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ABSTRACT: Bayesian networks (BNs) are a powerful tool for efficiently representing joint probability 
distributions and updating probabilities in near real-time. We combine BNs with structural reliability 
concepts to develop a warning system for runway overrun of a landing aircraft, one of the most critical 
accident types in civil aviation. This warning system allows to use currently available measurements of 
the aircraft weight, the head wind and the approach speed to update the probability of runway overrun 
in-flight. Based on the probability, the system informs the pilots whether or not it is save to land. One 
of the key challenges when treating structural reliability problems in a discrete BN framework is the 
discretization of the continuous outcome space of the reliability problem. We apply a heuristic 
developed in Zwirglmaier and Straub (2014) to discretize the reliability problem, such that the 
discretization error is kept small with only a moderate number of  discretization intervals. 

 

1. INTRODUCTION 
In the field of structural reliability, one is 
interested in estimating the probability of failure 
Pr 𝐹  of an engineering system. Failure is 
described through a limit state function (LSF) 
𝑔 𝐗  as 𝐹 = 𝑔 𝐗 ≤ 0 . Calculating the 
probability of failure corresponds to solving the 
following integral: 

Pr 𝐹 = Pr 𝑔 𝐗 ≤ 0 = 𝑓𝐗 𝐱 𝑑𝐱
! 𝐱 !!

 (1) 

with  𝑓𝐗 𝐱  being the probability density function 
of the random vector 𝐗 . Since there is no 
analytical solution for Equation 1 , in general 
well-known structural reliability methods 
Rackwitz (2001) are used to approximate it.  Due 
to performance issues of these methods in near 
real-time situations Straub and Der Kiureghian 
(2010a,b) proposed a framework for combining 

structural reliability with discrete Bayesian 
networks (BNs), for which exact inference 
algorithms exist. A major challenge is the 
discretization of the basic random variables, such 
that the problem can be treated in a discrete BN. 
In Zwirglmaier and Straub (2014) we propose a 
heuristic for efficiently discretizing the basic 
random variables of structural reliability 
problems. Here we apply this heuristic to 
develop a near real-time warning system, 
intended to prevent runway overrun (RWO). 
RWO of a landing aircraft, i.e. the event of a 
landing aircraft overrunning the end of the 
runway, is one of the most critical accident types 
in civil aviation IATA (2013). A physical model 
for the stopping distance of a landing aircraft was 
developed by Drees and Holzapfel (2012). By 
combining this physical model with a statistical 
model of its random input parameters, one can 
treat this problem as a structural reliability 
problem.  
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2. BAYESIAN NETWORKS FOR 
STRUCTURAL RELIABILITY 
PROBLEMS 

For brevity only a short introduction to BNs will 
be given here. For a detailed introduction, the 
reader is referred to the standard textbooks e.g. 
Jensen and Nielsen (2007); Kjaerulff and 
Madsen (2013). BNs are an efficient 
representation of a joint probability distribution 
of a number of random variables 𝐗 . The 
qualitative dependence structure of BNs is 
represented through a directed acyclic graph 
(DAG). Each node in the DAG represents a 
random variable and links between the nodes 
represent dependencies. The dependencies are 
quantified by conditional probability tables 
(CPTs), which are attached to the nodes. Family 
terms are used to describe relationships between 
nodes e.g. in the BN of Figure 1 ‘Runway 
overrun’ is among others a child of ‘Head wind’ 
and ‘Landing weight’, which in turn are its 
parents. A main feature of discrete BNs is their 
capability of updating probabilities in near real-
time. For this reason Straub and Der Kiureghian 
(2010a,b) proposed a framework for combining 
BNs with structural reliability concepts. While 
structural reliability problems are typically 
applied to problems with a continuous outcome 
space, robust updating with exact inference 
algorithms is only possible for discrete BNs and 

some special continuous cases. These are BNs 
with Gaussian nodes, whose means are linear 
functions of their parents and BNs, whose nodes 
are defined as a mixture of truncated 
exponentials (MTE) Langseth et al. (2009). 
Discretization of the outcome space of a 
reliability problem is therefore a crucial element 
in the combination of structural reliability and 
BNs. Inevitably this discretization leads to an 
approximation, whose error should be 
minimized. 

3. DISCRETIZATION 
The random variable of interest in structural 
reliability problems is the performance of the 
component or system. In the scope of this paper, 
the interest is in whether a landing aircraft runs 
over the end of a runway or not. A binary node 
‘Runway overrun’ is introduced as the target 
node (Figure 1). Each basic random variable of 
the reliability problem is modeled as a parent of 
the target node. Measurements can be performed 
on some of the quantities represented by the 
basic random variables. To preserve causality in 
a BN, measurement variables are generally 
included as children of the corresponding basic 
random variables. The computational demand for 
computing the parameters of the BN and for 
inference in the BN is governed by the size of the 
target node’s CPT. To keep this CPT at a feasible 
size, it is necessary to limit the number of 

 
Figure 1. A Bayesian network for assessing RWO risks. The light grey nodes are not included explicitly in the BN 
because the uncertainty associated with them can be neglected. The dark grey nodes are excluded because the BN 
is intended as a tool for decision support at a point in time when no information on the state of these nodes can be 
obtained. The explicitly modeled nodes are shown in white.  
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discretization intervals of the basic random 
variables. The objective of using only a moderate 
number of intervals is however opposed to the 
objective of minimizing the discretization error. 
As long as the nodes representing basic random 
variables have their prior distribution, there is no 
discretization error. However, once evidence 
updates the distributions of the basic random 
variables, a discretization error occurs. The 
reason for that is, that the discrete BN is not 
capable of representing the dependency between 
the measurement variables and the target variable 
exactly. This has been recognized by Straub and 
Der Kiureghian (2010a,b) and is discussed in 
detail in Zwirglmaier and Straub (2014). The 
magnitude of the discretization error is 
determined by the discretization scheme used. 
An efficient discretization scheme should 
minimize the posterior discretization error while 
using only a feasible number of intervals to 
discretize the outcome space of the basic random 
variables. 

 

Figure 2. Linear (FORM) approximation 𝐺! 𝑢!, 𝑢!  
of the LSF 𝐺 𝑢!, 𝑢!  at the design point 𝒖∗ in 
standard normal space. The elements of the normal 
vector on 𝐺! 𝑢!, 𝑢! , 𝛼! can be viewed as importance 
measured for the random variables 𝑈!. 
 
In Zwirglmaier and Straub (2014) we propose a 
heuristic for an efficient discretization of a 
reliability problem’s outcome space, such that it 

can be treated in a discrete BN framework. To 
determine the discretization scheme for each 
basic random variable 𝑋!, the heuristic uses the 
FORM importance measure 𝛼! (Fig. 2). 𝛼! is the 
𝑖-th element of the normal vector on the linear 
approximation 𝐺! 𝐮  of the LSF 𝐺 𝐮  in 
standard normal space. If the uncertainty 
associated to a random variable 𝑈! does not have 
any influence on Pr 𝐹 , 𝛼!  is 0. If  Pr 𝐹  does 
only depend on the uncertainty associated with 
𝑈!, 𝛼!  is 1.  In the following, we summarize the 
derivation of the discretization heuristic, which 
starts out in standard normal space. The resulting 
discretization scheme is then transformed back to 
the original space. 

3.1. Optimal discretization schemes for linear 
LSFs in U-space 

We consider linear LSFs in U-Space, i.e. the 
FORM approximations. For each of the random 
variables in U-space, a hypothetical 
measurement is considered, to which an additive 
normal distributed error 𝜀! is associated. For this 
case, there exists an analytical solution to 
computing the posterior probability of failure 
given the measurements. For this reason, it is 
feasible to find an optimal discretization scheme 
through optimization. We parameterize 
discretization schemes as illustratively shown in 
Figure 3 for a linear two-dimensional reliability 
problem in U-space. In each dimension, there is a 
first and a last interval boundary. All outer 
interval boundaries combined form the 
discretization frame. The cells inside of this 
discretization frame are fine while coarse cells 
capture the remaining outcome space. The 
discretization frame has a midpoint with a 
position 𝐯 , which is measured relative to the 
design point. 𝑛! intervals are used to discretize 
the basic random variable 𝑈!, this includes the 
two intervals outside of the discretization frame. 
The width of the discretization frame 𝑤!  in 
dimension 𝑖 is the distance between the first and 
the last interval boundary in this dimension. Let 
𝐝  be a vector containing the discretization 
parameters for the 𝑚 basic random variables i.e. 

α2

α1
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u*
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𝐝 = 𝑛!,… ,𝑛!,𝑤!,… ,𝑤!, 𝑣!,… , 𝑣! . The 
optimal discretization is then defined as: 
 
𝐝!"# = argmin

𝐝
E! 𝑒𝑟𝑟!"#$ 𝐝,𝐦                    

                    = argmin
𝐝

𝑒𝑟𝑟!"#$ 𝐝,𝐦 𝑓 𝐦
𝐌

𝑑𝐦             
(2)  

 
subject to:  
 

𝑐!"# ≥ 𝑛!
!

   (3)  

𝑐!"# is the maximum number of cells that may 
be used to discretize the problem. 
E! 𝑒𝑟𝑟!"#$ 𝐝,𝐦  in Eq. 2 denotes the expected  
posterior error, where 𝐸!is the expectation with 
respect to the measurement outcomes. The error 
𝑒𝑟𝑟!"#$ 𝐝,𝐦  is here defined as: 
 

𝑒𝑟𝑟!"#$ 𝐝,𝐦

=
log!" P! 𝑴 𝐝,𝐦 − log!" P! 𝑴 𝐦

log!" P! 𝑴 𝐦
 (4)  

 
P! 𝑴 𝐝,𝐦  is the estimate of the posterior failure 
probability obtained from the discrete BN and 
P! 𝑴 𝐦  is the exact posterior failure 
probability. This definition of the error can be 
seen as a relative error with a weighting term that 
ensures that a relative error is considered to be 
worse if the posterior failure probability is large. 
Calculating the expected value in Eq. 2 is 
essentially a preposterior analysis, meaning that 
before any measurements have been made one 
integrates over all possible measurements 
outcomes Benjamin and Cornell (1970); Straub 
(2014). 

3.2. Heuristic 
The most important findings from the 
optimization described above are briefly 
summarized. They are based on optimizations for  

 
 
Figure 3. Parameterization of a discretization 
scheme. The last and the first interval in each 
dimension build a frame with width 𝑤! , which 
encloses a region that is discretized by fine intervals. 
The midpoint of this frame has a position 𝑣! relative 
to the design point  in each dimension. Furthermore in 
each dimension there is am integer number 𝑛!   of 
intervals used to discretize the outcome space. 
 
different linear problems in standard normal 
space with two or three basic random variables. 
The considered problems differ in terms of: 
• The importance of the basic random variables 

(expressed through the FORM importance 
measures 𝛼!) 

• The prior failure probabilities Pr 𝐹  of the 
problem 

• The maximal number of cells 𝑐!"# 
• The standard deviation of the measurement 

error 𝜀!  
The results show that the optimal discretization 
is independent of the standard deviation of the 
measurement error. Furthermore, when fixing an 
integer number 𝑑  and choosing 𝑐!"#  as 
𝑐!"# = 𝑑! , the discretization parameters are 
independent of the number of basic random 
variables 𝑚. Independent of all other factors, the 
discretization frame is always centered at the 
design point, i.e. the shift 𝐯 of the discretization 
frame is negligible.  The optimal number of 
intervals 𝑛!   used to discretize 𝑈! is equal, or at 
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least almost equal, for all basic random variables 
in a problem, independent of the investigated 
factors.  
For the width of the discretization frame 𝑤! in 
dimension 𝑖 a clear dependence was found on: 
• The importance of the basic random variables 

𝛼! 
• The prior failure probabilities Pr 𝐹  of the 

problem 
• The maximum number of cells 𝑐!"# 
The dependency of 𝑤! on 𝛼! is shown in Figure 4 
(grey curve) for Pr 𝐹 = 10!! and 𝑐!"# = 10!.  
When considering not directly the width 𝑤! as a 
function of 𝛼!, but instead the probability mass 
enclosed by the discretization frame, 
log Φ 𝑢!∗ + 𝑤! 2 −Φ 𝑢!∗ − 𝑤! 2 , the 
relation to 𝛼! can be described by an exponential 
function. Here 𝑢!∗ is the 𝑖-th component of the 
design point. The grey curve representing the 
dependency between 𝛼!  and 𝑤!  in Figure 4 is 
derived from the exponential function 
representing the relationship between 𝛼! and the 
enclosed probability mass. For Pr 𝐹 = 10!! 
and 𝑐!"# = 10! the exponential function fitted 
to the points obtained through optimization is: 

log Φ 𝑢!∗ +
𝑤!
2 −Φ 𝑢!∗ −

𝑤!
2 =  

−0.14  exp 4.7   𝛼!  
(5) 

3.3. Application to general reliability problems 
The proposed heuristic is derived in standard 
normal space for linear LSFs corresponding to 
the FORM solution. It is known that in most 
practical applications, the FORM estimate is 
quite accurate, meaning that most practical LSFs 
are not strongly non-linear in U-space Rackwitz 
(2001). Therefore, it is reasonable to assume that 
a discretization scheme, which is optimal for a 
linear surrogate LSF, is also efficient for the 
corresponding non-linear LSF. Since the final 
BN is intended as a model of the problem in its 
original space, the discretization scheme needs to 
be transformed back to the original space. If the 
basic random variables are statistically 
independent, the interval boundaries of each 

Figure 4. The optimal width of the discretization 
frame respectively the logarithm of the probability 
mass enclosed between the first and the last interval 
of the discretization frame in dimension 𝑖  as a 
function of 𝛼!. The crosses mark the points obtained 
through optimization, which are used to fit the 
exponential function. 
 
basic random variable can be transformed 
independently. If the basic random variables are 
dependent, the interval boundaries of one 
dimension cannot be transformed independently 
of the other dimensions. A discretization scheme, 
which is orthogonal in U-space, will thus not be 
orthogonal in X-space. We can overcome this 
problem as follows. Consider transforming 𝑢!! , 
the 𝑘-th interval boundary of the discretization 
scheme of 𝑈!. Orthogonality in X-space can be 
preserved by transforming a point 
𝑢!∗ ,… ,𝑢!!!∗ ,𝑢!! ,𝑢!!!∗ ,… ,𝑢!∗ , i.e. the point 

which equals the design point except for the 𝑘-th 
dimension, to obtain the interval boundary 𝑥!! in 
X-space. The resulting discretization scheme will 
only approximately correspond to the 
discretization scheme in U-space. Finally, the 
conditional probabilities forming the target 
node’s CPT are calculated based on the original 
LSF 𝑔 𝐱  by Monte Carlo simulation or latin 
hypercube sampling.  

4. APPLICATION TO RUNWAY OVERRUN 
Runway overrun (RWO) is one of the most 
critical accidents types in civil aviation. RWO of 
a landing aircraft corresponds to the event of the 
operational landing distance exceeding the 
available runway length  (Fig. 5). Drees and 
Holzapfel (2012) proposed a model for the 
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operational landing distance required by a 
landing aircraft. We use this model to define a 
LSF for runway overrun, which using the 
definitions from Fig. 5 can be written as: 
𝑔 𝐱 = Stop  margin 𝐱  (6) 
with 𝐗 representing the basic random variables 
of the problem i.e. the random variables 
summarized in Table 1. In Zwirglmaier et al. 
(2014) subset simulation Au and Beck (2001) is 
applied to calculate RWO probabilities for this 
problem. Here we develop a BN that allows to 
update RWO probabilities of an approaching 
aircraft in near real-time. While approaching an 
airport observations and measurements related to 
the factors influencing RWO can be made. These 
measurements can be used to reduce the 
uncertainty associated with the occurrence of 
RWO and to make a decision on whether landing 
is save or not. Which variables can be observed 
is closely related to the question, which variables 
should be modeled explicitly in the BN. The 
pilots make a decision before the aircraft touches 
down, before spoilers and reversers are deployed 
and before starting to break. Since it is not 
possible to make measurements related to the 
touchdown point, the spoiler- or reverser- 
deployment time and to the braking time before 
the decision is made, these random variables are 
not modeled explicitly as nodes in the BN. In 
Figure 1 these variables are shown in dark grey 
and with dashed links only for the purpose of 
illustration. Also the nodes shown in light grey 
(Fig. 1) are included only implicitly in the BN. 
The reason for that is that their influence on 
Pr 𝑅𝑊𝑂  is negligible; this becomes evident 
from the FORM importance measures in Table 1. 
The remaining variables are thus ‘Approach 
speed deviation’, ‘Landing weight’ and ‘Head 
wind’. For these variables, measurements of their 
current states can be used to reduce the 
uncertainty about their state at the time, when the 
aircraft is approaching the runway. We assume 
the measurement 𝑚!  (i.e. the quantity at the 
current point in time) equals the state of the 
random variable 𝑋!  at landing plus a random 
term 𝜀!. 

𝑚! = 𝑥! + 𝜀! (7) 

𝜀! is modeled by a normal distribution with zero 
mean and standard deviation 𝜎!!. For the random 
variable landing weight (at landing time) we 
assume the standard deviation of the 
corresponding measurement error to be 
𝜎!!" = 0.2 ∙ 𝜎!" ; where 𝜎!"  is the standard 
deviation of the basic random variable landing 
weight.  Due to turbulences governing wind 
speeds, the measurement of the current head 
wind speed is a less reliable indicator for the 
head wind speed at landing time we model the 
measurement error with a standard deviation 
𝜎!!" = 0.5 ∙ 𝜎!". An even higher uncertainty is 
assumed for the approach speed deviation at 
landing, given a current speed deviation: 
𝜎!!"# = 𝜎!"#. 

Figure 5. Term definitions for runway overrun of a 
landing aircraft. 

5. RESULTS 
We base the discretization for the problem at 
hand on the reliability analysis in Zwirglmaier et 
al. (2014). The FORM importance measures 𝛼! 
obtained there are shown in Table 1. Applying 
Eq. 5 gives us the widths 𝑤! of the discretization 
frame (Table 2).  In the considered problem, the 
widths 𝑤!  are similar for all basic random 
variables. In Figure 4 it can be seen that smaller 
𝑤!′s are only optimal for random variables with 
higher importance i.e. above 𝛼! = 0.8 . A 
discretization frame with the obtained widths is 
centered at the design point. The edges of this 
discretization frame represent the first and the 
last interval boundary in each dimension. The 
remaining interval boundaries are then 
introduced between those outer intervals.  

Threshold Touchdown
point

Runway length

Aircraft
stops

Runway
end

Operational landing distance Stop margin
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Transforming the boundaries back to the original 
space yields the interval boundaries shown I 
Table 2. For each cell in the discretization 
scheme, conditional failure probabilities are 
calculated. To this end samples from each cell as 
well as samples from the remaining basic 
random variables, not modeled explicitly as 
nodes, are generated. The samples from the 
remaining, implicitly modeled basic random 
variables are thereby generated from an 
importance sampling density centered at the 
design point. To calculate the conditional 
probabilities, the samples are weighted 
accordingly. For the fine cells inside the 
discretization frame, 300 samples are used per 
cell, while for the boundary cells 500 samples 
are used to calculate the conditional 
probabilities. The CPTs of the measurement 
nodes are calculated by Monte Carlo Simulation. 
This is computationally inexpensive compared to 
the computation of the target node’s CPT. 
Without entering any evidence, the final BN 
gives a RWO probability of 1.7 ∙ 10!!. An exact 
benchmark solution does not exist, however this 
value is in the range of the estimate obtained 
through subset simulation in Zwirglmaier et al. 
(2014), where a probability of 1.1 ∙ 10!!  was 
computed. Observing no head wind at the current 

point in time and entering this as evidence to the 
BN reduces the RWO probability to 1.9 ∙ 10!!". 
Having on the other hand currently a speed 
deviation of +30  knots, will increase the 
probability of a RWO to 2.9 ∙ 10!! according to 
the BN. Observing both events at the same time 
yields a RWO probability of 4.8 ∙ 10!!". 

6. CONCLUDING REMARKS 
We model a reliability problem with a 
physically-based performance model through a 
discrete BN.  The advantage of this lies in the 
capability of discrete BNs to rapidly update 
probabilities, once new information becomes 
available. Such a feature is especially of interest 
in near real-time applications. Treating 
continuous reliability problems in a discrete BN 
framework requires the discretization of the 
continuous outcome space of the reliability 
problem. This leads inevitably to a discretization 
error. In order to keep this error small, a heuristic 
is applied. In this paper we use 10 intervals for 
each basic random variable, that is modeled 
explicitly as a node in the BN. Of the 10 basic 
random variables in the original problem, we 
model 3 explicitly as nodes. The number of free 
parameters of the target variable’s CPT is thus 
1000. Computing the parameters for this setting 

Table 1.  Basic random variables of the problem. The FORM importance measures indicate the influence of the 
uncertainty associated with the respective random variable on the probability of failure (RWO). Note: The mean 
value of the random variable ‘Touchdown point’ is a deterministic function of other basic random variables 
Zwirglmaier et al. (2014).  
Random variable Distribution model Mean Std. dev. 𝛼! 
Landing weight [t] Weibull(60.0,44.3) 59.3 1.69 0.116 
Head wind [kts] Normal(5.4,5.8) 5.4 5.8 −0.693 
Temperature [°C] GEV(−0.26,7.9,6.5) 9.4 8.0 0.020 
Pressure [hPa] Normal(1016,8.1) 1016 8.1 0.010 
Approach speed deviation [kts] GEV(−0.20,4.0,3.0) 4.7 4.2 0.202 
t reverser [s] Gamma(9.0,0.55) 5.0 1.7 0.037 
t start braking [s] GEV(0.15,3.9,10.2) 13.1 6.4 0.650 
t spoiler [s] GEV(0.11,0.89,3.7) 4.3 1.3 0.019 
t end braking [s] Normal(25,5) 25 5 0.004 
Touchdown point [m] Normal(𝜇!"# , 121.9) 𝜇!"# 121.9 0.204 
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is feasible for the LSF considered in the scope of 
this paper. However if the number of cells 𝑐!"#, 
used for discretization is increased by some 
orders of magnitude this may lead to 
considerable computation cost. It is therefore 
necessary to decide carefully, which random 
variables should be modeled explicitly as nodes. 
For computationally more demanding LSFs it 
may be necessary to reduce the number of 
intervals per dimension and accept a larger 
discretization error. By applying an importance 
sampling approach to sample from the 
distributions of the implicitly modeled random 
variables, we can reduce the number of samples 
required to populate the CPT of the target 
variable to some extend. Furthermore while a 
computational demanding LSF may cause a large 
computational effort in the process of 
establishing the model, it does not have any 
effect on the computational effort in the 
application of the model. Finally it should be 
noted that while the final BN developed in this 
paper is quite simple, such BNs can be 
incorporated into more complex BN models, 
fully exploiting the advantages of the modeling 
framework. 
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Table 2. The width of the discretization frame in U-space and the interval boundaries in the original space 
for each of the basic random variables derived following Equation 5.  
Random variable Width U-space Interval boundaries (X-space) 

Landing weight  2.92 [58.0;   58.7;   59.3;   59.9;   60.4;   60.8;   61.2;   61.6;   61.9] 
Head wind 3.32 −[25.1;   22.7;   20.3;   17.9;   15.5;   13.1;   10.7;   8.2;   5.8] 
Appr. speed dev. 3.15 [2.2;   3.9;   5.6;   7.3;   9.2;   11.0;   12.8;   14.6;   16.25] 
 


