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Abstract

One of the weakest aspects of hydromorphological models is the use of empirical for-

mulae for calculating sediment transport rates, which are of limited generality. In

many cases, unreasonable morphological changes are predicted and the results of the

di�erent formulae often strongly vary. The reasons arise from the complexity of the

interaction between �ow and sediment transport, and in the limitations of the non-

linear regression applied in these methods. In contrast to most traditional empirical

methods, which need prior knowledge about the nature of the relationships within the

data, the data-driven models (e.g. Arti�cial Neural Networks) learn from the data

examples presented to them in order to capture the subtle functional relationships

between the data. This can be determined even if the underlying relationships are

unknown or the physical meaning is di�cult to explain.

The main objective of this study is to develop optimal Arti�cial Neural Network models

(ANNs), able to be integrated into a hydromorphological model system and adequately

predict the morphological changes in alluvial channels under di�erent �ow conditions.

To achieve this aim, the open source �nite element system, TELEMAC-MASCARET,

was applied to simulate di�erent complex hydrodynamic and morphodynamic situa-

tions. The calibrated results were then used as input-data in ANN to obtain ANN-

based approximators for the new proposed schemes of hydromorphodynamic-model

system. In the �rst scheme, 2 or 3 ANN models might be utilized for hydrodynamic

calculations. At each time step, the hydrodynamic variables including velocity �eld

and water depth were transferred into the morphodynamic model (ANN-based ap-

proximator), which then sent back the updated bed elevation to the hydrodynamic

model.

In the second scheme, only one ANN based approximator model was integrated into

the sediment transport model SISYPHE while the TELEMAC-2D/3D remained un-

changed for hydrodynamic calculations. The time-step of morphodynamic part (ANN-

based approximator) was much larger than the time step of TELEMAC-2D/3D and

during the �ow computation, the bed level was assumed to stay constant.
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The novelty of the proposed schemes is that they reduce the computation costs sig-

ni�cantly in the prediction of both hydrodynamic and morphodynamic variables. To

evaluate the prediction qualities of the proposed models, a comparative study evalu-

ating the errors associated with the model was carried out. A statistical parameter

included in this study was the measurement of goodness-of-�t between the estimated

bed change and TELEMAC simulation.
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Zusammenfassung

Die Verwendung von nur begrenzt allgemein gültigen, empirischen Formeln zur math-

ematischen Beschreibung von Sedimenttransport stellt eine Unsicherheit und Limi-

tierung von hydromorphologischen Modellen dar. Häu�g prognostizieren diese Mod-

elle unrealistische morphologische Veränderungen und die Ergebnisse verschiedener

Formeln für ein identisches Gebiet variieren stark. Ursache dieser Limitierung ist es,

dass die Wechselwirkung zwischen Strömung und Sedimenttransport sehr komplex ist

und nur begrenzt durch nichtlineare Regression, was diesen Methoden zu Grunde liegt,

abbildbar ist.

Im Gegensatz zu den meisten traditionellen empirischen Methoden, die umfassende

Kenntnis über die Beziehung zwischen Daten benötigt, können datengetriebene Mod-

elle (z. B. künstliche neuronale Netze) von diesen Daten lernen und detaillierte funk-

tionale Beziehungen ermitteln. Das geschieht sogar, wenn die grundlegende Beziehung

zwischen den Daten unbekannt ist oder ihre physikalische Bedeutung sich schwer

beschreiben lässt. Das Hauptziel dieser Arbeit ist es, geeignete Architekturen kün-

stlicher neuronaler Netze zu entwickeln, die in ein hydromorphologisches Modellsystem

integriert werden können und in der Lage sind, die morphologischen Veränderungen

in alluvialen Gerinnen unter verschiedenen Strömungsbedingungen vorherzusagen.

Für die Simulation verschiedener hydrodynamischer und morphodynamischer Sit-

uationen wurde das Open-Source-System TELEMAC-MASCARET angewandt. Die

kalibrierten TELEMAC-MASCARET-Ergebnisse wurden als Eingangsdaten verwen-

det, um ANN-basierte Approximatoren für die neu vorgeschlagenen Schemata des hy-

dromorphodynamischen Modellsystems zu erhalten. Im ersten Schema können wahlweise

2 oder 3 ANN-Modelle verwendet werden, um die hydrodynamische Berechnungen

durchzuführen. Die ermittelten Variablen, wie Geschwindigkeitspro�l und Wasser-

tiefe, werden in jedem Zeitschritt in das neu entwickelte morphodynamische Modell

(ANN-basierter Approximator) übertragen, welches die aktualisierte Flusssohle an das

hydrodynamische Modell zurückspielt.

In dem zweiten Schema wird nur ein ANN-basiertes Modell in das morphody-
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namische Modell integriert, während für die Hydrodynamik auf das konventionelle

TELEMAC-2D/3D zurückgegri�en wird. Diese Entwicklung erlaubt einen deutlich

vergröÿerten Zeitschritt für die morphologische Berechnung, als der Zeitschritt von

TELEMAC2D/3D.

Die Neuheit der vorgeschlagenen Systeme besteht darin, dass sie den Berechnungsaufwand

bei der Vorhersage von hydrodynamischen und morphodynamischen Gröÿen deut-

lich reduzieren. Um die Vorhersagequalität der entwickelten Modelle zu bewerten,

wurde eine Vergleichsstudie durchgeführt. Maÿgebendes Kriterium war dabei die

Genauigkeit, mit der die hier vorgestellten Modelle die Ergebnisse der TELEMAC-

MASCARET Simulationen reproduzieren können.
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Chapter 1

Introduction

1.1 Historical background

Fluid �owing over the bed of a river, channel, or estuary acts to deform the shape

of the bed by transporting sediment. This process can have a detrimental impact on

the coastal infrastructure and environment. For example, dredged navigational chan-

nels and coastal inlets can be rendered useless by the accumulation of transported

sediment producing signi�cant cost to return these structures to operational status or

to maintain them. As another example, the structural integrity of bridges and piers

may be compromised due to excessive scour of the bed around abutments. Besides

these infrastructure issues, transport of pollutant with or as sediments can cause seri-

ous environmental damage. Therefore, accurate prediction of sediment transport and

morphological bed level changes is necessary to manage these costly problems.

Determining the evolution of a given bed con�guration due to the motion of the

�uid and the resulting sediment transport was �rst examined in a theoretical context

by Exner (1925). Exner's work in this area can be considered as a classical treatment

of the problem and appears in many texts (e.g., Graf 1971; Leliavsky 1955; Raudkivi

1967; Sleath 1984; Yang 1996). It states the conservation of sediment mass and in the

literature is often referred to the Exner equation which is the foundation of estuarine

and river morphodynamic. From equations for the conservation of �uid and sediment

mass, and through a number of simplifying assumptions, Exner derives a simpli�ed

bed evolution model that takes the form of a nonlinear hyperbolic scalar equation.

Despite the relative simplicity of this model, the results obtained are, to a limited

extent, in good agreement with what is observed in nature. The analytical solution

provided by Exner for his model is the so-called classical or genuine solution of the

initial-value problem, which is valid while the solution is continuous (Kubatko, 2007).
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Numerical morphological models also involve coupling between a hydrodynamic

model and equation for bed level change. The sediment conservation equation is phys-

ically a nonlinear equation for the bed level like other mass conservation equations. A

common feature of these conservation laws are shock waves. It means that discontinu-

ities of the respective physical quantities will develop when particle velocity approaches

celerity (Long et al. 2008). Several decades of research e�ort have been devoted to the

development of numerical solution techniques for obtaining accurate and stable simula-

tion of shock behavior with invention of shock-capturing methods. The methods can be

classi�ed into two general categories: classical and modern methods. The well-known

classical shock-capturing methods include the MacCormack method, Lax-Wendro�

method, and Beam-Warming method. Examples of modern shock-capturing schemes

include higher-order total variation diminishing (TVD) schemes, �ux-corrected trans-

port scheme, Monotonic Upstream-centered Schemes for Conservation Laws (MUSCL)

based on Godunov approach (1959), and the piecewise parabolic method (PPM). An-

other important class of high-resolution schemes belongs to the approximate Riemann

solvers by Roe (1981). Recent examples of such models are the work of Nicholson et al.

(1997), Alam (1998), Kassem and Chaudhry (2002), Johnson and Zyserman (2002),

and Hudson et al. (2005).

Nicholson et al. (1997) reviewed some state-of-art morphodynamic models in which

many of them used classical shock capturing schemes for bed level simulation. Alam

(1998) applied MacCormack scheme to the study of aggradation-degradation in alluvial

channels. Kassem and Chaudhry (2002) developed a two-dimensional numerical model

to predict the time variation of bed deformation in alluvial channel bends. A variety of

numerical schemes, including versions of Lax-Friedrichs, Lax-Wendro�, MacCormack

and Roe schemes based on shallow water equation for hydrodynamics and simple power

law for sediment transport rate are discussed in Hudson et al. (2005). He showed that

a �ux-limited version of the Roe scheme was much more stable than Lax-Friedrichs and

Lax-Wendro� schemes. However, Roe scheme su�ers from calculation of eigenvectors

for the Roe averaged Jacobian matrix of the entire hydrodynamics and morphology

system. This calculation is possible for simple problems, like system of shallow water

and simple power law of sediment transport rate, but it becomes very complex for

more comprehensive hydrodynamic and sediment transport models.

In recent years, di�erent comprehensive morphodynamic modeling systems are de-

veloped such as ECOMSed (Hydroqual, 2002), Mike-21 (Warren and Bach, 1992),

Delft3D (Lesser et al., 2004), ROMS (Warner et al., 2008), FAST3D (developed at

the Institute of Hydromechanics, University of Karlsruhe,Germany), and TELEMAC-
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MASCARET. These modeling systems generally consist of di�erent �ow modules (from

1D to 3D): a wave propagation model, and a sand transport model encompassing bed-

load and suspended load (Papanicolaou et al., 2008, Amoudry, 2008). Most existing

morphodynamic modeling systems rely on �nite di�erence methods and are there-

fore constrained by the use of boundary (orthogonal curvilinear horizontal coordinate

systems, sigma stretched vertical coordinates), which are only suitable for simpli�ed

geometry. Moreover, �ltering methods such as the lengthening of the tide or the use

of the so-called morphodynamic factor (Latteux, 1995), which have been extensively

applied to reduce computational costs for long term applications, introduce an addi-

tional source of uncertainty (cf. van der Wegen and Roelvink, 2008). On the other

hand, most existing morphodynamic modeling systems rely on numerical methods,

therefore, having high computational costs for long-term applications.

1.2 Application of data-driven methods

Due to either the physical complexity of a natural phenomenon or the time-consuming

process of analyzing of a system, modeling a system is always challenging in the �eld

of water resource engineering. Data-driven methods have been found as powerful tools

to help overcome those di�culties by building the subtle functional relationships from

data examples presented to them and accelerating the response of decision-makers in

facing real-world problems. The popularity of these methods arises from their ability

to derive relationship between complex data without need for deep understanding of

their physical meanings. Data-driven methods encompass mainly two di�erent cate-

gories, statistical and soft computing (arti�cial intelligent) methods. Some important

advantages of these methods are that they are inexpensive, precise, and �exible. They

can be used to deal with the problems, which are considered too complicated by our

knowledge of mathematical equations. In system modelling, as the complexity of a

system increases the e�ciency of o�ered models by data-driven methods rises. In gen-

eral, some problems of interest for which data-driven methods can be used are listed

below:

• Data classi�cation and clustering

• Function approximation

• Prediction

• Optimization
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• Data generation

• General simulation

For the sake of the previously mentioned advantages and capabilities, there has

been a growing enthusiasm on data-driven methods in the �eld of water resources and

environmental engineering during the recent decade.

Figure 1.1: Number of articles published in the selected data-driven techniques (Google

Scholar)

The trend of the number of published papers that use data-driven methods including

arti�cial neural networks (ANNs), fuzzy modeling, regression models, and data fusion

in the �eld of water resources and environmental engineering is illustrated in Fig 1.1

for a period of 20-year. However, the presented statistic might not represent the actual

number of researches in those �elds; their relative changes demonstrate the fact of an

increasing demand on the application of those models. The �gure shows a considerable

ascending trend in all classic and modern techniques (Araghinejad, 2013).

1.3 Objectives of the research

The main objective of this research is to develop new schemes for hydromorphological

model system based on data-driven methods to predict the morphological changes with

lowest computational costs. To achieve this, the research has the following steps to

pursue:
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1. Test and analyze the performance of data-driven methods in the context of pre-

diction and function approximation, and improve their e�ciency in the �eld of

water engineering if possible.

2. Develop analytical and conventional numerical hydro-morphological solutions,

for bed level calculations to generate input data for training and testing of the

networks.

3. Test di�erent networks to obtain information on the optimum network structures

and parameters.

4. Integrate the optimum networks into new proposed schemes of hydrodynamic-

morphologic-model system.

5. Apply both proposed integration models on di�erent test cases and validate their

capacity in reproducing the morphodynamic modeling.

1.4 Outline of the thesis

In Chapter 2, the fundamentals of data-driven methods are discussed in preparation

for their application in Chapters 3 and 5. The �rst part of this chapter deals with

Arti�cial Neural Networks. A description of a simple arti�cial neuron and its analogy

with biological neuron is provided. Activation functions, various type of neural net-

work architectures and methods of training are described, followed by a discussion of

generalization capability of neural networks. The second part of this chapter consists

of a discussion of Adaptive Neuro Fuzzy Inference System. A description of fuzzy logic

and Fuzzy Inference Systems are described extensively. The common learning rules

applied to ANFIS is also provided. This chapter ends with development of some new

proposed learning rules for ANFIS.

Chapter 3 essentially focuses on the basics of the morphological bed level calcula-

tions. An introduction to the Navier-Stokes equations, its simpli�ed form including

Reynolds-Averaged-Navier-Stokes and shallow water theory are detailed in this part.

The modeling of morphodynamic component is provided by description of the Exner

equation. The concept of incipient motion of sediment particles and sediment trans-

port are outlined therein. This chapter also encompasses the principles of numerical

schemes, focusing mainly on Finite Di�erence Method, for solving a system of partial

di�erential equations, which model morphological evolution of the bed.

Chapter 4 gives an overall presentation of the TELEMAC-MASCARET system which
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is a comprehensive morphodynamic modeling system.

Chapter 5 is concerned with probably the most crucial objective of this research. It

describes two new integration concepts for the hydro-morphodynamic modeling sys-

tem using ANN models to predict the morphological changes. It also explains the

motivation behind this research and novelty of the proposed concepts.

Chapter 6 discusses the criteria on which the proposed models are evaluated. This

includes the examples and statistical indices that are used for assessment of model

performances.

Chapter 7 tries to validate the ability of data-driven methods in the �eld of water

engineering and sediment transport. Two test cases are considered to achieve our ob-

jective. The �rst one consists of the development of an ANN and ANFIS models for

contraction scour estimation. The data collection and input parameters are described

in details. A description of the chosen networks architectures and the reason for this

choice are described extensively. This involved evaluating the optimal number of hid-

den layers and neurons as well as the activation function for ANN model. A same

procedure was performed to evaluate the optimal parameters for ANFIS such as the

number and type of membership functions. The Levenberg-Marquardt algorithm is

the selected method of training for both ANN and ANFIS methods. The networks

were then validated using unseen data set and the results were compared to some

well-known empirical equations. This chapter also conducts a comparative study of

three di�erent learning algorithms applied to ANFIS for predicting daily-suspended

sediment concentration using the second test case. The comparison is made between

the two common learning rules implemented on ANFIS using the MATLAB software

package and one proposed rule applied using a FORTRAN-based computer code. A

comprehensive explanation of data collection is provided therein. A description of the

chosen input combination and the reason for this selection is discussed. The networks

were tested using new data and �nally the best performance of each were compared.

Chapter 8 focuses on the development of 1D ANN for modeling dynamic channels.

This section describes the development of an ANN model that can predict the morpho-

logical changes in a straight alluvial channel under steady �ow discharge and uniform

bed material, where the bed level changes are calculated directly from the de�ned �ow

without calculation of the bed load. This chapter clari�es extensively how the required

data are selected for ANN training and explains the way in which the ANN model is

designed.

Chapter 9 analyses the performance of our �rst proposed concept, which applies

2D/3D ANN models for hydro-morphodynamic processes. To achieve this, two exam-
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ples including �ow and bed change in a straight and curved channel are considered.

In contrast to the 1D model where an analytical approximation is used for data gen-

eration, the open-source �nite-element TELEMAC-MASCARET system will be used

for 2D/3D models to simulate the morphodynamic evolution and generate input data

set for ANN training process.

Chapter 10 discusses how the second proposed concept, which requires modi�cation

of some subroutines TELEMAC-MASCARET system, is implemented. A description

of the chosen input parameters and the reasons for this choice are described. The

similar examples of chapter 9 are used here to assess the e�ectiveness of the model.

Chapter 11 is a discussion of the results and conclusions with recommendations of

further research.
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Chapter 2

Data-driven methods

The term �method� points out a wide range of tools and programs, which can be

used to imitate a real-world system. These methods are usually divided into physical

and mathematical categories. A framework of di�erent types of methods is depicted

in Fig.2.1a. As can be seen from this �gure, the mathematical method is broken

down into three types of methods: data-driven, conceptual and analytical. Di�erent

types of mathematical methods could be classi�ed by the complexity of a system

as well as our mathematical knowledge, as shown in Fig.2.1b. Data-driven methods

are split into the two general forms of soft computing methods, which is the major

focus of this research, and statistical methods. Some examples of the soft computing

methods are fuzzy logic, neuro-computing and genetic algorithms. Each one of these

methods have been developed to deal with a speci�c type of data. For instance,

methods such as probabilistic neural networks usually use discrete data to classify a

set of input variables, where fuzzy inference systems can consider descriptive data.

In this research, Arti�cial Neural Networks (ANN) and Adaptive Neuro Fuzzy

Inference Systems (ANFIS) are considered as the two most popular soft computing

methods. These methods o�er numerous advantages, such as requiring less formal

statistical training, ability to implicitly detect complex nonlinear relationships between

Parts of this chapter were published as:

Kaveh, K.; Bui, M. D.; Rutschmann, P. (2015a): Improvement of ANFIS model by developing of novel

hybrid learning algorithms for contraction scour modeling. Mathematics in Engineering, Science &

Aerospace (MESA), 6(4).

Kaveh, K., Bui, M. D., & Rutschmann, P. (2015): New hybrid learning algorithms in adaptive neuro

fuzzy inference systems for contraction scour modeling. In Proc. of the 14th International Conference

on Environmental Science and Technology Rhodes, Greece.

Kaveh, K.; Bui, M. D.; Rutschmann, P. (2017): A comparative study of three di�erent learning

algorithms applied to ANFIS for predicting daily suspended sediment concentration. International

Journal of Sediment Research, 32(3), 340-350.
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dependent and independent variables, ability to detect all possible interactions between

predictor variables, and the availability of multiple training algorithms. Disadvantages

include its �black box� nature, greater computational burden, proneness to over�tting,

and the empirical nature of model development (Tu, 1996). The following represents

an extensive description of these two types of methods.

(a) (b)

Figure 2.1: (a) A general classi�cation of di�erent types of methods; (b) Status of

three types of mathematical methods based on two characteristics of complexity and

mathematical knowledge (Modi�ed from Araghinejad, 2013)

2.1 Arti�cial Neural Networks

Arti�cial Neural Networks are inspired by the way biological nervous systems in the

human brain process information, and are used for complex problems of pattern recog-

nition, prediction, function approximation, etc. The way computation is done by a

human brain is entirely di�erent from that of a conventional computer. Computers

normally operate linearly, whereas the brain is a highly complex, nonlinear, and par-

allel system (Haykin, 2005). The brain gains experience during the lifetime and builds

its own rules. The nervous system adapts to its surrounding environment by plasticity.

ANNs mimic the way a human brain is working by using a massive interconnection of

simple computing cells, known as �neurons� or �processing units�. It has been proven

that ANNs are universal function approximator that can map any complicated non-

linear function.
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2.1.1 Human brain

The human nervous system can be viewed as a three-stage system, as depicted in

the block diagram of Fig.2.2. The central part of the system represented by the

neural net is the brain, which continually receives information, perceives it, and makes

appropriate decisions.

Figure 2.2: Block diagram representation of nervous system (Haykin, 2005)

In this �gure, the arrows pointing from left to right indicate the forward transmission

of information signals through the system while the arrows from right to left signify

the presence of feedback in the system. The receptors convert stimuli from the human

body or the external environment into electrical impulses that convey information

to the neural net. The e�ectors convert electrical impulses generated by the neural

net into discernible responses as system outputs (Haykin, 2005). The term neuron

is introduced to explain the structural constituents of the brain. A biological neuron

consists of four major parts, namely, soma, dendrite, axon, and synapse as shown in

Fig.2.3. The cell body of the neuron (soma) can store small electrical charges, similarly

to a battery. This storage is loaded by incoming electrical impulses from other neurons

and through dendrites, which are receptive zones (Black and Ertel, 2011). It should be

noted that neural networks work much faster on speci�c problems than conventional

systems because of the massive number of interconnections (synapses) between the

di�erent neurons.

Figure 2.3: Schematic of a biological neuron
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Plasticity in an adult brain might be described by two mechanisms: the creation of

new synaptic connections between neurons and modi�cation of existing neurons.

2.1.2 Model of an arti�cial neuron

The idea of developing an arti�cial neuron uses the same process. Let us considers

the neuron as a unit that functions in combining the inputs that come in (X) and

comparing the combined inputs with a speci�c activation function (θ) to determine an

appropriate output, as shown in Fig.2.4.

Figure 2.4: Schematic of an arti�cial neuron (Araghinejad, 2013)

Like synapses that control the magnitude of each single input, the inputs to an

arti�cial neuron could be weighted by a weight matrix. For a mathematical reason,

which is described in the next section, an arti�cial neuron usually bene�ts from an

additional unit input with a weight known as bias. The mathematical relation of the

functional process of an arti�cial neuron is de�ned as:

I = w × x + b (2.1)

Y =

{
1 if I ≥ θ

0 if I < θ
(2.2)

where x is input vector, w is weight matrix, b is bias, I is sum of the weighted inputs,

θ is threshold, and �nally Y is output. The crude analogy between an arti�cial and

biological neuron is that the connections between nodes represent the axons and den-

drites, the connection weights represent the synapses, and the threshold approximates

the activity in the soma (Jain et al., 1996).
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2.1.3 Activation functions

The threshold value in the second half of a neuron could be replaced by a mathematical

function, namely, the activation function to limit the amplitude of the output of a

neuron. The activation function is also referred to as a squashing function in that it

squashes the permissible amplitude range of the output signal to some �nite value.

Typically, the normalized amplitude range of the output of a neuron is written as

the closed unit interval [0,1] or alternatively [-1,1] (Haykin, 2005). Here we identify

the most common types of activation functions as illustrated in Fig.2.5. The Logistic

Sigmoid function is by far the most common form of activation function. It takes the

input I of any value and squashes the output a into the range of 0 to 1. A linear

Transfer Function is normally used in the �nal (or output) layer.

Figure 2.5: Four di�erent forms of transfer functions

2.1.4 Network architectures

The way the neurons of a neural network are structured is closely linked with the learn-

ing algorithm used to train the network. In general, the three fundamentally di�erent

classes of network architectures may be identi�ed as single layer feedforward, multi-

layer feedforward, and recurrent networks. The following provides a short description

of each class of architecture.
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2.1.4.1 Single-layer feedforward networks

In a layered neural network the neurons are organized in the form of layers. In the

simplest form of layered network, we have an input layer of source nodes that projects

onto an output layer of neurons (computation nodes), but not vice versa. In other

words, this network is strictly a feedforward or acyclic type. It is illustrated in Fig.2.6

for the case of m nodes in the input layer and S1 nodes in the output layer. Such a

network is called a single-layer network, with the designation �single-layer� referring

to the output layer of computation nodes (neurons). We do not count the input layer

of source nodes because no computation is performed there (Haykin, 2005).

Figure 2.6: Feedforward or acyclic network with a single layer of neurons

2.1.4.2 Multilayer feedforward networks

The second class of a feedforward neural network distinguishes itself by the presence of

one or more hidden layers, whose computation nodes are correspondingly called hidden

neurons or hidden units. The function of hidden neurons is to intervene between the

external input and the network output in some useful manner. By adding one or more

hidden layers, the network is enabled to extract higher-order statistics. The ability of

hidden neurons to extract higher-order statistics is particularly valuable when the size

of the input layer is large (Haykin, 2005).

The architectural graph in Fig.2.7 illustrates the layout of a multilayer feedforward

neural network for the case of a single hidden layer. The neural network in Fig.2.7 is

said to be fully connected when every node in each layer of the network is connected

to every other node in the adjacent forward layer (Haykin, 2005).
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Figure 2.7: Multilayer feedforward arti�cial network with one hidden layer

2.1.4.3 Recurrent networks

A recurrent neural network can be distinguished from a feedforward neural network in

that it has at least one feedback loop. There are di�erent classes of recurrent neural

networks. For example, a recurrent network may consist of a single layer of neurons

with each neuron feeding its output signal back to the inputs of all neurons. Fig.2.8

illustrates a class of recurrent network called layer-recurrent network, which contains

a feedback loop, with a single delay, around each layer of the network except for the

last layer.

Figure 2.8: Schematic of a layer-recurrent network (Araghinejad, 2013)

The �rst version of this network was introduced by Elman (1990). The presence of

feedback loops, whether in the recurrent structure of Fig.2.8 or that of other classes,

has profound impact on the learning capability and performance of the network. More-

over, the feedback loops involve the use of particular branches composed of unit-delay
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elements, which result in a nonlinear dynamical behavior, assuming that the neural

network contains nonlinear units (Haykin, 2005).

2.1.5 Learning rules of neural networks

To make statements over a speci�c task or environment, the con�gured ANN needs

to have some knowledge of the task or environment. For generation of knowledge

a so-called learning or training process needs to be passed (Fischler and Firschein,

1987). The weights and biases are parameters of a network that should be modi�ed

and assigned during this process, so that the network is able to evolve an appropriate

behavior towards its application. This could be obtained by either supervised or

unsupervised approaches. Training is an expression that is typically termed to the

supervised approach for determining weights and biases of a network. In supervised

learning, the learning rule is provided with a set of examples (the training set) of proper

network behavior while in unsupervised learning, the weights and biases are modi�ed

in response to network inputs only. There are no target outputs available. The problem

of learning an input-output mapping from a set of examples can also be understood as

the minimization of a suitably de�ned error function. Although di�erent de�nitions of

the error have been used, for concreteness we consider the sum-of-square-di�erences

error function de�ned as:

E(x,w) =
1

2

p∑
p=1

n∑
n=1

e2
pn =

1

2

p∑
p=1

n∑
n=1

[tpn − opn(x,w)]2 (2.3)

where x is input vector, w is weight matrix, tpn and opn are the target and the

correct output values for pattern p, respectively, and n is the number of output units.

Training can be implemented in two di�erent ways: incremental and batch mode. In

the incremental mode, the weights and biases are updated after each input is applied

to the network. In batch mode, this is done after all inputs have been presented to

the network.

2.1.5.1 Back-Propagation learning rule

The Back-Propagation (BP) algorithm, also called the generalized delta rule, provides

a way to calculate the gradient of the error function e�ciently using the chain rule of

di�erentiation (Bose and Liang 1996). In this algorithm, for each iteration the network

weights are moved along the negative of the gradient of the performance function in the

steepest descent direction. Normally, gradient g is de�ned as the �rst order derivative
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of total error function:

g =
∂E(x,w)

∂w
(2.4)

With de�nition of gradient g, the update rule of the Back-Propagation algorithm

could be written as:

wk+1 = wk − η gk (2.5)

where η is the learning constant and k is iteration.

2.1.5.2 Levenberg-Marquardt learning rule

The Levenberg-Marquardt algorithm (LM), which was developed by Kenneth Lev-

enberg (1994) and Donald Marquardt (1963) is fast and has stable convergence. In

the arti�cial neural networks �eld, this algorithm is suitable for training small and

medium sized problems. This algorithm blends the Back-Propagation method and

the Gauss-Newton algorithm. Although the LM algorithm tends to be a bit slower

than Gauss-Newton algorithm, it converges much faster than the Back-Propagation

method. In the LM method, a second order convergence speed can be achieved without

computing the expensive Hessian Matrix.

H = JTJ (2.6)

The Jacobian matrix J contains the �rst derivatives of the network errors in re-

spect to the weights and biases (Penz, 2013). The Jacobian matrix can be computed

through a standard Back-Propagation technique. Compared to the computation of the

Hessian matrix, a lot of computing time can be saved. To ensure the Hessian matrix is

invertible, which is required for the applied Newton's method, a further approximation

is added:

H ≈ JTJ + µ I (2.7)

where µ is always positive, called combination coe�cient and I is the identity ma-

trix. Finally, the following formula can be applied to update the weights:

wk+1 = wk − (JTJ + µ I)−1JTe (2.8)

where e is error vector.

As the combination of the Back-Propagation and Gauss-Newton algorithms,the LM
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algorithm switches between the two algorithms during the training process. When the

combination µ is very small, the equation approaches to the Gauss-Newton method.

When combination coe�cient µ is very large, the equation approximates to equal the

Back-Propagation method (Yu & Wilamowski, 2011).

2.1.6 Design of ANNs

Fig.2.9 (Penz, 2013) illustrates the scheme for a general ANN. Five di�erent parts can

be identi�ed as follows:

1. Input Pattern: presents the unprocessed data (set) to the network.

2. Input Layer: the input data are normally preprocessed in this section.

3. Hidden Layer: contains at least one neuron, but normally has more. This part is

a black box, which receives inputs and after data processing provides an output

signal.

4. Output Layer: counterpart of the Input Layer, where the data received from the

hidden layer are post-processed.

5. Output Pattern: providing data to the environment.

Figure 2.9: Scheme for a general ANN (Penz, 2013)

2.1.7 Generalization capability of ANNs

Generalization with respect to ANN is de�ned as the ability of the network to handle

unseen patterns. However, ANNs may su�er from under�tting and over�tting during

the training procedure, which tend to decrease the capability of the network in the

generalization performance. There might be di�erent reasons causing these two factors.

For instance, a reason for over�tting might be a high number of parameters in the

network compared to the samples in the training set (Lawrence & Giles, 2000). Good

generalization can be obtained by going for a smaller network, which can �t the data

well (Lawrence et al. 1998). Nevertheless, it is not easy to determine the smallest
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network, which best �ts the data. The counterpart of over�tting is under�tting. This

means that the network is not able to model a certain issue in a satisfactory way. It

might be due to the low number of neurons for the present problem (Huber, 2014).

Fig.2.10 is brie�y showing how under-�tting, properly �tting, and over-�tting models

fare on the training compared to the test sets. In order to �nd the perfect architecture

for a problem, a trial and error process is required, although several methods are

available to get an idea of the number of neurons.

Figure 2.10: Over�tting, under�tting, and generalization
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Another reason for under�tting and over�tting can be inappropriate number of

epochs or iterations. Increasing the number of epochs in the training procedure results

in decreasing the under�tting of the network, but if the number of epochs is greater

than a speci�c number, over�tting may occur. In this case, the technique of early

stopping improves the generalization of the network. It implements a feature that

stops the training at an early stage to avoid over�tting. To achieve this, the data set

is divided into three subsets, the training- , validation-, and the test data set. The

one mentioned �rst is used to adjust the weights and biases, which get �xed in the

validation data set. Based on this, two curves with the number of epochs versus the

observed error of the data sets are plotted, as shown in Fig.2.11. The two curves

decrease until the point, where the validation curve starts to increase is reached. At

this point the training stops. The weights and biases are now returned to the values

of the epoch with the minimum validation error because the network essentially just

learned the noise contained in the training data (Penz, 2013).

Figure 2.11: Selection of optimum epoch based on the network performance in data

training and testing (Araghinejad, 2013)

The training curve usually keeps decreasing with an increasing number of iterations.

The utilized method is a so-called cross validation technique. The training stops if the

number of validation checks, representing the number of successive iterations that the

validation performance fails to decrease, reaches a certain value (Beale et al., 2013).

2.2 Adaptive Neuro-Fuzzy Inference System

System modelling based on conventional mathematical tools is not well suited for

dealing with ill-de�ned and uncertain systems. By contrast, a fuzzy inference system
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employing fuzzy if-then rules can model the qualitative aspects of human knowledge

and reasoning processes without employing precise quantitative analyses. This general

idea is very suitable for engineering applications where a precise representation of

the real world is desired. The idea of fuzzy modelling, �rst explored systematically

by Takagi and Sugeno (1985), has found numerous practical applications in control

(Pedrycz, 1993), prediction and inference (Kandel, 1991), and its application in the

engineering �eld has signi�cantly increased in recent years.

Adaptive Neuro-Fuzzy Inference System, or simply ANFIS, can serve as a basis for

constructing a set of fuzzy if-then rules with appropriate membership functions able

to generate the stipulated input-output pairs.

2.2.1 Fuzzy logic

Lot� Zadeh introduced the Fuzzy Logic tool in 1965. It is a mathematical tool for

dealing with uncertainty and o�ers to a soft computing partnership the important

concept of computing with words. It implements a technique to deal with impreci-

sion and information granularity by providing a mechanism for representing linguistic

constructs, such as �many�, �low�, �medium�, �often�, �few�. In general, the fuzzy logic

provides an inference structure that helps human reasoning. While, the traditional

binary set theory describes crisp events, events that either do or do not occur, the

fuzzy logic uses probability theory to explain if an event will occur and to measure the

chance of its occurrence. The theory of fuzzy logic starts with the concept of a fuzzy

set and is based upon the notion of relative graded membership. (Sivanandam, 2007).

2.2.2 Classical sets and fuzzy sets

Traditional system modeling and analysis techniques are too precise for real world

problems, whose complexity involves a degree of uncertainty. In a classical set, the

membership value is �1� if it belongs to the set or �0� if it is not a member of the set.

Thus, membership in a set is found to be binary i.e., the element is a member of a set

or not. It can be indicated as:

XA(x) =

{
1 , x ∈ A
0 , x /∈ A

(2.9)

where XA(x) is the membership of element x in set A and A is the entire set on the

universe.

Zadeh extended this membership to possess various �degrees of membership� on the
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real continuous interval [0,1]. He formed fuzzy sets as the sets on the universe X that

can accommodate �degrees of membership�. In other words, the concept of fuzzy set

contrasts with a classical concept of a crisp set, whose boundary is required to be

precise (Sivanandam, 2007).

Fig.2.12 helps to explain this idea, but from a two-dimensional perspective. Point a

in Fig.2.12a is clearly a member of crisp set A; point b is unambiguously not a member

of set A. Fig.2.12b shows the vague, ambiguous boundary of a fuzzy set B on the same

universe X: the shaded boundary represents the boundary region of B. In the central

(unshaded) region of the fuzzy set, point a is clearly a full member of the set. Outside

the boundary region of the fuzzy set, point b is clearly not a member of the fuzzy set.

(a) (b)

Figure 2.12: (Diagrams for (a) crisp set boundary and (b) fuzzy set boundary (Ross,

2009)

However, the membership of point c, which is on the boundary region, is ambiguous.

If complete membership in a set is represented by the number 1, and no-membership in

a set is represented by 0, then point c in Fig.2.12b must have some intermediate value

of membership (partial membership in fuzzy set B) on the interval [0,1]; say about

0.7 (Ross, 2009). A key di�erence between crisp and fuzzy sets is their membership

function; a crisp set has a unique membership function, whereas a fuzzy set can have an

in�nite number of membership functions to represent it (Ross, 2004). A membership

function (MF) is a curve that de�nes how each point in the input space is mapped to

a membership value (or degree of membership) between 0 and 1 (The Math Works,

2013). Fig.2.13 illustrates most common membership functions used in neuro-fuzzy

systems.
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Figure 2.13: Membership functions

2.2.3 Logical operations

To combine two fuzzy numbers, AND, OR, and NOT operators exist in fuzzy logic,

usually de�ned as the minimum, maximum, and complement. It means that the

membership function of the output variable, in the case of combining two fuzzy num-

bers would be the maximum/minimum membership function of them in case of using

AND/OR operators. In case of using the NOT operator, the membership function of

the output variable would be the complement of the single input variable (Araghine-

jad, 2013). Fig.2.14 shows an example of combining two fuzzy variables by di�erent

operators.

Figure 2.14: Logical operations (The Math Works, 2013)
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2.2.4 Fuzzy if-then rules

Fuzzy if-then rules are expressions of the form IF A THEN B , where A and B are

labels of fuzzy sets characterized by appropriate membership functions. Due to their

concise form, fuzzy if-then rules are often employed to capture the imprecise modes

of reasoning that play an essential role in the human ability to make decisions in an

environment of uncertainty and imprecision. A simple example is:

If pressure is high, then volume is small

where pressure and volume are linguistic variables, high and small are linguistic

values or labels that are characterized by membership functions.

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno, has fuzzy sets

involved only in the premise part. By using Takagi and Sugeno's fuzzy if-then rule,

we can describe the resistant force on a moving object as follows:

If velocity is high, then force = k∗(velocity)2

where, again, high in the premise part is a linguistic label characterized by an

appropriate membership function. However, the consequent part is described by a

non-fuzzy equation of the input variable, velocity(Jang, 1993).

2.2.5 Fuzzy Inference System

Fuzzy inference system (FIS) can deal with both linguistic and quantitative variables

in the process of modeling. In contrast to the conventional data-driven methods, which

try to �nd a logical relationship between input and output variables from the observed

data, FIS bene�ts from both the concept of the problem and the information within

the observed data. According to Jang (1993), a fuzzy inference system is composed of

�ve functional blocks (see Fig.2.15):

1. a rule base containing a number of fuzzy if-then rules;

2. a database de�ning the membership functions of the fuzzy sets used in the fuzzy

rules;

3. a decision-making unit performing the inference operations on the rules;

4. a fuzzi�cation interface transforming the crisp inputs into degrees of match with

linguistic values;

5. a defuzzi�cation interface transforming the fuzzy results of the inference into a

crisp output;
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Figure 2.15: Fuzzy inference system (Jang, 1993)

Several types of fuzzy reasoning have been proposed in the literature. Depending

on the types of fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference

systems can be classi�ed into three types (Fig.2.16):

Figure 2.16: Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms (mod-

i�ed from Jang, 1993)

Type 1: The overall output is the weighted average of each rule's crisp output

induced by the rule's �ring strength (the product or minimum of the degrees of match

with the premise part) and output membership functions.

Type 2: The overall fuzzy output is derived by applying the �max� operation to the

quali�ed fuzzy outputs (each of which is equal to the minimum of �ring strength and

the output membership function of each rule). Various schemes have been proposed
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to choose the �nal crisp output based on the overall fuzzy output. Some of them are

centroid of area, bisector of area, mean of maxima, maximum criterion, etc.

Type 3: Takagi and Sugeno's fuzzy if-then rules are used. The output of each rule

is a linear combination of input variables plus a constant term, and the �nal output

is the weighted average of each rule's output.

2.2.6 ANFIS architecture

ANFIS is a kind of neural network that is based on Sugeno fuzzy inference system.

Since it integrates both neural networks and fuzzy logic principles, it has potential to

capture the bene�ts of both in a single framework. Its inference system corresponds

to a set of fuzzy if-then rules that have learning capabilities to approximate nonlinear

functions. Its network structure consists of a number of nodes connected through

directional links. Each node is characterized by a node function with �xed or adjustable

parameters. A basic ANFIS introduced by Jang (1993) is illustrated in Fig.2.17.

Figure 2.17: ANFIS architecture (modi�ed from Jang, 1993)

For simplicity, we consider the fuzzy inference system having two inputs x and y

and one output f . For a �rst-order Sugeno fuzzy model, a typical rule set with two

fuzzy if-then rules can be expressed as:

Rule 1: If x is A1 and y is B1, then f1 = p1x+ q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2

Each nodes of the same layer have similar functions, as described below:

Layer 1: Each node in this layer produces membership grades of an input variable.

The output of the i-th node in layer l is denoted as O1
i . Assuming a generalized bell
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function as the membership function, the output O1
i can be computed as:

O1
i = µAi (x) =

1

1 + ((x− ci)/ai)2Ni
=

{
µAi (x) ; i = 1, 2

µBi−2 (x) ; i = 3, 4
(2.10)

where x is input to node i and {ai, ci, Ni}are adaptable variables known as premise

parameters. The outputs of this layer are the membership values of the premise part.

Layer 2: Every node in this layer multiplies the incoming signals:

O2
i = wi = µAi (x)× µBi (y) , i = 1 , 2 (2.11)

Layer 3: The i-th node of this layer calculates the normalized �ring strengths as:

O3
i = w̄i =

wi
w1 + w2

, i = 1 , 2 (2.12)

Layer 4: Node i in this layer calculates the contribution of the ith rule towards the

model output, with the following node function:

O4
i = w̄ifi = w̄i (pix+ qiy + ri) (2.13)

where w̄ is the output of layer 3, and {pi, qi, ri}are the parameter set. Parameters

of this layer are referred to as consequence parameters.

Layer 5: The single node in this layer calculates the overall output of the ANFIS

as (Jang & Sun, 1995):

O5
1 =

∑
i

w̄ifi =

∑
i

wifi∑
i

wi
= f (2.14)

2.2.7 Learning rules of ANFIS

A nonlinear neuro-fuzzy model can be generally expressed as:

f = g (z, θ) (2.15)

where z is the input vector, θ = [θ1, . . . , θn] is the parameter vector, and f is

the model's (scalar) output. Given a set of training data {(zp; tp) , p = 1, . . . ,m}, a
squared error measure takes the form:

E(θ) =
m∑
p=1

[tp − g (zp, θ)]
2 (2.16)
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which is the objective function to be minimized.

From the ANFIS architecture (see Fig.2.17), it is observed that given the values of

premise parameters, the overall output can be expressed as a linear combinations of

the consequent parameters. More precisely, the output f in Fig.2.17 can be written

as:

f = w1

w1+w2
f1 + w2

w1+w2
f2 = w̄1f1 + w̄2f2

= (w̄1x) p1 + (w̄1y) q1 + (w̄1) r1 + (w̄2x) p2 + (w̄2y) q2 + (w̄2) r2

(2.17)

which is linear in the consequent parameters (p1, q1, r1, p2, q2, and r2). As a result,

we have S = set of total parameters, S1 = set of premise parameters, and S2 = set

of consequent parameters.

For the ANFIS architecture, the task of the learning algorithm is to adjust all the

adaptable parameters S1 and S 2. There are two well-known methods to update the

parameters: gradient descent or Back-Propagation and hybrid-learning rule.

2.2.7.1 Basic Back-Propagation learning rule

The actual output of the model is computed directly from Eq.(2.14) when using the

basic Backpropagation learning algorithm, in the forward pass, for a given input pat-

tern and initial values of all parameter set S . In the backward pass, the error signal

resulting from the di�erence between the actual output and the desired output of the

model is propagated backward where these parameters are then adjusted using the

error correction rule. Training of network, i.e. error correction, is stopped when the

value of the error function E has become su�ciently small below a certain threshold.

One of the most important problems in learning is the prevention of over �tting. This

issue can be addressed by observing the error index of testing data during the learning

iterations. The learning algorithm will be terminated when the error index of the test-

ing data starts to increase on average. Prevention of over �tting is the most common

way to provide high generalization.

The error function describes the error when approximating or classifying the training

data as a function of the parameters of the activation functions. To �nd the minimum

of this function, we are using the Gradient descent method, where the parameters

are updated on pattern by pattern basis, until the complete set of training data was

utilized for the training of the network. The parameter update is equal to the slope of

the error function with an opposite sign of the gradient of error. The update rate is

further scaled by a learning rate η, which controls the speed at which we do the error

correction or decides for the rate at the network learns. The parameter θ of the set of
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total parameters S is updated using the following equation:

θk+1 = θk + η (∆θ)k; (∆θ)k = −
(
∂E

∂θ

)k
(2.18)

As the basic Back-Propagation algorithm depends on the gradient of the error func-

tion, the adjustments for �at spots in the error surface may be very small. Therefore,

this results in slow and time consuming progression in error minimization. The speed

of convergence can be improved by increasing the learning rate η. However, with a

large value of η, the learning algorithm can overshoot the error minimum leading to

oscillations of the weight values between relatively poor solutions.

2.2.7.2 Basic hybrid learning rule

The most well-known learning algorithm for ANFIS is hybrid algorithm, where:

• In the forward pass, node outputs values go forward until layer 4 and the conse-

quent parameters belonging to the subset S2 are identi�ed by the least squares

method.

• In the backward pass, the output errors are propagated backward and the premise

parameters are updated by gradient descent method mentioned above, with θ

being the parameter of the set of premise parameters S1. Table.2.1 summarizes

the activities in each pass.

Using this method, the consequent parameters identi�ed are optimal under the condi-

tion that the premise parameters are �xed. Generally, the hybrid approach converges

faster than the basic Back-Propagation approach, since it reduces the dimension of

the search space of the original Back-Propagation method.

Table 2.1: Two passes in the hybrid learning procedure for ANFIS (Jang, 1993)

Forward pass Backward pass

Premise parameters Fixed Gradient descent

Consequent parameters Least Square Estimate Fixed

2.2.8 Alternative learning rules

According to Jang and Mizutani (1996), ANFIS is a network architecture that allows

systematic calculations of gradient vectors (derivatives of output error with respect to
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modi�able parameters), so the analysis is not limited to Back-Propagation or Hybrid

learning algorithms only. In fact, any gradient-based techniques in nonlinear regression

and optimization can be applied, such as the Gauss-Newton method, the Levenberg-

Marquardt algorithm, and the extended Kalman �lter algorithm.

On the other hand, the MATLAB toolbox only provides a graphical user interface

for ANFIS models trained with the Hybrid and Back-Propagation (BP) algorithms.

This fact hold signi�cance because these models have been widely used by researchers

in the �eld of water resources and environmental engineering. Therefore, the current

research analyzes the application of alternative learning algorithms for ANFIS applied

to hydrological issues. To achieve this aim, the FORTRAN programming language

is applied to build an ANFIS model using alternative learning rules. The following

sections clarify these algorithms and their training process, which are applied to adjust

the premise and consequence parameters of ANFIS networks.

2.2.8.1 Levenberg-Marquardt learning rule

Before introducing the Levenberg-Marquardt algorithm for minimizing Eq.(2.16), the

closely related the Gauss-Newton method is reviewed. The Gauss-Newton method,

also known as the linearization method, uses a Taylor series expansion to obtain a

linear model that approximates the original nonlinear model and then applies the

ordinary least-squares method to estimate the parameters. Speci�cally, let the current

parameters be denoted by θk; then the nonlinear model in Eq.(2.15) can be expanded

in a Taylor series around θ = θkand only the linear terms are retained:

f = g (z, θk) +
n∑
i=1

(
∂g (z, θ)

∂θi
|θ=θk

)
(θi − θki ) (2.19)

Inspection of Eq.(2.19) reveals that the translated output f − g
(
z, θk

)
is linear

function of the translated parameters, θi−θki . Therefore, a better estimator, θk+1, can

be obtained by means of the well-known pseudo-inverse formula:

θk+1 = θk +
(
JTJ

)−1
JTe = θk + ∆θ (2.20)

where e is the error vector of which the pth element is equal to tp − g
(
zp, θ

k
)
, ∆θ

is,
(
JTJ

)−1
JTe and the element at row p and column j of matrix J is ∂g (zp,θ)

∂θj
|θ=θk .

A potential problem with the Gauss-Newton method is that
(
JTJ

)−1
might not always

exist, rendering this method practically unusable. Such a situation is handled by the
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Levenberg-Marquardt procedure, which de�nes ∆θ as follows:

∆θ = (JTJ + λI)−1JTe (2.21)

where I, is the identity matrix and λ is usually small positive constant. Depending

on the magnitude of λ, the algorithm transits smoothly between two extremes: the

Gauss-Newton method (λ → 0) and gradient descent method (λ → ∞). Usually the

Gauss-Newton method is more e�cient but less stable; the gradient descent method

is more stable but less e�cient. By properly setting the value of λ, the Levenberg-

Marquardt algorithm can be e�cient as well as stable.

Fig. 2.18 shows the �owchart of the ANFIS program used in this research. As can be

seen, three sub sets of data are generated to build the model.

Figure 2.18: Flowchart of the ANFIS program (Kaveh et al. 2017)
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The �rst one is the training set, used to update the adjustable parameters. With the

update rule of the Levenberg-Marquardt algorithm (Eq. 2.21) and the computation

of matrix J, the next step is to organize the training process. The aim of the training

(learning) process is to achieve the best possible performance of the ANFIS network

by adjusting the premise and consequence parameters.

The diagram of the training subroutine is shown in Fig.2.19. As can be observed

from this diagram, if the error reduces, which means it is smaller than the error for the

previous iteration, the quadratic approximation of the total error function is working

and the combination coe�cient, λ, could be reduced to decrease the in�uence of the

gradient descent part (ready to speed up). On the other hand, if the error increases,

which means it's greater than the error for the previous iteration, it's necessary to

follow the gradient more closely to look for a proper curvature for quadratic approxi-

mation and the combination coe�cient λ is increased.

Figure 2.19: Diagram for training using the Levenberg-Marquardt algorithm: Ek+1 is

the current total error, and Ek is the previous total error (modi�ed from Kaveh et al.

2017)
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The training process using the Levenberg-Marquardt algorithm could be designed

as follows:

1. With the initial parameters, evaluate the total error (SSE ).

2. Update the parameters as directed by Eq.(2.21).

3. With the new parameters, evaluate the total error (SSE ).

4. If the current total error increased as a result of the update, then retract the

step and increase combination coe�cient, λ, by a factor of 10 or by some other

factor. Then go to the second step and try parameter update again.

5. If the current total error decreased because of the update, then accept the step

and decrease the combination coe�cient, λ, by a factor of 10 or by the same

factor as step 4.

6. Go to the second step, with the new parameters until the current total error is

smaller than the required value (Emax).

During the training process, the error of the validation set is monitored and normally

decreases during the initial phase of training. In contrast, the error of the validation

set increases when the network begins to over-�t the data. At the minimum of the

validation set error the premise and consequence parameters of the ANFIS are selected

and saved. The last subset is used to test the developed ANFIS. Besides the stopping

criteria (called early stopping criteria), several other conditions to stop the training

are implemented. In this paper, the maximum number of epochs is set to 1000, while

the minimum performance goal (or maximum accepted error, Emax) is set to zero. The

maximum combination coe�cient, λ, of the Levenberg-Marquardt algorithm is set to

1× 1010. The training stops when one of these values is reached (Kaveh et al. 2017).

2.2.8.2 Back-Propagation with momentum learning rule

Another way of improving the rate of convergence is the inclusion of a momentum to

the gradient expression. Therefore, a part of the previous parameter change is added

to the current parameter change. Due to the momentum, the Back-Propagation can

respond to recent trends in the error surface. This helps to smoothen the gradient

descent path by ignoring local anomalies in the error surface. Hence, prevention against
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extreme changes in the gradient is added to the algorithm. The parameter θ is now

updated using the following equation:

θk+1 = θk + η (∆θ)k + µ (∆θ)k−1 (2.22)

where µ is the momentum coe�cient. If the direction of the gradient remains con-

stant, the algorithm will take increasingly large steps. This improves the convergence

rate. Also in a �at plateau, the momentum can decelerate the decrease (due to the �at

gradient) in weight adjustment. Another aspect is that the momentum can help to

escape from local minima of the error function. This is useful when the learning rate

η alone is not able to generate large enough steps to overcome the ridge of the minima

�valley�. Of course, if the learning starts in deep local minima (due to the random

weight initialization) the momentum does not help to �nd the way out. However, in

general the momentum increases the chances of the Back-Propagation in �nding the

global minima of the error surface (Bui et al. 2017).

2.2.8.3 New proposed hybrid learning rules

Di�erently from the common hybrid learning rule which combines the gradient method

and the least squares estimate (LSE) to identify parameters, the two new proposed

hybrid rules are combination of LM and LSE methods (called New Hybrid 1), as well

as of LM and BP methods (called New Hybrid 2). Similarly, each epoch of these

hybrid learning procedures is composed of a forward and backward pass.

For the Hybrid 1 rule, we supply input data and functional signals go forward until

the forth layer, and the parameters in S2 are identi�ed by the sequential least squares

estimate. After identifying parameters in S2, the functional signals keep going forward

until the error measure is calculated. In the backward pass, error rate propagate from

the output end toward the input end, and the parameters in S1 are updated by the

LM method. Fig.2.20 shows the �owchart of this new proposed hybrid rule combining

the LSE and LM methods.

The main di�erence between the second proposed hybrid rule and the common hy-

brid one is that both premise and consequent parameters are updated in the backward

pass. In the forward pass, we supply initial premise and consequent parameters, in-

put data and functional signals go forward to calculate output in layer �ve. In the

backward pass, error rate propagates from the output end toward the input end, and

the parameters in S2 and S1 are updated by the gradient descent Back-Propagation

and the LM method, respectively. The advantage of this proposed method compared
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Figure 2.20: Flowchart of the �rst new hybrid learning procedure of ANFIS (Kaveh

et al. 2015a; 2015b)

to LM is that it can signi�cantly decrease the CPU run time, since the calculation of

huge Jacobian matrix for consequent parameters is not required (Kaveh et al. 2015a;

2015b).
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Chapter 3

Conventional hydro-morphodynamic

modeling

The transport of sediment as bed load is an important process that occurs in rivers,

estuaries, and coastal regions. In many situations, this process and the resulting mor-

phological changes of the bed can have a detrimental impact on the infrastructure and

environment. Clearly, the processes of sediment transport and morphological evolution

of the bed are determined by the properties of the �uid �ow, which in turn are a�ected

by the changes in the morphology of the bed that they induce. Thus, the motion of

the �uid and the motion of the bed form an interdependent two-phase phenomenon

that must be analyzed using a model system made up of two distinct but interdepen-

dent model components: (1) a hydrodynamic component de�ning the evolution of the

�ow; and (2) sediment transport/morphological component de�ning the evolution of

the bed. Such a modeling system is often referred to as a hydromorphological model.

The conventional method for performing hydromorphological simulations in rivers is

to decouple the hydrodynamic and the morphodynamic systems. The decoupling ap-

proach is based on the rationale that the channel bed reacts at a much slower timescale

than the �ow. At implementation level, these modules communicate through a quasi-

steady morphodynamic time-stepping mechanism: during �ow computation, the bed

level is assumed to be constant and during computation of the bed level, the �ow and

sediment transport quantities are assumed invariant to the bed level changes. The

modules are linked together at the programming level. The hydrodynamic system is

usually modeled by Navier-Stokes equations (NSE). The morphodynamic component

is modeled by Exner equation.
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3.1 The Navier-Stokes equations

The foundation of nearly all hydrodynamic calculations are a set of equations called

Navier-Stokes Equations. To describe the governing laws of hydrodynamics the devel-

opment of the main equations is given in the following.

Equation of continuity : The equation of continuity is based on the law of con-

servation of mass, which states that mass can neither be created nor destroyed. The

continuity equation can be written in either di�erential or integral form. In di�erential

form, consider the in�nitesimal control volume in Fig.3.1.

Figure 3.1: In�nitesimal element of �uid

The di�erence between the mass �uxes entering and leaving the di�erential control

volume equals the rate of increase of internal mass. The assumption of a continuous

�uid medium yields the following di�erential relationship:

∂ρm
∂t

+
∂

∂x
(ρmvx) +

∂

∂y
(ρmvy) +

∂

∂z
(ρmvz) = 0 (3.1)

For homogeneous incompressible �uid, the mass density is independent of space and

time (ρm = constant); consequently, ∂ρm/∂t = 0 and the divergence of the velocity

vector must be zero:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (3.2)
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Momentum equations: Using the law of conservation of momentum, which con-

siders the forces acting on a domain, the momentum equations can be written in its

non-conservative form as:

ρm
∂vi
∂t

+ ρmvj
∂vi
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ fi (3.3)

where v is three-dimensional �ow velocity vector, p is pressure, τij is three dimen-

sional shear stress vector, and fi is forces.

Given an inviscid, Newtonian �uid the constitutional form of the shear stress τij is

described in Eq.(3.4) with the dynamic viscosity µ (kg/sm2), (Laurien & Oertel jr.

2013).

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.4)

Finally combining both equations results in the momentum equation for incom-

pressible �uids:

ρm
∂ui
∂t

+ ρmuj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂x2

j

+ fi (3.5)

Conservation of energy : Conservation of energy is neglected, because typical

no relevant temperature gradients in free surface application occurs. The interested

reader is referred to (Hervouet 2007), (Chanson 2004) and (Laurien & Oertel jr. 2013).

To sum up, the equations of continuity Eq.(3.2) and momentum Eq.(3.5) states the

Navier-Stokes equations for incompressible �uids in three dimensions. An analytical

solution of this equation set is only possible in certain well-de�ned cases. So far

only numerical solutions exist, which are quite time consuming. In a so-called direct

numerical simulation (DNS) the complete temporal and spatial spectrum of the �ow

is solved, but requires enormous computational e�ort. Practical it is not necessary to

resolve the complete spectrum to gain a satisfactory result. Rather the in�uence of

turbulence is treated separately from the �ow, (Laurien & Oertel jr. 2013).

3.1.1 The Reynolds-Averaged-Navier-Stokes equations

As mentioned the full resolution of the Navier-Stokes equation is very complex and

only for well-de�ned cases, like fully developed, laminar �ows, a direct solution can be

found. In turbulent �ows, the �eld properties become random functions of space and

time. Hence, the �eld variables vi and p must be expressed as the sum of time-averaged
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and �uctuating parts as (Fig.3.2):

vi = v̄i + v+
i , p = p̄+ p+ (3.6)

The time-averaged values at a �xed point in space are given by:

v̄i =
1

t1

∫ t0+t1

t0

vi dt (3.7)

Taking the mean values over a su�ciently long time interval t1, the time-averaged

values of the �uctuations equal zero; thus, v+
i = p+ = 0.

Figure 3.2: Velocity measurements versus time (Julien, 2010)

Inserting Eq.(3.6) into the Navier-Stokes equations gives the Reynolds-Averaged

Navier-Stokes equations or shortly RANS equations. Here only the �nal three-dimensional

RANS equations are listed, with Eqs.(3.8) and (3.9) for continuity and momentum,

respectively.

∂v̄i
∂xi

= 0 (3.8)

ρm
∂v̄i
∂t

+ ρmv̄j
∂v̄i
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

(
µ

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− ρmv+

i v
+
j

)
+ fi (3.9)

The last noted stress term is called Reynolds stress tensor τRe = −ρmv+
i v

+
j and has

to be provided external by a turbulence model.

3.1.2 The shallow water equations

A numerical solution of the three dimensional Navier-Stokes equations is quite complex

and needs high computational e�ort, even with the separated treatment of turbulence
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as in RANS equations. The shallow water equations or shortly SWE, which are derived

from the Navier-Stokes equations under the assumption that the horizontal length scale

is much larger than the vertical on, describe of a hydrostatic homogeneous incompress-

ible �uid in response to gravitational and rotational accelerations. The combination

of the mentioned assumptions and their application to the Navier-Stokes equations,

leads to the depth averaged shallow-water equations for continuity and momentum,

(Hervouet 2007):

∂h

∂t
+
∂hUx
∂x

+
∂hUy
∂y

= 0 (3.10)

where Ux and Uy are the depth-averaged quantities of local velocities ux and uy.

ρm
∂Ui
∂t

+ ρmUj
∂Ui
∂xj

= −ρmg
∂h

∂xi
− ∂

∂xi

(
µ
∂Ui
∂xj
− ρmU+

i U
+
j

)
+ fi (3.11)

The term ρmU
+
i U

+
j is the disturbed part of the averaged di�usion. This is similar

to the τRe in the RANS equations and estimated by a turbulence model.

3.2 Sediment transport models

Non-cohesive bed particles enter motion as soon as the shear stress applied on the

bed material exceeds the critical shear stress. Generally, silt and clay particles enter

suspension, and sand and gravel particles roll and slide in a thin layer near the bed

called the bed layer. The bed layer thickness is typically less than 1 mm in sand-bed

channels, up to tens of centimeters in gravel-bed streams. The total sediment transport

rate qt is de�ned as the �ux of sediment transported per unit width and time, and can

be split up in bed load and suspended load.

qt = qb + qs (3.12)

3.2.1 Theory of incipient motion

According to Shields theory, the movement begins when the shear stress exceeds a

critical shear value. Above this value, the current is able to transport the granular

sediment. The dominating forces acting on a sediment particle at the river bottom

are: the bed shear stress τ0, sediment density ρs, �uid density ρm, grain diameter

ds, gravity g and the dynamic viscosity µ, (Chanson 2004). Applying dimensionless
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analysis on these parameters give two characteristic values as:

Re∗ =
u∗ds
υm

(3.13)

Fr∗ =
(u∗)

2

(s− 1)gds
(3.14)

where Re∗ is grain Reynolds number, Fr ∗ is grain Froude number (Shields parameter

τ∗), s = ρs/ρm is relative density, ds is grain diameter and u∗ = (τ0/ρm)1/2 is friction

velocity. Applying friction velocity relation into Eq.(3.14) gives the relation between

the Shields parameter and the bed shear stress, as:

τ∗ =
τ0

(ρs − ρm) gds
(3.15)

The incipient motion condition is expected as τ∗>τ∗c where:

τ∗c =
τc

(ρs − ρm) gds
(3.16)

From the analysis of fully developed two-dimensional �ows in a laboratory channel

and the evaluation of the beginning of sediment motion, a relation between both quan-

tities is derived. Fig.3.3 illustrates the dependence between Re∗ and critical τc (Julien,

2010).

Figure 3.3: Shields diagram for granular material (modi�ed from Julien, 2010)
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3.2.2 Bedload

As sketched in Fig.3.4, the bed layer thickness a is a few grain diameters thick, and

a = 2ds has been commonly used. Bed-load, or contact load, refers to the transport

of sediment particles which frequently maintain contact with the bed. Bedload trans-

port can be treated either as a deterministic or a probabilistic problem. Deterministic

methods have been proposed by DuBoys and Meyer-Peter Müller; probabilistic meth-

ods were developed by Kalinske and Einstein.

Figure 3.4: De�nition sketch of bedload and suspended load (Julien, 2010)

DuBoys' equation: The pioneering contribution of DuBoys (1879) is based on

the concept that sediment moves in thin layers along the bed. The applied bed shear

stress τ0 must exceed the critical shear stress τc to initiate motion. The volume of

gravel material in motion per unit width and time qb in ft2/s is calculated from:

qb =
0.173

d
3/4
s

τ0 (τ0 − 0.0125− 0.019ds) (3.17)

where ds is the particle size and τ0 is the boundary grain shear stress.

Meyer-Peter Müller's equation: Among numerous available semitheoritical

bedload transport equations, the MPM is probably the most widely applied equation

in both basic research and engineering applications. Meyer-Peter and Müller (1948)

developed a complex bedload formula for gravels based on the mean sediment size d50

of the surface layer of the bed material. Chien (1956) demonstrated that the elaborate

original formulation can be reduced in the following simple form:

qb√
(s− 1) gd3

s

= 8 (θ − 0.047)3/2 (3.18)

This formulation is most appropriate for channels with large width-depth ratios and

for grain diameters in the range of 0.4 mm <d50 <29 mm.
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Einstein-Brown's equation: H.A. Einstein (1941) made the seminal contribution

to bedload sediment transport. He introduced the idea that grains move in steps

proportional to their size. He de�ned the bed layer thickness as twice the particle

diameter. He extensively used probability concepts to formulate a relationship for

contact sediment discharge.

Figure 3.5: Dimensionless sediment discharge qb∗ versus Shields parameter τ∗(Julien,

2010)

The gravel sediment discharge qb in volume of sediment per unit width and time (qb

in L2/T) is transformed, using Rubey's clear-water fall velocity ω0, into a dimensionless
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volumetric unit sediment discharge qb∗ as:

qb∗ =
qb
ω0ds

= qb

(√
(s− 1) gd3

s

{√
2

3
+

36υ2
m

(s− 1) gd3
s

−

√
36υ2

m

(s− 1) gd3
s

})−1

(3.19)

The dimensionless rate of sediment transport qb∗ is shown in Fig.3.5 as a func-

tion of the Shields parameter τ∗ = τ0/(ρs-ρm)gds, with measurements from Gilbert

(1914), Bogardi (1974) and Wilson (1966). Brown (1950) suggested the following two

relationships:

{
qb∗ = 2.15e

−0.319
τ∗ when τ∗ < 0.18

qb∗ = 40τ 3
∗ when 0.52 > τ∗ > 0.18

(3.20)

Considering sediment transport data at high shear rates τ∗ >0.52 one obtains:

qb∗ = 15τ 1.5
∗ when τ∗ > 0.52 (3.21)

At such high shear rates, this third approximation is not very accurate, however,

because large quantities of sediment will move in suspension as discussed in next

section.

3.2.3 Suspended load

As the hydraulic forces exerted on sediment particles exceed the threshold condition for

beginning of motion, coarse sediment particles move in contact with the bed surface

as described. Finer particles are brought into suspension when turbulent velocity

�uctuations are su�ciently large to maintain the particles within the mass of �uid

without frequent bed contact. The unit suspended sediment discharge qs in natural

streams and canals is computed from the depth-integrated advective �ux of sediment

Cvx above the bed layer z>a:

qs =

h∫
a

Cvxdz (3.22)

where C is volumetric sediment concentration, and vx is logarithmic velocity pro�le.

The comparison of suspended load to bedload delineates which mode of sediment

transport is dominant. The suspended unit sediment discharge qs can be calculated
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from Eq.(3.22) after substituting C and logarithmic velocity vx:

qs =

h∫
a

Ca
u∗
k

[(
h− z
z

)(
a

h− a

)] ω0
ku∗

ln
z

z0

dz (3.23)

in which Ca represents the reference sediment concentration at a reference elevation

a, k is equal 0.4, ω0 is fall velocity, and z0 is a distance from the �at boundary at

which the logarithmic velocity vx hypothetically equals zero (Julien, 2010).

3.3 The Exner equation

Mathematically, the morphological evolution of the bed is de�ned by the so-called

sediment continuity or Exner equation. This equation simply states that the time rate

of change of the bed elevation is equal to the divergence of the sediment �ux, which

can be expressed in terms of the local �ow properties through the use of an empirical

sediment transport formulae (Kubatko et al., 2006).

In the case of mobile bed, it is necessary to describe the movement of the granular

sediment with an appropriate equation. The solid concentration is de�ned as:

c =
Vs
V

(3.24)

where Vs is the solid volume and V the total volume. The rates of bed level changes

are calculated from the equation of conservation of sediment mass. In two dimensions,

this is written as:

∂z

∂t
+

1

1− p0

(
∂qx
∂x

+
∂qy
∂y

)
=
∂ (cρs)

∂t
(3.25)

where z is bed level above a �xed datum, x and y are horizontal space coordinates, t

is time, p0 is porosity and, qx and qy are sediment transport rates in x and y directions.

The term on the right side of the equation de�nes the variation of the solid materials

concentration in the control volume, where ρs is the sediment density. Assuming that

the solid concentration is constant, the system becomes:

∂z

∂t
+

1

1− p0

(
∂qx
∂x

+
∂qy
∂y

)
= 0 (3.26)

which is known as the Exner equation. The transport rates qx and qy are functions

of several parameters, namely, currents waves water depth and sediment properties.

Within morphological time step (i.e. time step used in solving Eq.(3.26), we assume

the following at each grid point: (a) sediment properties are �xed, (b) currents and
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waves locally vary with water depth and (c) water level is at a �xed level above datum.

Under these assumptions, the transport rate vary only with the bed level and Eq.(3.26)

can be written as an advection equation as:

∂z

∂t
+

1

1− p0

(
∂qx
∂z

∂z

∂x
+
∂qy
∂z

∂z

∂y

)
= 0 (3.27)

or

∂z

∂t
+ Cx(z)

∂z

∂x
+ Cy(z)

∂z

∂y
= 0 (3.28)

where Cx(z) and Cy(z) are, respectively the x and y components of the bed celerity,

which also depend on the bed level. Eq.(3.28) shows that morphological evolution

occurs as non-linear propagation of the bed level deformations in the direction of the

transport. The Exner equation needs a closure model for the sediment transport q, a

matter studied by Shields (1936), who developed the theory of incipient motion.

3.4 Numerical methods

The mentioned equations for hydrodynamic (i.e. RANS or SWE) and morphody-

namic (i.e. Exner equation) systems represent nonlinear hyperbolic partial di�erential

equations and analytical solutions of these equations are not possible except for a few

simpli�ed cases. Therefore, they are often solved by numerical schemes where the con-

tinuous description of the equations are transferred into a set of discrete expressions

in time and space.

3.4.1 Spatial discretization

There are three main methods for discretizing the �ow �eld in numerical simulations.

A brief description of these methods is provided below.

3.4.1.1 Finite Di�erence Method (FDM)

The �nite di�erence method uses Taylor series expansions to derive di�erence quo-

tient expressions for the derivatives at discrete grid points, expressing them through

variable values at neighboring grid points. This is explained here by reference to a

one-dimensional variable distribution as shown in Fig.3.6.
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Figure 3.6: Finite di�erence computational stencils for 1D problems

As can be seen from this �gure, a continuous function f(x) can be represented as a

series of discrete values fj at discrete points (j). The value fj+1 at point (j + 1) can

be expressed in terms of a Taylor series expanded about point (i) as:

fj+1 = fj +
∂f

∂x
|j (∆x)1 +

∂2f

∂x2
|j

(∆x)2

2
+
∂3f

∂x3
|j

(∆x)3

6
+ · · · (3.29)

Similar expansions can be made for other points. Expression (3.29) is exact if

an in�nite number of terms on the right hand side is retained and/or if ∆x → 0.

The accuracy of Eq.(3.29) depends on which terms are neglected. With Eq.(3.29)

and similar Taylor series expansions for other neighboring points, we can derive the

following approximations:

1storder :
∂f

∂x
|j =

fj+1 − fj
∆x

+ Γ1 (3.30a)

2ndorder :
∂f

∂x
|j =

fj+1 − fj−1

2∆x
+ Γ2 (3.30b)

The above represent the �rst order forward or upwind di�erence (3.30a) and the

second order central di�erence approximations (3.30b). The truncation term Γm rep-

resents the higher order terms not accounted for in the di�erence approximations and

is the di�erence between the exact solution of the derivative and its discrete approxi-

mations.

An advantage of this method is the high accuracy and direct implementation to nu-

merical solvers. However, when we encounter irregular geometries or an unusual spec-

i�cation of boundary conditions, we �nd that �nite di�erence techniques become hard

to use.
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3.4.1.2 Finite Element Method (FEM)

The powerfulness of FEM arises when more complex geometries are needed, and FDM

becomes harder and harder to implement and its demands of computational power

increase excessively. The FEM subdivides a model into very small but �nite-sized

elements of geometrically simple shapes (e.g. triangles), which can represent the real

geometry very accurate. The collection of all these simple shapes constitutes the

so-called �nite-element mesh. As an example of how a �nite di�erence model and a

�nite element model might be used to represent a complex geometrical shape, consider

Fig.3.7 where an exterior shape, makes it a non-simple geometry.

A uniform �nite di�erence mesh would reasonably cover the blade (the solution region),

but the boundaries must be approximated by a series of horizontal and vertical lines

(or �stair steps�). On the other hand, the �nite element model (using the simplest two-

dimensional element; the triangle) gives a better approximation to the region (Pletcher

et al., 2012).

(a) (b)

Figure 3.7: (a) Finite di�erence and (b) �nite element discretization of geometry

(Pletcher et al., 2012)

Classical �nite element methods assume continuous or weakly continuous approxi-

mation spaces and ask for volumetric integrals of the weak form to be satis�ed. The

order of accuracy is increased by raising the approximation order within elements.

The methods are not exactly conservative, thus often struggle with stability for dis-

continuous processes. In contrast, �nite volume methods use piecewise constant ap-

proximation spaces and ask for integrals against piecewise constant test functions to

be satis�ed. This yields exact conservation statements.
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3.4.1.3 Finite Volume Method (FVM)

The FVM o�ers an alternative approach for deriving the discretized equations. This

method is based on the principle that the divergence term, that frequently occurs in

di�erential equations governing various interesting scienti�c phenomena, can be rewrit-

ten as a surface integral using the divergence theorem. The problem then simpli�es to

evaluating �uxes normal to the cell walls. Since this becomes a vector problem, the

cell walls can take any shape and can be arbitrarily oriented. All that is required is

that the they enclose a closed volume. Since the method is based on evaluating �uxes,

the FVM is conservative. Out�ow from one cell becomes in�ow into another. This

makes the FVM stable and �exible, and yet relatively easy to implement. This is why

the Finite Volume Method is commonly implemented in commercial computational

�uid dynamics (CFD) solvers (Pletcher et al., 2012).

3.4.2 Time discretization

The discretization of the time derivative using �nite di�erences is very similar to the

discretization in space, and an approximation analogous to the �rst-order expression

(3.30a) can, for instance, be derived from a Taylor series as:

∂f

∂t
=
fn+1 − fn

∆t
+ Γ1 (3.31)

where ∆t is time step, fn is the value of f at time tn, fn+1 is the yet unknown value

of f at time tn+1and Γ1 is the truncation error.

The simplest time discretization schemes are explicit and implicit Euler methods,

in which variable fn+1 is calculated from:

fn+1 − fn

∆t
= rhsn (3.32)

fn+1 − fn

∆t
= rhsn+1 (3.33)

Euler methods can be considered as the analogues of forward and backward dif-

ferencing in space and are �rst order accurate in time. Euler methods are called

two-point methods, because value of f at two instances in time are involved. A second

order accurate two-point method can be constructed by applying the trapezoidal rule

to approximate rhs, which yields the semi-implicit Crank-Nicolson method:

fn+1 − fn

∆t
=

1

2

(
rhsn + rhsn+1

)
(3.34)
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The application of the explicit Euler method provides very fast computational re-

sults, but su�er from instability for inappropriate time steps or grid resolutions. There-

fore, explicit time discretization methods are subject to rigorous stability conditions,

which are generally known as the CFL condition (Courant-Friedrichs-Levy conditions):

CFL =
|u|∆t
∆x

< 1 (3.35)

where u is characteristic velocity, and ∆x is grid resolution.

3.5 Numerical solutions

The numerical solution of the system constituting two hydrodynamic and one sediment

equation is non-trivial. Cunge et al. (1980) discussed two approaches that can be used

for any sediment transport �ux that is a function of �ow velocity only. However, both

approaches can be adapted for any sediment transport �ux with varying degree of

di�culty (Hudson et al. 2005).

3.5.1 Decoupled approach

The decoupled approach assumes that the water motions are steady with respect to

changes in the bed level. In other words, the timescale over which the bed changes

is so much larger than those associated with the hydrodynamic motions that these

individual motions do not impact on bed changes: only the mean hydrodynamics

e�ects and responds to bed changes.

Another way of stating this is that the speed of the propagation of seabed wave-

forms (like ripples or tidal sand waves) is considerably smaller in magnitude than

the wave speeds of the water �ow. These assumptions allow the water �ow to be

discretized separately from the bed. Moreover, the approach takes advantages of the

slow evolution of the bed by iterating the water �ow,

[
h

uh

]
t

+

[
uh

hu2 + 1
2
gh2

]
x

=

[
0

−ghzx

]
(3.36)

to an equilibrium state each time the bed is updated. In other words, the quasi-

stationary assumption is implemented numerically by iterating to a state where the

time derivatives are zero. This results in the computation time being signi�cantly

reduced for test cases where the bed evolves slowly (Hudson et al. 2005).
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3.5.2 Coupled approach

For the coupled approach, no assumptions are made and the water �ow and bed are

calculated simultaneously. With this approach, the water motions can either be steady

or unsteady and changes in the bed update are considered to be signi�cant. Here

the wave speed of the sediment continuity equation can be of a similar magnitude

to the wave speeds of the water �ow. For this approach, the system is discretized

simultaneously (Hudson et al. 2005).
h

uh

z


t

+


uh

hu2 + 1
2
gh2 + ghz
1

1−p0 q


x

=


0

gzhx

0

 (3.37)

Both approaches discussed above can be written in the general form:

∂~w

∂t
+
∂~F(~w)

∂x
= ~R (3.38)

where ~F(~w) is the numerical �ux and ~R contains the inhomogeneous term. In order

to solve the system (3.38) the continuous equations must be discretized to re�ect the

�nite number of grid points. Using the upwind scheme, this discretization takes the

form:

~wt+1
i = ~wt

i −
∆t

∆x
(~F

t

i+1 − ~F
t

i) +
∆t

∆x
~Ri (3.39)

The upwind scheme is an example of an explicit scheme, that is a scheme where the

solution at the new time-level t + 1 can be calculated explicitly from the quantities

that are already known at the previous time-level t. This is to be contrasted with

an implicit scheme in which the �nite di�erence representations of the di�erential

equation has, on the right hand side, terms at the new time level t+ 1.

The points x = x0 and x = xI are the spatial boundaries and we require numerical

boundary conditions at these points. The spatial step size, ∆x, is �xed and we use a

variable time step,

∆t =
v∆x

maxi (|λk|)
(3.40)

where max (|λk|) is the maximum wave speed, λk are the eigen values of the Jacobian

matrix associated with the system,

A(~w) =
∂~F

∂~w
(3.41)
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where k is the k-th component of the system and v is the required Courant number.

Unless stated otherwise, the scheme discussed here is stable for Courant number of

less than one. The values λk are the eigen values of the Jacobian, and represent the

speeds at which information travels in the general system (3.38).

The condition (3.40) amounts to ensuring that time steps are small enough to ensure

that, consistent with the numerical scheme (3.39), no wave can propagate further

than its adjacent cell in one integration. And this is one of the main reasons why

most morphodynamic codes take the decoupled approach, because the hydrodynamical

wave speeds are usually so much greater than the morphodynamical ones, resulting in

time steps that are orders of magnitude smaller and codes that are correspondingly

slower. The decoupled approach also has the advantage that any sediment transport

�ux, or even a black box approach, can easily be implemented, whereas the coupled

approach can experience di�culties when including more complex sediment transport

�uxes (Hudson et al. 2005). More detailed information about numerical methods

for morphodynamic modelling and their solution can be found in Hudson (2001) and

Rezzolla (2011).
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Chapter 4

TELEMAC-MASCARET system for

hydro-morphodynamic modeling

The open source TELEMAC-MASCARET was developed originally by the National

Hydraulics and Environment Laboratory (LNHE) of the research and development

directorate of the French Electricity Board (EDF) as a hydro-informatics system for

free surface �ows (Hervouet 2007). All modules of the system are based on unstruc-

tured grids and �nite element or �nite volume algorithms. One important feature is

parallelism with domain decomposition. The implicit algorithms have led to a parti-

tioning without overlapping, with matching interface points, and linear systems are

solved on the whole domain. The programs are written in Fortran 90 and can be run

on Unix, Linux and Windows systems, they are compatible with any Fortran 90com-

piler. The model system includes 2D and 3D hydrodynamic modules (TELEMAC-2D

and -3D), and a spectral wave propagation model (TOMAWAC). The environment

is extended by the two dimensional morphologic module SISYPHE (developed with

contribution of Dr. Minh Duc Bui at Technical University of Munich) for bed load

and depth averaged suspended load and SEDI-3D for three dimensional suspended

load. More detailed information about the system can be found on the website:

http://www.opentelemac.org/.

4.1 Hydrodynamic module

The TELEMAC-2D �ow module solves the shallow water equations with several op-

tions for the horizontal dispersion terms (e.g. depth-averaged k-ε model, Elder model,

and constant eddy viscosity models) and source terms (e.g. atmospheric pressure gra-

dients, Coriolis force, etc.). The numerical discretization includes a choice of classical

http://www.opentelemac.org/
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methods for the advection terms (e.g. characteristics, SUPG, distributive schemes. . . ).

The use of implicit schemes enables relaxation of the limitation on time steps (typically,

values of a CFL-numbers up to 10 or 50 are acceptable). Recently, ideas stemming

from �nite volume techniques have been coupled with these implicit schemes to ensure

monotonicity of depth and sediment concentrations, as well as mass conservation at

machine accuracy.

TELEMAC-3D solves the Reynolds-Averaged Navier-Stokes (RANS) equations in un-

structured meshes obtained by a super- imposition of 2D meshes of triangles. The

movement of the mesh can be taken into account in the advection step by transforma-

tion. The superimposed layers may not be evenly spaced. This allows a more accurate

representation of the �ow �eld by a re�nement near the bed, enabling better accuracy

of the turbulence models (mixing-length model, k-ε model) and leading to a better

estimate of the bed shear stress. The 3D model can be applied to capture the e�ect

of vertical recirculation cells as well as strati�cation e�ects, assuming a hydrostatic or

non-hydrostatic pressure distribution (Villaret et al., 2013).

4.2 Wave propagation model

TOMAWAC is a third generation spectral wave propagation model, which accounts

for the e�ect of wave generation by wind, white-capping, nonlinear wave-wave inter-

action, refraction, shoaling and dissipation (cf. Benoit etal.,1996). Internal coupling

between TELEMAC-2D and TOMAWAC accounts for the e�ect of the waves on the

mean circulation (e.g. wave-induced currents, leading to littoral drift) as well as the

modulation of waves by the tides. The interaction between waves, tidal �ows and

storm-surges has also been studied at a regional scale by Nicolle et al.(2009).

4.3 Sediment transport and morphodynamic module

Sediment transport and bed change modules (SISYPHE) can be used to model com-

plex morphodynamic processes for di�erent �ow conditions, sediment size classes and

sediment transport modes. In SISYPHE, sediment transport processes are grouped as

bed-load, suspended-load or total-load, with an extensive library of bed-load transport

relations. A choice of di�erent sediment transport formulae for bed-load or total-load

is implemented.

SISYPHE is applicable to non-cohesive sediments that can be uniform (single-sized) or

non-uniform (multiple-sized), cohesive sediments (multi-layer consolidation models),
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as well as sand-mud mixtures. A number of physically-based processes are incorpo-

rated into SISYPHE, such as the in�uence of secondary currents to precisely capture

the complex �ow �eld induced by channel curvature, the e�ect of bed slope associated

with the in�uence of gravity, bed roughness predictors, and areas of non-erodible bed,

among others. SISYPHE can be coupled to the depth-averaged shallow water module

TELEMAC-2D or to the three-dimensional Reynolds-averaged Navier-Stokes module

TELEMAC-3D.

The sediment transport model relies on a complete description of the �ow �eld, through

internal coupling with the �ow module. At each time step, the hydrodynamic model

(TELEMAC) calculates the �ow �eld and sends to the SISYPHE model the spatial

distribution of the main hydrodynamic variables: water depth, �ow velocity compo-

nents, and bed shear stress. These sediment transport rates are calculated bed level

change is used to account the e�ects of sediment transport on �ow. The structure of

such a coupled system is shown in Fig.4.1.

Figure 4.1: Scheme of a hydro-morphodynamic-model system

Sediment transport rates in the modeling system are calculated with classical semi-

empirical concepts, which involve the decomposition of sediment transport rates into

bed-load and suspended load. The resulting bed evolution is then computed by solv-

ing the Exner's equation. The model is mainly applicable to non-cohesive sediment,

composed of either uniform grains or multi-grains, characterized by their mean size

and density.

The conventional method for performing hydro-morphodynamic simulations in rivers is
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to decouple the hydrodynamic and the morphodynamic modules. The decoupling ap-

proach is based on the rationale that the channel bed reacts at a much slower timescale

than the �ow. At implementation level, these modules communicate through a quasi-

steady morphodynamic time-stepping mechanism: during �ow computation, the bed

level is assumed to be constant and during computation of the bed level, the �ow and

sediment transport quantities are assumed invariant to the bed level changes. The

modules are linked together at the programming level.

4.4 Input �les for TELEMAC-MASCARET

TELEMAC demands di�erent input �les to create a simulation. Following provides a

short description of these �les as they are used in this thesis:

• Geometry �le (.slf): This is a mandatory �le in Telemac software which con-

tains the mesh information. This �le can include more information like friction

values as well.

• Steering �le (.cas): This is a mandatory text �le containing all the con�gu-

ration of the computation. In a way it presents the control panel of the com-

putation. It includes a number of keywords to which values are assigned. For

coupling of modules several steering �les are necessary.

• Boundary conditions �le (.cli): This is a formatted �le generated automat-

ically by other softwares such as BLUE KENUE but it can be modi�ed by a

standard text editor. Each line of this �le is dedicated to one point of the mesh

boundary. This is also a mandatory �le for running software. The BLUEKENUE

program can be used as a pre- and post-processor of TELEMAC.

• Liquid boundary �le (.txt): The user is able to determine values for time-

dependent boundary using this text �le.

• Fortran �le (.f): The �le contains all the Telemac subroutines modi�ed by

the user and those that have been specially developed for the computation. The

software allows the user to change and modify some subroutines.

• Previous computational �le (.slf): If this �le is included, the software uses

an existing simulation to initialize the next simulation. Here it is important that

the number of nodes and elements does not change.
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Chapter 5

New concepts for integrating ANNs

into hydro-morphodynamic models

The transport of sediment as bed load is an important process that occurs in rivers,

estuaries, and coastal regions. In many situations, this process and the resulting mor-

phological changes of the bed can have a detrimental impact on the infrastructure and

environment. Clearly, the processes of sediment transport and morphological evolution

of the bed are determined by the properties of the �uid �ow, which in turn are a�ected

by the changes in the morphology of the bed that they induce. Thus, the motion of the

�uid and the motion of the bed form an interdependent two-phase phenomenon that

must be analyzed using a model system made up of two distinct but interdependent

model components: (1) a hydrodynamic component de�ning the evolution of the �ow;

and (2) sediment transport/morphological component de�ning the evolution of the

bed. Such a modeling system is often referred to as a hydro-morphodynamic model.

The conventional method for performing morphodynamic simulations in rivers is to

decouple the hydrodynamic and the morphodynamic systems. At the implementa-

tion level, these modules communicate through a quasi-steady morphodynamic time-

stepping mechanism: during �ow computation, the bed level is assumed to be constant

and during computation of the bed level, the �ow and sediment transport quantities

are assumed invariant to the bed level changes. The modules are linked together at

the programming level. In the conventional hydro-morphodynamic models the bed

level changes are governed by the equation for conservation of sediment mass (Exner's

equation). The bedload transport rate (qb) in Exner equation is a complex function of

various hydrodynamic quantities such as currents and water depth as well as quantities

associated with sediment properties such as sediment density and grain size. Many

empirical functions are available to calculate bedload transport. Most of the formulas
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available in the literature have been developed by laboratory and �eld data analysis

using statistical methods such as the regression method. It is understood that such

formulas have drastic di�erences between them. No uniformly valid formulation for qb

currently exists. That being said, we are unable to select the most accurate formula

for a particular problem, which results in challenges with interpreting the accuracy

of computational sediment transport models. Therefore, in many cases, unreasonable

morphological changes are predicted and the results of the di�erent formulae often

strongly vary. The reasons are assumed in the complexity of the interaction between

�ow and sediment transport and in limitations of the nonlinear regression applied in

these methods. In contrast to most traditional empirical methods, which need prior

knowledge about the nature of the relationships among the data, data-driven models

learn from data examples presented to them. Through learning the input data, these

models can capture the subtle functional relationships among the data even if the

underlying relationships are unknown or the physical meaning is di�cult to explain.

Additionally these models have proven a high tolerance against data sample errors.

These attributes make the utilization of data-driven methods for sediment transport

predictions very promising. Thus, the main objective of this research is to develop

new schemes for hydromorphological model system based on data-driven methods to

predict the morphological changes. The focus of this research is especially on ANN as

it has lower computational cost than ANFIS.

5.1 Motivations

The following summarizes the motivations behind the use of ANN for new proposed

hydro-morphodynamic model systems:

1. To overcome imprecise and limited existing sediment transport formulas.

2. To �x the numerical instability of conventional methods in some cases.

3. No prior knowledge of data relationship and physical characteristic are required

in ANN application.

4. To handle non-linearity and automatically adjusts to new information, while

generally requiring little computational e�ort.

5. To solve di�culties in bed-load measurement, as it only needs bed-level-change

observation, which is easier.
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6. Its high tolerance against data sample errors.

5.2 Two new concepts

To overcome the weaknesses of the conventional models, two new concepts are proposed

that integrate ANNs into hydro-morphodynamic models. In the �rst proposed concept,

up to 3 ANN models can be used for hydrodynamic calculations depending on the

complexity and dimension of the problem. Since the characteristic time scale of bed-

evolution and bed load transport processes is normally much greater than that of �uid

�ow, it can be assumed that changes in the bed elevation during one computational

time step do not signi�cantly in�uence the �ow �eld. This assumption leads to the

computationally attractive possibility of coupling �ow and sediment computations in

an iterative manner. Hereby, the �ow and sediment-transport modules communicate

through a quasi-steady morphodynamic time-stepping mechanism: during the �ow

computation, the bed level is assumed constant and during the computation of the

bed level the �ow and sediment transport are assumed invariant to the bed level

changes. At each time step, the hydrodynamics variables (velocity �eld, and water

depth) are transferred into the morphodynamic model which in this case is another

ANN-based approximator. The bed elevation is updated and then sent back to the

hydrodynamic model. The procedure continues until the last time step is reached.

This proposed coupling concept is shown in Fig.5.1.

According to the proposed concept, the con�gured ANNs need to obtain some

knowledge of the task presented to them. The knowledge can be generated by providing

the required data and passing the training process. Normally, a data set is divided

randomly into three subsets, whereby the biggest amount of data is added randomly

to the training subset. The remaining data set samples are used for validating and

testing the networks. Finally, the weights and biases get modi�ed and �xed during

the training process, so that the networks can evolve an appropriate behavior towards

their application.

In the second proposed concept, the framework is the TELEMAC-MASCARET open

source. According to this model, an ANN-based approximator replaces the sediment

transport model SISYPHE, which is coupled with either the 2D or 3D �ow models.

This requires modi�cation of some subroutines in TELEMAC.

In fact, the hydrodynamic calculations are done by TELEMAC while the bed change

is being calculated by the knowledge of ANN. Unlike the �rst proposed concept where

both structured and unstructured meshes can be applied, here we are obliged to use
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Figure 5.1: The �rst proposed hydro-morphodynamic-model system

only unstructured mesh. The reason is that all modules of the TELEMAC system

are based on unstructured grids so that it must receive the calculated bed evolution

at di�erent times for every unstructured grid. Such a coupling concept is illustrated

in Fig.5.2. As can be seen from the �gure, the time step of morphodynamic part

(ANN model) can be much larger than the time step used in TELEMAC-2D/3D. For

coupling TELEMAC-ANN, some subroutines in the TELEMAC-MASCARET system

must be modi�ed.

One of the advantages of these proposed models is that the calculation of sediment

transport rate and bed shear stress are not required and the prediction of bed level

evolution is only based on the bed elevation and hydrodynamic characteristics. This

reduces the computational costs of simulation.
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Figure 5.2: The proposed hydro-morphodynamic-model system
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Chapter 6

Evaluation of the model performance

To develop and evaluate the new proposed concepts for integrating ANNs into hydro-

morphodynamic models, some steps have to be pursued. This research achieve this

by applying very simple one-dimensional models and later more complicated two and

three-dimensional models. Fig.6.1 shows a brief description of the steps which are

carried out.

Figure 6.1: Followed steps for model development

As can be seen from this �gure, a very simple 1D model will be developed in the �rst

step. We consider a straight channel with a �nite amplitude perturbation of the bed

level under steady �ow discharge and uniform bed material. Under the assumption of

constant water surface elevation, an analytical approximation based on the equation of

conservation of sediment can be applied to generate data used for training and testing

di�erent ANN models. This step may become more complex by considering models

with changing water surface elevation.

In the second step, two or three-dimensional models will be developed using the cali-

brated conventional numerical hydro-morphological solutions in �umes. The TELEMAC-

MASCARET hydro-informatics system, which can couple Exner equation with SWE
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or RANS equations to simulate morphological bed level changes is used to generate the

required data. Two di�erent test cases will be considered and modeled in TELEMAC-

MASCARET for this part. The �rst test case which is set up by the user, includes a

straight channel in TELEMAC-3D modeling system with a �nite amplitude perturba-

tion of the bed level close to the center of the domain. The second test case models

the evolution of the bed in a 180◦channel bend under unsteady-�ow conditions with

uniform sediment (Yen and Lee, 1995). This is an available example in the software

package. Chapter 9 provides more detailed information about each test case.

The obtained data then will be used to build the proposed hydro-morphodynamic mod-

els. After simulating each test case, the prediction qualities of the designed models are

studied by evaluating several statistical parameters that describe the errors associated

with the model. The statistical measure of goodness-of-�t between the estimated bed

changes and those obtained from di�erent numerical models was used to quantify this

error.

The correlation coe�cient (R) alone is unsuitable for evaluation of model prediction

(e.g., Legates & McCabe, 1999). Legates and McCabe (1999) proposed that a perfect

evaluation of the model performance should include at least one goodness-of-�t or rel-

ative error measure (e.g., coe�cient of determination: R2) and at least one absolute

error measure (e.g. root mean square error: RMSE or mean absolute error: MAE).

The mathematical formulas for calculating these parameters are as follows:

R =
n
∑
xiyi − (

∑
xi) (

∑
yi)√

n (
∑
x2
i )− (

∑
xi)

2
√
n (
∑
y2
i )− (

∑
yi)

2
(6.1)

RMSE=

√∑
(xi − yi)2

n
(6.2)

MAE =

∑
|xi − yi|
n

(6.3)

where n is number of pairs of data, xi and yi are i-th predicted and measured values,

respectively. Here, the models' performances are evaluated based on the values of

R2 (or R), RMSE, and MAE. The R2 expresses a degree of similarity between predicted

and actual values and measures how well considered independent variables account for

the variance of the measured dependent variable. Higher values correlate with greater

model predictive capability, with R2 values close to 1 indicating predicted and actual

values to be very similar. The RMSE computes the square error of the prediction

compared to actual values and computes the square root of the summation value. The

RMSE is, thus, the average distance of a data point from the �tted line measured
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along a vertical line. In contrast to the RMSE, the mean absolute error, MAE, is

a quantity used to measure how close predictions are to the measured outputs. The

MAE computes average magnitude of error between predicted and actual values with

no distinction between error direction. Low RMSE and MAE values indicate high

con�dence in the model-predicted values.

For more precise comparing the performance of di�erent models, the present study

additionally used two statistical indexes. The �rst index, mean absolute percentage

error (MAPE) can be de�ned as follows:

MAPE =
1

n

∑ |xi − yi|
|xi|

× 100% (6.4)

The MAPE is a statistical measure of predictive accuracy expressed as a percentage.

The MAPE is useful for evaluating the performance of predictive models due to its

relative values. MAPE e�ectively re�ects relative di�erences between models because

it is una�ected by the size or unit of actual and predicted values. To measure the

generalization capability of the di�erent learning rules, the non-dimensional error index

(NDEI) is used as the second index, which can be de�ned as the RMSE divided by

standard deviation of the target series (Jang, 1993).

If the �rst and second steps are successfully achieved, the models for real rivers could be

developed and applied, however, this thesis does not deal with step 3, as the required

data from real rivers are not available. Chapters 8, 9 and 10 essentially focus on

development and evaluation of these new proposed concepts. However, e�ciency and

e�ectiveness of data-driven methods on river engineering issues will be tested �rst for

the much simpler cases in chapter 7.
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Chapter 7

Application of data-driven models on

river engineering issues

This chapter validates the ability of data driven methods in the �eld of water engineer-

ing and sediment transport. To achieve this aim, two di�erent validation test cases,

are considered.

In the �rst test case, the accuracy of ANN and ANFIS's estimation of the maximum

equilibrium depth of the contraction scour are analyzed. The developed networks are

trained using the data set gathered by di�erent investigators for long contractions un-

der clear-water conditions. The designed ANN includes one hidden layer and seven

nodes within that layer. Its hidden neurons use a hyperbolic tangent sigmoidal trans-

fer function. The ANN model was implemented using the MATLAB software package.

The importance of the individual input parameters was tested with a sensitivity analy-

sis. This revealed the contraction ratio to be the most sensitive parameter, followed by

the e�ect of armor layer formation for non-uniform sediments. For the designed ANN

network, the training was based on the Levenberg-Marquardt algorithm in batch mode.

The designed ANFIS was trained on the zero-order Takagi-Sugeno model with four

bell-shaped membership functions for each input, and then the Levenberg-Marquardt

algorithm was applied for network training. The ANFIS model was implemented using

a FORTRAN-based computer code.

In the second test case, an ANFIS model trained with the Levenberg-Marquardt learn-

This chapter was published as:

Bui, M. D.; Kaveh, K., Penz, P.; Rutschmann, P. (2015a): Contraction scour estimation using data-

driven methods. Journal of Applied Water Engineering and Research, 3(2), 143-156.

Kaveh, K.; Bui, M. D.; Rutschmann, P. (2017): A comparative study of three di�erent learning

algorithms applied to ANFIS for predicting daily suspended sediment concentration. International

Journal of Sediment Research, 32(3), 340-350.
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ing algorithm is considered for time series modeling of suspended sediment concen-

tration in a river. The model is trained and validated using daily river discharge and

suspended sediment concentration data from the Schuylkill River in the United States.

The results of the proposed method are evaluated and compared with similar networks

trained with the common Hybrid and Back-Propagation algorithms, which are widely

used in the literature for prediction of suspended sediment concentration.

7.1 Contraction scour estimation

Scouring occurs due to several di�erent reasons. One is the so called contraction

scour which is often encountered in natural rivers due to channel contraction or river

restoration structures. When the �ow area is reduced by a natural contraction or bridge

opening, the velocity and bed shear stress will increase as required by continuity and

momentum considerations. The higher velocity results in an increased erosive force so

that more bed material is removed from the contracted reach. As a consequence of

which, the bed elevation is lowered and a scour hole develops over the general bridge

cross section. Contraction scour is classi�ed as either clear-water or live-bed. In the

clear-water case, no sediment transport occurs upstream of the contraction, while in

live-bed case, sediment is transported from upstream through the contraction scour

area. Further, two di�erent contraction types can be speci�ed: the short one and the

long one, according to the ratio of the length of the contraction to the width of the

approaching �ow. Fig.7.1 (Dey & Raikar, 2005) shows the schematic of a rectangular

contraction, where ds is equilibrium scour depth (m), L is length of contraction (m), h1

is approaching �ow depth, h2 is �ow depth in contracted depth (m), b1 is approaching

channel width (m), and b2 is contracted channel width (m). In the literature di�erent

statements for the threshold of the ratio L/b1, by which the contraction is designated

as long or short, can be found. For example, Komura (1966) terms a contraction as

long when values of L/b1>1 are predominant, whereas Webby (1984) sees values of

L/b1>2 as relevant (Bui et al. 2015a).

7.1.1 Data collection

In the context of rivers and sediment transport, armoring describes a process by which

an erosion-resistant surface layer is formed. This occurs on a river bed or a scour hole

when forces of the �owing water remove �ner particles and leave relatively large parti-

cles behind. The coarser bed material builds up a natural riprap like armor layer over
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Figure 7.1: Schematic of a long rectangular channel contraction at equilibrium scour

conditions; (a) top view, (b) side view

a heterogeneous mixture of sediment with a wide range of diameter. This armoring

limits further scour development for a particular �ow rate. In some cases, the formed

armor layer can be destroyed again by higher levels of shear stress, leading to further

development of the scour until a new armor layer is formed or the maximum scour

is reached. Whether an armor layer is formed or not depends on the values of the

geometric standard deviation (σg) of bed materials. According to Gessler (1971), ar-

moring will arise for σg >2. Later Raudkivi and Ettema (1982) reported that the bed

material will not armor for values of σg <1.5. An alluvial open channel is considered

with rectangular cross sections and along contraction, which means the ratio of the

length of the contraction to the width of the approaching �ow is larger than one. The

physical parameters in�uencing the equilibrium scour depth ds (m) in a long contrac-

tion are the approaching �ow velocity v1 (m/s), the approaching �ow depth h1 (m),

the density of water ρ (kg/m3), the density of sediment ρs (kg/m3), the acceleration

of gravity g (m/s2), the kinematic viscosity of water ν (m2/s), the median sediment

particle size dm (m), the approaching channel width b1 (m), contracted channel width

b2 (m), and geometric standard deviation of the grain-sized distribution σg (-) (Dey &

Raikar, 2005).

The independent variables g, ρ, and ρs are presented as one combined parameter

∆g. By using the Buckingham theorem for the dimensional analysis with repeating

variables approaching �ow velocity v1 and width b1, I can rewrite the relation be-

tween the 10 physical variables of the dimensional contraction scour form into the
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non-dimensional functional relation with only six dimensionless variables:

dS = dS
b1

; d = dm
b1

; h = h1
b1

; b = b2
b1

; Fr = v1√
∆gdm

; ∆g =
(
ρS−ρ
ρ

)
dS = F

(
d, Fr, h, b, σg

) (7.1)

The channel opening ratio b shows the in�uence of geometric contraction on the

degree of contraction scour. d represents the impact of sediment size on scour depth.

h refers to the importance of approaching �ow depth in scour depth. σg indicates the

role of sediment gradation in scour depth and accounts for armoring in well-graded

sediments. The densimetric Froude number Fr considers the e�ect of the mobility of

submerged sediment particles on scour depth. These �ve parameters are considered

as model inputs. The dimensionless equilibrium scour depth is considered as the only

output parameter. More details about the derivation of Eq.(7.1) can be found in Dey

and Raikar (2005).

Dey and Raikar (2005) have studied long contraction scour in a rectangular tilting

�ume in the Hydraulic and Water Resources Engineering Laboratory, Indian Institute

of Technology. The channel was 12 m long, 0.6 m wide, and 0.7 m deep with a

uniform contraction length of 1 m. The approaching channel width b1 remains constant

over the whole experiment (0.6 m), whereas the contracted channel width b2 has four

di�erent sizes (0.24, 0.30, 0.36, and 0.42 m). The experimental data were di�erentiated

according to the sediment type: sand or gravel. An overall number of 131 samples with

relevant parameters for contraction scour were provided; of those, 95 samples were for

gravel. To achieve a fully developed turbulent �ow, the �ume inlet was located 6 m

away from the contraction entrance. After a slow initial �lling of the �ume, the tests

ran until the equilibrium scour depth was reached. Equilibrium is attained when the

time-averaged transport of bed materials into the scour hole equals what is removed

from it. During all experiments, the average approaching �ow velocities were kept at

certain values, so that Clearwater conditions were guaranteed for all conducted tests.

In the present paper, the experimental data conducted by Dey and Raikar (2005) and

the data of other investigators (Komura 1966; Gill 1981; Webby 1984; Lim 1993) are

used. The whole data set consists of 182 samples with the relevant parameters for

contraction scour. In Table.7.1 the ranges of the di�erent parameters are listed. They

also represent the applicable domain of the data-driven models.

Additionally, since the geometric standard deviation has a range between 1.0 and

3.60, in some cases an armor layer could form during the scouring event. The data

set has been divided randomly into three subsets, whereby the biggest amount of data

(70%) is added randomly to the training subset. The remaining data set samples are
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Table 7.1: Range of parameters

Limit dm(mm) v1(m/s) h1(m) b1(m) b2(m) σg Fr dS(m)

Lower 0.350 0.1932 0.0240 0.400 0.100 1.00 1.1434 0.0100

Upper 14.25 0.9290 0.1366 1.586 0.524 3.60 3.2882 0.1626

used for testing (15%) and validating the networks (15%). The training subset is used

to design the weights. The validation subset is used to test the accuracy of training

while training is ongoing. After each epoch, the validation subset acts as a barometer

for determining when the accuracy of the network is acceptable. After the network is

considered to be optimally trained, the test subset is used to verify its performance.

To achieve a better performance and faster training of the network, all data were

normalized. The range after the data preprocessing is chosen to be between minus one

(ramin = -1) and one (ramax = 1). To ensure this, Eq.(7.2) is utilized. For a simpler

and more understandable comparison of the computed outputs with the targets, post-

processing is also included. Here the outputs and targets are de-normalized again,

thus set back to the ranges before preprocessing. For this purpose, Eq.(7.3) is applied.

xpr =

(
ramax − ramin

) (
x − xmin

)(
xmax − xmin

) + ramin (7.2)

xpo =

(
x pr − ramin

) (
xmax − xmin

)(
ramax − ramin

) + xmin (7.3)

where xpr is the preprocessed variable, xpo the post-processed variable, x the

original variable, and (ramin,ramax) is the range (Bui et al. 2015a).

7.1.2 Network design

For many problems of hydraulic engineering, a feedforward ANN is considered as an

e�ective tool which is also applied in the present paper. These networks often have

one or more hidden layers of sigmoid neurons followed by an output layer of linear

neurons or nodes. The reason for this is that multiple layers of neurons with nonlinear

activation functions allow the network to learn nonlinear relationships between input

and output vectors. This type of con�guration does not constrain the output result

to a �xed range of values, but instead grants the network the freedom to represent

any possible outcome. Learning or training algorithms decide how the weights used

in con�gured ANN architectures are adjusted to minimize the output errors of a par-

ticular data set. This is measured by the generalization ability of the input-output
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mapping computed by the ANN. At present, there are numerous learning algorithms

available for di�erent network con�gurations and applications. Miscellaneous train-

ing algorithms can propose di�erent equations that modify some of the weights of

processing elements in response to input and output values. One of the most widely

used algorithms for training a feedforward ANN is the Levenberg-Marquardt algo-

rithm with the mean squared error (MSE) being used as an error function. The MSE

computes the similarity of the prediction compared to actual values. This tool is e�-

cient at assessing undesirably large di�erences. The Levenberg-Marquardt algorithm

is employed in the scope of this work. Besides this, an early stopping algorithm and

the Nguyen-Widrow initialization for weights were utilized. More details about ANN

approaches with these methods can be found in Penz (2013).

Since the appropriate number of hidden layers and dependent nodes for the models is

not known, a trial and error method was used to �nd the best network's con�gura-

tion. An optimal architecture was determined by minimizing the di�erence between

neural network predicted values and desired outputs for various numbers of hidden

layers and neurons. The training of the neural network models was stopped when

either the acceptable level of error was achieved, or the number of iterations exceeded

a prescribed value. After several runs of this analysis, the neural network model con-

�guration that minimized the MAE and RMSE and optimized the R was selected

as optimal. The ANN architecture was modi�ed by changing the number of hidden

layers and its neurons, the initial weights, as well as the type of input and output func-

tions. Each modi�cation was tested with one hundred trials, which served as the basis

for performance assessment of mean values. To compare these mean values, di�erent

modi�ed architectures were evaluated. After extensive trial and error processes, an

optimal ANN for maximum equilibrium contraction scour modeling under clear-water

conditions was found with the simplest multilayer feedforward network resulting in

the one hidden layer performing clearly better than the alternatives. Further, for this

single hidden layer, the optimal number of neurons was determined to be seven. The

weight function was set as multiplication, whereas the net input function was chosen

according to trial-and error. A combination of the hyperbolic tangent sigmoid func-

tion in the hidden neurons with the linear transfer function for the output neuron was

determined as the best alternative.

By applying the designed ANN model, the values of the weights and biases have been

speci�ed after a successful learning process. They represent the stored knowledge of

the ANN for contraction scour depth modeling. The best designed network utilizes

all 50 de�ned parameters, which are collected in one input weight matrix IW1,1, one
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hidden layer weight matrix LW2,1, one bias vector ~b1, and one bias value b2 with the

following values:

IW1,1 =



−61.7540 0.7590 16.0804 −2.2736 −1.3754

−36.1590 −1.9702 −18.4141 3.2689 3.0961

12.5222 −.0.0331 −14.5885 8.0144 −0.2061

112.9620 1.4127 2.7952 −5.7359 −1.0236

−26.4800 0.0029 13.6386 8.1508 −0.0300

128.5200 −1.6282 8.8843 −0.1999 0.2204

−65.1840 −1.1853 −12.4488 −0.9877 −0.6407


(7.4a)

IW2,1 =
[

0.0276 −0.0258 −0.0726

0.0241 −0.0312 0.2775 −0.0295]
(7.4b)

~b1 =



2.1017

1.7659

−0.0878

0.1017

−7.2220

4.7620

3.9530


(7.4c)

b2 = [−0.1876] (7.4d)

Using the designed network, the following equation is received for the normalized

equilibrium scour depth:

(ds)pr = LW2,1 × tansig
(
IW1,1 ×



d

Fr

h

b

σg


pr

+ ~b1

)
+ b2 (7.5)

The dimensionless value of the scour depth dS can be then calculated using Eq.(7.5).

Based on this value and the approaching channel width b1, the absolute scour depth

ds can be de�ned.

For the ANFIS model, the same dimensionless inputs and output as well as the data

sets are applied. A two-step process is used for faster training and to adjust the net-

work parameters. When following a hybrid learning procedure, the premise parameters
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are kept unchanged in the �rst step, and the information is propagated forward in the

network to layer 4, where a least-squares estimator identi�es the consequent param-

eters. In the second step, the backward pass, the chosen parameters are held �xed

while the error is propagated. In MATLAB, the method of either back-propagation or

a combination of least-squares estimation and Back-Propagation could be applied for

estimating and modifying membership function parameters. Di�erent ANFIS models

were established to estimate maximum equilibrium contraction scour. Each model

had di�erent numbers of membership functions. The triangle, Gaussian, and gener-

alized bell functions were applied to each model. After an extensive trial-and-error

search for various networks, the optimal zero-order TS ANFIS model, which has four

bell-shaped membership functions for each input, was found. The training method is

based on the Levenberg-Marquardt algorithm with a combination coe�cient of 10−4

(Bui et al. 2015a).

7.1.3 Results and discussion

Although there are di�erent parameters (input variables) that a�ect the contraction

scour, only some are of primary signi�cance. To determine the e�ect of each individual

variable, a sensitivity analysis was performed. For this purpose, the ANN structure

with the best validation performance was used. Table.7.2 provides a comparison be-

tween di�erent ANN models having one of the independent variables removed in each

case. It can be seen the contraction ratio has the most e�ect on the contraction scour.

This is in accordance with the contraction scour formula of Lim and Cheng (1998)

which proposes that the equilibrium scour depth is only a function of the ratio of

contracted to uncontracted channel width. Another sensitive parameter, the standard

deviation of the size distribution of the bed materials, stood out. On the contrary,

the median sediment particle size seems to have the least in�uence on the equilibrium

scour depth.

Table 7.2: Sensitivity analysis of input variables

Performance
Omission of variables

dm/b1 Fr h1/b1 σg b2/b1

R 0.958 0.955 0.939 0.906 0.581

RMSE (m) 0.017 0.018 0.019 0.024 0.046

MAE (m) 0.012 0.013 0.014 0.016 0.037



7.1. CONTRACTION SCOUR ESTIMATION 77

To ensure physical plausibility of the designed ANN model, a sensitivity analysis

was carried out, where the contraction ratio and the standard deviation of the size

distribution of the bed materials in the test data set were altered and the e�ect on the

modeled scour depth was assessed. The following four scenarios were considered:

1. Contraction ratio increased by 15%, other inputs unchanged,

2. Contraction ratio decreased by 15%, other inputs unchanged,

3. Standard deviation of bed materials increased by 15%, other inputs unchanged,

4. Standard deviation of bed materials decreased by 15%, other inputs unchanged.

As expected, by increasing the contraction ratio, the long contraction reduces its

equilibrium scour depth, and decreasing the standard deviation of the bed materials

increases the equilibrium scour depth. The nonlinearity of the response curves also

provides further information; for example, the sensitivity of the equilibrium scour

depth to the contraction ratio is much greater than that to the standard deviation of

the bed materials. The results of the sensitivity analysis ensured physical plausibility

of the designed ANN model.

Fig.7.2 shows the response curves pertaining to the e�ect that changing the con-

traction ratio (b) by -15% and +15% and changing the standard deviation of the bed

materials (σg) in the same percentage range, while other input variables were un-

changed, has on scour depth.

The curve in Fig.7.3 shows the network's response for a continuous variation of con-

traction ratios b in the range of the whole data (between 0.4 and 0.7). In this case,

mean values for the remaining parameters were used: d = 0.0126, h = 0.171, σg = 2.3,

and Fr = 2.2158. The calculated results repeatedly con�rmed the physical plausibil-

ity of the designed feed-forward model: by decreasing the contraction ratio, the long

contraction increases the equilibrium scour depth.

Further, it should be emphasized again that the previous empirical equations have

been developed principally based on the simpli�ed one-dimensional theory of Straub

(1934) and limited experimental data. Laursen (1963) assumed that the shear stress in

the contracted section reaches its critical value at the end of the scouring process in a

long contraction under clear-water scour condition. Using Manning's equation for the

approach �ow and contracted �ow combined with the continuity equation, he obtained

the clear-water contraction scour formula. Modifying this concept, Richardson and

Davis (2001) proposed the clear-water contraction scour equations for homogeneous
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Figure 7.2: Response curves for the e�ect of the contraction ratio (a), and the standard

deviation of the size distribution of the bed materials (b) on the modeled contraction

scour depth (Bui et al. 2015a)

bed materials where the scour depth depends on the �ow discharge, the contraction

width, the upstream water depth, and the e�ective mean bed material size. Komura

(1966) emphasized the in�uence of armoring on live-bed scour depth by arguing that

the ratio of the sediment sizes in the approach �ow section and contracted section

in�uences the contraction scour depth for large contraction ratios and geometric stan-

dard deviation of sediment size distribution.

Through dimensional analysis of several laboratory experiments involving live-bed

and clear-water contraction scour in a long contraction, he proposed a dimensionless

scour depth formula that depends on the approach �ow Froude number, the ratio of

channel widths, and geometric standard deviation of sediment size distribution. Lim

and Cheng (1998) derived a long contraction scour formula for live-bed scour along

the same lines as that of Gill (1981) using a simple bed-load formula that assumes the

sediment transport rate is proportional to excess shear stress. Eventually, they showed
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Figure 7.3: Response of the designed feedforward network for a continuous variation

of contraction ratios (Bui et al. 2015a)

that the only solution of the equation was one in which the contraction scour depth

depends on the ratio of channel widths alone. In the work of Dey and Raikar (2005),

a detailed parametric investigation on scour depth in long contractions for uniform

and non-uniform sediments under clear-water scour has been carried out. These own

experimental data and the data conducted by other authors have been used to deter-

mine a new equation of maximum equilibrium clear-water scour depth. They de�ned

that the characteristic parameters a�ecting the maximum equilibrium non-dimensional

scour depth (scour depth - approaching �ow depth ratio) are the Froude number of the

excessive approaching �ow, sediment size - approaching �ow depth ratio, and channel

width ratio. Their results showed a signi�cant e�ect of sediment with a minimum

value of scour depth due to armoring given as 25% of the value for uniform sediment.

From the aforementioned studies, it is revealed that apart from the work conducted

by Dey and Raikar (2005) a detailed investigation describing the e�ects of various

parameters on scour depth in long contractions is inadequate. Also, little attention is

paid to study the scour depth in long contractions with non-uniform sediment.

Mohammad and Al-Sa�ar (2010) applied a feed-forward ANN model with six inputs

including the median particle diameter, the approaching �ow velocity, ratio of the

approaching �ow velocity to the critical velocity for sediments, the approaching �ow

depth, the approaching channel width, and the contracted channel width. The output

is the equilibrium scour depth. However, the e�ect of sediment gradation has not

been considered in their model. It is not clear whether only uniform sediment data
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have been used for the development of their model. Their designed ANN model then

consists of one hidden layer with 10 neurons. Logistic activation functions are applied

for hidden and output layers. Since the information about the designed ANN model

and �nal equation for scour depth is not su�ciently detailed in their paper, comparing

the performance of their model to that of our model is not possible.

To evaluate the performance of the new data-driven methods in predicting equilibrium

scour depth, a comparison between the new models and four of the existing formulae,

which have been proposed by Komura (1966), Lim and Cheng (1998), Richardson and

Davis (2001), and Dey and Raikar (2005), was undertaken using the same 182 cases'

observed data set. For this purpose, observed equilibrium scour depth values are

plotted against the predicted one. Fig.7.4 and Table.7.3 illustrate the correlation for

the di�erent contraction scour formulae and the chosen networks with the statistical

performance indices between predicted and observed data.

Table 7.3: Performance indices of various approaches for the whole data set

ANFIS ANN
Dey and

Raikar

Richardson

and Davis
Komura

Lim and

Cheng

R 0.976 0.965 0.836 0.853 0.790 0.748

RMSE (m) 0.013 0.015 0.035 0.054 0.170 0.048

MAE (m) 0.005 0.006 0.013 0.028 0.084 0.016

Comparing Fig.7.4(e) with (f) and looking at Table.7.3 again con�rm the statement

of Legates and McCabe (1999) that the correlation coe�cient R alone is unsuitable

for model evaluation. The formula of Komura (1966) provided a better correlation

coe�cient R = 0.788, but a worse RMSE = 0.170 m. The corresponding correlation

plot in Fig.7.4(e) shows a principal overestimation up to 200% of the Komura scour

formula, whereas for small contraction scour depths the formula underestimates. The

correlation plotted for the formula developed by Richardson and Davis (2001) is shown

in Fig.7.4(c) (Bui et al. 2015a).
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Figure 7.4: Comparison of the equilibrium scour depths computed using di�erent

methods with the experimental data for the whole data set (Bui et al. 2015a)
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It is apparent that of all the compared equation Richardson and Davis (2001) is

the most underestimating. Almost all points in the plot lay below the line of perfect

agreement in combination with a RMSE value (RMSE = 0.054 m). Despite its sim-

plicity that the scour depth is only dependent on the contraction ratio of the channel,

the formula of Lim and Cheng (1998) has the lower RMSE = 0.048 m. From the

corresponding correlation plot in Fig.7.4(f), again the tendency for underestimating is

evident.

Furthermore, some outliers can be identi�ed, which may result from neglecting a vari-

able that would represent armoring for non-uniform sediments. Comparing all existing

formulae based on the statistical values R, MAE, and RMSE proves the formula of Dey

and Raikar (2005) shows a better performance. Comparing the performance qualities

of the contraction scour formulas with those of the chosen ANN and ANFIS reveals

that the recommended networks have the highest R and lowest RMSE values. The new

models o�er improved predictions of scour depth. When applying the whole data set

for the best existing method (Dey & Raikar 2005), the RMSE was 0.035 m, compared

to the RMSE of 0.008 (m) for the new ANFIS model. Corresponding values of the

correlation coe�cient (R) are 0.836 and 0.976.

Fig.7.5 and Table.7.4 present a graphical and statistical comparison between di�erent

methods based on the test data. Again, it is clear that ANFIS and ANN models

provide better predictions than conventional methods. A more detailed description of

the application of the newly proposed hybrid and Back-Propagation with momentum

algorithms on ANFIS for contraction scour prediction can be found in (Bui et al. 2017)

and (Kaveh et al. 2015a; 2015b).

Table 7.4: Performance indices of various approaches for the test data set

ANFIS ANN
Dey and

Raikar

Richardson

and Davis
Komura

Lim and

Cheng

R 0.982 0.966 0.838 0.770 0.784 0.552

RMSE (m) 0.006 0.009 0.017 0.029 0.098 0.030

MAE (m) 0.004 0.007 0.011 0.027 0.085 0.020
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Figure 7.5: Comparison of the equilibrium scour depths computed using di�erent

methods with the experimental data for the test data set (Bui et al. 2015a)
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7.2 Predicting of daily suspended sediment concen-

tration

Suspended load refers to the sediment that is lifted by the upward components of

turbulent currents and remain suspended for a considerable length of time. In re-

cent decades, numerous studies have been done on the modeling of sediment transport

processes. However, due to the large number of di�culties to measure parameters

involved in this phenomenon, the theoretical governing equations may not be of much

advantage in gaining knowledge on the overall process. Studies have been done to re-

duce the complexities of the problem in terms of developing practical techniques that

do not require dwell on algorithms and/or theory. Among such techniques, classical

time series models, such as Multiple Linear Regression (MLR: an approach for mod-

eling the relation between a scalar dependent variable and one or more explanatory

variables) and Auto Regressive Integrated Moving Average (ARIMA), are widely used

for hydrological time series forecasting (Salas et al. 1980). However, these models are

basically linear models that assume data is stationary, and prove to have a limited

ability in capturing nonlinearities in hydrological and environmental data. In recent

years, the use of arti�cial intelligence approaches is increasing due to their capabil-

ity. Arti�cial Neural Networks (ANN) has been successfully applied in several diverse

�elds including water resources. Nagy et al. (2002) developed an ANN model to es-

timate Suspended Sediment Concentration (SSC) in rivers, achieved by training the

ANN model to extrapolate several streams data collected from reliable sources. The

network was set up using several parameters, such as Froude number, stream width

ratio, mobility number, and Reynolds number, as the input pattern and the SSC as

the output pattern. Raghuwanshi et al. (2006) proposed an ANN model for runo�

and sediment yield modeling in the Nagwan watershed in India. A �ve-year data set

was used for training and a two-year data set was considered for testing the model.

Linear regression based daily and weekly runo� and sediment yield prediction mod-

els were also developed using the previously mentioned data set and tested using the

testing data set. The ANN model performed better than the linear regression model

in predicting both runo� and sediment yield on daily and weekly simulation scales.

Zhu et al. (2007) proposed an ANN model for simulating the monthly suspended sed-

iment �ux in the Longchuanjiang River in China, whereby suspended sediment �ux

was related to the average rainfall, temperature, rainfall intensity, and �ow discharge.

Results illustrated that the ANN model is capable of simulating monthly suspended

sediment �ux with fairly good accuracy when considering proper variables and their
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correlation to the previous month suspended sediment �ux.

Despite the suitable �exibility of ANN in modeling hydrologic time series, sometimes

it may be di�cult to train an ANN when signal �uctuations are highly non-stationary,

and the physical hydrologic process operates under a large range of time scales varying

from one day to several decades. In such an uncertain situation, the Fuzzy Inference

System (FIS) may be applied in the estimation of uncertainties in the real situations.

Developing Hybrids of an ANN and a FIS, called Neuro-Fuzzy (NF) systems, is a

current research focus, that makes use of the advantages of both ANN and FIS. NF

systems can capture the bene�ts of both these techniques in a single framework and

have been applied to a number of problems in water resources and environmental en-

gineering, including ecological status simulation in surface waters (Ocampo-Duque et

al., 2007), as well as river �ow modeling (Zounemat-Kermani and Teshnehlab, 2008).

There are few studies of the application of fuzzy logic and NF algorithms in predic-

tion of sediment transport. Kisi et al. (2009) studied the accuracy of an adaptive

neuro-fuzzy computing technique for monthly suspended sediment prediction at the

Kuylus and Salur Koprusu stations in the Kizilirmak Basin in Turkey. The results of

their study illustrated that the NF algorithm provided better performance than the

ANN and Sediment Rating Curve (SRC) models. Rajaee et al. (2009) studied ANN,

NF, MLR, and SRC models for daily simulation of SSC for two hydrometry stations.

The models were trained using daily river discharge and SSC data for the Little Black

River and Salt River gauging stations in the USA. Comparison of the models' results

indicated that the NF model better predicts SSC in comparison to other methods.

Several papers have been published that use the Levenberg-Marquardt algorithm to

train an ANN for SSC prediction (Kisi, 2004; Rajaee et al., 2009). However, to the

knowledge of the authors, no work has been reported in the literature that applies

the Levenberg-Marquardt (LM) learning algorithm (Jang & Mizutani, 1996) to an

Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of daily SSC.

Therefore, the main objective of this paper is to investigate capability and accuracy

of ANFIS model trained with the LM algorithm in estimating SSC. Since the MAT-

LAB program supports only the common Hybrid and Back-Propagation algorithms

for ANFIS, a computer program system written in the FORTRAN language has been

developed for the LM algorithm (Kaveh et al. 2017).
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7.2.1 Data collection

Data obtained from the Schuylkill River gauging station at Manayunk, Philadelphia,

PA (Station No: 01473800, Basin Area = 4740 km2, Latitude: 40o 01'41� N and Lon-

gitude: 075o 13'44� W) operated by the U.S. Geological Survey (USGS), was used

to train and test all the models developed in this study. For this station, daily time

series of river discharge (Qt) and suspended sediment concentration (SSCt) were down-

loaded from the web server of the USGS (http://co.water.usgs.gov/sediment/

seddatabase.cfm).

Three subsets of the data -for training, validation and testing- are required to build

the model. To achieve this, the data from January 1, 1949 to December 31, 1953 (83%

of total data) were used for training and validation, and the data from January 1,

1954 to December 31, 1954 (17% of total data) were used as the testing set. Fig.7.6

shows the time series of data related to daily �ow discharge and suspended sediment

concentration.
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Figure 7.6: Discharge and SSC time series for the Schuylkill River Manayunk, Philadel-

phia, PA (Kaveh et al. 2017)

The statistical analysis for training, validation, testing, and all data is listed in

Table.7.5 which includes the minimum, maximum, mean, standard deviation (Sd),

skewness coe�cient (Cs), and autocorrelations from 1 day lag to 3 day lag (R1, R2,

and R3). It should be noted that data-driven methods (e.g., ANN or ANFIS) perform

best when they do not extrapolate beyond the range of data used for model training

and the extreme values of the available data must be included in the training set.

It can be seen from Table.7.5 that the extreme values of Q and SSC are in the range

of the training set. Skewness coe�cients are low for all data sets. This is appropriate

for modeling, because a high skewness coe�cient has a considerable negative e�ect on

model performance (Altun et al., 2007). At this river station, �ow discharge (Q) is

highly autocorrelated while the autocorrelation coe�cient for SSC is lower.

http://co.water.usgs.gov/sediment/seddatabase.cfm
http://co.water.usgs.gov/sediment/seddatabase.cfm
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Table 7.5: Statistical analysis for training, validation, testing, and all data sets

Statistical

parameters

Training set Validation set Testing set All data

Q

(m3/s)

SSC

(mg/l)

Q

(m3/s)

SSC

(mg/l)

Q

(m3/s)

SSC

(mg/l)

Q

(m3/s)

SSC

(mg/l)

Min 5.38 1.0 14.5 3.0 9.85 2.0 5.38 1.0

Max 1690 4010 603 750 337 508 1690 4010

Mean 95.96 92.44 107.38 43.99 52.31 21.45 90.62 72.55

Sd 120.88 292.74 100.89 94.45 47.73 37.13 110.08 244.29

Cs 4.847 7.569 1.623 4.557 2.362 7.695 4.656 8.949

R1 0.733 0.535 0.836 0.522 0.841 0.570 0.758 0.542

R2 0.474 0.236 0.676 0.214 0.678 0.366 0.522 0.247

R3 0.376 0.196 0.624 0.213 0.576 0.167 0.433 0.208

In general, this table shows relatively similar statistical characteristics between the

data sets, especially the validation and testing sets in terms of autocorrelation coe�-

cients. The correlation coe�cients between observed suspended sediment concentra-

tion and river discharge time series are calculated to choose suitable input patterns

for ANFIS models. The results are listed in Table.7.6. It is obvious that SSCt has

relatively higher linear correlations with Qt, Qt−1, Qt−2, SSCt−1, and SSCt−2.

The original data sets consist of di�erent variables with di�erent physical meanings

and units, and, thus, their ranges are highly variable. To ensure that each variable

is treated equally in a model and to also make them dimensionless, all variables are

preprocessed by scaling them between 0 and 1. The following simple linear mapping

of the variables is most commonly used for this purpose. Input and output variables

for the present study are rescaled using this formula.

xpr =

(
x − xmin

)(
xmax − xmin

) (7.6)

where xpr is the rescaled value of the original variable x, and xmin and xmax are

the minimum and maximum of variable x, respectively (Kaveh et al. 2017).
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Table 7.6: The correlation coe�cients between observed SSCt and Qt for all data

Parameter Qt Qt−1 Qt−2 Qt−3 Qt−4 SSCt−1 SSCt−2 SSCt−3 SSCt−4 SSCt

Qt 1.0 0.7578 0.5224 0.4334 0.3852 0.6081 0.3355 0.2507 0.2150 0.7929

Qt−1 1.0 0.7577 0.5229 0.4336 0.7930 0.6082 0.3357 0.2510 0.4373

Qt−2 1.0 0.7584 0.5235 0.4375 0.7932 0.6082 0.3364 0.2219

Qt−3 1.0 0.7584 0.2225 0.4382 0.7929 0.6081 0.1721

Qt−4 1.0 0.1732 0.2243 0.4416 0.7941 0.1134

SSCt−1 1.0 0.5375 0.2452 0.2082 0.5372

SSCt−2 1.0 0.5381 0.2472 0.2443

SSCt−3 1.0 0.5420 0.2072

SSCt−4 1.0 0.1322

SSCt 1.0

7.2.2 Network design

ANN and NF models are applied as e�ective approaches to handle nonlinear and noisy

data, especially in situations where the relations among physical processes are not fully

understood. They are also particularly well suited for modeling complex systems on

real time basis (Rajaee et al., 2009). The aim of this research is to investigate the

e�ciency of the ANFIS model trained with the LM learning algorithm for predicting

SSC one day ahead. With respect to the statistical analysis presented in Table.7.6,

the following combinations with di�ering numbers of input values (Q and SSC) were

considered to predict the unique SSC value one day ahead of time t. Since the variables

at times t-3 and t-4 show lower correlation, these variables are ignored in the following

combinations:

• Combination 1: Qt, SSCt−1

• Combination 2: Qt, Qt−1, Qt−2, SSCt−1, SSCt−2

• Combination 3: Qt−1, SSCt−1

• Combination 4: Qt−1, Qt−2, SSCt−1, SSCt−2

• Combination 5: Qt, Qt−1, SSCt−1, SSCt−2

• Combination 6: Qt, SSCt−1, SSCt−2
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The applied ANFIS models use a fuzzy inference model of Sugeno type (Jang et al.,

1997), in which the membership function parameters are tuned to �t a given input-

output set by optimization algorithms. In the ANFIS model each rule contains several

parameters of membership functions (MFs) and each variable may have several values

(in terms of rules). For example, if each variable has two rules and each rule includes

three parameters, then there are [n (variables) × 2 (rules) × 3 (parameters)] = 6n

parameters for the determination in layer 1. The ANFIS model trains these MFs

according to the training data set. In layer 2, these rules generate 2n neurons, and

furthermore, there are 2n × (n + 1) parameters undetermined within the defuzzi�-

cation process in layer 4. Choosing the number of MFs for each input re�ects the

complexity of selecting parameters for the ANFIS model. In this research, three dif-

ferent ANFIS models are considered for predicting SSC values in the river. In all these

models, three Gaussian membership functions for each input are found to provide the

best model performance. The di�erences between the models lie in their training al-

gorithms, namely the common Hybrid, Back-Propagation, and Levenberg-Marquardt

algorithms (Kaveh et al. 2017).

7.2.3 Results and discussion

The results of the model performance are listed in Table.7.7. In the testing phase,

many combinations had the LM algorithm yield better performance than the Hybrid

algorithm, while for some others the Hybrid algorithm performs better. However, for

all combinations, the Hybrid and LM learning algorithms have better performance in

comparison to the BP algorithm.

According to Table.7.7, in the Schuylkill River, the ANFIS model trained with the LM

algorithm provides the best e�ciency using combination 2 with the highest value of R2

= 0.7513 and the lowest RMSE = 25.955 mg/l and MAE = 11.859 mg/l. For ANFIS

model trained with the Hybrid algorithm the results are a little more complex, from

R2, RMSE, and MAE viewpoints, it shows the best performance for combinations 5,

6, and 2, respectively. Using the LM algorithm, the values of R2, RMSE, and MAE

vary in the ranges of 0.3103 to 0.7513, 21.467 to 47.709 mg/l, and 10.938 to 24.826

mg/l, respectively. Using the Hybrid algorithm they are in the ranges of 0.3273 to

0.7186, 26.639 to 41.945 mg/l, and 14.575 to 25.271 mg/l, respectively. In the training

phase, except for only one combination, all RMSE values for the LM algorithm are

lower than those for the Hybrid and BP algorithms. Similar to the testing phase, the

LM algorithm provides better R2 values for 4 combinations.
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Figure 7.7: SSC predicted by ANFIS models with combination 2 for testing data set

(Kaveh et al. 2017)

It can be said that ANFIS models trained with the Hybrid and LM algorithms are

comparable in terms of the prediction accuracy. However, in general, the networks

trained with the LM algorithm perform better than those trained by the Hybrid algo-

rithm.

The temporal variations of the observed and predicted SSC using all three training

algorithms for the combinations 2, 5, and 6 are shown in Figs.7.7, 7.8 and 7.9, re-

spectively. Moreover, the predicted SSC are plotted against observed SSC. As can be

seen, ANFIS models trained with the LM and Hybrid algorithms yield better results

for SSC prediction than those trained by the BP algorithm. It is also obvious that

the BP algorithm is almost always over-predicting measured values, except for a short

interval. The critical result of the LM and Hybrid algorithms is that they consistently
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Figure 7.8: SSC predicted by ANFIS models with combination 5 for testing data set

(Kaveh et al. 2017)

overestimated the SSC peaks. However, at peaks in the data, the LM algorithm shows

better agreement with the observed time series than the other algorithms.

The predicted magnitudes of low, medium, and high SSC using the LM algorithm are

closer to the observed values when compared to other algorithms. On the other hand,

the results of ANFIS models trained by the LM algorithm are closer to 45o straight

line in the scatter plots compared with those of the other algorithms.

Fig.7.10 shows the performance indexes MAPE and generalization capability (NDEI)

of the networks trained with di�erent learning algorithms and input combinations. As

can be observed, the LM algorithm performs better than the Hybrid algorithm for in-

put combinations 1, 2, and 5 while the Hybrid algorithm provides a lower MAPE value

for the other input combinations. In general, it can be said that the LM algorithm is a
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Figure 7.9: SSC predicted by ANFIS models with combination 6 for testing data set

(Kaveh et al. 2017)

more stable learning rule in comparison to the Hybrid and BP algorithms. According

to Fig.7.10(b), by applying the LM learning rule, the lowest NDEI value was obtained

for input combination 2. Except for combination 4 where Hybrid algorithm shows a

slightly better result, the LM learning rule performs better for the other combinations

in term of generalization capability.

Further, the cumulative suspended sediment load (SSL) was predicted using the

developed ANFIS models. The results are shown in Fig.7.11 for combinations 2, 5,

and 6, as well as for the best result of each algorithm (the Hybrid algorithm with

combination 5; the BP algorithm with combination 6; and the LM algorithm with

combination 2). The best results for each algorithm were selected based for the com-

parison between the measured and predicted maximum SSL and the chosen statistical
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Figure 7.10: (a) Performance index and (b) generalization capability (NDEI) for dif-

ferent learning Algorithms and input combinations (Kaveh et al. 2017)

performance indexes.

As is obvious from Fig.7.11, models trained with the BP algorithm overestimated the

cumulative SSL in all cases. As expected, the model trained by the LM algorithm has

the best performance for combination 2. For combination 5, the results of the Hy-

brid and LM algorithms are comparable while they also overestimate the SSL values.

In Fig.7.11(d), the measured cumulative SSL values are compared with the results

of di�erent ANFIS algorithms with the best combination for each model. The mea-

sured cumulative SSL in the veri�cation period is 66,616.69 tons. The ANFIS models

trained with the Hybrid, BP, and LM algorithms overestimate SSL values by 30,726.75,

82,366.88, and 7,494.97 tons, respectively. However, the LM algorithms gives better

performance when compared to other algorithms. It can be concluded that, ANFIS

model trained with the LM algorithm is more e�cient in prediction of the cumulative

SSL (Kaveh et al. 2017).
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Figure 7.11: Observed and estimated cumulative SSL for: (a) combination 2, (b)

combination 5, (c) combination 6, and (d) the best combination for each method

(Kaveh et al. 2017)
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Chapter 8

1D ANNs for modeling dynamic

channel

In this chapter, the �rst proposed concept will be tested for 1D dynamic channel

modeling. The main objective is, therefore, to develop an ANN model to predict

the morphological changes in a straight alluvial channel under steady �ow discharge

and uniform bed material, where the bed level changes are calculated directly from

the de�ned �ow without calculation of the bed load. The prediction qualities of the

designed network are studied by evaluating several statistical parameters, those of

which describe the errors associated with the model in terms of the goodness-of-�t

between the estimated bed change and analytical solution.

8.1 Model of a sand wave along an alluvial channel

8.1.1 Model setup

For a simple 1D model, a straight channel is considered with a length of 1000 m

and a �nite amplitude perturbation of the bed level near the center of the domain as

illustrated in Fig.8.1. This case can represent a sand dune in a river �ow. It is assumed

that the bed elevation Zb is very small in comparison to the water free surface level Zs

This chapter was published as:

Bui, M. D.; Kaveh, K.; Rutschmann, P. (2015b): Integrating arti�cial neural networks into hydro-

morphological model for �uvial channels. In Proceedings of the 36th IAHR World Congress (pp.

8-pages).

Kaveh, K., Bui, M. D., & Rutschmann, P. (2016): A new approach for morphodynamic modeling

using integrating ensembles of arti�cial neural networks. In �Wasserbau-mehr als Bauen im Wasser�.

Beiträge zum 18. Gemeinschafts-Symposium der Wasserbau-Institute TU München, TU Graz und

ETH Zürich (pp. 304-315).
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and the bed form movement is only due to bed load. Assuming a steady �ow discharge

throughout the channel with a rigid lid H0 = Zs = constant, one can obtain:

H ≈ H0 − Zb and U ≈ q

H
(8.1)

where H is the water depth, U is the mean �ow velocity, and q is the constant �uid

volume �ux per unit width (Bui et al. 2015b).

Figure 8.1: Bathymetry and coordinate system for the test case (Bui et al. 2015b)

8.1.1.1 Analytical approximation

Assuming that transport rate qb is a power function of current speed U (Grass, 1981;

van Rijn, 1993), then:

qb = AUm (8.2)

where A is a given function and m is a given positive constant both of which

are speci�c to the particular sediment transport formula. Note that A is typically a

function of the mean �ow velocity U , the total height of the water column H, and a

number of constants that are based on sediment properties (e.g. sediment type and

grain size) and data �tting procedures. The constant m is typically in the range of 1

≤ m ≤ 3. The phase speed of bed form C(Zb) can be now expressed as:

C(Zb) =
mAqm

(1− p0)(H0 − Zb)m+1
(8.3)

The initial condition Zb(x0, 0) is speci�ed as follows with α = 1(m):

Zb(x0, 0) =

 α sin2
[
π(x0−300)

200

]
if 300 ≤ x0 ≤ 500 (m)

0 otherwise
(8.4)
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Further, the Exner equation may be solved approximately by the method of char-

acteristics, which gives the result that Zb will remain constant along characteristics

given by:

dx

dt
= C (Zb(x0, 0)) =

mAqm

(1− p0) (H0 − Zb (x0, 0))m+1 (8.5)

Further, since Zb is constant along each characteristic, dx/dt is then constant and

each characteristic is a straight line in {x, t} with slope given by C(Zb(x0, 0)) at its

intersection with the x axis. Substituting the initial bathymetry into Eq.(8.5) and

integrating gives:

x = x0 +
mAqmt

(1− p0)


(H0 − α sin2(π(x0−300)

200
))−(m+1), if 300 ≤ x0 ≤ 500 (m)

H
−(m+1)
0 , otherwise

(8.6)

Unfortunately, x0, which is a function of x and t, cannot be written in the closed

form of x and t. Hence, the approximate solution of Zb is:

Zb(x, t) =

 α sin2
[
π(x0−300)

200

]
if 300 ≤ x0 ≤ 500 (m)

0 otherwise
(8.7)

where the value of x is determined by substituting values of x0 and t into Eq.(8.6)

(Bui et al. 2015b).

8.1.1.2 Data selection for ANN

The Eqs.(8.1), (8.6) and (8.7) with 0 ≤ t ≤ 60000 sec and 250 ≤ x ≤ 550 m are used

to generate the data for ANN model. The following quantities are speci�ed according

to similar settings in Hudson et al. (2005): m = 3, p0 = 0.4, H0 = 10 m, A = 0.001

s2/m, and α = 1 m. Grid spacing is chosen to be ∆x = 2 m. For all of the numerical

schemes discussed in Hudson et al. (2005) and Long et al. (2008) a very small time

step was chosen to satisfy stability conditions (e.g. ∆t = 0.1 s), however for the ANN

model, a large time step ∆t = 300 s is used. To generate the data set, U must be

evaluated using Eq. 8.1 at all alternate grid points i at time level n (denoted by Un
i ).

Then, Zb needs to be similarly evaluated using Eqs. 8.6 and 8.7 at the same grid

points and time level (denoted by Zn
bi). Once complete, the process is then repeated

at time level (n+ 1) and so on.

Finally, I have a data set of 30350 patterns, which are then divided randomly into three

subsets, whereby the biggest amount of data (70%) is added randomly to the training
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subset. The remaining data set samples are used for validating (15%) and testing the

networks (15%). The training subset is used to design the weights. The validation

subset is used additionally to monitor the accuracy of training, while training is ongo-

ing. After each epoch, the validation subset acts as a barometer for determining when

the accuracy of the multilayer perceptron is at an acceptable level. After the network

is considered optimally trained, the test subset is used to verify its performance (Bui

et al. 2015b).

8.1.2 Design of ANN model

8.1.2.1 Model inputs

Based on di�erent numerical schemes used in Hudson et al. (2005) and Long et

al. (2008) for calculation of morphological change in alluvial channels, the following

combinations including di�erent parameters at the time step n are considered as inputs

of ANN models to predict the bed level change at the grid point i and at one time

step ahead :

• Combination C1: Zn
bi, Z

n
b(i−1), U

n
i , U

n
(i−1)

• Combination C2: Zn
bi, Z

n
b(i+1), Z

n
b(i−1), U

n
i

• Combination C3: Zn
bi, U

n
(i−1), U

n
i , U

n
(i+1)

• Combination C4: Zn
bi, Z

n
b(i+1), U

n
i , U

n
(i+1)

• Combination C5: Zn
bi, Z

n
b(i−1), U

n
i , U

n
(i+1)

• Combination C6: Zn
bi, Z

n
b(i−1), Z

n
b(i+1), U

n
i , U

n
(i+1)

• Combination C7: Zn
bi, Z

n
b(i−1), Z

n
b(i+1), U

n
(i−1), U

n
(i+1)

• Combination C8: Zn
bi, Z

n
b(i−1), Z

n
b(i+1), U

n
i , U

n
(i−1), U

n
(i+1)

8.1.2.2 Model development

There is no special rule for ANN model development. By using Kolmogorov's theorem,

Marques (2001) and Hornik (1989) provided there are enough neurons in the hidden

layer, therefore, only one hidden layer should be su�cient to ensure that the structure

has the properties of a �universal approximator� for a number of particular problems.

Further, Marques (2001), the number of neurons in the hidden layer would most likely

be (2N + 1), where N is the number of neurons in the input layer. If there are too few
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hidden units there will be both a high training error and generalization error due to

under�tting and high statistical bias. Correspondingly, too many hidden units result

in a low training error but still in a high generalization error due to over�tting and

high variance. Here a feedforward neural network is considered in which each node

connects to every node in subsequent layers. During the learning phase, the network

learns by adjusting the weights to be able to predict the correct class output of the

input signals.

In this study, estimation of bed level change is based on an ANN model with one

hidden layer. It is necessary to mention that the performance of ANN model is sig-

ni�cantly related to the number of hidden layer nodes. Trial and error approach has

been employed to choose the appropriate number of nodes in the hidden layer. For

the �rst tests, the logistic sigmoid and linear transfer functions have been used for

hidden and output layers, respectively. Further, the inputs combination C1 and the

Levenberg-Marquardt learning rule have been applied. After each training process,

predicted values have been compared with those calculated by analytical approxima-

tion. Statistical indicators such as, correlation coe�cient (R), root mean square error

(RMSE) and mean absolute error (MAE) have been used to evaluate performance of

the ANN models. Based on performance indices of the ANN models given in Table.8.1

for the testing data set, it is seen that by increasing the hidden neuron numbers from

10 to 14, the performance of the ANN model becomes worse. Further, there is no sig-

ni�cant accuracy di�erences between models trained with 10 and 15 hidden neurons.

For simplicity and reducing the run time, this ANN con�guration with ten hidden

neurons is used for the next parts. Further tests have been carried out for di�erent

transfer functions used in the hidden layer and output one. As seen in Table.8.2, ap-

plying the logistic sigmoid transfer function for hidden layer and the linear function

for the output one results in the best performance of the ANN model.
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Table 8.1: Calculated performance indices for di�erent hidden nodes

Number of hidden nodes R RMSE MAE

1 0.998442 0.021353 0.017702

2 0.999917 0.004870 0.003703

3 0.999945 0.003976 0.003166

4 0.999993 0.001366 0.000887

5 0.999995 0.001195 0.000725

6 0.999992 0.001555 0.000862

7 0.999997 0.000935 0.000474

8 0.999998 0.000713 0.000350

9 0.999995 0.001193 0.000848

10 0.999998 0.000715 0.000302

11 0.999994 0.001330 0.000730

12 0.999993 0.001395 0.000720

13 0.999984 0.002164 0.001049

14 0.999995 0.001157 0.000527

15 0.999999 0.000628 0.000307

Table 8.2: Performance criteria for di�erent transfer functions

Hidden layer Output layer R RMSE MAE

logsig logsig 0.999986 0.002064 0.001557

tansig tansig 0.999998 0.000715 0.000302

logsig tansig 0.999994 0.001309 0.000630

tansig logsig 0.999919 0.004907 0.004298

radbas logsig 0.999983 0.002309 0.001906

logsig radbas 0.999958 0.003600 0.002800

radbas tansig 0.999987 0.001950 0.001212

tansig radbas 0.999976 0.002696 0.002108

radbas radbas 0.999996 0.001135 0.000877

logsig purelin 0.999999 1.38E-05 9.13E-06

tansig purelin 0.999999 0.000186 0.000127

radbas purelin 0.999999 1.82E-05 1.49E-05

It is well known that the Levenberg-Marquardt method is one of the fastest learn-
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ing algorithms chosen. However, its convergence speed is not necessarily linked to

the optimal performance behavior. Hence, the ANN con�guration mentioned above is

used to test against di�erent training methods. Table.8.3 presents the statistical per-

formances of ten di�erent learning rules, where the quasi-Newton Back-Propagation is

denoted by BFG; Resilient Back-Propagation by RP; Gradient descent with adaptive

learning rate Back-Propagation by GDA; Gradient descent with momentum Back-

Propagation by GDM; Gradient descent with momentum and adaptive learning rate

Back-Propagation by GDX; Gradient descent back-propagation by GD; One-step se-

cant back-propagation by OSS; Conjugate gradient Back-Propagation with Fletcher-

Reeves updates by CGF; Levenberg-Marquardt back-propagation by LM; and Conju-

gate gradient Back-Propagation with Powell-Beale restarts CGB. Based on the calcu-

lated performance indices, it is obvious that the LM training method is best suitable

for this study case.

Table 8.3: Calculated performance indices for di�erent learning algorithms

BFG RP GDA GDM GDX

R 0.9999 0.9999 0.9905 0.9900 0.9964

RMSE 0.00059 0.00246 0.0513 0.05276 0.03202

MAE 0.00046 0.00181 0.04317 0.03638 0.02242

GD OSS CGF LM CGB

R 0.9903 0.9999 0.9985 0.9999 0.9999

RMSE 0.05169 0.00359 0.01997 1.30E-05 0.00311

MAE 0.0394 0.00285 0.01459 9.10E-06 0.00238

Table 8.4: Calculated performance indices for di�erent learning algorithms

Combination R RMSE MAE

C1 0.999999999 1.38E-05 9.13E-06

C2 0.999999976 9.11E-05 6.98E-05

C3 0.999999556 0.000353 0.000282

C4 0.999999976 8.40E-05 6.22E-05

C5 0.999999710 0.000286 0.000208

C6 0.999999995 3.72E-05 2.62E-05

C7 0.999999945 0.000124 9.37E-05

C8 0.999999864 0.000195 0.000160
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According to Table.8.4, the designed ANN model with the inputs combination C1

provides the best performance. Understood from Eq.(8.3), the phase speed of bed

form is always positive. Hence, in this study case the morphological change at the

point i depend mostly on the bed level and water velocity at this point and at the

upstream neighbor point (i− 1) (Bui et al. 2015b).

8.1.3 Results and discussion

Applying this designed ANN model, the values of the weights and biases have been

speci�ed after a successful learning and validation process. They represent the stored

knowledge of the ANN for bed level change modeling, which are separated in one input

weight matrix IW1,1, one hidden-layer weight matrix LW2,1, one bias vector ~b1 and

one bias value b2 with the following values:

IW1,1 =



5.8720 −6.2430 26.1509 34.6502

4.4199 5.1539 −45.8799 −46.2625

−4.6946 6.2918 43.7671 −27.4119

5.5531 0.0688 51.5353 −54.2679

2.5215 5.7512 29.1313 −65.7119

−5.5153 −4.7864 33.8444 42.4838

−6.4566 −2.6638 56.3371 45.2583

1.0147 8.6364 −20.8286 −35.2006

6.4408 4.4430 19.5797 56.1871

5.5915 5.4314 −34.2711 −48.4119



(8.8a)

LW2,1 =
[

0.176690 −0.419430 −0.068665 0.071825 0.197520

−1.445500 0.601230 −0.180750 −0.000003 1.134200
] (8.8b)

~b1 =



−69.1472

88.7288

−14.0323

−2.0066

34.0812

−76.1308

−103.4181

56.2286

−80.3684

86.0117



(8.8c)
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b2 = [−0.22516 ] (8.8d)

Using the designed network, the following equation is received for the bed level

change:

Z
(n+1)
bi = LW2,1 × logsig

IW1,1 ×


Zn
bi

Zn
b(i−1)

Un
i

Un
(i−1)

+ ~b1

+ b2 (8.9)

Since the characteristic time scale of bed-evolution and bed load transport processes

is normally much greater than that of �uid �ow, it can be assumed that changes in

the bed elevation during one computational time step do not signi�cantly in�uence

the �ow �eld. This assumption leads to the computationally attractive possibility

of coupling �ow and sediment computations in an iterative manner. Hereby, the �ow

and sediment-transport modules communicate through a quasi-steady morphodynamic

time-stepping mechanism: during the �ow computation, the bed level is assumed

constant and during the computation of the bed level the �ow and sediment transport

are assumed invariant to the bed level changes. Based on this coupling concept, the

main calculation procedure implemented in this study is shown in Fig.8.2 (Bui et al.

2015b).

Now the capability of the designed ANN model for prediction of bed level changes

in the new coupling model can be analyzed. First, the initial values (at time t = 0)

are de�ned at every grid point i. The bed levels at one time step ahead, t = 5 min,

are calculated using the ANN-based Eqs.(8.8) and (8.9). The water velocities at this

time step are updated using Eq.(8.1). This procedure is repeated until the last time

step is reached. Table.8.5 presents the statistical performances indices of the model

based on a comparison between the predicted bed levels and analytical approximation

at di�erent times.

Table 8.5: Calculated performance indices for di�erent times

Performance 500 (min) 1000 (min) 1500 (min) 2000 (min)

R 0.999974 0.999976 0.999866 0.999066

RMSE 0.003169 0.004032 0.007505 0.016973

MAE 0.002571 0.003245 0.006234 0.012875

Given the morphological change in the channel, the results indicate that the de-
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Figure 8.2: Flowchart of the coupling system (Bui et al. 2015b)

signed ANN performs well. This can be deduced from the high values of R along with

small values of RMSE and MAE. Further, it should be noted that many time series

problems involve the task of predicting a sequence of future values using the values

observed in the past. A typical approach to solve this problem is to construct a single

model from historical values of the time series and then applies the model step-by-step

to predict its future states. This approach is known as multi stage prediction. As it

uses the predicted values from the past, multi stage prediction could be susceptible

to the error accumulation problem, i.e. errors committed in the past are propagated

into future predictions. The same error problem can be found also in the conventional

numerical models for morphodynamic.

Fig.8.3 is a plot of the bed level calculated by analytical approximation and prediction

of the designed ANN model at after 1000 and 2000 minutes. The �t is extremely

good, and it is rather di�cult to discern one graph from the other at any time t ≤
1500 minutes.

The predicted results show that for the simple case of 1D morphological problems,

arti�cial neural networks can provide good performance. It is also demonstrated that

the ANN could perform well for long-term time series prediction and could be inte-

grated in the hydromorphological model systems. The following sections encompasses
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Figure 8.3: Bed elevation after 1000 and 2000 minutes

further model developments to obtain a universal ANN-based approximator for mor-

phological change in alluvial channels (Bui et al. 2015b).

8.2 Model of dynamic bed forms

8.2.1 Model setup

To develop a more comprehensive universal ANN-based approximator for 1D mor-

phological change in alluvial channels, a broader range of input data is required for

network training. Consequently, I consider di�erent time steps, various discharge val-

ues, and three di�erent hump shapes including sinusoidal, Gaussian, and fractional,

with a wide range of heights and widths for data generation. These di�erent initial

conditions are determined as follows with heights (α) and widths (β):

Zb1(x0, 0) =

 α sin2
[
π(x0−300)

β

]
if 300 ≤ x0 ≤ 500 (m)

0 otherwise
(8.10a)

Zb2(x0, 0) = α× e−β(x0−400)2 (8.10b)

Zb3(x0, 0) =
αβ

(x0 − 400)2 + β
(8.10c)

The range of changeable parameters for each hump shape, such as discharge, time

step, height and width, is presented in Table.8.6.

Similar to the previous section, it is assumed that the bed elevations Zbi are very small

in comparison to the water free surface level Zs, and the bed form movement is only

due to bed load. It is also assumed that the �ow discharges throughout the channel

are steady. As a result of these assumptions the Eq.(8.1) will be valid here as well.
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Table 8.6: Range of varying parameters for data generation

Hump shape Range
Discharge

(m3/s)

Time step

(min)

Height

(α)

Width

(β)

Sinusoidal
Lower limit 6.0 30 0.6 180

Upper limit 12.0 50 1.2 240

Gaussian
Lower limit 6.0 30 0.6 0.0005

Upper limit 12.0 50 1.2 0.0010

Fractional
Lower limit 6.0 30 0.3 140

Upper limit 12.0 50 0.7 200

8.2.1.1 Analytical approximations

As the same transport rate qb formula (Grass equation) is used here, the Eq.(8.5) which

is solution of the Exner equation by the method of characteristics can be applied in

this section as well. Substituting each initial bathymetry into Eq.(8.5) and integrating

provides the analytical approximation of bed forms.

8.2.1.2 Data selection for ANN

The obtained equations with 0 ≤ t ≤ 60000 s and 250 ≤ x ≤ 550 m are used to

generate the data for ANN model. The following constant parameters are speci�ed for

calculations: m = 3 , p0 = 0.4, H0 =10 m, and A = 0.001 s2/m. Then each equation

is solved for di�erent discharge, time step, height and width values. These values are

quanti�ed as: Q = 6-12 m3/s with increment of 2 m3/s, ∆t = 30-50 min with increment

of 5 min, α1 = α2 = 0.6-1.2 with increment of 0.2, α3 = 0.3-0.7 with increment of 0.1,

β1 = 180-240 with increment of 20, β2 = 0.0005-00.1 with increment of 0.00025, and β3

= 140-240 with increment of 20. The indices 1, 2, and 3 are representing Sinusoidal,

Gaussian and Fractional humps, respectively. Grid spacing is chosen to be ∆x = 2 m.

Similarly, U is evaluated using Eq.(8.1) at all alternate grid points i at time level n

(denoted by Un
i ) for each discharge and bathymetry. Then, Zb is evaluated using the

obtained analytical approximations for each bathymetry at the same grid points and

time level (denoted by Zn
bi). Once complete, the process is then repeated at time level

(n+ 1) and so on.

Finally, a huge unique data set including the required information is obtained based

on di�erent discharges and bathymetries. The data set is then divided randomly into

three subsets, whereby the biggest amount of data (70%) is added randomly to the

training subset. The remaining data set samples are used for validating (15%) and
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testing the networks (15%).

8.2.2 Design of ANN model

8.2.2.1 Model inputs

The best input combination resulted from section 8.1 can be used here as well. How-

ever, it is noteworthy to mention that ∆t has to be added to the input parameters, as

it is not �xed for data generation. The following parameters are considered as inputs

of ANN model:

• Zn
bi, Z

n
b(i−1), U

n
i , U

n
(i−1), ∆t

8.2.2.2 Model development

In this part, no further work has been conducted to determine the network best struc-

ture. The estimation of bed level change is based on the optimum ANN model found

in the previous section. Therefore, the ANN is trained using Levenberg-Marquardt

technique due to the fact this technique is more powerful and e�cient than the conven-

tional gradient descent technique. One hidden layer consisting of 10 neurons is used

in this application. The logistic sigmoid and linear transfer functions are considered

for the hidden layer and the output one, respectively.

8.2.3 Results and discussion

The values of the weights and biases, which represent the stored knowledge of the

ANN, have been established after a successful training and validating process. They

are separated and de�ned in one input weight matrix IW1,1, one hidden-layer weight

matrix LW2,1, one bias vector ~b1 and one bias value b. The following equation can be

�nally obtained:

Z
(n+1)
bi = LW2,1 × logsig


IW1,1 ×



Zn
bi

Zn
b(i−1)

Un
i

Un
(i−1)

∆t


+ ~b1


+ b2 (8.11)

Now, the Eqs.(8.1), (8.11) and the coupling system explained in the previous section

can be applied for bed level changes prediction. To assess the e�ectiveness of the

ANN-based approximator, three di�erent test cases are considered using new test
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parameters, which ANN is not trained with. The prediction is performed for all test

cases including sinusoidal, Gaussian and fractional shape, whose results are presented

in Table.8.7. The results indicate that the designed ANN performs well, given the

morphological change in the channel, with high values of R and small values of RMSE

and MAE, even for the new data sets provided to it. The predicted bed levels are

compared with the analytical ones for testing data sets in Fig.8.4 at after approximately

1000 minutes.

Figure 8.4: Comparison between the calculated and predicted bed elevation on the

testing data; (a) sinusoidal, (b) Gaussian, and (c) fractional shape
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Table 8.7: Statistical performance of ANN model for di�erent test cases

New test parameters Performance index

Shape Q (m3/s) ∆t (min) α β R RMSE MAE

Sinusoidal 9.0 42.0 0.90 190 0.99993 0.00419 0.00338

Gaussian 7.0 47.0 0.70 0.0009 0.99994 0.00278 0.00177

Fractional 11.0 33.0 0.55 190 0.99788 0.00814 0.00371
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Chapter 9

2D/3D ANN models for

hydro-morphodynamic processes

This section presents a study on the development of ANN models for predicting bed

level changes in which the water surface elevation is inconstant. The motivation behind

the research is to study the e�ciency and e�ectiveness of ANN for more complicated

case studies. In contrast to the 1D model where an analytical approximation is used

for data generation, the open-source �nite-element TELEMAC-MASCARET system

will be used for 2D/3D models to simulate the morphodynamic evolution in a channel.

Obtained results are then used as input data set for ANN training process.

9.1 Flow and bed change in a straight channel

As the �rst case, a straight channel is considered in TELEMAC-3D modeling system

with a length of 20 m and a �nite amplitude perturbation of the bed level with a

height of 0.3 m close to the center of the domain. The initial bathymetry is illustrated

in Fig.9.1.

To build the geometry, the mesh generator from the free licensed program BLUEKENUE

is applied. It is developed by the Canadian Hydraulics Centre of the National Research

Council. It can be used as a Pre- and Post-processor of TELEMAC. The mesh includes

nodes and elements in 2D coordinates of x and y. However the bathymetry includes

additional information of the elevations in z-direction. This can be done by interpo-

lation of the mesh, which requires a point set consisting of x-, y- and z-coordinates.

Parts of this chapter were published as:

Kaveh, K., Bui, M.D., & Rutschmann, P. (2018): Development of an Arti�cial-Neural-Network-based

concept for hydro-morphodynamic modelling in rivers, The 5th IAHR Europe Congress, 2018,Trento,

Italy.
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For the hump the elevation of points in z-direction are extracted from the Gaussian

function. Finally, the mesh as in Fig.9.1 shown is developed. The �nal geometry is

then saved in a sela�n �le (.slf).

Figure 9.1: Initial bathymetry

The hydrodynamic model is based on the 3D Reynolds-Averaged Navier-Stokes

(RANS) equations in unstructured mesh grids. The prescribed �ow rate and elevation

are considered as inlet and outlet boundary condition, respectively. To start the sim-

ulation the de�nition of initial conditions is also required. By default, two options of

constant water depth or constant elevation over all the domain are available. Here, a

constant elevation of 3 m is applied as an initial condition. The turbulence compo-

nents are calculated by the accurate standard k − ε model. The di�usion of velocity

parameter for the 3D simulation must be given in horizontal and vertical directions.

The value of 1e-6 is considered for this part.

Another important parameter to be chosen for the TELEMAC simulation is the bed

roughness or bed friction. The application of friction requires the de�nition of the

friction law and its corresponding value in the steering �le. The applied law in this

model is the law of Nikuradse which uses a logarithmic velocity pro�le in z-direction.

The friction coe�cient for the bottom is 0.00015, whereas a high friction coe�cient

is considered for lateral solid boundaries (0.045) to get a fully 3-dimensional model.

As a result, during the simulation, the middle of the hump changes faster than chan-

nel sides, which makes the modelling more di�cult for ANN because it must predict

asymmetric movement of bed.

The sediment transport model is calculated based on semi-empirical formulae, which
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includes bedload computation and bed evolution. Non-cohesive sediment with uni-

form grain size of 0.15 mm is used for sediment transport model. Suspended load is

not considered in this model. Of the most important simulation parameters is the

de�nition of the numerical solvers, schemes and related parameters. The most impor-

tant parameter is the time step. A minor time step ∆t = 1 s with repetition of 10000

times is chosen. Further, an implication parameter is de�ned which corresponds to the

discretization scheme. To get a more stable result, a full implicit scheme is applied.

9.1.1 Data selection for ANN

After a successful simulation of the test case using TELEMAC-3D modeling system,

the obtained results can be used for networks training. To do this, the program was

run for 10000 sec. For this model a very small time step was chosen to satisfy stability

conditions (e.g. ∆t = 1 s), however for the ANN model, a large time step ∆t = 500 s

is used. The obtained results from TELEMAC models consist of water depth, scalar

velocity, and bed elevation at all spatial nodes and time steps. It is noteworthy that

all modules of the TELEMAC system are based on unstructured grids, but for ANN

training I tend to use all information at structured grids. Thus, the interpolation

technique was used to gain all required information at our desired structured grid

points. Considering 0 ≤ t ≤ 10000 s and 0 ≤ x ≤ 20 m and speci�ed values for ∆t,

and ∆x, a data set is received, that is divided randomly into three subsets: training,

validation and testing.

Finally, I have a data set for each network, which are then divided randomly into three

subsets, whereby the biggest amount of data (70%) is added randomly to the training

subset. The remaining data set samples are used for validating (15%) and testing the

networks (15%).

9.1.2 ANN design

Based on di�erent numerical schemes used in Hudson et al. (2005), Long et al. (2008)

and Bui et al. (2015) for calculation of morphological change in alluvial channels, the

following combinations, including di�erent parameters at the time steps t and t − 1,

are considered as inputs of ANN models to predict the water depth, scalar velocity

and bed level change at the grid point (i, j) and at one time step ahead t + 1. After

a trial and error procedure, the best input combinations for the models is found as

follows:

• For water depth and scalar velocity integrators: bed elevation, water depth,
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and velocity in x-direction at grid points (i, j), (i− 1, j), (i, j − 1), (i+ 1, j), and

(i, j + 1) and at times (t− 1) and (t):

~A =
[
Zt
b(i,j), Z

t
b(i−1,j), Z

t
b(i,j−1), U

t
(i,j), U

t
(i−1,j), U

t
(i,j−1), H

t
(i,j), H

t
(i−1,j), H

t
(i,j−1),

Zt−1
b(i,j), Z

t−1
b(i−1,j), Z

t−1
b(i,j−1), U

t−1
(i,j), U

t−1
(i−1,j), U

t−1
(i,j−1), H

t−1
(i,j), H

t−1
(i−1,j), H

t−1
(i,j−1)

]
• For bed level integrator: bed elevation at grid points (i, j), (i−1, j), (i, j−1), (i+

1, j), and (i, j+ 1) and at times (t− 1) and (t) and scalar velocity at grid points

(i, j), (i− 1, j), (i, j − 1), (i+ 1, j), and (i, j + 1) and at times (t+ 1) and (t):

~B =
[
Zt
b(i,j), Z

t
b(i−1,j), Z

t
b(i,j−1), U

t
(i,j), U

t
(i−1,j), U

t
(i,j−1), Z

t−1
b(i,j), Z

t−1
b(i−1,j), Z

t−1
b(i,j−1),

U t+1
(i,j), U

t+1
(i−1,j), U

t+1
(i,j−1)

]
As mentioned before, the optimal number of hidden layers and dependent nodes

for the ANN models is not known and a trial and error procedure must be applied to

�nd the best network's structure for each model. This was done in the same way as

explained in chapter 8. As a result, a detailed description of model development is

skipped in this section.

Similarly, the number of hidden layers and neurons were changed until the optimal

architecture was determined based upon minimizing the di�erence among the neural

network predicted values and the desired outputs. The training of the neural net-

work models was stopped when either the acceptable level of error was achieved or

the number of iterations exceeded a prescribed value. The neural network model con-

�gurations that minimized the MAE and RMSE and optimized the R were selected

as the optimum networks and the whole analysis was repeated several times. After

extensive trial and error processes, three optimal ANNs for velocity, water depth, and

bed level change modeling were found. All models consist of only one hidden layer

with ten neurons. The logistic sigmoid and linear transfer functions have been used

for hidden and output layers, respectively. The Levenberg-Marquardt is applied to all

three networks.

9.1.3 Results and discussion

After the training process, the weights and biases parameters of the con�gured net-

works are modi�ed and get �xed, which represent the stored knowledge of the ANN
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models. This knowledge is stored in one input weight matrix IW1,1, one hidden layer

weight matrix LW2,1, one bias vector ~b1, and one bias value b2 for each network.

Finally, using the designed networks, the following equations are received for the nor-

malized velocity, water depth, and bed level change calculations:

U t+1
(i,j) = LWu

2,1 × log sig(IWu
1,1 ×AT +~bu1) + bu2 (9.1a)

H t+1
(i,j) = LWh

2,1 × log sig(IWh
1,1 ×AT +~bh1) + bh2 (9.1b)

Zt+1
b(i,j) = LWz

2,1 × log sig(IWz
1,1 ×BT +~bz1) + bz2 (9.1c)

where superscripts u, h, and z denote the corresponding ANN model (velocity, wa-

ter depth and bed level integrator, respectively).

Since in this example the water surface elevation is not �xed, the Eq.(8.1) is no longer

valid for the �ow calculations. As a result, two more ANN models replace Eq.(8.1)

for hydrodynamic calculations (velocity and water depth integrators). The integra-

tion method for the hydro-morphodynamic modelling is shown in Fig.9.2. One of

the advantages of the proposed scheme is that the calculation of sediment transport

rate and bed shear stress is not required and the prediction of bed level evolution is

only based on the bed elevation and hydrodynamic characteristics. This reduces the

computational costs signi�cantly.

To assess the pro�ciency of the designed ANN models in the new proposed coupling

model, the initial values at times t = 0 and 500 s are determined at every grid point

explained above. The velocity and water depth at one time step ahead t = 1000 s are

updated using the ANN models (ANN_1 and ANN_2). Using calculated values and

applying the next ANN-based approximator (ANN_3) the bed change is calculated.

The results are sent back for �ow �eld calculations at the next time step. The proce-

dure is repeated until the last time step is reached. Table.9.1 presents the statistical

performances of the model based on a comparison between the predicted bed levels

and simulation of TELEMAC-3D modeling system at di�erent times. Given the mor-

phological change in the channel, the results indicate that the designed ANN performs

well. This can be deduced from the high values of R along with small values of RMSE

and MAE. According to this table, the model performance reduces as time increases.

As explained before, the reason is an error accumulation problem, i.e. errors commit-

ted in the past are propagated into future predictions. This is more serious here as

three ANNs exist instead of one. Figs.9.3 and 9.4 show the simulation of TELEMAC
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Figure 9.2: Proposed hydromorphodynamic modelling system

and proposed hydrodynamic-morphologic modeling system after 15000 and 25000 sec-

onds, respectively. In order to make a better comparison between the models and

analyze our ANN-based scheme, 2D view of Figs.9.3 and 9.4 on xy-plane are plotted

in Figs.9.5 and 9.6, respectively.

Table 9.1: Statistical performance of the �rst proposed concept modeling the bed

change in a straight channel at di�erent times

Performance index 15000 sec 25000 sec

R 0.9876 0.9854

RMSE 0.0119 0.0129

MAE 0.0055 0.0064

As can be seen from these �gures, there is a good agreement between the bed level

simulated using the ANN-based model and TELEMAC model. The di�erence between

two models are depicted in Figs.9.3(c) and 9.4(c) shows that the di�erence between

the models are very low.
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Figure 9.3: Bed level simulation after 15000 sec; (a) TELEMAC-3D, and (b) ANN-

based model

Figure 9.4: Bed level simulation after 25000 sec; (a) TELEMAC-3D, and (b) ANN-

based model
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Figure 9.5: 2D comparison of bed level simulation after 15000 sec; (a) TELEMAC-3D,

and (b) ANN-based model, (c) Di�erence between two models

Figure 9.6: 2D comparison of bed level simulation after 25000 sec; (a) TELEMAC-3D,

and (b) ANN-based model, (c) Di�erence between two models
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9.2 Flow and bed change in a curved channel

The mechanics of sediment transport in channel bends, frequently appearing in natural

rivers, is much more complex than that in straight channels. Therefore, the second

test case models the evolution of the bed in a 180o channel bend under unsteady-�ow

conditions with non-uniform sediment (Yen and Lee, 1995). The test case is calibrated

and already available in TELEMAC program system. The unsteadiness of �ow in this

test case certainly has some e�ects on the structure of the �ow �eld, thereby a�ecting

the motion of sediment particles. The initial geometry of the test case is shown in

Fig.9.7.

Figure 9.7: Initial geometry of the channel

The width of the channel is 1 m and the radius of curvature 4 m. At both ends of the

channel, there is a straight reach of 11.5 m. Starting from a horizontal �at bed in the

transverse direction with a longitudinal bed slope of 2%, a typical bank cross-section

with a scour at the outer bank and deposition at the inner bank is formed without

imposing any sediment discharge upstream. In the experiment, a layer of sand around

20 cm thick, with d50 of 1.0 mm is placed on the bed. The hydrodynamic model is

based on the 2D Shallow Water Equations (SWE) in unstructured mesh grids. The

base �ow is set at 0.02 m3/s, determined according to the condition of incipient motion

for the sediment with d50 of 1.0 mm.
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Figure 9.8: Hydrograph used in the experiment and simulation

The �ow discharge �rst linearly increased during the 100 min up to 0.053 m3/s

and then progressively decreased back to its initial value. The associated water depth

varied between 0.0544 and 0.103 m. Fig.9.8 presents the open boundary �le used

in TELEMAC including �ow rate and water depth varying over time. As an initial

condition, constant depth is applied, which initializes the water depth at the given

value (0.0544 m in this example). The bedload formulae of Meyer-Peter and Müller

(1948) is applied with a critical Shields parameter of 0.047, corresponding to the mean

grain size. The bed roughness is taken about three times the mean diameter (ks =

0.035 m), which corresponds to �atbed conditions.

9.2.1 Data selection for ANN

In this test case, the program was run for 6000 s. For the ANN models, a large

time step of ∆t = 200 s is used. Similar to the �rst case, the required results from

TELEMAC-2D model including water depth, scalar velocity, and bed elevation are

obtained at all spatial nodes and time steps. To get the required data on our desired

structured points, the interpolation technique was applied. Fig.9.9 shows schematically

the desired structured grids on the study domain. Lastly. the obtained data set for

each network are randomly divided into three subsets: training, validation and testing.

9.2.2 ANN design

The same input parameters as section (9.1.2) for �ow �eld and bed change calculation

are used. All three ANN models are structured with only one hidden layer consisting

of 10 neurons. The logistic sigmoid and linear transfer functions are considered for the

hidden layer and the output one, respectively.
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Figure 9.9: Schematic of the structured grids

9.2.3 Results and discussion

After the training process and updating the weights and biases parameters, three ANN-

based equations are obtained. Since the same number of hidden layer and neurons,

and the same transfer functions are applied here, these equations are comparable to

Eqs.(9.1a), (9.1b), and (9.1c). The only di�erence is that these equations are not

identical in terms of weights and biases parameters.

The initial values at time t= 0 and 200 s are de�ned at every grid point (i, j). Similarly,

the velocity and water depth at one time step ahead t = 400 s are calculated using the

ANN-based Eqs.(9.1a) and (9.1b). Using calculated values and applying the ANN-

based Eq.(9.1c) the bed change is calculated. The results are sent back for �ow �eld

calculations at the next time step. The procedure is repeated until the last time step is

reached. Table.9.2 presents the statistical performance indices of the model based on

a comparison between the predicted bed levels and simulation of the TELEMAC-2D

modeling system at di�erent times.

Table 9.2: Statistical performance of the �rst proposed concept modeling the bed

change in a channel curve at di�erent times

Performance index 6000 sec 10000 sec 20000 sec

R 0.9999 0.9959 0.9865

RMSE 0.0002 0.0016 0.0035

MAE 0.0001 0.0011 0.0026

Figs.9.10(a) and (b) plot the bed level simulated by the TELEMAC-2D model and

the ANN-based model after 6000 s, respectively. The di�erence between two models is

illustrated in Fig.9.10(c) to make a comparison between the models easier. As can be

seen from this �gure, the di�erence between the bed level calculations by two models
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is small which proves quality of the proposed model.

Figure 9.10: Bed level simulation after 6000 sec; (a) TELEMAC-2D, and (b) ANN-

based model, (c) Di�erence between two models

The long-term di�erences between the aforementioned models after 10000 and 20000

sec simulations are illustrated in Figs.9.11(a) and (b), respectively. According to Ta-

ble.9.2, the R, RMSE, and MAE are in the range of 0.9999 to 0.9865, 0.0002 to 0.0035,

and 0.0001 to 0.0026, respectively. These values and �gures con�rm good quality of

results. It is noteworthy to mention that the simulation takes only few seconds by

applying this new proposed concept while it would take the TELEMAC system few

minutes.

Figure 9.11: Di�erence between two models; (a) After 10000 sec, (b) After 20000 sec
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Integrating ANN model into

TELEMAC system

All the simulation modules of TELEMAC open source software are written in Fortran

90, with no use of the speci�c language extensions in a given machine. When using a

simulation module from the TELEMAC system, the user may have to program speci�c

subroutines that are not in the code's standard release. In particular, that is made

through a number of so-called user subroutines. These subroutines are written so that

they can be modi�ed, with the help of the guide for programming in the TELEMAC

system. The procedure to be carried out in that case is comprised of the following

steps:

1. Recovering the standard version of the user subroutines provided with the sys-

tem, and copying them into a �le that will be the speci�c Fortran �le of the

given case,

2. Modifying the subroutines according to the model we wish to build,

3. Linking up the set of subroutines into a single Fortran �le that will be compiled

during the TELEMAC start procedure.

During this programming phase, users may need to have access the various soft-

ware variables. This is possible from any subroutines by using the structures of For-

tran 90 gathered into a module type component. This feature of TELEMAC open

source software is used in this chapter to introduce a new proposed scheme for hydro-

morphodynamic modeling.

According to our second proposed concept for hydro-morphodynamic modeling, the

required hydrodynamic variables (water depth (H) and scalar velocity (U)) calculated
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by TELEMAC-2D or -3D are sent to ANN based approximator at each coupling period

∆tsed (see chapter 5). This is achieved by modi�cation of the subroutines according

to the model we wish to build, and replacing our obtained explicit equation for calcu-

lation of bed evolution. One of the most important subroutines of SISYPHE, which

is required to be modi�ed in this new scheme, is the bedload_solves_fe.f. This sub-

routine solves the Exner equation to calculate the bed evolution. After the training

process of ANN model, the weights and biases parameters of the con�gured network

are adjusted so that an explicit equation for calculation of morphological bed level

changes is obtained. This equation, which calculates the new bed level for each node

at every time step, will be used to modify subroutine bedload_solves_fe.f. In this

chapter, the e�ciency of the model is tested by two examples used in chapter 9.

10.1 Flow and bed change in a straight channel

10.1.1 Model setup

The test case of section 9.1, is used here to show the ability of the proposed integra-

tion model to reproduce the morphodynamic modeling. The same data set that was

generated in the section 9.1.1, can be used for networks training. The most important

di�erence here is that the data on unstructured grids are needed. The reason is that

all modules of the TELEMAC system are based on unstructured grids. Therefore, the

new bed level calculated by ANN based approximator must be sent to TELEMAC-

2D/3D for every unstructured grid points at each coupling period (∆tsed).

The bed elevation and scalar velocity at each grid and its neighbor points are consid-

ered as the most important input parameters. Since the location of neighbor points

around a node is irregular, another parameter must be introduced to represent the

strength of each neighbor point. As a result, the area of each element around a node

is considered as the other input parameter. Finally, after a trial and error procedure,

the following input matrix including the mentioned parameters at the time steps t and

t− 1 are considered for ANN model to predict the bed level change at the grid point

i and at one time step ahead:
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B =


Zt

1 U t
1 Zt

11 U t
11 · · · Zt

1m U t
1m Zt−1

1 U t−1
1 Zt−1

11 U t−1
11 · · ·

Zt
2 U t

2 Zt
21 U t

21 · · · Zt
2m U t

2m Zt−1
2 U t−1

2 Zt−1
21 U t−1

21 · · ·
...

...
...

...
...

...
...

...
...

...
...

...

Zt
p U t

p Zt
p1 U t

p1 · · · Zt
pm U t

pm Zt−1
p U t−1

p Zt−1
p1 U t−1

p1 · · ·

· · · Zt−1
1m U t−1

1m A11 · · · A1m

· · · Zt−1
2m U t−1

2m A21 · · · A2m

...
...

...
...

...
...

· · · Zt−1
pm U t−1

pm Ap1 · · · Apm


where p is the maximum number of grid points, m is the maximum number of

neighbor points around a node in entire domain, Zi is bed elevation at grid point i, Ui

is scalar velocity at grid point i, Aij is the area of j-th element around i-th node, and

Zij and Uij are the bed elevation and scalar velocity of j-th neighbor node around i-th

node, respectively.

10.1.2 Model development

It was found after a trial and error procedure and trying di�erent model structures that

the accuracy of the ANN model does not signi�cantly change when varying the number

of hidden layers and neurons. On the other hand, the generated explicit equation forms

a model with only one hidden layer, which is much simpler than those including more

layers. Therefore, I came up with the conclusion to use a model consisting of only one

hidden layer with ten neurons. The logistic sigmoid and linear transfer functions have

been used for hidden and output layers, respectively. The Levenberg-Marquardt was

also selected as the most suitable algorithm for the model training.

10.1.3 Results and discussion

Now we analyze the capability of the proposed concept and newly modi�ed subroutine

that implements the designed ANN model for prediction of bed level changes into the

TELEMAC-2D and -3D system. Applying this designed ANN model, the weights and

biases values have been speci�ed after successful learning and validating processes for

each test case. They represent the stored knowledge of the ANN for bed level change

modeling, which are separated in one input weight matrix IW1,1, one hidden-layer

weight matrix LW2,1, one bias vector ~b1 and one bias value b2. Finally, the equation
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for calculation of the bed changes is received as follows:

Zt+1
b(i) = LW2,1 × log sig(IW1,1 ×BT + ~b1) + b2 (10.1)

This equation is then used in subroutine bedload_solves_fe.f to calculates the new

bed level for each node at every time step.

After modi�cation of the subroutine, we have to recompile the code. Consequently

the program can be ready to be launched with the user-de�ned functions in the sub-

routine. Using the initial values, the program can simulate the bed levels at every

grid point i at one time step ahead. The minor time step of ∆thyd = 1 s is chosen for

hydrodynamic calculations while the coupling period with the morphologic module is

∆tsed = 500 s. The bed level remains �xed during the hydrodynamic computation.

After each 500 sec, the results are sent to bed level change module and during the

computation of the bed level the �ow is invariant to the bed level changes. After up-

dating the bed changes using the knowledge of ANN model, the results are sent back

to the TELEMAC-3D for �ow �eld calculations. The procedure is repeated until the

last time step is reached.

The performance of the model is analyzed using statistical indicators such as Corre-

lation Coe�cient (R), Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE). The Table 10.1 presents the accuracy of the proposed hydromorphodynamic

model after 15000 and 25000 sec. Figs.10.1 and 10.2 show the simulation of the origi-

nal TELEMAC-3D and the proposed modeling system after 15000 and 25000 seconds,

respectively. A 2D comparison between the models are illustrated in Figs.10.3 and

10.4, respectively.

Table 10.1: Statistical performance of the second proposed concept modeling the bed

change in a straight channel at di�erent times

Performance index 15000 sec 25000 sec

R 0.8938 0.9149

RMSE 0.0266 0.0602

MAE 0.0146 0.0384

According to Table.10.1, the proposed concept, which is integrating ANN model into

TELEMAC system, performs poorly for the �rst test case. The statistical performance

of the model indicates insu�cient quality of results. The poor results can be also

noticed from the �gures. This might be due to the location of neighbor nodes as they

play a crucial role in this concept.
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Figure 10.1: Bed level simulation after 15000 sec; (a) TELEMAC-3D, and (b)

TELEMAC-3D implementing ANN-based model

Figure 10.2: Bed level simulation after 25000 sec; (a) TELEMAC-3D, and (b)

TELEMAC-3D implementing ANN-based model
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Figure 10.3: 2D comparison of bed level simulation after 15000 sec; (a) TELEMAC-3D,

(b) TELEMAC-3D implementing ANN-based model, and (c) Di�erence of models

Figure 10.4: 2D comparison of bed level simulation after 25000 sec; (a) TELEMAC-3D,

(b) TELEMAC-3D implementing ANN-based model, and (c) Di�erence of models
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10.2 Flow and bed change in a curved channel

10.2.1 Model setup

In this part, we use the test case of section 9.2 and apply the same data set generated

in the section 9.2.1 for networks training but according to the unstructured grids. The

same input matrix (B) can be used here as well.

10.2.2 Model development

No changes are applied here to the network structure. The same model architecture

as section 10.1.2 is used for this example.

10.2.3 Results and discussion

First, the initial values are de�ned at every grid point i. The bed levels at one time

step ahead are calculated using the explicit equation implemented in the modi�ed

subroutine. We choose a minor time step for hydrodynamic calculations (∆thyd = 0.1

s) and a big time step for the bed level change simulation (∆tsed = 200 s). Table 10.2

shows the tabulation of the statistical performance of the proposed hydromorphody-

namic system which implements ANN into TELEMAC open source software after 6000,

10000, and 20000 s. The results con�rm that there is a good agreement between the

proposed scheme of hydrodynamic-morphologic system and the original TELEMAC

modelling system. The di�erences between the original TELEMAC-2D model and the

modi�ed one after 6000, 10000 and 20000 s are illustrated in Figs.10.5(a), (b) and (c),

respectively.

Table 10.2: Statistical performance of the second proposed concept modeling the bed

change in a channel curve at di�erent times

Performance index 6000 sec 10000 sec 20000 sec

R 0.9859 0.9821 0.9700

RMSE 0.0020 0.0023 0.0030

MAE 0.0011 0.0017 0.0023
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Figure 10.5: Di�erence between original TELEMAC-2D and TELEMAC-2D imple-

menting ANN based-model; (a) After 6000 sec, (b) After 10000 sec, and (c) After

20000 sec

The predicted results show that the newly proposed scheme could perform well for

long-term time series prediction and ANN results could be integrated in the hydro-

morphological model systems.
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Chapter 11

Results

11.1 Summary of the results

Current research focuses on developing new schemes of hydromorphodynamic model-

ing systems that integrate data-driven models, particularly Arti�cial Neural Networks,

into hydromorphological models for �uvial channels. As the �rst step, the fundamen-

tals of data-driven methods were discussed and several learning algorithms such as

MATLAB existing learning rules and those which were developed in FORTRAN were

applied to these models to improve their e�ciency and e�ectiveness. Two test cases

were considered and their performance in the context of prediction and function ap-

proximation was analyzed.

In case of the contraction scour depth prediction, an ANN and ANFIS were devel-

oped using the data set previously generated by various investigators for clear-water

contraction scours. The designed networks applied the learning algorithm proposed by

Levenberg-Marquardt in batch mode. The predicted results demonstrate the capacity

of the new approaches for the estimation of contraction scour. They indicate that using

suitable ANN and ANFIS networks for the scour modeling can lead to more accurate

predictions than using other existing methods. The errors of the ANFIS model are

less than those of the ANN model. However, it is too complicated to obtain a general

ANFIS-based equation for scour depth which may be useful for engineers working in

practice.

An attempt was also made to investigate the application of the LM learning al-

gorithm in ANFIS to predict the daily suspended sediment concentration for the

Schuylkill River in the United States. The FORTRAN programming language was

utilized to construct ANFIS models using the LM algorithm, and the MATLAB tool-

box was used to build ANFIS models based on the Hybrid and BP learning algorithms.
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Comparison of the predicted results indicated that the models trained with the LM

algorithm better predicted the SSC than the other algorithms. To recognize the best

algorithm between the LM, Hybrid, and BP, evaluations of the performance indexes

and the generalization capability of the network were presented. The results show

that the LM learning rule could improve the performance and generalization of AN-

FIS model. It was also found that the ANFIS model, which used the LM algorithm

as the learning rule, had the best accuracy when predicting the cumulative suspended

sediment load. The ANFIS models trained with the LM algorithm showed an improve-

ment in the coe�cient of determination, the root mean square error, and the mean

absolute error values compared to the Hybrid model.

An analytical approximation based on the equation of conservation of sediment was

applied to generate data used for training and testing di�erent ANN models. By eval-

uating the calculated results, the related parameters for an optimal network structure

was obtained for the simulation of bed level changes in a straight alluvial channel under

a steady �ow discharge and simple assumption for sediment transport processes. The

predicted results showed that for the simple case of 1D morphological problems con-

sidered in this study, arti�cial neural networks perform well. The calculated results

also showed that the ANN could perform well for long term time series prediction.

Moreover, the study demonstrated that a well-trained ANN model could be integrated

into the hydromorphological model systems and perform like conventional numerical

operators.

After a successful application of data-driven models for di�erent hydraulic test

cases, especially 1D simulation of bed level changes, two new integration methods

for the hydromorphodynamic modelling were proposed. In the �rst scheme, which is

simpler, 2 or 3 ANN models can be utilized for hydrodynamic calculations. At each

time step, the hydrodynamics variables (velocity �eld and water depth) are transferred

into the morphodynamic model (another ANN-based approximator), which then sends

back the updated bed elevation to the hydrodynamic model. In the second scheme,

the sediment transport model SISYPHE was replaced by an ANN model coupled with

either the 2D or 3D �ow models. The time-step of the morphodynamic part (ANN-

based approximator) is much larger than the time step of the TELEMAC-2D/3D.

During the �ow computation, the bed level is assumed constant. The main advantages

of the proposed schemes are that there is no need for bed shear stress and sediment

transport rate calculations.

To test the e�ciency and e�ectiveness of each proposed scheme, two di�erent test

cases were considered in this thesis. The �rst test case included a straight channel with
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a �nite amplitude perturbation of the bed level in the TELEMAC-3D modeling system.

The evolution of the bed in a 180◦channel bend under unsteady-�ow conditions with

uniform sediment was also considered as the second test case. The results showed

that the model predictions of the �rst proposed scheme for both test cases agreed

closely with the TELEMAC simulation. It was concluded from the results that the

proposed scheme performed well for short and long-term time series predictions and

would signi�cantly reduce the computational time. The comparison of the prediction

accuracies of the second proposed scheme and TELEMAC simulation indicated that

the proposed model could su�ciently simulate and predict the morphological bed level

changes for the second test case. However the second scheme did not perform as well

for the �rst test case as compared to the �rst scheme. In general, it can be concluded

that applying the schemes developed in this research would reduce the computational

costs and simplify the computational procedure, as they did not require the shear

stress and sediment transport rate calculations. It is also proved that these schemes

could perform well for long-term time series prediction, even though the ANN models

were not trained for that length of time.

11.2 Recommendation and further work

The current research applies a very simple structure of Arti�cial Neural Network with

only one hidden layer and ten neurons in its hidden layer. A useful direction would be

to use deep learning which is a sub�eld of machine learning concerned with algorithms

inspired by the structure and function of the brain i.e. Arti�cial Neural Networks.

Deep learning methods aim at learning feature hierarchies with features from higher

levels of the hierarchy formed by the composition of lower level features. Automati-

cally learning features at multiple levels of abstraction allow a system to learn complex

functions by mapping the input to the output directly from data, without depending

completely on human-crafted features. The hierarchy of concepts allows the com-

puter to learn complicated concepts by building them out of simpler ones. It is also

recommended to test and develop the new proposed concepts for real rivers.
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α Coe�cient adjusting height of humps

β Coe�cient adjusting width of humps

η Learning constant

Γm Higher order terms of Taylor series expansions

λ Constant coe�cient for ANFIS

λk Eigen values of the Jacobian matrix

µ Combination coe�cient for ANN

µ Dynamic viscosity

ω0 Fall velocity

Fr Densimetric Froude number

ρ Density of water

ρm Fluid density

ρs Density of sediment

ρs Sediment density

σg Geometric standard deviation

τ ∗ Shields parameter

τRe Reynolds stress tensor

τ0 Bed shear stress

τ ∗c Critical shields parameter
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τij Three dimensional shear stress

θ Threshold

υ Kinematic viscosity of water

~R inhomogeneous term

A Function of the mean �ow velocity

a Bed layer thickness

a Premise parameter

b1 Approaching channel width

b2 Bias value

b2 Contracted channel width

C Bed celerity

C Volumetric sediment concentration

c Premise parameter

c Solid concentration

C(Zb) The phase speed of bed form

Ca Reference sediment concentration at a reference elevation a

CFL Courant-Friedrichs-Levy number

dm Median sediment particle size

ds Equilibrium scour depth

ds Grain diameter

d50 Mean grain size

E Error function

e Error vector

f Output of ANFIS model
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F (w) Numerical �ux

f(x) Continuous function

fi Forces in i-direction

Fr∗ Grain Froude number

g Gravity

H Water depth

h Water depth

h1 Approaching �ow depth

h2 Flow depth in contracted depth

I Sum of the weighted inputs

k Iteration

k Von Karman constant

L Length of contraction

m Constant parameter

N Premise parameter

n Number of pairs of data

O5
1 The output of the ith node in the �fth layer of ANFIS

O1
i The output of the ith node in the �rst layer of ANFIS

O2
i The output of the ith node in the second layer of ANFIS

O3
i The output of the ith node in the third layer of ANFIS

O4
i The output of the ith node in the fourth layer of ANFIS

opn Correct output values for pattern p

P Pressure

p0 Porosity
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p1, p2 Constant parameters of �rst-order Sugeno function

q Constant �uid volume �ux per unit width

q1, q2 Constant parameters of �rst-order Sugeno function

qb Unit sediment discharge (bedload)

qs Unit sediment discharge (suspended load)

qt Unit sediment discharge (total load)

qb∗ Dimensionless sediment discharge

r1, r2 Constant parameters of �rst-order Sugeno function

ramax Upper range

ramin Lower range

Re∗ Grain Reynolds number

s Relative density

tpn Target values for pattern p

U Mean �ow velocity

u∗ Friction velocity

Ux Depth-averaged quantities of local velocity in x-direction

Uy Depth-averaged quantities of local velocity in y-direction

V Total volume

v1 Approaching �ow velocity

Vs Solid volume

vx Velocity in x-direction

vy Velocity in y-direction

vz Velocity in z-direction

x Input of ANFIS model
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x Original variable

XA Membership functionMembership function

xi ith predicted value

xmax Maximum of variable x

xmin Minimum of variable x

xpo Post-processed variable

xpr Preprocessed variable

y Input of ANFIS model

yi ith measured value

z Bed level above a �xed datum

z0 Distance from the �at boundary at which the logarithmic velocity hypothetically

equals zero

Zb Bed elevation

θ Parameter vector of ANFIS

S Set of total parameters (premise and consequent)

S1 Set of premise parameters

S2 Set of consequent parameters

b1 Bias vector

g Gradient (the �rst order derivative of total error function)

H Hessian matrix

IW1,1 Input weight matrix

I Identity matrix

J Jacobian matrix

LW2,1 Hidden layer weight matrix
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w Weight matrix

x Input vector

z Input vector for ANFIS

b Bias

Cs Skewness coe�cient

MAE Mean absolute error

MAPE Mean absolute percentage error

NDEI Non-dimensional error index

Qt River discharge at time t

R Correlation coe�cient

R2 Coe�cient of determination

R1, R2, R3 Autocorrelations from 1 day lag to 3 day lag

RMSE Root mean square error

Sd Standard deviation

SSCt Suspended sediment concentration at time t

SSL Suspended sediment load
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