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Abstract: Demands on structures and infrastructures change over their service 

life and cannot be predicted with certainty. Adaptable (or flexible) infrastructure 

designs are thus potentially beneficial, enabling easier adjustments of the sys-

tems at a later stage. However, systematic quantitative investigations and corre-

sponding recommendations are missing. In (Špačková and Straub 2016), we 

present a framework for such an analysis, which is based on sequential decision 

processes. In this contribution, we summarize the approach and focus on the in-

terpretation of flexibility. We show that the framework enables quantification of 

the value of flexibility, to answer the question: what is the maximum amount that 

should be spent additionally to ensure system flexibility? Two case studies illus-

trate that this value is strongly dependent on a number of factors, in particular 

on the types of uncertainty present and the amount of future information col-

lected in the future. 
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1 Introduction 

Most structures and infrastructure are built to last, with projected service life times of 50 

years or more. However, these systems are subject to changing demands from environment 

and users over their service life. Bridges are deteriorating and are subject to possibly increas-

ing traffic loads, demands on dwater infrastructure are affected by changing climates and 

population development and industrial facilities undergo changes in user requirements (Hall 

et al. 2014; Yzer et al. 2014). If these systems cannot be adapted to the new demands, they 

may become inefficient or obsolete. On the other hand, increasing the flexibility or adapta-

bility of engineering systems is typically associated with additional costs, and it may turn 

out to be unnecessary in the long run if demands are not changing. To further complicate the 

matter, safety margins against future changes in demand may be built into systems as an 

alternative to building adaptable systems. These margins also come at a cost though, and it 

is necessary to find a trade-off among safety, adaptability and risk.  

Such an optimization problem can be formalized by sequential decision analysis, which was 

first developed by economists and was later enhanced in the field of artificial intelligence 

(Raiffa and Schlaifer 1961; Kochenderfer et al. 2015). In (Špačková and Straub 2016), we 
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show that the theory and the available mathematical tools are ideally suited to model infra-

structure systems under uncertain future demands. The approach can account for the fact that 

adaptable systems may be adjusted when demands are changing or when new information is 

available in the future. In contrast to alternative approaches, most of which are based on real-

options analysis (e.g. Neufville et al 2006), sequential decision analysis allows to consist-

ently address all uncertainty and decision alternatives in the process, and also can account 

for partial observability of the relevant processes. To facilitate the modeling process and 

communication, the decision process is represented by an influence diagram, similar to the 

proposal of (Nishijima 2016).   

A special focus of this contribution is on investigating the effect of a system’s flexibility. It 

has been pointed out in the literature that flexible system designs can be advantageous under 

future uncertainties, such as climate change uncertainty or demand uncertainty (Hallegate 

2009). Intuitively, this appears reasonable, as flexible systems can be adapted in the future 

with limited cost. However, formal quantitative investigations of the effect of flexibility in 

the context of infrastructure planning are missing. To enable such analysis, we propose a 

measure of flexibility in (Špačková and Straub 2016). Through sequential decision analysis, 

one can then derive a value of flexibility and make recommendations on optimal strategies 

for dealing with future uncertainty. In particular, the relation between a system’s flexibility 

and the initial safety margin can be derived. As we show, this relation depends on a number 

of factors, not least the amount of information that can be obtained in the future.  

The generic concepts are illustrated by application to infrastructure subject to demand un-

certainty and to flood management systems under climate change uncertainty. 

2 Adaptable or flexible engineering systems 

Adaptable or flexible systems are designed such that they are easily adjusted to changing 

demands (Ross et al. 2008; Saleh et al. 2009). Examples include pipes with additional ca-

pacity for future transmission cables, buildings with structural systems that enable flexible 

floor plans or flood defense systems where land for future extension is reserved. Because 

such flexibility comes at an additional cost, an optimization should be carried out to under-

stand if it pays off. Furthermore, if a system is more flexible, the optimal design of the system 

might change (if transmission cables can be added later, fewer cables might be installed 

initially).  

We propose to measure flexibility through the cost of establishing capacity. Conceptually, 

Fig. 1 shows two systems with higher and lower flexibility.  

2.1 A measure of flexibility 

To formalize the analysis of flexibility, we proposed a quantitative measure 𝜑 of flexibility 

in (Špačková and Straub 2016 and Špačková et al. 2015). The measure is based on the costs 

of establishing and upgrading a system. Let 𝑐(𝑣) denote the cost of establishing a system 

capacity 𝑣 initially. In a flexible system, the cost Δ𝑐 of increasing the system capacity from 

a value 𝑣′ to a higher 𝑣′′ should be comparable to the difference of the costs for establishing 

𝑣′′ and 𝑣′ initially. Therefore, one can write this upgrading cost Δ𝑐 as 
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Δ𝑐(𝑣′, 𝑣′′) = 𝑐(𝑣′′) − 𝜑 ⋅ 𝑐(𝑣′). (1) 

It follows that the measure of flexibility is defined as 

𝜑 =
𝑐(𝑣′′) − Δ𝑐(𝑣′, 𝑣′′) 

𝑐(𝑣′)
. (2) 

All costs in Eqs. (1) and (2) are undiscounted values, since the system flexibility measure 

should not depend on time. The actual net present value of upgrading the system from 𝑣′ to 

𝑣′′ might therefore be lower than Δ𝑐 according to Eq. (1).  

 

 

Fig. 1: Illustration of the total development cost for a flexible vs an inflexible system. 

Shown are the costs associated with establishing the initial capacity and the costs 

associated with the 1st and 2nd upgrade conditional on existing levels of capacity. 

While the inflexible system is typically cheaper initially, it may lead to larger life-

time costs when updates become necessary.  

 

3 Sequential decision analysis 

The optimization of infrastructure system capacity over time can be approached with se-

quential (Bayesian) decision analysis, which originated in mathematical economics (Raiffa 

and Schlaifer 1961) and was further developed in artificial intelligence and planning (e.g. 

Kaelbling et al. 1998, Kochendoerfer 2015). Decisions are optimized following the expected 

utility principle, which here corresponds to a minimization of expected present value life 

cycle costs. Uncertainties are modelled probabilistically, and the effect of future information 

on the uncertainties is accounted for by Bayesian analysis.   

Following (Špačková and Straub 2016), infrastructure capacity planning can be generically 

represented by a partially observable Markov decision process (POMDP). This only requires 

the demand process to be modelled as a Markov process1. The generic POMDP, and its 

special case, the MDP (Markov decision process), are represented by the influence diagrams 

 

 

1 As discussed in (Špačková and Straub 2016), this is not a strong limitation, since most non-Markovian pro-

cesses can be transformed into a Markovian process by augmenting the state space. 
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(IDs) in Fig. 2. An ID is an extension of Bayesian networks that includes decision and utility 

(cost) nodes; the former are represented by squares, the latter by diamond-shaped nodes. IDs 

can mostly be understood intuitively, the detailed semantics are described e.g. in (Jensen and 

Nielsen 2007).  An important aspect of an ID are the links pointing towards a decision node. 

They reflect the flow of information, as they indicate that the parent node is known at the 

time of making the decision.  

 

Fig. 2: Influence diagram representing the general infrastructure capacity planning prob-

lem. (a) Markov decision process (MDP). (b) Partially observable Markov deci-

sion process (POMDP). The variables at each time step 𝑡 are: 𝜃𝑡: demand, 𝑍𝑡: 

measurement, 𝑣𝑡: capacity, 𝜑: flexibility, 𝑏𝑡: benefits, 𝑟𝑡: risk (associated with de-

mands exceeding capacity), 𝑐𝑡: cost of system update. (Figure from Špačková and 

Straub 2016). 

The ID of Fig. 2b shows the POMDP model, in which the demand node 𝜃𝑡 cannot be ob-

served directly before a decision is made at 𝑡 + 1. Instead, an indicator variable 𝑍𝑡 is ob-

served, which represents partial information on the demand variable. Unfortunately, this 

partial observability leads to computationally challenges in identifying optimal decision pol-

icies. An introduction to POMDP is found in (Kochenderfer et al. 2015). POMDP has pre-

viously been applied to planning of inspections in deteriorating structure and infrastructure 

(e.g. Madanat 1993; Corotis et al. 2005; Papakonstantinou and Shinozuka 2014; Memarza-

deh and Pozzi 2016). A special case of this model arises when the demand at any time 𝑡 can 

be observed with certainty. In this case, the POMDP reduces to the MDP (Fig. 2a), which is 

substantially easier to solve. For details on the computation of such POMDP or MDP models 

in the context of planning in adaptable infrastructure systems, the reader is referred to 

(Špačková and Straub 2016). 

In a POMDP/MDP, the decision to be taken at each time is described by a policy, which 

describes the action to be taken conditional on the available information. In an MDP, this 

information is the current state of demand 𝜑𝑡, in the POMDP, this is the current state of 

belief, which summarizes all past observations. If these policies are not changing with time, 

they are called stationary policies. An approximate solution to a POMDP can be found by 

defining a stationary policy through a limited number of parameters 𝐝 (a heuristic), compu-

ting the expected total utility by means of a Monte Carlo approach for a given heuristic, and 

then performing an optimization over 𝐝. Such approaches are common in risk-based inspec-

tion planning (e.g. Straub and Faber 2006).  
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4 Numerical illustrations 

4.1 Case 1: Infrastructure capacity 

In this example, we consider a generic model for infrastructure capacity planning, where the 

demand at present is observable with high accuracy. Examples of such problems include 

transportation infrastructure, water resource systems or electrical power networks. The prob-

lem setting is summarized by the ID of Fig. 3. In Fig. 3a, the actual model is shown where 

the demand at each time step is defined conditional on the trend 𝜏, which reflects the mean 

change in the demand. An equivalent POMDP is obtained by replacing the common variable 

𝜏 with identical copies 𝜏𝑡 (corresponding to an augmentation of the state space). 

 

 

Fig. 3: Influence diagram representing the investigated infrastructure capacity planning 

problem. 𝜏 is the trend in the demand, 𝐷𝑡 is the system demand, 𝑣𝑡 is the system 

capacity, 𝑐𝑡 is the cost associated with upgrading the system, and 𝑟𝑡 is the cost as-

sociated with the demand exceeding the capacity.  

The remaining uncertainty in observations of the demand 𝐷𝑡 can be neglected, therefore 

there is a link from 𝐷𝑡 to the decision node 𝑣𝑡+1, indicating direct observability of 𝐷𝑡. Note 

that the process is nevertheless only partially observable, because the trend variables 𝜏𝑡 can 

be inferred only indirectly.  

The considered service life is 50 years, with a 2% discounting rate. For the numerical inves-

tigation, the parameters of the model are according to Table 1. The trend is modelled by a 

discrete random variable with three possible scenarios. The demand is modelled as a lognor-

mal random process.  

It is assumed that decisions on upgrading system capacity are made every 5 years. A reduc-

tion of capacity is not considered, as there are no benefits associated with such a reduction.  
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Table 1: Parameters of the infrastructure capacity case study. 

Parameter Type Description 

Trend 𝜏 

Demand 𝐷𝑡 

 

 

Capacity 𝑣𝑡 

Capacity cost 

Cost of demand 

Discount rate 𝜌 

Discrete random variable 

Lognormal random process 

 

 

Decision process  

Function 

Function 

Deterministic 

𝑝𝜏(0) = 1/3 , 𝑝𝜏(0.01) = 1/3, 𝑝𝜏(0.02) = 1/3 

𝐷0 = 1  

ln 𝐷𝑡 | ln 𝐷𝑡−1 ~𝑁(ln 𝐷𝑡 + 𝜏, 𝜎Δ𝐷)  

𝜎Δ𝐷 = 0.05  

optimization parameter 

𝑐(𝑣) = ln(1 + 𝑣)  

𝑟𝑡 = 𝐷𝑡 − 𝑣𝑡, if 𝐷𝑡 > 𝑣𝑡, else 0 

0.02 

 

The optimal life-cycle strategies are identified by means of the heuristic approach in combi-

nation with Monte Carlo sampling.   

The stationary decision policy for 𝑡 > 0 is parametrized as follows: 

 Extend capacity when the demand times a tolerance parameter 𝛼 exceeds capacity, 

i.e. if 𝛼 ⋅ 𝐷𝑡 > 𝑣𝑡.  

 If the capacity is extended, then to a value 𝛾 ⋅ 𝐷𝑡. Here, 𝛾 represents the overdesign 

of a system modification. 

The initial capacity is selected as 𝑣0 = 𝑆𝐹 ⋅ 𝐷0, where 𝑆𝐹 is a safety factor (initial overde-

sign). Therefore, the optimization parameters are 𝐝 = [𝑆𝐹; 𝛼, 𝛾]. 

In Fig. 4, the expected net present value of the life-cycle costs in function of flexibility and 

the initial safety factor are shown. Costs decrease with increasing flexibility, as expected. 

The optimum safety factor, i.e. the initial overdesign, increases as the flexibility decreases, 

from a value of around 1.4 (for 𝜑 = 1) to 3 (for 𝜑 = 0). 

 

 

Fig. 4: Expected net present value of life-cycle costs in function of the initial safety factor 

and the flexibility of the system, together with the optimal safety factor.  

 

In Fig. 5, the optimal expected net present life-cycle costs are plotted for varying system 

flexibilities (these are the values found along the white line of Fig. 4). The largest costs are 
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incurred for the inflexible system. The reduction in costs for higher values of flexibility re-

flects the value of flexibility.  

 

 

Fig. 5: Optimal expected net present value of the life-cycle cost in function of flexibility. 

The difference relative to the value achieved with flexibility zero is the value of 

flexibility. 

 

The temporal distribution of optimal expected costs varies in function of the system flexibil-

ity (Fig. 6). In case of the inflexible system, the optimal strategy is to invest initially, and 

then accept the possibility of costs because of insufficient capacity towards the end of service 

life. For the fully flexible system, the costs are most equally distributed over the service life. 

Whenever the capacity is insufficient, or if it is likely that the capacity will become insuffi-

cient in the next years, the system is upgraded.  

 

 

Fig. 6: Distribution of expected discounted costs over the lifetime for the different flexibili-

ties, when the optimal management strategy is implemented. The yellow (lighter) 

bars correspond to cost associated with building or upgrading the system 𝑐𝑡, and 

the blue (darker) bars are the expect costs associated with the demand 𝐷𝑡 exceed-

ing the capacity 𝑣𝑡. 
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4.2 Case 2: Disaster risk management 

Disaster risk mitigation infrastructures, such as flood defences, are designed to protect soci-

ety from extreme events. The frequency of extreme events is not directly observable – many 

years of observations are in fact needed to derive the frequency accurately (Dittes et al. 

2016). This problem is intensified when the frequency and characteristic of extreme events 

changes in time (is non-stationary), e.g. due to climate change.  

The following example on planning of flood mitigation measures under climate change un-

certainty is taken from (Špačková and Straub 2016). The presentation here differs the one in 

the original paper. Three climate scenarios are considered: A – no change in extreme dis-

charge frequency, B – moderate increase of frequency of extreme discharges and C – signif-

icant increase. These climate scenarios correspond to trend values 𝜏 = 0,1,2, respectively. 

In the future, observed annual maximum discharges will be applied to update the probabil-

istic believes on the climate scenarios.  

The model corresponds to the model shown in Fig. 3. Decisions on flood protection capacity 

are revised every 30 years, the total planning horizon is 90 years. Definitions of the utilized 

variables are provided in Table 2. The risk and cost functions are defined in the original 

paper.  

Table 2: Parameters of the flood protection case study. 

Parameter Type Description 

Climate trend 𝜏 

Ann.max discharge 𝐷𝑡 

Capacity 𝑣𝑡 

Discount rate 𝜌 

Discrete RV 

Continuous RV 

Decision process  

Deterministic 

𝑝𝜏(0) = 1/3 , 𝑝𝜏(1) = 1/3, 𝑝𝜏(2) = 1/3 

𝐷𝑡|𝜏~𝐺𝑢𝑚𝑏𝑒𝑙(1200 + 2 ⋅ 𝜏 ⋅ 𝑡, 960 + 1.6𝜏)   
optimization parameter 

0.02 

 

In Table 3, the optimal initial designs of the flood protection system are summarized for 

stationary conditions (neglecting the effect of climate change, i.e., assuming that the proba-

bility of scenario A is 1) and under consideration of the uncertain effects of climate change. 

The latter results are shown for varying flexibility 𝜑. The difference between flexible and 

inflexible systems is very low, indicating that the flexibility has limited value in this case. 

  

Table 3: Optimal initial design of the flood protection system excluding and including un-

certain climate impact for different flexibilities.  

 Neglecting climate 

change 

Including climate change uncertainty 

           𝜑 = 0              𝜑 = 0.5            𝜑 = 1 

Design discharge 

Design return period 

4800 m3/s 

220 yr 

        5240 m3/s          5240 m3/s          5220 m3/s 

        400yr                 400 yr               380 yr 
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Fig. 7: Distribution of expected discounted costs over the lifetime for the different flexibili-

ties, when the optimal management strategy is implemented. The yellow (lighter) 

bars correspond to cost associated with building or upgrading the flood defense, 

and the blue (darker) bars are the discounted flood risks.  

5 Concluding remarks 

We present a framework that enables the investigation of the effect of adaptability (flexibil-

ity) in infrastructure systems in a systematic and quantitative manner. Adaptability is fre-

quently mentioned as a potentially effective strategy to deal with uncertain climate change 

and other future changes and uncertainties. However, numerical investigations into its effect 

are lacking, which is the aim of this research. To enable a generalization of results from 

individual case studies, we propose a measure of flexibility. Taking basis in sequential deci-

sion analysis, it is then possible to quantify the value of flexibility.  

The results of the two case studies, and others reported in (Dittes et al. 2016) and (Špačková 

and Straub 2016), indicate that the value of flexibility can be fundamentally different de-

pending on a number of factors, which include the amount of uncertainty and the possibility 

for future learning (reducing uncertainty), the mean predicted changes of the system, the 

discounting rate as well as the cost and risk functions. Comparing the two presented exam-

ples, one can observe that the flexibility has a significant value in the infrastructure capacity 

example, where the learning process is strong. This is in contrast to the second example, 

where the uncertainty is on extremes, which are generally hard to predict. The presented 

example does underestimate the true capability for learning, because it is not accounted for 

improvements in climate models and other information that can be used to improve flood 

predictions.  Nevertheless, the value of information will be limited also under modified as-

sumptions, because increasing flood protection capacity is a no-regret strategy. I.e., a con-

servative design has benefits under any future change, which is not the case in the first 

example.  
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