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abstract

In order to understand the physics in the scrape-off layer (SOL) of tokamaks
and simulate the turbulent cross field transport, numerical codes have
become an important tool. The simulation of the edge and SOL poses a major
challenge, due to the complex physics and geometry. The widely used field
or flux-aligned coordinate systems become ill defined at the X-point and
separatrix of a tokamak. The solution to this issue was presented with the
plasma turbulence code GRILLIX, which uses a flux-coordinate independent
approach (FCI), enabling the simultaneous simulation of the closed and open
field line region. A cylindrical grid is used, posing no singularities at the
X-point and separatrix. Parallel operators are discretized via a field line map
along a field line. Moreover the Cartesian grid within each poloidal plane
allows an efficient and consistent simulation of the plasma turbulence.
The functionality of the FCI approach was demonstrated within the simple
Hasegawa-Wakatani plasma turbulence model. However this model is not
suited for the simulation of the complex physics in the SOL. In this work
the turbulence simulation efforts within the FCI approach are taken to
further depth. The drift-reduced Braginskii model, which is more suited
for the SOL, is implemented in GRILLIX. Along this line, the focus is on
the consistent and tested implementation of a global electrodynamic model,
finally posing a solid and reliable foundation for further development of
GRILLIX and turbulence simulations. In this context ’global’ means, that
nowhere in the model any assumptions about the density and temperature
fluctuations amplitude are made. For this goal, many subtle points regarding
the widely used Boussinesq approximation, which was relaxed in this
thesis, conservation properties of the model and electromagnetic dynamics
are considered. In order to reduce the complexity, firstly simulations are
performed within a simplified slab geometry, where also a comparison to
experimental turbulence data from LAPD device was possible. Finally it
helped to perform the transition to more realistic and complex geometries,
where the FCI approach shows successfully its capabilities.
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zusammenfassung

Für das Verständnis der Plasma Abschälschicht in Tokamaks und des turbulen-
ten Transports sind numerische Programme immer wichtiger geworden. Die
Simulation des Plasmarands und Abschälschicht stellt wegen der komplexen
Physik und Geomtrie eine große Herausforderung dar.
Die häufig benutzten Feldlinien-angepassten Koordinatensysteme sind am
X-Punkt und der Separatrix singulär. Die Lösung dieses Problems wurde mit
dem Plasmaturbulenz-Simulationsprogramm GRILLIX präsentiert, welches
einen feldlinienunabhängigen Ansatz benutzt, was eine gleichzeitige Simu-
lation der offenen und geschlossenen Feldlinien ermöglicht. Es wird ein
zylindrisches Gitter benutzt, wo keine Singulatitäten am X-Punkt und der
Separatrix auftreten. Parallele Operatoren werden entlang einer Feldlinie
diskretisiert. Es wird ein kartesisches Gitter in jeder poloidalen Ebene
benutzt, was eine effiziente und konsistente Simulation der Plasmaturbulenz
ermöglicht.
Die Funktionalität des feldlinienunabhängigen Ansatzes wurde mit einem
einfachen Hasegawa-Wakatani Plasmaturbulenz-Modell demonstiert. Dieses
Modell is jedoch nicht geeignet, die komplexe Physik in der Abschälschicht
zu simulieren. In dieser Arbeit werden die Turbulenz-Simulationen mit
dem feldlinienunabhängigen Ansatz auf eine neue Stufe gestellt. Das drift-
reduzierte Braginskii-Modell, was sich für die Simulation der Abschälschicht
mehr eignet, wurde in GRILLIX implementiert. Dahingehend liegt der
Fokus auf einer konsistenten und getesteten Implementierung des globalen
elektromagnetischen Modells, was am Ende eine solide und verlässliche
Grundlage für weitere Entwicklungen von GRILLIX und Turbulenz-Simula-
tionen darstellt. In diesem Kontext bedeutet ’global’, dass keine Annahmen
im System über die Fluktuationsamplituden der Dichte und Temperatur
gemacht worden sind. Für dieses Ziel mussten viele subtile Punkte beachtet
werden, betreffend die Boussinesq Näherung, die in dieser Arbeit abgeschafft
wurde, Erhaltungseigenschaften des Modells und elektromagnetische Dyn-
amik. Um die Komplexität zu reduzieren, wurden die Simulationen zunächst
in einer vereinfachten Slab-Geometrie durchgeführt, was auch einen Vergleich
mit experimentellen Turbulenzdaten von LAPD erlaubte. Schließlich half
es zu komplexeren Geometrien zu gehen, wo der feldlinienunabhängiger
Ansatz seine Möglichkeiten erfolgreich zeigt.
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1

T H E PAT H T O A V I RT UA L T O K A M A K

In order to prepare for ITER (International Thermonuclear Experimental
Reactor)1 operation, interpret the future results and facilitate the design
of future fusion power plants like DEMO (DEMOnstration Power Plant)2,
the plasma community needs to perform the transition from postdiction to
prediction. For this aim interdisciplinary efforts between physics, computer
science, mathematics and engineering are crucial, and there exists a consensus
that the creation of a virtual fusion plasma is of great importance for the
future of fusion energy research. Such a virtual fusion plasma needs to
have reliable, validated and predictive capabilities. In fact, the tokamak concept
has proven to be a promising candidate for plasma confinement and future
power plants. Consequently, the creation of a virtual tokamak is necessary.

1.1 tokamak

A plasma consists of free charged particles (electrons and ions) and needs to
be insulated against thermal losses in order to establish and sustain a fusion
reaction. In contrast to the sun where gravity confines the particles, on earth
magnetic fields are used to confine a plasma.
A charged particle in a magnetic field is subject to the Lorentz force which
leads to a helical orbit around the magnetic field line of the particle. It means
that the particle is still allowed to stream freely along the magnetic field
lines, but the motion in the perpendicular plane is constrained to the helical
trajectory. This leads to the idea of magnetic plasma confinement where
particles are confined along the magnetic field lines. Compared to other
magnetic configurations the tokamak has proven to be the most successful
one. Another promising candidate is the Stellarator c.f. Wendelstein 7-X [1].

1 ITER is a research tokamak, which is currently under construction in Cadarache, France.
First hydrogen plasma is planned for the year 2025. The reactor is planned to show a higher
electrical energy output compared to the energy input.

2 DEMO is the successor of ITER. It is planned to produce electrical energy for the power
grid. Moreover, the reactor is planned to demonstrate a closed tritium circle.

1



2 the path to a virtual tokamak

In a tokamak configuration the particles are confined in the parallel direction
by closing the magnetic field lines in toroidal direction. The toroidal magnetic
field is created by a set of planar magnetic coils, see figure 1.1.1.

Figure 1.1.1: Toroidal magnetic field (green) produced by centric ordered coils [2].

However, the confinement properties of such a configuration are quite poor.
The reason is the inhomogeneity of the toroidal magnetic field Btor � R−1,
where R is the radial distance from the symmetry axis of the machine. The
magnetic field strength is maximum in the machine close to the symmetry
axis. This region is called the High Field Side (HFS). Consequently the
region at the outboard of the torus is called the Low Field Side (LFS). In
combination with the curvature of the magnetic field lines, a vertical drift is
created. The direction of this drift depends on the charge of the particles. It
means that electrons and ions drift in opposite directions, which leads to a
charge separation. Consequently an electric field is created, which causes
an additional radial drift for both species. This leads to a loss of the plasma
confinement. The solution of this issue is an additional magnetic field in the
poloidal direction, induced by the toroidal electric current, see figure 1.1.2.
The toroidal current is induced via the principle of a transformer, where the
secondary winding is the plasma column. In the primary winding (poloidal
coils) a rising current needs to flow in order to maintain a constant toroidal
current subject to a finite resistivity of the plasma. Therefore the tokamak
concept is constrained to a pulsed regime3.

3 Advanced operation scenarios for ITER are under research, which are supposed to enable a
steady-state operation [3].
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Figure 1.1.2: Twisted magnetic field lines compensate for the vertical drift of the
particles [4].

The toroidal and poloidal magnetic field creates helically twisted magnetic
field lines. This compensates for the drift of the particles, which are now
confined on the magnetic field lines crossing the LFS and HFS. The whole
configuration is axisymmetric. The poloidal field of a tokamak is usually
much smaller than the toroidal component. The resulting magnetic field
forms toroidally nested flux surfaces.

1.2 scrape-off layer and power exhaust

Even on the nested flux surfaces in a helically twisted magnetic field
the confinement is not perfect, since stability against perturbations has
to be considered. Microplasma instabilities saturate on a nearly constant
turbulence level, which causes an increase in the transport of particles and
heat [5]. Macroscopic instabilities lead to disruptions [6], which poses a
serious issue, since they can damage the first wall. At some place in the
tokamak the plasma will have contact with the wall, causing a sputtering
of material into the main core region, that leads to a dilution of the plasma
or even an interrupted fusion reaction. In order to have a controlled contact
between the plasma and material surfaces a limiter can be used, see figure
1.2.1.
Modern Tokamaks are however based on the divertor concept, which has
important advantages over the limiter concept. Additional coils create a
poloidal magnetic field null at one or more points. This area is called the
X-point. Compared to the limiter concept, the influx of impurities and
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helium ash into the confined core region is reduced because of the use of
additional pumps in the divertor region. Thus, the confined plasma is more
pure leading to better confinement properties. In addition, a new operation
mode of improved confinement, called the H-mode, has been discovered in
a diverted geometry at ASDEX [7].
The region of the outer flux surfaces with closed field lines is called plasma
edge. The area where the magnetic field lines hit the material surfaces forms
the scrape-off layer (SOL), which plays a crucial role in plasma confinement
[8]. Plasma coming out of the core streams along the magnetic field towards
the target plates before it can reach the wall. The separatrix or last closed
flux surface (LCFS) separates the edge and the SOL.

a) b)

Figure 1.2.1: Poloidal cross sections of the tokamak geometries: a) Limiter b)
Divertor [9]

In a very simplified picture one can estimate the scrape-off layer dimensions
by assuming that for a magnetized plasma, subject to a laminar flow, the
ratio of the electron-ion collision frequency νei to the gyro-frequency ωce
is given by νei/ωce � 1. This leads to a scale separation of the parallel
and radial electron fluxes Γ‖ and Γ⊥, competing with each other, finally
determining the SOL width. Particles traveling along the magnetic field
lines will gyro-rotate many times before a collision, which subsequently
causes a radial flux. Consequently, the parallel flux is much bigger than
the radial flux giving Γ⊥/Γ‖ ≈ (νei/ωce)2 � 1 [10]. If no other volumetric
sources are present in the scrape-off layer, ∇ · Γ ≈ 0, one finds that it holds
Γ⊥/Γ‖ ∼ L⊥/L‖ � 1, where L‖ is half of the magnetic connection length
between solid targets and L⊥ is a typical length scale perpendicular to the
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magnetic field [10]. With the constraint of a constant loss of particles along
the magnetic field one gets an exponential radial decay of the parallel particle
flux towards the target plates [10]. In the best case the SOL protects the
wall by scraping-off the plasma coming out of the core. In the reality, the
physics is much more complicated. The characteristics of the SOL are a low
plasma density and temperature, a high plasma collisionality and large scale
turbulent behavior Lturb

⊥ & ρs, Lturb
‖ > λm f p (where ρs = cs/ωci is the ion

sound radius; ion gyro-frequency ωci; mean free path λm f p) of order unity
amplitudes in the normalized density, electrostatic potential and electron
temperature [11]. Radial profiles have been measured experimentally. The
findings confirmed the exponential decay of the radial profiles and the large
amplitude fluctuations [5]. In the near scrape-off layer one observes a strong
electric potential given approximately by the electron temperature φ ≈ 3Te
which leads to a strong poloidal shear flow [10]. In the far SOL the profiles
are almost flat and the fluctuation level is increased towards the wall. The
typical SOL width is of the order of several cm in the limited geometry [12]
and a few mm for the diverted case [13].
The thin SOL width in the diverted geometries introduces also new problems:
With an increasing fusion machine size and power, the power exhaust from
the core into the SOL also increases. This leads to very high parallel heat
fluxes onto the divertor across the SOL. As was pointed out in [14, 15] the
parallel heat flux width λq does not seem to be sensitive to the major radius
of the machine but rather decreases with an increasing toroidal magnetic
field which will be used in future power plants. Combined with the higher
power deposition from the core for bigger machines the reduced SOL width
worsens the heat flux problem. Rough approximations for DEMO showed
in [16] that the power exhaust from the core into the SOL will be in the
order of PSOL = 150 MW, which leads to the heat flux on the divertor plates
q ∼ 250 MW/m2, where the major radius was assumed with R0 = 9m
and λq ∼ 1cm [17]. This by far exceeds the thermal robustness of present
materials for the divertor which can hold up to 20 MW/m2 [18]. In order to
achieve a reliable and economically meaningful source of energy, damage
or strong stress of the divertor needs to avoided. A possible solution is a
combination of an increase of the divertor area, magnetic flux expansion
and impurities seeding (N2, Ne) which radiate the power before it reaches
the surface such that detachment occurs [19]. For ITER, which will operate
in partially detached regime, these techniques will be sufficient. However,
the power loads in DEMO are expected to be five times larger and remain a
major challenge still under research. Thus a deep understanding of the edge
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and SOL is crucial for the future realization of power plants and plasma
control.

1.3 modeling the edge and sol

Modeling the edge and SOL is in many ways more complicated than the
rest of the device. As was pointed out in the review article [20] the physics
becomes very rich in the edge and SOL, which includes radiation losses,
sheath [8] and atomic physics. In addition to that, phenomena occur on
many time scales ranging from the gyro-motion to the turbulence time scale.
Plasma structures range from the electron gyro-radius to the machine size
showing steep perpendicular gradients and also strong gradients along the
magnetic field lines. We have already mentioned in the previous section that
the fluctuations are of the order of unity compared to the background. This
means that for modeling efforts a linearization of the quantities (splitting in
a constant background part and a perturbation e.g for density n = δn + n0)
is prohibited. On top of the challenges from both, the physics and model
side, the geometry of a diverted device is complex.
In the past years several numerical fluid codes have been developed in
order to tackle the complexity of the edge and SOL. The GBS code [21]
treated limited geometries and has been used for the studies of the SOL and
plasma turbulence characterization [22–24]. BOUT++ [25] has been used for
the simulation of e.g. peeling-ballooning modes in circular geometry [26],
edge localized modes (ELMs) [27] and turbulence studies [28] in diverted
geometries. With TOKAM3X [29], both edge transport and turbulence have
been investigated [30]. The recently developed GBD code also studied plasma
turbulence in a limited geometry confirming spontaneous E× B−rotation
of the plasma [31]. These developments pose an important advance for
the understanding of the edge and SOL in the community. However, they
have one thing in common: all of the mentioned codes are based on field
or flux aligned coordinates, which are singular on the separatrix and the
X-point. This will be clarified in the following. A comprehensive review
of flux coordinates can be found in [32]. For any ideal axisymmetric MHD
equilibrium [33] the magnetic field can be written in the form

B = I(Ψ)∇ϕ +∇Ψ×∇ϕ, (1.3.1)

where ϕ denotes the toroidal angle and Ψ(R, Z) is the poloidal flux function,
which is a solution of the Grad-Shafranov-Schlüter (GSS) equation [34, 35]
and I(Ψ) is a scalar function of Ψ. Eq. (1.3.1) ensures ∇ · B = 0. For a
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toroidally symmetric magnetic equilibrium the poloidal flux is independent
of the toroidal angle ∇ϕ · ∇Ψ = 0. Furthermore B · ∇Ψ = 0, which follows
from Eq. (1.3.1), meaning that the contour lines of ∇Ψ pose flux surfaces
where the poloidal basis vector is always perpendicular to the magnetic
field. Assuming nested flux surfaces, one can construct from a toroidal
coordinate system ρ(Ψ), θ, ϕ, where the flux surface label is given by ρ and
the poloidal θ and toroidal angle ϕ can have arbitrary representations, a
coordinate system (ρ, ξ, ζ) where one of the coordinates ξ, ζ is aligned along
the magnetic field. The desired form of the safety factor q, which measures
the number of toroidal turns as one advances along a magnetic field line one
poloidal turn, is the one of a flux function q(ρ). This motivates the use of a
coordinate system where the magnetic field lines are straight if rolled out on
a flux surface (ρ, θS, ϕS), see figure 1.3.1 giving

dθS

dϕS
=

1
q(ρ)

, (1.3.2)

with the safety factor

q(ρ) =
1

2π

ˆ 2π

0
dθ

B · ∇ϕ

B · ∇θ
. (1.3.3)

0 π 1 π 2 π
φS

0 π

1 π

2 π

θ S B

Figure 1.3.1: Representation of the magnetic field line in the straight coordinate
system (ρ, θS, ϕS).

A field aligned coordinate system is constructed out of it in two ways. Either
the poloidal angle is chosen as the parallel coordinate giving

ζpol = θS, ξpol = ϕS − qθS, (1.3.4)
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or the toroidal angle is the parallel coordinate

ζtor = ϕS, ξtor = θS −
1
q

ϕS. (1.3.5)

On the separatrix the definition of the straight field line angles (1.3.2) breaks
down as q → ∞ and consequently any set of field aligned coordinates
(1.3.4), (1.3.5). This is also shown in figure 1.3.2 (b), where the contours of
the poloidal field line angle θs are sucked into the X-point. It was shown
that the definition of ρ(Ψ), θ, ϕ is ill defined on the X-point, which is a
saddle point in Ψ, since the Jacobian of the coordinate transformation is
divergent i.e. J = (∇Ψ · ∇α×∇ϕ)−1 → ∞ (∇Ψ = 0) , where α defines a
third basis vector [9]. The freedom of choice of the third basis vector allows
the construction of many field aligned coordinate systems [32, 36, 37], but
none of them is able to cross the separatrix. It is possible to construct a
field aligned coordinate system for the core and separately to that for the
open field line region. Treating both regions simultaneously using one field
aligned coordinate system is not possible. Only with a special treatment
of either, the coordinate system or the topology, these challenges can be
overcome to some extent. The GBS code was recently extended to diverted
geometries by using a toroidal coordinate system [38], where a diverted
magnetic equilibrium was inserted into a torus topology. The BOUT++ code
is able to cross the separatrix by using a flux aligned grid. In a similar
fashion TOKAM3X performs a domain decomposition for the geometry. The
magnetic equilibrium is defined separately in the core and SOL region [29].
In both codes the X-point remains special, surrounded by eight cells instead
of four having a low resolution, see figure 1.3.2 (a) which was taken from [29].
Moreover there is a huge resolution imbalance between the LFS, HFS and
X-point, which is problematic for turbulence simulations due to the isotropic
behavior of the turbulence within the poloidal planes. Resolving the X-point
with an appropriate resolution can lead either to a very expensive simulation
or the simulation becomes even not feasible due to a heavy limit on the
time step from the extremely high resolution on the LFS. Important effects
like e.g. X-point MARFEs [39, 40], a sonic event in a high-density detached
regime plasma around the X-point need an appropriate resolution around
the X-point for simulations. In the worst case, the change of topology around
the X-point and the resolution imbalance can lead to numerical artefacts,
influencing the rest of the domain. Even if the X-point is not present, the
resolution imbalance remains an issue because the flux surfaces are stretched
into the direction of the X-point, making calculation of turbulent plasma
transport difficult even in the core region in the vicinity of the separatrix.
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These issues motivated the development of GRILLIX, a plasma turbulence
code based on a flux coordinate independent approach, which is able to
cross the separatrix and overcome the mentioned issues.

a) b)

Figure 1.3.2: a) The TOKAM3X grid shows the distinct position of the X-point and
resolution imbalances. b) Poloidal cross section of the contours of the
poloidal flux (black) are stretched into the direction of the X-point. The
poloidal straight angle (red) is sucked into the X-point [41].

1.4 grillix

GRILLIX was developed from scratch by A. Stegmeir during his PhD [9].
Here a brief introduction into the code and basic concepts are given. More
detailed information about the flux coordinate independent approach (FCI)
can be found in [42–45].
First, a code curing the disadvantages of flux aligned coordinates should
not have any singularities in the coordinate system. A cylindrical coordinate
system (R, ϕ, Z) is well defined everywhere in a tokamak. Thus the cylindrical
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computational grid (Ri, ϕk, Zj) bounded by two limiting surfaces ψmin,ψmax
is chosen in GRILLIX, see figure 1.4.1.
Second, the code should be computationally efficient by making use of the
flute mode character of turbulent structures in a tokamak (k‖ � k⊥) meaning
that a relatively low toroidal resolution is sufficient. This is accomplished
in GRILLIX by choosing a relatively low number of equivalently spaced
poloidal planes (e.g. 6 in figure 1.4.1) where the quantities of interest are
derived.
Finally, the code should avoid resolution imbalances. In GRILLIX a Cartesian
grid (Ri, Zj) is chosen within each poloidal plane providing everywhere
the same resolution and numerical accuracy. Within the Cartesian grid the
X-point has no distinction. It is treated in the same way like every other grid
point in the domain. In GRILLIX the challenge is shifted from grid creation
and singularities of the coordinate system to the discretization of parallel
operators. The parallel operators are discretized with a finite difference
method along the magnetic field lines.

Figure 1.4.1: Schematic view of the FCI approach. The grid is coarsened in the
toroidal direction ϕ . Within each poloidal plane a Cartesian grid is
used. The magnetic field line is traced along the geometry. Penetration
points on neighboring planes are calculated via an interpolation.
Picture was taken from [46].
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field line tracing Every parallel operator connects points on neigh-
boring poloidal planes (R−i,j, Z−j,j↔ Ri, Zj↔ R+

i,j, Z+
i,j) along the magnetic field

line. The magnetic field is assumed to be static ∂tB = 0. In order to get a
high directional accuracy, the magnetic field line is traced from a given grid
point to the next poloidal plane, where the intersection point in general does
not coincide with a grid point. An interpolation within the poloidal plane
needs to be applied in order to get the intersection point. For static and
axisymmetric equilibria the field line tracing procedure needs to be applied
only once at the beginning of the simulation on one single plane. For 3D
equilibria (e.g. Stellarator) the field line tracing has be to applied on each
plane [47]. The following ODEs have to be solved for the field line tracing
procedure needed for the establishment of parallel operators [46]

R
′
(ϕ) =

BR

Bϕ , R(0) = R0 (1.4.1)

Z
′
(ϕ) =

BZ

Bϕ , Z(0) = Z0 (1.4.2)

s
′
(ϕ) =

B
Bϕ , s(0) = 0 (1.4.3)

v
′
(ϕ) =

1
Bϕ , v(0) = 0 (1.4.4)

where R
′
, Z
′

define the shift from the initial position R0, Z0 of the radial
coordinate R and the poloidal coordinate Z on the neighboring poloidal
planes, respectively. Eq. (1.4.3) defines the length of a magnetic field line.
The last equation solves for the flux box volumes around a magnetic field.
Having obtained the intersection points, the length along the magnetic field
line and the flux box volume, parallel operators can be constructed.

parallel gradient Here a general coordinate free representation of the
parallel gradient used in GRILLIX is presented. It allows the discretization of
the parallel gradient on field lines which are strongly converging or diverging
leading to map distortions, which is discussed in more details in [45,46]. The
parallel gradient can be expressed via a surface integral

∇‖ f = lim
V→0

1
BV

ˆ
∂V

f B · dn (1.4.5)
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with an arbitrary volume parametrization V and f being some quantity of
interest. This expression is given in its simplest form by a finite difference
along the magnetic field line

∇‖ f →
fk+1(R+

i,j, Z+
i,j)− fk(R−i,j, Z−i,j)

s+j + s−j
. (1.4.6)

The discrete version of further parallel operators appearing in the model,
i.e. parallel divergence and parallel diffusion, are obtained via the support
operator method, which is discussed in detail in chapter 4.
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1.5 motivation and outline

The FCI concept allows the simulation of complex and diverted geometries
treating the X-point in a very natural way. Once the parallel operators are
discretized correctly along the field line, they can be applied on different
models. In GRILLIX the FCI concept was applied for the first time in
a diverted geometry [9] using the well established Hasegawa-Wakatani
turbulence model [48]. This model evolves disturbances on a constant back-
ground. As was pointed out in chapter 1.2 the physics of the edge and SOL
is rather complex including turbulent high amplitude plasma fluctuations
prohibiting a splitting of the quantities in a constant background and distur-
bances. However using the Hasegawa-Wakatani model was a necessary step
for the implementation of the FCI concept, reducing the complexity and
proving that the FCI approach is able to tackle the simulation of turbulence
in the edge and SOL simultaneously, see figure 1.5.1.
The next logical step, which motivated this thesis, is the application of the
FCI approach in GRILLIX on a more advanced model capturing the complex
physics of the edge and SOL. In particular this model should be ’global’,
meaning that no assumptions are made about the density and temperature
fluctuation amplitudes anywhere in the equations. As was pointed out at
the beginning of this chapter ’a virtual fusion plasma needs to have reliable,
validated and predictive capabilities’. Thus the final goal of this thesis is the
implementation of a turbulence model (global electromagnetic drift-reduced
Braginskii model) in a reliable, tested and validated way, posing a solid
foundation for turbulence simulations with GRILLIX in complex geometries.
To achieve this, the following procedure was necessary:
In chapter 2 the target model, based on global electromagnetic drift reduced
Braginskii equations, are derived. The starting point is on a kinetic level,
which allows the most complete description of the plasma. Several simplifi-
cations and the drift approximation are necessary in order to bring the model
into a form ready for discretization. The energy conservation properties of
the model are emphasized. The widely used Boussinesq approximation,
which is not valid in the edge and SOL, is relaxed and the impact of
it on the conservation properties is described. Finally the details of the
discretization and implementation in a slab geometry of the model are
discussed. The slab geometry acts as a tool in order reduce the complexity of
the implementation. The knowledge gained in this simplified geometry helps
to perform the transition to more complex geometries. The implementation
of the global electromagnetic drift reduced model is verified with the method
of manufactured solutions.
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Figure 1.5.1: GRILLIX in the year 2015 within Hasegawa-Wakatani model. Snapshots
of density fluctuations n at a poloidal plane. a) closed field line region
b) single-null c) double-null; Insets show outboard midplane region
and X-point region enlarged. Plots are taken from [49]

In chapter 3 the complexity of simulations is successively increased. Starting
with qualitative description of blob propagation, a high amplitude event
often observed in the edge and SOL, analytic expression for scalings with the
width and the amplitude of the blob are derived and compared to GRILLIX
results. The impact of the Boussinesq approximation on blob propagation
is investigated. Fundamental tests are performed in order to check the
electromagnetic dynamics comparing the propagation of an Alfvén wave
in GRILLIX with analytical predictions. It was found that the extension
of GRILLIX to an electromagnetic model is crucial from a numerical and
physical point of view. The simulation of turbulence on closed field lines in
slab geometry is performed in order to check the conservation properties
(energy and particles) in GRILLIX. After that the Large Plasma Device
(LAPD) is modeled in GRILLIX. The turbulence results are compared to
experimental data validating GRILLIX simulations.
Finally the FCI approach is applied in chapter 4 comparing turbulence
dynamics in a circular, single-null and double-null geometries on closed
magnetic field lines. The radial plasma transport is derived and compared
in these geometries.



2

M O D E L A N D I M P L E M E N TAT I O N

In order to describe plasma in the edge and SOL region of a fusion device a
model which is able to capture the main turbulence dynamics is required.
The Hasegawa-Wakatani model [48] which was implemented in GRILLIX
in [9] is not suitable for the scrape-off layer since it describes only small
amplitude fluctuations on a constant background. The fluctuations in
the SOL can reach an amplitude which is several orders higher than the
background plasma [50]. In the edge region the plasma is found to have low
temperatures and a high collisionality such that the assumption ω/νc � 1
with the frequency of interest ω and νc the collision frequency is valid.
For such a situation the Braginskii model can be applied. Collisions are
important because they bring the plasma into an equilibrium state, defined
by a Maxwellian distribution. It is the collisional part of the equations
which fails at higher temperatures [51], the rest of the system is a general
set of fluid equations. The Braginskii system evolves vector quantities on
very diverse time scales ranging from the ion cyclotron frequency up to the
confinement time scale. In order to take out the fast time scales from the
equations and keep only the frequencies of interest for plasma turbulence
a drift approximation is performed. Along with the drift approximation a
set of other assumptions are made in order to simplify the equations further
which yields the reduced fluid model. The derivation of the reduced fluid
model follows mainly the works by B. Scott [52], A. Zeiler [53] and the
original work by S. Braginskii [54]. The final model contains thermal and
electromagnetic effects which were absent in many previous works [21,29,44].
It is shown that the model conserves energy. Furthermore the use of the
Boussinesq approximation [55], which is popular in the plasma community,
is discussed. The impact of it on the energy theorem will be derived. It is
shown that it was used often in a non-conservative form, breaking the entire
conservation properties of the complete system [21].

15
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2.1 braginskii equations

The most complete and detailed description of plasma dynamics is obtained
by solving the underlying equation of motion for each particle in the electric
and magnetic field. Each particle has 6 degrees of freedom (3 spatial, 3

velocity) leading to a 6D phase space with 6N unknowns for N particles.
Thus, following the trajectory of each particle is computationally impossible
even for low densities in a tokamak.
A simplification is the statistical kinetic approach describing a hydrogen
plasma by a particle distribution function f j(t, r, v) for the particle species (j :
electrons e, single charged ions i) being evolved with respect to Boltzmann’s
equation [56]

∂ f j(t, r, v)
∂t

+ vj · ∇r f j(t, r, v) +
Fj

mj
∇v f j(t, r, v) =

(∂ f j(t, r, v)
∂t

)
collisions.

(2.1.1)
The interaction of particles in the plasma is described in Eq. (2.1.1) via the
long ranging Lorentz force

F = qj
(
E + v× B

)
(2.1.2)

and the short ranging collisions, described by the term (
∂ f j(t,r,v)

∂t )collisions
on the right hand side. The Debye length separates these two scales. The
electromagnetic fields can be computed self-consistently via the Maxwell
equations. This reduces the required computational resources, however its
demand is too high for present computers.
In Gyrokinetics the 6D phase-space is reduced to 5D by averaging the fast
gyro-motion out of the equations. The system of equations is a gyro-averaged
kinetic Boltzmann equation. This makes direct numerical computations
possible in a reasonable time [57, 58].
A further reduction of the dimensions to 3D leads to a fluid description of
the plasma. This approach is more suited for a collisional plasma in the edge
region. In a fluid model the plasma is characterized by moments Mn which
are integrations over the particle distribution function

M(n) =

ˆ +∞

−∞
vn f (r, v)d3v (2.1.3)

with the volume element d3v in the velocity space. The moments define
unknowns of the fluid equations. The first three moments of the Boltzmann
equation can be identified with the density nj(t, r), momentum mjnjvj(t, r)
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and temperature Tj(t, r) of a fluid segment, respectively. In principle an
infinite number of equations is produced in this way and for closure of the
moment n, the moment n + 1 is required. An extra equation expressing
the last equation independent of the others is needed. Braginskii used a
collisional closure for this purpose which requires the distribution function
to be close to a local Maxwellian in velocity space

f j =
nj

(2πTjkB/mj)3/2 exp
(
− (v− u)2/v2

T
)
. (2.1.4)

With this distribution the right hand side of the Boltzmann equation is zero,
meaning that the collision term vanishes, regardless of its actual form.
Furthermore it is assumed that the macroscopic time variations are slower
than the collisional time. The scale length perpendicular to the magnetic field
is longer than the ion gyro radius. More, the scale length along the magnetic
field is longer than the mean free path. As was pointed out in [59, 60] this
can actually become questionable. Heat carrying electrons have a much
longer mean free path compared to thermal electrons. They can travel very
long distances without experiencing a single collision. In particular this lead
to a deviation from the Maxwellian distribution for high energy electrons,
which make a kinetic approach useful. Higher moments of the distribution
function e.g. parallel heat conduction (2.1.13) are sensitive to the tails. This
is the reason why the fluid approach fails first for these terms. However this
topic is still under research [59] and out of the scope of this thesis.
The Maxwellian distribution vanishes when the velocity approaches ±∞.
The first three moments of the Boltzmann equation yield a set of equations
for the density, momentum and the temperature for each species

∂nj

∂t
+∇r · (ujnj) = 0, (2.1.5)

mjnj(
∂

∂t
+ uj · ∇r)uj +∇r ·Πj = qjnj

(
E + (uj × B)

)
+ Rj, (2.1.6)

3
2

nj(
∂

∂t
+ uj · ∇r)Tj + pj∇r · uj = −∇r · qj −Πj · ∇r · uj + Qj (2.1.7)

where the fluid element velocity is uj. The pressure tensor Πj consists of an
isotropic part pj = Tr(Πj)/3 which is the pressure of the fluid element and
an anisotropic part πj which is called the stress tensor, giving Πj = pj + πj.
The full expression of the stress tensor is given in [54]. The collision term Rj
represents momentum exchange between particles and consists of

Rj = R ≡ Rei = −Rie = Ru + RT = nebj‖/σ‖ − 0.71nb∇‖Te, (2.1.8)
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where the term Ru describes friction between the species. The conductivity
is given by

σ‖ = e2n/(0.51meνe) (2.1.9)

with ve = 1/τe being the electron collision frequency with the collision time

τe =
3T3/2

e

4neΛe4

√
me/2π, (2.1.10)

the Coulomb logarithm

Λ = 24− ln(n1/2
e /Te) (2.1.11)

and the parallel current
j‖ = en(u‖i − v‖e). (2.1.12)

The last term in Eq. (2.1.8) is the thermal force in parallel direction. As
pointed out in [53] the friction in perpendicular direction is neglected,
keeping only the parallel component of Rj due to its importance for plasma
turbulence. The species heat fluxes are given by

qi = −κ‖ib∇‖Ti + κ⊥ib×∇⊥Ti (2.1.13)
qe = −0.71Tebj‖/e− κ‖eb∇‖Te + κ⊥eb×∇⊥Te (2.1.14)

with κ‖i = 3.9 piτi
mi

, κ⊥i =
5pi

2miωci
,κ‖e = 3.2 peτe

me
and κ⊥e = 5pe

2meωce
. The energy

transfer due to collisions is Qj. The full expressions for these quantities and
the pressure tensor are given in [54].
The unit vector along the magnetic field is given by b = ~b/B and the
subscript ‖, (⊥) denotes the direction along (perpendicular to) the magnetic
field. In the energy transfer Qj only the thermal part is kept [53], giving

Qe =
j2‖
σ‖
− 0.71

q
j‖∇‖Tj (2.1.15)

In addition to the fluid equations the Maxwell equations have to be added to
the system. The Braginskii model needs further simplifications which are
pointed out in the next section.
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2.2 standard simplifications

For the reduction of the complexity of the Braginskii model some standard
assumptions are made. For fusion plasmas even a small charge separation
leads to a very large electric fields driving the plasma towards a neutral state.
This yields the plasma oscillations with the frequency ωpe =

√
4πnee2/me ∼

1011s−1, describing an oscillation of the electrons with respect to the ions
which are assumed fixed here, due to the much higher mass. This frequency
is much faster compared to the time scales of plasma turbulence giving

ω � ωpe, Ωe, ck (2.2.1)

where ck is the frequency of light and the electron gyro frequency is Ωe =
eB/(mec). In this regime the electron density fluctuations ne − n0 remains
close to thermodynamic equilibrium

ne − n0 ' n0
eφ

Te
∼ (ni − ne)

L2

λ2
D

(2.2.2)

where L is the characteristic scale length of the turbulence and the relation
between the electron density and electrostatic potential was used

ne = n0exp
[ eφ

Te

]
' n0

[
1 +

eφ

Te

]
. (2.2.3)

Assuming that the scales of interest are much bigger than the Debye length
λD =

√
Te/4πe2n the relation between ion and electron densities follows as

ni ≈ ne ≡ n (2.2.4)

In the following n is used for the density of the plasma.

2.3 drift approximation

If the plasma disturbances in the parallel direction (along the magnetic
field) are on very different length scales compared to the perpendicular
direction, the frequencies of the corresponding Alfvén oscillations are also
disparate. This can be found in a fusion device with a very strong guiding
magnetic field. In such a situation, if one assumes low frequency dynamics
in parallel direction, the compressional Alfvén waves in transverse direction
are not excited. This leads to a quasi static force balance in the perpendicular
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direction without the fast compressional waves. Under these assumptions
plasma dynamics becomes plasma drift dynamics describing scalar quantities
(density, momentum, temperature).

The definition of drift approximation

The strong guiding magnetic field in a fusion device leads to structures
strongly elongated along the magnetic field lines compared to the perpendi-
cular direction or in terms of wavenumber

k⊥ � k‖ (2.3.1)

This is the flute mode character saying that the corresponding Alfvén
oscillations in perpendicular and parallel direction are also disparate. The
fluid drift motion is of the same order as the shear Alfvén dynamics. Thus,
the frequencies of interest are in the range of

ω ∼ k‖vA (2.3.2)

where vA is the Alfvén speed. Combining these two relations yields

ω � k⊥vA. (2.3.3)

An assumption is that ω � Ωi, that the dynamics of interest is also much
slower than the ion gyro-motion. It follows, that the time scales of motion are
much slower compared to compressional waves, thus these are not excited.
A further inequality Eq. (2.3.4) implies, that the perpendicular spatial scale
L⊥ is much bigger then the drift scale ρs,

δ ≡ ρs

L⊥
� 1, (2.3.4)

where ρs = c
√

miTe/eB is the sound radius, which also implies cs/L⊥ ∼ δ.
The magnetic pressure is also assumed be much bigger the the gas pressure,
resulting in a additional assumption

βe ≡
4πpe

B2 � 1. (2.3.5)

These assumptions can be interpreted as a quasi static force balance across
magnetic field lines, meaning without dynamical oscillations. The perpendicular
motion remains incompressible. This leads to a separation of the parallel
and perpendicular dynamics, which can be then expressed with the help
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of stream functions being scalar quantities among the dependent variables.
This gives a drift reduction of the initial Braginskii system, which evolved
vector quantities in a wide range of frequencies.

Perpendicular force balance

In order to obtain more insight into the perpendicular drift dynamics the
velocity of a fluid element is split up in a parallel and perpendicular part
from the previously stated assumptions

uj = u‖jb + u⊥j (2.3.6)

With respect to δ we expand the perpendicular velocity as

u⊥j = u∗⊥ + δu(0)
⊥ + δ2u(1)

⊥ + . . . , (2.3.7)

where the lowest order velocity u∗⊥ denotes the gyro-motion. Now the
momentum Eq. (2.1.6) is written for each species (e electrons, i ions)
neglecting R , the electron inertia me � mi [52] and assuming a single
charged fluid with ne = ni = n,

min(
∂

∂t
+ ui · ∇r)ui +∇r · πi = −∇r pi +en

(
E +

1
c
(ui × B)

)
, (2.3.8)

0 = −∇r pe −en(E +
1
c
(ve × B). (2.3.9)

Assuming that the parts on left side of the ion momentum equation are one
order smaller in δ compared to the right side [52], the equations are solved
for u⊥j in the perpendicular plane by applying the drift operator c

B2 B× to the
both equations assuming the perpendicular electric field to be electrostatic

E⊥ =−∇⊥φ, E‖ = −
1
c

∂A‖
∂t
−∇‖φ. (2.3.10)

which yields the lowest order solution in δ,

u(0)
i⊥ =

c
B2 B×∇⊥φ +

1
ne

c
B2 B×∇r pi, (2.3.11)

v(0)
e⊥ =

c
B2 B×∇⊥φ− 1

ne
c

B2 B×∇r pe. (2.3.12)
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The single parts of the velocity vector are given by

vE×B =
c

B2 B×∇⊥φ, vDi =
1
ne

c
B2 B×∇pi, vDe = −

1
ne

c
B2 B×∇pe,

(2.3.13)
which are respectively, the E× B-drift (which is equal for both species) and
the diamagnetic drift for ions and electrons. In the following the gradient
will be always in spatial coordinates such that the notation r will be omitted
in ∇r. In order to calculate the next order drift in δ, the lowest order drifts
are inserted in the ion momentum equation

mi(
∂

∂t
+ ui · ∇)u(0)

⊥i +∇ · πi =
en
c
(u(1)
⊥i × B), (2.3.14)

Again the drift operator is applied

mi

e
c

B2 B× (
∂

∂t
+ u⊥ · ∇)u(0)

⊥i +
c

B2 B×∇ · πi = ~u(1)
⊥i , (2.3.15)

The diamagnetic part of the ion stress tensor −minvDi · ∇u(0)
⊥i cancels the

advection with the diamagnetic velocity, a procedure known as the dia-
magnetic cancellation. In the temperature equation the diamagnetic advection
is canceled by the diamagnetic heat flux. Consequently, the diamagnetic
drift does not contribute to particle and heat transport, which are dominated
by the E× B−drift. The diamagnetic drift is a pure fluid drift. No particles
are moving due to a pressure gradient. However more or faster particles
are gyro-rotating along the pressure gradient causing a net fluid flow. The
polarization drift follows from Eq. (2.3.15)

u(1)
⊥i =

mi

e
c

B2 B× (
∂

∂t
+ ui · ∇)u(0)

⊥i +
c

B2 B×
{

pi(∇×
b

ωci
) · ∇u(0)

⊥i +

∇⊥(
pi

2ωci
∇ · b× u(0)

⊥i ) + b×∇( pi

2ωci
∇⊥ · u(0)

⊥i ) + Gk−∇G/3
}

=: vp, (2.3.16)

where here the velocity vector is given up to first order ui = vE×B + vp +
vDi + u‖ib and k = b · ∇b is the field line curvature vector. It is important
to answer the question: Why does the polarization drift has to be kept in the
equations even if it is formally one order below the other drifts? First, as will
be shown later, the polarization drift is important for energy conservation.
Second, although vp is one order below the other drifts its divergence ∇ · vp
is not [52]. It may be seen in more detail if one assumes the scale of motion



2.4 drift reduced equations 23

comparable to ρs and the dynamical frequency to cs/L⊥. The E× B-drift
advection is then in the order of magnitude

vE×B · ∇n ∼ c
B

φ

ρs

n
L⊥

. (2.3.17)

The divergence of the polarization drift is comparable to that assuming
∂
∂t ∼ cs

L⊥

n∇ · vp ∼
n
ρs

cs/L⊥
Ωi

c
B

φ

ρs
∼ c

B
φ

ρs

n
L⊥

. (2.3.18)

It means that advection by E× B-drift and the divergence of the polarization
drift are of the same order of magnitude. The divergence of the polarization
drift will be required for the vorticity equation later on.

2.4 drift reduced equations

With the result from the last section one can derive a closed set of equations
for the scalar quantities: the density n, the parallel ion momentum u‖i, the
potential φ and the electron temperature Te. From here on we assume cold
ions Ti = 0, which simplifies the equations due to pi, vDi = 0.

Continuity equation

The electron continuity equation has been chosen, due to the absence of the
polarization drift

∂

∂t
n +∇ · n

(
vE×B + vDe + v‖eb

)
= 0. (2.4.1)

Vorticity

In order to obtain an equation for the electrostatic potential, one can subtract
the continuity equations for both species and using the quasi-neutrality
condition yielding ∇ · j = 0 which is given in terms of j = jp + jDe + j‖,

∇ ·
(
nvpol − n(vDe) +

j‖
e

b
)
= 0. (2.4.2)
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Generalized Ohm’s law

In order to receive the current conservation equation the momentum equations
for both species are used in parallel direction

men(
∂

∂t
+ ve · ∇)bv‖e = −neE‖ −∇‖pe −∇‖πe + R, (2.4.3)

men((
∂

∂t
+ ui · ∇)bu‖i =

me

mi
neE‖ −

me

mi
R,

(2.4.4)

where the ion momentum equation was multiplied by
me

mi
. Subtracting these

two equations

men(
∂

∂t
+ ve · ∇)bv‖e −men((

∂

∂t
+ ui · ∇)bu‖i = −neE‖ −∇‖pe −∇‖πe + R,

+
me

mi
neE‖ +

me

mi
R.

(2.4.5)

Neglecting the electron stress tensor and the terms with the mass ratio me
mi

and using that it holds u‖i � v‖e yields the generalized Ohm’s law with the
vector potential A‖

j‖
σ‖

= −∇‖φ+
1
c

∂

∂t
A‖+

1
en
∇‖pe + 0.71∇‖Te/e−me/e

( ∂

∂t
+(vE×B + v‖eb)∇

) j‖
en

(2.4.6)

Parallel ion momentum

The parallel ion momentum equation is obtained by taking again the parallel
component of the momentum equation for both species

men(
∂

∂t
+ ve · ∇)bv‖e = −neE‖ −∇‖pe + R, (2.4.7)

min
( ∂

∂t
+ ui · ∇

)
bu‖i = −R. (2.4.8)
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Summing up these two equations yields the parallel ion momentum equation
taking into account the cold ion assumption

( ∂

∂t
+ ui · ∇

)
u‖ib = − 1

min
∇‖pe (2.4.9)

electron Temperature

The electron temperature equation follows directly from the Braginskii
equations

3
2

n
( ∂

∂t
+ (vE×B + v‖eb + vDe) · ∇Te

)
= −∇ · qe + Qe +

5
2

c
e

pe(∇×
b
B
) · ∇Te

−pe∇ · (vE×B + vDe + v‖eb).
(2.4.10)

2.5 energy conservation

In [53] it is shown that the energy is perfectly conserved for the whole system.
Here only the final energy theorem is given.

Total energy theorem

Summarizing the energies contained in the system yields the perpendicular
kinetic, parallel kinetic, thermal and electromagnetic energies

∂

∂t
1
2

nmiv2
E×B +∇ ·

[1
2

nmiv2
E×Bui + φj + vE×B pe

]
= j‖∇‖φ + pe · ∇vE×B,

(2.5.1)
∂

∂t
1
2

nmiu2
‖i +∇ ·

[1
2

minu2
‖iui
]

= pe∇‖u‖i,
(2.5.2)

3
2

∂

∂t
pe +∇ ·

[3
2

vE×B pe +
5
2

pev‖eb− q‖eb−
5
2

c
B2 B×∇ peTe

e
]

= v‖e∇‖pe − pe∇ · vE×B

+Qe. (2.5.3)
∂

∂t
(

1
2

nme(
j‖
en

)2 +
B2
⊥

8π
) +∇ ·

[1
2

nme(
j‖
en

)2v‖e −
∇⊥A‖

4π

∂

∂t
A‖
]

= −j‖∇‖φ− pe∇u‖i

−v‖e∇‖pe −Qe (2.5.4)
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Each term on the right hand side of Eq. (2.5.1-2.5.4) has a corresponding
term in another equation balancing each other, representing a transfer of
energy from one form to another. The energy theorem in integral form shows
then, that the energy is perfectly conserved in the whole system:

∂

∂t

ˆ
dV[

1
2

nmiv2
E×B +

nme

2
( j‖

en
)2

+
1
2

nmiu2
‖i +

3
2

pe +
1

8π
(|∇⊥A‖|2)] =

−
ˆ

dV∇ ·
[1

2
nMiv2

E×Bui + φj +
1
2

minu2
‖iui +

3
2

vE×B pe +
5
2

pev‖eb

−5
2

c
B2 B×∇ peTe

e
+ vE×B pe − q‖eb +

1
2

nme(
j‖
en

)2ve‖ −
∇⊥A‖

4π

∂

∂t
A‖
]

= 0

(2.5.5)

The remaining sinks and sources for the energy are the terms under the
divergence, which are in fact energy flows over the boundaries of the
integration domain.

2.6 debye sheath boundaries

In the SOL charged particles moving along the magnetic field line hit the
solid surface of the divertor or limiter. This interaction between the plasma
and a solid surface is crucial for the local plasma dynamics. The solid acts a
a plasma sink. The electrons and ions recombine on the wall and are injected
back into the plasma as neutrals. The mass difference between the electrons
and the ions leads to a large space-charge electrostatic potential φ which
occurs in a narrow region of the order of a Debye length λD =

√
Te/(4πnee2)

caused by the accumulation of the electrons at the wall. The accumulation of
the electrons on the surface proceeds until an equilibrium state is reached
such that only very fast electrons can overcome the potential drop. In
contrast the ions are accelerated by the same potential towards the wall. An
ambipolar flow to the wall, meaning an equal flux of electrons and ions to
the wall occurs. This region is called ’sheath plasma’. The typical length of
the Debye sheath for a hydrogen plasma with the density ne = ni = 1019m−3

and Te = Ti = 10 eV is λD = 10−5m. The quasi-neutrality does not hold in
the Debye sheath, see figure 2.6.1. Although the thickness of this region
is very small, it influences the rest of the plasma, where quasi-neutrality
holds. Here we are following the calculation in [8] for the cold ion case.
Assuming that the electrons are following a Maxwellian distribution in the



2.6 debye sheath boundaries 27

sheath, because they are in an almost perfect force balance and no sources or
sinks are present, one obtains for the electron density

ne = nseexp
[
e(φ− φse)/kTe

]
(2.6.1)

The reference potential is set to zero in some distance to the sheath. φse
describes the potential drop at the sheath entrance ’se’. For the solution
of the pre-sheath potential drop simple energy and particle conservation
properties of the sheath are applied. Finding the potential drop transforms
into finding the sheath entrance velocity vse which is obvious from

1
2

miv2
se = −eφse (2.6.2)

All ions are assumed to start at the same position upstream of the sheath
edge and it is further assumed that the ions travel collisionlessly over the
potential drop. Particle conservation states that nsevse = nivi giving

ni = nse(φse/φ)
1
2 (2.6.3)

Now Eq. (2.6.1) and Eq. (2.6.3) are inserted into the Poisson equation
d2/dx2φ = −e(ni − ne)/ε0 giving

d2

dx2 φ = −ense
[
(φse/φ)

1
2 − exp(e(φ− φse)/kTe)

]
/ε0 (2.6.4)

Linearizing the square root and the exponential terms yields

d2

dx2 (φse − φ) ≈ −ense(φse − φ)
[ e

kTe
− 1

2|φ|
]
/ε0 (2.6.5)

In order to exclude non-oscillatory solutions, which would be unphysical,
the expression in the bracket need to fulfill

e
kTe
≥ 1

2|φ| (2.6.6)

which finally gives the Bohm-condition

vse ≥ cs (2.6.7)

for the ions velocity along the sheath. Taking into account continuity of
fluxes and the subsonic dynamics of the plasma, it follows at the sheath
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entrance vi = cs. The situation is summarized in figure 2.6.1. With this
condition it is now possible to calculate the wall potential φw using the
ambipolar flow condition Γw

i = Γw
e . The electron flux on the wall is obtained

via the distribution function in the half-velocity space [8] (positive towards
the wall)

Γw
e = ne,w

√
kTe

2πme
(2.6.8)

This flux must be equal to the ion flux and both are equal to the flux
entering the sheath nsecs. Using a Boltzmann relation for the wall density
ne,w = nseexp

[
eφw/kTe

]
the wall potential relative to the plasma potential

(φ = 0) follows as

φw =
kTe

e
ln
(√

2π
me

mi

)
(2.6.9)

This sets a boundary condition on the parallel current jw
‖ = e(Γw

i − Γw
e )

giving

jw
‖ = ±nsecse

[
1− exp(Λ− eφse

kTe
)
]

(2.6.10)

with the parameter Λ = ln
(
2π

mi

me

)
, which is between 2 and 3 for a typical

plasma. It is important to emphasize that the Debye sheath is collisionless [8]
meaning that a fully kinetic approach is necessary in order to resolve this
region [59]. However in fluid codes the effect of the sheaths is captured
via the boundary conditions Eq. (2.6.10) and (2.6.7) and modification of
them [61, 62].
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Figure 2.6.1: The potential drop φse breaks the quasi-neutrality in the sheath region
forcing the ions vse ≥ cs.
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2.7 additional simplification and its implications

In addition to the drift approximation further simplifications are still needed
in order to make the system relative simple to solve from a numerical point
of view. As mentioned before, the polarization drift is very small. However
the divergence of it is not, thus we neglect the polarization drift if it is in
front of a divergence. This simplifies the system, because now one does not
have to keep track of the time dependent polarization in the equations. It
should be noted that this affects the energy conservation properties of the
system by introducing new terms in the energy theorem.
The other simplification is the already mentioned Boussinesq approximation
which was relaxed in GRILLIX during this thesis. In the following the subtle
impact of these two simplifications is going to be discussed.

2.7.1 New advective derivative

We neglect the polarization drift in the ion advective derivative in the
perpendicular force balance calculation giving

di

dt
=

∂

∂t
+ (vE×B + u‖ib) · ∇ =

∂

∂t
+ ui · ∇· (2.7.1)

This approximation leads to new terms on the right side of Eq. (2.5.5)

· · · =
ˆ

dV
1
2

mi(u2
‖i + v2

E×B)∇ · (nvp),

indicating that the energy is not conserved anymore. This is the price for
the simplifications of the equations for numerical purposes. However these
terms are very small, which will be shown in section 3.2.2.

2.7.2 Boussinesq approximation

The Boussinesq approximation is widely used in the plasma turbulence
community. The main point of it is the assumption that the fluctuations
of the density are very small. This assumption is problematic for several
reasons. First as was pointed out in the introduction of this chapter, this does
not hold in the SOL. Moreover models which make use of the Boussinesq
approximation are not global in a strict sense. They are a hybrid between a
model where no assumptions about the density are made (e.g. continuity
equation) and a model which makes explicit assumptions about the fluctuation
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level of the density in the vorticity equation. However, the use of different
assumptions in a coupled system of equations is not consistent. The main
motivation for the Boussinesq approximation is not of physical nature
but rather the numerical solution of the vorticity equation becomes much
easier within this approximation. Thus the relaxation of the Boussinesq
approximation is of crucial importance on the way towards a model and
a code suitable for the SOL. In previous works different forms of the
Boussinesq approximation can be found. The first form is called here the
conservative Boussinesq approximation.

Conservative form

The conservative Boussinesq approximation was used e.g. in [28,29,44]. One
neglects the spatial and temporal dependence of the density (n→ n0 = 1) in
the polarization part of the vorticity equation leading to a simplification:

n0∇ · vp = ∇ ·
(
nvDe −

j‖
e

b
)
→ ∇ · j = 0 (2.7.2)

This form of the Boussinesq approximation keeps the charge conservation
properties of the system. An energy theorem can be constructed within the
conservative Boussinesq approximation giving a modified perpendicular
kinetic energy

∂

∂t
[1

2
n0

B2 |∇⊥φ|2
]

= (φvE×B + φu‖ib) · ∇ω− φ∇ · (
j‖
e

b) + φ∇ · (nvDe),

(2.7.3)

where the vorticity is ω = ∇2
⊥φ. First the perpendicular kinetic energy

becomes independent of n. Second additional terms arise on the right side
having no counterpart in the total energy theorem, indicating a loss of energy
conservation. In order to bring Eq. (2.7.3) to a conserved form, one has to
neglect the advection by parallel ion velocity

u‖ib · ∇ω = 0, (2.7.4)
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which is problematic on open magnetic field lines where parallel velocity can
reach the sound velocity (see section 2.6). Furthermore, one has to assume
that the divergence of the E× B-drift is negligible, such that

φvE×B · ∇ω = ∇ · [φωvE×B]−ωvE×B∇ · φ︸ ︷︷ ︸
=0

−ωφ∇ · vE×B︸ ︷︷ ︸
≈0

, (2.7.5)

where the second terms vanishes because of a vector identity. Eq. (2.7.5)
does not hold in general. This gives the perpendicular kinetic energy in
the Boussinesq approximation depending only on surface terms taking into
account counterparts from other energies

∂

∂t
[1

2
n0

B2 |∇⊥φ|2
]
+∇ · [φωvE×B] = 0 (2.7.6)

Consequently the conservative Boussinesq approximation is much more
than just neglecting spatial and temporal dependence of the density in the
vorticity equation. It requires two more strong assumptions which are not
generally satisfied in the edge region and realistic geometries. Nevertheless
charge is conserved and the perpendicular delta-f energy has to be equal to
the right side of Eq. (2.7.3). From this perspective the second form of the
Boussinesq approximation, which is called here non-conservative Boussinesq
approximation, is more problematic.

Non-conservative form

Another possibility of using the Boussinesq approximation is keeping the
spatial and temporal dependence of the density in the polarization part of
the vorticity equation

n∇ · vp = ∇ ·
(
nvDe −

j‖
e

b
)
→ ∇ · j 6= 0 (2.7.7)

This clearly breaks the charge conservation of the entire system! A consequence
of this is that no energy theorem can be constructed anymore and the
conservation properties are completely lost. This form of the Boussinesq
approximation was used in other models such as [21–23, 63, 64].
The impact of the non-conservative Boussinesq approximation will be discussed
in the section 3.2.
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Summary

In this section the model which is finally implemented in GRILLIX was
derived. Starting from the Braginskii equations, many simplifications needed
to be applied in order to bring the system into a form which can be solved
numerically. We employ the drift approximation and assume cold ions. It
was shown that the chosen model conserves energy. The subtle impact of
the conservative form of the Boussinesq approximation was discussed. The
conservative Boussinesq approximation leads to a modified energy theorem,
however it keeps the charge conservation. In contrast the non-conservative
form of the Boussinesq approximation (which can be still found in recent
works) breaks completely the conservation properties of the model. The
Boussinesq approximation is not suitable for the treatment of the SOL and its
use is not consistent with the rest of the global electromagnetic model, where
no assumptions about the density are made. In GRILLIX the Boussinesq
approximation was relaxed. The comparison between the full model and the
Boussinesq approximation will be discussed in the next section.
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2.8 numerical implementation

In this section the numerical implementation of the final set of equations is
discussed. An important point is the chosen geometry. As was discussed
before, the powerful feature of GRILLIX is the treatment of realistic geo-
metries. However this is an additional layer of complexity during the
model development. Here the focus is on the correct model discretization,
implementation and verification. For this purpose a simple slab geometry
is chosen. In order to discretize the equations we use finite difference
methods [65]. The spatial and temporal discretization of each operator
is shown. Before doing this the model needs to be normalized. Special
attention is required for the relaxation of the Boussinesq approximation. The
discretization of the corresponding operators is discussed. The results can
be easily transfered to more complex geometries using the flux-coordinate
independent approach, see chapter 4.

2.8.1 Geometry

In the following a 3D flux tube set up is chosen as the computational domain,
see figure 2.8.1. The flux box follows the magnetic field lines across the
circular domain of the tokamak hitting the limiter plates. The coordinate
system (x, z, y) for the slab geometry consists of the radial coordinate x, the
poloidal coordinate y, where periodic boundary conditions are applied and
the coordinate z which is parallel to the magnetic field lines, where Bohm
boundary conditions are used, see the discussion on boundary conditions
in section 2.6. Alternatively periodic boundary conditions can be applied.
The direction of the curvature of the magnetic field is denoted by κ. The
flux box is unwound to a straight box having the length L‖, see figure 2.8.2.
Although the magnetic field lines are straight, the curvature can still be
modeled yielding a flux box around the torus with a low-field side (LFS) and
high-field side (HFS). Without the curvature a linear device can be modeled
within this set up. Despite the simplicity of the geometry many phenomena
can be studied e.g. blob dynamics (chapter 3.1), basic plasma turbulence
(chapter 3.2 - 3.3), conservation properties of the model (section 3.2.2) and
electromagnetic effects (section 3.2.1). For more complex geometries which
are going to be investigated in chapter 4 the coordinate system is given by
(R, ϕ, Z) with the poloidal angle θ and the toroidal angle ϕ.
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Figure 2.8.1: A 3D flux tube following the magnetic field lines around the torus.
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Figure 2.8.2: The flux box is unwound to a straight slab geometry, which still
captures the curvature effects.
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2.8.2 Normalization

The set of equations (2.4.1),(2.4.2),(2.4.5),(2.4.9),(2.4.10) is normalized according
to

t̃ =
c0

s
R

t, x̃⊥ =
x⊥
ρs0

, ñ =
n
n0

, φ̃ =
eφ

T0
, ~̃B =

~B
B0

,

ũ‖ =
u‖
cs0

, j̃‖ =
j‖

c0
s en0

, x̃‖ =
x‖
R0

, T̃e =
Te

Te0
, Ã‖ =

A‖
β0B0ρs0

.

The normalized quantities are on the left side under tilde, which will be
dropped in the following for clarity and conciseness. The perpendicular
direction is normalized with the ion sound radius ρs0 = c

√
Te0mi/eB0. Time

is measured in terms of R0
c0

s
with the sound speed c0

s =
√

Te0/mi and the
major radius of the tokamak R0. The density, the magnetic field and the
electron temperature are normalized to some reference values n0, B0, Te0,
respectively. In order to ensure the positivity of the density and electron
temperature we want to develop instead of n and Te the logarithm of these
quantities. In the following we use θn = log(n) and θT = log(Te). For this
reason the continuity equation and the temperature equation are divided by
n and Te respectively. The normalized set of equations is given by:

Continuity equation

∂

∂t
θn +

δ

B
{φ, θn} = C(φ)− C(pe)−

1
n
∇ · nu‖ib−

1
n
∇ · j‖b (2.8.1)

Vorticity

∇⊥ ·
[

n
B2

∂

∂t
∇⊥φ

]
+

δ

B
∇⊥ ·

( n
B2{φ,∇⊥φ}

)
= −C(pe) +∇ · j‖b

−∇⊥ ·
( n

B2 u‖i∇‖∇⊥φ
)

(2.8.2)

Parallel ion momentum

∂

∂t
u‖ +

δ

B
{φ, u‖i} = −u‖i∇‖u‖i −

1
n
∇‖pe (2.8.3)
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Electron temperature

∂

∂t
θT +

δ

B
{φ, θT} =

2
3
(
C(φ)− 7

2
C(Te)− TeC(θn)

)
+

2
3

0.71
n
∇ · j‖b−

2
3
∇‖v‖e

−v‖e∇‖θT +
2
3

1
nTe

j2‖
σ‖

+
2
3

1
nTe
∇ · κ‖e∇‖Te

(2.8.4)

Ohm’s law

β0
∂

∂t
A‖+µ

[ ∂

∂t
j‖
n
+

δ

B
{φ,

j‖
n
}+ v‖e∇‖

j‖
n
]
= −

j‖
σ‖
−∇‖φ+Te∇‖θn + 1.71∇‖Te

(2.8.5)

The E× B−advection of some quantity f can be written with the help of the
Poisson bracket

vE×B · ∇ f =
δ

B
(∂xφ∂y f − ∂yφ∂x f ) :=

δ

B
{φ, f } (2.8.6)

C( f ) denotes the curvature operator which is given by

C( f ) = −2∂y f (2.8.7)

The parallel electron velocity is written as

v‖e = u‖i −
j‖
n

(2.8.8)

The free parameters of the system are given by

δ = R0/ρs, σ0
‖ =

c0
s

R0

mi

me

1
0.51ν0

e
, κ‖e0 = 3.15

cs0

R0

mi

me
τe0, β0 =

4πn0Te0

B2
0

, µ =
me

mi

determining the E× B−advection, the parallel conductivity σ‖ = σ‖0 · T
3
2

e

and the parallel heat conduction κ‖e = κ‖e0 · T
5
2

e .
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2.8.3 Sources, Dissipation and radial boundary conditions

In order to ramp up plasma density and electron temperature source terms
Sn,t are added. We can choose between two kind of sources. The first one
is a source with a constant rate in time. The second source ramps up the
quantities to a defined target density and electron temperature respectively.
In addition to that, hyper-diffusion D( f ) = ∇2k

⊥ f with k = 1, 2, . . . is
applied on all quantities in perpendicular direction in order to damp high k⊥
structures on the grid scale. This stabilizes the simulation since it prevents the
power spectrum from piling up at higher frequencies. In parallel direction a
weak normal diffusion is applied acting also on the grid scale.
Radial boundary conditions are chosen according to Dirichlet or homogeneous
Neumann conditions on all quantities. In addition to these the Bohm
boundary conditions in parallel direction can be applied. The density,
vorticity and electric potential are extrapolated linearly at the parallel boundaries
∇2
‖ f |Boundary = 0 and Neumann boundary condition is applied on the

electron temperature in parallel direction.

2.8.4 Discretization

In this section the normalized set of equations (2.8.1)-(2.8.5) is going to be
discretized. The discretization is discussed for the parallel and perpendicular
operators respectively.

Parallel operators

For the discretization of the parallel operators along the magnetic field line
(ez) a grid G with the integer indices k = 0, 1, 2, . . . and a staggered grid G∗

having half-integral indices k∗ = 1
2 , 3

2 , . . . is introduced, see figure 2.8.3.
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Figure 2.8.3: The grid is shown in parallel direction. The staggered grid G∗ is shifted
by ∆z

2 compared to the grid G.

parallel gradient The discrete parallel gradient is an operator Q
which maps from the grid G to the staggered grid G∗:

Q : G → G∗.

For some quantity f which exists on the grid G the parallel gradient q‖

which is defined on the staggered grid G∗ is written in discretized form as:

q‖k∗ := (Q f )k∗ :=
fk+1 − fk

∆z
, (2.8.9)

where ∆z =
L‖
N

with N being the number of poloidal planes.

parallel divergence Analogously, the parallel divergence is an operator
of type Q∗ meaning that it maps from the staggered grid G∗ to G:

Q∗ : G∗ → G.

The discrete from of the parallel divergence d‖ is written in the form:

d‖k := [Q∗(Q f )]k :=
(Q f )k∗+1 − (Q f )k∗

∆z
. (2.8.10)



40 model and implementation

mapping operators For objects like e.g. fk(Q f )k∗ or fk∗(Q f )k∗ where
the quantity f exists on the grid G or G∗ whereas the gradient is applied on
the staggered grid G∗ a mapping operator M is needed to bring only the
gradient to G, f to G∗ or the product to G :

M : G → G∗,
M∗ : G∗ → G.

A quantity f is mapped from the grid G to the staggered grid G∗ in the
following way

(M f )k∗ =
1
2
( fk+1 + fk). (2.8.11)

Accordingly the gradient is mapped from the staggered grid G∗ to the grid
G

(M∗(Q f )k∗)k =
1
2
((Q f )k∗+1 + (Q f )k∗). (2.8.12)

Perpendicular operators

Within the poloidal planes (ex, ey) operators are discretized on the grid G
with the indices i, j = 0, 1, 2, . . . with standard finite differences. In addition
to that a staggered grid G∗⊥ is introduced having the half-integral indices
i∗, j∗ = 1

2 , 3
2 , . . . , see figure 2.8.4. All perpendicular operators are discretized

and mapped in the same fashion like the parallel operators.

~B

∆h

xi

yj
i, j = 1, 1 i, j = 2, 1 i, j = 3, 1

i∗, j = 1
2 , 1 i∗, j = 3

2 , 1

i, j∗ = 1, 1
2

i, j∗ = 1, 3
2

GG∗
⊥

Figure 2.8.4: The grid in the poloidal planes. The staggered grid G∗⊥ is shifted by ∆h
2

compared to the grid G.
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perpendicular gradient The perpendicular gradient is an operator
P which maps from the grid G to the perpendicular staggered grid G∗⊥:

P : G → G∗⊥.

The perpendicular gradient p⊥k,i,j is defined on G∗⊥ and can be written as

p⊥k,i∗,j := (P f )k,i∗,j :=
fk,i+1,j − fk,i,j

∆h
, (2.8.13)

where the grid spacing is ∆h =
L⊥
N⊥

with N⊥being the number of poloidal

grid points. Here only the radial direction is shown but the same approach
holds obviously for the poloidal direction as well.

perpendicular divergence Another form of operators P∗ is introduced
within the poloidal planes which map the quantities from the staggered grid
G∗⊥ to grid G:

P∗ : G∗⊥ → G.

The perpendicular divergence is written consequently in the following form

l⊥k,i,j := [P∗(P f )]k,i,j :=
(P f )k,i∗+1,j − (P f )k,i∗,j + (P f )k,i,j∗+1 − (P f )k,i,j∗+1

∆h
.

(2.8.14)

perpendicular mapping operators Perpendicular mapping operators
are introduced bringing the quantity to G or G∗⊥ :

M⊥ : G → G∗⊥,
M∗⊥ : G∗⊥ → G.

A quantity f is mapped from the grid G to the staggered grid G∗⊥ in the
following way

(M⊥ f )k,i∗,j =
1
2
( fk,i+1,j + fk,i,j). (2.8.15)

Therefore the gradient is mapped from the staggered grid G∗⊥ to the grid G

(M∗(P f )k,i∗,j)k,i,j =
1
2
((P f )k,i∗+1,j + (P f )k,i∗,j). (2.8.16)

Now the set of equations can be written in a systematic way. The density n,
the electron temperature Te and the potential φ are derived on the grid G.
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The parallel current j‖ and the parallel ion velocity u‖i are calculated on the
staggered grid G∗.

Special operators

exb-advection The E× B−advection vE×B · ∇ f = {φ, f } acts purely
in the poloidal plane. For the discretization of the Poisson bracket {φ, f }
we use the conservative Arakawa scheme [66] and use in the following the
notation [φ, f ].

non-boussinesq advection Special attention was required for the
relaxation of the Boussinesq approximation and discretization of the operators
∇⊥ ·

(
n[φ,∇⊥φ]

)
and ∇ ·

(
nu‖i∇‖∇⊥φ

)
in the vorticity equation. In the first

one the perpendicular gradient of φ exists on the perpendicular staggered
grid G∗⊥. This means that the potential needs to be mapped to the staggered
grid. The Arakawa bracket is then evaluated on the staggered grid [M⊥φ, Pφ].
For the product with n, the density is mapped to the staggered grid as
well M⊥n[M⊥φ, Pφ]. Finally the divergence brings the quantity back to the
full perpendicular grid G, P∗(M⊥n[M⊥φ, Pφ]). This procedure is necessary
because otherwise the stencil jumps over neighboring grid points, a pheno-
menon known as checker boarding.
For the second operator the parallel gradient is interchanged with the
perpendicular gradient writing ∇⊥ ·

(
nu‖i∇⊥∇‖φ

)
. The parallel gradient of

φ is mapped to the grid G where the perpendicular gradient is evaluated
PM∗Qφ. The parallel ion velocity is mapped to the full grid, where the
product nu‖i is evaluated, which is mapped to G∗⊥, M⊥n(M∗u‖i)PM∗Qφ.
The perpendicular divergence brings the quantity back to the full grid
P∗M⊥n(M∗u‖i)PM∗Qφ. A consistent discrete form of the full electromagnetic
system of equations could be only reached with the use of staggered grids
and the discussed procedure.
As an example the discrete continuity equation is shown here on the discrete
level.

Continuity equation

∂

∂t
θn + δ[φ, θn] = C(φ)− 1

n
C(pe)−M∗(u‖iQθn)−Qu‖i +

1
n

Q∗ j‖ +
D(n)

n
+

Sn

n
(2.8.17)

The diffusion term is given by D( f ) = D⊥( f )+ D‖( f ) = Q∗µ‖Q f +P∗µ⊥P f .
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2.8.5 Time-Stepping scheme

For the time propagation a 3rd order backward differentiation formula
(BDF3) is used [67]. In the earlier Hasegawa-Wakatani version of the code
the BDF3 scheme was already used. It has proven to be numerically stable
and performed well concerning conservation of energy. The scheme has the
following form

ft+1 =
18
11

ft +
9

11
ft−1 +

2
11

ft−2 +
6

11
dt F(t + 1, ft+1). (2.8.18)

Consequently three time points per each quantity need to be stored in the
memory. The function F(t + 1, ft+1) contains all discrete operators at the
time step t + 1. Thus BDF3 is an implicit time scheme. An implicit treatment
of nonlinearities is a difficult task thus the operators on the right hand side
at the time-step t + 1 are extrapolated out of the previous three time-steps

F(t + 1, ft+1) = 3F(t, ft)− 3F(t− 1, ft−1) + F(t− 2, ft−2), (2.8.19)

where d ft is the sum of all discrete operators on the right hand side of the
model.

2.8.6 Helmholtz solver

In GRILLIX solutions to equations of the Helmholtz type

λu−∇ · [c∇⊥u] = b in Ω (2.8.20)

have to be determined, where b is some right hand side and Ω is a poloidal
plane. In order to get the electrostatic potential out of the vorticity equation
(2.8.2) an elliptic equation (u = φ, λ = 0, c = n) needs to be solved. The full
Helmholtz equation (u = A‖, λ = β0, c = 1) is solved for the vector potential
(2.8.5). Eq. (2.8.20) is discretized with finite differences according to section
2.8.4 giving a system of equations Au = b. A solution of this system with a
direct solver is to costly since a LU− decomposition [68] has to be performed
in each time step. Using Splitting methods e.g. Jacobi relaxation, which is a
linear iterative method, is also not possible. In order to converge, the iteration
matrix M of a linear iterative method needs to fulfill ρ(M) < 1 where ρ(M)
is the spectral radius. However for the Jacobi relaxation method it holds
ρ(M)− 1 ∝ h2 [65, 68], where h is the grid resolution. With an increasing
resolution the Jacobi relaxation method converges slower. This is the reason
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why iterative solvers have no practical applications [65]. In order to accelerate
the convergence behavior of the Jacobi relaxation method a multigrid solver is
used in GRILLIX, which was developed by A. Stegmeir. Details of the use and
implementation are provided in the GRILLIX Documentation [46]. A general
introduction to iterative and multigrid solvers can be found in [65, 68, 69]
and more mathematical approach in [70].
The basic idea behind the multigrid approach is the use of multiple grids
where the equation reads Alul = bl with the index l defining the grid
resolution hl = h0/2l (h0 : resolution of the coarsest grid). On the finest grid
the Jacobi relaxation method converges too slow, however it smooths the
higher frequencies of the numerical error εl = ul − ul,∗, where ul and ul,∗

are the approximated solution after several iterations and the exact solution
respectively [68]. The smooth numerical error can be used on a coarser grid
(restriction) in order to get the final solution e.g. via a direct solver, which
then has to be brought to the finer grid (prolongation). The restriction and
prolongation operations can be done in several ways. The trivial restriction
simply takes the values of the vector on the coarser grid. A linear restriction
interpolates the values on the coarser grid via a linear interpolation out of
the neighboring points. In the same fashion the prolongation operation is
performed, where the values on the finer grid are computed linearly out of
the coarser grid. In GRILLIX a trivial restriction and the bilinear prolongation
are used [46]. Instead of prolonging the solution to the finer grid, it can
be used as the initial condition for a further restriction to an even coarser
grid. The solution on the coarsest level is prolongated all the way up to
the finest level. At each level post-smoothing Jacobi iterations are applied.
Going directly from the finest to the coarsest level and back defines the so
called V−cycle. Similarly, in the W− cycle the solution is restricted and
prolongated intermediately several times. The main advantage of multigrid
methods is the O(N) computational complexity with the problem size N,
which makes it very efficient for large problems [71].
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2.8.7 Method of manufactured solutions

In this section the slab version of GRILLIX is verified. The verification
process is aimed to check if the chosen set of partial differential equations
was discretized, implemented and solved correctly. It does not show whether
the chosen numerical methods are applicable to the equations. Our chosen
model consists of a nonlinear set of partial differential equation meaning
that no analytical solution can be provided. In this sense a comparison
between the numerical solution and an analytical result is impossible. The
Method of Manufactured solutions (MMS) [72–74] is a technique allowing
the verification of a code even without an analytical result. Within this
method a known or manufactured solution is provided by adding source
terms to the equations. It is checked how close the numerical solution of the
equation is to the provided manufactured solution. The difference between
the numerically derived solution and the manufactured solution gives the
numerical error. Here we will focus on the L2−norm of the numerical error

ε2 =

√√√√∑N
i=1( fm,i − fn,i)

2

∑N
i=1 f 2

m,i

, (2.8.21)

where fm is the manufactured analytical function and fn is the numerical
solution. The sum is taken over all grid points N. With higher spatial
resolution the numerical result should approach the manufactured solution
with a known scaling in the numerical error e.g. second order for central
finite differences. In order to test the correctness of the numerical imple-
mentation of a nonlinear equation evolving some quantity f

∂

∂t
f = O( f ), (2.8.22)

where O( f ) is a nonlinear operator acting on f containing the discretized
differential operators in the spatial dimensions a time-dependent manu-
factured function fm(t) is chosen. This function should be a smooth differen-
tiable general combination of some simple mathematical functions e.g. sin,cos
and exp employing all spatial and temporal parts of the code. Here a
periodic slab is chosen as the computational domain for testing the method
of manufactured solutions. Thus, the chosen function fm should also be
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periodic in the poloidal and toroidal directions. The manufactured function
is inserted in Eq. (2.8.22) providing an analytical form of the source function

S(t) =
∂

∂t
fm −O( fm). (2.8.23)

The source function is inserted in the equation giving the new equation
which is solved numerically

∂

∂t
f = O( f ) + S(t). (2.8.24)

Now it is evident that fm is an exact solution of the new equation (2.8.24).
The procedure for the test of the scaling of the numerical error is then as
follows. At the start of the simulation t = 0 the quantity is set to zero. The
time is then advanced to some later point t = ∆t. The source function is an
analytical expression which is derived at every time point and provided to
the code. After a period of time, which should be long enough in order to
let the system reach the manufactured solution, the numerical outcome is
compared to fm. The L2−norm of the numerical error (2.8.21) is computed.
This is repeated with the double resolution and the numerical error is derived.
If the spatial operators were implemented correctly then the scaling of the
numerical error must show the expected order of convergence and decrease
towards zero for higher spatial resolutions. The time mesh should also be
refined in order to avoid a dominance of the numerical error from the time-
discretization for higher spatial resolutions. Here only Dirichlet boundary
conditions on the quantities are tested. Analytical expressions fm|Boundary for
the boundary conditions are set in the code within the MMS procedure. The
following function is used

f (x, y, z, t) = [c1cos(kz
1z) + s1sin(kz

2z)] · [c + sin(ψ + tω)] · (2.8.25)
[e1e−ex·x̄ + c2cos(kx

1 x̄) + s2sin(kx
2 x̄] · (2.8.26)

[c3cos(ky
1ȳ) + s3sin(ky

2ȳ)]. (2.8.27)

with x̄ = 2π(x−xmin)
(xmax−xmin)

, ȳ = 2π(y−ymin)
(ymax−ymin)

and the parameters c1, kz
1, s1, kz

2, c, ψ, ω, e1,

ex, c2, s2, kx
1, kx

2, c3, s3, ky
1, ky

2. These parameters are set individually for each
manufactured solution for the density nm, the electron temperature Te,m, the
potential φm, the parallel ion velocity u‖i,m and the vector potential A‖m. The
values are shown in table below.



2.8 numerical implementation 47

c1 kz
1 s1 kz

2 c ψ ω e1 ex c2 s2 kx
1 kx

2 c3 s3 ky
1 ky

2

nm 0.321 1 0.689 1 0.1 2.34 20 0.68 0.313 0.653 0.543 1 2 0.573 0.684 3 2

Te,m 0.269 1 0.412 2 0.06 0.79 18 0.598 0.562 0.389 0.265 3 1 0.165 0.721 1 1

φm 0.462 2 0.321 1 0.8 0.69 33 0.365 0.468 0.385 0.684 3 1 0.942 0.762 2 1

u‖i,m 0.984 2 0.176 2 0.2 1.34 23 0.318 0.789 0.798 0.687 1 1 0.156 0.563 3 1

A‖m 0.756 1 0.985 1 0.15 0.83 27 0.145 0.863 0.462 1.268 2 1 0.724 0.621 1 2

One can test the complete model with the technique which has been discussed.
Unfortunately this can lead to a situation where the error of some operator
which was implemented in a wrong way is hidden by the numerical error of
correctly implemented operators. In order to avoid this situation each part
of the equations was tested separately. Here only the result for the complete
model is shown, see figure 2.8.5.

Complete model

For the testing of the complete model the poloidal resolution is h = 1.0
2i

with i = 0, 1, 2, 3 and the toroidal resolution is chosen with ∆z = 2π
j with

j = 16, 32, 64, 128. The physical parameters are in the range of a typical
turbulence simulation with δ = 680, β0 = 10−2, µ = 10−3, σ‖0 = 1.2, χ‖0 =
0.75. All lines are parallel to each other in figure 2.8.5 and also parallel to the
reference 2nd order line indicating a very good second order behavior of the
implemented system. A similar result was achieved within an electrostatic
model which was published in [75]. From this one concludes that the model
was discretized and implemented in a correct way.
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Figure 2.8.5: MMS for the complete electromagnetic model. All quantities show a
second order behavior.

Summary

In this section the discretization and implementation of the drift reduced
Braginskii model was shown, which is one of the major achievements in
this thesis. For this purpose the use of staggered grids in toroidal and
poloidal direction was essential. Both the staggered grids and the Helmholtz
solver allowed the relaxation of the Boussinesq approximation extending
GRILLIX to a global electromagnetic model without any assumptions about
the density. For simplicity the discretization and implementation was shown
in a magnetic slab geometry, which is a very efficient testing environment
for the numerics and physics. The extension to FCI and more complicated
geometries will be discussed later in the chapter 4. The important test of the
numerics with the method of manufactured solutions showed an excellent
second order behavior of the numerical schemes.



3

S I M U L AT I O N S I N S L A B G E O M E T RY

Radial transport of plasma in the SOL of magnetically confined plasmas is
found to be turbulent. This turbulence is mainly dominated by filamentary
large-amplitude structures in density, the electron temperature and the
electric potential known as ’blobs’ [76–82]. It is known from the theory
and simulation side that these blobs are born as a result of the nonlinear
saturation of the underlying edge turbulence instabilities [83]. These coherent
structures are spatially localized in the poloidal plane on a lower-density
plasma background and are elongated along the magnetic field lines in 3

dimensions. A wide review of blob physics is given in [84–86]. Simple
analytical theories, which already yield satisfactory results describing the
basic blob dynamics [87–90]. Most of the numerical studies were performed
in 2D [91–95]. However blobs are a full 3D phenomenon such that in in recent
years the new standard became 3D simulations [64, 96–106]. In this chapter
the basic blob dynamics is recapitulated. The focus is on the dynamics of
the full 3D thermal system, which is a very important test for the model
and the implementation of it. The numerical results can be compared to
the analytical predictions. The correct description of the blob dynamics is
important since plasma turbulence consists mainly of blobs. The scaling laws
for the maximum center of mass velocity of a blob are derived and tested.
For the first time the simulations are compared to the Boussinesq system
in order to identify the regimes where the applicability of the Boussinesq
system does not impact the overall dynamics. It is shown that GRILLIX
successfully treats the blob dynamics in all regimes.

49
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3.1 blob dynamics

In this section the basic blob dynamics which is derived from a simple
isothermal 2D model is presented. This helps to understand the polarization
mechanism and the convection of the blobs in the SOL. The extension to a
3D thermal model is discussed afterwards.
The basic model consists of the continuity and the vorticity equation

∂

∂t
n +∇ · n(ve⊥ + v‖eb) = 0, (3.1.1)

∇ · j = 0,

where the vorticity equation can be written in the usual form neglecting the
parallel advection term using d/dt = ∂/∂t + vE×B · ∇·

∇⊥ ·
[

n
B2

d
dt
∇⊥φ

]
= ∇‖ j‖ +∇ · nvDe. (3.1.2)

Currents are induced in perpendicular direction by the ion inertia polarization
which describes the collective plasma motion according to the vorticity and
the diamagnetic plasma drift, which arises due to the curvature of the
magnetic field. The diamagnetic drift acts as a source for the vorticity,
interchanging high density plasma with low density plasma [86]. The
diamagnetic drift polarizes the plasma due to the sign dependence for
oppositely charged particles. The density structure shown in figure 3.1.1
is polarized due to the interchange drive in Eq. (3.1.2) which consequently
produces an electric field perpendicular to the magnetic field. This causes an
E× B-advection of the complete structure.
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Figure 3.1.1: The blob is polarized due to the interchange drive. An electric field
arises which is perpendicular to B and the curvature κ causing the
E× B−advection of the entire structure. Contours show areas with
equal density ranging from the background density nB to the maximum
blob density n.

The dynamics of the blob depends highly on the balancing of the induced
current. From Eq. (3.1.2) it is evident that the last term on the right hand side
can be balanced by the inertial term (inertial regime) on the left side or by
the parallel current which is limited by the sheaths (sheath limited regime),
see the discussion on boundary conditions in section 2.6. In many theoretical
works cited above, the scaling of the maximum velocity of the blob, which
depends on the width of it was derived. Here we are following [89], where
the authors also take the amplitude of the blob into account, in addition to
the width for the derivation of the scaling laws. They used an isothermal
model in 2D for the calculations but mention that it can be extended for
capturing non-thermal effects. In the following the main points of [89] are
sketched and extended in order to include the electron temperature. Here
we focus on symmetrical blobs with the radial width δ⊥. The divergence of
the diamagnetic current is found to be approximately (see Eq. (3) in [89])

∇ · jDe ∼ −
κ

δ⊥
(n− nB), (3.1.3)

where κ is a constant denoting the strength of the curvature, nB is the
background density and n the density of the blob. The electron temperature
is included in a straight forward way giving

∇ · jDe ∼ −
κ

δ⊥
(pe − peB), (3.1.4)
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where peB = nBTeB is the pressure of the background plasma and pe = nTe
is the total pressure of the blob with the absolute amplitude of the density
and electron temperature n and Te. The velocity of the blob is defined as the
velocity of the center of mass

v f =

ˆ
dxdy(n− nB)v. (3.1.5)

In the blob frame the background plasma has a negative momentum related
to the blob. By going into the background frame where the blob has a positive
momentum one can understand why the velocity of the blob saturates. In
principle the blob is accelerated due to the E × B−advection, and there
is no force which decelerates the blob. However in experiments and also
in simulations which will be shown in the following the blob reaches a
maximum velocity and starts decelerating. The gain in the momentum of the
blob must be balanced. This is provided by the background plasma which
the blob absorbs when traveling due to the E× B−advection. The maximum
velocity is reached when the force from the polarization current jp × B is
compensated by the mass gain of the filament. As pointed out in [89] in Eq.
(9) the momentum gain of the blob due to absorption of the background
plasma can be estimated roughly

∂P
∂t
∼ −L‖δ⊥nBv2

f (3.1.6)

Extending the total force F ( [89] ,Eq. (10)) on the blob to include the electron
temperature yields

F ≈ κL‖Ap peBδ2
⊥, (3.1.7)

where the relative amplitude of the pressure is given by Ap = ∆pe
peB

with
∆pe = pe − peB.
Balancing Eq. (3.1.6) and Eq. (3.1.7) gives the maximum velocity scaling of
the blob in the inertial regime

vI
f ∼

√
Ap

nB
δ⊥. (3.1.8)

This result shows clearly the physical behavior of the blob in the inertial
regime. The interchange drive is pressure dependent. It is expected that
with a higher pressure the polarization of the blob is stronger leading to a
higher velocity of the blob. With an increasing background plasma nB which
is flowing into the blob the maximum velocity is decreased.
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In order to get a scaling of the velocity in the sheath limited regime (section
1.2.3 in [89]) the sheath boundary condition is linearized

j‖|sheath = ±nScs(1− eλ−φS/TeS) ≈ ±ncs(Λ− φS/TeS). (3.1.9)

Integrating over the the parallel direction yields
ˆ

dz∇ · j‖ ≈ 2nScs(Λ− φS/TeS), (3.1.10)

where the subscript S denotes the value of the quantity at the sheath.
Assuming that the blob velocity is equal to the E× B−velocity one estimates
v f ∼ φ/δ⊥.With this assumption one can balance the sheath current Eq.
(3.1.10) and the diamagnetic drive Eq. (3.1.4) giving

2nScsΛTeS −
2nScsv f δ⊥

TeS
= − κ

δ⊥
(pe − peB), (3.1.11)

which yields a rough approximation for the scaling of the maximum velocity
of the blob in the sheath limited regime

v f ∼
T3/2

eS
δ2
⊥

pe − peB

peS
+

ΛTeS

δ⊥
, (3.1.12)

where one can assume that
T3/2

eS
δ2
⊥

pe − peB

peS
� ΛTeS

δ⊥
giving the final form of

the sheath limited scaling

vS
f ∼

T3/2
eS
δ2
⊥

pe − peB

peS
. (3.1.13)

The fundamental blob size when vS
f ≈ vI

f is given by

δ∗ ∼
(T3/2

eS (pe − peB)

peS
√

Ap/nB

)2/5. (3.1.14)

In the following the scaling laws are going to be checked by simulating
the model Eq. (2.4.1),(2.4.2),(2.4.5),(2.4.9),(2.4.10) without diffusion and the
nonlinear heat conduction (κ‖e0 = 0) in the electrostatic limit β0 = 0, µ = 0.
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Here a Gaussian blob structure for the density n(x, y, z, t) and the electron
temperature Te(x, y, z, t) is chosen

n(x, y, z, 0) = nB + ∆n exp
(
− (x− x0)

2 + (y− y0)
2

2σ2

)
· exp

(
− (z− z0)

2

2µ2
‖

)
,

(3.1.15)

Te(x, y, z, 0) = TeB + ∆Te exp
(
− (x− x0)

2 + (y− y0)
2

2σ2

)
· exp

(
− (z− z0)

2

2µ2
‖

)
,

(3.1.16)
where ∆n, ∆Te denotes the amplitude of the blob on the background. In the
following a helium plasma is considered with Λ = 3, R = 1.65m, Te0 = 7eV,
n0 = 1.0 · 1019m−3 B0 = 1.5T, L‖ = 5R0 which results in the critical blob
width δ∗ ∼ 10 in terms of ρs = 2.5 · 10−4m. Before going into the details of
the scaling laws the blob dynamics is discussed qualitatively.

3.1.1 Qualitative blob dynamics

For this purpose three blobs with δ⊥ = 2.0, 10.0, 80.0 corresponding to the
inertial, intermediate and the sheath limited regime respectively with nB = 1,
∆n = 1 and TeB = 1, ∆Te = 1 are considered. The potential, the vorticity and
the parallel current are initialized to zero. In figure 3.1.2 the dynamics of the
density and the potential is shown in the inertial regime. The blob develops
the classical ’mushroom-like’ form. In order to gather a detailed view of the
internal blob dynamics the velocity field ~v = (∇xφ,∇yφ) and the absolute

value |~v| =
√

v2
x + v2

y are also plotted. The reason for these dynamics is the
behavior of the potential which shows a dipolar structure leading to a high
velocity of the plasma in the middle of the blob with two points where the
velocity is almost zero. The mushroom form was observed very often in
previous works [91–95].
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Figure 3.1.2: Blob dynamics in the inertial regime with δ⊥ = 2. Dipolar structure of
the potential causes the mushroom like form in the density.

In the intermediate regime, see figure 3.1.3 the blob shows a different
behavior. The potential shows a dominant monopolar structure. It reveals
a heavy non-symmetrical velocity field leading to a poloidal motion of the
blob. The monopolar structure of the potential has two sources. First, every
disturbance in density leads to a Boltzmann response of the potential, such
that the potential follows the shape of the density which in this case is a
Gaussian. Second, in the intermediate regime all currents are equivalent. The
sheath physics forces the potential to approach φ ∼ ΛTe. This effect is not
fully developed in the intermediate regime, nevertheless the potential starts
to follow the structure of the electron temperature leading to a monopolar
structure.
Consequently in the sheath limited regime, see figure 3.1.4 the potential
approaches φ ≈ ΛTe leading to a strong rotational component in the velocity
field. However the dipolar structure is still present, although not visible,
leading to a radial motion of the blob.
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Figure 3.1.3: Blob dynamics in the intermediate regime with δ⊥ = 10. The dipolar
structure of the potential is overlapped by a monopolar component
leading to a poloidal flow.

Figure 3.1.4: Blob dynamics in the sheath limited regime with δ⊥ = 80. The dipolar
structure of the potential is not visible anymore. It is overlapped by a
monopolar component φ ≈ ΛTe leading to a rotational motion.
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3.1.2 Scaling with the width

In this section the scaling laws for the radial width of the blob in the inertial
regime Eq. (3.1.8),

v f ∼
√

δ⊥ (3.1.17)

and in the sheath limited regime Eq. (3.1.13),

v f ∼
1

δ2
⊥

(3.1.18)

are checked. For this purpose the radial widths δ⊥ = 0.1, 0.025, 0.4, 1.0, 2.0,
4.0, 6.0, 8.0, 10.0, 20.0, 40.0, 80.0 are scanned. The radial resolution is always
chosen in the way such that the blob is resolved in every case with 10 grid
points h = δ⊥/10. The toroidal resolution is again ∆z = 2π/32. The initial
state and the boundary conditions are chosen in the same way like it was
done in the previous section. For each case the behavior of the velocity is
analyzed, see figure 3.1.5.
For the blob widths which are smaller than the critical blob size, δ⊥ <
δ∗ ≈ 10ρs for the chosen parameters, the velocity increases with the width.
The blob shows a linear acceleration phase until it reaches the maximum
velocity and starts decelerating. The situation is different in the sheath
limited regime with δ⊥ = 20.0, 40.0, 80.0. In this regime the velocity shows
a kind of plateau behavior. It reaches the maximum velocity at much later
time points compared to the inertial regime and starts decelerating slowly.
Also the maximum velocity is lower compared to the inertial regime which
is consistent with the theory of blob dynamics.
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Figure 3.1.5: Velocity dependence of the blobs center of mass on the radial width
δ⊥ = 0.1, 0.025, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 20.0, 40.0, 80.0. After
Reaching the critical blob size δ⊥ = δ∗ = 10ρs the maximum velocity
decreases. Dashed: inertial regime. Solid: sheath limited regime.

The logarithm of the maximum values of the velocities v f are plotted against
the logarithm of the radial width of the blob in figure 3.1.6. Two reference
lines are plotted for

√
δ⊥ and 1/δ2

⊥. Under the critical blob size the expected
inertial behavior is obtained. The maximum velocity increases with the
radial width v f ∼

√
δ⊥. The transition to the sheath limited regime appears

at the critical blob size δ⊥ ≈ δ∗ ≈ 10ρs. In the sheath limited regime the
velocity decreases with v f ∼ 1/δ2

⊥. This behavior was also reproduced in an
isothermal model [93] using the Boussinesq approximation with GRILLIX.
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Figure 3.1.6: Complete velocity scaling from the inertial regime over the intermediate
regime to the sheath limited regime.

The full transition from the inertial regime to the sheath limited regime is
successfully recovered within GRILLIX simulations. Next, the dependence
on the amplitude is going to be investigated.

3.1.3 Scaling with the amplitude

In this section the scaling laws for the amplitude of the blob in the inertial
regime Eq. (3.1.8),

v f ∼
√

∆n∆Te + nB∆Te + TB∆n (3.1.19)

and in the sheath limited regime Eq. (3.1.13),

v f ∼ T3/2
eS

pe − peB

peS
(3.1.20)

are checked. For this purpose the radial widths δ⊥ = 2.0, 10.0, 80.0 are
chosen in order to cover the inertial, the intermediate and the sheath limited
regime. For every width a constant background density nB = 1 and electron
temperature TeB = 1 are chosen.
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On top of the background the dynamics of blobs with different amplitudes
in the density and the electron temperature is considered. In the following,
in each regime the density amplitude of the blob will be increased from
∆n = 1 to ∆n = 9 while the amplitude of the electron temperature is chosen
∆Te = 1 as the initial condition. Next the electron temperature will be
increased from ∆Te = 1 to ∆Te = 9 while the density amplitude is chosen
with ∆n = 1. Finally both quantities are going to be increased at the same
time from ∆n, ∆Te = 1 to ∆n, ∆Te = 9. In each case the maximum velocity
v f is derived and plotted against the amplitude.
In the inertial regime a square root dependence on the amplitude in ∆n, ∆Te
of the maximum velocity is expected. The expected scaling is obtained for
∆n as shown in figure 3.1.7 by the reference line

√
∆n for the full system

without the Boussinesq approximation (FS). If only the amplitude of the
temperature is increased then the situation is more complex. The blob gets
very unstable such that the derivation of the center of mass is very difficult.
This is why just the maximum amplitude ∆Te = 5 could be covered. When
∆n, ∆Te are increased at the same time one expects a nearly linear scaling,
which is not recovered. The reason for this is the shift of the inertial regime
towards the sheath limited regime with higher temperatures. The parallel
conductivity is temperature dependent σ‖ ∼ T3/2

e which makes the sheath
closure more favorable with an increasing temperature, although the blob
width δ⊥ = 2 suggests an inertial behavior. The increasing temperature
causes the blob to change to the regime where neither the inertial scaling nor
the sheath limited scaling hold.
In the sheath limited regime it is necessary to know the sheath values of the
quantities in order to obtain the scaling. However it is not clear which value
need to be taken, e.g. the center of mass of the blob or some intermediate
value. It is found from simulations that the sheath value at maximum velocity
depends linearly on the initial amplitude fS = q + c · A f . The values q and c
act as fitting parameters. The model

v f ∼ (q + c · At)
3/2 Ap

(q + c · Ap)

is found to describe the simulation data very well in the sheath limited
regime. The reference line in the ∆n, ∆Te−plot is the fitted model with
q = 1.8, c = 1.15.
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Figure 3.1.7: Maximum velocity scan over ∆n,∆Te for the full system (FS) and the
Boussinesq system (BS). The predicted scalings (reference lines) for the
inertial and the sheath limited regimes are in excellent agreement with
simulation. Double resolution simulation yields the same result.

This result shows clearly that in addition to the width scaling the GRILLIX
simulations recover excellently the predicted scalings with the amplitudes
which were derived in section 3.1. In the next section the impact of the
Boussinesq approximation is going to be discussed.
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3.1.4 Impact of the Boussinesq approximation

The Boussinesq approximation has a long history in simulations of blob
dynamics. Most of the works cited in this chapter were done using the
Boussinesq approximation. Only a few papers investigated the impact of
the Boussinesq approximation in an isothermal 2D model [89, 107–109]. It
was shown that in the Boussinesq approximation the blob decays faster.
Furthermore, it was not possible to get the correct velocity scaling in the
inertial regime in the Boussinesq approximation. A subtle point considering
the use of the Boussinesq approximation is that it was often employed in
the non-conservative form given in section 2.7.1, see for example the recent
paper [64]. In that paper, although a thermal model is used, the velocity
scaling in the inertial regime becomes independent of the pressure. Although
the results in the non-conservative form of the Boussinesq approximation
may give the desired outcome, its use is at least questionable since the
relation ∇ · j = 0 does not hold anymore. However, this relation is the
foundation for the whole theory of blob dynamics from the inertial to the
sheath limited regimes. If current is not a conserved quantity a discussion
about current balancing is not consistent without providing the magnitude
of error for ∇ · j = 0 + O(ε). Here the conservative form of the Boussinesq
approximation (BS) is compared to the full system (FS). The Boussinesq
approximation enters the inertial part. Current balancing suggests that the
impact of the Boussinesq approximation should depend not only on the
amplitude of n, but also on the regime of the dynamics. In the sheath limited
regime where the inertial term is negligible the impact of the Boussinesq
approximation is expected to be weak.
Figure 3.1.8 shows a qualitative difference between FS and BS. The plot
shows a blob with δ⊥ = 10 and ∆n, ∆Te = 5 at three time points. Although
the time points are equal, the blob shows a different behavior. In the BS the
blob accelerates faster. It looses the coherent form and decays into turbulence
while the blob in FS still has a coherent form. This run has been performed
with the double resolution in order to exclude a numerical reason for the
difference, which produced the same result. A more detailed and systematic
comparison between these two systems is presented in figure 3.1.7, where the
amplitude scans from the previous section are compared in FS and BS. The
maximum velocity with the double resolution is plotted in the intermediate
∆n, ∆Te−plot.
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Figure 3.1.8: Comparison between the density in full system (FS) and in the
Boussinesq system (BS) for a blob with δ⊥ = 10. and ∆n, ∆Te = 5.

The BS is in qualitative agreement with FS. Going from the inertial regime
into the sheath limited regime the difference between FS and BS decreases.
In the sheath limited regime the difference is negligible. The difference
starts to become visible only for very high values of ∆n, ∆Te. The situation
is different in the inertial regime. Here the dynamics is dominated by the
terms where the Boussinesq approximation enters. If only ∆n is varied, the
difference gets bigger for higher amplitudes but stays nevertheless moderate.
In the situation where only ∆Te is varied the situation is again difficult
in terms of measurement of the center of mass. Also in the Boussinesq
approximation the blob is very unstable. However a difference in maximum
velocity between BS and FS is recognized even when only ∆Te is varied. This
holds also in the intermediate regime where the blobs are stable and a clear
measurement of the center of mass is possible. This is a surprising finding
since the Boussinesq approximation enters the system only via the density.
The temperature amplifies the difference between FS and BS. As discussed
before, for higher electron temperature the blob changes from the inertial
regime into the sheath limited regime where the potential starts to follow
ΛTe. Via this effect the temperature enters the inertial term and amplifies
the difference between FS and BS. The difference is even more pronounced
when ∆n and ∆Te are increased at the same time. Thus the impact of the
Boussinesq approximation does not only depend on the density due to the
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relation of the potential to the electron temperature the regime of the filament
is important when discussing the impact of the Boussinesq approximation.
In previous works this fact was not taken into account.
In the intermediate regime the difference between BS and FS is observable
especially for hot and dense blobs. The use of the Boussinesq approximation
in these regimes may become questionable depending on the parameters.

Summary

In this chapter the dynamics of blobs was investigated. It is an important test
for the model and the numerical implementation of it. It was shown that the
model captures the expected physics of blobs. GRILLIX is able to simulate
the complete transition from the inertial to the sheath limited regime. One
can conclude from this that the temperature dependent sheath boundary
conditions were implemented correctly. Furthermore on the analytical side
the scalings for the maximum velocity capturing the radial width, thermal
effects and the amplitude of the blob were derived and tested. It was found
that the expected scalings were in excellent agreement with the simulations.
Thermal effects introduce an additional layer of complexity which can drives
the blob from the inertial into the sheath limited regime by affecting the
sheath part of the equation via the parallel conductivity. At the same
time the temperature enters the inertial part via the potential affecting the
inertial regime which is an explanation for the impact of the Boussinesq
approximation. It was stated that the use of the non-conservative form of the
Boussinesq approximation is not consistent with the theory of blob dynamics.
The conservative form was in qualitative agreement with the full system.
The difference between the full and the Boussinesq system was found to be
significant in the inertial and intermediate regime for higher amplitudes of
the density and the electron temperature.
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3.2 turbulence on closed field lines

In this section several fundamental tests in GRILLIX are performed. In all
cases a periodic slab geometry is used. The simplicity of the geometry allows
a focus on key features of GRILLIX. First, the electromagnetic dynamics,
which is treated via the Helmholtz solver (section 2.8.6), is going to be
tested. The simulation of an Alfvén wave impulse is compared to theoretical
predictions, testing whether the solver provides the correct solution. Second,
the conservation of energy and particles within GRILLIX simulations of
turbulence is checked. On the analytical level the model has perfect conser-
vation properties, see section 2.5. These properties need to be conserved on
the discrete level in a good way. Otherwise artificial sources or sinks may
appear, affecting the turbulence dynamics. Results, which are produced in
such an environment would not be reliable. In addition to MMS (section
2.8.7), which only tests the numerical implementation, the tests presented
here are crucial showing the reliability of physical results produced with
GRILLIX.

3.2.1 Alfvén dynamics

In this chapter the importance of electromagnetic effects on turbulence
dynamics and simulations is investigated. As pointed out in [110] collisional
drift-wave turbulence with k⊥ρs ∼ 1 can be taken to be electrostatic if the
plasma beta (see chapter 2) satisfies β � µ for the parallel dynamics and
β̂ = β(qR/L⊥)2 � 1 for the drift dynamics with the connection length
2πqR which depends on the geometry. These assumptions leads to the
electrostatic E× B−dynamics and the drift-wave instability. These conditions
are satisfied in the far scape-off layer. Outside of the far scrape-off layer
they are violated already at rather low densities and temperatures near the
separatrix where β ≥ µ and β̂ ≥ 1, resulting in turbulence and transport
which is strongly affected by electromagnetic effects. However it is important
to point out that although the electron dynamics, which are determined by
Ohm’s law, may be dominated by magnetic induction and electron inertia,
the transport can be still electrostatic dominated by E× B−flows which are
much stronger than the parallel transport down the perturbed magnetic field
lines. As will be discussed in more detail below the most pronounced effect
of magnetic induction in turbulence is to make the response of the electrons
to parallel forces non-adiabatic, leading to electron driven turbulence. Under
these conditions the drift-wave instability turns into nonlinear Drift-Alfvén
instability [110, 111] (which is discussed below) leading to an increasing
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turbulence with higher β. In order to understand the impact of magnetic
induction and electron inertia, the generalized Ohm’s law Eq. (2.4.6) is
rewritten in terms of the parallel electron heat flux Eq. (2.1.14) giving [110]

β0
∂

∂t
A‖︸ ︷︷ ︸

magnetic induction

+ µ
[ ∂

∂t
j‖
n
+

δ

B
{φ,

j‖
n
}+ v‖e∇‖

j‖
n
]

︸ ︷︷ ︸
electron inertia

+
j‖
σ‖

+
0.71
κ‖e

(q‖e + 0.71Te j‖)︸ ︷︷ ︸
collisional dissipation

=

−∇‖φ + Te∇‖θn.︸ ︷︷ ︸
parallel f orces

(3.2.1)

Now it is more clear how the electron response to parallel forces should
appear. Magnetic induction, electron inertia and collisional dissipation
tend to balance the electron response to parallel forces. In the electrostatic
case neglecting electron inertia β = µ = 0 the parallel forces are balanced
by collisional dissipation. In the electromagnetic case the electron inertia
introduces the collisional skin depth, as the perpendicular scale above which
the magnetic induction becomes dominant in the collisionless regime which
is β > (k⊥ρs)2µ [110, 112]. Magnetic induction controls then the response to
parallel forces and ensures that a perturbation cannot propagate along the
magnetic field faster than the Alfvén velocity vA = B0/

√
4πnmi or for very

small scales faster than the thermal velocity ve.
In order to get a more quantitative view of the electromagnetic dynamics a
model evolving disturbances on a homogeneous background under the drift
approximation from [52] is used

∂

∂t
∇2
⊥φ̃ = ∇‖

j̃
n

, (3.2.2)

∂

∂t
ñe

ne
= ∇‖

j̃
necs

, (3.2.3)

β0
∂

∂t
Ã‖ +µ

∂

∂t
j̃
n
= ∇‖

(
ñe − φ̃

)
. (3.2.4)

Out of the system Eq. (3.2.2-3.2.4) a wave equation can be derived giving

∂2

∂t2 (ñe − φ̃) = V2
a∇‖(ñe − φ̃) (3.2.5)
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with the wave speed

Va =

√
1 + k2

⊥
β0 + µk2

⊥
(3.2.6)

It is evident that the speed of the wave along the magnetic field line depends
on the scale of motion k⊥ in perpendicular direction. As pointed out in [52]
the limit k2

⊥ → 0 yields propagation at the Alfvén speed

lim
k2
⊥→0

Va = vA (3.2.7)

On the other side the limit k2
⊥ → ∞ yields propagation at the thermal velocity

lim
k2
⊥→∞

Va =

√
Te

me
= ve

These two limits indicate the fastest and slowest Alfvén wave propagation.
Large perpendicular scales propagate with the Alfvén velocity vA. Small
scales propagate with the thermal velocity ve. In the literature these Alfvén
waves are often called ’kinetic Alfvén waves’, due to the first derivation from
the Vlasov Equation [113]. Compared to the basic shear Alfvén wave, which
is a plain wave along the magnetic field lines, the kinetic Alfvén waves have
a cross-field component posing a torsional Alfvén wave [52]. Drift waves,
which have a perpendicular wavelength comparable to the ion gyro-radius
couple to the kinetic Alfvén waves due to its dependence on k⊥ finally posing
the Drift-Alfvén instability in turbulence [114].
What do these findings mean for GRILLIX or in general a turbulence code
suitable for the scrape-off layer? The electrostatic assumption breaks down
in the scrape-off layer, meaning that a plasma turbulence code designed for
the simulation of the turbulence in the SOL needs to take into account the
electromagnetic effects. If electrostatic dynamics are assumed, the only
remaining balancing for parallel forces in Eq. (3.2.1) is the collisional
dissipation which is a very fast process. Resolving such a fast process
in the simulation is cumbersome due to a heavy limit on the time step on
the one hand and on the other hand it is not relevant for the SOL due to the
fact that even at very low β0 ∼ 10−6 [110] the dynamics is electromagnetic.
Indeed the experience gained within the global electrostatic model during
this thesis confirmed the importance of electromagnetic dynamics. The limit
on the time step was extremely pronounced in particular when the electron
temperature was high, leading to a high σ‖ and κ‖e. The slow, but still
feasible simulations in the slab geometry finally motivated the inclusion of
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the electromagnetic effects. The extension of GRILLIX to an electromagnetic
model is crucial in a numerical and physical sense. It is of great importance
to note, that the extension to an electromagnetic model finally accelerated
the simulations by a factor of 60! The core of the electromagnetic model in
GRILLIX is the Helmholtz-solver from section 2.8.6, whose implementation
is going to be tested with the analytical predictions from the delta-f model
(3.2.2-3.2.4). Finally the results are compared to the global model.
For this test a Gaussian function in the density is initialized in parallel
direction. A periodic slab geometry is used here with an isothermal electro-
magnetic model without parallel ion momentum in order to match the
delta-f model as closely as possible. In the perpendicular plane a sine
mode is initialized which allows the variation of k⊥. For the first test, the
values β0 = 8 · 10−3 and µ = 10−4 are chosen. The perpendicular scale
is varied with k⊥ρs ∈ [ 2π

628 , 2π
20 , 2π

15 , 2π
10 , 2π

5 , 2π
1.98 , 2π

1 , 2π
0.5 , 2π

0.25 , 2π
0.125 , 2π

0.00625 , 2π
0.003125 ].

The center of mass velocity of the impulse ñ− φ̃ is tracked. An example is
shown in figure 3.2.1 for k⊥ = 2π

628 .

Figure 3.2.1: Initial Gaussian perturbation in the density at t = 0. An impulse in
ñ− φ̃ propagates along the magnetic field lines. Both models coincide
with each other.

For the delta-f simulation a disturbance with the amplitude n(t = 0) = 1
was initialized. In the global model a constant background density n0 with a
perturbation n(t = 0) = 0.1n0 was used. In order to show both simulations
on the same plot the background density was subtracted from the global
solution and the amplitude was scaled with a factor of ten. From the initial
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density perturbation an impulse in ñ− φ̃ starts in both directions. It is evident
that the delta-f solution coincides with the global model. The k⊥−scan is
shown in figure 3.2.2 for both models. First of all the delta-f solution matches
the analytical prediction. Very large perpendicular structures propagate with
Alfvén velocity. There is a smooth transition to thermal electron velocity
for smaller scales. The global model matches the analytical prediction and
the delta-f model for all tested scales! This result holds for small initial
perturbation in the density. The models diverge significantly for higher
amplitudes. This result shows clearly that the delta-f model is a limit of the
global model for low amplitudes compared to the background. The linear
dynamics is still present in the global model.
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Figure 3.2.2: k⊥−scan for the delta-f model and the global model. Analytical
prediction coincides with both models. Smooth transition from Alfvén
limit to electron thermal velocity.

Another test is the scan of β0. For this the perpendicular scale is fixed with
k⊥ = 2π

12800 . A scan in β0 ∈ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] ·
10−3. In this limit it is expected that the structure propagates at the Alfvén
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speed. The result is shown in figure 3.2.3. Again the the analytical prediction
is matched perfectly by the delta-f model. The global model is also in very
good agreement. These tests show clearly that the core of electromagnetic
model in GRILLIX, the Helmholtz-solver is performing well. Although the
implementation of it was already tested within the method of manufactured
solutions a physical test remains crucial. The electromagnetic effects are
simulated in GRILLIX correctly from a numerical and physical perspective.
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Figure 3.2.3: β0−scan for the delta-f model and the global model. Analytical
prediction coincides with both models. Alfvén velocity is obtained
for k⊥ = 2π

12800 .
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Summary

In this chapter several fundamental tests were performed in order to check
whether GRILLIX simulations yield the expected electromagnetic dynamics.
It was shown that the dynamics in the scrape-off layer is dominated by
electromagnetic effects. The turbulence is electromagnetic, the transport
remains mainly electrostatic. Magnetic induction and electron inertia replace
the collisional dissipation in Ohm’s law for the electron answer slowing
down the dynamics to Alfvén speed or thermal speed. This is favorable
from a numerical point of view as the limitation on the time step from
the fast collisional dissipation process is relaxed. In addition to that, the
results become physically relevant for the SOL. The Alfvén dynamics was
tested within a relative simple delta-f model where an analytical dispersion
relation can be derived. It showed that the Helmholtz solver which is the
core for the treatment of electromagnetic effects in GRILLIX works very well.
The dynamics of an impulse changed from thermal velocity to pure Alfvén
velocity in dependence of k⊥ as predicted by theory. The global model was
compared to the delta-f model for small amplitudes of the density and it was
found that the models are in overall agreement. From this one concludes
that the electromagnetic effects are captured by GRILLIX in a correct way.
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3.2.2 Conservation properties

Conservation properties play a crucial role for the model and the numerical
implementation of it in GRILLIX. As was shown in section 2.5 the global
drift reduced Braginskii system perfectly conserves energy. Towards a global
turbulence code with predictive and trustable capabilities this property
need also to be fulfilled accurately on the discrete level in the code. The
final outcome of a simulation would become at least questionable if a
fundamental feature like energy conservation is not fulfilled. In addition
to the energy conservation the code needs to fulfill particle conservation.
The numerics should neither create nor destroy energy and particles. The
method of manufactured solution from section 2.8.7 is not able to discover
non-conservative properties of the numerical scheme as it just shows if the
scheme was implemented correctly. In this light the check of the conservation
properties is a physical verification test. In this chapter the conservation
properties of the global electromagnetic system will be investigated. For this
purpose a turbulence simulation in a periodic slab geometry is performed.
The periodic slab geometry is chosen due to its simplicity as the focus here
is on the check of the conservation properties. Plasma is brought into the
system via sources. Without any sinks e.g. target plates, the density and
electron temperature should remain in the computational domain. The
corresponding energies are transformed according to the energy theorem.
Each part in Eq. (2.5.1)-(2.5.4) is derived in GRILLIX. It is checked if the
equations hold. In section 2.7.1 the impact of the Boussinesq approximation
on the energy theorem was shown and it was stated that very often the
Boussinesq approximation is used in a non-conservative form, breaking the
conservation properties of the system. Here the impact of the Boussinesq
approximation on turbulence on closed field lines is shown. Earlier results
in a electrostatic model were published in [75]. The results presented here
take the efforts in reaching a global conservative model one step further by
the inclusion of electromagnetic effects.
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Modeling

For the modeling of the turbulence and the check of conservation properties
a periodic slab geometry is used. The global electromagnetic model (2.7.1-
2.7.5) is employed. The density and electron temperature are ramped up to
a target value with Gaussian sources S f respectively

S f = C f exp(−(x− xs)
2/2ws)( ftarget− < f >zonal). (3.2.8)

The sources are localized on the left side of the computational domain
simulating the core plasma. In the rest of the domain (source free region) the
plasma develops freely. A Dirichlet boundary condition is chosen on the wall
side for the density and electron temperature, acting as a sink. A grid with
nx = ny = 128 and nz = 32 was used for the simulations in this chapter. The
plasma is subject to several instabilities. The main drive of the turbulence
are the drift-Alfvén instabilities, ballooning and the interchange instability
leading to a turbulent state. Similar parameters like in [75] were used in
this chapter with the parallel conductivity σ‖0 = 1.5, the perpendicular
diffusion νn,Te,φ,u‖ = 2.5, the parallel diffusion µn,Te,φ,u‖ = 10−2, δ = 580, the
perpendicular resolution h = 0.5 and the toroidal resolution ∆z = 2π/32. A
typical example of a turbulence simulation is shown in figure 3.2.4 for the
density and the potential at the mid-plane. Blob like structures are born in
the source region, which are advected by the E× B−drift into the direction of
the wall developing a kind of mushroom like form which is typical for blobs
in the inertial regime, as was discussed in section 3.1.1 about qualitative blob
dynamics.
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Figure 3.2.4: Turbulence on closed field lines at the mid-plane creates blob like
structures which are advected by the E× B−drift.
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Particle conservation

The only sink in the system is the Dirichlet boundary subtracting plasma
reaching the wall. The turbulence reaches a turbulent equilibrium regime
when the sources and sinks are in balance. As shown in figure 3.2.5 the
density and electron temperature are saturated, fluctuating around a mean
value.
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Figure 3.2.5: Volume average of the density and electron temperature indicates a
balance between the sources and sinks. The turbulence is saturated.

The balance between the sources and sinks is shown in figure 3.2.6, indicating
a very good particle conservation in GRILLIX. The change in density is
according to a balance of the source and sink which is the diffusion on
density Dn, see section 2.5.
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Figure 3.2.6: Particle conservation in a saturated turbulent regime. The change in
density is according to a balance between the sources and sink.

Energy conservation

In the same fashion like the particle conservation the energy conservation
properties are checked. For this the perpendicular kinetic energy E⊥, the
parallel kinetic energy E‖, the thermal energy Ethe and the electromagnetic
energy with electron parallel kinetic energy Eem + E‖e are derived in GRILLIX.
In figure 3.2.7 the energy conservation is plotted for each energy including
all parts on the right side of equations (2.5.1)-(2.5.4) in order to demonstrate
the energy balancing of each term. Each energy form is conserved quite
well as is demonstrated by the overlap of the time derivative curve with
the dashed curve which represents the sum of all parts on the right side
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in the energy theorem. In figure 3.2.8 the total energy theorem is shown.
The overall energy is conserved very well. The only remaining terms on the
right side of the total energy theorem are the sources and sinks. The terms
coming from the new advective derivative in section 2.7.1 were not included
in the diagnostics indicating that these terms are indeed negligibly small.
Each energy form e.g parallel advection −u‖i∇‖pe in E‖ has a corresponding
counterpart in another equation +u‖i∇‖pe in Eem + E‖e balancing each other
leading to the total energy conservation. This fact shows that the energy is
not simply conserved in GRILLIX on the discrete level, even more the energy
transfer mechanism remains valid.

10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

0

1

2

0

t

d
E

⊥
/d

t

 

 

dE
⊥
 dt

sum
j
||
∇

||
φ

p
e
∇⋅  v

E

D
E⊥

10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

0

0.5

0

d
E

||
/d

t

 

 

dE
||
/dt

sum
−u

||
∇

||
p

e

D
E||

10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

−2

0

2

4

−2

t

d
E

th
e
/d

t

 

 

dE
the

/dt

sum
−p

e
∇⋅  v

E

v
||
∇

||
p

e

j
||

2
/σ

−0.71j
||
∇

||
T

e

D
Ethe

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−1.5

−1

−0.5

0

0.5

1

1.5

t

d
(E

e
m

+
E

||
e
)/

d
t

 

 

d(E
em

+E
||e

)/dt

sum
−j

||

2
/σ

−j
||
∇

||
φ

(u
||
−v

||
)∇

||
p

e

0.71j
||
∇

||
T

e

D
E||e

Figure 3.2.7: Energy conservation properties in GRILLIX. All energies are conserved
well. The lime curve represents the time derivative of the corresponding
energy overlaps with the dashed line which is the sum of all energy
forms on the left side of equations (2.5.1)-(2.5.4).
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Figure 3.2.8: The total energy is conserved very well. The remaining terms on the
right side are the sources and sinks. The energy transfer mechanism
remains valid in GRILLIX simulations.

Impact of Boussinesq approximation

In [75] the turbulence dynamics was compared in the electrostatic global
model and the conservative Boussinesq model from section 2.7.2. The biggest
difference was the higher fluctuation level in the global system. The profiles
almost overlapped as did the convective transport of energy and density.
The neglect of ohmic heating in the equations leads to a decaying thermal
energy transport in both systems. Here the complete global electromagnetic
model is compared with the Boussinesq system. Moreover the impact of the
non-conservative from of the Boussinesq approximation is shown.
In figure 3.2.9 the profiles < n >y,z,t and < Te >y,z,t, the fluctuation level f̂ =√
< ( f 2− < f >2)/ < f >2>y,z,t, convective and diffusive transport of particles

Γn = ΓC
n + ΓD

n =< nvE×B >y,z,t + < D∂xn >y,z,t (3.2.9)

and thermal energy

Γp = ΓC
p + ΓD

p =
3
2
< pevE×B >y,z,t +

3
2

n < D(Te) >y,z,t +
3
2

Te < D(n) >y,z,t

(3.2.10)
are shown for the Boussinesq system (BS) and full system (FS).
Here < ... >y,z,t indicates the poloidal, toroidal and time average, respectively.
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Figure 3.2.9: Comparison between BS (black) and FS (blue) for the profiles, the
energy and particle transport and fluctuation levels.

The results are qualitatively very similar. The difference in profiles between
FS and BS is slightly increased compared to the electrostatic model. The
biggest difference is the fluctuation level which is higher in FS. Furthermore
the fluctuation level of the density shows in FS a different shape remaining
almost flat in the source free region which is not the case in BS. The convective
transport of the thermal energy is now almost flat in the source free region.
Strong convective particle transport indicates that transport is dominated
by turbulence in the source free region. A general statement about the
impact of the Boussinesq approximation would require a scan over a wide
range of parameters, models and geometries. Nevertheless one can conclude
from the findings in the electrostatic model and in the electromagnetic
model used here by taking into account the result from section 3.1.4 that the
Boussinesq approximation has an impact on the overall dynamics beyond
the assumptions on the density. Although the Boussinesq approximation
does not enter the electromagnetic part of the equations it has an impact on,
for example the shape of the fluctuation level of the density although the
density gradient is comparable to the electrostatic case.
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Non-conservative Boussinesq approximation

Finally the same simulation is repeated using the non-conservative Boussinesq
approximation from section 2.7.2. The system shows a completely different
behavior. A typical result is shown in figure 3.2.10. The snapshot shows the
density and potential at the same plane and time like in figure 3.2.4. The
potential indicates a strong negative parabolic shape. This leads to a strong
poloidal E× B−flow of the plasma smearing out the structures coming from
the source region. Later in the simulation the potential gets even more
negative causing a poloidal flow which largely suppresses the turbulence!
Finally the simulation crashes due to the poloidal flow which gets too intense.
The poloidal flow is a direct consequence of the lost conservation properties
in the vorticity equation. This finding strongly emphasizes the importance of
the conservation properties. By chance the lost conservation properties may
not show up either by the use of a different geometry or other boundary
conditions. However the results produced in such an environment are at
least doubtful as it is hard to say how exactly the turbulent dynamics is
affected by the lost conservation properties.
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Figure 3.2.10: Non-conservative Boussinesq approximation creates a strong poloidal
flow. This flow accelerates and finally suppresses the turbulence
leading to a crash of the simulation.
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Summary

In this chapter several fundamental tests were performed in order to check
whether GRILLIX simulations yield the expected dynamics. The Alfvén
dynamics was tested within a relative simple delta-f model where an analytical
dispersion relation can be derived. It showed that the Helmholtz solver
in GRILLIX works very well. Another important test is the check of the
conservation properties. It was shown that the numerical scheme in GRILLIX
conserves energy and particles to good accuracy. As far as known this test is
still a missing part in other plasma turbulence codes. Without conservation
properties the accuracy of the results becomes questionable. The comparison
between the global model and the conservative Boussinesq model did
not show a qualitative difference but it is suggested that the Boussinesq
approximation may have an impact on the overall dynamics which is hard to
foresee. The non-conservative form of the Boussinesq approximation, which
still can be found in literature, yielded a significant different result. The loss
of conservation properties in the vorticity equation translates into strong
poloidal flows, which suppress the turbulence, leading finally to a crash
of the simulation. This effect may be overlapped in other geometries or by
other parameters. In principle it is always present with an impact on the
turbulence which is absolutely not desired.
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3.3 large plasma device (lapd)

The Large Plasma Device (LAPD) is a linear machine which provides a
very useful environment for the study of plasma turbulence and transport.
Plasma can be created at the size and scale of many fusion machines. The
axial magnetic field hitting material walls at the end of the device leads
to a situation similar to the scrape-off layer. Although the densities and
temperatures are usually smaller compared to a fusion plasma, the size of
the machine allows the growth of many modes in parallel and perpendicular
directions, leading to a wide range of turbulent processes relevant for actual
fusion devices [115]. It is a perfect test case for a validation of GRILLIX. In the
validation process, the simulation results are compared to real experimental
data. In general, the more features of the experiment can be reproduced
by simulations the more valid is the model and the implementation of it.
Here for the first time GRILLIX results within the global electromagnetic
model are compared to experimental data from LAPD. In addition to the
verification tests from section 2.8.7, the blob tests from chapter 3.1 and the
Alfvén and conservation tests from section 3.2., experimental validation is
an important milestone on the way to a reliable fluid code having predictive
capabilities. Previous works on LAPD used an electrostatic model with the
non-conservative Boussinesq approximation [22,23] or a superficial geometry
neglecting the parallel boundaries [116]. In this light this chapter takes the
LAPD modeling efforts one step forward. First the LAPD experiment is
introduced. It is discussed afterwards how the experiment is modeled in
GRILLIX. The validation results are shown in the end of this chapter. The
impact of the Boussinesq approximation is discussed in the last section.
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3.3.1 LAPD experiment

A schematic view of the experiment is shown in figure 3.3.1. The vacuum
chamber is surrounded by axial magnetic coils (yellow and violet) which are
separately connected allowing many magnetic field configurations.

a)

b) c)

~B

Plasma
source

Magnetic coils

target
~B

Figure 3.3.1: a) Schematic side view of the LAPD experiment. The picture was
taken from [117]. The vessel is surrounded by magnetic coils. b) The
barium-oxide cathode acts as plasma source. c) Schematic view of the
inner of the vessel. Plasma is created and travels along the magnetic
field hitting the target plate.

A barium-oxide coated, nickel cathode is heated to emission temperature of
about 850

0C. A discharge of a few thousand Amperes of current creates free
electrons. A mesh anode is located next to the cathode which is about 50%
transparent allowing a part of the electrons to travel down the length of the
device and fill the chamber with plasma. The rate of emission of the plasma
source can be adjusted. The plasma column has a length of approximately
17 meters and a diameter of up to 60 cm. In the following table the typical
values of the LAPD plasma are given:
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Parameter
max. density n 2.0× 1012cm−3

max. Te 6 eV
max. Ti 0.5 eV

λP(Al f ven) 2.0 m
vA 7.7× 107cm/s
cs 1.2× 106cm/s

Plasma β 0.0015
species He

charge state Z 1

Here a Helium plasma is going to be investigated. The cold ion assumption
is reasonable in LAPD. It is important to note that the plasma β0 is relatively
high such that an electrostatic treatment is not justified in LAPD [118].

3.3.2 Dominant Instabilities

In a linear device like LAPD three main instabilities occur, the resistive
drift wave instability, the interchange instability and the Kelvin-Helmholtz
instability. The resistive drift wave arises due to the presence of a pressure
gradient. It has been shown in section 3.2.1 that it couples to the Alfvén
waves, leading to resistive drift-Alfvén instability. The interchange instability
arises due to the rotation of the plasma column. In order to understand the
cause of the self-generated plasma rotation one has to recapitulate the impact
of the sheath boundary conditions from section 2.6. The potential follows the
electron temperature very closely with φ = ΛTe. The electron temperature
source has a top-hat like form, leading to a gradient in the potential which
drives the E× B−rotation of the plasma. The centrifugal force drives the
interchange instability mixing higher density region with lower density. The
sheared plasma rotation causes also the Kelvin-Helmholtz instability. All
three instabilities can be present in a linear device at the same time and are
going to be discussed in more detail.

Resistive Drift Wave Instability

Drift waves can occur in every quasi-neutral magnetic configuration with a
pressure gradient. A sinusoidal pressure perturbation is assumed as shown
in figure 3.3.2. If the electrons follow a Boltzmann distribution then the
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initial pressure perturbation will lead to a potential perturbation according
to

eφ̃

Te
=

p̃e

p0e
.

The potential perturbation causes an E× B−advection of the plasma. Above
the positive charge accumulation the E× B−flow lowers the density. Below
the charge accumulation the situation is opposite. This causes a motion of
the entire perturbation with the diamagnetic velocity, giving the wave its
name. If the Boltzmann response of the electrons is perturbed in some way,
e.g. by low parallel conductivity, then the phase between the pressure and
potential is shifted. In this situation the initial perturbation is amplified
instead of creating a pure wave, leading to a drift-wave instability. A drift
wave is a full three dimensional effect. Charge imbalance can only occur
in the parallel direction as any charge imbalances in perpendicular plane
are annihilated by the E× B−flow of the plasma leading to charge mixing.
Thus a parallel variation of the plasma must exist for the creation of the drift
wave.

B

dense light

∇p

uE×B

uE×B

uE×B

B

dense light

∇p

ud

Figure 3.3.2: An initial perturbation of the electrostatic potential leads to an E× B-
advection of the plasma. The perturbation propagates in the direction
perpendicular to the initial pressure gradient and the magnetic field
with the diamagnetic velocity.
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Interchange Instability

Interchange instabilities are present in systems which are subject to a force
acting in opposite direction to the density gradient leading to a interchange
of high density plasma with low density plasma. The rotation of the plasma
column leads to a centrifugal force. This force force causes a charge imbalance
in perpendicular plane, leading to a E × B−flow amplifying the initial
perturbation. The parallel dynamics is not important for the interchange
modes but come into play when interchange modes couple to drift-waves.

Kelvin-Helmholtz Instability

The Kelvin-Helmholtz mode arises in regions of sheared flow where the flow
on one side has a different density compared to the flow in the other side.
A perturbation on the interface between this two regions creates vortices
mixing the two plasma regions.
For the Kelvin-Helmholtz mode the parallel direction does not play a role. It
was found in previous works [24] that the main driver for cross-field radial
transport is the Kelvin-Helmholtz instability (KH) in LAPD.

3.3.3 Modeling

For the modeling of LAPD plasma the slab geometry is used. The perpendicular
domain width spans from −L⊥/2 to L⊥/2 with L⊥ = 1.4 m. The parallel
length is Lz = 17 m. The global electromagnetic model (1.7.1-1.7.5) is employed
without the curvature terms C( f ) = 0 with the LAPD parameters from the
last section. The density and electron temperature sources are modeled with
top-hat shaped profiles Sn,T respectively

Sn,T = Cn,T(1− tanh[(r− rs)/Ls])exp(−λsz). (3.3.1)

The ionization front decay in parallel direction is modeled with an exponential
function where in normalized units λs = 0.0813. The strength of the sources
are adjusted with Cn,T and are chosen in order to match the experiment
with Cn,T = 0.27. The sharpness of the sources is set with Ls = 0.5. The
sources are localized in the center of the computational domain. Bohm
boundary conditions are chosen according to section 2.6. In the radial
direction Neumann boundary conditions are chosen on density and electron
temperature. Dirichlet boundary conditions are chosen for the potential,
vorticity and parallel ion momentum. A grid with nx = ny = 128 and
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nz = 32 was used for the simulations in this chapter. A full 3D turbulence
simulation is shown in figure 3.3.3

Figure 3.3.3: 3D turbulence simulation of LAPD with GRILLIX. Cut planes show
density at t = 42. The first plane is located at z = 0. The last plane
shows the density at z = Lz.

3.3.4 Validation

In this section the LAPD plasma is compared to the experiment. The top-hat
shaped sources ramp up the density and electron temperature having steep
gradients. The plasma is subject to several instabilities. Here the radial
profiles, the fluctuation level, the probability distribution function (PDF)
of fluctuations, the skewness of the PDF and the power spectrum of the
turbulence will be compared to experimental data which were taken from [22,
119]. The result obtained using the conservative Boussinesq approximation
is also included in the plots. The impact of the Boussinesq approximation is
discussed in the last section. In figure 3.3.4 the density is shown at 3 time
steps on the mid-plane. At the beginning the source keeps the top-hat shape.
The drift-Alfvén waves instabilities which are shown in the second snapshot
saturate at much smaller amplitudes compared to the KH instability as was
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pointed out in [22]. The full saturated turbulent regime dominated by KH is
shown in the last snapshot.

Figure 3.3.4: The plasma source at three stages during the development of
turbulence. The top-hat shaped source decays into turbulence due
to the onset of resistive drift-Alfvén wave instabilities. Turbulence is
dominated by KH instability.

profiles The radial profile is compared to the experiment at the poloidal
position y = 0, see figure 3.3.5. GRILLIX data is in qualitative agreement
with the experiment. The main deviation is the absolute value of the density
in the source region r < 0.28m.
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Figure 3.3.5: Radial density profile compared to the LAPD experiment shows
qualitative agreement. Deviation in absolute value of the density
in the source region.
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fluctuation level The fluctuation amplitude δn = n− n̄ normalized
to the maximum value of the density nmax is shown in figure 3.3.6. The
maximum value of the fluctuations appear on the source boundary where
the gradients are steepest. The GRILLIX simulation results are in qualitative
agreement with the experiment, although GRILLIX result is slightly higher.
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Figure 3.3.6: Fluctuation level is in qualitative agreement with the experiment. The
maximum value appears at the source boundary, where GRILLIX
simulation results are a factor of half higher.

probability distribution function The PDF of the fluctuations
normalized to the root mean square rms(δn) was averaged at the source
boundary in the experiment 0.22m ≤ r ≤ 0.28m. The comparison to GRILLIX
simulation is shown in figure 3.3.7. The PDF produced by GRILLIX is in
excellent agreement with the experiment. It has a nearly Gaussian shape
indicating a pure uncorrelated behavior of the plasma in the gradient region.
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Figure 3.3.7: The probability distribution function is in very good agreement with
the experiment.

skewness The skewness of the PDF indicates the deviation from a normal
distribution

γ =
1

Nt
∑Nt

t=1 δn3

( 1
Nt

∑Nt
t=1 δn2)3/2

.

It is a statistical measure for the presence of holes and blobs in plasma.
A negative skewness is an indicator for the presence of holes. A positive
skewness indicates blobs. The comparison of the experimental skewness to
GRILLIX simulations is shown in figure 3.3.8. GRILLIX captures the overall
skewness to good agreement with experimental results. As in experiment,
the dynamics is dominated by holes in the source region. The source free
region is dominated by blobs.
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Figure 3.3.8: The skewness is in qualitative agreement. The overall trend indicates
that in the source region plasma dynamics are dominated by holes,
whereas in the source free region the dynamics are dominated by blobs.

power spectrum Finally the power spectrum of normalized density
fluctuations δn/n is analyzed. It shows how the power is distributed along
the frequencies of the turbulence. The result is shown in figure 3.3.9. The
GRILLIX power spectrum fits the experiment almost perfectly over a large
frequency range. It is a strong indication that GRILLIX captures the main
turbulence dynamics to high accuracy.

The deviations between GRILLIX results and the experiment can have several
reasons. First there are uncertainties on the experimental side, meaning that it
is not obvious in details how and where in the machine the experimental data
presented here was collected e.g the profiles of the density differ between
[119] and [22] although similar plasma parameters were used. Second, the
question arises if the experimental data shows general results. As was
pointed out in [22], also other values for e.g. the fluctuation level have been
measured. In GRILLIX a plasma source on a constant plasma background of
0.2 is simulated. However in the experiment the situation is different. The
plasma column is surrounded by neutral gas. The global electromagnetic
model lacks of neutrals dynamics which are important in LAPD [119, 120].
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Figure 3.3.9: The power distribution of the turbulence matches the experiment.

Impact of Boussinesq approximation

The difference between the full system (FS) and the Boussinesq system (BS)
the initial onset of the instability in the density is considered in figure 3.3.10

at a very early time step. The difference between FS and BS is remarkable.
The initial mechanism by which the plasma source decays into turbulence
in BS totally different compared to FS. As was shown in chapter 3.1 the
difference between BS and FS depends on the gradients in density and
temperature. Before the onset of the instabilities which finally relax the
gradients, the source has a top hat like shape with steep gradients. It means
that the impact of the BS is strongest at the beginning of the simulation
showing that the use of BS can strongly affect a turbulence simulation where
steep gradients are present.
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Figure 3.3.10: Comparison between the density in the full system (left) and the
Boussinesq system (right) during the onset of the instability at early
time step. The picture shows a clear difference between these two
systems.

profiles In figure 3.3.5 the density profile is shown for BS and FS. It
shows no qualitative difference.

fluctuation level The fluctuation level in figure 3.3.6 is also very
similar. The BS and FS are in qualitative agreement with the peak of the
fluctuation level in the vicinity of the steepest gradients.

probability distribution function For both system the probability
distribution function shows in figure 3.3.7 a Gaussian shape at the source
edge.

skewness The skewness is in qualitative agreement between BS and FS

power spectrum The power spectrum in figure 3.3.9 is in BS and FS
very similar. The slope of the curves is equal in both systems indicating that
the power distribution along the frequencies of the turbulence is equivalent.
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Summary

In this chapter the focus was on the validation of GRILLIX. For the first
time GRILLIX turbulence results were compared to experiment. The LAPD
experiment is a very good test case for the simulation efforts as it includes
the dynamics which can be found in the scrape-off layer. It was shown that
GRILLIX captures the overall dynamics of the experiment. The profile
matches qualitatively the experimental outcome. The fluctuation level
is slightly higher than in the experiment but matches qualitatively the
experiment. The PDF is in very good agreement with the experiment and also
the skewness of the PDF. The power spectrum is an important measure for
the turbulence dynamics. GRILLIX turbulence power spectrum is in excellent
agreement with the experiment. The deviations between simulation and
experiment might have several sources on the model and experiment side.
Finally the impact of the Boussinesq approximation was investigated. The
impact of the Boussinesq approximation is strongest when steep gradients
are present like in the beginning of the simulation. When the turbulence
relaxes the gradients the difference between the models is less pronounced.
It is possible that the Boussinesq approximation has a strong impact on the
turbulence when steep gradients are present.
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F L U X - C O O R D I N AT E I N D E P E N D E N T A P P R O A C H

The previous chapters showed a step by step development and progress of
a new model for GRILLIX. The system of equations was discretized on a
slab grid which was verified with the method of manufactured solutions in
section 2.8.7. The slab geometry was an efficient set up for the testing of blob
dynamics and the comparison to analytical predictions in chapter 3.1. The
Boussinesq approximation was relaxed and the impact of it was investigated
on closed field lines in a turbulence simulation in chapter 2.2 where also
very good conservation properties of GRILLIX were shown. The Alfvén
dynamics was also tested and yielded excellent agreement with analytical
predictions. These efforts were taken one step further in chapter 3.3 where
for the first time GRILLIX turbulence simulations were compared to the
LAPD experiment showing good qualitative agreement. All of these steps
pose a solid foundation for the transition of the global electromagnetic model
to realistic magnetic geometries which are going to be investigated in this
chapter. Here the focus is on the comparison between a single-null, double-
null and circular geometries in the closed field line region. The open field
line region was not considered, due to a lack of the implementation of the
parallel boundary conditions, which poses a major challenge and will be
discussed in chapter 5. First the discretization of the equations in these
geometries will be discussed. The geometries are presented in more detail
and it is pointed out that the unique feature of GRILLIX namely the use of a
Cartesian grid in the poloidal planes allows for a very efficient calculation of
radial transport of the plasma. In addition to this result the radial transport,
profiles and fluctuation levels are presented.
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4.1 discretization

In section 2.8.4 the discretization of the system of equations was shown.
Figure 2.8.3 showed that in the slab geometry used in the last chapters the
magnetic field lines are normal to the poloidal planes always hitting the
grid points. This allowed a relatively straight forward discretization of the
parallel gradient and divergence. Also the mapping of the quantities on the
staggered grid was in fact the average value of the quantity. The formal
discrete form of the equations is very advantageous in terms of flexibility.
Once the equations are written in terms of the mapping operators e.g. Eq.
2.8.17 changing the geometry converts into changing the mapping operators
Q and Q∗. The scheme for toroidally staggered FCI approach is shown in
figure 4.1.1. For clarity we restrict the discussion here to a 2D setup, where
ϕ is the toroidal direction x mimics the poloidal plane. The transition to
the 3D case is straight forward. It is clear that the magnetic field lines do
not coincide with the grid points anymore. Furthermore the length along a
magnetic field line is denoted as s−j + s+j . The parallel gradient is discussed
here in its simplest form in this setting. The more advanced version, which
is based on a flux box integration including map distortions can be found
in [9, 45, 46].

~B

k = 0 k = 1 k = 2k∗ = 1
2

k∗ = 3
2

∆ϕ

ϕk

xj

GG∗

x−j

x+j

qj, 12
s−j

s+j

Vj

Figure 4.1.1: Scheme for toroidally staggered FCI approach. The staggered grid G∗

is shifted by ∆ϕ
2 compared to the grid G in the toroidal direction.
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The FCI version of the parallel operator, see Eq. (2.8.9) is given by

q‖k∗ := (Q f )k∗ :=
fk+1(x+j )− fk(x−j )

s+j + s−j
. (4.1.1)

The quantity on the penetration points of the magnetic field line with the
poloidal plane fk+1(x+j ), fk(x−j ) are found via interpolation. The coefficients
of interpolation are stored in the sparse matrix Q. In similar fashion the
mapping operator M, see Eq. (2.8.11) to the staggered grid is rewritten
giving

(M f )k∗ =
fk+1(x+j )s

−
j + fk(x−j )s

+
j

s+j + s−j
. (4.1.2)

The direct discretization along a magnetic field line of the parallel divergence
is given by

D‖ f =
2

s+j + s−j
[(∇‖ f )j,k+ 3

2
− (∇‖ f )j,k+ 1

2
] (4.1.3)

This scheme causes spurious perpendicular numerical coupling, which can be
even larger than real dynamics. It turns out to be advantageous to discretize
the parallel divergence in FCI with the support operator method [9, 121, 122].
The first order operator is discretized, here the parallel gradient Eq. (4.1.1),
then the second order discrete operator is constructed via a discretization of
a scalar product < ·, · > and the keeping of certain integral properties i.e.
adjointness

< u, D‖ f >=

ˆ
V

dV u∇ · [(∇‖ f )b] = −
ˆ

V
dV∇‖u∇‖ f = − < ∇‖u,∇‖ f >

(4.1.4)
→ ∇†

‖ = −∇ · [b·]
The surface terms have been dropped here as they only enter through
boundary conditions. The equality (4.1.4) is brought to the discrete level
giving

∑
α,β,γ

uα(∇ · [(∇‖fγ)β,γ])α,βVα = − ∑
µ,ν,τ

(∇‖u)µ,ν(∇‖f)µ,τVµ (4.1.5)

where Greek indices denote a summation over all grid points here. A
relabeling of the indices µ → α, ν → β and τ → γ leads to the final
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expression of the discrete parallel divergence, which is the negative adjoint
of the parallel gradient

Q∗ = −V−1QTV, (4.1.6)

where V is a diagonal matrix containing the flux box volumes Vj.

4.2 geometries

In this chapter the geometries shown in figure 4.2.1 are used. In the following
they are introduced in more detail.

Circular geometry

In the circular geometry the magnetic field is prescribed with a safety factor

q(ρ) = q0 + s(ρ− ρ0), (4.2.1)

where the flux surface label in normalized units ρ =
√
(R− 1)2 + Z2 with

the bound ρ ∈ [ρmin, ..., ρmax] and the reference value q0 is at the central flux
surface ρ0 = (ρmax + ρmin)/2. The constant magnetic shear is s.

Single-Null geometry

For the single-null geometry the magnetic field is prescribed as

B = ∇ϕ +∇ϕ×∇ψ. (4.2.2)

The toroidal angle is given by ϕ. The poloidal flux function ψ is taken from
an exact solution of the Grad-Shavranov-equation from [123] having the
form

ψ(R, Z) = 0.0159− 0.0363 R2 − 0.00262 R J1(5.836 R)
−0.0117 R(1.769 Z− 0.231) J1(5.836 R)
−0.0665 R Y1(5.836 R)
−0.0461 R J1(4.669 R) cos(3.502 Z− 0.457)
+0.0360 R J1(3.502 R) cos(4.669 Z− 0.610)
+0.0218 R J1(0.584 R) cos(5.807 Z− 0.758)
−0.0383 R J1(6.825 R) cosh(3.537 Z− 0.462)
+0.0238 R J1(4.669 R) sin(3.502− 0.457)
−0.00926 sin(5.836 Z− 0.762) (4.2.3)
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with the Bessel functions of first order J1 and second order Y1. Here the flux
label is defined as ρ =

√
(ψ− ψ0)/(ψx − ψ0), where ψ0 is the poloidal flux

at the magnetic axes and ψx is the magnetic flux at the separatrix.

Double-null geometry

For the double-null configurations the non-symmetric parts are removed
from Eq. (4.2.3) yielding

ψ(R, Z) = 0.0159− 0.0363 R2 − 0.00262 R J1(5.836 R)
−0.0665 R Y1(5.836 R)
−0.0461 R J1(4.669 R) cos(3.502 Z− 0.457)
+0.0360 R J1(3.502 R) cos(4.669 Z− 0.610)
+0.0218 R J1(0.584 R) cos(5.807 Z− 0.758)
−0.0383 R J1(6.825 R) cosh(3.537 Z− 0.462) (4.2.4)

One advantage of the use of a Cartesian grid within the poloidal planes
becomes clear when considering the poloidal resolution of the flux surfaces
in the single-null or double-null geometries. It is shown in figure 4.2.1 that
the flux surface density and with it the resolution of a flux aligned grid
are different across the poloidal section. The flux surfaces are stretched
into the direction of the X-point leading to an imbalance of the resolution.
This means that the numerical accuracy differs at different locations around
the poloidal plane. However turbulence acts isotropically within poloidal
planes. Consequently the Cartesian grid, providing everywhere the same
resolution, is suited more for the simulation of turbulent dynamics. Moreover
the stretched flux surfaces lead to a problem when calculating e.g. radial
transport of the plasma for which perpendicular derivatives of the potential
need to be calculated. If the resolution is not high enough in the stretched
region the outcome becomes questionable. Increasing the resolution in
the stretched region to a sufficient level leads to a very dense grid at the
outboard mid-plane such that the simulation becomes very expensive or
even not feasible due to limitations on the time step. The Cartesian grid
allows GRILLIX to calculate the radial transport with the same numerical
accuracy everywhere in the poloidal plane.
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Figure 4.2.1: a) double-null geometry b) single-null geometry c) circular geometry
with constant magnetic shear
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The q−profiles in all geometries are shown in figure 4.2.2. In the circular
geometry the parameters q0 = 2.75 and s = 10 were chosen in order to match
roughly the other geometries.
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Figure 4.2.2: q-profiles: left: single-null (SN) and double-null (DN). right: circular
geometry; shadowed area is the computational domain.

4.3 simulation and diagnostics

In this section the profiles, fluctuation level and the radial transport are going
to be calculated in the three geometries presented in the last section. For the
turbulence simulations a hydrogen plasma with the following physical and
numerical parameters was used

physical parameters
density n0 5.0E13 cm−3

el. temperature T0 30 eV
magnetic field B0 1.5 T
major radius R0 1.65 m
flux surface label ρ [0.8, ..., 1.0]

numerical parameters
poloidal resolution h 1.0E− 3
toroidal resolution ∆ϕ 2π/16
⊥ hyper-diffusion (N = 6) 10.0
‖ diffusion 0.15
target density and temp. nt Tet 3.0

Here we focus on a qualitative comparison and results. A constant density
and electron temperature background (n, Te = 1.0) with small amplitude
noise is initialized. All other quantities are set to zero in the beginning.
The Gaussian sources ramp up the density and temperature to the target
values. All quantities (density, electron temperature, vorticity, parallel ion
velocity) are rotating clockwise, see figure 4.3.1, where the zonal average
of the poloidal rotation velocity < vΘ > is shown. This kind of rotation
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was also observed in simulations with GBD code [31] and experimentally in
e.g. ASDEX Upgrade [124]. The gradient of the poloidal velocity is higher
in the circular geometry and shows a parabolic shape. In the outer region
ρ > 0.190 the poloidal velocity changes direction. In figure 4.3.2 a density
snapshot in a saturated turbulence regime is shown for all three geometries.
It is important to note that although just one poloidal plane is shown, full
3D turbulence simulations were used in this chapter.
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Figure 4.3.1: Zonal average of the poloidal velocity < vΘ > along the flux surfaces.
left: single-null (SN) and double-null (DN). right: circular geometry

profiles For the calculation of the profiles the density and electron
temperature was averaged over the time and toroidal angle yielding < n >t,ϕ
and < Te >t,ϕ . First the profiles in the circular geometry are considered.
Here the density profile at the outboard mid-plane (LFS) is compared to
the profile at the high field side (HFS). The result in figure 4.3.3 shows a
clear difference between LFS and HFS. The ballooning on the LFS is stronger,
relaxing the gradients more compared to HFS. A minor asymmetry between
the upper side (UP) and the lower side (DOWN) is visible which was also
observed in [31]. The asymmetry in density is more pronounced. As was
pointed out in [31] the non-linear heat conduction relaxes the asymmetry in
the electron temperature.



4.3 simulation and diagnostics 101

Figure 4.3.2: Density snapshot of saturated tubulence in all three geometries.
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Figure 4.3.3: Density and electron temperature average < n >t,ϕ, < Te >t,ϕ, in
circular geometry. The profile is steeper on HFS compared to LFS.
Minor Up-Down asymmetry in both quantities.

The profiles are compared in the single-null (SN) and double-null (DN)
geometries at the LFS and HFS respectively. The result is shown in figure
4.3.4. First a clear difference between the LFS and HFS is visible in the
density. The profiles at HFS are much steeper. The difference between LFS
and HFS is much stronger compared to the circular geometry indicating that
the HFS is more stable in SN and DN respectively. The difference in the
electron temperature between LFS and HFS is less pronounced, which was
also the case in circular geometry. The double-null geometry is symmetric,
however the profile of the density is not. There is a clear up-down asymmetry
in the density profile which is at the same time absent in the temperature.
This finding is in line with the circular geometry. Although the circular
and DN geometries are symmetric, the dynamics are not. The reason for
this is the poloidal rotation of the plasma. The plasma rotates clockwise,
meaning that on the lower side plasma is transported from the LFS into the
more stable HFS. On the upper side, the situation is opposite. There, plasma
is transported from the more stable HFS into LFS, causing the up-down
asymmetry.
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Figure 4.3.4: Density and electron temperature average in the single-null and
double-null geometries. Comparison between LFS and HFS for both
geometries.
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fluctuation level The fluctuation level is computed as the root mean
square RMS( f ) =

√
< ( f− < f >ϕ,t)2 >ϕ,t of the quantity. The results are

presented for all three geometries for the density and electron temperature.
In figure 4.3.5 the fluctuation level is shown for circular geometry. The
maximum value for the density fluctuations is around RMS(n)max ≈ 0.25
for HFS, LFS, UP and DOWN. No clear ballooning is visible in the density.
In the electron temperature the fluctuation is higher on the LFS. A slight
asymmetry between the upper and lower side is also present.

Figure 4.3.5: Fluctuation level RMS(n), RMS(Te) in circular geometry.

The ballooning is not pronounced due to the strong rotation of the plasma
introducing other instabilities, e.g. Kelvin-Helmholtz and interchange, see
the discussion in section 3.3.2. If the rotation velocity is decreased artificially
in simulations by reducing the E× B−velocity, a clear ballooning with a
relative stable HFS and less stable LFS with very high fluctuations on LFS is
present.
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Figure 4.3.6: Fluctuation level RMS(n), RMS(Te) in single-null and double-null
geometry. Comparison between LFS and HFS.
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The fluctuation levels in SN and DN are shown in figure 4.3.6. First, there
is no big difference between SN and DN in the fluctuation levels. The
maximum value for the density fluctuations is around RMS(n)max ≈ 0.32 on
the LFS. The difference between LFS and HFS is more pronounced, indicating
a more stable HFS in SN and DN compared to LFS. The flux expansion on
HFS might also play a role. The density fluctuations are in the same range
in SN and DN compared to the circular geometry on the HFS. The electron
temperature fluctuations are decreased on HFS.

transport The radial particle transport Γn =< nvρ
E×B >ϕ,t and the heat

transport Γp =< pev
ρ
E×B >ϕ,t across the flux surfaces is calculated in all

three geometries. The particle transport is shown in figure 4.3.7 for t = 47.0.
It is dominated by streamers. Towards the top/bottom in SN and DN the
structures are tilted.
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Figure 4.3.7: Radial transport Γn snapshot in a saturated turbulence regime for
t = 47.0 in all three geometries. A mode structure is clearly visible.

It is obvious that the transport has a structure with different k−modes. As
all quantities, the radial density and heat transport also rotates clockwise.
A rotating mode is difficult in terms of data analysis, as will be discussed
below.
We are interested in the smooth global average < · >ϕ,t. However the
average of a running (rotating) mode always shows again a mode structure,
as is shown in figure 4.3.8 with the help of a toy-model. A running sine
wave in 1D f (x, v, t) = 3.0 + sin(vt + x) with the constant velocity v = 0.1
and x ∈ [0, 2π] is used. The average < f (x) >t=

1
Ns

∑Ns
t f (x, v, t) with

Ns = 2000 is shown in the right plot. It poses again a mode structure with a
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smaller amplitude. The amplitude approaches asymptotically towards the
background value 3.0 with higher number of average snapshots Ns, which is
shown in the same plot, where the maximum amplitude of the average value
max(< f (x) >) is plotted for Ns ∈ [10, ..., 150]. An exponential fit indicates
the asymptotic approach to the background.
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Figure 4.3.8: Toy-model for the explanation of the data analysis issue. The average
of a running mode is again a mode. The amplitude of the average
max(< f (x) >) approaches asymptotically the background value with
higher number of snapshots Ns.

This clearly shows the issues one encounters for the calculation of the average
transport. The average background value is hidden behind the residue of a
mode structure. As is shown in figure 4.3.9, the behavior of the maximum
value of the density transport max(< Γn >ϕ,t) is very similar to that in the
1D example in figure 4.3.8. The maximum value of the transport approaches
asymptoticly a background value, meaning that the mode, which is present
in the average transport, is a residue. A large amount of data is needed for
the average procedure, in order to decrease the amplitude of the mode and
make the global structure visible. In order to decrease the computational
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time, a filter has been applied. The average transport (density and heat) was
Fourier transformed along the flux surfaces in poloidal direction. In the
Fourier space higher k−modes were set to zero. The rest of the modes were
transformed back in order to get the final smooth transport. This makes
a qualitative comparison of the geometries possible. The same amount of
data in all three geometries was used for the average and the same filter was
applied.
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Figure 4.3.9: red: Maximum value of the particle transport max(< Γn >) averaged
over number of snapshots Ns in GRILLIX. blue: exponential fit

The result for the density transport is shown in figure 4.3.10 for the circular
geometry. The transport is higher at the LFS compared to the HFS. A
pronounced up-down asymmetry is visible. The transport is highest in
the upper right quarter. The rotation of the plasma is responsible for
this asymmetry. A pure ballooning would cause an up-down symmetric
transport, which was observed with artificially decreased E× B−rotation.
However with clockwise rotation, the plasma rotates from the less stable LFS,
where the radial transport is enhanced, into the lower side direction. There
effectively less plasma arrives, which could be transported outwards. The
plasma is stabilized at the HFS, where the radial transport is decreased.
Leaving the HFS, the plasma is transported strongly outwards in the upper
right quarter.
The situation is similar in SN and DN, see figure 4.3.11. The density transport
in DN is slightly higher on the LFS compared to SN. It is equivalent into the
direction of the X-point and on the HFS in both geometries. The transport is
maximum on LFS, which is in line with the circular geometry. Effectively the
DN geometry seems to be less stable on the LFS. Compared to the circular
case, the SN and DN geometries show a higher density transport on the
LFS and a decreased transport on HFS. It seems that the plasma, which is
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Figure 4.3.10: left: Filtered average radial density transport < Γn >ϕ,t in circular
geometry. right: Radial transport at HFS, LFS, upper side (UP), lower
side (DOWN)

stabilized on the HFS, due to the presence of the stretched flux surfaces in
the vicinity of the X-point, is transported more strongly on the LFS.
The heat transport is shown in figure 4.3.12 and 4.3.13. It is in line with the
particle transport. In circular geometry the same asymmetries are observed.
The HFS in SN and DN is in the same range like the circular geometry.
However the heat transport on the LFS is a factor two higher in SN and DN.
The plasma which is stabilized on the HFS (lower fluctuation levels in density
and electron temperature and lower density transport), due to the stretched
region, rotates into LFS, where it is more strongly transported outwards.
Thus a bigger imbalance between LFS and HFS in heat and density transport
is observed. in the SN and DN cases.
Open questions still remain. The plasma rotation has a strong impact on the
dynamics. In circular geometry it destabilizes the HFS leading to comparable
fluctuations on all sides and also causes the difference in transport on LFS
and HFS to be relatively weak. In SN and DN the rotation causes an increased
density and heat transport on LFS. The origin of the rotation in the global
electromagnetic model needs to be clarified. In [31] a force balance between
the curvature terms was suggested leading to vE×B ' vDe. Another open
question is the impact of the sheared rotation. Although the q−profile was
chosen in the circular geometry in order to match SN and DN closely, the
profile of the poloidal rotation velocity is different, showing steeper gradients
and different shape. Sheared flows are able to decrease particle and heat
transport, as was shown in the review article [125]. The circular geometry
shows effectively a smaller density and heat transport outwards compared
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to SN and DN. One reason is that the rotation itself pushing the plasma,
which is stabilized by the stretched region around the X-point in SN and
DN, from the HFS to LFS. Another reason may be the sheared poloidal flow
decreasing the turbulent transport, which of course needs further studies.
The X-point disconnects the HFS and LFS in SN and DN. After the X-point
the particle and heat transport approaches a lower constant value on HFS
in SN and DN. In SN it starts to increase again on the top side, whereas it
remains on the low value in DN. The second X-point decreases the transport
on the top side in the vicinity. In the circular geometry, where no X-point is
present, no such behavior can be observed.

Figure 4.3.11: Filtered average radial density transport < Γn >ϕ,t in single-null and
double-null geometries.
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Figure 4.3.12: left: Average radial heat transport < Γp >ϕ,t in circular geometry.
right: Radial transport at HFS, LFS, upper side (UP), lower side
(DOWN)

Figure 4.3.13: Filtered average radial heat transport < Γp >ϕ,t in single-null and
double-null geometries.
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Summary

In this chapter the FCI concept was applied in a circular, single-null and
double-null geometries with similar q-profiles. The aim was the comparison
of the geometries in terms of the profiles, fluctuation levels, particle and heat
transport. The separatrix could not be crossed, due to the lack of boundary
conditions. However the impact of the X-point was investigated, because the
closed flux surfaces are stretched towards the X-point. The simulations
showed a strong E × B−rotation of the plasma, which had interesting
implications. In circular geometry the profiles were slightly steeper on the
HFS and an up-down asymmetry was present. The fluctuation levels were
on all sides very similar. Also the difference in density and heat transport
between HFS and LFS was not very pronounced. The rotation equilibrated
the turbulence strength across the flux surfaces in circular geometry. The
situation was different in single-null and double-null geometries. The
stretched flux surface region stabilized the HFS in both geometries. The
profiles were steeper on HFS compared to LFS. Also the fluctuation levels on
the HFS were lower, but at the same time higher on LFS compared to the
circular geometry. The rotation of the plasma pushed the more stable and
dense plasma from the HFS towards LFS, leading to an enhanced density
and heat transport. Consequently, stabilizing the HFS by a stretched flux
surface region in the vicinity of the X-point, destabilized the LFS. This effect
is stronger in the presence of a second stretched region. Further studies are
needed in order to answer questions concerning the origin of the poloidal
rotation within the global electromagnetic model. Furthermore the impact of
the sheared poloidal flow on turbulence dynamics needs to be investigated.



5

S U M M A RY, C O N C L U S I O N S A N D O U T L O O K

The GRILLIX project aims to develop a numerical code which can simulate
and predict anomalous transport in the scrape-off layer of fusion devices. The
singularity of field-aligned coordinate systems at the separatrix motivated
a flux-coordinate independent approach, which is able to treat the X-point
and other complicated magnetic topologies such as snowflake divertor.
The numerical methods for the flux-coordinate independent approach in
GRILLIX were initially developed with a relatively simple fluid-turbulence
model (Hasegawa-Wakatani), which is not accurate in the edge and SOL
region. The importance of the SOL for a successful fusion reactor and the
complicated physics there made the implementation of a more advanced
model in GRILLIX essential. The focus was on the consistent and correct
implementation of the global electromagnetic model in GRILLIX. Significant
achievements of this thesis included the relaxation of the Boussinesq approxi-
mation, good conservation properties on the discrete level and the extension
to electromagnetic dynamics. By improving the accuracy of the GRILLIX
code, the simulations could be compared directly to and verified against the
experiment. This is an important step towards the goal of a virtual tokamak,
where numerical simulations can be used both to self-consistently interpret
and even predict the behavior of fusion experiments. At the end of the thesis
a reliable, verified and validated model poses a solid foundation for further
extensions of GRILLIX.

5.1 summary and conclusions

In chapter 2 the theoretical foundation of the new plasma model in GRILLIX
is developed from the foundation of the Braginskii equations. A series of
simplifications are made to the system of plasma-fluid equations to reduce
the computational cost and make them suitable for numerical implementation.
Only slower drift dynamics is kept in the system. The Boussinesq approxima-
tion is discussed in depth, and in particular how it breaks energy-conservation

114
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if applied in a non-conservative way. This is incompatible with the use of a
global electrodynamic model and as such the Boussinesq approximation was
relaxed in the model. In particular the treatment of the terms without the
Boussinesq approximation was by far more complex. The use of staggered
grids and a multigrid solver were needed. All equations were shown in a
systematic discretized way. The simple slab geometry reduced the complexity
and enabled the transition to more complex geometries. The method of
manufactured solutions successfully verified GRILLIX and indicated the
correct numerical implementation.
In chapter 3 the model was initially tested for the case of plasma blobs,
which are high-amplitude events in the SOL. Blobs benefit from being able
to be treated relatively simply analytically, and as such allow for comparison
between theory and numerical implementation in GRILLIX. By deriving
and comparing analytical expressions for blob dynamics against the results
of a simulation, it is shown that the new model in GRILLIX is able to
successfully simulate blobs across the range of turbulence-relevant plasma
parameters. The blob case also allowed for testing of the novel features
of the model, particularly the removal of the Boussinesq approximation
and temperature dependent sheath boundary conditions. It was found that
the effect of the Boussinesq approximation was strongly dependent on the
plasma-parameters and the blob regime.
The experiences with an electrostatic model showed a heavy limitation of
the time step, due to fast collisional dissipation processes, which finally
motivated the extension of GRILLIX to an electromagnetic model. Analytical
predictions were used in order to test the Alfvén dynamics and the Helmholtz
multigrid solver. The very good agreement of GRILLIX results with the
analytical predictions showed that the Helmholtz solver performs well and
that the electromagnetic dynamics are treated correctly.
The new model was then used to study turbulence in slab geometry. Periodic
slab geometry was used to verify energy and particle conservation in
GRILLIX and to compare to the case where conservation was broken through
the use of the Boussinesq approximation. It was seen that breaking the
conservation properties typically led to very strong poloidal flows, which
either crashed the simulation or gave unphysical results for turbulence
suppression.
The tested and verified global electromagnetic model was applied on the
Large Plasma Device (LAPD), a linear pulsed cathode-source device which
could be modeled in slab geometry. The LAPD modeling efforts from other
works, which used the non-conservative Boussinesq approximation and an
electrostatic model, were taken one step further. By running simulations



116 summary,conclusions and outlook

at parameters which matched experimental conditions, it was possible to
validate the simulation results through direct comparison to the experimental
result. Comparison of profiles, turbulent fluctuation levels, the power
spectrum and skewness all showed reasonable agreement, suggesting that
the simulation was accurately reflecting the dominant physical dynamics of
the experiment. Observed deviations appear to originate due to the omission
of neutral dynamics in GRILLIX, and due to experimental uncertainties
which make direct comparisons difficult. The effect of switching back on
the Boussinesq approximation for the comparison between model results
and experimental data was minor for cases with shallow gradients, but gave
significant deviation for cases with steep gradients.
Finally the tested, verified and validated global electromagnetic model was
used in the full three-dimensional tokamak geometry in chapter 4. The
investigations were performed on the closed-field-line region, since the
treatment of sheath boundary conditions in FCI remains an open research
question. Nevertheless, the effect of the X-point could be studied due to the
elongation of flux surfaces in the surrounding region. Profiles, fluctuation
levels and turbulent transport levels were compared between single-null,
double-null and circular geometries. It was found that the inclusion of
elongated regions stabilized the high-field side (HFS) of the torus, leading to
steeper gradients and lower transport, while simultaneously the low-field
side (LFS) was destabilized compared to circular geometry. The stretched
region enhances the transport imbalance and damps fluctuations on the HFS.
The more stable plasma on HFS rotates into LFS, where it is transported
strongly outwards. Additionally, the single-null and double-null geometries
were found to have reduced shear of the poloidal flow which is known to
strongly affect turbulent dynamics.

5.2 outlook

Having established and implemented the global electromagnetic model in
GRILLIX, the extension of the model to diverted geometries is the next
research goal of the GRILLIX project. In particular the implementation of
the parallel boundary conditions poses a major challenge within FCI. The
reason for this is the location of the parallel boundary e.g. divertor plates.
It lies neither on the magnetic field line nor on the grid. The subtle points
regarding the implementation of the parallel boundary conditions are listed
in [46]. Consequently the implementation of the sheath-boundary conditions
within the FCI approach was beyond the scope of this thesis. First steps
were done in the GRILLIX group by A. Stegmeir and T. Body, using the
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volume penalization method [126] in collaboration with the GBD group [127].
Promising results are shown in figure 5.2.1.

a) b)

c)

Figure 5.2.1: Penalization method applied to FCI for limited circular geometry. a)
density b) electron temperature c) parallel ion velocity. Grey area poses
the limiter.

The boundary conditions will allow the transition across the separatrix and
finally the simulation of the X-point. This work has already been started.
Moreover, once the parallel boundary conditions are implemented, GRILLIX
can be extended to non-axisymmetric geometries e.g. stellarator.
On the model side, there is also room for further extensions. The dynamics
of the neutrals plays a crucial role in the SOL. Phenomena like recycling and
detachment can only be studied if the model will be extended to incorporate
with neutrals. This project is also currently under active development, testing
a fluid neutrals model in LAPD geometry. The linear device can also facilitate
the transition from postdiction to prediction. For this a collaboration with
the experimental side has to be established.
Furthermore, the cold ion assumption also needs to be relaxed. Therefore two
paths are possible. One can implement the ion temperature equation from the
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Braginskii system, or a gyro-fluid model might even be better suited for this
task. Also on the electromagnetic model side, there is room for improvement.
The Alfvén dynamics had a big impact on the simulations, however the
transport is still electrostatic. The inclusion of magnetic flutter in the model
will provide a more complete picture of plasma transport. Connected with
that, the FCI approach can be applied to a temporally variating magnetic field
lines, finally simulating a self-consistently developing magnetic equilibrium.
For such sophisticated simulations better computational performance is
desired. The constraint of using only a single MPI process per poloidal plane
needs to be relaxed. In terms of performance, the use of a more advanced
time stepping scheme e.g. super time step may be needed and has to be
tested.

5.3 conclusion

The use of simulation as a tool to both interpret and also predict experimental
results is a significant challenge. It requires the derivation and implementation
of a physically accurate plasma model, the treatment of the derived equations
in a consistent and numerically stable method, and the numerical solution of
the equations in a reasonable time on modern supercomputers. Consequently,
the path to a virtual plasma is a long one and a lot of work is still needed.
At the same time, all of the mentioned challenges are solvable within FCI.
The global electromagnetic model significantly improves the physical accuracy
of the GRILLIX code, providing an important step on the path to a virtual
tokamak with reliable, validated and predictive capabilities.
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