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Abstract

In this doctoral thesis, we investigate the effect of Quantized Constant Envelope (QCE) sig-
naling at the transmitter on the performance of communication systems. Although massive
Multiple-Input Multiple-Output (MIMO) systems, which are characterized by the large num-
ber of Base Station (BS) antennas, offer a significant increase in power and spectral efficiency,
the hardware power consumption remains a crucial concern especially at Millimeter-Wave
(mmW) frequencies. The QCE signaling at the transmitter is a promising approach to en-
hance the power efficiency. Therefore, we opt for this solution and develop digital signal
processing techniques to mitigate the resulting performance loss. Our contribution is two-
fold. First, we derive the signal statistical properties of the Constant Envelope Quantizer
(CEQ). To this end, we extend Price’s theorem to the complex-valued case. Second, we de-
velop new precoding techniques, linear and non-linear, to counteract additionally the CEQ
distortions. Finally, we discuss the benefits of QCE systems in terms of power efficiency and
their challenges in terms of spectral shaping.
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1. Introduction

The remarkable increase in the number of personal mobile devices with internet access com-
bined with the excessive emerging of bandwidth-hungry mobile applications such as multi-
media communications, e.g. video streaming with High Definition Television (HDTV) and
Ultra-High Definition Video (UHDV), and cloud computing, leads to an ever-increasing de-
mand for higher data rates. However, the existing commercial standards cannot meet the ever
increasing need for high-speed wireless connectivity anymore. Therefore, the next generation
of mobile communication aims at increasing 1000-fold the network capacity, 10-100-fold the
number of connected devices and decreasing 5-fold the latency time and the power consump-
tion compared to 4G networks [1]. To achieve these challenging requirements, the following
technologies are the subject of current research:

e massive Multiple-Input Multiple-Output (MIMO) systems, where the Base Stations (BSs)
are equipped with a very large number of antennas (100 or more) that can simultaneously
serve many users [2—6],

e Millimeter-Wave (mmW) communication, i.e. frequencies ranging between 30 GHz and
300 GHz, where the spectrum is less crowded and greater bandwidth is available [7-9]
and

e smaller cells with ranges on the order of 10-200 m, i.e. pico- and femtocells.

First, massive MIMO systems lead to a drastic increase in the number of Radio Fre-
quency (RF) chains at the BS and hence in the number of the wireless front-end hardware
components. Second, mmW communication implies that the wireless front-end hardware
components are operated at much higher frequencies. Third, reducing the cell size means
that the number of cells per unit area is increased and thus results in a much more dense
wireless network. Combining the three technologies means a dramatic increase in the num-
ber of RF hardware elements operating at very high frequencies per unit area. Hence, the
RF power consumption per unit area alarmingly increases. While the above technologies
are foreseen as key technologies for future communication systems, the increase in power
consumption represents a crucial concern.

The most critical front-end elements in terms of power consumption, depending on
whether the large number of antennas is situated at the receiver or at the transmitter,
are the Analog-to-Digital Converters (ADCs) in the uplink scenario, and mainly the Power
Amplifiers (PAs) and secondarily the Digital-to-Analog Converters (DACs) in the downlink
scenario, which is the focus of this contribution. According to [10,11], the PA is considered
as the most power hungry device at the transmitter side. When the PA is run in the satu-
ration region, i.e. the highly non-linear region, high power efficiency is achieved and hence
less power is consumed [12]. However, the saturation region implies strong non-linear signal
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distortions. To omit the signal distortions, while keeping the PA operate in the saturation
region, the input signals should fulfill the Constant Envelope (CE) property, which leads to
a unit Peak-to-Average-Power Ratio (PAPR).

To this end, polar (phase-based) DACs at the transmitter are designed to convert the
discrete-time and discrete-value base-band signals into continuous-time but discrete-value
(at the sample rate), i.e. discrete-phase, CE signals. The number of possible discrete phases
is determined by the resolution of the DAC. Thus, the polar DAC can be considered as a
Constant Envelope Quantizer (CEQ). The larger the resolution is, the more accurate the
phase information at the DAC’s output is, but the larger its power consumption is [13]. To
further reduce the hardware power consumption, the DAC’s resolution can be reduced. The
use of coarsely quantized DACs is also beneficial in terms of reduced cost and circuit area
and can further simplify the surrounding RF circuitry due to the relaxed linearity constraint,
leading to very efficient hardware implementations. In this way, the power consumption is
reduced twofold: power efficient PAs due to the CE signals and less power consuming polar
DACs due to the low resolution. However, this approach can lead to non-linear distortions
that degrade the system performance and have to be mitigated by the precoder design in
massive Multi-User (MU) MIMO downlink systems.

1.1 Related Works

Many works have addressed the precoding poblem in the context of CE transmit signals
for massive MIMO systems [14-18], where the Multi-User Interference (MUI) is minimized
subject to the CE constraint. Another work [19] opts for minimizing an upper bound of the
Symbol Error Ratio (SER) in the case of single-user Multiple-Input Single-Output (MISO)
systems for two strategies: antenna-subset selection, where a subset of the antennas is selected
for transmission, and unequal power allocation among the antennas, where the magnitude
of the transmit signal at each antenna is kept constant over a transmission period but the
signal magnitudes at distinct transmit antennas are not necessarily equal. The authors of [20]
jointly optimize the transmit CE precoding and the constellation in order to minimize the
SER in a MISO multicast system. Recent works in [21] and [22] exploit the constructive part
of the MUI to design the CE precoder. The authors in [23] design a CE precoder to maximize
the Signal-to-Leakage-plus-Noise Ratio (SLNR). In [24], a CE precoder is jointly designed
with the receive beamforming to minimize the SER for point-to-point MIMO systems, while
adopting antenna grouping for multi-stream transmission. In the above contributions, the
DACs are assumed to have infinite resolution.

The contribution in [25] is an early work that addressed the precoding task with low
resolution DACs at the transmitter. A linear Minimum Mean Squared Error (MMSE) pre-
coder is designed, while quantization distortion is taken into account. This precoding design
is not given in the context of coarsely Quantized Constant Envelope (QCE) signals since
the DACs are not polar but cartesian (in-phase- and quadrature). However, the extreme
case of 1-bit DACs in [25] represents a special case of coarsely QCE signals. Many contribu-
tions in the literature have studied this special case. They can be categorized in two groups:
linear and non-linear precoders. In addition to the linear precoder in [25], we introduced
in [26] another linear precoder, where the second-order statistics of the 1-bit DAC signals
are computed based on Price’s theorem [27]. Non-linear precoding techniques in this context
were introduced in [28-34]. The non-linear methods can be classified with respect to two
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design criteria: the symbol-wise Mean Squared Error (MSE) and the symbol-wise SER. In
the context of the symbol-wise MSE, the authors in [29] presented a convex formulation of
the problem and applied it to higher-order modulations [30]. The problem formulation is
based on semidefinite relaxation and squared /,-norm relaxation. The same optimization
problem was solved more efficiently in [32] and [35].

In the context of the symbol-wise SER, we presented in [28] a precoding technique based
on a minimum Bit Error Ratio (BER) criterion and made use of the box norm (/) to relax
the 1-bit constraint. Recently, the work in [33] proposed a method to significantly improve
linear precoding solutions in conjunction with 1-bit quantization by properly perturbing the
linearly precoded signal for each given input signal to favorably impact the probability of
correct detection. In [31] the safety margin to the decision thresholds of the received Phase-
Shift Keying (PSK) symbols is maximized subject to a relaxed 1-bit constraint using linear
programming for flat-fading channels and extended in [36] for frequency-selective channels.
This approach is called the Maximum Safety Margin (MSM) method. The same optimization
problem was solved by the Branch-and Bound algorithm in [37] for the special case of 4-
PSK. The approach in [34] is based on minimizing an upper bound of the SER under the
1-bit constraint. By the use of a powerful Lemma, the problem was reformulated as a convex
optimization problem, of which the solution is discrete.

To the best of our knowledge, the only works that have considered the case of coarsely
QCE transmit signals are [38-41]. In [38], we proposed a symbol-wise MSE precoder based
on the gradient-descent method under a strict CE constraint or a relaxed polygon constraint.
In [39], the authors extended the method in [29] to fit the context of QCE transmit signals.
In [40], the authors use a greedy approach for the precoder design while using the symbol-wise
MSE as the design criterion. The contribution in [41] addressed the task of QCE precoding
in the context of using a single common PA and separate digital phase shifters for the
antenna front-ends. The optimization problem consists of designing the QCE precoder while
minimizing the MUI, and the idea of constructive interference, [42,43], is not exploited.
In [44], the MSM method was extended to QCE precoding for general constellations and for
flat-fading channels. The extension of the MSM method for frequency-selective channels was
studied in [45] for Quadrature Amplitude Modulation (QAM) signaling only.

It is worth mentioning that the QCE precoding can be combined with appropriate pulse
shaping strategies as in [46,47] to ensure an efficient spectral confinement. In [48], it was
shown that CE precoding is still power efficient even when considering time-based processing.
The same investigation can be conducted for the case of QCE precoding. Here, we focus
rather on the spatial design problem.

1.2 Outline and Main Contributions

The thesis is organized as follows.

e Chapter 3 is devoted to introduce the mathematical model of the CEQ. Moreover, Price’s
theorem is extended and applied for the CEQ to obtain its signal statistical properties
under the assumption of Gaussian distributed input signals. The main results are summa-
rized in [49]. To ensure minimal distortions, the optimal CEQ is introduced, whose sta-
tistical properties can be approximated by the Linear Covariance Approximation (LCA).
Finally, a linearized model of the CEQ is derived using Bussgang’s theorem.
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Chapter 4 presents the system model of the QCE MU massive MIMO system that is
considered throughout the thesis. Two channel models, i.e. the independent and identi-
cally distributed (i.i.d.) and the mmW channel models, are also described. Moreover, a
potential uplink system model is illustrated.

Part I, which includes Chapter 5 and Chapter 6, addresses the linear precoding task
for flat-fading and frequency-selective channels, respectively. For the precoder design,
we choose the MMSE criterion. With the help of Bussgang’s theorem, the CEQ can
be linearized, which leads to a linear system model with an additional quantization
noise. The Wiener Filter (WF) precoder that considers the quantization noise is designed
under the assumption of equal and unequal power allocation at the BS antennas. The
statistics of the quantization noise are computed by applying Price’s theorem or the
LCA. Furthermore, the MSE duality between the uplink and the downlink QCE systems
is investigated to show that no MSE duality holds and only virtual or approximate duality
can be achieved. Linear precoders for the virtual and approximate dual uplink systems
are derived.

Part II, which contains Chapter 7 and Chapter 8, is concerned with the non-linear pre-
coder design for flat-fading and frequency-selective channels, respectively. A significant
part of Chapter 7 is published in [44], whereas Chapter 8 is partially published in [45].
The design criterion consists of the safety margin to the decision thresholds. Maximizing
the safety margin leads to decreased SER. In contrast to the linear precoding scheme, no
precoding matrix is designed but the transmit vector for each given input signal and at
a given channel realization is optimized. To take the QCE constraint into account, the
entries of the optimized vector should belong to a relaxed convex version of the QCE con-
straint. The obtained optimization problem is a linear programming problem, for which
there exist very efficient methods to solve.

Chapter 9 discusses the benefits and challenges of QCE systems in terms of power ef-
ficiency and spectral shaping. We show the potential power savings of QCE systems
compared to the ideal linear systems. Afterwards, we investigate the spectral regrowth
in the presence of coarse quantization.



1.3 Notation

1.3 Notation

Signals, Channels, Filters
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Additive White Gaussian Noise (AWGN) vector
Linear equalizer in the dual domain
Receive matrix

Channel matrix

Precoding matrix

Received signal vector

input signal vector

Estimate of the input signal vector

CEQ output signal vector

Linear transmit matrix in the dual domain
Received filtered signal vector

CEQ input signal vector

Noiseless received signal vector

Numbers and Quantities

HENSunzEE o

<
=

Block length for the non-linear processing

Safety margin to the decision thresholds at the receiver
Number of taps of the channel impulse response matrix
Number of taps of the linear precoder impulse response matrix
Number of single-antenna users

Number of transmit antennas at the BS

Available transmit power

Cardinality of the input set

™

5

Block length for the blind estimation at the receiver
Sample period

Symbol period
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Matrix, vector and complex number operations

diag (X)
nondiag (X)
Ay

£ (@)

Quantization

[ [11 <

Transpose of a matrix

Hermitian of a matrix

Trace of a matrix

Null space of a matrix

Range of a matrix

Complex conjugate

p-norm

Real part of a complex-valued number
Imaginary part of a complex-valued number
Convolution

Hadamard product

Kronecker product

N-dimensional zero vector

N-dimensional all ones vector
N-dimensional identity matrix

n-th column of the identity matrix

N x M-dimensional zero matrix

Matrix

Vector

Scalar

1-th element of the vector x

Diagonal matrix containing the diagonal elements of X
X — diag (X)

Function f evaluated at discrete instants ¢
Function f evaluated at continuous instants ¢

1 -5,

Distortion factor of the CEQ

Quantization noise after the Bussgang linearization of the CEQ
Linear matrix between the input and output after the Bussgang
linearization of the CEQ

Resolution in bits

Number of possible discrete phases at the output of the CEQ
Element-wise CEQ

Element-wise phase quantization

us

Q
Envelope magnitude at the output of the n-th CEQ

Diagonal matrix > " E,e,e,
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Probability and Stochastics

px(x) Probability Density Function (PDF) of the random variable X
Pr(statement) Probability that the statement holds true
A Logical and
\% Logical or
E o] Expectation operator
o2 Variance of the signal z
Py Correlation factor between x and y
Cyy Covariance matrix between x and y, i.e.
Cxy =E [xy"] —E[x|E [y"]
Ry Correlation matrix, i.e. Ry, = diag(Cyy) /?Cyy diag(Cyy) /2
CN¢(0,C) Circularly-symmetric complex-valued Gaussian distribution with

zero-mean and covariance matrix C

Sets
C Set of complex-valued numbers
S Input set, i.e. QAM or PSK
T CEQ output set
X CEQ input set
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2. Motivation

2.1 Power Amplifiers

The PA in wireless communication systems is a device at the end of the transmit front-end
to amplify the RF signal and drive it into the antenna. The amplification is in the ideal case
without distortion and with 100% efficiency. However, this is not possible with real devices.
Therefore, each PA is characterized by two main features, i.e. linearity and efficiency.
Linear amplification avoids introducing strong distortions to the signal and hence avoiding
the higher out-of band radiations. To run the PA in the linear region, the input signal has
to have a peak magnitude well below the PA output peak. This implies, however, that the
supply power is not used fully and power dissipation arises.

Power efficient amplification ensures efficient power usage and hence less requirements on
cooling systems at the BS. The power efficiency of the PA is defined as

Pout
n Poc’
where P, is the output power and Ppc is the supply power. It describes how much per-
centage out of the supply power is converted to the RF power (output power). If the power
efficiency is equal to 1, it means that the supply power is totally transmitted to the output.
Hence, no power is consumed at the PA in the ideal case.
Both fundamental characteristics depend on the class of the PA. There are different classes
of amplifiers of different theoretical efficiency values [50]; that is
e class A (n = 50%), class AB (n = 68%), class B (n = 78.5%), class C (n = 87%): behave
like linear transconductors
e class D (n = 100%), class E (n = 100%), class S (n = 100%), and M (n = 100%) [51]:
behave like non-linear switches with high efficiency levels.
There is always a trade-off between the linearity and the power efficiency of the PA. The
linear PA is less power efficient than the non-linear PA. However, having a PA input signal
of constant magnitude, the PA can be operated in the saturation region while achieving the
maximal possible power efficiency and without introducing any distortion to the signal. The
PA of class M shows a higher efficiency in real systems compared to other highly efficient
PAs. Therefore, we suggest its use in this thesis.

(2.1)

2.2 DACs

The conventional DACs in wireless communication systems are the current-steering DACs
thanks to their high-speed characteristic [52]. A current steering DAC consists of a number of

9
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parallel switched current sources. Depending on the digital input signal, the switchers steer
the currents to either the output or dump them to ground. The resulting weighted currents
are summed at the output and converted into a voltage by a transimpedance stage.

The number of switched current sources grows exponentially with the resolution of the DAC.
Therefore, a high resolution leads to a huge number of devices, increased complexity of the
corresponding wiring and certainly higher hardware power consumption. Thus, low resolution
ensures less power consumption and simplified circuitry.

Since we are interested in having CE signals at the PA input for power efficiency enhance-
ment, the DAC should be designed accordingly. In CE signaling, the information is conveyed
by the signal phase. Hence, instead of having two DACs for the inphase and quadrature sig-
nal parts each, the DAC should process both signals jointly to recover the phase information.
Therefore, we do not talk about cartesian DACs anymore but about polar DACs that are
applied in polar transmitters. The DAC can be modeled as a two-step operation. The first
step consists of the quantization of the continuous-value input signal. The second step is the
conversion from the discrete-time to the continuous-time representation. The quantization
operation of the polar DAC can be then modeled by the CEQ, which is described in Chapter
3. Note that the cartesian DAC with resolution of one bit at each dimension is equivalent to
the polar DAC with a resolution of two bits; that is only four discrete phase values can be
generated at the output.

2.3 Polar Transmitters

Polar transmission can enhance simultaneously the linearity and the efficiency of wireless
communication systems [53,54]. The information is conveyed by the magnitude and the phase
in contrast to cartesian systems, where the information lies in the inphase and quadrature
signal parts. For our study, the magnitude is constant due to the CE property. Thus, the
information lies only in the phase and only phase modulation is required.

For the conversion from the digital to the analog world, Digital-to-Time Converter (DTC)
are deployed in polar transmitters. The DTC is composed of an array of switchers with
cascaded delay elements. The DTC input signal is an instantaneous period that is converted
into a certain time delay. The time delay is obtained by turning on the corresponding switch.
The number of delay elements defines the number of possible discrete phase values at the
quantizer output. In other words, the resolution determines the number of delay elements.
The higher the resolution is, the more delay elements we have in the converter. For less power
consumption and reduced chip area we restrict our work to low resolution and therefore small
number of delay elements in the DTC. Note that our derivations assume that the number
of delay elements is a power of two. However, the work can be generalized for all possible
numbers of delay elements.



3. On Constant Envelope Quantizers

3.1 One-Dimensional CEQ

The input of the CEQ, denoted by x, is a complex-valued signal in contrast to the quantizers
with real-valued inputs that are largely studied in the literature. In the polar representation,
the output signal ¢ has a constant magnitude and a quantized version of the input signal
phase as

t = Qcg(x)
2 o Qe (@)

Q
== Z (u(arg(x) — (2k — 2)1p) — u(arg(z) — 2kep)) DY, (3.1)

k=1

where = is constant and denotes the magnitude of the CE, u(e) denotes the unit step function
as

~JO0 ¢<0
u(cb)—{l 5> 0, (3.2)

1 is defined as
p=I (3.3)

and arg (x) gives the phase of the complex-valued signal z. So, the information after the
CEQ lies only in the phase. The phase quantizer Q4(e) is a symmetric uniform real-valued
quantizer. It is characterized by its resolution ¢ that defines the number of the discrete
output phases, i.e (7, that is

Q=2 (3.4)

In other words, the 27 phase range is divided into @, %”—rotationally symmetric, sectors.

The input signal that belongs to the k-th sector gets quantized (mapped) to Zel—1¥ a5
shown in Fig. 3.1.

11
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Fig. 3.1: Tllustration of the CEQ output set for ¢ = 3, i.e. Q = 8.

3.2 Multi-Dimensional CEQ

Having an N-dimensional vector x at the input of an N-dimensional CEQ), the output vector
t is given by

N
= Z g, ¢l @s@n) o (3.5)

which corresponds to an element-wise quantization. The output vector can be compactly
expressed as

t = E o Qlare) (3.6)

where = is a diagonal matrix containing the magnitudes for each output; that is

(1l

N
n=1

3.3 Statistical Properties

In this section, we aim to find the impact of the CEQ on the statistical properties of Gaussian
input signals. To this end, we consider N input signals z,,, n = 1,--- , N, that build the N- di-
mensional vector x. The N-dimensional CEQ output vector is denoted by t. We assume that
the input signals are joint complex-valued Gaussian distributed with zero mean and variance
o2 , that is x, ~ Ng(0,02 ), n=1,---,N. Thus, the Probability Density Function (PDF)
of the complex-valued Gaussian distributed random variable z,, = r,e/®", n = 1,---, N,
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reads as, [55, Theorem 2.4],

1 -2

e “n . (3.8)

Additionally, the complex-valued correlation coefficient p,, ., between the input signals x;
and z;, 4,7 = 1,--- , N, is defined as
Paic; = ——= (39)

02,0,

1 2 27 00 0o o
= / / / / 7"l~27"]2~ e’](d)l ;) Px;.x; (7“7;, Tj, ¢i, d)]) d?“i d?"]’ d¢J d¢l, (310)
0 0 0 0

02,0,

where the joint PDF for x; # x; is expressed as

1 Ti2 T]2' 2'ri7‘jm{pl‘iyl‘j5_'](¢i_¢j)}
1 |2t
il

pX“Xﬁw&](T“ T‘j’ QS,“ ¢]) — 5 e lfyﬂzi,z z; zj ;925 ’
2 (1 — | Pasray | ) 202
; 0z,
(3.11)
as explained in Al. Moreover, we define the input covariance matrix as
Cux = E [XXH]
o2 o Elrry]
= : ) (3.12)
Elzyzi] - o2,
Consequently, the input correlation matrix reads as
Ry = diag (Cxx) /2 Cyx diag (Cxx)
1 Pzi,zN
pINﬂ?l e 1

Assuming Gaussian input signals, our target consists of finding the expressions of

e the covariance matrix Cix = E [tXH] between the QCE signal vector and the unquantized
signal vector, i.e. E [tlx;"] , 4,5=1,--- N, and

e the covariance matrix Cy = E [ttH] of the QCE signal vector for a given input correlation
matrix Ry, L.e. B [tit5], 3,7 =1,--- | N.

To this end, we introduce Price’s theorem.

3.3.1 Price’s Theorem

Price’s theorem, first introduced in [27], consists in ordinary or partial differential equations
of different orders to describe the expected value of the product of n non-linear functions
of n real-valued jointly distributed Gaussian random variables. Each non-linear function de-
pends only on one random variable. The /-th derivative of the expected value with respect
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to (w.r.t.) the covariances between the random variables equates the expected value of the
product of the ¢-th functions’ derivatives w.r.t. the corresponding random variables. The the-
orem was reformulated in [56] to obtain a partial differential equation relating the derivative
of the expected value of a non-linear function of two jointly distributed Gaussian random
variables w.r.t. their covariance and the expected value of the second order derivative of
the non-linear function w.r.t. the random variables. This relationship holds under a certain
boundedness constraint given in [57]. The number of the real-valued joint Gaussian variables
n determines the number of the differential equations to solve, that is (}) = n(n—1)/2. The
modified version of Price’s theorem in [58] extends the expression for non-linear functions
of more than two real-valued variables to end up with a single ordinary differential equa-
tion involving all derivatives’ orders. In [59], Price’s theorem was extended for two circularly
symmetric complex-valued Gaussian random variables and generalized in [60] under no cir-
cular symmetry assumption. The two latter extensions describe the complex-valued version
of Price’s theorem for the derivative of first order only. We could stick to the version of
Price’s theorem for complex-valued Gaussian random variables for the first order only given
in [60]. However, we extend the theorem in [58] to obtain Price’s theorem for two circularly
symmetric complex-valued Gaussian random variables that involve all derivatives’ orders.
Theorem 1. Let f(x) = f(x1,22) be a function of two joint complex-valued circularly sym-
metric Gaussian variables. The covariance matriz and the correlation matriz of the vector x
are denoted by Cyxx and Rxx of elements py, .;, 1,7 = 1,2. The off-diagonal entries of Cux
are multiplied by a perturbing term v. Then, it holds that

d"E[f(z,25)] 4, o[ O f(wiyay) | O [l xy)
do? = 70,00, B | R P} dxjoxst + Oyt oxs
. 82£f Xy L5 azef X, Ty
+ g{pxi’mj}e < 8:6283:*.‘/) B (%ciéaxff]) ’ (3.14)
iV i 7

where E,, denotes the expectation operation based on the resulting perturbed PDEF.
The proof is provided in A2. [ |
Price’s theorem is usually an alternative way to find the analytical expression for

E [f(z;,x;)], which can be obtained by integrating the first-order derivative w.r.t. v. There-
fore, we state Theorem 3.14 for the special case £ =1

dE[f(zi, 2))]

- (3.15)

= O-$i0-$jEU

82f(33i’93j)+ . 32]‘1(331-,35]')]‘

Pais; 0z;07} ot Qrror;

The latter expression can be reformulated as

(07 f(wi,3;) | P f(wi, )
dE 1) = 040, Ey Z S\ ) v d 2.0 By RS R N S |
[f(x 7'x])] g ’LO- J axlal‘; IO 2R v + g 7,0 7 ax;kal’] Ti,Lj v
(07 f(w1,3;) | P f(wi, )
= 0,.0,. B, LI Ay 2.0z By A e A Ve 3.16
Tai0a; Or;0x7] Pria + OO Ox;0x; Pocay  (316)
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where p . = Upy, .. Therefore, we obtain

OE[f(x;, x; P f(xs, z;
S T
T, T Cadad}
aE[f(%,%‘)] [82]8(1‘1'»1‘]‘)}
—— = 04,0, B, | |, (3.18)
O o, 0z} 0x;
which simplify for the case of v =1 to
OE[f(xi, x; P f(xs,
Elflnsi) o, [P 19
Ti, T ]
OE[f (@i ;)] _ 0% f (i, )
o = 04,02, E oviom, | (3.20)

The expression in (3.19) was also obtained in [59] under the circular symmetry assumption,
while (3.19) and (3.20) were obtained in [60] without any circular symmetry assumption. This
implies that Theorem 1 holds true for the first-order derivative for general complex-valued
signals, too.

In the polar representation, (3.19) and (3.20) read as

0P, 4
E[ej(‘b"d’f) <82f($i,$j)_'_ 1 0%f (i, ) +.132f($z‘,90j) Jyf(%»%‘))} (3.21)

8’/’1'87“]' T 8@8% . ] aria¢j ) i 3¢i37’j
OE[f(xiz;)] 1

= —04,0%."
* T J
0%, a, 4

E [é(@@) (an(:L‘i,CL’j) + 1 82f(xi’xj) o1 m 4 EM)} ) (322)

Griarj riry 8@8@ ] T arﬁgbj ] T; &bﬁrj

The conversion of the second order derivative of a function w.r.t. two complex-valued vari-

ables to the second order derivatives w.r.t. to their corresponding polar arguments is detailed
in A3.
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3.3.2 Cross-correlation between QCE Signal and Unquantized Signal

The cross-correlation factor between x; and t; is expressed as

27 o]
E[t;z]] :/ / Eie! 9 dr; e I% p (i, ¢i)ri dri gy

o0 Q 7'7:2
= — / / = o (2k— wr e~ 1% o o3, de; dr;
TOg, (2k 2)1p

ke .
— 5 / 7-12 e O'%i drl Z — eJ(Zk*l)w / ef.] (z)z d¢7,
WUIZ, 0 k=1 (2k—2)¢
1 o5 | e (5—2k) _ i(Z—(2k-2)0)
_ T 2 = SJRE-1)y [ (5 5=
= — Iro? = e <e 2 el\2 )
mo2 4 i ; ’

_ Z1%5 0 gin()). (3.23)

The computation of the cross-correlation factor between ¢; and x; with ¢ # j implies the
evaluation of the following quadruple integral

21 2w poO OO

E[tzl‘ﬂ:/ ///EieJQd)((bi)Tje_Jd)iji,Xj,i;éj(Ti;Tju¢ia¢j)rirjdrz’drjd¢id¢j
o Jo
Q

2k 00 0O
ZZ/( Z; Y /_J¢J//rirjz‘pXi,Xj,i;éj(Tiarja¢i>¢j)dridrjd¢jd¢ia
1 ¥ (2k—2)y 0
(3.24)

which is not straightforward to calculate analytically. Therefore, we make use of Price’s
theorem. To this end, we compute the following derivatives

Ot}

or;0r; e
Oty 0
ori0p;

aztil'#-‘ _ Q
L =5 ) (6(¢ — (2k — 2)ip) — 6(¢h — 2kyp)) IR=1¥=00), (3.27)

(3.25)

(3.26)

;. = —JZ ) (8(di — (2k — 2)1) — (¢ — 2kep)) r; lZE-D¥=0)

L (3.28)
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Hence, we apply Price’s theorem in the polar representation from (3.21) and (3.22). We start
with the first property and we get

O [tiaf] [82tix; ]

OPa; 81’1-83:;‘
s 924 ok 24 %
4 TiT T T; 8@8@ ’I"i’l"j 8¢,8¢]
1 . 1 0%tx%
= —j-0,0. E —ilbi=¢;) — — I
] 20 i J |:e r; 8@87"]-
E / 272700/00'(¢.¢~> Otz
= —] 504,04 e NP9 DX, (Tis Tjy @iy @)1 dry dry Ay dés.
9 o Jo Jo ) (9@87“]- #J( J ]) J JY¥i
(3.29)
Plugging (3.27) in (3.29) results in
OE [txﬂ 1 o @
S S S = ((2k—1)¢—9;) .
Oray 2%%%/0 2.°
T k=1
(e‘j((%_QW’_%) / / DX, X025 (16, 75, (2k — 2)ap, ¢5)r; dr; dr;
o Jo
—e_j(2k¢_¢j)/ / P, X;,i2 (Tis Ty, 2k, @)y dry de)
o Jo
1 or @ ) )
=—j 5o—‘no—‘,,cjzi/ > (EYwi((2k — 20y — ¢;) — e Pwi 2k — ¢;)) depy,
0 k=1
(3.30)
where
wy(p; — @) = / / DX, X025 (76, 75, iy @)1 drg drj. (3.31)
o Jo

The latter double integral is computed analytically in (A2) and the obtained expression is
2
1- {p;ci,$j|

w1(¢i - ¢]) = 47T\/7_T0-xi (1 — K (¢z - 925]‘))’

(3.32)

where

k(¢) = R{poyay e 0} (3.33)
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Hence, (3.30) reduces to

9B [t]

Q
1 /2” . .
_j—axiaiji w1 (2ky — ¢ PR L do;
Oy~ 137 E [ 2RO =0 ) do,

or @
= 04,0,,Z;sin(y)) /0 Z Wy (2kY — ¢;) dg;
k=1

2m
W by, 00, s sin(1)Q /0 wy(¢) dp

_ Y L= ’pxi,xjfaxj“l sin(4 Q/

47Tﬁ %{px 2T e J¢}

V1= lps
(b) 1-— |pxi,xj‘ O'mjh'z Sln Q/ gb,

G = P el

2
1= \pzia;| Oz, 2 ™ 92
_ ‘ J| J S]_n(d])Q/ d¢l
o 1— P

4/ ) j|20082(¢’)

sin(¢) 205, (3.34)

—

C

2\/_

where in (a) we introduce the variable ¢ = 2k — ¢,. Since wq(¢) is 2m-periodic, the integral
operation from (2kvy — 2m) to 2k is equivalent to the integration from 0 to 27. In (b) we
define ¢/ = arg (pmi’mj) — ¢. Again the integral boundaries do not change due to the 27-
periodicity of the integrand. In (¢) we use the equality

! 2 1 2
/ — " VaeR with a<l, (3.35)

g 1l—a?22\/1—22 1-—a

Additionally, we obtain

Mzozia%]ﬂ)[ *ZUJ]
1 2 * 2 *
= 1agg.am. E o) [ 1 0"tz n 1 0%t}
R 7 09;0r;  1ir; 00,00,
- (3.36)

Since E [tlajﬂ depends only on p,, ., and not on Pr,; WE can get the covariance between t;
and z; by integrating the expression in (3.34) w.r.t. p,, ., as

. Pzie; O B [tzx*}
E[tiz}] = /0 oy Weia,
Xq,Lj

23_ Sin(V)Zi0%, Py ;- (3.37)
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3.3.3 Cross-correlation between Two QCE Signals
The auto-correlation of the CEQ output ¢; is given by

|t | / / |t | Px; T’Z, gbz)rz de d¢z
) 2T
= |t / / px, (13, 3)ri dr; dg;
0 0

= |t:|* = =5 (3.38)

However, the computation of the cross-correlation between ¢; and t; with ¢ # j turns to be
more complicated

2 27 [e'e) 00
E [t;t}] :/ / / / =5 eJ(%(d’i)*%(‘z’j))pXi,X]-,z;éj(Ti,ijbz',¢j)7’z‘7“j dr;dr; de; do;

Q Q 2kt 2%/ 1) ) 00 poo
/ 2iZ; (%%W/ /Tiriji,Xj,i;éj(riarj7¢ia¢j)dridrjd¢jd¢i-
k lk’ 1 (2k—2)y J (2K'—2)y 0 JO

(3.39)

Therefore, we make use of Price’s theorem to compute the cross-correlation between ¢; and
t; with 7 # j. Since the information after the CEQ lies only in the phase, all derivatives
w.r.t. the radii vanish and only the derivative w.r.t. to the phases is different from zero, i.e.

0%t t*

T 7 o
o 0, (3.40)
0%t;t:

i 41
0%t t:

1 _] .
Dot 0, (3.42)
Pttt A Z

=)0 (5 — (2k — 2)y) — 6(¢i — 2kv))

00:00; 1o 6o
(5(¢; — (2K — 2)p) — 8(¢; — 2K'Y)) Z;=; ICEFIY) - (3.43)

Hence, we apply Price’s theorem in (3.21) and (3.22). We get

OE [tit;] Ot}

apxi,xj o axzax;
1
4

24 4%
0405 B [e—j(m—@-) 1 0%t} ]
Ti” Ty

rir; 0¢18¢]

21 §(66—b5) 82tit§
%Ux]/ / / / e 8¢ia¢ij¢,Xj,i7éj<ria7"ja¢i>¢j)dridrjd¢id¢j
(3.44)
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Plugging (3.43) in (3.44) leads to

O [t:] 1 A

L+ eienww [T / h
0o Jo
— e_j(Q(k’—k;’_l)w) / / Xi,Xj,i7éj(ri7 T (2]{] o 2)w7 lew) d'r'i d?”j
o Jo
— o IQE=F+1)4) /OO / (

PX;,X;,i#j (7“1'7 Tj, 2k, 27{3,1?) dr; de
Px; X i#] Ty, T, 2k3¢ (2]{?, — 2)¢) dT’Z‘ d?“j)
2

oo
p
oo
Q Q
O'$ZO'$].EZE ZZ < woy(2 )
k=1 k’'=1

— 20k — kK — 1)) — e I wy(2(k — K + 1)¢)> . (3.45)

where
wa (i — ) = / / DX, X025 (16, 75, @i, @) dr dr;. (3.46)
o Jo
The latter double integral is computed analytically in (A3) and the obtained expression is
1 1 1
wa (P — ;) = + 5 aresin(k (¢ — ¢5)) | (3.47)
2 \4  2r
MO, 0z, \/1 — k(P — 05)

where k(¢) is defined in (3.33). Thus, (3.45) can be rewritten as

OB [titr] 1 = i j
6p[ ]} — Zo-xio-:vj:i‘:jQ Z (QZUQ(QA]{ZQ/}) — eJQw w2(2(Ak — 1)"¢) - €7J2¢ wz(Q(Ak + 1)¢>)
T4, Ak=0

_EEQ Qil 1 el 2V I
C Ar 1— kAR 2\/1— k(2(Ak — D)2 2y/1— r(2(Ak + 1))

Ak=0
QR/2-1

_ HIHJQ Z 1 (1 1 (emiC) _ ej(zw))>
0 V1 — k(20ky)? 2

Q/2-1

==.0 |
= 77 (1 —cos (2¢))
4m Ak;z() V1 — Kk(2AkY)?
Q/2-1

_ :@:]Q ! . 3.48
sin” A;O NN (3.48)
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.. OE|t;t:
Similarly, we compute 8p*[t 2] and get
Ti,T
* —_— Q/2-1 .
OE [tit;] _MQ o 40kY
5 = sin? E = (3.49)
pa:i,a:j Ak=0 V 1- "{<2Ak‘l¢)
) 02 Elt;t7] 02 B[tit}] . . .
Since 5 50— = 35, there exists a potential for the vector field built by the
pIiVIj pzi,zj pzi,a:j pﬁi@j

partial derivatives. Hence, the expression of the covariance between ¢; and ¢; is given by

Peie; QB | t;t% Pra; OB Lt
E [tz‘tﬂ — / # dp’ _ / g dp’*
0 0

pxi,xj o apgkivxj o
Pz qu]Q @21 1 /
:/ sin? Z dpwz‘afb"
0 Ak=0 \/W J
==.0 Q2-1  k(2Aky) 9 ol 28k
J /
- ) Akz/ VT wnRgE AR
o Q/2—-1
_ ~@;JQ sin? () 3 I22H) arcsin (5(2Ak))
Ak=0
Q/2-1
(3.39) _z:Q sin? (1)) Z AR aresin (R { py,a, € 12KV (3.50)
Ak=0

3.3.4 Numerical Validation

In this section, we aim to check the correctness of the expressions in (3.37) and (3.50)
by comparing them with numerical results. To this end, we take two sequences of length
N, = 10° of two arbitrary complex-valued Gaussian signals z; and x, of variances crfc1 and
o2 ,- We pass them through a two-dimensional CEQ to obtain ¢; and t3. The input signals are
correlated with a given input correlation coefficient pi, = ps, 2, With Monte-Carlo simula-
tions we compute numerically the cross-correlation coefficient peross = pty 2y = E [t123] /2104,
and the output correlation coefficient, i.e. pout = pr, 1, = E[t1t5] /=1Z2. The obtained results
(dashed lines with markers) are compared to the derived closed-form expressions (solid lines)
in Fig. 3.2 for Q = 4, 8, co. Almost the same distortion behavior is observed between ) = 16
and () = oo. For this reason the results related to () = 16 are dropped out. Since we are
dealing with complex-valued correlation coefficients, we need 4 plots to study the relation-
ship between p;, and peoss and another 4 plots for p;, and pou. As can be seen, the numerical
simulations show the correctness of the derived expressions. Moreover, it can be deduced that
the phases of the output correlation coefficient and the cross-correlation coefficient remain
almost unchanged compared to the phase of the input correlation coefficient. However, most
of the distortion is concerning the magnitude depending on Q).

3.3.5 In a Nutshell

In summary, applying (3.37) and (3.50) for the multi-dimensional case, the signal statistical
properties of an N-dimensional CEQ of a Gaussian input signal x and an output signal t
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1 T F—
0.8 /2| |
—~ 0.6 |- g
: < 0 )
=04 ! £
— Q=4 a HEh —m/2 2
0.2 Q=38 H 0.32( 5=0 ¢ fo)
— Q=0
od—. I I I 0.31 | | | 0.77 | | | —T = ! 2 ! =
0 02040608 1 0 7T/2 0 37r/2 2w 02040608 1 0 7T/2 ™ 37T/2 2
|pin| arg(pin) ‘pin| arg(pin)
1 R — T T T 0.79 \ ‘ T —
é 0.39 ¢-=0=L-g—0—0-0-0-0
0.8} y ()
X | Io—@\0 7T/2 [~ |
Losl A0 153 4 Johaels
3 @ 3 < 7/4 —w—\éﬁ—Bg:e%@ = 0¢ D
< J SN \55 'l 1 \ 'Q V0 go
04 [~ 1 028 [ N s{é lI ,' é é o <
vl |—@=i 2 «
' Q=8 | p26ReATAALS ¢
— Q=00 ‘
0d | I I I | | | 0.77 | | | —T & ! 2 ! =
0 02040608 1 0 7T/2 n 37r/2 27 0.2 04 06 0.8 1 0 71'/2 n 371'/2 27
il arg(pin) ™ arg (i)

Fig. 3.2: Comparison of the derived closed-form expressions in (3.37) and (3.50) (solid lines)
with the numerical results obtained by Monte-Carlo simulations (dashed lines with markers).
In each figure, one dimension of py, is fixed either |p,| = 0.4 or arg (pim) = 7, © 2018 IEEE.
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read as
Cix = ¢ sin(y) 2 diag (Cxx)/* C (3.51)
X Qﬁ XX XX
and
) Q/2-1
Ci = — sin® (1) Z 22R) = arcesin (?R{Rxx e_jmkw}> =. (3.52)
T
Ak=0

3.4 Optimal CEQ

3.4.1 One-Dimensional Optimal CEQ

In this section, the magnitude = is optimized to minimize the quantization distortions in-
troduced to the signal. In general, the one-dimensional CEQ output can be expressed as

t=z+n, (3.53)

where 7, denotes the complex-valued quantization distortion term. Since we assume that the
input signal x = re¢'? is a complex-valued Gaussian distributed signal with zero mean and

2 we get

variance o;

Elng =E[t] -E[z] =0, (3.54)
and
E [[nly] = o3, = By03, (3.55)

where 3, denotes the distortion factor of the CEQ. The task is to find the optimal = that
minimizes the power of the quantization distortion term; that is

Eopt = arg min O‘Zq. (3.56)
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To this end, we find the expression of ng

o2 E[|t—x|}

Mg
/ |t — x|2px(r ¢)rdrde

Q 2k o] ) o9 1 2
:Z/ / EeJ(%’l)w—rem‘Qje oz rdrde
o

2k—2)1 T

1 Q 2k 0o . | P
=— / / (EZ + r2 _ =y e,]((2k—1)¢—¢>) — =y e—J((2k—1)¢_¢)) o 72 rdr do
T 4= J ek-2)6 Jo
1 oo 2 o 2
= o2 27@2/ e ff%rdr+27r/ e 7 ridr
moZ 0 0

Q 2ky) o 2
_= Z e (2k=1)y) / e~ 10 / e o2 r2drde
(2k—=2) 0

1 2k—2
Q 2hen) o L2
— EZej((zkl)w)/ ej¢/ e °Fr?dr dqﬁ)
1 (2k—2)1p 0
1 203 2

2k—2)ep (2k—2)¢

Q 2k ki
—E%( ej((2k—1)¢)/ e 3¢ \/no? d¢+z —j((2k— 1)¢)/ & \/no? d¢>>
(
o

k
L QR QI )
==+ 02 — Q—=Esin(y). (3.57)

The optimal magnitude =, is obtained by setting the derivative of agq w.r.t. = equal to 0;
that is

— = 22— —=Qsin(y) = 0. (3.58)

Thus, the optimal magnitude is given by

— Q .
Zopt = o 3.59
0 = 5omsin)o (359
The optimal magnitude of the CE signal is dependent on the standard deviation of the input
signal x. Thus, a different optimal magnitude is obtained for a different input signal variance
o2. With the use of the optimal CEQ, the following covariance factors simplify to:

E[tn;] =E[t(t" —2")]
— B[] — E [ta”]

B9, (3.60)

—2

—opt 2\/— Sln( )‘—‘OthI
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q | @ Eopt By

2 | 4 2/ 1—-2/m
3] 8 0.86362402 0.2541536
4|16 0.88054342 0.2246433
5 |32 0.88480399 0.2171219
00 | 00 | \/7/4=0.88622693 | 1— /4

Table 3.1: Optimal step size for the CEQ and the corresponding distortion factor for unit
variance inputs.

and
E [zn;] = E[(t —ng) 1]
=B [tn;] o3,
g
B2 302, (3.61)
After plugging (3.59) in (3.57), the distortion factor S, for the optimal CEQ reduces to
Q* sin’(¢))
=1-—-—. 3.62
6(1 47T ( )
And we introduce the new variable o, as
Q* sin’(v)
=1-p,==—" "7 3.63
Qg By . ( )

The optimal values X', and the resulting distortion factors of the CEQ having unit variance
Gaussian complex-valued inputs, i.e. 02 = 1, are summarized in Table 3.1 for different
quantization resolutions. We notice that the values of =, and 3,, when rounded up to the
second digit after the decimal point, do not vary for ¢ > 4 and hence for ) > 16. This
explains why we observed the same behavior between () = 16 and () = oo in Fig. 3.2.

3.4.2 Multi-Dimensional Optimal CEQ

From (3.59) and the definition in (3.63), the optimal matrix E for an N-dimensional CEQ
with input vector x and output vector t is given by

Eopt = /g diag(Cro) /2 (3.64)

3.5 Statistical Properties of the Optimal CEQ

The statistical properties of the optimal CEQ can be first obtained from Price’s theorem
introduced in Section 3.3 by just plugging (3.64) in (3.51) and (3.52). A second way to obtain
the approximate statistical properties of the CEQ is the LCA that was applied in [25] and
will be recalled below. One might ask why the LCA is only considered in the case of the
optimal CEQ. The answer to this question is that the covariance factor between the output
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signal ¢ and the quantization distortion term 7, vanishes under the optimality condition
of the CEQ as shown in (3.60). This fact simplifies the derivations and allows us to get
closed-form approximations of the statistical properties of the CEQ.

To this end, we again assume an N-dimensional CEQ with joint Gaussian distributed
input signals x,, n=1,---, N.

3.5.1 Price’s Theorem

When plugging (3.64) in (3.51) and (3.52), we get

Cox = @y Con. (3.65)
and
o Q/2-1
Cu = = sin(1)oy, diag (Coo)/* D~ P4 arcsin <§R{Rxx em"“"]‘) diag (Crx)''”.
n Ak=0
(3.66)
3.5.2 LCA

To find the corresponding expressions of the covariance matrices when using the LCA, we
write first the general expressions

Cix = Cxux + qux, (367)
and
Cit = Cux + Cxpy + Crgx + Cpny- (3.68)

To this end, we have to find the entries of Cy,, and C,_,, . First, the correlation factor
between the input signal x; and the quantization distortion term 7, reads as

B o ] = s, B [ou o]
YE, [E [zilz;] B [né}l%‘”
2., [B o] B [e0]] " i B [y ]|
= [2:2}] E [a52] B |ajn
O g1 ], (3.69)

where in (a) we use the fact that the quantization distortion term 7,, does not statistically
depend on the other random variables when conditioned on x;, in (b) the Bayesian estimator
is equal to the linear estimator for jointly Gaussian distributed signals z; and z; and (c)
results from (3.61). In summary, it holds that

Ciny = —B4Cocxc (3.70)
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Second, the correlation factor between two quantization distortion terms 7; and n;, with
i # 7, reads as

= B2 [w}], (3.71)

where in (d) the Bayesian estimator is approximated with the linear estimator by assuming
that 7, is Gaussian distributed. The power of the quantization distortion term is related to
the input signal variance as follows

E [ngn;,] = o5, = Baos,- (3.72)
Thus, we obtain
Coang = B2 Cxx + af3, diag (Cyx) . (3.73)
Plugging (3.70) and (3.73) in (3.67) and (3.68), we get
Cix = a,Cxx, (3.74)
and
Cit = agcxx + o, diag (Cxx)

= o, diag (Cxx) + 042 nondiag (Cxx) - (3.75)

3.5.3 Price’s Theorem vs. LCA

When we compare the expressions obtained by Price’s Theorem with the expressions obtained
by the LCA, we observe that the only difference is in the computation of Cy. To discover
the relationship between both methods, we first split the expression in (3.66) into diagonal
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and non-diagonal parts

Q/2-1
Cit = Q sin’(¢)a, diag (Cxx)l/2 Z ARY) aresin (?R{diag (Rxx) e_jmw}> diag (Cxx)l/2
T Ak=0
o Q/2-1
+ = sin®(¢¥) oy, diag (Cxx)l/2 Z oI PAkY) aresin (%{nondiag (Rxx) e‘jmlﬂ/’}> diag (Cxx)l/2
T
Ak=0
o Q/2-1
= —sin*(¢)q, diag (Cxx)l/2 Z 22k aresin (cos (2Ak) Iy) diag (Cxx)l/2
7T Ak—=0
o Q/2-1
+ = Sin2(¢)ozq diag (Cxx)l/2 Z I 2ARY) aresin (?R{nondiag (Rxx) e‘jmkw}> diag (Cxx)l/2
& Ak=0
o Q/2-1 _
= < sin(¢)a, diag (Crx)'/? Y 22K (5 - 2Akw> Iy diag (Cr) /2
7T Ak=0
0 Q/2-1
+ = sin2(¢)ocq diag (Cxx)l/2 Z oI ?AkY) aresin (ifﬁ{nondiag (Rxx) e‘jmkw}> diag (Cxx)l/2
T Ak=0
© a, diag (Cxx)
B Q/2-1
+ = sin® (), diag (Cxx)l/2 Z oI PAkY) aresin (%{nondiag (Rxx) ejQN“/’}> diag (Cxx)1/2 )
T
Ak=0
(3.76)
where in (e) we made use of the property
0 Q/2-1 -
Q. 9 i(20ky) <_ —9Ak ) —1. 3.77
—sin (¥) g;o e 5 (0 (3.77)

Second we approximate the arcsin(e) function by its first order Taylor expansion and obtain

Ciut ~ a,diag (Cxx) + Q sin?(¥)ay, Qg:l AR R nondiag (Cyx) €245}
T Ak=0
@ a diag (Cyx) + o nondiag (Cyx) , (3.78)
where in (g) it holds that
Q/2-1
Agzzo QAR Ly e I28kY — %x (3.79)

Hence, we get the same expression as in (3.75). This implies that the approximation of the
non-diagonal entries in Cy from (3.66) based on the first order Taylor expansion of arcsin(e)
leads to the same expression as in (3.75) for the LCA. In other words, the LCA represents
the first order Taylor expansion of Price’s Theorem.
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3.6 Bussgang Linearization of the CEQ

Theorem 2 (Bussgang’s Theorem [61]). For two Gaussian distributed signals, the crosscor-
relation function taken after one of them has undergone non-linear amplitude distortion is
wdentical, except for a factor of proportionality, to the crosscorrelation function taken before
the distortion.

According to Bussgang’s Theorem [61], it holds that

Cix = LoCox. (3.80)

Consequently, every non-linear function with Gaussian distributed input signal can be mod-
eled by the sum of a linear function and a distortion term that is uncorrelated with the input
as

t = Lox + dog, (3.81)
such that
E [xdd] = 0. (3.82)
This leads us to the result
Lo = C, Cyl
= /@E diag (Cyx) 2 Cyx Ci}
= /A, Ediag (Cy) % . (3.83)

For the optimal CEQ, (3.64) can be plugged in (3.83) and the expression in (3.83) reduces
to
Lo = a,ly. (3.84)

Indeed, when we plug (3.83) in (3.80) and compare the obtained expression with (3.51), we
notice that Bussgang’s theorem is a special case of Price’ Theorem. Note that dg is not
Gaussian distributed but has an unknown distribution. However, the covariance matrix of
do can be computed whether by applying Price’s theorem or the LCA. First, with Price’s
theorem, we get

CdeQ =FE [(t — LQX) (t — LQX)Hi|
= Ctt - LQCxt - Cthg + LQCXXLS
- Ctt - LQCxng

= Ctt — OéqERxxE

Q/2-1
= gsinz(w) Z o ?AkY) = aresin <9‘%{Rxx e_j(m]“/’)}> 2 — a,BERxE
Ak=0
0 Q/2-1
= 3,2 + p sin? (1)) Z e 2AR) = arcsin (?R{nondiag (Rxx) ej(mkw)}> =
Ak=0

—

— o;Enondiag (Rxx) 2
~ 3,22, (3.85)
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where we use the first order Taylor expansion of the arcsin function. For the optimal CEQ),
we get

CdeQ ~ aqﬁq diag (Cxx> ) (386)

which matches with the result when using the LCA.
In the following, we aim at getting the covariance matrix for different time instants. When
applying Price’s theorem, we get

E[dolt — ty]dl[t — ] = E [(t[t — t] — Lox[t — t1]) (£t — t] — Lox][t — tz])H}
=E [t[t — t:]t"[t — t]] — E [t[t — t:]x"[t — o] ] LG
—LoE [x[t — 4]t"[t — t5]] + Lo E [x[t — t1]x"'[t — t,]] L
CEVE [eft — 67t — 1] — Lo B [x[t — taJx"[t — o] LY
— Lo E [x[t — t4]x"[t — to]] Lg + Lo E [x[t — t4]x" [t — t5]] Lg
=E [t[t — t:]t"[t — t]] — Lo E [x[t — t:]x"[t — t2]] LG

0 Q/2-1
_ W2 120kt =
— sin (¥) Z e

Ak=0
arcsin (R {diag(Cux) ™"/ B [x[t — t2]x"[t — to]] diag(Cu) /2712300
E — a,E diag(Cyx) V2 E [x[t — t1]x"[t — 1] diag(Cyx) /2.

(3.87)
Again, with the first order Taylor expansion of the arcsin function, we get
B,E? it =1,
E [do[t — t]dg[t — to]] =~ {7 3.88
[ ol 1Jdel 2H {ONJV otherwise. ( )
For the optimal CEQ), it holds that
diag (Cyxx) if t; = to,
I B (3.89)
On N otherwise,

where this approximation can be also obtained by the LCA.
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4.1 Input-Output Relationshsip

st] P (o x|t] Ocn (o) Nt[t] 1 ylt] @r[t] G ult] Do) | 8t
SM XV [ T. cM | oM cM sM
"= n[t]

Fig. 4.1: Downlink MU-MIMO system model.

The system model shown in Fig.4.1 consists of a single-cell massive MU-MIMO downlink
scenario with coarsely QCE signals at the transmitter. The BS is equipped with N antennas
and serves M single-antenna users simultaneously, where N > M.

The input signal s[t] € S¥ contains the symbols to be transmitted to each of the M users
at time instant ¢. Each user’s signal is drawn from the set S that represents either an S-
PSK or S-QAM constellation, where S denotes the number of constellation points. The
input set is detailed Section 4.3. We assume that E [s[t]] = 0y, E[s[t]s[t]!'] = 021, and
E[s[t]s[t — 7]] = 0y, Vt and T # ¢.

The signal vector s[t] is precoded into the vector x[t] € XV prior to the polar DACs. The
set X can represent the set of complex numbers, i.e. C or a subset of it depending on the
precoder design. The choice of X will be discussed in the following sections. The function
P (o) represents the precoding operation to reduce the distortions caused by the coarse
quantization and the MUI. A brief overview about the precoding function P (e) is given in
Section 4.4. The whole thesis is devoted to explain in detail the precoder design.

The operator Qcg(e), defined in Chapter 3, models the non-linear behavior of the polar
DACs combined with the power allocation at the PAs as

t[t] = Qer(x[t]). (4.1)

After the CEQ each entry of the transmit vector ¢,, n = 1,---, N, belongs to the set T,,
which is defined as

Tn:{EneXp(j(Qi—l)%):2’:1,---,@}, (4.2)

where Z2 denotes the coefficient for the power allocation at the n-th antenna that is chosen
according to the transmit power constraint detailed in Section 4.5.
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The signal t[t] is transmitted through the channel modeled by

Iﬂﬂzngﬁﬁ—ﬂ, (4.3)

where 0 represents the Dirac function and with the (m,n)-th element of the ¢-th channel
matrix, i.e. [Hy|mn, being the ¢-th channel tap among L taps between the n-th transmit
antenna and the m-th user. At the M receive antennas, an AWGN, which is denoted by the
vector 7 ~ CNg (0pr, C,y = Iy), perturbs the received signals

r[t] = H[t] * t[t] + nlt]. (4.4)

The precoder is designed such that, without any noise, the received signals would lie in their
intended decision regions and no joint receive processing is necessary. Additionally, coherent
data transmission with multiple BS antennas leads to an antenna gain, which depends on the
channel realization. The entries of the received signal vector r do not belong to the nominal
decision regions of S but to a scaled version of them. Therefore, rescaling the received signal
at each receive antenna is required to make the signal belong to the nominal decision region.
The rescaling operation is modeled by the diagonal real-valued matrix G, as follows

ult] = G (H[t] * t[t] + n[t]) , (4.5)
where
M
G= Z Imeme,, (4.6)
m=1
with g, >0, m = 0,---, M. The coefficients g,, are blindly estimated at the receiver over

a block of T" received symbols as explained in Section 4.7. Note that no receive processing
G is required if S represents the PSK constellation. Finally, based on the decision regions to
which the entries of the signal u belong, the decision operation D(e) produces the detected
symbols § at the users

s[t] = D (G (H[t] = t[t] + n[t])) . (4.7)

4.2 Compact Input-Output Relationship

We drop out the time index and express u = uft] compactly as

u=G(Ht+n)), (4.8)
where
H=[H, H, --- H; 4], (4.9)
t=[t[]T t[t—1T - tft—L+1]T]" = Qup (x), (4.10)
x=[x[" x[t—1" - x[t—L+1"]", (4.11)
and

n = nlt). (4.12)
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4.3 Input Set

Within the scope of the thesis, the input signals can be drawn from an S-PSK constellation
or an S-QAM constellation. To this end, we define both constellations. First, the S-PSK
constellation is given by

S:={exp(j(2t—1)0):i=1,---, 5}, where = g (4.13)
Second, the S-QAM constellation, where S is assumed to be a power of 4, is defined as

S={x2i—1)£j2i—1):i=1,---,log,(9)}. (4.14)

4.4 Transmit Processing: Precoding

4.4.1 Linear Precoding

For linear precoding techniques, the precoding function reduces to a Finite Impulse Response
(FIR) matrix; that is

P[] = Z_ Puoft — 0, (4.15)
=0

where L, represents the number of taps of the precoding FIR filter between every antenna
element and every user.

4.4.2 Non-linear Precoding

In the case of non-linear precoding, no explicit expression for P (e) is provided. However, for
a given channel realization H, every input vector s is mapped to a precoded vector x.

x =P (s, H). (4.16)

4.5 Transmit Power Constraint

For an available transmit power P, the transmit power constraint is given by

tr (Ctt) S L.Ptx (4.]_7)
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Therefore, we should compute tr (Cy). Applying (3.52), we obtain

Q/2-1

tr (Cy) = Q sin? Z o (2AkY) tr (Zarcsin (R{Rux e 122%}) B)
Ak=0

= 9 sin? il el ARY) ¢y (dlag (arcsm (%{Rxx e_JQA]“/’})) = )
T Ak=0

_Q sin? Q/izl AR £ (arcsin (cos (2Ak) Iy) E?)
T Ak=0

_ Qg2 () Qileﬂ%kw tr ((f - 2Akw> INE2>
T Ak=0 2

= 9 gin? () Q/fl (5 — 20kw) 24 41 (=2)
T Ao 2

CI0 4 (22). (4.18)

Hence, it must hold that
tr (%) < LP. (4.19)

We choose E =, /a, diag(Cyxx)'/? to reduce the quantization distortions, as stated in (3.64).
Consequently, the transmit power constraint can be rewritten as

aytr (Cxx) < LP. (4.20)
4.5.1 Equal Power Allocation
In the case of equal power allocation, the matrix Z is just a scaled identity, i.e. 2 = ZIyy.
This leads to
—2
diag (Cxx) = —Ini (4.21)

q

due to the optimality condition of the CEQ in (3.64). The value of = is found by fulfilling

the power constraint in (4.19)
Ptx
\/ - 4.22
N ( )

To exploit the total available transmit power we choose

P
E=1/—=. 4.23
Y (423)

Plugging (4.23) in (4.21), it follows that

(1]
IA

Ptx

diag (Cxx) = N
q

Ing. (4.24)
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4.5.2 Unequal Power Allocation

In the case of unequal power allocation, i.e. E # =y, and for maximal exploitation of the
total available transmit power, it must hold that
LP

Qg

tr (Cxx) =

(4.25)

4.6 Channel Model
4.6.1 The i.i.d. Channel

The first channel model that we consider throughout this thesis is the simplistic i.i.d. channel,
where the entries of the matrices Hy,, ¢ = 0,--- ,L — 1, are of zero means and constant
variances; that is

[Hg]m’n =CN¢ (070}(112)2)’ m=1,---,M, n=1,--- N, (4.26)

where it must hold that

L—-1
Yo =1 (4.27)
{=0

In the case of L = 1, we obtain that o7 = 1. However, in the case of L # 1, the variances are
defined by the exponential power delay profiles that are given in Table 4.1 and Table 4.2 for
L =3 and L = 6, respectively.

7 e
1010g,q (it ) /dB | -3 | -6

Table 4.1: Exponential power delay profile with L = 3.

4.6.2 The mmW Sparse Channel

A more realistic channel model that takes into account the use of mmW frequencies is the
mmW sparse channel, which is a clustered channel based on the extended Saleh-Valenzuela
model [62]. Experiments and measurements have shown that the mmW channel can be
modeled by a number of clusters N for each user that group rays of number N,,, departing
from the BS in similar directions [63-66]. Mathematically, we can write that

cl Nray

enH =[5 Nray Z Z% a (o w) , (4.28)

]7

14 1121 3 4 5

10log;, (EH;E’Z“E)/dB 1]-9]-10|-15 | -20

Table 4.2: Vehicular A (Case II) power delay profile with L = 6.
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where fyi(?’é) denotes the complex small-scale fading gain on the j-th subpath of the i-th
cluster at the /-th main path for the m-th user and a (¢) is the vector response function of
the BS antenna arrays to the angular departures; that is, when we assume a uniform linear
array, we get

o - - T
a(qb):ﬁ[l eimsin(d) ., el(N—l)WSIH(¢)] ) (4.29)

Each i-th cluster is defined by a certain mean Angle of Departure (AOD) that is drawn from
a uniform distribution. The AODs that correspond to the rays within the same cluster, i.e.

gzﬁl(?, j =1,--+, Ny, are drawn around the mean AOD from a truncated Laplacian PDF
given by [67]
1 —|V2¢/04| if _
—5 © if ¢ € [—m,7),
ps(g) = § Vare(1e VTI0) (4.30)
0 else.

In this work, we assume that

oy =1°. (4.31)
The small-scale fading factors fulfill the following property
%'(ZM) ~CN ¢ (07 U’(YZ)Q) 7 (4.32)

where 05,5)2 are chosen according to the exponential power delay profile either in Table 4.1

or in Table 4.2. Additionally, it must hold that

L—-1
D ol =1 (4.33)
=0

4.7 Receive Processing
After multiplication with the receiver coefficient g,,, the m-th scaled received signal is
Un[t] = gntinlt] = g e H[E * t[t] + gratin[t] = st — 7] + ], [¢], (4.34)

where 7 represents the time delay and 7, [t] denotes the deviation of w,,[t] from the nominal
point s,,[t — 7] due to the precoder design, the AWGN 7,,[t] and the quantization applied
on the precoded vector x. Then, we can write

(R{ron [} + M {ron [} = g, (R{smlt — 7]+, [T HSsm[t — 7]+, [t]}) (4.35)
~ G (IR{smlt — 7IH + [S{smlt — 7} + R{m, [6]} + 3{77;1[75](1)?;6)

where the approximation is very accurate when the receiver Signal-to-Interference-Noise
Ratio (SINR) is much larger than 1, which is the case for massive MIMO systems. Having
zero-mean noise plus interference 7/, [t], we get

E[[R{rn[t]} + [S{rnlt]}] = g5 BIR{smlt — 71} + [S{sm[t — 7]}]
R g V'S, (4.37)
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when using the definition of the QAM constellation in (4.14). We recall that the receive
processing is required only in the case of QAM signaling. Based on (4.37), we propose a
blind estimation method to obtain the scaling factor g,, for each user prior to the decision
operation; that is

T VS
> [R{rm [} + [S{rm [t}
where T is the length the received sequence. The method does not require any feedback or

training from the BS nor any knowledge of the noise plus interference power at the user
terminal.

Im = (438)

4.8 Potential Dual Uplink System Model with the Optimal CEQ

As explained in Section 3.6, the CEQ can be linearized and the resulting linear system
model with the optimal CEQ is shown in Fig. 4.2. The potential dual uplink system model
is provided in Fig. 4.3. The MSE duality between both system models will be investigated
throughout this thesis.

We have the following assumptions for the potential dual system model

1

F, = BP?, ¢=0,---,L,—1, (4.39)
T = C,/2"G", (4.40)
Css = CIF = 021, (4.41)

and
C,y =1Iy. (4.42)
The transmit power constraint in (4.20) for maximal power exploitation can be rewritten as
Lp—1
Qg tr (Z PZ/CSSPE> = P, (4.43)
=0

Hence, the corresponding scaling factor 8 can be obtained by plugging (4.39) in the transmit
power constraint in (4.43) as

5= Pl (4.44)

Oy tr <Z§p::)1 FgCSSFg/> ‘
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slt] t] t[t] yli] ~ rl] uli] slt]
P> — 0 Do |2
dolt] nli]
Fig. 4.2: Downlink system model with Bussgang decomposition.
SUL [t] tUL uUL [t] éUL [t]
T HY[{]Cp/>H —»@—»»—» Ft] D(e) |—

77 [ dUL

Fig. 4.3: Uplink system model with Bussgang decomposition.
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5. Flat-Fading Channels

5.1 Input-Output Relationship

In this section, we consider linear precoding for flat-fading channels; that is L = 1. This
implies that the precoder impluse response matrix P[t] reduces to the matrix P. Accordingly,
it holds that

x[t] = Pslt]. (5.1)
The time indexes are dropped out in the sequel. We recall the input-output relationship in
(4.8)
u=G (Ht +n)
= G (HQcg (Ps) +n) . (5.2)

5.2 Optimization Problem

The precoding task consists of finding the optimal linear precoder P, and the diagonal
positive real-valued receive filter G,p¢ that minimize the MSE between the desired and the
received signals, s and u under the transmit power constraint given in (4.20). The MMSE
optimization problem is expressed as

{Popt, Gopt } = ar%gﬂnE [||u — S||§} st aytr (Cxx) < Pik. (5.3)

5.2.1 MSE
In general, the MSE is expressed as

E [|lu-s|3] = tr (GHCxH"G + GC,,,G) — tr (GHCs) — tr (Cs H'G) + tr (Css) -
(5.4)

Due to the central limit theorem [68], the entries in x are approximately Gaussian distributed
for massive MIMO systems, where a large number of users is served by a large number of
transmit antennas. Hence, Price’s theorem can be applied to obtain the expressions of the
covariance matrices Cy, and Cyy according to (3.66) and (3.65). Consequently, the MSE
expression calculates to
Q/2-1
E[|u- S||§} = gsin2 (¥) Z AR £ (arcsin (R{Rux e 22*}) EH"G’HE)
Ak=0
+ tr (GCypy,G) — g tr (GHPCy5) — o tr (CosP"H"G) + t1 (Cos) . (5.5)
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According to (5.1), the covariance matrix Cyy is expressed in terms of the precoder P as

Cyxx =E [XXH]
= PC,P". (5.6)
Therefore, we obtain the following expressions
Ry = diag (PC.P") " /? PCP" diag (PC.P") ", (5.7)
= — diag (PC,P")"*. (5.8)

5.2.2 Transmit Power Constraint

After plugging (5.6) in the transmit power constraint in (4.20) and for maximal exploitation
of the available power, we get

oy tr (PCssP") = P (5.9)

As explained in Section 4.5, we differentiate between two cases
e equal power allocation, i.e. diag (PCssP") = Lx Iy,

q
and

e unequal power allocation, i.e. tr (PCSSPH) = B

Qg

5.3 Precoder Designs in the Primal Domain

5.3.1 Precoder Design Based on Gradient Projection Algorithm

Since the MSE expression in (5.5) is highly non-linear in Cy, = PCgPH and thus in P,
we cannot find a closed-form expression for P,. Therefore, we use the Gradient-Projection
algorithm as described in Algorithm 1 and Algorithm 2 for equal and unequal power alloca-
tion, respectively. To this end, we have to compute the derivatives of the MSE w.r.t. P and
G. First, the derivative of the MSE w.r.t. P is expressed as

0E [||u—s|| (9E ||u—S|| ] T
E g e,e
oelPe,, "

n=1 m=1
_Q.
= Zsin ()
Q/2-1 N M iy _ —_
Z RO Z O tr (arcsin (R{Ruxx e 71244 }) :.HHGQHz)e o7
T nEm
et v fiowt OelPe,,
— o, H'GCL,. (5.10)
The challenging term in the above derivative expression is
dtr (arcsin (R{Rux e 122}) EHG?HE) .y O arcsin (R{Rxx 1224V} ) EHUGIHE
oelPe,, - delPe,, - -
. JEHIG?HE
+ tr (arcsin (%{Rxx e_J2Akw}) M—Pem) .

(5.11)



5.3 Precoder Designs in the Primal Domain 43

Algorithm 1 Gradient Projection Algorithm to obtain the QWF-Price precoder with equal
power allocation.

1: Initialization
P(g), G(O) = Zopt (P(o)) , U= 10, e = 107*and n =0

2: repeat
OMSE ) \
3 Puyy =P —p (—3P( ))
~1/2

4 Py = c%(v diag (P(Ml)CSSPgLH)) P(,11) {Equal power allocation con-

straint }
50 Gur1) = 8opt (P(nt))
6: if MSE(n_H) > MSE(n) then
T: = q1/2
8 else
9: n=n+1
10:  end if
11 until M —MSPG| <e

|MSE ) |

Algorithm 2 Gradient Projection Algorithm to obtain the QWF-Price precoder with un-
equal power allocation.

1: Initialization
P(o), G(o) = Bopt (P(o)) , =10, € = 107*and n =0

2: repeat

OMSE ) \
3 Puy=Pu —u ( : ))

-1/

4 Py = i—t‘ tr (P(n+1)CSSP&+1)> P (,11) {Unequal power allocation constraint}
5 Ge1) = 8opt (Pnt)
6: if MSE(N_H) > MSE(n) then
T: = q1/2
8: else
9: n=n+1
10:  end if
11: until M —MSPG| <e

|MSE ) |
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According to Ab, the derivative term related to arcsin(e) calculates to

—1/2

: PINT ’
darcsin (R{Rxx e~} }) = nondiag <1N’N — nondiag (R{Rxx e_ij)OQ) °

del'Pe,,

OR{ Ry e~ 128F0}
delPe,,

—1/2

1 28k )0\ ©

=5 nondiag (1N’N — nondiag (ER{RXX e*ﬂAde}) ) o
( diag (Cxx)_l/2 eqer e 128k C P diag (Cxx)_1/2

+ diag (Cx) /2 P*CL 227 ¢, e diag (Crx) 2

— (ezcxxen) 82 e} CssPle,e,ef R{C,, e 1221 diag (Cxx)fl/2
— diag (Cxx)fl/2 R{Cyy e 12801 (eECxxen) 3/ eTTnCSSPHeneneE> .
(5.12)
Moreover, we have
JEHIG?HE 1 12
~5Pe. = Qg5 (enCxxen) ' e,,CssPleye,e) H'G?H diag (Cx O
+a 1dia (Cxx)/*H'G?H (en Cxxen) 12 e CiPle,e el (5.13)
q2 g XX n XxX*+n Ss n-n N .
Plugging (5.12) and (5.13) in (5.11) and applying the property
tr ((Covivy)D) =tr(vy (DoC")wvy), (5.14)

we obtain

dtr (arcsin (R{Rxx e7122%}) EH'G?HE)
Oel'Pe,, a

1
5 (e e 128 o PH dlag(Cxx)_1/2Qdiag (Cx )_1/2 e,
+egejmk¢diag(c x) 1/2 leag( xx 1/2 p~ Cien

)
- egw{cx _J2Ak¢} dlag 1/2 (ez xxen) e e, CssPHenen
— e Qdiag (Cyy)” 1/2 R{Cxxe J2A’w} (ezcxxen) /2 TCSSPHenen>
+a,= 5 ( THYG2H diag (Cyx) "/ arcsin(R{Rux ¢ 122} e, (e) Cxxer) 2 e, P*C.en
+ e, CssPe, (e, Cxxe,) 2 el arcsin(R{Ryx € 1221 diag (Cyx) '/ HHG2Hen) :
(5.15)

where

. 09\ 0—1/2
Q2 = (EH"G’HE) o nondiag (1N,N — nondiag (R{R}, e ?2*}) 2) : (5.16)
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Thus, the derivative of the MSE w.r.t. P is given by

2 Q/2-1
E [Hu - SHz} 1 Q sm Z oI (20ky) (diag (C )71/2 <e—j2Ak1/; QT & oi28k
oP Ak=0

— diag (%{Rxx e—jQAkw}ﬂ) — diag (Q%{Rxx e—jQAkzp})
+ diag (EHHG2HE arcsin (%{Rxx o 2Ak¢}))

+ diag (arcsin (%{Rxx e‘jmw}) EHHGQHE) )

diag (Cor) " P*CL )
—a,H"GCL,. (5.17)

Second, the derivative of the MSE expression in (5.5) w.r.t. G calculates to

OE [[[a — s3]
9G

= 2diag (HCyH" + C,;,;) — diag (HCys) — diag (H*Cy) . (5.18)

Thus, the optimal filter Gy is obtained by setting (5.18) equal to a zero matrix and is given
by

Gopt = 8opt (P) = ‘diag (HCuH" + C,p,)) " diag (R{HCy,})| (5.19)

where the operator |e| is applied element-wise to the matrix entries.

5.3.2 Precoder Design Based on LCA

In this section, we aime at getting a closed-form approximation for the MMSE precoder by
using the LCA to obtain a linear expression of the MSE. We recall the linear precoder design
in [25] and apply it to the case of QCE transmit signals. The precoder aims at minimizing
the MSE under a transmit power constraint, where the receive processing is assumed to be
a scaled identity matrix, i.e. G = gI;;. Using the LCA, the MSE expression simplifies to

E[fu—s|?] = tr < 9> H (2PCP" + a,p, diag(PCP") H"
— gHa,PCy — g*a,Csc, PTH" + lg)? Cpn+ CSS). (5.20)
The Lagrangian function is expressed by

L(P,g,\) =t ( 9> H (a2PCP" + a,, diag(PC,.P") H"

— ga,HPCy — g*anSSPHHH + |g|2 Coy + CSS> + A (aq tr (PCSSPH) — Ptx) )
(5.21)
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The Karush-Kuhn-Tucker (KKT) equations are then given by

oL (P, g, \
% = |g° (eH"H'P*C, + a3, diag (H'H*) P*CL) — 9o, H'CL + Ao, P*CL,
= O, (5.22)
P
w = g" tr (H (a2PCssP" + oy 8, diag(PCs,P") H" + C,)) — oy tr (HPCy) = 0,
(5.23)
and
P,g, A
0L (P.g, ) = a,tr (PCiP") — P = 0. (5.24)
O\
Multiplying (5.22) by PT from the left side and taking the trace leads to
lgI* tr (a2PTH"H*P*CL, + a,8,P" diag (H'H*) P*CL) — ga, tr (PTH'CY)
+ Aoy tr (PTP*CL) = 0. (5.25)
From (5.23), we get
ag tr (HPCy) = ¢* tr (H (0PCssP" + o 3, diag(PCs,P") H' + Cypyy) (5.26)
which when inserted in (5.25) gives the expression of A
2 2
|9|” tr (Cy) _ lg]” tr (Cnn)’ (5.27)

~ a, tr (PC4PH) P
where we used (5.24) and the properties tr (A diag (B)) = tr(diag (A)B) and tr(A) =
tr (A)". Inserting (5.27) in (5.22) and solving it for P, we obtain

1 tr (C !
P = p (aqHHH + B, diag (H"H) + Y(P—"")IN> H". (5.28)

tx

The optimal g is found by satisfying (5.24) with P from (5.28); that is

tr (Cnn)

tx

g= % fr <(aqHHH + B, diag (HHH) +

tx

-2
IN) HHCSSH> . (5.29)

This precoder design was already derived in [25] for low resolution cartesian DACs at the
transmitter. Whether we use polar or cartesian DACs, the expression of the WF precoder
that takes into account the quantization distortions based on LCA turns to be the same.
The coefficients o, and 3, have to be defined accordingly.

5.4 Dual Optimization Problem
5.4.1 Does a Dual Problem Exist?

In the above sections, the MMSE precoder was designed based on Price’s theorem for equal
and unequal power allocation and on LCA for only unequal power allocation. With Price’s
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theorem, no closed-form expression of the precoder could be found but the optimal precoder
is found by an iterative approach. However, with LCA an approximate expression of the
optimal MMSE precoder is given in a closed-form. One might ask whether it is possible to
get a closed-form expression for the exact optimal MMSE in the dual domain; that is when
applying Price’s theorem. To this end, we first have to find the dual uplink system model.
Second, find the optimal dual filter, hopefully in closed-form expression. Finally, convert the
expressions in the primal domain, i.e. downlink scenario, and obtain the expression of the
MMSE precoder.

According to Fig. 4.2, the corresponding MSE expression for flat-fading channels, after
dropping out the time index, is given by

MSEPL = E [Hu — ng}
= a_tr (GHPCP"H"G) + tr (GHCq,4,H"G)
— oy tr (GHPGy;) — g tr (CsxP"H"G) + tr (GC,y G) + tr (Css)

P2 02t (GHPCLP'H"G) + a8, tr (GH diag (PCP") H'G)

Q/2—-1
+ Q sin? (1) Z AR (GHE arcsin <§R{nondiag (Rxx) e_j(mkw)}> EHHG>
s
Ak=0
- ag tr (GH nondiag (PCSSPH) HHG)
+ tr (GCypyyG) — g tr (GHPCy5) — g tr (CssP'H"G) + tr (Css)
= a, tr (GH diag (PCsP") H'G)

Q/2—1
+ Q sin? (1) Z AR (GHE arcsin <3‘E{nondiag (Rxx) ej(mW)}) EHHG>
m
Ak=0
+ tr (GCypyG) — a tr (GHPCy) — g tr (Cos PTHYG) + tr (Css) - (5.30)

The potential dual uplink system model is illustrated in Fig. 4.3, where dIQIL [t] = d[QjL can
be freely designed and is not necessarily defined by a CEQ at the receiver. The statistical
properties of d[QJL have to be chosen such that an MSE duality between both systems can be
achieved. The MSE expression for the uplink system for flat-fading channels is expressed as

MSE"E = |[u - 5" ]

= o} tr (FH"C,)*"TCJ T"C,*"HF") + tr (FCJL, F") + o} tr (FCF")

— a, tr (FHYCZ V20V — o tr (CUFTHC /2HFY) + tr (CUF) 5.31
q nn ss q ss nn sS
where
u’t = uVH] (5.32)
s = sV, (5.33)
and
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If we assume that dgL is the quantization noise that results from quantizing xU% = xVt[¢]
and is uncorrelated with it and hence we use the expression in (3.85) for ngdg, we get

MSE" = o2 tr (FH"C, \/*"TC T C, [/*HF")
+ a3, tr (F diag (H'C, /> TCJ'T"C,//*H + C %) FY)
0 Q/2-1
+ = sin’(1) Z AR <FEUL arcsin (%{nondiag (Rix) e_j(QAW)}) EULFH)
g Ak=0
— ozg tr (F nondiag (CE,];) FH)
+ ag tr (FC%FH)
— aqtr (FH'C,)*"TCY") — a, tr (CILTYC, )/*HFY) + tr (CLL)

Y o, tr (CUFTIC, /2 H diag (FUF) H'C; 1/ °T)

Q/2-1
+ Q sin? (1)) Z I CARY) ¢y (FEUL arcsin <§R{nondiag (RE,I;) e_j(ml“f’)}) EULFH)
& Ak=0
+ g tr (FC%FH)
— aqtr (FHYC,)*"TCY") — a, tr (CLTC, )/*HFY) + tr (CL), (5.35)
where
Cyy =H'C/*"Tcd'T"C,/*H, (5.36)
RU- = diag (CY2)™* CU diag (CV2)™?, (5.37)
=0 = /a, diag (CVX)"? (5.38)

and in (h) we used the equality

ozg tr (Fnondiag (Cyy ) F') = ag tr (CESLTHC;%/ZHH nondiag (F'F) HHC,;%/zT) . (5.39)
We aim to match both MSE expressions in (5.30) and (5.35). Applying the identities in
(4.39), (4.40), (4.41) and (4.42) for the flat-fading case, i.e. L = L, = 1, we get

1

F = _—P% 5.40
3 (5.40)
1/2,H~H
T = BC,,2"GH, (5.41)
Css = CUF = 021y, (5.42)
and
C,, =1y (5.43)

Thus, (5.35) calculates to
MSE"" = q, tr (GH diag (PC,P") H'G)

Q/2-1
+ %Q sin? (1)) Z e 2ARY) ¢y (PHEUL arcsin (%{nondiag (RE,E) e_j(mkw}> EULP>
T
Ak=0

+

2“1 tr (PCsP") — o, tr (P"H"GCy) — a, tr (CesGHP) + tr (Css) - (5.44)

o232
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As we can see, all terms of (5.30) and (5.44) match except of the second and third terms.
To match the third terms, we choose 3 as

5= a, tr (PCsPH)
o2tr (GC,,,G)

(5.9) Py
o . 5.45
\/ag tr (GC,, G) (5:45)

However, we cannot match the second terms due to the non-linear expressions. Thus, there
exists no MSE duality if dUL is the quantization noise that is uncorrelated with x" and
results from quantizing XUL The problem arises with the non-diagonal elements of CdeQ
that should be chosen in an appropriate way to match both MSE expressions.

5.4.2 Exact Dual Problem

To find the dual MSE expression, we are changing the quantization function at the receiver
to replace it with a different dual non-linear function; that is the distortion term dg has the
following covariance matrix

ngdg o, 3, diag (HHC 1/2, HTCULTHC 1/2H " CUL)
— a2 nondiag (HYC, /> HTCULTHC 1)

Q/2-1
+ L @)a, Y Q@A) Fl(FFY) T TIC, [/?H diag (F'CUF) '
™
Ak=0

arcsin (%{nondiag (diag (FHCESLF)A/2 FYCUF diag (FHCESLF)*I/2> e—i(mW)})

1

diag (FECYF)? HYC, }/>HT (FFY) ' F. (5.46)
The resulting MSE expression reads as

MSE"" = o, tr (F diag (HC, }/*"TCI'TYC, )/*H) FY) + o, tr (FCLLFH)
Q/2-1
+ = sin® (1), Z IARY) gy <THC '/2H diag (FHCESLF)I/2
Ak=0

arcsin (?R{nondiag <diag (FHCESLF)_U2 FYCULF diag (FHCESLF)_V2> e—j(%mﬁ)})

. HAUL\ Y2 pyH~—1/2,H
diag (F"CYF) " HEC, /1T
— agtr (FH"C,\*"TCT") — o tr (CIITHC, ) PHFY) + tr (CLF) . (5.47)
By applying the equalities in (5.40), (5.41), (5.42), (5.43) and (5.45), we obtain
MSEVF = MSEP". (5.48)

The dual uplink system is not simply having the quantization at the receiver in the uplink
scenario.
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In the dual uplink system, we end up with two filters F and T to optimize. To simplify
the optimization task, we assume that G is a scaled identity, i.e. G = gI; and thus from
(5.41) and (5.45) we get

P,
T=,—% Cl2H 5.49
a?tr(Crm) R ( )

Consequently, the transmit power is the same as in the primal domain since
tr (TCy T") = P (5.50)
To find the dual filter F, we should compute the derivative of MSEYY w.r.t. F. In analogy

to the derivations in Section 5.3.1, we get

UL Q/2-1
% = L (e, D el %CESL*F*<diag (FICLLF) V2 (o itk g 4 2k T
T
Ak=0
— diag (3%{2 eijAkw}Q*) — diag (Q*%{E e—j2Akw})
L P
a2tr (C,y)
i ; —j2Akep T ~—1/2,T (~—1/2,%p1*
+ m diag (arcsm (%{Ee J }) AH Cnn/ le/ H A) >

diag (F'CUF) ™)

diag (AHTC%M’TC;%/Q’*H*A arcsin (%{2 e—j2Ak1j)}))

P * (UL, T UL, T (~v—1/2, %
m&qF CTIU — anSS C’?U/ H s (551)
where
% = diag (F'CUF) /> FUCUMF diag (FUCUF) 2, (5.52)

. o o—1/2
Q= (AHHC;}/ZHTTHC;%MHA) o nondiag <1N,N — nondiag (R{X* e 122%}) 2) :
(5.53)

and

1/2

A = diag (F"C"F) (5.54)

Unfortunately, we cannot find a closed-form expression for F' and we have to find the optimal
filter F again with iterative algorithms, i.e. gradient descent algorithm as in the primal
problem. However, the advantage here is that no power constraint has to be considered. The
gradient descent algorithm is given in Algorithm 3. After obtaining the optimal filter F, the
duality scaling factor 8 in (4.44) can be expressed by

P
b= \/aq tr (FHCULF) (5:55)

Hence, the dual filters P and G can be extracted by applying the equalities in (5.40) and
(5.41).
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Algorithm 3 Gradient Descent Algorithm to obtain the dual WFQ-Price with unequal
power allocation.

1: Initialization
F), p=10, e = 107 and n =0

2: repeat
OMSEUL \

3 Fapny =Foy —p | —5
4: if MSE(,) > MSE(,; then
5 = pi/2
6: else
7 n=n+1
8: end if oL oL

MSEVL | —MSE
9: until | THSEFL' o] <e

n)

5.4.3 Approximate Dual Problem

We still aim to get a closed-form expression for the filter F and hence for the precoder
P. To this end, we assume that the MSE expressions in (5.35) and in (5.30) are equal.
This assumption holds true if the Bussgang decomposition is applied with the LCA; that

is Caody = 8, diag (HHCT_,%/Q’HTCESLTHC%QH + Cg#) The MSEY" expression is in
general expressed as
MSE"" = tr (FCy"F") — tr (FCyy) — tr (C“F") + tr (CL") . (5.56)
The optimal filter F that minimizes (5.56) reads as
F=CY (cy) ™. (5.57)

To compute Cp” we apply Price’s theorem in (3.66). The optimal filter T is given in (5.49).
Hence, the optimal filters in the primal domain are obtained by applying (5.40) and (5.41),
where £ is given in (4.44). This method was introduced in [69] for the one-bit quantization
case, i.e. () = 4.

5.5 Simulation Results

In this section, we compare the performance of the different linear precoding techniques that
were introduced above with the ideal WF precoder. We denote the precoders by

e WF: the ideal WF, [70], where no CEQ is applied in the system.

e QWF: the Quantized WF that was introduced in [25] for cartesian DACs and was ex-
tended to the case of polar DACs in Section 5.3.2.

o QWF-Apprxpua: the approximate dual Quantized WF that applies unequal power allo-
cation at the antennas. The resulting receive filter G is a scaled identity. This precoder
is derived in Section 5.4.3.
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o QWF-Priceqqpa: the Quantized WF based on Price’s theorem that applies equal power
allocation at the antennas. This precoder is detailed in Algorithm 1. The start value is
the WF precoder that is projected to fulfill the equal transmit power constraint.

o QWPF-Pricepeqpa: the Quantized WF based on Price’s theorem that applies unequal power
allocation at the antennas. This precoder is detailed in Algorithm 2. The start value is
the WF precoder.

o QWPF-Pricepya: the dual Quantized WF based on Price’s theorem that applies unequal
power allocation at the antennas. The resulting receive filter G is a scaled identity. This
precoder is detailed in Algorithm 3. The start value is the QWF-Apprxpyua precoder.

To this end, we assume a BS with N = 64 or N = 128 antennas serving M = 8 single-antenna
users with 4-PSK or 16-QAM signals, respectively. The numerical results are obtained with
Monte Carlo simulations of 100 independent flat-fading channel realizations from the i.i.d.
channel model and the mmW sparse channel model described in Section 4.6. For the mmW
sparse channel, we assume that Ny = 2 and N,,, = 10. The AWGN is also i.i.d. with
variance one at each antenna. The performance metric is the uncoded BER averaged over
the single-antenna users. For the blind estimation of the coefficients g,, we use a block length
of T' = 128. The numerical results are plotted in Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.4.

First, it can be deduced that all proposed linear precoders perform almost the same for
i.i.d. channels. There is a moderate gain compared to the QWF precoder. The loss compared
to the ideal WF reduces with increased quantization resolution.

Second, the proposed precoders perform differently for mmW sparse channels. We can
see that the QWF-Pricepeqpa precoder performs the best followed by QWF-Priceeqpa, QWEF-
Pricepua, QWF-Apprxpu. and last QWEF. This behavior is expected since the QWF-
Pricepeqpa precoder is computed in the primal domain without any approximation of Price’s
theorem. Additionally, having unequal power allocation at the antennas offers more degrees
of freedom for the precoder design, which explains the performance loss of QWF-Priceqqpa
compared to QWF-Pricepeqpa. The performance loss of QWF-Pricep,, can be explained by
the assumption of G being a scaled identity, which again reduces the degrees of freedom
in the precoder design. Although the QWF-Apprxp,. precoder is more efficient in terms of
convergence time and computational complexity, it performs worse than the linear precoders
based on iterative algorithms. This is due to the approximate duality that we applied for
this precoder design and the assumption on G being a scaled identity. Last but not least,
the QWF precoder performs the worst due to the LCA and the assumption on G being a
scaled identity.

Third, doubling the number of antennas with the use of the QWF-Priceyeqpa precoder
leads to almost the same BER performance as in the ideal unquantized case for () = 4 and
with 4-PSK signaling. With increased resolution, e.g. () = 8, less than the double number of
antennas in required in the quantized case to obtain the same performance as in the ideal
case. For 16-QAM signaling the latter statement holds for low values of the transmit power.

In summary, the performance improvement with the iterative and more accurate linear
precoding algorithms that take into account the quantization distortions is very moderate
compared to the QWEF that is based on approximate statistics. However, this comparison is
restricted to flat-fading channels. So how does the performance comparison look like in the
case of frequency-selective channels?
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Fig. 5.1: Comparison between different linear precoders for 4-PSK signaling: N = 64, M = 8
with the i.i.d. channel.
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Fig. 5.2: Comparison between different linear precoders for 16-QAM signaling: N = 128,
M = 8 with the i.i.d. channel.
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Fig. 5.3: Comparison between different linear precoders for 4-PSK signaling: N = 64, M =8
with the mmW sparse channel.
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Fig. 5.4: Comparison between different linear precoders for 16-QAM signaling: N = 128,
M = 8 with the mmW sparse channel.



6. Frequency-Selective Channels

6.1 Input-Output Relationship

In this section, we consider linear precoding for frequency-selective channels; that is L > 1.
This implies that more than one precoder tap is required to mitigate the Inter-Symbol
Interference (ISI); that is L, > 1. Thus, the precoded signal vector is given by

Ly—1

x[t] = > Puslt — 0]

L,-1 N M

— Z ZZen TPyeelst — ]

=0 n=1m=1
LplN M

= Z ZZene Ple.el st — /]

=0 n=1 m=1
st]
N
s[t — 1]
- Zein (IMLP ® en) . ) (61)
n=1 )
s[t — L, + 1]
where
p' =[eiP] - eyPl -+ eP , - ey,PL . (6.2)
For the vector x defined in (4.11) we get
NL s[t]
X = Z e;p'T; : (6.3)
i=1 s[t — L — L, + 1]
= (Ino®p") s, (6.4)
where
)
Fi =S (’VN—‘ - 1, Lp, L— 1> ® IM ® emod(ifl,N)Jrla (65)
S(i,5,€) = [0, 15,05 (6.6)
NL
i=1

25
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and
s=[s[t]" s[t—1]T - s[t—L—Lp+1]T]T. (6.8)
Thus, we recall the input-output relationship in (4.8) and use the identity in (6.4) to get
u=G (Ht +n)
=G (HQck ((Iny ®@p") T's) + 1) . (6.9)

6.2 Optimization Problem

The precoding task consists of finding the optimal linear precoding vector pep; and the
diagonal positive real-valued receive filter Gy that minimize the MSE between the desired
signal before a time delay 7 and the received signal, i.e. s[t — 7] and u[t], under the transmit
power constraint given in (4.20). The MMSE optimization problem is expressed as

{Popts Gopt, Topt } = argéninE [lJult] — st — 7']||§] st a,tr (Cxx) < Pix
P,&, T

= argmin E [”u — (e, ®1y) SHﬂ st agtr (Cxx) < Px.  (6.10)
p,.G,7
6.2.1 MSE
In general, the MSE expression is given by
MSE = tr (GHCH"G) + tr (GC,,,,G) — tr (GHCys (6,41 ® L))
—tr ((efﬂ X IM) CstHHG> + tr ((e;FH & IM) Css (eT+1 & IM)) . (611)

In massive MIMO systems, the entries in x are approximately Gaussian distributed due
to the central limit theorem [68]. Hence, Price’s theorem can be applied to compute the
covariance matrices Ciy and Cix as given in (3.66) and (3.65). Consequently, the MSE
expression calculates to

Q/2-1
MSE = %sim2 () Z AR ¢y (arcsin (R{Rux e 22"} EH"G’HE)
Ak=0
+ t1 (GCypy,G) — g tr (GHC s (€741 ® Inp)) — g tr ((el,; ® Iny) Csx H'G)
+tr((el,; ®In) Css (€741 @ Iar)) - (6.12)
According to (6.4), the covariance matrix Cyy is expressed in terms of the precoder p as
NL NL
Cxx = Z Z pTI‘iCSSI‘;Pp*eie;F (6.13)
i=1 j=1
= (I @p") TCsI'" (In, @ P¥). (6.14)

Therefore, we obtain the following expressions
R = diag ((Inz, ® ") PCuI™ (Iy, @ p7)) "
(Ine @ p") TCsI'" (Ing, @ p*) diag ((Inz @ p") TCT™ (Iy, ® p*))_1/2 , (6.15)
and

1/2

== d1ag ((INL & pT) FCSSFT (INL & p*)) (616)
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6.2.2 Transmit Power Constraint

After plugging (6.14) in the transmit power constraint in (4.20) and for maximal exploitation
of the available power, we get

agtr (Iny ® p") TCI'" (I, ® p*)) = LPy, (6.17)
which simplifies to
NL
ap" Y TiCuIfp* = LP,. (6.18)

i=1
Based on the assumption that Cgs = J?IM( L+r,-1) and using the identity
S(i,5,0)8(i,5,0)" = 1, (6.19)

that leads to ]_“Z-CSSI‘Z.T = ]_“k,NHCSSI‘EN +i» k € Z+, we can further simplify the transmit
power constraint and obtain

N
ap" Y TiCuIp” = Py (6.20)
i=1
6.2.2.1 Equal Power Allocation
For equal power allocation, it must holds that

Prx

T T__x
FiCSSF' = s
p ; N

i=1,---,N. (6.21)

According to the definition of I'; in (6.5) and the identity in (6.19), we get
DiCoI) =02 (I,m ® (ese])) . (6.22)

Thus, the transmit power constraint is expressed as

pt (ILpM(X) (eie;r))p* _ B i=1,---,N. (6.23)

=0,
oiagN

6.2.2.2 Unequal Power Allocation

For unequal power allocation, the transmit power constraint is given in (6.20). From (6.22),
we can conclude that

N
Z FZCSSF;T = JgIMNLp- (624)

i=1
Hence, the transmit power constraint simplifies to

Ptx

2
s

(6.25)

2
Ipll; <

050y
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6.3 Precoder Designs in the Primal Domain

6.3.1 Precoder Design Based on Gradient Projection Algorithm

Since the MSE expression in (6.12) is highly non-linear in Cyy =
(I NL ® pT) rc.rt (Inr ® p*) and thus in p, we cannot find a closed-form expres-
sion for pept. Therefore, we use the Gradient Projection algorithm. To this end, we have to
compute the derivatives of MSE w.r.t. p and G.

OMSE _ Q 1o Qfl aa 01 (arcsin (R{Ro e 1227} SHYG?HE)
op T &= Jp
2 otr ((e,41 ®Iy) GHCq
—%st(@D) ((er+ ap) ), (6.26)
where
dtr (arcsin (R{Rux e 122}) EHG?HE)
Ip
NL NL

1 , B N . _ ) *
=52 D e diag (Cu) !/ (277128 £ Q& 224) ding (Cox) ' i Cusl [P

i=1 j=1

+ = Z e;F diag (Cxx)fl/2 ZEH"G?HE arcsin (%{Rxx e QA’“/’}) diag (Cxx)fl/2 eiI‘iCSSI‘Z»Tp*

NL
1 .
+ 3 E e; diag (Cxx)fl/2 arcsin (%{Rxx e”) 2AW}) ZH"G*HE diag (Cxx)fl/2 e;I';C.. I/ p*
i=1

NL
1 . .
-5 > el diag (Cux) 2 (R{Ruxx e 12} + QOR{Ryx e 124%}) diag (Cux)/* 1 Cus T} P,
=1

(6.27)
Q is defined in (5.16) and

NL

= T;Cq (er+1 ®1y) GHe;. (6.28)

=1

8tI‘ ((eT+1 ®IM) GHCXS)
op

The derivative of the MSE expression in (6.12) w.r.t. G is expressed as

OMSE
——— = 2diag (HCyH" + C,;,;) — diag (HCys (6,11 ®1)) — diag (H*Cy (6,41 ®Iyr)) .

oG
(6.29)
Thus, the optimal filter G, is obtained by setting (6.29) equal to zero and is given by

Gopt = 8ops (P, 7) = |diag (HCH" 4 C,,)) ™ diag (R{HC4s (e,11 ©Ly)})|,  (6.30)

where the |e| operator is applied element-wise to the matrix entries. The Gradient Projection
algorithms for equal and unequal power allocation are given in Algorithm 4 and Algorithm
5, respectively. In each iteration, the MSE expression is computed for different values of 7.
The value of 7 that leads to the minimal MSE is the optimal 7.



6.3 Precoder Designs in the Primal Domain 59

Algorithm 4 Gradient Projection Algorithm to obtain the FIR-QWF-Price precoder with
equal power allocation.

1: Initialization

P0), G(0) = 8opt (p(o)) , p=10and n =0
2: repeat
OMSE(,,y

33 P@+1) = Pm) — H (T)
. A\ —1/2
4 Pn1) = 4/ OZX; diag ((INML,, ® pT) I'C,I'" (INMLp QP )) / P(n+1),

where I" = Y e, @ T'; {Equal power allocation constraint}
5. 1 = argmin MSE(p(n+1), 7)

6: G(n—l—l) = 8opt (p(n+1)7 7_)

7 if MSE(n+1) > MSE(n) then
8: = pi/2

9: else

10: n=n+1

11:  end if

12: until [MSEre1) ~MSB | <€

MSE(,, =

Algorithm 5 Gradient Projection Algorithm to obtain the FIR-QWF-Price precoder with
unequal power allocation.

1: Initialization

P©), G0) = 8opt (p(o)) , u=10and n =20
2: repeat

o OMSE(,,) \ *
3: Pn+1) = Pn) — U op

Pix
4 Pt =4/ 524

!p(nﬂ) ||2_1 P(n+1) {Unequal power allocation constraint }

5. 7 = argmin MSE(pg41), 7)
6: G(n—H) = Zopt (p(TH-l)? 7-)

7 if MSE(n_H) > MSE(n) then
8: f=p/2

9: else

10: n=n+1

11:  end if

12: until [MSB(r1)~MSE(r | <e

MSE(,,, =
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6.3.2 Precoder Design Based on LCA

In this section, we recall the linear precoder design in [25] and apply it to the case of QCE
transmit signals for frequency-selective channels. The precoder aims at minimizing the MSE
under the constraint of unequal power allocation, where the receive processing is assumed to
be a scaled identity matrix, i.e. G = gI;. Note that the case of equal power allocation will
not be considered, since it must be solved with iterative algorithms and hence no benefits
in terms of computational complexity are obtained by using the LCA. However, applying
unequal power allocation and assuming a scaled identity processing at the receiver will lead
to a closed-form expression of the precoder, as detailed in this section.
Using the LCA and the appropriate expressions in (3.74) and (3.75), we get

MSE = tr ( |g]" H (2 Crx + g3, diag(Crx)) H

- gHanxs (e7'+1 & IM) - g*aq (ez+1 ® IM) CSXHH + |g|2 CT]”I)
+ tr ((ez—l—l X IM) Css (eTH X IM)) . (631)

The Lagrangian function is expressed by
£(P,g,\) = tr ( g H (a2Cyx + agp, ding(Cx)) HP

— gHo,Cys (€741 ® L) — g%y (eﬂl & IM) CoxH" + |9|2 Cnn)

Prix

(el © L) Curlerns 91) + (Il - )
sq

NL NL NL

T (lg*E (ai STS PTTCLITpreel + 4,8, S pTTiC LT p*em?) H"
i=1 j=1 i=1
NL NL
- gHaq Z eipTFiCss (e7'+1 & IM) - g*aq (62—5—1 ® IM) Css F;rp*e?HH)
i=1 i=1
Prix
+ tr (|g|2 Cm,) + tr ((e7T_Jr1 ® IM) Css (€711 ® IM)) + A (HpHg — ﬁ) . (6.32)
s—q

The KKT equations are then given by

L ( A NL NL NL
% = |g|2 043 Z Z e?HTH*ejFiCSSF]’rp* + ‘9‘2 Oél]ﬁq Z eiTHTH*eiFiCssI‘;Fp*
i=1 j=1 i=1
NL
— gay Z ICss (€741 ® Iny) Hey + Ap™ = Onarr,x1, (6.33)
i=1
oL (p, g, A . i
(ggg ) =g"tr (H (aiCxx + a,0, dlag(Cxx) HY + Crm) — oy tr (HCxs (6,11 @ Iny)) =0,
(6.34)
and
8‘C(paga)‘) o 2 Ptx o
— o = Ipll — 2oy ) " 0. (6.35)
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Multiplying (6.33) by p* from the left side and taking the trace leads to
NL NL NL

lg|” a2 tr (Z > el HTH*ejpTricssrop*> +[g[* ag By tr (Z e?HTH*eipTricssr?p*>
i=1 j=1 i=1

NL
— gagtr (Z p'T;Cy (6,11 @ 1) Hei> —Mplls=0. (6.36)

i=1

From (6.34), we get

agtr (HCxs (€741 @ Inyy)) = a tr (Z He;p'T,Cy (6741 ® IM)>
= g tr (H (aCxx + g, diag(Cux) H" + Cyppy) (6.37)

which when inserted in (6.36) gives the expression of A

_ |g|2 tr (Cpp) ola, ‘Q‘Qtr (Can)
- 2 - ) (638)
Ipll5 Pix

where we used (6.35). Inserting (6.38) in (6.33) and solving it for p, we obtain

NL 9 -1
tr (C
- (aq S § :eTHHHeJI‘ CLIT + 5,3 e'H"He I,CLIT + MINMLP>

. Pu,
=1 j5=1 =1

NL

> TiCL(ern @ Ly) H'e,. (6.39)

i=1

The optimal g is found by satisfying (6.35) with p from (6.39); that is

2
g= |0 aq(ZZeTHT T+1®IM) C;SI\]T
=1 j5=1

-2
2tr (C
<aq S j§ e/ H'He,T,C., T + 5, § eTH"He,I';C.I'T + MINMLP>

P,
=1 j=1 tx

1/2
FZC:S (eT+1 & IM) H*el) . (640)

Each value of 7 determines a different precoder vector p and a different scalar g, which in
turn determine the value of MSE. Therefore, the MSE expression is computed for different
values of 7. The value of 7 and the corresponding filters p and g that lead to the minimal
MSE are the optimal solutions.
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6.4 Dual Optimization Problem
6.4.1 Exact Dual Problem

To find the exact dual optimization problem, we first state the input-output relationship in
the uplink system model illustrated in Fig. 4.3; that is

Lp—1
=2 F (% (Z H}IC,py 21Tt — ¢ = 0]+t - m) +dgHt - m) .
(6.41)

Hence, the uplink MSE expression is given by

SUL1] — sVt — 7]l

=altr Z Z Z Z Fo Hi CPHTE [s"M ]t — 0 — £]s"M1[t — 6, — 6] TC, /*H, Fy)

21=0 £,=0 £1=0¢2=0

MSEYF =

p—1 Ly

+altr <Z Fg,CULFé,) +tr Z Z Fy E [dULt—é’]dULH[t—e’]}

=0 £,=0

=0 ¢=0

Lp—11-1
—aytr (Z DB [sU]t —7]s 0t — 0 0] TC;#QHZF%)

0 ¢=0
+tr (CL") . (6.42)

Lp—11-1
— g tr < Z F@H?C;;/Q’HT E [sY[t—¢— st — T]])

Since it holds that E [s [t,]sH [tg]] = Opr 1, if 11 # o, the uplink MSE expression recalculates
to

Lp—1Lp—1L—1+£}
MSE" _a tr Z Z Z Fy HM z/C 1/2 HTCULTC UQHM_EEFZ
0=0 £,=0 Al={}

Ly—1 Lp—1Lp—1
+altr (Z Fg/CULF£,> +tr| Y Y FyE [dUL [t —¢]dg "t - E’]} Fil

=0 £=0 £,=0

Ly—1 Ly—1

0'=0
+tr (Cg") - (6.43)

For comparison, we need to express the downlink MSE. Therefore, we state the downlink
input-output relationship as

t] = § GH;, (aq i Pys[t — ¢ — ']+ dg[t — E]) + Gnlt]. (6.44)

=0 £'=0
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Thus, the downlink MSE expression reads as

MSEP" = E [||8[t] — s[t — 7]|I3]
Ly—1Ly—1 L—1+£}

— 2 § E E HyyH
0=0 thy=0 Al=(,

(f Li GHy, E [dolt — 6:]dg[t — 6] Hy, G) +tr (GC,, G)

£1=04¢2=0

Ly—1 Ly—1
— agtr (Z GH,_,P,C ) g tr (Z CSSPH,Hﬁ_g,G> +tr(Css).  (6.45)

el

Section 5.4.1 proves that for flat-fading channels there is no MSE duality between the down-
link system with a CEQ at the transmitter and the uplink system with a CEQ at the receiver.
According to Section 5.4.3, there exists only an approximate dualtiy, when the LCA instead
of Price’s theorem is applied to compute the MSE expressions in the downlink and uplink
scenarios. In Section 5.4.2, we modified the covariance matrix Cg;dg to achieve the exact
MSE duality. Analogously, we draw the same conclusions for frequency-selective channels.
To this end, we have to find the matching parts and the non-matching parts between the
downlink and uplink MSE expressions.

First, we split the terms E [dg [t — Kﬁ]dgL’H[t — 6’2]] and E [do[t — ¢;]dB[t — £]] in the
uplink and the downlink systems into three terms

o diag (E [dgL[t—é’l]dgL’H[t—f’Q]D and diag (E [dolt — £]d8[t — &3]]), ¢, = ¢,

e nondiag (E [dg [t — ¢]dg" [t — K’Z]D and nondiag (E [do[t — ¢4]dB[t — 64]]), ¢4 = 0,
and
e E [dg [t — ¢]dg"" [t — eg]] and E [dolt — ¢]dR[t — 6]], ¢; # 0.

The above covariance matrices can be computed exactly with Price’s theorem according to
(3.87). Note that the LCA makes the second and third terms vanish.

Second, we compute the covariance matrices stated above according to Price’s theorem
and plug the resulting expressions in (6.43) and (6.45). Thus, the uplink and downlink MSE
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expressions calculate to

Lp—11-1

MSEY = q, tr Z > Fy diag (H)'C,/*"TCL'TC,/*H,) FE)
=0 (=0

Ly—1 Ly—1 L—1+¢,

+aztr | Y0 > FyHY, ,C PN TCLTC, ) *Hay g F))
=0 £,=0 Al=¢
e,

0 Ly—1  Q/2—1
+ < sin® (¥) a, tr ( Z F, Z 28R diag(CUL)1/2

™
=0 Ak=0

arcsin (R {nondiag (RYy) e 122%1) diag(CE,E)l/QFg)

Lpy—1 Lp—1

[ Y FiE [dULt—E’]dULH[ —e;]} Fll

0=0 £,=0
70

Ly—1 Ly—1
oyt (Z el el ) <oy (3 cttrcg ot

/4 0'=0
Lp—1

+ agtr (Z FZ,CULFE,> +tr (CUHY, (6.46)
£'=0

and

L—1Lp—1
MSEP" = agtr | Y ) GH,diag (PyCssP})) HEG)

=0 ¢'=0

Lp—1 Ly—1 L—1+4,

+agtr [ 30> > GHa Py CPHY, ,G
0=0 t=0 AL={,

0440,
) L-1 Q/2-1
+ = sin® (1) o tr (Z GH, Z 22 diag(Cly )2
77
=0 Ak=0

arcsin (R {nondiag (Ru) e 1225 1) diag(Cxx)1/2H5G>

=0 l2=0,02#0;
Lpy—1 Lp—1

— Q4 tr (Z GHT gngl ss) Oy tr (Z CSSPHHH Z’G)
0'=0

+ tr (GC,y,, G) + tr (Csg) - (6.47)
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By applying the identities in (4.39), (4.40), (4.41) and (4.42), the uplink MSE expression
recalculates to

L—1Lp—1
MSE"" = ay tr (Z > GH,diag (P, CsP}) H?G)
{=0 ¢'=0

Lp—1 Lp—1 L—1+¢}

‘|‘CY tr Z Z Z GHAK g/Pg/ CSSP ng E’G

=0 tL=0 AL={)

o
0 N Ly-1  Q/2-1
& 20y O H PINTET UL\ 1/2
+ = sin® (1) ik ( > Py Y & diag(CYy)
=0 Ak=0
arcsin (R {nondiag (RYy ) e 12251) diag(Cg;)lﬂPg,)
Ly—1 Lp—1
+ —tr Z Y PUE [dULt—E’]dULH[t—K’]} P,
=0 #,=0
oA

Ly—1 Ly—1
— Oy tr (Z GHT @/P@/ SS) Oy tr <Z CSSPHHH @’G>

K/

Lp—1
62 L (Z Pg/Csng,> + tr (Cgs) - (6.48)

ZI

By comparing (6.48) to (6.47) , we can see that all terms match except of the third, fourth
and seventh terms. The seventh terms can be matched by choosing

Oéq tr (Zé;p:_ol PZ/CSSPE)

b= o2 tr (GCppG)
(4.43) P
tr (GC,,,G) (6.49)

The obtained expression for 3 is the same as for flat-fading channels. In analogy to Section
5.4.2, we assume that G is a scaled identity, i.e. G = gIj; and thus from (4.40) and (6.49)
we get

g
— X (l/2H 6.50
o tr (Cpy) " ( )
Hence, the transmit power constraint in the uplink system holds true; that is
tr (TC ' T") = P (6.51)

For exact MSE duality, the third and fourth terms in the uplink and downlink MSE expres-
sions must additionally match.
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6.4.2 Approximate Dual Problem

By using the LCA instead of Price’s theorem, the third and fourth terms in the uplink
and downlink MSE expressions in (6.48) and (6.47), respectively, vanish. Thus, the MSE
expressions match. In other words, we can achieve approximate duality by applying the
LCA for the computation of the MSE.

After considering the approximate dual uplink system, the optimal MMSE equalizer F|t]
has to be designed. To this end, we state the compact input-output relationship as

utt] = u = Ft'", (6.52)
where
F=[F, F, - F, 4], (6.53)
t"" = Qcp (x1), (6.54)
UL — [X[t]UL’T x[t — 1]UL,T T L,+ HUL,T}T
= HVEsYL (6.55)
L-1
H" =) "S((, L, L, - 1) ® (H'C,/*"T), (6.56)
=0
and
SUL — [S[t]UL’T st —1)V%T ... sft—L,— L+ Q]UL,T}T‘ (6.57)

The uplink MSE is expressed in terms of the defined variables as

MSE" = E [[Ju™ = (e, @ L) s
= tr (FCyF") — tr (FCys (6,41 ® Iny)) — tr ((el,; @ Ins) CoFM)
+tr ((el,; ®In) Cos (€741 ® Inp)) . (6.58)
Hence, the optimal MMSE dual filter is then given by
F = (el,; ®Iy) CiCy . (6.59)

First, we apply Price’s theorem to compute Ci and CY and hence obtain the filter F.
The matrix T is given in (6.50). Second, the optimal filters in the primal domain can be
computed using the identities (4.39) and (4.40). The corresponding scaling factor 5 in (4.44)
can be expressed as

Pix
b= \/aq tr (FECF) (6.60)

6.5 Simulation Results

In this section, we compare the performance of the different linear precoding techniques
that were introduced above with the ideal WF precoder while assuming full Channel State
Information (CSI). We denote the precoders by
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e FIR-WF: the ideal FIR-WF, [70], where no CEQ is applied in the system.
e FIR-QWF: the FIR-Quantized WF that was introduced in Section 6.3.2.

e FIR-QWF-Apprxpua: the approximate dual Quantized WF that applies unequal power
allocation at the antennas. The resulting receive filter G is a scaled identity. This precoder
is derived in Section 6.4.2.

o FIR-QWEF-Priceeqpa: the FIR-Quantized WF based on Price’s theorem that applies equal
power allocation at the antennas. This precoder is detailed in Algorithm 4. The start value
is the FIR-WF precoder that is projected to fulfill the equal transmit power constraint.

o FIR-QWEF-Priceyeqpa: the FIR-Quantized WF based on Price’s theorem that applies un-
equal power allocation at the antennas. This precoder is detailed in Algorithm 5. The
start value is the FIR-WF precoder.

For all precoders, it holds that L, = L. To this end, we assume a BS with N = 64 or
N = 128 antennas serving M = 8 single-antenna users with 4-PSK or 16-QAM signals,
respectively. The numerical results are obtained with Monte Carlo simulations of 100 in-
dependent frequency-selective channel realizations of L = 3 from the i.i.d. channel model
and the mmW sparse channel model described in Section 4.6. For the mmWsparse chan-
nel, we assume that Ny = 2 and N,y = 10. The AWGN is also i.i.d. with variance one at
each antenna. The performance metric is the uncoded BER averaged over the single-antenna
users. For the blind estimation of the coefficients g,, we use a block length of T" = 128. The
numerical results are plotted in Fig. 6.1, Fig. 6.2, Fig. 6.3 and Fig. 6.4.

First, it can be deduced that all proposed linear precoders perform almost the same
for i.i.d. channels. The loss compared to the ideal WF reduces with increased quantization
resolution.

Second, the proposed precoders perform slightly different for mmW sparse channels. We
can see that the QWF-Price,eqpa and the QWF-Pricecqpa precoders perform the best and
have almost the same behavior. In the presence of the ISI, there is almost no much difference
between equal and unequal power allocation at the BS antennas.

Third, as observed in the case of flat-fading channels, a QCE system requires at most the
double number of antennas to obtain the same BER performance as in the ideal unquantized
case.

In summary, the performance improvement between the proposed linear precoding algo-
rithms that take into account the quantization distortions is too small and the performance
gap for the same system settings to the ideal linear system is still large. Therefore, we de-
cide to study non-linear precoding techniques with the hope that they offer a much better
performance.
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Fig. 6.1: Comparison between different linear precoders for 4-PSK signaling: N = 64, M =8
with the i.i.d. channel with L = 3.
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Fig. 6.2: Comparison between different linear precoders for 16-QAM signaling: N = 128,
M = 8 with the i.i.d. channel with L = 3.
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Fig. 6.3: Comparison between different linear precoders for 4-PSK signaling: N = 64, M =8
with the mmW sparse channel with L = 3.
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Fig. 6.4: Comparison between different linear precoders for 16-QAM signaling: N = 128,
M = 8 with the mmW sparse channel with L = 3.
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7. Flat-Fading Channels

As explained in Section 4.4.2, the signal vector x is designed rather than the precoder matrix
P. For every given input signal s and for each channel realization H, the precoding task is
to find

x =P (s, H). (7.1)

The task consists in designing the transmit vector x such that s = s holds true with high
probability to reduce the detection error probability. The symbol-wise precoder aims to
mitigate all sources of distortion

e the quantization distortions

e the channel distortions and the MUI, and

e the AWGN.

Our goal is to develop a problem formulation that jointly minimizes all three distortion
sources.

7.1 Transmit Power Constraint

The transmit power is allocated equally among the antennas. From (4.23), it follows that

Ptx
2=4/—1Iy. 2
VT (72)

Thus, the set T,,, n=1,---, N, reads as

Tn:']l‘:{\/%exp(j(%—l)%):izl,---,Q}. (7.3)

7.2 Optimization Problem
To formulate the optimization problem, we have to consider all distortion sources and find

a way to mitigate them one by one.

7.2.1 Mitigation of the Quantization Distortions

First, it is obvious that the quantization distortions can be omitted if we design the precoded
vector x such that

x € TV, (7.4)

73
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Fig. 7.1: Illustration of the relaxed polygon constraint for Q=8, © 2018 IEEE.

i.e. X = T. This would ensure that the quantizer Qcg(e) produces no distortion, and we
would have an undistorted transmit signal t = x. However, the QCE constraint in (7.4)
would lead to a discrete optimization problem due to the discrete nature of the set T. To
avoid this problem, we relax the discrete set T to the convex set X that represents the
polygon built by the @) scaled PSK points of the set T. Thus, the QCE constraint is relaxed
to a convex constraint that we call the relaxed polygon constraint. Fig. 7.1 illustrates the
relaxed polygon constraint for the case of Q = 8. Instead of designing x € T to completely
eliminate the quantization distortions, we design x € X" to minimize them.

The set X can be mathematically described by a set of linear inequalities. For ¢-bit polar
DAC s, i.e., where the transmitted data are constrained to be () scaled PSK symbols, the
polygon can be constructed by the intersection of ()/4 squares that have an angular shift of
27/Q. To this end, we define the rotation matrix R; of angle g; = %(2 —1) as

R, = [f‘;sfﬂ zg;g} @Iy, i=1,..,Q/4. (7.5)

The system of inequalities that considers the feasible set, i.e. the relaxed polygon constraint,
and hence relaxes the constraint in (7.4) is given by

T [P,
[RlT ~RT--. Ré —Ré} x < Wt cos (%) 1ng, (7.6)

where x = [R{x}T %{X}T}T. Since Ry = Iy, the first 4V inequalities in (7.6) define the
bounds for x. Hence, the relaxed polygon constraint, i.e. x € X%, is equivalent to

_ B TN 1o < 5 < )L LA
NCOS Q IN S < NCOS Q 2N

T P
and [Rg -RJ - -Ré —RE] % < /== cos (%) 1n(Q-1)- (7.7)

.

=E
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Fig. 7.2: Decision regions and SRs (in red) for different constellations, © 2018 IEEE.

This reformulation leads to significant computational savings since the final optimization
problem will be written as a linear program with bounded variables. As discussed in Section
7.5, it is beneficial in terms of computational complexity to have fewer inequalities.

7.2.2 Mitigation of the Channel Distortions and the MUI

Second, to minimize the channel distortions and the MUI, we look deeper into the properties
of the constellations. As illustrated in Fig. 7.2a and Fig. 7.2b, each constellation is defined by
thresholds that separate the distinct decision regions of the constellation points. In total, we
have as many contiguous decision regions as constellation points. For each outer constellation
point, the decision region has at least one infinite boundary. Therefore, we make use of
the idea of constructive interference optimization [42,43]. When the downlink channel and
all users’ data are known at the transmitter, the instantaneous constructive MUI can be
exploited to move the received signals further from the decision thresholds [43]. In contrast
to this, conventional precoding methods, e.g. MMSE, aim at minimizing the total MUI
such that the received signals lie as close as possible to the nominal constellation points.
Constructive interference optimization exploits the larger symbol decision regions and thus
leads to a more relaxed optimization.

Each constellation symbol lies within a Symbol Region (SR) that is a downscaled version
of the decision region. In contrast to the decision region, the SR has a safety margin denoted
by 0 that separates it from the decision thresholds. When each entry of the noiseless received
signal vector y belongs to the correct SR and thus to the correct decision region, the channel
distortions and the MUI are mitigated.
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7.2.3 Mitigation of the AWGN

Finally, the safety margin 0 has to be large enough such that, when y is perturbed by the
AWGN, the received signals do not jump to unintended neighboring decision regions.

7.2.4 General Problem Formulation

In summary, the problem formulation has to take into account the relaxed QCE constraint in
(7.7), the SR constraint for each received signal and maximizing the safety margin ¢. Thus,
the optimization problem for the symbol-wise precoder, which we call the MSM precoder,
can be written in general as follows

mfxé (7.8)
s.t. yl, € SRy, Vm (7.9)
and x € XV, (7.10)
where
y' = Hx (7.11)

represents the relaxation of y due to the relaxation of (7.4) to (7.7). Exact expressions for
the safety margin § and the SRs as a function of x are provided in Section 7.3 and Section
7.4 for PSK and QAM signaling, respectively.

This problem formulation depends on the input symbol vector s, which determines the
intended SR for each received signal and on the channel H. The optimization is run for
one specific value of the transmit power, i.e. Py, = N. Since the optimization variables
depend linearly on the square-root of the transmit power /P, it is sufficient to solve the
optimization problem for one transmit power value. Once the optimal relaxed solution x is
found, the transmit vector t is obtained as stated in (4.1).

7.3 Problem Formulation for PSK Signaling

7.3.1 SR for PSK Signals

In this section, we assume that the input signals s,,, m = 1,---, M, belong to the S-PSK
constellation. The set S in this case is defined in (4.13).

Each SR in the PSK constellation, as shown in Fig. 7.2a, is a circular sector of infinite
radius and angle 26. To find a mathematical expression for each SR, we rotate the original
coordinate system by the phase of the symbol of interest s,,, as illustrated in Fig. 7.3, and
introduce a new variable z,, that represents the signal ¢/ in the new coordinate system such
that

*

zm:y;n Sm’ m:L...’M
||
=y s,m=1--- M, (7.12)

since PSK signals have unit magnitude. The m-th SR, m = 1,--- , M, can be hence described
by

R{zn} >0, (7.13)
3z} < (R{zm} — &) tand, (7.14)
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where §' =

= 9 Note that the inequality in (7.13) is already fulfilled if the inequality in
(7.14) is satisfied. In the vector notation, the vector z can be expressed as

S zm 1 Y

&' R{zm}

Fig. 7.3: llustration of the PSK SR in the modified coordinate system.

z = diag(s™")Hx
= Hx, (7.15)
where
H = diag(s*)H. (7.16)
Hence, all M SRs can be compactly described as
13{z}| < (R{z} — 1) tanb, (7.17)

as also given in [43]. When using the following real-valued representation

ni) = [reity —spny] 509 - a (7.15)

—A
~ ~ 1 | R{x _

S{z) = [3() R(}] {%J{LXH _ Bx, (7.19)

_B

the constraint in (7.17) can be rewritten as

B —tanfA 1] |Xx
cos 6

—B — tanfA colsé']'M:| [5] < Oanr. (7.20)

7.3.2 Optimization Problem with the Relaxed Polygon Constraint

Finally, the optimization problem for the symbol-wise precoder with PSK signaling is ob-
tained by combining (7.8), (7.20) and (7.7) and and is expressed for the case of Py = N
as

B —tanfA colsalM 0o/
max [03y 1] vst. |[-B—tanfA ——1y | v < [COS < > 1 ]
E On(Q-1) Moy

(0. ¢]

and [ €08 (0 )12 ] <v< [COS (Q) 12N] , (7.21)
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where v1 = [XT 5}. The resulting optimization problem is a linear programming problem
for which there exist very efficient solving methods [71]. In order to solve the problem for
different P values, it is sufficient to scale the solution of (7.21) by £x due to the linearity
of the problem.

When the optimization terminates, the optimal signal x € X* is found. The signal t that
goes through the channel is obtained as described in (4.1). In other words, each entry in x
gets mapped to the corresponding CE point depending on the circular sector that it lies in.

7.3.3 Safety Margin for PSK Signals
The safety margin § in (7.8) can be expressed for the PSK case as

0 = mind,,

= min (sin(@)R{z} — cos(0) |I{z}]), (7.22)

where the operator |e| is applied element-wise to the entries of 3{z}. Note that an equivalent
objective function was introduced in [22] in the context of continuous-phase CE precoding for
PSK signaling. In [22], the strict CE constraint is relaxed to the convex unit circle, whereas
in our work the QCE constraint is relaxed to the linear polygon constraint. Consequently,
due to the linear objective function and the linear constraints, our optimization problem can
be formulated as a linear programming problem unlike [22].

7.3.4 Interpretation of the Safety Margin ) for PSK Signals

The safety margin § is a parameter that affects the receiver Signal-to-Noise Ratio (SNR) and
the SER. These relationships will be given for the relaxed problem; that is the quantization
is omitted and we consider the relaxed received signal y’ instead of y.

7.3.4.1 Safety Margin vs. Receiver SNR
The receiver SNR at the m-th user is given by

E(ly.°
SNR,, = M —E [ygnf] , (7.23)
since we assume unit-variance AWGN. The expected value can be computed by averaging

over N, transmit signals. Hence, we get

1 O /607
SNR,, > — > <sin9> . (7.24)

Thus, we can conclude that maximizing the safety margin ¢ leads in turn to maximizing the
lower bound of the receive SNR at each user.

7.3.4.2 Safety Margin vs. SER

The statistics of the AWGN in the modified coordinate system do not change, since it just
consists of a rotation. We denote the modified noise vector by 7, where 1) ~ CN¢ (0y7, Lns).
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The SER represents the probability that the entries of z + n lie outside the corresponding
decision regions. The SER of the m-th user for the ¢-th transmission can be then expressed
as

SERS? =Pr (3{27(7?} > 0) (Pr ((%{ﬁm + 201 > O) A (J{nm} >

(t)
cos(6)

(t)
+Pr (m{ﬁm + Z7(7?} 2 O) A (g{ﬁm} < =2[S{zn} - C(fSnEQ) - %{ﬁm}tan(9)>> >

(*)
+Pr (S{z} < 0) (Pr ((%{ﬁm +zm} > 0)A (%{ﬁm} < —Ci’z 5 é}%{ﬁm}tan(e))>

+ R{7,} tan(0 )))

(
(t)
( R{ 7 + z } > O) <\S{77m} > 2 ‘\s{z(t)}} + — Om cos(0) + R{7,, } tan(d ))) )

+

Pr ((R{7 + D) < 0))

(t)
- /%{ )y ; (erf (cjs(ﬁ) i tan(6 )>

(t)
+ erf (2 ‘\s{z }| + ——= o cos(0) + {7, } tan(6 )) )%emﬁ’"}2 dR{7m}- (7.25)

Since the erf function is monotonically increasing and it holds that ¢®) < (5§,?,Vm and
(t)
3%{2,(,?} > an(e) we obtain

>0 5% 1 - 12
ERY) < 1—/ fl—— im — ¢ Mim} i }- 2
SER,,) < er (c + R{n }tan(9)> ﬁe dR{7 } (7.26)

Gk os(6)

Thus, the SER at the m-th user averaged over a transmission block of length N, is upper
bounded by

SER, <1 - —S Z / 0 ° (—) + R{7l} tan(0 >) %e—%{ﬁmp AR{7m},  (7.27)

which means that maximizing § minimizes the upper bound on the SER.

7.4 Problem Formulation for QAM Signaling

7.4.1 The Need for an Additional Degree of Freedom «

In this section, we assume that the input signals s,,, m = 1,--- , M, belong to the S-QAM
constellation that is defined in (4.14). As explained in Section 7.2, the safety margin  has to
be maximized such that the entries of the noiseless received signal y belong to the intended
SRs. The SRs in turn are determined by the constellation set S and the safety margin J.
Hence, the maximal value is limited by the coordinates of the inner constellation points; that
is

5<1. (7.28)
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(a) Shifted coordinate system for R {s;,} > 0and  (b) Shifted and rotated coordinate system.
S{sm} > 0.

Fig. 7.4: Hlustration of the QAM receiver SR in the shifted and in the shifted and rotated
coordinate system : {1, € {2, 00}.

Independently of the available transmit power, the entries of y cannot have a distance to the
decision thresholds larger than 1. Hence, the available transmit power cannot be exploited
to the fullest. This results already in a limitation of the problem formulation.

Thanks to the receive processing G, we can introduce an additional degree of freedom «
such that the entries of the received signal y do not have to belong to the SRs of the set S
but rather to a scaled version of them; that is, the QAM constellation at each receiver gets
scaled by «. The receive processing G has to rescale the received signals to their nominal
positions before the decision block. Thus, the constraint in (7.28) is replaced by

§<a, (7.29)

where « has to be jointly optimized with 0. Note that maximizing ¢ results in turn to
maximizing «, which leads to a maximal exploitation of the available transmit power. Thus,
the entries of the signal vector x will get closer to the polygon corners, which decreases the
variations between t and x.

The factor o denotes the expansion or shrinkage factor of the constellation at the re-
ceiver side depending on the available transmit power P;,. As explained in Section 7.2, the
optimization problem is formulated for the specific case, i.e. P, = N.

7.4.2 Scaled Symbol Region for QAM Signals

To describe the SRs for QAM signaling after considering «, we define a new coordinate
system, that is a shifted and rotated version of the original coordinate system. First, the
original receiver constellation system is shifted by o,,

Om = (S —sgn (Sp)), m=1,---, M. (7.30)
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We get the following expressions for the received and the desired signal in the intermediate
coordinate system depicted in Fig. 7.4b

Ym(o) = Ym — Om (7.31)
Sm(om) = XSm — Om
739 sgn (Spm) - (7.32)

Second, the intermediate coordinate system is rotated by the phase of the symbol of
interest Sy,(,,,)- So the signal z,, which represents the received signal y;, in the modified
coordinate system, is given by

Ym(o Sy
PO O

,m=1-- M. (7.33)

|Sm(0m)|
The m-th SR, m =1,--- | M, as shown in Fig. 7.4b, can be hence described by
R{zm} > V26,

(7.34)

Rizn} < \/(aE, — 67 + (aka,, —6)% (7.35)
S{zm}| < <§R{zm} - ﬁa) , (7.36)
(7.37)

(7.38)

%{Zm} < _%{Zm} + \/§ (ang - 5) )
S zm} > R{zm} — V2 (aty,, —9),.

Note that &, and &, € {2,00} depending on which constellation point the symbol of
interest s, corresponds to. If s,, is one of the outer constellation points, then at least &;, or
&,,, must be equal to co. Moreover, (7.34) and (7.35) are inherently fulfilled by (7.36), (7.37)
and (7.38). In the vector notation, the vector z can be expressed as

z = % diag (sgn(s*)) (Hx — a (s —sgn (s))) (7.39)
= Hx — ac, (7.40)
where
H = % diag (sgn(s*)) H, (7.41)
c= 1 diag (sgn(s*)) (s —sgn(s)). (7.42)

V2
Thus, all M SRs can be compactly described by
3z} < (Riz} - V20Lu). (7.43)

Mz} < —R{z} + V2 (aky — 51y), (7.44)
3z} > R{z} — V2 (ak, — 61y). (7.45)
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When using the following real-valued representation
V= [R{HA -3{A}] (7.46)
W = [3{H} R{A}], (7.47)
the constraint in (7.45) can be rewritten as
W-V 1y R{c} —S{c}
W _ &
WiV 1 {?}{E}g{j}{i}\/ﬁ@ V2= Our (7.48)
WV Ly R{c}+S{c} -~ v2E |- "

By adding the first line to the fourth and the second line to the third, the latter constraint
recalculates to

X

W-V 1y R{c}—-S{c}]|[ _
-W-V 1y R{c}+3{c}
Opov V21y -6 V26| < Oupr. (7.49)

a
Onon V2 1y =3

7.4.3 Optimization Problem with the Relaxed Polygon Constraint

We are interested in maximizing the safety margin as presented in (7.8). In contrast to the
PSK case, there is a constraint on ¢ in the QAM case, stated in (7.29), which is inherently
fulfilled by (7.49). Combining (7.8) with the SRs constraint in (7.49) and the relaxed polygon
constraint in (7.7), we get a linear programming problem for the design of the symbol-wise
precoder for QAM signaling. The optimization problem for the case of P, = N is given by

[ W-V 1y R{c}—S{c}
T aM
max [03y 1 0] vst. | Oyaoy V21y —¢, < [COS <£> 1 ]
Oron V2 1y -£ Q) TN@-4)
L B Ove-9y  On-y
— CoS (%) 1on cos (%) 1on
and 0 <v< o , (7.50)
i 0 00
where v = [)‘(T V26 a}. In order to solve the optimization problem for different Py

P

values, it is sufficient to scale the optimal solution of (7.21) by =

optimization problem.
Again the optimized vector x € XV goes through the quantizer, as stated in (4.1), to
obtain the transmit vector t.

due to the linearity of the

7.4.4 Safety Margin 0 for QAM Signals
For the QAM case, the safety margin ¢ in (7.8) can be expressed as

1 N 1 o _
7 (R{z} — [S{z}]) ,0&, — 7 (R{z} — 3{z}), a&,

1

V2

0 = min min (
m

(R{z} +3{z}) ),
(7.51)

where the operator |e| is applied element-wise to the entries of 3{z}.
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7.4.5 Interpretation of the Safety Margin § for QAM Signals

Again we consider the relaxed problem; that is the quantization is omitted and we consider
the received signal y’ instead of y.

7.4.5.1 Safety Margin vs. Receiver SNR
The receiver SNR at the m-th user can be approximated by

N,
1 S
SNRy, & - > (@")?q?. (7.52)
S 4=1
Since ¢ < «, we get
1 &
- (1122
SNR,, > — > (69)%q2. (7.53)

S =1

Thus, maximizing  results in maximizing the lower bound of the receiver SNR.

7.4.5.2 Safety Margin vs. SER

The statistics of the AWGN in the modified coordinate system do not change, since it just
consists of a rotation. The shift is applied only to the noiseless received signal y. We denote
the modified noise vector by 1, where ) ~ CN'¢ (07, 157). The SER represents the probability
that the entries of z + m lie outside the thresholds that are represented by the black lines
in Fig. 7.4b. We consider the worst case, where the decision region is bounded from all four
sides. Additionally, we assume that the distribution of the entries of z is uniform. Therefore,
the SER of the m-th user for the ¢-th transmission is upper bounded by

SER® < Pr ((o < ROV + R} < 2\/§a<t>) A (%{ﬁm} > V260 + %{ﬁm}))
+Pr((0 < R+ Riin} <2v200) A (Sim} < ~V200 — Rin} ) )
+Pr (02 RE}+ R} < 2v200) A (S} 2 2v200 = V260 — R} ) )
( ) (

S}
+Pr (0 < REDY 4 R{Fim) < 2v200) A (S{fim} < —2v2a + V260 + nmR>>

+1—Pr(0 < R{zV} + R{A,} < 2v2a) (7.54)
230 —R{=D}
_ _ ®) = ) _ /250 _ {7
1+ /afe{zﬁ,?} (1 (erf (\/§5m + %{nm}> + erf (2\/504 V25 %{nm}>>)
L o Rim¥ qpis
— AR i .
N R } (7.55)

Since the erf function is monotonically increasing and it holds that ) < 5t < a®, ¥m and
\/55%) < %{zﬁ,ﬁ)} < 2v/2a® — \/559, we obtain

2\/501(1)7\&6%) 1

SER( < 1+ / (1—2erf (\/iag?w%{ﬁm})) e Rl AR{A.}  (7.56)

—2v/20(") 4264

S

2v3a() /250 1 L,
<1+ / 1—2erf<\/§5(t)+§)?{ﬁm})) o RnY AR{ALY. (7.57)
9\ /Balt) 41/35(0)

S
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Thus, the SER at the m-th user averaged over a transmission block of length Ny is upper
bounded by

SER,, <1+ —
S +N

s

Ne  n2yBald— a5
L / (1~ 20xf (V35O 4 (7)) ) = e M0 A}
m ﬁ mJ -

(7.58)

= J—2v2a) 426

Since erf is a monotonically increasing function, larger values of § make the upper bound of
the SER decrease. Note that larger values of 9 lead inherently to larger values of «.

7.4.6 Symbol-wise Processing vs. Block-wise Processing

One might ask why we opt for symbol-wise processing and not block-wise processing. The
factor a cannot be communicated to the receiver and hence has to be estimated. The esti-
mation is based on averaging over a block of T" received signals. Thus, one expects that the
design of a at the transmitter has to be computed for the same block length, i.e. B = T.
However, fixing « for a certain block length B means that B vectors x have to be de-
signed jointly with a single factor « instead of having a distinct factor a for every vector x.
Additionally, the joint optimization of B vectors results in a higher-dimensional linear pro-
gramming problem, where the number of inequalities is increased by a factor of B. Hence,
block-wise processing not only increases the computational complexity of the problem as
can be deduced from Section 7.5 but also reduces the degrees of freedom of the optimization
problem at the transmitter. This leads to the entries of the vector x moving farther from
the polygon corners, thus increasing the quantization distortions. This effect is illustrated
in Fig. 7.5, where the entries of e Hx, e} Ht and fe} Ht of an arbitrary user m are ob-
tained by transmitting 1024 16-QAM signal vectors through an i.i.d. channel of coefficients
Py ~ CNc(0,1), n=1,--- N, m=1,--- , M, where N = 64, M = 8 and = 4. The opti-
mization is computed for both symbol-wise processing, i.e. B = 1, and block-wise processing
with B = 4. As can be deduced from the plots, block-wise processing leads to a larger safety
margin with the relaxed vector x. However, after applying the quantization this gain is lost
and the symbol-wise processing is more robust against the quantization operation. This can

be further explained by the results in Table 7.1, which shows E [%}, the percentange

of entries of x that are distorted due to the quantization and the MSE between t and x.
We see that increasing B significantly increases the quantization distortion. Therefore, the

B=1] B=4
B |2} | 0.2176 | 0.4432
E [[|t —x][3] | 2.5458 | 12.6429

Table 7.1: Quantization distortion vs. B, © 2018 IEEE.

symbol-wise processing is chosen in this contribution, i.e, an optimal value of « is designed
for each vector x.
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Fig. 7.5: The noiseless received symbols at one arbitrary user m for an arbitrary i.i.d. channel
realization with N = 64, M = 8 and Q = 4, © 2018 IEEE

7.4.7 One Joint « vs. M Distinct o’s for M Users

Symbol-wise transmit processing followed by block-wise receive processing is reliable only if
the obtained values of o, i.e. a®, i = 1,---,T, do not vary much from one vector x® to
another. Otherwise, estimating the mean value of « at the receiver would not be sufficient
for correct detection. This explains why we choose one joint « for all users. If a different
value a,, per user is chosen, this will result in more degrees of freedom and the values
Qm, m=1,---, M, would fluctuate much more from one vector x to another, which worsens
the estimation result at the receiver. For a large number of users, the jointly designed « will
not vary much, since the norm of the input vector s will not fluctuate much from one
realization to another. This behavior is explained as follows.

For a given channel realization, 7" symbols are transmitted and the MSM method is
applied T times to get in the optimal case

Hx™) = oM™, (7.59)
The factor o can be then expressed as

) _ JEx,

(@) o
oV ="z =17 (7.60)
181,

and hence is upper bounded by
o < 1Bl <, _ i, €],

s, = sl

(7.61)

Due to the constant envelope property, we get Ht(")H2 = VN,Vi = 1,---,T. Thus, the
fluctuation of the upper bound of a? is determined by Hs(i)H ,- Since the entries of the
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vector s are i.i.d, the fluctuation of ||S(i)H , from one realization to another and for S > 4
diminishes by increasing its dimension, i.e. the number of users M. We recall that the MSM
method aims to maximize the safety margin ¢ that is upper bounded by «a as stated in
(7.29). Consequently, the MSM method will maximize « as well. As explained before, the
upper bound of a fluctuates less from one signal realization to another for a large number
of users and thus the optimal value of & has only small fluctuations in such cases.

To make the received signals belong to the nominal constellation, the receive processing
G, as explained in Section 4.7, is applied. For each time instant, the coefficients g,,, m =
1,---, M should be equal to the inverse of . However, the computation of the coefficients
Jm 1s based on blind estimation over a block length T'. Therefore, the resulting coefficients g,,
are ideally equal to the inverse of the mean value of o, i.e. g,, = 1/ E [a]. Hence, the designed
SR at the transmitter in the noise-free case, which is illustrated in Fig. 7.4a, is scaled by
1/ E[a] at the receiver before the decision operation. For the i-th transmission, the center
of the obtained nominal SR,,, corresponds to s%a®/E[a]. If a corresponds to E [a], the
nominal SR, after the receive filter G is situated in the center of the corresponding nominal
decision region, that is 37(%). However, if a(? is smaller than E [a], the center of the nominal
SR, shifts towards the left lower corner of the decision region of s and might pass over
it. Analogously, if (¥ is larger than E [a], the center of the nominal SR,, shifts towards the
right upper corner of the decision region and might pass over it, too. To illustrate the passing
over phenomenon, we introduce the nominal safety margin d,,,, which is given by

Onom = Min (% —2,2— %)
o (g -2 )
2 ﬁ (min (0a,.; apnr) — 2max (E [a] — amin, 0max — E[@]))
= ﬁéamin 2A«
min §¢)

5 — 2Aa, (7.62)

nom Z Tl—
>ie1 a® /T

where aumin, Omax, Oa,,, and o denote the minimal and maximal value of o« and their
corresponding safety margins, respectively. Aa represents the maximal relative fluctuation
of a. For the optimization with one single «, it is defined as

Qmax

min o max a(?)
Aov=max |l - —F——— ———— 1], (7.63)
> aW/T 37 a)/T

whereas it is expressed as

min oz(i) max oz(i)
Ao =maxmax | 1 — ! !

. 1
" Z?ﬂ O4%)/77 Zszl O‘%)/T

(7.64)
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for the optimization with M distinct o’s for the different users. In the case that d,on gets
negative values due to the large fluctuation of «, i.e. Aq, it implies that the nominal SRs
overlap in the noise-free case. To ensure a large positive number for d,om, Aa must be kept
as small as possible. In the best case, Aa must be equal to zero.

From (7.62), we can conclude that smaller fluctuations of « lead to larger values of dyom,.
This observation is justified by numerical results, where the MSM optimization is run for
T = 128 16-QAM symbols, for 100 i.i.d. channel realizations and for () = 4. The obtained
values for A« and 6,,,,, are averaged over the channels and shown in Table 7.2 and Table 7.3.
We can deduce from Table 7.2, where a common « is designed for all users, that the values

64 200
Aa | dpom | A | Opom
1.3]1-03]12]-02
051 02 |04 0.3
03] 02 ]03] 04

Eoowiz

Table 7.2: Aa and Gpom vs. N and M: single o, © 2018 IEEE.

of a fluctuate less and hence 6, increases by increasing the number of users. However, no
monotonic behavior of the fluctuations is noticed in Table 7.3, which shows relatively larger
values of A« and hence smaller values of d,,, compared to Table 7.2.

7.5 Computational Complexity of MSM

7.5.1 On the Computational Complexity of General Linear Programming Prob-
lems

In this section, we study the computational complexity of the simplex method for a general
linear programming problem with bounded variables in inequality form:

maxcix s.t. Ax<b
X

and 1 <x < u, (7.65)

where ¢, x, l and u € R", A € R™*"™ and b € R™.

64 200
Aa | dpom | A | Spom
1.2 ]1-02 | 1.1 -0.1
1.1 1 -08 {05 0.3
1.6 -2 0.7 | -0.4

Eoowiz

Table 7.3: Aa and Gpom vs. N and M: M o’s, © 2018 IEEE.
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First, we have to make sure that the entries of b are non-negative. To this end, we change
the signs of the inequalities that correspond to negative entries in b. So we get

minc’x s.t. Ax Z b
- <

and 1 < x < u, (7.66)

where b € R’ and some inequalities hold with the sign < and others with the sign >.

Second, the linear programming problem is transformed to the canonical form by in-
troducing m slack and surplus variables denoted by x,. Additionally, a artificial variables
denoted by x,, with 0 < a < m, are added to set up an initial feasible solution [72]. The
equivalent enlarged problem reads as

minc'x s.t. A

and 1

I
IN T

IN ™
i

u, (7.67)

where A = [A A, I,] € Rxmimta) T — [xT xT xT] € Rrtmte 1T = 1T oF ]
T

and ul = [u o) +a}. The matrix Ay is a diagonal matrix with entries equal to 1 or
—1 depending on whether the inequality sign in (7.66) is < or >, respectively. The number
a of artificial variables is defined by the number of negative entries in Ag, such that the
concatenation of m columns from [AS Ia} can construct the identity matrix I,,. For the
special case b = b, i.e. the entries of b are non-negative, Ay = I,,. Hence, no artificial
variables are needed, i.e. a = 0.

With the use of the simplex method to solve (7.67), the number of operations (multipli-

cation and addition pairs) on each iteration is given by, [72, p.83],
3m or (m+1)(n+a+1)+2m, (7.68)

depending on whether pivoting is required or not. According to [72, p.86], in most iterations
no pivoting is required and hence less computation is needed.

7.5.2 Computational Complexity of MSM for PSK Signaling

As can be seen from (7.21), there are m = 2M + N (Q —4) inequalities and n =
2N + 1 variables. The number a of artificial variables reduces to 0, since the vector

bl = [O;FM Cos (£> o 4)} has only non-negative entries. Thus, the number of opera-

tions (multiplicatiocil and addition pairs) on each iteration calculates in this case to
6M +3(Q—4)N, (7.69)
or
2N +4MN +8M + 2+ (Q —4) (2N? + 4N) . (7.70)

For massive MIMO systems, where N > M, the number of floating-point operations for
each iteration is on the order of

#FLOPspgk = O (AMN + (Q —4) (2N? +4N)) . (7.71)

For the special case of one-bit quantization, i.e. () = 4, the computational complexity of the
MSM method is linear in N and M.
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Fig. 7.6: Uncoded BER performance for a MU-MIMO system with N = 64 and M = 8 for
different precoding designs and 4-PSK signaling, © 2018 IEEE.

7.5.3 Computational Complexity of MSM for QAM Signaling
From (7.50), we have m = 4M+N (Q — 4) inequalities and n = 2N +2 variables. The number

a of artificial variables reduces to 0, since the vector bT = [OEM 41 COS (%) 1]T\,(Q_4)] has

only non-negative entries. Thus, the number of operations (multiplication and addition pairs)
on each iteration calculates in this case to

12M +3(Q —4) N, (7.72)
or
2N 4+ 8MN +20M + 3+ (Q — 4) (2N* + 5N). (7.73)

For massive MIMO systems, the number of floating-point operations for each iteration is on
the order of

#FLOPsqam = O (8MN + (Q —4) (2N? + 5N)) . (7.74)

For the special case of one-bit quantization, i.e. () = 4, the complexity is linear in N and
M. Note that the sparsity of E can be exploited by deploying the revised simplex method
to reduce the number of required operations in the case of @ > 4 [72, p.89].

7.6 Simulation Results

For the simulations, we assume a BS with N = 64 antennas serving M = 8 single-antenna
users. The channel H is composed of i.i.d. Gaussian random variables with zero-mean and
unit variance. The numerical results are obtained with Monte Carlo simulations of 100 in-
dependent channel realizations. The additive noise is also i.i.d. with variance one at each
antenna. The performance metric is the uncoded BER averaged over the single-antenna
users. For the blind estimation of the coefficients g, we use a block length of T" = 128.
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In the first simulation set, depicted in Fig. 7.6, we assume full CSI, choose QPSK modula-
tion and compare the uncoded BER as a function of the transmit power P,y for the following
precoders:

e The proposed MSM method with Q) = 4.

e The SQUID precoder presented in [29] with @) = 4, where the precoder design criterion
is the symbol-wise MSE between u and s under a quantization constraint. The latter is
equivalent to the QCE constraint for the special case () = 4. The SQUID precoder is a
semi-definite relaxation based algorithm.

e The quantized WF precoder denoted by "QWEF” from [25] with @) = 4. This precoder
design is based on linearizing the quantizer and considering the resulting quantization
noise as additive Gaussian noise.

e The CE precoder presented in [38] denoted by ”CE [38]”, with Q = oo, where the symbol-
wise MSE between y and a scaled version of s is minimized under the CE constraint.
The scaling factor that is applied to s is jointly optimized.

e The CE precoder from [22] denoted by CVX-CIO that aims at maximizing the construc-
tive interference under the CE constraint.

e The WF precoder followed by the CE quantizer with () = oo denoted by "WF-CE” | and

e The WF precoder in the ideal case denoted by ”The ideal WF” from [70], where neither
quantization nor the CE constraint is applied to the transmit signal.

It can be seen that the CE constraint leads to a loss of almost 2 dB at a BER of 1072
compared to the ideal WF and a loss of less than 1.5 dB when using the unquantized symbol-
wise precoders proposed in [38] and in [22]. The one-bit quantization, which represents the
QCE case of ) = 4, leads to more losses that depend on the precoder design. With the use of
the linear precoder QWF a loss of more than 4 dB at a BER of 1072 is noticed. However, the
non-linear precoders MSM and SQUID improve the performance drastically and show a loss
of slightly more than 2 dB compared to the ideal case at the cost of higher computational
complexity. Nevertheless, the proposed MSM method is more efficient than SQUID as it is
based on a purely linear programming formulation.

In the second simulation set, depicted in Fig. 7.7, the uncoded BER is plotted as a
function of the transmit power P, using the MSM precoder for different modulation schemes,
for the i.i.d. and the mmW (Ny = 2 and N,y = 10) channel models and for two different
values of Q): ) = 4 and @) = 8. Higher values of () are omitted since the obtained results do
not differ much from the case of @) = 8. In addition, it is beneficial in terms of computational
complexity and power consumption to keep @) as small as possible. The performance obtained
by the MSM method is compared to the performance of the ideal linear system. It can be
deduced from the plots that the non-linear approach improves the performance much better
than the linear approaches discussed in Chapter 5. As expected, the higher the number of
symbols in the modulation scheme, the higher the BER for a given P, value. However, the
increase of the DAC resolution ¢ and thus the resulting increase in () leads to a performance
improvement, which depends on the modulation scheme.

In the third simulation set, the same comparison is conducted, but with doubling the
number of antennas of the quantized system. The results are plotted in Fig. 7.8. It can be
concluded that the performance of the ideal system can be achieved with a QCE, which has
less than the double number of antennas. When the quantization resolution is increased, less
antennas are required to achieve the same performance as the one of the ideal linear system.
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Fig. 7.7: Uncoded BER performance for a MU-MIMO system with N = 64 and M = 8 for
different modulation schemes: MSM (solid lines), the ideal WF (dashed lines).

Since the optimization problem in [22] has some similarities with our proposed MSM,
we compare the uncoded BER performance for both designs in Fig. 7.9. In our simulation,
we pass the entries of x obtained by the CVX-CIO method through the CE quantizer to
get QCE signals. Additionally, we introduce the method denoted by CVX-CIO-noCE that is
the same as CVX-CIO with an instantaneous power constraint instead of the CE constraint.
As can be seen from the results, CVX-CIO and CVX-CIO-noCE do not perform optimally
under the constraint of QCE transmit signals. However, the loss compared to MSM reduces
when the quantization resolution increases.

In the last simulation set, we counted the average number of iterations required by the
MSM precoder. The results are summarized in Table 7.4, where we observe that around 50
iterations are required for all modulation schemes for () = 4 and more than 100 iterations
for Q) > 4.



92 7. Flat-Fading Channels

10°
= 1 = 1
= €3]
as) % as)
3 s | 3 :
] * ]
g O g
=1 “ “ =1
- *‘ a | =] |
L \e |
) 10 15 20 20
P, (dB) P, (dB)
(a) i.i.d. channel model: Q = 4 (b) i.i.d. channel model: @ =8
10°
-1 L
e 0 .
M =
as) L as)
ERl 2
Q C Q
O <
5 5
= 1073
—4 ‘w ‘9
10 —-10 ) 0 5 10 15 20
Py (aB)
(¢) mmW channel model: Q =4 (d) mmW channel model: @ = 8

Fig. 7.8: Uncoded BER performance for a MU-MIMO system with M = 8 for different
modulation schemes: MSM with N = 128 (solid lines), the ideal WF with N = 64 (dashed
lines).

Nb. ofiter | Q=4 | Q=8| Q=16
4-PSK 45.77 | 121.05 | 187.63
8-PSK 50.15 | 123.91 | 191.55
16-PSK 54.94 | 128.74 | 199.61
16-QAM | 43.25 | 120.42 | 187.32

64-QAM | 43.04 | 120.30 | 188.30

Table 7.4: Average number of iterations of MSM for the i.i.d. channel model with N = 64
and M =8, © 2018 IEEE.
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8. Frequency-Selective Channels

8.1 Input-Output Relationship

In the case of frequency-selective channels, the relaxed noiseless received signal vector is
given by

y'[t] = H[t] x[t], x[t] € XV, (8.1)

To mitigate the resulting ISI, multiple time instants have to be jointly considered in the
optimization problem. Therefore, we consider in general signal blocks of length B. To this
end, let us define the input signal block as

splt] = [s[t]T s[t—1T - sft—B+1]"]" (8.2)
and we aim to design the optimal transmit signal block
xpl] = [x[f)]* x[t—1T - x[t—B+1"]". (8.3)

The relaxed noiseless received signal block y5[t] = [y'[{]" y'[t — 1T --- y'[t — B+ 1]"] B
is in general expressed as

Yi[t] = Hpxp(t] + yip[t], (8:4)

where Hp and y{g[t] denote the corresponding convolution matrix and the vector contain-
ing the Inter-Block Interference (IBI) due to the channel frequency-selectivity. The exact
expressions depend on the block length B and are given for different block lengths in Section
8.1.1 and Section 8.1.2.

8.1.1 Symbol-wise Processing: MSM-SP
In the case of symbol-wise processing, i.e. B = 1, we get

L-1

y' =y'[t] = Hox[t] + Y Hx[t — (. (8.5)
=1
This leads to the expressions
L—1
Hp = H, and  yglt] = Z Hx[t — /). (8.6)
=1

95
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8.1.2 Block-wise Processing
8.1.2.1 Without Cyclic Prefix: MSM-BP

In this section, the precoding task is conducted for a block of length B, with B > L, such
that we get only one interfering block. The noiseless received block signal is given by

le[t] = HBXB[t] + HIBIXB[t — B], (87)
where
L-1
Hp = Z T, (B,¢) ® Hy, (8.8)
=0
L1
Hy = » Yo (B,() ®H, (8.9)
=0
T, (B, () = {OB—” IH] (8.10)
OB
Ty (B, 1) = { 0515 ] . (8.11)
I, O/;p_r14¢

This leads to the following exact expression:

Yigiltl = Hisixplt — BJ. (8.12)

8.1.2.2 With Cyclic Prefix: MSM-BP-CP

To remove the IBI, we append to each block a cyclic prefix of length L —1 and choose a block
of length B > L. Note that due to the cyclic prefix the power per useful transmit vector t[t]
reduces to Ptxﬁ. The resulting noiseless received vector is given by

y/B [t] = HcirCXB [t]; (813)
where
L—1
Hee = Y (Y1 (B.0)+ Y2 (B,0) ® Hy (8.14)
(=0

is the block-circular channel matrix. Thus, we get
HB = Hcirc and yiBI[t] = OMB- (815)

8.2 Optimization Problem

The MSM precoder that was first introduced in Chapter 7, can be reformulated for frequency-
selective channels as

max (8.16)
xplt]
s.t. Y, [t] €SRy, m=1,--- ,MB (8.17)
and xp[t] € XV, (8.18)

Since the mathematical expressions of the SRs depend on the constellation set S, we introduce
the optimization problem of the MSM precoder for frequency-selective channels separately
for PSK signaling and QAM signaling.
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8.2.1 PSK Signaling

In analogy to the derivations introduced in

zp = diag(sp(t]")y's[t]

= Hpxalt] + g, (8.19)

where
I:IB = dlag(sB[t]*)HB (820)
5’131 = diag(sp [t]*>yiBI [t]. (8.21)

When using the following real-valued representation:

R{Hpxp[t]} = lye{ﬁg} —%{f{B}l ggi % ﬂ — Apxp (8.22)
~As —
S{Fgxsll) = (310} i) | T Baxe, (32

and the following definitions:

a=R{yp} — SV} (8.24)
b = R®{¥ip} + SH{Fimit (8.25)
the constraint in (7.17) applied on zp from (8.19) can be rewritten as
BB—tanﬁAB L‘glMB XB a
cos < |~
—BB — tan@AB ﬁlMB ) ~— |b . (826)

Combining (8.16), (8.26) and (8.18), the optimization problem MSM for PSK signaling can
be expressed for the case P,y = N by the real-valued linear programming problem

BB—tanéAB mlMB %
max [OZTNB 1} vg s.t. |—-Bp —tanfAp @11\/13 vy < b
B E®Ip 0NB(Q—4) COS (%) 1nB(Q-4)
and [_ o8 <@> Lave| oy < [COS (5> IQNB] , (8.27)
0 00

where vp = [X] (5}T.

8.2.2 QAM Signaling

In analogy to the derivations introduced in Section 7.4, the noiseless received signal in the
modified coordinate system, shifted by

op = a(sp[t] —sgn(sp[t])) (8.28)
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and rotated by the phases of the signals of interest in the shifted coordinate system, i.e.

SB(oB)[t] = OéSB[t] — O0p, (829)
is given by
1 . * /
=75 diag (sgn (spt])) (¥plt] — o (spt] —sgn (sp(t])))
= Hpxplt] + ¥ip — acp, (8.30)
where
1, = —= ding (sen (s5(1)) H (331)
A~/ 1 : * /
YiB1 = E diag (sgn (sp(t])) yisi[t] (8.32)
1 . .
cp = — diag (sgn (sp(t])) (splt] —sgn (sp[t])) - (8.33)
V2
When using the following real-valued representation:
A R A R t _
R{axl]) = (1) -] |50 — v, (5.34)
=V,
N - - R t _
S{Hpxplt]) = [$(Hs) R{A,)] {%gﬂtm W, (8.35)
—Wg
and the following definitions:
a=R{9p} — S{Im} 8.36)
b = R{Jip} + S{Fiwi}s 8.37)
the constraint in (7.9) applied on zp from (8.30) can be rewritten as
WB—VB ]-MB %{CB}—%{CB} %5 EEI
—WB—VB ]-MB %{CB}—F%{CB} b
20| < . 8.38
W+ Ve 1ys —%{CB}—%{C}—\/?€2 \2:5 = |-pb ( )
~Wg+ Vg 1yp —R{cs} + S{cp} — vV2¢, —a

By adding the first line to the fourth and the second line to the third, the latter constraint

recalculates to

WB—VB ]—MB %{CB}—%{CB} 2 E:l
—WB_VB ]-MB %{CB}—F%{CB} \/53(5 < b
Oypons V2 1lug -&, ~ |Ous

a
Oympons V2 1lug -& Omp

(8.39)
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Combining (8.16), (8.39) and (8.18), the optimization problem of the MSM precoder for
QAM signaling can be then for P, = N expressed by

max [OgNB 1 O] \'s:}
vB

[ WB—VB ]-MB %{CB}—%{CB}- %
—WB—VB 1MB ?R{CB}—F%{CB} b
s.t. OMB,QNB \/5 ]-MB —62 VB§ 0MB
Oypons V2 lyg —& Oup
E®Ip OnB(Q-4) OnB(Q-4)  cos <%) 1NB(Q—4)_
[_ cOS (%) 1onvp cos (%) 12NB_
and 0 < Vg 00 ; (8.40)
where v = [X5 V2§ al.

8.3 Computational Complexity

We recall the study of the computational complexity of linear programs in Section 7.5.1. Note
that the sparsity of the linear program in (8.27) and (8.40) can be exploited by deploying
the revised simplex method to reduce the computational complexity [72, p.89].

8.3.1 PSK

From (8.27), we have m = 2M B + N B (() — 4) inequalities and n = 2N B + 1 variables. The
number a of artificial variables is defined by the number of non-negative entries in a and
b. We introduce the ratio € to denote the percentage of non-negative entries in a and b. It
holds that a = 2M Be. Note that € = 0 for MSM-BP-CP due to (8.15).

According to Section 7.5.1, the number of floating-point operations for each iteration,
under the assumption of massive MIMO systems, is on the order of

#FLOPspsk = O (AMNB* 4+ (Q —4) (2N*B* + 2NM B%)) . (8.41)

For the special case of one-bit quantization, i.e. () = 4, the complexity is linear in N and M
but quadratic in B. For ) > 4, the complexity becomes quadratic in N and B.

8.3.2 QAM

From (8.40), we have m = 4M B + N B (() — 4) inequalities and n = 2N B + 2 variables. The
number a of artificial variables is defined by the number of non-negative entries in a and
b. We introduce the ratio £ to denote the percentage of non-negative entries in a and b. It
holds that a = 2M Be. Note that € = 0 for MSM-BP-CP due to (8.15).

According to Section 7.5.1, the number of floating-point operations for each iteration,
under the assumption of massive MIMO systems, is on the order of

#FLOPsqan = O (BMNB? + (Q — 4) (2N?B* + 2NM B%)) . (8.42)

For the special case of one-bit quantization, i.e. () = 4, the complexity is linear in N and M
but quadratic in B. For ) > 4, the complexity becomes quadratic in N and B.
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8.4 Simulation Results

In this section, we compare the performance of the different linear precoding techniques that
were introduced above with the ideal WF precoder while assuming full CSI. We denote the
precoders by

For the simulations, we consider the i.i.d. channel model with the exponential power
delay profiles of L = 3 and L = 6 given in Table 4.1 and Table 4.2. Assuming full CSI,
we compare the performance of the different precoding techniques that were introduced in
this chapter with the ideal FIR-WF precoder of length L introduced in [73]. We denote the
precoders by

e FIR-WF: the ideal FIR-WF, [70], where no CEQ is applied in the system.
e FIR-WF + CEQ: the ideal FIR-WF, that is followed by the optimal CEQ.

e MSM-SP: the MSM precoder based on symbol-wise processing as introduced in Section
8.1.1.

e MSM-BP: the MSM precoder based on block-wise processing as introduced in Section
8.1.2.1.

e MSM-BP-CP: the MSM precoder based on block-wise processing with the cyclic prefix
as introduced in Section 8.1.2.2.

We assume a BS with N = 64 antennas serving M = 8 single-antenna users with 16-QAM
signals. The numerical results are obtained with Monte Carlo simulations of 100 independent
frequency-selective channel realizations. The AWGN is also i.i.d. with variance one at each
antenna. The performance metric is the uncoded BER averaged over the single-antenna
users. For the blind estimation of the coefficients g,, we use a block length of 7" = 128. The
numerical results are plotted in Fig. 8.1a and Fig. 8.1b for ) = 4. It can be deduced, that
the smaller the block length B, the worse the performance is. The MSM-SP performs the
worst. When performing block-wise processing with B = 4 and B = §, the gain in terms of
the uncoded BER is moderate, whereas the addition of the cyclic prefix in the block-wise
processing leads to a significant gain. This gain is due to the fact that the cyclic prefix
removes the IBI, and comes with decreased computational complexity for the same block
length and ¢ > 4. However, it comes at the cost of a decrease in the throughput, since
B/(B+ L—1) is the percentage of the useful transmission. In every block transmission there
are L — 1 redundant (unuseful) symbols due to the cyclic prefix. Increasing the block length
decreases the IBI and increases the throughput. However, it increases the computational
complexity as discussed in Section 8.3. Thus, there is a trade-off between the performance,
the throughput and the computational complexity.

It can be also noticed that the QCE system can achieve the same performance as the ideal
linear system with the method MSM-BP-CP with an optimal value of B and by doubling
the number of antennas.

In Fig. 8.2, the effect of increasing the resolution of the polar DACs is studied. We choose
the precoder MSM-BP-CP with a block length of B = 16 and plot the uncoded BER as a
function of the available power P, for different values of (). As expected the performance
improves for higher resolution. The performance difference between ) = 8 and () = 16 is very



8.4 Simulation Results 101

—1 |- -1
= 1071 = 1071
= | | == FIR-WF = | | == FIR-WF
g | === FIR-WF + CEQ g | |=== FIR-WF + CEQ
3 || e MSM-SP b || e MSM-SP
§ 10-2 || =#=MSM-BP, B =4 :E) 10-2 || =#=MSM-BP, B =4

|| —— MSM-BP, B =8 || —— MSM-BP, B =8

| ~e= MSM-BP-CP, B = 4 | ~m- MSM-BP-CP, B =8

| ~m— MSM-BP-CP, B =8 i MSM-BP-CP, B = 16

|-m- —— N =128 i N =128

-3 I I l g -3 I I l 1
LT -5 0 5 10 15 LT -5 0 5 10 15
P (dB) Py, (dB)
(a) L=3 (b L=6

Fig. 8.1: BER performance for a MU-MIMO system with N = 64, M = 8 and @) = 4 with
16-QAM and the i.i.d. channel model.

10° ‘ ‘ 7

= FIR-WF | ]

Q=14 i

r —1—@:8 8

Cmd 107t | = Q=16 |

/M B §

- I ]

% = B

s | i

g 1n-2L i

5 1077 F e
1073 : | | |

-0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16
Py (dB)

Fig. 8.2: BER performance for a MU-MIMO system with N = 64, M = 8 with 16-QAM
signaling and channel exponential power delay profile with L = 6 for different quantization
resolutions: MSM-BP-CP with B = 16

moderate compared to the required additional computational complexity and the resulting
higher power consumption.

In summary, the proposed MSM method offers significant gains in terms of the uncoded
BER for the case of flat-fading channels as well as for frequency-selective channels. It is
however characterized by its high computational complexity especially for frequency-selective
channels, where block-wise processing is required. This challenge can be overcome by the
steady enhancement of the hardware computational power.
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9. Discussion: Benefits and Challenges

Throughout this work, we are justifying the use of massive MIMO systems with CEQs by
their high power efficiency. Therefore, we show in Section 9.1 a comparison between an ideal
linear system and a quantized system in terms of power consumption, which proves the
benefit of coarsely QCE systems. However, a strong argument againt coarse quantization
at the transmitter is the spectral regrowth. Therefore, we look deeper in Section 9.2 at the
obtained spectrum in the presence of coarse quantization in massive MIMO systems.

9.1 Power Efficiency

As shown in the previous chapters, the same performance of an ideal linear system, i.e. linear
PAs and infinite resolution DACs, can be obtained with a QCE system having at most the
double number of antennas as in the ideal case. We compare the power consumed at the PAs
in both cases.

A linear PA has a given power efficiency denoted by 7y pa. However, only a fraction of
the ideal power efficiency nppa can be achieved, if the input signal at the PA shows large
PAPR, which is the case for systems without CE constraint at the PA input. In average each
antenna has a transmit power of P /N, thus the dissipated power at all PAs in the ideal
system is given by

Poc, = N=&— =~ (9.1)

whereas the dissipated power in a QCE system, having the same BER performance for the
same transmit power Py, is given by

Ptx ]- Ptx
P =2N— = , 9.2
Ple 2N nNLpA TINLPA ( )

where nnLpa denotes the power efficiency of the PA deployed in the QCE system. Since the
input to the PA in this case is of CE, there is no need to use linear PAs. Switching PAs that
show high power efficiency are then suitable. A recent PA that operates at the saturation
region and has a power efficiency of more than 90% is the PA class M [51]. Since QCE signals
have a PAPR value equal to 1, the PA in the QCE case can be operated at its highest power
efficiency.

By assuming that the linear PA achieves at most 20% of power efficiency, the ratio between

103
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the dissipated powers in the ideal case and the QCE case is given by

Ppc,  nNLpa

Pocg,  mMupa
09

= — =45. 9.3
0.2 (9:3)

This means that the power dissipated at the PAs in the ideal case is more than 4 times the
power dissipated in the QCE case. In this comparison, the power consumption related to
other hardware components like up-converters, is ignored. However, we justify this analysis
by the fact that the PA is the most power hungry device in the BS. Note that the DAC in
the quantized case is of very low resolution, which first leads to reduced power consumption
of the DAC itself and second simplifies the surrounding circuitry.

9.2 Strong Non-linearities vs. Spectral Shaping

The coarse quantization is usually related to the potential deterioration of the pulse shaping
in the time domain and thus the increase in bandwidth and the introduction of undesired
out of band radiations in the frequency domain. This is true in the case of one transmit
antenna and Single-User (SU) scenario. However, does this statement hold true for MU
massive MIMO systems? In the sequel, we restrict our analysis to the case of () = 4 for
simplicity. The analysis for the case of () = 8 is left for future work.

To check whether the BS transmits signals that respect a specified spectral mask, a
measuring device is put in the far field of it and measures the Power Spectral Density (PSD)
of the received signal. Therefore, we assume the measuring device as being the virtual (M +1)-
th user and its continuous-time noiseless received signal is denoted by yps41(t'), which is
expressed as

ym(t) = hJ\T/[+1t’(t’), (9.4)

where h,/, denotes the channel vector between the BS antennas and the measuring device.
h,;,, is a random vector that is drawn from the same distribution as the user channels.
Moreover, t'(t') denotes the continuous-time transmit signal. The vector t'(¢') is obtained by
converting the discrete-time signal t[¢], i.e. the CEQ output signal, to the analog world. In
the following, we will differentiate between two cases

e standard QAM staggering

o offset QAM staggering.

9.2.1 Standard QAM

In this case, the continuous-time signal t'(¢') is obtained by
t'(t') = Z t[t]gpac(t’ —tT1y), (9.5)
=0

where T represents the sample period and gpac(t’) is a real-valued impulse response. Since
we are interested in the PSD at the measuring device, we first compute the autocorrelation
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function of the signal yp1 ().

E [ypra () yir (' —7')]
Pysrt1ymt1 (T/> - 2 =
YM+1

Bl B 6@ = )] B,
Bl B [0 ()eT(0)] by,

(9.6)

The covariance matrix E [t’ et — 7 )} is given by

E |t/ (¢ — T/)] =3 > goact! = kT)gpac(t' — kT, — (' — ('TL)) E [t[k]t" [k — ¢']]

= Z Cet[l'] (9pac * gpac) (7" — (')

V=—00

= (Cys * (gnac * gpac)) (7). (9.7)
Therefore, we get

P (T/) _ hTM+1 ((gpac * gpac) * Cet) (T/)h?\ul
YM+1YM+1 h;\FJ.H ((gDAC % gDAC) * Ctt) (O)h*M+1 .

(9.8)

9.2.1.1 Without Digital Pulse Shaping

If no digital pulse shaping is applied to the precoder output, then there is no time correlation
for the signal t; that is

Culr) = S T =0 (9.9)
Oy n, otherwise.

Therefore, the autocorrelation function simplifies to

o (gpac * gpac) (7) h}/l-&-lctth?\/l-&-l
~ (gpac * gpac) (0) hy;, Cechyyy,
- (gpac * gpac) (7)
~ (gpac * gpac) (0)

pyM+1yM+1 (T/)

(9.10)

The PSD at the measuring device is then given by

o

SyM+1yM+1(f) - / pyM+1yM+1<T/> e 12T 47!

o0

___GoacDI®
I |Gpac(f)Pdf

Thus, the shape of the PSD in this case is determined by the transfer function of the DAC
and is independent of the number of antennas N and users M. By choosing the time impulse

(9.11)
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response of the DAC as the rectangular function,

y 1 i <L
gDAC(t/) = rect (i) = % ,lf |t/| = % (912)
0 ,otherwise,
and thus the frequency transfer function
sin(w f /T5)
G = —F" 9.13

we get the PSD depicted in Fig. 9.1 at the measuring device. Note that the sample period
T is equal to the symbol period Ty, in the case of no digital pulse shaping.

0
o —10| .
)
=
Q
— —20| .
+
=
IS
i
s
N 30| .
_40 ) | | | |

-5 —4 -3 -2 —1 0 1 2 3 4 5
fin 1/Tm

Fig. 9.1: PSD at the measuring device with the DAC as the rectangular function in standard
QAM staggering and without digital pulse shaping.

9.2.1.2 With Digital Pulse Shaping
We assume that the input of the CEQ x[t] is given by

x[t] = gps]t] * x'[t]

= x[lges[t — 4], (9.14)
=0
where
gpsit] = 3 ges®)6(t — ¢T2), T, = T (0.15
b S 2 )
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and x'[t] is the output of the precoder. The Discrete Time Fourier Transform (DTFT) of
gps|t], leads to the transfer function Gpg(e/?™/7*), which is continuous and periodic.
The covariance matrix at the input of the CEQ calculates to

Colt] = D Cuoe[l] (905 * gos) [t = €]

V=—00

= Cyx (gps * gps) [t]. (9.16)
Hence, the covariance matrix Ryx[7] calculates to

Rux[7] = diaug(Cxx)’l/2 E [x[t]XH[t — TH dia,g.);(Cxx)’l/2

(diag(Cx/x/)_l/2 E [X’X’H] diag(cx”(’)_m)

Ry (9.17)

Consequently, the autocorrelation function of the signal y, 41 (') after applying Price’s The-
orem in (3.52) reads as

Q/2-1 -

Pyntsrynees (T) = Dy B Z I (2AkY) ((QDAC * gpAC) * arcsin <§R {Ryx e 128kY )) (0)2h},,,

Ak=0
Q/2-1

hy, 2 Z I (2AkY) (gpac * gpac * arcsin (R {Rux[7] e 122 1)) (1)2hj,
Ak=0
Q/2-1

“hIE Y QeAR)
Ak=0

<gDAC * gDAC * arcsin (3CE {MRxw o I2AkY })) (7)Eh},

(gps * gps) [0]

Q/2-1

CED
Ak=0

-1
(gDAC * gpDAC * arcsin (3‘% {(QPLQPS)]RX'XI e I2AkY })) (O)Eh?\/l-l—l) :

(gps * gps) [0
(9.18)
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The PSD is then obtained by transforming the autocorrelation function into the frequency
domain. Thus, we get

o
—12 /
SyM+1y]M+1(f) = / py]\/[+1y]\/[+1 (7—/) € j2mfT dT,,

[e.e]

Q/2-1
- (h}“la D AR

Ak=0

-1
. (gPS * gPs) —j2Ak }))
* xarcsin [ R ——2L _Ropve ) v 0)Eh?
(gDAC 9gDAC ( { (gPs " gPs) [0] ( ) M+1

Q/2-1

|GDAC(f)|2 Z AR b (Eh +1hM+1E
Ak=0

Z arcsin (?R {MRXIX/ e‘jmw}) e i2mIT ) (9.19)
= (gps * gps) (0]
In the case that the channels of the users show small correlation, we can assume that the

non-diagonal entries of Ry are small enough to use the first order Taylor approximation
of the arcsin function. According to Section 3.6, we get

SyM+1yM+1 (f) ~ |GDAC(f)|2

* * * 0) —_ — x o
hL " ( a (QDAC gDAC * gps QPS)( )‘:‘Rx’x":' + 5q ( gDAC * gDAc) (0)‘:2) hM+1>
(gps * gps) [0]

GPS(ej 27rfTs) 2
(hTMJrl (O‘ |

ERy 2 =2 | ht
! (gps * gPs) [0] - ﬁq > MH)
= |Gpac(f)° < M= (\GPs(ejzﬂfTS)

< 112( (gpac * gpac * gps * gps) (0)Ryss

2 — %
Ryxr + Bq/aq (gps * gps) [O]IN) ‘=‘hM+1)

+ B4/ g (gps * gps) [0] (gpac * gpac) (O)IN> EhLH) : (9.20)

By choosing the impulse response of the DAC as in (9.12) and the pulse shaper as the
Root-Raised-Cosine (RRC) filter of roll-off factor 7o = 0.1, we obtain the PSDs according to
(9.20) depicted in Fig. 9.2 for different values of the ratio N/M, when applying linear and
non-linear precoding. The PSD is measured at one of the active users. It can be observed that
the spectrum is narrower for lager values of the ratio N/M. Additionally, there is a slight
improvement in the spectral shape in the case of the linear precoder, which is explained by
the non-equal power allocation at the antennas.

Additionally, the PSD is plotted for a random hy, 1, where hy;,; € range (Ry ) and for the
h,;.1 being the eingenvector with the largest eingenvalue of Ry« in Fig. 9.3. For a random
hjy/i1 € range (Ryy), there is no improvement in the spectral shape for large ratios N/M.
This is due to the fact that the signals in that direction do not overlap constructively. The
precoder designs the transmit signals such that they overlap constructively at the users.
When h,;,; is chosen as the eingenvector with the largest eigenvalue, we can see the best
spectral shape that can be obtained, which improves with the ratio N/M.
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Fig. 9.2: PSD at one of the users for an i.i.d. channel realization with the DAC as the
rectangular function in standard QAM staggering and with digital pulse shaping, i.e RRC

filter with roll-off factor ro = 0.1.
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Fig. 9.3: PSD at the measuring device for an i.i.d. channel realization with the DAC as the

rectangular function in standard QAM staggering, with digital pulse shaping, i.e RRC filter
with roll-off factor ro = 0.1 and with the MSM precoder.
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Asymptotic Analysis Let us look at the obtained approximate expression of the PSD in

(9.20) and assume that the precoder is close to the matched filter of the channel such that
Cyx ~ H'H, (9.21)
Ryy ~ diag(H"H) V*H"H diag(H"H) /2, (9.22)

By assuming the i.i.d. channel model described in Section 4.6.1 and a large number of

antennas and users with N > M, which leads to almost orthogonal user channels that span
an M-dimensional subspace, we get

E [diag(H"H)| = M1y, (9.23)
E [h}/[-s-lh}k\/[-i-l} = Na
0 <E [h),,,H"Hh;,,,| < N?, (9.24)

where the lower bound is reached, if hjy,, lies in the null space of H*, i.e. hy,, 1 € null (H*),
and the right limit is reached, if hy;,; lies in the range space of HT i.e. h,,; € range (HT)
We first assume that the CEQ is optimal and hence E = | /a;diag(Cyy)Y? =
Vg (gps * gps) (0) diag(Cyx)'/?. Therefore, if hy;,; € range (HT), the approximation of
the PSD expression is asymptotically given by
Syrrmrsr (F) = |GDAC(f)‘2 (qu (Nzcl + ﬁq/anQNM))_
(aq <|Gps(ej2”fTS) N2 4 ﬁq/achNM)>

2 O‘q% ‘GPS(Gj QﬂfTs)

1

2
+ BqCS

G 9.25

> G L0 (925
where

c1 = (gps * gps * gpac * gpac) (0), (9.26)

c2 = (gps * grs) [0] (gpac * gpac) (0), (9.27)

c3 = (gps * gps) [0]. (9.28)

The obtained expression, under the i.i.d. channel assumption and large number of N and
M, consists of two parts: the desired PSD of the pulse shaper that increases linearly with
the ratio a,;,N/M and a constant noise part due to the quantization errors. Indeed, from this
approximation we can see that increasing the ratio N/M improves the spectral shape of the
received signal.

In the extreme case that hj,; is orthogonal to all user channels, we get

C
SyM+1yM+1 (f) — ‘GDAC(f) 2 C_z

L, |Goac()F
J2 Goac(HF df
We see here that the digital pulse shaping vanishes and the spectrum is shaped only by the

transfer function of the DAC.
Hence, this asymptotic analysis explains the behavior observed in the previous section.

(9.29)
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9.2.2 Offset QAM

In this case, the output of the CEQ t[t] undergoes Offset QAM staggering. This means that
the inphase and quadrature parts of the signal are alternated in a time distance of T;/2.
Therefore, the continuous-time signal at the transmitter t'(¢') reads as

= i 2t|gpac(t’ — 2tT") + t[2t + 1gpac(t’ — (2t + 1)T"), (9.30)

where _
t[20] = R {t[t]}, (9.31)
[2t + 1] =S {t[t]}. (9.32)

We introduce two different impulse responses for the DAC. The first one is the the rectangular
function introduced in (9.12)

t/
goac (t') = rect <2T') : (9.33)

where T = T,/2. The output signal t(¢') is of constant envelope and the phase follows a
rectangular time shape. The maximal difference between the phase values at subsequent time
instants is equal to £7/4.

The second time impulse response for the DAC is the cosine impulse

1
goac (¥) = gusi (#) = = cos ( 27;,#) . ST <t <T, (9.34)

which leads in the considered case, i.e. @ = 4, to Minimum-Shift Keying (MSK) signaling
at the BS antennas. The corresponding frequency transfer function is given by
4 cos(2m fT")

Gusk (f) = ;W (9.35)

Note that the output signal t(¢') is also of constant envelope and the phase changes linearly
in time.
In order to obtain the analytical expression of the autocorrelation function py,,. v, ('),

we have to compute the covariance matrix E [t' et — 7 )], that is

oo

E [t/(t’)t’H(t’ —T'ﬂ = 3" R{Cul20} (gpac * goac) (7' — 20T")
l=—o00
—] Z Curieysie) [2¢] (9pac * gpac) (7" — (20 = 1)T7)
U'=—00
+] Z Csioyniey [20"] (9pac * gpac) (7' — (20" + 1)T")
¢'=—00

= (R{Cu:} * (gpac * gpac)) (7')
— j (Cretyster * (gpac * gpac)) (7' + T/
+] (CS{t}%{t} * (gpAC * gpAC ) (9.36)
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Therefore, we get

Pussinsees (7) = (W0 (R{Cu} * (gnac * gnac)) (0) +1 (S{Cu} * (gnac * goac)) (1) Wipsr)

h}4+1 < (R{Cuu} * (gpac * goac)) (') = (C%{t}%{t} * (gpac * gDAc)) (7" + 1)
+J (Csgerpey * (gpac * gpac)) (7' — T’)) hiL (9.37)

9.2.2.1 Without Digital Pulse Shaping

In the case of no digital pulse shaping, the autocorrelation function simplifies to

Pysnme (T) = (M1 R{Cu} (gpac * gpac)) (0) +j S {Cst} (gpac * gpac) (T')h}hﬂ)_l

h}Hl (3? {Cue} (9pac * gpac) (') = i Cagyysie) (gpac * goac) (7' + 1)
+ j Csgeynit) (gpac * gpac) (7" — T’)) hy, .. (9.38)

Thus, the PSD can be computed as

|Gpac(NPDY, (R{Cu} +j Camympey e 1277 — j Crpyagey @27) by

Systsrvara (f) = hT ., ((9pac * goac) ()R {Cee} +j (gpac * gpac) (T)S {Cu}) hiyry
(9.39)
It holds that
i Copgsrn @77 by, = (h;\F/[JrlC%{t}%{t} o 27T h’;m) !
= hjr 1 Cogoprisy @777 Mg
= (h;\F/[+1C%{t}§R{t} e iz h7\4+1> ) , (9.40)

which leads to the simplified expression

s () = 1Goac)F (i, B {Ced Wiy — 23 {hy Coreyminyhip =21 })
s hy, ., ((9pac * gpac) (0)R{Ce} +j (9pac * gpac) (T)S{Cu}) hi/y,

~ |GDAC(f)|2 <hJ\T/[-s-1E (agR {Rux} + Beln) B}y
— 2@(1% {hTM-i-lE diag(cxx)_1/2C%{x}%{x} diag(cxx)_l/QEh)]k\/[+1 e_jQWfT/} >

(hLHE( (9pac * gpac) (0) (g {Rux} + B4In)

-1
+ g (gac * gpac) (T)S {Roec} ) By ) (9.41)
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In Fig. 9.4, the evaluation of the PSD expression in (9.41) is depicted for both time impulse
responses for the DAC. We can observe that the spectral shape changes slightly with in-
creasing the ratio N/M, in contrast to the case of standard QAM without pulse shaping,,

where no dependency on N and M was observed.

Fig. 9.4: PSD at one of the users for an i.i.d. channel realization with the MSM precoder in

Offset QAM staggering without digital pulse shaping.
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9.2.2.2 With Digital Pulse Shaping

We use the same identity as in (9.14). By applying the first order Taylor approximation of
the arcsin function, we obtain

E t'(t')t'H(t'—T'ﬂ ~ 3 LoR {Cxlf} LY (gpac * goac) (7' — 20T3)

{=—00

+ B,E? (gpac * gpac) (1)

—J Y LoCrpgat [(1LG (9pac * gpac) (7' = (20 = DT,)

V=—c0
+J Y LoCapgnpa LG (9pac * gpac) (7' — (20" + 1)T2)
=00
1

= = Edla Cx’x’ _1/2
(gps * gps) [0] 7 &l )

(SCE {CX/X’} (gDAC * JDAC * gps * gPS) (7-)
— J C%{x’}%{x’} (gDAC * gDAC * gPS * gPS) (7_/ + TS)

+ j Caximix} (9pAaC * gpac * gps * gps) (7' — Ts))

(11

diaug((]xle)’l/2
+ 3422 (9oac * gpac) (1), (9.42)

which leads to

Pyni+1yn+1 (7',) ~ (h;\%ﬂa < (3% {Rxx'} (gps * gps * gpac * gpac) (0)
+ B,/ a4 (gpac * gpac) (0) (gps * gps) (O)IN>

—1
+j S {Ruxx' } (gps * gps) [0] * (9pac * gpac) (T')> Eh*MJrl)

hy, B (% {Ryx} (gps * gps * gpac * gpac) (77)
=] diag(cx’x’)_I/QCéR{x’}%‘{x/} diag(cx/x')_l/Q ((gps * gps) * (gpac * gpac)) (7 +T")
+.] diag(cx’x’)_1/20%{)(’}9?{)(/} diag(Cx/x/)_1/2 ((gps * gPS) * (gDAC * gDAC)) (7', — T’))

—=h*
Ehj/

4 28 (g o 905 0] (gm0 * 9oac) (7 B (9.43)
q
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Thus, the PSD can be approximated by

SyM+1yM+1 (f) ~ |GDAC(f)|2 (h;\FJ—HE |GPS(f>|2 <§R {Rx’x’}
— jdiag(Cusx) *Crpxyapey diag(Cuxr) /2 7T
+ j diag(Cxx) ™ /*Ca ey diag(Cooxr) 12 7720 )Eh}*uﬂ

ﬁ — *
+ 1 (gns * gos) (010, E2hi )
q

—

(h}prl:a < (3? {Rxx'} (gps * gps * gpac * gpac) (0)

+ Bq/ 0 (gpac * gpac) (0) (gps * gps) [O]IN>

-1
+ S {Rxx} (gps * gps * gpac * gpac) (T/)> Eh}k\JJrl) : (9.44)
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Fig. 9.5: PSD at one of the users for an i.i.d. channel realization with the MSM precoder in
Offset QAM staggering with the RRC digital pulse shaping of ro = 0.1.

By choosing the digital pulse shaper as the RRC filter of roll-off factor ro = 0.1, we
obtain the PSDs depicted in Fig. 9.5 for different time impulse responses for the DAC and
different values of the ratio N/M. It can be again observed that the spectrum is narrower for
lager values of the ratio N/M. Additionally, the spectrum with the rectangular function and
in Offset-QAM staggering has less out of band radiations compared to the case of standard
QAM case.

Additionally, the PSD is plotted in Fig. 9.6 for a random hy;, 1, where hy;,; € range (Ryx)-
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Fig. 9.6: PSD for a random hj,4; € range (Ryy) for an i.i.d. channel realization with the
MSM precoder in Offset QAM staggering with the RRC digital pulse shaping of ro = 0.1.
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Fig. 9.7: PSD for hj;,; being the eigenvector with the largest eingenvalue of Ry for an

i.i.d. channel realization with the MSM precoder in Offset QAM staggering with the RRC
digital pulse shaping of ro = 0.1.

there is no improvement in the spectral shape for large ratios N/M. This is due to the fact
that the signals in that direction do not overlap constructively. The precoder designs the
transmit signals such that they overlap constructively at the users.

Finally, the PSD is plotted for hj;,; being the eingenvector with the largest eingenvalue of
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R,x in Fig. 9.7. We can see the best spectral shape that can be obtained, which improves
with the ratio N/M.

In summary, we have shown that the spectral shape at the measuring device, when
h,;,, is one of the user channels or one of the eigenvectors with large eigenvalues of Ry,
improves by increasing the ratio N/M. Indeed, the spectral shape deterioration due to the
coarse quantization diminishes in massive MIMO systems and is not that dramatic as in
the SU Single-Input Single-Output (SISO) system. By using the Offset-QAM staggering
combined with the rectangular or MSK impulse response, we ensure that the input of the
PA is of constant envelope. Therefore, only non-linear and thus highly power efficient PAs
are required in the system.

We would like to remind the reader that our analysis was restricted to the case of Q) =
4. Our goal was to show the potential of spectral shaping despite the presence of coarse
quantization in massive MIMO scenarios. The optimization problem of the PSD is left for
future wotk. However, we would like to share our future steps with the reader.

In order to further improve the spectral properties in QCE systems, we think that the
desired pulse shaping should be considered in the precoder design. Therefore, each user’ s
signal should undergo a pulse shaping. Hence, the input to the precoder is not drawn from a
discrete well-defined set S anymore but from a continuous of high resolution undefined set.
We suggest to quantize the resulting continuous set to obtain a well-defined discrete set S at
the input of the precoder. Then, the MSM precoder should be extended to make sure that
the received signals at the receiver belong to the new defined set. In other words, the new
SRs should be defined that correspond to the new set S'. Consequently, the received signals
would follow the same pulse shape that is designed at the transmitter.

Another idea would be to optimize the pulse shaping after the CEQ. Therefore, to ensure the
CE property, we can apply phase modulation for the transmission. Hence, we can consider
the concepts of the Continuous Phase Modulation (CPM), [74], in particular the Gaussian
Minimum-Shift Keying (GMSK) modulation [75]. This modulation type ensures a smooth
change of the phase in time. This enhances the spectral efficiency of the transmit signals.
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10. Conclusion

Throughout this thesis, we developed digital signal processing techniques for MU massive
MIMO systems, whose transmit signals are restricted to be of CE. Additionally, the con-
version from the digital into the analog world is deployed with very low resolution. The
introduced CEQ models this behavior. Hence, we end up with coarsely QCE MU massive
MIMO systems.

The choice of CE signaling at the BS antennas is motivated by having high power efficient
PAs. In the case of massive MIMO systems, where the number of BS antennas is assumed to
be very large, e.g. 100, the PA power consumption becomes a crucial concern especially at
mmW frequencies. Therefore, we enhance the power efficiency of the communication systems
by the CE constraint.

The choice of the coarse quantization is also motivated by having less power consuming
DACSs, whose number increases linearly with the number of the BS antennas and whose
power consumption increases exponentially with the resolution. Other benefits of low reso-
lution DACs are the reduced required chip area and the relaxed need for highly performing
surrounding circuitry.

The combination of both properties leads to power efficient QCE MU massive MIMO sys-
tems.

However, this results in performance degradation, since beside to the MUI, the channel
distortions and the AWGN, additional CEQ distortions are introduced to the system.
Therefore, we proposed digital precoding techniques to mitigate all usual distortion sources
and additionally the CEQ distortions. The proposed techniques are classified into two
groups: linear and non-linear techniques.

The linear precoding designs were based on the MMSE criterion. The precoding matrix is
optimized for every channel coherence time. For the matrix design, the CEQ was linearized
based on Bussgang’s theorem and the statistical properties of the quantization noise were
first computed with Price’s theorem and second approximated with the LCA. Furthermore,
we have shown that there is no MSE duality between uplink and downlink in the case
of QCE MIMO systems. Two linear precoder designs were proposed based on a virtual
duality and an approximate duality. The simulation results showed that the proposed linear
techniques are moderately better, in terms of the uncoded BER, than the well known linear
WF followed by the CEQ. This observation made us think about non-linear precoding.

In the non-linear precoding approach, denoted by MSM, the transmit vector at each time
instant is optimized. Therefore, we talk about symbol-wise precoding that depend on the
desired received signal at the users and the channel realization. This approach is certainly
more computationally complex than the linear approach. The design criterion is the safety

119



120 10. Conclusion

margin to the decision thresholds that should be maximized to minimize the SER. In order
to consider the QCE constraint, the entries of the designed transmit vector should belong
to a relaxed convex version of the QCE constraint. The problem could be formulated such
that we obtained a linear programming problem. The simulation results showed significant
gains compared to the linear approach. However, this gain comes at the cost of more
computational complexity.

The main motivation of choosing the QCE is the power efficiency. We have shown that
the PA power consumption of an ideal linear system is more than four times the PA power
consumption of a QCE for the same uncoded BER performance.

To settle the doubts about the spectral regrowth combined with the coarse quantization,
we analyzed the PSDs at the users in QCE MU massive MIMO systems. We have observed
that the quantization widens the spectrum. However, this effect diminishes for larger ratios
between the number of antennas and users, which is the case in massive MIMO systems. In
this analysis, we did not propose an optimal solution for the time pulse shaping in order to
optimize the PSD. However, we have shown that the problem of the spectral regrowth in the
presence of quantization distortions is not that dramatic as in the case of SU SISO systems.
This means that there is potential for optimization, which is left for future work.
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A1l Complex-Valued Gaussian Joint PDF

Let us assume that x; and x; with ¢ # j, are complex-valued Gaussian random variables
with zero means and positive variances o2 and agj; that is the PDFs are given by

T

2

¥i/j
2

1 o2
px,, (Tij) = —5—e i
Ti/j

According to [55, Theorem 2.16], the random variable z; given z; is a complex-valued Gaus-
sian random variable with mean value

Ele:le:] = J
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After introducing the correlation coefficient factor py, ., = E;[xax] ], it holds that
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Hence, the PDF of z; given z; is given by
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Finally, the joint PDF of x; and z; is obtained by

px..x; (T, ) = pxy|x; (zilzj)px, (75)
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A2 Proof of Theorem 1

We recall the modified version of Price’s theorem in [58].
Theorem 3 (Pawula’s Theorem [58]). Let f(s) = f(s1,---,Sn) be a function of n real-
valued joint Gaussian random variables. The covariance matriz and the correlation matriz

of the vector s are denoted by Css and R of elements denoted by ps, s, 1,7 =1,--- ,n. The
off-diagonal entries of Css are multiplied by a perturbing term v. Then

d“E[f(s1, -+ ,5n)] ¢ ¢ ga2€f(51,"',sn) C
du’ =E, Zpsi,sj-o-sia—sj- 050" y oSS € R, 4 j=1,--n,
i<j L
where E,, denotes the expectation based on the resulting perturbed PDF.
Theorem 3 can be applied to two complex-valued Gaussian random variables z; = z;, +

jz;, and z; = xj, +jx;, as follows
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While assuming circularly symmetric distributed Gaussian signals x; and z;, i.e.
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The following equalities
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A4 Special Integrals
The joint PDF of x; = r;e% and z; = r;e% for i # j can be expressed in the polar
coordinates as

2 J—
DX, X, (T3 1, Giy 05) = dee ~(aPr+?r] 2“”01%7‘3),

where
1 1
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2 2 52
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In this section, two different integrals as functions of the joint PDF w.r.t. the radii r; and r;
are computed, viz.,
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Using the equality (1,011.2) in [76], the first integral reduces to
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Analogously, the second integral can be computed as
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Using the equality (1,010.2) in [76], we obtain

d 1 1
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A5 Derivative of arcsin(A)

Let A € R™™"™ be a quadratic matrix, whose non-diagonal elements depend on a parameter
b and diagonal elements are constant. Then, the derivative of arcsin (A) w.r.t. to b is given

by
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Acronyms

ADC Analog-to-Digital Converter
AOD Angle of Departure
AWGN Additive White Gaussian Noise

BER Bit Error Ratio
BS Base Station

CE Constant Envelope

CEQ Constant Envelope Quantizer
CPM Continuous Phase Modulation
CSI Channel State Information

DAC Digital-to-Analog Converter
DTC Digital-to-Time Converter
DTFT Discrete Time Fourier Transform

FIR Finite Impulse Response
GMSK Gaussian Minimum-Shift Keying
HDTYV High Definition Television

i.i.d. independent and identically distributed
IBI Inter-Block Interference
IST Inter-Symbol Interference

KKT Karush-Kuhn-Tucker
LCA Linear Covariance Approximation

MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MMSE Minimum Mean Squared Error

mmW Millimeter-Wave

MSE Mean Squared Error
MSK Minimum-Shift Keying
MSM Maximum Safety Margin
MU Multi-User

MUI Multi-User Interference

PA Power Amplifier

PAPR Peak-to-Average-Power Ratio
PDF Probability Density Function
PSD Power Spectral Density

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation
QCE Quantized Constant Envelope

RF Radio Frequency
RRC Root-Raised-Cosine

SER Symbol Error Ratio

SINR Signal-to-Interference-Noise Ratio
SISO Single-Input Single-Output

SLINR Signal-to-Leakage-plus-Noise Ratio
SNR Signal-to-Noise Ratio

SR Symbol Region

SU Single-User

UHDYV Ultra-High Definition Video

w.r.t. with respect to
WF Wiener Filter
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