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Abstract

In the present work a new output-only measurement based method is proposed which al-

lows identifying the modal parameters of structures subjected to natural loads such as wind,

ocean waves, traffic or human walk. The focus lies on the dynamic excitation of structures

by wind turbulences and wind-induced ocean waves modeled as stationary Gaussian random

process. In contrast to the existing output-only identification techniques which model the

unmeasured load as white noise process, statistical information about the dynamic excita-

tion, e.g. obtained by measurements of the wind fluctuations in the vicinity of the structure,

are taken into account which improve the identification results as well as allow identifying

the unmeasured load process exciting the structure.

The identification problem is solved on basis of a recently developed method called H-

fractional spectral moment (H-FSM) decomposition of the transfer function H(ω) which

allows representing Gaussian random processes with known power spectral density (PSD)

function as output of a linear fractional differential equation with white noise input.

In the present work (i) the efficiency and accuracy of this method is improved by the use of an

alternative fractional operator and (ii) a modification is proposed which makes it applicable

to short as well as long memory processes. (iii) The most widely used wind and ocean wave

model spectra are compared and discussed, and the corresponding H-FSMs are provided in

closed form allowing to simulate realization of the processes in a straight forward manner.

(iv) Based on the FSM decomposition a state space representation of arbitrarily correlated

Gaussian processes is developed in closed form which neither requires the factorization of

the PSD function nor any optimization procedure. Combined with the state space model

of the structure, it leads to an overall model with white noise input, (v) which can be effi-

ciently combined with any state-space model-based parameter identification algorithms such

as the well known (weighted) extended Kalman filter algorithm used here. (vi) The method

is successfully applied for the stiffness and damping estimation of single and multi-degree of

freedom systems subjected to wind and wind-wave turbulences as well as for the estimation

of the unmeasured load process. vii) Finally, a sensitivity analysis of the filter accuracy is

conducted in order to improve the accuracy and efficiency of the method.
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Zusammenfassung

In der vorliegenden Arbeit wird eine neue Methode zur Identifikation modaler Parameter

dynamischer Systeme entwickelt, die auf (Output-only) Messungen der Systemantwort in-

folge der natürlichen Anregung durch Lasten wie z.B. Wind, Wellen, Verkehr oder Personen

basiert. Der Fokus der Arbeit liegt hierbei auf der stochastischen Anregung durch Windtur-

bulenzen und windinduzierten Wellen, welche als Realisation stationärer Gaußscher Prozesse

modelliert werden. Im Gegensatz zu bestehenden Output-only Identifikationsverfahren, die

die unbekannten Lasten vereinfacht als weiße Rauschprozesse beschreiben, werden hier zu-

sätzliche statistische Informationen, die beispielsweise durch Windmessung in der Nähe der

Struktur gewonnen werden, berücksichtigt. Dies führt nicht nur zu einer Verbesserung der

Parameterschätzung, sondern ermöglicht auch die gleichzeitige Lastidentifikation .

Das entwickelte Identifikationsverfahren basiert auf einer kürzlich entwickelten Methode, der

sogenannten
”
H-fractional spectral moment (H-FSM) decomposition“, d.h. der Zerlegung der

Überragungsfunktion H(ω) mit Hilfe von spektralen Momenten fraktionaler Ordnung. Die

Methode erlaubt einen Gaußschen Prozess mit gegebener Leistungsspektraldichte (PSD) als

Output einer linearen fraktionalen Differentialgleichung mit weißem Rauschen als Input zu

simulieren.

Im Rahmen dieser Arbeit wird (i) die Effizienz und die Genauigkeit dieser Methode durch

die Verwendung eines alternativen fraktionalen Integraloperators verbessert und (ii) die Def-

inition der H-FSMs derart modifiziert, dass die Methode nicht nur für sogenannte
”
Short

Memory“ Prozesse mit exponentiell abklingender Autokorrelation, sondern auch für lang-

korrelierte (
”
Long Memory“) Prozesse anwendbar ist. iii) Die gebräuchlichsten Wind und

Windwellen charakterisierenden Modell–Spektren werden diskutiert und die zugehörigen H-

FSMs in analytischer Form zur Verfügung gestellt, mit Hilfe derer, Realisationen der Prozesse

in einfacher Weise generiert werden können. (iv) Auf der H-FSM Zerlegung aufbauend,

wird ein für beliebig korrelierte Lastprozesse gültiges lineares Zustandsraummodel in ana-

lytischer Form hergeleitet, das im Gegensatz zu gebräuchlichen Methoden weder die spek-

trale Faktorisierung der Leistungsspektraldichte noch die Anwendung eines Optimierungsver-

fahrens erfordert. (v) Es erlaubt die Lasten in die Systemgleichungen zu integrieren, so

dass das System mit korrelierten Lasten auf ein Gesamtsystem höherer Ordnung mit weißem
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Rauschen als Input zurückgeführt werden kann, dessen Parameter dann mit einem beliebigen

Zustandsraum-basierten Verfahren, wie z.B. das hier verwendete Erweiterte Kalman Filter,

identifiziert werden können. (vi) Die Methode wird für die Schätzung der Steifigkeits- und

Dämpfungsparameter von Ein- und Mehrfreiheitsgradsystemen unter wind- und wellenin-

duzierten Lasten sowie für die Schätzung des unbekannten Lastprozesses verwendet. (vii)

Schließlich wird eine Sensitivitätsanalyse durchgeführt, mit dem Ziel, die Genauigkeit und

die Effizienz des Algorithmus weiter zu verbessern.
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Ūz

[–] Dimensionless (reduced) frequency



List of Symbols XV

nz =
fz
Ūz
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1 Introduction

Ambient vibration identification techniques, that is methods, which are based on the mea-

surement of the system-response only, have attracted great interest in engineering in recent

years. In the present work a new output-only measurement based method is proposed which

allows identifying the modal parameters of structures subjected to autocorrelated loads. The

focus lies on the dynamic excitation of structures by wind turbulences and wind-induced

ocean waves. In contrast to the classical ambient vibration approaches, statistical informa-

tion about the dynamic excitation, e.g. obtained by measurement of the wind fluctuations in

the vicinity of the structure, are taken into account which improve the identification results

as well as allow identifying the unmeasured load process exciting the structure.

1.1 Motivation

Forced vibration tests on structures of civil engineering interest are expensive and time con-

suming as they are performed using impact hammers or heavy shakers, needed to excite the

modes of interest with sufficient energy. Moreover, they often require temporary out of ser-

vice state of the structure which causes increments of costs. Conversely, ambient vibration

tests can be conducted continuously in time measuring the structural response for large time

intervals using the excitation of both natural and/or service loads such as wind, traffic, seis-

mic ground motions or human walk. Such loads are caused by the superposition of multiple

inputs and thus lead to a broad-band excitation of a significant number of vibration modes

[Yuen and Katafygiotis 2001; Cunha and Caetano 2006].

The first use of the ambient vibration technique for the dynamic characterization of full-

scale structures is reported in the seventies. Since then, ambient vibration tests gained

great attention in civil engineering in the scope of parameter identification (eigenfrequen-

cies, damping ratios and modal shapes) [James et al 1993; Peeters et al 1995, 1998; De Roeck

et al 2000; Brownjohn 2003; Ren and Zong 2004; Gentile and Saisi 2007], model updating
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[Jaishi and Ren 2005; Gentile and Saisi 2007] as well as damage detection and health mon-

itoring [Doebling and Farrar 1996; Peeters et al 2001; Lee et al 2002] of slender structures

such as pedestrian bridges, chimneys, long-span frame structures or high-rise buildings.

In case that the unmeasured system’s excitation can be modeled as a stochastic white noise

process, various experimental modal identification methods for output-only measurements

are available. Whiteness implies that the process is uncorrelated and its power spectral

density (PSD) function is constant over all frequencies. From a physical point of view, the

white noise process cannot exist in nature as the constant PSD leads to a process with in-

finite variance corresponding to an unbounded, infinite fast varying signal. However, the

white noise assumption is justified, if the PSD function of the input process is flat within

the system bandpass, that is within the frequency range in which the system is vibrating

predominately. The comparison and discussion of existing ambient vibration identification

techniques is beyond this work, but for completeness’ sake a conceptional description of the

most important time-domain methods can be found in the annexe D.1.

In case of non-white excitations, the parameter identification problem is more complex and

classical ambient vibration techniques lead to poor identification results. In this case, the

parameter identification problem to be solved consists of two subparts, namely: i) the digital

simulation of the random load process; and ii) the estimation of the structural response to

the random load using output-only model identification techniques. In case that both parts

are handled individually, numerous methods for the system identification as well as for the

simulation of stochastic processes are available, but for the solution of the combined problem

few techniques appeared in literature (s. chapter 3).

This leads to the motivation to address the identification problem of structures subjected to

arbitrarily correlated load processes in this work. Similar to the classical ambient vibration

identification techniques, the proposed method is based on output-only measurements of the

system response, while the actual load process exciting the structure remains unmeasured.

Though, in order to include the load process in the identification algorithm, it is assumed

that information about the statistics of the process are available, e.g. from additional mea-

surements in the vicinity of the structure.

The focus of this work lies on the stochastic excitation by wind velocity fluctuations and the

random nature of the surface evaluation of the fully developed sea. A large number of actual

measured data indicates that such processes can be modeled as stationary Gaussian random

processes and thus are completely characterized by the second order statistics, namely mean

value and autocorrelation and PSD function, respectively. The assumption of Gaussianity

can be justified mathematically by the central limit theorem which states that the sum of a

large number of independent identical distributed random variables follows approximately a

Gaussian distribution [Maybeck 1979, p. 8, 109].
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The solution of the identification problem under correlated loads is based on a concept found

in [Lewis et al 2008] which allows introducing colored processes in the Kalman filter algo-

rithm. As many of the classical time-domain ambient vibration identification techniques,

the Kalman filter is based on a linear(ized) state space model where random inputs are in-

troduced as Gaussian white noises. In case the white noise assumption is inadequate and

autocorrelations in the ambient loads or measurements must be considered, in [Lewis et al

2008] a procedure called state space augmentation is proposed: It is based on the spectral

factorization theorem which allows modeling a wide sense stationary random process with

given rational PSD function as an output of a linear system with white noise input. This

system can then be added to the original system by augmenting the state space representa-

tion leading to an overall linear system driven by white noise once again to which standard

tools as the Kalman filter based on linear system theory for response analysis, optimization,

and design of active control devices can be applied [Chen and Kareem 2001].

Though, difficulties arise if the PSD function is of non-rational form, as in this case, the

spectral factorization is difficult and in general not possible in analytic form. In the present

work, the problem is solved on basis of a recently developed method which allows represent-

ing PSD and autocorrelation (AC) function in closed form by means of a generalized Taylor

expansion using fractional spectral moments (FSMs) [Cottone and Di Paola 2010c]. Based

on this concept, a state space representation of arbitrarily correlated load processes is derived

in analytic form which neither requires the factorization of the PSD nor any optimization

procedure and which can be easily combined with common state space model based system

identification methods such as the Kalman filter algorithm used here. Moreover, it shall be

highlighted, that the method is i) applicable to a wide range of Gaussian processes of both,

short and long memory1; ii) it allows the simultaneous estimation of the structural param-

eters and the unmeasured load process; and iii) due to its analytic form its implementation

is straight forward.

The outline of the thesis is given in the following.

1.2 Outline

Chapter 2 deals with stochastic models for the description of the dynamic excitation of

structures by wind and wind waves. To this aim, physical and phenomenological models of

wind turbulences and sea waves are discussed. Emphasis is placed on the spectral represen-

tation of wind and wind wave turbulences. Varies model spectra, extensively used in wind

1A process with short memory exhibits an exponentially decaying autocorrelation function, while long
memory processes are characterized by a much slower decaying autocorrelation function (s. section 5.6)
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and ocean engineering are discussed and compared with respect to their applicability and

theoretic basis. Furthermore, the equations for the calculation of the associated load spectra

are summarized.

In Chapter 3 a literature review on the state-of-the-art of classical approaches for the dig-

ital simulation of stationary Gaussian random processes with target PSD function is given,

including the spectral representation methods as well as parametric time series models such

as ARMA-based approaches and the spectral factorization theorem. The methods are de-

scribed and critically discussed with respect to computational efficiency, applicability and

restrictions.

Chapter 4 introduces the concept of state space modeling and states space augmentation

needed for the derivation of the Kalman filter equations discussed in Chapter 5 as well as

for the development of the new identification algorithm proposed in Chapter 6. Further-

more, equivalent state space formulations of the discussed digital filter schemes are derived.

Chapter 5 starts with a brief historical overview of fractional calculus and its importance in

engineering applications. In order to explain and clarify the idea of fractional calculus, the

Grünwald-Letnikov form of fractional integral and derivative operators is derived which is

commonly used for the discretization of such operators. Then the principles of the fractional

spectral moment (FSM) decomposition proposed in [Cottone and Di Paola 2010c; Cottone

et al 2010d] are summarized and verified by three load processes which are of great relevance

in wind and ocean engineering. Furthermore, the accuracy and efficiency of the method is

discussed. The use of an alternative discretization operator is proposed, which leads to a

significant improvement of the accuracy and efficiency of the method. Finally, a modified

form of the FSM decomposition is proposed and verified which makes the method applicable

for the modeling of long memory processes with unbounded variance.

Chapter 6 recalls the principles of the Kalman filter algorithm in the scope of structural

parameter identification under white noise excitation. After explaining the basic concept,

the classical Kalman filter equations are derived by means of the Bayesian theorem. Then

the theory of the extended Kalman filter (EKF) and the weighted iterated EKF is introduced

which is used in the thesis for the solution of the nonlinear parameter identification prob-

lem. The method is applied for the identification of the stiffness and damping parameters

of a three story shear building excited by Gaussian white noise. By means of a sensitivity

analysis the dependence of the filter accuracy and convergence on the initializations of the

filter is investigated.

In Chapter 7 a new extended Kalman filter-based algorithm for the parameter identification

of structures excited by correlated random loads is proposed. Focus lies on the stochastic

excitation by wind turbulences and wind waves. In contrast to classical ambient vibration

identification techniques, which model the unmeasured load process as white noise and thus
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are not applicable in case of non-white excitations, the proposed method takes into account

additional information about the second-order statistics of the load process, e.g. obtained

from measurements in the vicinity of the structure, and thus allows estimating both, the

unknown system parameters as well as the unmeasured load process.

The new filter is called H-fractional (weighted) extended Kalman filter as it combines the

(weighted) extended Kalman filter algorithm with the H-fractional spectral moment decom-

position needed for introducing the unmeasured load process into the filter equations. After

deriving the latter, the method is applied to estimate the stiffness and damping parameters

of single- and multi-degree of freedom systems as well as the unmeasured load process ex-

citing the structure. Finally, a sensitivity analysis is undertaken, in order to investigate the

dependence of the accuracy of the load and parameter identification on the chosen parame-

terization of the load process.

Chapter 8 summarized the results and provides conclusions.
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2 Stochastic Models of Dynamic

Excitations

The dynamic excitation of structures by natural and/or service loads, such as wind, ocean

waves, traffic, seismic ground motion and human walk exhibits an obvious character of ran-

domness and thus is termed stochastic excitation. Consequently, such loads are in general

described stochastically in terms of probability and modeled as realizations of random pro-

cesses. An excellent introduction to stochastic process models for typical dynamic excitations

can be found in [Li and Chen 2009, ch. 3].

This chapter deals with the characterization of natural loads which are of great importance

in wind and ocean engineering applications, in particular, loads caused by turbulences in

the wind velocity flow and by the random nature of the surface evaluation of the ocean. A

detailed comparison of the most important model spectra is given with the aim to evaluate

their applicability for engineering problems. Restrictions in the applicability result from the

fact, that the spectra are in general phenomenological models combining side-specific mea-

surement data with fundamental theory, as will be discussed in the following.

The chapter starts with a brief review on the fundamental principles of random processes

and introduces the notation conventions, that will be used throughout the thesis.

2.1 A brief review on probability and stochastic process

A stochastic process (random process or random function) {X(t)}, denoted in the following

by the symbol { ⋅}, can be represented as a set of random variables X(t) ordered by an index

set t ∈ T . If the index set T = {t; 0 < t <∞} is continuous and interpreted as time, then the

process is referred to as a continuous time process, while if the random variables X0,X1,X2,...

are ordered by the discrete index set {k; k = 0,1,2,...} the process is called a discrete time

process and will be denoted as {Xk}.

In general, the stochastic process {X(t)}, t ∈ T is defined as a function of two arguments
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Figure 2.1: Realizations of a continuous-time stochastic process

{X(t;ω); t ∈ T,ω ∈ Ω} where Ω is called the sample space. If the first argument t = ti ∈ T is

fixed (indicated as line in Fig. 2.1), then {X(ti; ⋅)} is a family of random variables depending

upon the chosen parameter ti. If instead the second argument ωi ∈ Ω is fixed, {X(⋅;ωi)} is

a function of time, depending upon the chosen parameter ωi1. That is, for each outcome ωi

a so-called realization of the process, sometimes also named sample function, trajectory or

path [Åström 1970, p. 13-14], is obtained. In that way, a stochastic process can be regarded

either as a family of realizations or as a family of random variables as illustrated in Fig. 2.1.

In the former case, the process {X(t1; ⋅), t1 ∈ T} is characterized by the marginal distribution

F (x1; t1) = P{X(t1; ⋅) ≤ x1} (2.1a)

and corresponding marginal probability density function

f(x1; t1) =
∂F (x1; t1)

∂x1

(2.1b)

Similarly, let {X(t; ⋅), t ∈ T} be a stochastic process which is characterized by the multidi-

mensional set of random variables X(t1; ⋅),X(t2; ⋅), . . .X(tn; ⋅) defined for arbitrary distinct

times ti ∈ T , i = 1,2, . . . , n, then its finite dimensional probability distribution is of order n

and given by

Fn(x1, x2, . . . , xn; t1, t2, . . . , tn) = P (X(t1; ⋅) ≤ x1,X(t2; ⋅) ≤ x2, . . . ,X(tn; ⋅) ≤ xn) (2.2a)

1Throughout this work, the second argument is omitted for sake of simplicity in notation, i.e. {X(⋅;ωi)} ≡
{X(t)}



8 2 Stochastic Models of Dynamic Excitations

where xi ∈ R. The corresponding finite dimensional density function of {X(t)} can be

obtained by taking the derivative

pn(x1, x2, . . . , xn; t1, t2, . . . , tn) =
∂n

∂x1∂x2 . . . ∂xn
Fn(x1, x2, . . . , xn; t1, t2, . . . , tn) (2.2b)

providing that these derivatives exists. However, in order to define a stochastic process

by an arbitrary collection of distribution functions Fn, n = 1,2, . . . the latter must satisfy

the conditions of symmetry and consistency (Kolmogorov’s theorem [Kolmogorov 1933]):

The symmetry condition implies that Fn is symmetric in all pairs (ti;xi) and the consistency

condition states that any distribution function Fm(x1, x2, . . . , xm; t1, t2, . . . , tm) of order m < n

can be derived from the distribution function Fn(x1, x2, . . . , xn; t1, t2, . . . , tn) [Åström 1970,

p. 14].

2.1.1 Second-order characterization

In order to have a complete probabilistic description of a stochastic process, the distribution

function (2.2a) must be known for every set of random variables belonging to that process,

that is for all possible choices of xi, ti and n = 1,2, . . .. Therefore, such a complete proba-

bilistic process model is rarely used in engineering applications since it contains far too many

parameters to be estimated from a finite measurement data set [Brockwell and Davis 2002,

p. 7]. Instead, the random variables of the process are often characterized by certain aver-

ages, the so-called expected values. Assume a random variable X with probability density

p(X), then the expectation operator, denoted as E[⋅] is defined as

E [g(X)] = ∫

∞

−∞

g(x)p(x)dx (2.3a)

which can be interpreted as the probability weighted average of all possible outcomes of the

function g(⋅). Choosing g(X) = Xj, the formal definition of integer moments of order j ∈ N
is obtained, i.e.

E [Xj] = ∫

∞

−∞

xjp(x)dx (2.3b)

In particular, the first order moment, i.e. µ = E[X], is commonly denoted as mean value of

the random variable X, while the second order moment is related to the variance using the

identity σ2 = E[X2] − µ2. Instead of calculating the moments of the random variable X by

evaluating the integral, they can be also derived from the Fourier transform of the probability

density function, the so-called characteristic function as shown in A.1.1 for completeness’
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sake.

The concept can be extended for random vectors and used for the characterization of random

processes. Let X(t1), X(t2), . . . X(tn) denote a finite set of the random process {X(t; ⋅), t ∈

T}, then the joint moments of order m =m1 + . . . +mn are defined by the ensemble average

E [X(t1)
m1 ..X(tn)

mn] = ∫

∞

−∞

..∫
∞

−∞

xm1
1 . . . xmnn p(x1, .., xn; t1, . . . , tn)dx1..dxn (2.4)

In many applications the second order statistics, i.e. the first and second order moments,

namely the mean µ(t) and AC function R(t1,t2) are of particular interest and given by

µ(t) = E [X(t)] = ∫
∞

−∞

xp(x,t)dx (2.5a)

RX(t1,t2) = E [X(t1)X(t2)] = ∫
∞

−∞

∫

∞

−∞

x1x2p(x1, x2; t1, t2)dx1dx2 (2.5b)

The AC function is related to the autocovariance function by

CX(t1,t2) = RX(t1,t2) − µ1(t)µ2(t) (2.5c)

that is, in case the process is of zero mean AC and covariance function coincide.

In many cases, the second order statistics of the process are assumed to be time-invariant and

ergodic (s. A.1.3). In this case, the time average over a single long time history {X(⋅;ωi)}

of the process and the ensemble average of a large number of realizations {X(ti; ⋅)} coincide

[Lutes and Sarkani 2004, p. 251]. Thus, instead of using Eqs. (2.5), the mean µ(t) and AC

function R(τ) of an ergodic and stationary process can be expressed in the form

µ(t) = E [X(t)] = ∫
∞

−∞

X(t)dt = const. (2.6a)

RX(τ) = E [X(t)X(t + τ)] = ∫
∞

−∞

X(t)X(t + τ)dt (2.6b)

where τ denotes an arbitrary time shift. Processes which satisfy the conditions (2.6) are

said to be stationary in the wide sense [Priestley 1981, ch. 3]. Alternatively, they can be

characterized in the frequency domain by its PSD function SX(ω). The AC and the PSD

are related by the Fourier transform pair

RX(τ) = F{SX(ω); t} = ∫
∞

−∞

SX(ω)eiωτdω (2.7a)

SX(ω) = F−1{RX(τ);ω} =
1

2π ∫
∞

−∞

RX(τ)e−iωτdτ (2.7b)

Clearly, the concept of stationarity can be extended to higher-order moments (s. A.4). The

most rigorous definition of stationarity is the so-called strict stationarity, which says that the
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joint finite dimensional distribution defined in (A.5) characterizing the process is invariant

for an arbitrary time shift. It must be kept in mind, that in general case the knowledge of

the time-invariance of the second order moments does not provide any information on the

finite dimensional distribution, and thus, a stationary process in the wide sense may not be

stationary in the strict sense.

Wide-sense stationary processes can be characterized by the so-called spectral moments

(SMs) introduced by [Vanmarcke 2010]. They are the moments of the one-sided PSD GX(ω)

λX(γ) = ∫
∞

0
2U(ω)SX(ω)ωγdω = ∫

∞

0
ωγGX(ω)dω (2.8)

where U(ω) is the unit step function and where γ ∈ N0. They represent important time-

domain properties of the underlying process, in particular the zero-order SM λX(γ = 0)

corresponds to the variance of the process {X(t)} and the second- and forth-order SMs

λX(γ = 2), λX(γ = 4) give the variance of its derivatives {Ẋ(t)}, {Ẍ(t)}, respectively.

Higher order SMs are not of general interest, as they do not provide further information

about the process and are often divergent.

Later in section 5 the classical SMs are generalized for complex orders, that is j ∈ C and

denoted as ΛX(γ). They are called fractional spectral moments and will be essential for the

development of the novel identification method proposed in chapter 7.

2.1.2 Important processes

In the following the properties of the Gaussian random process and the Gaussian white noise

process are briefly reviewed. For completeness’ sake, in annexe A.1.4 the Brownian motion

process is discussed, which is of great importance for the solution of stochastic differential

equations with white noise input as they are appear within the Kalman filter framework. Fur-

thermore, the second order statistics of multivariate and multidimensional Gaussian random

processes are summarized.

2.1.2.1 White noise process

A stationary random process with constant PSD function SW (ω) is defined as white noise

process {W (t)}. Whiteness implies that the process is uncorrelated, i.e. its AC function is

described by the dirac delta function δ(t), being infinite at time lag τ = 0 and zero elsewhere,



2.1 A brief review on probability and stochastic process 11

and the PSD function is constant over all frequencies, i.e.

SW (ω) =
qW
2π

RW (τ) = qW δ(τ) (2.9)

where qW is the intensity of the process. Band limited white noise denotes a process whose

PSD function is flat over a finite range of frequencies and vanishes above a certain frequency

ω0. Its AC and PSD function is given by

SWb(ω) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qW
2π , ∣ω∣ ≤ ω0

0, else

RWb(τ) =
qW
πτ

sin(ω0τ) (2.10)

The so-called white noise sequence refers to a discretized white noise process with zero mean

and AC function

RW (τ) = E[WkWj] = qW tsδkj (2.11)

where δkj denotes the Kronecker delta function, qW denotes the intensity and ts the sampling

interval. If the random variables Wk are assumed to be Gaussian distributed, the process is

referred to as Gaussian white noise sequence and will be indicted as

{Wt} ∼ WN(0, σ2
W ) (2.12)

where σW =
√
qW ts. In the multivariate case the zero mean white noise sequence is defined

similarly

RW (τ) = E[WkW
T
j ] = Rδkj indicated as {W} ∼ WN(0,R) (2.13)

where R = σ2
W I ∈ Rm×m denotes the autocovariance matrix of the vector process {W} ∈ Rm

and I ∈ Rm×m the identity matrix. In annexe A.1.4.3 more details about the white noise

process and its applicability are given.

2.1.2.2 Gaussian process

In engineering, many physical phenomena are the result of the superposition of a large num-

ber of individual random processes. E.g. the randomness of wind turbulences is caused by
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the superposition of eddies of different sizes and rotational velocity and the random pattern

of the surface evaluation of the fully developed sea can be thought to be the result of the

superposition of an infinite number of independent sinusoidal waves with random phase,

height, wavelength and propagation direction. Short-term measurements of the wind fluc-

tuations over homogeneous terrain2 and the ocean indicate that such processes may be be

modeled as stationary Gaussian process. The assumption of Gaussianity can be justified

mathematically by the central limit theorem which states that the sum of independent iden-

tical distributed random variables follows approximately a Gaussian distribution [Maybeck

1979, p. 8, 109]. A process is said to be Gaussian, if the finite dimensional density function

of the process {X(t)} follows a normal distribution (see A.7). Thus, Gaussian processes are

completely characterized by the statistics up to the second order. Hence, the existence of a

time invariant mean µ(t) and autocorrelation function RX(τ) defined in Eq. (2.6) ensures

the stationarity of the Gaussian process. That is, in the Gaussian case, weak stationarity of

the process also implies strict stationarity.

Another important property of the Gaussian process which makes it so interesting in many

applications, is its invariance of linear transformation. That is, a stationary Gaussian process

which undergoes a linear transformation such as integration, differentiation, linear filtering,

sampling and summation with other Gaussian processes, remains Gaussian [Bendat and Pier-

sol 2010, p. 147ff.]. This concept is extensively used for the modeling of random processes

as discussed in chapter 3 as it allows generating a colored Gaussian process with target PSD

function, by passing a Gaussian white noise through a linear system. Moreover, the property

strongly contributed to the great success of the Kalman filter algorithm, used in chapter 6

to solve the parameter identification problem, as it allows performing the filter operations

rapidly and efficiently.

The following two sections describe the second order statistics of loads caused by turbulences

in the wind velocity flow and by the random nature of the sea surface evaluation. Focus lies

on the spectral representation of such loads as it will be needed for the development of the

proposed identification algorithm. To this aim a detailed comparison of the most important

model spectra is given and their applicability and restrictions for the use in engineering

applications is discussed.

2For the turbulence in complex terrain a skewness of about −0.1 is not uncommon, implying that the
Gaussian model is not quire fulfilled [Det Norske Veritas 2010]
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Figure 2.2: Velocity components of turbulent wind [Balendra 1993, p. 50]

2.2 Aerodynamic Wind Excitation

Wind is the result of moving air caused by varying thermal and pressure conditions in

the atmosphere. The wind velocity at a given point in the space is usually modeled as

a Gaussian stochastic process completely characterized by its mean value and its power

spectral density function. Let x, y, z be a location in space, where z is the distance from

the ground and x defines the along-wind direction, then the wind velocity field U(x,y,z; t)

can be decomposed into its time average Ū(z) of the main wind direction at height z and

a zero mean random vector process UD(x,y,z; t) = [uD(x,y,z; t),vD(x,y,z; t),wD(x,y,z; t)],

describing its dynamical fluctuations [Di Paola and Zingales 2008] as shown in Fig. 2.2.

Hence, the velocity field is characterized in vector form by [Balendra 1993, p. 49]

U(x,y,z; t) = Ū(z)i + uD(x,y,z; t)i + vD(x,y,z; t)j +wD(x,y,z; t)k (2.14)

If the averaging time is sufficient long, typically T = [10,60] [min.], then the mean value Ū(z)

is a time-invariant function of the height z. Due to the surface friction, the mean wind speed

increases with height until it reaches a constant value at great distance where frictional effects

are negligible. The so-called gradient wind velocity Ug(t) results from pressure gradients in

the atmosphere caused by the varying solar heating of the earth [Mendis et al 2007]. The

region in which the friction forces influence the wind velocity is called atmospheric boundary

layer whose thickness zg (the gradient height) depends on the ground roughness. In Fig. 2.3

a typical measurement of wind speeds at three heights on a tall mast for a fully developed

boundary-layer flow in the atmosphere is shown. The following properties can be observed

[Holmes 2007, p. 55-56]:

(i) The average wind velocity increases with increasing height.
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Figure 2.3: Typical measurement of wind speeds at three heights during gales on a tall mast for a fully
developed boundary-layer flow in the atmosphere [Holmes 2007, p. 56]

(ii) Gusts/turbulences occur at all heights.

(iii) The gusts show a broad band frequency content, i.e. slowly changing gusts are super-

posed by high frequent variations in the wind flow.

(iv) In particular, the slow frequent variations seem to be similar at all heights.

Van der Hoven [Van der Hoven 1957] investigated the frequency dependency of the wind

characteristics and weather systems in the atmospheric boundary layer based on long- and

short term measurements of the wind velocity taken at 80 [m] height at the meteorological

tower of the Brookhaven National Laboratory, New York. Fig. 2.4 shows the proposed wind

spectrum over a wide range of frequencies, constructed by piercing together various portions

of the spectrum. It indicates how the variance of the wind process is distributed with respect

to frequency. As the frequency axis ranges over several decades, a logarithmic scale is used

for the horizontal axis. In order to preserve that the area below the power spectral density

function S(f) is proportional to the energy per frequency, the vertical axis is multiplied by

the frequency using the following identity

σ2
u = ∫

∞

0
Gu(f)df = ∫

∞

0
f ⋅Gu(f)d(ln f) (2.15)

where Gu(f) = 2S(f) denotes the one-sided power spectral density function.

The wind spectrum is split into three domains, namely the mesometeorological and microm-

eteorological range describing wind speed fluctuations for periods longer and shorter than

about one hour, respectively, and a spectral gap where the spectral energy is negligible. In

the former the peaks result from seasonal and daily variations (seasonal, diurnal peak) as

well as changes in the general weather patterns (synoptic peak) due to the passing of large

pressure systems, occurring typically all four days [Burton et al 2001, p. 11ff]. The associ-

ated long term (i.e. low-frequency) variations of the wind velocity on a time-scale of one to

several hours, can be considered constant if viewed at turbulence time scale, and thus are

referred to as quasi-steady mean wind speed [Gavriluta et al 2012]. If the spectral gap in
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Figure 2.4: Broad band frequency spectrum of the horizontal wind velocity proposed by Van der Hoven
(1957) based on measurements taken form the farm Brookhaven, New York [Burton et al 2001,
p. 12], [Petersen 2000, p. 596]

the period from approximately one day to 10 minutes is reasonably distinct, then the long

and short term variations, i.e. the mean velocity and the turbulent fluctuations, are mutually

independent and can be treated separately by choosing an appropriate averaging time for the

calculation of the power spectrum and superposed as in Eq. (2.14). In many wind engineer-

ing applications just the high frequency micrometeorological domain of the wind spectrum

corresponding to the turbulences, i.e. wind fluctuation of typically 10 minutes time scale, of

the boundary layer is of interest. Due to the spectral gap, the latter can be modeled as zero

mean random process based on the micrometeorological power spectral density function, if

averaging is performed on a 10 minutes time window [Burton et al 2001, p. 11ff].

The main properties of the wind mean velocity and the wind turbulences are discussed in

the following.

2.2.1 Mean wind velocity profile

The mean wind velocity profile within the atmospheric boundary layer is depicted for different

terrains in Fig. 2.5. It can either be described by a power law or logarithmic law. The latter

can be derived analytically from the physics of the boundary layer (see for instance [Holmes

2007, p. 56ff.]) and is used by both engineers and meteorologists for modeling the strong

wind conditions in the upper 20-30% of the atmospheric boundary layer near the surface

[Stathopoulos and Baniotopoulos 2007, p. 2]. It is given by

Ū(z) =
1

k
U∗ ln(

z − d

z0

) (2.16)
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Figure 2.5: Mean wind profiles for different terrains [Mendis et al 2007]

where k ≈ 0.4 is the exponentially found von Kármán’s constant, U∗ [m/s] denotes the friction

velocity and z0 [m] is the roughness length, related to the roughness of the ground surface.

If the mean velocity is known for a given height above ground, then the friction velocity can

be calculated from Eq. (2.16) by

U∗ = kŪ(z) ln−1
(
z − d

z0

) (2.17)

Another measure for the surface roughness is the so-called dimensionless surface drag co-

efficient κ [-] which can be used to relate the friction velocity to the mean wind speed at

10 [m] above ground by U∗ =
√
κ Ū(10). Both parameters are given in Tab. 2.1 for different

terrain conditions [Holmes 2007, p. 55 ff]. The constant d [m] is the height above the ground

where the velocity is zero. In the open terrain or sea d can be set to zero, while for very

rough terrain, such as urban areas or forests, d is about one or two meters below the average

height of trees and buildings, i.e. typically values in city centers are d ≈ 10 − 25 [m] and in

suburban terrain d ≈ 5 − 10 [m] [Balendra 1993, p. 49]. Due to the mathematical properties

of the logarithmic function, the mean velocity pursuant to Eq. 2.16 is not defined for z < d

and is negative in case z − d < z0. Furthermore the logarithmic law was derived for fully

developed wind flow over homogeneous terrain which is rarely the case in engineering appli-

cations [Holmes 2007, p. 55 ff]. Hence, the power law is preferred by some engineers and is

defined empirically by

Ū(z) = Ū(zref)(
z

zref
)

α

(2.18)
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Terrain type roughness length z0 [m] surface drag coefficient κ [-]

Very flat terrain (snow, desert) 0.001 - 0.005 0.002 - 0.003
Open terrain (grassland, few trees) 0.01 - 0.05 0.003 - 0.006
Suburban terrain (buildings 3 - 5 m) 0.1 - 0.5 0.0075 - 0.02
Dense urban (buildings 10 - 30 m) 1 - 5 0.03 - 0.3

Table 2.1: Terrain types, roughness length and surface drag coefficient [Holmes 2007, p. 58]

where the reference height is in general set zref = 10 [m] and where α denotes the power

exponent [Balendra 1993] which depends on the surface roughness and the height range of

the trees and buildings. The main advantage of the power law towards the logarithmic law

is related to the fact, that integrations of the power law needed in the response analysis

can be performed much easier than in case of the logarithmic law. However, both profiles

can be matched closely with respect to a chosen reference height zref by the relationship

α = ln(zref/z0)
−1 which relates the exponent α of the power law and the surface roughness

length z0 of the logarithmic law [Holmes 2007, p. 58-59].

2.2.2 Turbulence

The fluctuating components in Eq. (2.14) are known as turbulences which result either

from convective movement, so-called meteorological turbulences, and/or ground roughness

referred to as mechanical turbulences due to the retarding effect of obstacles (e.g. buildings),

the terrain type (open field, forest, etc.) and general relief or topography. In engineering, in

general just the mechanical turbulences are of interest, as they are predominant in the case

of boundary layer flow at high wind speed.

The turbulence or gustiness is lower in smoother terrain (e.g. grass land) than in rougher

terrain (e.g. urban with tall buildings) and decreases with increasing height above ground

[Stathopoulos and Baniotopoulos 2007, p. 3-4]. The longitudinal component uD(x,y,z; t)

of the wind fluctuations UD(x,y,z; t) in Eq. (2.14) is the largest one and especially effects

vertical structures such as high rise buildings which are flexible in the along-wind direction.

The vertical component wD(x,y,z; t) is mainly relevant for horizontal, i.e. vertically flexible,

structures such as long-span bridges [Balendra 1993, p. 49]. The turbulences are charac-

terized by the turbulence intensity, the correlation lengths and the power spectral density

functions: The former is a measure of the magnitude of the wind velocity fluctuations, the

autocorrelation function is a measure of the wind field’s memory and related to the eddy

size and the power spectral density function gives information about the frequency content

of the turbulence and is especially important for structural design. In the following sections,

these properties will be discussed in detail.
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2.2.2.1 Turbulence intensity

The turbulence intensity is a measure of the standard deviation σ of the turbulences which

can be estimated either by calculating the root mean square (here given exemplarily for the

longitudinal wind direction) of the velocity fluctuations or by integration of the PSD function

of the wind turbulences, i.e.

σu =

√
1

T ∫
T

0
uD(x,y,z; t)2dt =

√

∫

∞

0
Gu(f)df (2.19)

where T is the averaging period. The turbulence intensities Iu, Iv, Iw are defined as the ratio

of the standard deviation of the corresponding fluctuation component and the mean value

of the predominant wind direction, i.e.

Iu =
σu
Ū(z)

; Iv =
σv
Ū(z)

; Iw =
σw
Ū(z)

(2.20)

2.2.2.2 Integral scales of turbulence

Wind turbulences can be decomposed into a mixture of eddies of different sizes and rotational

characteristics which are transported by the mean wind Ū(z) [m/s] and which fluctuate

with a certain frequency f [Hz]. Theoretically, spatial distribution, size and form of the

eddies are irregular in space and subjected to permanent changes in time. Geoffrey I. Taylor

(1939) suggested that under certain conditions, the turbulence statistics can be thought to be

’frozen’ in time while the wind field propagates in space with mean velocity. That suggestion

is also known as Taylor’s frozen-in turbulence hypothesis ([Holm 2005]) and is based on the

assumptions that the rate of change of the eddy size and distribution is small compared to

the propagation velocity in space. Consequently, the time while the eddy passes the observer

is too short for noticeable changes and hence can be considered as ’frozen’ [Mur Amada 2009,

p. 11]. Based on the Taylor’s hypothesis, the size of the eddies can be related to the time

scale, i.e. the eigenperiod or frequency of the fluctuations, respectively, by the wavelength

λ = Ū(z)/f [m]. The average sizes of the eddies are measured by an integral length scale,

sometimes also called correlation length of the turbulence, as it is based on the normalized

autocorrelation function, here given for the longitudinal component by

ρu(x,y,z; τ) =
∫
T

0 u(x,y,z; t)u(x,y,z; τ + t)dt

∫
T

0 u(x,y,z; t)2dt
(2.21)
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If the velocity flow is horizontally homogeneous, i.e. independent of the location x, y and thus

u(x,y,z; t) = u(z; t) as assumed in the following, then the autocorrelation function depends

only on the height z above the ground and the time shift τ of the velocity signal.

The integral time scale Tu given by

Tu(z) = ∫
∞

0
ρu(z; τ)dτ (2.22)

is a measure of the average period over which the wind velocity fluctuation are correlated.

According to Taylor’s hypothesis, ρu(z; τ) = ρu(z; rx), where rx = Ūzτ denotes the distance in

along wind direction between two locations in space. Consequently, the longitudinal integral

length scale of the eddies can by obtained simply by multiplication of the integral time length

with the mean wind velocity, leading to [Dyrbye and Hansen 1997, p. 40]

Lu(z) = Tu(z)Ū(z) (2.23)

Each of the fluctuating velocity components uD(z; t), vD(z; t) and wD(z; t) is characterized

by three integral scales Lxi (z), L
y
i (z), L

z
i (z) and i = u, v,w in longitudinal, lateral and vertical

directions corresponding to the three dimensions of the eddies in space leading altogether to

nine integral scales of turbulence [Simiu and Scanlan 1996, p. 53ff]. If the size of the eddies

and the dimensions of the structure are comparable so that the turbulences envelope the

structure completely, then the correlation of the wind pressure might lead to a significant

excitation of the structure. However, small eddies effect the structure just locally so that the

pressure fluctuations can be considered to be uncorrelated with distance of separation and

the overall effect of the longitudinal turbulence will be small [Mendis et al 2007]. In section

2.2.3 an aerodynamic admittance function is introduced, which takes this effect into account.

The integral length scales can be estimated by full-scale measurements. Similar to the mean

velocity, the eddy size depends mainly on the surface roughness z0 of the terrain, the height

over ground z and - at greater heights - on the wind speed. The quality of the estimates

strongly depends on the degree of stationarity of the used wind records [Dyrbye and Hansen

1997, p. 41]. J. Counihan analyzed wind velocity data based on measurements in the period

1880 - 1972 and discussed various models of the integral length scale. He observed that the

integral length scale increases with decreasing surface roughness z0 and increases with the

height. He suggested the following purely empirical expression for the longitudinal integral

length scale [Counihan 1975]

LC,u = Cz
m (2.24)
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at heights in the range of z = 10 − 240 [m] over ground. Values for the parameters C and

m are given graphically as function of the surface roughness in [Counihan 1975]. Purely

empirical formulations as the one proposed by Counihan are often based on records obtained

at heights comparatively near the ground and at moderate hourly-mean reference wind speeds

corresponding to Ū10 = 10 [m/s] at heights z = 10 [m]. However, typical design wind speeds

are of order Ū10 = 20− 30 [m/s] which leads to semi-theoretical models of the integral length

scale by extrapolating the measured data obtained at moderate wind speeds and heights to

the much higher design wind speed at heights corresponding to taller buildings. The model

proposed by the Engineering Sciences Data Unit [ESDU-85020 1985] is based on a similarity

theory approach and the observation, that the influence of the wind velocity on the eddy

size is no longer negligible at greater height. It leads to fairly complicated expressions for

the integral scale length depending on the ratios z/h, σu/U∗ and the so-called Richardson

number U∗/(fz0) obtained by spectral fitting of the von Kármán spectrum to measurement

data [Burton et al 2001, p. 25] (compare Eq. 2.33-2.35).

2.2.2.3 Asymptotic properties of the turbulence spectra

As discussed in section 2.2, the frequency content of the gusts is characterized by the microm-

eteorological range of the PSD of the wind velocity. If measurement data is available, the

site-specific spectral densities of the turbulence can be obtained by spectral fitting. Besides,

there exists various model spectra, which were derived combining empirical observations and

theoretic aspects. In section 2.2.2.4 some of the most widely used spectra will be discussed

and compared. To this aim in the following, the asymptotic characteristics resulting from

theory are defined.

According to the Kolmogorov law, the wind velocity spectrum decays proportionally with

f−5/3 at high frequencies [Burton et al 2001, p. 22]. As illustrated in Fig. 2.6, it is based on

the observation that turbulent energy is generated in large eddies (low frequencies) either

by shear wind or convection and dissipated by the decay of the eddies to higher and higher

frequencies until a sufficiently small length scale is reached such that the viscosity of the

fluid can effectively dissipate as heat [Dyrbye and Hansen 1997, p. 41-42]. According to Kol-

mogorov’s second hypothesis, in the intermediate range, the so-called inertia subrange, the

production and dissipation of turbulent energy is balanced and the eddy motion is assumed

to be independent of the viscosity and solely determined by the energy transfer leading to a

constant rate of energy dissipation ε. Kolmogorov showed that the following relation holds
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Figure 2.6: Left: Log-Log plot of the energy spectrum of turbulence where the power law k−5/3 appears
as straight line [Mathieu and Scott 2000, p. 242]; Right: Energy cascade theory, i.e. energy
transfer by the continuous break up of the eddies into smaller eddies from a macroscale L0

(outer scale of turbulence) to a microscale l0 (inner scale of turbulence) [Andrews 2004, p. 6ff]

for high wavenumbers k = 2π/λ [rad/m] [Simiu and Scanlan 1996, p. 55-56]

Su(k) = aε
2/3k−5/3 ⇔ Su(f) = aε

2/3 (
2πf

Ūz
)

−5/3

(2.25)

where a = 0.5 has been found by measurements. The second relation is obtained, by substi-

tuting k = 2πf/Ū(z) using Taylor’s hypothesis (2.2.2.2). Close to the ground, the integral

length scale can be assumed to be of order z. For a given average velocity Ūz, height z and

terrain roughness length z0, Kolmogorov proposed the following normalized one-sided PSD

function [Andersen and Enmark 2011, p. 397]

Kolmogorov:
fGu(f)

U2
∗

= 0.26n
−2/3
z (2.26)

where U∗ is the friction velocity defined in Eq. (2.17) and where the dimensionless frequency

nz = fz/Ūz is also known as Monin similarity coordinate [Dyrbye and Hansen 1997, p. 42].

In general, Eq. (2.26) provides a very good approximation of spectra in the high frequency

region3 and may, for engineering purposes, be conservatively assumed to be valid for nz > 0.2

[Simiu and Scanlan 1996, p. 59]. However, at greater heights, the turbulence scale cannot be

assumed to be proportional to the height and hence z is in general replaced by the turbulence

length scale defined in Eq. (2.23). Experimental measurements at different heights in the

inertial subrange and dimensional analysis indicated that the non-dimensional half-power

3in the following the frequency band of the turbulence spectrum between n,nz = 0 and the lower end of the
inertia subrange is indicated as low frequency range and beyond as high frequency range.
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Figure 2.7: Chosen parameters: z = 10 [m], Ū10 = 20 [m/s] , Lu(z) = LECu (z) [m] pursuant to Eq. (2.30),
z0 = 0.05 [-], κ = 0.006 [-] (open terrain, grassland); Top: Log-Log plot of the non-dimensional
turbulence spectra; Bottom: Comparison of the spectra in the low-frequency range

spectrum, the so-called reduced PSD, approaches at high frequencies

Kolmogorov (Lu) ∶
fGu(f)

σ2
u

≈ A(z)n−2/3 (2.27)

using the dimensionless (or reduced) frequency n = fLu/Ūz, and where A(z) is typically of

order 0.1 − 0.15 [Mur Amada 2009, p. 13]. As it is closely related to the Kolmogorov form

defined in Eq. (2.26) with the main difference, that the dimensionless frequency is depending

on the integral scale length Lu(z) instead of the height z, it is denoted as Kolmogorov (L)
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Figure 2.8: Chosen parameters: z = 60 [m], Ū10 = 20 [m/s] , Lu(z) = LECu (z) [m] pursuant to Eq. (2.30),
z0 = 0.05 [-], κ = 0.006 [-] (open terrain, grassland); Top: Log-Log plot of the non-dimensional
turbulence spectra; Bottom: Comparison of the spectra in the low-frequency range

in the following. According to [ESDU-85020 1985], the function A(z) is slowly decreasing

with height and approximated by A(z) = 0.115 [1 + 0.315(1 − z
h)

6]
2/3

where h is the gradi-

ent height. However, in [Dyrbye and Hansen 1997, p. 42] a constant value A(z) = 0.14 is

proposed for structures up to 200− 300 [m] yielding an estimate of the PSD function within

approximately 5 % accuracy.

Various model spectra for the characterization of the along wind velocity fluctuations ex-

ist, among them the spectrum proposed by von Kármán [Von Kármán 1948; Harris 1968],

Davenport [Davenport 1961], Harris [Harris 1970], Kaimal [Kaimal et al 1972], Simiu [Simiu
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Figure 2.9: Chosen parameters: z = 200 [m], Ū10 = 20 [m/s], Lu(z) = LECu (z) [m] pursuant to Eq. (2.30),
z0 = 0.05 [-], κ = 0.006 [-] (open terrain, grassland); Top: Log-Log plot of the non-dimensional
turbulence spectra; Bottom: Comparison of the spectra in the low-frequency range

1974], Kareem [Kareem 1985] and ESDU [ESDU-85020 1985]. The different spectra and their

non-dimensional form fGu(z; f)/σ2
u of the velocity fluctuations are depicted in Fig. 2.7 - 2.9,

for different heights over ground, namely z = 10 [m], z = 60 [m] and z = 200 [m], respectively.

The remaining parameters have been chosen as follows: Ū10 = 20 [m/s], Ūz according to the

logarithmic law in Eq. (2.16), Lu(z) = LECu (z) given in Eq. (2.30) and z0 = 0.05, κ = 0.006

assuming open terrain, grassland according to Tab. 2.1. For comparison, additional the

high-frequency approximations Kolmogorov (z) and Kolmogorov (L) proposed in Eq. (2.26),

(2.27), valid within the inertia subrange (approx. nz, n > 0.2), are illustrated. The corner



2.2 Aerodynamic Wind Excitation 25

frequency (f ≈ 0.2), where the spectra approaches the asymptotic limit, indicates the lower

bound of the inertia subrange. As mentioned previously, the Kolmogorov (z) spectrum is

appropriate as long as the integral scale length Lu(z) is proportional to the height z. Ex-

amination of Fig. 2.7 - 2.9 reveals that for z = 10 [m] both limits agree, but with increasing

height the energy is underestimated choosing Lu(z) ∼ z.

At high frequencies (f > 0.2 [Hz]) the different models decrease proportionally to the Kol-

mogorov limits Fig. 2.7 - 2.9, Top) and thus show similar characteristics, but at low fre-

quencies, they differ significantly (Fig. 2.7 - 2.9, Bottom). This is due to the fact, that the

model parameters characterizing the low frequency range of the spectrum are difficult to ob-

tain by measurements. The difficulties are caused by the required high frequency resolution

of the experimental data which leads to long sampling times where the stationarity of the

signal becomes questionable. However, for the structural design of land-based structures an

accurate approximation of the high frequency band (f > 0.2) of the turbulence spectrum is

in general sufficient, as the natural eigenfrequencies of such structures are relative high and

thus the low frequency content of the excitation is of minor importance [Simiu and Scanlan

1996, p. 342]. In contrast, in the design of ocean based structures, such as tension leg plat-

forms, which are much more flexible in the horizontal plane, the low frequency range can

be significant for the structural response analysis and hence must be modeled adequately

[Gurley and Kareem 1993].

The lower frequency range between zero and the lower bound of the inertia subrange, de-

pends on the local atmospheric and topographic conditions and thus the spectrum lacks a

universal description. However, the following property can be used to characterize and com-

pare the low frequency region of the spectra [Simiu and Scanlan 1996]: Using the relation

Gu(z; f) =
1

2π ∫
∞

0
4R(z; τ) cos(2πft)dτ (2.28)

between the AC and the one-sided PSD function and substituting the definition for the

integral scale length Lu(z) according to Eq. (2.21), the power spectral density function

should theoretically approach at f = 0 [Hz] the value

Gu(z; 0) =
4σ2

uLu(z)

2πŪz
(2.29)

It is important to note that due to the relation in Eq. (2.28), the existence of Gu(z; 0)

requires, that its derivative G′(z; 0) = ∂Gu(z; f)/∂f = 0 vanishes for f = 0 [Hz], i.e. the

spectrum approaches a horizontal asymptote at low frequencies.
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2.2.2.4 Turbulence model spectra

Two spectra for isotropic along wind turbulences which tend to the asymptotic limit at high

frequencies are the widely used Kaimal [Kaimal et al 1972] and the von Kármán velocity

spectrum [Von Kármán 1948; Harris 1968], given by

Kaimal:
fGu(z; f)

σ2
u

=
6.8n

(1 + 10.2n)5/3
; LECu (z) = 300(

z

200
)

0.67+0.05 ln z0

(2.30)

von Kármán:
fGu(z; f)

σ2
u

=
4n

(1 + 70.8n2)5/6
; (2.31)

with the dimensionless frequency n = fLu(z)/Ūz. The Kaimal spectrum is used in Eurocode 1

[EN 1991-1-4:2005 2010], where it is defined for the range zmin < z < 200 [m] using the given

integral scale length LECu (z) unless measurement data indicates otherwise [Det Norske Veritas

2010]. For heights below z < 50 [m], Simiu [Simiu 1974] proposed the form

Simiu:
fGu(z; f)

σ2
u

=
2

3

λnz
(1 + λnz)5/3

; λ = 50; (2.32)

where nz = fz/Ūz. It must be stressed, that the form of the Kaimal and Simiu spectrum

coincides, setting λ = 10.2. Comparing Fig. 2.7 - 2.9, it is evident that both spectra show a

similar behavior for lower heights, but with increasing distance to the ground, the Kaimal

spectrum approaches the Kolmogorov (L) limit 2.27 while the Simiu spectrum leads to an

underestimation of the PSD at high frequencies. This is caused by the fact, that the Simiu

spectrum assumes a proportional increase of the turbulence length scale with heights. To

be precise the integral length has the form Lu(z) = 1/(12π)λz as can be shown by means

of the low frequency relation Gu(z; 0) in Eq. (2.29). As mentioned previously, at greater

height (z ≥ 50 [m]) the proportional increase of the turbulence length scale with heights is

not appropriate. Thus, in such cases z in Eq. (2.32) should be replaced by the estimated

length scale Lu(z) of the wind data using Eq. (2.23).

In comparison to the von Kármán spectrum, the one proposed by Kaimal agrees better

with empirical observations of atmospheric turbulences and is characterized by a lower and

broader peak [Burton et al 2001, p. 22ff]. It is fitted based on measurement data collected

under strong wind conditions over flat homogeneous terrain in Kansas [Kaimal et al 1972].

Thus the spectrum implies a relative low terrain roughness and convection effects are not

considered. These conditions are for instance met in offshore applications such as wind parks

where the Kaimal spectrum is widely used also due to its simplicity [Mur Amada 2009]. It

gives an accurate representation of the turbulent fluctuations in the high frequency range,
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but it is not recommended for low frequent fluctuations [Dyrbye and Hansen 1997, p. 43].

The von Kármán representation is sometimes also called Kármán-Harris spectrum [Holmes

2007, p. 67] as it was analytically derived for laboratory turbulences in wind tunnels by von

Kármán [Von Kármán 1948] and adapted later for wind engineering by Harris [Harris 1968].

It is suited for the representation of atmospheric turbulence above about z = 150 [m], but

has some deficiencies at lower altitudes. Measurements have shown that the von Kármán

spectrum underestimates the measured spectral density function at high frequencies [Lungu

and van Gelder 1997]. In Harris [Harris 1990] the deficiencies of the Kármán spectrum in

fitting data measured in the layer nearest to the ground are discussed. The model parameters

(a = 4, b = 70.8) result directly from the integral scale length defined in Eq. (2.23) and the

condition 2.15 calculated analytically from the spectrum itself and thus do not depend on the

experimental data. Consequently, characteristic properties of the measured spectrum such

as the position and heights of its maximum or the level of the spectrum at high frequencies

cannot be included in the model. In [ESDU-85020 1985] the following more flexible form is

recommended

ESDU:
fGu(z; f)

σ2
u

= β1
2.987n/α

[1 + (2πn/α)2]5/6
+ β2

1.294n/α

[1 + (πn/α)2]5/6
F1 (2.33)

where h = U∗/(6f) is the gradient height of the boundary layer and

A = 0.115[1 + 0.315(1 − z/h)6]2/3; α = 0.535 + 2.76(0.138 −A)0.68

β1 = 2.357α − 0.761; β2 = 1 − β1

(2.34)

The expression F1 is based on particular orders of the Gauss Hypergeometric function and

can be approximated by

F1 = 1 + 0.455e−0.75nα0.8

(2.35)

For β1 = 1 and α = 0.747, Eq. (2.33) reduces to the Kármán form (2.31). Moreover, the

parameters β1, β2, α are derived in such a way that for high frequencies the spectrum agrees

with the Kolmogorov (L) limit (2.25) choosing A(z) = 0.115. Furthermore, Fig. 2.7 - 2.9

shows, the von Kármán spectrum and its modified version proposed in [ESDU-85020 1985]

are with increasing heights, where the side-specific characteristics are of less importance,

almost identical.

The spectra proposed by Davenport and Harris are derived by averaging various wind speed

measurements over land at different heights above the surface. Consequently, the dependency

of the turbulence spectrum on the height is not reflected. They are given by the following



28 2 Stochastic Models of Dynamic Excitations

equations

Davenport:
fGu(f)

σ2
u

=
2

3

n2

(1 + n2)4/3
; Lu,D ≈ 1200 [m]; n̄ =

fLu,D

Ū10

(2.36)

Harris:
fGu(f)

σ2
u

=
2

3

n

(2 + n2)5/6
; Lu,H ≈ 1800 [m]; n̄ =

fLu,H

Ū10

(2.37)

The Davenport spectrum approaches Gu(z; 0) = 0 as f → 0, implying that the integral length

scale Lu(z) is zero which is physically not possible. The resulting sharp drop in the frequency

range close to zero leads to an underestimation of the energy of the wind velocity in the low

frequency region while the energy at high frequencies is in general overestimate at greater

hight4 as illustrated by Fig. 2.7 - 2.9 [Simiu and Scanlan 1996, p. 61]. In contrast, the Harris

spectrum approaches the Kolmogorov (L) limit (2.27) just for great heights (here for z = 200

[m]) and thus, in general, leads to an underestimation of the energy in the high frequency

band. Both spectra are not recommended for the use in the low frequencies range below

f < 0.01 [Hz] [Det Norske Veritas 2010].

While the spectra by Davenport and Harris are widely used to model the wind excitation

of land-based structures, the Kareem spectrum is more appropriate for offshore applications

[Li and Kareem 1990] and is given by

Kareem:
fGu(z; f)

σ2
u

=
Bnz

(1 +Cnz)5/3
; nz =

fz

Ūz
(2.38)

where B and C are empirical constants to be determined from observed data by spectral

fitting in order to satisfy the Kolmogorov (z) limit at high frequencies, the position of the

peak value as well as the turbulence intensity [Kareem 1985]. E.g. for Ū(10) = 20 [m/s]

the parameters are computed as B = 335 and C = 71. Furthermore, it must be stressed,

that for B = 6.8 and C = 10.2, the spectrum coincides with the one proposed by Kaimal

(2.30). The development was motivated by the observation, that spectra over the sea seem

to have relatively more energy at low frequencies than land-based spectra [Busch and Panof-

sky 1968]. Moreover, Kareem compared measured values of the variance of the longitudinal

velocity fluctuations over sea based on observations conducted by Smith in the years 1976 -

1978 at an offshore stable platform installed at Sable Island (Novia Scotia, North Atlantic

ocean) [Smith 1980] and the theoretic values resulting from the integration of three widely

used standard turbulence spectra, namely the Kaimal, Harris and Davenport spectrum. He

showed that especially at higher mean wind speeds of about Ū10 = 20 − 25 [m/s], these stan-

dard models underestimate the true deviation of the fluctuations by 21 %, 6 % and 11%,

4for z > 10 [m] [Simiu and Scanlan 1996, p. 61]
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Applications Restrictions
Kolmogorov
Limit (2.26)

Foundation

Kaimal
off-shore structures; land-
based structures with low
terrain roughness

z < 200 [m] agrees
empirical, strong wind
conditions, flat homoge-
neous terrain

Kareem off-shore structures adjustable parameters empirical

von
Kármán

atmospheric turbulences
(e.g. aircraft design), wind
tunnel tests

z ≥ 200 [m] agrees
theoretically founded on
the relation 2.23

ESDU empirical modification of the von Kármán spectrum with adjustable parameters

Simiu
off-shore structures; land-
based structures with low
terrain roughness

z < 50 [m]
under-

estimated
empirical

Davenport land-based structures

f > 0.01 [Hz]

over-
estimated

empirical, averaging var-
ious measurements over
land at different heightHarris land-based structures

under-
estimated

Table 2.2: Comparison of wind velocity model spectra

respectively. In contrast, the greater flexibility of the Kareem spectrum allows describing the

low frequency content of the wind velocity fluctuations accurately, by employing information

derived from actual measurements and, at the same time, keeps the Kolmogorov limit at

high frequencies [Kareem 1985]. Analysis of full-scale measurements from the Gulf of Mex-

ico, North Sea, Pacific and Atlantic oceans confirms the adequacy of the proposed model for

the description of ocean wind data [Gurley and Kareem 1993].

The main results of the comparison of the different wind velocity model spectra are summa-

rized in Tab. 2.2.

2.2.3 Models for wind loads on structures

The gustiness of the wind might lead to a critical excitation of the structure immersed in the

turbulent wind flow. For the structural design a relation between the pressure fluctuations

over the surface or the equivalent resultant forces and moments and the wind velocity fluc-

tuations is needed. As an analytical modeling of such wind flows is in general not possible,

simplified empirical formulas based on wind tunnel tests are used.

Assuming that the structure is completely enveloped by the flow, the time-varying aerody-
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namic force can be approximated by the formula

Ftot(z; t) =
1

2
ρaACFU

2(z; t) (2.39)

where ρa is the air density and CF denote the force coefficient. CF strongly depends on the

geometry of the body and is determined by wind tunnel tests as ratio of the wind load per

unit of area A and the velocity pressure pv(z; t) = 1/2ρaU2
tot(z; t). The area A is in general

a characteristic size, e.g. the projected frontal area or in case of long or two-dimensional

structures, A is replaced by a characteristic length B, which for instance describes the

projected length normal to the flow or the length of the diagonal of a rectangular body. The

squared wind velocity U2(z; t) results from Eq. (2.14) and is given by

U2(z; t) = [Ū(z) + uD(z; t)]2 + v2
D(z,t) +w2

D(z; t) ≈ Ū2(z) + 2Ū(z)uD(z; t) (2.40)

The last equality is based on the assumption that the mean wind velocity Ū(z) is much

greater then the magnitude of the turbulence components uD(z; t), vD(z; t) and wD(z; t).

To be precise, in wind engineering, the ratio uD(z; t)/Ū(z) of the along wind component

uD(z; t), which can be assumed to show the highest fluctuations, rarely exceeds a value of

0.2, and thus the squared values u2
D(z; t), v2

D(z; t), w2
D(z; t) are negligible. Furthermore, it

must be stressed, that the spatial correlation of the velocity fluctuations is neglected, which

allows reduce the velocity field U(x,y,z; t) (2.14) to the random vector process U(z; t) used

in Eq. (2.40). This simplification is justified if the wind fluctuations are completely correlated

over the surface, i.e. if the dimensions of the structure are sufficiently small compared to the

spatial correlation length of the wind turbulences [Simiu and Scanlan 1996, p. 180-181].

Due to these assumptions the aerodynamic force defined in Eq. (2.39) reduces to the along

wind component, the so-called drag force, which can be decomposed into its horizontal mean

value F̄D(z) and a dynamic time-dependent part F ′

D(z; t) [Dyrbye and Hansen 1997, p. 56]

FD(z; t) = F̄D(z) + F ′

D(z; t) (2.41a)

where

F̄D(z) =
1

2
ρaACdŪ

2(z) (2.41b)

F ′

D(z; t) = ρaACdŪ(z)uD(z; t) (2.41c)

where Cd denotes the drag coefficient Cd, e.g. known from measurements. It must be noted,

that in the general case the drag coefficient is a frequency dependent function of the wind
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velocity fluctuations. Thus, setting it constant results in a further approximation [Simiu and

Scanlan 1996, p. 181].

The statistics of the dynamic component are described by the one-sided PSD function which,

introducing the relation (2.41b), is of form

GF (f) = [ρaACdŪ(z)]2Gu(f) =
4F̄ 2

D(z)

Ū2(z)
Gu(f) (2.42)

The statistical properties of the force fluctuations, such as variance and intensity σ2
F , IF ,

respectively, follow directly from the corresponding properties of the wind speed fluctuations

defined in Eq. (2.19-2.20) and are given by [Dyrbye and Hansen 1997, p. 57]

σ2
F = ∫

∞

0

4F̄ 2
D(z)

Ū2(z)
Gu(f)df =

4F̄ 2
D(z)

Ū2(z)
σ2
u (2.43a)

IF =
σF

F̄D(z)
= 2

σu
Ū(z)

= 2Iu (2.43b)

However, the magnitude of the dynamic response of the structure does not only depends

on the turbulence intensity but also on the size of the eddies, i.e. the integral scale length

of the turbulence defined in Eq. (2.23). If, as assumed here, the dimensions of the eddies

are comparable with the dimensions of the structure, they envelope the structure completely

and cause well correlated pressure fluctuations which might lead to a severe excitation of the

structure. [Kareem and Dalton 1982].

For larger structures, the velocity fluctuations at different locations of the structure do not

occur simultaneously and thus their correlation over the whole area A must be taken into

account. The influence of the departure from perfectly correlated flow is introduced by mul-

tiplying the PSD function in Eq. (2.42) with a correction factor, the so-called aerodynamic

admittance function χ2
a(z,f) given here for a rectangular structure, yielding

GF (f) = (ρaACdŪ(z))2∣χa(z; f)∣2Gu(f) (2.44a)

where

χa(z; f) =

⎡
⎢
⎢
⎢
⎢
⎣

1 + (
2f

√
A

Ū(z)
)

4/3⎤
⎥
⎥
⎥
⎥
⎦

−1

(2.44b)

Fig. 2.10 depicts the function for various plates and prisms in turbulent flow with respect to

the dimensionless frequency n = f
√
A/Ū(z) and shows a good agreement with experimental

data. The argument n can be interpreted as ratio of the dimension of the structure
√
A

and the characteristic eddy size of natural wind Ū(z)/f . At low frequencies or for small



32 2 Stochastic Models of Dynamic Excitations

DAVENPORT

0.5

8” × 8” × 4”

A/Ls → 0

12” DIA

Theoretical Curves for ideal lattice

B/H = 1

B/H = 1/4

A/Ls = 0

A/Ls → 0

Longitudinal/Lateral scale of turbulence Ls = 0.7 FT/Ls = 0.22 FT
Turbulence intensity 10.5

Empirical
(fitted) relationship

X(n) = 1

1+( 2n
√
A

Ūz
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Figure 2.10: Experimental and theoretical aerodynamic admittance functions for flat plates and prisms
perpendicular to the flow [Dyrbye and Hansen 1997, p. 60]

structures, i.e. n << 1, the turbulences can be considered to be fully correlated, and thus

the aerodynamic admittance function tends towards 1.0. Conversely, at high frequencies or

for very large bodies, that is n >> 1, the function tends towards zero as the gusts effect

the structure just locally leading to small, nearly uncorrelated pressure fluctuations [Holmes

2007, p. 123].

2.3 Wind wave excitation

If natural forces such as wind, earthquakes, tidal forces (due to gravity between earth, moon

and sun), the Coriolis force (due to the earth’s rotation) or the surface tension are acting

on the ocean, surface waves are caused [World Meteorological Organization 1988, p. 1].

In [Munk 1950] it is observed that the period (or the frequency) of the generated waves,

describing the time in which two successive crests passes, is a characteristic measure which

gives information about the nature of the causing force. Thus the location of the peaks in the

wave spectrum can be used for the classification of the ocean waves as depicted in Fig. 2.11.
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Figure 2.11: Idealized energy spectrum of surface ocean waves [Kinsman 2002]

2.3.1 Ocean wave spectra

The capillary waves are the smallest waves of period less than Tp < 0.1 [s] whose properties

are strongly influenced by the surface tension of the water.

The ordinary gravity waves vary randomly in height and period over location and time,

and thus have a probabilistic nature. They can be split into wind sea if the waves are

directly generated and affected by the local winds and swell, if the waves have escaped the

generating wind field, i.e. they have been generated elsewhere, or some time ago. Sea is of

shorter period and in general of shorter wavelength, steeper and more confused than swell.

As the frequency bands of sea and swell are overlapping and there’s no gap in the wave

spectrum, the separating period between sea and swell just can be estimated roughly and is

about 10 [s] [Kinsman 2002, p. 22].

The ultra-gravity and ordinary-gravity waves are caused mainly by two mechanism, namely

a horizontal pressure gradient in the air flow between the windward and leeward side of

the wave and a tangential friction drag on the water surface leading to a mass transport

according to the linear wave theory as discussed in [Munk 1950]. The infra-gravity waves

describe surface waves at periods longer than the swell and wind-driven waves. In deep water

the wave heights are in general small (H ≤ 1 [cm]) and the period is of about 20-500 [s]. The

waves causes pressure fluctuations at the deep sea bed and thus are greatly affected by the

bottom topography. They are of greater importance for the modeling of harbor oscillations

and near-shore processes such as sediment transport [Dolenc et al 2005].

The long-period band and the transtidal band of periods Tp > 5 [min.] are caused by large
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scale atmospheric pressure systems, earthquakes, and tidal forces, respectively [Kinsman

2002, p. 24].

Most of the energy is introduced by the ordinary gravity waves and the tidal waves. In the

following only the former class will be discussed in more detail as it is of great importance for

the design of ocean and offshore engineering structures [World Meteorological Organization

1988, p. 1].

2.3.2 Sea states

The wind characteristics and the growth of the waves is not just influenced by the wind speed

and the turbulence intensity in the lower boundary layer, but also by the water depth, the

area over which the wind blows, the so-called fetch, and the duration the wind has blown.

Hence, the generation of wind waves is characterized by three states:

a) Developing sea: In the first state the sea is said to be developing as the mean values of

the statistical properties are increasing in along wind direction x as the sea becomes

rougher and thus the wind energy is absorbed more effectively. The minimum fetch

Fmin describes the length of this region in wind direction, i.e. x ≤ Fmin [McCormick

2009, p. 1ff]. The process which causes the waves to grow in heights and length is

explained in more detail in section (2.3.3).

b) Fully developed sea: If the wind blows steadily for a long time over a large area, the

waves reaches an equilibrium state and the sea is said to be fully developed. Thus the

average wave height and wave period can be assumed to be stationary in time and

constant over distance Fmin < x ≤ F , where F denotes the storm fetch.

c) Decaying sea: Finally, when the waves escape the wind field, the wave energy starts to

decrease in the so-called decay region, i.e. F < x <XD, where XD represents the decay

length and where the sea is referred to as decaying sea or swell.

It must be noted that the wave spectra of all three states show similar characteristics but

are not identical. E.g. the peak energy value in the developing sea is lower than the one in

the fully developed sea and the modal period, i.e. the period of maximum energy intensity,

is shifted to lower periods (higher frequencies). Moreover in contrast to the time- and space-

variant wave spectra of the developing and decaying sea, the spectrum of the fully developed

sea can be assumed to be independent of both time and position within Fmin < x ≤ F . In

the decaying sea, the modal period increases with x, whereas the overall energy intensity,

corresponding to the area under the curve, decreases. The change of the frequency content of
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Figure 2.12: States of the sea: a) Calm sea; b) Capillary waves; c) Linear waves; d) Nonlinear waves;
e) Breaking waves [McCormick 2009, p. 46]

the wave spectrum is caused by a phenomenon called dispersion describing the dependency

of the propagation velocity c on the frequency. Thus the longer waves, or similarly the

waves with greater period (smaller frequency), outrun the shorter waves of lesser period

[McCormick 2009, p. 1ff].

In the following the discussion is restricted to deep water waves of the fully developed sea.

They are modeled using the classical theory of linear wave analysis also known as Airy’s wave

theory suggested by George B. Airy in the middle of the nineteenth century (see [Coleridge

1845, p. 241-396]). Without going into details, solely the main results needed for a description

of the wave loads are presented. A comprehensive derivation of the equations used in linear

and nonlinear wave theory can be found e.g. in [McCormick 2009].

2.3.3 Generation of wind waves

In order to show under which conditions the linear wave assumption is adequate, the process

which causes the waves to grow in both height and length is illustrated in Fig. (2.12) and

summarized in the following [McCormick 2009, p. 45ff]:

a) If the free surface of the sea is effected by a slight breeze of relative small velocity U0 [m/s],

the air flow in the boundary layer can be assumed to be laminar, i.e. it flows in parallel
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layers without lateral mixing and turbulences. The mean wind speed at different heights

is characterized by a logarithmic profile as previously discussed. Due to the viscosity

of the air, it adheres to the water particles on the free surface and drags them in flow

direction. Due to the lack of turbulences the air flow does not cause waves and the sea

remains calm as illustrated in Fig. 2.12a.

b) If the velocity increases U1 > U0, the lower part of the boundary layer becomes turbu-

lent. Small ripples at the surface, so-called capillary waves, are created if the pressure

fluctuations in the airflow above the water are sufficient to induce small deformation on

the sea surface. The shape of the wave profile is predominantly influenced by the surface

tension leading to broad chests and narrow troughs as depicted in Fig. 2.12b, whereas

the shear stresses on the surface causes the propagation of the waves in air flow direction

with velocity c [m/s]. They decay quickly as they are strongly damped by viscous forces,

and for their generation wind velocities above 1-2 Beaufort are required. These waves are

often studied visually by photographing the glitter of the sun on the sea surface. They

increase the surface roughness, so that the wind can grip the water more effectively [Munk

1950]. However, the capillary waves are in general of minor importance in engineering

applications as their energy is relative small.

c) The energy of the wind turbulences in the boundary layer as well as the shear stresses

increase with growing wind velocity and the stronger air flow U2 > U1 is indicated as wind

rather than as breeze. The energy exchange between the air and the water leads to the

development of longer waves with sinusoidal shape as depicted in Fig. 2.12c. The so-called

linear waves are characterized by a sinusoidal profile and thus can be described using

linear wave theory by superposition of waves with different wavelength λ and altitude H.

d) A further increase of the wind velocity U3 > U2 results in an increase of the wave heights

and length as well as the propagation velocity. The wind profile is non-symmetric showing

a narrow crest and a broad trough, as illustrated in Fig. 2.12d, and as the water volume

above and below the still water level (SWL) must be balanced, the mean water level

(MWL) lies above the SWL. The air flow is blocked by the waves leading to a horizontal

pressure gradient on the leeward (wind-averted) side of the waves so that the wind profile

is no longer symmetric. The waves are called nonlinear waves as their properties cannot

be described by linear equations.

e) If the wind speed further increases so that the propagation velocity equals the horizontal

velocity of the water particles, the waves start to break and hence are called breaking

waves. The shape of the waves is characterized by a broad trough and a peaked crest
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Figure 2.13: Idealized ocean wave due to linear wave theory [World Meteorological Organization 1988]

which shows a white cap if the water is sheared of the crest and spilled down the leeward

side as white foam as sketched in Fig. 2.12e

2.3.4 Linear wave model

A large number of actual measured data indicates, that the free surface particle displacement

of the ocean wave can be represented by a zero-mean stationary stochastic process [Li and

Chen 2009, p. 68]. The simplest model is based on the linear wave analysis which is valid

for non-breaking, deep water surface waves and which allows considering waves in a spectral

sense. It is based on the assumption, that the amplitude of the waves H is small compared

to the wavelength λ and the water depth h. The first assumption H/λ << 1 implies a

small steepness of the waves, while the second assumptions H/h << 1 indicates that deep

water waves are considered, i.e. λ/h < 2, which are unaffected by the sea bed topography.

They allow the linearization of the boundary conditions at the water surface and an analytic

solution of the underlying differential equation can be found (s. [McCormick 2009, p. 47ff.])

for further detail). Furthermore it is assumed that the water is incompressible, i.e. of constant

density, and that the viscosity of the water flow can be disregarded, that is friction effects

are ignored. The latter assumption is valid if the viscous forces are small in comparison

to the inertial (gravity) forces and the pressure acting perpendicularly to the surface of the

water particle. Furthermore, the water flow is assumed to be irrotational, i.e. the individual

particle does not rotate and a group of water particles move around each other but without

mixing effects [World Meteorological Organization 1988, p. 1].

Assuming linear wave theory, the wave has a sinusoidal form as illustrated in Fig. 2.13 and

the free surface profile can be described as

η(t,x) = a sin(kx − ω) = a sin(k[x − ct]) (2.45)
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Figure 2.14: Sea generated by the superposition of many sine waves with random amplitude and phase
[Pierson et al 1955]

where a = H/2 [m] denotes the amplitude of the wave measured with respect to the mean

water level. The constants k [rad/m] and ω = 2π/T [rad/s] indicate the wave number and

the angular frequency of the oscillating wave, respectively. The second equality in Eq. (2.45)

can be interpreted as frozen wave profile with wavelength λ = 2π/k [m] which moves in the

direction of the horizontal x-axis with constant velocity c = ω/k [m/s] which is also known as

phase velocity. Alternatively, the wave speed as well as the wave length can be expressed in

terms of the wave period using the expressions c = λ/T [m/s] and λ = cT [m]. Thus, the wave

is described in a two-dimensional coordinate system x,z in order to account for the wave

propagation in x direction as well as its vertical oscillation in z direction [Chakrabarti 2005,

p. 83ff]. However, the actual surface of the sea does not resemble the simple form depicted

in Fig. 2.13, but has a more random nature. The waves appear in irregular, constantly

changing shapes since they are continually being overtaken and crossed by others. Hence,

the random pattern can be generated by superposing an infinite number of independent

sinusoidal waves with random phase which differ from each other in height, wavelength and

propagation direction as illustrated in Fig. 2.14 [World Meteorological Organization 1988,

p. 7] leading to the following formula for the surface evaluation suggested in [Pierson et al

1955, p. 17ff]

η(t,x) = lim
N→∞

N

∑
j=1

aj sin(kjx − ωjt + θj) (2.46)
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2.3.5 Model spectra of the fully developed sea

A number of different procedures exist for the description of the sea surface [Bai 2003, p.

21-22]. In the frequency domain, the power spectral density function represents the dis-

tribution of the energy content of the sea over a range of measured wave frequencies (or

periods). Various deep-water wave spectral models exist to characterize the fully devel-

oped sea, among them the spectra proposed by Neumann [Neumann 1953], Bretschneider

[Bretschneider 1959] and Pierson and Moskowitz [Pierson and Moskowitz 1963] are the most

widely used [Chakrabarti 2005, p. 106]. These spectra follow the generic equation [Li and

Chen 2009, p. 68]

G(ω) =
A

ωp
e−

B
ωq (2.47)

where the parameters p and q are typically of order p = 5−6, q = 2−4 and result from curve-

fitting of the measurement data while the coefficients A and B model the influence of the

wind velocity, the wave height and other physical parameters such as the modal frequency

(or period), the fetch length, the wind duration [McCormick 2009, p. 137]. The parameters

of the three spectra are chosen as

Neumann: p = 6; q = 2; A =
Cπ

2
; B =

2g2

Ū2
7.5

(2.48)

Bretschneider: p = 5; q = 4; A = 0.1687H2
sω

4
s ; B = 0.675ω4

s (2.49)

Pierson-Moskowitz: p = 5; q = 4; A = 0.0081g2; B = 0.74(
g

Ū19.5

)
4

(2.50)

These spectra are derived by empirical fitting of various wave data sets in combination with

dimensional and theoretical reasoning. Longuet-Higgins [Longuet-Higgins 1952] showed that

for a narrow-banded wave spectrum, the surface evaluation can be assumed to be Gaussian

distributed. As it is known, that the maximum values of a normally distributed random

parameter follow a Rayleigh distribution5 [World Meteorological Organization 1988, p. 10],

Longuet-Higgins concluded that the wave heights, which corresponds to the maximum values

of the sea state, are Rayleigh distributed. The latter was shown theoretically and verified by

experimental data leading to the following probability density function for the wave height

p(H) =
H

4ση
e
−
H2

8ση = 2
H

H2
rms

e
−

H2

H2
rms (2.51)

5The Rayleigh probability density function is: p(x) = x
σ2 e

−x2
/2σ2

, x ≥ 0 for σ > 0
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where H is defined on the interval [0,∞], ση denotes the standard deviation of the surface

evaluation and Hrms is the root-mean square of the wave heights defined as

Hrms =

√

∫

∞

0
H2p(H)dH ≅

¿
Á
ÁÀ 1

N

N

∑
j=1

H2
j =

√
8ση (2.52)

One interesting property of the Rayleigh distribution is, that all characteristic wave height

parameters are interrelated and can be calculated once a single wave height parameter is

determined. The most frequent wave height parameters are

a) the most probable wave height H0 = 2ση, (2.53a)

b) the mean wave height H̄ =
√

2πση ≈ 2.5ση, (2.53b)

c) the root-mean-square wave height Hrms =
√

8ση ≈ 2.8ση and (2.53c)

d) the significant wave height Hs = 4ση (2.53d)

The latter is also denoted as H1/3, as it is defined by the average wave height considering

the highest one-third of all waves, i.e.

Hs =
1

N/3

N/3

∑
j=1

Hj (2.53e)

where N is the number of all individual wave heights and Hi are the wave heights ranked

from highest to lowest, i.e. H1 > H2 > . . . > HN . Due to the dependency of the different

wave heights H̄, Hs and Hrms, respectively, on the variance of the surface evaluation ση, the

relations in Eq. (2.53a-2.53d) can be used to scale the measured wave spectra. E.g. using

Eq. (2.53d) the following relation between the significant wave height and the one-sided PSD

function can be used

Hs = 4

√

∫

∞

0
G(ω)dω = 4

√
m0 (2.53f)

where m0 = σ2
η is the zeros moment of the PSD function of the surface evaluation correspond-

ing to the area below the PSD function.

The development of the Neumann spectrum was based on the characteristic wave heights

Hc and period Tc obtained by visual observations (in literature often indicated by using the

symbols T̃ , H̃) of the apparent waves in the fully developed North Atlantic sea. By plotting

the values Hc/T 2
c versus the ratios (Tc/Ūz)2 in a semi-logarithmic scale, as illustrated in

Fig. 2.15, Neumann derived an empirical envelope curve in the form
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Figure 2.15: Ratio of the observed apparent wave heights to the wave period, Hc/T 2
c versus different

ratios of the wave period to the mean wind speed (Tc/Ūz)2 plotted in semi-logarithmic scale
for fully developed sea [Neumann 1953, p. 12]

Hc

T 2
c

= Ce−(
g

2π
⋅
Tc
Ūz
)

2

(2.54)

where C [m/s2] is a constant. He observed that the apparent waves may occur with any

steepness but due to instabilities and breaking cannot exceed a certain maximum value.

Below this envelope curve any value of the ratio Hc/T 2
c may occur at a given ratio Tc/Ūz.

Neumann concluded, that the observed apparent waves result from the superposition of a

large number of individual wave trains with individual period T concentrated around the

observed apparent wave period Tc. Thus the corresponding wave heights Hc at a given period

Tc can be interpreted as spectral wave height for a certain spectral wave band Tc ±∆T /2 of

width ∆T [Neumann 1953, p. 9ff.]. Since the wave energy density E [J/m2] per area equals

gρwH2/8 is proportional to the squared wave heights (see for instance [McCormick 2009,

p. 64-65] for further detail), Neumann assumed, that the wave spectrum is proportional

to the squared apparent height H2
c obtained from Eq. 2.54 [Bretschneider 1959, p. 149].

The constant C is chosen in such a way that the variance of the process is equal to the

so-called energy coefficient obtained by Longuet-Higgins [Longuet-Higgins 1952] given by

4/πH̄2. The latter coincides with the mean square value of the wave height H2
rsm = 4/πH̄2

as can be shown by combining Eq. (2.53c) and Eq. (2.53b) assuming that the wave heights

are Rayleigh distributed (s. Eq. 2.51). Using the relation defined in Eq. (2.53c) between the
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variance of the surface evaluation and the mean square value of the wave height the following

relation of the spectrum of the surface evaluation and the Neumann spectrum can be found

H2
rms = ∫

∞

0
GN(ω)dω = 8σ2

η = 8∫
∞

0
Gη(ω)dω (2.55)

It is interesting to note, that the relation in Eq. (2.55) can also be derived analytically from

the wave energy density E = gρwH2/8 without using the assumption that the wave height

follow a Rayleigh distribution as shown in [McCormick 2009, p. 134-135]. In the Neumann

spectrum defined in Eq. (2.48), C = 3.05 [m2/s5] and the mean wind velocity is chosen with

respect to the height z = 7.5 [m] over the sea surface.

The wave spectrum for a given sea-state proposed by Bretschneider [Bretschneider 1959]

depends on two parameters, namely the significant wave height Hs defined in Eq. (2.53e)

and the modal angular wave frequency ωs [Bai 2003, p. 22-23]. From statistical analysis of

the wave data he noticed that the variability of both, the wave period as well as the wave

height follow a Rayleigh distribution. Thus the Bretschneider spectrum was derived theoret-

ically by squaring all components of H and summing according to the distribution function.

The significant angular frequency ωs = 2π/Ts in Eq. (2.49) describes the average angular

frequency corresponding to the significant waves in the short-term record of period Ts = 1/fs

and height Hs. The latter is given by the relation Ts = (4/5)0.25Tp, where Tp = 2π/ωp denotes

the period corresponding to the angular wave frequency ωp of the modal value. While the

area under the Neumann spectrum was forced to be equal to the Longuet-Higgins energy

coefficient H2
rms = 4/πH̄2, the Bretschneider spectrum satisfies this property automatically

[Bretschneider 1959, p. 150].

The spectrum proposed by Pierson and Moskowitz [Pierson and Moskowitz 1963] is based

on 460 spectra observed and recorded of the fully developed sea in the North Atlantic Ocean

from 1955 to 1960 for wind speeds between 20 to 40 knots [Moskowitz 1964]. It has the same

exponent values p, q as the Bretschneider spectrum, however, the derivation of the coeffi-

cients A and B in Eq. (2.47) does not make use of the assumption that the wave heights

and wavelengths follow a Rayleigh distribution, but is based on the similarity hypothesis of

Kitaigorodskii and on at-sea measurements of the wave properties. Kitaigorodskii assumed

that the wave spectral density depends on four parameters, namely fetch F , gravity acceler-

ation g [m/s2], friction velocity of the wind U∗ [m/s] and frequency f [Hz]. Instead of using

the friction velocity as a parameter, the proposed spectrum in Eq. 2.50 is given with respect

to the mean wind speed Ū19.5 [m/s] measured at z = 19.5 [m]. In order to refer the wind

velocities measured at any z to the one needed in Eq. (2.50), Pierson suggested the following
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relation for U10 ≈ 30 [m/s]

Ūz = U10 [1 +

√
0.80 + 0.114U10

0.4 × 103/2
ln(

z

10
)] (2.56)

Furthermore, the fetch is assumed to be infinite and thus is not included in the spectrum. The

integral of the Pierson-Moskowitz (P-M) spectrum is equal to the variance of the free-surface

displacement η defined in Eq. (2.45), that is it holds

∫

∞

0
GPM(ω)dω = 2.74 × 10−3 Ū

4
19.5

g2
=
H2
rms

8
= η2

rms (2.57)

Consequently, the integral of the Bretschneider and Neumann spectrum, respectively, is eight

times that of the Pierson-Moskowitz spectrum [McCormick 2009, p. 142]. The high-frequency

part of the Pierson-Moskowitz and Bretschneider spectrum is modeled in agreement with

Phillips’s hypothesis [Phillips 1958] as ω−5 power law decay. He assumed that in a well-

developed sea, there is an ’equilibrium range’ of high frequencies in the spectrum in the form

SF (ω) ∼ g2αpω−5, determined by the physical parameters, namely the gravity acceleration,

governing the formation of sharp crests in breaking waves. The Phillips parameter αp is a

constant, e.g. set to 0.0081 in the Pierson Moskowitz spectrum.

The three discussed spectra are eligible for the description of open-ocean wind-generated seas,

that is, where the fetch is assumed to be infinite. However, in cases where the cite is located

near the coast of a land mass, i.e. where the wave growth under steady wind conditions

is limited by the distance from the shore, this assumption is not justified. To account for

limited fetch, in [Hasselmann et al 1973] a modified P-M formula is suggested, which is based

on 2500 measured spectra in the German Bight of the North Sea. The spectrum is known

as JONSWAP spectrum as it was derived within the Joint North Sea Wave Project and is

given by the formula

JONSWAP ∶ G(ω) =
αg2

ω5
exp(−

5

4

ω4
p

ω4
)γ

exp(−
(ω−ωp)

2

2σ2ω2
p
)

(2.58)

where α [-] denotes the energy scale parameter, which is a function of the dimensionless fetch

F̃ = gF /Ū2
10 [-] in wind direction and which is given by

α = 0.07F̃ −0.22; 0.01 ≤ F̃ ≤ 105 (2.59)

γ [-] is the so-called peak enhancement factor which modifies the interval around the spectral

peak leading to a much sharper peak than in the P-M spectrum. Otherwise, the shape of the



44 2 Stochastic Models of Dynamic Excitations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
Normalized wave spectra G(ω)/σ2

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

ω [rad/s]

Normalized wave spectra G(ω)/σ2
PM

 

 

Pierson−Moskowitz
Bretschneider
Neumann

JONSWAP, γ = 3.3, F=100 [km]
JONSWAP, γ = 3.3, F=1000 [km]
JONSWAP, γ = 2.0, F=100 [km]
JONSWAP, γ = 2.0, F=1000 [km]
Pierson−Moskowitz

U
10

=20 m/s

U
10

=20 m/s

U
10

=30 m/s

U
10

=30 m/s

U
10

=20 m/s

U
10

=20 m/s

U
10

=30 m/s

U
10

=30 m/s

Figure 2.16: Top: Normalized wave spectra with respect to the area below the PSD function for the case
of a mean wind velocity of Ū10 = 20,30 [m/s] at height z = 10 [m]; Bottom: Comparison
of the P-M spectrum and the JONSWAP spectrum for different peak enhancement factors
γ = 2.0,3.0 [-] and for Ū10 = 20,30 [m/s]. The spectra are normalized with respect to the area
below the P-M spectrum

JONSWAP and P-M spectrum is similar. It is defined by the ratio of the maximum value

of the JONSWAP and the P-M spectrum, respectively, and calculated by

γ =
GJONSWAP
max (ω)

GPM
max(ω)

(2.60)

The peak factor is typically of magnitude 1.5-6 and in the average of order 3.3. The peak

shape parameter σ defines the left- and right-sided width of the spectral peak, respectively,

and is given by
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σ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0.07 ω ≤ ωp

0.09 ω > ωp
(2.61)

where ωp denotes the modal frequency associated with the peak value of the spectrum, which,

in contrast to the P-M spectrum, is an adjustable parameter.

The discussed wave spectra are depicted in Fig. (2.16) for different mean wind velocities

measured at z = 10 [m] over ground. In the upper plot, the P-M, Bretschneider and Neumann

spectrum are compared. It is evident that an increase of the mean wind speed leads to an

increase of the peak values of the spectra and a shift to smaller frequencies, i.e. the wave

height as well as the wave length increase. The spectra are normalized with respect to the

area below the respective PSD functions. The mean wind velocities Ū7.5 [m/s] and Ū19.5

used in the formula of the Neumann and P-M spectrum, respectively, are calculated from

Eq. (2.56). As the areas below the spectra proposed by Neumann and Bretschneider are

both corresponding to the mean square value of the wave height H2
rms, the significant wave

height Hs needed in the equation of the Bretscheider spectrum is chosen in such a way, that

the constraint H2
rms =H

2
rms,N =H2

rms,B is satisfied. The lower plot of Fig. 2.16 compares the

P-M spectrum with its modified version, the JONSWAP spectrum with peak enhancement

factors γ = 2.0,3.3 [-] and for a fetch of F = 100,1000 [km]. Both spectra are normalized

with respect to the area below the P-M spectrum. It is obvious that in the low frequency

range and the high frequency range both spectra show a similar characteristic, but they differ

significantly in the peak value. However, as expected the difference between the two spectra

reduces with increasing fetch.

2.3.6 Wind-induced wave forces

Water waves which pass a circular cylinder of diameter D, cause wave-induced forces whose

magnitude depends primarily on the scale of the diameter of the cylinder compared to the

wave length and the wave heights, i.e. D/λ and H/D. Depending on these ratios, the forces

can be split into three components, namely the viscous pressure force due to a combination

of the boundary layer and the wake, the inertial force caused by the acceleration of the

water, the structure, or both, and the diffraction force due to scattering, i.e. wave reflection

and diffraction. Chakrabarti [Chakrabarti 2005, p. 164ff] summarized the dependency of the

components on the length ratios graphically as shown in Fig. 2.17. The chart reveals that

the ratio πD/λ mainly determines if diffraction must be considered and thus is also called

diffraction parameter. The second ratio defines the so-called Keulegan-Carpenter number

KC ≈ πH/D, valid in this form for deep water waves, and describes the effect of gravity and
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Figure 2.17: Graphical representation of the dominant wave force components (viscous pressure force,
inertial force and diffraction force) depending on the diffraction parameter πD/λ and the
Keulegan-Carpenter number KC ≈ πH/D [McCormick 2009, p. 290]

drag. In the following the discussion will be restricted to structures whose dimensions are

small compared to the wave length, i.e. D/λ < 0.2 [Li and Chen 2009, p. 66], and where the

effect of diffraction can be neglected, i.e. H/D > 2 (or KC > 6).

Assuming non-braking waves, the resulting inertia and drag forces acting on the structure

can be described by the so-called Morison equation. The inertia and the drag coefficients

Cm [-] and Cd [-], respectively, are determined experimentally either in the laboratory or

from field measurements [Chakrabarti 2005, p. 133]. For a vertical, infinitely stiff cylinder

under the action of an ocean wave, the Morison equation is given by the following empirical

formula

F (x,z; t) =
1

2
ρwCdv(x,z; t)∣v(x,z; t)∣ + ρwCm

πD2

4
a(x,z; t) (2.62a)

where ρw is the density of the sea water [Li and Chen 2009] and where the summands

Fd(x,z; t) =
1

2
ρwCdv(x,z; t)∣v(x,z; t)∣ =Kdv(x,z; t)∣v(x,z; t)∣ (2.62b)

Fm(x,z; t) = ρwCm
πD2

4
a(x,z; t) =Kma(x,z; t) (2.62c)
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Figure 2.18: Distribution of the wave force [Li and Chen 2009, p. 67]

denote the horizontal drag and inertia forces Fd(x,z; t), Fm(x,z; t), respectively. The profile

of the wave forces along the height of the piles is schematically depicted in Fig. 2.18. In

general Cm ranges between 1.6 − 2.5 and for a vertical cylinder Cm = 2.0 can be assumed.

The drag coefficient Cd never falls below 0.6 and for a smooth cylinder Cd = 1.0 [Norton and

Quarton 2003]. The functions v(x,z; t), a(x,z; t) describe the horizontal particle velocity and

acceleration, respectively. While the former is in phase with the wave profile η(x,t) given by

Eq. (2.45), the horizontal acceleration is 90○ out of phase. They are derived by linear wave

theory, leading to

v(x,z; t) =H(ω,z)η(x,t); a(x,z; t) =H(ω,z)η̇(x,t) (2.63a)

where H(ω,z) is given by

H(ω,z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ω cosh[k(z + h)]

sinh[kh]
;

h

λ
≥

1

2
(finite depth)

ω exp(kz);
h

λ
≤

1

20
(deep water)

(2.63b)

Due to the random nature of the wind waves, the surface displacement η(x,t) can be regarded

as random field. Assuming that the differences of the waves at different points along the x axis

can be ignored, i.e. if the wave is assumed completely correlated along the x direction, then

the random field η(x,t) reduces to a random process η(t). However, the physical relations

given in Eq. (2.63) between the surface displacement η(t) and the horizontal velocity and

acceleration v(z; t), a(z; t) of the water particles in the wave process still hold.

The drag force in Eq. (2.62b) is a quadratic function of the wave velocity leading to a

nonlinear relation between the surface evaluation and the wave-induced forces. Due to this

nonlinearity, the exact calculation of the response statistics is difficult and thus, the quadratic

factor v(z; t)∣v(z; t)∣ is replaced by a linear term cv(z; t) where c is a constant and v(z; t) a
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zero mean Gaussian process with standard deviation σu. By employing the statistical least-

square-error technique, the constant is derived by minimizing the expectation of the square

error between the linear and quadratic functions, i.e. E[(v(z; t)∣v(z; t)∣ − cv(z; t))
2
] leading

to the value c =
√

8/πσu. Introducing the linearized drag force [Hu et al 1991]

Fd =

√
8

π
Kdσuv(z; t) (2.64)

into the Morison equation (2.62a) and taking into account the relations (2.63), yields the

following simplified formula for the load process

F (z; t) =

√
8

π
KdσuH(ω,z)η(t) +KmH(ω,z)η̇(t) (2.65a)

Assuming that the displacement and velocity η(t), η̇(t) can be represented as stationary ran-

dom processes whose PSD functions Gη(ω), Ġη(ω) = ω2Gη(ω) are known e.g. from measure-

ments, then the PSD function of the load process can be easily calculated from Eq. (2.65a)

leading to [Li and Chen 2009, p. 66-67]

GF (z;ω) = (
8

π
K2
dσ

2
u +K

2
mω

2) ∣H(ω,z)∣
2
Gη(ω) (2.65b)

Similar to the relation in Eq. (2.44) which relates the wind velocity spectrum to the spectrum

of the wind force, this relation finally allows transferring the discussed wave spectra of

the surface evaluation directly to the spectra characterizing the wave load process. Now,

assuming that the load spectra is known from measurements or given by one of the modal

spectra, the next step is the digital simulation of realizations of the random process with

target PSD function, in order to include the load process as input in the response analysis

or system identification. To this aim, in the next chapter different algorithms for the digital

simulation of the target process are critically reviewed.
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The proposed identification algorithm is based on the concept, that the unmeasured load

process is modeled as output of linear system driven by white noise which then can be added

to the dynamic system of the structure. In order to apply the Kalman filter algorithm, the

load model must be Gaussian and expressible in state space form. Furthermore, the digital

simulation technique should be applicable to a wide range of processes, that is without

restriction to the functional form of the PSD function. To this aim, in this chapter, different

algorithms for the digital simulation of Gaussian random processes which are widely used in

literature are reviewed as well as discusses with respect to these requirements. The different

methods are classified in spectral representation approaches and digital filters schemes with

band-limited white noise input as proposed in [Kareem 2008]. The first class is based on

the superposition of sine and cosine functions with random phase either carried out in the

time or in the frequency domain using fast Fourier transform (FFT) and are discussed in the

following in section 3.1. In the second class described in section 3.2, the process is modeled

as output of a linear system subjected to white noise represented either by convolution

of the input process with the impulse response function or by integration of a differential

equation driven by white noise. The former is based on the spectral factorization theorem

and discussed in section 3.2.2 and the latter leads to parametric time series models such as

autoregressive (AR), moving average (MA), and the combined ARMA models to simulate

the time series of the random process (s. 3.2.1). Such time domain methods are of great

importance e.g. in the response analysis and design of structural control.

In chapter 4 the concept of state space modeling is introduced and applied to the discussed

parametric time series models (s. 4.2, 4.3) and the transfer function obtained by spectral

factorization of the PSD function (s. 4.4). The state space form is needed in chapter 7 to

include colored processes in the Kalman filter algorithm.
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3.1 Wave superposition-based methods

The spectral representation methods, proposed in [Shinozuka and Jan 1972], belongs to

the most popular methods for the digital simulation of random processes in the engineer-

ing community. It allows generating sample functions with target probabilistic characteris-

tics of stationary/ non-stationary, homogeneous/non-homogeneous, one-dimensional/multi-

dimensional, one-variate/multi- variate as well as Gaussian/non-Gaussian stochastic pro-

cesses, fields or waves. Combined with the Monte Carlo Simulation algorithm, the method

can be applied to a variety of engineering problems in stochastic mechanics such as nonlinear

problems or problems related to the stochastic stability, parametric excitation, parameter

and input uncertainties, risk assessment, etc.. Before the publication of the milestone paper

[Shinozuka and Jan 1972] in the beginning of the seventies, most methods for the digital

simulation of random processes were restricted to the univariate or unidimensional case.

The first techniques which overcome this restriction were published by [Borgman 1969] and

[Shinozuka 1971]. Borgman developed a method for the simulation of stationary, ergodic sea

surface elevations by superposition of sine waves with weighted amplitude consistent with

the energy in the target spectral density at that frequency. In [Shinozuka 1971] a similar

method for the simulation of multivariate and multidimensional processes with given cross-

power spectral density was developed. It is shown that the process can be generated as the

sum of cosine functions with random frequency and random phase angle. The main draw-

back of the method is the time consuming generation of the random frequencies according

to the cross power spectral density function which makes it cumbersome for the treatment

of processes with high dimensionality. The representation proposed in [Shinozuka and Jan

1972] is a modification of the method which no longer requires the generation of random

frequencies. It is based on the decomposition of the random process into a series of cosine

functions with weighted amplitudes corresponding to the known PSD, evenly (possibly un-

evenly) spaced random frequencies and uniformly distributed random phase angles. If the

PSD function is sampled with constant sample rate, then the resulting series representation

can be calculated efficiently using the Fast Fourier transformation (FFT) as shown in [Yang

1972].

The univariate one-dimensional (1V-1D) zero-mean stationary stochastic process {F (t)} with

PSD SF (ω) can be simulated by the following series [Shinozuka and Jan 1972; Schuëller 1997]

F (t) =
√

2 lim
N→∞

N−1

∑
k=0

Ak cos(ωkt + φk) (3.1)
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where k ∈ N0, ωk = k∆ω and with Ak =
√

2SF (ωn)∆ω. The sampling rate ∆ω = ωu/N is

determined from the cut-off frequency ωu beyond which the values of the PSD function are

assumed to be zero. The random phase angles φk are independent and uniformly distributed

over the interval [0,2π]. Hence, the process defined by Eq. (3.1) is the result of the su-

perposition of many independent identical distributed (i.i.d.) random variables with finite

variance. According to the central limit theorem the process is asymptotically Gaussian if

N →∞. Furthermore, it must be noted, that the generated process is periodic with period

T0 = 2π/∆ω. In order to assure ergodicity in the mean value and the autocorrelation function

of each sample of the simulated process the constraint A0 = 0 or SF (0) = 0 must be satisfied

and the length of the sample function is either equal to the period T0 or tends to infinity

[Schuëller 1997]. Otherwise, the mean value obtained by averaging of the generated signal

over the simulation time is different from zero.

The efficiency of the simulation can be improved by rewriting Eq. (3.1) in polar coordinate

form

F (t) =
√

2∆ωRe{X(t)} where X(t) =
N

∑
k=1

[
√

2SF (ωk)e
iφk] eiωkt (3.2)

where X(t) is the finite complex Fourier transform of
√

2SF (ω)eiφ. Applying the FFT leads

to a significant saving in computer time [Yang 1972]. A review paper on the simulation of

one-dimensional and uni-variate stationary stochastic processes is published by [Shinozuka

and Deodatis 1991].

In order to describe the system’s response of a structure excited by a stochastic field, e.g. by

a wind field acting on a building, the variation of the dynamic load process in time as well

as in spatial locations must be taken into account. Such a wind field can be represented by

a discretized n-variate one-dimensional (nV -1D) stochastic vector process where the com-

ponents of the n-dimensional zero-mean vector {F(t)} = [F1(t), F2(t), . . . , Fn(t)] describe

the along wind processes acting on n locations of the structure [Di Paola 1998]1. In order

to generate a realization of the process, the cross PSD (XPSD) matrix SF (ω) (s. A.9a) is

factored by applying the Cholesky decomposition leading to

SF (ω) = H(ω)H∗(ω)T (3.3)

1In the annexe A.1.4.2 further detail on multivariate and multidimensional processes is given
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where the asterisk indicates the complex conjugate and where H(ω) is a lower triangular

matrix of the form

H(ω) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11(ω) 0 . . . 0

H21(ω) H22(ω) . . . . . .

. . . . . . . . . 0

Hn1(ω) Hn2(ω) . . . Hnn(ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.4)

Here it was assumed that the XPSD matrix is Hermitian and positive definite. For the

general case of a non-negative definite XPSD matrix, see [Shinozuka and Jan 1972]. The

diagonal elements Hjj(ω) are real and the off-diagonal terms Hjk(ω) are in general complex

function of ω. They can be expressed in polar form as

Hjk(ω) = ∣Hjk(ω)∣e
iθjkω where θjk(ω) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tan−1 (
ImHjk(ω)

ReHjk(ω)
) , j ≠ k

0, j = k
(3.5)

leading to the following series representation of the j-th component of the n-dimensional

vector process {F(t)} given by

Fj(t) = 2 lim
N→∞

n

∑
m=1

N

∑
k=1

∣Hjm(ωmk)∣
√

∆ω cos(ωmk − θmk(ωmk) + φmk) (3.6)

where ωmk = (k − (n −m)/n)∆ω and the sampling rate is defined as before from the cut-off

frequency ∆ω = ωu/N of the PSD [Schuëller 1997]. In [Shinozuka 1974] the applicability of

the FFT technique in the scope of the digital simulation of multidimensional processes is

explained and illustrated in detail for the two dimensional case.

In [Yamazaki and Shinozuka 1988] an iterative procedure is developed which allows generat-

ing samples of non-Gaussian multidimensional homogeneous fields. The spectral representa-

tion method is used for the generation of Gaussian sample fields which are then transformed

into non-Gaussian sample fields by applying an iterative mapping technique. The method

is used for the simulation of a two-dimensional stochastic field with target power spectral

density whose one-dimensional distribution function is described by a beta distribution. Re-

cently, the technique is compared with a new spectral based method introduced by [Yura

and Hanson 2011] which allows generating samples of a stochastic process with arbitrary

given probability density function and specified power spectral density. The method relies

on initially transforming a Gaussian white noise process into a corresponding Gaussian set

of colored random numbers with the desired spectral distribution. In contrast to the previ-

ous method the desired probability distribution is obtained via an inverse transform which
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is non-iterative which makes the method not as accurate but straightforward, efficient and

computational fast.

Based on Priestley’s evolutionary power-spectrum [Priestley 1965] a theory for non-stationary

propagating seismic waves as well a technique for digitally generating samples of such waves

is proposed in [Deodatis and Shinozuka 1989] which allows considering their stochastic char-

acteristics in the time and space domain. The method is used for the digital generation

of (non-dispersive) Rayleigh waves modeled as non-stationary stochastic waves with two-

dimensional spatial non-homogeneity. The method is verified using acceleration data of the

ground motion recorded during an earthquake in Lotung, Taiwan in 1981. Due to the lack

of frequency-wave number analysis an artificial non-dispersional relationship between the

wave numbers and the frequency was assumed. In [Deodatis et al 1990] this assumption

was relaxed and a method for the digital simulation of seismic ground motion based on its

frequency-wave number spectra is derived. Using an extension of the spectral representa-

tion method, the simulation is performed by superposing a number of plane waves, having

amplitudes consistent with the frequency-wave number spectra which is derived analytically

considering the seismic source as a point source located in an elastic half-space. The gen-

eration of non-stationary, multi-variate stochastic vector processes with evolutionary power

spectral density are discussed in [Deodatis 1996a]: An iterative algorithm for the generation

of seismic ground motion time histories at several locations on the ground surface is proposed

using response spectra or evolutionary time-dependent cross-spectral density functions. The

latter can be estimated by means of the short-time Fourier transform (STFT), the wavelet

transform (WT) and the Hilbert-Huang transform (HHT) from measured response data as

shown in [Liang et al 2007].

In case of non-stationary/non-homogeneous processes the conventional spectral represen-

tation method introduced by [Shinozuka and Jan 1972] does not generate ergodic sample

functions. In [Deodatis 1996b] a modification of the method is presented which succeeds

in generating ergodic sample functions of a stochastic vector process. After the first re-

view paper on simulation of one-dimensional and uni-variate stationary stochastic process

[Shinozuka and Deodatis 1991], a detailed review on simulation of multi-dimensional ho-

mogeneous stochastic fields using the spectral representation technique can be found in in

[Shinozuka and Deodatis 1996].

From the literature review it can be summarized that the main limitations of the spectral

representation method are: i) The stochastic process is modeled as (theoretical infinite) se-

ries of trigonometric functions; ii) Especially if processes with a large number of variates are

considered, this leads to computational difficulties; iii) The use of the Fast Fourier transform

improves the computational efficiency drastically, but not without the expense of increased
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demand on computer storage [Kareem 2008]. Furthermore, the efficiency strongly depends

on the frequency truncation and thus the algorithm is not suited for power-law spectra;

These limitations are even more severe iv) if the simulation is to be performed over a long

period of time, as the generation of the samples is, even in the one-dimensional univariate

case, computational demanding [Samaras et al 1985]. Besides these difficulties, the crucial

problem arises from the fact, that the obtained series representation of the process cannot

be written in the required state space form in order to combine it with the later used system

identification technique.

Besides, a similar problem occurs if the Karhunen-Loéve decomposition of the random pro-

cess is used. This is based on linear superposition of deterministic functions where the

combination factors are a set of uncorrelated random variables [Li and Chen 2009, p. 27

ff.]. Also in this approach the resulting equations cannot be written in state space form and

hence the method is not appropriate.

3.2 Digital filter schemes

Digital filtering refers to methods which model the process as output of a linear system

subjected to white noise represented either by integration of a differential equation driven

by white noise or by convolution of the input process with the impulse response function.

The former strategy leads to parametric time series models, discussed in the following and

the latter is based on so-called shaping filters obtained by spectral factorization of the PSD

function of the target process as shown in section 3.2.2.

3.2.1 Parametric time series-based methods

A different approach to the wave superposition method consists in using time series models

whose parameters are tuned to match a target PSD function. This might be more efficent

because digital filtering schemes, such as autoregressive (AR), moving average (MA) or

their combination autoregressive moving averages (ARMA) generate the random process

recursively on basis of previous samples. In contrast to FFT-based techniques, parametric

models are characterized by the filter coefficient matrices and consequently, just a limited

amount of information must be stored during the simulation. Hence, even long duration

processes can be generated more efficiently from recursive relations. The main concerns in

using these models regards firstly, the determination of the optimal parameters and secondly,

the needed model order.
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A weakly univariate stationary process {Ft} with given AC function RF (τ) is said to be an

ARMA(p,q) series with autoregressive order p ≥ 0 and moving-average order q ≥ 0, if it is

the solution of the following discrete difference equation2

Fk − a1Fk−1 − . . . − apFt−p =Wk − b1Wk−1 − . . . − bqWk−q (3.7)

where {Wt} is a sample of a zero mean Gaussian white noise sequence with variance σ2
W

(compare Eq. (2.11)). If q = 0 Eq. (3.7) reduces to an autoregressive series AR(p) of order

p, while in case of p = 0, Eq. (3.7) is denoted as moving average series MA(q) of order

q. MA models are widely used for the simulation of random processes characterized by

an all-zero spectra, i.e. if the estimated PSD has no prominent peaks, in contrast to AR

models which are more suitable for all-pole spectra, i.e. the PSD is characterized mainly

by spectral peaks at distinct frequencies. Their combination, the ARMA model, yields a

PSD with peaks and polynomial background [Spanos 1983; Broersen and De Waele 2003;

Kantz and Schreiber 2008] which is suitable for a wide range of spectra with both poles

and zeros. While the coefficients of the AR model can be derived by linear regression, the

approximation of the process by the more general ARMA model leads to an highly non-

linear minimization problem. Defining the autoregressive and moving-average polynomials

a(z) and b(z), respectively by

a(z) = 1 − a1z − a2z
2 − . . . − aqz

q; b(z) = 1 − b1z − b2z
2 + . . . − bpz

p (3.8)

where z ∈ C, the ARMA model in Eq. (3.7) can be also written as

a(L)Fk = b(L)Wk (3.9)

where L denotes the lag (or backward shift) operator with the property LkFt = Ft−k for k ∈ N0.

It can be shown that Eq. (3.9) defines a stationary process, if all roots of the characteristic

equation a(L) = 0 lie outside the unit circle [Box et al 2008, p. 95], i.e. ∣L∣ > 1. To make this

more clear, assume for instance the case of a first-order autoregressive model (q = 1, p = 0),

i.e.

(1 − a1L)Fk = wk or Fk = a1Fk−1 +wk (3.10)

2It must be noted that in literature, e.g. [Box et al 2008], the ARMA series is sometimes defined using
positive signs before the moving-average coefficients
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it is easily verified3 that the series increases exponentially after a short induction time, if a1

lies outside the stationary range ∣a1∣ < 1 [Box et al 2008, p. 95].

If the process is stationary and if the characteristic polynomial b(L) = 0 has additionally all

its roots outside the unit circle, the process is said to be invertible [Box et al 2008, p. 79f.].

In this case, the stationary and finite ARMA(p,q) model can be transformed into an infinite

MA(∞) series

Fk = c(L)Wk =
∞

∑
j=0

cjWk−j (3.11)

where c(L) = a−1(L)b(L) and, if the process is invertible, into an infinite AR(∞) model

d(L)Fk = Fk −
∞

∑
j=1

djFk−j =Wk (3.12)

where d(L) = b−1(L)a(L). While stationarity implies that the weights cj and dj are absolutely

summable, the invertibility of the ARMA process allows representing the ARMA process in

terms of previous values of Fk and an innovation which is independent of the past. Thus,

the invertibility is a necessary and sufficient condition for an ARMA series to be uniquely

determinable (to a second order) from the knowledge of its autocovariance function [Holan

et al 2010].

Though, while the coefficients of the AR model can be derived by linear regression, the

approximation of the process by the more general ARMA model leads to a highly non-linear

minimization problem4. In [Spanos and Mignolet 1986; Mignolet and Spanos 1987; Spanos

and Mignolet 1987; Spanos and Zeldin 1996] the optimization problem is solved by two stage

algorithms where first the process is approximated as high order AR series by autocorrelation

matching and then in a second step a low order ARMA representation of the prior model is

derived by matching of the output autocorrelations and input-output cross-correlations. The

methods are verified by application to spectra encountered in earthquake engineering (Kanai-

Tajimi spectrum), wind engineering (von Kármán velocity spectrum) and ocean engineering

(Pierson-Moskowitz (P-M) spectrum). In case that the target spectrum exhibits zeros like

the P-M spectrum or a slope discontinuity like the Davenport spectrum, the computation

of reliable AR approximations need some further tuning of the ARMA model [Mignolet and

Spanos 1991]. Zeros in the target spectrum leads indeed to high frequency fluctuation in the

3either by solving the characteristic equation, e.g. (1 − a1L) = 0 ⇒ L = 1
a1

∩ ∣L∣ > 1 ⇒ ∣a1∣ < 1 or by

substitution of the equation recursively into itself, i.e. Fk = ∑kj=0 (a1)jWk−j + (a1)k+1Fk−j
4In annexe B.1.1 an iterative procedure is described exemplarily where first the AR coefficients are estimated

by a least square algorithm and secondly, the MA coefficients are determined iteratively by solving a
nonlinear system of equation.
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corresponding AR spectrum whose amplitude decays slowly with increasing system order.

The problem is discussed in detail in scope of the properties of the z-Transform in [Spanos and

Mignolet 1986], where a Taylor series expansion of the P-M spectrum is proposed to reduce

the effect of the zero in the spectrum. Instead of approximating the ARMA representation

on basis of a high order AR model in [Spanos and Mignolet 1990] the problem is solved by

a two stage approach, where the first step is to calculate a high order MA representation

being more suited to model zeros is the spectrum. In [Mignolet and Spanos 1991] it is

shown that the rate of convergence of this algorithm can be improved by adding a very small

positive value to the target spectrum so that the zero, causing the numerical problems, is

removed. Slope discontinuities in the spectrum also lead to a slow convergence of the AR

model to the target process, in particular a kink at small frequency leads to a decrease of the

convergence rate. A general shortcoming of ARMA-based algorithms is the fact, that they

require a repetitive calculation of the AR and MA parameters in order to find the optimal

order of these models. The model selection problem has been studied extensively and the

proposed algorithms can be split into the information criterion based methods, such as the

Akaike information criterion, the minimum describing length and the minimum eigenvalue

criterion, and the linear algebraic methods which are based on determinant and rank testing

algorithms [Sadabadi et al 2009]. A comparative study of several information criterion based

methods is given in [Stoica and Selen 2004]. Though, at the best of the author’s knowledge,

there are not methods to a priori estimate the number of coefficients to be calculated for the

AR and MA parts.

In [Di Paola and Zingales 2008] a time-continuous counterpart to the discrete-time AR models

for the generation of stationary Gaussian processes was proposed. The method is applied for

the simulation of random processes with Davenport and Kaimal velocity PSD. In contrast

to the standard recursive ARMA representations which is based on difference equations, the

continuous model allows the analysis using stochastic differential calculus which has been

proved to be an efficient method for the evaluation of the statistics of linear and non-linear

dynamical systems subjected to external and parametric white noises such as Poissonian and

Lévy delta-correlated processes.

An important characteristic of ARMA-based models is that their AC function exhibits an

exponential decay rate which will be shown in the following. To this aim assume a zero mean

ARMA(p,q) process as defined by Eq. (3.7). Multiplying by Ft−k and taking the expectation

yields a difference equation

RF (k) = a1RF (k − 1) + a2RF (k − 2) + . . . + apRF (k − p)+

RFW (k) − b1RFW (k − 1) − b2RFW (k − 2) − . . . − bqRFW (k − q) (3.13)
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in terms of the autocorrelation RF (k) = E[Ft−kFt] and cross correlation function RFW (k) =

E[Ft−kWt], respectively. Using the infinite MA representation, it can be shown that the

series Ft−k = ∑
∞

n=0 cnWt−k−n only depends on the white noise sequence up to time t − k.

Consequently, RFW (k) = 0 for k > 0 and RFW (k) = c−kσ2
W for k ≤ 0, yielding

RF (k) = a1RF (k − 1) + a2RF (k − 2) + . . . + apRF (k − p)−

− σ2
W (bkc0 + bk+1c1 + . . . + bqcq−k) , k ≤ q (3.14)

For k > q Eq. (3.14) reduces to a pth order difference equations given by

RF (k) = a1RF (k − 1) + a2RF (k − 2) + . . . + apRF (k − p), k > q (3.15)

which can be written in compact form as

RF (k) −
p

∑
j=1

ajRF (k − j) = a(L)RF (k) = 0, k > q (3.16)

which is also known as modified Yule-Walker equations5. Solving Eq. (3.16) for the autocor-

relation function RF (k) is very similar to solving homogeneous differential equations. As-

suming that the characteristic polynomial a(z) in Eq. (3.8) has distinct roots λ1, λ2, . . . , λp,

then the solutions to Eq. (3.14), can be expressed as linear combinations of geometric se-

quences, i.e. damped exponentials and sinusoidal, in the form [Rao 2008]

RF (k) =
p

∑
k=1

Ckλ
−k
k (3.17)

where Ck are constants. Indeed, the autocorrelation function of stationary, causal ARMA

models converges rapidly, i.e. exponentially, to zero as the lag approaches infinity, i.e. k →∞,

and thus belong to the class of short memory processes. This leads to the following relation

∣RF (k)∣ ≤ Cλ
−k k = 1,2, . . . (3.18)

where λ > 1, C <∞ are some constants. From Eq. (3.17) it follows, that the largest possible

value of λ is defined by the magnitude of the largest root of a(z) [Holan et al 2010], [Box

et al 2008, p. 428f.].

In section 5.6 stationary processes with a more slowly decaying autocorrelation function are

discussed, which are referred to as long memory processes (or long-correlated processes), and

5The name is motivated by the similarity to the Yule-Walker equations arising in the autoregressive modeling
problem which have the form of Eq. (3.16) but with k > 0, i.e. for q = 0 [Kay 1993, p. 266ff.]
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can be described by a modified form, the so-called fractionally integrated ARMA processes

(ARFIMA) [Granger and Joyeux 1980] which can be interpreted as ARMA processes driven

by fractionally integrated white noise [Box et al 2008, p. 428–436].

Besides, in the last decades many variants and extensions of ARMA models have been

proposed to develop models with periodicities (e.g. SARMA, PARMA models), stochastic

volatility (changing variances, e.g. ARCH, GARCH models) as well as multivariate series

(VARMA, MGARCH models) and discrete counts (INARMA models). In [Holan et al 2010]

a comparison of common variants of ARMA models as well as an extensive bibliography for

further reading is provided.

3.2.2 Shaping filters

In the previous chapter it was shown that stochastic loads caused by wind turbulences and

wind-waves of the fully developed sea can be modeled as stationary Gaussian processes and

thus are characterized completely by the second order statistic. The next step, which will

be discussed in the following, is the simulation of realizations of these processes with target

PSD function, either known from measurements or using one of the discussed model spectra.

A colored Gaussian noise process {F (t)} with target PSD SF (ω) can be represented as

output of a linear differential equation, a so-called shaping filter, excited by a Gaussian

white noise process {W (t)}. That is, the process can be expressed using a linear differential

operator L(⋅) in the form

L(F (t)) =W (t) (3.19)

where {W (t)} denotes the standard Gaussian white noise process of intensity qW as defined

in (2.9). The corresponding input-output relation of a single-input-single-output (SISO)

linear system can be characterized either in the frequency domain in terms of the transfer

function H(ω)

SF (ω) = ∣H(ω)∣2SW (ω) =
qW
2π

∣H(ω)∣2 (3.20a)

or in the time domain by the impulse response function h(t) through the Duhamel integral

F (t) = ∫
∞

−∞

h(t − τ)W (τ)dτ = ∫
t

−∞

h(t − τ)W (τ)dτ (3.20b)

Here it is assumed that the process {F (t)} is causal, that is h(t) = 0 for t < 0. Many methods

exists to find H(ω) given the target PSD of {F (t)}, with the aim of simulating realizations
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of the process {F (t)}. If the process is described by a rational PSD then determining a

shaping filter is possible by the spectral factorization theorem as will be explained in the

next section.

3.2.2.1 The spectral factorization theorem

The concept of the spectral factorization was proposed by Wiener in [Wiener 1949]. He

showed, that a wide-sense stationary stochastic process with given PSD function, can be

modeled as output of a time invariant system with white noise input, if the Paley-Wiener

condition is met. The Paley-Wiener theorem says, that if the condition

∫

∞

−∞

lnφ(ω)

1 + ω2
dω <∞ (3.21a)

is satisfied and if φ(ω) is a real non-negative, quadratically integrable function, i.e.

∫

∞

−∞

∣φ(ω)∣2dω <∞, (3.21b)

then there exists a factorization in the form

φ(ω) = g(ω)g(−ω) (3.21c)

where g(ω) is the Fourier transform of a function g(t) which vanishes for t < 0 and g(−ω) =

g∗(ω) is the conjugate complex. Hence, if the PSD of the process SF (ω) satisfies the con-

ditions Eq. (3.21a) and (3.21b) and the transfer function g(ω) = H(ω) is obtained from

Eq. (3.21c), the property h(t) = 0, for t < 0 guarantees the causality of the generated process.

If discrete time processes are considered, then the fulfillment of the condition

∫

π

−π
∣ lnφ(ω)∣dω <∞ (3.21d)

is sufficient in order to allow the factorization [Åström 1970, p. 112f.]. However, if the target

PSD of the process is of non-rational type, its factorization is difficult and a spectral factor

can be only derived analytically in special cases. A survey of spectral factorization methods

for both rational and non-rational PSD can be found in [Sayed and Kailath 2001].

In the following a process with rational PSD shall be considered. It can be expressed in the

form

SF (ω) =
a0 + a1ω2 + a2ω4 + a3ω6 + . . .

b0 + b1ω2 + b2ω4 + b3ω6 + . . .
(3.22a)
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Figure 3.1: Roots and zeros of the PSD in the s plane

or alternatively in the Laplace domain

SF (ω) =
a0 − a1s2 + a2s4 − a3s6 + . . .

b0 − b1s2 + b2s4 − b3s6 + . . .
(3.22b)

by replacing ω = is, ω2 = −s2, respectively. Since SF (ω) is a even function and so is SF (s),

there are no odd powers of ω, s, respectively. SF (s) can then always be factored in the

form

SF (s) = C ⋅
(c1 − s2)(c2 − s2) . . .

(d1 − s2)(d2 − s2) . . .
(3.22c)

where C denotes a constant. As the parameters ak, bk are real-valued coefficients, the values

ck, dj must be either real or appear in conjugate complex pairs. Consequently, the poles pj

of the polynomial will encounter one of the three cases

dj ∈ R, dj > 0 pj = ±
√
dj = ±a

dj ∈ R dj < 0 pj = ±i
√
dj = ±iω0

dj = d∗k ∈ C pk = ±(a + iω0), pj = p∗k = ±(a − iω0)

(3.23)

The zeros corresponding to the cj in Eq. (3.22c) are treated analogously. As illustrated in

Fig. 3.1 pure real or imaginary roots and poles appear as doubles and are symmetric about

the imaginary and real axis, respectively (case a) and b)), while complex roots and poles

occur in quadruplets and are symmetric about both the real and imaginary axes of the s plane
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(case c)). The locations of the poles and zeros of the transfer function are directly related

to the differential equation describing the process [Maybeck 1979, p. 186ff.]. In particular,

the location of the poles in the s plane characterizes the components in the homogeneous

part of the system response as depicted in Fig. 3.1: A negative real pole p = −a in the left

half plane corresponds to an exponentially decaying component, while a positive real pole

p = a leads to an unstable system with an unbounded exponential growth. An imaginary

pure complex pole pair p = ±iω0 results in an oscillatory component with frequency ω0 and

constant amplitude; they are called marginally stable. Combining both characteristics, the

complex conjugate pole pair p = −a ± iω in the left half plane leads to an exponentially

decaying sinusoidal system response, while the pole pair p = a ± iω0 lying in the right half

plane is unstable and corresponds to an exponentially increasing sinusoidal component.

In the next step, all stable factors corresponding to the zeros and poles lying in the left half of

the s plane are collected in the factor SF,L(s) and, similarly, the unstable ones corresponding

to the right half plane are gathered in the factor SF,R(s). The pairs of pure imaginary poles

are distributed each arbitrarily between the both factors and the constant term is partitioned

as
√
C. Finally this yields the sought factorization of the PSD

SF (s) = SF,L(s)SF,R(s) = SF,L(s)SF,L(−s). (3.24)

where the last equality results directly from the symmetry of the poles and zeros with

respect to both coordinate axes as shown in Fig. 3.1. Using the relation in Eq. (3.20a)

and SW (s) = qW , the shaping filter of the process can finally be derived by

H(s) =
SF,L(s)

SW,L(s)
=

√
1

q
SF,L(s) (3.25)

The restriction that the poles belong to the left half of the s plane guarantees the stability

of the process, i.e. the system response tends asymptotically against zero or a finite value

as t increases. If the system has additionally more poles than finite zeros, then the system

is said to be causal, that is the output just dependents on actual and previous inputs. If

both, poles and zeros, are within the left half plane, the system is of minimum phase which

guarantees that the system H(s) as well as its inverse 1/H(s) are stable.

Finally, applying an inverse Laplace transform provides the impulse response function which

convolved with the white noise input provides a sequence of the process using Eq. (3.20b).

Alternatively, the transfer function can be represented in state space form as discussed in

section 4.4.

It must be stressed that in the non-rational case or in the matrix case, the factorization of

the PSD function in analytic form is in general not possible and difficulty arises from the fact
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that the above factorization is non unique, unless it is assumed that the spectral factor is of

minimum phase. In the scope of this work this is a severe limitation as from the comparison of

the model spectra discussed in chapter 2, it is evident that their genetic form, resulting from

theory, is non-rational. This was also observed in [Bagchi 2003] who studied the problem

of modeling atmospheric turbulences in adaptive optics with von Kármán and Kolmogorov

velocity spectrum, respectively. He proposed to first approximate the target PSD function in

rational form by applying a Padé approximation [Padé 1892] before performing the spectral

factorization. Though, similar to the discussed ARMA-based approaches, the model order

of the optimal Padé approximate is not known beforehand, and different parameterizations

must be tested to find the optimal order of the nominator/denominator polynomial. Fur-

thermore, long memory processes which are characterized by a PSD function with power law

decay cannot be represented by a rational transfer function. Indeed, the transfer function of

ARMA processes, H(ω) = b(z)/a(z), is rational and it was proofed in Eq. (3.17), that this

leads to an exponentially decaying AC function.

The next chapter introduces the concept of state space modeling later needed for the imple-

mentation of the Kalman filter algorithm and its modification for arbitrarily correlated loads.

To this aim, equivalent state space formulations of the rational transfer function obtained

by the discussed digital filter schemes, are derived.
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4 State Space (Markovian) Modeling of

Ambient Loads

Instead of using the explicit form of the ARMA model given in Eq. (3.7) or the convolution

representation obtained by spectral factorization, a so-called state space or Markovian rep-

resentation of the input-output relation is often more convenient as standard tools based on

linear system theory for response analysis, optimization, and design of active control devices

can be applied. Furthermore, the Kalman filter, discussed in chapter 6, which is widely used

for state estimation and system identification in all engineering disciplines is based on state

space modeling. In the following section the state space model is defined and its properties

reviewed. Then, the relation between state space model and AR, MA (4.2), ARMA (4.3)

and transfer function (4.4), respectively, is derived. Finally, the concept of state space aug-

mentation is explained and illustrated by means of a short example. It will be later needed

as reference solution for the verification of the proposed identification method.

4.1 Definition

A state space model for a (multivariate) process {Xk} is generated by two equations, the

system and the observational equation. The latter describes the linear relation between the

m-dimensional vector of observations Zk at time t = kτ and the unobserved n-dimensional

state vector Xk

Zk = CXk +Vk (4.1a)

where C ∈ Rm×n is a matrix of scalars and {Vk} ∼ WN(0,Qk) ∈ Rm×m is an added m-

dimensional Gaussian white noise vector process to consider random measurement errors

e.g. due to sensor inaccuracy. The system equation

Xk+1 = AkXk +Wk (4.1b)



4.1 Definition 65

describes the temporal changes in the state of the linear dynamic system. The transfer matrix

Ak ∈ Rn×n relates the state at the previous time step t to the state at time t+1. In case that

the physical problem can be modeled as time-invariant process, the subscript k of system

matrices can be dropped. The model uncertainties or disturbances are represented by the

added m-dimensional Gaussian zero-mean white noise vector process {Wt} ∼ WN(0,Rt) ∈

Rn×n. Furthermore, the noise processes {Wk} and {Vk} are assumed to be uncorrelated, i.e.

E[WsVT
k ] = 0, ∀ s,t.

Eq. (4.1b), (4.4) can be rewritten in terms of previous states by substituting the equation

recursively into itself, leading to

Xk+1 = AkXk +Wk

Xk+1 = Ak(Ak−1Xk−1 +Wk−1) +Wk

⋮

Xk+1 = (AkAk−1 . . .A1)Xk + (AkAk−1 . . .A2)W1 + . . . +AkWk−1 +Wk

which might be rewritten as

Xk+1 = fk+1(X1,W1, . . . ,Wk) (4.2a)

Zk = gk+1(X1,W1, . . . ,Wk,Vk) (4.2b)

If the sequence X1,W1, . . . ,Wk is independent, then the process is Markovian. This means

that the probability distribution function given the sequence X1,X2, . . . ,Xk is the same as

the distribution of Xk+1 given just the previous value Xk. The simplicity of the state space

representation is the result of the Markovian property, as it allows modeling the process as

well as its observation in a recursive manner. For many physical systems a Markovian repre-

sentation can be found by including sufficiently many past components in the specification

of the state Xk [Brockwell and Davis 2002, p. 260f.] as will be shown in the following.

Furthermore, it must be noted, that state space representations are not unique, that is a

certain set of state variables uniquely describes the system behavior, but there exists an

infinite number of such sets. Some standard realizations are physical, standard controllable,

standard observable, and canonical forms, where the first two are often used due to their

simplicity: While the physical form is directly derived from the physical laws describing the

relation between the state variables, the standard controllable realization is directly gen-

erated from the transfer function or the differential/difference equation of the process and

will be used in the following. The canonical form leads to a decoupling of the modes of the

dynamical system and thus simplifies both, system analysis and numerical solutions to the
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state differential equation [Maybeck 1979, p. 27ff.].

The different state models are equivalent representations of the process and can be related

through similarity transformations, i.e. the original n-dimensional state vector Xk is defined

in terms of a new coordinate basis X∗

k. The latter is obtained by multiplication of the original

basis with an invertible matrix Sk, i.e.

Xk = STX∗

k ⇔ X∗

k = S−1
T Xk (4.3a)

Substituting the first relation in Eq. (4.1a) yields

STX∗

k+1 = AkSTX∗

k +Wk (4.3b)

and pre-multiplying the result with S−1
T , leads to the equivalent representation

X∗

k+1 = A∗

kX
∗

k +B∗Wk

Z∗

k = H∗

kX
∗

k +Vk (4.3c)

where A∗

k = S−1
T AkST , B∗ = S−1

T and H∗

k = HkST . Hence, the eigenvalues, determinant, trace,

and characteristic polynomial remain unchanged under a similarity transformation. Conse-

quently, such a transformation does not alter the dynamics of the system representation. A

further discussion and examples of the different state space models can be found in [Maybeck

1979, p. 27ff.].

4.2 State space model of AR and MA series

In case of a causal univariate pth order AR(p) model,

a(L)Fk = wk, Fk = a1Fk−1 + a2Fk−2 + . . . apFk−p +wk (4.4)

it is straight forward to formulate an equivalent state space representation. First note that

the process at time k + 1 can be expressed in the form

Fk+1 = a1Fk + a2Fk−1 + . . . + Fk−p+1 +wk+1 (4.5)
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Defining the state vector Xk which collects the p known components Fk,Fk−1, . . . ,Fk−p+1 of

the right hand side of Eq. 4.5

Xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fk−p+1

⋮

Fk−1

Fk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.6)

then the pth order difference equation in Eq. (4.5) reduces to a first order vector difference

equation of form

Xk+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0

0 0 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1

ap ap−1 ap−2 . . . a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Xk +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

⋮

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wk+1 (4.7)

were the last row of the state vector Xk corresponds to the time series defined in Eq. (4.4)

and the upper part of the coefficient matrix Ak updates the state vector Xk by dropping

the latest value Fk−p+1 and shifting the remaining entries Fk−p+2, . . . ,Fk−1,Fk of the vector to

the top row. While Eq. (4.7) corresponds to the system equation of the state space model

defined in Eq. (4.1b), the observation equation provides the actual sample of the process by

extracting Fk from the state vector Xk with the help of the observational equation

Fk = [0 0 . . . 1]Xk (4.8)

where the white noise disturbance is set Vk = 0.

In case of a causal univariate qth order MA(q) model, given by

Fk = b(L)wk, Fk = b0wk + b1wk−1 + b2wk−2 + . . . + bqwk−q (4.9)

a similar approach can be used to express it in state space form. Defining the state vector

Xk which collects the q past components of the white noise sequence wk,wk−1, . . . ,wk−q, i.e.

Xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

wk−q

⋮

wk−1

wk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.10)
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then the equivalent state space representation is given by the system equation

Xk+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0

0 0 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Xk +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

⋮

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wk+1 (4.11)

which updates the state vector Xk by dropping the latest value wk−q and shifting the re-

maining entries wk−q+1, . . . ,wk−1,wk of the vector to the top row, the observation equation

provides the actual sample of the process Fk by weighting the state vector Xk by the moving

average coefficients, i.e.

Fk = [bk−q bk−q+1 . . . b1 b0]Xk (4.12)

where the white noise disturbance is set Vk = 0.

4.3 State space model of an ARMA series

In case of the ARMA(p,q) model an equivalent state state representation of the difference

equation

a(B)Fk = b(B)Wk, Fk = a1Fk−1 + a2Fk−2 + . . . + apFk−p + b0Wk − b1Wk−1 − . . . − bqWk−q

(4.13a)

can be formulated using the result from the previous section. Defining the AR(p) autore-

gressive process

a(B)Uk =Wk (4.13b)

then the process can be simulated by the series

Fk = b(B)Uk (4.13c)

as the following relation must hold

a(B)Fk = a(B) ⋅ b(B)Uk = b(B) ⋅ a(B)Uk = b(B)Wk (4.13d)
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Let r = max(p,q + 1), then the system equation of the ARMA(p,q) series follows directly

from Eq. (4.13b) in connection with the result (4.7), yielding

Xk+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0

0 0 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1

ar ar−1 ar−2 . . . a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Xk +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

⋮

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wk+1 where Xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Uk−r+1

Uk−r+2

⋮

Uk−1

Uk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.14)

where aj = 0, if j > p. Te process generating observation equation is resulting from Eq. (4.13c)

[Brockwell and Davis 2002, p. 268f.]

Fk = [−br−1 −br−2 . . . b0]Xk. (4.15)

where b0 = 1 and bj = 0, if j > q. The special form of the state space equations which were

used here, is known as the controllable canonical form in control theory. Controllability

means that all state variables in the model are affected by the input, i.e. it is possible to

drive the dynamic system from any initial state to any other state in a finite interval of time

by a control input [Maybeck 1979, p. 43].

4.4 Relation between state space model and transfer

function

The following continuous linear state space model

Ẋ(t) = AcX(t) +GcW (t)

Z(t) = CcX(t) +DcW (t) (4.16)

of a SISO system driven by a white noise process {W (t)} ∼ WN(0,Qc) can be written in the

Laplace domain as

sX(s) −X(0) = AcX(s) +GcW (s)

Z(s) = CcX(s) +DcW (s) (4.17)
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using the first time derivative property of the Laplace transform which states

∂Y (t)

∂t
sY (s) − Y (0) (4.18)

The coefficient matrices Ac ∈ Rn×n, Gc ∈ Rn×1, Cc ∈ R1×n, Dc ∈ R are assumed to be time-

invariant and the subscripts ’c’ indicates that the evaluation of the model states is time-

continuous. The output of the system Z(t) is a realization of a Gaussian random process

{F (t)} characterized by its target PSD SF (ω). Setting the initial conditions X(0) = 0, where

X(t) ∈ Rm, the transfer function of the input-output relation Z(s) = H(s)W (s) is given by

H(s) = Cc(Is −Ac)
−1Gc +Dc (4.19)

First the special case Dc = 0 is discussed: Using Cramer’s rule the inverse (Is−Ac)
−1 can be

express in the form [Dullerud and Paganini 2000, p. 90]

(Is −Ac)
−1 =

1

det(Is −Ac)
adj(Is −Ac) (4.20)

where adj(⋅) denotes the classical adjoint of a matrix also referred to as adjugate matrix.

The determinant of the matrix (Is − Ac) is the characteristic polynomial of the transition

matrix Ac and thus a polynomial of order n. The entries of the adjugate matrix are formed

by taking the transpose of the cofactor matrix of Is − Ac and hence leading to a matrix

with polynomial entries of order less than n. Consequently, the term Cc(Is −Ac)
−1Gc is a

real, strictly proper function, i.e. the order of the denominator is higher than the one of the

numerator. Thus, if Dc = 0, the transfer function defined in Eq. (4.19) can be expressed in

the form [Dullerud and Paganini 2000, p. 90]

Hs(s) =
cn−1sn−1 + cn−2sn−2 + . . . c1s + c0

sn + an−1sn−1 + . . . a1s + a0

(4.21)

where the subscript s indicates the strictly proper case. In the more general case Dc ≠ 0, the

order of the numerator and denominator is equal, and thus the transfer function is said to

be real and proper. Hence, the transfer function in Eq. (4.19) can be expressed as

H(s) =
cnsn + cn−1sn−1 + . . . c1s + c0

sn + an−1sn−1 + . . . a1s + a0

=Hs(s) +Dc (4.22)

where Hs(s) is strictly proper and Dc a real constant. Conversely, one can state, that if the

transfer function obtained by spectral factorization in Eq. (3.25) is strictly proper and real

rational, then there exists an equivalent state space realization of the process (A,B,C,Dc =
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0), e.g. using the controllable canonical form results in

Ac =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0

0 0 1 . . . 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Gc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

⋮

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT
c =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c1

⋮

cn−2

cn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(4.23)

Hence, the order of the state space model is directly linked to the number of poles in the

transfer function. In case that the rational function is proper, the constant Dc ≠ 0 must be

derived from Eq. (4.22) [Dullerud and Paganini 2000, p. 92ff.] and included in the observation

equation.

It must be stressed that the obtained state space representation is time-continuous. However,

in many situations a discrete state space model is more appropriate in order to introduce

sampled measurement data or control forces [Simon 2006, p. 107]. Thus, in the following the

discretization of the obtained model is discussed.

The system model defined in Eq. (4.16) corresponds to a linear stochastic differential equation

with constant coefficients in the form

dX(t) = AcX(t)dt +Gcdβ(t) (4.24)

where dβ(t) is a sample of a Brownian motion process of diffusion Q(t) for all t = [0,T )

whose derivative represents the Gaussian white noise as dβ(t) = W (t)dt (s. A.1.4.4). Its

solution yields the process X(t) in a recursive form from the initial conditions X(0) at t0

X(t) = Φ(t,t0)X(0) + ∫
t

t0
Φ(t,τ)Gc(τ)dβ(τ) (4.25a)

where Φ(⋅,⋅) ∈ Rn×n is the state transition matrix satisfying the differential equation and

initial condition [Maybeck 1979, p. 163ff.]

d

dt
Φ(t,t0) = AcΦ(t,t0), Φ(t0,t0) = I (4.25b)

It must be noted that the integral in Eq. (4.25a) is a stochastic integral I(t,⋅). Since the

integration is performed with respect to time and not with respect to the sample path of the

Brownian motion, the integral can be considered as realization of a random variable defined

in the mean square sense with zero mean and variance

E[I(t,⋅)I(t,⋅)] = ∫
t

t0
Φ(t,τ)Gc(τ)Q(τ)GT

c (τ)Φ
T (t,τ)dτ (4.25c)
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Hence the integral can be modeled as Gaussian white noise sequence with variance defined

by Eq. (4.25c).

The state transition matrix is characterized by the following properties [Maybeck 1979, p.

40-42]:

1. Φ(t,t1) is uniquely defined for all t and t1 in [0,∞).

2. For t1 < t2 < t3 it holds Φ(t1,t3) = Φ(t1,t2)Φ(t2,t3). This property is also called the

’semigroup’ property, saying that the transition from X(t1) to X(t3) is the same as

the transition from X(t1) to X(t2) followed by the transition X(t2) to X(t3)

3. Φ(t,t0) is invertible, that is Φ(t,t1)Φ(t1,t) = Φ(t,t) = I so that Φ(t,t1)−1 = Φ(t1,t).

In case of a time-invariant linear rational system, as considered here, the relation for the

state transition matrix given in Eq. (4.25b) reduces to

d

dt
Φ(ts) = AcΦ(ts), Φ(0) = I (4.26a)

which is depending on the time lag ts = t − t0 instead of the specific instances of time. Its

solution is obtained either by using the matrix exponential function or alternatively by taking

first the Laplace transform of Eq. (4.26) resulting in Φ(s) = (Is −Ac)−1 for t0 = 0 to which

the inverse Laplace transformation is applied leading to [Kasdin 1995]

Φ(t − t0) = L
−1 {(Is −Ac)

−1,t} = eAc(t−t0) (4.26b)

where eAc(t−t0) is the matrix exponential function. The results (4.25c), (4.26b) are now used

to obtain a simple, recursive formula for the generation of the process {X(t)} and thus the

target process {Z(t)} from the measurement equation. Solving the stochastic differential

equation over a finite interval ts = tk+1 − tk yields the sought discretized state space model of

the process in the form

Xk+1 = AdXk +Wk (4.26c)

Zk = CXk +DVK (4.26d)

where {Vk} denotes the measurement noise sequence {Vk} ∼ WN(0,Qc/ts) and where ac-

cording to Eq. (4.26b) Ad = Φ(ts) = eActs . Wk is a zero mean white noise sequence with

variance

Qd = ∫

ts

0
Φ(ts)GcQΦT (ts)G

T
c dt (4.26e)
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Augmented system with white measurment noise

Case 2: System with colored measurement noise
(not treated throughout the thesis)

)('

)(

tW

tW
)(tZ

)(' tV

augmented system equation

)(' tW shaping filter system )(tZ

)(tV

Augmented system with white process noise

system)(tN )(tZ

)(tV

system)(tW )(tZ

)(tN

Case 1: System with colored process noise
(treated throughout the thesis)

shaping filter system

augmented system equation

Figure 4.1: The linear system with colored input (left) and colored measurement noise N(t) (right) is
transformed into a linear system driven by white input W (t),W ′(t) and measurement noise
V (t),V ′(t) by state space augmentation where the primes denote additional white processes

The integral equation for Qd can be solved using an algorithm due to Van Loen [Kasdin

1995]. He showed that Qd can be expressed by the matrix equation

Qd = ET
22E12 (4.26f)

where the matrices E22, E12 are calculated from the matrix exponential

eFts ≡

⎡
⎢
⎢
⎢
⎢
⎣

E11(n×n) E12(n×n)

0(n×n) E22(n×n)

⎤
⎥
⎥
⎥
⎥
⎦

with F =

⎡
⎢
⎢
⎢
⎢
⎣

−Ac GcQGT
c

0 AT
c

⎤
⎥
⎥
⎥
⎥
⎦

(4.26g)

4.5 State space augmentation

Up to now, it was assumed, that both process and measurement noise can be modeled as

uncorrelated white noise sequences. However, in many cases the white noise assumptions is

inadequate. In the following a method will be discussed which allows introducing colored

process or measurement noise into the state space model defined in Eq. (4.1a-4.1b) in case

the white noise assumption is inadequate and autocorrelations in the ambient loads or mea-

surements must be considered. The method is based on the results obtained in the previous

sections where it was shown that autocorrelated processes with known target PSD can be

expressed as linear system driven by white noise either using ARMA-type models obtained

by regression as discussed in section 3.2.1 or with the help of the spectral factorization theo-

rem described in 3.2.2. In a procedure called state space augmentation, the colored process

or measurement noise in the structural system is modeled indirectly in form of an added
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linear system with white noise input leading to an overall system excited by white noise

once again and to which standard tools based on linear system theory for response analysis,

optimization, and design of active control devices can be applied [Chen and Kareem 2001].

The steps of the procedure are summarized in the following and illustrated in Fig. 4.1.

Starting point is a state space representation of the time-invariant linear system given by

Xk+1 = AXk +GNk

Zk = CXk + Vk (4.27)

assuming for simplicity a SISO system where {Vk} ∼ WN(0,Rd) and where {Nt} is a second

order stationary Gaussian noise sequence with known target PSD. Furthermore it is assumed

that the processes {Xt}, {Vt} and {Nt} are uncorrelated with each other. In the next step the

colored process is represented in state space form e.g. resulting from the spectral factorization

of the target PSD of the process

X′

k+1 = A′X′

k +G′W ′

k

Nk = C′X′

k +D
′W ′

k (4.28a)

where the primes denote additional variables and {W ′

t} ∼ NW(0,Qd) the driving Gaussian

white noise process with variance Qd. Augmenting the state vector of the system Xk by the

states of the noise process X′

k yields

⎡
⎢
⎢
⎢
⎢
⎣

Xk+1

X′

k+1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

A GC′

0 A′

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

Xk

X′

k

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

GD′

G′

⎤
⎥
⎥
⎥
⎥
⎦

W ′

k

Zk = [C 0]

⎡
⎢
⎢
⎢
⎢
⎣

Xk

X′

k

⎤
⎥
⎥
⎥
⎥
⎦

+ Vk (4.29a)

which can be written compactly in terms of the augmented state vector Xa,k = [Xk,X′

k]
T

Xa,k+1 = AaXa,k +GaWk

Zk = CaXa,k + Vk (4.29b)

where the subscript a indicates the augmented matrices [Lewis et al 2008, p. 123-125].

Eq. (4.29b) is the sought result of an overall linear system driven by white noise which

is the basis for many standard algorithms such as the Kalman filter widely used in active

control, response analysis and prediction.

Similarly, the case of a system with white process noise {Wt} ∼ NW(0,Qd) and colored
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measurement noise {Nt} [Lewis et al 2008, p. 130-131]

Xk+1 = AXk+1 +GWk

Zk = CXk +Nk (4.30a)

can be rewritten in the form

⎡
⎢
⎢
⎢
⎢
⎣

Xk+1

X′

k+1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

A 0

0 A′

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

Xk

X′

k

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

G 0

0 G′

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

Wk

W ′

k

⎤
⎥
⎥
⎥
⎥
⎦

Zk = [C C′]

⎡
⎢
⎢
⎢
⎢
⎣

Xk

X′

k

⎤
⎥
⎥
⎥
⎥
⎦

+DW ′

k (4.30b)

by substitution of the colored process {Nt} by its equivalent state space representation

defined in Eq. (4.28a). Using the augmented state vector Xa,k = [Xk,X′

k]
T and system

matrices, once again a linear system with white process and measurement noise is obtained

Xa,k+1 = AaXa,k +GaWa,k

Zk = CaXa,k + Vk (4.30c)

Here, it must be noted, that for D′ ≠ 0, the white noise vector process Wk = [Wk,W ′

k]
T and

the white measurement noise Vk =DW ′

k are correlated with

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

W ′

k

⎡
⎢
⎢
⎢
⎢
⎣

Wk

W ′

k

⎤
⎥
⎥
⎥
⎥
⎦

T⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [0 D′Qd] (4.31)

as they are both depending on the same sample of the white noise sequence {W ′

t} ∼ WN(0,Qd).

Hence, the noises are just uncorrelated in case D′ = 0 which implies that if the state space

model of the colored process is obtained by spectral factorization, that the underlying trans-

fer function H(s) is strictly proper as defined in Eq. (4.21). In case that an ARMA-based

state space model defined in Eq. (4.14-4.15) is used, D = 0 in all cases.

4.5.1 Numerical example

In order to clarify the idea of the state space augmentation here a short example taken from

[Lewis et al 2008] is discussed which is needed in section 7.1.3.1 as reference solution. In

this example the (long period) longitudinal dynamics of an aircraft are approximated by the

continuous state space model of a harmonic oscillator with natural eigenfrequency ω =
√
k/m
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and ratio of critically damping D = c/(2mω) given by

ẋ(t) =

⎡
⎢
⎢
⎢
⎢
⎣

0 1

−ω2 −2Dω

⎤
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎣

0

1/m

⎤
⎥
⎥
⎥
⎥
⎦

n(t) (4.32)

where x(t) = [φ(t), φ̇(t)]T and φ(t) denotes the pitch angle, i.e. the angle between the

longitudinal axis of the aircraft and the horizon. The colored process noise n(t) represents

wind gusts with exponential AC function R(τ) = σ2e−a∣t∣ and corresponding low-frequency

spectrum

SF (ω) =
aσ2

π(a2 + ω2)
(4.33a)

Performing the spectral factorization in the Laplace domain, yields (s. Eq. (3.24))

SF (s) = SF,L(s)SFL(−s) =

√
2aσ

(s + a)
⋅

√
2aσ

(−s + a)
(4.33b)

where SF,L(s), SF,L(−s) denote the stable/instable factor with negative/positive real valued

pole s = ∓a in the left/right half of the s-plane as illustrated in Fig. 3.1a. The shaping filter

H(s) of the colored noise n(t) is then obtained from Eq. (4.16) in the form

H(s) =
1

a + s
(4.33c)

where the white noise input is set to SW (s) = 2aσ2
W . Using the controllable canonical state

space representation in Eq.(4.23), the obtained shaping filter H(s) corresponds in the time

domain to the first order Markov model

ẋ′(t) = −ax′(t) +w′(t); n(t) = x′(t) (4.34)

which is excited by a Gaussian white noise w′(t) with standard deviation
√

2aσW . It is used

in order to augment the state space model in Eq. (4.32) leading to

ẋa(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

−ω2 −2Dω 1/m

0 0 −a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xa(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

w′(t) (4.35)

where xa(t) = [φ(t), φ̇(t), x′(t)]T denote the augmented state. After discretization of the

augmented model, e.g. by Euler approximation or by using the matrix exponential function,

a linear model excited by Gaussian white noise is obtained.
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5 Fractional Representation of Stationary

Gaussian Processes

From the literature review it can be summarized that at the state-of-the-art, the main lim-

itations in the field of digital simulation of correlated Gaussian loads are: i) if the load is

long-correlated1, time series models require an infinite number of coefficients to properly

simulate the inverse power-law decay; ii) the number of coefficients p and q of time series

models, such as ARMA models, cannot be predicted a priori and, increasing them, requires

the recalculation of the whole set of coefficients; iii) this limitation is more severe from the

computational time point of view in multivariate and multidimensional cases; iv) efficient

simulation methods, based on Karhunen-Loéve or wavelet methods, cannot be rewritten in

state space form needed to combine them with the used identification algorithm; v) analytic

approaches such as the spectral factorization method require a certain functional form of the

PSD function, and thus are not applicable to arbitrarily correlated processes.

In [Cottone and Di Paola 2010c] a new method, called fractional spectral moment (FSM)

decomposition, for the description of PSD and AC function is introduced. It was used in

[Cottone et al 2010d] to derive a linear fractional differential equation, whose output is a

stationary colored Gaussian process with target PSD. It will be shown, that this new digital

filter allows solving the issues summarized above. It will be used in chapter 7 for the devel-

opment of a new identification method by combining it with the widely used Kalman filter

algorithm [Runtemund et al 2013].

The chapter starts with a brief overview of fractional calculus and its importance in en-

gineering applications. In order to explain and clarify the idea of fractional calculus, the

Grünwald-Letnikov form of fractional integral and derivative operators is derived which is

commonly used for the discretization of such operators. Then the principles of the FSM

decomposition proposed in [Cottone and Di Paola 2010c; Cottone et al 2010d] will be sum-

marized and verified by three load processes which are of great relevance in wind and ocean

engineering. Furthermore, the accuracy and efficiency of the method is discussed. The use of

1that is, the AC function of the process decays much slower than exponentially. See section 5.6 for further
details about short and long memory processes.
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an alternative discretization operator is proposed, which leads to a significant improvement

of the accuracy and efficiency of the method. Finally, a modified form of the FSM decompo-

sition is proposed and verified which makes the method applicable for the modeling of long

memory processes with unbounded variance.

5.1 A short historical overview

The idea of generalizing G. W. Leibniz’s notion of differentiation dnf(x)/dxn to non-integer

orders is as old as the differential calculus itself. Though, the problem was first addressed

in 1695 by M. de L’Hopital who asked Leibniz about the possibility to extend his notation

to fractals of order 1/2. Not knowing the answer, Leibniz responded prophetically ”This is

an apparent paradox from which, one day, useful consequences will be drawn” [Ross 1975,

p. 1ff].

In the following 300 years many well known mathematicians among them N. H. Abel, M. Ca-

puto, L. Euler, J. Fourier, A. K. Grünwald, J. Hadamard, G. H. Hardy, O. Heaviside,

H. J. Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann,

M. Riesz, and H. Weyl, contributed to this field proposing varies definitions and notations of

fractional integral operators, but which were in general valid just under certain assumptions

[Sabatier et al 2007, p. 6-7]. Though, maybe due to the complexity of the theory, the frac-

tional calculus remain almost unknown among engineers. A brief historical overview about

the developments until the twenties century can be found e.g. in [Samko et al 1993, p. ].

It was not before the last 30 years, that fractional calculus starts to attract interest in almost

every field of science and engineering. Books such as the encyclopedia on fractional calculus

by [Samko et al 1993] contribute decisively to this development by summarizing the classical

and modern results of the theory in a unifying form as well providing a large number of

historical and recent references of publications describing both, theory and applications in

this field [Sabatier et al 2007].

Nowadays, in structural engineering, fractional order models are widely used for the de-

scription of mechanical material properties such as the frequency-dependence of damping

properties in viscoelastic materials in the scope of response analysis [Di Paola et al 2012],

seismic isolation [Koh and Kelly 1990; Makris and Constantinou 1991], control [Moreau et al

2002] and identification [Sivaprasad et al 2009], as well as strain-softening and time- depen-

dent behavior of fracture of concrete [Barpi and Valente 2002] or long range dependencies

such as relaxation and creeping of composite materials [Hedrih 2006].

In [Cottone and Di Paola 2010c] a new method, called fractional spectral moment (FSM)
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decomposition, for the description of PSD and AC function is introduced which was used

in [Cottone et al 2010d] to derive a linear fractional differential equation, whose output is a

stationary colored Gaussian process with target PSD. These results will be used in chapter 7

for the development of a new identification method by rewriting the algorithm for the load

generation in state space form and combining it with the widely used Kalman filter algorithm

[Runtemund et al 2013].

5.2 Grünwald - Letnikov fractional integral

Various forms of fractional derivative and integral operators exists; here, the definition pro-

posed by Grünwald and Letnikov is chosen for illustration purposes as it strongly resembles

Leibniz’s notation used in classical differential calculus.

Leibniz defined the first-order derivative of the function f(x), by the finite backward differ-

ence [Podlubny 1999, p. 43]

f ′(t) = lim
h→0

∆hf(t)

h
= lim
h→0

f(t) − f(t − h)

h
(5.1a)

For h > 0 the difference ∆hf(t) is called left-sided (or backward) difference while for h < 0,

it is denoted as right sided (or forward) difference [Kilbas et al 2006, p. 121ff]. Applying this

definition twice, results in the second-order derivative

f ′′(t) = lim
h→0

∆2
hf(t)

h2
= lim
h→0

∆hf(t) −∆hf(t − h)

h
= lim
h→0

f(t) − 2f(t − h) + f(t − 2h)

h2
(5.1b)

and by induction, the nth-order derivative can be expressed in the form

(Dnf)(t) = lim
h→0

∆n
hf(t)

hn
= lim
h→0

(1 −L)n

hn
f(t); (5.1c)

where L denotes the lag operator with the property Lkf(t) = f(t − kh), k > 0 (compare

section 3.2.1). Using the binomial expansion of the operator (1 −L)n

(1 −L)n =
n

∑
k=0

Γ(k − n)

Γ(k + 1)Γ(−n)
Lk =

n

∑
k=0

(−1)k(
n

k
)Lk n ∈ N (5.1d)

Eq. (5.1c) can be rewritten in the form

(Dnf)(t) = lim
h→0

n

∑
k=0

(−1)k(
n

k
)f(t − kh); n ∈ N (5.1e)
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where the term in brackets denotes the binomial coefficient2 and Γ(⋅) the Gamma function.

The binomial expansion of (1−L)γ in Eq. (5.1d) can be easily extended for complex exponents

γ ∈ C, by changing the upper bound of the summation to infinity, leading to the right- and

left-sided Grünwald-Letnikov fractional derivative operator of the continuous function f(t),

respectively, in the form [Kilbas et al 2006, p. 121ff]

(Dγ
+f)(t) = lim

h→0

∆γ
hf(t)

hγ
= lim
h→0

1

hγ

∞

∑
k=0

(−1)k(
γ

k
)f(t − kh); γ ∈ C (5.2a)

(Dγ
−f)(t) = lim

h→0

∆γ
−hf(t)

hγ
= lim
h→0

1

hγ

∞

∑
k=0

(−1)k(
γ

k
)f(t + kh); γ ∈ C (5.2b)

where h > 0. The corresponding right- and left-sided Grünwald-Letnikov (GL) fractional

integral operator are obtained from Eqs. 5.2 by choosing γ < 0, that is, using the identities

(Iγ+f)(t) = (D−γ
+ f)(t) (5.3a)

(Iγ−f)(t) = (D−γ
− f)(t) (5.3b)

It can be shown (see e.g. [Samko et al 1993, p. 387f]), that Eqs. (5.2) and (5.3) coincide

as h → 0 with the right- and left-sided Riemann Liouville fractional derivative and integral

operators [Samko et al 1993, p. 34-35], respectively which are given by

(Dγ
+f)(t) =

1

Γ(1 − γ)

d

dt ∫
t

−∞

f(τ)

(t − τ)γ
dτ ; 0 < Reγ < 1 (5.4a)

(Dγ
−f)(t) = −

1

Γ(1 − γ)

d

dt ∫
∞

t

f(τ)

(τ − t)γ
dτ ; 0 < Reγ < 1 (5.4b)

and

(Iγ+f)(t) =
1

Γ(γ) ∫
t

−∞

f(τ)

(t − τ)1−γ
dτ (5.4c)

(Iγ−f)(t) =
1

Γ(γ) ∫
∞

t

f(τ)

(τ − t)1−γ
dτ (5.4d)

This result shows, that the GL fractional representation can be interpreted as fractional

generalization of the ordinary discretization formulas for integer order derivative and integrals

[Sousa 2012]. It will be needed in section 5.5 for the numerical calculation of fractionally

integrated white noise. Some computational aspects of the GL series representation as well

as its convergence and accuracy will be discussed in more detail in sections 5.5.1 and 5.5.3,

respectively.

2(n
k
) = n!

k!(n−k)!
= Γ(n+1)

Γ(k+1)Γ(n−k+1)
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5.3 Reconstruction of AC and PSD function by fractional

spectral moment decomposition

In [Cottone and Di Paola 2010c] a new representation of the PSD and AC function in terms of

so-called fractional spectral moments (FSMs) is introduced. The FSMs are a generalization

of the classical integer order moments (2.8) proposed by Vanmarcke to the complex plane by

choosing γ ∈ C. In section 5.4 the concept is needed for the digital simulation of stationary

Gaussian processes with given target PSD function and thus, the main steps are summarized

in the following.

The FSMs are calculated from the one-sided PSD function GX(ω) of the process {X(t)}

using

ΛX(γ) = ∫
∞

−∞

∣ω∣γSX(ω)dω =∫

∞

0
ωγGX(ω)dω; γ ∈ C (5.5)

which coincide for γ = 1,2,... with the classical spectral moments (SMs) λX(γ) already define

in 2.8. The FSMs are a function of the complex quantity γ and will be denoted as ΛX(γ)

in the following. While the classical SMs cannot be used to reconstruct the PSD of the

process, even if the complete set of SMs would be known, it was proofed in [Cottone and Di

Paola 2010], that its fractional counterpart ΛX(γ) restores both, the PSD and its Fourier

transform pair, the correlation function.

To this aim, the Riesz fractional integral of the AC function is introduced

(IγRX) (τ) =
1

2ν(γ)

∞

∫
−∞

RX (t)

∣τ − t∣1−γ
dt; Reγ > 0, γ ≠ 1,3,5,... (5.6a)

where ν(γ) = Γ(γ) cos(γπ/2). Using the relation between PSD and AC function defined

in Eq. (2.7) and assuming that these functions are differentiable, it can be shown, that

the inverse Fourier transform of the Riesz fractional integral operator in Eq. (5.6a) may be

calculated by means of the property [Samko et al 1993, p. 137ff., 489ff.]

F−1{(IγR) (τ) ;ω} = ∣ω∣−γF−1{R(τ);ω} = ∣ω∣−γSX(ω) (5.6b)

Finally, applying a Fourier transform to Eq. 5.6b, i.e.

(IγRX) (τ) = ∫
∞

−∞

∣ω∣−γSX(ω)eiωτdω = ∫

∞

0
∣ω∣−γGX(ω)eiωτdω (5.7)
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which evaluated in τ = 0, yields the meaningful result

ΛX(−γ) = (IγRX) (0) =

∞

∫
0

ω−γGX(ω)dω; γ ∈ C, γ0 < Reγ < γ1 (5.8)

which coincides with the fractional spectral moments, defined in Eq. (5.5). It must be

stressed that γ ∈ C is chosen such, that the integral converges, that is, with the real part

γ0 < Reγ < γ1. For symmetric functions, such as the autocorrelation function, the Riesz

fractional integral in Eq. 5.10a can be simplified and rewritten in the form

(IγR) (0) =
1

ν(γ) ∫
∞

0
tγ−1R (t)dt =

1

ν(γ)
M{R(t);γ} (5.9)

which can be directly interpreted as Mellin transform operator M. Finally, applying an

inverse Mellin transform3 to Eq. (5.9) and substituting ΛX(−γ) = (IγRX) (0), the sought

representation of AC and corresponding PSD function (by means of Fourier transform) are

obtained, yielding

RX(t) =
1

2πi ∫
ρ+i∞

ρ−i∞
ν(γ)ΛX(−γ)t−γdγ (5.10a)

SX(ω) =
1

4πi

ρ+i∞

∫
ρ−i∞

ΛX(−γ)ω−γdγ (5.10b)

where ν(γ) = Γ(γ) cos(γπ/2) and γ0 < ρ < γ1. It must be stressed, that both integrals are

performed along the imaginary axis with fixed real part ρ which belongs to the fundamental

strip of the Mellin transform. Similar to the characteristic function (CF) defined in Eq. (A.3)

which can be reconstructed from the classical moments, i.e. the derivatives of the CF evalu-

ated in zero, the AC and PSD functions RX(τ) and SX(ω) are obtained from the knowledge

of the FSMs coinciding with Riesz factional integrals calculated in zero. Hence, Eqs. 5.10

can be interpreted as Taylor integral expansion and are therefore indicated as generalized

Taylor integral forms. By discretization of the obtained integrals the resemblance to the

Taylor series shall be emphasized. It requires a truncation of the integral along the imagi-

nary axis with constant real part. Defining γk = ρ + ik∆η the integral is calculated up to a

certain value η̄ = ∓m∆η by discretizing the interval into 2m + 1 small increments ∆η. This

leads to the following approximation

R(τ) ≈
∆η

2π

m

∑
k=−m

ν(γk)ΛX(−γk)∣t∣
−γk (5.11a)

3f(t) =M−1{f(γ); t} = 1
2πi ∫

ρ+i∞
ρ−i∞ M{f(t);γ}t−γdγ where γ = ρ + iη; ρ, η ∈ R
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S(ω) ≈
∆η

4π

m

∑
k=−m

ΛX(−γk)∣ω∣
γk−1 (5.11b)

In annexe B.1.2.1 and B.1.2.3 the FSMs ΛX(γ) of the model wind velocity and wind wave

PSD functions discussed in chapter 2 are summarized. It shall be highlighted that all of them

could be calculated analytically by means of the computer algebra systems Mathematica.

In the derivation of the formulas it was considered, that the autocorrelation and consequently

the PSD are symmetric and real functions. A more general extension to antisymmetric func-

tions can be found in [Cottone et al 2010d]. It must be stressed, that this representation is

valid for any Fourier pair, and was originally proposed for probability density and charac-

teristic function in [Cottone and Di Paola 2010], and extended to multidimensional random

variables [Cottone et al 2010b] and multivariate processes in [Cottone et al 2011; Cottone

and Di Paola 2011].

In the following section the concept of the spectral moment decomposition is applied to the

transfer function and used for the description of a stationary colored Gaussian process with

target PSD function.

5.4 Reconstruction of impulse response and transfer

function by H-FSM decomposition

As described in section 3.2.2, a colored Gaussian noise process F (t) can be represented as

output of a linear differential equation, excited by a Gaussian white noise process {W (t)}.

Many methods exist to find the transfer function H(ω) characterizing the input-output re-

lation in the frequency domain with the aim of simulating realizations of the process {F (t)}

with given target PSD. Though from the literature review in chapter 3 it can be concluded

this is not a trivial task in general, especially if the PSD function is not rational and thus the

factorization of the PSD function in general can not be formulated in analytic form. More-

over it was shown, that the discussed classical approaches are not eligible for the description

of long memory processes.

The problem is solved on basis of the fractional spectral moment (FSM) decomposition

described in section 5.3 which neither requires the factorization of the PSD nor any opti-

mization procedure as shown in the following. The method proposed in [Cottone et al 2010d]

is called H-fractional spectral moments decomposition as the coefficients for the noise simu-

lation are calculated from the FSMs of the linear transfer function H(ω). In [Cottone et al

2011; Cottone and Di Paola 2011] it is applied for the simulation of univariate/multivariate
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wind velocity fields, respectively.

In the following the main results of the method for the representation of colored Gaussian

processes described in [Cottone et al 2010d] are summarized for clarity’s sake.

Using this method the colored load process {F (t)} with assigned PSD SF (ω) is simulated

as output of a linear system excited by Gaussian white noise. Due to the linearity of the

underlying differential equation and the statistical independence of the Gaussian white noise

process, the output remains a strict stationary Gaussian process. Following the steps de-

rived in section 4.4 this can be expressed either using the linear differential operator L(⋅)

in the form L(F (t)) =W (t) or in the frequency domain by the corresponding input-output

relation in terms of the transfer function in the form SF (ω) = ∣H(ω)∣2SW (ω) where {W (t)}

denotes a zero mean white noise process with intensity qW and PSD function SW (ω) = qW /2π.

Assuming

Im[H(ω)] = 0 (5.12)

the filter is defined from the target PSD function as

H(ω) = ∣H(ω)∣ =

√
2π

qW
SF (ω) (5.13)

It must be noted that the assumption (5.12) leads to a non-causal system, i.e. h(t) ≠ 0 for

t < 0, hence, the generated time series of the process {F (t)} is not just depending on the

realizations W (t0),W (t−1),W (t−2),... of the white noise process {W (t)} for t < 0 but also on

future values W (t1),W (t2), ... for t > 0. In order to reconstruct the transfer function H(ω)

and its Fourier transform one can follow the approach derived in the previous section for the

AC function and PSD leading to the H-fractional spectral moments (H-FSM)

ΠH(γ) = ∫
∞

−∞

H(ω) ∣ω∣
γ

dω (5.14)

as shown in [Cottone and Di Paola 2010c]. Similar to Eqs. (5.10) the transfer function h(t)

and its Fourier transform H(ω) can be represented by

h(t) =
1

2πi ∫
ρ+i∞

ρ−i∞
ν(γ)ΠH(−γ) ∣t∣

−γ
dγ (5.15a)

H(ω) =
1

4πi ∫
ρ+i∞

ρ−i∞
ΠH(−γ) ∣ω∣

γ−1
dγ (5.15b)

with ν(γ) = Γ(γ) cos(γπ/2). In some cases these contour integrals cannot be calculated in

analytical form, but as the Gamma function Γ(γ) decays exponentially fast in vertical strips,
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Figure 5.1: Exact (continuous) and approximated (dotted) power spectral densities for the three load
cases: exponential AC, von Kármán and P-M PSD

i.e. for Imγ → ∞, depending on the decay of ΠH(γ), the integrals can be truncated along

the imaginary axis with constant real part Reγ = ρ. Defining γk = ρ + ik∆η, the integral

is calculated up to a certain value η̄ = ∓m∆η by discretizing the interval into 2m + 1 small

increments ∆η, yielding the approximation

h(t) ≈
∆η

2π

m

∑
k=−m

ν(γk)ΠH(−γk) ∣t∣
−γk (5.16a)

H(ω) ≈
∆η

4π

m

∑
k=−m

ΠH(−γk) ∣ω∣
γk−1

(5.16b)

In the annexe B.1.2.1 and B.1.2.3 the H-FSMs ΠH(γ) of the model wind velocity and wind

wave PSD functions are summarized and in B.1.2.2 and B.1.2.4 the corresponding H-FSMs

of the wind and wind-wave load spectra are given, respectively. Once again, in all cases the

functions could be derived analytically by means of Mathematica.

5.4.1 Numerical examples

Three load processes which are widely used in wind and ocean engineering are discussed, in

particular wind turbulences characterized by an exponential AC function and von Kármán

velocity PSD, respectively, and wind waves with Pierson Moskowitz PSD are examined for

verification of the method.

5.4.1.1 Exponentially autocorrelated wind gusts

The most simplest model for the description of along wind turbulences is a process with

exponential AC function R(τ) = σ2e−a∣t∣ and corresponding rational low-frequency power
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spectrum SF (ω) given by

SExp(ω) =
aσ2

π(a2 + ω2)
(5.17a)

The H-FSMs of the transfer function H(ω) in Eq. (5.13) can be easily calculated by Math-

ematica using Eq. (5.14) and are given by

ΠH(γ) = (
1

a2
)
−γ/2

√
2aσ2

qWπ
Γ(−

γ

2
)Γ(

1 + γ

2
) ; −1 < Reγ < 0 (5.17b)

The PSD SF (ω) of the process is reconstructed by the relation SF (ω) = ∣H(ω)∣2qW /(2π).

The approximation of the transfer function H(ω) in Eq. (5.15b) is calculated choosing a = 0.2

[1/s], σ = 3 [N] and ρ = 0.6, ∆η = 0.2 for the discretization of the integral involved taking

into account m = 20 FSMs. From the results depicted in Fig. 5.1 it can be stressed that

the proposed reconstruction leads to a good approximation of the analytic PSD function.

Moreover, the quality of the approximation depends solely on the chosen discretization of

the integral given in Eq. (5.15b).

5.4.1.2 Wind gusts with von Kármán velocity PSD

In general, if the PSD is rational it is not difficult to find a transfer function by spectral

factorization [Maybeck 1979, p. 180–195] as shown in section 4.5.1 for the example of the

exponentially correlated process. However, if the PSD of the process noise is given by a not

rational function, there is no general method available for the analytically derivation of the

transfer function H(s) by spectral factorization and this is in fact a nontrivial task [Bagchi

2003]. This is the case for the widely used von Kármán spectrum of along-wind turbulences

defined in Eq. (2.31) which is given here in the form

Su,Kar(ω) =
σ2L

πūz

1 + 8
3
(1.339L ω

ūz
)

2

[1 + (1.339L ω
ūz

)
2
]

11/6
(5.18a)

where σ, L is the standard deviation of the fluctuating component of the wind speed at

height z and the integral turbulence scale lengths, respectively, and ūz denotes the mean

velocity with which the assumed frozen-turbulence field propagates in space (Taylor’s frozen-

in turbulence hypothesis [Holm 2005]). The PSD of the corresponding wind load is given

by Eq. (2.44) using the aerodynamic admittance function χa(z,ω) [Ruscheweyh 1982a,b]
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discussed in section 2.2.3. Numerical values for the parameters for Germany can be taken

e.g. from the national annexe of the ”Eurocode 1: Actions on structures, Part 1-4: General

actions/Wind actions” (DIN EN 1991-1-4:2010-12). In the example the parameters were

chosen arbitrarily: L = 10 [m], σ = 1 [m/s], z = 3 [m], ūz = 18.25 [m/s], CD = 1 [-], A = 0.1 [m2]

and ρa = 1.25 [kg/m3]. The associated H-FSMs follow from Eq. (5.14) using Mathematica,

yielding

ΠH(γ) = C(γ) +
2

∑
k=0

DΓ[
5+2ck

12 ]Γ[ −1
6ck

]3F2[1,
2ck+5

24 ,2ck+17
24 ; ck+6

12 ,
ck+12

12 ,−b
2L4

A2 ]ū
3
2
+γ

z

(−1)kb
−1
6ck Ā

2(1+k)
3 L

−ck
3 Γ[ 5

12]
(5.18b)

for −1 < Reγ < 7/6 with

C(γ) = −
3iπDĀ−

1+γ
2 e

3iπ(1+γ)
4 (−ie

3iπγ
2 (1 − ibL2

Ā
)

5
12 + (1 + ibL2

Ā
)

5
12 )ū

3
2
+γ

z

(1 + e3iπγ)(1 + b2L4

Ā2 )
5
12

where ck = 1+ 4k − 3γ, b = 70.8, Ā = 4A, D =
√

8πL(ACdσρa)2/qW and pFq[a1,...ap; b1,...bq; z]

is the generalized hypergeometric function. The analytical form of the H-FSMs leads, also in

this case, to a very efficient application of the method. In Fig. 5.1 the results are illustrated,

having chosen the following parameters: ρ = 0.6, ∆η = 0.15, m = 30.

5.4.1.3 Wind waves with Pierson Moskowitz PSD

In this last example the process noise is generated from a wind wave PSD of fully developed

sea introduced by Pierson and Moskowitz (P-M) given by (s. Eq. (2.50))

SPM(ω) =
a

∣ω∣5
e−

b
ω4 (5.19a)

where a = 0.0081g2, b = 0.74(g/ū19.5)
4, g is the acceleration due to gravity and ū19.5 denotes

the mean velocity at height z = 19.5 [m] above the sea surface. Assuming a stationary process

the wave force acting on a vertical pile with diameter D at height z follows from Eq. (2.65b).

The H-FSMs are given, also in this case, in analytical form

ΠH(γ) =
2c−2

b
1
8

¿
Á
ÁÀa cosh[k(h + z)]2

AqW sinh[hk]2
(Ab

γ
4

√
8πΓ[c]2F2 [−

1

4
,
1

4
;
1

2
,1 − c, −

bB2

2A2
]+

+ b
5
8
−cB

√
πΓ [c −

1

2
] 2F2 [

1

4
,
3

4
;
3

2
,
3

2
− c;−

bB2

2A2
]+
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− 2
3
2
−cb

1
8A1−2cB2c Γ [2c −

1

2
]Γ[−2c]2F2 [c −

1

4
,c +

1

4
; c +

1

2
,c + 1;−

bB2

2A2
])

(5.19b)

for Reγ < −1/2 and c = 1/8 − γ/4, A=8/πσ2
uK

2
d and B = K2

1 . In the example a pile with

diameter D = 0.1 [m], drag coefficient Cd = 0.6 [-] and inertia coefficient Cm = 2 [-] which

is excited by wind-induced (ū19.5 = 20 [m/s], σu = 1 [m/s]) ocean waves with wave length

λ = 20 [m] and water depth h = 15 [m] is assumed. The corresponding PSD of the wave

loads and the approximation using m = 40 FSMs and ρ = 1.6, ∆η = 0.3 for the discretization

of the integral involved is depicted in Fig. 5.1. Once again a good agreement between the

approximated and the exact PSD is obtained.

5.5 Digital simulation of Gaussian random processes with

target PSD function

The obtained fractional representation of the transfer function H(ω) given in Eq. (5.15a)

can be now introduced in the input-output relation Fk(ω,T ) =H(ω)Wk(ω,T )

Fk(ω,T ) =
1

4πi ∫
ρ+i∞

ρ−i∞
ΠH(−γ) ∣ω∣

γ−1
Wk(ω,T )dγ (5.20)

where 0 < t < T and k denotes the index of the ensemble of the process {F (t)}, {W (t)},

respectively. The truncation of the time interval is needed as the stationary data theoretically

persists forever and thus just the finite-range Fourier transforms exists [Bendat and Piersol

2010]. We introduce the definition of the Riesz fractional integral (Iγf) (t)

(Iγf) (t) =
1

2ν(γ)

∞

∫
−∞

f (τ)

∣t − τ ∣1−γ
dτ ; Reγ > 0, γ ≠ 1,3,5,... (5.21)

where ν(γ) = Γ(γ) cos(γπ/2). For differentiable functions, it can be shown that the inverse

Fourier transform of the Riesz fractional integral (Iγf) (t) from the time in the frequency

domain is given by

F−1{(Iγf) (t) ;ω} = ∣ω∣−γF−1{f(t);ω} = ∣ω∣−γF (ω) (5.22)
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Rewriting Eq. (5.20) leads to

Fk(ω,T ) =
1

4πi ∫
ρ+i∞

ρ−i∞
ΠH(−γ)F−1{(I1−γWk) (t,T ) ;ω}dγ (5.23)

Applying a finite Fourier transform finally leads to a reconstruction of the correlated noise

process {F (t)} in terms of the H-FSMs given by

F (t) = lim
T→∞

E [Fk(t,T )] =
1

4πi ∫
ρ+i∞

ρ−i∞
ΠH(−γ)(I1−γW )(t)dγ (5.24)

where E [Fk(t,T )] is the ensemble average over the ensemble index k. In [Cottone and Di

Paola 2011] a computational efficient algorithm for the digital simulation of wind loads based

on Eq. (5.24) is introduced.

Using the approximation of the transfer function H(ω) given in Eq. (5.15b), the integral

representation of the colored load process defined in Eq. (5.24) can be approximated by the

truncated sum

F (t) ≈
∆η

4π

m

∑
k=−m

ΠH(−γk)(I
1−γkW )(t) (5.25)

Hence, the main difficulty in the simulation of the process lies in the efficient calculation of

the Riesz fractional integral (I1−γkW )(t) of the Gaussian white noise process {W (t)}. It can

be shown that the Riesz integral form can be expressed in terms of Riemann-Liouville (RL)

fractional integrals [Samko et al 1993, p. 214]

(IγW )(t) =
1

2ν(γ)
[∫

t

−∞

W (τ)

∣t − τ ∣1−γ
dτ + ∫

∞

t

W (τ)

∣τ − t∣1−γ
dτ] =

(Iγ+W )(t) + (Iγ−W )(t)

2 cos(γπ/2)
(5.26)

with −∞ < t < ∞ and ν(γ) = Γ(γ) cos(γπ/2) and where (Iγ+W )(t), (Iγ−W )(t) denote the

left-, right-handed RL fractional integral, respectively. Assuming that the process {W (t)}

is discretized on a finite interval [0,nτ], where n ∈ N, τ > 0, and zero elsewhere, the RL

integrals can be calculated numerically using fractional order differences [Samko et al 1993,

p. 385–388] as illustrated in section 5.2. This leads to the Grünwald - Letnikov form of the

Riesz fractional integral given by:

(IγW )(jτ) ≈ lim
τ→+0

j

∑
k=0

αk(γ)W (jτ − kτ) + lim
τ→+0

n−j

∑
k=0

αk(γ)W (jτ + kτ) (5.27)

where

αk(γ) =
(−1)kτ γ−1

2 cos(γπ/2)
(
−γ

k
) (5.28)
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The latter can be calculated either by fast Fourier transform (see e.g. [Podlubny 1999, p.

208]) or using the recursion

α0(γ) =
τ γ−1

2 cos(πγ/2)
and αk(γ) =

k + γ − 1

k
αk−1; k = 1,2, . . . (5.29)

The first sum in Eq. (5.27) includes the weighted sequence of past white noisesW0,W1, . . . ,Wj

up to the actual time jτ , while the second sum represents the weighted sequence of future

white noises Wj,Wj+1, . . . ,Wn. As mentioned in section 5.4, the dependence on the future,

that is the non-causality of the generated process, is caused by disregarding the imaginary

part of the transfer function in Eq. 5.12.

Eq. (5.27) can be efficiently calculated in matrix form by Z(γ) = A(γ)W

Z(γ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IγW )(0)

(IγW )(τ)

. . .

(IγW )(nτ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; A(γ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2α0 α1 . . . αn

α1 2α0 . . . . . .

. . . . . . . . . α1

αn . . . α1 2α0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W (0)

W (τ)

. . .

W (nτ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G0

G1

. . .

Gn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.30)

where the discretized white noise process W in the interval [0,nτ] is described by the realiza-

tions of a zero-mean Gaussian random process G0,G1, . . . ,Gn with standard deviation
√
qW τ .

Finally, the vector of the colored load process F = [F (0), F (τ), . . . ,F (nτ)]T is obtained by

F =
∆η

4π

m

∑
k=−m

ΠH(−γk)Z(1 − γk) =
m

∑
k=−m

H(γk)W (5.31)

by means of the matrix transfer function H(γk) = ∆η(4π)−1ΠH(−γk)A(1 − γk).

In the following section, the short memory principle will be introduced, which is needed

for the efficient generation of a long time series. Furthermore, it will be shown, that the

coefficient matrix A(γ) defined in Eq. (5.30) must be truncated in order to obtain a stationary

sequence.

5.5.1 Short memory principle

It must be noted that the evaluation of the fractional integral approximation (5.27) requires

at each iteration the re-calculation and summation of every previous time point and thus

becomes increasingly cumbersome for large times 0 << nτ where a significant numbers of

computations and memory storage is needed. However, [Podlubny 1999, p. 203f] observed,

that the Grünwald Letnikov coefficients αk(γ) defined in Eq. (5.28) decay with increasing
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value k and can be set to zero for k > p. For illustration purposes, Fig. 5.2 depicts exem-

plarily the absolute values of the coefficients αk(γ) for a sampling interval of τ = 0.05 [s] in

dependence of the chosen order of integration γ = ρ + 1i where the real part is varied in the

range ρ = 0...0.9. Instead of taking into account the complete history of the process {W (t)}

starting from t = 0, [Podlubny 1999, p. 203f] proposed to truncate the infinite sum after a

finite number of values. This leads to the so-called short memory principle, based on which

the fractional integral is calculated from the recent past of the function defined by the time

interval [t−M,t], where M denotes the considered process’s memory. Defining p =M/τ , the

series representation in Eq. (5.27) can be truncated, yielding

(IγW )(jτ) ≈ lim
τ→+0

min(j,p)

∑
k=0

αk(γ)W (jτ − kτ) + lim
τ→+0

min(p,n−j)

∑
k=0

αk(γ)W (jτ + kτ) (5.32)

Consequently, the coefficient matrix A(γ) needed for the generation of the process discretized

in the time interval [0,nτ] shows the following band structure

A(γ) =

2α0 α1 . . . αp 0 . . . 0 0 . . . 0 0

α1 2α0 α1 . . . αp 0 0

⋮ ⋱ ⋱ ⋱ . . . ⋱ ⋱ ⋮

αp . . . α1 2α0 α1 . . . αp 0 0

0 αp . . . α1 2α0 α1 . . . αp 0 0

⋮ ⋱ ⋱ . . . ⋱ ⋱ ⋱ . . . ⋱ ⋱ ⋮

0 0 αp . . . α1 2α0 α1 . . . αp 0

0 0 αp . . . α1 2α0 α1 . . . αp

⋮ ⋱ ⋱ . . . ⋱ ⋱ ⋱ ⋮

0 0 αp . . . α1 2α0 α1

0 0 . . . 0 0 . . . 0 αp . . . α1 2α0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.33)

where the lower and upper triangular part of the n × n-matrix includes the weights of the

past and future realizations of the Gaussian white noise process, respectively. It must be

noted, that for an input vector W of length n, the first and last p samples of the output

sequence F can be regarded as transition states whereas the remaining n − 2p samples, are

the steady states needed for the simulation of a stationary time series. The transition states

are caused by the fact, that the process is discretized on a finite time interval, i.e. due to the
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Figure 5.2: Evaluation of the coefficients of the Grünwald-Letnikov approximation choosing the order of
integration equals γ = ρ + 1i, where ρ takes values between 0.1 and 0.9

assumption that the process vanish for nτ < t < 0. Consequently, the first and last p rows

of the coefficient matrix, contain an incomplete number of coefficients. The box indicates

the part of the coefficient matrix which is characterized by a complete set of p past and

future weights, and which, if multiplied with a white noise sequence, leads to a stationary

process.

5.5.2 Numerical examples

The result in Eq. (5.31) is once again verified by means of the three load cases. In order to

obtain a stationary time series, the truncated coefficient matrix defined in Eq. (5.33) is used

for the simulation. In Fig. 5.3 (Bottom) the three generated time series and the corresponding

AC functions (Top) are depicted. It can be stressed that there is a good agreement between

the normalized analytic AC function and the one obtained from the generated time series.

For the latter a sampling interval of τ = 0.05 [s] and the following parameters are used:

i) Exponentially correlated wind gusts: p = 300, m = 30, ρ = 0.6, ∆η = 0.2

ii) Wind gusts with von Kármán velocity PSD: p = 250, m = 50, ρ = 0.6, ∆η = 0.15

iii) Wind waves with P-M PSD: p = 500, m = 100, ρ = 1.6, ∆η = 0.3

where p denotes the number of considered α coefficients.

Though, comparing the standard deviation of the sampled AC functions σ̂Exp, σ̂Kar, σ̂PM

with the corresponding target values, it must be mentioned that the these values slightly

deviate from the expected ones by about 5 [%]. It can be shown, that this error decreases

with decreasing sampling interval τ . In the following the dependence of the accuracy on the
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Figure 5.3: Top: Exact (continuous) and approximated (dotted) normalized AC functions, Bottom: Gener-
ated time series for the three load cases: exponential AC, von Kármán and P-M PSD

chosen sampling interval and the numbers of coefficients will be discussed in more detail.

Furthermore, the use of an alternative Grünwald Letnikov (GL) operator, denoted as centered

GL form, is proposed, which allow increasing both, the accuracy as well as the efficiency of

the algorithm.

5.5.3 Investigation of the simulation accuracy: discretization and

truncation errors

In the previous section the number of coefficients p =M/τ needed for the generation of the

random process was chosen in such a way, that its AC function agrees accurately with the

target function. Inaccuracies are caused by the approximation of the fractional integral: The

Grünwald Letnikov form of the integral leads to two types of errors, a discretization error

depending on the size of the chosen sampling interval τ and an error caused by truncating the

infinite sum in Eq. 5.27 after a finite number of values, that is, by considering just the recent

past of the process, defined by the time interval [t −M,t] instead of taking into account the

complete process’s history. The effect of the chosen sampling interval τ and the considered

memory M on the simulation result is now investigated on the example of the exponentially
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correlated random process with AC function R(t) = σ2e−a∣t∣.

As a measure of accuracy, the mean square error (MSE) between the approximated AC

function R̂(t) of the generated time series and the analytic function is calculated, using

MSE =
1

L

N

∑
0

(R̂(jτ) −R(jτ))
2
; N = L/τ (5.34)

where L denotes the length of the process beyond which the AC function is negligible, and,

choosing a = 0.2, σ = 10 [N], is set to L = 50 [s]. For t > L, the AC function drops below a

value of R(50) = 0.0045 and thus can be considered to be zero.

In the first test, 5000 samples of fixed length T = 200 [s] each are generated as weighted

sum of p past and future Gaussian white noises by means of Eq. (5.31) setting αk = 0 for

k > p. In order to investigate the effect of the discretization error, five parameterizations are

tested: Keeping the considered memory of the process M constant by setting M = 25 [s],

the sampling interval τ is varied between 0.025 and 0.5 [s] and the number of coefficients

results from p = M/τ . Fig. 5.4a shows the calculated AC functions and the corresponding

MSEs: It is evident, that with increasing sampling interval τ , the variance of the process

is over-estimated (Top), while the tail of the AC function is approximated in all cases with

comparable accuracy up to a lag of 24 [s] (Bottom). Instead of choosing a smaller sampling

interval in order to ensure a good fit of the peak value, of course, the variance problem can be

solved, by scaling the simulated sequence by the target variance after its generation. How-

ever, if the algorithm for the load generation is combined with other methods, for instance

with a system identification algorithm, as in the following, a subsequent correction is not

possible.

The truncation error, that is the effect of the choice of the considered memory M on the

accuracy of the simulation, is investigated by varying the considered memory between 2.5

and 25 [s], while the sampling interval is kept constant and the number of coefficients are set

p =M/τ . In order to keep the discretization error small, the process is discretized choosing

a small sampling interval, setting τ = 0.025 [s]. The result is depicted in Fig. 5.4b. From the

upper plot it is evident that a too short length M mainly causes the AC function to decrease

much faster then the target function and leads to small errors in the peak value. The bot-

tom plot shows the result in a semi-logarithmic scale. It can be concluded that the sampling

interval mainly influences the scaling, that is the variance of the process, while the choice of

the considered memory M effects the range, in which the AC function is approximated well.

There exists different strategies for the reduction of the discretization and the truncation

error. The simplest approach is a refinement of the discretization grid and an increase of

the considered memory, respectively. It allows making these errors arbitrary small, but not
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(a) Keeping the considered process memory constant M = 25 [s], the
number of coefficients p = M/τ and varying the sampling interval τ
between 0.025 and 0.5 [s].
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M = 25,  p = 1000, MSE = 0.168
M = 20,  p = 800,   MSE = 0.173
M = 15,  p = 600,   MSE = 0.239
M = 10,  p = 400,   MSE = 0.958
M = 5.0, p = 200,   MSE = 8.802
M = 2.5, p = 100,   MSE = 30.948

(b) Keeping the sampling interval constant τ = 0.025 [s], the number of
coefficients p = M/τ and varying the considered process memory
M between 2.5 and 25 [s].

Figure 5.4: Exact (continuous) and approximated (dotted) normalized and corresponding semi-logarithmic
plot of the tail of the AC functions of the exponentially correlated process for different param-
eterizations generated using the Grünwald-Letnikov approximation
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without a fast increase of the computational demand and memory storage. More efficient

strategies are the adaptive memory principle [Sprouse et al 2010], higher order approxima-

tions for fractional operators [Lubich 1986; Lin and Liu 2007] and a modified Grünwald

Letnikov approach using centered differences [Ortigueira 2006, 2008]: In contrast to the used

short memory principle, the adaptive sampling method does not truncate the convolution

operator, but uses a non-equidistant sampling of the process’s history. By including pro-

gressively fewer samples along the process’s past, a temporally weighted history is computed

including contributions from the whole past of the process, and thus leading to an increased

accuracy and, at the same time, resulting in a higher computational efficiency. However, the

non-equidistant sampling interval does not allow expressing the process in state space form

which is later needed to combine it with the Kalman filter algorithm.

While the standard GL approximation is based on a first order Taylor series expansion, the

method proposed by Lubich makes use of higher order approximations and thus is applica-

ble with higher accuracy for larger time steps. Though, the coefficients of the Taylor series

expansion are not readily defined in analytic form but must be calculated numerical and, in

addition, starting weights must be determined by solving a linear set of equations. Thus,

in contrast to the first order approximation, the implementation is not straight forward,

especially, if the fractional integral must be evaluated for different fractional orders, as it is

needed here.

In contrast to the GL approximation of the fractional integral given in (5.28) which result

from the fractional generalization of the forward and backward difference operator, respec-

tively, as shown in section 5.2, in [Ortigueira 2006] a modified GL form based on a general-

ization of centered differences ∆c = f(t + τ/2) − f(t − τ/2) to fractional orders, is proposed,

yielding

(Dγ
c f)(t) = lim

τ→0

∆γ
cf(t)

τ γ
= lim
τ→0

Γ(γ + 1)

τ γ

∞

∑
k=−∞

(−1)k

Γ(
γ
2 − k + 1)Γ(

γ
2 + k + 1)

f(t − kτ) (5.35a)

where γ ∈ C. It is shown in [Ortigueira 2006], that for γ < 0, Eq. 5.35a coincides with the

Riesz fractional integral operator defined in Eq. (5.21). Assuming that the function f(t) is

discretized on a finite interval [0,nτ], where j, n ∈ N, τ > 0 and zero elsewhere, then the sum

in Eq. (5.35a) can be truncated and used to express the Riesz fractional integral operator

(IγW )(t) of the white noise process needed in 5.24 evaluated at t = jτ in the form

(IγcW )(jτ) = lim
τ→0

n−j

∑
k=0

αc,k(γ)W (jτ + kτ) + lim
τ→0

j

∑
k=0

αc,k(γ)W (jτ − kτ) (5.35b)
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using (IγcW )(t) = (D−γ
c W )(t). The coefficients are defined as

αc,k(γ) =
τ γ−1(−1)kΓ(1 − γ)

Γ(1 − γ
2 − k)Γ(1 − γ

2 + k)
(5.35c)

and can be calculated recursively, by means of

αc,0(γ) =
τ γ−1Γ(1 − γ)

Γ2(1 − γ/2)
and αc,k(γ) =

2(k − 2) + b

2(k − 1) − b
αc,k−1; (5.35d)

where k ∈ N. Thus, due to the similarity to Eq. (5.27) this discretization method, denoted

in the following as centered GL approximation, can be easily combined with the proposed

algorithm by introducing the modified coefficients where needed.

In order to compare the centered GL representation with the classical one, again the errors

introduced by discretization and truncation of the integral are investigated. To this aim, the

two examples are re-run for the new representation using the same white noise sequence as

input data.

Fig. 5.5a (Top) shows the calculated AC functions setting the considered process memory

M = 25 [s], the number of coefficients p =M/τ and varying the sampling interval τ between

0.025 and 0.5 [s]. By visual inspection of the plot it is evident, that the process is generated

in all cases with high accuracy. Though, in contrast to the standard GL approximation, the

variance of the generated time series agrees well with the target value independently from

the chosen sampling interval. The higher accuracy is reflected by an enormous reduction

of the MSEs by about about 55 [%] for small sampling intervals and about 80 [%] for long

sampling intervals of τ ≥ 0.1. The log-log-plot in Fig. 5.5a (Bottom) reveals that again a good

agreement between the results is obtained for times t ≤ 22 and that the small discretization

errors are caused by the approximation of the tail of the AC function. It can be concluded

that a change in the sampling interval has an inverse proportional effect on the required

number of coefficients, i.e. if the sampling interval is halved, twice as much coefficients are

needed in order to simulate the process with comparable accuracy.

The effect of the truncation of the fractional integral is again investigated by setting the

number of coefficients p =M/τ and varying the considered process memory M between 2.5

and 25 [s]. For a better comparison with the results of the classical GL approximation, again

a small sampling interval of τ = 0.025 [s] is used. The result is depicted in Fig. 5.5b. The

upper plot illustrates that a short memory M leads to errors in the peak value and causes

the AC function to decrease much faster then the target function. The bottom plot shows

the result in a semi-logarithmic scale. Similar to the results of the GL approximation, it is

evident that the choice of the length M influences the range, in which the AC function is

approximated well. Comparing the MSEs of the two approaches, it must be stressed, that
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(a) Keeping the considered process memory constant M = 25 [s], the
number of coefficients p = M/τ and varying the sampling interval τ
between 0.025 and 0.5 [s].
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(b) Keeping the sampling interval constant τ = 0.025 [s], the number of
coefficients p = M/τ and varying the considered process memory
M between 2.5 and 25 [s].

Figure 5.5: Exact (continuous) and approximated (dotted) normalized and corresponding semi-logarithmic
plot of the tail of AC functions of the exponentially correlated process for different parameteri-
zations generated using the centered Grünwald-Letnikov approximation
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Figure 5.6: Top: Exact (continuous) and approximated (dotted) normalized AC functions of the exponen-
tially correlated process setting the sampling interval τ = 0.1 [s], the number of coefficients
p = M/τ and varying the considered process memory M between 2.5 and 25 [s]. Bottom:
Corresponding semilogarithmic plot of the AC function

while the centered GL leads to better results for M ≥ 15 reducing the error by about 35 -

55 [%], for M ≤ 10, the results of the classical approach are slightly better.

The strength of the centered GL approximation is evidently the fact, that it is applicable

with high accuracy for larger sampling intervals as illustrated by Fig. 5.6. Once again, the

considered memory is varied between 2.5 and 25 [s], but in this example, the sampling interval

is increased from τ = 0.025 [s] by a factor of four, setting τ = 0.1 [s]. It shall be highlighted,

that the larger sampling interval increases the accuracy, and at the same time, reduces the

required number of coefficients to a forth.

From these results the following procedure for the use of the centered Grünwald-Letnikov

approximation is proposed: (i) As prior guess, set the considered memory M according to the

time range in which the AC function shall be approximated with high accuracy; (ii) choose a

large sampling interval τ and set the numbers of coefficients p =M/τ 4; (iii) increase/reduce

the length M until the required accuracy of the simulation is obtained; (iv) after finding the

optimal length M , the process can be generated, choosing the required sampling interval and

determine the number of coefficients by p = M/τ . In the following, all examples are based

4As shown above, an increase of the sampling interval reduces the required number of coefficients and thus
makes the computation more efficient. Though, in order to avoid aliasing, the sampling rate 1/τ should
meet the Nyquist–Shannon sampling theorem, i.e. it must exceed 1/τ > 2fc, where fc denotes the cut-off
frequency of the spectrum [Brigham 1988, p. 79ff.]
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on the centered GL approximation combining the Eqs. (5.31), (5.33) and (5.35).

5.6 Long-memory processes

So far, the H-FSM decomposition was applied successfully for the generation of Gaussian

random processes with short memory, that is, where the AC function decays with exponential

rate as mentioned previously. However, it shall be highlighted that in contrast to the classical

digital simulation methods discussed in chapter 3, the introduced fractional representation of

the process, allows the generation of processes with much slower decaying AC function. To

this aim, in the following section, the most important properties of long-memory processes

are summarized and in section 5.6.2, a modification of the H-FSM decomposition is proposed

which allows modeling long memory processes with infinite variance.

5.6.1 Properties

The phenomenon of long memory had been observed in fields such as hydrology and clima-

tology long before suitable stochastic models for their description were available. In general,

long memory in time or space, refers to empirically observed autocorrelations which exhibits

a much slower decay to zero than can be explained by classical ARMA-type models. As

shown previously, the AC function R(k) of such models decays exponentially to zero as the

lag approaches infinity, i.e. k →∞, leading to the relation

∣R(k)∣ ≤ Cλ−k k = 1,2, . . . (5.36a)

where λ > 1, C > 0 are some constants (compare Eqs. (3.17-3.18)). Due to that rapid decay,

such processes are denoted as short memory processes. In contrast, long memory processes

are characterized by a much slower decaying AC function of form

R(k) ∼ Ck−α, as k →∞ (5.36b)

where the constants 0 < α < 1 and C > 0. It can be shown that the function decays to zero hy-

perbolically and thus the autocorrelations are not absolute summable, i.e. ∑
∞

k=−∞ ∣R(k)∣→∞.

Another characteristic property is the decay of the variance of the sample mean X̄ =

1/n∑
n
k=1Xk of the sequence X1,X2, . . . ,Xn with increasing sample size n. In general for

independent and identically distributed random variables the variance decreases inverse
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Figure 5.7: Long memory process

proportionally to the sample size, i.e. var(X̄) = σ2n−1 where σ2 denotes the variance of

the signal. In contrast, if the autocorrelations are neither zero nor significantly small to be

negligible, the error of the sample mean decays much slower to zero and the process is said

to be of long memory, if

var(X̄) ∼ Cn−α, as n→∞ (5.36c)

where 0 < α < 1. Alternatively, in the frequency domain, the long term dependence of

the process is characterized by the behavior of the PSD function at low frequencies, which

approaches

S(ω) ∼ Cω−β, as ω → 0 (5.36d)

where 0 < β < 1. That is the PSD function is unbounded at zero frequency, which, of course,

is the consequence of the divergence of the sum of autocorrelations.

In Fig. 5.7a a realization of a long memory process of T = 500 [s] and a close up of T = 50 [s] is

depicted. Fig. 5.7b compares the corresponding AC function of the process with a typically

exponentially decaying function of a short memory process. The process exhibits two typical

features of long range dependency: Looking at the whole series, it seems that relatively

long periods where the data tends to stay at a high level are followed by long periods with

low levels. However, these cycles are irregular with random period and without persistent

upwards or downwards trend. In contrast, if a shorter period of the time series is examined,

then the signal shows a random nature with superposed cyclic trend [Beran 1994, p. 41]. Such
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Figure 5.8: AC function R̂(k) = 0.1∣k∣2d−2, where d = 0.9 (line) and 5 % confidence bands ±2N−1/2 for
sample sizes N = 100,200,400,1000 (dashed)

behavior has been noted in different data sets of yearly minimal water levels of the Nile River

by [Hurst 1950], who observed the tendency of wet years to cluster into wet periods, or of

dry years to cluster into drought periods. Motivated by Hurst’s findings, it was [Mandelbrot

and Van Ness 1968] and coworkers who introduced the concept of fractional calculus for the

description of long range dependencies and proposed the concept of fractionally integrated

Gaussian noise as a statistical model with long memory. Later, [Granger and Joyeux 1980]

and [Hosking 1981] introduced the fractionally integrated ARMA (ARFIMA) models which

nowadays, belongs to the most widely used class of long memory processes.

It shall be stressed that the properties 5.36 just give information about the asymptotic

characteristics of the long memory process and thus describe solely the limiting behavior of

the correlations and spectrum as the lag tends to infinity or the frequency approaches zero.

E.g. the rate of convergence of the AC function does not provide any information about the

absolute size of the values for any particular lag. Indeed, they can be arbitrarily small making

the detection of slowly decaying correlations just by visual inspection of the data difficult.

This is illustrated by means of the following example [Beran 1994, p. 43f]: Consider a time

series of length N whose estimated AC function has the form R̂(t) = 0.1∣k∣−0.2. Consequently,

due to the slow decay it might be difficult to detect non-zero but very small correlations by

looking at the classical ±2/
√
N -confidence band1. To this aim, in Fig. 5.8 the AC function as

well as the confidence bands for N = 100,200,500,1000 are depicted. The autocorrelations

are said to deviate significantly from zero if they fall outside the confidence band. Though,

in this example, this is just the case for sample sizes evidently greater than N = 400 and

consequently, if a too small data set is used, the test leads to the spurious assumptions that

the autocorrelations are insignificant, even if the estimated sample AC function coincides

with the true function. Though, the effect on statistical inference is by far not negligible

1In the limiting case of a Gaussian white noise process, the deviation of the sample mean X̄ from the true
value µ is normally distributed with N(0,σ2/N) where N is the sample size. That is with 95 % confidence
the true value lies in the band ±1.96/

√
N . Thus, the ACs are said to deviate significantly from zero, if

they exceed the confidence interval ±2/
√
N [Priestley 1981, p. 340]
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even for small sample sizes [Beran 1994, p. 43f].

The example shows, that without an investigation of the asymptotic properties of the process,

long-range dependencies are not necessarily evident and might be missed if not explicitly

investigated. Indeed, classical tests such as the
√
σ2/n-significant method might confirm the

spurious assumption of short term dependence, especially if a too short time series is used.

Furthermore, the digital simulation of such processes is computational demanding, since

the AC function decays slowly, and thus, the estimation of the model parameters e.g. by

applying the maximum likelihood procedure, requires the consideration of all autocorrelations

including those with large time lags. Moreover, the introduced standard methods such as

ARMA-type approaches or the spectral factorization methods, are not adequate for modeling

long range dependencies due to their exponential decay rate.

This leads to the development of fractional calculus based method such as the ARFIMA

models or fractional integrated Gaussian noise models. Further literature on common signal

modeling techniques for the generation of time series with power law decay such as fractional

Brownian motion method, Fourier transform based-methods and wavelet-based methods is

given in [Ferdi et al 2008].

So far the H-FSM decomposition was applied for the simulation of short-memory processes.

Though, by means of the following example, it will be shown, that the method is also eligible

for the modeling of long range dependencies. It must be stressed, that the applicability of

the method to both short and long memory processes makes the method unique among the

classical simulation approaches.

5.6.2 Proposed modification of the H-FSM decomposition for the

representation of Gaussian processes with power-law decay

In the following, processes with AC and PSD function of form

R(τ) = C1 ∣τ ∣
−a (5.37a)

S(ω) =
C1Γ(1 − a) sin(aπ2 )

π
∣ω∣a−1 = C2(a) ∣ω∣

a−1 (5.37b)

will be discussed, which, pursuant to the properties 5.36, show long-term behavior, if the

constant a is chosen from the interval 0 < a < 1. Though, due to the characteristic pole of

the PSD function at ω = 0, the FSMs of the transfer function H(ω) =
√

2πS(ω)/q

Π(γ) =

√
2πC(a)

q ∫

∞

−∞

∣ω∣γ+
1
2
(a−1)dω (5.38a)
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diverge. To overcome this problem, a modified fractional integral defined as

Π̃(γ) = ∫
∞

−∞

H(ω)
∣ω∣γ

1 + ∣ω∣
dω (5.38b)

is proposed, which results in

Π̃(γ) =

¿
Á
ÁÀ (2π)3C2(a)

q cos2(aπ2 + πγ)
; −

(1 + a)

2
< Reγ <

(1 − a)

2
(5.38c)

Introducing the modified H-FSMs in 5.15b provides a reconstruction formula of the expres-

sion H(ω)/(1 + ∣ω∣), which multiplied by (1 + ∣ω∣) finally yields the sought relation for the

representation of the transfer function and corresponding unit response function in the form

H(ω) =
1

4πi ∫
ρ+∞

ρ−i∞
Π̃(−γ) {∣ω∣γ−1 + ∣ω∣γ}dγ (5.39a)

h(t) =
1

2πi ∫
ρ+∞

ρ−i∞
Π̃H(−γ){ν(γ)∣t∣−γ − Γ(1 + γ) sin(

πγ

2
)∣t∣−1−γ}dγ (5.39b)

where ν(γ) = Γ(γ) cos(πγ/2). Comparing the result with the relations in Eq. (5.15) shows,

that the modification leads to an additional term in the brackets, but the functional form of

the reconstruction is still the same.

5.6.2.1 Numerical example

The result will be now verified on the example of the process characterized by an AC function

with power law decay of order a = 1/2 choosing C1 = 10. To this aim the corresponding PSD

function is reconstructed by means of Eq. (5.39a) using the relation S(ω) = ∣H(ω)∣2q/(2π).

The integral (5.39a) along the imaginary axis is truncated and discretized on the interval

[−m∆η,m∆η] as shown in 5.16, setting ρ = 0.2, m = 50 and ∆η = 0.05. In Fig. 5.9 the

analytic PSD function and the approximated one are compared. Especially, the log-log plot

illustrates the high accuracy of the approximation in a wide frequency band.

5.6.3 Digital simulation of a Gaussian random process with power-law

decay by H-FSM decomposition

The concept of the H-FSM decomposition for the digital simulation of a Gaussian random

processes introduced in section 5.5 can be easily extended for the modified expression of the
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Figure 5.9: Exact (continuous) and approximated (dotted) power spectral densities of a process with
power-law decay of order a = 1/2

transfer function (5.39a): Introducing the latter in the input-output relation (5.20)

Fk(ω,T ) =
1

4πi ∫
ρ+∞

ρ−i∞
Π̃H(−γ) {∣ω∣γ−1 + ∣ω∣γ}Wk(ω,T )dγ (5.40a)

and following the steps 5.21-5.24 leads to a quite similar integral representation of the Gaus-

sian process and its series approximation in the form

F (t) =
1

4πi ∫
ρ+i∞

ρ−i∞
Π̃H(−γ) {(I1−γW )(t) + (I−γW )(t)}dγ (5.40b)

F (t) ≈
∆η

2π

k=+m

∑
k=−m

Π̃H(−γk) {(I
1−γkW )(t) + (I−γkW )(t)}; γk = ρ + ik∆η (5.40c)

where (I1−γW )(t) and (I−γW )(t) denote the Riesz fractional integrals of the Gaussian white

input process {W (t)}. Finally, discretizing the fractional integrals on a finite interval [0,nτ]

by means of the centered Grünwald-Letnikov representation 5.35, provides a realization of

the colored load process F = [F (0), F (τ), . . . ,F (nτ)]T in the form

F =
∆η

4π

m

∑
k=−m

Π̃H(−γk) {A(1 − γ) +A(−γ)}W (5.41)

where the elements of the noise vector W ∈ Rn×1 are samples of a zero-mean Gaussian

random process with standard deviation σ =
√
τq and the coefficient matrices A(γ), A(−γ)

are constructed based on the short memory principle using the definitions (5.35) and (5.33).

5.6.3.1 Numerical example

The algorithm is again verified on the example of a Gaussian random process with AC

function of power law type defined in Eq. (5.37), choosing a = 1/2 and C1 = 10. The process
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Figure 5.10: Top: Generated time series of a process with power law decay of order a = 1/2 by means of
the H-FSM decomposition. Bottom: Exact (continuous) and sample AC function (dotted) of
the generated time series

is generated choosing a sampling interval of τ = 0.25 [s] and setting p = 1000, ρ = 0.2, m = 50,

∆η = 0.05. Fig. (5.10) depicts the generated time series (Top) and compares the analytic

and calculated sample AC function of the process (Bottom). Again a very good agreement

between the exact and approximated function is observed in a wide range. It must be

stressed, that the sample variance of the generated time series is not unbounded This is of

course due to the fact that it is calculated from a finite time series. Though, for lags of

order of the chosen sampling interval (that is for t ≥ τ), the AC function is approximated

accurately, and thus the error in the peak value can be made arbitrarily small choosing a

smaller sampling interval.

5.7 Summary of the main findings

It was shown that the H-FSM decomposition is an efficient method for the simulation of sta-

tionary Gaussian random processes with target PSD function. Due to its analytic form, its

implementation is straight forward as illustrated by Fig. 5.11. It is applicable to arbitrarily

correlated processes, without restriction to the functional form of the PSD function. Indeed,
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Target PSD function

SF (ω)

Calculate transfer function

H(ω) =
√

2π
q
SF (ω)

Calculate H-FSM (5.14)

ΠH(γ) = ∫
∞

−∞
H(ω) ∣ω∣γ dω

Calculate transfer matrix (5.31)

H(γ) = ∑k=mk=−m∆η(4π)−1ΠH(−γk)A(1 − γk)

Generate white noise sequence

{W} ∼ WN(0,qI)

Generate process

{F} = hW

Figure 5.11: Workflow of the H-FSM decomposition used for digital simulation of Gaussian random pro-
cesses. the coefficient matrix A(γ) is calculated based on the short memory principle (5.31)
and the centered GL discretization scheme (5.35)

the H-FSMs ΠH(γ) of the wind velocity and wind wave model spectra discussed in chapter

2 could be derived analytically and are summarized in annexe B.1.2.

Due to the genetic form of the algorithm, in chapter 7 a general state space representation

is derived, which can be given directly, once the H-FSMs are calculated, and be combined

with the Kalman filter algorithm.

The accuracy of the simulation is directly related to the accuracy of the numerical evaluation

of the fractional integral operator involved. [Cottone et al 2010d] proposed the use of the

Grünwald-Letnikov (GL) series representation leading to a discretization error depending

on the chosen sampling interval and a truncation error caused by the choice of the pro-

cess’s memory. A sensitivity analysis revealed, that i) the accuracy of the GL discretization

strongly depends on the chosen sampling interval; ii) a too large sampling interval (τ ≥ 0.025)

leads to an erroneous variance of the generated time series; iii) the sample AC function of the

generated time series decays to fast if a too short memory is chosen; iv) the required number

of coefficients and thus, the efficiency of the algorithm, increases inverse proportionally to

the sampling interval and proportionally to the memory; i.e. it holds p =M/τ .

It was shown that the discretization error can be significantly decreased by the use of the

centered GL discretization. The sensitivity analysis revealed that the accuracy of the ap-

proximation is almost independent from the chosen sampling interval leading to a significant

reduction of the discretization error, to be precise by about about 55 [%] for small sampling

intervals and about 80 [%] for long sampling intervals of τ ≥ 0.1. Furthermore, due to the

inverse proportional dependence of the number of coefficients on the sampling interval, a

significant improvement of the efficiency is archived. Based on these properties, an efficient

procedure for selecting the optimal number of model coefficients is developed.

Finally, a modified form of the H-FSM decomposition is proposed which makes the method
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applicable for the modeling of long memory processes with unbounded variance. The mod-

ification is needed as the PSD function of long memory processes exhibits a characteristic

pole at zero frequency and thus causes the classical H-FSM to diverge. It must be stressed,

that the applicability to both, short and long memory processes, makes the method unique

among the classical digital filter schemes.
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6 Structural Parameter Identification by

Kalman Filter Approaches

Many experimental modal identification methods for output-only measurements are available

if the load process can be modeled as a stochastic white noise process: i) The peak picking

method [Bendat and Piersol 1993, p. 196-203] in which the eigenfrequencies of the system

are determined from the resonant peaks of the averaged normalized power spectral densities

(ANPSDs) of the system response, is widely used in civil engineering due to its simplicity

and computational efficiency. In case of a broad-band excitation, well separated modes and

low damping, the method provides reliable estimates of the eigenfrequencies [Gentile and

Saisi 2007]. ii) The stochastic subspace identification method [Peeters et al 1995; De Roeck

et al 2000] belongs to the most advanced time-domain methods which identifies the system

matrices of a stochastic state space model from which the modal parameters can be extracted

using numerical techniques such as singular value decomposition (SVD) or QR factorization.

The unknown input is introduced as zero-mean white process noise in the system equation.

Hence, if the input contains some dominant frequencies, they cannot be distinguished from

the eigenvalues of the system matrices used for the parameter identification [Ren and Zong

2004]. iii) The natural excitation technique (NExT) is based on the fact that the theoretical

cross-correlation function between two response output channels from an ambient excited

structure has the same analytical form as the free vibration response of the structure [James

et al 1993]. For completeness’ sake, in the annexe D.1 a conceptional description and discus-

sion of the above mentioned time-domain identification methods is given.

In the present work the focus lies on the parameter identification of structures subjected to

correlated loads with known PSD functions, that is where the white noise assumption is no

longer appropriate and thus the above cited time-domain methods are not applicable. In

chapter 7 a new output-only identification algorithm is proposed which is capable to esti-

mate simultaneously the systems parameters and the unmeasured system’s excitation. This

method can be understood as a modification of the classical white noise Kalman filter for

arbitrarily correlated loads. Thus, this chapter reviews the classical Kalman filter theory as

well as its extension to parameter identification problems.
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This chapter starts with a conceptual description of the Kalman filter in order to clarify

the filter problem. After summarizing the model assumption and defining the state space

representation of the physical model, the filter equations are derived based on a probabilistic

approach also known as Bayesian modeling. Then the nonlinear filter problem of adaptive

parameter identification is discussed leading to the extended Kalman filter (EKF), which

is one of the most widely used nonlinear estimation techniques. Finally, a weighted global

iteration scheme is introduced into the EKF algorithm which allows evaluating the filter

convergence by means of an objective function. The method, denoted as weighted EKF

(W-EKF) is applied for the identification of the stiffness and damping parameters of a three

story shear building excited by a white noise process including a sensitivity analysis of the

filter performance on the chosen initialization.

6.1 Kalman filter

Filtering usually refers to amplifying signals in a specified frequency range and suppress-

ing those frequency components outside that range of interest. In the early 1940s Norbert

Wiener and Andrei N. Kolmogorov investigated a different filter problem, namely the sep-

aration of the noise from the signal if their spectra are significantly overlapping and thus a

separation of signal and noise is difficult. They solved the problem independently from each

other leading to the Wiener filter [Wiener 1949] (originally published in 1942 as a classified

document) formulated in the frequency domain and its time-domain counterpart proposed

by Kolmogorov in [Kolmogorov 1941]. They belong to the class of linear-minimum-mean-

square error (MMSE) filters providing a best separation of signal and noise in the minimum

mean-square error sense. The Wiener filter is based on the assumption that both, signal and

noise, are random processes of infinite length with known spectral characteristics. In order

to ensure the existence of the needed auto- and cross-correlation functions, the method is

applicable under the constraints of linearity, time-invariance and stationarity of the signals,

which is of course a significant restriction [Brown and Hwang 1997, p. 159-160].

In 1960, Rudolf Emil Kálmán [Kálmán 1960] provided an alternative approach to the same

problem using state-space formulations which allow to loosen some of the restrictions of

the Wiener filter. Indeed, it can be shown, that the Kalman filter applied to a stationary

process arising from a linear time-invariant system over an infinite time horizon approaches

the causal Wiener filter. However, its implementation in the time-domain allows consider-

ing time-variant linear systems, non-stationary noises as well as a finite observation record

length [Maybeck 1979, p. 273]. By removing the requirement of stationarity of the Wiener
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filter, the Kalman’s sequential solution to the time-varying linear filtering problem made a

significant contribution to the field of linear filtering. A historical retrospect of the early

events that resulted in the discovery of the Kalman filter, its role in the Apollo mission and

the events in the following years and its extension for nonlinear estimation problems can be

found in [McGee and Schmidt 1985].

The Kalman filter can be regarded as an optimal recursive data processing tool which pro-

vides a best estimate of the states of a physical, dynamic model which is indirectly observed

through noisy measurements. The states of the system is a set of dynamic variables such as

position, velocities, accelerations orientation, etc. describing the physical states of the sys-

tem. The dynamic system is often assumed to be affected by so-called process noise which,

in general, does not imply that the system has a stochastic nature, but the stochasticity is

only used for representing uncertainties in the model or inputs. Similarly, the noise in the

measurement can be understood as measurement inaccuracies. The word optimal implies

that the Kalman filter provides an estimate of the desired variables in such a manner that

the error is minimized statistically by combining i) prior knowledge about the system and

measuring device dynamics, ii) statistical information about both, the measurement errors

and the process noise and iii) any available information about initial values of the variables

of interest. Another important feature of the Kalman filter is that it works recursively, which

allows a simple implementation of the algorithm but, above all, avoids the storage and re-

processing of all previous data once a new measurement have been taken.

Figure 6.1 illustrates a typical situation where the Kalman filter can be applied advanta-

geously: A dynamic system is driven by some known inputs (controls), and its outputs are

measured. However, the states of the system cannot be observed directly and thus a tool is

needed which allows inferring these states of interest from the available information of its

inputs and outputs. This is not a trivial task and difficulties arise from the fact that the

actual inputs as well as the relationship between the measured quantities and the various

state variables of the system are just known with some degree of uncertainty. Consequently,

in general, the modeled physical system and controls differ from the actual system and its

inputs. Additionally to these system errors, measurement errors due to the corruption of the

measurement data by noise, bias and/or device inaccuracies must be considered in order to

extract the required information from the noisy data.

In a probabilistic approach (see 6.1.2) the uncertain parameters of the system and the mea-

surements are modeled as random variables characterized by their probability density func-

tion (PDF). Starting from a prior density function including all available information about

the parameters, the density function of the variables of interest is estimated at each time

step conditional on the actual data coming form the measurement device. The uncertainty

in the estimate is directly related to the width of the conditional PDF, that is, if the uncer-
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Figure 6.1: Application of the Kalman filter [Maybeck 1979, p. 5]

tainties are low, the probability weight is concentrated in a narrow range of values leading

to a peaked PDF while in the converse case the probability weight is spread over a wider

range of values. The choice of the optimal value is depending on the functional form of

the PDF, where appropriate and widely used measures are for instance the mean value, the

mode corresponding to the maximum of the PDF, or the median of the PDF describing the

value with 50 % exceeding probability.

The Kalman filter algorithm is based on the assumptions that the physical system is lin-

ear and that the system and measurement noises can be modeled as uncorrelated Gaussian

white noise processes. Under these constraints, it can be shown that the conditional PDF

characterizing the state estimate follows a normal distribution. This is an important result

because mean, mode, median or any other reasonable choice of the optimal estimate coincide

in the Gaussian case and thus the optimization problem has an unique solution. Indeed, if

the condition of linearity, Gaussianity and whiteness are met, among all linear filters, the

Kalman filter provides the best possible state estimate [Maybeck 1979, p. 3-7].

6.1.1 Model assumptions

The following derivations are based on the information taken from [Brown and Hwang 1997,

Ch. 5.5], [Simon 2006, Ch. 5.0-5.1] and [Reid 2003, Part 2]. A detailed discussion of linear

stochastic system models driven by white Gaussian noises and the application of Kalman fil-

ter to such models can be found in [Maybeck 1979]. For further reading about compensation
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of linear model inadequacies, adaptive estimation based upon linear models with uncertain

parameters, nonlinear stochastic system models and estimation algorithms, the second vol-

ume [Maybeck 1982] is recommended. [Lewis et al 2008] gives an introduction to stochastic

control theory including a extensive discussion of the discrete and continuous Kalman filter

and reflects recent developments in estimation theory and design techniques as well as the

problem of filter robustness.

The Kalman filter is based on a linear state space model consisting of two equations, that is

the system equation

xk+1 = Akxk +Bkuk +Gkwk (6.1a)

representing the nth order dynamics of the physical model and the observation or measure-

ment equation

zk = Ckxk + vk (6.1b)

where Ak ∈ Rn×n, Bk ∈ Rn×u, Gk ∈ Rn×l and Ck ∈ Rm×n are the transfer matrices, uk is

a deterministic control and wk ∈ Ru and vk ∈ Rm are samples of uncorrelated stationary

zero-mean white noise processes. The transfer matrix Ak relates the actual state xk to the

state at the next time step k + 1. The vector of controls uk collects the known inputs and is

related to the state by the transfer matrix Bk. The matrix Ck describes the linear relation

between the m-dimensional vector of observations zk and the unobserved state vector xk.

Similarly, the process noise wk ∈ Rl is related to the state by the matrix Gk.

The KF is based on a Gaussian noise model, i.e. the random measurement errors vk ∈ Rm, e.g.

due to sensor inaccuracy, as well as the process noise wk, resulting from model uncertainties

or unmeasured disturbances, are modeled as independent, zero mean Gaussian white noises,

characterized by the covariance matrices

E[wkw
T
i ] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Qk, i = k

0, i ≠ k
(6.2a)

E[vkv
T
i ] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Rk, i = k

0, i ≠ k
(6.2b)

E[wkv
T
i ] = 0, for all k and i (6.2c)

The aim of the KF is to estimate the state vector xk based on the knowledge of the system

dynamics and the available noisy measurement data zk. The algorithm is characterized by

an iterative prediction-correction structure as shown in Fig. 6.2.
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Optimal state estimate x̂k∣k, Σxx,k∣k

Time Update (Prediction)

1.) Calculate the prior state estimate and error covariance

x̂k+1∣k = Akx̂k∣k +Bkuk (6.3a)

Σxx,k+1∣k = AkΣxx,k∣kA
T
k +BkΣuu,kB

T
k +GkQkG

T
k (6.3b)

Measurement update - Innovation

uk

2.) Calculate the innovation

dk+1 = zk+1 −Ckx̂k+1∣k (6.4a)

3.) Calculated the Kalman gain

Kk = Σxx,k+1∣kC
T
k (Rk +CkΣxx,k+1∣kC

T
k )

−1 (6.4b)

zk+1

Measurement update - Correction Step

4.) Calculate the posterior estimate and error covariance

x̂k+1∣k+1 = x̂k+1∣k +Kk+1dk+1 (6.5a)

Σxx,k+1∣k+1 = Σxx,k+1∣k −Kk+1CkΣxx,k+1∣k (6.5b)

Figure 6.2: Kalman filter algorithm

In the following the Kalman filter equations are derived in a probabilistic framework, also

known as Bayesian analysis, instead of the commonly used least square approach which

is summarized for completeness’ sake in the annexe C.1.1. The Bayesian approach can be

sought of being the most general estimation methods which includes e.g. maximum likelihood,

weighted least square, least square and also the Kalman filter as special cases [Isermann

1988a, p. 19]. Due to its generalized form it gives a better understanding of both, the

assumptions made in the derivation of the Kalman filter as well as its restrictions.

6.1.2 Bayesian approach to the Kalman filter

Bayesian filtering is a probabilistic approach of the filter problem where the states of the

physical model and the measured outcomes are treated as random variables. The assigned

probability distribution functions quantify both, the model uncertainties as well as the phys-

ical randomness. That is, the probabilistic modeling does not necessarily imply that the
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Figure 6.3: Bayesian dynamic network: Each slice characterizes the state of the system at a certain time
step; nodes represent random variables, lack of links represent conditional independencies

physical model or parameters are truly random, but rather randomness is a mathematical

tool for modeling the uncertainty in a dynamic phenomenon [Särkkä 2012].

The Bayesian model consists out of a probabilistic prior model p(φ) which represents all in-

formation on the parameter vector φ characterizing the system and the measurement model

p(z∣φ), also known as likelihood function, determining the stochastic mapping from the

parameter to the measurements. The Bayesian inference provides then the probability dis-

tribution of the parameters, conditional on the observed measurements applying the so-called

Bayesian rule given by

posterior
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
p(φ∣z) =

likelihood
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
p(z∣φ)

prior
¬
p(φ)

∫
∞

−∞
p(z∣φ)p(φ)dφ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
normalization

=
p(z∣φ)p(φ)

p(z)
(6.6)

where the conditional posterior distribution p(φ∣z) represents the state of knowledge about

the parameters to be estimated when all available information from the measurements and

the model are combined.

Ho and Lee [Ho and Kálmán 1966] were among the first authors who discussed iterative

Bayesian filtering and discovered that the Kalman filter can be easily derived in a Bayesian

framework. In a Bayesian approach, the Kalman filter can be interpreted as recursive

Bayesian estimator of the conditional PDF of the actual system state xk given the measure-

ment data Zk = z1,z2, . . . ,zk and the inputs Uk = u1,u2, . . . ,uk, denoted as p (xk, ∣Zk,Uk).

Using the incoming measurements and the observation model describing the physical rela-

tionship between the states to be estimated and the measurements, the recursive Bayesian

estimator determines the unknown PDF recursively in time while the standard Kalman filter

calculates recursively the true values of observations. In both cases the underlying dynamic

system model can be described by a dynamic Bayesian network as shown in Fig. 6.3 which
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represents graphically the dependency structure between variables of a multivariate proba-

bility distribution. Each slice characterizes the state of the system at a certain time step

where the node corresponds to a random variables and the absence of a link between two

variables indicates their conditional independence [Roweis and Ghahramani 1999]. The net-

work shown in Fig. 6.3 is homogeneous, i.e. the slices are all identical, and Markovian, that

is there are just links from one slice to the next one. A Markovian model is characterized by

the following two properties [Särkkä 2012, p. 32]:

a) Markov property of states: The states form a Markov chain, that is the state xk+1

(and actually the whole future xk+2, xk+3, . . .) is independent of everything that happened

in the past given the present state xk and the input uk, i.e.

p(xk+1∣Xk,Zk,Uk) = p(xk+1∣xk,uk) (6.7a)

where Xk−1 = x1,x2, . . . ,xk−1, Uk−1 = u1,u2, . . . ,uk−1 and Zk−1 = z1,z2, . . . ,zk−1. Con-

versely, also the past is independent of the future given the present

p(xk−1,uk−1∣Xk∶T ,Zk∶T ,Uk∶T−1) = p(xk−1,uk−1∣xk) (6.7b)

where Xk∶T = xk,xk+1, . . . ,xT , Uk∶T−1 = uk,uk+1, . . . ,uT−1 and Zk∶T = zk,zk+1, . . . ,zT .

b) Conditional independence of measurements: The current measurement zk is con-

ditionally independent of the measurement and state history given the actual state xk,

i.e.

p(zk∣Xk,Zk−1,Uk−1) = p(zk∣xk) (6.8)

These properties lead to a significant simplification of the dependency structure and are

the core elements for the derivation of a recursive Bayesian filter as will be shown in the

following.

6.1.2.1 Recursive Bayesian filtering

The Bayesian estimator calculates the PDF of the posterior state at time k from the PDF

of the prior estimate and the likelihood applying the Bayes’ rule [Du Plessis 1997]

p(xk+1∣Zk+1,Uk) =
p(zk+1∣xk+1)p(xk+1∣Zk,Uk)

p(zk+1∣Zk,Uk)
(6.9)
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Similar to the Kalman filter the recursive Bayesian estimation is based on a prediction step

prior to the observation and a correction step after obtaining the measurement data using

the measurement likelihood. The underlying probabilistic state space model

p(xk+1∣xk,uk) ∼ N(Akxk +Bkuk, GkQkG
T
k ) (6.10a)

p(zk∣xk) ∼ N(Ckxk, Rk) (6.10b)

can be derived from the assumed mathematical description of the model (6.1) assuming

Gaussian noise statistics (6.2) and applying standard rules of linear transformation of random

variables.

Starting at time k the PDF of the state xk is given by the posterior conditional distribution

known from the previous time step

p(xk∣Zk,Uk) ∼ N(x̂k∣k, Σxx,k∣k) (6.11)

which is assumed to be Gaussian with conditional expectation x̂k∣k and error covariance

matrix Σxx,k∣k.

In the prediction step first the joint density of xk+1,xk conditional on the input and the

observation up to time k is calculated using the PDF of the prediction p(xk+1∣xk,uk) resulting

from the probabilistic system model (6.1a) and the posterior distribution p(xk∣Zk,Uk) known

from the previous time step

p(xk+1,xk∣Zk,Uk) = p(xk+1∣xk,uk)p(xk∣Zk,Uk−1) (6.12a)

The prior distribution is obtained by marginalization, i.e. integration over xk

p(xk+1∣Zk,Uk) = ∫

∞

−∞

p(xk+1,xk∣Zk,Uk)dxk

p(xk+1∣Zk,Uk) ∼ N(x̂k+1∣k, Σxx,k+1∣k) (6.12b)

where x̂k+1∣k, Σxx,k+1∣k denote the expectation and the covariance of the prior state estimate

given in Eq. (6.3).

In the correction step the likelihood p(zk+1∣xk+1) incorporates the new measurement into the

prior PDF of the state estimate. It can be interpreted as the likeliest observation zk+1 for

the given prior state estimate x̂k+1∣k. Once the new measurement zk+1 have been obtained,

the residual dk+1

dk+1∣k = zk+1 − ẑk+1 = zk+1 −Ckx̂k+1∣k (6.13a)
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between the actual measurement zk+1 and the predicted measurement Ckx̂k+1∣k is calculated.

As the prior estimate is known form the previous time step, observing the error dk+1∣k and

observing zk+1 are equally likely [Meinhold and Singpurwalla 1983]. Thus, using the obser-

vational equation (6.1b) the likelihood is given by

p(zk+1∣xk+1) ∼ N(Ckx̂k+1∣k, Rk) (6.13b)

In order to obtain the posterior distribution the normalization factor p(zk+1∣Zk,Uk) is

computed using the prior PDF of the state estimate (6.12b) and the likelihood (6.13b) by

marginalization of

p(zk+1,xk+1∣Zk,Uk) = p(zk+1∣xk+1)p(xk+1∣Zk,Uk) (6.14a)

with respect to xk+1, yielding

p(zk+1∣Zk,Uk) = ∫

∞

−∞

p(zk+1,xk+1∣Zk,Uk)dxk+1

p(zk+1∣Zk,Uk) ∼ N(Akx̂k+1∣k, AkΣxx,k+1∣kA
T
k +Qk+1) (6.14b)

Finally, the posterior density is computed by introducing the obtained PDFs (6.12b), (6.13b),

(6.14b) into (6.9) and applying the Bayes’ rule, leading to

p(xk+1∣Zk+1,Uk) ∼ N(x̂k+1∣k+1, Σxx,k+1∣k+1) (6.15a)

In the general case, the most probable estimate would be the mode of the posterior distribu-

tion, the so-called maximum a-posteriori estimate (MAP), which is defined by the condition

[Chen 2003]

∂p(xk+1∣Zk+1,Uk)

∂xk+1

∣
xk+1=x̂

MAP
k+1

= 0

and the associated error covariance follows from

ΣMAP
k+1 = E [(x̃k+1 − x̂MAP

k+1 )(x̃k+1 − x̂MAP
k+1 )T ] (6.15b)

In the Gaussian case, the mode of the posterior distribution and error covariance x̂MAP
k+1 ,

ΣMAP
k+1 are readily defined by the mean value and covariance x̂k+1∣k+1, Σxx,k+1∣k+1 of the pos-

terior distribution p(xk+1∣Zk+1,Uk), i.e.

x̂MAP
k+1 = x̂k+1∣k+1
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x̂MAP
k+1 = x̂k+1∣k +Kk+1 (zk+1 −Ckx̂k+1∣k) = x̂k+1∣k +Kk+1dk+1∣k

ΣMAP
k+1 = Σxx,k+1∣k+1

= Σxx,k+1∣k −Kk+1CkΣxx,k+1∣k (6.15c)

where

Kk+1 = Σxx,k+1∣kC
T
k (Rk +CkΣxx,k+1∣kC

T
k )

−1 (6.15d)

denotes the Kalman gain matrix. That is, in the correction step, the residual dk+1∣k is

weighted by the Kalman gain matrix and used to correct the prior state estimate x̂k+1∣k.

Thus, the residual is often denoted as innovation, as the difference can be interpreted as

the part of the measurement, which contains new information about the state. It can be

shown that under optimal conditions, the innovation is a zero mean Gaussian process with

covariance matrix Σdd = CkΣxx,k+1∣kCk + RT
k and thus provides an important measure of

the filter performance which can be used to check the consistency of the filter. E.g. if the

innovation is colored, of nonzero-mean, or if the covariance deviates from its nominal value,

it may indicate mis-modeling of the dynamic and/or measurement model, failure of sensors,

and outliers in the data [Simon 2006, p. 298ff]. A review on different monitoring schemes

and statistical tests of the innovation sequence as well as the relevant literature can be found

in [Salzmann 1988, Ch. 5]. In section 6.1.3.3, an objective function which is based on the

posterior residual dk+1∣k+1 between the obtained posterior estimate and the measurement is

introduced in order to detect the divergence of the filter.

A comparison with the result obtained by the classical Kalman filter given in Eq. (6.5) shows,

that the estimate of the recursive Bayesian filter and the Kalman filter coincide. However,

it must be highlighted that in the Bayesian approach it was neither demanded that the

estimator is unbiased, i.e. E [x̂k∣Zk] = x̃k, as in Eq. (C.5b) of the classical derivation, nor

assumed that there is a linear relation between the estimate and the measurements in the

form Eq. (C.4). Instead, this came out naturally as a consequence of the Gaussian assumption

and the choice of the conditional mean as optimal estimate. Consequently, one can conclude,

that in the Gaussian case, the Kalman filter is not just the best among all available linear

filters, but, in fact, it is the best within the class of all filters, linear or nonlinear [Brown and

Hwang 1997, p. 231].

If the Gaussian assumption of the process and measurement noise is violated and thus the

assumed linear form of the optimal estimator in Eq. (C.4) is no longer justified, the estimated

mean value and error covariance x̂k+1∣k+1, Σxx,k+1∣k+1 provided by the Kalman filter, do not

coincide with the conditional mean value and error covariance x̂MAP
k+1 , ΣMAP

k+1 of the posterior

PDF. As a result, the Kalman estimate is biased and does not provide a minimum variance
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estimate and thus, there might be nonlinear filters which perform better. However, among

the linear filters it is still the best linear minimum variance estimator.

6.1.3 Nonlinear state estimation

So far, it was assumed that the system dynamics and measurement relations are adequately

described by a linear model in order to develop optimal estimators. However, in reality,

linear systems either are approximations of the nonlinear system’s behavior and thus just

valid over a certain range and under predefined conditions, or they result from the lack of

knowledge about the system being modeled. In order to solve the nonlinear filter problem,

various nonlinear estimation techniques were developed during the last decades which include

particle filters, sigma-point filters, sequential Monte Carlo methods and unscented transform

methods [Grewal and Andrews 2008] as well as nonlinear extensions of the classical Kalman

filter, e.g. the ensemble Kalman filter, the unscented Kalman filter or the extended Kalman

filter (EKF). Among them, the EKF is certainly the most widely used nonlinear state esti-

mation technique [Simon 2006, p. 396].

The nonlinear estimation problem which will be discussed in the following, results from in-

complete knowledge about the system model, that is model parameters such as elements of

the state or force transition matrices such as stiffness or damping coefficient, the inputs, or

the covariances of the noise processes are not completely known [Grewal and Andrews 2008,

p. 333]. Typically, prior information about these parameters are available, but the variabil-

ity of the material properties or simplifications in the material and/or structural modeling

lead to uncertainties, so that just a range of physically admissible values can be given. In

civil engineering typical examples for such uncertainties are related to the scattering of the

Young’s modulus within the structure, changes due to temperature or damage, the improper

modeling of the composite material properties as the bond between steel and concrete or

result from the unknown stiffness of the beam-column connections and disregarded friction

effects, respectively.

The simultaneous estimation of the system’s states and a number of uncertain parameters in

the dynamics or measurement model is often termed combined state estimation and system

identification or also known as adaptive estimation. If the set of unknown parameters is

constant or slowly time-varying, this can be achieved by state space augmentation, that is

by treating the unknown parameters as additional state variables. It leads to a nonlinear

estimation problem as both, the states as well as the system matrices depend on the pa-

rameters to be estimated. This may have first been suggested by [Kopp and Orford 1963]

who applied the newly developed Kalman filter to solve the adaptive control problem [Simon
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2006, p. 450], that is the problem of controlling a process (here it was a aerospace vehicle)

where imperfect or limited information about the system’s parameters are available or are

changing in time.

In the following the nonlinear estimation problem will be solved using the extended Kalman

filter which is certainly the most widely used nonlinear state estimation technique that has

been applied in the past decades.

6.1.3.1 Derivation of the extended Kalman filter for adaptive estimation

Starting point is again a linear state space model as defined in Eq. (6.1), but with the

difference that the system matrices Ak,Bk and Gk and measurement matrix Ck depend in

a nonlinear way on an unknown parameter vector pk ∈ Rp, i.e.

xk+1 = Ak(pk)xk +Bk(pk)uk +Gk(pk)wk (6.16a)

zk = Ck(pk)xk + vk (6.16b)

If the set of unknown parameters is constant or slowly time-varying, then its evolution can

be model by a random walk process, i.e.

pk+1 = pk +wp,k (6.16c)

where wp,k ∈ Rp is a small artificial additive Gaussian white noise term with zero mean and

covariance matrix Qp,k. In order to estimate the parameters and the states of the dynamic

system simultaneously, the unknown parameters are included in the state vector

x′k =

⎡
⎢
⎢
⎢
⎢
⎣

xk

pk

⎤
⎥
⎥
⎥
⎥
⎦

(6.17a)

and then the system equation is augmented by the parameter update equation (6.16c),

yielding

⎡
⎢
⎢
⎢
⎢
⎣

xk+1

pk+1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Ak (pk) 0n×p

0p×n Ip×p

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A′

k
(pk)

⎡
⎢
⎢
⎢
⎢
⎣

xk

pk

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

Bk (pk)

0p×u

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B′

k
(pk)

uk +

⎡
⎢
⎢
⎢
⎢
⎣

Gk (pk) 0n×p

0p×u Ip×p

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G′

k
(pk)

⎡
⎢
⎢
⎢
⎢
⎣

wk

wp,k

⎤
⎥
⎥
⎥
⎥
⎦

(6.17b)

where Ip×p denotes the p×p identity matrix, 0a×b an a×b matrix of zeros and A′

k(pk), B′

k(pk),

G′

k(pk) the extended state transition matrices.
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Assuming that the unknown parameters are not directly observable, the measurement equa-

tion can be written as

zk = [Ck(pk) 0m×p]

⎡
⎢
⎢
⎢
⎢
⎣

xk

pk

⎤
⎥
⎥
⎥
⎥
⎦

+ vk (6.17c)

Eq. (6.17) can be rewritten in compact form as

x′k+1 = f(x
′

k,uk,w
′

k) (6.18a)

zk = h(x
′

k) + vk (6.18b)

where w′

k = [wk,wp,k]
T is the augmented noise vector and where f(⋅) and h(⋅) denote the

vectorial nonlinear system and measurement functions, respectively, depending on the ex-

tended state vector x′k to be identified. Thus, the identification problem can now be solved

by any nonlinear filter which is run on the extended model in order to obtain an estimate of

the augmented state vector, i.e. of the system’s states as well as of the unknown parameters

[Simon 2006, p. 422-423].

In case of weak nonlinearities the identification problem is solved using the EKF which lin-

earizes about the current mean and covariance by applying a first order Taylor expansion of

the Eqs. (6.18) near the current state x′k = x̂′k estimate and w′

k = ŵ′

k. Assuming a zero-mean

process noise and thus ŵ′

k = 0, the linearized system equation is given by

x′k+1 ≈ f(x̂
′

k,ûk,0) +A′

k,L(x
′

k − x̂′k) +B′

k,L(uk − ûk) +G′

k,Lw′

k (6.19a)

where the extended and linearized matrices A′

k,L, B′

k,L, G′

k,L are given by the partial deriva-

tive matrices

A′

k,L =
∂f

∂x′k
∣
x′
k
=x̂′
k

=

⎡
⎢
⎢
⎢
⎢
⎣

Ak(pk)
∂xk
∂pk

∣
pk=p̂k

0p×n Ip×p

⎤
⎥
⎥
⎥
⎥
⎦

; B′

k,L =
∂f

∂uk
∣
uk=ûk

=

⎡
⎢
⎢
⎢
⎢
⎣

Bk(pk)

0p×u

⎤
⎥
⎥
⎥
⎥
⎦

G′

k,L =
∂f

∂w′

k

∣
w′

k
=0

=

⎡
⎢
⎢
⎢
⎢
⎣

Gk(pk)
∂xk
∂wp,k

∣
wp,k=0

0p×n Ip×p

⎤
⎥
⎥
⎥
⎥
⎦

(6.19b)

It must be noted that the non-diagonal elements of the system matrices A′

k,L, B′

k,L, G′

k,L

relate the parameters pk to the system states and thus describe how a change in the pa-

rameters effects the dynamics of the system. Consequently, an update of the Kalman state

estimates leads to a simultaneous correction of the parameter estimates.

Taking the expectation of Eq. (6.19a) conditional on the measurements up to time k, yields
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the approximated prior state estimate in the form

E[x′k+1∣Zk] ≈ f(x̂
′

k,ûk,0) +A′

k,LE[ex,k∣Zk] +B′

k,LE[eu,k∣Zk]

x̂′k+1∣k ≈ f(x̂
′

k,ûk,0) (6.20a)

where ex,k = x′k − x̂′
k∣k

and eu,k = u′

k − ûk denote the discrepancies between the true and

estimated values. The last equality is based on the assumption that the Kalman estimate

of the previous time step is unbiased so that the conditional expectation of the estimation

errors vanish. Using Eq. (6.19), the prior prediction error and resulting prior error covariance

matrix can be written as

ex,k+1∣k = x′k+1 − x̂′k+1∣k ≈ A′

k,L(x
′

k − x̂′k) +B′

k,L(uk − ûk) +G′

k,Lw′

k (6.20b)

Σ′

xx,k+1∣k = A′

k,LΣ′

xx,k∣kA
′T
k,L +B′

k,LΣuu,kB
′T
k,L +G′

k,LQ′

kG
′T
k,L (6.20c)

The prediction is then used to linearize the measurement equation with respect to xk+1 =

x̂k+1∣k and vk+1 = 0 in order to keep the zero-mean of the measurement noise. The linearized

measurement equation can then be written as

zk+1 ≈ h(x̂
′

k+1∣k) +C′

k,L(x
′

k+1 − x̂′k+1∣k) + vk (6.21a)

where the extended measurement matrix is given by the partial derivative matrix

C′

k,L =
∂h

∂x′k+1

∣
x′
k+1

=x̂′
k+1∣k

= [Ck
∂h

∂pk+1
∣
pk+1=p̂k+1∣k

] (6.21b)

For the correction step, the innovation dk+1∣k = zk+1 − h(x̂′k+1∣k
) between the actual measure-

ment and the predicted measurement must be calculated. Based on the measurement model,

the likeliest measurement results from the conditional expectation and is of form

E[zk+1∣Zk+1∣k] ≈ h(x̂
′

k+1∣k) +C′

k,LE[ex,k∣Zk+1]

ẑk+1 ≈ h(x̂
′

k+1∣k) (6.22)

As in the linear case, the optimal estimate results from a linear combination of the prior

estimate and the measured response, and is given by

x̂′k+1∣k+1 = x̂′k+1∣k +Kk+1 (zk+1 − h(x̂
′

k+1∣k)) (6.26a)
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Optimal state estimate
x̂′k∣k = [x̂Tk∣k, p̂

T
k∣k]

T , Σ′

xx,k∣k

Time Update (Prediction)

1.) Calculate the prior state estimate

x̂′k+1∣k = A′

k(p̂k)x̂
′

k∣k +B′

k(p̂k)u
′

k (6.23a)

2.) Calculate linearized extended state transition matrices

A′

k,L = ∂f

∂x′k
∣
x′
k
=x̂′
k

; B′

k,L = ∂f

∂u′k
∣
u′
k
=û′

k

; G′

k,L = ∂f

∂w′

k

∣
w′

k
=0

(6.23b)

3.) Calculate the prior state covariance of the augmented state x̂′k+1∣k

Σxx,k+1∣k = A′

k,LΣ′

xx,k∣kA
′T
k,L +B′

k,LΣ′

uu,kB
′T
k,L +G′

k,LQ′

kG
′T
k,L (6.23c)

Measurement update - Innovation

uk

4.) Calculate linearized measurement transition matrix

C′

k,L = ∂h

∂x′k+1

∣
x′
k+1

=x̂′
k+1∣k

(6.24a)

5.) Calculate the innovation

dk+1 = zk+1 −C′

k,Lx̂′k+1∣k (6.24b)

6.) Calculated the Kalman gain

K′

k = Σ′

xx,k+1∣kC
′T
k,L(Rk +C′

k,LΣ′

xx,k+1∣kC
′T
k,L)

−1 (6.24c)

zk+1

Measurement update - Correction Step

7.) Calculate the posterior estimate and error covariance

x̂′k+1∣k+1 = x̂′k+1∣k +K′

k+1dk+1 (6.25a)

Σ′

xx,k+1∣k+1 = Σ′

xx,k+1∣k −K′

k+1C
′

k,LΣ′

xx,k+1∣k (6.25b)

Figure 6.4: Extended Kalman filter algorithm

The corresponding posterior error covariance

Σxx,k+1∣k+1 = Σ′

xx,k+1∣k −Kk+1C
′

k,LΣ′

xx,k+1∣k (6.26b)
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and the Kalman gain matrix

Kk+1 = Σ′

xx,k+1∣kC
′T
k,L(Rk +C′

k,LΣ′

xx,k+1∣kC
′T
k,L)

−1 (6.26c)

are calculated based on the linearized model following the steps summarized in Fig. 6.4.

Comparing the procedure with the linear KF algorithm depicted in Fig. 6.2, it is evident that

the general structure is kept, but that the linearizion with respect to the actual state estimate

requires the recalculation of the transition matrices at each iteration step. Furthermore, it

must be stressed, that in contrast to the linear problem the estimate given by the extended

Kalman filter is biased as in the nonlinear case the assumption

E[f(x̂k∣k)] = f (E[x̂k∣k]) (6.27)

is violated and thus the obtained estimate does not coincide with the mean value of the

posterior distribution. That is in the presence of nonlinearities, the approximates of posterior

distribution as Gaussian is not always justified and leads to poor results if the true posterior

distribution is for instance heavily tailed or multi-modal [Chen 2003].

Having derived the linearized model, the next step is the initialization of the filter equation

which will be discussed in the next section.

6.1.3.2 Initialization of the Kalman filter algorithm

Before the Kalman filter can be run on the linearized model, the prior error covariance Σxx,0

for k = 0 as well as the process and measurement noise covariances Qk and Rk, respectively,

for k ≥ 0 must be chosen. Rewriting Eq. (6.5) of the optimal state estimate for a single-

input-single-output system, i.e.

x̂k+1∣k+1 = x̂k+1∣k +Kk+1(zk+1 − x̂k+1∣k)

σ2
xx,k+1∣k+1 = σ

2
xx,k+1∣k −Kk+1σ

2
xx,k+1∣k (6.28)

where

Kk+1 =
σ2
xx,k+1∣k

Rk + σ2
xx,k+1∣k

with σ2
xx,k+1∣k = A

2
kσ

2
xx,k+1∣k +G

2
kQk

it becomes obvious that the update of the posterior state estimate x̂k+1∣k+1 and associated

error covariance σ2
xx,k+1∣k+1

strongly depends on the choice of these parameters. This depen-
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dency shall be investigated further by considering two limiting cases: First, assume that the

measurement noise Rk approaches zero. Pursuant to Eq. (6.28) the Kalman gain weights the

residual more heavily and in the limit, i.e. Kk+1 → 1, the optimal state estimate is given by

lim
Rk→0

x̂k+1∣k+1 = zk+1 (6.29a)

That is, the prior estimate x̂k+1∣k derived from the system model is completely ignored and

the new measurement denotes the optimal estimate. Secondly, assume that the measurement

noise Rk → ∞ or equivalently, the prior error covariance and the process noise vanish, i.e.

σ2
xx,k+1∣k

, Qk → 0, then in the limit, the Kalman gain approaches zero and Eq. (6.28) yields

lim
σ2
xx,k+1∣k

→0
x̂k+1∣k+1 = lim

Rk→∞
x̂k+1∣k+1 = x̂k+1∣k (6.29b)

This implies that little confidence is put in a very noisy measurement and in the limit would

be completely ignored [Maybeck 1979, p. 14-15].

Assume now the case, that the measurement noise covariance is time-invariant, i.e. Rk = R,

the process noise Qk = 0 and the initial error covariance σ2
xx,0 > 0. Then at each time

step the posterior error covariance σ2
xx,k+1∣k+1

in Eq. (6.28) decreases by Kk+1σ2
xx,k+1∣k+1

. If

σ2
xx,k+1∣k+1

→ 0, the filter will reach a steady solution where, pursuant to Eq. (6.29b), any

new measurement will be ignored. Similarly, in case that the process noise is time-invariant,

i.e. Qk = Q and Q > 0, the error covariance and thus the Kalman gain will decrease at each

time step until it converges to a constant value.

Throughout the thesis, the process noise models the unmeasured load process and thus its

variance is related to the intensity of the excitation. The measurement accuracy is in general

dependent on the measurement range of the used sensor. Thus, in the numerical examples

discussed in the following, the statistics of the measurement noise are assumed to be known

and time-invariant. From the above discussion it can be concluded, that a larger prior error

covariance makes the filter more sensitive to the incoming measurement and thus is favorable

in order to accelerate the filter convergence. This was also observed by [Hoshiya and Saito

1984] who proposed a weighted iterated extended Kalman filter, denoted as W-EKF, which

will be discussed in the following section.

6.1.3.3 The weighted extended Kalman filter algorithm (W-EKF)

[Hoshiya and Saito 1984] investigated the stability and convergence of the EKF with respect

to the initial conditions and introduced a weighted global iteration procedure into the Kalman
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Initialization
x0

0, Σ0
xx,0

Extended Kalman filter
using a measurement record

of length T (Fig. 6.4)

Posterior estimate
xjT , Σj

xx,T , θj

Initialization
for the next iteration loop

xj+1
0 = xjT

Σj+1
xx,0 = W ⋅ Σj

xx,T

xj0 = xjT or θjmin End
No Yes

Figure 6.5: W-EKF algorithm: In each iteration j, the EKF is run using a measurement record of length T .
The obtained state estimates xjT are used for the initialization of the next iteration loop. The
iteration is aborted either if the cost function θj is minimized or the estimates converge.

filter algorithm containing an objective function to estimate the stability. That is, while,

the iterative scheme improves the accuracy of the approach, especially if the first guess

of the parameters to be identified is poor, the calculation of the objective function allows

assessing the accuracy of the filter and avoids the divergence to erroneous identification

results [Kijewski and Kareem 2000]. In [Hoshiya and Saito 1984] the method is applied

successfully for the parameter identification of a linear multiple degree of freedom system

and a bilinear hysteretic system. In [Hoshiya and Maruyama 1987] the problem of a beam

excited by a moving load is discussed and the method is used for the identification of both,

the weight and velocity of the excitation as well as the parameters of the beam. In [Hoshiya

and Sutoh 1993] the method is coupled with the Finite Element Method and applied for the

parameter estimation of a non-homogeneous stochastic plane strain field.

The algorithm is illustrated in Fig. 6.5 and can be summarized as follows: First, the Kalman

filter is initialized choosing the initial state estimate and associated covariance matrix x1
0,

Σ1
xx,0 as well as defining the process noise covariance matrix Q0. The statistics of the

measurement noise R0 are assumed to be time-invariant and known. Then the EKF is run

using a finite measurement record of length T [s] until the estimated parameters converge.

They are used for the initialization of the next iteration loop, that is, setting x2
0 = x1

T ,

Σ2
xx,0 = W ⋅ Σ1

xx,T where W denotes a weighting factor. As shown by Eq. (6.29b), the

Kalman filter will reach a steady solution after a certain time as the belief in the model
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increases with decreasing error covariance. The weighting prevents the filter from ignoring

new measurement data and thus accelerates the convergence of the filter. [Hoshiya and Saito

1984] observed that a large initial covariance is favorable in order to accelerate the extended

Kalman filter’s convergence, but it also might affect the stability of the filter. Thus, an

objective function θj is suggested which is calculated at the end of each iteration loop j

along with the state estimate and error covariance. The iteration is repeated until the prior

estimate become essentially constant, that is xj+1
0 ≈ xjT or until the objective function θj is

minimized. The latter is given by

θj =
1

m

m

∑
i=1

N−1

∑
k=0

(dj
k+1∣k+1

)
2

(6.30a)

where N = T /ts denotes the number of sampling points of the measurement record, m is

the dimension of the measurement vector and dj
i,k+1∣k+1

describes the ith component of the

posterior residual

dj
k+1∣k+1

= zk+1 −Cx̂j
k+1∣k+1

(6.30b)

Here, it must be noted that, in contrast to the previous defined innovation process (compare

Eq. (6.13a)), the posterior estimate x̂k+1∣k+1 is used for the calculation of the residual in

order to obtain an estimate of the filter accuracy. The objective function gives the average

of all prediction square errors and thus θjmin indicates that the global error between each

observation and corresponding estimate becomes totally minimum [Hoshiya and Saito 1984].

[Hoshiya and Saito 1984] show that the choice of W influences mainly the rate of convergence

as well as the identification result. The optimal value is found by comparing the minimum

global values θjmin and the number of needed iterations for different choices of W .

6.1.4 Application to a three story shear building

In order to verify the method, the W-EKF algorithm is now used for the identification of

the stiffness and damping parameters characterizing the dynamic behavior of a three story

shear building excited at the top floor by a white noise process. Assuming that i) the total

mass of the structure is concentrated at the floor levels, ii) the columns are axially rigid and

the floor beams are infinitely rigid as compared to the columns, iii) the interstory stiffness is

distributed constantly over the stories, iv) the deflection of the structure is independent of

the axial forces in the columns and v) the structure can be modeled as lumped three degrees

of freedom (DOF) system, corresponding to the horizontal displacements at the floor levels
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as depicted in Fig. 6.6.

The system’s dynamics of the three story building subjected to a white noise excitation are

given by the second order stochastic differential equation

Mÿ(t) +Cẏ(t) +Ky(t) = Gw(t) (6.31a)

where M, K and C are the time-invariant mass, stiffness and damping matrices, respectively,

given by

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 0 0

0 m2 0

0 0 m3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.31b)

and where y(t), ẏ(t) and ÿ(t) denote the vectors of the horizontal displacements, velocities

and accelerations of the floor levels and w(t) is the zero mean Gaussian white noise process

describing the unmeasured load at the top level of the system. The state vectors and the

load transition matrix G are given by

y(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

y2(t)

y3(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ẏ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẏ1(t)

ẏ2(t)

ẏ3(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ÿ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ÿ1(t)

ÿ2(t)

ÿ3(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.31c)

Furthermore, the structural damping is assumed to be of Rayleigh type, a form of viscous

damping, which allows expressing the damping matrix as linear combination of the mass

and/or stiffness coefficients, i.e. it holds

C = aM + bK (6.32a)

The coefficients are real valued and determined by choosing the modal damping ratios Dj,

Dk (where Dj = cj/(2mjωj) = cj/ccrit) for two modes and solving the relation

a =
ωjωk(ωjDk − ωkDj)

ω2
j − ω

2
k

; b =
ωjDj − ωkDk

ω2
j − ω

2
k

(6.32b)

The damping in the remaining modes follows then immediately from Eq. (6.32a). Due to

the mass and stiffness proportionality, the Rayleigh model ensures that the eigenvalues of

the damped system remain real and allows the decoupling of the system equation by the

modeshapes of the undamped system.
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Figure 6.6: Three-story shear building [Petersen 2000, p. 676]

Thus, the classical modal analysis procedure can be used to analyze damped systems in a

similar manner. By pre- and postmultiplying the damping matrix by the jth modeshape,

and using the relation Dj = cj/(2mjωj), the corresponding damping ratio satisfies

Dj =
1

2ωj
a +

ωj
2
b (6.32c)

Assuming a uniform column whose ends are fixed against rotation, the theoretical stiffness

constant is given by

k = 2 ⋅
12EI

h3
(6.33)

where E, I, h denote the Young’s Modulus, the second moment of area and and length of the

column and where the factor two considers the fact, that there are two columns per story.

For the columns of the first story a HEB 320 profile and for the upper to levels a HEB 300

profile are chosen. This leads to the following model parameters

E = 21.000 [kN/cm2]

I1 = 30820 [cm4] (HEB 320); I2 = I3 = 25170 [cm4] (HEB 300)

h1 = h2 = h3 = 6 [m]

m1 = 30000 [kg]; m2 =m3 = 25000 [kg] (6.34a)
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damping estimates stiffness estimates

∣ĉi,0 − ci∣/ci ∣k̂i,0 − ki∣/ki

ĉ1,0 ĉ2,0 ĉ3,0 k̂1,0 k̂2,0 k̂3,0

37% 30% 37% 30% 20% 30%

Table 6.1: Prior relative estimation error used for the initialization of the Extended Kalman filter at k = 0

Using Eq. (6.32a) and Eq. (6.33) the stiffness and damping parameters of the ideal model

are given by

k̂1 = 7.191.333 [N/m]; k̂2 = k̂3 = 5.873.000 [N/m]

D̂1 = 0.03; D̂3 = 0.07 (i.e. â = 0.1775, b̂ = 0.0049)

ĉ1 = 40.736 [Ns/m]

ĉ2 = 28.919 [Ns/m]

ĉ3 = 33.357 [Ns/m] (6.34b)

They are used as prior estimates needed for the initialization of the EKF. The system’s

parameters of the structure differ from the assumed model parameters. They are set to

k1 = 0.7 k̂1 = 5.033.933 [N/m]

k2 = 0.8 k̂2 = 4.698.400 [N/m]

k3 = 0.7 k̂3 = 4.111.100 [N/m]

D1 = 0.03; D3 = 0.06 (i.e. a = 0.1886, b = 0.0047)

c1 = 29.656 [Ns/m]

c2 = 22.397 [Ns/m]

c3 = 24.313 [Ns/m] (6.34c)

leading to a prior relative estimation error of 20 %-30 % in case of the stiffness estimates

and of about 30 %-40 % in case of the damping estimates as summarized in Tab. 6.1. The

system is assumed to be excited at the top story level by a zero mean Gaussian white noise

process with standard deviation

σw = 2000 [N] (6.34d)

Defining the state vector as x(t) = [yT (t), ẏT (t)]T , the second order differential equation
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(6.31) can be easily written in state space form as

ẋ(t) = Acx(t) +Gcw(t) (6.35a)

where the system matrices are given by

Ac =

⎡
⎢
⎢
⎢
⎢
⎣

03×3 I3×3

−M−1K −M−1C

⎤
⎥
⎥
⎥
⎥
⎦

; Gc =

⎡
⎢
⎢
⎢
⎢
⎣

03×3

M−1G

⎤
⎥
⎥
⎥
⎥
⎦

(6.35b)

In order to apply the Kalman filter to the identification problem, the unknown parameters

p(t) = [k1, k2, k3, c1, c2, c3] are included in the state vector. If the parameters are time-

invariant, then they can be modeled as random walk process, which is expressed in the

continuous case as random bias plus noise [Maybeck 1982, p. 51]

ṗ(t) = wp(t) (6.36a)

wp(t) ∼ N(0,Qp,c) is a small artificial Gaussian white noise term that allows the Kalman

filter changing its estimate of p(t). Using the augmented state vector x′(t) = [xT (t),pT (t)]T ,

the resulting state space model is defined as

ẋ′(t) = A′

c(p)x′(t) +G′

cw
′(t) = f (x′(t),w′(t)) (6.36b)

where w′(t) = [wT (t),wT
p (t)]

T denote the augmented noise vector and where the extended

system matrices are given by

A′

c(p) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

06×6 I6×6 06×6

−M−1K −M−1C 06×6

06×6 06×6 06×6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G′

c =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03×1 03×6

M−1G 03×6

03×1 I6×6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.36c)

The state transition matrix Ac(pk) in the system equation depends nonlinearly on the un-

known parameters in the state vector. In order to apply the discrete Kalman filter the

system needs to be linearized as well as discretized. There are two alternative orders in

performing these operations, that is either to first linearize the model with respect to the

previously state estimate and then to discretize the resulting linear model, or, conversely,

to first discretize the model and then to linearize the discrete model around the previous

estimated state. The former procedure is denoted discretized linearization while the other is

also known as linearized discretization [Gustafsson and Isaksson 1996].

Here the former approach will be used as the discrete state transition matrix calculated by

the matrix exponential function Ad = eActs (compare Eqs. (4.26)), in general, cannot be de-
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rived in closed form. In contrast the linearization of the time continuous model in Eq. (6.36b)

can be derived analytically in many cases and thus the discretization can then be calculated

numerically when the filter is implemented (here MATLAB is used). That is, the discretized

linearization requires the following steps: i) Calculate analytically the linearized transition

matrices A′

c,L(p), G′

c,L(p) of the continuous state space model by the partial matrix differ-

entials given in the annexe (C.13-C.14) and implement the obtained functions in Matlab;

ii) At each time step, update these matrices by the new parameter estimates pk; iii) The

discretized and linearized transition and covariance matrix A′

d,L(pk), Q′

d(pk) is calculated

numerically at each time step by means of the matrix exponential operator following the

steps summarized in (4.26).

It is assumed that the displacements as well the velocities of all three story levels are mea-

sured. Thus, the observation transition matrix which relates the states to the measurements

consists of zeros and ones in order to collect the measured states from the state vector, i.e.

it is independent of the parameters to be estimated. The resulting augmented observation

model is given by

zk+1 = C′

dx
′

k + vk; where C′

d = [I6×6 06×6] , vk ∼ WN(0,Rd) (6.37)

Initialization of the W-EKF

In the following it is assumed that the statistics of the load process are known and the process

noise level corresponding to the variance of the load process is set to σw = 2000 [N] as defined

in (6.34d). Besides, the filter is initialized using the following parameterizations:

ŷ0 = [−0.02,0.03,0.01]T [m], σy,0 = 1 [m],

ˆ̇y0 = [−0.1,0.5,0.2]T [m/s], σẏ,0 =
√

5 [m/s]

p̂0 = [7.19 × 106, 5.87 × 106, 5.87 × 106, 0.03, 0.07] see 6.34b

σk,0 =
√

106 . . .
√

1011 [N/m] ;σc,0 =
√

106 . . .
√

1011 [Ns/m] ;

Rδij = 1, 10 and 100 [%] of MSi see Eq. (6.40a) (6.38)

The prior estimates of the displacement and velocity vector ŷ0, ˆ̇y0 are chosen in agreement

with the measurement data z0. The prior error covariance matrix has diagonal form, and is
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given by

Σxx,0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σyy,0 0

Σẏẏ,0

0 Σpp,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

Σyy,0 = σ
2
y,0I3×3; Σẏẏ,0 = σ

2
ẏ,0I3×3; and Σpp,0 =

⎡
⎢
⎢
⎢
⎢
⎣

σ2
k,0I3×3 0

0 σ2
c,0I3×3

⎤
⎥
⎥
⎥
⎥
⎦

(6.39)

The chosen variances σ2
y,0, σ2

ẏ,0, σ2
k,0, σ2

c,0 are given in Eq. (6.38). Furthermore, the mea-

surement error covariance matrix is assumed to be time-invariant, i.e. Rk = R. In order to

investigate the influence of the choice of the initial error covariance and measurement noise

matrix Σxx,0, R on the parameter identification result, different initializations are tested. To

be precise, the prior standard deviation of the parameter estimates σ2
k,0 [(N/m)], σ2

c,0 [N/s] is

varied between
√

1 × 106 . . .
√

1 × 1011 while the measurement noise covariance matrix is kept

constant.

In order to investigate the sensitivity of accuracy of the parameter identification on the mea-

surement noise intensity, three cases corresponding to 1, 10, and 100 [%] of the mean-square

of the undisturbed system response (i.e. R = 0) are considered. It is defined as

MSi =
1

N

N−1

∑
k=0

z̃2
i,k (6.40a)

where z̃i,k denotes the ith component of the undisturbed measurement vector z̃k = Cx̃k of

the true states x̃k. In all cases, the W-EKF is run iteratively using a measurement record

of T = 500 [s] length of the story velocities and displacements until the filter converges. As

described in section 6.1.3.3 At the begin of jth iteration, the W-EKF is initialized by the

previous state estimate and error covariance matrix xj−1
500 and Σj−1

xx,500 multiplied by a weight,

W , here set to 1000. In the following section the results of the sensitivity analysis will be

discussed.

Results of the sensitivity analysis

In Fig. 6.7, a sequence of the used noisy measurement data, the true, i.e. undisturbed dis-

placement y3 (Top) and velocity ẏ3 (Bottom) as well as the estimation results are depicted

exemplarily for the top floor of the three story shear building taking into account a mea-
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Figure 6.7: Noisy measurement (grey), undisturbed (solid) and estimated displacement (dotted) y3 [m]
(Top) and velocity ẏ3 in [m/s] (Bottom) of the top floor of the three story shear building using
the W-EKF for 100 % measurement noise and σk,0 [N/m], σc,0 [Ns/m] of order

√
108

surement noise level of 100 % of the mean-square of the undisturbed system response and

an initial error covariance σk,0 [N/m] and σc,0 [Ns/m] of order
√

1 × 108 . The quality of the

estimation of the observable states can be used as visual indicator of the accuracy of the

parameter estimation. E.g. here, the states are estimated with high accuracy, however a close

look reveals that the quality of the estimation of the level displacements seems to be slightly

more accurate than the estimation of the velocities. Hence, assuming viscous damping, the

latter might be an indicator for errors in the damping estimation.

In all cases the W-EKF was iterated 6 times, however, convergence was already obtained

after 2-3 iterations as depicted in Figs. 6.8a, 6.9a, 6.10a, setting the measurement noise

Rδij = 1,10,100 [%], respectively. The figures show the identification result of the parame-

ters at the end of each cycle in dependence on the chosen initial error standard deviations

σk,0 [N/m] and σc,0 [Ns/m]. As expected, with increasing covariance, a faster convergence is

observed. In order to obtain the optimal estimate, the algorithm is aborted either if the ob-

jective function θj is minimized and/or if the filter converges. The given identification errors

are calculated as relative deviation from the true values, e.g. the relative identification error

of the stiffness estimate k̂1 is given by error = (k̂1 − k1)/k1 and summarized in Figs. 6.8b,

6.9b and 6.10b. Two errors are compared: the error after convergence corresponds to the

estimation error where the filter reaches its steady solution. The second error corresponds to

the estimate where the global error θmin in the state estimation is minimized. As highlighted
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in bold, the minimum value is obtained after about 2-3 iterations. It must be noted that

cases where the objective function reaches its minimum value before the filter converges,

could be an indicator for the divergence of the filter. However, it is encouraging to note

that in all cases both criteria leads almost to identical estimation results. One can observe,

that the objective function θmin tends to greater values with increasing measurement noise

leading to the question, which magnitude is reasonable. Rewriting the posterior error in the

form

dk∣k = zk −Cx̂k∣k = C(x̃k − x̂k∣k) + vk (6.41)

it is obvious, that in the optimal case, i.e. where the posterior estimate x̂k∣k and the true state

x̃k are equal, the posterior error dk∣k corresponds to the measurement noise, i.e. dk∣k = vk.

Thus, in this case, the mean square of the ith element of the posterior error di,k∣k, that is

γi =
1

N

N−1

∑
k=0

d2
i,k∣k (6.42a)

should tend to corresponding element of the measurement error covariance Rii. Taking into

account that the measurement error is given with respect to the mean square value of the

undisturbed system response given in Eq. (6.40a), here the normalized square errors

γNi =
∑
N−1
k=0 d

2
i,k∣k

∑
N−1
k=0 z̃

2
i,k

(6.42b)

should agree with the measurement noise intensities of 1, 10 and 100 [%], respectively. Thus,

the same must be true for the normalized objective function

θNmin =
1

m

m

∑
i=1

γNi (6.42c)

which gives the mean square value of the trace of the measurement noise. Of course, in reality

the undisturbed system response z̃k = Cx̃k is unknown as just the noisy data zk = Cx̃k+vk is

available. However, in the optimal case, i.e. if x̂k∣k ≈ x̃k∣k and thus dk∣k ≈ vk, then the relations

(6.42b) and (6.42c) can be expressed in terms of the noisy measurement data, yielding

γ̂Ni =
∑
N−1
k=0 d

2
i,k∣k

∑
N−1
k=0 (z̃i,k + vi,k)2

=
∑
N−1
k=0 d

2
i,k

∑
N−1
k=0 z̃

2
i,k +∑

N−1
k=0 v

2
i,k +∑

N−1
k=0 z̃i,kvi,k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈0

≈
1

(γNi )−1 + 1
(6.43a)

θ̂Nmin =
1

m

m

∑
i=1

γ̂Ni (6.43b)
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(a) Identification results (where Q = σ2
k,0, σ

2
c,0)

Rδik = 0.01MSi and σ2
k,0, σ

2
c,0 = 1 × 106 . . .1 × 1011

p̂500 error in [%] 1 × 106 1 × 107 1 × 108 1 × 109 1 × 1010 1 × 1011

k̂1

after convergence -0.226 -0.226 -0.226 -0.226 -0.226 -0.226

for θmin -0.225 -0.226 -0.225 -0.224 -0.224 -0.226

k̂2

after convergence -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

for θmin -0.009 -0.014 -0.014 -0.006 -0.007 -0.014

k̂3

after convergence -1.173 -1.173 -1.173 -1.173 -1.173 -1.173

for θmin -1.172 -1.173 -1.172 -1.171 -1.171 -1.173

ĉ1
after convergence 7.592 7.592 7.592 7.592 7.592 7.592

for θmin 7.607 7.593 7.631 7.619 7.608 7.592

ĉ2
after convergence 4.528 4.528 4.528 4.528 4.528 4.528

for θmin 4.506 4.526 4.430 4.497 4.496 4.527

ĉ3
after convergence -23.960 -23.960 -23.960 -23.960 -23.960 -23.960

for θmin -23.996 -23.963 -24.077 -24.019 -24.001 -23.959

θj

1 1.590721 1.222611 0.476710 0.308953 0.285114 0.289822

2 0.296054 0.276986 0.276282 0.276286 0.276287 0.276288

3 0.276286 0.276287 0.276287 0.276287 0.276287 0.276287

4 0.276287 0.276287 0.276287 0.276287 0.276287 0.276287

θNmin in [%] 0.856 0.856 0.856 0.856 0.856 0.856

(b) Estimation error

Figure 6.8: Identification results (a) and errors (b) of the stiffness and damping coefficients k̂1-k̂3 and ĉ1-
ĉ3, respectively, using the W-EKF in dependence on the chosen initial error covariance σ2

p and
1 % measurement noise. Two errors are compared: The error corresponding to the steady
solution of the filter and the one associated with the estimate where the global error θNmin in
the state estimation is minimized.
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(a) Identification results (where Q = σ2
k,0, σ

2
c,0)

Rδik = 0.1MSi and σ2
k,0, σ

2
c,0 = 1 × 106 . . .1 × 1011

p̂500 error in [%] 1 × 106 1 × 107 1 × 108 1 × 109 1 × 1010 1 × 1011

k̂1

after convergence -0.411 -0.411 -0.411 -0.411 -0.411 -0.411

for θmin -0.410 -0.410 -0.411 -0.410 -0.410 -0.411

k̂2

after convergence 0.038 0.038 0.038 0.038 0.038 0.038

for θmin 0.039 0.041 0.039 0.038 0.041 0.037

k̂3

after convergence -1.301 -1.301 -1.301 -1.301 -1.301 -1.301

for θmin -1.300 -1.301 -1.301 -1.300 -1.301 -1.302

ĉ1
after convergence 8.393 8.393 8.393 8.393 8.393 8.393

for θmin 8.412 8.405 8.395 8.412 8.404 8.390

ĉ2
after convergence 6.453 6.453 6.453 6.453 6.453 6.453

for θmin 6.376 6.436 6.452 6.377 6.434 6.439

ĉ3
after convergence -24.103 -24.103 -24.103 -24.103 -24.103 -24.103

for θmin -24.200 -24.131 -24.107 -24.199 -24.130 -24.101

θj

1 5.377263 5.328509 4.797749 3.826868 3.651922 3.635838

2 3.824161 3.650661 3.632934 3.632081 3.632142 3.632156

3 3.632081 3.632143 3.632158 3.632160 3.632160 3.632160

4 3.632160 3.632160 3.632160 3.632160 3.632160 3.632160

θNmin in [%] 9.158 9.158 9.158 9.158 9.158 9.158

(b) Estimation error

Figure 6.9: Identification results (a) and errors (b) of the stiffness and damping coefficients k̂1-k̂3 and ĉ1-
ĉ3, respectively, using the W-EKF in dependence on the chosen initial error covariance σ2

p and
10 % measurement noise. Two errors are compared: The error corresponding to the steady
solution of the filter and the one associated with the estimate where the global error θNmin in
the state estimation is minimized.
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Q = 106 Q = 107 Q = 108 Q = 109 Q = 1010 Q = 1011

k
2

k
3

c
3

c
1

k
1

c
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(a) Identification results (where Q = σ2
k,0, σ

2
c,0)

Rδik = 1MSi and σ2
k,0, σ

2
c,0 = 1 × 106 . . .1 × 1011

p̂500 error in [%] 1 × 106 1 × 107 1 × 108 1 × 109 1 × 1010 1 × 1011

k̂1

after convergence -0.898 -0.898 -0.898 -0.898 -0.898 -0.898

for θmin -0.898 -0.903 -0.898 -0.898 -0.903 -0.898

k̂2

after convergence 0.042 0.042 0.042 0.042 0.042 0.042

for θmin 0.042 0.021 0.042 0.042 0.021 0.042

k̂3

after convergence -0.782 -0.782 -0.782 -0.782 -0.782 -0.782

for θmin -0.782 -0.783 -0.782 -0.782 -0.783 -0.782

ĉ1
after convergence 11.653 11.653 11.653 11.653 11.653 11.653

for θmin 11.653 11.684 11.653 11.653 11.687 11.653

ĉ2
after convergence 15.611 15.611 15.611 15.611 15.611 15.611

for θmin 15.611 15.969 15.611 15.611 15.988 15.611

ĉ3
after convergence -23.838 -23.838 -23.838 -23.838 -23.838 -23.838

for θmin -23.838 -23.892 -23.838 -23.838 -23.893 -23.838

θj

1 45.82925 46.11427 46.15507 44.73402 42.37916 42.09499

2 44.74202 42.38037 42.09646 42.07152 42.07010 42.07034

3 42.07144 42.07008 42.07029 42.07016 42.07012 42.07012

4 42.07016 42.07012 42.07012 42.07011 42.07011 42.07011

5 42.07011 42.07011 42.07011 42.07011 42.07011 42.07011

θNmin in [%] 96.273 96.273 96.273 96.273 96.273 96.273

(b) Estimation error

Figure 6.10: Identification results (a) and errors (b) of the stiffness and damping coefficients k̂1-k̂3 and
ĉ1-ĉ3, respectively, using the W-EKF in dependence on the chosen initial error covariance σ2

p

and 100 % measurement noise. Two errors are compared: The error corresponding to the
steady solution of the filter and the one associated with the estimate where the global error
θNmin in the state estimation is minimized.
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γNy1
γNy2

γNy3
γNẏ1

γNẏ2
γNẏ3

θNmin

0.981 0.988 0.967 0.952 0.963 0.286 0.856

Table 6.2: Normalized square error in [%] of the posterior state estimate for 1 [%] measurement noise and
σp =

√
1 × 108 [N]

where the independence of the measurement noise vi,k and the undisturbed observation z̃i,k

was used.

For the three cases of measurement noise with intensity of 1, 10 and 100 [%] of the mean-

square of the undisturbed system response, the target values of γNi and γ̂Ni in [%] should

approach in the optimal case

Rδik = 0.01MSi: γNi = 1 [%]; γ̂Ni = 100/101 [%]

Rδik = 0.1MSi: γNi = 10 [%]; γ̂Ni = 100/11 [%]

Rδik = 1MSi: γNi = 100 [%]; γ̂Ni = 50 [%] (6.44a)

and thus are related by

Rδik = 0.01MSi: γNi = 1.01γ̂Ni

Rδik = 0.1MSi: γNi = 1.1γ̂Ni

Rδik = 1MSi: γNi = 2γ̂Ni (6.44b)

As the values γNi , φNmin are directly related to the intensity of the measurement noise, they

are used in the following for the evaluation of the filter performance. They are calculated

based on the noisy measurement using Eq. (6.43) and the relations (6.44b).

The value θmin tends in the three cases to about 0.86, 9.1 and 96.0 [%] and thus the expected

values of 1, 10 and 100 [%] are slightly underestimated. In order to explore the reason for the

underestimation, exemplarily, in Tab. 6.2 the values γN1 -γN3 and γN4 -γN6 in [%], correspond-

ing to the mean square error of the estimated displacements and velocities, respectively, for

the case of 1 [%] measurement noise and an initial error standard deviations σk,0 [N/m],

σc,0 [Ns/m] of order
√

1 × 108 are given. It is encouraging to observe that the values γN1 -γN5
agree well with the rate of noise contained in the observation. However, the quantity γN6 cor-

responding to the velocity of the third floor underestimate the strength of the measurement

noise strongly and thus leads to the conclusion, that the accuracy in the damping estimate

ĉ3 is much lower. Comparing the results summarized in Tab. 6.8b confirms this assumption

and shows that the estimation error decreases, if γNj approaches the target value of 1 [%].

All in all, it can be concluded that the magnitude of the objective function should agree with
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Figure 6.11: Comparison of the exact and estimated eigenfrequencies and modeshapes for the case σ2
p =

1 × 106 and a measurement noise of 10 [%]

the global level of measurement noise.

Independent from the chosen measurement noise level and initial error covariance, the stiff-

ness parameters k̂1, k̂2 and k̂3 are estimated with high accuracy leading to an estimation

error of less than 1 [%]. The estimation errors of the damping parameters ĉ1, ĉ2 are much

higher, varying between 4-8 [%] for the coefficients ĉ1, ĉ2 and of about 24 [%] for ĉ3. Fig. 6.11

and 6.7 illustrate, that the damping parameters of the here considered weakly damped sys-

tem have no significant effect on the modal frequencies and the observed system response.

In [Ceravolo 2004] it is observed that in case of naturally excited systems, commonly1, the

accuracy of the damping estimation is not very high and even in numerical simulations er-

rors of about 20 % are not unusual. Thus the obtained results can be considered to be of

satisfying accuracy. Furthermore, it must be emphasized that the identification results are

almost identical independent from the choice of prior error covariance confirming the high

stability of the algorithm.

Up to now it was assumed that the system’s excitation can be modeled as white noise pro-

cess. However, if this assumption is violated, the EKF filter will lead to poor estimation

results. In order to apply the filter to a wider class of processes, in the following chapter,

a new output-only identification algorithm is proposed, which allows introducing arbitrarily

correlated Gaussian processes into the (weighted) EKF algorithm.

1assuming a broad-banded excitation without dominant frequency components close to the system’s eigen-
frequencies
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7 A New Parameter Identification Method

of Structures Excited by Random

Loads

In this chapter a new extended Kalman filter-based algorithm for the parameter identification

of structures excited by correlated random loads is proposed. Focus lies on the stochastic

excitation by wind turbulences and wind waves. In contrast to classical ambient vibration

identification techniques, which model the unmeasured load process as white noise and thus

are not applicable in case of non-white excitations, the proposed method takes into account

additional information about the second-order statistics of the load process, e.g. obtained

from measurements in the vicinity of the structure, and thus allows estimating both, the

unknown system parameters as well as the unmeasured load process.

The new filter is called H-fractional extended Kalman filter as it combines the classical ex-

tended Kalman filter algorithm with the H-fractional spectral moment decomposition needed

for introducing the unmeasured load process into the filter equations. After deriving the lat-

ter, the method is applied to estimate the stiffness and damping parameters of single- and

multi-degree of freedom systems as well as the unmeasured load process exciting the struc-

ture. Finally, a sensitivity analysis is undertaken, in order to investigate the dependence of

the accuracy of the load and parameter identification on the chosen parameterization of the

load process.

7.1 Proposed modification of the EKF algorithm

The new method is based on a concept found in [Lewis et al 2008, p. 123-125] where it is

shown that colored process noise and measurement noise with rational PSD function, respec-

tively can be introduced into the Kalman filter algorithm by state space augmentation: That

is, the colored noise is modeled indirectly as output of a linear state space model driven by
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white noise obtained by means of the spectral factorization method (s. 4.4) and then, this

linear system is added to the structural state space model resulting in an overall system,

driven by white noise to which the Kalman filter can be applied in order to estimate the

states of interest. For further details, see section 4.5, where the concept is applied for the

modeling of a single degree of freedom system subjected to exponentially correlated wind

gusts.

The restriction of the applicability of the concept to processes with rational PSD function

results directly from the limitations of the spectral factorization method discussed in section

4.4 where it is shown that, the spectral factorization problem can be solved analytically, in

general, just in the rational case.

In order to apply the concept to a wider class of processes, in the following, the method

is combine with the H-fractional spectral moment decomposition discussed in section 5.4.

Based on these results a state space representation of general form is proposed which al-

lows modeling arbitrarily correlated processes in a uniform manner. Then, following the

concept described above, the obtained state space model is augmented to the state space

representation of the structural model leading to a linear system with white noise input to

which the (weighted) extended Kalman filter can be applied in order to solve the parameter

identification problem.

7.1.1 Generalized state space representation of colored random

processes

Based on Eq. (5.30) given in section 5.5, in the following, a general state space representation

for colored load processes is developed, which is valid for arbitrary correlated Gaussian

processes and can be given directly once the H-FSMs in Eq. (5.14) are calculated.

Due to the Toeplitz form of the coefficient matrix A(γ) (5.30), the matrix transfer function

h(γk) in Eq. (5.31) can be calculated easily. As discussed in section 5.5.1, if Reγ > −1 is

chosen, then the coefficients αk(γ) decrease with inverse power law behavior as k increases

and can be neglected after a finite number of terms p (also known as short memory principle).

Furthermore, it was shown, that for an input vector W of length n, the first and last p samples

of the output F can be regarded as the transition states whereas the remaining n−2p samples

are the steady states which are needed in the following for the formulation of a recursive state

space form. Using the truncated coefficient matrix A(γ) defined in Eq. (5.33), the calculation

of one steady state realization Fj = F (jτ) of the discrete load process F, with j = 0,1, . . . ,n

is given by



144 7 A New Parameter Identification Method of Structures Excited by Random Loads

G
j-p

G
j-p+1

G
j+p-1

G
j

G
j+1

G
j-1

G
j-p-1

G
j+p+1

G
j+p

jj
F bW=

11 ++
=

jj
F bW

Figure 7.1: Steady state realization of the load process: the load Fj+1 of the next time step is generated
by shifting the p-dimensional vector Wj of increments of white noise
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where

βp =
∆η

4π

m

∑
k=−m

ΠH(−γk)αc,p(1 − γk) (7.2)

and where ΠH(−γk) are the fractional spectral moments of the transfer function defined

by Eq. 5.14 and αc,p(γk) are the coefficients given by Eq. (5.35d). As one can see from

Eq. (7.1) the actual sample Fj = bWj of the load process is calculated by a time-variant

white noise sequence Wj = [Gj−p, ...,Gj, ...,Gj+p] of p previous and past samples of the zero-

mean Gaussian white noise process with standard deviation
√
qτ which are weighted by a

time-invariant coefficient vector b = [βp, βp−1, ...,2β0, ..., βp−1, βp]. The order p of the model is

related to the process memory M = pτ , where τ is the sampling interval as shown in section

5.5.3. As rule of thumb, the choice of the process order p defines the time interval M in

which the AC function of the process is approximated accurately.

As illustrated in Fig. 7.1 the load process is generated by shifting the Gaussian white noise

sequence Wj at each time step one position further in time and weighting it by the coefficient

vector b. It must be stressed that the result in Eq. (7.1) coincides with a (non-causal1)

1The non-causality of the process, that is the dependency on future realizations Gj+1,Gj+2,...,Gj+p of the
Gaussian white noise process is caused by the assumption that the imaginary part of the transfer function
vanishes (s. Eq. (5.12))
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MA representation of the process. Though, in contrast to classical approaches where the

coefficients of the MA models are calculated by solving a non-linear optimization problem,

it shall be highlighted that here the coefficients are given analytically.

Noting that a MA representation is obtained, it is now straight forward to define a state

space representation of Eq. (7.1) using the result in section 4.2, yielding

x′k+1 = A′

dx
′

k +B′

dw
′

k

Fk = C′

dx
′

k (7.3a)
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T and with time-invariant transfer matrices
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⎢
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⎢
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⎢
⎢
⎢
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⎢
⎣

βp

βp−1

⋯

2β0

⋯

βp−1

βp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(7.3b)

In the following the subindex d for discrete-time will be omitted for simplicity of notation.

Comparing Eq. (7.3) with the state space representation (4.28a) obtained by spectral fac-

torization, the strong resemblance of these two representations is obvious.

Though, it shall be highlighted that Eq. (7.3) is a general state space representation of sta-

tionary arbitrarily colored load processes without any restriction to the functional form of

the PSD function. That is, once, the H-FSM of the PSD are determined using Eq. (5.14)

the corresponding state space form is readily defined by Eq. (7.3).

7.1.2 Generalized state space model of structures subjected to random

loads

The result can now be used to introduce the unmeasured system’s excitation with given

target PSD function into the Kalman filter algorithm by state space augmentation. Starting

point is the structural state space model, given by the system equation

xk+1 = Akxk +GkNk (7.4a)
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and measurement equation

zk = Ckxk + vk (7.4b)

where Ak ∈ Rn×n, Gk ∈ Rn×1 and Ck ∈ Rm×n are the transfer matrices, xk ∈ Rn and zk ∈ Rm

are state and measurement vector, respectively. While the measurement noise is modeled

as white noise process, i.e. vk ∈ Rm ∼ WN(0,R), the process noise Nk ∈ R, representing

the unmeasured load process Fk exciting the structure, is described as stationary colored

Gaussian process with given target PSD function, e.g. known from measurements in the

vicinity of the structure. Introducing the augmented state vector xa,k = [xk,x′k]
T

and using

the result (7.3), the state space model with colored process noise (5.12) can be rewritten in

the form

⎡
⎢
⎢
⎢
⎢
⎣

xk+1

x′k+1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Ak GkC′

0 A′

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

xk

x′k

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0

B′

⎤
⎥
⎥
⎥
⎥
⎦

w′

k

za,k = [ Ck 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

xk

x′k

⎤
⎥
⎥
⎥
⎥
⎦

+ vk (7.5)

which is once again a linear system excited by white noise. Hence, after rewriting Eq. (7.5)

xa,k+1 = Aaxa,k +Gawk za,k = Caxa,k + vk (7.6)

the KF algorithm summarized in Fig. 6.2 and its nonlinear extension, the EKF or weighted

EKF, given in 6.4 and 6.5 can be run on the augmented state space model (7.5) using the

modified transfer matrices Aa, Ga and Ca, respectively.

It must be stressed that the derived augmented state space model has a genetic form whose

derivation neither required the factorization of the PSD nor any optimization procedure,

but which can be given immediately, once the H-fractional spectral moments of the transfer

function have been calculated. Furthermore, it’s valid for arbitrarily correlated Gaussian

processes with long as well as short memory (s. chapter 5).

7.1.3 Parameter identification of a SDOF dynamical structure

7.1.3.1 CASE STUDY 1: Exponentially correlated wind gusts

The proposed method is now applied to a single degree of freedom (SDOF) system excited

by wind gusts wc with exponential AC function R(τ) = σ2e−a∣t∣ in order to estimate the
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stiffness and damping parameters, respectively. In this example the (long period) longitu-

dinal dynamics of an aircraft are approximated by the continuous state space model of a

harmonic oscillator with natural eigenfrequency ω =
√
k/m and ratio of critically damping

D = c/(2mω). The system’s state x(t) = [φ(t), φ̇(t)]T is characterized by the pitch angle and

velocity φ(t), φ̇(t) describing the evaluation of angle between the longitudinal axis of the

aircraft and the horizon. Due to the rational form of the PSD function of the process noise

wc(t), a state space model of the colored process can be derived analytically by applying the

spectral factorization theorem as shown in section 4.5.1 leading to the first order Markov

model

ẋ′(t) = −ax′(t) +w′(t) F (t) = x′(t) (7.7)

which is excited by a Gaussian white noise w′(t) with standard deviation σ (compare section

4.5.1). By state space augmentation the following state space model is obtained

ẋa(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

−ω2 −2Dω 1/m

0 0 −a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xa(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

w(t) (7.8)

where xa(t) = [φ(t), φ̇(t), x′(t)]T denote the augmented state. The discretized model can

be obtained by applying an explicit Euler approximation, that is by expressing the time

derivative of the state vector ẋa(t) in Eq. (7.8) as forward difference

dxa(t)

dt
≈

xa(t + τ) − xa(t)

τ
=

xa,k+1 − xa,k
τ

(7.9a)

and solving the resulting equation for the future state xa,k+1, yielding

xa,k+1 = (Aa,cτ + I3×3)xa,k +Ga,cdβ (7.9b)

where τ is the sample interval and dβ(t) = τw(t) denotes the increment of a Brownian motion

process. As shown in the annexe A.1.4.4, the latter can be simulated as Gaussian white noise

process with variance
√
τσ. Thus, the discretization of Eq. (7.8) yields the following linear

model

xa,k+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 τ 0

−ω2τ 1 − 2Dωτ τ/m

0 0 1 − aτ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xa,k +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

wk (7.10)
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za,k =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

xa,k + vk (7.11)

excited by the Gaussian white noises wk ∼ (0,σ2τ) and vk ∼ (0,Rc/τ). Here, it must be

mentioned, that the Euler discretization is used for illustrative purposes, in the numeri-

cal calculations the discretization is obtain by means of the matrix exponential function

(s. section 4.4). This model will be used in this example for the generation of the ’true’

measurement of the pitch angle φ(t) used in the KF algorithm.

By means of the approach using fractional calculus the augmented state space model is ob-

tained by the following procedure: (i) the system’s state space representation is formulated,

(ii) the H-FSMs are calculated from the target PSD and the weights βk of the Gaussian

white noise are determined using Eq. (7.2), (iii) the initial vector x′0 of increments of Gaus-

sian white noise and the system matrices of the generalized state space model in Eq. (7.3)

are stored and introduced in Eq. (7.5) to obtain the augmented state space model. Again

using the Euler discretization this model has the following form

xa,k+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎣
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⎥
⎦
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⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

wk

(7.12)

zk =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . . . . . . 0

⎤
⎥
⎥
⎥
⎥
⎦

xa,k + vk (7.13)

with the augmented state xa,k = [φk, φ̇k,Gk−p, . . . ,Gk, . . . ,Gk+p] and the white noises

wk ∼ (0,τ), vk ∼ (0,Rd). It must be noted that this state space model is valid for arbitrarily

correlated Gaussian process noises with known PSD function. Only varying parameter is

the number of coefficients p needed to approximate the correlation structure of the process

with sufficient accuracy. In the following, the KF algorithm based on this approach will

be indicated as H-fractional KF (H-KF) and the corresponding process noise is denoted as

H-fractional noise, respectively.

In the first example, the system’s parameters are assumed to be known and the evaluation
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Figure 7.2: Top: Evaluation of the pitch angle φ(t) [rad] and AC function Rφ(t) [rad] for ω =
√

2 [rad/s],
D = 0.05 [-] of the system excited by exponentially correlated wind gusts, Bottom: Colored
process noise generated by spectral factorization (line), by H-FSMs (gray) and estimated by
the fractional KF (points) and corresponding AC function RF (t) [N] in [N2]

of the pitch angle and the input force is estimated from output-only measurements apply-

ing the H-fractional KF using the following parameters: a = 0.2, σ = 10 [N], k = 10 [N/m],

c = 0.707 [Ns/m] (D = 0.05), m = 5 [kg] and a sampling interval of τ = 0.1 [s]. The fractional

noise is parametrized choosing p = 150, m = 30, ρ = 0.5, ∆η = 0.2. Fig. 7.2 depicts the evalu-

ation and AC of the pitch angle φ(t) (Top) and the corresponding process noise exciting the

system (Bottom). In order to illustrate that the KF algorithm not just updates the pitch

angle φ(t) but also the H-fractional noise, the load process is depicted in gray for the case

without consideration of the measurement date and in black-dotted after applying the KF

algorithm. It can be stressed that both, the unmeasured load as well as the pitch angle,

are estimated with high accuracy. The estimated correlation function of the load process

is identical in the form, the estimated maximum value R̂(0) ≈ 96 [N2] is just slightly lower

than the target value of σ2 = 100 [N2].

In order to estimate the system’s stiffness k = 10 [N/m] and damping constant c = 0.707 [Ns/m]

(D = 0.05) now the so-called H-fractional EKF (H-EKF) as well as the so-called spectral-

EKF (S-EKF) based on the Markov noise model (7.7) obtained by spectral factorization is

applied. It is assumed that noisy measurement date of the pitch angle φ(t) and the veloc-



150 7 A New Parameter Identification Method of Structures Excited by Random Loads

0 200 400 600
4

6

8

10

12
True value k = 10 [N/m]

t [s]
0 200 400 600

0

0.5

1

1.5

2
True value c = 0.70711 [Ns/m]

t [s]

 

 
H−EKF
G−EKF
S−EKF

(a) Estimation of the stiffness k [N/m] and damping constant c [Ns/m] by means of
H-fractional EKF (points), the spectral EKF (plus sign) and the Gaussian EKF
(squares). The upper and lower bounds represent the corresponding 90 % con-
fidence intervals.
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(b) Top: Evaluation of the pitch angle φ(t) [rad] and AC function Rφ(t) [rad2] for
ω =

√
2 [rad/s], D = 0.05 [-], Bottom: Actual process noise generated by spectral

factorization (line) and estimated input by the H-fractional EKF (points) and the
spectral EKF (circles) and corresponding AC functions RF (t) [N2]

Figure 7.3: SDOF system excited by exponentially correlated load process

ity φ̇(t) is available taking into account a measurement error corresponding to 10 % of the

mean-square of the undisturbed system response (compare Eq. (6.40a)). It is assumed that

a set of 20 measurements of a duration of 10 [min.] each are available. The H-EKF and

spectral-EKF as well as the standard Kalman filter is run on the samples. In the latter case
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Case
initial

estimate

identified
parameters

standard
deviation

identification
error

k̂0

[N/m]
ĉ0

[Ns/m]
k̂

[N/m]
ĉ

[Ns/m]
σk̂

[N/m]
σĉ

[Ns/m]
ek
[%]

ec
[%]

Exponential 5.00 0.35 10.00 0.76 0.24 0.22 0.00 7.19

von Kármán 5.00 0.35 10.02 0.75 0.22 0.14 0.24 5.70

Pierson Moskowitz 5.00 0.35 10.02 0.73 0.20 0.18 0.20 2.92

true values k = 10 [N/m], c = 0.707 [Ns/m]

Table 7.1: Identification results for the different load cases

the correlation of the load process is neglected and modeled as Gaussian white noise with

equivalent standard deviation of σ = 10 [N] and thus denoted as Gaussian-EKF (G-EKF).

The G-EKF is used in order to show the error introduced into the parameter identification

by the erroneous white noise assumption.

The initial values of the stiffness and damping parameter k̂0, ĉ0 are selected considering an

estimation error ek0 = ∣k̂0 −k∣/k, ec0 = ∣ĉ0 − c∣/c of 50 % and the associated initial error covari-

ance is set to σk = 10 [N/m] and σc = 2 [Ns/m]. The mean value as well as the corresponding

90 % confidence intervals of the identified model parameters are depicted in Fig. (7.3a).

It is encouraging to note, that the H-EKF and the spectral-EKF provide almost identical

identification results which confirms the consistency of the proposed method. In both cases,

the stiffness parameter is estimated with high accuracy while the identification of the damp-

ing parameter leads to an error of 7.2 %. The higher error is caused by the fact, that in

the example considered here, the damping parameter has no significant effect on the modal

frequencies and the observed system response. As the update of the parameters is based on

the minimization of the error between the obtained measurement and the predicted system’s

response, it is in general difficult to identify parameters whose estimation has almost no

impact on the prediction error.

Neglecting the correlation of the load process leads to poor identification results as shown by

means of the G-EKF which fails to identify both the stiffness and damping parameter. The

results of the parameter identification of the H-fractional EKF are summarized in Tab. 7.1.

Fig. 7.3b depicts the estimated evaluation of the pitch angle and the input force as well as

the corresponding AC functions applying the H-EKF (black dotted) and the spectral-EKF

(black circles). It can be stressed that the H-EKF and the S-EKF succeeded in estimating

simultaneously the system state as well as the input process with high accuracy. In the latter

case it takes about 30 [s] until the estimated process noise closely approaches the actual input

process. It must be stressed, that in case where the loading is characterized by a ratio-
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(a) Estimation of the stiffness k [N/m] and damping constant c [Ns/m] of the by
means of H-fractional EKF (points) and the Gaussian EKF (squares). The dotted
lines represent the corresponding 90 % confidence intervals.

0 10 20 30 40 50

−1

0

1

2

Pitch angle φ(t)

−20 −10 0 10 20

−0.2

0

0.2

0.4

AC of the pitch angle φ(t)

0 10 20 30 40 50
−10

−5

0

5

10

Process noise

t [s]
−30 −20 −10 0 10 20 30

0

5

10

15

AC of the process noise

t [s]

 

 
H−EKF

(b) Top: Evaluation of the pitch angle φ(t) [rad] and AC function Rφ(t) [rad2] for
ω =

√
2 [rad/s], D = 0.05 [-], Bottom: Actual process noise (line) and estimated

input by the H-fractional EKF (points) and corresponding AC function RF [N2]

Figure 7.4: SDOF system excited by wind loads with von Kármán velocity PSD

nal PSD function, the standard spectral factorization method outperforms the H-fractional

Kalman filter from a computational point of view as it leads to a state space representation

of lower order. However, the strength of the proposed method is its general applicability

to arbitrary spectra and its straight forward implementation as shown in the following by

means of wind turbulences with von Kármán velocity function and wind waves with Pierson
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(a) Estimation of the stiffness k [N/m] and damping constant c [Ns/m] by means
of H-fractional EKF (points) and the Gaussian EKF (squares). The dotted lines
represent the corresponding 90 % confidence intervals.
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(b) Top: Evaluation of the displacement y(t) [m] and AC function Ry(t) [m2] for
ω =

√
2 [rad/s], D = 0.05 [-], Bottom: Actual process noise generated by spectral

factorization (black) and estimated input by the H-fractional EKF (black dotted)
and the spectral EKF (black circles) and corresponding AC functionsRF (t) [N2.]

Figure 7.5: SDOF system excited by wind waves with P-M PSD

Moskowitz PSD function.
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7.1.3.2 CASE STUDY 2: Wind gusts with von Kármán velocity PSD

The von Kármán wind velocity spectrum is widely used in wind engineering applications

as discussed in section 2.2.2.3. The spectrum is of non-rational form and thus there is no

analytic method available to simulate the random process directly from the knowledge of

the PSD function. As shown in section 5.5 the corresponding H-FSMs are different, but

the implementation of the filter is the same as in the previous example. Choosing again a

sampling interval of τ = 0.1 [s], the fractional noise is parameterized setting: p = 150, m = 50,

ρ = 0.6, ∆η = 0.15. The results of the parameter identification for the H-Fractional KF and

the standard EKF are illustrated in Fig. 7.4a. The mean values and corresponding 90 %

confidence interval are calculate based on 20 measurements each of 15 [min.] length. Once

again the standard EKF leads to poor identification results while the introduced method

allows estimating the stiffness and damping parameter with high accuracy. Furthermore,

Fig. 7.4b illustrations that also in this case the system state as well the unmeasured process

noise is estimated accurately.

7.1.3.3 CASE STUDY 3: Wind waves with Pierson-Moskowitz PSD

The results of the parameter identification are shown in Fig. 7.5a. The estimated stiffness

and damping parameter corresponds to the generalized quantities of the first eigenmode of

a clamped vertical pile which is excited by wind-induced ocean waves. Both parameter are

again estimated accurately by means of the H-Fractional EKF. As in the previous example

20 measurements of 15 [min.] length with a sampling interval of τ = 0.1 [s] were used. The

fractional noise is parameterized choosing: p = 200, m = 50, ρ = 1.6, ∆η = 0.2. Similarly,

the estimated evaluation and AC function of the deflections and the process noise agree well

with the measurement and actual loading of the system as illustrated in Fig. 7.5b.

7.1.4 Enhancing the method’s efficiency by the weighted H-fractional

extended Kalman filter

In the previous example the parameter estimates are calculated by averaging the identifi-

cation results based on 20 samples of measurement data, choosing the same initializations

for each run. However, in cases where just a small number of measurements is available,

the weighted iterated EKF algorithm is more appropriate as it solves the parameter identi-

fication problem iteratively using only one measurement sample as input and re-initializing
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the filter in the next iteration loop by the obtained estimates. Moreover, the computational

efficiency of the H-fractional EKF mainly depends on the dimension of the state vector and

thus on the number of coefficients needed to generate the fractional noise. As discussed in

section 5.5.3, the order of the state space model of the noise process is dependent on the

needed sampling interval, the memory of the process and the needed accuracy. Assuming a

high order state space model, it is not efficient to re-run the H-EKF on many measurement

samples and to calculate the parameters by averaging. As shown in the numerical example

of the three story shear building, in contrast the W-EKF is applicable even if just one mea-

surement record is available and converges already after a small number of iterations. The

accuracy of the W-EKF is evaluated based on the global error θj pursuant to Eq. (6.30a)

between the state estimate and the corresponding measurement to be calculated at each

iteration j. The optimal state estimate is obtained either when the global error is minimized

or if the filter converges. At the end of each iteration the error covariance matrix is increased

by a factor W = 100 in order to prevent the filter from ignoring the incoming measurement

data in the next iteration. The identification results for the stiffness and damping estimate

for the three load cases by means of the weighted H-fractional EKF algorithm (H-WEKF) is

summarized in Tab. 7.2. For the parametrization of the fractional noises the same values as

in the previous section were chosen. The filter was run based on one measurement record of

T = 25 [min.] length, taking into account a measurement noise of 10 [%] of the mean-square

of the undisturbed system response (compare Eq. (6.40a)).

It is encouraging to note that in all cases, two iterations are sufficient to identify the pa-

rameters with an accuracy which is comparable to the results obtained by means of the

H-fractional EKF algorithm. The accuracy of the estimation result is checked by the nor-

malized minimum global square error θNmin between the state estimates and the measurements

defined in Eq. (6.42c) which should approach, in the optimal case, the measurement noise

level of 10 [%]. In addition, the normalized errors γNφ , γN
φ̇

are given separately for the error

of the displacement and velocity measurement and thus are related to the accuracy of the

stiffness and damping estimations. The values confirm that the parameter estimation errors

decrease if these errors approaches the target value of 10 [%].

7.1.5 Parameter identification of a three story shear building

In the following section the weighted H-fractional EKF algorithm is applied to the three

story shear building discussed in section 6.1.4 subjected to wind gusts with exponentially

AC and Kármán velocity PSD function, respectively. In section 7.1.5.1.1 and 7.1.5.1.2 the
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Exponential von Kármán
Pierson

Moskowitz

iterations k̂ ĉ k̂ ĉ k̂ ĉ

j

0 5.000 0.354 5.000 0.354 5.000 0.354

1 10.032 0.665 9.921 0.652 9.973 0.674

2 10.034 0.665 9.922 0.652 9.974 0.674

3 10.034 0.665 9.922 0.652 9.974 0.674

true value 10.000 0.707 10.000 0.707 10.000 0.707

error in [%] 0.339 5.977 0.778 7.775 0.264 4.734

θj
1 3815.69 1165.84 1397.77

2 3815.49 1165.87 1397.74

3 3815.49 1165.87 1397.74

θNmin in [%] 11.38 11.45 10.93

γNφ in [%] 13.25 13.68 12.58

γN
φ̇

in [%] 12.31 12.57 11.75

Table 7.2: Identification results for the H-fractional W-EKF for the three load cases taking into account
10 [%] measurement noise. θj : global square error for the jth iteration between posterior state
estimate and measurement pursuant to Eq. (6.30a); γNi : normalized minimal square error in
[%] calculated separately for the displacement and velocity estimate pursuant to Eq. (6.42b);
θNmin normalized minimal global error in [%] of the state estimation pursuant to Eq. (6.42c).

dependence of the filter convergence and identification accuracy on the chosen sampling

interval and the number of coefficients used for the load approximation, respectively.

7.1.5.1 CASE STUDY 1: Exponentially correlated wind gusts

In the numerical example discussed in section 6.1.4, the stiffness and damping parameters

k1 - k3 and c1 - c3, respectively, of the idealized lumped model of a three story shear building

excited by an uncorrelated white load process at the top level of intensity σw = 2000 [N] are

identified by means of the weighted EKF algorithm. Now, an exponentially autocorrelated

load process of same intensity (a = 0.2, σ = 2000 [N]) is applied at the top floor. The load

process used for the simulation of the displacement and velocity measurements at the floor

levels is generated by the first order Markov model derived in Eq. (7.7). A measurement error

of 10 [%] of the undisturbed system response is assumed, setting Rδik = 0.1MSi pursuant

to Eq. (6.40a). As in the example 6.1.4, the model is initialized introducing an estimation

error of 30 [%] for the stiffness parameters k̂1, k̂3 and 20 [%] for the parameter k̂2, 37 [%] for

the damping parameters ĉ1, ĉ3 and an error of 30 [%] in case of ĉ2. In the example 6.1.4 it

was shown that the number of iterations decreases with increasing initial error covariances

σ2
k,0 [(N/m)2] and σc,0 [(Ns/m)2], and hence, they are set equal 1 × 1011. In order to accelerate

the convergence of the filter, the error covariance Σpp is weighted by the factor W = 1000.
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Figure 7.6: Identification results of the stiffness and damping coefficients k̂1 - k̂3 and ĉ1 - ĉ3 of the three
story building subjected to exponentially autocorrelated wind gust using the H-fractional W-
EKF choosing a measurement noise of variance Rδik = 0.1MSi and a sampling interval of
τ = 0.1 [s]. The optimal value where the global error θNmin between the measurement and the
predicted state estimates is minimized, is indicated as black dot.

The H-fractional W-EKF is run N = 10 times and the results obtained at the end of each

iteration is depicted in Fig. 7.6 and summarized in Tab. 7.3. The minimal global error

θmin = 8.15 [%] is reached after 4 iterations and lower than the target value of 10 [%]. The

normalized errors γNi between the displacement and velocity estimates and the measurements

used for the calculation of the global error indicate, that the estimation error mainly results

from the inaccuracies of the velocity estimation at the first and third floor and thus higher

identification errors of the damping estimates can be expected. To be precise, the stiffness

parameters k̂1 - k̂3 are estimated with high accuracy leading to an identification error of less

than 1 [%] and the damping coefficients ĉ1 - ĉ3 are identified with satisfying accuracy with

relative errors of about 17, 3 and 7 [%], respectively. Again choosing a sampling interval of

τ = 0.1 [s], the fractional noise was parameterized, setting p = 150, m = 30, ρ = 0.5, ∆η = 0.2.

In Fig. 7.7 the estimated and actual load process exciting the structure are compared. It

is encouraging to note, that the proposed filter succeed in estimating the evaluation of the

process accurately from output only measurements.
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iterations k̂1 k̂2 k̂3 ĉ1 ĉ2 ĉ3

0 7191333 5873000 5873000 40736 28919 33357

1 4911314 4204710 3845910 24988 -10083 61451

2 5031342 4758707 4134715 22293 29290 17781

3 5045749 4719323 4117561 24526 19917 23424

θmin 4 5042847 4715290 4115281 24578 21812 22545

5 5043517 4718198 4116343 24509 21511 22680

6 5043382 4717395 4116060 24530 21536 22661

7 5043404 4717545 4116122 24526 21541 22663

8 5043402 4717529 4116111 24526 21538 22663

true value 5033933 4698400 4111100 29656 22397 24313

error in
[%]

for N = 8 0.188 0.407 0.122 -17.296 -3.833 -6.789

for θmin 0.177 0.359 0.102 -17.121 -2.614 -7.273

θj

1 0.05530

2 0.05340

3 0.05340

4 0.05337

5 0.05338

in [%]
θNmin γNy1

γNy2
γNy3

γNẏ1
γNẏ2

γNẏ3

8.15 8.65 8.80 8.66 7.24 8.04 7.53

Table 7.3: Estimation result of the stiffness and damping coefficients k̂1-k̂3 and ĉ1-ĉ3, respectively, for
the three story building subjected to exponentially autocorrelated wind gust taking into account
10 [%] measurement noise and a sampling interval of τ = 0.1 [s]. θj : global square error for
the jth iteration between posterior state estimate and measurement pursuant to Eq. (6.30a);
γNi : normalized minimal square error in [%] calculated separately for the displacement and
velocity estimate pursuant to Eq. (6.42b); θNmin normalized minimal global error in [%] of the
state estimation pursuant to Eq. (6.42c).
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Figure 7.7: Estimated (dotted) and true (line) evaluation of the load process {F (t)} [N] and AC function
RF (t) [N2] of the exponentially correlated load process exciting the structure at the top floor
using a sampling interval of τ = 0.1 [s].

7.1.5.1.1 Influence of the sampling interval on the filter convergence

To keep the order of the state space model of the fractional noise small, again a sampling in-
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iterations k̂1 k̂2 k̂3 ĉ1 ĉ2 ĉ3

true value 5033933 4698400 4111100 29656 22397 24313

error in
[%]

for N = 6 -0.648 3.002 0.105 -0.082 8.461 -4.703

for θj=4min -0.648 3.002 0.105 -0.086 8.454 -4.701

in [%]
θNmin γNy1

γNy2
γNy3

γNẏ1
γNẏ2

γNẏ3

8.89 9.06 9.52 9.52 8.49 8.66 8.09

Table 7.4: Estimation result of the stiffness and damping coefficients k̂1-k̂3 and ĉ1-ĉ3, respectively, for the
three story building subjected to exponentially autocorrelated wind gust taking into account 10
[%] measurement noise and a sampling interval of τ = 0.05 [s]. γNi : normalized minimal square
error pursuant to Eq. (6.42b); normalized minimal global error pursuant to Eq. (6.42c)

terval of τ = 0.1 [s] was used. Though, the large sampling interval causes the filter to converge

slowly, as the prediction error increases with increasing time step width and thus the up-

dated parameters vary strongly in the first filter steps. Consequently, it takes more updates

until the filter reaches its steady solution. While in the example 7.1.4 of the SDOF system

subjected to exponentially correlated load convergence is obtained after about T = 25 [min.],

in the example of the three story building discussed here, a measurement duration of about

65 [min.] is required, where the stationarity of the load process becomes questionable.

With the aim to accelerate the convergence, the filter is re-run using a measurement record

with a smaller sampling interval of τ = 0.05 [s]. As discussed in section 5.5.3, if the sam-

pling interval is halved, twice as much coefficients (p = 300) are needed for the generation of

the load process with comparable accuracy. The increases of computational demand of the

Kalman filter at each time update, is compensated by the drastic reduction of the computa-

tion time by a factor of 10 due to the fast convergence after T = 6.5 [min.]. The identification

results are depicted in Fig. 7.8 and summarized in Tab. (7.4). Again the parameters are iden-

tified with a high accuracy which is comparable to the previous result. Also in this case, the

filter succeeded in estimating the evaluation and AC function of the force from output-only

measurements as illustrated by Fig. (7.9)

7.1.5.1.2 Influence of the accuracy of the load modeling on the filter performance

Up to know, the state space representation of the load process has been modeled with high

accuracy by choosing the number of coefficients in such a way, that a good agreement with

the target AC function is obtained. In the previous example of the exponentially correlated

process, this let to p = 300 coefficients at a sampling interval of τ = 0.05 [s]. It was shown

that in this case, the system’s parameters and the time series of the unmeasured load process

are estimated accurately. Of course, the question arises, if a model reduction of the load

process is possible, and consequently, how the resulting decrease of the considered number
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Figure 7.8: Identification results of the stiffness and damping coefficients k̂1 - k̂3 and ĉ1 - ĉ3 of the three
story building subjected to exponentially autocorrelated wind gust using the H-fractional W-
EKF choosing a measurement noise of variance Rδik = 0.1MSi and a sampling interval of
τ = 0.05 [s]. The optimal value where the global error θNmin between the measurement and
the predicted state estimates is minimized, is indicated as black dot.
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Figure 7.9: Estimated (dotted) and true (line) evaluation of the load process {F (t)} [N] and AC function
[N2] of the exponentially correlated load process exciting the structure at the top floor using a
sampling interval of τ = 0.05 [s].

of coefficients, influences these identification results.

To this aim, the sampling interval is again set to τ = 0.05 [s] and the number of coefficients

is successively reduced, setting p = [300,250,200,150,100,50,25]. In order to illustrate the

effect of such a reduction, in Fig. 7.10a the target AC function and the sample AC functions

corresponding to the generated time series using the H-FSM decomposition are depicted in
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(a) Comparison of the target AC function of the exponentially correlated process
with standard deviation σ = 2000 [N] (line) and the approximated function calcu-
lated from the generated times series choosing a sampling interval of τ = 0.05
and varying the number of load coefficients in the interval p = [25,250].
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(b) Comparison of the analytic PSD function of the exponentially correlated process
with standard deviation σ = 2000 [N]) (line) and the approximated function cal-
culated from the generated time series setting the sampling interval τ = 0.05 [s]
and varying the number of load coefficients in the interval p = [25,250]. The
spectrum is normalized with respect to SF (ω = 0) and the standard deviation σ
of the generated time series is given for comparison.

Figure 7.10: Case study 1: Exponentially autocorrelated wind gusts

dependence on the chosen number of load coefficients, i.e. the considered memory of the

process M = pτ . It is evident, that for p < 150, the variance of the target process σ = 2000 is

underestimated and that the approximated AC function decays much too fast.
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(a) Relative estimation error for the stiffness (Top) and damping estimates (Bottom)
in dependence on the number of load coefficients.
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including the damping estimates (Right), respectively, in dependence on the
number of load coefficients.

Figure 7.11: Case study 1: Exponentially autocorrelated wind gusts

A frequency analysis of the load process confirms these results: For this purpose in Fig. 7.10b

the analytic PSD function of the exponentially correlated process is compared with the

densities calculated from the generated time series for the different parameterizations. As

expected, the reduction of the number of parameters leads to a too broad PSD function.

Though, in order to approximate the target spectrum with satisfying accuracy, just about

p = 150 − 200 coefficients must be taken into account.
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Figure 7.12: Case study 1: Comparison of the actual load process with exponential AC (σ = 2154 [N])
exciting the structure at the top floor and the estimated AC functions by means of the H-
WEKF in dependence on the considered number of load coefficients p. For the calculation a
time series of 5 [min.] length (6000 samples) is taking into account.

Using the same initialization as in the previous example, the H-WEKF is now run for the

different load models. In all cases, about j = 2 − 4 iterations are needed, until the objective

function θj reaches its minimum. The identification results (especially the damping esti-

mates) converge slower with decreasing model accuracy, and thus, for the different cases, a

measurement record of length T = [5,10,10,15,25, > 50, > 50] [min.] is required. In the case

p ≤ 50, the filter diverges, so here, the given estimates correspond to the result obtained after

T = 50 [min.]. Fig. 7.11a depicts the relative identification error in [%] in dependence on the

chosen number of coefficients. In order to evaluate the global performance of the filter for

the different parameterizations, in Fig. 7.11b the corresponding cumulative errors, obtained

by summing up the relative errors of the stiffness (Left) and damping estimates (Right), are

given. It can be stressed that the overall errors in the stiffness estimation vary for p ≥ 100 in

a narrow band of about 1 - 2 [%] while the errors in the damping estimation show a stronger

dependence on the number of parameters and reach a constant error level for p ≥ 200.

The results of the load identification are illustrated in Fig. 7.12 where the AC function of

the actual load process, exciting the structure at the top floor, and the one calculated from

the estimated time series by means of the H-WEKF are compared. For comparison sake,
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the sample AC functions are calculated in all cases taking into account the first 5 [min.] of

the generated time series. It is encouraging to note, that even in the case p ≤ 50, where the

results of the parameter identification diverge, a good estimation is obtained. Comparing

the estimation of the peak value, in all cases a slight underestimation of the target standard

deviation is observed.

From these results the following conclusions can be drawn:

(i) The filter converge slower, with decreasing number of load coefficients and diverges, if

a too small number of parameters is chosen (here if p ≤ 50) .

(ii) The quality of the load identification is almost independent from the number of coef-

ficients.

(iii) The damping estimation results depend stronger on the number of coefficient and the

divergence of the filter is more prominent.

(iv) It is interesting to note, that the range p ≥ 200 where the total error is minimized,

coincides with the number of coefficients, required for a good approximation of both,

the variance of the process as well as the analytic PSD function. Below that value, the

variance of the process starts deviate from the target value, the AC function decreases

much quicker and the PSD function is evidently broader, respectively, than the analytic

functions.

That is, as a rule of thumb, the load process must be parameterized in such a way, that

the PSD function of the load process is approximated well. With the aim to confirm these

results, in the following example, the three story shear building subjected to wind gusts with

Kaŕmán velocity PSD is discussed.

7.1.5.2 CASE STUDY 2: Wind gusts with von Kármán velocity PSD

First, the actual load, exciting the structure at the top floor, is generated as in the previous

example, choosing a sampling interval of τ = 0.05 [s] leading to p = 240 coefficients to obtain

a high accuracy. However, for this sampling interval, the damping estimates converge slowly,

leading to a long iteration time of more than T > 25 [min]. Thus, using the result obtained

in section 7.1.5.1.1, the sample interval is increased in order to accelerate the convergence

of the filter, setting τ = 0.025 [s]. As shown in section 5.5.3, this leads to about p = 500

load coefficients, in order to generate the process with comparable accuracy. The remaining

parameters are set as before, choosing m = 50, ρ = 0.6, ∆η = 0.15.

In order to verify the results of the previous example, again different parameterization for
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Figure 7.13: Case study 2: Wind gusts with von Kármán velocity PSD function

the estimation of the process are used, reducing the number of coefficients successively,

choosing p = [500,400,300,200,100,50]. In order to illustrate the modeling accuracy for these

parameterizations, the resulting sample AC and PSD functions are depicted in Fig. 7.13a and
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(a) Relative estimation error for the stiffness (Top) and damping estimates (Bottom)
in dependence on the number of load coefficients.
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(b) Cumulative relative estimation errors including both, stiffness and damping es-
timates (Left), the error including the stiffness estimates (Center) and the error
including the damping estimates (Right), respectively, in dependence on the
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Figure 7.14: Case study 2: Wind gusts with von Kármán velocity PSD function

Fig. 7.13b, respectively, in dependence on the chosen number of coefficients. It is evident,

that for p ≥ 300, the PSD function is approximated well and the variance of the series starts

to deviate from the target value (σ = 2000 [N]) for p < 200. Thus, using the results from

the previous example, the H-WEKF should provide a good identification result, if the load

process is approximated using about p = 200 − 300 coefficients.

This assumption is now verified by applying the H-WEKF for the different parameterizations
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Figure 7.15: Case study 2: Comparison of the actual load process with Kármán velocity PSD (σ =
1938 [N]) exciting the structure at the top floor and the estimated AC functions by means
of the H-WEKF in dependence on the considered number of load coefficients p. In all cases,
a time series of 5 [min.] length (12000 samples) is taking into account for the calculation.

which initialized as before taking into account a measurement noise of 10 [%]. Again, with

decreasing model accuracy the convergence of the filter (here, especially of the damping

identification) is slower, and thus, successively, a longer measurement record of length T =

[5,5,5,7.5,7.5, > 25] [min.] is needed. Once again, a too small number of coefficients, here

if p ≤ 50, the damping estimates diverge. In all cases, the objective function θj is minimized

after just one iterations. The identification results are again compared in terms of the relative

estimation errors plotted in Fig. 7.14a and the resulting cumulative relative errors depicted

in Fig. 7.14b with respect to the chosen number of coefficients.

Both, the stiffness and damping identification results reach an almost constant error level

for p ≥ 50 and p ≥ 100, respectively, i.e. the mentioned divergence of the filter for p = 50

is just evident in the damping estimation. It is interesting to note, that a higher number

of coefficients, does not lead to an improvement of the identification results. This behavior

might be caused by an over-parameterization of the load process, that is by specifying 2p +

1 state variables in order to estimate the unmeasured load process. Consequently, with

increasing model order, a larger number of states must be estimated a priori in order to

initialize the model. Of course, the initialization of the load process can be done in a
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straight forward manner, as it just requires the generation of a set of Gaussian random

numbers, but nevertheless, the introduced initial error as well as the number of states which

must be updated at each time step, increases with increasing model order. Moreover, a

comparison of the AC functions of the estimated load process and the one of the actual

process exciting the structure shows, that the accuracy of the load identification is, as in the

previous example, again almost independent from the number of coefficients as illustrated

by Fig. 7.15. Even, the variances of the estimated time series are for the cases p ≤ 200 nearly

identical. This confirms, that due to the information gained from the measurement of the

system response, the load can be modeled using a much smaller number of coefficients.

All in all, it is encouraging to note, that indeed, the best result is obtained, for p = 200 −

300 confirming the assumptions, that the required number of coefficients coincides with

the number needed for an adequate approximation of the PSD function and the process’s

variance. This result is important also from a computational point of view, as, the resulting

number is in general evidently smaller than the one needed in order to approximate the AC

function with comparable accuracy.
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8 Conclusions and Outlook

In the present thesis a new extended Kalman filter-based algorithm for the parameter iden-

tification of structures excited by correlated random loads is proposed. Focus lies on the

stochastic excitation by wind turbulences and wind waves. In contrast to classical ambient

vibration identification techniques, which model the unmeasured load process as white noise

and thus are not applicable in case of non-white excitations, the proposed method takes

into account additional information about the second-order statistics of the load process,

e.g. obtained from measurements in the vicinity of the structure, and thus allows estimating

both, the unknown system parameters as well as the unmeasured load process.

The work was divided into two subparts, namely the characterization and modeling of such

loads and the identification of the modal parameters using output-only measurements of the

system response.

PART 1: Modeling of Stochastic Excitations

It is shown that wind turbulences and wind waves of the fully developed sea can be modeled

as stationary Gaussian random processes from the knowledge of the second order statistics.

A detailed comparison of the most important model spectra is given and their applicability

for wind and ocean engineering problems is discussed.

Then the-state-of-the-art on classical algorithms for the digital simulation of Gaussian ran-

dom processes is reviewed, among them the spectral representation method and digital filter

schemes either obtained from the spectral factorization of the PSD function or by means of

time series modeling using ARMA-based approaches. From the literature review it can be

summarized that at the state-of-the-art, the main limitations in the field of digital simulation

of correlated Gaussian loads are: i) the methods are not applicable to long memory processes

with power law decay; indeed, ii) if the load is long-correlated, time series models require

an infinite number of coefficients to properly simulate the inverse power-law decay; iii) the

number of coefficients p and q of time series models, such as ARMA models, cannot be pre-

dicted a priori and, increasing them, requires the recalculation of the whole set of coefficients;
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iv) this limitation is more severe from the computational time point of view in multivariate

and multidimensional cases; vi) efficient simulation methods, based on Karhunen-Loève or

Wavelet methods, cannot be rewritten in state space form needed to combine them with

the used identification algorithm; vii) analytic approaches such as the spectral factorization

method require that the PSD function is of rational form, which is not the case for the

discussed wind and wind wave model spectra.

It is shown that these short comings can be overcome, by the use of a recently introduced

method, called H-fractional spectral moment (H-FSM) decomposition. Due to its analytic

form, its implementation is straight forward and it is applicable to arbitrarily correlated

processes, without restriction to the functional form of the PSD function. This is illustrated

by applying the method to three processes of engineering interest, namely a process with

(i) exponential autocorrelation function and (ii) von Kármán power spectral density, which

are extensively used in wind engineering in order to model along wind turbulences, and (iii)

with Pierson Moskowitz power spectral density which is widely used in coastal engineering

applications for the description of wind induced waves. Furthermore, a list of the FSMs of

the discussed wind velocity and wind wave model spectra as well as the corresponding wind

load and wind wave load model spectra is provided.

It is shown that the accuracy of the simulation is directly related to the accuracy of the

numerical evaluation of the fractional integral operator involved. In [Cottone et al 2010d]

the use of the Grünwald-Letnikov (GL) series representation is proposed. It was shown that

this approximation leads to a discretization error depending on the chosen sampling interval

and a truncation error caused by the truncation of the infinite series after a finite number

of values, that is, by considering just the recent past of the process, instead of taking into

account the complete process’s memory. A sensitivity analysis revealed, that i) the accuracy

of the GL discretization strongly depends on the chosen sampling interval; ii) a too large

sampling interval (τ ≥ 0.025) leads to an erroneous variance of the generated time series; iii)

the sample AC function of the generated time series decays to fast if a too short memory

is chosen; iv) the required number of coefficients and thus, the efficiency of the algorithm,

increases inverse proportionally to the sampling interval and proportionally to the memory.

It is shown that the discretization error can be significantly decreased by the use of an alter-

native sampling scheme, the so-called centered GL discretization. The sensitivity analysis

revealed that the accuracy of the approximation is almost independent from the chosen sam-

pling interval and leads to a significant reduction of the discretization error, to be precise by

about about 55 [%] for short sampling intervals and about 80 [%] for large sampling inter-

vals of τ ≥ 0.1. Furthermore, due to the inverse proportional dependence of the number of

coefficients on the sampling interval, a significant improvement of the efficiency is archived

by the use of the proposed algorithm. Based on these properties, an efficient procedure for
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selecting the optimal number of model coefficients is developed.

Finally, a modified form of the H-FSM decomposition is proposed which makes the method

applicable for the modeling of long memory processes with unbounded variance. The mod-

ification is needed as the PSD function of long memory processes exhibits a characteristic

pole at zero frequency and thus causes the classical H-FSM to diverge. It must be stressed,

that the applicability to both, short and long memory processes, makes the method unique

among the classical digital filter schemes.

PART 2: Parameter Identification under Correlated Random Loads

The proposed identification algorithm is based on a modification of the classical extended

Kalman filter to arbitrarily correlated load processes. Thus, first the main characteristics of

the Kalman filter and its non-linear extension, the extended Kalman filter (EKF), needed

to solve the identification problem, are reviewed. In case of a stochastic excitation, it is a

common approach to run the EKF on a set of measurements and to represent the identi-

fication results by the sample mean and the corresponding sample deviation indicating the

estimation uncertainties. As this strategy is not appropriate if just a small number of mea-

surements is available, the use of the so-called weighted extended Kalman filter (W-EKF)

algorithm is proposed. It is based on a weighted global iteration procedure which i) improves

the accuracy of the identification, especially if the first guess of the unknown parameters is

poor; ii) is applicable even if just one measurement record is available; iii) allows assessing

the filter accuracy as well as indicates the divergence to erroneous identification results by

means of an objective function; and, as the filter convergences in general after a small num-

ber of iterations, iv) is more efficient.

In order to verify the implementation and stability of the method, it is applied to a three

story shear building excited at the top floor by a white noise process in order to estimate

the stiffness and damping parameters of the structure. A sensitivity analysis is undertaken

in order to investigate the dependence of the accuracy of the parameter identification on the

chosen initialization of the filter and the intensity of the measurement noise. It is observed,

that i) the filter provides stable estimates also in the presence of strong measurement noise

after just 2 - 5 iterations; whereat ii) the identification results converge faster with decreas-

ing measurement noise intensity and with increasing error covariance of the prior parameter

estimates; iii) in all cases, the stiffness parameters of the lumped model are estimated with

high accuracy while the damping parameters are estimated with satisfying accuracy. The

lower accuracy can be explained by the fact, that in the example considered here, the damp-

ing parameters have no significant effect on the modal frequencies and the observed system
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response. As the update of the parameters is based on the minimization of the error between

the obtained measurement and the predicted system’s response, it is in general difficult to

identify parameters whose estimation has almost no impact on the prediction error.

In case of non-white excitations such as wind turbulences or wind waves, the EKF filter as

well as the classical ambient vibrations identification techniques lead to poor estimation re-

sults as the white noise assumption is no longer justified. In order to solve the identification

problem under correlated loads a new extended Kalman filter-based algorithm is proposed

which allows the simultaneous estimation of the unknown structural parameters and the un-

measured load process by taking into account additional information about the second-order

statistics of the process, e.g. obtained by wind measurements in the vicinity of the structure.

The new filter is called H-fractional (weighted) extended Kalman filter as it combines the

(weighted) extended Kalman filter algorithm with the H-fractional spectral moment decom-

position needed for the modeling of the load process. Based on the latter a state space

representation of arbitrarily correlated load processes is derived in analytic form which nei-

ther requires the factorization of the PSD function nor any optimization procedure, but which

can be given immediately, once the H-fractional spectral moments of the transfer function

have been calculated. Augmenting the state space model of the dynamical system by the

obtained linear model of the load process, results in an overall linear system driven by white

noise once again to which standard tools as the Kalman filter based on linear system theory

for response analysis, optimization, and design of active control devices can be applied.

In order to verify the method, it is applied to a SDOF system to estimate the stiffness and

damping parameter using noisy measurement data of the system response. Three load cases

are discussed, namely wind turbulences with (i) exponential autocorrelation function and

(ii) von Kármán velocity power spectral density, respectively, as well as wind waves with (iii)

Pierson Moskowitz power spectral density function. First, the H-fractional EKF (H-EKF)

algorithm and the H-fractional W-EKF (H-WEKF) is run on the augmented state space

model. While in the former case a set of 20 measurements is used for the calculation of

the sample mean and covariance of the parameter estimates, the latter is run iteratively

using just a single sample of the system response until the objective function is minimized.

The identification results are compared with those obtained by the classical EKF where the

unmeasured load process is introduced as Gaussian white noise with equivalent standard

deviation. The following conclusions can be drawn: i) Both, the H-EKF and the H-WEKF

succeed in estimating the stiffness and damping parameter as well as the system’s excita-

tion with comparable high accuracy; ii) the H-WEKF requires just about three iterations

until the filter converges and thus is much more efficient than the H-EKF; iii) The classical

EKF leads in all three load cases to poor estimation results confirming the need of a more

advanced identification algorithm in case of non-white excitations.
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It must be stressed, that in case where the loading is characterized by a rational PSD

function, the standard spectral factorization method outperforms the H-WEKF from a com-

putational point of view as it leads to a state space representation of lower order. However,

the strength of the proposed method is its general applicability to arbitrary spectra and its

straight forward implementation.

In order to investigate the H-WEKF with respect to accuracy and efficiency in more detail,

the filter is applied for the identification of the stiffness and damping parameters of the

previously discussed three story shear building subjected at the top floor to exponentially

correlated wind gusts as well as wind turbulences with von Kármán velocity PSD function.

As the efficiency of the method strongly depends on the dimension of the state space model

describing the load process, two model reduction strategies are investigated: The first is the

reduction of the sampling interval using the fact, that the number of required load coefficients

p depends inverse proportionally on the sampling interval. As the state space model is of

order 2p+1, halving the sampling interval, increases the model order by a forth. The second

strategy is the less accurate modeling of the process. To this aim, a sensitivity analysis is

undertaken where the number of coefficients is first chosen in such a way that the second

order statistics are modeled with high accuracy and then the number is reduced successively

until the filter diverges. The obtained results can be summarized as follows: i) A larger

sampling interval leads to a slower convergence of the parameter identification which might

be problematic, if the required length of the measurement record exceeds a duration where

the stationarity of the signal becomes questionable; thus this strategy is not recommended;

ii) The parameter identification, especially the damping estimation converges slower with

decreasing model order and diverges if a too small number of coefficients is used; iii) The

best estimates are obtained in case that the number of coefficients was chosen such, that

the frequency content, i.e. the PSD function is modeled accurately. The latter is achieved

using just half as much coefficients needed for the modeling of the AC function with com-

parable accuracy1; iv) A very high number of coefficients does not necessarily lead to better

identification results. This might be caused by an over-parameterization of the load process,

that is by specifying 2p+ 1 variables in order to estimate the unmeasured load process; thus

with increasing model order, a larger number of states must be updated based on the infor-

mation obtained from the system response; v) A comparison of the sample AC functions of

the estimated load process and the one of the actual process exciting the structure reveals,

that the accuracy of the load identification is almost independent from the chosen number

of coefficients supporting the assumption above.

1Though, in order to avoid aliasing, the chosen sampling rate 1/τ should exceed the Nyquist–Shannon
criterion, i.e. 1/τ > 2fc, where fc is the cut-off frequency of the spectrum
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Summing up, the relevant properties of the proposed identification method are: i) it is

applicable for arbitrarily correlated loads, i.e. without any restriction to the functional form

of the PSD function; ii) it is efficient also in case of long-memory processes; iii) the coefficients

of the model for the process are known in analytical form and their number can be arbitrarily

increased to achieve higher accuracy without recalculation; iv) it can be efficiently combined

with the centered Grünwald-Letnikov discretization scheme leading to a significant increase

of the accuracy and efficiency of the method v) due to its analytic form, a general state space

representation can be derived, once the H-fractional spectral moments are calculated which

neither requires the spectral factorization of the PSD function nor any optimization scheme;

and thus vi) it can be efficiently combined with the (weighted) extended Kalman filter or

any other state-space model-based identification algorithm; vii) it allows estimating both,

the system parameters and the unmeasured system excitation.

Outlook

The present work focused on the dynamic excitation of structure by (i) stationary, (ii) uni-

variate, (iii) Gaussian random loads in the scope of parameter identification. While the

Gaussianity of the input process is a constraint resulting from the model assumptions of the

Kalman filter algorithm used for the parameter identification, the remaining assumptions are

simplification made in the modeling process. Using the results presented in [Cottone et al

2011; Cottone and Di Paola 2011], where the H-fractional spectral moment decomposition is

applied for the digital simulation of multivariate wind velocity fields, it is believed that the

proposed method is easily extensible to the identification problem of structures subjected to

multivariate loads.

Of course, the high dimensionality of the state space representation of the load process

might lead to computational difficulties in the multivariate case. The problem is linked to

the non-causality2 of the generated time series, which was caused by the neglect of the imag-

inary part of the transfer function in order to simplify the spectral factorization of the PSD

function (s. Eq. (5.12)). The problem of finding the causal transfer function remains to be

solved in further research. As the latter allows halving the number of load coefficients the

solution would lead to a significant reduction of the computational costs. Furthermore, in

earthquake engineering, the generation of causal time series is of great importance for the

modeling of the seismic ground motion as well as the description of the transition states of

the structural response. The problem might be solved by an approach found in [Dietrich

and Newsam 1997; Chan 1999], initially proposed for the digital simulation of stationary

2i.e. the dependence of the actual sample on both, past and future values of the weighted white noise process
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Gaussian processes. In order to factor the covariance matrix, its Toeplitz form is used to

embed it in a circulant matrix. It is shown, that the latter has some particular features3,

allowing a fast and efficient factorization of the covariance matrix by means of FFT. Noting

that the matrix transfer function H(γ) (5.31) is of Toeplitz form, the concept might be used

for its factorization H(γ) = h(γ)h∗(γ)T where h(γ) is the causal transfer matrix. Similar to

the non-casual transfer function H(ω) whose elements are linked to the FSMs of the process,

it is believed that the coefficients of the causal function h(γ) corresponds to an alternative

fractional integral operator leading to a modified set of FSMs.

Due to the time-domain formulation of the Kalman filter algorithm, non-stationary excita-

tions can be introduced by means of a time-variant state space model of the load process.

Using the concept of evolutionary spectra, the non-stationary load process {X(t)} is ob-

tained by multiplying a stationary process {Xs(t)} with given PSD function, by a determin-

istic modulation function f(t). That is, in order to introduce the non-stationary process in

the proposed method, first a state space representation of the stationary process {Xs(t)}

is derived, whose output is then multiplied by the modulation function. In future works,

the identification of the modulation function by means of the proposed method might be of

interest in the scope of load identification.

In the discussed examples, the error in the damping estimation was significantly higher than

in the stiffness estimation. It was argued that higher errors are caused by the small impact of

the damping on the structural response and thus, little information about the damping can

be extracted from the measurements. Of course, if the system is excited close to the eigenfre-

quency, then the damping has a significant influence on the system’s response. Thus in future

works a sensitivity analysis needs to be undertaken, in order to investigate the influence of

the frequency content of the systems excitation on the accuracy of the parameter estimation.

3e.g. the eigenvalues of the circulant matrix C is the FFT of any row from C, the eigenvectors of C are
independent from C and the modal matrix is an unitary matrix [Chan 1999]
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Annexe

A.1 Definitions

A.1.1 Characteristic function

The characteristic function (CF) provides an alternative form for giving a complete descrip-

tion of a probability distribution. It is defined as the Fourier transform of the probability

density function and is obtained from Eq. (2.3b), setting g(X) = eiωX , i.e.

φ(ω) = E [eiωX] = ∫

∞

−∞

eiωxp(x)dx (A.1)

where x ∈ R, i =
√
−1. An important feature of the CF is its moment-generation property,

which leads to the relation

∂φj(ω)

∂ωj
∣
ω=0

= ijE [Xj] (A.2)

That is, instead of calculating the moments of the random variable by evaluating the integral

(2.3b), they can be obtained directly from the CF by differentiating of the characteristic

function and evaluating the derivative at ω = 0 using the relation A.2. Finally, using the

Taylor series expansion of the CF, the following relation can be used for the reconstruction

of the CF from the knowledge of the integer moments (provided that they exists):

φ(ω) =
∞

∑
j=0

E [(iX)
j
]
xj

j!
(A.3)

It must be stressed that the integer moments might diverge, e.g. if the probability density

function is heavily tailed as it is the cases for the α-stable distribution. Thus the relation

(A.3) is not applicable to all types of density functions.



A.1 Definitions 177

A.1.2 Stationarity

Stationary processes are a special class of time series, which are based on the assumption that

the stochastic process {X(t)} is in a particular state of statistical equilibrium. In section

2.1.1 the stationarity of the second order statistics, denoted as wide sense stationarity, was

introduced. Clearly, the concept of second order stationarity can be extended to higher-

order moments, i.e. the process {X(t)} is said to be stationary up to order m if for any finite

collection of times t1 < t2... < tn the joint moments up to order m exists and are invariant

under time shift τ , i.e. for all positive integers m1,m2,..,mn where m1 +m2 + ... +mn ≤m, it

holds [Priestley 1981, ch. 3]

E [X(t1)
m1X(t2)

m2 ...X(tn)
mn] = E [X(t1 + τ)

m1X(t2 + τ)
m2 ...X(tn + τ)

mn] (A.4)

The most rigorous definition of stationarity is the definition in the strict sense: A process is

said to be strictly stationary if the stochastic properties of the time series are invariant under

time shift. That is, for any finite collection of times t1 < t2 < ... < tn the process {X(t)} can

be defined by the condition, that the finite set X(t1),X(t2),...,X(tn) and X(t1 + τ),X(t2 +

τ),...,X(tn + τ) of random variables from the process have the same joint distribution for an

arbitrary time shift τ [Box et al 2008], [Brockwell and Davis 2002], i.e.

F (x1, x2, . . . , xn; t1 + τ, t2 + τ, . . . , tn + τ) = F (x1, x2, . . . , xn; t1, t2, . . . , tn) (A.5)

That is, it must be kept in mind, that the knowledge of the time-invariance of the second or-

der moments does not provide any information on the finite dimensional distribution defined

(A.5), and thus, a stationary process in the wide sense may not be stationary in the strict

sense.

A.1.3 Ergodicity

A process is said to be mean ergodic, if it is mean-value stationary and the time average of

any realization j of the process converges to the expected value µ(t) = E[X(t)] as T →∞,

i.e.

µ(t) = lim
T→∞

1

T ∫
T /2

−T /2
Xj(t)dt = E[X(t)] (A.6a)
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Similarly a process is said to be ergodic in the second moment if it is second-moment sta-

tionary and the following identity holds

R(τ) = lim
T→∞

1

T ∫
T /2

−T /2
Xj(t + τ)Xj(t)dt = E[Xj(t + τ)Xj(t)] (A.6b)

It must be stressed that it is difficult to prove that a physical process is ergodic as there

will be never an infinite time series available in order to calculate the required cumulative

distribution function. For a detailed discussion on ergodicity see for instance [Lutes and

Sarkani 2004, p. 132ff].

A.1.4 Selected processes

A.1.4.1 Gaussian vector process

If a process is characterized by a set of random variables X(t1),X(t2),...,X(tn) which be-

long to the same probability space, then the sequence x = [X(t1),X(t2, . . . ,X(tn)] is a

n-dimensional random vector process with the following joint multidimensional normal dis-

tribution

f(x,t) = (2π)−n/2∣CX ∣−1 exp ((x − µ)TC−1
X (x − µ)T ) (A.7a)

where µ ∈ Rn, CX ∈ Rn×n denote the mean vector and covariance matrix of the sequence

X(t1),X(t2),...,X(tn) which are given by

µ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ(t1)

µ(t2)

. . .

µ(tn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; CX =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cx(t1,t1) Cx(t1,t2) . . . Cx(t1,tn)

Cx(t2,t1) Cx(t2,t2) . . . Cx(t2,tn)

. . . . . . . . . . . .

Cx(tn,t1) Cx(tn,t2) . . . Cx(tn,tn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.7b)

where the mean values µ(tk) and covariances Cx(tk,tj) are calculated by Eq. (2.5) and

Eq. (2.6), Thus, Gaussian processes are completely characterized by the statistics up to

the second order. Hence, the existence of a time invariant mean µ(t) and autocorrelation

function RX(τ) defined in Eq. (2.6) ensures the stationarity of the Gaussian process. That

is, in the Gaussian case, weak stationarity of the process also implies strict stationarity.
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A.1.4.2 Gaussian random fields

This section is based on the definitions given in [Di Paola 1998]. This paper gives an excel-

lent review on digital simulation techniques with application to wind velocity fields and is

recommended for further reading. A process which vary in space and in time can be modeled

as random field. Assume for instance a wind velocity field acting on a building. Then the

velocity at a certain point depends on the time t as well as on the coordinates (x, y, z) de-

scribing the location of the point P in space. Thus, the stochastic field velocity V (x, y, z; t)

can be expressed as one-variate four-dimensional (1V -4D) random field. Let P , P ′ denote

two locations in space, then the cross correlation (XC) function of the processes V (x,y,z; t)

and V (x′,y′,z′; t) is given by

RV (x, y, z,x
′, y′, z′; t,t′) = E[V (x, y, z; t)V (x′, y′, z′; t, t′)] (A.8a)

where E[⋅] denotes the expectation operator. In case the process is stationary and homo-

geneous, then the XC function depends solely on the time shift τ = t − t′ and the spatial

distance ξ = x − x′, η = y − y′ and ζ = z − z′, yielding

RV (ξ, η, ζ; τ) = E[V (x, y, z, ; t)V (x + ξ, y + η, z + ζ; t + τ)] (A.8b)

Alternatively, the process can be characterized in the frequency domain by the cross power

spectral density (XPSD) function obtained by a four folded Fourier Transform, i.e.

SY (k1,k2,k3;ω) =
1

(2π)4 ∫

∞

−∞

..∫
∞

−∞

RV (ξ, η, ζ; τ)e−i(ξk1+ηk2+ζk3+ωτ)dξdηdζdτ (A.8c)

where k1, k2 and k3 are wave numbers. If the random field depends only on the absolute

value of the distance between ξ, η and ζ, then the field is said to be isotropic. It must be

stressed, that a wind velocity field is in general dependent on the height z and thus not

homogeneous.

Alternatively, the velocity field can be discretized and characterized by the field velocities

in a finite number of n points. In this case the field reduces to a discretized n-variate one-

dimensional (nV -1D) stochastic vector process where the components of the n-dimensional

zero-mean vector {V(t)} = [V1(t), V2(t), . . . , Vn(t)] describe the along wind processes acting

on n locations of the structure at time t. The zero-mean stationary Gaussian nV -1D stochas-

tic vector field is completely characterized by the XC and corresponding XPSD matrices of
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Figure A.1: System’s bandpass and band-limited white noise [Maybeck 1979]

the components given by

RV (τ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R11(τ) R12(τ) . . . R1n(τ)

R21(τ) R22(τ) . . . R2n(τ)

. . . . . . . . . . . .

Rn1(τ) Rn2(τ) . . . Rnn(τ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; SV (ω) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S11(ω) S12(ω) . . . S1n(ω)

S21(ω) S22(ω) . . . S2n(ω)

. . . . . . . . . . . .

Sn1(ω) Sn2(ω) . . . Snn(ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.9a)

where Sij(ω) is the Fourier Transform of the cross correlation function Rij(τ). They are

given by

Rij(τ) = ∫
∞

−∞

Vi(t + τ)Vj(t)dτ (A.9b)

Sij(ω) =
1

2π ∫
∞

−∞

Rij(τ)e
−iωτdτ (A.9c)

A.1.4.3 White noise process

A stationary random process with constant PSD function SW (ω) is defined as white noise

process {W (t)}. Its name originated from optics where light with constant power spectral

density over all visible frequencies is denoted as white light. Whiteness implies that the

process is uncorrelated, i.e. its autocorrelation function (AC) is described by the dirac delta

function δ(t), being infinite at time lag τ = 0 and zero elsewhere. Consequently, the white

noise signal is unpredictable as the information about values at past instants of time does

not provide any information on the values of the process at future time steps. If the random

variables W (tj), W (tk) are not only uncorrelated for every time instant tj and tj ≠ tk but

additionally independent, then {W (t)} is called a strictly white noise process.

From a physical point of view, in nature the white noise process does not exist as the constant

PSD leads to a process with infinite variance corresponding to an unbounded, infinite fast

varying signal. However, the white noise assumption is often justified for two reasons: Firstly,

each system is characterized by its frequency bandpass, that is the frequency range in which

the system is excitable. Outside this frequency band the system response is insignificant in
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Figure A.2: PSD and AC function of the white noise process (dashed) and band-limited counterpart (line)

the overall system response. Secondly, many input processes can be characterized as band-

limited white noise, e.g. the PSD is flat within the system bandpass and vanishes above a

certain frequency ω0 as illustrated in Fig. A.1 [Maybeck 1979, p. 7ff.]. The PSD and AC

function of the white noise is depicted in Fig. A.2. It must be noted that RWb(τ) is zero

for τ = kπ/ω0 and k ∈ N>0. Consequently, if the underlying process is discretized choosing

ts = π/ω0 an uncorrelated set of random variables is obtained. In order to make use of this

simplification, band-limited input processes are often approximated as white band-limited

and assumed to be uncorrelated [Brown and Hwang 1997, p. 92ff.].

The so-called white noise sequence refers to a discretized white noise process with zero

mean and AC function RW (τ) = E[WkWj] = qtsδkj. The elements of the sequence are

mutually uncorrelated and can be generated as Gaussian random numbers with zero mean

and standard deviation σ2 = qts There exists other non-Gaussian white noise processes, such

as the Poisson or the Lévy white noise process, but which won’t be treated throughout the

thesis.

A.1.4.4 Brownian motion

Brownian motion is a physical phenomenon, first observed experimentally by Robert Brown

in 1827, describing the random movement of microscopic particles suspended in a liquid or

gas caused e.g. by other particles hitting it or by an external force. Assuming that the parti-

cle position at time t = 0 is Y0, then its position at time n is given as Yn = Y0+∑
n
i=1Xi, where

the displacements X1,X2,X3, . . . are modeled as independent and identical distributed ran-

dom variables. Such a process is also known as random walk process which approaches a

Brownian motion in distribution as the time step τ → 0. Wiener proofed that the path of

Brownian particle is almost everywhere continuous but nowhere differentiable is almost every-

where continuous but nowhere differentiable. That is the Brownian motion {B(t)} describes

the macroscopic characteristics of a random walk with sufficiently small jumps to become
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negligible in the macroscopic picture, such that the sample path is continuous. It has the

following properties [Mörters and Peres 2010, p. 1-2]

� for all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the increments B(tn) − B(tn−1), B(tn−1) − B(tn−2),

etc. are independent,

� the increments are stationary, that is, the probability distribution of the increment

∆B = B(t + τ) −B(t) is time-invariant, e.g. independent from t

� the process {B(t)}, t ≥ 0 has almost surely1 continuous paths.

Consequently, using the central limit theorem it can be shown that these properties imply

that for every t ≥ 0 and τ ≥ 0 the increment process ∆B(t) is normally distributed with

E[∆B(t)] = µτ (A.10a)

E[∆B(t)2] = σ2τ (A.10b)

The process is characterized by three values, the drift µ, the diffusion σ and the initial

probability distribution of B(0) and thus is denoted as Brownian motion with drift µ and

diffusion σ. The standard Brownian motion process refers to the special case where µ = 0

and σ2 = 1 and which starts from zero, i.e. B(0) = 0. Introducing t = 0 and τ = t in the

definitions Eq. (A.10), it follows that not only the increments are Gaussian distributed but

also the Brownian motion process is Gaussian with

E[B(t)] = µt (A.11a)

E[B(t)2] = σ2t (A.11b)

Moreover suppose that s < t and using that the increment B(t) −B(s) is of zero mean and

is independent of B(s), and B(s) has variance σ2s, then the correlation of B(t) and B(s)

is given by

RB(t,s) = E[B(t)B(s)] = E[(B(t) −B(s))B(s)] +E[B(s)2] = σ2s

In the general case for any t and s, the autocorrelation can be expressed as

RB(t,s) =
σ2

2
(∣t∣ + ∣s∣ − ∣t − s∣) = σ2 min(t,s) (A.11c)

These properties lead to the following recursive generation procedure

1that is, with probability 1
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Figure A.3: 20 samples of the Brownian motion process B(t) for B(0) = 0, µ = 0, τ = 0.05 [s]

B(t + 1) = B(t) +∆B(t) = B(t) +
√
τG(t) (A.12)

where G(t) is a realization of the Gaussian white noise process WN(0,1). Fig. (A.3) depicts

20 samples of the process choosing τ = 0.05 and µ = 0. In agreement with Eq. (A.11) the

process is non-stationary with linearly increasing variance. A process {X(t)} is said to be

mean square differentiable if the limit Ẋ(t) ≈ limτ→0(X(t+τ)−X(t))/τ used to describe the

mean square of the approximated derivative {Ẋ} exists.

In case of the Brownian motion B(t)

E [
B(t + τ) −B(t)

τ
] = 0 (A.13a)

E [(
B(t + τ) −B(t)

τ
)

2

] =
σ2

τ
(A.13b)

the mean value (A.13a) of the difference approximation approaches zero as τ → 0 and the

mean square derivative (A.13b) becomes infinite, proofing that the Brownian motion is non-

differential almost surely. However, interpreting the time derivative of the Brownian motion

in a distributional sense, such that limτ→0 1/τ = δ(t), it can be thought of as a δ-correlated

stationary, Gaussian process with zero mean zero and covariance

E[Ḃ(t)Ḃ(s)] = σ2δ(t − s) (A.13c)

which are exactly the characteristics of a Gaussian white noise process. This leads to the

formal definition

B(t) −B(0)
def
= ∫

t

0
W (s)ds; or equivalently W (t)

def
=

d

dt
B(t) (A.14)
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relating the Brownian motion and the Gaussian white noise process which is of great impor-

tance for the solution of stochastic differential equations. A mathematical derivation can be

found for instance in [Maybeck 1979, p. 147ff].

B.1 Digital Simulation of Ambient Loads

B.1.1 Iterative derivation of the ARMA coefficients

A weakly univariate stationary process {Ft} with given AC function RF (τ) is said to be an

ARMA(p,q) series with autoregressive order p ≥ 0 and moving-average order q ≥ 0, if it is

the solution of the following discrete difference equation1

Fk − a1Fk−1 − . . . − apFt−p =Wk − b1Wk−1 − . . . − bqWk−q (B.1)

where {Wt} is a sample of a zero mean Gaussian white noise sequence with variance σ2
W

(compare Eq. (2.11)). The coefficients of the ARMA(p,q) model can be estimated on basis

of Eq. (3.13) from the empirical covariances known from measurements of the load process.

Assuming that n = 0,1, . . . ,N − 1 samples of the process Ft = [F0, F1, . . . , FN−1] are known,

the AC function is estimated by

R̂F (k) =
1

N

N−1−∣k∣

∑
n=0

FnFn+∣k∣ (B.2)

and introduced in Eq. (3.16), leading to

p

∑
n=0

anR̂F (k − n) = ε(n), k > q (B.3)

where ε(n) refers to the error introduced by the estimation of the AC function. Rewriting

this result in the linear least square problem

R̂F (k) =
p

∑
n=1

anR̂F (k − n) = ε(n), k > q (B.4)

Estimating the AC functions for lags n = 0,1, . . . ,M (and M ≤ N − 1), then the linear

least square estimate (LSE) of the p AR coefficients of the ARMA model are obtained by

1It must be noted that in literature, e.g. [Box et al 2008], the ARMA series is sometimes defined using
negative signs before the moving-average coefficients
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minimizing [Kay 1993, p. 266ff.]

J =
M

∑
n=q+1

[R̂F (n) − (

p

∑
n=1

anR̂F (k − n))]

2

= (x −Ha)T (x −Ha) (B.5)

where

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R̂F (q + 1)

R̂F (q + 2)

. . .

R̂F (M)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, a =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1

a2

. . .

ap

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R̂F (q) R̂F (q − 1) . . . R̂F (q − p + 1)

R̂F (q + 1) R̂F (q) . . . R̂F (q − p + 2)

. . . . . . . . . . . .

R̂F (M − 1) R̂F (M − 2) . . . R̂F (M − p)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.6)

Here M should not be chosen too high, as for higher lags the number of averages considered

in the estimation of the AC function, reduces to N − k (compare Eq. B.2). Consequently,

the AC estimate is less reliable with increasing lag k. The estimated autoregressive param-

eters a1, a2, . . . , ap can now be used for the estimation of the moving average coefficients

b1, b2, . . . , bq and the variance of the white noise sequence σ2
W following an approach given

in [Box et al 2008, p, 226ff.]. Unlike the modified Yule-Walker equations which are linear

in the AR coefficients, the estimation of the MA parameters leads to an nonlinear problem

which must be solved iteratively as shown in the following.

The ARMA(p,q) process in Eq. (3.9) might be thought of as pth order AR process

a(L)Ft = et (B.7)

where the disturbance et follows a q order MA process

et = b(L)wt (B.8)

The latter can be expressed in terms of the estimated AR coefficients as

et = Ft − a1Ft−1 − a2Ft−2 − . . . − apFt−p (B.9)

The autocorrelation function Re(k) = E[et−ket] of the series Eq. (B.9) satisfies

Re(k) =
p

∑
j=0

a2
jRF (k) +

p

∑
j=1

(a0aj + a1aj+1 + . . . + ap−jap)(RF (k + j) +RF (k − j)) (B.10)
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for j = 0,1, . . . , q, a0 = −1 and RF (k) approximated by Eq. (B.4). Similarly, the autocorrela-

tion can be expressed using Eq. (B.8) by

Re(k) = E[b(L)at−kb(L)at] = (−bk+b1bk+1+b2bk+2+. . .+bq−kbq)σ
2
W , k = 1,2, . . . , q (B.11)

where b0 = 1 and Re(k) = 0 for n > q. Equalizing of the two equations yields the estimates of

the parameters σ2
W and the coefficients bq, bq−1, . . . , b1 using the iteration

σ2
W =

Re(0)

1 + b2
1 + . . . + b

2
q

(B.12)

bk = −(
Re(k)

σ2
W

− b1bk+1 − b2bk+2 − . . . − bq−kbq) (B.13)

For instance, in case q = 2, this leads to

σ2
W
(i)

=
Re(0)

1 + b2
1
(i−1)

+ b2
2
(i−1)

; b
(i)
2 = −

Re(2)

σ2
W
(i)

; b
(i)
1 = −

⎛

⎝

Re(1)

σ2
W
(i)

− b
(i−1)
1 b

(i)
2

⎞

⎠
(B.14)

where (i) denotes the iteration step. The procedure is initialized, setting b0
1 = b0

2 = . . . =

b0
q = 0. The parameters are calculated iteratively starting with the variance σ

(i)
W and the

qth coefficient b
(i)
q . The remaining parameters bq−1, bq−2, . . . , b1 are calculated subsequently

in decreasing order, using the most up to date values available. It can be shown, that the

method converges linearly to the model parameters. To improve the rate of convergence, the

Newton-Raphson method, which has quadratic convergence, can be used, as shown in [Box

et al 2008, p. 226ff.].

B.1.2 Fractional spectral moments

B.1.2.1 Wind velocity spectra

In the following the FSMs Λ(γ) (5.5) of the model wind velocity PSD functions Su(ω) =

1/2Gu(ω) discussed in section 2.2.2.4 are listed which can be used to reconstruct the PSD and

AC function by the relation (5.11). Furthermore, the H-FSMs (5.14) of the transfer function

are given which can be used for the reconstruction of the latter and the corresponding non-

causal unit response function defined in Eq. (5.16) as well as the simulation of a realization

of the velocity fluctuations by means of Eq. (5.31).
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B.1.2.1.1 Kaimal (2.30)

Λ(γ) =
aL(bL)−2−γŪ1+γ

z σ2Γ (−1
3 − γ)Γ(2 + γ)

Γ (5
3
)

; −2 < Reγ < −
1

3
(B.15a)

ΠH(γ) =
2
√
π ( bL

Ūz
)
−

3
2
−γ

√
aLσ2

qŪz
Γ (−2

3 − γ)Γ (3
2 + γ)

Γ (5
6
)

; −
3

2
< Reγ < −

2

3
(B.15b)

B.1.2.1.2 Simiu (2.32)

Λ(γ) =
2Ū1+γ

z zλ(zλ)−2−γσ2Γ (−1
3 − γ)Γ(2 + γ)

3Γ (5
3
)

− 2 < Reγ < −
1

3
(B.16a)

ΠH(γ) =
2
√

2π
3
( Ūz
zλ

)
3
2
+γ √ zλσ2

qŪz
Γ (−2

3 − γ)Γ (3
2 + γ)

Γ (5
6
)

; −
3

2
< Reγ < −

2

3
(B.16b)

B.1.2.1.3 Davenport (2.36)

Λ̃(γ) =
Ū1+γ

10 σ2Γ (−1
6 −

γ
2
)Γ (

3+γ
2

)

3L1+γΓ (4
3
)

; −3 < Reγ < −
1

3
(B.17a)

Π̃H(γ) = −

√
2
3π

3/2
√

1
q (

Ū10

L )
1+γ

σΓ (1 + γ
2
)

Γ (2
3
)Γ (4

3 +
γ
2
) sin (1

6π(2 + 3γ))
; −2 < Reγ < −

2

3
(B.17b)

B.1.2.1.4 Harris (2.37)

Λ̃(γ) =
2

1
6
+
γ
2L ( L

Ū10
)
−2−γ

σ2Γ (−1
6 −

γ
2
)Γ (1 + γ

2
)

3Ū10Γ (5
6
)

; −2Reγ < −
1

3
(B.18a)

Π̃H(γ) =
2

5
6
+
γ
2

√
π
3 ( L

Ū10
)
−

3
2
−γ √

L
qŪ10

σΓ (−1
3 −

γ
2
)Γ (3

4 +
γ
2
)

Γ ( 5
12
)

; −
3

2
< Reγ < −

2

3
(B.18b)

B.1.2.1.5 Kareem (2.38)

Λ(γ) =
Bz (Cz

Ūz
)
−2−γ

σ2Γ (−1
3 − γ)Γ(2 + γ)

ŪzΓ (5
3
)

; −2 < Reγ < −
1

3
(B.19a)

ΠH(γ) =
2
√
πŪ1+γ

z (Cz)−
3
2
−γ

√
Bz
q σΓ (−2

3 − γ)Γ (3
2 + γ)

Γ (5
6
)

; −
3

2
< Reγ < −

2

3
(B.19b)
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B.1.2.2 Wind load spectra

The PSD function SF (f) of the wind load is determined by means of the aerodynamic

admittance function χ2
a(z,f) given here for a rectangular structure with surface A and the

two-sided model wind velocity PSD function Su(f) = 1/2Gu(f) discussed in section 2.2.2.4,

yielding

SF (f) =D∣χa(z; f)∣2Su(f); χa(z; f) =
1

1 + (
2f
√

A
Ūz

)
4/3

where D = (ρaACdŪz)2. The following H-FSMs (5.14) of the transfer function can be used

for the reconstruction of the latter and the corresponding non-causal unit response function

defined in Eq. (5.16) as well as the simulation of a realization of the wind load fluctuations

by means of Eq. (5.31).

B.1.2.2.1 Kaimal (2.30)

ΠH(γ) =
3

∑
k=1

a1,kC1,k(γ) +
2

∑
k=1

a2,kC2,k(γ) +
2

∑
k=1

a3,kC3,k(γ); −
3

2
< Reγ (B.20a)

where

ck =
8k − 6γ

24
; bk =

11 + 6k

24

a1,k =
(−1)k−1Ūγ

zK

2
4k
3
−

1
2A

2k
3 (bL)

3
2
−

4k
3
+γ

C1,k(γ) =
5F4 [{1, ck −

1
6 , ck +

1
12 , ck +

1
3 , ck +

7
12
} ,{ck −

1
8 , ck +

1
8 , ck +

3
8 , ck +

5
8
} , − ( bL

2
√

A
)

4
)

Γ (5
6
) (Γ(−2

3 + 4ck)Γ(3
2 − 4ck))

−1 ;

a2,k =
55πŪγ

z (bL)1+kK

28+2k+γ32k−1171−kA
1
4
(5+2k+2γ)

C2,k(γ) =
4F3 [{bk, bk +

1
4 , bk +

1
2 , bk +

3
4
} ,{2bk −

2
3 , bk +

13
24 , bk +

19
24
} , − ( bL

2
√

A
)

4
]

sin (
π(1+2γ(−1)k)

8 ) sin (
π(5−6γ(−1)k)

24 ) cos (π(1−6γ(−1)k)
24 )

;

a3,k =
−32−k5k−1K(−bL)k−1πŪγ

z

23+2k+γA
1
4
(1+2k+2γ)

C3,k(γ) =
4F3 [{bk −

1
2 ,2bk −

23
24 ,

17
24 , bk +

1
4
} ,{bk −

11
24 , bk −

5
24 ,2bk −

2
3
} , − ( bL

2
√

A
)

4
]

sin (
π(1−6γ(−1)k)

24 ) cos (π(1+2γ(−1)k)
8 ) cos (π(5−6γ(−1)k)

24 )
(B.20b)
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where pFq[a1,...ap; b1,...bq; z] is the generalized hypergeometric function and where a = 6.8,

b = 10.2, K = Ūzσ
√

2πaDL/qW and where z < 200 [m].

B.1.2.2.2 Simiu (2.32)

Introducing a = b = z, L = λ = 50 [m], K = Ūzσ
√

4πzDλ
3q in Eq. (B.20b), provides the H-FSMs

of the wind loads with Kaimal velocity spectrum in the form

ΠH(γ) =
3

∑
k=1

a1,kC1,k(γ) +
2

∑
k=1

a2,kC2,k(γ) +
2

∑
k=1

a3,kC3,k(γ); −
3

2
< Reγ <

2

3
(B.21)

where z < 50 [m].

B.1.2.2.3 Davenport (2.36)

ΠH(γ) =K (C1(γ) +C2(γ)) ; −2 < Reγ (B.22a)

where

ak =
k

3
−
γ

4
;

C1(γ) =
3

∑
k=1

Γ (
6ak−1

3
)Γ(1 − 2ak)3F2 [{1, − 1

6 + ak,
1
3 + ak} ,{ak,

1
2 + ak} , − ( ŪzL

2
√

AŪ10
)

4
]

(−1)1−kŪ−γ
z (LŪz

Ū10
)

1−4ak
(4A)

2k
3 Γ (2

3
)

C2(γ) =
−3πLŪ1+γ

z sin(
3πγ

4 − 2
3arccot((2

√

AŪ10

LŪz
)

2
))

2
2
3
+γŪ10 (16 + ( ŪzL

√

AŪ10
)

4
)

1
3

A1+ γ
2 sin (

3πγ
2

)

(B.22b)

where L ≈ 1200 [m] and K = uσ
√

2πD
3qW

.

B.1.2.2.4 Harris (2.37)

ΠH(γ) =K1 (C1(γ) +C2(γ)) ; −
3

2
< Reγ (B.23a)

where

ak =
k

3
−
γ

4
;
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C1(γ) =
3

∑
k=1

Γ [2ak −
1
3
]Γ [3

4 − 2ak] 3F2 [{1,ak −
1
6 ,ak +

1
3
} ,{ak +

1
8 ,ak +

5
8
} , − ( LŪz

√

8AŪ10
)

4
]

(−1)1−kŪ−γ
z 22k− 1

3
−
γ
2 (LŪz

Ū10
)

1−4ak
A

2k
3 Γ [ 5

12
]

C2(γ) =

√
L

Ū10

3πŪ
1
2
+γ

z (1 + i)(−1)7/8e
3iπγ

4 ((1 + i)e
3iπγ

2 K
5/12
2 +

√
2(K∗

2 )
5/12)

2
5
3
+γA

3
4
+
γ
2 (64 + ( LŪz

√

AŪ10
)

4
)

5/24

(i + e3iπγ) (K2K∗

2 )
5/24

K2 = −i(Lu)
2 + 8AŪ2

10 (B.23b)

where ∗ denotes conjugate complex, L ≈ 1800 [m] and K1 = uσ
√

2πD
3qW

.

B.1.2.2.5 Kareem (2.38)

Introducing a = B, b = C, L = z in Eq. (B.20b), provides the H-FSMs of the wind loads with

Kareem velocity spectrum in the form

ΠH(γ) =
3

∑
k=1

a1,kC1,k(γ) +
2

∑
k=1

a2,kC2,k(γ) +
2

∑
k=1

a3,kC3,k(γ); −
3

2
< Reγ (B.24)

B.1.2.3 Wind wave spectra

In the following the FSMs Λ(γ) (5.5) of the model wave PSD functions Su(ω) = 1/2Gu(ω)

discussed in section 2.3.5 are listed which can be used to reconstruct the PSD and AC

function by the relation (5.11). Furthermore, the H-FSMs (5.14) of the transfer function are

given which can be used for the reconstruction of the latter and the corresponding non-causal

unit response function defined in Eq. (5.16) as well as the simulation of a realization of the

velocity fluctuations by means of Eq. (5.31).

B.1.2.3.1 Generic PSD function (2.47)

Λ(γ) =
AB

1−p+γ
q Γ (

−1+p−γ
q )

q
; p > 1 +Reγ (B.25a)

ΠH(γ) =
2
−2+p+2q−2γ

2q B
2−p+2γ

2q
√
π
√

A
qW

Γ (
p−2(1+γ)

2q )

q
; Reγ < 2 ∩ p > 2 + 2Reγ (B.25b)
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Finally the FSMs of the discussed model spectra are obtained by introducing the following

parameters:

Neumann: p = 6; q = 2; A =
Cπ

2
; B =

2g2

Ū2
7.5

Bretschneider: p = 5; q = 4; A = 0.1687H2
sω

4
s ; B = 0.675ω4

s

Pierson-Moskowitz: p = 5; q = 4; A = 0.0081g2; B = 0.74(
g

Ū19.5

)
4

(B.26)

B.1.2.4 Wind-wave load spectra

The PSD function SF (f) of the wind wave load acting on a vertical pile is obtained from

the following relation (2.65b)

SF (z;ω) = 1/2 (K1 +K
2
mω

2) ∣H(ω,z)∣
2
G(ω) (B.27a)

using the one-sided model spectra G(ω) of the surface evaluation discussed in section 2.3.6.

The transfer function H(ω,z) and the coefficients K1 are given by

H(ω,z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ω cosh[k(z + h)]

sinh[kh]
;

h

λ
≥

1

2
(finite depth)

ω exp(kz);
h

λ
≤

1

20
(deep water)

(B.27b)

K1 =
8

π
K2
dσ

2
u; K2 =K

2
m (B.27c)

The following H-FSMs (5.14) of the transfer function can be used for the reconstruction

of the latter and the corresponding non-causal unit response function defined in Eq. (5.16)

as well as the simulation of a realization of the wind wave load fluctuations by means of

Eq. (5.31).

B.1.2.4.1 Neumann (2.48)

ΠH(γ) = C(γ) (−
√

4πB
(γ−1)

2 Γ(
1 − γ

2
) 1F1 [−

1

2
,
1 + γ

2
,
BK2

m

2K1

] +

+ (
2K1

K2
m

)

γ−1
2

Γ(
γ − 1

2
)Γ(−

γ

2
) 1F1 [−

γ

2
,

3

2
−
γ

2
,
BK2

m

2K1

]) ; Reγ < 0
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where

C(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2−
γ
2

√
AK1

2qw

cosh(k(h + z))

sinh(hk)
;

h

λ
≥

1

2
(finite depth)

−2−
γ
2

√
AK1

2qw
exp(kz);

h

λ
≤

1

20
(deep water)

(B.28a)

B.1.2.4.2 Brettschneider (2.49) and Pierson Moskowitz (2.50)

ΠH(γ) = C(γ)(

√
16πΓ(c)

Bc 2F2 [{−
1

4
,
1

4
} ,{

1

2
,1 − c} , −

BK4
m

2K2
1

] +

+
K2
mB

1
2
−c
√

2πΓ (c − 1
2
)

K1
2F2 [{

1

4
,
3

4
} ,{

3

2
,
3

2
− c} , −

BK4
m

2K2
1

] −

−
Γ (2c − 1

2
)Γ[−2c]

2c−2 ( K1

K2
m
)

2c 2F2 [{c −
1

4
,
1

4
+ c} ,{

1

2
+ c,1 + c} , −

BK4
m

2K2
1

]

⎞
⎟
⎟
⎠

where Reγ < −1/2, c = 1/8 + γ/4 and

C1(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
AK1
qW

cosh(k(h + z))

23−c sinh(hk)
;

h

λ
≥

1

2
(finite depth)

√
AK1
qW

exp(kz)

23−c
;

h

λ
≤

1

20
(deep water)

(B.29a)

The coefficients A, B are summarized in Eq. (B.26).
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C.1 Kalman Filter

In the following an alternative derivation of the Kalman filter equations is summarized which

is based on a least square approach.

C.1.1 Least square approach to the Kalman filter

The algorithm is characterized by an iterative prediction-correction structure as shown in

Fig. (6.2). In the prediction step (6.3) a time update of the current state and error covariance

matrix xk, Σxx,k based on the observation data Zk = [zk,zk−1, . . . ,z1] up to time k is taken in

order to obtain a prior estimate of the process state and its associated error covariance matrix

x̂k+1∣k, Σxx,k+1∣k at the next time step. The prior state estimate is denoted as prediction and

is defined by the expectation of the state at time k + 1 conditioned on the observations up

to time k, yielding

x̂k+1∣k = E[xk+1∣Zk]

= E[Akxk +Bkuk +Gkwk∣Zk]

= AkE[xk∣Zk] +Bk[uk∣Zk] +Gk[wk∣Zk] (C.1a)

Using the fact, that the process noise is of zero mean and the input is independent of the

past observations, finally the prediction is given by an undisturbed system equation

= Akx̂k,k +Bkuk (C.1b)

where x̂k,k is the posterior estimate known from the previous time step. The corresponding

covariance results from the prediction error

ex,k+1∣k = x̃k+1∣k − x̂k+1 = Ak(x̃k − x̂k∣k) +Bk(ũk − uk) +Gk(w̃k −wk) (C.2)

Σxx,k+1∣k = E [ex,k+1∣ke
T
x,k+1∣k] = AkΣxx,k∣kA

T
k +BkΣuu,kB

T
k +GkQkG

T
k (C.3)

where the tilde indicates the true, undisturbed state.

In the correction step (6.4-6.5) the new measurement zk+1 is used to correct the predicted

state and covariance dependent on all available information up to time k in order to find the

posterior (optimal) state estimate and covariance x̂k+1∣k+1, Σxx,k+1∣k+1 at time k+1. Assuming

that the posterior estimate can be expressed as linear weighted sum of the prediction and
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the new observation, then it holds

x̂k+1∣k+1 = K′

k+1x̂k+1∣k +Kk+1zk+1 (C.4)

where K′

k+1, Kk+1 are weighting matrices, sometimes also denoted as gain matrices and which

are determined in the following. The estimation error between the posterior estimate and

the true value x̃k+1∣k+1

ex,k+1∣k+1 = x̃k+1∣k+1 − x̂k+1∣k+1 (C.5a)

is a measure for the quality of the estimation. Furthermore, in order to obtain an unbiased

estimate, the conditional expectation of the estimation error must vanish, i.e.

E[ex,k+1∣k+1] = E[ex,k+1∣Zk+1] = E[x̃k+1∣Zk+1] −E[x̂k+1∣Zk+1] ≡ 0 (C.5b)

and consequently, the identity E[x̃k+1∣Zk+1] = E[x̂k+1∣Zk+1] must hold. Introducing Eq. (6.1b)

in Eq. (C.4) and taking the expectation, yields

E[x̂k+1∣Zk+1] = E[K′

k+1x̂k+1∣k +Kk+1Ckx̃k+1 +Kk+1vk]∣Zk+1]

= K′

k+1E[x̂k+1∣k∣Zk+1] +Kk+1CkE[x̃k+1∣Zk+1] (C.6a)

Using the assumption that the estimate of the previous x̂k∣k time step is unbiased, i.e.

E [x̃k∣Zk] = E [x̂k∣Zk], it follows

E[x̂k+1∣k∣Zk+1] = E[Akx̂k∣k +Bkuk +Gkwk∣Zk+1]

= E[Akx̃k +Bkuk +Gkwk∣Zk+1]

= E[x̃k+1∣Zk+1] (C.6b)

and Eq. (C.6a) reduces to

E [x̂k+1∣Zk+1] = (K′

k+1 +Kk+1Ck)E [x̃k+1∣Zk+1] (C.6c)

The condition C.5b that the optimal estimate is unbiased, i.e. E [x̂k+1∣Zk+1] = E [x̃k+1∣Zk+1],

requires that the following relation holds

K′

k+1 = (I −Kk+1Ck) (C.6d)
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Introducing this relation in Eq. (C.4) finally yields the sought optimal posterior state estimate

in the form

x̂k+1∣k+1 = (I −Kk+1Ck)x̂k+1∣k +Kk+1zk+1

= x̂k+1∣k +Kk+1 (zk+1 −Ckx̂k+1∣k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

innovation

(C.7)

where Kk+1 is the so-called Kalman gain matrix. The term in brackets is called residual

as it describes the difference between the actual measurement zk+1 and the predicted mea-

surement Ckx̂k+1∣k, which is the likeliest observation for the given prior state estimate. In

the correction step, the residual is weighted by the Kalman gain matrix and used to correct

the prior state estimate. Thus, the residual is often denoted as innovation as the difference

can be interpreted as the part of the measurement that contains new information about the

state.

The quality of the posterior estimate is reflected in the corresponding posterior error covari-

ance Σxx,k+1∣k+1 of the prediction error ex,k+1∣k+1, which describes the discrepancy between the

true state x̃k+1∣k+1 and the posterior estimate x̂k+1∣k+1. Substituting x̂k+1∣k+1 by the relation

(C.7) and the measurement zk+1 by the Eq. (6.1b), the posterior estimation error defined in

Eq. (C.5a) can be rewritten in the form

ex,k+1∣k+1 = (I −Kk+1Ck)(x̃k+1∣k+1 − x̂k+1∣k) +Kk+1vk+1 (C.8a)

Noting that the term in the second bracket corresponds to the prior prediction error ex,k+1∣k

defined in Eq. ( C.2), the posterior error covariance matrix finally follows from

Σxx,k+1∣k+1 = E [ex,k+1∣k+1e
T
x,k+1∣k+1]

= (I −Kk+1Ck)Σxx,k+1∣k(I −Kk+1Ck)
T +Kk+1RkK

T
k+1 (C.8b)

where for the last equality the following identities were used

E [ex,k+1∣ke
T
x,k+1∣k] = Σxx,k+1∣k

E [vTk+1vk+1] = Rk+1

E [eTx,k+1∣kvk+1] = 0

The last step in the derivation of the Kalman filter equations is the determination of the

Kalman gain matrix. It will be chosen in such a way, that the obtained posterior estimate

is optimal in the mean least squared sense, that is the Kalman filter leads to a minimum
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variance estimate. This is archived by minimizing the conditional mean-squared estimation

error ex,k+1∣k = x̃k+1∣k+1 − x̂k+1∣k+1. Using the fact that the trace of the posteriori estimate

covariance matrix is the sum of the mean-square errors in the estimates of all the elements

of the state vector, this is equivalent to minimizing tr (Σxx,k+1∣k+1). Thus the minimization

problem can be state as follows

Kk+1 = argmin
K∈Rn×m

E [eTx,k+1∣k+1ex,k+1∣k+1] ≡ argmin
K∈Rn×m

tr (Σxx,k+1∣k+1) (C.9a)

and the Kalman gain matrix which produces the optimal estimate can be easily calculated

by first, setting the partial derivative of the trace of the posterior covariance matrix zero

and secondly, by solving the resulting equation for Kk+1. In order to calculate the partial

derivative, the following property, valid for any matrix A and a symmetric matrix B, is

used

∂

∂B
tr (ABAT ) = 2AB (C.9b)

Applying this property to Eq. (C.8b) and differencing with respect to the gain matrix, leads

to

∂

∂Kk+1

tr (Σxx,k+1∣k+1) = −2(I −Kk+1Ck)Σxx,k+1∣kC
T
k + 2Kk+1Rk (C.9c)

Then, setting the result equal to zero and solving for the optimal gain Kk+1, finally yields

Kk+1 = Σxx,k+1∣kC
T
k (Rk +CkΣxx,k+1∣kC

T
k )

−1 (C.9d)

Substituting the optimal gain in Eq. (C.8b) leads to various possible implementations of the

posterior error covariance matrix. They lead to identical results if the optimal gain C.9d is

used and perfect arithmetic is assumed. Due to the in general numerical implementation of

the Kalman filter the latter assumption of course cannot be preserved and thus they vary

significantly with respect to accuracy and computational cost.

The main advantage of the implementation defined in Eq. (C.8b), the so-called Joseph form,

results from the fact that the symmetry as well as the positive semidefiniteness of the error

covariance is ensured also in the presence of roundoff errors. Thus, it is often used for actual

software implementation of the filter [Lewis et al 2008, p. 73].

In many engineering applications, the system’s order is significantly higher than the dimen-

sion of the measurement vector, i.e. n >> m. In this case a computational more efficient
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implementation is given by

Σxx,k+1∣k+1 = Σxx,k+1∣k −Σxx,k+1∣kC
T
k (CkΣxx,k+1∣kC

T
k +Rk)

−1
CkΣxx,k+1∣k

= Σxx,k+1∣k −KkCkΣxx,k+1∣k (C.10a)

which is widely used as it requires a significant lower number of computations (multiplications

and additions) than the Jordan form. As it involves m-by-m inversions, computational

efficiency increases with decreasing numbers of measurement locations. The form ensures

the symmetry of the covariance matrix, but the positive semidefiniteness of the covariance

is not necessarily preserved. Further numerical problems can arise if the accuracy of the

measurements is very high and thus a small difference of large numbers must be calculated.

Moreover, the following simplification should be avoided

Σxx,k+1∣k+1 = (I −KkCk)Σxx,k+1∣k (C.10b)

Although algebraically equivalent to the implementation Eq. (C.9a) the factorized form suf-

fers additionally from the lack of symmetry as instead of subtracting two symmetric matrices

as in the previous form, a product of a antisymmetric and a symmetric matrix is calculated.

Thus it is a less desirable form and should be avoided [Maybeck 1979, p. 236-237]. In [May-

beck 1982, Ch. 5.6, 7.8] the property of diverse implementations are discussed in detail and

which is recommended for further reading.

Fig. (6.2) summarizes the implementation of the Kalman filter as it is used throughout this

work.
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C.1.2 Partial derivative matrices

Introducing the mass stiffness and damping matrix defined in Eqs. (6.31b-6.32a) in the state

space representation 6.36b leads to the following nonlinear function

f (x′(t),w′(t)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẏ1

ẏ2

ẏ3

−
(c1+c2)ẏ1

m1
+
c2ẏ2

m1
−
(k1+k2)y1

m1
+
k2y2

m1
+ w1

m1

c2ẏ1

m3
−
(c2+c3)ẏ2

m3
+
c3ẏ3

m3
+
k2y1

m3
−
(k2+k3)y2

m3
+
k3y3

m3
+ w2

m3

c3ẏ2

m3
−
c3ẏ3

m3
+
k3y2

m3
−
k3y3

m3
+ w3

m3

wk1

wk2

wk3

wc1

wc2

wc3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.11)

The linearization of is performed by a Taylor series with respect to the previous state estimate

x′(t) and noise term w′(t), that is around

x′(t) =

⎡
⎢
⎢
⎢
⎢
⎣

x(t)

p(t)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

x̂(t)

p̂(t)

⎤
⎥
⎥
⎥
⎥
⎦

; w′(t) =

⎡
⎢
⎢
⎢
⎢
⎣

w(t)

wp(t)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0

0

⎤
⎥
⎥
⎥
⎥
⎦

(C.12)

where the last equality results from the assumptions that the model disturbances are of zero

mean. The linearized state transition matrix is then given by the partial derivative matrix

Ac,L =
∂f

∂x′(t)
∣
x′=x̂′

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂x(t)
∂x(t) ∣x=x̂

∂x(t)
∂p(t) ∣p=p̂

∂p(t)
∂x(t) ∣x=x̂

∂p(t)
∂p(t) ∣p=p̂

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Ac
∂x(t)
∂p(t) ∣p=p̂

05×6 I5×5

⎤
⎥
⎥
⎥
⎥
⎦

(C.13a)

where the matrix

∂x(t)

∂p(t)
∣
p=p̂

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂y1(t)
∂k1

∣
k1=k̂1

∂y1(t)
∂k2

∣
k2=k̂2

. . . ∂y1(t)
∂c3

∣
c3=ĉ3

∂y2(t)
∂k1

∣
k1=k̂1

∂y2(t)
∂k2

∣
k2=k̂2

. . . ∂y2(t)
∂c3

∣
c3=ĉ3

⋮ ⋮ ⋱ ⋮
∂ẏ3(t)
∂k1

∣
k1=k̂1

∂ẏ3(t)
∂k2

∣
k2=k̂2

. . . ∂ẏ3(t)
∂c3

∣
c3=ĉ3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−
y1

m1

−y1+y2

m1
0 −

ẏ1

m1

−ẏ1+ẏ2

m1
0

0 y1−y2

m3

−y2+y3

m3
0 ẏ1−ẏ2

m3

−ẏ2+ẏ3

m3

0 0 y2−y3

m3
0 0 ẏ2−ẏ3

m3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.13b)

relates the unknown parameters to the system’s states. Similarly the noise transition matrix

Gc,L follows from

Gc,Lin =
∂x(t)

∂w′(t)
∣
ŵ′=0

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂x(t)
∂w(t) ∣w=0

∂x(t)
∂wp(t)

∣
wp=0

∂p
∂w(t) ∣w=0

∂p(t)
∂wp(t)

∣
wp=0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Gc
∂x(t)
∂wp

∣
wp=0

06×6 I6×6

⎤
⎥
⎥
⎥
⎥
⎦

(C.14a)

where the partial derivative matrix is given by

∂f

∂wp(t)
∣
wp=0

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂y1(t)
∂wk1

∣
wk1

=0

∂y1(t)
∂wk2

∣
wk2

=0
. . . ∂y1(t)

∂wc3
∣
wc3=0

∂y2(t)
∂wk1

∣
wk1

=0

∂y2(t)
∂wk2

∣
wk2

=0
. . . ∂y2(t)

∂wc3
∣
wc3=0

⋮ ⋮ ⋱ ⋮
∂ẏ3(t)
∂wk1

∣
wk1

=0

∂ẏ3(t)
∂wk2

∣
wk2

=0
. . . ∂ẏ3(t)

∂wc3
∣
wc3=0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 06×6 (C.14b)
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D.1 State-of-the-art on System Identification Techniques for

Operational Modal Analysis

Experimental modal analysis (EMA) has been extensively used in the aerospace, automo-

tive, railway and maritime industries in order to study the dynamic behavior of structures

under dynamic excitation. In the last decades the EMA has gained great attention in civil

engineering where the development towards constantly lighter and slender structures leads

to a higher susceptibility of the structures to vibrations. Consequently the experimental

verification of design parameters such as eigenfrequencies, damping rations and modeshapes,

characterizing the dynamic behavior, is crucial for design and model validation in order to

comply with the increased demands for higher levels of safety, serviceability and durability

[Reynders 2012]. The classical EMA is based on input-output measurements, i.e. the mea-

surements of the loads exciting the structure and the system’s response in order to obtain

frequency and impulse response functions, respectively [Zhang et al 2005]. Such forced vi-

brations test are in general costly and time consuming as they require a specific excitation

by impact hammers, drop weights or heavy electrodynamic shakers in order to excite the

modes of interest with sufficient energy.

In contrast to applications of the EMA in other fields of engineering, where smaller com-

ponents of the structure can be tested under laboratory conditions, in civil engineering

the measurements on the typically large structures must be conducted under operational

conditions due to the constantly present and in general non-negligible operational loads as

wind or traffic [Reynders 2012]. Hence, in recent years so-called operational modal analysis

(OMA) techniques, also known as output-only, natural excitation or ambient modal analy-

sis methods, have been developed. They are based on ambient vibration tests (AvTs), i.e.

output-only measurements of the system subjected to the natural excitation and/or service

loads as wind, seismic ground motion, traffic or humans. Most natural loads applied to civil

engineering structures are caused by the superposition of multiple inputs and thus lead to

a broad-band excitation of a significant number of vibration modes [Yuen and Katafygiotis

2001; Cunha and Caetano 2006]. Due to their inherent random nature, the unmeasured

ambient forces are modeled in the OMA as stochastic processes with unknown parameters

but with known behavior, e.g. as zero-mean white noise process with unknown covariance

[Reynders 2012].

A literature review on the use of AvTs can be found for instance in [Ivanovic et al 2000]. The

first use of AvTs for the dynamic characterization of full-scale structures is reported in the

’70s. Since then, the technique is extensively used in engineering in the scope of parameter

identification (eigenfrequencies, damping ratios and mode shapes) [James et al 1993; Peeters
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et al 1995, 1998; De Roeck et al 2000; Brownjohn 2003; Ren and Zong 2004; Gentile and

Saisi 2007], model updating [Jaishi and Ren 2005; Gentile and Saisi 2007] as well as dam-

age detection and health monitoring [Doebling and Farrar 1996; Peeters et al 2001; Lee et al

2002] of slender structures such as pedestrian bridges, chimneys, long-span frame structures

or high-rise buildings. While forced vibration tests in general require a temporary out of

service state of the structure, ambient vibration tests are based on the natural and/or service

loads permitting to continuously measure the structural response without interruption of its

use during large time intervals.

System identification techniques can be classified as parametric and non-parametric ap-

proaches. In the former case the functional form of the system model is known, thus the

identification problem reduces to the identification of a finite number of model parameters

like the matrix entries of a state-space model or the coefficients of a time series model. Non-

parametric identification techniques do not require any information about the mathematical

model of the system and are based e.g. on the measured frequency response, transfer, covari-

ance or spectral densities functions from which the modal parameters can be determined by

modal decomposition of the identified system model [Reynders 2012; Luk and Damper 2006;

Åström 1970].

In this chapter a literature review of different time-domain operation modal identification

techniques is provided, following the structure given in [Zhang et al 2005] which is recom-

mended for further reading. To this aim the fundamentals of the methods are briefly sum-

marize without intending to give an exhaustive derivation. In each section a great number

of publications describing both theory and applications are critically discussed with respect

to computational efficiency, applicability and restrictions.

D.1.1 NExT-type methods

The Natural Excitation Technique (NExT) belongs to the nonparametric time domain iden-

tification methods and was first proposed in [Lauffer et al 1985] for the modal identification

of vertical wind turbines subjected to wind loads using output-only measurements James

et al [1993]. A literature review on the first developments and applications of NExT to wind

turbines, trucks, highway bridges and offshore structures under operational conditions is

given in [James et al 1996]. The technique is based on the assumptions that the system be-

haves linearly and the unmeasured forces are stationary and uncorrelated with the system’s

response [Caicedo 2011]. The method uses auto- and cross-correlation functions instead of

impulse response functions (IRF) generated between the system’s response and a reference
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sensor Xref . The latter must be chosen carefully as it provides the reference for the whole set

of measurements. Assuming that the unmeasured force exciting the system can be modeled

as stationary, broad-banded noise process, the system can be described by the equation of

motion of a multi-degree of freedom (MDOF), linear time-invariant system

MẌ(t) +CẊ(t) +KX(t) = W(t) (D.1)

where M, C, K ∈ Rn×n is the deterministic mass, damping and stiffness matrix, {X(t)},

{Ẋ(t)}, {Ẍ(t)} ∈ Rn is the stationary stochastic vector process of the system’s displacement,

velocity and acceleration, respectively, and {W(t)} is the unmeasured input modeled as

Gaussian white noise process. Multiplying Eq. (D.1) by the scalar reference response process

Xref(s) and taking the expected value, denoted as E[⋅], yields

ME[Ẍ(t)Xref(s)] +CE[Ẋ(t)Xref(s)] +KE[X(t)Xref(s)] = E[W(t)Xref(s)] (D.2)

which leads to a differential equations in terms of the vector of correlation functions R(t,s)

given by

MRẌXref
(τ) +CRẊXref

(τ) +KRXXref (τ) = RWXref (τ) (D.3)

where τ = t − s. In [Bendat and Piersol 2010, p. 151 ff] it is shown that for (wide sense)

stationary processes, the derivative ṘXX(τ) of the autocorrelation function with respect to

the time shift τ is the same as the cross-correlation function between the processes {X(τ)}

and {Ẋ(τ)}. This relation can be extended to the general case RX(m)X(τ) = R
(m)
XX(τ) where

the superscript (m) denotes themth derivative with respect to τ . Assuming that the system’s

responses are uncorrelated to the external disturbances {W(t)} for τ > 0 one obtains the

following homogeneous differential equation [Caicedo et al 2004]

MR̈XXref (τ) +CṘXXref (τ) +KRXXref (τ) = 0, τ > 0 (D.4)

which strongly resembles the homogeneous differential equation of a MDOFs. Hence, its

solution leads to a series of decaying sinusoids where each sinusoid is characterized by a

damped eigenfrequency, damping ration and mode shape coefficient corresponding to the

modal parameters of the system James et al [1993]. The free response data obtained by

the NExT can be processed as the impulse responses function of the system in order to

extract modal parameters using standard modal parameter identification techniques, such

as the Eigensystem Realization Algorithm (ERA) [Juang and Pappa 1985; Brownjohn 2003;

Caicedo et al 2004; Siringoringo and Fujino 2008; Caicedo 2011; Chang and Pakzad 2012]
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or the Ibrahim Time Domain (ITD) method [Siringoringo and Fujino 2008]. The main

weakness in the implementation of the NExT is related to the fact that one sensor is selected

as reference for the whole set of measurements. The location of the sensor must be selected in

such a way that all modes contribute to the measured response. If the sensor is for instance

placed close to a modal node or if the vibrations of the structure are orthogonal to the

measurement direction of the sensor, then little or no information about the respective mode

are contained in the estimated free response. Therefore in general the measurements have to

be conducted repeatedly with different reference sensors [Giraldo et al 2009]. Furthermore

long-time series of response data are required to allow significant averaging of the data

under relative stationary operating conditions [Shen et al 2003]. If the assumption of the

whiteness of the input is violated, the parameter estimation can have significant errors leading

to estimation errors of about 0.5 % in the frequency and 50 % in the damping estimates

[Barney and Carne 1999]. A benchmark study based on a four-story laboratory scale-model

building on the influence of the number of sensors, the model order (12/ 120 DOFs), the

mass distribution (symmetric, asymmetric) and different damage pattern on the damage

detection can be found in Caicedo et al [2004]. In [Siringoringo and Fujino 2008] the NExT-

ERA algorithm is applied to the Hakucho Suspension Bridge and compared with the Random

Decrement technique which was combined with the Ibrahim Time Domain (RD-ITD) used for

the identification of the modal parameters. A further comparative study of the NExT-ERA

algorithm with the frequency-domain decomposition and the Random Decrement Method

applied in the scope of damage detection to the L’Aquila City Hall (Margherita Palac, Italy)

can be found in [Cimellaro et al 2012].

D.1.2 ARMA-type methods

Output-only parametric time-domain identification of dynamic systems refers to the fitting

of a finite, parametrized mathematical time-domain model to the measured response sig-

nals of the vibrating structure. While non-parametric identification techniques lead to a

representation in terms of frequency, correlation or impulse response functions, parametric

identification algorithms result in parameterized models such as difference/differential equa-

tion or state space representations [Kadakal and Yüzügüllü 1996]. Non-parametric models

have the advantage that they do not require any knowledge about the model order, whereas

parametric representation are mainly relevant in optimal prediction and control [Isermann

1988b, p. 193]. In the last two decades parametric time-domain identification based on time

series models, such as autoregressive (AR) or autoregressive moving average (ARMA) mod-

els gained great attention in engineering as they allow modeling structures with ambient
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vibration records as single-output models which have widely been used in the literature to

identify systems excited by random white noise [Kadakal and Yüzügüllü 1996]. The most

general description of a linear time-invariant system excited by white disturbances is the

n-dimensional vector ARMA model of order (p,q) denoted as ARMAV(n,p,q)

y(t) +A1y(t − 1) + . . . +Apy(t − p) = w(t) +B1w(t − 1) + . . . +Bqw(t − q) (D.5)

where {y(t)} ∈ Rn, Ak, Bk ∈ Rn×n are vectors of constants and {w(t)} ∈ Rn ∼ WN(0,Σδts)

is a zero-mean white noise process. The autoregressive part on the left hand side ARV(n,p)

of Eq. (D.5) corresponds to the measured system’s response {y(t)} and the moving average

term MAV(n,q) on the right hand side is related to the process noise {w(t)}. The unknown

coefficients can be solved from measurements of the system’s response by minimizing the

error between the predicted output of the model and the measured output signal. Such

methods known as prediction error methods [Caines 1988, p. 482 ff] were introduced by

[Ljung 1974] and contain under certain conditions the maximum likelihood method as a

special case. They allow taking into account the noise characteristics of the signals and are

extensions of the so-called output error or equation error methods, originally designed for

noiseless data and deterministic systems [Mehra and Lainiotis 1976, p. 122 ff]. However,

the prediction error method leads to a highly non-linear minimization problem which is

computational demanding, especially in the multivariate case. Moreover due to local minima

the convergence is not necessarily guaranteed and the results might strongly depend on

the initial estimates. The nonlinearity is caused be the moving average (MA) part of the

ARMA model and hence one possible solution is to omit the ARMA part leading to an

autoregressive model whose coefficient can be estimated directly by a linear least-square

algorithm. Since this model is less general, the main disadvantage of this procedure requires

an over-specification of the model order resulting in a number of spurious numerical modes

as will be shown in the following [Peeters and De Roeck 1999].

The difference equation given in Eq. (D.5) can be expressed using the backward shift operator

L (also called lag operator) with the property Lky(t) = y(t − k) in the form

y(t) =
In +B1L−1 + . . . +BqL−q

In +A1L−1 + . . . +ApL−p
w(t) =

B(L)

A(L)
w(t) = C(L)w(t) (D.6)

where In denotes the n × n identity matrix. Hence, the finite ARMAV(n,p,q) model can be

transformed into a infinite MAV(n,∞) model

y(t) = w(t) +C1w(t − 1) +C2w(t − 2) + . . . =
∞

∑
j=0

Cjw(t − j) (D.7)
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where C0 = In or an infinite ARV(n,∞) model

y(t) = w(t) −D1y(t − 1) −D2y(t − 2) − . . . = w(t) −
∞

∑
j=1

Djy(t − j) (D.8)

where D(L) = C−1(L) is used. From a physical point of view, an infinite order process does

not exist which allows approximating the ARMAV(n,p,q) model by a high order, but finite

ARV(n,l), MAV(n,l) model, respectively Vu et al [2007]. When no information about the

input is available, the ARV process is appropriate as the n2l unknown coefficients can be

determined from the measured system response data by solving a linear least square problem:

Multiplying both sides of Eq. (D.8) by yT (t − k) and taking the expected value yields

r(k) = −
l

∑
j=1

Djr(k − j) (D.9)

where r(k) = E[y(t)yT (t − k)]. Furthermore the relation E[w(t)yT (t − k)] = 0n for k > 0

was used as the system response can be considered uncorrelated with future inputs [Huang

2001]. Eq. (D.9) can be expressed in matrix form

R = R̂ θ (D.10)

where R = [r(1) r(2) . . . r(m)]T ∈ Rmn×n, θ = [−D1 −D2 . . . −Dl]
T ∈ Rln×n and R̂ ∈ Rmn×ln

is a matrix with Toeplitz form whose elements are obtained by R̂ij = r(i − j) and i = 1..m,

j = 1..l leading to

R̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r(0) r(−1) r(−2) . . . r(1 − l)

r(1) r(0) r(−1) . . . r(2 − l)

. . . . . . . . . . . . . . .

r(m) r(m − 1) r(m − 2) . . . r(m − l)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.11)

In general the system of equations is solvable if the number of equations m is equal to the

number of unknowns l. However due to the measurement error, this would lead to a high

estimation error. Therefore the value of m is always set much larger than that of l and

a least square approach is used in order to determine the coefficient matrices Best [1991];

Huang [2001].

With the knowledge of the coefficient matrices, the model parameters of the structure in-

cluding natural frequencies, damping ratios and mode shapes can be obtained by truncating
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the infinite sum Eq. (D.8) for the chosen model order l, yielding

(In +D1L
−1 +D2L

−2 + . . . +DlL
−l)y(t) = 0n (D.12)

and solving the eigenproblem

det(In +D1L
−1 +D2L

−2 + . . . +DlL
−l) = 0n (D.13)

which can be expressed in matrix form by

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−D1 −D2 . . . . . . −Dl

In 0n 0n . . . 0n

0n In 0n . . . 0n

. . . . . . . . . . . . . . .

0n 0n . . . In 0n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.14)

Solving the characteristic equation det (Il⋅nλ −Φ) = 0 of a VAR(n,l)-model describing a sys-

tem with n-channels and l-order, leads to l ⋅ n discrete, complex eigenvalues λ1, λ2, . . . , λl⋅n

[He and De Roeck 1997]. If the measured data of a structure contains j vibration modes, it

will have j-pairs of conjugate system eigenvalues. In order to identify all modes, the model

order must be selected in such a way that l ≥ 2j/n holds. In general l ⋅ n is chosen much

higher than 2n in order to get a good correlation between the fitted model and the measured

data leading to l ⋅ n − 2n artificial modes. In [Abdel Wahab and De Roeck 1999] different

techniques for extracting the physical modes from the artificial ones are proposed. In [Hung

and Ko 2002] a backward ARV model is introduced, for which can be shown, that the first

2j eigenvalues located outside or on the unit circle can be directly attributed to the system

modes while the remaining eigenvalues belongs to the computational modes.

The continuous eigenvalues µk of the original vibrating system are acquired by the transfor-

mation

λk = exp(µk∆t) (D.15)

where ∆t denotes the sampling interval. The modal frequencies and damping ratios are

calculated from the complex eigenvalue µk = αk + iβk using the relation

ωk =
√

α2
k + β

2
k and D =

αk
ωk

(D.16)
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The kth mode shape Ψk is determined from the following equation

[I2jλ
l
k +D1λ

l−1
k +D2λ

l−2
k + . . . +Dl−1λk +Dl]Ψk = 0 (D.17)

Comparative studies of parametric time-domain identification methods based on ARV models

and nonparametric frequency domain methods can be found in [Kadakal and Yüzügüllü

1996]. It is shown, that nonparametric frequency domain methods allow estimating modal

frequencies with a certain accuracy, but modal damping estimates are highly biased and

vary strongly if the calculations are repeated for different sensor locations, leading to the

estimation of a range of possible modal damping values rather than a single value.

In [Vu et al 2007; He and De Roeck 1997] a high order ARV model is used to approximate

an ARMAV model. In the first cased the effect of the noise level and characteristics of the

input (random excitation, impulsive excitation, harmonic components), of closely separated

frequency modes, of low or high damping ratios as well as the dependency of the accuracy of

the parameter identification on the chosen model order are investigated. In [He and De Roeck

1997] the method is applied for the modal parameter identification of a water transmission

tower subjected to wind excitation using in situ vibration measurements. The comparison

with a classical frequency domain identification approach shows that the method is superior

as problems such as leakage or a low frequency resolution, caused by the restriction of the

observation window and sampling rate, can be avoided.

In [Huang 2001] a modification of LS approach used for the parameter identification of an

ARV model is proposed which uses the equivalence between the correlation function matrix

for the responses of a linear system subjected to white-noise input and the deterministic free

vibration responses of the system as shown in the previous section D.1.1. The influence of

the signal-type (velocity or acceleration responses), the signal to noise ratio, the number of

measured DOFs, and non-white-noise input (band-limited white noise) on the identifiability

of the modal parameters is studied.

In [Bodeux and Golinval 2003] the modal identification and damage detection on the Steel-

Quake structure using the ARMAV and the data-driven stochastic subspace (DSS) methods

are studied. For the identification of the ARMAV(n,p,q) model given in Eq. (D.5) from

measurements of the system response only, the prediction error method (PEM) [Caines

1988, p. 482 ff] is used leading to a non-linear, iterative estimation procedure: The model

parameters θ are estimated by minimizing a criterion function, e.g.

CN(θ) = det(
1

N

N

∑
k=1

e(k∣θ)e(k∣θ)T) (D.18)
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where N is the number of samples and e(k∣θ) = y(k) − ŷ(k∣θ) describes the error at time

t = k∆t between the predicted response ŷ(t∣θ) and the measurements y(t). As the predictor

ŷ(t∣θ) depend nonlinearly on the unknown model parameters, the minimization of the crite-

rion function is applied in an iterative manner.

In order to select an appropriate model order method such as the Akaike’s Final Prediction

Error Criterion (FPE) or Akaike’s Information Theoretic Criterion (AIC) can be applied

[Ljung 1998, p. 219 ff, p. 503 ff]. These criteria are based on monitoring the decrease in

the criterion function CN(θ) as the order p,q increases [Giraldo et al 2009]. In the special

case of Gaussian distributes prediction errors the ARMAV/PEM algorithm yields efficiently

asymptotically unbiased model parameter estimates where the estimation errors as well as

the uncertainties in the modal parameter estimation can be calculated. The case study

showed that the ARMAV/PEM as well as the data-driven stochastic subspace method lead

to comparable identification results. However, the subspace method converges quickly while

the PEM required a long computation time.

In [Giraldo et al 2009] a comparative study of three output-only time domain identification

techniques of the modal parameters, namely the eigensystem realization algorithm with data

correlations (ERA/DC), the prediction error method through least squares (PEM/LS), and

the stochastic subspace identification (SSI) is performed. Here, an ARMAV-based two-stage

least squares approach combining the prediction error method and the standard least square

algorithm is used. First, a high order ARV model is fitted to the measurement data. Then,

a pseudo-ARX model (AR model with exogenous input) is estimated using the prediction

error of the AR model as the pseudoinput. The resulting ARX model is given

ŷ(t) = −D1y(t−1)−D2y(t−2)−. . .−Dpy(t−p)+B1e(t−1)+B2e(t−2)+. . .+Bqe(t−q) (D.19)

from which the p autoregressive Ai and q moving average Bi coefficient matrices can be

calculated by a least square approach solving

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(p + 1)

y(p + 2)

. . .

y(j)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(p) . . . y(1) e(p) . . . e(p − q + 1)

y(p + 1) . . . y(2) e(p + 1) . . . e(p − q + 2)

. . . . . . . . . . . . . . . . . .

y(j − 1) . . . y(j − p) e(j − 1) . . . e(j − q)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT
1

. . .

AT
p

BT
1

. . .

BT
q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.20)

Finally, the modal parameters can be extracted from the obtained AR matrix coefficients fol-

lowing the approach described before. The comparative study showed that SSI and PEM/LS

lead to much better results than the ERA algorithm. The identification result of the fre-
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quencies and damping parameters is in all three methods robust to sensor noise. The signal-

to-noise-ratio mainly affects the identification of the mode shapes, where SSI is clearly more

robust than ERA/DC and PEM/LS. While the errors in the frequency estimation is below

1 %, damping ratios are often estimated with an error of about 20 % and even reach 50 %

in case of the ERA algorithm.

D.1.3 Stochastic realization-based methods

The realization problem of identifying a linear dynamic system from its nonparametric im-

pulse response sequence was first defined in [Kálmán 1963] and solved by [Ho and Kálmán

1966] using a finite-dimensional block Hankel matrix composed of noise-free impulse re-

sponses from which the system matrices of a deterministic state-space model were derived.

In the 1970’s the method was modified by [Zeiger and McEwen 1974] to consider noise

corrupted impulse response functions by introducing a singular value decomposition of the

Hankel matrix. [Akaike 1974] extended the realization theory for stochastic systems leading

to a stochastic interpretation of the Ho-Kalman algorithm. In [Benveniste and Fuchs 1985]

the method was first applied to modal identification [Reynders 2012].

The stochastic realization-based parameter identification procedures which where developed

in the last two decades in the scope of operational modal analysis [Peeters and De Roeck 1999;

Lardies and Larbi 2001; Magalhães et al 2009a] are often called Covariance-driven Stochas-

tic Subspace Identification (SSI-COV) methods [Zhang et al 2005] as the system model is

obtained for a random process on the basis of covariance data. The stochastic realization

problem address the question of finding a minimal stochastic state space representation in

the form

xt+1 = Axt +wt (D.21)

yt = Cxt + vt (D.22)

from the knowledge of the measured system output. The system response is modeled as

zero-mean Gaussian stochastic process defined by

E[yk] = 0, E[yt+ky
T
t ] = Λk (D.23)
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which implies that the additive process and measurement noises {wk}, {vk} are as well of

zero mean and normal and complete characterized by their covariance matrix

W = E

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

wk

vk

⎞

⎠
(wT

k vTk )

⎤
⎥
⎥
⎥
⎥
⎦

=
⎛

⎝

Q S

ST R

⎞

⎠
δ(t) (D.24)

The stochastic realization problems consists of two parts, namely finding the state space

matrices A,C under the constraint of a minimal dimension of the system matrix A from

measurements of the zero mean stochastic vector process {yt} describing the system output

and secondly, determining the covariance matrices Q, S, R so that the second order statistics

of the output of the model and of the given output with covariance sequence Λk are equal.

The former is archived by expressing yk+m repetitively in terms of xk using Eq. (D.21), (D.22)

and taking into account that E[xkvTk ] = E[wkxTk ] = E[vk+1vTk ] = E[vk+1xTk ] = 0 which allows

determining the covariance of the output in the form

Λk = CAk−1Σ for k ≥ 0 (D.25)

Λ0 = CΣCT +R for k = 0 (D.26)

with Σ = E[xk+1yTk ] = AΣxxCT + S and where Σxx = E[xkxTk ] denotes the state covariance

matrix [Gevers 2006]. Using Eq. (D.25) the Hankel matrix Hp,q = OpCq, consisting of p block

rows and q block columns of the correlation matrix R(k), can be factored into the product

of a so-called observability block matrix Op of order p and a controllability Cq block matrix

of order q, respectively, given by

Hp,q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R(1) R(2) R(3) . . . R(q)

R(2) R(3) R(4) . . . R(q + 1)

. . . . . . . . . . . . . . .

R(p) R(p + 1) R(p + 2) . . . R(q + p)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

. . .

CAp−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ [Σ AΣ . . . Aq−1Σ]

(D.27)

The name observability matrix implies that the matrices A, C are observable, i.e. it is

assumed that all the dynamical modes of the system can be observed in the output. Similarly,

the name controllability matrix refers to the assumption, that the matrix pair A, Σ is

controllable, which implies that all the dynamical modes of the system can be excited by the

stochastic input [Peeters and De Roeck 1999]. Assuming that the system is described by N

eigenmodes, the rank of the observability matrix and controllability matrix is 2N . Hence,

multiplying Eq. (D.27) from right and left by user defined weighting matrices W1, W2

[Arun and Kung 1990; Van Overschee and De Moor 1996; Zhang et al 2005] and performing
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a singular value decomposition of Hp,q yields

W1Hp,qW
T
2 = (W1Op)(CqW

T
2 ) = [U1 U2]

⎡
⎢
⎢
⎢
⎢
⎣

S1 0

0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

V1

V2

⎤
⎥
⎥
⎥
⎥
⎦

= U1S1V
T
1 (D.28)

where S1 contains 2N non-zero singular values in decreasing order and where the 2N columns

of U1, V1 corresponds to left, right singular vectors, respectively. Using Eq. (D.28) the

observability matrix, controllability matrix, respectively, can be derived immediately

Op = W−1
1 U1S

1/2
1 (D.29)

Cc = S
1/2
1 VT

1 W−1
2 (D.30)

and the system matrices A, C can be extracted from the first two block rows of Op. Different

choices of weighting matrices W1 and W2 will lead to different stochastic subspace identi-

fication methods [Hermans and Van der Auweraer 1999]. There are three mayor methods,

namely the Principal Component (PC) method, the Canonical Correlation or Canonical

Variant Analysis (CVA) method and the Balanced Realization (BR) method. The latter

is also called Un-weighted Principal Component (UPC) method as the singular value de-

composition (SVD) is directly applied to the Hankel matrix, i.e. the weights are identity

matrices. The method is mainly used if the modes are of equal strength and in presence of

a good signal-to-noise ratio in the data. It is the stochastic counterpart of the deterministic

realization/identification algorithm, e.g. ERA [Zhang et al 2005]. In case of the CVA all

sensors are used as reference channels and the weights are set in such a way that the system

modes are balanced in terms of energy leading to a better identification of the less excited

modes in operational conditions and when dealing with noisy data. The PC method can

be regarded as compromise between UPC and CVA [Hermans and Van der Auweraer 1999;

Rainieri 2008].

It must be noted that the covariances used for the construction of the Hankel matrix are

calculated from a finite number of measurements and thus are just estimates. Hence the

result Eq. (D.28) only hold for infinite block-Hankel matrices and for a finite order system.

In practice, the dynamic system is of infinite order (due to an infinite number of eigenval-

ues) and due to modeling inaccuracies, measurement noise and computational noise, the

higher singular values are not exactly zero [Peeters and De Roeck 1999]. Hence, the SVD

decomposition yields

W1Hp,qW
T
2 = [U1 U2]

⎡
⎢
⎢
⎢
⎢
⎣

S1 0

0 S2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

V1

V2

⎤
⎥
⎥
⎥
⎥
⎦

= U1S1V1 +U2S2V2 ≈ U1S1V1 (D.31)
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where the second summand contains non-physical eigenvalues. An estimation of the observ-

ability matrix Ôp is then obtained by neglecting the second term leading again to the result

given in Eq. (D.29). The system’s order is in general unknown, but might be identified from

the maximal gap between two successive singular values. However, for large, real structures

there is generally no significant drop in the singular values and other techniques such as

stabilization diagrams are required in order to estimate the model order [Hermans and Van

der Auweraer 1999; Peeters and De Roeck 1999].

The dynamics of the system are completely characterized by the eigenvalues and correspond-

ing eigenvectors of the system matrix A. Hence, the modal parameters are obtained from

the eigenvalue decomposition of A given by

A = ΦΛΦ−1 (D.32)

solving the characteristic equation det (A − I2Nλ) = 0. The diagonal matrix contains the dis-

crete complex eigenvalues λk which can be transformed into system poles µk using Eq. (D.15)

and the modal parameters are extracted applying Eq. (D.16). The elements of the kth mode

shape ψk = Cφk at the sensor locations, are the observed components of the system eigen-

vectors φk of Φ. As the input force is not measured, the extracted mode shapes cannot be

mass-normalized [Hermans and Van der Auweraer 1999].

In [Benveniste and Fuchs 1985] the problem of identifying the modal parameters of a Gauss-

Markov process subjected to non-stationary noises using only a single record of the process

is addressed. Different realization methods including the Ho-Kalman algorithm and the bal-

anced realization algorithm are compared with ARMA-based methods. In contrast to the

nonlinear identification problem in case of the latter class of algorithms, the estimates in

the realization based methods are solutions of equations which are linear in the estimated

covariances of the single sample of the process.

A referenced-based SSI-COV method is proposed in [Peeters and De Roeck 1999] which only

requires the computation of the covariances between the outputs and a limited set of ref-

erence channels instead of the covariances between all outputs as in the classical approach.

The method is applied for the modal analysis of a steel mast excited by wind loads. It is

shown that it is considerably faster than the classical SSI-COV, requires a lower model order

which is faster and leads to more accurate results.

In [Lardies and Larbi 2001] different methods such as the ordinary least squares, total least

squares, partial least squares algorithms and a new iterative procedure are used in order to

estimate the system matrix from the variance based Hankel matrix.

An application of the SSI-COV to the Humber Suspension Bridge (UK) for modal analysis

is described in Magalhães et al [2009a]. It is based on an automatic algorithm for the inter-
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Figure D.1: Subspace and classical system identification methods [Katayama 2005]

pretation of stabilization diagrams in order to distinguish between the physical modes and

artificial ones, recently introduced in [Magalhães et al 2009b].

D.1.4 Stochastic subspace-based methods

Subspace identification algorithms can be considered as an extension of the system realiza-

tion theory. While the stochastic realization methods described in the previous section is

covariance driven, the stochastic subspace identification (SSI) is data driven. Hence, it does

not require the calculation of the covariance matrix but starts directly from the measured re-

sponse data [Kirkegaard and Andersen 1997]. The method is widely used in engineering since

the publication of the book [Van Overschee and De Moor 1996] which gives a detailed insight

into the theory. As previously discussed the most general model of a linear time-invariant

systems excited by white noise is the so-called ARMA model. The classical system identifica-

tion is based on the prediction error methods which leads to a highly nonlinear minimization

problem where convergence is not guaranteed and which is computational demanding. Thus

the ARMAV model is often approximated by a high order ARV method which can be iden-

tified by a linear least square algorithm, but which requires a over-specification of the model

order leading to non-physical modes. The SSI combines the advantages of both methods, i.e.

it allows a general description of the system while the identification problem is linear. Con-

sequently the SSI is much faster and more robust than the classical prediction error method

[Peeters and De Roeck 1999]. In Fig. D.1 a comparison of the subspace and classical system

identification methods is illustrated [Katayama 2005]. Both system identification techniques

aim at finding a state space representation from input-output data (or just output data as
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described before). In the classical methods first a transfer function is estimated from which

the system matrices of the state space model can be derived. Finally the system states can

be estimated applying the Kalman filter algorithm. In contrast, the subspace identification

method starts with the estimation of a Kalman filter state sequence directly from the out-

put data and allows identifying the system matrices without knowledge of the underlying

mathematical model by applying projection techniques and numerical methods such as the

singular value decomposition. The projection can be interpreted as conditional mean of the

future outputs retaining all information on the past outputs. Once the Kalman states are

known the identification of the system matrices of the state space model reduces to a linear

least square problem. Hence the subspace idenification technique can be interpreted as a

conditional linearization of the nonlinear prediction error problem [Van Overschee and De

Moor 1996; Katayama 2005].

The SSI is based on the general assumptions, that the underlying physical system model

is time-invariant and behaves linearly. Similar to the stochastic realization problem, it ad-

dresses the question of finding a stochastic state space representation in the form

xt+1 = Axt +wt (D.33)

yt = Cxt + vt (D.34)

as already defined in Eq. (D.21-D.26) from output only measurements. In contrast to the

stochastic realization method which is based on a Hankel matrix constructed from the (cross)-

covariances of the system outputs, the SSI algorithm starts directly from a Hankel matrix of

the measured response data: the available N data points are grouped in the response matrix

Y0∶N−1 = [y0, y1, . . . , yN−1] where each of the vectors yj ∈ Rm collects the system response

at m sensor locations at time t = j∆t. The first row of the Hankel matrix is then created

from the first N − 2s data points y1, y2, . . . , yN−2s of the system’s response. The following

rows are obtained by shifting the data matrix successively by one position leading to

H2s,N−2s−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0 y1 y2 . . . yN−2s−1

y1 y2 y3 . . . yN−2s

. . . . . . . . . . . . . . .

ys−1 ys ys+1 . . . yN−s−1

ys ys+1 ys+2 . . . yN−s

ys+1 ys+2 ys+3 . . . yN−s+1

. . . . . . . . . . . . . . .

y2s−1 y2s y2s+1 . . . yN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Yp

Yf

⎤
⎥
⎥
⎥
⎥
⎦

(D.35)
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and the matrix is spitted into s block rows of past outputs Yp ∈ Rsm×N−2s−1 and future

outputs Yf ∈ Rsm×N−2s−1, respectively. The number of block rows is user defined and should

be selected in such a way that sm is larger than the number of system modes. The number

of columns is N − 2s − 1 if all available N data samples are used. For statistical reasons it

is in general assumed that s, N → ∞ [De Cock et al 2002]. The next step is the optimal

prediction of the future outputs at time k given all information about the past output up to

time k−1. An optimal predictor results in a minimum square error between the predicted ŷk

and measured system response yk and allows estimating the underlying model in an optimal

sense. In the Gaussian case the optimal prediction is given by the conditional expectation

[Brincker and Andersen 2006] of the system state xk vector describing the system’s dynamics

at time k given the past outputs up to time k − 1

x̂k = E[xk∣Y1∶k−1] (D.36)

The state prediction error ex,k = xk − x̂k between the true and estimated state is the part of

xk which is unpredictable. Similarly to Eq. (D.36) the optimal prediction can be formulated

in terms of the measured system response, leading to [Andersen and Brincker 2001]

ŷk = E[yk∣Y1∶k−1] = E[Cxk + vk∣Y1∶k−1] = Cx̂k (D.37)

Assuming a zero mean Gaussian process yk, the conditional mean ŷk given in Eq. (D.37)

can be calculated directly by

ŷk = E[ykY
T
0∶k−1] ⋅E[Y0∶k−1Y

T
0∶k−1]

−1 ⋅Y0∶k−1 (D.38)

The Hankel matrix in Eq. (D.35) can be used to calculate the optimal predictions of the

system response efficiently in matrix form

Ĥsm,sm = E[Yf ∣Yp] ≈
1

s
YfY

T
p (YpY

T
p )

−1Yp, O ∈ Rsm×sm (D.39)

where

Ĥsm,sm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷs ŷs+1 . . . ŷN−s

ŷs+1 ŷs+2 . . . ŷN−s+1

ŷs+2 ŷs+3 . . . ŷN−s+2

. . . . . . . . .

ŷ2s−1 ŷ2s+1 . . . ŷN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.40)
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The last matrix in this product defines the conditions, while the first four matrices in the

product introduces the covariances between sensors at different time lags [Brincker and An-

dersen 2006]. The matrix Ĥsm,sm is again of Hankel form and plays a key roll in the stochastic

subspace identification method as will be shown in the following.

The relation between the two predictors given in Eq. (D.36) and Eq. (D.37) is defined by the

Kalman filter for linear and time-invariant systems. As shown in section C.1.1, the Kalman

filter equations are obtained by minimization of the mean square prediction error ex,k tak-

ing into account the uncertainties in the model and the measurements. Assuming that the

system matrices are known, the optimal state estimate in the mean square sense is given

by

x̂k+1 = Ax̂k +Kkey,k (D.41)

Kk = (APkC
T + S)(CPkC

T +R)−1 (D.42)

Pk+1 = E[(xk − x̂k)(xk − x̂k)
T ] =

= APkA
T +Q + (APkC

T + S)(CPkC
T +R)−1(APkC

T + S)T (D.43)

ey,k = yk −Cx̂k (D.44)

where Kk denotes the Kalman gain. The innovation ey,k = yk − ŷk is a zero mean Gaus-

sian process and describes the error between the measured and predicted output. Hence,

it is the part of the measurement that contains new information about the state. Rear-

ranging Eq. (D.44) yields the so-called innovation form of the state space representation in

Eq. (D.33)

x̂k+1 = Ax̂k +Kkey,k (D.45)

yk = Cx̂k + ey,k (D.46)

which is widely used in output only modal analysis and where

Kk = (G −APkC
T )(Λ0 −CPkC

T )−1 (D.47)

Pk+1 = APkA
T + (G −APkC

T )(Λ0 −CPkC
T )−1(G −APkC

T )T (D.48)

The classical and the innovation Kalman filter look different, but they lead to the same state

estimate x̂k+1 as shown in [Van Overschee and De Moor 1996, p. 205f]. In the innovation

form the state vector is replaced by its optimal prediction and the measurement and process

noise are converted into a single input process, namely the innovation [Andersen and Brincker

2001]. Defining Pk = E[x̂kx̂Tk ] the state covariance matrix of the predicted state vector and

Σee = E[ey,keTy,k] the covariance matrix of the innovation, the unknown quantities Pk+1, Kk
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are calculated from the following three constrains characterizing the innovation model in

Eq. (D.33), (D.34)

Pk+1 = E[x̂kx̂
T
k ] = APkA

T +KkΣeeK
T
k (D.49)

G = E[ykx̂
T
k ] = APkC

T +KkΣee (D.50)

Λ0 = E[yky
T
k ] = CPkC

T +Σee (D.51)

Solving Eq. (D.50) for the covariance Σee and introducing it in Eq. (D.51) yields the time-

variant (i.e. non-steady) Kalman gain Kk defined in Eq. (D.47). Introducing both matrices

in Eq. (D.49) finally leads to the state covariance matrix Pk+1 given in Eq. (D.48) [Gevers

2006].

Assuming that a sufficient number of states X̂s∶s+i = [x̂s, x̂s+1, . . . , x̂s+i−1] and X̂s+1∶s+i+1 =

[x̂s+1, x̂s+2, . . . , x̂s+i] can be predicted then the identification of the system matrices A,C

reduces to a the least square regression problem defined by

⎡
⎢
⎢
⎢
⎢
⎣

X̂s+1∶s+i

Ys∶s+j−1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

A

C

⎤
⎥
⎥
⎥
⎥
⎦

X̂s∶s+i−1 +

⎡
⎢
⎢
⎢
⎢
⎣

ρw

ρv

⎤
⎥
⎥
⎥
⎥
⎦

(D.52)

where the innovations or Kalman residuals ρw = [ρws , ρws+1 , . . . , ρws+i−1
], ρv = [ρvs , ρvs+1 , . . . , ρvs+i−1

]

are defined by

ρwk = x̂k+1 − Âx̂k ρvk = yk − Ĉx̂k (D.53)

As the innovations are uncorrelated with the Kalman states X̂s∶s+i−1, the system of equations

given in Eq. (D.52) can be solved for the system matrices by

⎡
⎢
⎢
⎢
⎢
⎣

Â

Ĉ

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

X̂s+1∶s+i

Ys∶s+j−1

⎤
⎥
⎥
⎥
⎥
⎦

X̂−1
s∶s+i−1 (D.54)

The covariance matrices are calculated by the least square error

⎛

⎝

Q̂ Ŝ

ŜT R̂

⎞

⎠
=

1

i

⎛

⎝

ρw

ρv

⎞

⎠
(ρTw ρTv ) (D.55)

In order to calculate the system and covariance matrices according to Eq. (D.54, D.55) it

was assumed that the Kalman states are known beforehand. Now the question arises how

to extract these states directly from the output data when the system matrices are still

unknown. Recalling that the optimal predictors are defined by the conditional mean with

respect to past observations, the state space model is transfered from an input-output relation
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given in Eq. (D.33), (D.34) in a ’Kalman state’-output relation by applying the expectation

operator on both sides of Eq. (D.33), (D.34) which yields

E[xk+1∣Y0∶k] = AE[xk∣Y0∶k−1] +E[wk∣Y0∶k−1] ⇒ x̂k+1= Ax̂k (D.56)

E[yk∣Y0∶k−1] = CE[xk∣Y0∶k−1] +E[vk∣Y0∶k−1] ⇒ ŷk = Cx̂k (D.57)

and where x̂k denotes the optimal Kalman state estimate. Assuming that a recursion is

started at time step s by inserting Eq. D.56 recursively into itself i times yields the following

formulation

Ĥsm,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷs

ŷs+1

ŷs+2

. . .

ŷs+i−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

. . .

CAs−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̂s = Γsx̂s (D.58)

where Ĥsm,1 corresponds to the first column of the matrix Ĥsm,sm defined in Eq. (D.40) if

i = s is chosen. Defining X̂s∶s+i−1 = [x̂s, x̂s+1, . . . , x̂s+i−1] one obtains finally

Ĥsm,sm = ΓsX̂s∶s+i−1 (D.59)

which strongly resembles the result of the stochastic realization method given in Eq. (D.27).

Following the steps Eq. (D.28), (D.29), the singular value decomposition of Ĥsm,sm yields

Γs = W1U1S
1/2
1 (D.60)

X̂s∶s+i−1 = S
1/2
1 VT

1 W−1
2 (D.61)

In a similar manner an estimate of the state sequence X̂s+1∶s+i can be derived. Having de-

termined the state sequences X̂s∶s+i−1, X̂s+1∶s+i the system matrices and corresponding error

covariances can be derived solving the linear least square problem defined in Eq. (D.52)-

(D.55). Once the system matrices are obtained, the modal parameters are identified solving

an eigenvalue problem using Eq. (D.15), (D.16) and Eq. (D.32).

In [Peeters and De Roeck 1999] a modified implementation of the SSI method was proposed

where instead of all past outputs, just the past reference outputs are considered in order

to predict the future outputs. Consequently, the dimensions of the matrices are reduced

which makes the SSI/ref algorithm much faster than the standard SSI algorithm. The new

technique is applied to a vibration test on a steel transmitter mast and compared with the

standard SSI algorithm.
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A comparative study of various identification techniques for the modal analysis of the bridge

dynamics of the Z24-Bridge, a three-span reinforced concrete bridge in Switzerland subjected

to ambient loads such as traffic, wind and micro-earthquakes, to a drop weight and to a pe-

riodic excitation by shakers is presented in [Peeters and Ventura 2003]. The identification

results of two frequency domain techniques, namely the peak picking and frequency decom-

position method, as well as of four time domain methods, among them the Ibrahim time

domain method, the stochastic Realization method, the stochastic subspace method and an

ARMAV-based technique are discussed. It is shown that the SSI method yields in all load

cases the most complete and consistent modal parameter estimates. Another comparative

study of the SSI technique and the peak-picking method used for ambient vibration testing

and experimental modal analysis on large civil engineering structures can be found in [Ren

and Zong 2004]. The methods are applied to a 15 story reinforced concrete shear core build-

ing as well as to a concrete filled steel tubular arch bridge. Also in these case studies the SSI

technique outperforms the peak picking method which is computational efficient but fails to

identify the complete set of eigenfrequencies and yields inaccurate mode shape estimates.

In [Bodeux and Golinval 2003] modal analysis and damage detection of a steel-frame struc-

ture is performed using an ARMAV-based algorithm and the SSI method. The accuracy of

the modal analysis and damage detection of both methods is comparable. However, the SSI

technique requires a shorter computation time in order to obtain good results while at the

same time the mean uncertainties of the estimates are smaller.



220

Bibliography

[Abdel Wahab and De Roeck 1999] Abdel Wahab, M. M. ; De Roeck, Guido: An effec-
tive method for selecting physical modes by vector autoregressive models. In: Mechanical
Systems and Signal Processing 13 (1999), Nr. 3, p. 449 –474

[Akaike 1974] Akaike, Hirotugo: Stochastic theory of minimal realization. In: Automatic
Control, IEEE Transactions on 19 (1974), dec, Nr. 6, p. 667 – 674

[Andersen and Brincker 2001] Andersen, Palle ; Brincker, Rune: The Stochastic
Subspace Identification Techniques.www.svibs.com. 2001

[Andersen and Enmark 2011] Andersen, Torben ; Enmark, Anita: Integrated Modeling
of Telescopes. Springer, 2011 (Astrophysics and Space Science Library)

[Andrews 2004] Andrews, Larry C.: Field Guide to Atmospheric Optics. SPIE Press,
2004 (Spie Field Guides)

[Arun and Kung 1990] Arun, K. S. ; Kung, S. Y.: Balanced Approximation of Stochastic
Systems. In: SIAM Journal on Matrix Analysis and Applications 11 (1990), Nr. 1, p. 42–68
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