

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Geoinformatik

Domain Extendable 3D City Models –

Management, Visualization, and Interaction

Zhihang Yao

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Uwe Stilla

Prüfer der Dissertation:

1. Prof. Dr. Thomas H. Kolbe
2. Prof. Dr.-Ing. Liqiu Meng

3. Prof. Dr. Peter van Oosterom

Delft University of Technology

Die Dissertation wurde am 01.02.2019 bei der Technischen Universität München

eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 20.12.2019

angenommen.

2

Acknowledgements

3

Acknowledgements

During the past four years, this work has been carried out in large parts within the research

project “Fachlich erweiterbare 3D-Stadtmodelle – Management, Visualisierung und

Interaktion” funded by the company CADFEM GmbH, whom I would like to thank for its

support firstly.

Next, I would like to express my sincere appreciation to Prof. Matthäus Schilcher who

brought me into the field of Geographic Information System during my master studies and

gave me the opportunity to start my research career at the Chair of Geoinformatics at

Technical University of Munich (TUM). This thesis would not have been possible without his

kind advice and encouragement in every phase of the dissertation work throughout the past

four years.

My special thanks go to my PhD supervisor Prof. Thomas H. Kolbe, who gave me this

challenging research topic and devote his time to consistently help me in training my soft

skills to build my confidence towards the completion of this dissertation. His constructive

criticism and valuable remarks from both scientific and engineering perspectives have

tremendously helped me to establish the correct research direction and to dig deeper into

many different interesting fields and tasks. I deeply appreciate his enlightening supervision

which extended my scope of technical knowledge and which will benefit my long-term career

development.

I would also like to give my sincere thanks to my two PhD co-supervisors Prof. Liqiu Meng

from TUM and Prof. Peter van Oosterom from TU-Delft for carefully reviewing my thesis as

well as for giving their valuable comments which guided me improving and finishing my

thesis.

Bedsides my supervisors, I further want to thank my colleagues from the Chair of

Geoinformatics for their great help, which let me to gain the insights into diverse research

aspects. First, I owe my thanks to Dr. Tatjana Kutzner for the fruitful discussions on the

technical implementation of CityGML extensions which is one of the key research aspects in

my thesis. I am grateful to Dr. Andreas Donaubauer, who has been continuously paying

attention to my research work and also provided valuable feedback after reviewing my thesis.

I also thank Maximilian Sindram, Kanishk Chaturvedi, Son Nguyen, and my former

colleagues Dr. Robert Kaden and Dr. Aftab Khan for their efforts in completing many joint

articles.

The colleagues from the company virtualcitySYSTEMS GmbH (a subsidiary of the company

CADFEM GmbH) have also offered me incredible support in completing this thesis. I am

especially grateful to Dr. Claus Nagel for his tremendous contribution to the implementation

of the CityGML Import/Export tool which is mentioned in many places within this thesis and

plays an essential role in enhancing the functionalities of the developed framework. I also

thank Jannes Bolling for the fruitful discussions on designing one of the kernel APIs of the

developed 3D web client.

Last, I owe the deepest gratitude to my parents for their continual support and understanding,

and all my love goes to my wife Xue Chen for her infinite patience, care, and love that

accompanied me through the tough period.

 Acknowledgements

4

Contents

5

Contents

Acknowledgements .. 3

Contents .. 5

Abbreviations ... 7

List of Figures .. 9

List of Tables .. 14

Summary .. 15

Zusammenfassung ... 17

Chapter 1 Introduction .. 19

1.1 Motivation .. 19

1.2 Research Hypotheses and Questions ... 21

1.3 Organization of the Thesis ... 21

Chapter 2 Theoretical Background .. 23

2.1 Geographic Information System (GIS) .. 23

2.2 Spatial Database System .. 25

2.3 Cloud Computing ... 28

2.4 Geospatial Data Modelling .. 31

2.5 3D Graphics Visualization ... 37

2.6 Digital Virtual Globes .. 41

Chapter 3 Management of Semantic 3D City Models .. 45

3.1 CityGML .. 46

3.1.1 Overview ...46

3.1.2 Main Features of CityGML ...47

3.2 Management of CityGML using SRDBMS ... 52

3.2.1 Standard Approach for Mapping of OO-Models onto Relational Models53

3.2.2 Advanced Approach for optimizing Relational Database Models59

3.3 3D City Database (3DCityDB) .. 63

3.3.1 Overview ...63

3.3.2 3DCityDB Insights ..64

Chapter 4 Management of Domain Extendable 3D City Models 71

4.1 Extending the CityGML Data Model .. 72

4.1.1 CityGML ADE Insights ..73

4.1.2 Development of CityGML ADEs ...74

4.1.3 Extending the 3DCityDB for CityGML ADEs ...75

4.2 Automatic Derivation of Relational Database Schemas for ADEs 76

4.2.1 Survey of existing Transformation Solutions ..77

4.2.2 Relevant Concepts of Graph Transformation System ...81

4.2.3 Concept of using GTS to automatically derive ADE Database Schemas87

4.3 Implementation and Evaluation ... 89

 Contents

6

4.3.1 Design of a Graph Transformation Environment ..90

4.3.2 Extending the 3DCityDB for Managing CityGML ADEs ..98

4.3.3 Example Application: CityGML-TestADE ..103

4.3.4 Practical Applications: EnergyADE and UtilityNetworkADE108

Chapter 5 Visualization and Exploration of Large Semantic 3D City Models 109

5.1 Visualization of Semantic 3D City Models ... 110

5.1.1 Creation of 3D Visualization Models ..111

5.1.2 Tiling of 3D Visualization Models ..117

5.1.3 Streaming and Visualization of Tiled 3D Visualization Models122

5.2 Exploration of Semantic 3D City Models .. 124

5.2.1 Interaction with 3D City Model Objects ...125

5.2.2 Coupling of 3D Visualization Models with Thematic Information.........................127

5.2.3 Implementation of a 3D Web Client ...130

5.3 Example Applications .. 135

5.3.1 3D City Model of New York City ...136

5.3.2 3D City Model of Berlin ...137

5.3.3 3D City Model of Vorarlberg ..138

Chapter 6 Utilization of Domain Extendable 3D City Models 139

6.1 Conceptual Considerations .. 140

6.1.1 Problems of the traditional System Solutions ...140

6.1.2 A new Multi-Level System Architecture ..141

6.2 System Implementation ... 143

6.2.1 Implementation of the Information Backbone ..143

6.2.2 Implementation of the Application Level ...144

6.3 Example Applications .. 148

6.3.1 Use Case 1: Solar Potential Simulation for the district LBBD148

6.3.2 Use Case 2: Energy Atlas Berlin ...152

Chapter 7 Discussion, Conclusions, and Outlook ... 155

7.1 Discussion .. 155

7.2 Contribution of the Thesis ... 159

7.3 Outlook and Future Research... 161

Bibliography ... 163

Appendix 1: Layered Graph Transformation Rules .. 175

Appendix 2: XML Schema Definition File of the TestADE .. 191

Appendix 3: SQL Definition of the TestADE Oracle DB-Schema 195

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema 201

Appendix 5: XML Definition of the TestADE Schema Mapping 209

Abbreviations

7

Abbreviations

3DCityDB 3D City Database

AGG Attributed Graph Grammar

ADE CityGML Application Domain Extension

API Application Programming Interface

B-Rep Boundary Representation

BIM Building Information Model

B3DM Batched 3D Model

CZML Cesium Markup Language

CPU Central Processing Unit

CAD Computer-aided Design

CRUD Create, Read, Update, and Delete

CityGML City Geography Markup Language

COLLADA Collaborative Design Activity

CRS Coordinate Reference System

DPO Double-Pushout

DCC Digital Content Creation

DTM Digital Terrain Model

DSM Digital Service Model

DBS Database System

DBMS Database Management System

ETL Extract, Transform, and Load

EA Enterprise Architect

ESRI Environmental Systems Research Institute

FME Feature Manipulation Engine

GPU Graphics Processing Unit

GIS Geographic Information System

GUI Graphical User Interface

GFM General Feature Model

GML Geography Markup Language

GFM General Feature Model

GTS Graph Transformation System

glTF GL Transmission Format

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

INSPIRE Infrastructure for Spatial Information in Europe

ISO International Organisation for Standardisation

 Abbreviations

8

IaaS Infrastructure as a Service

KML Keyhole Markup Language

LOD Level of Detail

LRU Least Recently Used

LHS Left-hand Side

MDA Model-driven Architecture

NAC Negative Application Condition

OGC Open Geospatial Consortium

OMG Object Management Group

OO Object-oriented

PAC Positive Application Condition

PIM Platform Independent Model

PSM Platform Specific Model

PaaS Platform as a Service

RHS Right-hand Side

REST Representational State Transfer

SRDBMS Spatially-enhanced Relational Database Management System

SQL Structured Query Language

SaaS Software as a Service

SDBS Spatially-enhanced Database System

SPO Single-Pushout

TMS Tile Map Service

TC211 ISO Technical Committee 211

TUM Technische Universität München

UML Unified Modeling Language

URI Unique Resource Identifier

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

WFS OGC Web Feature Service

WMS OGC Web Map Service

WPS OGC Web Processing Service

WGS 84 World Geodetic System 1984

WebGL Web Graphics Library

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

X3D Extensible 3D Graphics

XPath XML Path Language

List of Figures

9

List of Figures

Figure 1: Relevant components of a typical GIS environment (cf. Jung 2008) 24

Figure 2: Application structure based on a spatial database system (cf. Brinkhoff 2005) 25

Figure 3: An example of R-Tree spatial index (cf. Guttman 1984) ... 27

Figure 4: Conceptual system architecture of Cloud Computing (cf. Buyya et al. 2008) 29

Figure 5: An example of the three types of Cloud-based services using the Google Cloud

ecosystem ... 30

Figure 6: Conceptual idea of the interoperable data dissemination using a common data model

in GIS ... 32

Figure 7: Relationship between PIM and PSMs in a Model-Driven Architecture 33

Figure 8: Spatio-semantic representation of a building based on ISO 19107 and 19109

standards ... 34

Figure 9: Relationship between the conceptual models from the ISO 19100 series and their

GML encodings (ISO 19136:2007) .. 35

Figure 10: 3D Graphics Rendering Pipeline (Chuan 2012) ... 38

Figure 11: API architecture of the CesiumJS framework library (Cozzi 2015) 42

Figure 12: Graphical user interface of the Cesium Viewer .. 43

Figure 13: Overview of the CityGML modules (cf. Gröger et al. 2012) 46

Figure 14: The LOD concept defined by CityGML (Biljecki et al. 2016) 47

Figure 15: Example of realizing an aggregation hierarchy using CityGML’s grouping concept

 .. 48

Figure 16: Graphical UML notation of the CityGML geometry model (Gröger et al. 2012) .. 49

Figure 17: Coherence of semantics and geometry in CityGML (Stadler & Kolbe 2007) 50

Figure 18: Example of using CityGML External References for linking with remote data

repositories ... 51

Figure 19: Relationship between CityGML and ADE modules .. 52

Figure 20: Mapping a Class onto a table .. 54

Figure 21: Mapping each class of an inheritance hierarchy onto a separate database table 55

Figure 22: Mapping two classes with inheritance relationship onto a single database table ... 56

Figure 23: Mapping N:0..1 relationship between two different classes (variant 1) 56

Figure 24: Mapping N:0..1 relationship between two classes with a shared table (variant 2) . 56

Figure 25: Mapping N:0..1 relationship of the same class (variant 3) 57

Figure 26: Mapping 1:N relationship between two different classes (variant 1) 57

Figure 27: Mapping 1:N relationship between two classes with a shared table (variant 2) 57

Figure 28: Mapping 1:N relationship between the same class (variant 3) 58

Figure 29: Mapping M:N association relationship (Variant 1) .. 58

Figure 30: Mapping M:N association relationship (variant 2) ... 58

Figure 31: Example of mapping an inheritance hierarchy onto one table 59

 List of Figures

10

Figure 32: Example of mapping multiple classes onto one table ... 60

Figure 33: General idea for the mapping of an object-oriented model with the composite

pattern onto an efficient relational database model .. 61

Figure 34: GML geometry types being used in the CityGML standard (cf. Kolbe et al. 2016)

 .. 62

Figure 35: Relevant components of the 3DCityDB Software Suite ... 64

Figure 36: Overview of the 3DCityDB database procedure packages 65

Figure 37: Software structure of the CityGML Import/Export Tool (cf. Stadler et al. 2009) .. 66

Figure 38: Implementation of the 3DCityDB Web Feature Service .. 67

Figure 39: Workflow of generating KML/COLLADA/glTF visualization models 68

Figure 40: Workflow of generating spreadsheet from 3DCityDB ... 69

Figure 41: Workflow of using 3DCityDB web client coupled with Cloud-based online

spreadsheets .. 70

Figure 42: Relationships between the ISO 19100 standard family and CityGML ADEs 73

Figure 43: Conceptual workflow for creating a dynamically extendable 3D geo-database for

CityGML .. 76

Figure 44: General approach for deriving relational database schema based on model

transformation .. 77

Figure 45: Conceptual workflow of using graph transformation system to perform a

computation process ... 82

Figure 46: Conceptual diagram of the SPO-based approach (cf. Geiß et al. 2006) 82

Figure 47: Example of the “dangling” edges resulted from a simple graph rewriting process 83

Figure 48: Conceptual diagram of the DPO-based approach (cf. Habel et al. 2001) 84

Figure 49: Example of DPO approach for graph transformation ... 85

Figure 50: Conceptual diagram of graph transformation with type graph (cf. Taentzer et al.

2006) ... 86

Figure 51: Conceptual workflow of layer-based graph transformation 87

Figure 52: General idea of deriving a relational database schema from a GML application

schema by means of graph transformation ... 88

Figure 53: Software structure of the developed graph-based converter tool for generating

relational database schema and schema mapping file from a given ADE application schema 89

Figure 54: Meta-model of the GML application schema according to the ISO 19136 90

Figure 55: Meta-model of the relational database model ... 92

Figure 56: An excerpt of the meta-graph for representing the model mapping structure 93

Figure 57: Rule 1: Mapping ADE class onto table .. 94

Figure 58: Rule 2: Mapping two ADE classes with inheritance relationship onto one table .. 95

Figure 59: Negative application conditions of the Rule2 ... 95

Figure 60: Rule 3: Mapping Inheritance to a foreign key constraint 95

List of Figures

11

Figure 61: Rule 4: mapping two classes which have a composition relationship and are

mapped onto the one table .. 96

Figure 62: Rule 5: Mapping simple attribute property onto a table column 96

Figure 63: Rule 6: Initializing a node for representing the 3DCityDB table

"SURFACE_GEOMETRY" .. 97

Figure 64: Rule 7: Mapping B-Rep-based geometry property onto a foreign key column

referencing to the SURFACE_GEOMETRY table .. 97

Figure 65: New conceptual 3DCityDB database structure for handling CityGML ADEs 98

Figure 66: Technical implementation of the 3DCtyDB Metadata Module in a relational

diagram ... 99

Figure 67: Software structure of the extended CityGML Import/Export Tool 101

Figure 68: Workflow of deregistration for a CityGML ADE from a database instance 103

Figure 69: An artificial CityGML ADE for testing the developed graph-based transformation

approach ... 105

Figure 70: Concept of grouping and merging GML, CityGML, and ADE classes for deriving

compact relational database models. Note that the classes of the groups 1, 8, 9, 13, and 15 are

standard GML and CityGML classes, which have already been mapped to the default

3DCityDB tables. ... 106

Figure 71: Relational diagram of the automatically derived relational database of the artificial

ADE using the developed graph-based converter tool ... 107

Figure 72: Report of Database instance including EnergyADE and UtilityNetworkADE

database schemas .. 108

Figure 73: Conceptual structure for the Web-based geo-visualization of 3D city models 110

Figure 74: Workflow of generating 3D visualization models .. 111

Figure 75: Comparison between the coordinates of different reference system types. Note that

the latitude ‘La’ of the point ‘P’ is geodetic latitude which is the angle between the

corresponding surface normal and the equatorial plane, rather than the angle (called

‘geocentric loatitude’) between the equatorial plane and the line connecting the point ‘P’ and

the orgin ‘O’. .. 112

Figure 76: Workflow of interacting with Elevation API .. 113

Figure 77: Example of different display forms of the created 3D visualization models 115

Figure 78: Comparison of the different visual effects of the same 3D model with (the left

figure) and without (the right figure) surface normal .. 115

Figure 79: Example of the first packing algorithm .. 116

Figure 80: Comparison of the generated texture atlas images created using the Basic (left) and

TPIM (right) packing algorithms ... 117

Figure 81: Excerpt of the TMS layout based on the Web Mercator Auxiliary Sphere 118

Figure 82: Typical spatial data structure supported by the 3D-Tiles standard (cf. Cozzi et al.

2019) ... 119

Figure 83:Hierarchical directory structure for export of 2x3 tiles using the grid-based tiling

layout .. 120

 List of Figures

12

Figure 84: Strategy for determining the candidate data tiles that should be loaded according to

the camera perspective projected onto the screen space .. 122

Figure 85: Efficient determination of which data tiles should be loaded according to the user-

defined visibility range in screen pixel .. 123

Figure 86: Workflow of performing the determination and caching of the data tiles for

efficient 3D visualization ... 124

Figure 87: Exploration of a building in a mash-up view using ‘Dual Maps’

(www.dualmaps.com) .. 125

Figure 88: Modelling of the hierarchical structure of 3D city models using the glTF-based

B3DM format (cf. Schilling et al. 2016) .. 126

Figure 89: Example system architecture of coupling WFS with 3D visualization models in a

3D web map application ... 127

Figure 90: Coupling an online spreadsheet with a 3D visualization model via GMLID 128

Figure 91: Example system architecture of coupling online spreadsheet with 3D visualization

models in web applications .. 129

Figure 92: Conceptual API for coupling multiple online spreadsheets with a 3D visualization

model .. 130

Figure 93: System architecture of the developed 3D web client .. 131

Figure 94: User interface and the relevant GUI components of the 3D web client 132

Figure 95: Table manager for dynamically adding multiple online spreadsheet to a data layer

 .. 133

Figure 96: Idea of using a configuration spreadsheet for storing and loading linked 3D

visualization models and online spreadsheets .. 134

Figure 97: Collaborative work using the 3D web client based on Cloud-based online

spreadsheets (cf. Herreruela et al. 2012) .. 135

Figure 98: Example demo of visualizing 3D city model of New York City on the 3D web

client ... 136

Figure 99: Example of visualizing 3D city model of Berlin on the 3D web client 137

Figure 100: Example of visualizing 3D landscape model of Vorarlberg on the 3D web client

 .. 138

Figure 101: Traditional Tree-tier architecture of a 3D Web GIS application (cf. Westra 2010)

 .. 140

Figure 102: Three-tier system architecture (cf. Yao et al. 2014) ... 141

Figure 103: Workflow of setting up the information backbone and urban analytics toolkit . 143

Figure 104: Sequence diagram of the process flow when performing a query on an online

spreadsheet ... 145

Figure 105: Conceptual idea of using online spreadsheet to perform a simple spatial query 146

Figure 106: Example of creating a simple calculation engine using an online spreadsheet .. 146

Figure 107: Example of using two separate spreadsheets to perform calculations and

simulations with secured data .. 147

Figure 108: User interface after loading the LBBD 3D building models into the 3D web client

 .. 149

List of Figures

13

Figure 109: User-dialog for signing up using a valid Google Account 149

Figure 110: Example of performing a spatial query using a user-defined bounding box 150

Figure 111: Example of performing a simple query based on an attribute 150

Figure 112: Example of performing a complex query based on multiple attributes 151

Figure 113: Example of performing aggregation calculation on multiple numeric attributes 151

Figure 114: Example of the automatically generated report showing an overview of the

statistic information .. 152

Figure 115: Example of showing the estimated energy demand for a selected building 153

Figure 116: Ad-hoc estimation of the heating energy demand for one building (cf. Yao et al.

2014) ... 153

 List of Tables

14

List of Tables

Table 1: Comparison of the key features between different 3D visualization models 40

Table 2: Quantitative comparison of the number of tables generated from different software

tools .. 104

Summary

15

Summary

Domain-extendable semantic 3D city models are complex mappings and inventories of the

urban environment which can be utilized as an integrative information backbone to facilitate a

range of application fields like urban planning, environmental simulations, disaster

management, and energy assessment. Today, more and more countries and cities worldwide

are creating their own 3D city models based on the CityGML specification which is an

international standard issued by the Open Geospatial Consortium (OGC) to provide an open

data model and XML-based format for describing the relevant urban objects with regards to

their 3D geometry, topology, semantics, and appearance. It especially provides a flexible and

systematic extension mechanism called “Application Domain Extension (ADE)” which

allows third parties to dynamically extend the existing CityGML definitions with additional

information models from different application domains for representing the extended or

newly introduced geographic object types within a common framework. However, due to the

consequent large size and high model complexity, the practical utilization of country-wide

CityGML datasets has posed a tremendous challenge regarding the setup of an extensive

application system to support the efficient data storage, analysis, management, interaction,

and visualization. These requirements have been partly solved by the existing free 3D geo-

database solution called ‘3D City Database (3DCityDB)’ which offers a rich set of

functionalities for dealing with standard CityGML data models, but lacked the support for

CityGML ADEs.

The key motivation of this thesis is to develop a reliable approach for extending the existing

database solution to support the efficient management, visualization, and interaction of large

geospatial data elements of arbitrary CityGML ADEs. Emphasis is first placed on answering

the question of how to dynamically extend the relational database schema by parsing and

interpreting the XML schema files of the ADE and dynamically create new database tables

accordingly. Based on a comprehensive survey of the related work, a new graph-based

framework has been proposed which uses typed and attributed graphs for semantically

representing the object-oriented data models of CityGML ADEs and utilizes graph

transformation systems to automatically generate compact table structures extending the

3DCityDB. The transformation process is performed by applying a series of fine-grained

graph transformation rules which allow users to declaratively describe the complex mapping

rules including the optimization concepts that are employed in the development of the

3DCityDB database schema.

The second major contribution of this thesis is the development of a new multi-level system

which can serve as a complete and integrative platform for facilitating the various analysis,

simulation, and modification operations on the complex-structured 3D city models based on

CityGML and 3DCityDB. It introduces an additional application level based on a so-called

‘app-concept’ that allows for constructing a light-weight web application to reach a good

balance between the high data model complexity and the specific application requirements of

the end users. Each application can be easily built on top of a developed 3D web client whose

functionalities go beyond the efficient 3D geo-visualization and interactive exploration, and

also allows for performing collaborative modifications and analysis of 3D city models by

taking advantage of the Cloud Computing technology. This multi-level system along with the

extended 3DCityDB have been successfully utilized and evaluated by many practical projects.

 Summary

16

Zusammenfassung

17

Zusammenfassung

Fachlich erweiterbare semantische 3D-Stadtmodelle sind komplexe Abbildungen und

Datenbestände der städtischen Umgebung, die als ein integratives Informationsrückgrat

genutzt werden können, um eine Reihe von Anwendungsfeldern wie z. B. Stadtplanung,

Umweltsimulationen, Katastrophenmanagement und Energiebewertung zu ermöglichen.

Heute schaffen immer mehr Länder und Städte weltweit ihre eigenen 3D-Stadtmodelle auf

Basis des internationalen Standards CityGML des Open Geospatial Consortium (OGC), um

ein offenes Datenmodell und ein XML-basiertes Format zur Beschreibung der relevanten

Stadtobjekte in Bezug auf ihre 3D-Geometrien, Topologien, Semantik und Erscheinungen zur

Verfügung zu stellen. Es bietet insbesondere einen flexiblen und systematischen

Erweiterungsmechanismus namens „Application Domain Extension“ (ADE), der es Dritten

ermöglicht, die bestehenden CityGML-Definitionen mit zusätzlichen Informationsmodellen

aus verschiedenen Anwendungsdomänen dynamisch zu erweitern, um die erweiterten oder

neu eingeführten Stadtobjekt-Typen innerhalb eines gemeinsamen Framework zu

repräsentieren. Aufgrund der konsequent großen Datenmenge und hohen Modellkomplexität

bei der praktischen Nutzung der landesweiten CityGML-Datensätze wurden jedoch enorme

Anforderungen an den Aufbau eines umfangreichen Anwendungssystems zur Unterstützung

der effizienten Speicherung, Analyse, Verwaltung, Interaktion und Visualisierung der Daten

gestellt. Die bestehende kostenlose 3D-Geodatenbank-Lösung „3D City Database“

(3DCityDB) entsprach bereits teilweise diesen Anforderungen, indem sie zwar eine

umfangreiche Funktionalität für den Umgang mit den Standard-CityGML-Datenmodellen,

jedoch keine Unterstützung für CityGML-ADEs bietet.

Die Schlüsselmotivation für diese Arbeit ist es, einen zuverlässigen Ansatz zur Erweiterung

der bestehenden Datenbanklösung zu entwickeln, um das effiziente Management, die

Visualisierung und Interaktion großer Datensätze beliebiger CityGML-ADEs zu unterstützen.

Der Schwerpunkt liegt zunächst auf der Beantwortung der Schlüsselfrage, wie man das

relationale Datenbankschema dynamisch erweitern kann, indem die XML-Schemadateien der

ADE analysiert und interpretiert und anschließend dem entsprechende neue

Datenbanktabellen erzeugt werden. Auf Grundlage einer umfassenden Studie verwandter

Arbeiten wurde ein neues graphbasiertes Framework entwickelt, das die typisierten und

attributierten Graphen zur semantischen Darstellung der objektorientierten Datenmodelle von

CityGML-ADEs verwendet und anschließend Graphersetzungssysteme nutzt, um eine

kompakte Tabellenstruktur zur Erweiterung der 3DCityDB zu generieren. Der

Transformationsprozess wird durch die Anwendung einer Reihe feingranularer

Graphersetzungsregeln durchgeführt, die es Benutzern ermöglicht, die komplexen Mapping-

Regeln einschließlich der Optimierungskonzepte aus der Entwicklung des 3DCityDB-

Datenbankschemas deklarativ zu formalisieren.

Der zweite wesentliche Beitrag dieser Arbeit ist die Entwicklung eines neuen mehrstufigen

Systemkonzepts, das auf CityGML und 3DCityDB basiert und gleichzeitig als eine komplette

und integrative Plattform zur Erleichterung der Analyse, Simulationen und Modifikationen

der komplex strukturierten 3D-Stadtmodelle dienen kann. Das Systemkonzept enthält eine

zusätzliche Anwendungsebene, die auf einem sogenannten „App-Konzept“ basiert, das es

ermöglicht, eine leichtgewichtige Applikation bereitzustellen, die eine gute Balance zwischen

der hohen Modellkomplexität und den spezifischen Anwendungsanforderungen der

 Zusammenfassung

18

Endbenutzer erreicht. Jede Applikation lässt sich ganz einfach mittels eines bereits

entwickelten 3D-Webclients aufbauen, dessen Funktionalitäten über die effiziente 3D-Geo-

Visualisierung und interaktive Exploration hinausgehen und auch die Durchführung

kollaborativer Modifikationen und Analysen von 3D-Stadtmodellen mit Hilfe von der Cloud-

Computing-Technologie ermöglichen. Dieses mehrstufige System zusammen mit dem

erweiterten 3DCityDB wurde erfolgreich in vielen praktischen Projekten genutzt und

bewertet.

Introduction

19

Chapter 1 Introduction

1.1 Motivation

In the past years, due to the increasing complexity of the city systems resulting from the

growing urban population, more and more authorities like national and state mapping

agencies worldwide have been motivated to create 3D spatial data infrastructures for

monitoring the physical cities to enhance the interoperable data access among different

sectors and organizations. The key concept is to link the relevant identifiable urban entities

with the heterogeneous socio-economic and environmental data like energy performance

indicators, pollution measurements, and air quality data etc. to provide an extensive

information basis for performing a range of analyses and simulations (cf. Zheng et al. 2014).

For example, it allows facilitating the decision-making processes in the energy and

environmental sectors to increase energy efficiency and reduce harmful emissions

respectively. Unlike using the traditional 2D spatial information, most of these analyses and

simulations can highly benefit from the introduction of the third spatial dimension since many

indicators can be computed or derived fully automatic from the 3D models. For example, the

energy demand estimation for a building can be performed by calculating its 3D solid volume

and outer surface areas, and the potentials for solar energy production can be estimated by

analyzing the shadow casting phenomena in 3D (cf. Kaden 2014, Chaturvedi et al. 2017).

Moreover, the shapes and the topological relations of the urban objects can also be visualized

in a highly intuitive and natural way using a 3D scene which allows human operators to

interactively explore the details about the city objects to check the data quality against the

real-world.

Semantic 3D City Models: The term ‘semantic 3D city model’ originates from the field of

urban information modelling with the aim of reaching a common understanding of the urban

phenomena within one framework. A semantic 3D city model is typically created with a clear

decomposition of the relevant real-world objects into meaningful types like buildings, roads,

railways, terrain, water bodies, vegetation and bridges with regards to their 3D geometry,

topology, semantics, and appearance. It allows, unlike the traditional 3D graphics models,

describing hierarchically structured 3D city objects based on their thematic attributes as well

as spatial and semantic interrelationships (cf. Kolbe 2009). Semantic 3D city models can,

hence, be a good basis for performing complex simulations and analyses etc., far beyond pure

3D visualization, since most urban applications do not just require data about the 3D

geospatial characteristics but also semantic information (cf. Biljecki et al. 2015). In order to

achieve interoperable access to semantic 3D city models, the international organization Open

Geospatial Consortium (OGC) issued the CityGML standard, which has been designed as an

open and universal information model for describing and exchanging semantic 3D city

models. It facilitates the efficient management, exploration, and analysis of the heterogeneous

3D urban information over different users and applications. Today, more and more countries

and cities worldwide are creating and maintaining their semantic 3D city models based on the

CityGML standard to establish an integrative information backbone for accelerating their 3D

spatial infrastructures (cf. Gröger et al. 2012).

Extendable Semantic 3D City Models: Although semantic 3D city models can represent the

most relevant 3D topographic feature types along with their relevant thematic and spatial

 Introduction

20

properties, additional feature classes or extra attributes are usually required to be added to the

existing 3D city model for performing domain-specific analysis or simulations like energy

demand calculations, utility network analysis, and noise propagation simulations. To resolve

this issue, semantic 3D city models must be extendable such that their default feature

catalogue can be dynamically enriched with additional feature classes from different

application domains. Besides, since 3D city objects typically have well-defined identifiers

which are usually kept stable throughout the lifetime of the referenced real-world objects,

extra spatial and thematic properties can be dynamically attached to the existing feature

classes. The creation and maintenance of such extendable semantic 3D city models can be

realized by means of CityGML, which provides a flexible and systematic extension

mechanism called “Application Domain Extension (ADE)”. It allows third parties to

dynamically extend the existing CityGML definitions with additional domain-specific data

models in a modular fashion, and can guarantee interoperable model interpretations across

various application domains. For instance, it is possible to combine the building information

from IFC with the urban information in CityGML to reach an Geo-BIM integration (cf. de

Laat & van Berlo 2010) .

Balancing City Model Complexity and User Needs: The introduction of additional extensions

to the default 3D city model can inevitably result in an extra level of complexity on the entire

model structure regarding the mixed thematic, geometric, and topologic information. This can

bring both advantages and disadvantages: On the one hand, the extended 3D city models are

enriched, and the datasets from different application domains are compatible with each other

by sharing a common interface. On the other hand, the application users from various sectors

normally just need to access a subset of the entire 3D city model to accomplish their domain-

specific tasks, which, however, could be hindered by the barrier resulting from the high

complexity of the underlying data models. Thus, a systematic approach is strongly needed in

practice to reach a good balance between the high city model complexity and the specific user

needs by means of a platform which should satisfy, amongst others, the following

requirements.

• The complex 3D city models must be efficiently managed within a database serving as

a central repository which should be flexible for handling any additional domain-

specific model extensions. In addition, the semantics as well as the dependencies of

the model structures shall also be reflected in the database for simplifying the data

access and maintenance.

• The platform should additionally provide an intuitive user interface along with a

simple data view that allows users to easily access and interact with the 3D city

models via an efficient 3D visualization to perform data exploration, analysis, and

simulations in a platform-independent environment.

• This platform shall allow the reliable credential management to secure the data that

will be accessed by multiple application users. The users with different levels of

authorization have to be assigned with the respective data access rights to facilitate the

collaborative work on the same datasets.

To the best knowledge of the author, none of the existing application platforms on the market

can fully meet the above-mentioned requirements. Besides, the conceptual solutions for

Introduction

21

reaching these purposes have also rarely been discussed in literature in the past years. Based

on this background, a novel approach has been developed in the context of this thesis and the

related details are elaborated by examining and answering the following research hypotheses

and questions.

1.2 Research Hypotheses and Questions

Question 1: Which technologies and standards are important for realizing the efficient

management, interaction, and visualization of semantic 3D city models using a computer

system?

Question 2: What are the key aspects for realizing the efficient storage and management of

large and complex-structured semantic 3D city models regarding the data modelling and

software implementation?

Question 3: How to implement the extensions to the semantic 3D city model according to the

CityGML standard and then develop a dynamically extendable database for dealing with these

extensions efficiently?

Question 4: Compared to the existing solutions, is there any further advanced approach that

allows the automatic derivation of a compact relational database model from a CityGML

extension which is structured as a complex object-oriented data model?

Question 5: How to realize the efficient visualization of large semantic 3D city models along

with their extensions in a web browser, where users are able to explore the data model

information interactively?

Hypothesis: It is possible to develop such an application system that supports management,

visualization, and interaction of extendable semantic 3D city models, and at the same time

reaches a good balance between the high model complexity and specific user needs. This

balance can be evaluated against the criterion, whether end users who are not GIS experts can

also access complex 3D city models and accomplish various domain-specific analysis and

simulation tasks.

1.3 Organization of the Thesis

According to the research hypotheses and questions outlined in the previous section, the rest

of this thesis is organized as follows:

Chapter 2 introduces several technologies, concepts, and standards which are relevant for

realizing the efficient management and visualization of 3D geospatial data. Included are

Geographic Information System (GIS), Spatial Database System (SDBMS), Cloud

Computing, Geospatial Data Modelling together with the ISO 19100 standard family, 3D

Graphics Visualization, and Digital Virtual Globes, which all together form the theoretical

foundations of this thesis.

Chapter 3 firstly reviews the relevant concepts and features of the international standard

CityGML which provides a common definition of the basic entities, attributes, and relations

of a semantic 3D city model. Additionally, the relevant relational database modelling

approaches are examined, based on which a complete database solution called 3D City

 Introduction

22

Database (3DCityDB) were developed which came with a set of software tools allowing to

import, manage, analyze, visualize, and export semantic 3D city models according to the

CityGML standard. The technical details of these software tools are illustrated in detail in the

last subsection of this chapter.

Chapter 4 mainly focuses on the key approaches for the efficient management of the domain-

extended semantic 3D city model according to the CityGML’s extension mechanism ADE. In

this context, the relevant concepts of the CityGML ADE have been first reviewed together

with a modular 3DCityDB database structure for dealing with CityGML ADEs. Particularly, a

new graph-transformation-based approach is presented in detail which has been developed for

automatically generating a compact 3DCityDB-compliant relational database schema from a

given ADE application schema constructed with an object-oriented data structure. Moreover,

a prototypical implementation of the concept solution is accomplished and illustrated along

with an application example.

Chapter 5 presents the relevant approaches for realizing the interactive 3D exploration of

large semantic 3D city models to facilitate users to access the city model information

intuitively. These approaches include the methods of generating the dedicated 3D

visualization models from the semantic 3D city models for realizing the efficient data

streaming and 3D geo-visualization on the web. Regarding the rich data exploration and

interaction of the individual 3D model objects, the Cloud Computing technology and the

Cesium Virtual Globe are utilized to develop a 3D web client which can be used to build a

simple and user-friendly 3D web viewer for a GIS application. The concepts and technical

implementation of this 3D web client are illustrated in detail along with a number of practical

application examples.

Chapter 6 proposes a new framework with a multi-level system architecture for facilitating

the employment of complex extended semantic 3D city models in domain-specific

applications. In this chapter, the conceptual idea of this approach has been first presented

which is based on an app-concept allowing to build a simple application according to the

specific application requirements to reach a sophisticated balance between the city model

complexity and the user needs. Additionally, the technical details of this developed system

together with an extended 3D web client are presented which is mainly realized on top of the

research and development results achieved from the former chapters. Finally, two application

examples are given to demonstrate the applicability of the developed system for the practical

use cases.

Chapter 7 first draws the conclusions about this thesis with respect to the stated motivations

and the outlined research hypothesis and questions. In the subsequent subsection, the main

contributions and efforts of this thesis to a range of fields like scientific research, practical

applications, academic teaching and practical training, as well as international standardization

are summarized according to the results obtained from this research and implementation

work. Finally, the potential possibilities for improving the developed approaches and software

applications are identified which needs to be further investigated in future research in order to

accelerate the enterprise management, interaction and visualization of semantic 3D city

models.

Theoretical Background

23

Chapter 2 Theoretical Background

This chapter is intended to give an overview of the relevant technologies and standards which

cover the key aspects of the research work presented in the subsequent chapters. First, a brief

explanation of the technology Geographic Information System (GIS) is given which forms the

fundamental backbone for the entire development work of this dissertation. In the subsequent

section, the Spatial Database System acting as one of the most important components in GIS

environments is illustrated as it is considered powerful means for realizing the efficient

storage and management of 3D geospatial data. Concerning the data exploration and

interaction of semantic 3D city models in practical applications, a novel approach has been

proposed and developed in the context of the thesis. It allows to construct a user-friendly

application framework which is based on the coupling of Cloud-based services with a Web-

based GIS implementation. Therefore, for the sake of clarity, a brief explanation of Cloud

Computing is given in this chapter. Additionally, the standard approach for Geospatial Data

Modelling has been reviewed in order to facilitate understanding the basic ideas for the

development as well as for the management of semantic 3D city models with their dynamic

extensions. Finally, the technologies i.e. 3D Graphics Visualization and Digital Virtual Globe

are illustrated in the rest part of this chapter, since they play an important role in building a

3D viewer for supporting high-performance interaction, exploration, and visualization of

semantic 3D city models in a GIS application.

2.1 Geographic Information System (GIS)

The term Geographic Information System (GIS), also called Geographical information System

stands for those kinds of computer systems that support for acquiring, storing, managing,

analyzing and displaying geospatial data (cf. Chang 2006). As this definition implies, the

ability of handling geospatial data information separates GIS from other information systems

and hence brings GIS to a wide variety of application fields like urban planning, emergency

analysis, resource management, and natural hazard assessment etc. In recent years, with the

advancement of computer technology, more powerful and cost-effective hardware have

dramatically accelerated the evolvement of GIS for managing large geospatial data on a

variety types of platforms and devices such as personal computers and mobile devices. Like

with other computer application systems, a GIS environment is typically made up of a set of

system components which can be hierarchically constructed to accomplish certain application

tasks. According to the literature (cf. Vijlbrief & van Oosterom 1992, Jung 2008), the typical

system architecture is shown in Figure 1.

The fundamental component of GIS is the geospatial data which can be created by digitizing

paper maps or captured by means of geospatial technologies like remote sensing, surveying,

and photogrammetry to integrate such various measured data into a common platform. These

data shall be organized in a sufficient data structure i.e. vector or raster, and also with an

appropriate spatial reference system i.e. geographic coordinate system, projected coordinate

system or a compound coordinate system which is a combination of a two-dimensional

projected coordinate system with a vertical coordinate system (Kothuri et al. 2011). All these

geospatial information shall be maintained in such a database system that must be enhanced

with additional spatial capabilities allowing for efficient storage of geospatial data. In

 Theoretical Background

24

addition, since the database systems are usually accessible over the network by applications,

interoperable access to a common database is guaranteed for the data management i.e. update,

deletion, and enrichment. Moreover, these kinds of spatially-enhanced database systems

usually offer powerful functionalities like performing queries and analysis on spatial data

which can be invoked in various spatial analysis and simulations like buffer analysis,

viewshed calculations, spatial interpolations, path and network analysis (cf. van Oosterom &

Vijlbrief 1994, van Oosterom et al. 2002). The calculation results along with the original

geospatial data can be displayed on a client application using a 2D/3D map viewer which

allows GIS users to visually explore and inspect the respective spatial and thematic

information as well as to operate the GIS functionalities in an interactive way.

Figure 1: Relevant components of a typical GIS environment (cf. Jung 2008)

Depending on the platforms on which the GIS client applications are run, GIS can be roughly

categorized into three types, namely desktop GIS, mobile GIS, and Web GIS (Amirian &

Alesheikh 2008), each of which can be further specialized into 2D and 3D variants according

to the visual dimensions supported the map viewer. Most GIS client applications used in

industrial and academic fields come under the desktop GIS category which are usually able to

provide the full functionalities ranging from the data creation and modification up to

geospatial analysis and processing using an integrative user interface. One of the

representative commercial GIS products is ESRI ArcGIS, which provides rich GIS

functionalities and has been widely used in research and production in the past years. A

number of additional free and open source desktop GIS application such as QGIS, gvSIG,

OpenJUMP GIS and GRASS etc. also provide sophisticated GIS functionalities and have

reached a certain market share in many application domains. Compared to the desktop GIS, a

mobile GIS application is normally a light-weight version of its desktop-based counterpart

and has a simplified GUI layout and functionalities to satisfy the shrinked screen size of the

mobile devices. The main advantage of the mobile GIS is that users can carry the mobile

devices to anywhere and hence is useful for acquiring geospatial data on-site. However, most

mobile and desktop GIS applications are platform-dependent and can only run on some

certain operating systems. In addition, the GIS applications must be installed on the devices

beforehand which require a certain level of access permission to the operating systems of the

devices. This will strongly restrict the use of GIS applications in a wide scope since normal

Technische Universität MünchenLehrstuhl für Geoinformatik

Geographic Information System

2

Data Management

Analysis & Processing

Data Acquisition

Visualization &

Exploration
U

s
e
r In

te
rfa

c
e

User

Data Storage

Theoretical Background

25

users are usually not granted with such privilege to install a software on corporate devices.

This drawback can be overcome by using Web GIS. A Web-based GIS application typically

use web browsers at the client side which allow to reach the platform-independent purpose.

With the latest version of Hypertext Markup Language HTML5, it is possible to create

powerful 2D and 3D GIS client applications by means of the HTML5 features e.g. canvas

element, multi-threading (Web workers), offline data storage, and Geolocation (cf. Faulkner

et al. 2017). The communication between client and server in Web GIS usually relies on

HTTP specifications to transfer data requests and responses via the OGC standards e.g. Web

Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), and Web

Processing Service (WPS) (cf. Evans & Sabel 2012). Nowadays, an increasing number of

web-based GIS applications have been developed by GIS vendors and have been successfully

employed in various application fields.

2.2 Spatial Database System

As mentioned in the previous section, the employment of database technology plays the

central role in a GIS application for the efficient management of geospatial data in a

consistent repository when dealing with large-size data and/or a large number of concurrent

users (cf. Shumilov et al. 2002). In general, a database system (DBS) typically consists of two

components, namely database and database management system (DBMS). While the database

is a collection of datasets, the DBMS is a software which allows easy access and organization

of the data stored in the database. A spatial database system (SDBS) is an enhanced version of

the ordinary DBS by extending the capabilities of the database to support high-performance

storing, querying, and processing of geospatial information. It provides a set of spatial data

types, in addition to the primitive data types i.e. string, floating point number, integer and date

etc. for storing different geometry types such as points, lines, polygons, solids, or a collection

of them (cf. Güting 1994). In addition, a spatial database may also be able to store raster data,

triangulated irregular networks (TINs), as well as massive point cloud objects (Kothuri et al.

2011), all of which can be represented with 2D or 3D coordinates based on real-world

coordinate reference systems.

Figure 2: Application structure based on a spatial database system (cf. Brinkhoff 2005)

Technische Universität MünchenLehrstuhl für Geoinformatik

3

Spatial Database Management System

(SDBMS)

Spatial Database System (SDBS)

read write

GIS Client

Application A

GIS Client

Application B

GIS Client

Application X
…

GIS Client Applications

Spatial Database

Non-spatial

data

Spatial

data

 Theoretical Background

26

Since the SDBS is an extension of the ordinary DBS, all functionalities of a DBS can be made

full use of in practical applications. For example, when the geospatial data stored in the

database are accessed by multiple users, a locking mechanism allowing for the concurrent

access is supported for preventing inconsistent results from data transactions. In addition, the

management of user access permissions is also supported by the DBMS and allows database

administrators to assign users different levels of access permissions for ensuring data security

and consistency. For example, a read-only access right can be granted to public users such

that the risk of altering the sensitive database data can be avoided. In order to speed up the

access performance when dealing with large data, multiple queries sent from different client

applications can be concurrently processed by the DBMS (cf. Figure 2). In addition, various

user-defined operation rules can also be implemented using the trigger mechanisms provided

by the database which allow to capture the events of changes made to the stored data and

programmatically propagate the update to the other data in the same database automatically.

Moreover, some databases products e.g. Oracle also support version management

mechanisms which allow to log and trace the history of the data modifications and roll back

the data contents to an earlier status of the database at a certain timestamp (cf. Beauregard et

al. 2009).

Compared to conventional DBS, another key feature of SDBS is the capability of creating

spatial indexes to boost the performance of the spatial operations, i.e. querying and processing

of large geospatial data. For example, some GIS analyses usually perform spatial queries to

answer the question like ‘which geospatial objects are contained within a certain spatial extent

i.e. a 2D bounding box’. A quick response of such query is especially important for the ad-

hoc interaction with the geospatial data for facilitating real-time GIS applications. In addition,

spatial indexes can also facilitate spatial operations such as spatial joins which are typically

used for creating an abstract view of all those objects whose locations or extents are spatially

related. There are also a number of further spatial functions and operations that can be

significantly sped up using spatial indexes. Thus, creating spatial indexes is one of the first

important steps when handling and storing large geospatial datasets in a SDBS (cf. Kothuri et

al. 2011).

The basic idea of creating spatial index is similar to conventional database indexes like the B-

tree which tries to order all data records in a hierarchical structure for speeding up the data

searching process. For handling spatial data with higher dimensions, a number of spatial

indexing methods have been developed which are based on different spatial structures e.g.

Grid, quad-tree, k-d tree together with the respective searching algorithms. However, most of

them are only well-suited for indexing points and are not sufficient for geometries like lines,

polygons, and solids (Kothuri et al. 2002). Therefore, most database products like Oracle

Spatial and PostgreSQL/PostGIS implement the so-called R-tree approach which is a more

powerful indexing method with respect to spatial queries on multi-dimensional spatial objects.

It has a B-tree like structure and is a balanced search tree whose leaf nodes must be at the

same height and each has a minimum bounding rectangle that spatially contains the minimum

bounding boxes of the referenced data objects. The non-leaf nodes are linked with their child

nodes in the similar manner (cf. Guttman 1984).

A simple example of the R-tree implementation is presented in Figure 3 where the minimum

bounding boxes (R8 – R19) of 12 polygons are distributed in a 2D plane space and are

Theoretical Background

27

spatially intersected, disjoint, or overlapped with each other for representing the topological

relationships which have frequently occurred in the real-world objects. When searching those

polygons that enclose a given point object, the conventional method without using spatial

index has to iterate through all the polygons to check whether the point is intersected with the

visited polygons. This way, the checking process must be performed 12 times and will

consume linearly increasing calculation time when the number of polygons is growing 𝑂(𝑛).

In comparison, the R-tree index allows the computer to rapidly find out the target polygon by

traversing the tree from its root node to the leaf nodes based on their spatially correlated

bounding boxes. In this case, only three calculation steps are needed with a lower

computational complexity 𝑂(log𝑀 𝑛), where M is the minimum number entries in one node.

Figure 3: An example of R-Tree spatial index (cf. Guttman 1984)

Nowadays, a number of open-source and commercial database products with enabled spatial

extensions have been developed which can be roughly categorized into two types namely,

non-relational and relational databases, according to the data structure managed within the

database (cf. Tauro et al. 2012). The former can be further classified into object-oriented

database, document-oriented databases, and graph databases etc., which are shortly explained

in the following.

• Object-oriented database: it is also called object database where the stored content

information are organized by following an object-oriented structure which is

commonly used in object-oriented programming languages (cf. Atkinson et al. 1992).

Thus, the relationships between objects such as inheritance and associations can be

fully represented in the database, and it allows to interact with the stored objects using

objected-oriented programming languages in a straightforward fashion. Supported

R1 R2

R3 R4 R5

R8 R9 R10

R6 R7

R11 R12 R15 R16 R17 R18 R19R13 R14

R18

R19

R17

R15

R3
R8

R9

R10

R12

R16

R6

R11

R

13

R14

R4

R7

R5

R1

R2

 Theoretical Background

28

database products are Objectivity/DB, ObjectStore, and InterSystems Caché etc. (cf.

Pratiksha & Pursani 2014).

• Document-oriented database: within this database, the data objects are represented

as a document which contains the object attributes and their values being structured as

JSON or XML documents for storing hierarchically data. Thus, the well-known XML

database belongs to the category of the document-oriented database. Since the data are

stored as single document in the database, the database model is schema-less and can

be easily accessed by application programs without needing to know the database

schema beforehand (cf. Boicea et al. 2012). In addition, compared to relational

databases, the update on the stored object data can be easily done by just editing the

corresponding document. There is no need to care about various constraints on the

related tables to ensure database consistency and integrity. A representative document-

oriented database product is “MongoDB” which is a spatially-enhanced XML

database management system and has been proven to be a sophisticated database

solution for storing GML-compliant geospatial data (cf. Mao et al. 2014).

• Graph database: As the name implies, the underlying data model of a graph database

is represented using a graph structure where a graph node is normally used for

representing objects, whereas graph edges represent the relationships between the

respective objects. Each node can be assigned with an arbitrary number of attributes

along with their values formed in a so-called “key-value” data structure (cf. Vicknair

et al. 2010). With the graph structure, the complex data models having tree or graph

structures can be directly mapped onto a graph-based database schema. This way, the

syntactical structure of the original data model can also be well kept in the database

which allows rapid query, processing, and comparison of the data (cf. Nguyen 2017).

A representative database product is ‘Neo4J’ which is an open-source graph database

management system and is also featured with sophisticated spatial capabilities for

handling geospatial data.

Although the above-mentioned non-relational databases are becoming more and more popular

in many application fields (cf. Ordonez et al. 2010), they are currently still limited in their

capabilities and performance of performing certain kinds of spatial operations and coordinate

transformations which are of great importance for the enterprise use in GIS applications (cf.

Agoub et al. 2016). Therefore, the spatially-enhanced relational database systems such as the

commercial Oracle with ‘Spatial’ extension and the open-source PostgreSQL with ‘PostGIS’

extension etc. are nowadays predominantly employed in GIS world due to their extensive

abilities in handling geospatial data.

2.3 Cloud Computing

One of the clearest definitions of Cloud Computing was given by (Armbrust et al. 2010):

 “Cloud computing refers to both the applications delivered as services over the Internet and

the hardware and systems software in the data centers that provide those services”.

As the definition indicates, the Cloud Computing technology offers an Internet-based solution

that allows system administrator and application developers to just focus on the business work

without the need to build up the physical computer infrastructures, since such computing

Theoretical Background

29

resources can be managed and provided via a central service pool known as “Cloud”. It

allows companies or developer users not only to minimize the resource and maintenance costs

but also to speed up the development time of their business products. In order to enable on-

demand access to the resources in the Cloud, the key concept behind the Cloud Computing

technology is virtualization (cf. Figure 4), which means that a bundle of physical computers

are grouped and shared by multiple virtual machines which are able to dynamically allocate

the computing resources according to the actual usage demands. In this way, Cloud services

can be provided with optimized usage efficiency of the hardware by avoiding the waste of

unused resources (cf. Armbrust et al. 2010).

Cloud Computing can be classified into different types according to the accessibility of the

computing resources. The first type is called ‘Public Cloud’ whose services are accessible to

the public users over the Internet. If the Cloud is just used within an intranet like a company’s

internal network, such type of Cloud is called ‘Private Cloud’. The combined version of the

‘Private Cloud’ and ‘Public Cloud’ is simply called ‘Hybrid Cloud’. In the case of a public

Cloud, the Cloud services can be sold based on a “pay-as-you-go” manner which is similar to

the case for energy and telephone services. In this way, the Cloud users just need to pay the

costs of the computing resources based on their actual needs and can dynamically adjust the

payment when there is an increase or decrease in their usage demand (Fernando et al. 2013).

Figure 4: Conceptual system architecture of Cloud Computing (cf. Buyya et al. 2008)

With the growing popularity of Cloud Computing in the IT field, different types of cloud

services are provided by Cloud Service providers to meet the various user needs. Depending

on the application level, the Cloud services are commonly categorized into three types (cf.

Buyya et al. 2008), namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS):

• Infrastructure as a Service (IaaS) offers the highest level of the control of the

infrastructure components including hardware, servers, and storage etc. which are

managed and monitored by the IaaS providers. It usually provides the functionalities

Technische Universität MünchenLehrstuhl für Geoinformatik

6

Cloud Service A

User A User B User X…

Cloud Users

Cloud Service B Cloud Service X

Virtual

Computers A

Virtual

Computers B

Virtual

Computers X

Internet/Intranet

…

…

Physical Computers

 Theoretical Background

30

like automation of administrative tasks, dynamic scaling, desktop virtualization, and

policy-based services (cf. Bhardwaj et al. 2010). The IaaS services can be charged

based on the actual use time or the amount of consumed virtual machine space. Thus,

the IaaS is very cost-effective for the Cloud users like a company who may want to

test its application on a temporary platform and later switch to an in-house deployment

if the software prototype has successfully past the tests. To date, the leading IaaS

providers include e.g. Amazon Elastic Compute Cloud (EC2), IBM SoftLayer, Google

Compute Engine etc.

• Platforms as a service (PaaS) refers to a ready-made service, which includes not only

the low-level infrastructure resources but also the deployment platforms and runtimes

for running applications. It releases Cloud users from managing and controlling the

underlying cloud infrastructure like hardware, network, operating systems, and

databases etc. and allows them to just focus on the development of their applications

without the need to worry about things like resource scalability, software maintenance,

and security. This makes it possible to realize a rapid development and deployment of

software applications with lower costs since the required platforms can be fully

managed by the PaaS providers. Typical PaaS-based Cloud Services are e.g. Microsoft

Azure, Google App Engine, and Apache Stratos.

• Software as a Service (SaaS) provides complete services or software applications

which are run and managed by the Cloud providers. In general, SaaS users just need to

know how to use and operate the provided software and do not have to concern how

the platform is managed or how the underlying infrastructure is constructed. A simple

example of a SaaS application is the web-based file hosting service Google Drive

where users can upload and share their document files over the Cloud without having

to maintain the underlying server configurations, hardware storage, or operating

systems that the software service is running on. Besides Google Drive, other

representative SaaS-based Cloud services include Dropbox, Microsoft OneDrive, and

Google Apps etc.

The relationship between these Cloud services and products are illustrated in Figure 5.

Figure 5: An example of the three types of Cloud-based services using the Google Cloud ecosystem

In the past years, the Cloud Computing technology has also revolutionized the way of

deploying GIS applications. While the software components required in a traditional GIS

Software as a Service

(SaaS)

Platform as a Service

(SaaS)

Infrastructure as a Service

(IaaS)

e.g. Google Drive,

Google Docs

Google Spreadsheets

Google Calendar

e.g. Google AppEngine

e.g. Google Cloud Storage

End Users

Application Developers

Network Architects

Theoretical Background

31

solution are typically installed or deployed on physical computers, the Cloud-based GIS shifts

its system components including spatial databases, web servers, and mapping applications etc.

to the Cloud, which allows to build an advanced GIS infrastructure but with relatively lower

cost. Besides, since the Cloud-based system can eliminate the work of deploying the complex

in-house hardware and software, GIS developers only need to focus on the application logics

and do not to have to master the specialized skills for maintaining the complex GIS

environment. Moreover, the Cloud-based service along with its authorization mechanism also

allows GIS customers to perform secured data access and accomplish collaborative GIS tasks

(cf. Bhat et al. 2011).

Nowadays, one of the most popular Cloud-based GIS solutions is the ESRI’s ArcGIS Online

which provides a complete platform allowing users to access, create, edit, and analyze

geospatial data on the Web (cf. ESRI 2017). Alternatively, it is also possible to construct a

GIS environment using a combination of the other existing Cloud service products. For

example, GIS developers are able to use the Google App Engine to build a web-based

mapping application for viewing and analyzing geospatial data (cf. Karimi et al 2011). At the

server side, the Amazon EC2 can be utilized to deploy web servers on different kinds of

operating systems like Windows and Linux for hosting the geospatial datasets in databases or

file systems that can be accessed via elastic IP addresses over the Internet. When the client

applications are reading and loading the geospatial data, the capacities of the web server can

be dynamically adjusted according to the actual usage demands and allow to guarantee the

data storage and retrieval performance. Moreover, the Google Sheets can be used as a light-

weight engine for realizing the location-based GIS visualization and exploration (cf. Gonzalez

et al. 2010).

2.4 Geospatial Data Modelling

As mentioned in the first subsection, geospatial data play a fundamental role in GIS

applications for the representation and analysis of real-world phenomenon. For instance, the

vector data such as points, lines, polygons, and solids can be used for quantitatively

describing the locations and shapes of various geospatial objects and allow for calculating the

relevant morphological characteristics like length, area, and volume. In addition, it is also

possible to utilize vector-based representations to explicitly describe the topological

relationships between geospatial objects (cf. Maffini 1987). For example, if two building

objects are adjacent in the horizontal direction, this topological relationship can be explicitly

modeled using one polygon or multi-polygon geometry to represent the shared wall surface

which shall be referenced by the two respective building objects. Compared to vector data,

raster data is very suitable for representing evenly distributed geospatial phenomenan such as

digital terrain model which can be approximated as a georeferenced raster grid where each

cell has a numeric value to represent the elevation height of the corresponding geographic

position.

In general, all these kinds of geospatial data along with the related thematic attributes must be

organized within a suitable data structure that can be efficiently handled within GIS

applications. A common approach is called feature-based modelling, which represents real-

world entities as features associated with their spatial and thematic attribute as well as

topological relations (cf. Chang 2006). In the past years, a number of GIS vendors have

 Theoretical Background

32

developed their own geospatial data models in the sense of heterogeneous application

schemas in their GIS products. However, most of these application schemas are platform-

dependend and hence usually incompatible with each other while maintaining the data in

different systems (cf. Kutzner 2017). This will strongly hinder the interoperable dissemination

of geospatial data for a wide range of GIS applications since the different model interfaces

must be implemented by the third parties and may result in high development costs for

realizing the schema transformation. Thus, an open and standardized approach for the

modelling of geospatial data at a higher abstract level becomes more and more important in

the GIS field in order to provide a standardized and platform-independent data model that can

be interpreted by different GIS applications using a common interface (cf. Figure 6).

Figure 6: Conceptual idea of the interoperable data dissemination using a common data model in GIS

To reach this goal, a systematic way for developing geospatial data models is required. The

common approach of developing data models in software and systems engineering is the so-

called “Model Driven Architecture (MDA)” issued by the Object Management Group

(OMG). The MDA provides a standard workflow for facilitating the development of software

and data models using Computer-Aided Software Engineering (CASE) tools. The key idea

behind this approach is that an abstract platform-independent model (PIM) representing the

underlying conceptual models shall be first created at the earlier stage of the development

phase and then be implemented for different target application platforms at a later stage by

transforming it into the corresponding platform-specific models (PSM) such as XML schema

and database schema, which can be directly handled in the concrete application systems (cf.

Gasevic et al. 2006).

The main advantage of this approach is that the definition and development of data models

can be purely done at the conceptual level without concerning the concrete implementation

for specific platforms. The PSMs can be automatically derived from the developed conceptual

model using a model transformation tool at any time (cf. Figure 7). This allows to minimize

the development and maintenance costs for the entire development lifecycle. In order to

ensure the unambiguity and consistency of the definition and description of model structures,

the Unified Modelling Language (UML) was chosen as the standard modelling language for

describing the platform-independent models since it comes with a rich set of graphic notations

Technische Universität MünchenLehrstuhl für Geoinformatik

7

Model A

Data Provider A

Model B Model X

Data Provider XData Provider B

GIS Application

Common Data Model

…

Theoretical Background

33

and syntax allowing to visually represent complex model structures as well as to fully

represent the respective semantics (cf. Siwik et al. 2010). Thus, the UML model is considered

a good start point for the development of a new data or application model (cf. Zulkifli NA et

al. 2014, Alattas et al. 2018). One of the existing tools supporting the MDA-based approaches

is Enterprise Architect (EA) which is a powerful design tool for developing a variety of

models like entity-relational models, relational database models, activity/progress models, and

object-oriented models according to the different application requirements.

Figure 7: Relationship between PIM and PSMs in a Model-Driven Architecture

Nowadays, the combined use of model-driven approach and UML has become the standard

procedure for developing geospatial data models in the GIS domain (cf. Kutzner 2016). The

UML data models are commonly defined according to geospatial standards called “ISO 19100

standards family” issued by the Technical Committee (TC) 211 of the International

Organization for Standardization (ISO). This bundle of standards comprises a series of

specifications which jointly provide a general guideline for geographic information modelling

regarding the definition and description of geographic phenomena in order to ensure the

interoperability of data exchanges across different application platforms (cf. Faucher &

Lafaye 2007). In total, over 40 ISO standards have been issued which cover most relevant

modelling aspects, among other things, such as temporal schema (ISO 19108), metadata (ISO

19115), and coverages (ISO 19123) are explicitly covered.

One of the most important members of the ISO 19100 standards family is the ISO standard

19107 “Spatial Schema” specification (ISO 19107:2003) which is a conceptual schema for

describing the geometric-topological characteristics of geographic features. Most relevant

geometry as well as the topology models associated with spatial objects have been fully

represented using class diagrams and package diagrams expressed in UML. The entire

schema has been subdivided into several packages to jointly represent a variety of different

geometry variants with respect to the ISO 19111 standard, which defines the conceptual

schema for the description of spatial referencing by coordinates. For example, geometric

primitives such as point, curves, planar polygons, and 3D solids have been explicitly

modelled ranging from 0D to 3D. Complex structured geometries can be represented using a

mixed collection of the provided primitive geometries and different aggregation concepts

such as aggregates, complexes and composites are also supported which differ in terms of the

topological relationships of the underlying geometry elements. In addition, the representation

of a solid object is based on a so-called B-Rep approach which uses a set of polygons to

Technische Universität MünchenLehrstuhl für Geoinformatik

General Model-Driven Architecture

9

UML Data Model

XML Schema

Definition

Relational Database

Schema

Platform-independet

Model (PIM)

Platform-specific

Models (PSMs)
…

translate to translate to translate to

 Theoretical Background

34

enclose the respective object’s body. Moreover, holes in the solid’s outer shell can also be

represented using oriented surfaces.

Another important standard is ISO 19109 “Rules for Application Schema”, which specifies

the relevant rules on modelling real-world features along with their spatial and non-spatial

properties as well as their interrelationships such as generalization/specialization and

association relationships like aggregations and compositions (ISO 19109:2005). It hence

provides a standard metamodel framework for developing application schemas to facilitate

the processing, analyses, simulation, and exchange of geospatial data in GIS applications. The

main concept of the standard is the General Feature Model (GFM) with the notion of

‘Feature’, which is an abstraction of real-world phenomena to represent geospatial features

such as building, rivers, parcels, and waters along with their semantic decomposition

hierarchies. Each feature can have zero, one, or more spatial attribures whose values are

restricted to geometrical and topological objects defined in the aforementioned ISO 19107

standard. This way, the coupling of ISO 19107 and ISO 19109 allows to extensively represent

a feature object with respect to its spatio-semantic coherence (cf. Stadler & Kolbe 2007). For

example (cf. Figure 8), a building's outer shell can be geometrically represented as a volume

(solid), which consists of multiple polygons according to the ISO 19107 standard. This

building can at the same time be semantically decomposed into thematic surfaces like wall

surfaces and roof surfaces modelled based on the ISO 19109 standard. Both geometric and

semantic representations can be coherently applied by linking the respective building

components.

Figure 8: Spatio-semantic representation of a building based on ISO 19107 and 19109 standards

In order to provide an open and manufacturer independent framework for the development of

geospatial data models based on the ISO 19100 standards family and MDA concept, the

international specification “Geography Markup Language (GML)” has been jointly developed

by OGC and ISO and was issued as ISO 19136 standard. It allows for semantically rich and

object-oriented data modelling of the geo object on the application level (ISO 19136:2007).

Technische Universität MünchenLehrstuhl für Geoinformatik

4

4

3

1
2

Building

Wall_1 Wall_2 Roof_1 Wall_2

Solid

Poly_1 Poly_2 Poly_3 Poly_4

Theoretical Background

35

The main GML model components like features, attributes, geometries, topologies,

coverages, coordinate- and time reference systems are mostly drawn from the conceptual

models defined in the ISO 19100 standard family and mapped to an XML-based schema

(GML schema) according to the XML encoding conventions specified in the ISO 19118

standard (ISO 19118:2011). The GML schema hence serves as a standardized and fixed XML

encoding of the conceptual models from the standards e.g. ISO 19107, ISO 19108, and ISO

19109 to increase interoperabilities and reduce ambiguities among applications. In addition,

GML provides an extensive UML profile, which adheres to the conceptual models from the

standards ISO/TS 19103 and ISO 19109 for developing ISO 19109 conformant UML

application schemas. This UML profile complements the UML profiles of the two standards

by introducing additional stereotypes and tag definitions to help transformation tools to

automatically map user-defined UML application schemas to GML application schemas,

which reference (import) the fixed GML schema. The corresponding encoding rules are based

on the ISO 19118 standard and given in Annex E of the ISO 19136 standard. An overview of

the relationships between the conceptual models and their encodings are shown in Figure 9.

Figure 9: Relationship between the conceptual models from the ISO 19100 series and their GML

encodings (ISO 19136:2007)

The UML profile specified in the ISO 19136 standard offers a set of UML stereotypes which

can be used for the modelling of application-specific object types and elements:

• <<Type>> is used for modelling the distinguishable objects which shall have unique

identifiers and can therefore be referenced by other objects. According to the GML

specification, this stereotype corresponds to the GML class AbstractGMLType in the

GML schema. In case that a class is declared with this stereotype in a UML model,

this class will be encoded in the derived application schema as a global XML element

 Theoretical Background

36

along with a global XML complex type being a subtype of the class

AbstractGMLType. In addition, the class AbstractGMLType also contains a set of pre-

defined attributes such as GMLID and GMLID_Codespace which can be combined to

serve as a unique identifier for the individual GML objects. A number of the standard

GML types such as GML feature, geometry, topology, and coordinate reference

system etc. are derived from this class.

• <<FeatureType>> can also be used for representing an identifiable and

distinguishable real-world object and is conform to the abstract class ‘Feature’ defined

in the ISO 19109 “Rules for Application Schema” standard. Basically, this stereotype

corresponds to the abstract GML class AbstractFeatureType which is a subtype of the

GML class AbstractGMLType and therefore inherits the relevant attributes like

GMLID and GMLID_Codespace. It also receives a number of additional attributes

such as 3D spatial extent of a feature object, multiple names with different

codespaces, and a feature description. In GML application schemas, each class defined

with this stereotype shall be encoded as a global XML Element along with a global

XML ComplexType being an extension of the GML type AbstractFeatureType. For

example, the GML’s built-in class GML Coverage is defined by extending the

AbstractFeatureType.

• <<Enumeration>> has a similar functionality compared to the Enumeration type used

in the programming language like Java and C++. According to the ISO 19136

standard, a class defined with this stereotype should be encoded as a global XML

Type SimpleType. Note that there exists an inconsistency between the UML model

and the encoded GML application schema. Regardless of the data type specified for

the Enumeration class in the UML model, the enumerated values are rigidly encoded

with the restriction to the XML’s built-in type xsd: string according to ISO 19136

Annex E (cf. Table E.1, page 324). As a result, the enumeration value contained in an

object or feature instance is always represented as a string although it may sometimes

should be used for representing a numeric value.

• <<CodeList>> is similar to the <<Enumeration>> for enumerating a list of values and

is per-default encoded as the XML SimpleType. The difference is that, in a CodeList,

each enumerated value can be extended with additional values which are encoded

using the XML’s annotation element appinfo for describing the details of the

individual listed code value. In addition, when setting the tagged value “asDictionary”

to “true” in the UML model, a CodeList can be alternatively implemented as an

external file outside the GML application schema according to the GML’s Simple

Dictionary Profile. The latter approach has been frequently chosen in practice since a

CodeList can then be encoded in a formal XML structure, while the XML annotations

like appinfo can contain any content which can sometimes not be validated against

XML schema definitions.

• <<DataType>> is defined as a set of properties that lack identity (ISO 19136:2007). It

has a similar functionality compared to the ‘Struct’ type introduced in the C/C++

programming language. The contained values can be defined with the simple primitive

data types like string, boolean, double, date, and integer etc. as well as those complex

data types that are defined using the stereotypes <<Type>>, <<FeatureType>>, and

Theoretical Background

37

<<DataType>>. In GML application schemas, the class defined with this stereotype

shall be encoded as a global XML element along with a global XML ComplexType. In

addition, a DataType can also be defined by extending another DataType using the

UML’s inheritance notation. In this case, XML-encoded complexType of the sub-

DataType shall have an <Extension> element pointing to the super DataType.

• <<Union>> is a set of properties and it is similar to the <<DataType>> for holding a

list of values or objects (ISO 19136:2007). In GML application schemas, it is also

encoded as a global XML element together with a global XML ComplexType. The

<<Union>> and <<DataType>> are mainly differentiated through their semantics as

well as the consequent XML encodings. First, as the stereotype name implies, only

one of the values or objects of a Union class can be present at one time. This is

implemented by means of the XML <choice> element contained within the Union’s

<complexType> to specify this restriction. Second, a Union class cannot be derived

from another one. In other words, inheritance relationships between Unions are not

allowed. Third, the association relationship between two Union classes is also

prohibited which means that the values or objects of a Union classes cannot be an

instance of a Union class.

Using the UML stereotypes defined by GML and outlined above, a variety of application

schemas can be defined as a platform-independent UML data model which can then be

automatically implemented as XML-based application schemas. To date, this workflow is

well supported by the combined use of the commercial software ‘Enterprise Architect’ and

the open-source software ‘ShapeChange’ (cf. ShapeChange 2017). ‘Enterprise Architect’

provides an intuitive graphical user interface that allows developers to interactively design

and create UML data models using the UML stereotypes defined by GML. The resulting

UML data model can be stored and transmitted as a binary file with the extension ‘.eap’,

which is an abbreviation of ‘Enterprise Architect Project’. ‘ShapeChange’ is able to read and

parse this binary file and automatically generates the GML application schema according to

the XML encoding rules as defined in the ISO 19136 standard. This approach has already

been successfully applied in the development of many data schemas e.g. INSPIRE, AAA, and

CityGML ADEs (cf. chapter 4).

2.5 3D Graphics Visualization

The 3D graphical representation of geospatial data is extremely useful to help people to

understand and interpret the real-world information in an intuitive way. Thus, a 3D mapping

application is very important for a GIS platform to support the interactive user exploration of

the heterogeneous geospatial data like aerial maps, digital terrain models as well as the 3D

geometric objects in order to facilitate the application tasks e.g. land management,

architectual planning, and urban development (cf. Herman & Reznik 2015, Thompson et al.

2018). However, most of the conventional GIS mapping applications are usually based on 2D

and lack 3D capabilities. With the advancements of computer graphics technology and the

increasing computational capacities of hardware, 3D geo-visualization has become possible

on various devices using different operating systems. In this context, one of the key

technologies in building a 3D mapping application is the 3D visualization of the 3D

geospatial contents on a 2D screen using modern 3D-enabled Graphics Processing Units

 Theoretical Background

38

(GPU). Hence, it is important to first get a better understanding of the basic principles of the

3D graphics rendering process (cf. Figure 10).

Figure 10: 3D Graphics Rendering Pipeline (Chuan 2012)

In the fields of computer graphics and geospatial information, the well-known Boundary

Representation (B-Rep) plays a central role for representing polyhedral 3D objects (cf. Foley

et al. 1995, ISO 19107:2003). In computer graphics, a B-Rep 3D object is typically composed

of a set of surfaces each of which is represented using a number of small polygons in the form

like triangles or quads (Parisi 2012). The vertices of these polygons are topologically

connected to construct the shape of the 3D object and each vertex has 3D coordinate values

(x, y, z) expressed in floating point numbers based on a local coordinate system in a 3D

Euclidean space. In order to add appearance information to the surfaces, each vertex can be

attributed with the additional parameter values like RGB color, materials, as well as textures

images which can be draped onto the surfaces by referencing each vertex to the respective 2D

texture coordinate (s, t) in the image. In addition, each vertex can also have an attached

normal vector called vertex-normal which can be calculated by evaluating the normal vectors

of the associated polygon surfaces. The vertex-normal is usually used for determining the

inner and outer surface: A normal vector pointing inwards or outwards indicates the back or

front face of the surface respectively (Chuan 2012). With this information, each polygon will

be rasterized into a set of fragments which can be seen as pixels comprising all visual

information in 3D spaces.

While moving the camera, the rendering effect of the observed 3D objects may be

dynamically changed during the runtime to provide cinematic visualization effects on the 2D

screen. This requires a set of rendering rules on how the rasterized fragments should be

illuminated according to the camera position in 3D space. Such rules can be defined using the

shader technology which allows to process the individual 3D fragments (Kessenich et al.

2008). Basically, shaders are small programs written in a C-like language and allow

developers to dynamically define how the pixels for 3D objects actually get drawn on the

screen. A shader mainly consists of two parts namely the vertex shader and the fragment

shader. While the vertex shader is responsible for transforming the coordinates of the object

into 2D display space, the fragment shader controls the rendered color of each screen pixel

displaying the mapped vertices according to the input parameter values i.e. color, texture,

lighting, and material.

For the visualization of 3D objects, all these information must be carried in an efficient 3D

graphics data exchange format. Nowadays, numerous proprietary and open standards have

been developed by many software vendors in the fields of movie industry, computer games,

Theoretical Background

39

computer-aided design, and manufacturing. One of the popular standards is COLLADA

(Collaborative Design Activity) which is an open standard issued by the non-profit

consortium Khronos Group (cf. Barnes & Finch 2008). It is an XML-based interchange

format identified with a .dae file extension and has been well supported by a range of

software tools like 3ds Max, Adobe Photoshop, and Google SketchUp. A proprietary

counterpart of the COLLADA standard is the FBX (Filmbox) which was developed by the

company Autodesk. The FBX file can be delivered either as XML file or binary file and the

latter allows to yield more sophisticated storage efficiency and loading times compared to

COLLADA (cf. McHenry & Bajcsy 2008). Although FBX is a proprietary format with

limited access to the binary file content, a comprehensive SDK is available allowing

applications to read, process, and write FBX files and has achieved a good interoperability

between Digital Content Creation (DCC) applications such as 3ds Max, MotionBuilder, and

Mudbox. There are many other 3D graphics standards which were specifically designed and

optimized for particular usage fields. For example, the web-based 3D graphics standards

allow to efficiently draw 3D objects within modern web browsers.

A well-known web-based 3D graphics standard is Virtual Reality Mark-up Language

(VRML) which was initiated by the Web3D Consortium. To date, it has been superseded by

its successor standard called X3D which supports coordinate georeferencing of 3D objects

and is very suitable for GIS applications (cf. Web3D 2015). Besides, the combined use of the

KML and COLLADA standards can also provide similar capabilities of displaying

georeferenced 3D objects in a 3D mapping application. However, in earlier years, the direct

web-based visualization of these 3D models is almost impossible since the rendering of large

3D models with detailed geometric and appearance contents usually requires very high

bandwidth and computing resources which were not supported by the conventional web

browsers. To overcome this issue, a common solution was to install additional plugins into

web browsers in order to access and make use of the computer graphics API for rendering the

3D objects in a 3D window embedded into web browsers. However, such plugin-approach

exposed many security issues due to which the installation of additional plugins is nowadays

strictly prohibited by most modern web browsers. As a result, the plugins for viewing X3D,

KML, and COLLADA 3D models have been deprecated as well. Against this background, the

way of web-based 3D visualization has been revolutionized with the development of the new

technologies HTML5 and WebGL.

HTML5 is an Open Standard format and provides a common platform for applications to be

developed and used on the web (cf. Faulkner et al. 2017). HTML5 enables the new generation

browsers to support multi-threading, which allows to perform parallel execution of different

tasks within one web page. WebGL is an implementation of the OpenGL API for the web and

extends the HTML5 canvas element to utilize the computer graphics card to provide hardware

accelerated 3D functionality for the web browsers running on different devices such as smart

phones, desktop and tablet computers (cf. Jackson 2014). Applying such an approach, 3D

capabilities can be fully realized in all major web browsers running on all major operating

systems without needing additional plug-ins or extensions. However, WebGL is a low-level

API and very complex in nature. In order to avoid low-level programming, a framework

wrapping WebGL would be very helpful for developers to quickly and easily handle WebGL

content in a small piece of code. Nowadays, a number of WebGL-based frameworks are

available such as X3DOM, Three.js and Scene.js, which come with extensive libraries for

 Theoretical Background

40

building web-based 3D mapping applications to visualize 3D graphic models directly (cf.

Krämer & Gutbell 2015).

Since the aforementioned 3D graphics standards like COLLADA and X3D were not designed

for web-based 3D visualization, it is difficult for web browsers to yield the optimal processing

performance when viewing these 3D models using HTML5 and WebGL technologies.

Considering this issue, a new 3D graphics format called glTF (GL Transmisson Format) has

been issued by the Khronos Group. It is a royalty-free specification for the interoperable use

across the industry. Compared to the other 3D graphics standards, glTF has a JSON-based file

structure and can also be formatted as binary file to minimize the file size allowing for fast

transmission over the Internet and efficient processing time at the client side. Besides, it

supports all relevant features of a 3D graphics format for carrying the 3D content information

like 3D positions, materials, animations, skins, cameras, and lights, which can be easily

converted from other 3D graphics formats. Furthermore, an outstanding feature of glTF is the

support of an extension mechanism which allows application vendors to add new properties

and parameter semantics to the glTF models with respect to the glTF specification (cf. Bhatia

et al. 2017).

For the sake of clarity, a rough comparison of the aforementioned 3D graphics formats is

summarized in Table 1 based on their latest verions (cf. Burggraf 2015, Barnes & Finch 2008,

Web3D 2015, Bhatia et al. 2017, Autodesk 2014). The chosen comparison criteria are

openness, the support of geometry, georeferencing, appearance, animation, and thematic

attributes.

Table 1: Comparison of the key features between different 3D visualization models

The first comparison criterion is ‘openness’, which reflects the degree of standardization of a

3D graphics format for public use. This criterion is well fulfilled by COLLADA, KML, and

X3D, as they are open standards issued by the standards organizations like OGC and Khronos

Group. FBX is however a proprietary file format and it has no open documentation about how

COLLADA FBX KML X3D glTF

openness ++ 0 ++ ++ ++

geometry + + ++ ++ +

georeferencing 0 0 + + +

appearance ++ ++ + ++ ++

animation ++ ++ + ++ ++

thematic attributes + + + + +

Legend: 0 =not supported, + = limited, ++ = comprehensive

Theoretical Background

41

to parse and interpret the files. The second aspect for the comparison is the capability of

representing geometry information. Both KML and X3D allow to represent the primitive

geometries e.g. point, curve, and polygon, while COLLADA, FBX, and glTF lack the support

for representing single point. Regarding the support of georeferencing, both COLLADA and

FBX are not able to represent georeferenced 3D objects. Although KML, glTF, and X3D

allows mapping 3D objects from scene coordinate system to a world coordinate system, they

all have limitations. For example, both KML and glTF solely support the WGS84 geographic

reference system, and X3D only supports two additional types, namely Universal Transverse

Mercator (UTM) and WGS84 geocentric coordinate reference systems. The storage and

description of appearances e.g. textures and animations e.g. skeletal animations are well

supported by these formats except KML, which soley supports simple color styles and time-

based animations. Strictly speaking, all these graphics formats allow to encode additional data

like thematic attributes for 3D objects. For instance, KML offers a tag element called

‘description’, which can be used for associating an 3D object with custom data encoded as

plain text or HTML content. However, the specifications of all these formats do not

standardise or specify the way how the encoded thematic attributes data can be parsed or

validated by applications.

2.6 Digital Virtual Globes

A digital virtual globe is a three-dimensional virtual environment for representing the Earth

surface in a realistic way (cf. Cozzi & Ring 2011, Grossner et al. 2008). The fundamental

component of a virtual globe is a 3D globe which allows users to navigate and explore the

Earth map by panning, moving, tilting, and rotating the camera perspective using a mouse or

touchscreen. Typically, a virtual globe is capable of representing many different geographic

features as 3D geometries or surface meshes. In addition, different types of base maps such as

satellite images and digital terrain models can also be draped onto the Earth surface to

facilitate the recognition of viewing locations and orientations which are helpful for the urban

planning process (cf. Hu et al. 2010). Moreover, some utility functionalities such as

geolocalization, selection of different base layers, and switching between different viewing

modes are also supported by most virtual globes.

The first widely published virtual globe is Google Earth developed by Keyhole and later

bought by Google Inc. in the year 2004. It was first released under the name ‘Google Earth’ in

2005 and is nowadays still one of the most popular virtual globes for free use. Google Earth

fully supports the display of satellite images, aerial photography, topographic maps as well as

KML files combined with COLLADA models for supporting the display of textured 3D

objects. It can also be operated on various mobile and desktop platforms using different

computer graphics API like OpenGL or direct3D. For the web visualization, Google Earth

came with a browser plugin called Google Earth Plugin along with a comprehensive API

allowing developers to build their own 3D mapping applications on top of the Google Earth

globe. However, due to the browser plugin prohibition, the APIs have been deprecated since

December 2015. In order to achieve an alternative solution, a number of WebGL-based open-

source virtual globes have been developed such as WebGL Earth (cf. WebGL Earth 2012),

OpenWebGlobe (cf. Loesch et al. 2012), and CesiumJS (cf. CesiumJS 2019). Nowadays, due

to its extensive support of the efficient presentation of 3D geospatial data on web browsers,

 Theoretical Background

42

CesiumJS has been evaluated as the most powerful virtual globe solution, which has been

used by a large number of applications world-wide (cf. Krämer & Gutbell 2015, CesiumJS

2019). The main features as well as the software structure of CesiumJS is roughly illustrated

in Figure 11.

Figure 11: API architecture of the CesiumJS framework library (Cozzi 2015)

As shown in Figure 11, the CesiumJS APIs are organized in a hierarchical structure with

different layers with regards to the specific functionalities and abstraction levels. The Core is

the lowest layer in Cesium and includes a number of static utility functions such as

mathematical conversions, coordinate transformations, and projections etc. The Renderer is a

thin abstraction over the WebGL library and comprises a set of GLSL functions to provide

shader programs, textures and buffers which are not exposed and just for internal use. The

layer Scene provides the high-level globe and map constructs such as 3D globe or map,

handling layer images from multiple sources like Web Map Service (WMS) and Tile Map

Service (TMS), creation of geometries and materials, camera control and animation. The layer

DataSources offers a high-level Entity API allowing to load geospatial data from different

types of data sources according to different formats such as CZML, KML, and GeoJSON. all

of which can be handled using a common data source interface. The Widgets is the top-most

layer providing a so-called Cesium Viewer (cf. Figure 12) which is a composite GUI widget

shipped with the Cesium API and provides overall functionalities of a 3D globe such as

camera control, rendering geometries and materials, animation etc. In addition, the Cesium

Viewer contains a number of helpful widgets and plugins that provide functionalities like

querying of geocoding service, switching between different viewing modes (2D, 2.5D, and

3D view), and that manage imagery and terrain layers easily. With the help of the Cesium

API, it is also possible to add additional widgets as ‘plugins’ to the Cesium Viewer to add

Theoretical Background

43

further functionalities and features by third parties. Thus, the Cesium Viewer can serve as a

good starting point for developers to easily extend it to build customized 3D mapping

applications.

Figure 12: Graphical user interface of the Cesium Viewer

 Theoretical Background

44

Management of Semantic 3D City Models

45

Chapter 3 Management of Semantic 3D City Models

As complex geospatial data models, semantic 3D city models are complex mappings and

inventories of the urban environment including not only the man-made objects like buildings

and infrastructures but also the natural features like vegetation, water bodies, terrains etc. All

these city objects along with their sub-parts are completely represented with homogeneous

data quality regarding the geometric, topological, visual as well as thematic properties. With

such an integrative data model, the semantic 3D city model can serve as an information

carrier allowing for the exchange of geospatial data between different application domains.

Thus, the semantic 3D city model can be used as a common ontology to describe the cities

and allows GIS companies to develop advanced applications that can fully exploit the spatio-

semantic urban information being required or useful for a wide range of applications like

urban planning, environmental and training simulations, disaster management, and energy

assessment.

Due to the highly complex data structure, the management of semantic 3D city models in GIS

applications exposes many challenges. First, a universal information model is required to

provide a common definition of the model entities, attributes, and relations along with a

standardized exchange format that can be interpreted by applications using a common

interface. Second, in order to ensure the interoperable access to the model information, the

database technology is considered to be the most powerful means for supporting the persistent

and efficient data storage of large 3D city models. To realize this, the database schema i.e. the

relational database schema must be carefully designed to create a compact database structure

allowing to efficiently perform the database operations like reading, writing, querying, and

updating of the thematic as well as the spatial data by making full use of the spatial

capabilities of the spatial database systems. Third, a complete software toolkit is needed to

provide the relevant functionalities supporting the work chain, starting from the reading,

processing, and writing of the data contents in the database, via the conversion to different

model representations, up to the high-performance data visualization and exploration within a

3D mapping application.

This chapter aims to give a comprehensive review of the existing developed approaches for

answering the above-mentioned three challenges and, hence, has been structured into three

parts accordingly. The first section gives a brief introduction of the international standard

CityGML which is an important approach for modelling, maintaining, and exchanging

semantic 3D city models. Actually, all the research and implementation work carried out in

the course of the thesis are based on this city model standard for answering the research

questions outlined in the first chapter of the thesis. In the second section, emphasis is placed

on the essential aspects of realizing the efficient management using spatially-enhanced

database system. The relevant relational database modelling approach is discussed in detail to

provide the foundation for designing a highly efficient and compact relational database

structure according to the CityGML standard which is an object-oriented data model. The last

section presents an open-source software toolkit called 3D City Database (3DCityDB) which

is an extensive software solution based on spatial relational databases for managing

CityGML-compliant semantic 3D city models. It additionally comprises a set of software

tools which can be used combined with other GIS and ETL software for building

sophisticated applications to accomplish various domain-specific analysis and simulation

 Management of Semantic 3D City Models

46

tasks. All these software tools will be presented and explained in detail with respect to the

technical implementations and the conceptual ideas of software design.

3.1 CityGML

3.1.1 Overview

The City Geography Markup Language (CityGML) is an open data model and international

standard issued by the Open Geospatial Consortium (OGC). It has been originally developed

by the Special Interest Group 3D (SIG3D), which is an international working group consisting

of many companies and academic organizations who aim to create an open and interoperable

3D spatial data infrastructure based on the existing international standards. The first official

version of CityGML was released in the year 2008 and its latest stable version is 2.0.0 having

been published in March 2012. Under the leadership of the chair of Geoinformatics at

Technical University of Munich (TUM), the development of the next major version of

CityGML was initiated in 2014 which will include many changes to the current model

structures, concepts as well as a number of additional semantic modules regarding the change

requests submitted by the CityGML users (cf. Löwner et al. 2014).

Basically, CityGML defines a rich feature catalogue and platform-independent UML data

model for the most relevant 3D topographic features like buildings, bridges, waters,

vegetation etc. All these feature classes including their geometrical, topological, visual, and

semantic properties are modelled in a modular fashion (cf. Figure 13) to provide a complete

3D city model and a common definition of the relevant urban objects within one framework.

Besides, the data model has been mapped onto an XML-based application schema using

OGC’s Geography Markup Language (GML3) for data exchange between different GML-

aware applications as well as the automatic data validation against an XML schema definition

file using software programs. Thus, CityGML can be employed as an integrative data model

with interoperable exchange format to facilitate those GIS applications that rely on a complete

semantic 3D city model.

Figure 13: Overview of the CityGML modules (cf. Gröger et al. 2012)

Technische Universität MünchenLehrstuhl für Geoinformatik

CityGML ADE and its related Modules

3

<<Application Schema>>

CityGML Core

<<Leaf>>

Appearance

<<XSDschema>>

Geography Markup Language

(from OGC)

<<XSDschema>>

Extensible Address Language

(from OASIS)

<<import>>

<<import>>

<<import>> <<import>>

<<Leaf>>

Bridge

<<Leaf>>

Building

<<Leaf>>

CityFurniture

<<Leaf>>

Relief
<<Leaf>>

LandUse

<<Leaf>>

WaterBody

<<Leaf>>

Vegetation

<<Leaf>>

Tunnel

<<Leaf>>

Transportation

<<Leaf>>

CityObjectGroup

<<Leaf>>

Generics

<<import>>

Management of Semantic 3D City Models

47

In CityGML, all classes and data types are grouped into individual modules according to the

thematically differentiated classes representing the relevant city objects. The conceptual

relationships between different modules are described using a UML package diagram (cf.

Figure 13) and implemented as a set of packages which are assigned with globally unique

namespaces for the corresponding XML schema definition files. In addition, the dependency

between different modules is represented using a dashed arrow tagged with the stereotype

<<import>> for denoting which schema must be referenced by another one. For example, the

CityGML Core module defining the basic concepts and components of CityGML is a

mandatory package that must always be imported into the XML packages of the other

CityGML’s modules including Building, Bridge, Transportation, CityObjectGroup,

Appearance, Generic, CityFurniture, Relief, Vegetation, Tunnel, Landuse, and WaterBody,

which are marked with yellow color in Figure 13. In addition, since CityGML is based on the

GML model, the CityGML Core module has a dependency of the GML schema which must

always be imported by the CityGML schemas. Another package referenced by the CityGML

Core module is the OASIS’ Extensible Address Language (xAL) which maps the address

formats of the different countries into a unified XML schema which has been usually used for

encoding the address information of a building object in a standard XML structure. In the

future version of CityGML, additional modules will be added including e.g. the

UtilityNetwork module for describing the underground network infrastructure and the

Dynamizer module which allows handling dynamic properties such as real-time sensor data

acquired over time (cf. Becker et al. 2013, Kutzner & Kolbe 2016, Chaturvedi & Kolbe

2016).

3.1.2 Main Features of CityGML

According to the CityGML specification (cf. Gröger et al. 2012), the CityGML modules are

modelled with numerous outstanding features some of which are summarized in the

following.

Level of Details (LoD) Concept

CityGML defines a level of detail (LOD) concept supporting variations of an individual city

object regarding its spatial and semantic resolutions in the conceptual meanings. Most of the

CityGML features including the digital terrain model can be simultaneously represented in

five discrete resolutions (0 - 4) ranging from coarse models (LOD0) to geometrically and

semantically fine-grained structures (LOD4).

Figure 14: The LOD concept defined by CityGML (Biljecki et al. 2016)

For example (cf. Figure 14), a CityGML building object can be simply represented using its

LoD0 footprint or a 3D solid (LoD1) which can be calculated by extruding the 2D footprint

according to the building height to construct a simple geometrical 3D representation. Starting

 Management of Semantic 3D City Models

48

from LoD2, buildings can be semantically enriched by classifying their outer shell into

different types of thematic surfaces such as wall surfaces, roof surfaces, and ground surfaces.

In LoD3, doors, window, as well as extensions of buildings like balconies and stairs can also

be thematically modelled for refining the semantic of buildings. Moreover, LoD4 completes a

LOD3 model by adding interior constructions within a building which can be further

composed of rooms, interior installations like doors, stairs, and furnitures. The same LOD

modelling approach also applies to other CityGML feature types like bridges and tunnels. The

main advantage of such LOD concept is that different degrees of scale referring to the same

city object are available to the application users allowing them to flexibly choose the suitable

resolution according to the different application requirements. For example, the LOD0 model

is very efficient for the visualization on a 2D or 3D map and the higher LOD models (LOD

>= 2) provides the complete information allowing for performing the analysis like i.e. the

building volume and floor area calculation, energy demand estimation, and solar potential

analysis.

Grouping Concept

The aggregation relationships between city objects can be properly represented in CityGML

by using the class CityObjectGroup which belongs to the CityObjectGroup module. It is a

subclass of the _CityObject class and allows to reference multiple city objects to create a

group. In addition, the instances of CityObjectGroup can also be aggregated to build a

recursive aggregation hierarchy with arbitrary levels (cf. Figure 15). Moreover, the

CityObjectGroup class has a spatial attribute called ‘geometry’ which can use a polygon

geometry to describe the spatial extent of a CityObjectGroup. This allows to ensure the spatial

coherence which means that all group members must be completely inside the bounding area

of their parent group. For example, a number of buildings might be grouped according to the

administrative districts which can be aggregated again to a city. With this aggregation

approach, it is possible to rapidly enumerate and visit all members of a CityObjectGroup at

any aggregation level. This is especially helpful for applications to automatically perform

statistic functions like count, sum, and average the values of a set of numeric attributes for all

member objects belonging to the same CityObjectGroup. For example, the energy demand

values from all buildings within a district can be easily aggregated and the resulting values

can be added as new attributes to the parent CityObjectGroup and propagated to the root

CityObjectGroup.

Figure 15: Example of realizing an aggregation hierarchy using CityGML’s grouping concept

Technische Universität MünchenLehrstuhl für Geoinformatik

11

Class diagram:

Group 2 Group 3

Object 1 Object 44Object 21Object 9

Group1

0..1

*

<<FeatureType>>

Core::_CityObject

<<FeatureType>>

CityObjectGroup

parent 0..*

*

groupMember

Instance diagram:

Management of Semantic 3D City Models

49

Geometric-topological modelling

The geometric-topological model of CityGML is realized using a subset of the GML3

geometry model based on the ISO 19107 standard ‘Spatial Schema’ for representing the

spatial properties of real-world objects. Supported geometry primitives include point, curve,

surface, and solid which allow to represent the city objects in different dimensions ranging

from zero to three. For each geometry type, more complex geometries with composite or

aggregated hierarchies (cf. Figure 16) can be constructed. The difference between the

aggregate and composite geometry lies in the topological relationships between the respective

geometry components. In an aggregate geometry such as MultiCurve, MultiSurface, and

MultiSolid, the spatial relationship between components is not restricted and can hence be

disjoint, overlapping, touching, or disconnected. In the contrary, a composite geometry like

CompositeCurve, CompositeSurface, CompositeSolid is a special case of the aggregate

geometry which must be isomorphic to the respective geometry primitive and the underlying

elements must be topologically connected along their boundaries. Note that the primitive

Point only has the aggregate geometry type MultiPoint since there exists no such topological

restrictions between zero-dimensional objects. In addition, a collection of geometric

primitives with different types can also be represented using a GML geometry type called

GeometryComplex which requires that its components must be disjoint and can only touch at

their boundaries.

Figure 16: Graphical UML notation of the CityGML geometry model (Gröger et al. 2012)

For geometry types like Surface and Solid as well as their aggregate and composite

counterparts, the well-known Boundary Representation called B-Rep have been used (cf.

 Management of Semantic 3D City Models

50

Foley et al. 1995). For example, a solid is a closed geometry which is bounded by one exterior

and zero or more interior shells represented as surface geometries. In addition, each surface

geometry can also be attributed with an explicit orientation information using the geometry

type OrientableSurface which allows to distinguish its front and back sides. This B-Rep

approach is very appropriate for 3D city modelling since it allows to explicitly represent the

shape of a 3D model object using explicit elements which can be easily attached with

additional information i.e. appearances using their IDs. However, it would result in redundant

vertices and edges at the boundaries which are not efficient for the data storage and 3D

visualization especially in the case of using the geometry type TIN for handling massive

digital terrain models (cf. Kumar et al. 2016).

In order to represent topological relationships between geometries, CityGML uses the XLink

concept originated from the GML specification. Each geometry object that should be shared

by different composite geometries is assigned a unique identifier which can be referenced by

a remote geometry element located in the same document. In addition, the spatio-semantic

coherence in the CityGML building model can also be ensured using the XLink mechanism.

For example (cf Figure 17), most of the LoD2 CityGML building models produced today

both semantically describe the wall, roof and ground surfaces and additionally provide a solid

geometry for the geometric representation of the outer shell and 3D shape. The semantic parts

are usually used to query and analysis the separate parts of the building, whereas the solid

geometry represents the whole body and is useful for geometric calculations such as deriving

the building's volume and surface area. Both ways of describing the building are

complementary and not mutually exclusive and therefore provide a very flexible modelling

structure ranging from simple geometric models to semantically rich models. Since the

geometry of a wall or roof surface can be identical to a part of the solid geometry, the reuse

the surfaces geometry can be realized using an XLink.

Figure 17: Coherence of semantics and geometry in CityGML (Stadler & Kolbe 2007)

Technische Universität MünchenLehrstuhl für Geoinformatik

12

Building

BuildingPartBuildingPart

Roof

Surf.

Roof

Surf.

Door

Wall

Surf.

Wall

Surf.

Win

dow

Building

Installation

...

...
...

Composite

Solid

SolidSolid

Poly

gon

Poly

gon

Poly

gon

Poly

gon

Composite

Surface

...

...
...

Poly

gon

Semantics Geometry

Composite

Surface

Semantics
based on ISO 19109

Geometry
based on ISO 19107

Management of Semantic 3D City Models

51

External references for all city model object

In CityGML, each city object can be linked with an arbitrary number of external information

systems e.g. cadastral databases, telecommunication databases, and facility management

systems which allow for supplying additional information referring to the same building

object. This is realized using the CityGML concept ‘ExternalReference’ which is

implemented as a data type called ExternalReference associated with the _CityObject class.

Each city object allows to have multiple external references each of which consists of an URL

of an external system and an object name or ID being a unique identifier within the respective

system. The combination of these path information builds a unique address of the external

data contents of a city object which can be easily accessed over the Internet. For example (cf.

Figure 18), if a building is linked with three external information systems, three

corresponding URIs linking with the external object contents can be generated. These URIs

can be displayed in a tabular form when the building object has been selected in a GIS

mapping application where each URI can be decorated as a hyperlink allowing users to

simply click on it to launch the data query against the respective information system. As a

result, the returned data contents will be displayed in a new dialog window.

Figure 18: Example of using CityGML External References for linking with remote data repositories

Support of extension mechanisms

In practical applications, an essential issue often encountered while using CityGML is that

many additional feature classes or extra attribute types are required which are not defined in

the standard CityGML modules. To overcome this issue, CityGML provides a simple

extension approach defined in the Generics module, based on which a CityObject can be

enriched with an arbitrary number of additional generic attributes using the CityGML data

type _genericAttribute or modelled as a generic city object using the CityGML class

GenericCityObject without needing to alter the CityGML application schemas. Supported

data types of a generic attribute include the primitive types such as string, integer, floating-

point numbers, and date. In addition, multiple generic attributes with different data types can

also be aggregated to form a new generic attribute called genericAttributeSet which is a

subtype of _genericAttribute. In this way, a complex attribute with arbitrary aggregation

levels can be created to augment the CityGML objects like building, road, tunnel, etc. with

simple or complex-structured information. The GenericCityObject is a subclass of the

Technische Universität MünchenLehrstuhl für Geoinformatik

15

a

City ATTRIBUTE VALUE

GMLID BLDG_a

ExternalReference_URI1 https://...?ID=..

ExternalReference_URI2 https://...?ID=..

ExternalReference_URI3 https://...?ID=..

… {…}

3D City Models Attribute Table

Resource1

Resource2

Resource3

 Management of Semantic 3D City Models

52

CityObject class and is typically used for representing any feature types that are not explicitly

defined in CityGML. Like with the other CityGML top-level feature classes, each

GenericCityObject is attributed with the properties like class, function, usage as well as

spatial properties with different geometry types for representing the GenericCityObject at

different detail level.

Another extension solution is called Application Domain Extension (ADE) which provides a

more systematic solution for extending the existing CityGML models. Each ADE can be seen

as a separate module which references the dependent CityGML standard modules (cf. Figure

19). This way, it offers a high degree of flexibility to the developers and allows them to

design a complex data model. In addition, due to the modular model structure, it is also very

simple to merge the developed ADEs into the CityGML framework to become new standard

CityGML modules. Moreover, since each ADE is a data module and can have an XML

application schema, this allows a software program to automatically validate the ADE

instance documents during runtime to guarantee the data correctness and consistency which is

typically not supported by utilization of the CityGML’s Generic module. Thus, the ADE

approach is considered the most reliable approach compared to the Generic approach in

practical applications. However, since an ADE introduces a completely new application

module, the complexity of the data models as well as the related software implementations are

substantially increased. More detailed discussions about the handling of CityGML ADEs are

elaborated in the next chapter.

Figure 19: Relationship between CityGML and ADE modules

3.2 Management of CityGML using SRDBMS

For the efficient storage and management of CityGML datasets, the spatially-enhanced

relational database system is considered to be a powerful means which also allows for

interoperable access from application programs or ETL software. The conceptual solution of

designing a relational database schema for handling data with object-oriented structures can

Technische Universität MünchenLehrstuhl für Geoinformatik

CityGML ADE and its related Modules

3

<<Application Schema>>

CityGML Core

<<Leaf>>

Appearance

<<XSDschema>>

Geography Markup Language

<<Application Schema>>

Energy ADE

<<XSDschema>>

Extensible Address Language

<<import>> <<import>>

<<import>> <<import>>

...Many More

CityGML ADEs

<<import>>

<<Leaf>>

Bridge
<<Leaf>>

Building
<<Leaf>>

CityFurniture
<<Leaf>>

CityObjectGroup
<<Leaf>>

Generics

<<Leaf>>

WaterBody

<<Leaf>>

Vegetation
<<Leaf>>

Tunnel

<<Leaf>>

Transportation

<<Leaf>>

Relief

<<Leaf>>

LandUse

<<Application Schema>>

UtilityNetwork ADE

<<Application Schema>>

Dynamizer ADE

Management of Semantic 3D City Models

53

be traced back to the old problem of mapping object-oriented model onto relational data

model. Both data models are categorized under different paradigms but can represent the

same data models semantically (cf. Kutzner 2017). An analysis of the existing relational

database systems indicated that a more compact database schema is much more efficient for

querying and processing of large and complex-structured data to achieve a good performance

while interacting with the database (cf. Stadler et al. 2009). To reach this goal, the database

schema for storing CityGML data contents shall be resulted from a careful assessment process

by mapping the CityGML data models onto a compact relational database structure with

respect to the database complexity, operating performance, and semantic interoperability. This

will allow the database to serve as an efficient as well as consistent data layer for

transforming i.e. building information between different domains. For example, IFC data

could be imported into a CityGML database by spreading them over the respective tables such

that CityGML datasets can be easily derived from the database and processed by the

CityGML-aware applications.

The approaches of mapping object-oriented models onto relational database models have been

extensively studied and discussed in many literature of the past 30 years. For instance,

(Golobisky & Vecchietti 2005) summarized the fundamental concepts for deriving relational

database schemas using different mapping rules according to the source UML class structures.

A comprehensive discussion on the comparison between different mapping rules has been

given by (Keller 1997) to help the database designers to choose the optimal mapping

approaches according to the various application requirements. Moreover, Kolbe et al. 2017

introduced a number of advanced mapping rules for designing a compact and optimized

relational database schema which allows the spatially-enhanced relational database

management system to efficiently deal with large CityGML datasets with complex-structured

thematic and spatial properties.

In this chapter, the relevant mapping rules proposed in the above-mentioned literature for

designing a CityGML database schema are briefly reviewed and presented. They are grouped

into two categories which are illustrated in separate subsections. The first group refers to the

standard mapping rules which are originated from the earlier literature and provides the

fundamental concepts for the relational database modelling of object-oriented data models.

The second category corresponds to the advanced mapping rules that are specifically designed

for dealing with complex spatial data model. The main objective of this review is to identify

the logics of these mapping rules for paving the way of developing a computer program that

allows to derive a compact database schema automatically. The related details are elaborated

in the next chapter.

3.2.1 Standard Approach for Mapping of OO-Models onto Relational Models

Depending on the relationships between classes, a set of class patterns have been identified to

define the basic mapping rules for the derivation of a relational database model. These

patterns are summarized as follows.

• Mapping a single class or complex data type

• Mapping inheritance (Generalization/Specialization) relationship

• Mapping N:0..1 association

 Management of Semantic 3D City Models

54

• Mapping 1-N association, aggregation and composition

• Mapping M:N associations

For some of these patterns, there may exist more than one mapping rule, which typically

differ in terms of query performance and storage efficiency.

Mapping a single class

Normally, a class shall be mapped onto one table (cf. Figure 20) where each row should

represent an instanced object of the class. Thus, the mapped table shall have at least one

primary key column which can be named as “ID” and defined with a numeric data type for

storing the object identifier which must be unique within the table. Additional columns can

also be added to the mapped table for storing the scalar attribute values of the respective

objects or serving as foreign keys linking with other tables where the non-scalar attributes are

stored.

Figure 20: Mapping a Class onto a table

The table name should be somehow identical with the class name, which allows human

operators to quickly recognize which table is mapped from which class. However, the two

names can sometimes differ due to two reasons. First, a class name could be started with an

underscore character which is conventionally used for denoting an abstract class in an object-

oriented data model. However, most database systems prohibit that the table name shall not be

started with a special character like underscore or digit. In this case, the class name with

omitted leading underscore can be used as the table name. Second, in case that the class name

contains over 30 characters, the table name must be shortened, because ‘30’ is the maximum

allowable length for a table name in some relational database systems like Oracle. Besides, if

the tables in an Oracle database have been versioned using the Workspace Manager, the name

length of each table will be strictly limited to 25 (cf. Oracle 2017).

In order to achieve a good shortened table name, a proper shortening-rule needs to be

carefully designed, because it is not possible to simply truncate the original class name from

its start to the position of the limited length. For example, if a class is named as a compound

word like ‘IndustrialBuildingConstructionComponent’ which is based on the camel case

structure being frequently used for naming model classes, the truncated result will be

‘IndustrialBuildingConstru’ which is obviously not able to reflect the actual meaning of the

original class name. Instead, a good approach is to first split this long word into several

simple words like ‘Industrial’, ‘Building’, ‘Construction’, and ‘Component’. In the next step,

according to the total length limit of the target table name, each of these words shall be

Object-Oriented Model

<TableNameForClass1>

«column»

*PK ID :NUMBER

 <ColumnNameForAttr1> :NUMBER

 <ColumnNameForAttr2> :VARCHAR2(50)

 ...

«FeatureType»

<Class1Name>

+ <Attribute1> :int

+ <Atrtibute2> :char

+ ...

Relational Database Model

mapsTo

Management of Semantic 3D City Models

55

truncated or abbreviated and then combined with each other using underscores. A possible

result could be ‘Indust_Build_Constr_Compo’ which is a sophisticated name for the mapped

class table and can also be easily generated programmatically according to this conceptual

shortening-rule.

Mapping inheritance relationship

One solution for the mapping of an inheritance relationship between two classes is to use a

foreign key constraint to link the subclass table with the respective super class table by

joining their primary keys, where the primary key in the child class table is at the same time a

foreign key of the parent class table (cf. Figure 21). This allows to explicitly represent the

inheritance relationship in the relational database model and conforms best to the object-

oriented concepts. This approach is also able to ensure the data integrity and consistency

using the database’s CASCADE mechanism. For example, if an instance of the child class has

a record in its mapped table, a new record with the same ID must be added into the table

representing the super class to store the values of those attribute that are inherited from the

super class. Once a record has been removed from the parent table, the corresponding record

in the child table can be automatically deleted by the database using its ON DELETE

CASCADE action.

Figure 21: Mapping each class of an inheritance hierarchy onto a separate database table

Another approach for handling inheritance relationship is to map both the child and super

class onto one table (cf. Figure 22). Since all instance objects of these two classes are stored

in the same table, an additional column named like OBJECTCLASS_ID shall be introduced

which can be used to determine the class affiliation of each record in the table. Compared to

the upper-mentioned mapping approach, this one is considerably more efficient for database

query procedures, since additional database join operation for linking two tables can be

avoided. However, in case that the two classes have very different attributes, this mapping

approach will result in a lower data storage efficiency, because many cells in the table will be

filled with NULL which also consume space on the hard disk. There are many additional

design trade-off between these two approaches which are comprehensively summarized by

(Ambler 2000) and (Awang & Labadu 2012).

Object-Oriented Model

<TableNameForClass2>

«column»

*pfK ID :NUMBER

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID :NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

0..1

(ID = ID)

«FK»

1

mapsTo

mapsTo

 Management of Semantic 3D City Models

56

Figure 22: Mapping two classes with inheritance relationship onto a single database table

Mapping N: 0..1 Association

There are three typical variants when dealing with the N:0..1 association relationship. The

first case is that two associated classes are mapped onto two separate tables (cf. Figure 23),

where a foreign key column shall be added into the table of the source class and at the same

time references to the primary key column of the target class table.

Figure 23: Mapping N:0..1 relationship between two different classes (variant 1)

In case that two classes are mapped onto one table (cf. Figure 24), a foreign key column shall

be added which at the same time references to the primary key column of the same table.

Figure 24: Mapping N:0..1 relationship between two classes with a shared table (variant 2)

Object-Oriented Model

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID :NUMBER

* OBJECTCLASS_ID :NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

mapsTo

mapsTo

class Diagram

Object-Oriented Model

<TableNameForClass2>

«column»

*PK ID: NUMBER

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

. >
mapsTo

*

+<roleName> 0..1

0..*
(<FkName> = ID)

«FK» 0..1

mapsTo

mapsTo

class Diagram

Object-Oriented Model

«FeatureType»

Class2Name

<TableNameForClass1>

«column»

*PK ID: NUMBER

* OBJECTCLASS_ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

Class1Name

Relational Database Model

.

0..*
(<FkName> = ID)

«FK»

0..1

mapsTo

*

+<roleName>0..1

mapsTo

Management of Semantic 3D City Models

57

The third case is that a class is associated with itself and mapped onto one table which shall

hold the foreign key column and its referenced primary key column (cf. Figure 25).

Figure 25: Mapping N:0..1 relationship of the same class (variant 3)

Mapping 1:N Association (Aggregation/Composition)

The mapping of 1:N association can also be realized by using a foreign key column which

shall be added into the target class table and points to the primary key column of the source

class table. The same approach can also be applied for the aggregation and composition

relationships since both are actually the special cases of the 1:N association with specific

semantics (cf. Figure 26).

Figure 26: Mapping 1:N relationship between two different classes (variant 1)

In analogy to the mapping of the N:0..1 association, another two cases for the 1:N association

can be handled through the respective mapping rules shown in Figure 27 and Figure 28.

Figure 27: Mapping 1:N relationship between two classes with a shared table (variant 2)

class Diagram

Object-Oriented Model

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

.

*

+<roleName> 0..1

0..*
(<FkName> = ID)

«FK»

0..1

mapsTo

Object-Oriented Model

<TabelNameForClass2>

«column»

*PK ID :NUMBER

 FK <FkName> :NUMBER

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID :NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

0..*

(<FkName> = ID)

«FK»

1

mapsTo

+<roleName> *

mapsTo

Object-Oriented Model

«FeatureType»

Class2Name

<TableNameForClass1>

«column»

*PK ID :NUMBER

* OBJECTCLASS_ID :NUMBER

 FK <FkName> :NUMBER

«FeatureType»

Class1Name

Relational Database Model

mapsTo

0..*
(<FkName> = ID)

«FK»

1

+<roleName>*

mapsTo

 Management of Semantic 3D City Models

58

Figure 28: Mapping 1:N relationship between the same class (variant 3)

Mapping M:N Association

The mapping of M:N association onto relational structure requires an additional table called

‘associative table’ to link the two tables mapped from the associated classes. This associative

table shall contain at least two foreign key columns which reference to the two class tables

respectively. In addition, both foreign key columns can be combined to build the primary key

of the associative table (cf. Figure 29).

Figure 29: Mapping M:N association relationship (Variant 1)

One additional variant is that an M:N association is linked with the same class. In this case,

the two foreign key columns in the associative table shall point to the primary key column of

the same table (cf. Figure 30).

Figure 30: Mapping M:N association relationship (variant 2)

Object-Oriented Model

«FeatureType»

<Class1Name>

<TableNameForClass1>

«column»

*PK ID :NUMBER

 FK <FkName> :NUMBER

Relational Database Model

+<roleName> *

mapsTo

0..*
(<FkName> = ID)

«FK»

1

Object-Oriented Model

TableNameForClass2

«column»

*PK ID :NUMBER

«FeatureType»

Class2Name

TableNameForClass1

«column»

*PK ID :NUMBER

«FeatureType»

Class1Name

<Assoicativ eTableName>

«column»

*pfK <Fk1Name> :NUMBER

*pfK <Fk2Name> :NUMBER

Relational Database Model

0..*(<Fk2Name> = ID)

«FK»1

0..*

(<Fk1Name> = ID)

«FK»1

mapsTo

*

*

mapsTo

Object-Oriented Model

<TableNameForClass1>

«column»

*PK ID :NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

<Associativ eTableName>

«column»

*pfK <Fk1Name> :NUMBER

*pfK <Fk2Name> :NUMBER

0..*

(<Fk2Name> = ID)

«FK»1

0..*

(<Fk1Name> = ID)«FK»

1mapsTo

+<roleName2>

+<roleName1> *

Management of Semantic 3D City Models

59

Note that the associative table can also be used for the mapping of N:1 or 1:N associations but

would result in relatively lower query performance due to the additional database join

operations. However, the introduction of an associative table could be very useful for

dynamically extending the existing database schema. For example, when a new class is

introduced which is associated with the existing class, the database schema can be easily

extended by adding one table along with an associative table without needing to alter the

existing class tables.

3.2.2 Advanced Approach for optimizing Relational Database Models

Using the standard mapping approaches outlined in the previous section, any object-oriented

data model can be properly mapped onto a relational database model. However, such resulted

relational database schema is usually not sufficient for some complex-structured data model

like CityGML, since a large number of database joins are required when querying the data

content that are distributed over many tables. To overcome this issue, a compact relational

database schema with a lower number of tables is needed which can be realized based on

some fine-grained optimizations by mapping multiple classes or data types onto one table.

According to the 3DCityDB implementation, the following optimization approaches are

summarized as follows:

Mapping an inheritance hierarchy onto one table

With this approach, multiple classes of an inheritance hierarchy can be mapped onto one

table. For example, a table named CITYOBJECT can be used for the mapping of the GML’s

class _GML, and _Feature as well as the CityGML’s class _CityObject (cf. Figure 31). For

each CityGML top-level class like AbstractBuilding, AbstractBridge and AbstractTunnel etc.,

a separate table associated with the CITYOBJECT table shall be created for storing the

feature specific attributes. This way, the CITYOBJECT table can be used as a central registry

of all the CityGML top-level features and allows for rapidly retrieving a list of CityObjects

through a query on their common attributes like GMLID, NAME, or spatial extent

ENVELOPE.

Figure 31: Example of mapping an inheritance hierarchy onto one table

Technische Universität MünchenLehrstuhl für Geoinformatik

Mapping ADE classes derived from a CityGML class

13

<<abstract>>

_GML

<<abstract>>

_Feature

<<abstract>>

_CityObject

CITYOBJECT

ID : NUMBER <<PK>>

OBJECTCLASS_ID : NUMBER <<FK>>

GMLID : STRING

GMLID_CODESPACE : NUMBER

NAME : STRING

NAME_CODESPACE : STRING

DESCRIPTION: STRING

ENVELOPE: GEOMETRY

CREATION_DATE: TIMESTAMP

TERMINATION_DATE: TIMESTAMP

RELATIVE_TO_TERRAIN: STRING

RELATIVE_TO_WATER: STRING

mapsTo

GML Classes

CityGML Classes 0..1 ID

1 ID

<<abstract>>

_AbstractBuilding

Building

ID : NUMBER <<PK>>

mapsTo

 Management of Semantic 3D City Models

60

Mapping classes at the same inheritance hierarchy level onto one table

This mapping approach utilizes only one table to represent multiple classes which are

subtyped from a common class and at the same time belong to the same inheritance hierarchy

level (cf. Figure 32). This way, all the subclasses are logically mapped onto the super class

table, so that the retrieval of data contents of all subclasses just needs to perform only one

query on the table which allows to avoid multiple table joins to speed up the overall database

performance. To distinguish the different types of instance objects stored in the table, an

additional column OBJECTCLASS_ID is required which can store a numeric value in each

row for representing the respective class type. This type value is static and can be well

documented in such a way that allows application programs to interpret the meta-information

of each class automatically. This can be realized by introducing an additional table called

‘OBJECTCLASS’ whose primary key values are used for enumerating the object class IDs

and referenced by the OBJECTCLASS_ID columns of the other class tables. Further columns

can also be added into the OBJECTCLASS table for storing meta-information about each

class type.

Figure 32: Example of mapping multiple classes onto one table

Analogically to the aforementioned mapping approach (cf. Figure 22), this mapping approach

also has its own usage limitations. For example, if the subclasses have very different attributes

or associations to other classes, a large number of empty cells will occupy the table space

which can easily result in lower storage efficiency, especially when the number of subclasses

is increased. Considering this situation, the utilization of this mapping approach must satisfy

some conditions regarding the model definitions and structures which are given as follows.

• The super class shall be an abstract class that holds all attributes and associations

which will be inherited by the subclasses.

• The subclasses shall have similar structures. Ideally, every of the subclasses shall not

have any further attributes or associations with other classes.

With these conditions, the storage efficiency can be furthest retained as only one additional

column storing the class IDs needs to be added. An observation of the CityGML data model

shows that, this mapping approach allows to substantially improve the database performance

and efficiency. For example, the thematic surfaces like wall surfaces, roof surfaces, and

Object-Oriented Model

«FeatureType»

Class2

CLASS1

«column»

*PK ID :NUMBER

 FK OBJECTCLASS_ID :NUMBER

«FK»

+ OBJECTCLASS_FK(NUMBER)

«PK»

+ PK_Class1(NUMBER)

«FeatureType»

Class1

Relational Database Model

«FeatureType»

Class3

«FeatureType»

ClassX
...

OBJECTCLASS

«column»

*PK ID :NUMBER

«PK»

+ PK_Class1(NUMBER)

mapsTo

0..*
(OBJECTCLASS_ID = ID)

«FK»
1

Management of Semantic 3D City Models

61

ground surfaces etc. of each feature type like Building, Tunnel, and Bridge are abstracted to

an abstract class called _BoundarySurface which holds the relevant attributes and association

information. For each type of thematic surface, a respective concrete class i.e. WallSurface,

RoofSurface, and GroundSurface etc. being a subtype of the class BoundarySurface have been

defined. This class structure exactly satisfies the outlined mapping conditions and can hence

be mapped onto a compact table which allows for fast data export. For example, a typical

query being usually applied is the export of a semantically rich building (LOD >= 2) into a

3D graphics format. In this case, the geometry information of the roof surfaces and wall

surfaces can be queried using a minimum number of joins to build the 3D shape of the

respective building object.

Mapping aggregation hierarchies onto one table

In objected-oriented data models, the recursive relations of aggregated features can be

properly modelled by means of a well-known design pattern called ‘Composite Pattern’ (cf.

Gamma et al. 1995) which uses three interrelated classes (cf. Figure 33) for constructing a

tree-like data structure. According to the concept of this design pattern, each instance of the

class CompositeObject can contain an arbitrary number of, but at least one instance of the

class BasicObject or CompositeObject. The BasicObject corresponds to the leaf in the

aggregation hierarchy and shall not have child components. The conventional solution for the

mapping of such data model onto relational structure is to use a foreign key for joining each

object with its parent object to querying all the aggregated objects. In this case, recursive

database queries must be performed which may cause high performance cost, especially if the

recursion depth is unknown.

Figure 33: General idea for the mapping of an object-oriented model with the composite pattern onto

an efficient relational database model

In order to guarantee good performance, a specific optimization approach has been developed

which was originally introduced by (Stadler et al. 2009) and has been successfully

implemented in practical applications for performing fast and efficient queries on aggregated

geospatial data stored in relational databases. The key idea of this database design is, on the

one hand, to utilize one database table for the mapping of all the involved feature classes

along with their inheritance relationships. On the other hand, a foreign key column

PARENT_ID is used for representing the composition relationship. Additionally, this

database table receives a foreign key column ROOT_ID which holds the ID of the root

element of each aggregation hierarchy. This way, the aggregation hierarchy has then to be

Technische Universität MünchenLehrstuhl für Geoinformatik

16

<<abstract>>

Object

BasicObject CompositeObject

1..*

0..1

OBJECT

ID: NUMBER <<PK>>

OBJECTCLASS_ID: NUMBER <<FK>>

PARENT_ID: NUMBER <<FK>>

ROOT_ID: NUMBER <<FK>> 0..1

ROOT_ID

* ID* ID

0..1

PARENT_ID

Object-oriented Model Relational Database Model

consistsOf

 Management of Semantic 3D City Models

62

reconstructed in the application program, which is typically much faster than to use recursive

queries on the database. Moreover, since three classes are mapped onto one table, an

additional column OBJECTCLASS_ID is required for supporting the automatic determination

of class affiliation information.

Mapping complex data types onto one table

The optimization approach for the mapping of composite pattern can also be applied for the

handling of complex data types like the B-Rep geometries such as aggregated/composite

surfaces and solids (cf. Figure 34).

Figure 34: GML geometry types being used in the CityGML standard (cf. Kolbe et al. 2016)

Management of Semantic 3D City Models

63

With this optimization step, all surface-based geometry types can be represented in a

simplified data model according to the composite pattern and consequently mapped onto a

single compact table allowing for high-performance database query of all the geometry

elements of an aggregation hierarchy (cf. Emgård & Zlatanova 2008). Instead of using a class

ID column, the class affiliation is realized using various flag columns for charactering the

type of geometry and aggregation. For example, the IS_SOLID distinguishes between surface

and solid geometry, and the IS_COMPOSITE can be used to determine whether this is an

aggregate (e.g. MultiSolid, MultiSurface) or a composite (e.g., CompositeSolid,

CompositeSurface) geometry. This approach offers a higher degree of semantic clarity of the

table structure. In addition, the use of this geometry table is very simple. For example, if a

feature is attributed with a MultiSurface property, a foreign key column can be added to the

class table and references to the primary key column of the geometry table where the

geometry data are physically stored.

3.3 3D City Database (3DCityDB)

3.3.1 Overview

The 3D City Database (3DCityDB) is a software package allowing to import, manage,

analyse, visualize, and export virtual 3D city models according to the CityGML standard. It is

freely available and completely open source under the LGPL3 license earlier and switched to

the Apache 2.0 licence later which allows for simplifying the inclusion and adoption of

3DCityDB in a range of third-party commercial and Open Source products. Over the past 10

years, 3DCityDB has been playing a very important role in many research and commercial

projects and has been successfully employed in a number of productive environments in many

cities worldwide like Munich, Berlin, Zurich, Rotterdam, Helsinki, Singapore, and London

etc. In addition, numerous companies around the world deploy the 3DCityDB at the core of

their commercial products and services to create, maintain, visualize, transform, and export

virtual 3D city models for building a 3D geospatial infrastructure and functionality rich GIS

applications. For example, the state mapping agencies of all 16 states in Germany store and

manage the state-wide collected 3D building models in CityGML LOD1 and LOD2 using

3DCityDB.

The development of 3DCityDB was started back in 2003 by the research team of Thomas H.

Kolbe and Prof. Lutz Plümer at the Institute for Cartography and Geoinformation at

University of Bonn. Since today, the 3DCityDB has constantly evolved and more and more

functionalities have been added in the context of many research activities. During that period,

the 3DCityDB has been widespread worldwide and become a key platform in demonstrating

the practical usability and versatility of CityGML. In 2012, the developer team (by that time

based at TU Berlin) received the Oracle Spatial Excellence Award for Education and

Research from Oracle USA for the work on 3DCityDB. Since 2013 the 3DCityDB and its

tools have been further developed by the Chair of Geoinformatics of TU Munich (TUMGI)

lead by Prof. Thomas H. Kolbe in collaboration with the companies virtualcitySYSTEMS

GmbH and M.O.S.S. Computer Grafik Systeme GmbH on the basis of a cooperation

agreement to facilitate the continuation of the improvement and development of 3DCityDB.

In the same year, the author of the thesis started with his PhD at TUMGI and joined the

 Management of Semantic 3D City Models

64

3DCityDB team as one of the major developers to work on the conceptual design and

technical implementation of the 3DCityDB software tools.

3.3.2 3DCityDB Insights

Basically, the 3DCityDB software package consists of a relational database schema along

with a set of database procedures and software tools (cf. Figure 35), which allow to efficiently

import, manage, analyse, visualize, and export virtual 3D city models according to the

CityGML standard. The database schema is the core component of the 3DCityDB for storing

CityGML datasets in a central repository. According to the mapping rules introduced in the

previous subsection, the database schema results from a mapping of the object-oriented data

model of CityGML onto a relational structure on top of the spatially-enhanced relational

database management systems (SRDBMS) and can be operated using either the commercial

Oracle or the Open Source PostgreSQL RDBMS with their spatial extensions. In this way,

CityGML data can be easily accessed by external GIS and ETL software applications or the

provided database procedures to e.g. enrich a 3D city model by adding information to the

corresponding database tables programmatically. Moreover, the data contents stored in the

3DCityDB database can be flexibly extracted and exchanged by exporting a 3D city model to

a CityGML document from the database without any information loss.

Figure 35: Relevant components of the 3DCityDB Software Suite

The first important 3DCityDB software toolkit are the database procedures which can be

automatically installed at the database side during the setup procedure of a 3DCityDB

database instance. They are written in the structured query language PL/SQL for Oracle and

in PL/pgSQL for PostgreSQL. Since some of these procedures expose some similar

Technische Universität MünchenLehrstuhl für Geoinformatik

Relational Database Schema
PL/SQL Scripts

Web Feature

Service

CityGML

Importer-

Exporter

KML/

COLLADA/

glTF Exporter

Spreadsheet

Generator

3D City Database

3D Web Client

Management of Semantic 3D City Models

65

functionalities, they can hence be managed into six packages, namely SRS, STAT, INDX,

ENVELOPE, and DELETE (cf. Figure 36). The package SRS mainly provides a useful

function to transform CityGML’s spatial data into another coordinate system for the output

document. The package STAT can be applied to count all entries in all data tables and

generate a report listing the number of rows in the individual data tables. The package

DELETE consists of several functions allowing to delete single or multiple city objects from

the database according to the given row ID or an object class ID in the CITYOBJECT table.

Each function automatically takes care of the integrity constraints between the related tables

to properly clean up the corresponding data contents. The package ENVELOPE provides

functions for calculating the minimum 3D bounding volume of a city object according to its

geometry contents and also allows for updating the ENVELOPE attribute of the respective

city object with the calculated value. In order to ensure data consistency, it is hence very

important to run this function whenever one of the geometry representations of a city object

has been changed. The package INDEX contains the function for activating and deactivating

the ordinary indexes and spatial indexes on those columns that are frequently used for

performing queries. This allows to deactivate the spatial indexes before running a CityGML

import on a big amount of data and to reactivate the spatial indexes afterwards. This way, the

import process will run much faster than with enabled spatial indexes. The last package UTIL

offers various utility functions i.e. checking database version information, performing affine

transformation on the 3D coordinates, determination of the mapping relationships between

3DCityDB tables and CityGML classes.

Figure 36: Overview of the 3DCityDB database procedure packages

One of the major software tools included in the 3DCityDB software toolkit is the

Importer/Exporter which is a Java-based desktop application serving as a front-end for the

3DCityDB database for high-performance reading and writing of large CityGML datasets

with arbitrary file size. For reading and writing CityGML documents, a low-level Java API

called citygml4j is available which provides a convenient way for processing and validating

CityGML datasets against the CityGML, GML as well as the xAL schema definition files.

This is realized by using the Java’s XML Schema binding compiler (xjc) to compile the

CityGML, GML, and OASIS xAL models to a set of corresponding Java classes which are

Technische Universität MünchenLehrstuhl für Geoinformatik

29

ENVELOPE

INDEX

DELETE

UTIL

SRS

STATISTICS

3DCityDB

 Management of Semantic 3D City Models

66

kept static and provide an object-oriented view for handling CityGML features along with

their properties in Java during runtime. While performing the CityGML import process (cf.

Figure 37), each CityGML top-level feature element is read chunk-wise and automatically

transformed to a Java object according to the corresponding class definition in the citygml4j

context. All these Java objects are organized as a buffered queue and can be successively

imported into the database concurrently by means of a multi-threaded approach to increase the

overall processing performance. In order to make full use of hardware CPUs/cores and to

avoid the thread lifecycle overhead, a thread pool is employed to manage and control the

number of the threads according to the number of the available processors of the hardware

being used.

The last step of the import process is resolving of the XLinks information in the CityGML

datasets (cf. Figure 37). This addresses an issue that a CityGML feature or geometry could be

referenced by other ones using the GML XLink mechanism. Since some CityGML objects in

the beginning of a CityGML file can point to objects located at the end of the same CityGML

file, resolving the XLinks usually requires reading the entire CityGML data into the main

memory, which can easily cause memory overflow issues when dealing with very large

CityGML datasets (>>4GB). To overcome this issue, CityGML features and geometries are

first read and imported, neglecting all the XLink reference information which shall, however,

be temporarily stored into the database. When the first import process is done, the XLink

reference information stored in the database will be resolved again and written into the

corresponding CityGML data tables to complete the entire CityGML import process.

Figure 37: Software structure of the CityGML Import/Export Tool (cf. Stadler et al. 2009)

During the export process (cf. Figure 37), a list of GMLIDs of the top-level features satisfying

the user-defined filter criteria i.e. feature class types and geographic bounding box etc. are

first queried from the database. In the subsequent step, a worker pool containing a number of

worker threads is constructed and each GMLID is processed by a worker thread for creating a

Technische Universität MünchenLehrstuhl für Geoinformatik

Static

Components

31

CityGML Import

Read

CityGML

follows instance of

instance of

Write

CityGML

follows

citygml4j classes

CityGML

XML Schema

Binding

Compiler

(XJC)

Schema derived

classes (JAXB) 3DCityDB

CityGML Export
Top-Level Feature

ID Queue

…

Worker 1

Worker 2

Worker N

Export Worker Pool

…

citygml4j object

Queue

…

Read

Database

citygml4j object

Queue

…

Worker 1

Worker 2

Worker N

Import Worker Pool

…

Resolve

XLinks

Management of Semantic 3D City Models

67

citygml4j object from the CityGML feature content queried from the respective database

tables. In the last step, the citygml4j objects are marshalled to XML elements and written to a

CityGML instance document.

Although the CityGML Importer/Exporter offers extensive functionalities for reading and

writing CityGML documents from the database, it is however only applicable on a desktop

environment and does not allow for accessing the data using a platform-independent call. To

overcome this limitation, the 3DCityDB offers a web service implementation by extending

the core modules of the CityGML Import/Export tool to allow for web-based access to the 3D

city objects stored in the database. It is realized based on the OGC Web Feature Service

(WFS) Interface Standard which provides a standardized and open interface for requesting

geographic features across the Web using a platform-independent HTTP request. Thus, the

3DCityDB users are no longer limited to using the Importer/Exporter tool for the data

retrieval but can also directly use the WFS interface via a web browser or a WFS-aware

application.

The 3DCityDB WFS is implemented as a Java web application based on the Java Servlet

technology and must hence be run in a Java servlet container e.g. Apache Tomcat on a web

server. The workflow of executing a WFS procedure is illustrated in Figure 38. When a WFS

client sends a request to the WFS server to retrieve certain CityGML features, the 3DCityDB

WFS servlet will first capture and parse the request information and translate it to a

corresponding database query to obtain a list of GMLIDs of the CityGML top-level features

that satisfy the filter criteria encoded in the WFS request messages. These feature IDs will be

then handed over to the CityGML Import/Export module which utilizes its pre-complied

citygml4j/JAXB classes as well as the multi-threading API for efficiently querying and

generating the corresponding CityGML XML elements. Finally, these XML datasets will be

returned as a response of the WFS request and can be directly downloaded or visualized in a

WFS client.

Figure 38: Implementation of the 3DCityDB Web Feature Service

The CityGML Import/Export tool also comes with an extensive plugin API which allows for

dynamically extending the existing Import/Export functionalities to support the modular

development and deployment of additional tools for interacting with the 3D City Database or

external datasets. Using the plugin API, software developers are able to create their own

plugins which can be separately added to the Importer/Exporter. A plugin can be easily

installed by copying its mandatory files including the compiled JAR file and related libraries

Technische Universität MünchenLehrstuhl für Geoinformatik

3DCityDB

Web Feature Service Servlet

32

CityGML

Import/

Export API
WFS Controller

Java Servlet Container

WFS Request

WFS Response

Web Feature Service Workflow

WFS Client

 Management of Semantic 3D City Models

68

etc. into a specific subfolder of the Importer/Exporter installation directory and will be

automatically found and launched when starting up the Importer/Exporter. In addition to

extending the functionalities, a plugin may also extend the GUI of the Importer/Exporter by

providing its own user dialog that will be embedded and rendered in the main operations

window of the Importer/Exporter.

Per default, the 3DCityDB provides an internal plugin called KML/COLLADA/glTF

Exporter which is delivered together with the Import/Exporter. Using this plugin, the spatial

data contents of CityGML features can be directly exported using popular 3D visualization

formats like KML, COLLADA, and glTF for high-performance visualization and exploration

in a broad range of 3D mapping applications or Earth browsers like Google Earth, ArcGIS

Explorer, and Cesium. This export process (cf. Figure 39) follows a similar logic to that of the

CityGML exports. In the first step, according to the user-defined filter criteria, the GMLIDs

of the satisfied features are first queried from the database and then passed to a worker pool

which is implemented using the same multi-threading API of the Import/Export tool.

Depending on the hardware being used, this worker pool is able to dynamically create an

optimal number of worker threads each of which is responsible for taking one GMLID after

another from the waiting queue and querying the respective feature content from the database

for creating a KML/COLLADA java object. The class definition of the java object is pre-

generated by means of the XML Schema binding compiler (xjc) for compiling the

KML/COLLADA’s XML schema definition files to the corresponding Java classes which

allows for directly marshalling the created java objects to the corresponding XML elements

using the JAXB library. In addition, the creation of the glTF models is done through a

separate processing step which utilizes a third-party tool called Collada2glTF for converting

the COLLADA to glTF models. Moreover, in order to achieve sophisticated streaming and

rendering performance in a 3D viewer, the KML/COLLADA/glTF models can be created

with various display forms with different level of details organized in an efficient spatial data

structure when exporting a large 3D city model. Further details are elaborated in chapter 5.

Figure 39: Workflow of generating KML/COLLADA/glTF visualization models

The 3DCityDB offers another plugin called Spreadsheet Generator plugin which is an

external plugin shipped with the Importer/Exporter and can be installed optionally. This

Technische Universität MünchenLehrstuhl für Geoinformatik

Static

Components

33

Write KML/

COLLADA

File

follows
instance of

Binding

Compiler

(XJC)

Schema derived

classes (JAXB)
KML/COLLADA

XML Schema

Worker 1

3DCityDB

KML/COLLADA/glTF Export

Top-Level Feature

ID Queue

…

JAXB-Object Queue

…

Collada2glTF

Converter

Worker 2

Worker N

Export Worker Pool

…
Read

Database

Management of Semantic 3D City Models

69

plugin can export the thematic contents of a 3D city models from a 3DCityDB instance to a

table format, either to a CSV or a Microsoft Excel file, where the first column lists the unique

identifiers (GMLIDs) of the exported city objects each of which refers to one spreadsheet

row. The generated spreadsheets can be opened using a spreadsheet application like Microsoft

Excel and Open Office Calc etc. or uploaded to a Cloud-based online spreadsheet service e.g.

Google Drive and Microsoft OneDrive which allows for interoperable web access by multiple

users. In addition, the relevant features of spreadsheet programs like formula calculation and

graphing tools, are applicable to the exported thematic data for realizing various analysis and

simulation functionalities in web-based 3D GIS applications. More details are illustrated in

chapter 6.

The spreadsheet generation process (cf. Figure 40) is similar to the workflow of the

KML/COLLADA/glTF exporter and is also implemented based on a multi-threading

programming by means of the concurrency API provided by the Importer/Exporter. In this

case, each thread in the worker pool is dedicated to query the thematic contents of a top-level

feature and map the results onto a table row based on a so-called table mapping template

which can be freely defined by the users. This template is a text-based file and comprises a set

of key-value pairs (KVP) each of which can be seen as a spreadsheet column definition: The

“key” of a KVP specifics an expression which can be directly translated to a SQL statement

for fetching the data from a column of a specific table in the 3DCityDB, whereas the “value”

specifies the column name in the output spreadsheet. With this template file, the value of each

spreadsheet’s column can be dynamically queried from the database for every city object and

written to the spreadsheet at the export time. In case that more than one value is returned by a

query expression, it is possible to select the first or the last one of the returned values or

simply group them as a comma separated string value which will be then passed into the

corresponding spreadsheet cell.

Figure 40: Workflow of generating spreadsheet from 3DCityDB

Starting from version 3.3.0, the 3DCityDB software package comes with a new tool called

3DCityDB-Web-Map-Client or simply called 3D web client acting as a web-based front-end

for high-performance 3D visualization and interactive exploration of arbitrarily large semantic

3D city models (cf. chapter 5). Basically, the 3D web client has been developed based on the

open-source Cesium virtual globe which provides high-performance and cross-platform

functionalities like displaying 3D geographic contents on the web without the need to install

Technische Universität MünchenLehrstuhl für Geoinformatik

34

Write each

row to

Spreadsheet

Table Mapping

Template

3DCityDB

Spreadsheet Export

Worker 1

Worker 2

Worker N

Worker Pool

…

Top-Level Feature

ID Queue

…

Spreadsheet Row

Queue

…

based on

based on
based on

Read

Database

 Management of Semantic 3D City Models

70

additional web browser plugins. While developing the 3D web client, various extensions have

been made to the Cesium 3D viewer in order to facilitate users to view and explore 3D city

models conveniently. The major one among those extensions is the high-performance

interaction and visualization of very large 3D models which are exported using the

KML/COLLADA/glTF Exporter and can be published via an in-house or a Cloud-based

webserver for enabling the data access over the Internet (cf. Figure 41). Furthermore, these

3D visualization models can be logically linked with multiple Cloud-based online

spreadsheets containing the thematic data exported using the Spreadsheet Generator Plugin

and allows for interactively querying the attribute information of every city object in addition

to the pure 3D visualization by means of the Cloud-based service like Google Docs (cf.

Herreruela et al. 2012, Yao et al. 2014).

Figure 41: Workflow of using 3DCityDB web client coupled with Cloud-based online spreadsheets

In summary, with the help of the presented relational database schema, database procedures,

as well as the front-end software tools, the 3DCityDB has become an extensive open-source

GIS software ecosystem with the full functionalities ranging from efficient storage and

management of virtual 3D city models according to the CityGML standard, via the dynamic

interaction with the spatial and thematic data, up to high-performance visualization and

exploration of them on the web. In combination with other GIS, BIM, and ETL software

systems, various applications can be built to accomplish certain tasks for different application

domains. Further details about the utilization of such software systems along with the

semantic 3D city models of CityGML in practical applications are comprehensively discussed

in chapter 6.

Off-line Process

3DCityDB

Spreadsheet

Export

KML/

COLLADA/

glTF

Export

upload

upload

3D Web Client

access

access

Logical link via Features‘ GMLIDs

On-line Process

Webserver

Management of Domain Extendable 3D City Models

71

Chapter 4 Management of Domain Extendable 3D City Models

Although CityGML offers a semantically rich 3D city model that covers the most relevant

geographic phenomena in real world, various additional feature classes and heterogeneous

attribute properties are usually required in some specific application cases like urban

planning, energy simulations, utility network analysis, and noise propagation calculations etc.

For instance, the heat demand calculation for a building typically needs the information about

the construction materials of the surrounding walls in order to determine the thermal

resistance about how easily the heat can flow out the building. Another example are utility

network constructions like water pipes and electrical connectors etc., which shall be

represented in a graph structure for facilitating network analyse. However, all such

information are currently not included in the existing CityGML data model. Concerning this

situation, the 3D city model must be extendable and can thereby be dynamically enriched

with arbitrary domain-specific information models. This is conceptually realizable since each

3D city model object is usually assigned with a unique identifier, which must be kept stable

throughout the lifetime of the referenced real-world object. Using such identifier, different

domain-specific information can be properly joined and attached to the same object within a

common framework like CityGML. Consequently, the extended 3D city model will become a

very sophisticated data basis that can be efficiently managed and exchanged across different

application systems.

To realize the efficient management of such domain extendable 3D city models, numerous

research and implementation challenges have been identified concerning the model

development and management in practical applications. First of all, a systematic extension

mechanism shall be chosen which should allow developers or organizations to develop their

domain-specific data models on their own and dynamically add the extension models to the

CityGML data model. The extended data model must be organized in such a way that can

ensure the interoperable data exchange across different application domains without

information loss. Second, the extended 3D city models must be managed as platform-

independent models such that they shall only be modeled on the conceptual level and can be

automatically converted to various encodings in different formats depending on the

application needs. For example, the automatic generation of a relational data model is of great

importance for creating a relational database schema to realize the efficient data storage in a

relational database management system. Third, from the perspective of industrial application,

the software tools for the data interaction like import and export must also be extendable to

facilitate the manipulation of instance datasets of the extended data models over the database

systems.

For overcoming the challenges mentioned above, a number of research and implementation

results have been successfully obtained during the dissertation work and the main contents are

structured as follows: the first section reviews the relevant concepts for the modelling and

development of domain-extendable 3D city models based on the CityGML standard using its

built-in extension mechanism called ‘ADE’ which serves as the key foundation of the entire

chapter. Regarding the data management of the extended 3D city models, a conceptual idea of

developing a dynamically extendable database framework based on the existing 3DCityDB

solution is given in order to make full use of the capability of the 3DCityDB for handling the

standard CityGML data model. In the second section, more focus is put on the answering the

 Management of Domain Extendable 3D City Models

72

question of how to automatically derive 3DCityDB-compliant relational database schemas for

arbitrary CityGML ADEs. To reach this purpose, the existing solutions have been carefully

examined to identify their drawbacks and limitations in the automatic derivation of compact

relational database structures. Based on this survey, a new advanced approach has been

developed which is based on ‘Graph Transformation Systems’. Finally, a technical realization

of the proposed approach has also been carried out and the corresponding details of the

implementation along with a representative example are presented in the last section to prove

the feasibility and advantages of the developed approach compared to previous software

solutions.

4.1 Extending the CityGML Data Model

As mentioned in section 3.1.2, there are two major ways for extending the standard CityGML

data model by augmenting the existing CityGML feature classes with additional domain-

specific attribute information or introducing new types of city objects: one is to use the

Generics module which is a standard thematic module defined in the CityGML specification.

The other one is the utilization of CityGML’s extension mechanism called ‘Application

Domain Extension’ (ADE), which requires that extra application schemas must be defined

and linked to the CityGML’s standard application schemas. Compared to the latter one, the

former one provides a relatively easy way as there is no need to change the existing CityGML

application schema. For example, it is very easy to use the GenericCityObject feature class to

represent any alien city objects with respect to their relevant thematic and spatial properties.

Moreover, in case of adding domain-specific attribute information to a city object,

GenericAttributes can be used for attaching an arbitrary number of attributes with different

data types to the existing CityGML feature classes. However, according to the CityGML

specification, the approach of using the Generic module also has its own limitations and

disadvantages:

• The class GenericCityObject is defined with a very simple structure and is hence not

able to describe the semantic relationships like association, aggregation/composition,

or specialization/generalization between feature classes, which might be associated

with or inherited from the existing CityGML classes. Besides, the generic attributes

only support a limited set of primitive data types like string, integer, floating-point

number, and date etc. or an aggregation of them, but is not able to represent those data

types that have complex structures like inheritance relationships. Obviously, these two

limitations hinder the use of the Generics module from representing the complex-

structured feature classes which can frequently occur in practical application cases.

• The utilization of generic attributes lacks the possibility to formally specify the

minimum or maximum occurrence of generic attributes, since they are allowed to

occur an arbitrary number of times in a city object according to the CityGML

standard. Consequently, it is impossible to use an XML-aware program to guarantee

the attribute multiplicities by validating the instance documents against the CityGML

schema definition files in a formal way. Thus, in order to ensure the semantic

interoperability of the extended data models, the attribute validation procedure can

only be done by the CityGML reader applications which will however require extra

implementation efforts.

Management of Domain Extendable 3D City Models

73

• Another disadvantage is that the generic attributes or city object belonging to

different application domains are not allowed to have the same name in an instance

document simultaneously, because no additional attribute like ‘Namespace’ aligning

with the attribute name is available which allow users or application programs to

distinguish the domain affiliation. As a result, the compatible use of different domain-

specific information cannot be guaranteed and naming conflict issues can easily

happen.

Concerning these usage limitations of the CityGML Generics module, the solution of using

the CityGML ADE mechanism has been chosen as the foundations of the thesis for exploring

how to realize the efficient management of domain-extendable 3D city models within the

CityGML framework. As the entry point, the following subsection will first give an insight

into the key concept of the CityGML ADE.

4.1.1 CityGML ADE Insights

According to the CityGML standard, a CityGML ADE is actually a GML application schema

for modelling domain-specific information which can be incorporated into CityGML instance

documents. Hence, it has very close relations with the CityGML and GML specification as

well as the ISO 19100 standard family. These relations are illustrated in Figure 42.

Figure 42: Relationships between the ISO 19100 standard family and CityGML ADEs

According to chapter 2.4, the ISO 19136 standard “Geography Markup Language (GML)”

provides an open and manufacturer independent framework for the definition of geospatial

data models and is completely based on the ISO 19100 standards such as the ISO standard

19109 “Rules for Application Schema”, the ISO standard 19107 “Spatial Schema”. In

addition, the ISO 19136 standard provides an extensive UML profile together with a

ISO 19107

Specification

ISO 19109

Specification

CityGML

Conceptual Ideas

Other ISO 191xx

Specifications…

ISO 19100 series of International Standards

CityGML ADE

Model (UML)

GML Model

(UML)

CityGML Schema

(XML Schema)

CityGML Model

(UML)

CityGML ADE

Application Schema

(XML Schema)
GML Schema

(XML Schema)

Well-defined

encoding

(ISO 19136 Annex D)

GML application

schema encoding rules

(ISO 19136 Annex E)

Well-defined encoding

(OGC CityGML encoding

standard)

based on

based on

based on
based on

<<import>> <<import>>

based on based on

P
la

tfo
rm

-

in
d

e
p

e
n

d
e

t

M
o
d
e
ls

 (P
IM

)

ISO 19136

Conceptual Ideas

extend

based on based on based on

OGC CityGML

Standard
ISO 19136

Standard

<<import>>

 Management of Domain Extendable 3D City Models

74

normative UML-to-XML encoding rule set which forms an MDA-compliant framework

allowing for the development of a variety of application schemas based on a standardized

exchange interface using GML standard. As an application schema of GML, the CityGML

data model specifies the application specific concepts for the spatio-semantic modelling of 3D

city and landscape objects. It can be maintained as a platform-independent information model

using UML models and has also been implemented as an XML-based schema in compliance

with GML schema. In analogy to the standard CityGML model, CityGML ADEs can also be

originated from the start with the design of a UML diagram (cf. van den Brink et al. 2013).

Using the UML-to-XML encoding rules defined in the ISO 19136 standard, a CityGML ADE

can also be implemented as an XML schema definition file that references both the CityGML

and GML schemas. Note that although the UML model can be directly serialized to a text-

based document using the standard format “XML Metadata Interchange (XMI)” for the

purpose of information exchange between different application systems, CityGML ADEs are

nowadays mostly transmitted using XML schema files. This is because, the XML schema

provides a sophisticated syntactical structure which is not only able to represent the semantics

of object-oriented models with complex data structures and can also be easily interpreted and

parsed by many XML-schema-aware software tools or programming libraries. Moreover, the

XML instance documents can also be checked against their meta-models directly using the

respective XML schemas to ensure the validity of the instance documents of CityGML ADEs.

4.1.2 Development of CityGML ADEs

According to the CityGML standard, there are two approaches for developing a CityGML

ADE through extending the existing CityGML data models:

• Defining new ADE classes: Depending on the application needs, new classes usually

have to be introduced which are not predefined in the CityGML specification. Since

CityGML is based on the GML standard, each ADE class shall be derived from

GML’s top-most abstract class ‘_GML’ or its subtype ‘_Feature’ which both are used

for representing identifiable real-world objects. Alternatively, since CityGML is based

on the object-oriented paradigm, new ADE classes can also be defined by subclassing

the existing CityGML classes and augmenting them with additional domain-specific

properties to construct an extended version of the corresponding CityGML superclass.

For example, a new class called ‘IndustrialBuilding’ can be defined as a subclass of

the CityGML class ‘_Building’ for explicitly representing the industrial constructions

like the factory workshops or machine halls. Although both approaches of defining

new ADE classes are feasible, it is however highly recommended to subtype the

CityGML class as far as possible when defining a new ADE class, since this new class

can transitively inherit all the properties and relations from its superordinate classes

e.g. _CityObject whose instances can be treated as city object members of a CityModel

object directly which is a root element in a CityGML instance document. Furthermore,

multiple industrial building objects can also be grouped as a CityObjectGroup object

by making use of the CityGML’s grouping concept (cf. chapter 3.1.2).

• Adding ADE properties to existing CityGML classes: In CityGML, a feature class can

be dynamically enriched with arbitrary number of additional properties of any data

types. This is realized using the XML substitution mechanism according to which

Management of Domain Extendable 3D City Models

75

each CityGML feature class is equipped with an interface attribute called “hook”

which has an unlimited multiplicity and can be substituted by any elements defined in

the XML schema definition file. In this way, model developers are able to extend an

existing feature class by defining new properties and inject them into the target feature

class. Compared to the first approach presented above, this approach has the

advantage that there is no need to define a new subclass and the extended CityGML

class can still be handled by the existing CityGML applications which just need to

simply ignore the ADE attributes while parsing the CityGML instance document.

However, this approach violates the concept of the object-oriented modelling in UML

as it does not support the concept of injecting properties to a well-defined class. To

overcome this issue, (van den Brink et al. 2013) introduce a workaround solution

which is based on the UML subtyping expression and utilizes two specific stereotypes

<<ADEElement>> and <<ADE>> to mark the subclass and specialization relation

respectively. In this way, all properties belonging to the <<ADEElement>> class will

be recognized as the ADE properties which shall be injected into the corresponding

parent CityGML class.

In the past years, numerous CityGML ADEs have been developed using the software tool

Enterprise Architect (EA) which is a UML design tool fully supporting the MDA-based

development of GML-compliant data models. The UML stereotypes used in the ISO 19100

standards as well as the GML and CityGML data models have also been implemented based

on the EA-framework to facilitate the convenient design of CityGML ADEs at the conceptual

level. In order to derive the GML application schema of an ADE, the open-source software

tool ShapeChange (cf. ShapeChange 2017) can be used to read and parse the EA-model of a

given CityGML ADE and automatically create the corresponding XML schema definition file

according to the UML-to-XML encoding rules defined in the ISO 19136 standard.

Concerning the creation of instance datasets of a CityGML ADE, the software ‘Feature

Manipulation Engine (FME)’ of Safe Software is a suitable tool which provides a

sophisticated transformer utility called “XMLTempater” that allows to create valid XML

datasets of an ADE with respect to its XML schema definition file. The universal reader

functions provided by the FME allow to read the geospatial data in different formats and pass

the interpreted data into the corresponding ADE datasets according to an explicit definition of

the semantic mapping between the input and output data.

4.1.3 Extending the 3DCityDB for CityGML ADEs

To store and manage CityGML datasets with ADE data for interoperable data access, the

spatially enhanced database management system is considered to be the most important

solution. As mentioned in the previous chapter, the open source relational database solution

3D City Database (3DCityDB) has been designed for the high-performance storage,

management, and analysis CityGML datasets despite their complex data structures and spatial

characteristics. However, the 3DCityDB database schema didn’t support the storage of

CityGML ADEs since it was resulted from a manual derivation of the CityGML data model

to a fixed relational database structure which cannot handle the data elements being not from

the standard CityGML data model. Therefore, the 3DCityDB must be extended to become

 Management of Domain Extendable 3D City Models

76

elastic in order to be able to support any CityGML ADEs which may also have very complex

model structures.

To realize this, there exists a traditional generic solution which employs a set of tables with a

rigid relational structure allowing to map arbitrary XML-based graph like structures onto a

relational database model (cf. Florescu & Kossmann 1999, Li et al. 2004). This approach has

been proven to be a relatively applicable solution for handling arbitrary XML/GML

documents. However, this approach also poses two significant drawbacks. First, the mapped

relational structure requires a large number of recursive joins for the representation of

aggregation and inheritance hierarchies of the object-oriented data models which will result in

lower database performance. Second, it lacks the explicit mapping between classes and tables,

since all classes and their attributes are mapped onto a mixed table structure which makes

applications difficult to retrieve the data contents from the database. Thus, instead of a generic

database structure, the 3DCityDB database models must be elastically extendable in such a

way that each CityGML ADE shall be handled like a “plugin” of the 3DCityDB to allow for

dynamically extending the kernel 3DCityDB database schema (cf. Figure 43). However, since

CityGML ADEs can be defined with very complex model structures in practical situations, a

challenging task is to find a way to automatically derive 3DCityDB-like database schemas for

supporting the high-efficient storage and maintenance of arbitrary CityGML ADEs. However,

due to the fact that the underlying design decisions of the 3DCityDB strongly rely on many

manual steps, e.g. recognizing a certain complex model structure and mapping it to a

particular target database structure, which makes the automation of the ADE mapping process

much harder than the generic solution and hence requires further investigations and research

work.

Figure 43: Conceptual workflow for creating a dynamically extendable 3D geo-database for CityGML

4.2 Automatic Derivation of Relational Database Schemas for ADEs

As mentioned in the previous section, CityGML ADEs are usually defined using XML

schema definition files which shall be used as the input asset for performing the automatic

Technische Universität MünchenLehrstuhl für Geoinformatik

Problem Statement

2

3D City Model

Data Model

3D City Database

(3DCityDB)

standardized

(fixed structure)
fixed structure

DynamizerNoise DynamizerNoise

Energy
Utility

Network

Lärm
Energy

LärmUtility

Network

Extension

(dynamic)

dynamic

Object-oriented model Spatio-relational model

Manual

Derivation

Management of Domain Extendable 3D City Models

77

derivation of the 3DCityDB-compliant relational database schemas (cf. Figure 44). While the

XML schema of a CityGML ADE natively represents an object-oriented data structure, the

target database schema has a relational table structure which must be the result from a model

transformation process to execute the conversion of an object-oriented model as the input to a

relational database model as the output (cf. Mens & Van Gorp 2006, Bohannon et al. 2002)

using a computer-aided transformation system. To realize this, both the input and output

models have to be mapped onto certain kinds of computer-interpretable formats such that the

model transformation process can be automatically carried out by applying a set of user-

definable mapping rules (cf. Ng & Learmont 2002). In the subsequent step, the output model

containing the relational database structure can be parsed and translated into the

corresponding database schema which shall be represented as specific SQL scripts that can be

directly used for the creation of database schemas for different types of database products e.g.

Oracle Spatial and PostgreSQL/PostGIS etc.

Figure 44: General approach for deriving relational database schema based on model transformation

4.2.1 Survey of existing Transformation Solutions

Today, a number of commercial or open-source software systems have been developed which

are capable of reading and parsing GML-conformant application schemas and automatically

generating relational database schemas for different relational database management systems.

The major ones are listed as the followings:

• Enterprise Architect: The commercial software “Enterprise Architect” developed by

the company Sparx Systems is a visual modelling tool which not only allows users to

visually design and develop object-oriented data models in UML diagram, but also to

automatically convert the platform-independent data models to domain-specific data

models like relational database models (cf. Sparx Systems 2017). If the XML

application schema of an ADE is given, the relational database model can be

generated using the Enterprise Architect by following two steps: First, the GML

application schema shall be read into the Enterprise Architect to reconstruct an object-

oriented UML model through a reverse engineering procedure. After this step, a UML

package containing all the ADE classes can be created which can be transformed into

a relational database model in the second operation step. In addition, Enterprise

Architect also provides the functionality to automatically generate the SQL statements

for the creation of database schema based on the chosen database products. However,

Technische Universität MünchenLehrstuhl für Geoinformatik

5

GML Application

Schema (XSD)
Relational Database

Schema (SQL)

Platform-specific

Models (PSM)

Input Model Output Model

Model Transformation

Transformation Tool

conforms to conforms to

Transformation

Engine

input output

executed by

 Management of Domain Extendable 3D City Models

78

according to the investigation of this research, Enterprise Architect is not applicable

for the handling of CityGML ADEs because of two reasons. First, this software tool

can only handle normal XML schema without the support of translating the GML

geometric properties to the 2D/3D spatial datatypes in the spatially-enhanced database

systems. Second, all ADE classes are mapped onto the database tables in a 1:1 manner

which will produce a non-compact database structure and usually result in

unsophisticated performance.

• ShapeChange: ‘ShapeChange’ is an open-source software tool which has been

originally developed by the company interactive instruments GmbH and later

expanded by the not-for-profit company MITRE Corporation (cf. ShapeChange 2017).

This software was written in Java and allows for the transformation of geospatial data

model between different forms of application schemas according to the ISO 19100

standards. For handling CityGML ADE, ShapeChange is able to directly read the

UML model created from the Enterprise Architect and automatically generate the

platform-specific formats such as XML application schema and relational database

schema etc. Compared to Enterprise Architect, the main advantage of using

ShapeChange is that the GML spatial properties can be translated to the spatial data

types in the target database systems. In addition, a set of rules and parameters for the

fine-grained control of the database derivation process is exposed and can be easily

managed by users using an editable XML-based configuration file. For example, a

simple conversion rule called ‘rule-sql-all-associativetables’ can be activated to

ensure that an associative table shall always be created for two classes with an M:N

relationship. One of the parameters is named ‘foreignKeyColumnSuffix’ which allows

users to specify a suffix for the name of those columns that contain foreign keys. In

order to choose the database system for which the SQL statements shall be created, the

parameter ‘databaseSystem’ can be properly specified and the supported values are

‘PostgreSQL’ and ‘Oracle’ which refer to the two modern database products

respectively.

• Deegree’s Feature Store: Degree is an open-source web-based application system for

the storage, management, and assessment of geospatial data according to the GML

specification (cf. Deegree 2017). It is implemented as a Java-tool that allows to handle

any GML-compliant 3D city models like INSPRE and CityGML. For storing GML

data, Degree provides a system module called Degree Feature Store which uses

relational database systems for storing GML data including the spatial properties. The

relational database model can be automatically created by reading the GML

application schema and mapped onto the database model on top of different relational

database products. The outstanding feature of this software is that it provides a

comprehensive schema mapping file that can be automatically created and allows to

formally describe the mapping information between the GML and database schemas.

Using this schema mapping file, the Deegree Feature Store can dynamically create

SQL queries on the database according to WFS queries to retrieve the data contents

from the database via a standardized web-based interface. In addition, the schema

mapping file can also be created by the users manually and hence offers a high degree

of flexibility to help the advanced developers to create their own database schemas

Management of Domain Extendable 3D City Models

79

and express the corresponding schema mapping semantics using a computer-

interpretable as well as human readable XML data structure.

• Snowflake’s Go Loader: Snowflake’s Go Loader is a commercial data management

tool for loading, updating and managing GML-compliant geospatial data in a

relational database (cf. Snowflake Software 2016). It provides similar features

compared to the Deegree Feature Store and also allows to dynamically create

relational database schemas for handling arbitrary GML-compliant geospatial data. In

addition, its counterpart software tool ‘GO Publisher’ also enables users to interact

with the stored geospatial data with other GIS software applications and to publish the

data via open standards like Web Feature Service (WFS). One of the main highlights

of the model translation engine coming with this software tool is the capability of

decreasing the number of the created tables in the derived relational database schema.

It is typically done by mapping the nested complex attributes onto a single table

column so that all the corresponding data properties of a feature object will be held in

one row of the feature table. This is especially helpful for those GIS applications that

are not aware of table joins and can only access one table. Obviously, a positive side

effect of such flattening table structure is the fast retrieval of the data contents from

the database as many table joins can be avoided. However, fine-grained data queries

are restricted because the database is not able to identify the individual attributes of its

parent complex attribute stored in a table cell.

After the survey of the existing model transformation solutions, it is identified that most of

them are capable of deriving valid relational database schemas for any GML-compliant ADE

data but are very limited in creating a compact relational structure, because the underlying

mapping rules for the model transformation are too simple. For instance, each GML class or

complex data type is normally mapped onto one individual database table, and the association

between two GML classes is represented using a table join or an associative database table to

connect the two mapped database tables. Such kind of mapping rule can easily result in a

large amount of database tables and will cause time-consuming issues when, for example,

performing a complex query on those data contents that are distributed over many database

tables due to the large number of required database joins. Although this issue has been taken

into account by the software “Go Loader” which allows for mapping a class along with its

complex attributes onto one database table to ensure that the overall number of the generated

database tables can be minimized. However, such optimization rules are hard-coded within

the software and lacks the flexibility to support user-defined transformation rules having

complex logics. For example, a user may want to map two classes onto one table rather than

two separate ones, in case that the two classes have many common attributes or properties

being inherited from a common parent class, because such table representation is not only

space-efficient for database but also has much more compact database structure to speed up

the database access for GIS applications like ETL software tools. Such kind of mapping rules

allows to achieve a very good trade-off between database complexity and semantic clarity and

can be learned from the design decisions applied during the development of the 3DCityDB

relational database schema. Thus, it would be sufficient to find a way to formally represent

the 3DCityDB’s mapping rules that can be interpreted by computer to automate the database

derivation process for arbitrary CityGML ADEs. However, the logics of the 3DCityDB’s

 Management of Domain Extendable 3D City Models

80

design decision is relatively complex and make it difficult to reuse or extend the existing

solutions being used in the aforementioned software tools due to the following reasons:

• According to the literature (Stadler et al. 2009), the manual derivation of the

3DCityDB mainly consists of two mapping steps: First, the classes matching to some

certain object-oriented design patterns are identified and optimized to a simple model

structure with less classes and relations. In the second step, the simplified object-

oriented model shall be transformed to the target relational database model in a

straightforward manner using the standard mapping approaches (cf. chapter 3.2.1).

However, particular problems occur when trying to automate the first mapping step

using the solutions of the traditional software tools, because the class patterns may

have varying characteristics and complex structures which can easily result in a

situation that a class matches multiple patterns of different mapping rules at the same

time. This is a typical conflicting issue that will confuse the software tool, which

mapping rule should be chosen for performing the model transformation on the

classes.

• For specific cases, users may want to add further mapping rules. However, the existing

software solutions do not support the dynamic enrichment of user-defined mapping

rules to the transformation engine, because the mapping rules are normally hard-coded

in the application systems using high-level programming language or annotated in the

original XML application schema (cf. Amer-Yahia et al. 2004). Thus, a flexible and

declarative formalism is required which should allow users to formally express the

mapping rules that can be automatically executed by the computers to perform the

model transformation. In addition, the mapping relationships between the object-

oriented model and the relational database model shall also be represented to reflect,

which classes or attributes are mapped onto which tables or columns. Moreover, the

relational model derived from the mapping process shall also be represented properly

such that it can be interpreted by computers to automatically generate the target

database schema.

• With the increasing number of user-defined mapping rules, the mapping process can

become even more complicated. One typical issue is that the transformation results of

a mapping rules may fulfill the condition of another transformation rule, whose

transformation results may in turn match the mapping condition of the former

mapping rule. This will result in an infinite loop of the transformation process which

cannot be terminated in the end. Therefore, an appropriate mechanism is required to be

tailored to such situations which can be automatically determined beforehand and

allow users to schedule the sequence of running the individual mapping rules to ensure

that one mapping rule can only be started when another one has been completely

processed.

Concerning these issues, a new approach must be found which should be able to overcome the

above-mentioned drawbacks of the existing software solutions to support the automatic

derivation of a compact relational database model form a give CityGML ADE. After careful

examination of the object-oriented model and relational database model, it can be concluded

that both model representations can be fully represented using a graph structure along with its

typed and attributed graph nodes and arcs which can represent the model entities and their

Management of Domain Extendable 3D City Models

81

semantic interrelationships respectively (cf. Kuske et al. 2009). In addition, the mapping

relationships between both model objects e.g., classes and database table objects can also be

properly expressed using directed graph arcs which connect the corresponding graph nodes.

Thus, the model transformation problem can be fully abstracted to a graph transformation

problem which can be solved in a systematic way by means of so-called Graph

Transformation Systems (cf. Taentzer et al. 2005).

4.2.2 Relevant Concepts of Graph Transformation System

Graph Transformation System (GTS) is a very important technique in the area of computer

science and has been widely used in various applications ranging from software engineering

up to computation simulations for different algorithms, data and model transformation (cf.

Vara et al. 2005, Rafe et al. 2011). The fundamental concept of using Graph Transformation

Systems is the algebraic approach which uses graphs to represent the computation logics for

solving some specific problems. According to the graph theory, a graph 𝐺 is commonly

defined as 𝐺 = (𝑉, 𝐸) where 𝑉 represents a set of nodes, whereas 𝐸 denotes the edges. Each

edge must be bounded by two nodes which can be identical or different. A node can be

connected with one or more edges, the number of which indicates the degree of the respective

node (cf. Godsil & Royle 2013). In graph transformation system, the graph definition has

been extended to a special kind of graph whose nodes and edges are labeled with different

types and attributed with a set of characteristics. Such graph is commonly called “typed

attributed graph” and can be seen as a suitable grammar for formally describing a various

kinds of computation states and activities of human behaviors, object movements, software

engineering processes etc. at a higher abstract level. For example, the UML diagrams such as

component diagram, activity diagram, as well as the class diagrams can be fully mapped onto

a typed attributed graph which allows for representing the semantics of the target applications

and data structures within a graph transformation system (cf. Büttner & Gogolla 2004, Folliet

& Mens 2008).

When using a graph transformation system, the initial state of the computation process is

formulated as a typed attributed graph called “host graph” which shall be first created and will

be used as the input for the graph transformation process. The entire process is carried out by

means of a set of user-defined transformation rules called ‘graph transformation rules’ each of

which uses graph representations to formalize the logical operation or computations on the

host graph and will be applied to the host graph to replace a certain number of subgraphs by a

new subgraph iteratively (cf. Ehrig et al. 2015). The computation results will be yielded by

interpreting the processed host graph once the graph transformation has been completed (cf.

Figure 45). In addition, the graph transformation rules can also be flexibly combined to

perform complex computations. A nice application example was given by (Krüger & Kolbe

2010) who have developed a GTS-based framework for the analysis, interpretation, and

transformation of 3D geospatial data according to the GML specification. For example, the

data transformations on the feature-based datasets allow for the data generalization by

merging multiple objects by analyzing their object attributes, the topological, and geometrical

relations. Since the GML data has a graph-like structure, the source data including the feature

objects and their attribute properties can be directly mapped onto a typed attributed graph and

 Management of Domain Extendable 3D City Models

82

the data transformations can be declaratively defined as graph transformation rules for

performing the transformation in a graph transformation system.

Figure 45: Conceptual workflow of using graph transformation system to perform a computation

process

Formally speaking, the graph transformation rules can be denoted as {𝑟1, 𝑟2, … , 𝑟𝑛} each of

which is equivalent to a match morphism which basically consists of two components and can

be generally formalized as 𝑟: 𝐿 → 𝑅 where 𝐿 is called left-hand side (LHS) graph, whereas 𝑅

is called right-hand side (RHS) graph (cf. Figure 46). Both LHS and RHS are also typed

attributed graphs. The LHS graph can be considered as a match pattern which could be

algebraically isomorphic to every member of those graphs {𝐺1
′ , 𝐺2

′ , … , 𝐺𝑛
′ } that are subsets

of the host graph 𝐺𝑆, where 𝐿 ≅ 𝐺𝑥
′ and {𝐺1

′ , 𝐺2
′ , … , 𝐺𝑛

′ } ⊆ 𝐺𝑆. When executing a graph

transformation, each of the given rules will be checked and if a match 𝑚(𝐿) of the respective

LHS has been found in the host graph, the respective graph transformation rule will be

considered to be applicable and the matched subgraph in the host graph 𝐺𝐿 will be substituted

by the RHS. Subsequently, the modified host graph 𝐺𝑅 will in turn be treated as the input for

the next transformation step and the entire graph transformation process will be continued by

successively processing the transformation rules until there is no further match of their LHS

can be found in the host graph.

Figure 46: Conceptual diagram of the SPO-based approach (cf. Geiß et al. 2006)

The upper-mentioned approach is generally called single-pushout approach (SPO) which

reflects the basic idea of graph transformation. With this approach, a graph transformation

rule with matched LHS can be directly applied to the host graph without the need to fulfil any

further conditions for running the graph transformation process. However, such

straightforward rewriting process may easily result in a “dangling” edge (cf. the example

Technische Universität MünchenLehrstuhl für Geoinformatik

20

Graph

Transformation

Initial State Resulting StateComputation

Process

represents

Transformation
input output

Graph

Transformation

Rules

representsrepresents

input output

Technische Universität MünchenLehrstuhl für Geoinformatik

19

𝐺𝐿 𝐺𝑅

𝐿 𝑅

𝑚𝐿 𝑚𝑅

Management of Domain Extendable 3D City Models

83

shown in Figure 47), which does not have a source or target node and violates the

fundamental definition of a graph.

Figure 47: Example of the “dangling” edges resulted from a simple graph rewriting process

As shown in Figure 47, a simple transformation rule has been defined which tends to map a

graph structure consisting of three interrelated nodes and edges to a simple graph containing

only one node with another type. After applying the transformation rule to the host graph, the

matched subgraph will be substituted by the RHS-graph of this transformation rule and the

resulted graph shown on the right side of the figure will contain two dangling edges. As

mentioned above, the resulted graph has an invalid structure and must hence be automatically

repaired through the automatic deletion of the two dangling edges (cf. van den Broek 1991).

Here, a considerable issue of the SPO-based approach is that the deletion of edges will be

instinctively performed by the graph transformation system and cannot be fully controlled by

the graph transformation rules.

An alternative to the SPO-based approach is called double-pushout (DPO) approach which is

a much more rigorous approach having been frequently used for solving the graph

transformation problems. The modern graph transformation system AGG (cf. Taentzer 2000)

is implemented based on the DPO-based approach at their core. According to the concept of

this approach, a graph transformation rule can be described as 𝑟: 𝐿 ← 𝐼 → 𝑅 which is slightly

different from the formalization for the SPO-approach due to the additional variant 𝐼 . It

represents a so-called gluing graph (𝐿 ∩ 𝑅) which is equivalent to an interface for joining the

both LHS-graph and RHS-graph. The two morphisms 𝐼 → 𝐿 and 𝐼 → 𝑅 are said to be

injective since the graph 𝐼 is actually a subgraph of the both 𝐿 and 𝑅 (cf. Ehrig et al. 2006).

For performing a DPO-based transformation, a graph transformation rule is applicable only if

it satisfies the so-called “gluing condition” which is made up of two sub-conditions, namely

the identification condition and the dangling condition. The identification condition restricts

that, if two graph elements (node or edge) x and y of the LHS-graph are not going to be

deleted by the rule, then they must occur in the gluing (interface) graph. In other words, the

Technische Universität MünchenLehrstuhl für Geoinformatik

20

Left-hand side (LHS) Right-hand side (RHS)

map

Transform

Host Graph (before process) Host Graph (after process)

Graph Transformation Rule

Graph TransformationNode Types

Edge Types

applied

 Management of Domain Extendable 3D City Models

84

two elements will be preserved after applying the transformation rule if 𝑥, 𝑦 ∈ 𝐿 ∩ 𝑅. The

dangling condition requires that if one node is to be deleted, then all edges which are adjacent

to this node must also be deleted. This condition is particularly important since it allows to

avoid the occurrence of dangling edges in the output graph to preserve a legal graph structure.

Once the gluing condition is satisfied, the DPO-based transformation can be executed by

performing a two-steps procedure which are formally illustrated in Figure 48.

Figure 48: Conceptual diagram of the DPO-based approach (cf. Habel et al. 2001)

In the first step, all those graph elements that match the subgraph 𝐿 \ 𝐼 shall be deleted from

the host graph 𝐺𝐼. An intermedia graph 𝐺𝐼, which is production of the 𝐺𝐿 \ 𝑚(𝐿 \ 𝐼), will be

yielded which contains a match 𝑚(𝐼) of the gluing graph 𝐼 . According to the dangling

condition, no dangling edges will be created in the graph 𝐺𝐼 during the transformation. In the

second step, the intermediate graph 𝐺𝐼 will be attached with the production of 𝑅 \ 𝐼 to

generate the result graph 𝐺𝑅. Since the gluing graph 𝐼 occurs in both LHS-graph and RHS-

graph, the input 𝐺𝐿 and output 𝐺𝐻 of the host graph can share a common subgraph that allows

to connect the initial and final computation states represented by the graph (cf. Habel et al.

2001). In case that none of the original graph elements have been deleted during the rule

applications, the structure of the original graph can be completely preserved. This feature is

especially essential for performing model transformations, because not only the target model

but also the mapping relationship between the input and output models can be kept which are

important for exploring the transformation results.

For the clear understanding, a simple example is given in Figure 49 to illustrate the general

workflow of the DPO-based approach. The transformation rule shown in the example tries to

convert a graph pattern by adding a new node along with three adjacent red edges linking with

the original nodes. All graph elements in the host graph remain unchanged throughout the

transformation process and the rewritten host graph can be treated as a graph-based

representation of the computation results which preserves the input graph elements and also

contains the relations between the initial and newly created graph elements. A practical

circumstance of this example is model transformation: The yellow nodes can be seen as the

virtual representation of an object-oriented model consisting of three classes whose

inheritance or association relationships can be represented using the black edges. The newly

created green node represents a database table which is logically mapped from the three given

classes and the related red edges can be used for holding the mapping relationships between

the respective model objects. In this way, the mapping of complex-structured class patterns

onto a relational database model can be easily formalized as a graph transformation rule that

Technische Universität MünchenLehrstuhl für Geoinformatik

double-pushout approach

20

𝐺𝐿 𝐺𝐼 𝐺𝑅

𝐿 𝐼 𝑅
 𝑟

()

()𝑚𝐿 𝑚𝐼 𝑚𝑅

Management of Domain Extendable 3D City Models

85

can be applied using the graph transformation system to accomplish the complex model

transformation task.

Figure 49: Example of DPO approach for graph transformation

An issue in the upper example is that, the graph transformation process can actually not be

terminated, because the LHS always has a match in the host graph and the respective

transformation rule will be applied on the host graph in infinite times (cf. Bottoni et al. 2005).

Hence, the applicability of every graph transformation rule must be further restricted to

prevent it from running multiple times. This can be reached by augmenting a transformation

rule with a set number of pre-conditions which are typically categorized into two types:

namely the Positive Application Condition (PAC) and the Negative Application Condition

(NAC), both of which are also expressed in graph structure. The PACs are combined with the

logical operator “AND” so that a graph transformation rule will only be triggered when all its

PACs are fulfilled. In the contrary, the NACs use the logical operator “OR” and make a

transformation rule not to be applicable if one of the NACs is satisfied. Therefore, the proper

use of PACs and NACs offers a variety of possibilities for specifying a graph transformation

rule being subject to different kinds of application conditions. In the upper example, a NAC

has been introduced to restrict that if one yellow node has been already connected with a

green node, then the respective transformation rule will become non-applicable. In this way,

the transformation rule can be only performed one time and the graph transformation process

can therefore be properly terminated when only new graph nodes and edges are created in the

host graph. This corresponds to the scenario of deriving relational database models from

object-oriented models.

Additionally, it is also possible to define a so-called type graph 𝑇 (cf. Figure 50) which is an

essential concept in graph transformation systems. It can be seen as a meta-graph over all

graph elements for prescribing their structural relationships in the host graph as well as in all

the defined graph transformation rules. For instance, a semantic relation between two node

types can be defined in a meta-graph to represent their inheritance relationship. This allows

Technische Universität MünchenLehrstuhl für Geoinformatik

Graph Transformation (System) – Overview

24

Left-hand side (LHS) Right-hand side (RHS)

map

Transform

Host Graph (before process) Host Graph (after process)

Graph Transformation Rule

Graph Transformation

Negative application condition (NAC)

Node Types

Edge Types

applied

 Management of Domain Extendable 3D City Models

86

that, if a transformation rule contains the super node type, it will also be applicable for those

matched subgraphs that contain the child node type, since the semantics of the parent node

type have been the inherited by its subtype. In addition, an edge type can also be restricted by

defining the multiplicity of its associated source and target nodes. For instance, in the upper

example, if the red edge type in the meta-graph has been defined in such a way that, the edge

can only link a yellow node with maximum one green node, then the graph transformation can

also be properly terminated without needing to use a NAC. This indicates that the use of the

meta-graph has very similar functionalities compared to the UML meta-model being used in

the model-driven engineering. Thus, the meta-graph is able to serve as a global constraint on

the all the graph elements in the graph transformation system to guarantee the structural

consistency of the host graph and transformation rules throughout the transformation process.

Figure 50: Conceptual diagram of graph transformation with type graph (cf. Taentzer et al. 2006)

While applying a large number of graph transformation rules, non-determinism or also called

“conflicting” can easily occur, if more multiple rules are applicable to the host graph at the

same time (cf. AGG 2006). In this case, one of these matched rules might be randomly chosen

to be first applied which may affect the other rules becoming not to be applicable to the

rewritten graph. For example, one rule application may tend to delete a graph node or edge

which simultaneously has a match in the LHS-graph of another rule. Another typical example

is that a graph object created by a rule application may occur in a NAC-graph of another rule.

The negative consequence of these situations is that, non-confluent output graph or even non-

terminated transformation can easily occur which will result in incorrect application results.

Thus, such kinds of dependencies between transformation rules must be avoided in a proper

way.

To solve this issue, graph transformation systems like AGG provide a very powerful control-

flow mechanism called layered-based transformation which is an important concept for

handling the conflicted application rules (cf. Ehrig et al. 2005). The general idea is to

schedule the processing sequence of all given application rules by grouping them into a set of

numbered layers which can be sorted in a descending order based on the user-defined

execution priorities and as such will be applied successively. With such layer subdivision,

each layer will have a small number of application rules whose potential conflicts can be

easily determined and eventually avoided by decomposing the conflicted rules into further

layers. In addition, each layer shall be applied only one time while performing the graph

transformation and may conform to a logic block for accomplishing a certain sub-task of the

entire processing-chain. In each layer, the included application rules shall be applied as long

as possible and the processed host graph will be delivered as the input for the next layer until

Technische Universität MünchenLehrstuhl für Geoinformatik

12

𝐺𝑆 𝐺 𝐺 … …
𝑟 𝑟 𝑟 𝑟

𝑇

 𝑦

 𝑦

 𝑦

Management of Domain Extendable 3D City Models

87

the processing of the last one has been successfully completed. Thus, a proper ordering of the

layers is of great importance for achieving the desired transformation result and hence must

be carefully designed by application developers. The conceptual workflow of the layered-

based transformation is shown in Figure 51.

Figure 51: Conceptual workflow of layer-based graph transformation

4.2.3 Concept of using GTS to automatically derive ADE Database Schemas

Based on to the presented concepts of the graph transformation system in the previous

subsection, a new graph-based approach has been investigated in the context of the thesis to

develop an advanced application system for realizing the automatic derivation of a compact as

well as 3DCityDB-compliant relational database schema for a given CityGML ADE (cf. Yao

& Kolbe 2017). The conceptual workflow of the developed approach is mainly made up of

the following four steps:

1. In the first step, the XML schema definition (XSD) file of the input CityGML ADE is

read into the application for parsing the contents of the underlying object-oriented data

model which will be subsequently mapped onto a graph structure. The contained

classes along with their attributes and associations are represented as a set of typed

attributed graph objects which allow to fully reflect the semantics of the respective

ADE data model. In addition, by using a meta-graph, the meta-model of the CityGML

ADE can also be expressed in the graph transformation system to guarantee that the

graph representation of the ADE data models always conform to the GML

specification.

2. In the second step, the mapped graph will be passed to the graph transformation

system where a number of graph transformation rules can be defined to formulate the

complex mapping rules learned from the 3DCityDB implementation for performing

the transformation from the object-oriented model to the relational database model.

For this step, modern graph transformation systems usually provide an intuitive

graphical editor allowing users to conveniently define the transformation rules by

Technische Universität MünchenLehrstuhl für Geoinformatik

23

𝐿 𝑦 𝑟

𝐿 𝑦 𝑟

𝐿 𝑦 𝑟 𝑛

𝐺 𝑛

𝐺

𝐺1

…

𝐺𝑛 1

𝐺𝑛

𝑟
𝑟 1

𝑟

…

𝑟1
𝑟11

𝑟1

…

𝑟𝑛
𝑟𝑛1

𝑟𝑛
…

𝐿 𝑦 𝑟

 Management of Domain Extendable 3D City Models

88

dragging and dropping the graph elements. Moreover, the mapping relationships

between both models are explicitly represented using a number of graph edges with a

specific type (painted with red color in Figure 52) for connecting the source and target

model objects.

3. In the third step, the resulted graph shall be parsed and the subgraph representing the

derived relational database model will be retrieved by navigating the respective graph

objects. This can be done by programmatically iterating through all those nodes and

edges that are typed for representing the relational database objects such as database

tables, columns, sequences, indexes, and foreign key constraints etc. Starting from a

table node, its ingoing and outgoing edges can be queried to rebuild the relational

database structure which can be directly translated to the corresponding SQL

statements for the creation of the relational database schema according to the chosen

database product.

4. In the last step, the mapping relationships between the GML application schema and

the its relational database schema shall also be parsed and formally represented using

a text-based format which can be easily transmitted as well as interpreted by human

operators and computer applications. For this purpose, an XML-based file format has

been developed which is an extended version of the Deegree schema mapping file for

supporting the description of the database mapping employed in the 3DCityDB

implementations. Using this schema mapping file, the XPath expression can be easily

translated to the corresponding SQL query statement for retrieving the data contents

from the database and hence allows to build a WFS-based application system (cf.

Almendros-Jiménez et al. 2008). In addition, some meta-information of the CityGML

ADE can also be carried in the schema mapping file which can be used for the

registration of the respective ADE into the 3DCityDB database.

Figure 52: General idea of deriving a relational database schema from a GML application schema by

means of graph transformation

Technische Universität MünchenLehrstuhl für Geoinformatik

General Idea

13

XML Schema (ADE) Relational

Databasediagram (ADE)

Step 1: Mapping

classes to

graph structure

Step 2: Applying graph

transformation rules

Step 3: Creation of

relational database schema

Step 4: Connection

of both schemata

Management of Domain Extendable 3D City Models

89

4.3 Implementation and Evaluation

Based on the conceptual solution outlined in the previous section, a prototypical converter

tool (cf. Figure 53) for performing the database derivation has been implemented which is a

stand-alone Java application on the basis of the AGG graph transformation system (cf. AGG

2006). It allows to read the ADE application schema using the Java library XSOM for parsing

the XML elements of the data models and map them onto an AGG-compliant graph

representation, which can be directly passed to the AGG’s graph transformation engine for

executing the model transformation. In addition, the converter tool also includes the

functionalities for parsing the AGG host graph to automatically generate the SQL-formatted

relational database schemas and the corresponding schema mapping file once the graph

transformation has been completed. The applied graph transformation rules as well as the

meta-graph have been predefined using the graphical editor provided by AGG and integrated

into the developed converter tool. Moreover, a new database structure has also been designed

for the 3DCityDB which can now be dynamically extended to cope with an arbitrary number

of ADEs.

Figure 53: Software structure of the developed graph-based converter tool for generating relational

database schema and schema mapping file from a given ADE application schema

In the following subsections, the main design decisions for the graph transformation

environment including the meta-graph and the graph transformation rules will be first

presented to show how to create a graph-based as well as model-driven like system for

realizing the derivation of an efficient relational database schemas from a given CityGML

ADE. In the second subsection, the new structure of the 3DCityDB database schema will be

introduced which allows users to easily manage the derived ADE database schemas within the

3DCityDB software environment. In the last subsection, the developed graph-based approach

will be evaluated by comparing it with the existing software systems like Enterprise Architect,

Deegree, and ShapeChange based on their generated relational database schemas of an

Technische Universität MünchenLehrstuhl für Geoinformatik

Overall Workflow

12

Read and Parse

XSD File

Schema Mapping File

Resolve Graph

Transform Graph

Transformation

Rules

applies

SQL DDL Statements

CityGML ADE

XSD File

Input

Output

AGG Host Graph

AGG Host Graph

AGG Meta Graph

Step 2
follows

conforms to

conforms to

conforms to

Step 1

Step 3

 Management of Domain Extendable 3D City Models

90

‘artificial’ ADE. This artificial ADE has been specifically designed for simulating the typical

data model structures which frequently occur in practical application scenarios.

4.3.1 Design of a Graph Transformation Environment

Since a correct meta-graph can guarantee the validity of the host graph throughout the graph

transformation process, it is important to carefully design the meta-graph for both object-

oriented and relational database models. The structure of the meta-graph can first be

conceptually expressed as a UML diagram and later be manually mapped onto the

corresponding graph structure, which can be interpreted in graph transformation systems.

Basically, the meta-graph is made up of two subgraphs which are used for representing the

GML application schema model and relational database model respectively. In Figure 54, the

UML diagram of the subgraph representing the meta-model of the GML application schema

is presented.

Figure 54: Meta-model of the GML application schema according to the ISO 19136

This UML diagram was manually created via a reverse engineering of the GML conceptual

meta-model according to the ISO 19136 standard. In this UML diagram, all classes and their

«abstract»

NamedElement

+ name :char

+ path :char

«abstract»

PropertyElement

+ minOccurs :int

+ maxOccurs :int

«abstract»

ElementType

ComplexType

+ contextType :char

+ isAbstract :boolean

EnumerationType CodeListType

ComplexProperty
«abstract»

Attribute

SimpleAttribute

+ primitiveDataType :String

ComplexAttribute

«abstract»

GeometryProperty

+ geometryType :String

GenericAttribute

BrepGeometryPropertyPointOrLineGeometryProperty HybridGeometryProperty

EnumerationProperty

CodeListProperty

Extension

Schema

+ namespaceUri :char

+ xmlns :char

+ schemaLocation :char

+ is_ade_schema :boolean

+targetType 1+targetType 1

+reverseProperty 0..1

+reverseProperty 0..1

*

+targetSchema 1

0..*

0..1

+baseType 1

+targetType

1..*

Management of Domain Extendable 3D City Models

91

relations are abstracted from the XML encoding rules specified in the ISO 19136 Annex E.

First, an abstract class NamedElement is given which is the top-most class for representing the

XML elements and types whose names are held using the textual attribute name. This class

can be further specialized into two abstract classes namely ElementType and propertyElement.

The ElementType along with its three subtypes (EnumerationType, CodeListType and

ComplexType) corresponds to the global XML complexType and simpleType elements which

are specifically encoded for representing those GML classes that are defined using the UML

stereotypes like <<Enumeration>>, <<CodeList>>, <<DataType>>, <<Type>>, and

<<FeatureType>> (cf. chapter 2.4). Unlike the EnumerationType and CodeListType the

ComplexType class is able to contain an arbitrary number of property elements which are

represented using the class PropertyElement and the multiplicity information can be stored

using the minOccurs and maxOccurs attributes.

The ComplexType is also a simplified class for representing the stereotype <<DataType>>,

<<FeatureType>>, and <<Type>> simultaneously. The reason of employing this

simplification is that the three class types have a common encoding structure regarding the

inheritance relationships and associations. For example, the inheritance relationship is

represented by means of an Extension element to connect the parent and child class according

to the extension mechanism of XML schema. Besides, the association relationship like

aggregation and composition between two classes is mapped onto an XML property element

which is represented using the class ComplexProperty by following the so-called

“complexType-property-complexType” encoding structure where a super class can contain an

element property which shall have a reference to the child class to build the relation. Note that

only directed associations are allowed when two classes are connected through a property

element. In order to represent a binary association, the child class needs to receive another

property element pointing the parent class and both property elements shall be paired using

the reverseProperty attribute.

Another subtype of the PropertyElement class is called Attribute which is mainly used for

representing the non-association property elements. It can be further specialized into four

classes. The first one is SimpleAttribute which represents primitive attributes like integer,

string, floating-point number, boolean, and date etc. The EnumerationProperty is a special

case of the simpleAttribute since the value defined in the Enumeration is always a simple

textual value according to the definition in the ISO 19136 standard. The ComplexAttribute

corresponds to those kind of GML data type that is an aggregation of multiple simple

attributes. For example, the GML MeasureType consists of two simple attributes which store

the value and unit information respectively. A special subtype of the Attribute is the

GeometryProperty which is specifically used for representing the GML-compliant geometry

properties and is further classified into three concrete types, namely

PointOrLineGeometryProperty, BrepGeomertyProperty, and HybridGeometryProperty. As

the class names imply, the PointOrLineGeometryProperty represents those geometry objects

that are constructed using 3D points or curves. In case of B-Rep-based geometries 3D

surfaces and solids, the BrepGeometryProperty shall be employed. If a geometry object is an

aggregation of different geometry types, the HybridGeometryProperty shall be used. Since an

ADE schema may also contain some data property types which are not conform to the ISO

19136 standard, such kind of property elements can be represented using the GenericAttribute

 Management of Domain Extendable 3D City Models

92

class which will be mapped onto a single table column in the database using the data type

BLOB for storing the respective XML data fragment.

The UML model of the subgraph representing the relational database schemas is illustrated in

Figure 55. Different kinds of database objects such as the database tables, indexes, columns,

sequences, as well as foreign key constraints are mapped onto the individual classes and their

relations are also reflected.

Figure 55: Meta-model of the relational database model

In this meta-model, an abstract class called DatabaseObject is the top-most class for holding

all the relevant types of database objects. As a subtype of it, the Table class is used for

representing the database table which normally contains multiple columns represented using

the Column class. According to the usage functionality, the Table class can be further

specialized into two classes: DataTable and JoinTable. The DataTable refers to those tables

that are utilized for storing the data contents of the object classes and their attributes, whereas

the JoinTable exclusively serves as an associative table to link the tables of two classes

having an M:N relationship. For each data table, a sequence object can be defined which

allows to automatically generate a set of incrementing and unique values which can be

propagated to the primary key column of the respective table. Thus, the Sequence class and

the DataTable class shall have a 1:1 relationship. The database index being used for speeding

up the data accessing performance is represented using the class Index. It can be either a

normal index for indexing the primitive data types or a spatial index for indexing the spatial

data types. Both index types are determined using the flag attribute isSpatialIndex. Since a

«abstract»

DatabaseObject

+ name :char

«abstract»

Table

JoinTableDataTable

«abstract»

Column

JoinColumn

PrimaryKeyColumn

ObjectClassIdColumn

«abstract»

DataColumn

Join

GenericDataColumnInlineGeometryColumnRefGeometryColumn NormalDataColumn

+ primitiveDataType :char

Index

+ isSpatialIndex :boolean

Sequence0..1

+targetTable
1..

0..*

+targetColumn

1..*

1..*

+belongsTo

1

*

+jointTo 1

*

+joinFrom

1

Management of Domain Extendable 3D City Models

93

normal index is able to be defined on multiple columns of a table, and more than one index

can also be defined on the same column, the classes Index and Column are associated with an

1:N multiplicity.

The Class Column has two subtypes JoinColumn and DataColumn, the latter of which can be

further classified into a number of subclasses. For example, the class NormalDataColumn

corresponds to those columns that are used for storing the attributes defined with primitive

data. The InlineGeometryColumn corresponds to the spatial data columns supported by the

spatially-enhanced relational database management systems. In addition, the

GenericDataColumn is a specific column with the database’s data type CLOB for holding the

complex-structured XML data elements. The JoinColumn class is a numeric column which

can be used for linking and joining two tables and can hence be treated as one table’s foreign

key column referencing to a primary column of another table. Such logical join relationship is

represented using the Join class which can be implemented as a foreign key constraint

allowing to guarantee database integrity and consistency. The referencing direction pointing

from a foreign key column to the target primaryKeyColumn can be realized using the

joinFrom and joinTo associations. Since a foreign key can also be defined on a primary key

column, the PrimarykeyColumn class is modeled as a subtype of the JoinColumn class. In

addition, there are two specific join columns namely ObjectClassIdColumn and

RefGeometryColumn both of which are exclusively used as foreign key columns referencing

to two existing 3DCityDB tables. The ObjectClassIdColumn is a foreign key of the

3DCityDB table OBJECTCLASS and is typically used for determining the class affiliation if

a data table is mapped from multiple classes. The RefGeometryColumn references to the

3DCityDB table SURFACE_GEOMETRY for efficiently storing the B-Rep-based geometry

properties.

To illustrate the basic concept of the mapping approach, a subset of the schema mapping

model has been chosen for the discussion and presented in Figure 56.

Figure 56: An excerpt of the meta-graph for representing the model mapping structure

NamedElement

«abstract»

PropertyElement

+ minOccurs :int

+ maxOccurs :int

ElementType

ComplexType

+ contextType :char

+ isAbstract :boolean

ComplexProperty
Extension BrepGeometryProperty

SimpleAttribute

+ primitiveDataType :String

«abstract»

Attribute

«abstract»

GeometryProperty

+ geometryType :String

JoinColumn

PrimaryKeyColumn

DatabaseObject

Join
DataTable

DatabaseObject

«abstract»

Column

«abstract»

DataColumn

DatabaseObject

«abstract»

Table

ObjectClassIdColumn

RefGeometryColumnNormalDataColumn

+ primitiveDataType :char

0..*

+targetType

+reverseProperty 0..1

+reverseProperty 0..1

+baseType 1

0..1

*

+joinFrom

1

*

+jointTo

1

+mapsTo 0..1 +mapsTo 0..1

+mapsTo

0..1

+mapsTo 0..1

1..*

+belongsTo

1

+mapsTo 0..1+mapsTo 0..1

 Management of Domain Extendable 3D City Models

94

In the UML diagram (cf. Figure 56), the conceptual mapping relationships between the

ADE’s GML application schema and the relational database schema are realized using a set of

directed associations to link the individual model objects. For example, the mapping from

classes onto tables has been designed according to the following concepts:

• A feature class shall be mapped onto one table, where each row should store the

attribute information of a feature instance. It is allowed to map multiple ADE feature

classes onto the same table only in the case that the classes belong to the same

inheritance hierarchy.

• If two feature classes with inheritance relationship have been mapped onto two

separate tables, a foreign key constraint shall be used to hold the inheritance relation

in databases. In another case where the two ADE classes are mapped onto one table,

the inheritance relationship itself should be logically mapped onto the same table at

the same time.

• In case that two feature classes are not directly or transitively inherited, they have to

be strictly mapped onto two separate tables. If the two classes are associated with a

1:N or N:0..1 multiplicity, the two mapped tables shall be joined using a foreign key

constraint which will be logically used for representing the mapping of the association

relationship.

Above, a variety of mapping rules can be declaratively expressed using graph transformation

rules, which can be combined to realize more complex mappings e.g. the handling of the

Composite design pattern. The first transformation rule is the mapping of a single feature

class onto a table which shall at the same time receive a primary key column to uniquely

determine the instance objects within the table. The corresponding graph transformation rule

is shown in Figure 57, which was drawn using the graphical editor of the AGG graph

transformation system. Note that since the meta-model (cf. Figure 56) has already specified

that one class shall be mapped onto maximum one table, there is hence no need to define a

NAC for preventing this transformation rule from running multiple times on the same class.

Figure 57: Rule 1: Mapping ADE class onto table

Once every class has been mapped onto a table, the next mapping rule is needed for handling

the inheritance relationships among classes. Depending on their relations and attribute

properties, two classes can be mapped onto one table to generate a compact relational

structure which allows not only to decrease the number of table joins for speeding up the data

query performance, but also to obtain an optimal storage efficiency. The corresponding

mapping rule has been implemented as a graph transformation rule shown in Figure 58, where

Management of Domain Extendable 3D City Models

95

the graph nodes representing the subclass, superclass, and their inheritance relationship are

mapped onto the node of the super class table.

Figure 58: Rule 2: Mapping two ADE classes with inheritance relationship onto one table

According to the mapping concept explained in chapter 3.2.1, the prerequisites for performing

this mapping rule has been formalized by three Nagative Application Conditions (NACs)

shown in Figure 59.

Figure 59: Negative application conditions of the Rule2

These three NACs specifies that, the mapping rule is only applicable, when the followings

conditions are fulfilled:

1. The super class is an abstract class

2. The subclass does not have any attributes or associated with other classes

3. The subclass is not an abstract class

If the conditions are not satisfied, an additional mapping rule will be triggered, which maps

the inheritance relation to a table join linking the two mapped tables using their primary key

columns (cf. Figure 60).

Figure 60: Rule 3: Mapping Inheritance to a foreign key constraint

 Management of Domain Extendable 3D City Models

96

In case that the superclass and the subclass are mapped onto one table and they also have a

composition relationship (1:N association), a foreign key column for storing the parent object

ID shall be added to the mapped table and referenced to its primary key column. According to

the optimization approach introduced in chapter 3.2.2, the relational table structure can be

further improved by introducing an additional foreign key column named ROOT_ID for

holding the ID of the root element of each composition hierarchy. This allows the fast

retrieval of all its child elements by just querying on the attribute ROOT_ID without the need

to employ recursive database joins which can usually result in poor database performance.

This mapping rule can also be expressed using graph transformation rule shown in Figure 61.

Figure 61: Rule 4: mapping two classes which have a composition relationship and are mapped onto

the one table

Regarding the mapping of attribute properties of each class, an additional transformation rule

(cf. Figure 62) has been designed for handling each simple data attribute which can be

directly mapped onto a single table column with the corresponding primitive data type. The

name of the mapped column could be equal to the attribute name.

Figure 62: Rule 5: Mapping simple attribute property onto a table column

For handling the geometry property e.g. B-Rep-based surfaces and solids, the 3DCityDB table

SURFACE_GEOMETRY shall be reused for storing the explicit geometry contents, because

the compact structure (cf. chapter 3.2.2) of this table can guarantee the high database

performance when accessing the complex-aggregated geometry objects from user

applications. Another reason for collecting all B-Rep geometries in a single table is that

CityGML and ADE feature types can have appearance information and it is much simpler to

Management of Domain Extendable 3D City Models

97

only have to link the 3DCityDB APPEARANCE table to one single

SURFACE_GEOMETRY table.

The database implementation is realized using a foreign key column pointing to the primary

key column of the SURFACE_GEOMETRY table. To reflect this mapping concept in the

graph transformation system, two graph transformation rules are need. The first one is shown

in Figure 63, where a node representing the SURFACE_GEOMETRY table shall be first

created, if it does not exist already.

Figure 63: Rule 6: Initializing a node for representing the 3DCityDB table "SURFACE_GEOMETRY"

Once the node of SURFACE_GEOMETRY table has been initialized, a new node

representing the foreign key column referencing to the SURFACE_GEOMETRY table shall

be created for the mapping of the B-Rep-based geometry property. The foreign key constraint

holding the relations between the data table and the SURFACE_GEOMERY table is realized

using a Join node. The corresponding graph transformation rule is shown in Figure 64.

Figure 64: Rule 7: Mapping B-Rep-based geometry property onto a foreign key column referencing to

the SURFACE_GEOMETRY table

Above, only a subset of the developed graph transformation environment is presented, where

a total number of 34 graph transformation rules have been designed for the automatic

derivation of a compact database schema (see Appendix 1 for further graph transformation

rules). These transformation rules are roughly grouped into the following layers which can be

executed successively according to the numbered order.

1. Layer 1: Mapping each classes and complex data type onto a separate table along with

a primary key column.

 Management of Domain Extendable 3D City Models

98

2. Layer 2: Mapping and merging classes with inheritance relationship to one table if

certain conditions are fulfilled.

3. Layer 3: Mapping each inheritance relationship onto a foreign key constraint if the

two classes with an inheritance relationship are not mapped onto the same table.

4. Layer 4: Mapping each association relationship (aggregation/composition) onto a

foreign key constraint.

5. Layer 5: Mapping each attribute property to a column or to a foreign key constraint

referencing to the table where the attribute contents are stored.

6. Layer 6: Creating a database index for each primary key and foreign key column and

spatial data columns.

7. Layer 7: Creating a database sequence for each table mapped from a complex data

type.

By applying such layered transformation rules, any ISO-19136-conform CityGML ADE

model can be transformed to a compact relational database schema. An example application is

given in the last subsection of this main chapter.

4.3.2 Extending the 3DCityDB for Managing CityGML ADEs

Once the relational database schema of an ADE is ready, the next task is to attach it to the

standard 3DCityDB database schema for storing the CityGML instance documents containing

the ADE data. In addition, the meta-information of the added ADE database schema should

also be stored in the database in order to offer the possibility of facilitating the database

administration e.g. the registration and deregistration of a selected ADE’s XML schema (cf.

Murthy et al. 2006). To reach this goal, the current 3DCityDB database schema (version

3.3.0) has been extended by decomposing all tables into three modules, namely Metadata

Module, Core Data Module, and Dynamic Data Module, whose relations are shown in Figure

65.

Figure 65: New conceptual 3DCityDB database structure for handling CityGML ADEs

Technische Universität MünchenLehrstuhl für Geoinformatik

New conceptual database structure

39

Core Data Module

CityGML ADE 1

Metadata Module

CityGML ADE 2

Many More ADEs

Modules …

Dynamic Data Module

Management of Domain Extendable 3D City Models

99

The green grids enclosed in the Core Data Module represents those database tables that are

already included in the current version of the 3DCityDB database schema which is

responsible for storing the standard CityGML models such as Building, Tunnel,

Transportation, CityFurniture, CityObjectGroup, Generic, Appearance etc. For a given

CityGML ADE, an additional group of database tables forming a separate module belonging

to the Dynamic Data Module (pink grids in Figure 65) shall be created and attached to the

3DCityDB database schema. In addition, the relationships (e.g. generalization/specialization

and associations) among the model classes of CityGML and CityGML ADEs are adequately

reflected using database foreign key constraints which can ensure the data integrity and

consistency within the database system. The Metadata Module associated with the Dynamic

Data Module is used for storing the relevant meta-information (e.g. the XML namespaces,

schema files, and class affiliations etc.) about the application schema of the registered

CityGML ADEs as well as the referencing relations among the ADE and CityGML schemas.

This way, the dependencies between the registered ADE application schemas can be directly

read from the 3DCityDB database schema itself which hence become to be dynamically

manageable for handling multiple CityGML ADEs within a database instance. In the

following, the implementation of the Metadata Module is presented in detail (cf. Figure 66).

Figure 66: Technical implementation of the 3DCtyDB Metadata Module in a relational diagram

 Management of Domain Extendable 3D City Models

100

The table ADE serves as a central registry for all the CityGML ADEs having been registered

each of which is held in a table row and its relevant attributes are mapped onto the respective

columns. For example, an ADE can be identified by assigning it with a globally unique ID

which can be automatically generated as a UUID (Universally Unique Identifier). The

columns NAME and DESCRIPTION are mainly used for storing the basic description

information for each ADE. The column VERSION denotes the version number of an ADE

and allows to distinguish different versions of the same ADE. In the 3DCityDB database

schema, the database objects like tables, indexes, foreign key constrains, and sequences of a

certain ADE shall be named by starting with a unique prefix text which allows applications to

rapidly filter out the database schema of a chosen ADE using a SQL query with wildcard. In

this way, it is possible to automatically perform some kinds of statistics on the ADE data

contents that are stored in the individual tables. In addition, the column

XML_SCHEMAMAPPING_FILE is used to store the XML-formatted schema mapping

information of each ADE and has hence been defined with the CLOB data type. Another

CLOB column is DROP_DB_SCRIPT where the SQL-script for dropping the ADE database

schema is saved and can be easily retrieved to be carried out at the database side. Moreover,

the CREATION_DATE and CREATION_PERSON are two application-specific attributes for

providing the information about when and who has registered the individual ADE within the

database to facilitate the database administration work, e.g. deletion of the outdated ADEs

from the database.

A CityGML ADE may consist of multiple application schemas one of which should be the

root schema that references the others. Such dependency information along with the meta-

information of the individual schema are stored in two tables, namely SCHEMA and

SCHEMA_REFERENCING. The SCHEMA_REFERENCING table is an associative table

which contains two foreign key columns REFERENCED_ID and REFERENCING_ID to link

the respective referencing schema and referenced schema. In the table SCHEMA, the flag

attribute IS_ADE_ROOT is used for denoting the root schema that directly or indirectly

references all the other ADE schemas of an ADE. In this way, the dependency hierarchy of

the ADE schemas can be fully represented in a relational model to facilitate the reconstruction

of the original schema relations through user applications. For each schema, its relevant meta-

information such as the schema location, namespace, namespace prefix, source schema file, as

well as the file type of the schema can also be stored in the remaining columns of the

SCHEMA table. Additionally, since an ADE schema can be developed based on either the

CityGML version 1.0.0 or 2.0.0, the column CITYGML_VERSION has been introduced to

denote this variable.

The table OBJECTCLASS is a central registry for enumerating the standard CityGML classes

along with the classes of the registered ADEs. Each class shall be assigned with a globally

unique numeric ID for querying and accessing the class-related information. According to the

3DCityDB implementation, the integer values ranging from between 0 and 106 have already

been reserved for the standard CityGML classes. Thus, the ID values of the registered ADE

classes must be larger than 106. However, concerning the future versions of the CityGML

standard into which more additional feature classes might be added, a certain range of integer

values must be preserved and shall also not be used for ADEs. Therefore, for each ADE, it is

recommended to assign its classes with a set of large and incremental integer values which

can be started with 10000. In order to avoid the class ID conflict, each ADE shall own a

Management of Domain Extendable 3D City Models

101

certain large value range which can be centrally maintained by an official community like the

3DCityDB organization group. The OBJECTCLASS table also contains a few additional

columns like the IS_ADE_CLASS which is a flag attribute to denote which classes come

from ADEs. Another column named TABLENAME refers to the table name of a CityGML or

ADE class to provide a simple model mapping information. The last two columns

SUPERCLASS_ID and BASECLASS_ID are two foreign key columns of the ID column.

The SUPERCLASS_ID points to the parent class, and the BASECLASS_ID reflects the base

class which can be ComplexType, AbstractGMLType, or AbstractFeatureType (cf. chapter

2.4). These two columns allow representing the inheritance hierarchy of all the CityGML and

ADE classes in a relational structure.

To perform the ADE registration, the CityGML Import/Export tool has been extended with a

newly developed plug-in called ‘ADE-Manager’ (cf. Figure 67) which provides a graphical

interface allowing users to register a selected ADE into the database and at the same time to

execute the automatic creation of the database scheme having been derived using the graph-

based converter tool (cf. chapter 4.3.1). To establish the database connection, the core module

of the Import/Export tool can be used which exposes a number of APIs to the plugins for

invoking the functions like database control, multi-threading support, event dispatching, and

plugin management etc. Once the database connection has been done, the schema mapping

file shall be read which is able to contain the relevant meta-information for the ADE

registration into the 3DCityDB’s Meta Data Module. In the subsequent step, the SQL script of

the ADE database schema shall also be read in order to automatically perform the creation of

the database objects like tables, indexes, and sequences, and foreign key constraints. To check

the results of the ADE registration, it is also possible to list the meta-information of all the

registered ADEs on the graphical user interface by querying the contents from the ADE table

directly.

Figure 67: Software structure of the extended CityGML Import/Export Tool

In order to realize the import and export of CityGML ADE datasets, additional plugins for the

Import/Export tool have to be developed for the individual ADEs. These plugins do not

Import/Export APIs
(incl. WorkerPool, EventDispatcher, DatabaseController, PluginInterfaces etc.)

CityGML Import/Export

Modules

ADE X Import/Export

(External Plugin)

Export

data

Import

data

Export

data

Import

data

ADE-Manager

(Internal Plugin)

Retrieve

meta-data

Register

meta-data

Im
p

o
rt

/E
x

p
o

rt
 T

o
o

l
3

D
C

it
y
D

B

D
a

ta
b

a
s

e

applies applies applies

 Management of Domain Extendable 3D City Models

102

require graphical user interfaces, but the functionalities of reading the ADE contents

contained in the CityGML documents to write them into the database. Such functionalities

can be implemented by extending the citygml4j library which will become capable of

handling not only the CityGML data elements but also the ADE’s. For example, while

importing a given CityGML document, the CityGML features will be processed as usual

using the standard CityGML Import module. Once an ADE feature is visited, it will be passed

to the ADE plugin whose import functions will be automatically invoked for performing the

ADE data import.

Since an Import/Export tool can be connected with multiple database instances, it might occur

that the installed ADE Import/Export plugins are not consist with the ADEs registered in the

target database. For example, an ADE plugin has been already installed at the client side but

the respective ADE has not been registered into the connected database. In this case, the

Import/Export tool must perform a match-check when it is launched. This match procedure

can be done by following two steps. First, the Import/Export tool should determine which

ADE plugins have already been installed and check whether they are runnable by validating

them against the plugin interface. If invalid ADE plugins have been found, a runtime

exception shall be raised through an alert window to show the detailed error message. If all

installed ADE plugins have passed this validation procedure, the Import/Export Tool will

display an overview list of the supported ADE plugins. After connecting with the target

database, the second checking step should be immediately started by the Import/Export tool to

determine which ADEs have already been registered into the database. To realize this, a list of

the registered ADEs shall be fetched by querying the values of the ADEID columns in the

ADE table. Since the ADE ID can be seen as a fingerprint of a physical ADE, it can be

utilized to carry out a short test to match each installed ADE-plugin to the registered ADEs.

The names and descriptions of all unmatched ADEs should be displayed on the application

window to guide users in installing the missing ADE plugins. With the help of the two-steps

check process, the Import/Export tool is able to guarantee the successful import and export of

the ADE datasets.

The last major aspect in the context of the CityGML ADE management is deregistration and

deletion of the data contents from the database. This requires three processing steps which are

shown in the Figure 68. First, for a given ADE, a list of the corresponding ADE class IDs can

be easily retrieved from the OBJECTCLASS table where all CityGML and ADE classes are

registered. It is hence possible to iterate through the fetched ID list and perform a simple SQL

deletion command like

“DELETE from CITYOBJECT where OBJECTCLASS_ID = [ID]”

Where the variable [ID] stands for each ADE class ID. By means of the database foreign key

constraints, the CASCADE-deletion mechanism can be used to automatically delete all ADE

data contents except those that are stored in the CityGML tables which are linked with the

ADE data tables via associative tables, because the CACADE-deletion actions can only be

applied to the referenced table being directly linked with the referencing table via a foreign

key constraint. In order to overcome this issue, the database trigger mechanism can be used to

execute the complete deletion in response to the deletion event on the referencing table. In the

second step, the ADE database schema including the tables, indexes, sequences, and foreign

key constraints shall be dropped from the database by running the DROP_DB script which

Management of Domain Extendable 3D City Models

103

can be retrieved from the column DROP_DB_SCRIPT in the ADE table. In the last step, all

meta-information of the target ADE shall be removed from the metadata tables to complete

the ADE deregistration. This can be done by simply deleting the corresponding record from

the ADE table, because the CASCADE-deletion can be applied to all the metadata tables

according their relational structure (cf. Figure 66).

Figure 68: Workflow of deregistration for a CityGML ADE from a database instance

4.3.3 Example Application: CityGML-TestADE

For testing and evaluation of the research results and the implemented software tools in the

context of the thesis, a specific CityGML ADE called ‘TestADE’ has been carefully

developed from scratch to provide a comprehensive testbed for simulating different scenarios

which can frequently occur in practical applications. It can hence be seen as an artificial ADE

which is not aimed to be employed for a specific domain application, but can be flexibly

modified in response to the various test needs. In order to experiment the optimization

approaches presented in the section 3.2.2 using the developed converter tool, this test ADE

includes a couple of feature classes and complex data types which are originated from

different existing CityGML ADEs such as Energy ADE and UtilityNetwork ADE. Note that

since the optimizations are mainly carried out by evaluating the relations between classes,

most attributes and properties of the original classes are omitted and only a few ones are kept.

This can make this artificial ADE very light-weight and intuitive, which allows to facilitate

the software tests as well as the graphical representation of the models. For the sake of clarity,

all classes of this ADE have been categorized into the following groups which are painted

with different colors in a UML diagram (cf. Figure 69).

• The classes painted with blue color represent the standard CityGML classes such as

AbstractCityObject, AbstractSite, AbstractBuilding, BuildingPart, Address,

AbstractBoundarySurface, and BuildingRoofSurface which are related with the

defined ADE classes.

• The class AbstractBuilding with the stereotype <<ADEElement>> is a specific class

for holding all ADE hook attributes of its super class, namely the standard CityGML

class AbstractBuilding. The two classes are related using an inheritance relationship

Technische Universität MünchenLehrstuhl für Geoinformatik

21

Clean up the

metadata from

database

3

Drop ADE database

schema

Delete data from

database schema

1 2

 Management of Domain Extendable 3D City Models

104

which is tagged with a stereotype <<ADE>> to indicate that this inheritance

relationship is not equivalent to the normal inheritance in the context of object-

oriented modelling.

• The classes, which are directly or indirectly derived from the standard CityGML

classes, can be recognized by their yellow color. This class group includes the classes

like IndustrialBuilding, IndustrialBuildingPart, IndustrialBuildingRoofSurface,

AbstractBuildingUnit, BuildingUnitPart, BuildingUnit, and OtherConstruction.

• The pink classes like DHWFacilities, LightingFacilities, and Facilities are those

classes which are not derived from the existing CityGML classes but from the GML

feature class.

• The green classes represent the geometry types, which have been defined according to

the ISO 19107 standard. The three typical geometry types e.g. GML_Solid,

GM_MultiSurface, and GM_MultiCurve have been chosen for representing the

geometric information.

• The last category is the class EnergyPerformanceCertification which is not a feature

class, but a complex data type defined with the GML stereotype <Datatype> for

representing a collection of simple attributes.

Based on this ADE model, a compact relational database model can be obtained according to

the mapping rules introduced in the section 4.3.1. The concrete mapping idea is graphically

shown in Figure 70, where the classes are grouped with a set of blocks each of which stands

for a merged table. In addition, both the Oracle and PostGIS compliant database schemas

along with an XML-based schema mapping file have been successfully generated whose SQL

and XML contents are printed out in the appendixes of the thesis. Further, a 3DCityDB

database instance was created on top of a PostGIS database instance on which the

corresponding SQL scripts have been executed to create the respective ADE database schema.

By means of the open-source software tool pgModeler, a reverse engineering process has

been carried out to generate a relational diagram (cf. Figure 71) of the ADE database schema.

A total number of 16 tables are displayed in the database diagram, where the tables painted

with green color represent those 3DCityDB tables that already exist for the mapping of the

standard CityGML classes. The yellow table OBJECTCLASS is the metadata table which is

also a default table shipped together with the standard package of the 3DCityDB. The other

10 tables painted with green color correspond to the dynamically extended ADE database

schema which has been automatically derived according to the optimization concept sketched

in Figure 70. For highlighting the advantage of the achieved result, a comparison to the

database schemas produced from different modern tools like ShapeChange, and Deegree has

been made by evaluating the number of the created tables. The comparison result is listed in

Table 2.

Table 2: Quantitative comparison of the number of tables generated from different software tools

Graph-based

Converter Tools
ShapeChange

(version 2.3.0)
Deegree

(version 3.3.20)

Number
of Tables

10 21 60

Management of Domain Extendable 3D City Models

105

Figure 69: An artificial CityGML ADE for testing the developed graph-based transformation ap-

proach

«FeatureType»

Building::AbstractBuilding

«ADEElement»

AbstractBuilding

«Property»

+ ownerName :CharacterString [0..1]

+ floorArea :Area [0..1]

+ energyPerformanceCertification :EnergyPerformanceCertification

«FeatureType»

_AbstractBuildingUnit

«Property»

+ class :Code [0..1]

+ usage :Code [0..*]

+ function :Code [0..*]

+ energyPerformanceCertification :EnergyPerformanceCertification [0..*]

«FeatureType»

Core::AbstractCityObject

GM_Primitive

«type»

Geometric primitiv e::GM_Solid

GM_MultiPrimitive

«type»

Geometric aggregates::GM_MultiSurface

«FeatureType»

Core::AbstractSite

GM_MultiPrimitive

«type»

Geometric aggregates::GM_MultiCurv e

«FeatureType»

Facilities

«Property»

+ totalValue :Measure

«FeatureType»

Core::Address

«FeatureType»

DHWFacilities

«FeatureType»

LightingFacilities

«FeatureType»

BuildingUnitPart

«FeatureType»

BuildingUnit

«FeatureType»

IndustrialBuilding

«Property»

+ remark :CharacterString [0..1]

«DataType»

EnergyPerformanceCertification

«Property»

+ certificationName :CharacterString [1..*]

+ certificationid :CharacterString

«FeatureType»

Building::BuildingPart

«FeatureType»

Building::AbstractBoundarySurface

«FeatureType»

Building::RoofSurface

«FeatureType»

IndustrialBuildingPart

«Property»

+ remark :CharacterString [0..1]

«FeatureType»

IndustrialBuildingRoofSurface

«Property»

+ remark :CharacterString [0..1]

«FeatureType»

OtherConstruction

*+address

«Property»*

+boundedBy 0..*

+boundedBy

«Property»

*

*

+consistsOfBuildingPart

«Property»
*

*

+consistsOf*

+address 0..*

*

+lod4MultiCurve

«Property»

0..1

*

+lod3MultiCurve

«Property»

0..1

*

+lod2MultiCurve

«Property»

0..1

*

+lod4MultiSurface

«Property»

0..1

*

+lod3MultiSurface

«Property»

0..1

*

+lod2MultiSurface

«Property»

0..1

*

+lod1MultiSurface

«Property» 0..1

*

+lod4Solid

«Property»
0..1

*

+lod3Solid

«Property»

0..1

*

+lod2Solid

«Property»

0..1

0..1

+equippedWith0..*

+buildingUnit

*

«ADE»

*

+lod1Solid

«Property»

0..1

 Management of Domain Extendable 3D City Models

106

Figure 70: Concept of grouping and merging GML, CityGML, and ADE classes for deriving compact

relational database models. Note that the classes of the groups 1, 8, 9, 13, and 15 are standard GML

and CityGML classes, which have already been mapped to the default 3DCityDB tables.

«FeatureType»

Building::AbstractBuilding

«ADEElement»

AbstractBuilding

«Property»

+ ownerName :CharacterString [0..1]

+ floorArea :Area [0..1]

+ energyPerformanceCertification :EnergyPerformanceCertification

«FeatureType»

_AbstractBuildingUnit

«Property»

+ class :Code [0..1]

+ usage :Code [0..*]

+ function :Code [0..*]

+ energyPerformanceCertification :EnergyPerformanceCertification [0..*]

«FeatureType»

Core::AbstractCityObject

GM_Primitive

«type»

Geometric primitiv e::GM_Solid

GM_MultiPrimitive

«type»

Geometric aggregates::GM_MultiSurface

«FeatureType»

Core::AbstractSite

GM_MultiPrimitive

«type»

Geometric aggregates::GM_MultiCurv e

«FeatureType»

Facilities

«Property»

+ totalValue :Measure

«FeatureType»

Core::Address

«FeatureType»

DHWFacilities

«FeatureType»

LightingFacilities

«FeatureType»

BuildingUnitPart

«FeatureType»

BuildingUnit

«FeatureType»

IndustrialBuilding

«Property»

+ remark :CharacterString [0..1]

«DataType»

EnergyPerformanceCertification

«Property»

+ certificationName :CharacterString [1..*]

+ certificationid :CharacterString

«FeatureType»

Building::BuildingPart

«FeatureType»

Building::AbstractBoundarySurface

«FeatureType»

Building::RoofSurface

«FeatureType»

IndustrialBuildingPart

«Property»

+ remark :CharacterString [0..1]

«FeatureType»

IndustrialBuildingRoofSurface

«Property»

+ remark :CharacterString [0..1]

«FeatureType»

OtherConstruction

*+address

«Property»*

+boundedBy 0..*

+boundedBy

«Property»

*

*

+consistsOfBuildingPart

«Property»
*

*

+consistsOf*

+address 0..*

*

+lod4MultiCurve

«Property»

0..1

*

+lod3MultiCurve

«Property»

0..1

*

+lod2MultiCurve

«Property»

0..1

*

+lod4MultiSurface

«Property»

0..1

*

+lod3MultiSurface

«Property»

0..1

*

+lod2MultiSurface

«Property»

0..1

*

+lod1MultiSurface

«Property» 0..1

*

+lod4Solid

«Property»
0..1

*

+lod3Solid

«Property»

0..1

*

+lod2Solid

«Property»

0..1

0..1

+equippedWith0..*

+buildingUnit

*

«ADE»

*

+lod1Solid

«Property»

0..11

2 3

4

5

6

97

8

10 11
12

13

14 15

Management of Domain Extendable 3D City Models

107

Figure 71: Relational diagram of the automatically derived relational database of the artificial ADE

using the developed graph-based converter tool

 Management of Domain Extendable 3D City Models

108

4.3.4 Practical Applications: EnergyADE and UtilityNetworkADE

The developed graph-based converter tool has also been successfully tested with the

derivation of 3DCityDB-compliant relational database schemas for existing practical

CityGML ADEs e.g. EnergyADE and UtilityNetworkADE. The EnergyADE is an open and

standardized CityGML ADE that defines a comprehensive data model for facilitating the

energy analysis and simulations in building and urban scale (cf. Agugiaro et al. 2018), while

the UtilityNetworkADE extends CityGML to allow for modelling different types of networks

e.g. electricity, wastewater, gas, and telecommunication networks in detail with respect to

their topographical, topological, and functional aspects (cf. Kutzner & Kolbe 2016). Both

ADEs are currently are being actively developed at the time of writing the thesis and the

developer groups of both ADEs are converged to collaboratively work together with the

common aim of optimizing the data models.

Both ADEs have more complex model structures regarding the technical implementation of

their relational database schema. For instance, the current version of the UtilityNetworkADE

contains a total number of 53 feature classes and complex data types some of which are

constructed with complex class relationships e.g. Composite design pattern and include

thematic and spatial properties. Using the graph-based converter tool, the UtilityNetworkADE

model can be mapped onto a relational database model composed of 36 tables. While testing

the EnergyADE, 72 tables have been derived from 74 classes and complex data types. Both

derived ADE database schemas have been successfully registered into one 3DCityDB

instance which is able to provide the basis for realizing the interoperable analysis and

simulation across the both application domains. Figure 72 shows an excerpt of the summary

of all tables of the standard 3DCityDB and registered ADE database schemas. This summary

report can be automatically generated using the CityGML Import/Export Tool after

connecting to the database server.

Figure 72: Report of Database instance including EnergyADE and UtilityNetworkADE database

schemas

EnergyADE tables (excerpt)

CityGML tables (excerpt)

UtilityNetworkADE tables (excerpt)

Visualization and Exploration of Large Semantic 3D City Models

109

Chapter 5 Visualization and Exploration of Large Semantic 3D

City Models

The 3D visualization and exploration of CityGML-based semantic 3D city models along with

domain-specific extensions is very essential to facilitate inspecting, manipulating and

analyzing 3D geo-information. On the one hand, the 3D visualization application builds an

interface between the users and the databases where the CityGML data are stored for realizing

easy data access. The 3D visual representation of the real-world objects allows broad users to

explore and validate the spatial contents of the urban information in an intuitive way without

needing to inspect the original XML data contents in the database. On the other hand, the data

management i.e. data modification, deletion, and enrichment can also be facilitated by the

visual interaction with the 3D city model objects owning complex geometric or topological

structures. To develop a sophisticated application supporting efficient 3D visualization and

exploration, a number of challenging issues are encountered. First, CityGML documents

usually carry the data on urban scale and are hence very large in size which can result in a

significant performance issues on those hardware that have limited computing resources and

capabilities. In addition, since the CityGML data model may have very complex data

structures due to the increasing number of the attached domain extension information models,

the exploration of, querying on and interaction with such complex 3D city objects are difficult

to be operated by the application users who are not familiar with the CityGML standard.

Nowadays, none of the above-mentioned issues have been fully answered or solved by the

existing software solutions. For example, a number of desktop-based 3D viewer applications

i.e. Autodesk LandXplorer, FME Data Inspector, FZKViewer, and Aristoteles etc. are

available which support the 3D visualization and exploration of CityGML data. However,

these software applications can only be operated on certain operating systems and have no

support for mobile devices. They can only be operated on certain machines where they are

installed and hence must be installed on every computer for the application users. This will

hinder the broad use of the software applications, since the installation of these software tools

mostly requires administrative privileges and cannot be done by the normal users. In addition,

all these software tools are limited in the capability of handling large CityGML documents

and are only able to render CityGML datasets with a file size not exceeding the available

computer memory. Moreover, in most GIS applications, CityGML data are provided by

different data providers and are distributed from different servers which requires the

functionality of accessing the data over the Internet which is also not supported by these

software applications.

This limitation can be overcome by realizing the 3D visualization through web-based

applications, which just need to be deployed on a web server at one time and can be accessed

and operated on web browsers and platforms over the Internet (cf. Altmaier & Kolbe 2003).

With the growing capabilities of modern web browsers due to the technological advancement

of HTML5 and WebGL, more and more browser-based 3D applications have been developed

which not only show a high performance but also can be run on all major operating systems

which just require the installation of a web browser without needing to pre-install any

software applications or browser plugins. Nowadays, since almost all mobile devices like

tablet PCs and smart phones with modern mobile operating systems support HTML5 and

 Visualization and Exploration of Large Semantic 3D City Models

110

WebGL, the cross-platform 3D visualization and exploration of semantic 3D city models

became possible (cf. Figure 73).

Figure 73: Conceptual structure for the Web-based geo-visualization of 3D city models

The main objective of this chapter is to answer the research and development challenges on

how to utilize the web-based approach for realizing the high-performance 3D visualization

and interactive exploration of semantic 3D city models according to the CityGML standard.

In this context, a developed web-based solution for pre-processing, visualization and analysis

of very large semantic 3D city models is introduced. In the first subsection, main focus is

placed on the approach for the efficient 3D visualization of large 3D city models according to

the CityGML standard. The second subsection introduces a 3D web client allowing not only

for 3D visualization but also for the rich exploration and data analysis by linking with

thematic information by means of Cloud-based technologies. In the last subsection, three

typical application examples are shown to demonstrate the usability of the developed

approach.

5.1 Visualization of Semantic 3D City Models

CityGML was primarily designed as an integrative data model for carrying a wide range of

urban information and its instance documents are usually created and provided as a single

document with a large file size in an XML structure. This data structure is optimal for the

purpose of data transmission and exchange but not sufficient for 3D visualization in most GIS

mapping application. For example, in case of CityGML building objects, their outer shell and

shape are represented using explicit solid or boundary geometries along with the XLink

mechanism. Such model representation is sufficient to reflect the geometric and topological

information but not optimal for the 3D computer visualization compared to 3D graphics

models which typically use scene graph concepts like grouping concept or triangulation of the

model vertices. Second, CityGML is actually not a visualization format and was not designed

for the efficient representation of the object appearances such as graphical materials and

textures in viewing applications. Although this visual information can be semantically

modeled inside a CityGML dataset using its Appearance module e.g. a huge texture atlas,

Technische Universität MünchenLehrstuhl für Geoinformatik

21.07.2016
WebGL-basierte 3D-Visualisierung von Stadtmodellen durch die Erweiterung von

Cesium
1

And

many

more

…
Berlin New York City London Vorarlberg

3
D

 c
it

y
a
n
d

la
n
d
sc

a
p
e

m
o
d
e
ls

Internet

E
n
d
 U

se
rs

Visualization and Exploration of Large Semantic 3D City Models

111

extra processing steps are required for splitting this texture image and drape each split

fragment onto the corresponding object surface and may consume more computation time.

Moreover, the rendering of a very large CityGML dataset at a time can also easily cause

memory overload problem. Thus, the CityGML datasets shall be converted to an efficient 3D

graphics format with a tiled data structure in order to realize the high-performance 3D data

visualization on the different platforms to archive a better viewing experience.

5.1.1 Creation of 3D Visualization Models

For the efficient 3D visualization, a pre-processing step is required for the conversion of

CityGML 3D models to 3D visualization models using 3D graphic formats. Such data formats

can be efficiently read and parsed by web browsers and computer graphic cards for fast

rendering of the 3D contents in the web browsers. The processing pipeline is summarized in

Figure 74.

Figure 74: Workflow of generating 3D visualization models

Since a CityGML dataset usually contains the information with the full coverage of a city and

only parts of the data are needed for specific application cases, a subset of the data shall be

first extracted. This can be done by applying a combination of different filter criteria such as

spatial bounding box, thematic feature classes, or the levels of detail. For example, by using

the thematic filter, different feature classes such as buildings, trees, water, and transportation

objects etc. can be generated separately to create a set of different thematic data layers each of

which can be activated or deactivated on the client application individually. With the spatial

filter, all objects of the selected feature classes, which are lying within or intersected with a

chosen spatial bounding box, can be exported when, for instance, exporting a certain district

from the entire city model. Moreover, since CityGML allows to represent the same object

with different levels of detail at the same time, multiple 3D visualization data layers align

with the available detail levels can be generated. In this way, the 3D viewer applications can

dynamically load the same 3D object at different details according to the distance to the

current camera position to optimize the rendering performance.

The second transformation step is the coordinate transformation. Although the geometric

information of CityGML datasets can be represented using different types of coordinate

reference systems (CRS) such as 3D geographic CRS, 3D Cartesian CRS and 3D projected

CRS etc., the spatial elements in CityGML models are mostly represented using a projected

CRS such as such UTM and Mercator etc. or a compound CRS which combines a projected

CRS with a vertical CRS for the height reference (cf. Figure 75). Since most web mapping

engine like Cesium and Google Earth virtual globes only support the geographic coordinate

Technische Universität MünchenLehrstuhl für Geoinformatik

Chapter 5

27

Creation of

Apprances

3

Creation of 3D

Geometries
Spatial Filtering

1 2 4

Coordinate

Transformation

 Visualization and Exploration of Large Semantic 3D City Models

112

system according to the WGS84 ellipsoid, a coordinate transformation process is hence

additionally required. This transformation process can be directly performed using the

spatially-enhanced database management systems which usually provide full support for

converting different coordinate reference systems.

Figure 75: Comparison between the coordinates of different reference system types. Note that the

latitude ‘La’ of the point ‘P’ is geodetic latitude which is the angle between the corresponding surface

normal and the equatorial plane, rather than the angle (called ‘geocentric loatitude’) between the

equatorial plane and the line connecting the point ‘P’ and the orgin ‘O’.

After performing the coordinate transformation, the horizontal coordinates of the 3D model

objects can be correctly transformed to the target position as geographic latitude and

longitude. The original height, which is usually based on the vertical reference surface (cf.

Figure 75), may remain unchanged according to the vertical height reference system. When

viewing the 3D object on a 3D virtual globe, a digital terrain model (DTM) is needed to

ensure a proper display of the 3D models on the Earth surface. However, the 3D models may

hover or sink into the ground in some unusual cases, i.e. wrong height data of the source data

or low resolution of the DTM being loaded into the 3D virtual globe. To overcome this issue,

one of the simplest solutions is to choose the lowest point of the 3D object as the anchor or

reference point and adjust it to the height value 0. The 3D virtual globe must interpret the

height value as relative height above the loaded DTM surface to automatically render the 3D

object on the terrain surface according to the relative height. However, virtual globes

sometimes do not provide such “relative altitude mode” functionalities and are hence not able

to automatically perform the height adjustment on-the-fly.

The second solution is to move the bottom of each object onto a certain DTM surface by

adjusting the height value of its anchor point by calculating a so-called z-Offset value (cf.

Kolbe et al. 2016). This value can be obtained from subtracting the anchor point’s z-

coordinate from the DTM’s elevation value of the same planar position. To realize this, the

elevation value of the DTM for each given position must be accessible. For example, Google

provides a so-called Google Maps Elevation API which provides a world-wide elevation data

and allows users to fetch the height value of a given position through the HTTP interface by

constructing a simple GET-request (cf. Google Elevation API 2017). However, the provided

DTM has relatively low resolution for most areas and this API also imposes strong usage

restrictions for non-premium users who can only issue a maximum of 2500 requests per day.

In practical applications, this limit can be easily reached when generating massive 3D models

for large areas. Therefore, the users must deploy their own elevation API by storing the DTM

data into a spatially-enhanced database which should be able to perform the coordinate

Technische Universität MünchenLehrstuhl für Geoinformatik

28

X

Y

Z

Lo
La

(, ,)

P

o

North

East

(𝐿 , 𝐿 ,)

(, 𝐸,)

La

H

Z
P

o

Visualization and Exploration of Large Semantic 3D City Models

113

transformation to convert the world coordinates of the selected position to the corresponding

raster space for querying the respective elevation value from the target DTM. However, with

the increasing size of the DTM data, querying of the elevation value for every 3D object’s

anchor point may slow down the overall data generation process.

While performing the export process, the calculated zOffset can be stored as a CityGML

generic attribute in the CITYOBJECT_GENERICATTRIB table of the 3DCityDB instance.

In this way, subsequent exports will be faster since the zOffset value is already stored in the

3DCityDB and does not have to be calculated again. Since city objects may have different

geometries for different LoDs, the anchoring points and their elevation values may also differ

for each LoD. Thus, for each LoD of a single object, an individual zOffset attribute is

required. Saving the building's height offset in the form of a generic attribute ensures that this

information will be stored in exported CityGML datasets and can thus be transmitted across

different database instances (cf. Figure 76).

Figure 76: Workflow of interacting with Elevation API

According to the CityGML specification, the same city object can be represented using

different geometries on different Levels of Detail ranging from 0 to 4. These geometry

information can directly be used for the generation of the 3D visualization models for

different LoDs. However, in practical applications, the city models usually do not contain the

geometry information for all LODs, but just contain the geometries of the highest available

LOD. The reason is that city object on higher LODs can be easily generalized to the lower

ones by means of an automatic process (cf. Mao et al. 2011). This makes the data storage and

management of 3D city models much more efficient. However, when generating a 3D

visualization model, a top-down geometric simplification process is required to generate

different display forms with different geometry details which are needed for certain

application scenarios. There are four typical display forms (cf. Figure 77) which are often

used in practical applications. These display forms are Footprint, Extruded, Geometry, and

Geometry with Textures that grow in the degrees of geometric information details (cf. Kolbe

et al. 2016):

• Footprint: 3D objects can be simplified to 2D representations by projecting the whole

3D bodies onto planar 2D polygons. Such simplified geometry representation can

massively reduce the geometric complexity of the original 3D models and just display

Technische Universität MünchenLehrstuhl für Geoinformatik

29

3D Visualization model Exporter

E
le

v
a

ti
o

n
 A

P
I

S
e

rv
e

r

3D Visualization Models

3DCityDB Instance 1

CityGML Importer/Exporter

3DCityDB Instance 2

CityGML Datasets

 Visualization and Exploration of Large Semantic 3D City Models

114

their 2D footprints which are suitable for 2D map applications for achieving a better

rendering performance. For example, many mapping applications utilize the 2D map

engine i.e. OpenLayers to establish the cadastral maps which allow public users to

explore and interact with the city objects such roads, buildings, and addresses etc. with

high viewing performance.

• Extruded: This display form is a generalized 3D representation of the original city

objects. It results from an extrusion of the Footprint geometry to their height

according to the height value of the respective 3D object. The height value can be

achieved by two ways: The first way is to query the value of the attribute

“Measure_Height” from the database. However, this attribute is only available for the

CityGML class “Building” but not for other feature classes. Besides, this attribute can

have a NULL value since it is not a mandatory building attribute according to the

CityGML standard. Another way is to calculate the height value of the object’s 3D

bounding box which can be queried from the ENVELOPE attribute of the respective

city object from the database. This is a very generic solution since the ENVELOPE

attribute is defined for all city objects and can also be automatically calculated from

the geometry information of the city object if the ENVELOPE attribute has a NULL

value.

• Geometry only: with this display form, all city objects are represented with fully

detailed geometry information in accordance with the CityGML’s Level of Detail. For

example, when exporting an LOD2 building object, all its thematic surfaces such as

ground surfaces, wall surfaces, and roof surfaces etc. can be exported and explicitly

displayed on the 3D map. To achieve a better rendering performance, the ground

surfaces can be omitted during the exports since they are typically hidden by the above

wall and roof surfaces and cannot appear on the 3D map anyway. In addition, for

improving the viewing effect, it is possible to assign different colors to the individual

thematic surface types, for example roof with red color, and wall with grey color.

These colors can be further tuned by using the alpha value which affects the

transparency of the surface appearance. In case that the thematic surfaces are not

explicitly modeled in the data model, the wall and roof surfaces can be distinguished

by following a trivial logic according to which surfaces touching the ground will be

considered wall surfaces, all others will be considered roof surfaces. However, this

approach is only applicable for LoD1 and LoD2 models because many additional

building constructions like windows, doors, and installations can exist in higher LoDs

(LoD3 and LoD4) which will violate this rule.

• Geometry with Textures: Compared to the display form “Geometry only”, this display

form shows much more sophisticated information regarding the surface appearance

such as materials and textures. Thus, this display form can provide rich visual

information for the realistic 3D representation of the city object on the 3D map. For

example, the texture images of the building surfaces can be captured from orthophotos

or street views and attached to the surfaces of the city objects by using the Appearance

module defined in the CityGML standard. These appearance information can be

directly used for generating textured 3D visualization models which are supported by

most 3D graphic formats like COLLADA and glTF. In addition, for the same city

Visualization and Exploration of Large Semantic 3D City Models

115

object, CityGML allows to define multiple appearance themes simultaneously which

can be used to generate different 3D visualization models for the same object.

Figure 77: Example of different display forms of the created 3D visualization models

While creating 3D models whose surfaces are rendered with a constant color, it is important

to calculate surface normal value for each surface during the exports and add the calculated

value to the 3D mesh. The reason is that the surface normal allows the object surfaces to be

illuminated with a shading effect in a 3D scene and therefore provides a better visual

representation. If the surface normal is not calculated, the 3D models will be rendered as a

solid geometry without any visual distinction of its boundary surfaces (cf. Figure 78).

However, when exporting textured 3D models, the shading effect is not crucial, since the

texture information can already provide a sophisticated visual effect through the surface

appearance e.g. textures.

Figure 78: Comparison of the different visual effects of the same 3D model with (the left figure) and

without (the right figure) surface normal

Technische Universität MünchenLehrstuhl für Geoinformatik

Darstellungsvariante des Visualisierungsmodells

7/21/2016 WebGL-basierte Visualisierung von 3D-Stadtmodell durch Erweiterung von Cesium 5

LoD0 - Footprint LoD1 - Extruded

LoD2 – Geometry only LoD2 – Geometry & Textures

 Visualization and Exploration of Large Semantic 3D City Models

116

When creating 3D visualization models with textures, there are a number of important aspects

that must be considered regarding the visual effects and performance issues. In CityGML

models, multiple texture images can be clustered together and stored in one image file by

grouping them into a very large canvas called ‘texture atlas’ which allows to increase the

overall storage efficiency for hard drive and rendering performance for 3D viewer

applications. However, in some CityGML datasets, it might occur that a very large texture

atlas image is shared by multiple surface geometries belonging to many different city objects.

In this case, every exported 3D graphics model representing a city object will receive a

complete copy of the texture atlas image in which only a small portion of it is actually used.

This will however result in poor rendering performance when loading and rendering the

individual 3D object. In order to overcome this issue, the original texture atlas image can be

cropped into a number of small texture images, each of which should correspond to one

surface geometry and could be very small in size. In the subsequent step, the split surface

images belonging to the same city object will be joined together again to create a new texture

atlas. In this way, an optimal rendering performance can be achieved when viewing the

individual city object (cf. Wloka 2005). In case that more than one city object are joined

together to form a batched model which will be rendered in a draw call, a larger atlas for this

batched model shall be created.

For creating a compact texture atlas, a number of algorithms have been developed which

generally solve the problem of the two-dimensional image packing, also known as 'knapsack

problem’ (cf. Coffman et al. 1980). One of the simplest algorithms is using a binary tree

structure to subdivide the atlas bin into a set of small rectangles which can be used for storing

the texture images. In the first step, an empty atlas bin will be initialized, and the first item

will be added and placed at the top-left corner of the bin. In the next step, the remaining

empty region is split into two rectangles along the larger side of the last added item. The next

item is inserted into one of the free rectangles and the remaining empty space is split again.

The items can be rotated when being inserted into the texture atlas in order to best fit the size

of the available empty space. Performing these steps in a recursive way can build a binary tree

structure to represent the texture atlas. An example illustrating this algorithm is shown in

Figure 79.

Figure 79: Example of the first packing algorithm

Another packing algorithm is called Touching Perimeter (TPIM) algorithms which is a

heuristic approach allowing to generate more efficient texture atlas with higher area/total atlas

size ratio (cf. Lodi et al. 1999, Lodi et al. 2002). TPIM also initializes a bin with a maximum

acceptable size and packs one item at one time. All items going to be inserted shall be sorted

according to descending area values. The first inserted item is placed at the bottom-left

Technische Universität MünchenLehrstuhl für Geoinformatik

30

3
2

1

1

2 C

3

A

B

D

A

B
C

D

Visualization and Exploration of Large Semantic 3D City Models

117

corner. Each following item is packed with its lower edge touching either the bottom of the

atlas or the top edge of another item, and with its left edge touching either the left edge of the

atlas or the right edge of another item. The packing position should be chosen by evaluating a

score value. This value is defined as the percentage of the item perimeter which touches the

atlas borders and the other items that have already been inserted. For each candidate item, the

score will be calculated twice according to the original orientation and the one with 90 degree

rotation. The orientation with the highest score value will be taken, and the candidate item

will be inserted accordingly. A comparison of results of the two mentioned algorithms are

displayed in Figure 80. Also, there exist many other packing algorithms such as SLEA,

NFDH, and NFDH etc. (cf. Rode & Rosenberg 1987)

Figure 80: Comparison of the generated texture atlas images created using the Basic (left) and TPIM

(right) packing algorithms

Scaling texture images is another important way for reducing file size to increase the loading

and rendering speed. This can be done by multiplying the image sizes with a scale factor

ranging from 0 to 1, where 1 means no scaling. From the practical experience, a test 3D

model with different sample scale factors such as 0.2, 0.5 and 0.7 etc. shall be first generated

and visually examined to select the proper one that should offer a fairly good image quality

and also has a major positive effect on the viewing performance. Therefore, the general

workflow for creating a textured model is to first generate texture atlases and then scale them

to a smaller size.

5.1.2 Tiling of 3D Visualization Models

In the practical application cases, the file size of the generated 3D visualization models of

large city regions can easily exceed several gigabytes or even more. Loading and displaying

all these 3D visualization models at one time will rapidly exhaust the CPU, GPU, and

memory resources of most user computers. To handle this issue, all the exported 3D

visualization models must be organized in a certain spatial structure by dividing the exported

3D model objects into a number of small tiles at the server side (cf. Christen 2016). The meta-

information i.e. the file location or the minimal 3D bounding box of each tile shall be encoded

in a separate file which shall have a very small file size such that it can be easily parsed by the

3D viewer application. Based on this meta-information, the application is able to determine

the relevant data tiles according to the current camera perspective and load the corresponding

 Visualization and Exploration of Large Semantic 3D City Models

118

3D visualization models from the server. The conceptual idea of such meta-information about

the tiling structure is called “Tiling Schema”.

A well-known tiling schema is the Tile Map Service (TMS) Schema which is based on a

quad-tree structure to split the entire geospatial data into a number of hierarchical levels (cf.

Tile Map Service Specification 2017). A total number of 27 levels are specified which range

from level 0 representing the lowest level up to level 26 being the highest level. At the root

level 0, two tiles are initially defined which can be recursively split up into four children tiles

down to the lowest level. All tiles belonging to the same level are evenly subdivided in the

longitude and latitude orientation (cf. Figure 81). In this way, each tile can be seen as a

container for holding the data lying within it to build a pyramid hierarchy based on which the

data with lower resolutions can be stored in the tiles at lower levels whereas the data with

higher resolutions are located at the tiles with higher levels. With this approach, a mapping

application is able to dynamically load and display the respective data tiles according to the

extent of the view at runtime. For example, when the map is zoomed in, the tiles at higher

levels shall be loaded to replace the tiles at the lower levels for showing the detailed

information. Due to its simple spatial structure, the TMS tiling schema has been widely used

for the implementation of OGC Web Map Service and Tiling Map Service etc. for streaming

imagery and raster data covering the entire earth surface. However, the main drawback of this

tiling schema is that it has a fixed tiling structure and lacks the ability to allow users to

structure their data based on a customized tile size or spatial structure.

Figure 81: Excerpt of the TMS layout based on the Web Mercator Auxiliary Sphere

Compared to the TMS tiling schema, a more powerful and generic tiling schema is available

called 3D-Tiles which is a general specification for efficiently streaming and rendering

Visualization and Exploration of Large Semantic 3D City Models

119

heterogeneous geospatial data on the web (cf. Cozzi 2017). It supports the 3D geospatial

contents with different formats such as 3D models, digital terrain model, and point cloud etc.

The 3D-Tiles specification has been initially designed by the company AGI who developed

the Cesium Virtual Globe and is now released as an OGC standard (cf. Cozzi et al. 2019).

During the past two years (2015 - 2017), more and more software vendors from the 3D GIS

domain employ the 3D-Tiles standard to deploy their 3D geospatial data for the high-

performance rendering and 3D visualization in the Cesium virtual globe.

According to the 3D-Tiles specification, the 3D geospatial data can be tiled into an arbitrary

number of data tiles which can be organized with a variety kinds of hierarchical spatial

structures such as k-d trees, uniform and non-uniform quad-tree, and octrees (cf. Figure 82).

The tiles can overlap with each other but should preserve the spatial coherence which means

that the spatial content of child tiles shall be completely inside the spatial extent of the parent

tile. Therefore, the 3D-Tiles standard provides a more flexible way for defining the tile

structure according to the specific application needs or data characteristics. For example,

when handling massive 3D building objects, the quad-tree structure is very suitable, since the

buildings in a city are evenly distributed on the 2D planar dimension. An Octree structure is

often chosen for handling massive point clouds that may have a large density in a 3D extent

or to represent a building object with a higher level of detail.

Figure 82: Typical spatial data structure supported by the 3D-Tiles standard (cf. Cozzi et al. 2019)

The hierarchical spatial structure of the 3D-Tiles datasets is described using a set of small

JSON-formatted files which are used for storing the metadata of the generated data tiles. In

each metadata file, a set of nested JSON objects are encoded each of which is called tileset.

Each tileset object receives a couple of metadata parameters for describing the relevant meta-

information of each tile. The first one is called boundingVolume to define the spatial extent of

the corresponding tile. This bounding volume can be a 3D bounding box or a 3D sphere

which will be used for performing the view-frustum culling calculation to determine if the tile

should be loaded or not. Further, the next parameter geometricError is a nonnegative number

to determine, if the respective tile can be actually visualized or not, even if it lies within the

view frustum. If the Screen-Space Error (SSE) of the current camera view is larger than the

geometricError value, then this tile shall be invisible and replaced by the parent tile with

coarse resolution. The next relevant parameter is content which store the path or URL of the

actual data contents or another tileset file. The last parameter is children which is an array of

tileset objects for representing the children tiles. Using this nested structure, applications are

able to tranverse the metadata file to fetch the corresponding data tiles according to the

camera perspective. The 3D-Tiles strategy offers a powerful means for organizing and

streaming geospatial data but also increases the complexity of the data generation process.

Therefore, it is difficult for most software vendors to manage the creation of 3D-Tiles

Technische Universität MünchenLehrstuhl für Geoinformatik

15

 Visualization and Exploration of Large Semantic 3D City Models

120

compliant 3D models, and to the date of writing the thesis, there exit no open-source solutions

supporting the full automatic generation of 3D-Tiles data from the semantic 3D city models

i.e. CityGML do exist yet.

Compared to the 3D-Tiles approach, a lightweight tiling schema has been developed in the

context of the thesis. It provides a simple tiling schema which was developed even one year

before the 3D-Tiles came up. This tiling approach is based on a simple grid-based structure

for the tiling of the geospatial data according to a chosen bounding box and a tile size (side

length). When performing the data tiling process, the amount as well as the extent of the tile

rows and columns will be calculated by dividing the length and width of the bounding box.

The 3D model objects i.e. buildings whose centroids lie within each tile's bounding box will

be assigned to the tiles and can be encoded in different 3D visualization formats i.e. KML,

COLLADA, glTF etc. In this way, all data tiles will be generated with a hierarchical directory

structure where each individual tile file shall be named with its column number and all the tile

files that belongs to the same row are stored in a separate subfolder named with their

corresponding row number. The numbering of both rows and columns should start with 0. All

those subfolders are in turn stored in a folder named “Tiles”. An example shown in Figure 83

indicates that this hierarchical directory structure can clearly reflect the underlying grid-based

spatial data structure and also ensures that the exported tile files are distributed over different

subfolders in order to avoid putting all tile files into a single folder which may result in

significant performance issues at least under the MS Windows operating systems.

Figure 83:Hierarchical directory structure for export of 2x3 tiles using the grid-based tiling layout

Additionally, the number of rows and columns can also be freely specified by users. In this

case, the global bounding box will be divided into equally spaced portions horizontally and

vertically based on the WGS84 geographic coordinate reference system. The tile size will

hence be automatically adapted according to the spatial subdivision. This tiling option could

be appreciated in case that the users want the amount of the generated tiles to not exceed a

certain limit. However, it is not possible to ensure that the tile side length to be equal in the

both horizontal and vertical directions. Therefore, a non-square tile i.e. may be generated if

the global bounding is very long and narrow, and the specified row and column numbers are

Technische Universität MünchenLehrstuhl für Geoinformatik

7

0

1

2

0

1

0

1

0

1

Tiles(1, 1)

(1, 2)

(1, 0)(0, 0)

(0, 1)

(0, 2)

Longitude

L
a
ti

tu
d
e

Visualization and Exploration of Large Semantic 3D City Models

121

equal. Such data tile form is not sufficient for the visualization, because when a tile is

intersected with the view frustum, a number of 3D models lying outside the view frustum may

also be loaded and slow down the viewing performance.

The meta-information of the generated data tiles is stored in a JSON file which has a very

simple structure and can be easily interpreted by applications. An example is shown in the

following.

Meta-Information of the grid-based Tiling:

{

 "layername": "NYC_Buildings",

 "fileextension": ".kmz",

 "displayform": "extruded",

 "colnum": 29,

 "rownum": 23,

 "bbox":{

 "xmin": -74.0209007,

 "xmax": -73.9707756,

 "ymin": 40.6996416,

 "ymax": 40.7295678

 }

}

As the name implies, the first parameter layername denotes the name of the generated

datasets. It is also used as the prefix of the file name for each data tile. The value of the

fileextension can be “.kml”, ”.kmz”, ”.collada”, or “.glTF” to denote the format of the

generated 3D visualization models. The next parameter displayform corresponds to the four

display forms mentioned in the previous subsection. Using these tree parameters, the name of

a tile data can be constructed as follows:

[layername] + [row] + [col] + [displayform] . [fileextension]

With this naming rule, if the row and column grid coordinates of a tile is given, applications

can quickly find the target data tile from the server according to the tiled file structure and the

file name.

The parameters colnum and rownum correspond to the amount of the generated tiles whose

global bounding box is represented using the parameter bbox. With the combined use of these

three parameters, applications are able to perform a simple spatial calculation for searching

those data tiles that are intersected with a given spatial point.

For example, the length and width (in WGS84) of each tile can be determined using the

following formulas:

TileWidth = (bbox.xmax – bbox.xmin) / colnum

TileLength = (bbox.ymax – bbox.ymin) / rownum

With these two calculated values, applications are also able to use the following formulas to

rapidly retrieve the row and column number of the tile in which a given point lies:

ColumnNumber = floor ((X – bbox.xmin) / TileWidth)

RowNumber = floor ((Y – bbox.ymin) / TileLength)

where X and Y denote the WGS84 coordinates of the given point.

 Visualization and Exploration of Large Semantic 3D City Models

122

Further, if a bounding box is given, which is formed by a lower-left corner and an upper-right

corner and their row and column numbers are expressed as (R1, C1) and (R2, C2) respective-

ly, all those tiles that intersect with the given bounding box can be found iteratively, as their

row and column numbers must fulfil the following conditions:

𝑅 ≤ 𝑅𝑜𝑤 𝑢𝑚𝑏 𝑟 ≤ 𝑅 ∧ 𝐶 ≤ 𝑐𝑜 𝑢𝑚𝑛 𝑢𝑚𝑏 𝑟 ≤ 𝐶 .

For example, while the 3D map is being navigated, the screen of the current camera view

shall be first projected onto the earth surface in order to build a quadrangle whose outlines are

painted with red color as shown in Figure 84. In the subsequent step, a maximum bounding

box (painted with blue color) enclosing the projected quadrangle shall be automatically

calculated by the applications and will be used for finding out all those tiles that are

intersected with the camera view or very near to the camera position. In this example, the tiles

whose row and column coordinates are in the range of [1, 5] and [1, 6] are matched. These

tiles are handled as the so-called candidate tiles which will be further processed and analyzed

by the map applications to determine, whether the tile should be loaded for the visualization

or not.

Figure 84: Strategy for determining the candidate data tiles that should be loaded according to the

camera perspective projected onto the screen space

5.1.3 Streaming and Visualization of Tiled 3D Visualization Models

In 3D map applications, the dynamic streaming and visualization of 3D visualization models

is generally based on the so-called Level of Details (LoD) concept according to which the

data tiles with higher resolution should be displayed when the observer is viewing them from

a short distance. When data tiles are far away from the observer, the data tiles with higher

resolution should be substituted by the data tiles with lower resolution. Such LOD concept

can be easily done by means of the simple and lightweight tiling schema introduced in the

previous section. Basically, the determination of visible data tiles is realized by means of the

combination of the two parameters minLodPixels and maxLodPixels which define the

Technische Universität MünchenLehrstuhl für Geoinformatik

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)

00

00

05 10

05

(0,m)

(n,0)

(n,m)

21.07.2016
WebGL-basierte 3D-Visualisierung von Stadtmodellen durch die Erweiterung von

Cesium
8

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)

00

00

05 10

05

Candidate Tiles

Bounding Box of

View Frame

(0,m)

(n,0)

(n,m)

View Frame

Effiziente Ermittlung der zu ladenden Kacheln

Visualization and Exploration of Large Semantic 3D City Models

123

minimum and maximum limit of the visibility range for each tiled dataset. The allowable

value range starts at 0 and end at an infinite value expressed as -1. In the map application, all

the candidate tiles (cf. the previous subsection) are projected onto the screen space (cf. Figure

85). During the runtime, the maximum diagonal length of each tile shall be calculated and

measured in screen pixel. If the diagonal length is larger than minLodPixels and less than

maxLodPixels, then the respective data tile shall be loaded and displayed. Otherwise it should

be hidden from display. In addition, all data tiles lying outside of the view frustum must not

be further processed and should be unloaded and invisible anyway. The approach of using

minLodPixels and maxLodPixels originates from the KML specification, which provides a so-

called “NetworkLink” format for streaming and visualizing tiled 3D KML data models in the

Google Earth 3D viewer. This approach has been further enhanced by means of the developed

tiling schema to support the efficient 3D model visualization on the open-source Cesium

Virtual Globe.

Figure 85: Efficient determination of which data tiles should be loaded according to the user-defined

visibility range in screen pixel

When viewing from a long distance to the Earth ground, if the visibility range specified by the

user starts at a very small value and ends at an infinite size, massive amounts of data tiles will

tend to be loaded which can also result in poor performance of the 3D rendering or even

memory overload of the web browser. In this case, each data tile will always be visualized

even though it only takes up a very small screen space. This issue can be avoided by a proper

setting of an additional parameter called maxNumberOfVisibleTiles which specifies the

maximum number of allowed visible data tiles. When this limit is reached, any additional data

tiles that are farthest away from the camera will not be shown, regardless the size of screen

space they occupy. According to many practical tests, this value can be set to 200 if the tile

size has been defined as 150*150 meter, which is an appropriate tile size in most use cases.

Of course, depending on data volume of each tile and the capability of the hardware such as

Technische Universität MünchenLehrstuhl für Geoinformatik

Effiziente Ermittlung der zu ladenden Kacheln

21.07.2016
WebGL-basierte 3D-Visualisierung von Stadtmodellen durch die Erweiterung von

Cesium
10

A data tile is visible only when its

diagonal length lie within the

visibility range defined by the

minimum and maximum limit in

screen pixel

 Visualization and Exploration of Large Semantic 3D City Models

124

main memory size being used, this parameter value can be adjusted to archive a better

viewing quality.

Moreover, the map application can be further optimized by implementing a so-called caching

mechanism (cf. Figure 86) which allows high-speed reloading of those data tiles that have

been loaded before and temporarily stored in the memory of the web browser. In order to

prevent memory overload, an additional parameter maxSizeOfCachedTiles can be used for

specifying the maximum allowable cache size expressed as a positive integer number. With

this parameter, the map application is able to implement the so-called Least Recently Used

(LRU) algorithm which is a caching strategy being widely used in many applications systems

for the cache control management. According to this algorithm, the newly loaded data tiles

will be successively put into the cache and sorted in a queue list which can be managed in a

background thread running in parallel. When the cache size limit is reached, the map

application will remove the least recently visualized data tiles from the cache. Obviously, the

value of this parameter has to be equal or higher than the value of the parameter

maxNumberOfVisibleTiles and can be increased in order to achieve a better viewing

experience depending on the capability of the hardware being used. The caching process runs

in parallel to the rendering procedure until the camera stops moving and the candidate data

tiles have been successfully rendered.

Figure 86: Workflow of performing the determination and caching of the data tiles for efficient 3D

visualization

5.2 Exploration of Semantic 3D City Models

Apart from the efficient 3D visualization, the data exploration of the individual or a group of

3D objects is also an essential functionality to enhance a 3D map application allowing to

work with semantically rich 3D city models for accomplishing various application tasks. To

realize this, two important aspects must be considered which include the interaction of the 3D

objects as well as the linking with dynamically extendable and domain-extendable attribute

information during the runtime for enriching the 3D visualization models. All these

Technische Universität MünchenLehrstuhl für Geoinformatik

7/21/2016 9

Main Thread
(1 instance)

BBOX Calculation of

current view

Signal()

Tiling Manager

Task

Queue

yes

no

Start

Query of

visible Tiles

Pop()

Signal()

Fulfill Loading

Condition?

Web Worker
(1 instance per Layer)

Determination

of Tile Size in

Screen Pixel

Creation of

Tile-Matrix

Is empty?

Rendering of

Tile in Cesium

yes

Signal()

Loading and

Caching of Tile

no
in Cache?

Removing of

invisible Tiles

no

yes

Camera View

changed

Visualization and Exploration of Large Semantic 3D City Models

125

functionalities can be realized using a web-based 3D map application which is able to serve as

an extensive platform for testing the developed functionalities on the one hand, on the other

hand, it can also be employed in many research and practical projects in the context of “Smart

Cities”.

5.2.1 Interaction with 3D City Model Objects

The rich model interaction requires the highlighting of the 3D objects on mouse over and

mouse click. Ctrl-clicking mouse operation should be able to select or deselect more than one

3D object interactively. Once a building has been selected, it shall be automatically

highlighted, and its attribute information shall be displayed next to the selected 3D object.

The attributes and their values can be carried along with the spatial contents in the 3D

visualization model or queried from a remote server through a standard web accessing API

e.g. Web Feature Service or Cloud services (cf. the next subsection). Additionally, it is also

important that the selected objects can be interactively hidden and redisplayed in the 3D map

application. This functionality is especially useful for simulating different urban planning

scenarios and architectural designs in the decision-making process. For example, an urban

planner or an architect may want to hide an existing building object and insert a new one for

editing and comparing different 3D designs of the same building. The different planning

scenarios can be shared with other project partners to allow for collaborative work on the

same workspace. In addition, a 3D object can be visually inspected in different kinds of map

viewers such as street view, bird-eye view, 2D top-down view or a combined version (cf.

Figure 87) for checking and validating a virtual 3D model against the real one captured from

the real scene.

Figure 87: Exploration of a building in a mash-up view using ‘Dual Maps’ (www.dualmaps.com)

 Visualization and Exploration of Large Semantic 3D City Models

126

The interaction with deeply structured semantic 3D city models is another important problem

for the 3D model interaction. CityGML comprise the spatial and graphical aspects of the city

objects along with the ontological structure including thematic classes, attributes, and their

interrelationships. Objects are decomposed into parts on the basis of deeply nested structures

that can be observed in the real world. For example, a building will be decomposed into

several building parts which can again consist of parts like wall and roof surfaces. Since

CityGML objects can have attributes and relations on all levels of this aggregation hierarchy,

the interaction with such deeply nested structures of the 3D city objects must be taken into

account.

This objective can be reached by using a so-called batched 3D models (B3DM) which is a

glTF-based format for transferring and rendering a group of 3D objects within a single file. In

a B3DM file, each model object has a unique identifier being assigned to every respective

vertex by means of its batchId attribute which is an additional attribute to the 3D coordinate

information. In addition, the B3DM allows to contain an extendable information table called

Batch Table which can be used for storing arbitrary attributes of the batched 3D model

objects and which is also indexable by using the batchId attribute of the vertex. With the help

of the Batch Table, the semantical feature hierarchy can be fully described. An example is

shown in Figure 88.

Figure 88: Modelling of the hierarchical structure of 3D city models using the glTF-based B3DM

format (cf. Schilling et al. 2016)

This batch table can be horizontally subdivided into two parts. The first part called batch

properties holds all the primitive objects of an aggregation hierarchy. The second part called

Group properties represents those objects that are not explicitly constructed by vertex but are

aggregated by the primitive object stored in the first table part. The hierarchical relationship

Visualization and Exploration of Large Semantic 3D City Models

127

between the aggregating and aggregated objects are represented using the parentPostion

attribute. The attribute value -1 indicates that the respective object is the root object of the

aggregation hierarchy. The attribute classId is used for determining the CityGML class type

of the respective model object whose actual attributes information are stored in the attribute

attributes encoded as a JSON structure. In this way, the attributes as well as the structure

information of a complex 3D city object with multiple aggregation levels can be fully stored

within the 3D visualization model which can be easily explored by the users using a map

application.

5.2.2 Coupling of 3D Visualization Models with Thematic Information

A major problem regarding the exploration of the 3D visualization models is the linking with

and exploration of thematic information. Although the 3D models like KML and B3DM allow

to store thematic information together with their spatial contents, the dynamic augmentation

and enrichment of thematic information is computationally very expensive, since the entire

3D visualization model will have to be regenerated and uploaded to the server again. This

problem can be solved by using a Web-based API e.g. Web Feature Service (WFS) which

allows applications to dynamically query the thematic as well as the spatial information from

a database instance based on a selected object ID (cf. Figure 89). However, this approach also

has its own drawbacks. First, the setup of a WFS server is a time-costly work which requires a

number of configurations for binding the database server with the WFS application server.

Second, if users want to add their own attributes information, the data contents in the database

must be augmented accordingly. However, this is often impossible since the central database

should be maintained as a stable data repository which shall prevent normal users from

changing and modifying the table contents.

Figure 89: Example system architecture of coupling WFS with 3D visualization models in a 3D web

map application

A complementary solution is to utilize a Cloud-based online spreadsheet for storing the

thematic information and any update of thematic contents can exclusively take place within

Technische Universität MünchenLehrstuhl für Geoinformatik

32

WFS Service 3D Map Application

Binding

Central Database

Database Server Web Server

3D Visualization

Models

export

Web Server Web Browser

response request

WFS Request

WFS Response

Off-Line Process

On-Line Process

 Visualization and Exploration of Large Semantic 3D City Models

128

the online spreadsheet and therefore does not require exporting and deploying the 3D

visualization models again. The basic idea of linking online spreadsheet with 3D visualization

models is illustrated in Figure 90. Like with the structure of a typical database table, the first

row of the online spreadsheet defines the attribute names, and the further rows store the

respective attribute values for each 3D object. The logical links between the 3D models and

the respective rows are established via a specific column within the spreadsheet, namely the

GMLID column which lists the unique identifiers of the 3D objects. Each further column is

used to represent one attribute of the 3D object. Since most cloud services i.e. Google Drive

and Microsoft OneDrive etc. usually provide comprehensive REST APIs allowing to query

the content information from an online spreadsheet via a HTTP GET/POST request, the ad-

hoc query of thematic information of a selected city object is possible within a 3D map

application. In addition, since the Cloud services also supports the handling of the access

control, the owner of an online spreadsheet can also share it with other users who will also be

able to access the online spreadsheet. This enables multiple users to work on the same online

spreadsheet in a collaborative way. Furthermore, the Cloud services usually offer a web portal

allowing users to alter the online spreadsheet by modifying the existing attribute values or

inserting a new attribute by means of adding a new spreadsheet column. In this way, the

online spreadsheet can be used as an intermediate data container for keeping the contents up-

to-date without affecting the original (possibly official) 3D city model stored in the central

database.

Figure 90: Coupling an online spreadsheet with a 3D visualization model via GMLID

The typical system architecture of the coupling of Cloud-based online spreadsheets and 3D

visualization models is illustrated in Figure 91. In analogy to the WFS-based application

environment, the 3D visualization models shall be first generated through an off-line pre-

processing step and uploaded to a web server. In another off-line processing step, the thematic

information can be exported from the central database and uploaded to an online spreadsheet

where the first column is per-default the GMLID column which lists all the object IDs of the

exported city objects in the 3D visualization model. Using this GMLID column, the online

spreadsheet can be expanded by joining with another spreadsheet which can contain other

domain-specific or user-defined attribute information of the exported city objects. While

Technische Universität MünchenLehrstuhl für Geoinformatik

32

b

a

d

c

City

e

GMLID Attribute_1 Attribute_2 …

BLDG_a {…} {…} {…}

BLDG_b {…} {…} {…}

BLDG_c {…} {…} {…}

BLDG_d {…} {…} {…}

BLDG_e {…} {…} {…}

… {…} {…} {…}

3D visulization models

on the Web

Thematic Information stored in an online-

spreadsheet in the Cloud

Logical link

Visualization and Exploration of Large Semantic 3D City Models

129

exploring the 3D visualization model in the 3D map application, users can visually inspect the

individual city object rendered on the 3D map and update the content information in the

online spreadsheet accordingly. In the last step, which takes place off-line, the edited and

enriched content information can be checked and validated by application administrators and

the valid data contents will be written back to the central database to make the 3D city models

up-to-date.

Figure 91: Example system architecture of coupling online spreadsheet with 3D visualization models

in web applications

In practical applications, a mash-up of and an M-N relationship between different 3D

visualization models and online spreadsheets are usually needed, rather than the simple 1:1

relationship. On the one hand, a city object, whose attributes are stored in an online

spreadsheet, may occur in different 3D visualization models exported with different display

forms e.g. footprint, extruded, or textured geometries. On the other hand, a 3D visualization

model representing a data layer can be linked with more than one online spreadsheet which

can be individually used for storing different categories of thematic information belonging to

different domains. For instance, one spreadsheet can be used for storing the values of the

standard CityGML attributes such as class, function, and usage etc. for building objects, while

another spreadsheet can be employed to carry the energy-related attribute information like

energy consumption and demand. A third spreadsheet may contain, for each building, a

number of URL links of sensor-based services for querying real-time values e.g. the

monitoring temperature and humidity. In map applications, once a city object has been

clicked, all the linked online spreadsheets will be queried against the object id and the

returned attribute information shall be displayed in an intuitive way that allows users to have

a concise overview of all the information as well as to distinguish, which attributes belong to

which domain or category.

To realize this, a conceptual framework has been developed in the course of the PhD research

to define an abstract API allowing to build a map application for integrating different types of

3D visualization models and online spreadsheets. The structure of the API is shown as UML

Online Spreadsheeht 3D Map Application

Central Database

Database Server Web Server

3D Visualization

Models

Tiled

pre-Export

Cloud Service Web Browser

response request

Request

Response

Off-Line Process

On-Line Process
export import

 Visualization and Exploration of Large Semantic 3D City Models

130

diagram in Figure 92. Note that this UML diagram is meant to show the interrelationships

between the diagram components. The attributes and methods of the individual classes and

interfaces are omitted.

Figure 92: Conceptual API for coupling multiple online spreadsheets with a 3D visualization model

The class WebMap3D serves as a wrapper of a 3D map engine e.g. 3D virtual globe with the

additional capability to hold different types of data layers e.g. imagery data layer, digital

terrain data layer, and 3D visualization model layer via a common interface named

DataLayer. This interface facilitates a map application to support the layer management

functionalities like adding/removing, hiding/showing etc. of a selected data layer. In addition,

the abstract class VisualizationModelLayer, which implements the DataLayer interface, can

be extended to define the concrete classes that represent different types of 3D visualization

model in the format like KML, glTF and 3D-Tiles etc. Each 3D visualization model class can

comprise multiple thematic data providers by means of the ThematicDataProvider interface

which exposes the function for constructing a HTTP request to fetch the thematic information

of a city object based on its GMLID. Implemented classes of this interface can be e.g. Google

spreadsheet or Fusion Table provided by the Google Drive Cloud Service and the Excel

spreadsheet hosted via the Microsoft’s OneDrive Cloud service etc. Further thematic data

providers based on other Cloud or database services can also be defined by implementing the

ThematicDataProvider interface. Based on this framework, a dynamically extendable 3D web

application can be developed to support the rich exploration of 3D city models on top of a 3D

virtual globe.

5.2.3 Implementation of a 3D Web Client

Based on the concepts introduced in the previous sections, a 3D web client has been

developed. It is implemented on top of the WebGL-based Cesium Virtual Globe to make full

use of the hardware acceleration and provides cross-platform functionalities like displaying

3D graphic contents on the web (cf. Chaturvedi et al. 2015, Yao et al. 2016). While

developing the 3D web client, various extensions have been made to the Cesium Virtual

Globe in order to facilitate users to view and explore 3D city models conveniently (cf. Figure

Technische Universität MünchenLehrstuhl für Geoinformatik

KML Layer
MicrosoftSpreadsheet

Provider

<< Interface >>

ThematicDataProvider

<<abstract>>

VisualizationModelLayer

WebMap3D

3D-Tiles Layer
GoogleSpreadsheet

Provider

Grid-based

Tiled Layer

*
*

thematicData

dataLayer <<interface>>

DataLayer

Core API
<<abstract>>

ImageryDataLayer
<<interface>>

TerrainDataLayer

Visualization and Exploration of Large Semantic 3D City Models

131

93). The major one among those extensions is that the high-performance visualization of large

pre-styled 3D visualization models which can be formatted in KML, KMZ, or glTF formats

and structured with different tiling schema e.g. 3D-Tiles or a simple grid-based structure. In

addition, the rich interaction with the city models is also supported e.g. highlighting of 3D

objects on mouseover and mouseclick, hiding and showing of the selected 3D objects as well

as the exploration from different view perspectives using third-party mapping services like

Microsoft Bing Maps with oblique view, Google Streetview, and a combined version using

Dual Maps (cf. Figure 87). Moreover, the 3D web client implements the Cloud-based Google

spreadsheet and fusion table as the online spreadsheet to store the thematic information

coupling with the 3D visualization models and allows for querying the thematic data of every

city object when it has been selected. In the past four years, this 3D web application has been

successfully employed in many research projects and the core source code are managed using

the Git version control system and can be freely obtained from the online Git-repository1. In

the year 2015, this 3D web client won the first price in the 'Best Students Contribution' of the

'Web3D city modelling competition'2 at the annual ACM SIGGRAPH Web3D Conference.

Figure 93: System architecture of the developed 3D web client

In most GIS applications, the term base layer (or basemap) is generally considered as a

background layer on the map using, for example, satellite imagery and terrain model, to help

people to quickly identify the locations and orientations from a certain camera perspective. In

the 3D web client, a variety kinds of base layers can be visualized along with the 3D

visualization models all of which can be conveniently managed via a common interface. Per

default, Cesium comes with a number of selectable imagery layers provided by different

mapping services, such as Bing Maps, OpenStreetMap and ESRI Maps etc. It is also possible

to add additional imagery layer by using an OGC compliant Web Map Service (WMS) which

1 https://github.com/3dcitydb/3dcitydb-web-map
2 https://www.ogc.org/blog/2274

Technische Universität MünchenLehrstuhl für Geoinformatik

1

Systemarchitektur der 3D-Web-GIS Anwendung

21.07.2016
WebGL-basierte 3D-Visualisierung von Stadtmodellen durch die Erweiterung von

Cesium
4

Imagery Server

Database

Terrain Server

DatabaseDatabase

Export Export

Visualization model Online Spreadsheet

Export Export

logical link

User Interface

Virtual Globe Visualization Engine (Cesium)

Map Layer

Control

Object handling

e.g. Highlighting

3D Web Client

Attribute Display

and Query

ResponseRequest ResponseRequestResponseRequestResponseRequest

… many

more Features

InteractionInteraction Interaction Interaction

Tiling

Manager
Attribute Display

and Query

Map Layer

Control
Object handling

e.g. Highlighting

Tiling

Manager

https://github.com/3dcitydb/3dcitydb-web-map
https://www.ogc.org/blog/2274

 Visualization and Exploration of Large Semantic 3D City Models

132

can easily be deployed using a number of open-source or commercial software tools like

GeoServer, Deegree, and ArcGIS Server etc. Concerning the digital terrain model, Cesium

Virtual Globe provides per default two available terrain layers. The first one is the so-called

WGS84 Ellipsoid which approximates the Earth’s surface using a smooth ellipsoid surface

with a constant height value of 0. The other one is the so-called STK World Terrain using a

worldwide 3D elevation data with an average grid resolution of 30 meters which is sufficient

in many use cases. For specific application cases, high-resolution Digital Terrain Models

might be required which can be stored and managed using spatial database, converted to a

specific terrain format i.e. heightmap or quantized-mesh, and uploaded to a web server for the

data access over Internet.

The user interface of the web client is created using the ExtJS JavaScript-based web

framework which is freely provided by Sencha the under GPL3 open source license (cf.

Sencha 2017). It provides a large number of GUI widget components such as grid table,

popup window, Tab container, as well as tree-structured panel etc. which allow web

developer to build an extensive web application with the support of rich user interactions.

With the help of these outstanding features provided by ExtJS, the 3D web client has been

designed very similar to most traditional GIS viewer applications to facilitate users to interact

with working data and to manipulate the relevant operating functionalities for completing

certain tasks conveniently. In addition, the main widgets of the web client were assembled

component-wise and can therefore be easily customized to hide or disable some certain UI

components for creating a lightweight version with concise user interface.

Figure 94: User interface and the relevant GUI components of the 3D web client

In the middle of the GUI (cf. Figure 94), a 3D viewer is embedded which is a standard

Cesium widget that allows users to navigate the Earth view by panning, moving, tilting, and

rotating the camera perspective using a mouse or touchscreen. In addition, the camera

perspective can also be controlled by means of the Navigation Component which offers the

1

5

4

2

3

Visualization and Exploration of Large Semantic 3D City Models

133

same navigation possibilities that can be achieved with mouse or touchscreen. It consists of a

group of widgets, namely a Navigator widget for controlling the camera perspective, a North

Arrows widget for orienting the Earth map towards the north, and a scale bar for estimating

the distance between two points on the ground. It is also possible to switch the 3D view mode

to 2D, which may result in a better rendering performance since all 3D objects will be

automatically simplified and projected on the 2D map. Using the Map Control component [2],

an arbitrary number of data layers can be added into the 3D web client and a name can be

assigned to each added layer by the user. Once the 3D visualization models have been loaded

and rendered on the 3D map, the loaded layer names will be listed in the Layer List panel [3]

which allows users to interactively control the visibility of the loaded data layers or remove

selected layers from the 3D web client.

Multiple 3D objects can be selected and highlighted on the map and the corresponding object

IDs can be listed in the Object Selection panel [4]. When clicking on a single object, the

thematic information will be queried from the linked online spreadsheets and the returned

attribute information will displayed as key-value pairs in a tabular form in the table panel [5].

In order to distinguish which attributes are provided by which online spreadsheet, the table

panel can be dynamically partitioned into several blocks each of which is painted with a

distinguishable background color. Per default, the background of the attribute GMLID is

coloured with grey color and the other blocks of the individual online spreadsheets can be

flexibly configured by the users. To support this, a table manager component is available

whose UI is shown in Figure 95.

Figure 95: Table manager for dynamically adding multiple online spreadsheet to a data layer

Using this table manager, users are able to select their preferred background colors for the

linked online spreadsheet and also to link additional online spreadsheets with the respective

3D visualization model. The display sequence of the respective panel blocks holding the

attributes can be reallocated by clicking on the Up (▲), and Down (▼) buttons of the

 Visualization and Exploration of Large Semantic 3D City Models

134

individual table. The remove (×) button allows users to remove an already existing item to

disconnect an online spreadsheet from the respective 3D visualization model.

To ease the work with the 3D web client, the configuration information including the added

data layers and their associated online spreadsheets can be stored in the Cloud by using an

online spreadsheet called configuration spreadsheet. This spreadsheet has a fixed structure

with a set of predefined columns and the relevant ones are shown in Figure 96. The first

column with the name LAYERID holds the identifiers of the data layers and will be used by

the 3D web client for indexing the data layers. Thus, these IDs must be unique in the scope of

a configuration spreadsheet and can be assigned using the universally unique identifier

(UUID). The layer names, which will be listed in the 3D web client, are stored in the column

NAME. For each layer, the URL of the respective 3D visualization model can be found in the

URL column, whereas the URLs of the linked online spreadsheets are stored in the column

Thematic Data URL and separated with semicolons. With the help of a such configuration

spreadsheet, an application workspace created by a user can be permanently stored, shared,

cloned, and recovered via the Cloud. In addition, the URL of a configuration spreadsheet can

be easily encoded as a key-value pair string to be attached to the 3D web client link, which

can be stored as a browser bookmark or sent to project partners to facilitate the collaborative

work (cf. Kolbe et al. 2003).

Figure 96: Idea of using a configuration spreadsheet for storing and loading linked 3D visualization

models and online spreadsheets

The typical operation process of using the configuration spreadsheet in the 3D web client is

summarized in the UML sequence diagram shown in Figure 96. When the 3D client is

launched by the user, an AJAX request to the configuration spreadsheet is performed to return

a response containing the layer information. Subsequently, the 3D web client iterates through

LAYERID NAME URL THEMATIC DATA URL

UUID_1… Roads https://... {https://...; https://...; …}

UUID_2… Buildings https://... {https://...; https://...; …}

UUID_3… Waters https://... {https://...; https://...; …}

… … … …

3D Web Client
Configuration

Spreadsheet
3D Visualization

Model

Launch 3D web client

AJAX request to fetch config info

Response
AJAX request to fetch 3D Models

Response

loop

[for each layer]

Save Workspace
AJAX request to update the

config spreadsheet

Response

Visualization and Exploration of Large Semantic 3D City Models

135

all the layer items and loads the respective 3D visualization models one by one. While

operating the 3D web client, the user may add some new layers, remove certain existing

layers, or enrich a layer by linking with additional online spreadsheets storing domain-

specific information. After confirming the changes, the user can save the workspace to the

Cloud by sending an AJAX update request to update the original configuration spreadsheet or

create a new one.

The access to the configuration as well as the thematic data stored in the online spreadsheets

can be easily controlled by taking fully advantage of the Cloud technology. Once an online

spreadsheet has been created by a user, it can be shared with other users who may have either

read-only or full access with write privilege to the spreadsheet. This allows multiple users to

complete complex collaborative work by categorizing them into different user groups with

different access rights. For example (cf. Figure 97), an application administrator creates a

configuration file associated with two online spreadsheets storing the thematic information.

Since the administrator is the owner of all the online spreadsheets, he can assign the write

access to the user “data manager” who have full access to the thematic data spreadsheet but

only read access to the configuration spreadsheet. The public users are only assigned with

read access to the online spreadsheets allowing them to launch the web client and to query

thematic information provided by the data manger. In this way, all the content information are

properly secured among multiple users.

Figure 97: Collaborative work using the 3D web client based on Cloud-based online spreadsheets (cf.

Herreruela et al. 2012)

5.3 Example Applications

In this subsection three typical use case examples are introduced to show the usability and

feasibility of the developed 3D web client in practical projects. Each of these examples has

been intentionally chosen to demonstrate the individual key features of the 3D web client that

have been successfully realized based on the research work and technical implementation.

These results of these use cases were obtained in the course of different research projects

which were carried out by the research team at the Chair of Geoinformatics at Technical

University of Munich. As a software developer, the author was involved in all these projects

Technische Universität MünchenLehrstuhl für Geoinformatik

Collaborative Work using the 3D Web Client

24.06.2017
WebGL-basierte 3D-Visualisierung von Stadtmodellen durch die Erweiterung von

Cesium
44

Administrator

Public User

Data Manager

link

link

Configuration

Thematic Data 1

Thematic Data 2

Cloud Service

 Visualization and Exploration of Large Semantic 3D City Models

136

and mainly worked on enhancing the 3D web client according to the requirements of the

project partners.

5.3.1 3D City Model of New York City

The project “3D City Model of New York City” is a student project which has been carried

out in the context of three master theses of Barbara Burger, Berit Cantzler, and Christof Beil

within the master's program Geodesy and Geoinformation at TUM (cf. Kolbe et al. 2015, Beil

& Kolbe 2017). The key objective of these student projects is to create a homogenized and

integrated semantic 3D city model of New York City (NYC) from the existing public 2D and

2.5D datasets provided in the NYC Open Data Portal. To reach this purpose, different spatial

and semantic transformations and manipulations together with some photogrammetric

analyses were investigated and performed using the ETL tool Feature Manipulation Engine

(FME) of Safe Software. The resulting 3D city model is managed as a single CityGML file

which comprises a variety of 3D feature types including all NYC buildings, land parcels,

roads, parks, the digital terrain model, and water bodies and can be downloaded as Open Data

from the project home page of the Chair of Geoinformatics3. In addition, the CityGML dataset

has been imported into a 3DCityDB instance for the efficient data maintenance and also been

converted to tiled KML/glTF models for the 3D visualization on the Virtual Globe like

Google Earth and Cesium. To explore the resulting 3D city model conveniently, all the

generated 3D visualization models have been deployed using the 3D web client and a

screenshot of the online demo is shown in Figure 98.

Figure 98: Example demo of visualizing 3D city model of New York City on the 3D web client

This 3D web client Demo contains all street space objects as well as all building objects of

New York City in LoD2. More than one million building objects and more than 500'000 street

3 https://www.lrg.tum.de/en/gis/projects/3d-city-model-of-new-york-city/

https://www.lrg.tum.de/en/gis/projects/3d-city-model-of-new-york-city/

Visualization and Exploration of Large Semantic 3D City Models

137

space objects were generated as tiled 3D visualization models separated into different layers

according to the feature types. Moreover, each city object is enriched with a range of attribute

information which have been uploaded and stored in the Cloud-based online spreadsheet

‘Google Fusion Table’ allowing for rich model exploration by clicking on the city object

individually.

5.3.2 3D City Model of Berlin

Nowadays, a semantic 3D city model of the German capital Berlin is freely available to the

public as open data in CityGML format. This 3D city model was created with the full

coverage of the entire city area (890 km²) and comprises around 550,000 LoD2 building

objects which are fully textured with the images photographed from the air (cf. Döllner et al.

2006). To date, this 3D city model is one of the largest textured CityGML models worldwide

and can be obtained via a web-based service portal4 through which users can select and

download individual building models in a variety of 3D data formats in addition to CityGML,

e.g. OBJ, KML, COLLADA, and 3D-Shapefile. Therefore, the 3D city model provides a good

foundation for the research and development of Smart Cities. For example, in the context of

the research project “Energy Atlas Berlin”, this 3D city model has been utilized as an

important information basis for developing the tools for holistic calculation of the energy

consumptions, demands and saving potentials at an urban scale. The results of the calculation

and simulations can be enriched to the 3D city models and shall be able to be explored on a

3D map. This has been realized using the developed 3D web client and a screenshot of a

dedicated online demo is shown in Figure 99.

Figure 99: Example of visualizing 3D city model of Berlin on the 3D web client

In this example, each building object has been generated with three different display forms

starting from the coarse “Extruded” geometry, via the untextured geometry up to the most

4 https://www.businesslocationcenter.de/downloadportal/

https://www.businesslocationcenter.de/downloadportal/

 Visualization and Exploration of Large Semantic 3D City Models

138

detailed textured geometry. Depending on the distance between the camera and the individual

building object, one of the three geometry representations can be automatically chosen by the

3D web client for the display and can also be dynamically switched during the runtime

according to the Level of Detail mechanism: The buildings being far away from the camera

are simply rendered as extruded or untextured geometries, while the textured buildings with

higher details will be rendered when viewing the building objects from a short distance. In

this way, the efficient 3D visualization of the 3D city models with higher level of details

(LOD ≥ 2) is possible.

5.3.3 3D City Model of Vorarlberg

In the context of the VoDLM3D (Semantisches 3D-Landschaftsmodell Vorarlberg) project,

the Vorarlberg State Government plans to establish and provide a semantic 3D landscape

model which shall contain comprehensive 3D spatial and thematic information on roads,

water bodies, vegetation coverage, as well as topographic objects like buildings, bridges,

tunnels, ski slopes, high-voltage lines and towers (cf. Marx et al. 2017). All these data shall be

able to be administrated by the Vorarlberg government and can also be publicly accessible to

the citizens from Vorarlberg based on a 3D web solution. For this purpose, the existing

2D/3D geospatial data of Vorarlberg have been first transformed to a CityGML data model

using the software tool FME and then converted to the respective 3D visualization models

with different data layers according to the topographic feature types. A subset of the project

results is represented as a 3D web client demo which is accessible via the Github5. This demo

(cf. Figure 100) shows around 9800 attributed LoD2 buildings along with an imagery base

map according the OGC Web Map Service (WMS) as well as a high-resolution (0.5 meter)

digital terrain model resulted from converting a GeoTIFF-formatted DTM to the Cesium-

compliant heightmap format.

Figure 100: Example of visualizing 3D landscape model of Vorarlberg on the 3D web client

5 https://github.com/3dcitydb/3dcitydb-web-map#demos

https://github.com/3dcitydb/3dcitydb-web-map#demos

Utilization of Domain Extendable 3D City Models

139

Chapter 6 Utilization of Domain Extendable 3D City Models

In the previous chapters, the relevant concepts and approaches regarding the efficient

management, visualization, and exploration of large and extendable 3D city models are

elaborated to show the possibilities of utilizing 3D city models in real-world application

cases. In the context of smart city projects, the growing complexity of the application

scenarios strongly requires a complete and integrative platform which should be capable of

performing the analyses, simulations, and modifications on the complex-structured 3D city

models. Certain parts of such procedures should be operable not only through a time-costly

off-line processing step but also via a simple user interface during the runtime of the 3D

visualization and exploration. This will allow both GIS experts and non-experts to easily

access and manipulate the data models as well as to rapidly capture the simulation and

analysis results to help them in completing the decision-making process (cf. Shen &

Kawakami 2010). Moreover, since all the data models are organized in a central database

based on a common model definition, the events of data changes and simulation results can be

automatically propagated and spread to the other application sectors to accomplish the

collaborative tasks of urban management (cf. Hofman et al. 2011).

Nowadays, an increasing number of analysis and simulation tools have been developed for the

application domains like urban planning and building energy simulation (cf. Sousa et al.

2012). Many of these calculations can produce rich output information which can be

automatically derived from the semantic 3D city models and will be analyzed by decision-

makers such as city planners and architects etc. to make decisions by comparing the different

results of the calculations upon the different input parameter values. However, these users

usually have very limited knowledge about the GIS technologies or the complex data

structures behind the calculation logics and their main task is to analyze some particular

indicator values which directly result from simulations. Thus, they do not need to dig deeper

into the complex methods to handle calculation procedures from scratch, but just need to

focus on the interrelationships between different input parameter and indicator values in order

to simulate different situations to find out the optimal construction measures and plans for

improving the future energy supply.

For this reason, such decision support systems for dealing with analysis and simulation

requires that, both complex data models and simulation engines must be organized with an

integrative framework to ensure 3D city models are accessible by normal users. On the one

hand, this system should provide a simple user interface for the normal users allowing them to

view, explore, edit, as well as analyze the 3D city models without the need to access the

original 3D city models directly. On the other hand, the modified data as well as the

simulation results can be written back to the original 3D city models which can be used as the

input for other simulations of different application domains. To realize this, the design of a

complete and scalable system platform is of great importance to assist a wide group of users

to easily access and handle the 3D city models during the planning, design, and development

process collaboratively.

In this chapter, emphasis is placed on the introduction of a novel approach of a new system

architecture concerning the requirements mentioned above. Additionally, technical

implementation of the system architecture is elaborated, and two typical application examples

 Utilization of Domain Extendable 3D City Models

140

based on the system architecture are given for proving the feasibility of the introduced

approach.

6.1 Conceptual Considerations

6.1.1 Problems of the traditional System Solutions

Nowadays, a number of open source and commercial application systems were brought to the

market, which support working with semantic 3D city models for a range of application

scenarios in many cities (cf. Hildebrandt 2014). Most of these applications are constructed

based on a so-called three-tier architecture (cf. Figure 101) which utilizes a data tier at the

lowest level for dealing with the storage of 3D city models in a spatially-enhanced database

management system. The communication between client application of the presentation tier

and the data tier is realized through an application tier also called middle tier which contains

the main business logic and various functionalities like session management for controlling

and performing the complex tasks including the query, analysis, as well as CRUD (create,

read, update, and delete) operations on the stored data contents. To minimize the complexity

of implementing such Three-tier architecture, a number of existing web application

frameworks such as Spring and Django etc. are available for the development and deployment

of the entire system through a set of standard templates and libraries. Moreover, the

application tier can be implemented as a web service according to the standard web interfaces

i.e. Web Feature Service (WFS) and Web Processing Service (WFS) which allow to access

the application tier via a URL in a way of sending a standardized HTTP request to the

business logic for performing the CRUD operations and analysis procedures and receiving

back a response containing the respective results.

Figure 101: Traditional Tree-tier architecture of a 3D Web GIS application (cf. Westra 2010)

This architecture approach works well for most application cases but has certain limitations

regarding two important aspects. First, most application users who are not authorized to have

write-access to the application tier and data tier are restricted from modifying the data

Technische Universität MünchenLehrstuhl für Geoinformatik

45

Graphical User Interface

URL Mapper JavaScript Library

Business Logic

Application Server

Session Management

Database Server

Presentation Tier

Spatial Database

Application Tier

Data Tier

Utilization of Domain Extendable 3D City Models

141

contents stored in the central database. This is because, the stored 3D city models are the

important information basis for performing the application logic and, hence, must be kept

consistent and can only be altered by advanced users having administration privilege.

However, in some application cases, the normal users may have to make some changes and

updates to the 3D city models which shall be temporarily stored in a form like a “pull

request” which can be checked and validated by the application administrators and merged

back to the central database in a later stage. Second, depending on the application scenarios,

users may want to add some new data and functionalities to the application system. However,

the application tier is usually implemented as a behind-the-scenes module which is difficult to

be modified or redeployed by the users due to the high system complexity in terms of the

hardware and software requirements. Considering the two above-mentioned limitations, a new

architecture approach is needed to ease the utilization of 3D city models for broader user

groups.

6.1.2 A new Multi-Level System Architecture

In the context of this dissertation thesis, a new multi-level system has been developed which

provides a novel conceptual solution for constructing a scalable 3D GIS environment and has

also been successfully implemented using the existing software tools and 3D city model

standard. The entire structure of this system can be subdivided into three logical tiers namely

the ‘information backbone’, the ‘application level’, and the ‘end user level’ shown in Figure

102 (cf. Yao et al. 2014).

Figure 102: Three-tier system architecture (cf. Yao et al. 2014)

At the lowermost level (Information backbone), the semantic 3D city model is created which

contains the city level information from different sources such as CityGML, Industry

Foundation Classes (IFC), ESRI shapefiles, CAD files and others. The city information from

GUI

Extract from

central Database

C
a
lc

u
la

tio
n

E
n

g
in

e

App 1: Decision support for

investment in renovation

A
p

p
li

c
a
ti

o
n

 L
e
v
e
l

Housing Company

En
d

 U
se

rs

Urban Analytics Toolkit

Noise Propagation

Simulation
Flooding Simulation

… many

more modules
Energy Demand

Calculation

3D City Model

+ ADEs
Common Urban

Information Model

In
fo

rm
a
ti

o
n

 B
a
c
k
b

o
n

e
 &

S
im

u
la

ti
o

n
 I
n

te
g

ra
ti

o
n

GUI

C
a
lc

u
la

tio
n

E
n

g
in

e

App 3: Decision support for

urban Planning

Extract from

central Database

Urban Planner

GUI

C
a
lc

u
la

tio
n

E
n

g
in

e

Extract from

central Database

Energy Planner

App 2: Reporting of renewable

energy production possibilities

 Utilization of Domain Extendable 3D City Models

142

different sources can be integrated into the common data model and exchange format

according to the CityGML standard along with its ADE mechanisms. This information model

shall be imported into a spatial database allowing for efficient storage and management of the

large 3D city models which can be efficiently accessed by different application domains. In

addition, an urban analytics toolkit can also be invoked, which is a bundle of complex

functional modules for performing the time expensive computations i.e. the derivation of key

indicator values, the attribute aggregation calculations, and the morphometric analysis etc.

which are essential in many different application fields like urban planning, environmental

and training simulations, disaster management, and energy assessment. Moreover, since all

these toolkits share the same data basis, multiple modules can be used together to complete

more complex tasks.

The Application Level acting as a “bridge” between the End Users level and the Information

Backbone is introduced which shall provide easy-to-use applications to the specific end-users

from different domains. Since most users from the End Users level usually have very little

GIS expertise and have nearly no knowledge of the complex 3D city models, they need only

intuitive tools that allow them to access the relevant part of the semantic 3D city models and

to perform some certain ad-hoc data modifications, simulations and calculations. Thus, all

applications at this Application Level must be designed in such a way that they follow the

principle of the "App concept", which has been established in recent years in the context of

smartphones and tablet PCs. This principle requires that for specific users or user groups, each

application should have a very limited range of functions in order to be relatively easy to learn

and intuitive to use. In addition, each application shall also be portable and can be easily

modified, recovered, or even cloned to a new one.

In order to create an application in compliance with the “App concept”, a number of

simplification procedures are needed to minimize the complexity of the application. First, it is

important to make clear about which functions provided by the urban analytics toolkit are

required by the end users and what information of the original 3D city model are relevant for

the application, because the required data and analysis functions may vary depending on the

application and target users of different application domains. In the subsequent step, the

relevant data contents shall be extracted from the central database according to different filter

criteria such as spatial bounding box, feature classes, and level of details etc. The

corresponding spatial content can be exported as tiled 3D visualization models and pre-cached

at the server side, whereas the thematic information can be mapped onto a simple table

structure allowing for easy data access and to realize the logical link with the generated 3D

visualization models. In addition, a calculation engine serving as a light-weight version of the

urban analytics toolkit shall be embedded into the application for performing the required

application functions. Moreover, the application level shall provide a user-friendly graphical

interface that helps users to explore the exported spatial and thematic information as well as

to operate the calculation engine to accomplish the application-specific simulation and

analysis tasks.

During the runtime of the application, the updated data content as well as the results of the

calculations and simulations are temporarily stored at the application level. Therefore, it is

very important to be able to import these up-to-date data back into the central database. The

application administrator or project manager must be able to determine what information

Utilization of Domain Extendable 3D City Models

143

contents have been changed, added, or deleted compared to the current database. After

confirming all the changes, a bulk process for updating the 3D city models in the central

database can be performed and the updated 3D city models can be used by further

applications and users of different domains.

6.2 System Implementation

The conceptual idea of the newly introduced multi-level system can be fully implemented for

the practical application cases by utilizing the existing GIS, ETL, and database-based

software tools including the 3DCityDB software toolkit along with the 3D web client

introduced in the previous chapters. The entire system implementation consists of two parts

according the system levels: one is the implementation of the information backbone and the

other one is the implementation of the application level. In the following two subsections, the

relevant aspects about the technical implementation of the both system levels are illustrated

respectively.

6.2.1 Implementation of the Information Backbone

A general way, among other things, of using the CityGML standard and the existing software

tools for creating the information backbone as well as the urban analytics toolkits is shown in

Figure 103. Since most of the applied software tools, especially the 3DCityDB software

package, have already been explained in the previous chapters, only the relevant workflow of

using the outlined tools and the comparison of different approaches are illustrated here.

Figure 103: Workflow of setting up the information backbone and urban analytics toolkit

To integrate the diverse spatial and non-spatial data with different formats into a common

data model in CityGML, the software tool Feature Manipulation Engine (FME) can be used

which allows the transformation of different data sources such as Industry Foundation Classes

(IFC), ESRI shapefiles, Spreadsheet files and others into CityGML and vice-versa. For the

creation of CityGML instance documents with ADE data, FME provides a transformer tool

Technische Universität MünchenLehrstuhl für Geoinformatik

46

3DCityDB
CityGML

Importer-

Exporter

…

+ADE

FME Workspaces

CityGML4j

Source Data
Database Procedures

Processing Tools

JDBC

 Utilization of Domain Extendable 3D City Models

144

called 'XMLTemplater' which can parse and interpret the ADE’s XML schema definition file

and use it as a template for creating instance documents, which are ensured to be valid against

the parsed ADE schema. In addition, FME offers a drag-and-drop user interface empower

users to design and develop their own analytics tools by assembling a set of transformer

functions provided by FME to realize complex data processing workflows. The calculation

results can be embedded into the CityGML model using either CityGML’s Generics module

or the ADE model, and exported as a single XML document for the data transmission and

exchange.

For the persistent data storage and maintenance, the CityGML file can be imported into a

3DCityDB database instance using the CityGML Import/Export tool. At the database level, it

is also possible to design a variety of powerful urban analytics toolkits by means of the

database procedures written using the script language such as PL/SQL for Oracle and in

PL/pgSQL for PostgreSQL/PostGIS. One of the advantages of using the database procedures

is that, developers can have a high flexibility in designing the analysis functions

programmatically and also can efficiently query the required data by just accessing the

corresponding database tables with the help of the indexing capabilities of the database to

achieve a sophisticated processing performance. In addition, the database procedures can also

be rapidly developed by utilizing the existing spatial function packages provided by the

spatial database and allows to develop complex spatial analysis and operation toolkit with

concise code structure.

The implementation of an urban analytics toolkit can also be done using high-level

programming languages like Java, Python, C#, and C++ etc. Compared to the database

procedures, such processing tools are able to provide a graphical user interface allowing users

to interact with the application program in an intuitive way. Besides, the data access to the

CityGML data contents is also very simple and flexible. For example, the data access to the

3DCityDB database can be realized by means of the Java Database Connectivity (JDBC)

library which is a standard part of the Java Development Kit (JDK) and provides a common

interface and methods to query and update data in a database. Moreover, the Java program can

also directly call the database procedures installed the 3DCityDB and receive the processing

results via the JDBC. Regarding the access to CityGML instance document, the Java-based

library citygml4j is a powerful means for reading, validating, processing, and writing

CityGML documents. This way, an extensive urban analytics toolkit based on the 3D city

models can be developed and built as a single runnable program that can be launched on any

computer installed with a Java virtual machine or serves as a function library referenced in

other toolkits.

6.2.2 Implementation of the Application Level

The implementation of the Application Level can be facilitated by making use of the Cloud

technology which fits very well to the technical requirements of setting up an application for

specific user groups. For the graphical user interface, the 3D web client introduced in the

previous chapter has been extended with the full functionalities for interacting with the

Cloud-based online spreadsheets which can not only serve as an online repository for storing

the thematic information of 3D city models but also provide a sophisticated calculation engine

Utilization of Domain Extendable 3D City Models

145

for performing many kinds of data processing and calculation tasks such as data modification,

query, statistics, and ad-hoc calculations.

For instance (cf. Figure 104), when using Google Spreadsheets, the city objects displayed on

the 3D web client can be queried on the basis of their attributes stored in the online

spreadsheet, which supports a set of query functions allowing to retrieve the desired data

records using a query expression that has a very similar syntax as the Structured Query

Language (SQL). The query statements can be encoded with the spreadsheet URL and then

sent to the spreadsheet server via a simple HTTP call. In addition, since only authenticated

users have access to the target online spreadsheet, the request must additionally carry a so-

called token code which will be interpreted by the Cloud server to determine, if the request is

sent from an authorized user. Once the Cloud server has completed the query processing, a

response containing the query results will be formatted in a JSON structure and can be easily

parsed at the client side using JavaScript engine.

Figure 104: Sequence diagram of the process flow when performing a query on an online spreadsheet

In the online spreadsheet, the geographic coordinates of each city object’s centroid can be

stored in two separate columns which represent the longitude and latitude attributes

respectively (cf. Figure 105). By applying a simple query against the two columns, it is very

easy to find out those city objects whose center points are contained within a 2D bounding

box which can be defined by simply selecting two diagonal points on the map. The query

statement may look like the followings:

SELECT * from [tableName] WHERE Longitude > minX AND

Longitude < maxX AND Latitude > minY AND Latitude < maxY;

Where the value pairs [minX, minY] and [maxX, maxY] denote the coordinates of the

diagonal points of the given bounding box in WGS84 Geographic coordinate reference

system. In case that a polygon area is given, its maximum bounding box can be first

calculated to be used for performing a pre-filter and the returned city objects will be further

checked at the client side using a ray-crossing algorithm to determine which city objects are

located within the polygon. This function is especially useful when, for example, developing a

Technische Universität MünchenLehrstuhl für Geoinformatik

47

3D Web Client Google Server
Online

Spreadsheet

Launch 3D web client

Login

Response containing a token code

Response containing the query results or

an error message if the token is not valid

AJAX query request

Validate the token

Result of the validation

 Utilization of Domain Extendable 3D City Models

146

web portal which should offer users the possibility to define a polygon and download all the

spatially related 3D city objects.

Figure 105: Conceptual idea of using online spreadsheet to perform a simple spatial query

In addition to the query function, the data contents in the online spreadsheet can be updated

via a simple authorized HTTP request. Once the value in a column has been updated, these

changes can be automatically propagated to another column which is defined as the result of a

formula based on the values from other columns. A simple example is shown in Figure 106 to

illustrate the basic concept.

Figure 106: Example of creating a simple calculation engine using an online spreadsheet

In this example, three columns Attr1, Attr2, Attr3 are defined in the online spreadsheet

representing three different numeric attributes of a 3D city model. A simple formula has been

defined on the column Attr1 whose value at each row must be automatically resulted from

multiplying the values of the Attr2, Attr3 columns and can therefore not be freely changed by

the users. Once a value in the column Attr2 or Attr3 has been changed, then the value of the

Technische Universität MünchenLehrstuhl für Geoinformatik

47

b

a

d

c

City

e

GMLID Longitude Latitude …

BLDG_a X1 Y1 {…}

BLDG_b X2 Y2 {…}

BLDG_c X3 Y3 {…}

BLDG_d X4 Y4 {…}

BLDG_e X5 Y5 {…}

… {…} {…} {…}

3D visulization models

on the Web

Thematic Information stored in an online-

spreadsheet in the Cloud

Logical link

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)

(X5, Y5)

Technische Universität MünchenLehrstuhl für Geoinformatik

49

GMLID Attr1 Attr2 Attr3

BLDG_a 400 4 100

BLDG_b 500 5 100

BLDG_c 600 6 100

BLDG_d 700 7 100

BLDG_e 800 8 100

… … … …

Thematic Information stored in an online-spreadsheet in the Cloud

Formula: = , =

Utilization of Domain Extendable 3D City Models

147

corresponding cell in the column Attr1 will be automatically updated. Similar to most desktop

spreadsheet calculation programs like Microsoft Excel, the Cloud-based online spreadsheet

i.e. Google Spreadsheet provides a rich set of functions for designing a formula which can be

used for developing a variety of calculation engines for specific applications.

However, using online spreadsheet as a calculation engine requires that the spreadsheet must

be editable, and the users must be authorized to have write-access to it. This would be very

risky regarding the data security and consistency, since this online spreadsheet may also

contain other columns for storing the important attribute values which can only be edited by

the application manager. To overcome this issue, a specific strategy using two interrelated

spreadsheets has been developed which is illustrated using a simple example (cf. Figure 107).

As shown in the figure, all attributes, which must be changeable by the end user to run the

calculation, are extracted and stored in a separate spreadsheet (Spreadsheet 1). The end user

shall have full access to this spreadsheet and can arbitrarily change the contained values. The

second spreadsheet (Spreadsheet 2) can be seen as the main spreadsheet where the calculation

formula is defined and in which the unmodifiable attribute data are stored. Thus, the end user

can only have read-only access to this spreadsheet. The columns Attr2 and Attr3 are linked

with their counterparts in the first spreadsheet and their values can be automatically updated

once the referenced column values in the first spreadsheet have been changed. To establish

such reference relationship, the owner of the second spreadsheet must be granted to have read

access to the first spreadsheet for being able to pull the data from it. In this way, the

calculation engine can be run by changing the input values in the first spreadsheet and the

calculation results along with the other attribute information can also be well-protected as

well as accessible to the public users.

Figure 107: Example of using two separate spreadsheets to perform calculations and simulations with

secured data

Technische Universität MünchenLehrstuhl für Geoinformatik

50

GMLID Attr1 Attr2 Attr3 …

BLDG_a 400 4 100 …

BLDG_b 500 5 100 …

BLDG_c 600 6 100 …

… … … … …

GMLID Attr2 Attr3

BLDG_a 4 100

BLDG_b 5 100

BLDG_c 6 100

… … …

End User

Spreadsheet 2

Spreadsheet 1

Pull from Pull from

 Utilization of Domain Extendable 3D City Models

148

6.3 Example Applications

The new multi-level system has been implemented, used, and evaluated in several commercial

and scientific projects within various domains e.g. solar irradiation analysis, energy demand

estimations, and identifying retrofitting and refurbishment potentials for buildings. In this

section, two corresponding use cases along with the 3D web client applications are presented.

6.3.1 Use Case 1: Solar Potential Simulation for the district LBBD

In the context of this commercial project, a 3D web application was required which should be

able to provide services in support of the ESCO (Energy Service Company) strategy that

specifically identifies the solar potential within the district London Borough of Barking and

Dagenham (LBBD). In this context, a CityGML-based 3D city model of the buildings in the

LBBD district was created to serve as a common information hub for carrying the solar

potential information. These information shall be efficiently managed and visualized in order

to allow users to explore and analyse the solar potential value of the individual buildings as

well as their other relevant attribute information e.g. size, shape, height, ownership, and usage

etc. The process for developing such information model consists of two major steps: The first

step is the creation of 3D building models according to the CityGML standard. The second is

to calculate of the solar potential value for each building in the district LBBD and to enrich

the 3D building models with the calculation results.

In the first step, the 3D building reconstruction was done by means of an automatic process

using the 2D footprint datasets of the building object along with the high-resolution Digital

Surface Model (DSM) and Digital Terrain Model (DTM). While the DTM describes the

actual shape of the Earth surface, the DSM represents the real height of the surface situations

with respect to the Earth surface as well as the 3D urban and landscape objects on it. Higher

resolution (≤ 0.5m/grid) of the two models enables the fine-grained reconstruction of the roof

surfaces of 3D building objects and can hence generate LOD2 building models according to

the LOD definition in CityGML standard (cf. Haala & Kada 2010). This reconstruction

process is well supported by the commercial software tool developed by the company

virtualcitySYSTEMS.

The calculation of the solar potential values was done by using the Solar Potential Analysis

Tool (cf. Chaturvedi et al. 2017) developed by the team of the Chair of Geoinformatics at

TUM. It is a Java-based simulation tool allowing for estimating solar energy production for

roofs and facades of buildings through a multi-threaded process. Based on the CityGML 3D

building model together with the calculated sun position and an approximated sky dome, the

solar power from direct, diffuse, and global solar irradiation for each month of the year have

been estimated for individual building with respect to the shadowing effects of its surrounding

topographic objects. Moreover, the Sky View Factor (SVF) which is a value ranging between

0 and 1 for representing the fraction of visible sky on a hemisphere has also been calculated

for all surfaces of each building.

The created CityGML dataset containing the calculation results of the solar potential analysis

were first imported into a 3DCityDB instance. Next, the thematic information were exported

and uploaded to a Cloud-based online spreadsheet using the Google Fusion Tables. A

Utilization of Domain Extendable 3D City Models

149

corresponding 3D visualization model has been generated with an LOD2 geometry

representation and can be visualized in the 3D web client as shown Figure 108.

Figure 108: User interface after loading the LBBD 3D building models into the 3D web client

To access the content information stored in the Google Fusion Table, authorized users must

sign in with their Google account by using a prompted login dialog window (cf. Figure 109).

Figure 109: User-dialog for signing up using a valid Google Account

 Utilization of Domain Extendable 3D City Models

150

Spatial queries can be performed by selecting a bounding box and the query results are shown

in Figure 110.

Figure 110: Example of performing a spatial query using a user-defined bounding box

As an example of the query operation, all buildings along “HAYDON ROAD” are queried

and a total number of 83 building objects are returned and highlighted in the 3D web client

(cf. Figure 111).

Figure 111: Example of performing a simple query based on an attribute

Utilization of Domain Extendable 3D City Models

151

It is also possible to narrow down the query criteria by adding a further search condition. For

example, a user may want to find out the buildings which are along “HAYDON ROAD” and

the value of their yearly average direct solar irradiation is larger than 50000 kWh. The user

just needs to select the corresponding attributes by activating their check boxes, and the

specified query criteria are combined in a logical “AND” operation (cf. Figure 112). If none

of the checkboxes has been activated, no query will be applied.

Figure 112: Example of performing a complex query based on multiple attributes

Aggregation functions like sum, average, min, and max are also supported for calculating the

relevant statistic values (cf. Figure 113).

Figure 113: Example of performing aggregation calculation on multiple numeric attributes

 Utilization of Domain Extendable 3D City Models

152

A comprehensive report for summarizing the latest working and analysis status of the 3D web

client can be created and displayed in a new browser window (cf. Figure 114). The created

report especially lists all the selected attribute contents of the selected building objects as well

as the calculation results of the aggregation functions. A screenshot of the current 3D map

view can also be printed in the report.

Figure 114: Example of the automatically generated report showing an overview of the statistic in-

formation

6.3.2 Use Case 2: Energy Atlas Berlin

In the context of the smart city project “Energy Atlas Berlin”, an analysis and decision

support tool for strategic energy planning at the city and district scale has been developed. It

is based on the semantic 3D city model of Berlin, which was modeled and represented

according to the CityGML standard. The Energy Atlas Berlin includes all data from the Solar

Atlas Berlin including the rating of the suitability of all individual roof surfaces for each of

the 550,000 buildings in Berlin for the production of photovoltaic and solar thermal energy. It

also integrates the methods for the estimation of energy demand e.g. heating energy and

electrical energy etc. and for the assessment of the energetic retrofitting possibilities on the

individual building.

Based on the developed multi-level system and the 3D web client, an interactive energetic

building retrofitting application has been developed which allows to assess the heating energy

demand of every residential building (cf. Figure 115). This application allows stakeholders

from housing companies, energy consulting firms, city administration as well as building

owners and tenants to explore the energy demand of individual buildings or any group of

buildings. Users can virtually apply retrofitting measures to the building(s) and directly see

estimates for the potential savings of energy and money, as well as the estimated costs for

Utilization of Domain Extendable 3D City Models

153

refurbishment. Nearly the entire computation logic has been implemented using formulas in a

Cloud-based Google Spreadsheet (cf. Kaden 2014).

Figure 115: Example of showing the estimated energy demand for a selected building

Figure 116 shows an example of using the spreadsheet-based calculation engine to perform

the ad-hoc simulation of the retrofitting measure. In this example, the heat transfer

coefficients (called U values) of the outer walls, roofs and windows can be directly changed

in the attribute table in the web client. The new U value entered by the user can be directly

passed to the online spreadsheet to run the pre-defined formula for calculating the expected

heat energy demand value of the annual heat demand per m² usable area. The respective

calculation methods and formulas are described in detail in the work of (Kaden & Kolbe

2013, Kaden 2014).

Figure 116: Ad-hoc estimation of the heating energy demand for one building (cf. Yao et al. 2014)

 Utilization of Domain Extendable 3D City Models

154

Discussion, Conclusions, and Outlook

155

Chapter 7 Discussion, Conclusions, and Outlook

In this chapter, the main results of this dissertation work including the developed methods and

approaches are first summarized regarding the objectives and motivations of this thesis. In the

second subsection, the major contributions of this thesis in the fields of scientific research,

industrial applications, academic teaching, as well as international standardization are

concluded. Finally, the relevant aspects about the future research are identified and outlined in

the last subsection.

7.1 Discussion

In this section, the research and development results will be discussed by answering the

questions and hypotheses stated in the first chapter.

1) Which technologies and standards are important for realizing the efficient

management, interaction, and visualization of semantic 3D city models using a computer

system ?

The first important technology are Geographic Information Systems (GIS), which are a

specific kind of application system designed for performing complex operations on geospatial

data regarding the data acquisition, storage, management, analysis, and visualization. Since

semantic 3D city models are a formal description of the heterogeneous geospatial data, the

GIS technology provides the ideal platform to bridge the gap between the virtual urban

information and the advanced computer applications on a variety of platforms or devices such

as personal computers and mobile devices. Another key technology are Spatial Database

Management Systems (SDBS), which is one of the most important component in a GIS

infrastructure to provide a powerful means for the efficient management of large 3D

geospatial data. Concerning the high hardware costs of a desktop and server-based GIS

infrastructure, the Cloud Computing technology paves a new way for an economical business

mode which allows IT vendors to provide contracted services, such that the GIS users do not

need to setup an in-house hardware infrastructure by their own. It also allows GIS companies

or developers to not only minimize the resource and maintenance costs but also to speed up

the development time for their business products. In addition, the Geospatial Data Modelling

concept offers a systematic approach and standard like CityGML to harmonize the

heterogeneous geospatial data into a common data model to facilitate the interoperable

exchange of 3D city models between different application systems. For 3D visualization and

interaction, the technologies 3D Graphics Visualization and Digital Virtual Globe play the

essential role, since they can offer the relevant functionalities for building a 3D user interface

to realize high-performance exploration and 3D visualization of 3D city models on diverse

platforms.

2) What are the key aspects for realizing the efficient storage and management of large

and complex-structured semantic 3D city models regarding the data modelling and

software implementation ?

The efficient management of semantic 3D city models in GIS applications requires a

universal information model that should be able to establish a common definition of the

complex city model objects, attributes, and relations along with a standardized exchange

 Discussion, Conclusions, and Outlook

156

format that can be interpreted by and exchanged between applications using a common

interface. In this context, the international standard CityGML has already been developed

which defines a rich feature catalogue and platform-independent UML model for the most

relevant 3D topographic features like buildings, bridges, waters, and vegetation etc. according

to well-defined international standards and specifications. In order to efficiently store

CityGML datasets with large file sizes, the spatially-enhanced relational database systems are

suitable means, which are able to make full use of their spatial capabilities and functions to

handle 2D/3D spatial contents. Furthermore, the relational database schema must be carefully

designed to create a compact table structure that allows to perform the operations reading,

writing, querying, and updating etc. of large geospatial data efficiently. To realize this, a

number of relational modelling concepts and approaches are identified which have also been

successfully employed to develop an efficient geo-database in the framework of the

3DCityDB project. In addition, a complete 3DCityDB-compliant software toolkit provides the

main functionalities supporting the work chain, starting with the reading, processing, and

writing of the data contents in the database, via the conversion to different model

representations, up to high-performance data visualization and exploration on a 3D mapping

application.

3) How to implement the extensions to the semantic 3D city model according to the

CityGML standard and then develop a dynamically extendable database for dealing

with these extensions efficiently ?

CityGML’s extension mechanism ADE allows to dynamically extend the existing CityGML

models by incorporating additional feature classes or extra attribute types into the CityGML

framework. Such extensions can be maintained as a platform-independent information model

using UML diagrams and can be implemented as an XML-based schema in compliance with

GML schema through an automatic procedures according to the UML-to-XML encoding

rules of the ISO 19136 standard. Concerning the data storage, the 3DCityDB database schema

has already provided an advanced database implementation for supporting high-performance

storage of standard CityGML data and the database must, hence, only become being

extendable for attaching additional compact database schemas to support the handling of

arbitrary CityGML ADE datasets with complex data model structures as well. While the

XML schema of a CityGML ADE natively represents an object-oriented data structure, the

target database schema can be generated from a dedicated model transformation process to

execute the conversion of an object-oriented model (input model) to a relational database

model (output model). To realize this, both the input and output models have to be first

mapped onto some particular kinds of computer-interpretable formats or representations. This

way, model transformation processes can be automatically carried out by applying a set of

user-defined mapping rules by means of a computer-aided transformation system to produce

the individual 3DCityDB-compliant database schema for the respective CityGML ADE.

4) Compared to the existing solutions, is there any further advanced approach that

allows the automatic derivation of a compact relational database model from a

CityGML extension which is structured as a complex object-oriented data model?

According to the survey of the existing model transformation solutions, it was identified that

most of them have very limited abilities in generating compact relational structures, because

the employed mapping rules of these software tools are too rigid and can hence easily result in

Discussion, Conclusions, and Outlook

157

a large amount of database tables, which will cause time-consuming issues when, for

example, performing a complex query on those data contents that are distributed over many

database tables linked with relational joins. In addition, the transformation rules are normally

hard-coded within the software lacking the flexibility in extending or introducing additional

new rules. Thus, it would be good to find a new way that allows developers to formally

represent the mapping rules learned from the design decisions of the 3DCityDB to also

automatically derive compact database schemas for arbitrary CityGML ADEs. To overcome

these issues, both model representations can be fully represented using proper graph

structures comprising a set of typed and attributed graph nodes and arcs which can represent

the model entities and their interrelationships respectively. In addition, the mapping

relationships between the model objects e.g., classes and tables can also be declaratively

expressed using directed graph arcs to connect the respective graph nodes. This way, the

model transformation problem can be completely expressed as a graph transformation

problem which can be solved using Graph Transformation Systems owning the following

advantages:

• In a graph transformation system, the initial state of the model transformation process

can be formulated as a typed attributed graph called “host graph”. The entire process

can be carried out by applying a set of so-called graph transformation rules which can

be declaratively defined by users to reflect the logical mapping of the source model

onto the target one. Each rule allows, according to the various transformation

conditions, to rewrite the host graph in a way of substituting a subgraph by a new one

for executing a corresponding calculation step. Moreover, a group of graph

transformation rules can also be combined to perform a more complex transformation

procedure. This way, the results including the desired relational database model as

well as the mapping relationships between the both model representations can be

yielded by interpreting the processed host graph once the graph transformation has

been completed.

• Some graph transformation systems like AGG provide a very powerful control-flow

mechanism called layered-based transformation which is an important concept for

handling conflicting graph transformation rules, which can occur in case that multiple

rules are applicable at the same time. The general idea of such layer-concept is to

schedule the processing sequence of all transformation rules by grouping them into a

set of numbered layers which can be sorted in a descending order based on the user-

defined execution priorities and as such will be applied successively. In this way, each

layer will have a small number of application rules whose potential conflicts can be

easily determined and avoided by decomposing the conflicting rules into further

layers. This mechanism is very essential for model transformations since it can ensure

the proper termination of the transformation processes that have all resolved

conflicting rules.

• The concept of the type graph coming with the graph transformation system like AGG

allows the formal definition of the meta-model of all graph elements in the graph

transformation system and can be used as a global constraint allowing to guarantee the

structural and semantic consistency of the host graph and transformation rules

throughout the transformation process. It is hence possible to design the meta-graph

 Discussion, Conclusions, and Outlook

158

for the object-oriented model and relational database model as well as for the mapping

relationship between the individual model objects, e.g. the mapping relationship

between classes and tables. The structure of the meta-graph can be conceptually

expressed as a UML-diagram which can later be directly mapped onto the

corresponding graph representation.

Based on the above-described features of graph transformation systems, a graph-based

approach has been successfully developed for deriving compact relational database schemas

from CityGML ADEs.

5) How to realize the efficient visualization of large semantic 3D city models along with

their extensions in a web browser, where users are able to explore the data model

information interactively ?

The semantic 3D city model standard CityGML was primarily designed as a universal

information model which is able to carry the heterogeneous urban information in an XML-

based data structure. It is however not very suitable for the purpose of 3D visualization and

shall be converted to specific 3D visualization models with appropriate spatial tiling structure

and coordinate reference system, so that 3D mapping applications are able to dynamically

load the relevant data tiles according to the current camera perspective for the efficient

rendering of 3D models during runtime. With the growing capabilities of modern web

browsers and the consequent advancement in HTML5 and WebGL-based 3D virtual globes,

the web-based 3D visualization of large spatial data on most major operating systems and

platforms became possible. Another aspect regarding the web-based exploration of semantic

3D city models is the linking with and quering of thematic information in addition to the pure

3D visualization. The proposed solution in the thesis is to utilize Cloud-based online

spreadsheets for storing the thematic information which can be provided by third parties or

outsourced from the central database. Consequently, the Cloud-based online spreadsheet can

be used as an intermediate data container for keeping the contents up-to-date without affecting

the original 3D city models stored in the central database. This way, any update of thematic

contents will exclusively take place within the online spreadsheet and can also be written back

to the database at any time. In addition, based on the unique identifier of each city model

object, multiple online spreadsheets containing different domain-specific information can be

linked together and displayed to users simultaneously. Furthermore, the access of online

spreadsheets can also be easily controlled via Cloud services. For example, once an online

spreadsheet has been created by a user, it can be quickly shared with other users by grouping

them with different access rights e.g. read-only or the full access with write privilege.

Hypothesis: It is possible to develop such an application system that supports

management, visualization, and interaction of extendable semantic 3D city models, and

at the same time reaches a good balance between the high model complexity and specific

user needs. This balance can be evaluated against the criterion, whether end users who

are not GIS experts can also access complex 3D city models and accomplish various

domain-specific analysis and simulation tasks.

In the context of Smart City projects, the growing complexity of the application scenarios

strongly requires a comprehensive and integrative platform which allows for facilitating a

range of analysis, simulation, and modification operations on the complex-structured 3D city

Discussion, Conclusions, and Outlook

159

models. Since most end users from specific application domains are not GIS experts, it hence

makes sense to make the system platform scalable such that a wide group of application users

are able to easily access and handle the 3D city models during the planning, design, and

development process. To reach this goal, a new multi-level system for building up such kind

of GIS environments has been proposed in this dissertation work and also been successfully

implemented based on existing software tools and 3D city model standard. It introduces an

additional application level that bridges the gap between the end users and the complex

semantic 3D city models stored in a central database which maintains the heterogeneous

urban information according to the CityGML standard along with its ADE mechanism. The

technical implementation of the application level has been realized based on the so-called

App-concept, which defines that for specific users or user groups, each application should

have a very limited range of functions and must hence be relatively easy to learn and intuitive

to operate. Based on this concept, the required 3D city models of a specific app shall be

simplified by extracting them from the central database according to the thematic and spatial

filter criteria in order to generate a relatively small 3D visualization model whose related

thematic information can be mapped onto a simple table structure. As an intuitive graphical

user interface, a 3D web client has been developed whose functionalities go beyond the 3D

visualization and exploration and allows for performing various analysis and simulations on

3D city models using the Cloud Computing technology. For example, it is possible use Cloud-

based online spreadsheets to develop a light-weight calculation engine by defining a

spreadsheet formula on a column whose record values can be automatically computed from

the values of the other columns. Any ad-hoc changes to the values of these columns can be

made by users through the web client and the calculation results will be immediately

displayed in response to the user operations. In this way, users are shielded from the complex

3D city models and only need to focus on their business tasks by accessing the simplified data

and operating the analytic tools.

7.2 Contribution of the Thesis

The key contributions of this dissertation work for a range of fields are summarized as

follows.

1) Contributions to scientific research

One of the main contributions of the thesis is the comprehensive review of the relevant

standards and technologies that are of great importance for the efficient management,

interaction, and visualization of 3D geospatial data. It especially provides GIS researchers

with the fundamental basis for the systematic development of a domain-extendable semantic

3D city model according to the international standards and summarizes the key solutions for

the creation of a compact database schema using spatially-enhanced relational database

management systems. In addition, the conceptualization of the logical mapping rules for the

model transformation facilitates the development of a new graph-based approach which go

beyond existing solutions for the automatic derivation of relational database schemas and

which can provide the GIS researcher with a new idea for the transformation between

different types of application schemas i.e. JSON, XML, and graph database etc. Moreover,

the implementation results obtained from the thesis also strongly shows the possibility of

utilizing graph transformation systems to accomplish the complex model transformations in

 Discussion, Conclusions, and Outlook

160

the geospatial domain. Thus, it is reasonable to believe that the developed methods and

concepts can be adopted and applied for other data models like INSPRE, IndoorGML, and

IFC etc. in future research.

2) Contribution to practical application

During the research of this thesis, a number of software tools have been developed or

extended for improving the handling of 3D city models for both CityGML 1.0 and 2.0. Most

of these software tools are completely open source and freely available for the public. For

example, starting from version 3.3.0 of the 3DCityDB, the developed 3D web client (cf.

4.3.4) has been introduced into the 3DCityDB toolkit to serve as a web-based front-end for

high-performance 3D visualization and interactive exploration of arbitrarily large semantic

3D city models using Cloud technology. Also, many consequent extensions have been made

to the CityGML Import/Export tool in order to generate pre-styled 3D computer graphics

models with a simple tiling structure for 3D geo-visualization. To date, the developed

software tools have been successfully employed in many research projects, and a number of

companies worldwide are using the software at the core of their commercial products to

process semantic 3D city models in a range of applications and infrastructures. At the time of

writing this thesis, a new version of the 3DCityDB (cf. Chapter 4) has been completed which

includes the support of CityGML ADEs and will be released in the year 2019.

3) Contributions to academic teaching and practical training

The presented work provides a comprehensive introduction to the relevant concepts and

workflow ranging from model-driven based 3D geospatial data modelling, via the relational

database modelling, up to the 3D geo-visualization and exploration on the web. It is based on

state-of-the-art technologies and international standards along with numerous application

examples, which together forms an ideal and extensive lecture roadmap for GIS students to

help them in learning the advanced knowledge around the topics of ‘Applied Geoinformatics’.

In addition, the key concepts of the international OGC standard CityGML as well as its

extension mechanism have also been explained in detail which covers the fundamental

aspects for the modelling of an extendable semantic 3D city model as well as for its utilization

in practical applications. Also the illustrated technical details about the software

implementation of the individual 3DCityDB software tool can substantially help GIS

developers and software vendors to get an easy start with the understanding of the software

structures and allow them to rapidly extend the existing functionalities of the software

modules according to the specific project needs. Moreover, for those 3DCityDB users who

are not experienced in software programming, the author of this thesis has written a hands-on

tutorial6 which simplifies the details of the software implementation and gives a step-by-step

instructions on how to use the CityGML and 3DCityDB to build a customized 3D web

application.

4) Contributions to international standardization

The current CityGML specification lacks a reasonable definition of the scope of CityGML

ADEs whose feature classes and data types can, in principle, be defined as any complex types

in XML schemas. However, as stated in the CityGML specification, new feature classes of an

6 Tutorial available at: https://www.gis.bgu.tum.de/en/projects/3dcitydb/

Discussion, Conclusions, and Outlook

161

ADE shall be defined based on the extension of the existing CityGML classes and this rule

was rarely respected in practice as many feature classes in the existing ADEs like Energy-

ADE and UtilityNetwork-ADE etc. have been directly derived from the GML feature class

instead. Besides, it also lacks extensive instructions about the systematic development of an

ADE regarding its UML data modelling as well as XML encodings which have only been

addressed later by (van den Brink et al. 2013). Against this background, this thesis offers a

complete framework to incorporate the existing model-driven approaches for the development

of ADEs with respect to the ISO 19136 standard which stipulates that the ADE classes must

be derived from either the GML or CityGML classes. In addition, the developed framework

also introduces a systematic way for the automatic derivation of a CityGML-compliant

relational database schema from a valid ADE application schema. The applicability of this

framework has been successfully evaluated based on an artificial ADE which is representative

for most ADEs in practice. Above, the implementation results around this artificial ADE

including its UML models, XML and relational database schema, as well as the

corresponding schema mapping file can serve as a best practice for the future CityGML

specification.

7.3 Outlook and Future Research

Future work should mainly focus on the continuing improvement of the presented graph-

based approach by fine-graining the developed graph transformation rules in order to derive

the desired database schemas according to the various optimization concepts, constraints, and

principles of model transformation. This would allow to abstract a set of declarative graph

transformation rules from the design decision of the 3DCityDB database schema which can

then be automatically derived from the original CityGML’s XML schema definition files or

UML models. This way, the 3DCityDB developers will be able to efficiently maintain the

database schema at an abstract conceptual level from which the SQL definitions of different

spatial database products e.g. Oracle Spatial, PostgreSQL/PostGIS, and SAP HANA can be

automatically generated. Another positive impact is that the 3DCityDB can also be rapidly

updated in response to any changes or upgrades made to the CityGML data models without

needing to modify the database schema manually. Moreover, the long-term goal is to make

the 3DCityDB far more generic for translating arbitrary GML application schema to efficient

database schemas automatically.

The current approach for the database import and export of CityGML ADE datasets is based

on a plugin-like solution which requires quite a lot of manual implementation on the

import/export functionalities for each individual ADE. This causes high costs in terms of

programming skills and investments in case of complex ADEs and therefore raises the

demand for a generic solution that should allow to automatically read and write CityGML

ADE instance documents without needing to deploy additional plugins. This concept could

also be applied to other 3DCityDB software tools like KML/COLLADA/glTF Exporter and

the Spreadsheet Generator Plugin in order to support the automatic creation of 3D

visualization models and Cloud-based online spreadsheets for arbitrary ADEs which would be

easily accessed and explored using the developed 3D web client. With these improvements,

the 3DCityDB along with its toolkit will become an extendible platform with the generic

 Discussion, Conclusions, and Outlook

162

support for the interoperable management, access, analysis, visualization, and exploration of

arbitrary GML data.

As mentioned in section 5.2.1, it is possible to represent the aggregation structure of a 3D city

object e.g. building using the glTF-based batched 3D models on a web client. With this

approach, the currently existing 3D mapping applications provide two interaction modes

which allow users to select the building object as a whole or click on its subdivided parts like

wall and roof surface to query the related thematic information (cf. Schilling et al. 2016). The

two modes are mutually exclusive and must be manually switched by users in order to interact

with the objects on different construction levels. This operation behavior is however not very

friendly for the users and can be improved with better interaction functionalities in future. For

example, once a building object has been firstly clicked, its root element along with its

subdivided parts shall be identified and highlighted. With the second click on the same screen

position, the respective sub-part like wall or roof surface will be selected and all the rest sub-

parts should be unhighlighted. When clicking on the same building object once again, the

element like window or door at a deeper level shall be selected. Depending on the selected

object, the associated thematic information should be respectively displayed in a table view as

usual, besides which the structure information about the decomposition hierarchy could also

be outlined on a dialog window using a tree-like structure which can be freely navigated to

select the individual building elements at different hierarchy levels. The possibility and

usability of such kinds of interactions on the Web will have to be proven in the future

research work.

Bibliography

163

Bibliography

AGG (2006) The AGG 1.5.0 Development Environment - The User Manual. http://www.user.tu-

berlin.de/o.runge/agg/AGG-ShortManual/AGG-ShortManual.html. Accessed 13 Nov 2018.

Agoub A, Kunde F, Kada M (2016) Potential of Graph Databases in Representing and Enriching

Standardized Geodata. In: Kersten TP (ed) Tagungsband der 36. Wissenschaftlich-Technischen

Jahrestagung der DGPF in Bern. Publikationen der Deutschen Gesellschaft für Photogrammetrie,

Fernerkundung und Geoinformation e.V. (DGPF), vol 25, pp 208-216.

Agugiaro G, Benner J, Cipriano P, Nouvel R (2018) The Energy Application Domain Extension for

CityGML: enhancing interoperability for urban energy simulations. Open Geospatial Data, Soft-

ware and Standards. 3(2).

Almendros-Jiménez JM, Becerra-Terón A, García-García F (2010) Development of a Query Language

for GML based on XPath. In: Kovács L, Kutsia T (eds) Proceedings of 6th International Workshop

on Automated Specification and Verification of Web Systems, 30-31 Juli 2010, Wien, Austria. EP-

iC Series in Computing 18, EasyChair 2013, pp 51-64.

Altmaier A, Kolbe TH (2003) Applications and Solutions for Interoperable 3d Geo-Visualization. In:

Fritsch D (ed) Proceedings of the photogrammetric week 2003 in Stuttgart. Wichmann Verlag,

Heidelberg, pp 251-267.

Ambler SW (1997) Mapping objects to relational databases: What you need to know and why.

http://caminotics.ort.edu.uy/innovaportal/file/2032/1/mappingobjectstorelationaldatabases.pdf. Ac-

cessed 13 Nov 2018.

Amer-Yahia S, Du F, Freire J (2004) A Comprehensive Solution to the XML-to-Relational Mapping

Problem. In: Proceedings of the 6th annual ACM international workshop on Web information and

data management, 12-13 November 2004, Washington DC, USA, pp 31-38.

Amirian P, Alesheikh A (2008) A Service Oriented Framework for Disseminating Geospatial Data to

Mobile, Desktop and Web Clients. World Applied 32 Sciences Journal. 2008;3(1):140-153.

Autodesk (2014) Autodesk FBX SDK Documentation.

http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/. Accessed 13 Nov 2018.

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,

Stoica I, Zaharia M (2010). A View of Cloud Computing. Communications of the ACM. 53(4):50-

58.

Atkinson M, Bancilhon F, DeWitt D, Dittrich K, Maier D, Zdonik S (1992) The Object-Oriented

Database System Manifesto. In: Bancilhon F, Delobel C, Kanellakis P (eds) Building an Object-

oriented Database System, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1-20.

Awang MK, Labadu NL (2012) Transforming Object Oriented Data Model to Relational Data Model.

International Journal on New Computer Architectures and Their Applications (IJNCAA). 2(3):402-

409.

Alattas A, van Oosterom PJM, Zlatanova S (2018) Deriving the Technical Model for the Indoor Navi-

gation Prototype based on the Integration of IndoorGML and LADM Conceptual Model. In: Pro-

ceedings of the 7th Land Administration Domain Model Workshop, 12-13 April 2018, Zagreb,

Croatia.

Barnes M, Finch EL (2008) COLLADA – Digital Asset Schema Release 1.5.0. Specification.

https://www.khronos.org/files/collada_1_5_release_notes.pdf. Accessed 13 Nov 2018.

http://www.user.tu-berlin.de/o.runge/agg/AGG-ShortManual/AGG-ShortManual.html
http://www.user.tu-berlin.de/o.runge/agg/AGG-ShortManual/AGG-ShortManual.html
http://caminotics.ort.edu.uy/innovaportal/file/2032/1/mappingobjectstorelationaldatabases.pdf
http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/
https://www.khronos.org/files/collada_1_5_release_notes.pdf

 Bibliography

164

Beauregard B, Murray C, Speckhard B (2009). Oracle Database 11g Workspace Manager Overview.

https://www.oracle.com/technetwork/database/twp-appdev-workspace-manager-11g-128289.pdf.

Accessed 13 Nov 2018.

Becker T, Nagel C, Kolbe TH (2013) Semantic 3D modeling of multi-utility networks in cities for

analysis and 3D visualization. In: Pouliot J, Daniel S, Hubert F, Zamyadi A (eds) Progress and new

trends in 3D Geoinformation sciences. Lecture notes in Geoinformation and cartography. Springer

Berlin Heidelberg, pp 41-62.

Beil C, Kolbe TH (2017) CityGML and the streets of New York - A proposal for detailed street space

modelling. In: Kalantari M, Rajabifard A (eds) Proceedings of the 12th International 3D GeoInfo

Conference 2017. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol IV-4/W5. ISPRS, pp 9-16.

Bhardwaj S, Jain L, Jain S (2010) Cloud computing: A study of infrastructure as a service (IAAS).

International Journal of Engineering and Information Technology. 2(1): 60-63.

Bhat MA, Shah RM, Ahmad B (2011) Cloud Computing: A solution to Geographical Information

Systems (GIS). International Journal on Computer Science and Engineering (IJCSE). 3(2):594-600.

Biljecki F, Ledoux H, Stoter J (2016) An improved LOD specification for 3D building models. Com-

puters, Environment and Urban Systems. 59:25-37.

Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Applications of 3D City Models: State

of the Art Review. ISPRS International Journal of Geo-Information. 4(4):2842-2889.

Biljecki F, Kumar K, Nagel C (2018) CityGML Application Domain Extension (ADE): overview of

developments. Open Geospatial Data, Software and Standards. 3(13).

Bohannon P, Freire J, Roy P, Siméon J (2002) From XML schema to relations: A cost-based approach

to XML storage. In: Agrawal R, Dittrich K, Ngu AHH (eds) Proceedings of 18th International con-

ference on data engineering, 26 Feburary - 1 March 2002, San Jose, California, USA, pp 64-75.

Boicea A, Radulescu F, Agapin LI (2012) MongoDB vs Oracle - database comparison. In: Proceed-

ings - 3rd International Conference on Emerging Intelligent Data and Web Technologies, Bucha-

rest, Romania, 19-21 September 2012, pp 330-335.

Bottoni P, Koch M, Parisi-Presicce F, Taentzer G (2005) Termination of High-Level Replacement

Units with Application to Model Transformation. In: Minas M (ed) Proceedings of the Workshop

on Visual Languages and Formal Methods (VLFM 2004), 30-30 September 2004, Rome, Italy.

Electronic Notes in Theoretical Computer Science vol 127, issue 4. Elsevier, pp 71-86.

Brinkhoff T (2005) Geodatenbanksysteme in Theorie und Praxis.Wichmann, Heidelberg.

Büttner F, Gogolla M (2004) Realizing UML metamodel transformations with AGG. In: Heckel R

(ed) Proceedings of the Workshop on Graph Transformation and Visual Modelling Techniques

(GT-VMT 2004), 27-28 March 2004, Barcelona, Spain. Electronic Notes in Theoretical Computer

Science, vol 109. Elsevier, pp 31-42.

Buyya R, Yeo CS, Venugopal S (2008) Market-Oriented Cloud Computing: Vision, Hype, and Reality

for Delivering IT Services as Computing Utilities. In: Proceedings of 10th IEEE International Con-

ference on High Performance Computing and Communications, HPCC 2008, 25-27 September

2008, Dalian, China, pp 5-13.

Burggraf D (2015) OGC KML 2.3, Version 1.0, OGC Doc No. 12-007r2. Open Geospatial Consorti-

um. http://docs.opengeospatial.org/is/12-007r2/12-007r2.html Accessed 13 Nov 2018.

https://www.oracle.com/technetwork/database/twp-appdev-workspace-manager-11g-128289.pdf
http://docs.opengeospatial.org/is/12-007r2/12-007r2.html

Bibliography

165

Chang KT (2006). Introduction to Geographic Information Systems. McGraw-Hill Education, New

York City, USA.

Chaturvedi K, Kolbe TH (2016) Integrating Dynamic Data and Sensors with Semantic 3D City Mod-

els in the context of Smart Cities. In: Dimopoulou E, van Oosterom PJM (eds) Proceedings of the

11th International 3D Geoinfo Conference. ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, vol IV-2/W1. ISPRS, pp 31-38.

Chaturvedi K, Willenborg B, Sindram M, Kolbe TH (2017) Solar Potential Analysis and Integration of

the Time-dependent Simulation Results for Semantic 3D City Models Using Dynamizers. In:

Kalantari M, Rajabifard A (eds) Proceedings of the 12th International 3D GeoInfo Conference

2017. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

vol IV-4/W5. ISPRS, pp 25-32.

Chaturvedi K, Yao Z, Kolbe TH (2015) Web-based Exploration of and Interaction with Large and

Deeply Structured Semantic 3D City Models using HTML5 and WebGL. In: Kersten TP (ed)

Tagungsband der 35. Wissenschaftlich-Technischen Jahrestagung der DGPF,16-18 March 2015,

Köln. Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und

Geoinformation e.V. (DGPF), vol 24, pp 296-306.

CesiumJS (2019) Open Source 3D Mapping. https://cesium.com/cesiumjs/. Accessed 13 Jan 2019.

Christen M (2016) Openwebglobe 2: Visualization of Complex 3D-Geodata in the (mobile) Web-

browser. In: Halounova L, Schindler K, Limpouch A, Pajdla T, Šafář V, Mayer H, Oude Elberink

S, Mallet C, Rottensteiner F, Brédif M, Skaloud J, Stilla U (eds) Proceedings of XXIII ISPRS Con-

gress, 12–19 July 2016, Prague, Czech Republic. ISPRS Annals of Photogrammetry, Remote Sens-

ing and Spatial Information Sciences vol III-3. ISPRS, pp 401-406.

Chuan CH (2012) 3D Graphics with OpenGL - Basic Theory.

http://www.ntu.edu.sg/home/ehchua/programming/opengl/cg_basicstheory.html. Accessed 13 Nov

2018.

Coffman EG, Garey MR, Johnson DS, Tarjan RE (1980) Performance bounds for level-oriented two-

dimensional packing algorithms. SIAM Journal on Computing. 9(4):808-826.

Cozzi P (2015) Graphics Tech in Cesium - Renderer Architecture.

https://cesiumjs.org/2015/05/15/Graphics-Tech-in-Cesium-Architecture/ Accessed 13 Nov 2018.

Cozzi P, Lilley S, Getz G (2019) 3D-Tiles Specification, Version 1.0, OGC Doc No. 18-053r2. Open

Geospatial Consortium. https://portal.opengeospatial.org/files/18-053r2 Accessed 31 Jan 2019.

Cozzi P, Ring K (2011) 3D Engine Design for Virtual Globes (1st edition). CRC Press, Boca Raton,

Florida.

de Laat R, van Berlo L (2010) Integration of BIM and GIS: The Development of the CityGML

GeoBIM Extension. In: Kolbe TH, König G, Nagel C (eds) Advances in 3D Geo-Information Sci-

ences. Lecture Notes in Geoinformation and Cartography. Springer, pp 211-225.

Deegree (2017) deegree webservices 3.3.13 documentation - Feature Stores

http://download.deegree.org/documentation/3.3.13/html/featurestores.html#anchor-mapping-

wizard. Accessed 13 Nov 2018.

Döllner J, Kolbe TH, Liecke F, Sgouros T, Teichmann K (2006) The Virtual 3D City Model of Berlin-

Managing, Integrating, and Communicating Complex Urban Information. In: Proceedings of the

25th International Symposium on Urban Data Management UDMS, 15-17 May 2006, Aalborg,

Denmark.

https://cesium.com/cesiumjs/
http://www.ntu.edu.sg/home/ehchua/programming/opengl/cg_basicstheory.html
https://cesiumjs.org/2015/05/15/Graphics-Tech-in-Cesium-Architecture/
https://portal.opengeospatial.org/files/18-053r2
http://download.deegree.org/documentation/3.3.13/html/featurestores.html#anchor-mapping-wizard
http://download.deegree.org/documentation/3.3.13/html/featurestores.html#anchor-mapping-wizard

 Bibliography

166

Ehrig H, Ehrig K, de Lara J, Taentzer G, Varró D, Varró-Gyapay S (2005) Termination Criteria for

Model Transformation. In: Cerioli M (ed) Fundamental Approaches to Software Engineering. Pro-

ceedings of the 8th International Conference, FASE 2005, Held as Part of the Joint European Con-

ferences on Theory and Practice of Software, ETAPS, 4-8 April 2005, Edinburgh, UK. Lecture

Notes in Computer Science. Springer, pp 49-63.

Ehrig H, Ermel C, Golas U, Hermann F (2015) Graph and Model Transformation - General Frame-

work and Applications. Springer.

Emgård L, Zlatanova S (2008) Implementation alternatives for an integrated 3D Information Model.

In: van Oosterom PJM, Zlatanova S, Peninga F, Fendel EM (eds) Advances in 3D Geoinformation

Systems. Springer, pp 313-329.

ESRI (2017) ArcGIS Online Help. http://doc.arcgis.com/en/arcgis-online/ Accessed 13 Nov 2018.

Evans B, Sabel CE (2012) Open-Source web-based geographical information system for health expo-

sure assessment. International Journal of Health Geographics. 11(2).

Faucher C, Lafaye JY (2007) Model Driven Engineering for implementing the ISO 19100 series of

international standards. In: Proceedings of CoastGIS 07, the 8th International Symposium on GIS

and Computer Mapping for Coastal Zone Management, 8-10 October 2007, Santander, Espagne, pp

424-433.

Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: A survey. Future Generation

Computer Systems. 29(1):84-106.

Florescu D, Kossmann D (1999) Storing and Querying XML Data using an RDMBS. IEEE Data

Engineering Bulletin (IEEE-CS). 22(3):27-34.

Foley JD, van Dam A, Feiner SK, Hughes J (1995) Computer Graphics: Principles and Practice (2nd

edition). Addison-Wesley, Boston, Massachusetts, United States.

Folli A, Mens T (2008) Refactoring of UML models using AGG. In: Margaria T, Padberg J, Taentzer

G, Mens T, Van Paesschen E, Mens K, D’Hondt M (eds) Proceedings of the Third International

ERCIM Symposium on Software Evolution, 5 October 2007, Paris. Electronic Communications of

the EASST vol 8.

Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I (2009)

Above the Clouds: A Berkeley View of Cloud Computing. Technical report of Electrical Engineer-

ing and Computer Sciences University of California at Berkeley.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf. Accessed 13 Nov 2018.

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-

oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Gasevic D, Djuric D, Deved V, Selic B (2006). Model Driven Architecture and Ontology Develop-

ment. Springer, New York, Inc., Secaucus, NJ, USA.

Geiß R, Batz GV, Grund D, Hack S, Szalkowski A (2006) GrGen: A Fast SPO-Based Graph Rewrit-

ing Tool. In: Corradini A, Ehrig H, Montanari U, Ribeiro L, Rozenberg G (eds) Graph Transfor-

mations. Proceedings of Third International Conference, ICGT 2006 Natal, 17-23 September 2006,

Rio Grande do Norte, Brazil. Lecture Notes in Computer Science, vol 4178. Springer, pp 383-397.

Godsil C, Royle GF (2013) Algebraic Graph Theory. Springer, New York City, USA.

Golobisky MF, Vecchietti A (2011) Fundamentals for the Automation of Object-Relational Database

Design. IJCSI International Journal of Computer Science. 8(3):1694-0814.

http://doc.arcgis.com/en/arcgis-online/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

Bibliography

167

Gonzalez H, Halevy A, Jensen C, Langen A, Madhavan J, Shapley R, Shen W (2010) Google Fusion

Tables: Data Management, Integration, and Collaboration in the Cloud. In: Hellerstein JM,

Chaudhuri S, Rosenblum M (eds) Proceedings of the 1st ACM symposium on Cloud computing,

10-11 June 2010 Indianapolis, USA. ACM, pp 175-180.

Google Elevation API (2017) https://developers.google.com/maps/documentation/elevation/start.

Accessed 13 Nov 2018.

Grossner K, Goodchild MF, Clarke K (2008) Defining a Digital Earth System. Transactions in GIS

12(1):145-160.

Gröger G, Kolbe TH, Nagel C, Häfele KH (2012) OGC City Geography Markup Language

(CityGML) Encoding Standard, Version 2.0, OGC Doc No. 12 – 019. Open Geospatial Consorti-

um. https://portal.opengeospatial.org/files/?artifact_id=47842. Accessed 13 Nov 2018.

Gaurkhede PP, Pursani PJ (2014) Survey of Object Oriented Database. International Journal of Mod-

ern Trends in Engineering and Research. 1(5):205-214.

Güting RH (1994). An Introduction to Spatial Database Systems. The VLDB Journal - The Interna-

tional Journal on Very Large Data Bases. 3(4):357-399.

Guttman A (1984) R-Trees - A Dynamic Index Structure for Spatial Searching. In: Yormark B (ed)

Proceedings of the 1984 ACM SIGMOD international conference on Management of data, 18-21

June 1984, Boston, Massachusetts, USA. ACM Press, pp 47-57.

Habel A, Müller J, Plump D (2001) Double-Pushout Graph Transformation Revisited. Mathematical

Structures in Computer Science. 11(5):637-688.

Herman L, Řezník T (2015) 3D Web Visualization of Environmental Information – Integration of

Heterogeneous Data Sources When Providing Navigation and Interaction. In: Mallett C, Papa-

roditis C, Dowman I, Oude Elberink SJ, Raimond AM, Rotensteiner F, Yang M, Christophe S,

Coltekin A, Bredif M (eds) Proceedings of ISPRS Geospatial Week 2015, 28 September - 3 Octo-

ber 2015, La Grande Motte, France. The International Archives of Photogrammetry, Remote Sens-

ing and Spatial Information Sciences, vol XL-3/W3. ISPRS, pp 479-385.

Herreruela J, Nagel C, Kolbe TH (2012) Value-added Services for 3D City Models using Cloud Com-

puting. In: Löwner MO, Hillen F, Wohlfart R (eds) Geoinformatik 2012 "Mobilität und Umwelt",

Konferenzband zur Tagung Geoinformatik 2012, 28-30 March 2012, Braunschweig. Shaker, pp

327-334.

Hildebrandt D (2014) A Software Reference Architecture for Service-Oriented 3D Geovisualization

Systems. International Journal of Geo-Information (ISPRS). 3(4):1445-1490.

Hofman W, Lohman W, Schelling A (2011). A Flexible IT Infrastructure for Integrated Urban Plan-

ning. Journal of Theoretical and Applied Electronic Commerce Research. 6(1):16-25.

ISO (2003) ISO 19107:2003: Geographic information - Spatial schema.

ISO (2005) ISO 19109:2005: Geographic information - Rules for application schema.

ISO (2007) ISO 19111:2007: Geographic information - Spatial referencing by coordinates.

ISO (2007) ISO 19136:2007: Geographic information - Geography Markup Language (GML).

ISO (2011) ISO 19118:2011: Geographic information - Encoding.

Jackson D (ed) (2014) WebGL Specification. https://www.khronos.org/registry/webgl/specs/1.0/.

Accessed 13 Nov 2018.

https://developers.google.com/maps/documentation/elevation/start
https://portal.opengeospatial.org/files/?artifact_id=47842
https://www.khronos.org/registry/webgl/specs/1.0/

 Bibliography

168

Jung V (2008) Integrierte Benutzerunterstützung für die Visualisierung in Geo-Informationssystemen.

Dissertation, Technischen Universität Darmstadt.

Haala N, Kada M (2010) An update on automatic 3D building reconstruction. ISPRS Journal of Pho-

togrammetry and Remote Sensing. 65(6):570-580.

Kaden R (2014) Berechnung der Energiebedarfe von Wohngebäuden und Modellierung

energiebezogener Kennwerte auf der Basis semantischer 3D-Stadtmodelle. Dissertation, Tech-

nische Universität München.

Kaden R, Kolbe TH (2013) City-Wide Total Energy Demand Estimation of Buildings using Semantic

3D City Models and Statistical Data. In: Isikdag U (ed) Proceedings of the 8th International 3D

GeoInfo Conference, 27-29 November 2013, Istanbul, Turkey. ISPRS Annals of the Photogramme-

try, Remote Sensing and Spatial Information Sciences, vol II-2/W1. ISPRS, pp 163-171.

Karimi HA, Roongpiboonsopit D, Wang H (2011) Exploring Real‐Time Geoprocessing in Cloud

Computing: Navigation Services Case Study. Transactions in GIS. 15(5):613-633.

Keller W (1997) Mapping Objects to Tables - A Pattern Language. In: Buschmann F, Riehle D (eds)

Proceedings of the 1997 European Pattern Languages of Programming Conference, Irsee, Germa-

ny. Siemens technical report 120/SW1/FB. pp 59-84.

Kessenich J, Baldwin D, Rost R (2008) The opengl shading language.

http://www.cse.chalmers.se/edu/year/2010/course/TDA361/GLSLangSpec.Full.1.30.08.pdf. Ac-

cessed 13 Nov 2018.

Bhatia S, Cozzi P, Knyazev A, Parisi T (2017) glTF 2.0 - Runtime 3D Asset Delivery.

https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md. Accessed 13

Nov 2018.

Kolbe TH (2009) Representing and Exchanging 3D City Models with CityGML. In: Lee J, Zlatanova

S (eds) 3D Geo-Information Sciences. Proceedings of the 3rd International Workshop on 3D Geo-

Information, 13-14 November 2008, Seoul, Korea. Lecture Notes in Geoinformation and Cartog-

raphy. Springer, pp 15-31.

Kolbe TH, Burger B, Cantzler B (2015) CityGML goes to Broadway. In: Fritsch D (ed)

Photogrammetric Week. Wichmann, Stuttgart, pp 343-356.

Kolbe TH, Steinrücken J, Plümer L (2003) Cooperative Public Web Maps. In: Proceedings of the

International Cartographic Congress (ICC), 10-16 August 2003, Durban, South Africa. Internation-

al Cartographic Association (ICA), pp 1062-1071.

Kolbe TH, Yao Z, Nagel C, Redweik R, Willkomm P, Hudra G, Müftüoglu A, Kunde F (2017) 3D

Geodatabase for CityGML Documentation Version 3.3.0.

https://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_Documentation_v3.3.pdf.

Accessed 13 Nov 2018.

Kothuri R, Godfrind A, Beinat E (2011) Pro Oracle Spatial for Oracle Database 11g. Apress, New

York City, USA.

Kothuri RKV, Ravada S, Abugov D (2002) Quadtree and R-tree Indexes in Oracle Spatial: A Compar-

ison using GIS Data. In: Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, 2-6 June 2002, Madison, Wisconsin USA. ACM, pp 546-557.

Krämer M, Gutbell R (2015) A case study on 3D geospatial applications in the web using state-of-the-

art WebGL frameworks. In: Proceedings of the 20th International Conference on 3D Web Tech-

nology, 18-21 June 2015, Heraklion, Crete, Greece. ACM, pp 189-197.

http://www.cse.chalmers.se/edu/year/2010/course/TDA361/GLSLangSpec.Full.1.30.08.pdf.%20Accessed%2013%20Nov%202018
http://www.cse.chalmers.se/edu/year/2010/course/TDA361/GLSLangSpec.Full.1.30.08.pdf.%20Accessed%2013%20Nov%202018
https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md
https://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB_Documentation_v3.3.pdf

Bibliography

169

Krüger A, Kolbe TH (2010) A Framework for the Data-Driven Analysis, Interpretation, and Trans-

formation of Geospatial Information Models. In: Kohlhofer G, Franzen M (eds) Proceedings of the

Joint Scientific Conference of the German Society for Photogrammetry, Remote Sensing & Geoin-

formation (DGPF), the Austrian Society for Surveying (OVG), and the Swiss Society for Photo-

grammetry and Remote Sensing (SGPF), 1-3 July 2010, Vienna, Deutsche Gesellschaft für Photo-

grammetrie, Fernerkundung und Geoinformation e.V., pp 309-324.

Kumar K, Ledoux H, Stoter J (2016) A CityGML extension for handling very large TINs. In:

Dimopoulou E, van Oosterom PJM, Zlatanova S, Isikdag U, Sithole G (eds) Proceedings of 11th

3D Geoinfo Conference, 20-21 October 2016, Athens, Greece. ISPRS Annals of Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol IV-2/W1. ISPRS, pp 137-143.

Kuske S, Gogolla M, Kreowski HJ, Ziemann P (2009) Towards an integrated graph-based semantics

for UML. Software & Systems Modeling. 8(3):403-422.

Kutzner T (2016) Geospatial Data Modelling and Model-driven Transformation of Geospatial Data

based on UML Profiles. Dissertation, Technische Universität München.

Kutzner T, Kolbe TH (2016) Extending Semantic 3D City Models by Supply and Disposal Networks

for Analysing the Urban Supply Situation. In: Kersten TP (ed) Lösungen für eine Welt im Wandel,

Dreiländertagung der SGPF, DGPF und OVG, 36. Wissenschaftlich-Technische Jahrestagung der

DGPF, 7-9 Juni 2016, Bern. Publikationen der Deutschen Gesellschaft für Photogrammetrie,

Fernerkundung und Geoinformation e.V. (DGPF), vol 25, pp 382-394.

Li Y, Li J, Zhou S (2004) GML Storage: A Spatial Database Approach. In: Wang S, Tanaka K, Zhou

S, Ling TW, Guan J, Yang D, Grandi F, Mangina EE, Song IY, Mayr HC (eds) Conceptual Model-

ing for Advanced Application Domains. Proceedings of ER 2004 Workshops CoMoGIS, CoM-

WIM, ECDM, CoMoA, DGOV, and eCOMO, 8-12 November 2004, Shanghai, China. Lecture

Notes in Computer Science, vol 3289. Springer, pp 55-66.

Lodi A, Martello S, Monaci M (2002) Two-dimensional packing problems: A survey: European

Journal of Operational Research. 141(2):241-252.

Lodi A, Martello S, Vigo D (1999) Heuristic and Metaheuristic Approaches for a Class of Two-

Dimensional Bin Packing Problems. INFORMS Journal on Computing. 11(4):345-357.

Loesch B, Christen M, Nebiker S (2012) OpenWebGlobe - An open source SDK for creating large-

scale Virtual Globes on a WebGL basis. In: Shortis M, Madden M (eds) Proceedings of XXII

ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia. International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXIX-B4. ISPRS,

pp 195-200.

Löwner MO, Benner J, Gröger G (2014) Aktuelle trends in der Entwicklung von CityGML 3.0. In:

Seyfert E, Gülch E, Heipke C, Schiewe J, Sester M (eds) Geoinformationen öffnen das Tor zur

Welt, 34. Wissenschaftlich-Technische Jahrestagung der DGPF, Hamburg. Deutsche Gesellschaft

für Photogrammetrie, Fernerkundung, Geoinformation e.V. (DGPF), vol 23.

Maffini G (1987) Raster versus Vector Data Encoding and Handling: A Commentary. Photogrammet-

ric Engineering and Remote Sensing. 53(10):1397-1398.

Mao B, Ban Y, Harrie L (2011) A Multiple Representation Data Structure for Dynamic Visualisation

of Generalised 3D City Models. ISPRS Journal of Photogrammetry and Remote Sensing.

66(2):198-208.

Mao B, Harrie L, Cao J, Wu Z, Shen J (2014) NoSQL based 3D City Model Management System. In:

Jiang J, Zhang H (eds) Proceedings of ISPRS Technical Commission IV Symposium, 14-16 May

 Bibliography

170

2014, Suzhou, China. The International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol XL-4. ISPRS, pp 169-173.

Marx C, Donaubauer A, Fiutak G, Kolbe TH (2017) Digitales Landschaftsmodell in 3D. In: Kolbe

TH, Bill R, Donaubauer A (eds) Geoinformationssysteme 2017 - Beiträge zur 4. Münchner GI-

Runde. Wichmann Verlag, Heidelberg.

McHenry K, Bajcsy P (2008) An Overview of 3D Data Content, File Formats and Viewers.

https://www.archives.gov/files/applied-research/ncsa/8-an-overview-of-3d-data-content-file-

formats-and-viewers.pdf. Accessed 13 Nov 2018.

Mens T, Van Gorp P (2006) A Taxonomy of Model Transformation. In: Karsai G, Taentzer G (eds)

Proceedings of the International Workshop on Graph and Model Transformation (GraMoT 2005),

28-28 September 2005, Tallinn, Estonia. Electronic Notes in Theoretical Computer Science, vol

152. Elsevier, pp 125-142.

Murthy R, Krishnaprasad M, Chandrasekar S, Sedlar E, Krishnamurthy V, Agarwal N (2006) Mecha-

nism for mapping XML schemas to object-relational database systems. US Patent 7096224, 22 Au-

gust 2016.

Ng TCT, Learmont TR (2002) Rule-based approach to object-relational mapping strategies. US Patent

6360223, 19 March 2002.

Nguyen SH, Kolbe TH (2017) Spatio-semantic Comparison of 3D City Models in CityGML using a

Graph Database. In: Kalantari M, Rajabifard A (eds) Proceedings of the 12th International 3D

GeoInfo Conference, 26–27 October 2017, Melbourne, Australia. ISPRS Annals of the Photo-

grammetry, Remote Sensing and Spatial Information Sciences, vol IV-4/W5. ISPRS, pp 99-106.

Oracle (2017) Database Application Developer's Guide - Workspace Manager.

http://docs.oracle.com/cd/B19306_01/appdev.102/b14253/long_intro.htm. Accessed 13 Nov 2018.

Ordonez C, Song IY, Garcia-Alvarado C (2010) Relational versus Non-Relational Database Systems

for Data Warehousing. In: Proceedings of the ACM 13th international workshop on Data ware-

housing and OLAP, 26-30 October 2010, Toronto, ON, Canada. ACM, pp 67-68.

Parisi T (2012) WebGL: Up and Running. O'Reilly Media, Inc., Sebastopol, California, United States.

Rafe V, Jamali S, Rahmani M, Mahdian F (2011) From Class Diagrams to Relational Tables: A Graph

Transformation-based Approach. Przegląd Ektrotechniczny. 87(8):163-165.

Rode M, Rosenberg O (1987) An analysis of heuristic trim-loss algorithms. Engineering Costs and

Production Economics. 12(1-4):71-78.

Schilling A, Bolling J, Nagel C (2016) Using glTF for streaming CityGML 3D City Models. In: Pro-

ceedings of the 21st International Conference on Web3D Technology, 22-24 July 2016, Anaheim,

California. ACM, pp. 109-116.

Sencha (2017) With Ext JS, create data-intensive HTML5 applications using JavaScript.

https://www.sencha.com/products/extjs. Accessed 13 Nov 2018.

ShapeChange (2017) SQL DDL - ShapeChange. http://shapechange.net/targets/sql-ddl/. Accessed 13

Nov 2018.

Shen Z, Kawakami M (2010) An online visualization tool for Internet-based local townscape design.

Computers Environment and Urban Systems. 34(2):104-116.

Shumilov S, Thomsen A, Cremers AB, Koos B (2002) Management and Visualization of large, com-

plex and. time-dependent 3D Objects in Distributed GIS. In: Proceedings of the 10th ACM Interna-

https://www.archives.gov/files/applied-research/ncsa/8-an-overview-of-3d-data-content-file-formats-and-viewers.pdf
https://www.archives.gov/files/applied-research/ncsa/8-an-overview-of-3d-data-content-file-formats-and-viewers.pdf
http://docs.oracle.com/cd/B19306_01/appdev.102/b14253/long_intro.htm
https://www.sencha.com/products/extjs
http://shapechange.net/targets/sql-ddl/

Bibliography

171

tional Symposium on Advances in Geographic Information Systems, 8-9 November 2002,

McLean, VA (near Washington, DC), USA. ACM, pp 113-118.

Sindram M, Machl T, Steuer H, Pültz M, Kolbe TH (2016) Voluminator 2.0 - Speeding up the Ap-

proximation of the Volume of Defective 3D Building Models. In: Halounova L, Li S, Šafář V,

Tomková M, Rapant P, Brázdil K, Shi W, Anton F, Liu Y, Stein A, Cheng T, Pettit C, Li QQ, Ses-

ter M, Mostafavi MA, Madden M, Tong X, Brovelli MA, HaeKyong K, Kavashima H, Coltekin A

(eds) Proceedings of XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic. ISPRS

Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol III-2. ISPRS,

pp 29-36.

Siwik L, Lewandowski K, Woś A, Dreżewski R, Kisiel-Dorohinicki M (2010) UML2SQL - A Tool

for Model-Driven Development of Data Access Layer. In: Szczerbicki E, Nguyen NT (eds) Smart

Information and Knowledge Management. Studies in Computational Intelligence, vol 260. Spring-

er Berlin Heidelberg, pp. 227-246.

Software S (2016) GO Loader Documentation - XML, GML and Application Schemas.

https://wiki.snowflakesoftware.com/display/GLD/XML%2C+GML+and+Application+Schemas.

Accessed 13 Nov 2018.

Sousa L, Eykamp C, Leopold U, Baume O, Braun C (2012) iGUESS - A web based system integrating

Urban Energy Planning and Assessment Modelling for multi-scale spatial decision making. In:

Seppelt R, Voinov AA, Lange S, Bankamp D (eds) Proceedings of 6th International Congress on

Environmental Modelling and Software (iEMSs), 1-5 July 2012, Leipzig, Germany, pp 171-178.

Stadler A, Kolbe TH (2007) Spatio-semantic coherence in the integration of 3D city models. In: Stein

A (ed) Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality (ISSDQ),

13-15 June 2007, Enschede, Netherlands. ISPRS Archives, vol XXXVI-2/C43.

Stadler A, Nagel C, König G, Kolbe TH (2009) Making interoperability persistent: A 3D geo database

based on CityGML. In: Lee J, Zlatanova S (eds). 3D Geo-Information Sciences. Proceedings of the

3rd International Workshop on 3D Geo-Information, 13-14 November 2008, Seoul, Korea. Lecture

Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, pp 175-192.

Sparx Systems (2015) Model Transformation with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/model_transformation/mdastyle

transforms.html. Accessed 13 Nov 2018.

Taentzer G (2000) AGG: A Tool Environment for Algebraic Graph Transformation. In: Nagl M,

Schürr A, Münch M (eds) Applications of Graph Transformations with Industrial Relevance. Pro-

ceedings of International Workshop, 1-3 September 1999, Kerkrade, Netherlands. Lecture Notes in

Cmputer Science, vol 1779. Springer, Berlin, Heidelberg, pp 481-488.

Taentzer G, Carughi GT (2006) A Graph-Based Approach to Transform XML Documents. In: Baresi

L, Heckel R (eds) Fundamental Approaches to Software Engineering. Proceedings of 9th Interna-

tional Conference, FASE 2006, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2006, 27-28 March 2006, Vienna, Austria. Lecture Notes in Comput-

er Science, vol 3922. Springer Berlin Heidelberg, pp 48-62.

Taentzer G, Ehrig K, Guerra E, de Lara J, Lengyel L, Levendovszky T, Prange U, Varró D, Varró-

Gyapay S (2005) Model Transformation by Graph Transformation: A Comparative Study. In: Pro-

ceedings of the workshop “Model Transformation in Practice” of the international conference on

Satellite Events at the MoDELS, 2-7 October 2005, Montego Bay, Jamaica.

https://wiki.snowflakesoftware.com/display/GLD/XML%2C+GML+and+Application+Schemas
http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/model_transformation/mdastyletransforms.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/model_transformation/mdastyletransforms.html

 Bibliography

172

Tauro CJM, Aravindh S, Shreeharsha A (2012) Comparative Study of the New Generation, Agile,

Scalable, High Performance NOSQL Databases. International Journal of Computer Applications.

48(20):1-4.

Thompson R, van Oosterom PJM, Cemellini B, de Vries M (2018) Developing an LADM Compliant

Dissemination and Visualization System for 3D Spatial Units. In: Proceedings of the 7th Land

Administration Domain Model Workshop, 12-13 April 2018, Zagreb, Croatia.

OSGeo (2017) Tile Map Service Specification.

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification. Accessed 13 Nov 2018.

Travers C (2012) O/R Modelling Part 1: Intro to PostgreSQL as Object-Relational Database Manage-

ment System. http://ledgersmbdev.blogspot.de/2012/08/intro-to-postgresql-as-object.html. Ac-

cessed 13 Nov 2018.

van Oosterom PJM, Maessen B, Quak W (2002) Generic query tool for spatio-temporal data. Interna-

tional Journal of Geographical Information Science. 16(8):713-748.

van Oosterom PJM, Vijlbrief T (1994) Integrating Complex Spatial Analysis Functions in an Extensi-

ble GIS. In: Proceedings of the 6th International Symposium on Spatial Data Handling, 5-9 Sep-

tember 1994, Edinburgh, Scotland, pp 277-296.

van den Brink L, Stoter J, Zlatanova S (2013) UML-Based Approach to Developing a CityGML

Application Domain Extension. Transactions in GIS. 17(6):920-942.

van den Broek PM (1991) Algebraic Graph Rewriting Using a Single Pushout. In: Abramsky S, Mai-

baum TSE (eds). TAPSOFT '91: Proceedings of the International Joint Conference on Theory and

Practice of Software Development, 8-12 April 1991, Brighton, UK. Lecture Notes in Computer

Science, vol 1: Colloquium on Trees in Algebra and Programming (CAAP '91). Springer Berlin

Heidelberg, pp 90-102.

Vara JM, Vela B, Bollati VA, Marcos E (2009) Supporting Model–Driven Development of Object-

Relational Database Schemas: A Case Study. In: Paige RF (ed) Theory and Practice of Model

Transformations. proceedings of the Second International Conference on Theory and Practice of

Model Transformations (ICMT 2009), 29-30 June 2009, Zurich, Switzerland. Springer Berlin Hei-

delberg, pp 181-196.

Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A Comparison of a Graph Database

and a Relational Database A Data Provenance Perspective. In: Proceedings of the 48th Annual

Southeast Regional Conference, 15-17 April 2010, Oxford, Mississippi, USA. ACM, pp 42:1-42:6.

Vijlbrief T, van Oosterom PJM (1992) GEO++: An extensible GIS. In: proceedings 5th International

Symposium on Spatial Data Handling, 3-7 August 1992, Charleston, South Carolina, Humanities

and Social Sciences Computing Lab, University of South Carolina, Columbia, S.C, pp 40-50.

Faulkner S, Eicholz A, Leithead T, Danilo A, Moon S (2017) HTML 5.2 - W3C Proposed Recom-

mendation. http://www.w3.org/TR/html5/. Accessed 13 Nov 2018.

WebGL Earth (2017) WebGL Earth – open source 3D digital globe written in JavaScript.

http://www.webglearth.org/. Accessed 13 Nov 2018.

Web3D (2015) X3D Standards for Version v3.3. https://www.web3d.org/standards/version/V3.3.

Accessed 13 Nov 2018.

Westra E (2010) Python Geospatial Development. Packt Publishing Ltd., Birmingham, UK.

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://ledgersmbdev.blogspot.de/2012/08/intro-to-postgresql-as-object.html
http://www.w3.org/TR/html5/
http://www.webglearth.org/
https://www.web3d.org/standards/version/V3.3

Bibliography

173

Wloka M (2005) Improved Batching via Texture Atlases. In: Engel W (ed) Shader X3: Advanced

Rendering with DirectX and OpenGL. Charles River Media, Newton Center, MA, USA, pp 155-

167.

Wu H, He Z, Gong J (2010) A virtual globe-based 3D visualization and interactive framework for

public participation in urban planning processes. Computers, Environment and Urban Systems.

34(4):291-298.

Yao Z, Chaturvedi K, Kolbe TH (2016) Browser-basierte Visualisierung großer 3D-Stadtmodelle

durch Erweiterung des Cesium Web Globe. In: Kolbe TH, Bill R, Donaubauer A (eds)

Geoinformationssysteme 2016 - Beiträge zur 3. Münchner GI-Runde, 24-25 Feburary 2016.

Wichmann Verlag Heidelberg.

Yao Z, Kolbe TH (2017) Dynamically Extending Spatial Databases to support CityGML Application

Domain Extensions using Graph Transformations. In: Kersten TP (ed) Kulturelles Erbe erfassen

und bewahren - Von der Dokumentation zum virtuellen Rundgang, 37. Wissenschaftlich-

Technische Jahrestagung der DGPF, 7-10 March 2016, Würzburg. Publikationen von Deutsche

Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V. (DGPF), vol 26. pp.

316-331.

Yao Z, Sindram M, Kaden R, Kolbe TH (2014) Cloud-basierter 3D-Webclient zur kollaborativen

Planung energetischer Maßnahmen am Beispiel von Berlin und London. In: Kolbe TH, Bill R,

Donaubauer A (eds) Geoinformationssysteme 2014: Beiträge zur 1. Münchner GI-Runde, 24-25

Feburary 2014. Wichmann Verlag Heidelberg.

Zahariev A (2009). Google App Engine.

http://cse.tkk.fi/en/publications/B/5/papers/1Zahariev_final.pdf. Accessed 13 Nov 2018.

Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban Computing: Concepts, Methodologies, and

Applications. ACM Transactions on Intelligent Systems and Technology (TIST). 5(3): 38:1-38:55

Zulkifli NA, Rahman AA, Jamil H, Hua TC, Choon TL, Seng LK, Lim CK, van Oosterom PJM

(2014) Development of a Prototype for the Assessment of the Malaysian LADM Country Profile.

In: Proceedings of the 25th FIG Congress, 16 – 21 June 2014, Kuala Lumpur, Malaysia.

All URLs in this thesis were checked on January 31, 2019.

http://cse.tkk.fi/en/publications/B/5/papers/1Zahariev_final.pdf

 Bibliography

174

Appendix 1: Layered Graph Transformation Rules

175

Appendix 1: Layered Graph Transformation Rules

This appendix complements section 4.3.1 by providing more details about some selected

graph transformation rules as well as their group affiliations for realizing the designed layered

graph transformation.

Rule 1: Creating singleton 3DCityDB tables

Group Layer 1

Description

As mentioned in section 4.3.1, the first transformation layer is designed for

mapping each feature class or complex data type onto an individual table.

Besides, this layer also includes a few additional transformation rules for

initializing three singleton graph representations in the host graph for

representing the three predefined 3DCityDB tables, namely OBJECTCLASS,

SURFACE_GEOMETRY, and IMPLICIT_GEOMETRY, which are intended to be

utilized for storing the meta und spatial information of ADE database schemas. In

order to represent each of these three 3DCityDB tables in the host graph, only

two associated nodes are required which represent the table and its primary key

respectively and allow for building foreign key connections with ADE tables. For

creating the graph nodes, the following graph transformation rules have been

designed, where the LHS is blank and RHS contains the table node and its

respective primary key node. Each rule is additionally equipped with a NAC which

is morphologically identical with the RHS to ensure that this transformation will

be performed only one time for ensuring the creation of three singleton table

nodes.

Graph
Definition of
the Transfor-
mation rule A

Graph
Definition of
the Transfor-
mation rule B

Graph
Definition of
the Transfor-
mation rule C

 Appendix 1: Layered Graph Transformation Rules

176

Rule 2: Mapping multiple classes onto one table

Group Layer 2

Description

The second transformation layer holds those graph transformation rules that

tend to merge multiple classes onto one table which is mapped from their super

class. Thus, this layer plays an important role for creating a compact relational

model, as the number of tables can be reduced. In the section 4.3.1, an example

of using the graph transformation rule of this layer is outlined which allows for

handling the classes with Composite Pattern to derive an optimized relational

database structure. Generally, depending on the various user-defined conditions

or application specific requirements, this model optimization process can be

realized in a generic way. This can be easily done by modifying the definition of

the NACs of the following graph transformation rule. For example, if a subclass

must be mapped onto an own table, if it has more than four properties, then we

can define a NAC where a class node is connected with four nodes typed as

propertyElement.This way, the graph transformation rule for merging

subclasses is only applicable when the subclass node is connected with

maximum three property nodes.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

«FeatureType»

<Class3Name>

«FeatureType»

<ClassXName>
...

mapsTo

Appendix 1: Layered Graph Transformation Rules

177

Rule 3: Mapping class inheritances onto foreign key constraints

Group Layer 3

Description

The third transformation layer is mainly designed for creating foreign key

constraint for each inheritance relationship from two classes, which are not

mapped onto the same table. In the graph transformation rule, a new graph

node typed as Join is created for representing the foreign key constraint

which connects the primary key columns of the two tables mapped from the

super class and subclass respectively. The foreign key constraint is named by

following the simple naming convention:

[FK_Name] = M + “_FK”

Where the variable “M” denotes the name of the super table. In order to avoid

creating the foreign key for each pair of classes twice, a NAC is added to the

graph transformation rule. In the NAC, the graph node representing the

inheritance relationship has a mapping onto a graph node representing the

foreign key constraint.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

<TableNameForClass2>

«column»

*pfK ID: NUMBER

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

. >
mapsTo

mapsTo

0..1

(ID = ID)

«FK»

1

mapsTo

 Appendix 1: Layered Graph Transformation Rules

178

Rule 4: Creating ObjectClassID column for merged tables (1)

Group Layer 3

Description

The third graph transformation layer also includes some additional rules for

adding an OBJECTCLASS_ID column to each of thoses tables that are mapped

from multiple non-abstract classes. The OBJECTCLASS_ID is a foreign key column

referencing to the primary key of the OBJECTCLASS table is required for

providing the affiliation information, as the table rows may store attribute

information of different feature class instances. The logical conditions of this

mapping rule are summarized as the following:

• The graph node representing the OBJECTCLASS table has already

created

• At lease two non-abstract classes have been already mapped onto the

same table

In the graph transformation rule, a node typed as ObjectclassIdColumn is

used for representing the OBJECTCLASS_ID column and a node with the type

Join serves for representing the corresponding foreign key constraint

referencing to the the OBJECTCLASS table.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

*FK OBJECTCLASS_ID: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

OBJECTCLASS

«column»

*PK ID: NUMBER

mapsTo

0..*
(OBJECTCLASS_ID = ID)

«FK» 1

mapsTo

Appendix 1: Layered Graph Transformation Rules

179

 Rule 5: Creating ObjectClassID column for merged tables (2)

Layer group 3

Description

In case that a class is mapped onto one table and its subclasses are

mapped onto individual tables, the parent table may also contain rows

storing attribute information coming from different classes and shall be

hence augumented with an OBJECTCLASS_ID column. the logical mapping

of this scenario and the corresponding graph transformation rule are

shown below. Compared with the LHS, two graph nodes representing the

OBJECTCLASS_ID column and its foreign key constraint are created in the

RHS and connected with the parent class table and OBJECTCLASS table. To

ensure that only one OBJECTCLASS_ID column will be created for the

target parent table, a NAC is required for suppressing the execution of this

graph transformation rule again when the OBJECTCLASS_ID column has

already been created and connected with the target class table in the host

graph.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition
(NAC)

class Diagram

Object-Oriented Model

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK OBJECTCLASS_ID: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

«FeatureType»

<Class3Name>

OBJECTCLASS

«column»

*PK ID: NUMBER

<TableNameForClass2>

«column»

*pfK ID: NUMBER

<TableNameForClass3>

«column»

*pfK ID: NUMBER

(ID = ID)
«FK»

0..*

(OBJECTCLASS_ID = ID)

«FK» 1

(ID = ID)

«FK»

mapsTo

mapsTo

mapsTo

 Appendix 1: Layered Graph Transformation Rules

180

Rule 6: Creating ObjectClassID column for merged tables (3)

Layer group 3

Description

If a class is mapped onto a table having an OBJECTCLASS_ID column and

the super class is mapped onto a separate table, then the super class table

shall also be equipped with an OBJECTCLASS_ID column. This is because

that the Polymorphism can be transitively propagated from the subclass

to its super class which can hence also contain attribute information

coming from different classes. The following figure shows the logical

structure of this mapping scenario and the corresponding graph

transformation rule has been implemented as shown in the figure below.

similar with the previous case, two new nodes representing the

OBJECTCLASS_ID column and its corresponding foreign key constraint are

created in the RHS and a NAC is also added to the graph transformation

rule for guaranteeing that only one OBJECTCLASS_ID column will be

created for each table.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«FeatureType»

Class2

Class1

«column»

*PK ID: NUMBER

 FK OBJECTCLASS_ID: NUMBER

«FeatureType»

Class1

Relational Database Model

OBJECTCLASS

«column»

*PK ID: NUMBER

Class2

«column»

*pfK ID: NUMBER

 OBJECTCLASS_ID: NUMBER

(OBJECTCLASS_ID = ID)

«FK»

mapsTo

(OBJECTCLASS_ID = ID)

«FK»

(ID = ID)
«FK»

mapsTo

Appendix 1: Layered Graph Transformation Rules

181

Rule 7: Mapping N:0..1 Association between different classes

Layer group 4

Description

Starting from the third transformation layer, the class associations are

mapped onto foreign key constraints or associative tables depending on

the multiplicity of each association. These kinds of mapping rules are

explained in the section 3.2.1. The first case is the mapping of two

different classes with a N:0..1 association, which is logically mapped onto

a foreign key constraint. In the graph transformation rule, the two graph

nodes with the type ComplexTypeProperty has a numeric attribute

maxOccurs which defines the upper bound of the multiplicity. Using this

attribute, an application condition M == 1 can be added to the graph

transformation rule in order to trigger the corresponding graph

transformation rule. In the RHS, two new nodes representing the foreign

key column and constraints are created to connect the associated tables.

Their names can be defined according to the following rule:

[FK_Name] = Y + “_” + n + “_FK”

[FK_COLUMN_NAME] = n + “_ID”

Where Y denotes the referencing table name, and N denotes the property name.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

<TableNameForClass2>

«column»

*PK ID: NUMBER

«FeatureType»

<Class2Name>

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

. >
mapsTo

mapsTo

*

+<roleName> 0..1

0..*
(<FkName> = ID)

«FK» 1

mapsTo

 Appendix 1: Layered Graph Transformation Rules

182

Rule 8: Mapping N:0..1 Association between different classes mappted to the same table

Layer group 4

Description

Another case of the N:0..1 association is that the associated classes are

mapped onto the same table. Also, the assoication is logically mapped

onto a foreign key constraint for which the referencing and referenced

tables are identical. Similar to the previous graph transformation rule, the

numeric attribute maxOccurs of the graph node

ComplexTypeProperty has been used for defining the application

condition M == 1, which means that the transformation rule is only

applicable when the upper bound of the association multiplicity is 1. The

naming rules for the newly created graph nodes in the RHS is defined as

the following:

[FK_Name] = X + “_” + N + “_FK”

[FK_COLUMN_NAME] = N + “_ID”

Where X denotes the mapped table name, and N denotes the role name of the

corresponding association.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«FeatureType»

Class2Name

<TableNameForClass1>

«column»

*PK ID: NUMBER

* OBJECTCLASS_ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

Class1Name

Relational Database Model

.

>
mapsTo

*

+<roleName>0..1

mapsTo

0..*
(<FkName> = ID)

«FK»

1

mapsTo

Appendix 1: Layered Graph Transformation Rules

183

Rule 9: Mapping N:0..1 Association between the same class mapped to the same table

Layer group 4

Description

The last case of the N:0..1 association is that the associated classes are

identical and mapped onto the same table. The logical mapping and graph

transformation rule are very similar to those of the previous case and

shown in the figures below. The naming rules for the created foreign key

column and constraint are also adopted from the previous case and are

formalized as below;

[FK_Name] = X + “_” + N + “_FK”

[FK_COLUMN_NAME] = N + “_ID”

Where X denotes the referencing table name, and N denotes the role

name of the corresponding association.

As explained in the section 3.2.1, the 1:N association can also be

categorized into three different scenarios compared to the N:0..1

association and their graph transformation rules are also structured in a

very similar way. For the sake of brevity, these rules are not outlined in

this secition and the details of technical implementation can be found in

on the 3DCityDB Github website.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK <FkName>: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

. >
mapsTo 0..*

(<FkName> = ID)

«FK»

1

mapsTo*

+<roleName> 0..1

 Appendix 1: Layered Graph Transformation Rules

184

Rule 10: Mapping M:N association between different classes

Layer group 4

Description

For M:N association an associative table is required that includes two

foreign key columns to reference to the primary key columns of the

associated tables. According to the logical mapping shown below, two

graph nodes with the type ComplexTypeProperty are used for

representing the binary association in the host graph and each has a

numeric attribute maxOccurs to define the upper bound of the

multiplicity value:

(M > 1 || M == -1) && (N > 1 || N > -1)

where M and N represent the maxOccurs attribute of the two associated

classes and the value of -1 indicates that the multiplicity is unbounded.

The associative table can be named based on the following rule:

[tableName] = A + "_" + B + "_TO_" + C + "_" + D

Where A and C are the names of associated tables, while B and D denotes

the role names of the two association ends.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

TableNameForClass2

«column»

*PK ID: NUMBER

«FeatureType»

Class2Name

TableNameForClass1

«column»

*PK ID: NUMBER

«FeatureType»

Class1Name

<AssoicativeTableName>

«column»

*pfK <Fk1Name>: NUMBER

*pfK <Fk2Name>: NUMBER

Relational Database Model

.
mapsTo

0..*(<Fk2Name> = ID)

«FK»1

mapsTo

mapsTo

0..*

(<Fk1Name> = ID)

«FK»1

*

*

Appendix 1: Layered Graph Transformation Rules

185

Rule 11: Mapping M:N among the same class

Layer group 4

Description

two special cases of the M:N association are that, 1): a class is associated

with itself and 2): two associated classes are mapped onto the same table.

Both cases have a similiar graph representation in the graph

transformation rule for representing the derived associative table in the

RHS. Again, the numeric attribute maxOccurs of the two

ComplexTypeProperty ndoes are used for defining the application

condition:

(M > 1 || M == -1) && (N > 1 || N > -1)

 where M and N represent the upper bound of the multiplicity. The

associative table is can be named according to a simplified rule:

[tableName] = A + "_" + B + "_" + C

where A, B, and C represent the names of class table and role names of

the two association ends respectively.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

<TableNameForClass1>

«column»

*PK ID: NUMBER

«FeatureType»

<Class1Name>

Relational Database Model

<AssociativeTableName>

«column»

*pfK <Fk1Name>: NUMBER

*pfK <Fk2Name>: NUMBER

.

mapsTo

*

* (<Fk2Name> = ID)

«FK»

(<Fk1Name> = ID) «FK»
mapsTo

 Appendix 1: Layered Graph Transformation Rules

186

Rule 12: Mapping non-Brep geometry property

Layer group 5

Description

In the fifth transformation layer, every thematic and spatial property of

each class and compex data type will be mapped onto one or multiple

columns or a foreign key constraint referencing to a separate data table

which stores the property value. The latter case is typicalled used for the

handling of the Brep-geometry property using the SURFACE_GEOMETRY

table and has already been mentioned in the section 4.3.1. For the non-

Brep geometry property, it can be simply mapped onto a column with a

spatial type (e.g. for Oracle, the spatial type is called “SDO_GEOMETRY”)

in the class table and the column name can be identical with the geometry

property name. The graph implmementation of this logical mapping rule is

quite simple: A new graph node typed with InlineGeometryColumn

is created in the RHS to connect with the classs table node and an

additional NAC is defined for avoiding the creation of the geometry

column twice.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«ObjectType»

<NonBrepGeometry>

<TableNameForClass1>

«column»

*PK ID: NUMBER

 GEOMETRYPROPERTY: SDO_GEOMETRY

«FeatureType»

<Class1Name>

Relational Database Model

.
mapsTo

mapsTo+geometryProperty 0..1

mapsTo

Appendix 1: Layered Graph Transformation Rules

187

Rule 13: Mapping hybrid geometry property

Layer group 5

Description

In practice, a feature class or complex data type may have a generic

geometry property which allows to have a Brep or non-Brep

representation at the same time. This kind of geometry properties shall

hence be mapped onto a spatial column in the class table along with a

foreign key column referencing to the SURFACE_GEOMETRY column.

This way, all non-Brep-geometry contents are stored in the spatial column

and the storage of Brep-geometry data are delegated to the

SURFACE_GEOMETRY table. The logical mapping relationship between

the object-oriented model and relational database model is shown below.

The implementation of the corresponding graph transformation rule is

somehow like the combination of the rules for handling Brep and non-

Brep geometry properties. Also, a NAC is added for avoiding the creation

of the geometry column two times.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«ObjectType»

<HybridGeometry>

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK BREP_ID: NUMBER

 OTHER_GEOM: SDO_GEOMETRY

«FeatureType»

<Class1Name>

SURFACE_GEOMETRY

«column»

*pfK ID: NUMBER

Relational Database Model

. mapsTo

mapsTo

mapsTo

(BREP_ID = ID)

«FK»

0..1

 Appendix 1: Layered Graph Transformation Rules

188

Rule 14: Mapping Implicit Geometry

Layer group 5

Description

Another important geometry type of the CityGML’s spatial model is the

`Implicit Geometry` which is based on the scene graph concept and can

also used in CityGML ADEs (cf. Gröger et al. 2012). The relational

representation of the implicity geometry property has already been

implemented in the standard 3DCityDB database schema based on which

a foreign key column LOD[X]_IMPLICIT_REF_ID is firstly created

which references to the primary key of the IMPLICT_GEOMETRY table.

Further, two additional columns LOD[X]_IMPLICIT_REF_POINT and

LOD[x]_IMPLICT_TRANSFORMATION shall be added for providing

the information on how to place the implicit geometry in the real-world

coordinate reference systems. Note that the token [x] denotes the level

of detail (LOD) of the respective implicit geometry representation. The

corresponding implemented graph transformation rule are shown in the

figures below.

Logical
Mapping

Graph
Definition of
the Transfor-
mation rule

Nagative
Application
Condition

class Diagram

Object-Oriented Model

«ObjectType»

ImplictGeometry

<TableNameForClass1>

«column»

*PK ID: NUMBER

 FK LOD[X]_IMPLCIT_REP_ID: NUMBER

 LOD[X]_IMPLCIT_REF_POINT: SDO_GEOMETRY

 LOD[X]_IMPLICIT_TRNASFORMATION: VARCHAR2(1000)

«FeatureType»

<Class1Name>

IMPLICT_GEOMETRY

«column»

*pfK ID: NUMBER

Relational Database Model

. mapsTo

mapsTo
0..1

(LOD[X]_IMPLCIT_REP_ID = ID)

«FK»

mapsTo

Appendix 1: Layered Graph Transformation Rules

189

Rule 15: Creating Index for foreign key and spatial columns

Layer group 6

Description

The second-last graph transformation layer contains only two simple

graph transformation rules for creating databae indexes for the foreign

key columns and spatial columns. It is usually necessary to create indexes

on foreign key columns for avoiding the full table scan when updating the

table contents in order to achieve a better database performance.

Furthermore, the foreign key index is especially important for the

database like Oracle, because the ‘ON DELETE CASCADE’ operation may

cause a “table-level” lock issue while performing the delete operations on

the tables, when no indexes are created on the corresponding foreign key

columns. For spatial columns, the spatial indexes are important not only

for guaranteeing good query performance but also required e.g. by Oracle

for its spatial operators like SDO_FILTER, SDO_ANYINTERACT, and

SDO_JOIN etc. (cf. Kothuri et al. 2011)

To create these two kinds of indexes, the following two graph

transformation rules are designed in this graph transformation layer.

Compared with the LHS of each graph transformation rule, a new graph

node representing the database index is added into the RHS and an

additional edge typed as targetColumn is created to connect the index

node with its respective column. Since only one index shall be created on

the corresponding column, each graph transformation rule also has a NAC

which is morphologically identical with the respective RHS and allows to

esure that the transformation rule will be applied on the target column

only one time.

Graph
Definition of
the Transfor-
mation rule A

Graph
Definition of
the Transfor-
mation rule B

 Appendix 1: Layered Graph Transformation Rules

190

Rule 16: Creating Seqeucne for tables mapped from non-Feature(Object) classes

Layer group 7

Description

The last transformation layer contains only one simple transformation rule

for creating a database sequence for each of those tables that are

mapped from the classes modelled with the stereotypes <<DataType>> or

<<Union>>. The database sequence allows to automatically generate

incremental integer values which are hence unique and can be used as

primary key values for the respective table. Note that it is not necessary to

create sequence for the tables mapped from <<FeatureType>> and

<<ObjectType>> classes, because all this kind of tables are dierectly or

transitively subtyped from the 3DCityDB table CITYOBJECT for which a

sequence CITYOBJECT_SEQ has already been provided in the standard

3DCityDB database schema.

The graph transformation rule is shown below, where a new node typed

as Sequence is created in the RHS and connected with the target table

via a graph edge typed as targetTable. The name of the newly created

sequence is defined by following the naming convention used for the

3DCityDB:

[Sequcne Name] = [Target Table Name] + “_SEQ”

This transformation rule is additionally augumented with the following

application condition

 x != “_Feature” && x != “_GML” && b = false

which means that the complex type should not be a <<FeatureType>> or

<<ObjectType>> and it should belong to the scope of the target ADE, not

to GML or CityGML. Similar with the other graph transformation rules, a

NAC is defeind for ensuring that only one sequence object will be created

for the target table.

Graph
Definition of
the Transfor-
mation rule A

Nagative
Application
Conditions

Appendix 2: XML Schema Definition File of the TestADE

191

Appendix 2: XML Schema Definition File of the TestADE

The following XML schema definition of the TestADE (cf. chapter 4.3.3) has been

automatically generated from its EA-UML model using the software tool ShapeChange (cf.

chapter 4.3.1).

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:TestADE="http://www.citygml.org/ade/TestADE/1.0"

 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

xmlns:core="http://www.opengis.net/citygml/2.0"

 xmlns:gml="http://www.opengis.net/gml" xmlns:sc="http://www.interactive-

instruments.de/ShapeChange/AppInfo"

 elementFormDefault="qualified" target-

Namespace="http://www.citygml.org/ade/TestADE/1.0"

 version="1.0">

 <import namespace="http://www.interactive-instruments.de/ShapeChange/AppInfo"

 schemaLocation="http://shapechange.net/resources/schema/ShapeChangeAppinfo.xsd"

/>

 <import namespace="http://www.opengis.net/citygml/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd" />

 <import namespace="http://www.opengis.net/citygml/building/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/building/2.0/building.xsd"

/>

 <import namespace="http://www.opengis.net/gml"

 schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd" />

 <!--XML Schema document created by ShapeChange - http://shapechange.net/ -->

 <element name="ownerName"

 substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"

 type="string" />

 <element name="floorArea"

 substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"

 type="gml:AreaType" />

 <element name="energyPerformanceCertification"

 substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"

 type="TestADE:EnergyPerformanceCertificationPropertyType" />

 <element name="buildingUnit"

 substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"

 type="TestADE:_AbstractBuildingUnitPropertyType" />

 <element name="BuildingUnit" substitutionGroup="TestADE:_AbstractBuildingUnit"

 type="TestADE:BuildingUnitType" />

 <complexType name="BuildingUnitType">

 <complexContent>

 <extension base="TestADE:_AbstractBuildingUnitType">

 <sequence />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="BuildingUnitPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:BuildingUnit" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="BuildingUnitPart" substitu-

tionGroup="TestADE:_AbstractBuildingUnit"

 type="TestADE:BuildingUnitPartType" />

 <complexType name="BuildingUnitPartType">

 <complexContent>

 <extension base="TestADE:_AbstractBuildingUnitType">

 <sequence />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="BuildingUnitPartPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:BuildingUnitPart" />

 </sequence>

 Appendix 2: XML Schema Definition File of the TestADE

192

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="DHWFacilities" substitutionGroup="TestADE:Facilities"

 type="TestADE:DHWFacilitiesType" />

 <complexType name="DHWFacilitiesType">

 <complexContent>

 <extension base="TestADE:FacilitiesType">

 <sequence />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DHWFacilitiesPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:DHWFacilities" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="EnergyPerformanceCertification"

 substitutionGroup="gml:_Object"

type="TestADE:EnergyPerformanceCertificationType" />

 <complexType name="EnergyPerformanceCertificationType">

 <sequence>

 <element maxOccurs="unbounded" name="certificationName"

 type="string" />

 <element name="certificationid" type="string" />

 </sequence>

 </complexType>

 <complexType name="EnergyPerformanceCertificationPropertyType">

 <sequence>

 <element ref="TestADE:EnergyPerformanceCertification" />

 </sequence>

 </complexType>

 <element abstract="true" name="Facilities" substitutionGroup="gml:_Feature"

 type="TestADE:FacilitiesType" />

 <complexType abstract="true" name="FacilitiesType">

 <complexContent>

 <extension base="gml:AbstractFeatureType">

 <sequence>

 <element name="totalValue" type="gml:MeasureType" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="FacilitiesPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:Facilities" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="IndustrialBuilding" substitutionGroup="bldg:_AbstractBuilding"

 type="TestADE:IndustrialBuildingType">

 <annotation>

 <appinfo>

 <taggedValue

 xmlns="http://www.interactive-instruments.de/ShapeChange/AppInfo"

 tag="topLevel">true</taggedValue>

 </appinfo>

 </annotation>

 </element>

 <complexType name="IndustrialBuildingType">

 <complexContent>

 <extension base="bldg:AbstractBuildingType">

 <sequence>

 <element minOccurs="0" name="remark" type="string" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="IndustrialBuildingPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:IndustrialBuilding" />

Appendix 2: XML Schema Definition File of the TestADE

193

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="IndustrialBuildingPart" substitutionGroup="bldg:BuildingPart"

 type="TestADE:IndustrialBuildingPartType" />

 <complexType name="IndustrialBuildingPartType">

 <complexContent>

 <extension base="bldg:BuildingPartType">

 <sequence>

 <element minOccurs="0" name="remark" type="string" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="IndustrialBuildingPartPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:IndustrialBuildingPart" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="IndustrialBuildingRoofSurface"

 substitutionGroup="bldg:RoofSurface"

type="TestADE:IndustrialBuildingRoofSurfaceType" />

 <complexType name="IndustrialBuildingRoofSurfaceType">

 <complexContent>

 <extension base="bldg:RoofSurfaceType">

 <sequence>

 <element minOccurs="0" name="remark" type="string" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="IndustrialBuildingRoofSurfacePropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:IndustrialBuildingRoofSurface" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="LightingFacilities" substitutionGroup="TestADE:Facilities"

 type="TestADE:LightingFacilitiesType" />

 <complexType name="LightingFacilitiesType">

 <complexContent>

 <extension base="TestADE:FacilitiesType">

 <sequence />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="LightingFacilitiesPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:LightingFacilities" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element name="OtherConstruction" substitutionGroup="core:_Site"

 type="TestADE:OtherConstructionType">

 <annotation>

 <appinfo>

 <taggedValue

 xmlns="http://www.interactive-instruments.de/ShapeChange/AppInfo"

 tag="topLevel">true</taggedValue>

 </appinfo>

 </annotation>

 </element>

 <complexType name="OtherConstructionType">

 <complexContent>

 <extension base="core:AbstractSiteType">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="0" name="boundedBy"

 type="bldg:BoundarySurfacePropertyType" />

 </sequence>

 </extension>

194

 </complexContent>

 </complexType>

 <complexType name="OtherConstructionPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:OtherConstruction" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

 <element abstract="true" name="_AbstractBuildingUnit"

 substitutionGroup="core:_CityObject" type="TestADE:_AbstractBuildingUnitType"

/>

 <complexType abstract="true" name="_AbstractBuildingUnitType">

 <complexContent>

 <extension base="core:AbstractCityObjectType">

 <sequence>

 <element minOccurs="0" name="class" type="gml:CodeType" />

 <element maxOccurs="unbounded" minOccurs="0" name="usage"

 type="gml:CodeType" />

 <element maxOccurs="unbounded" minOccurs="0" name="function"

 type="gml:CodeType" />

 <element maxOccurs="unbounded" minOccurs="0"

 name="energyPerformanceCertification"

type="TestADE:EnergyPerformanceCertificationPropertyType" />

 <element minOccurs="0" name="lod2MultiCurve"

 type="gml:MultiCurvePropertyType" />

 <element minOccurs="0" name="lod3MultiCurve"

 type="gml:MultiCurvePropertyType" />

 <element minOccurs="0" name="lod4MultiCurve"

 type="gml:MultiCurvePropertyType" />

 <element minOccurs="0" name="lod1MultiSurface"

 type="gml:MultiSurfacePropertyType" />

 <element minOccurs="0" name="lod2MultiSurface"

 type="gml:MultiSurfacePropertyType" />

 <element minOccurs="0" name="lod3MultiSurface"

 type="gml:MultiSurfacePropertyType" />

 <element minOccurs="0" name="lod4MultiSurface"

 type="gml:MultiSurfacePropertyType" />

 <element minOccurs="0" name="lod1Solid" type="gml:SolidPropertyType" />

 <element minOccurs="0" name="lod2Solid" type="gml:SolidPropertyType" />

 <element minOccurs="0" name="lod3Solid" type="gml:SolidPropertyType" />

 <element minOccurs="0" name="lod4Solid" type="gml:SolidPropertyType" />

 <element maxOccurs="unbounded" minOccurs="0" name="address"

 type="core:AddressPropertyType" />

 <element maxOccurs="unbounded" minOccurs="0"

 name="equippedWith" type="TestADE:FacilitiesPropertyType" />

 <element maxOccurs="unbounded" minOccurs="0" name="consistsOf"

 type="TestADE:BuildingUnitPartPropertyType" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="_AbstractBuildingUnitPropertyType">

 <sequence minOccurs="0">

 <element ref="TestADE:_AbstractBuildingUnit" />

 </sequence>

 <attributeGroup ref="gml:AssociationAttributeGroup" />

 </complexType>

</schema>

Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

195

Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

The following Oracle-compliant SQL definition of the TestADE (cf. chapter 4.3.3) has been

automatically generated from its XML schema definition file using the developed graph-

based model transformation tool (cf. chapter 4.3.1).

-- This document was automatically created by the ADE-Manager tool of 3DCityDB

(https://www.3dcitydb.org) on 2017-09-20 11:50:06

--

+++

+++++

-- *********************************** Create tables

--

+++

+++++

-- --

-- test_BuildingU_to_address

-- --

CREATE TABLE test_BuildingU_to_address

(

 BuildingUnit_ID INTEGER NOT NULL,

 address_ID INTEGER NOT NULL,

 PRIMARY KEY (BuildingUnit_ID, address_ID)

);

-- --

-- test_BuildingUnit

-- --

CREATE TABLE test_BuildingUnit

(

 ID INTEGER NOT NULL,

 OBJECTCLASS_ID INTEGER,

 BuildingUnit_Parent_ID INTEGER,

 BuildingUnit_Root_ID INTEGER,

 building_buildingUnit_ID INTEGER,

 class_codespace VARCHAR2(254),

 class VARCHAR2(254),

 usage_codespace VARCHAR2(254),

 usage VARCHAR2(254),

 function_codespace VARCHAR2(254),

 function VARCHAR2(254),

 lod2MultiCurve MDSYS.SDO_GEOMETRY,

 lod3MultiCurve MDSYS.SDO_GEOMETRY,

 lod4MultiCurve MDSYS.SDO_GEOMETRY,

 lod1MultiSurface_ID INTEGER,

 lod2MultiSurface_ID INTEGER,

 lod3MultiSurface_ID INTEGER,

 lod4MultiSurface_ID INTEGER,

 lod1Solid_ID INTEGER,

 lod2Solid_ID INTEGER,

 lod3Solid_ID INTEGER,

 lod4Solid_ID INTEGER,

 PRIMARY KEY (ID)

);

-- --

-- test_EnergyPerformanceCer

-- --

CREATE TABLE test_EnergyPerformanceCer

(

 ID INTEGER NOT NULL,

 BuildingUni_energyPerf_ID INTEGER,

 certificationName VARCHAR2(254),

 certificationid VARCHAR2(254),

 PRIMARY KEY (ID)

);

 Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

196

-- --

-- test_Facilities

-- --

CREATE TABLE test_Facilities

(

 ID INTEGER NOT NULL,

 OBJECTCLASS_ID INTEGER,

 BuildingUni_equippedWi_ID INTEGER,

 totalValue_uom VARCHAR2(254),

 totalValue NUMBER,

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuilding

-- --

CREATE TABLE test_IndustrialBuilding

(

 ID INTEGER NOT NULL,

 remark VARCHAR2(254),

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuildingPa

-- --

CREATE TABLE test_IndustrialBuildingPa

(

 ID INTEGER NOT NULL,

 remark VARCHAR2(254),

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuildingRo

-- --

CREATE TABLE test_IndustrialBuildingRo

(

 ID INTEGER NOT NULL,

 remark VARCHAR2(254),

 PRIMARY KEY (ID)

);

-- --

-- test_OtherConstruction

-- --

CREATE TABLE test_OtherConstruction

(

 ID INTEGER NOT NULL,

 PRIMARY KEY (ID)

);

-- --

-- test_Other_to_thema_surfa

-- --

CREATE TABLE test_Other_to_thema_surfa

(

 OtherConstruction_ID INTEGER NOT NULL,

 thematic_surface_ID INTEGER NOT NULL,

 PRIMARY KEY (OtherConstruction_ID, thematic_surface_ID)

);

-- --

-- test_building

-- --

CREATE TABLE test_building

(

 ID INTEGER NOT NULL,

 ownerName VARCHAR2(254),

 floorArea_uom VARCHAR2(254),

 floorArea NUMBER,

Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

197

 EnergyPerfor_certificatio VARCHAR2(254),

 EnergyPerfo_certificati_1 VARCHAR2(254),

 PRIMARY KEY (ID)

);

--

+++

+++++

-- ********************************* Create foreign keys

--

+++

+++++

-- --

-- test_BuildingU_to_address

-- --

ALTER TABLE test_BuildingU_to_address

 ADD CONSTRAINT test_Buildi_to_addres_FK1 FOREIGN KEY (BuildingUnit_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingU_to_address

 ADD CONSTRAINT test_Buildi_to_addres_FK2 FOREIGN KEY (address_ID) REFERENCES

address (ID);

-- --

-- test_BuildingUnit

-- --

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_Objectcl_FK FOREIGN KEY (OBJECTCLASS_ID)

REFERENCES objectclass (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUnit_FK FOREIGN KEY (ID) REFERENCES cityobject

(ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUn_Parent_FK FOREIGN KEY (BuildingUnit_Parent_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUnit_Root_FK FOREIGN KEY (BuildingUnit_Root_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Build_build_build_FK FOREIGN KEY (building_buildingUnit_ID)

REFERENCES test_building (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod1Mult_FK FOREIGN KEY (lod1MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod2Mult_FK FOREIGN KEY (lod2MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod3Mult_FK FOREIGN KEY (lod3MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod4Mult_FK FOREIGN KEY (lod4MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod1Soli_FK FOREIGN KEY (lod1Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod2Soli_FK FOREIGN KEY (lod2Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

 Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

198

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod3Soli_FK FOREIGN KEY (lod3Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod4Soli_FK FOREIGN KEY (lod4Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

-- --

-- test_EnergyPerformanceCer

-- --

ALTER TABLE test_EnergyPerformanceCer

 ADD CONSTRAINT test_Energ_Build_energ_FK FOREIGN KEY (BuildingU-

ni_energyPerf_ID) REFERENCES test_BuildingUnit (ID);

-- --

-- test_Facilities

-- --

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Faciliti_Objectcl_FK FOREIGN KEY (OBJECTCLASS_ID)

REFERENCES objectclass (ID);

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Facilities_FK FOREIGN KEY (ID) REFERENCES cityobject (ID);

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Facil_Build_equip_FK FOREIGN KEY (BuildingU-

ni_equippedWi_ID) REFERENCES test_BuildingUnit (ID);

-- --

-- test_IndustrialBuilding

-- --

ALTER TABLE test_IndustrialBuilding

 ADD CONSTRAINT test_IndustrialBuildin_FK FOREIGN KEY (ID) REFERENCES building

(ID);

-- --

-- test_IndustrialBuildingPa

-- --

ALTER TABLE test_IndustrialBuildingPa

 ADD CONSTRAINT test_IndustrialBuild_FK_1 FOREIGN KEY (ID) REFERENCES building

(ID);

-- --

-- test_IndustrialBuildingRo

-- --

ALTER TABLE test_IndustrialBuildingRo

 ADD CONSTRAINT test_IndustrialBuild_FK_2 FOREIGN KEY (ID) REFERENCES themat-

ic_surface (ID);

-- --

-- test_OtherConstruction

-- --

ALTER TABLE test_OtherConstruction

 ADD CONSTRAINT test_OtherConstruction_FK FOREIGN KEY (ID) REFERENCES cityobject

(ID);

-- --

-- test_Other_to_thema_surfa

-- --

ALTER TABLE test_Other_to_thema_surfa

 ADD CONSTRAINT test_Othe_to_them_sur_FK1 FOREIGN KEY (OtherConstruction_ID)

REFERENCES test_OtherConstruction (ID);

ALTER TABLE test_Other_to_thema_surfa

 ADD CONSTRAINT test_Othe_to_them_sur_FK2 FOREIGN KEY (thematic_surface_ID)

REFERENCES thematic_surface (ID);

-- --

-- test_building

-- --

Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

199

ALTER TABLE test_building

 ADD CONSTRAINT test_building_FK FOREIGN KEY (ID) REFERENCES building (ID);

--

+++

+++++

-- ********************************* Create Indexes

--

+++

+++++

SET SERVEROUTPUT ON

SET FEEDBACK ON

SET VER OFF

VARIABLE SRID NUMBER;

BEGIN

 SELECT SRID INTO :SRID FROM DATABASE_SRS;

END;

/

column mc new_value SRSNO print

select :SRID mc from dual;

prompt Used SRID for spatial indexes: &SRSNO

-- --

-- test_BuildingUnit

-- --

CREATE INDEX test_Building_Objectc_FKX ON test_BuildingUnit (OBJECTCLASS_ID);

CREATE INDEX test_BuildingU_Parent_FKX ON test_BuildingUnit (Build-

ingUnit_Parent_ID);

CREATE INDEX test_BuildingUni_Root_FKX ON test_BuildingUnit (BuildingUnit_Root_ID);

CREATE INDEX test_Build_build_buil_FKX ON test_BuildingUnit (build-

ing_buildingUnit_ID);

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='TEST_BUILDINGUNIT' AND

COLUMN_NAME='LOD2MULTICURVE';

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)

VALUES ('test_BuildingUnit','lod2MultiCurve',

MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),

MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005),MDSYS.SDO_DIM_ELEMENT('Z',

-1000, 10000, 0.0005)), &SRSNO);

CREATE INDEX test_Building_lod2Mul_SPX ON test_BuildingUnit (lod2MultiCurve)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='TEST_BUILDINGUNIT' AND

COLUMN_NAME='LOD3MULTICURVE';

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)

VALUES ('test_BuildingUnit','lod3MultiCurve',

MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),

MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005),MDSYS.SDO_DIM_ELEMENT('Z',

-1000, 10000, 0.0005)), &SRSNO);

CREATE INDEX test_Building_lod3Mul_SPX ON test_BuildingUnit (lod3MultiCurve)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='TEST_BUILDINGUNIT' AND

COLUMN_NAME='LOD4MULTICURVE';

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)

VALUES ('test_BuildingUnit','lod4MultiCurve',

MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),

MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005),MDSYS.SDO_DIM_ELEMENT('Z',

-1000, 10000, 0.0005)), &SRSNO);

CREATE INDEX test_Building_lod4Mul_SPX ON test_BuildingUnit (lod4MultiCurve)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

CREATE INDEX test_Building_lod1Mul_FKX ON test_BuildingUnit (lod1MultiSurface_ID);

 Appendix 3: SQL Definition of the TestADE Oracle DB-Schema

200

CREATE INDEX test_Building_lod2Mul_FKX ON test_BuildingUnit (lod2MultiSurface_ID);

CREATE INDEX test_Building_lod3Mul_FKX ON test_BuildingUnit (lod3MultiSurface_ID);

CREATE INDEX test_Building_lod4Mul_FKX ON test_BuildingUnit (lod4MultiSurface_ID);

CREATE INDEX test_Building_lod1Sol_FKX ON test_BuildingUnit (lod1Solid_ID);

CREATE INDEX test_Building_lod2Sol_FKX ON test_BuildingUnit (lod2Solid_ID);

CREATE INDEX test_Building_lod3Sol_FKX ON test_BuildingUnit (lod3Solid_ID);

CREATE INDEX test_Building_lod4Sol_FKX ON test_BuildingUnit (lod4Solid_ID);

-- --

-- test_EnergyPerformanceCer

-- --

CREATE INDEX test_Energ_Build_ener_FKX ON test_EnergyPerformanceCer (BuildingU-

ni_energyPerf_ID);

-- --

-- test_Facilities

-- --

CREATE INDEX test_Faciliti_Objectc_FKX ON test_Facilities (OBJECTCLASS_ID);

CREATE INDEX test_Facil_Build_equi_FKX ON test_Facilities (BuildingU-

ni_equippedWi_ID);

--

+++

+++++

-- ********************************* Create Sequences

--

+++

+++++

CREATE SEQUENCE test_EnergyPerformanc_SEQ INCREMENT BY 1 START WITH 1 MINVALUE 1

CACHE 10000;

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

201

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

The following PostGIS-compliant SQL definition of the TestADE (cf. chapter 4.3.3) has been

automatically generated from its XML schema definition file using the developed graph-

based model transformation tool (cf. chapter 4.3.1).

-- This document was automatically created by the ADE-Manager tool of 3DCityDB

(https://www.3dcitydb.org) on 2017-09-20 11:50:06

--

+++

+++++

-- *********************************** Create tables

--

+++

+++++

-- --

-- test_BuildingU_to_address

-- --

CREATE TABLE test_BuildingU_to_address

(

 BuildingUnit_ID INTEGER NOT NULL,

 address_ID INTEGER NOT NULL,

 PRIMARY KEY (BuildingUnit_ID, address_ID)

);

-- --

-- test_BuildingUnit

-- --

CREATE TABLE test_BuildingUnit

(

 ID INTEGER NOT NULL,

 OBJECTCLASS_ID INTEGER,

 BuildingUnit_Parent_ID INTEGER,

 BuildingUnit_Root_ID INTEGER,

 building_buildingUnit_ID INTEGER,

 class_codespace VARCHAR(254),

 class VARCHAR(254),

 usage_codespace VARCHAR(254),

 usage VARCHAR(254),

 function_codespace VARCHAR(254),

 function VARCHAR(254),

 lod2MultiCurve geometry(GEOMETRYZ),

 lod3MultiCurve geometry(GEOMETRYZ),

 lod4MultiCurve geometry(GEOMETRYZ),

 lod1MultiSurface_ID INTEGER,

 lod2MultiSurface_ID INTEGER,

 lod3MultiSurface_ID INTEGER,

 lod4MultiSurface_ID INTEGER,

 lod1Solid_ID INTEGER,

 lod2Solid_ID INTEGER,

 lod3Solid_ID INTEGER,

 lod4Solid_ID INTEGER,

 PRIMARY KEY (ID)

);

-- --

-- test_EnergyPerformanceCer

-- --

CREATE TABLE test_EnergyPerformanceCer

(

 ID INTEGER NOT NULL,

 BuildingUni_energyPerf_ID INTEGER,

 certificationName VARCHAR(254),

 certificationid VARCHAR(254),

 PRIMARY KEY (ID)

);

 Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

202

-- --

-- test_Facilities

-- --

CREATE TABLE test_Facilities

(

 ID INTEGER NOT NULL,

 OBJECTCLASS_ID INTEGER,

 BuildingUni_equippedWi_ID INTEGER,

 totalValue_uom VARCHAR(254),

 totalValue NUMERIC,

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuilding

-- --

CREATE TABLE test_IndustrialBuilding

(

 ID INTEGER NOT NULL,

 remark VARCHAR(254),

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuildingPa

-- --

CREATE TABLE test_IndustrialBuildingPa

(

 ID INTEGER NOT NULL,

 remark VARCHAR(254),

 PRIMARY KEY (ID)

);

-- --

-- test_IndustrialBuildingRo

-- --

CREATE TABLE test_IndustrialBuildingRo

(

 ID INTEGER NOT NULL,

 remark VARCHAR(254),

 PRIMARY KEY (ID)

);

-- --

-- test_OtherConstruction

-- --

CREATE TABLE test_OtherConstruction

(

 ID INTEGER NOT NULL,

 PRIMARY KEY (ID)

);

-- --

-- test_Other_to_thema_surfa

-- --

CREATE TABLE test_Other_to_thema_surfa

(

 OtherConstruction_ID INTEGER NOT NULL,

 thematic_surface_ID INTEGER NOT NULL,

 PRIMARY KEY (OtherConstruction_ID, thematic_surface_ID)

);

-- --

-- test_building

-- --

CREATE TABLE test_building

(

 ID INTEGER NOT NULL,

 ownerName VARCHAR(254),

 floorArea_uom VARCHAR(254),

 floorArea NUMERIC,

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

203

 EnergyPerfor_certificatio VARCHAR(254),

 EnergyPerfo_certificati_1 VARCHAR(254),

 PRIMARY KEY (ID)

);

--

+++

+++++

-- ********************************* Create foreign keys

--

+++

+++++

-- --

-- test_BuildingU_to_address

-- --

ALTER TABLE test_BuildingU_to_address

 ADD CONSTRAINT test_Buildi_to_addres_FK1 FOREIGN KEY (BuildingUnit_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingU_to_address

 ADD CONSTRAINT test_Buildi_to_addres_FK2 FOREIGN KEY (address_ID) REFERENCES

address (ID);

-- --

-- test_BuildingUnit

-- --

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_Objectcl_FK FOREIGN KEY (OBJECTCLASS_ID)

REFERENCES objectclass (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUnit_FK FOREIGN KEY (ID) REFERENCES cityobject

(ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUn_Parent_FK FOREIGN KEY (BuildingUnit_Parent_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_BuildingUnit_Root_FK FOREIGN KEY (BuildingUnit_Root_ID)

REFERENCES test_BuildingUnit (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Build_build_build_FK FOREIGN KEY (building_buildingUnit_ID)

REFERENCES test_building (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod1Mult_FK FOREIGN KEY (lod1MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod2Mult_FK FOREIGN KEY (lod2MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod3Mult_FK FOREIGN KEY (lod3MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod4Mult_FK FOREIGN KEY (lod4MultiSurface_ID)

REFERENCES SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod1Soli_FK FOREIGN KEY (lod1Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod2Soli_FK FOREIGN KEY (lod2Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

 Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

204

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod3Soli_FK FOREIGN KEY (lod3Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

ALTER TABLE test_BuildingUnit

 ADD CONSTRAINT test_Building_lod4Soli_FK FOREIGN KEY (lod4Solid_ID) REFERENCES

SURFACE_GEOMETRY (ID);

-- --

-- test_EnergyPerformanceCer

-- --

ALTER TABLE test_EnergyPerformanceCer

 ADD CONSTRAINT test_Energ_Build_energ_FK FOREIGN KEY (BuildingU-

ni_energyPerf_ID) REFERENCES test_BuildingUnit (ID);

-- --

-- test_Facilities

-- --

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Faciliti_Objectcl_FK FOREIGN KEY (OBJECTCLASS_ID)

REFERENCES objectclass (ID);

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Facilities_FK FOREIGN KEY (ID) REFERENCES cityobject (ID);

ALTER TABLE test_Facilities

 ADD CONSTRAINT test_Facil_Build_equip_FK FOREIGN KEY (BuildingU-

ni_equippedWi_ID) REFERENCES test_BuildingUnit (ID);

-- --

-- test_IndustrialBuilding

-- --

ALTER TABLE test_IndustrialBuilding

 ADD CONSTRAINT test_IndustrialBuildin_FK FOREIGN KEY (ID) REFERENCES building

(ID);

-- --

-- test_IndustrialBuildingPa

-- --

ALTER TABLE test_IndustrialBuildingPa

 ADD CONSTRAINT test_IndustrialBuild_FK_1 FOREIGN KEY (ID) REFERENCES building

(ID);

-- --

-- test_IndustrialBuildingRo

-- --

ALTER TABLE test_IndustrialBuildingRo

 ADD CONSTRAINT test_IndustrialBuild_FK_2 FOREIGN KEY (ID) REFERENCES themat-

ic_surface (ID);

-- --

-- test_OtherConstruction

-- --

ALTER TABLE test_OtherConstruction

 ADD CONSTRAINT test_OtherConstruction_FK FOREIGN KEY (ID) REFERENCES cityobject

(ID);

-- --

-- test_Other_to_thema_surfa

-- --

ALTER TABLE test_Other_to_thema_surfa

 ADD CONSTRAINT test_Othe_to_them_sur_FK1 FOREIGN KEY (OtherConstruction_ID)

REFERENCES test_OtherConstruction (ID);

ALTER TABLE test_Other_to_thema_surfa

 ADD CONSTRAINT test_Othe_to_them_sur_FK2 FOREIGN KEY (thematic_surface_ID)

REFERENCES thematic_surface (ID);

-- --

-- test_building

-- --

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

205

ALTER TABLE test_building

 ADD CONSTRAINT test_building_FK FOREIGN KEY (ID) REFERENCES building (ID);

--

+++

+++++

-- ********************************* Create Indexes

--

+++

+++++

-- --

-- test_BuildingUnit

-- --

CREATE INDEX test_Building_Objectc_FKX ON test_BuildingUnit

 USING btree

 (

 OBJECTCLASS_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_BuildingU_Parent_FKX ON test_BuildingUnit

 USING btree

 (

 BuildingUnit_Parent_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_BuildingUni_Root_FKX ON test_BuildingUnit

 USING btree

 (

 BuildingUnit_Root_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Build_build_buil_FKX ON test_BuildingUnit

 USING btree

 (

 building_buildingUnit_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod2Mul_SPX ON test_BuildingUnit

 USING gist

 (

 lod2MultiCurve

);

CREATE INDEX test_Building_lod3Mul_SPX ON test_BuildingUnit

 USING gist

 (

 lod3MultiCurve

);

CREATE INDEX test_Building_lod4Mul_SPX ON test_BuildingUnit

 USING gist

 (

 lod4MultiCurve

);

CREATE INDEX test_Building_lod1Mul_FKX ON test_BuildingUnit

 USING btree

 (

 lod1MultiSurface_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod2Mul_FKX ON test_BuildingUnit

 USING btree

 (

 lod2MultiSurface_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod3Mul_FKX ON test_BuildingUnit

 USING btree

 (

 Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

206

 lod3MultiSurface_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod4Mul_FKX ON test_BuildingUnit

 USING btree

 (

 lod4MultiSurface_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod1Sol_FKX ON test_BuildingUnit

 USING btree

 (

 lod1Solid_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod2Sol_FKX ON test_BuildingUnit

 USING btree

 (

 lod2Solid_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod3Sol_FKX ON test_BuildingUnit

 USING btree

 (

 lod3Solid_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Building_lod4Sol_FKX ON test_BuildingUnit

 USING btree

 (

 lod4Solid_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

-- --

-- test_EnergyPerformanceCer

-- --

CREATE INDEX test_Energ_Build_ener_FKX ON test_EnergyPerformanceCer

 USING btree

 (

 BuildingUni_energyPerf_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

-- --

-- test_Facilities

-- --

CREATE INDEX test_Faciliti_Objectc_FKX ON test_Facilities

 USING btree

 (

 OBJECTCLASS_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

CREATE INDEX test_Facil_Build_equi_FKX ON test_Facilities

 USING btree

 (

 BuildingUni_equippedWi_ID ASC NULLS LAST

) WITH (FILLFACTOR = 90);

--

+++

+++++

-- ********************************* Create Sequences

--

+++

+++++

CREATE SEQUENCE test_EnergyPerformanc_SEQ

INCREMENT BY 1

MINVALUE 0

MAXVALUE 2147483647

START WITH 1

Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

207

CACHE 1

NO CYCLE

OWNED BY NONE;

 Appendix 4: SQL Definition of the TestADE PostGIS DB-Schema

208

Appendix 5: XML Definition of the TestADE Schema Mapping

209

Appendix 5: XML Definition of the TestADE Schema Mapping

The following schema mapping file of the TestADE (cf. chapter 4.3.3) has been automatically

generated from its XML schema definition file using the developed graph-based model

transformation tool (cf. chapter 4.3.1).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<schemaMapping xmlns="http://www.3dcitydb.org/database/schema/3.0">

 <metadata>

 <name>TestADE</name>

 <version>1.0</version>

 <description>TestADE</description>

 <dbPrefix>test</dbPrefix>

 </metadata>

 <applicationSchemas>

 <schema id="test" xmlPrefix="ade5" isADERoot="true">

 <namespace context="citygml-2.0">http://www.citygml.org/ade/TestADE/1.0

 </namespace>

 </schema>

 </applicationSchemas>

 <complexTypes>

 <complexType id="EnergyPerformanceCertificationType"

 table="test_EnergyPerformanceCer" path="EnergyPerformanceCertification"

 schema="test">

 <attribute column="certificationName" type="string"

 path="certificationName" schema="test" />

 <attribute column="certificationid" type="string"

 path="certificationid" schema="test" />

 </complexType>

 </complexTypes>

 <featureTypes>

 <featureType abstract="true" id="_AbstractBuildingUnitType"

 table="test_BuildingUnit" objectClassId="20000" path="_AbstractBuildingUnit"

 schema="test">

 <extension base="AbstractCityObjectType">

 <join table="cityobject" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <complexAttribute path="class" schema="test">

 <attribute column="class_codespace" type="string"

 path="@codespace" schema="test" />

 <attribute column="class" type="string" path="."

 schema="test" />

 </complexAttribute>

 <complexAttribute path="usage" schema="test">

 <attribute column="usage_codespace" type="string"

 path="@codespace" schema="test" />

 <attribute column="usage" type="string" path="."

 schema="test" />

 </complexAttribute>

 <complexAttribute path="function" schema="test">

 <attribute column="function_codespace" type="string"

 path="@codespace" schema="test" />

 <attribute column="function" type="string" path="."

 schema="test" />

 </complexAttribute>

 <complexProperty refType="EnergyPerformanceCertificationType"

 path="energyPerformanceCertification" schema="test">

 <join table="test_EnergyPerformanceCer" fromColumn="ID"

 toColumn="BuildingUni_energyPerf_ID" toRole="child" />

 </complexProperty>

 <geometryProperty inlineColumn="lod2MultiCurve"

 type="MultiCurve" path="lod2MultiCurve" schema="test" />

 <geometryProperty inlineColumn="lod3MultiCurve"

 type="MultiCurve" path="lod3MultiCurve" schema="test" />

 <geometryProperty inlineColumn="lod4MultiCurve"

 type="MultiCurve" path="lod4MultiCurve" schema="test" />

 <geometryProperty refColumn="lod1MultiSurface_ID"

 Appendix 5: XML Definition of the TestADE Schema Mapping

210

 type="MultiSurface" path="lod1MultiSurface" schema="test" />

 <geometryProperty refColumn="lod2MultiSurface_ID"

 type="MultiSurface" path="lod2MultiSurface" schema="test" />

 <geometryProperty refColumn="lod3MultiSurface_ID"

 type="MultiSurface" path="lod3MultiSurface" schema="test" />

 <geometryProperty refColumn="lod4MultiSurface_ID"

 type="MultiSurface" path="lod4MultiSurface" schema="test" />

 <geometryProperty refColumn="lod1Solid_ID" type="AbstractSolid"

 path="lod1Solid" schema="test" />

 <geometryProperty refColumn="lod2Solid_ID" type="AbstractSolid"

 path="lod2Solid" schema="test" />

 <geometryProperty refColumn="lod3Solid_ID" type="AbstractSolid"

 path="lod3Solid" schema="test" />

 <geometryProperty refColumn="lod4Solid_ID" type="AbstractSolid"

 path="lod4Solid" schema="test" />

 <featureProperty target="AddressType" path="address"

 schema="test">

 <joinTable table="test_BuildingU_to_address">

 <join table="test_BuildingUnit" fromColumn="BuildingUnit_ID"

 toColumn="ID" toRole="parent" />

 <inverseJoin table="address" fromColumn="address_ID"

 toColumn="ID" toRole="parent" />

 </joinTable>

 </featureProperty>

 <featureProperty target="FacilitiesType" path="equippedWith"

 schema="test">

 <join table="test_Facilities" fromColumn="ID"

 toColumn="BuildingUni_equippedWi_ID" toRole="child">

 <condition column="objectclass_id" value="${target.objectclass_id}"

 type="integer" />

 </join>

 </featureProperty>

 <featureProperty target="BuildingUnitPartType"

 path="consistsOf" schema="test">

 <join table="test_BuildingUnit" fromColumn="ID"

 toColumn="BuildingUnit_Parent_ID" toRole="child">

 <condition column="objectclass_id" value="${target.objectclass_id}"

 type="integer" />

 <treeHierarchy rootColumn="BuildingUnit_Root_ID" />

 </join>

 </featureProperty>

 </featureType>

 <featureType abstract="true" id="FacilitiesType" table="test_Facilities"

 objectClassId="20001" path="Facilities" schema="test">

 <extension base="AbstractFeatureType">

 <join table="cityobject" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <complexAttribute path="totalValue" schema="test">

 <attribute column="totalValue_uom" type="string" path="@uom"

 schema="test" />

 <attribute column="totalValue" type="double" path="."

 schema="test" />

 </complexAttribute>

 </featureType>

 <featureType id="BuildingUnitPartType" table="test_BuildingUnit"

 objectClassId="20002" path="BuildingUnitPart" schema="test">

 <extension base="_AbstractBuildingUnitType" />

 </featureType>

 <featureType id="BuildingUnitType" table="test_BuildingUnit"

 objectClassId="20003" path="BuildingUnit" schema="test">

 <extension base="_AbstractBuildingUnitType" />

 </featureType>

 <featureType id="DHWFacilitiesType" table="test_Facilities"

 objectClassId="20004" path="DHWFacilities" schema="test">

 <extension base="FacilitiesType" />

 </featureType>

 <featureType id="IndustrialBuildingType" table="test_IndustrialBuilding"

 objectClassId="20005" topLevel="true" path="IndustrialBuilding"

 schema="test">

 <extension base="AbstractBuildingType">

Appendix 5: XML Definition of the TestADE Schema Mapping

211

 <join table="building" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <attribute column="remark" type="string" path="remark"

 schema="test" />

 </featureType>

 <featureType id="IndustrialBuildingPartType" table="test_IndustrialBuildingPa"

 objectClassId="20006" path="IndustrialBuildingPart" schema="test">

 <extension base="BuildingPartType">

 <join table="building" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <attribute column="remark" type="string" path="remark"

 schema="test" />

 </featureType>

 <featureType id="IndustrialBuildingRoofSurfaceType"

 table="test_IndustrialBuildingRo" objectClassId="20007"

 path="IndustrialBuildingRoofSurface" schema="test">

 <extension base="RoofSurfaceType">

 <join table="thematic_surface" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <attribute column="remark" type="string" path="remark"

 schema="test" />

 </featureType>

 <featureType id="LightingFacilitiesType" table="test_Facilities"

 objectClassId="20008" path="LightingFacilities" schema="test">

 <extension base="FacilitiesType" />

 </featureType>

 <featureType id="OtherConstructionType" table="test_OtherConstruction"

 objectClassId="20009" topLevel="true" path="OtherConstruction"

 schema="test">

 <extension base="AbstractSiteType">

 <join table="cityobject" fromColumn="ID" toColumn="ID"

 toRole="parent" />

 </extension>

 <featureProperty target="AbstractBoundarySurfaceType"

 path="boundedBy" schema="test">

 <joinTable table="test_Other_to_thema_surfa">

 <join table="test_OtherConstruction" fromColumn="OtherConstruction_ID"

 toColumn="ID" toRole="parent" />

 <inverseJoin table="thematic_surface" fromColumn="thematic_surface_ID"

 toColumn="ID" toRole="parent" />

 </joinTable>

 </featureProperty>

 </featureType>

 </featureTypes>

 <propertyInjections>

 <propertyInjection table="test_building"

 defaultBase="AbstractBuildingType">

 <join table="test_building" fromColumn="ID" toColumn="ID"

 toRole="child" />

 <attribute column="ownerName" type="string" path="ownerName"

 schema="test" />

 <complexAttribute path="floorArea" schema="test">

 <attribute column="floorArea_uom" type="string" path="@uom"

 schema="test" />

 <attribute column="floorArea" type="double" path="."

 schema="test" />

 </complexAttribute>

 <complexProperty path="energyPerformanceCertification"

 schema="test">

 <type path="EnergyPerformanceCertification" schema="test">

 <attribute column="EnergyPerfor_certificatio" type="string"

 path="certificationName" schema="test" />

 <attribute column="EnergyPerfo_certificati_1" type="string"

 path="certificationid" schema="test" />

 </type>

 </complexProperty>

 <featureProperty target="_AbstractBuildingUnitType"

 path="buildingUnit" schema="test">

 Appendix 5: XML Definition of the TestADE Schema Mapping

212

 <join table="test_BuildingUnit" fromColumn="ID"

 toColumn="building_buildingUnit_ID" toRole="child">

 <condition column="objectclass_id" value="${target.objectclass_id}"

 type="integer" />

 </join>

 </featureProperty>

 </propertyInjection>

 </propertyInjections>

</schemaMapping>

