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Abstract— Tactical maneuver planning of multiple, commu-
nicating vehicles provides the opportunity to increase passenger
safety and comfort. We propose a unifying method to orches-
trate the motion of cooperative vehicles based on the negotiation
of conflicting road areas, which are determined by reachable
set computation. As a result, each vehicle receives an individual
driving corridor for trajectory planning. The presented conflict
resolution scheme has polynomial runtime complexity and is
guaranteed to find the optimal allocation of road areas for
each negotiation round. Our method is not tailored to specific
traffic situations but is applicable to general traffic scenes with
manually driven and automated vehicles. We demonstrate the
universal usability of our approach in numerical experiments.

I. INTRODUCTION

There are many traffic situations in which individual nav-
igation goals of traffic participants lead to conflicts. Human
drivers often resolve these issues through implicit communi-
cation relying on the reasonable behavior of others. However,
communicating automated vehicles offer more sophisticated
solutions for collaborative maneuver planning. These vehi-
cles can form a cooperative group, which jointly agrees on a
common driving strategy to achieve conflict avoidance while
maximizing individual utilities. One of the major challenges
towards multi-vehicle motion planning is the development
of coordination schemes which are computationally efficient
without compromising optimality. We introduce a method
for tactical decision making, which unambiguously assigns
road areas to cooperating vehicles. Subsequently, we review
literature focusing on similar conflict resolution principles.

Dresner et al. [1] pioneered the work on reservation-based
algorithms with a focus on intersection management: the
intersection space is discretized into tiles, which approach-
ing vehicles can request via an intersection manager. This
manager simulates trajectories of vehicles to determine the
necessary tiles for passing the intersection and ensures that
no tile is occupied by more than one vehicle. The original
work has been extended in successive publications [2]–
[4]. Sharon et al. [5] improve on the work of Dresner et
al. [4] to be more efficient, particularly if the majority of
vehicles present are driven by humans. In [6]–[8], the first-
come, first-served policy for reservation assignment in [1]
is replaced by auction-based methods. In [9], [10], conflict
points instead of tiles are used as a resource for intersection
management; Levin et al. [11] combine conflict points at
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intersections into conflict regions. In [12], a legacy algorithm
based on reservations is proposed, which can handle a low
percentage of non-communicating vehicles or vehicles with
malfunctioning communication systems. A comprehensive
overview of further techniques for cooperative intersection
management can be found in [13].

While the former methods are applied to intersections,
Marinescu et al. [14], [15] present virtual slots for traffic
shaping. A virtual slot is a moving space-time corridor with
a predefined behavior, e.g., lane following with constant
speed or lane changing; vehicles assigned to slots must adopt
their behavior. Their method is evaluated on a highway
merging scenario. Alternative solutions to cooperative on-
ramp merging onto highways can be found in [16]. Zhang et
al. [17] propose a reservation-based scheduling technique to
coordinate communicating vehicles through an intersection,
which is divided into a set of static critical sections. Their
goal is to establish a service-orientated traffic management,
where high-priority vehicles are able to pass through the
intersection first. In [18], dynamic critical sections are in-
troduced among static critical sections to consider behaviors
like lane-changing and overtaking. Cooperative maneuvers
are defined as a sequence of states modeled within an event-
triggered state automaton [18].

We intend to solve temporarily bounded conflicts, where
vehicles collaborate for a limited amount of time based on
reservations: road areas requested by several communicating
traffic participants are distributed such that each vehicle
receives its own driving corridor for trajectory planning. In
contrast to previous work, we determine reservation conflicts
by computing the drivable areas of all collaborative vehicles
using reachability analysis. While many works assume that
vehicles are highly automated, we intentionally deal with
mixed traffic, where human-driven and automated vehicles
share the road. Since scenarios with only automated vehicles
are a special case, our algorithm can treat these situations
as well. Moreover, our unifying method is not restricted to
specific maneuvers or traffic situations.

Our approach can be categorized as a hybrid framework
[13], where we optimally use the capabilities of each vehicle
through decentralized computation of reachable sets, while
the negotiation is performed by a leading vehicle. The
presented paper is based on our previous work in [19]. The
novelty of this work includes:
• Designing a general framework to incorporate individ-

ual goals of cooperative vehicles, whereas in [19], the
value assessment of different road areas is exclusively
based on geometric reasoning.



• Formulating a combinatorial optimization problem to
optimally allocate conflicting road areas to the vehicles
according to their preferences and reducing its com-
putational complexity through hierarchical structuring
of conflicting road areas. This makes it possible to
resolve conflicts in polynomial runtime complexity in
the number of road areas to be negotiated [20], but
independently in the number of vehicles.

• Computing the reachable sets of cooperative traffic
participants in a vehicle-specific, curvilinear coordinate
system, whereas in [19], it is required that all compu-
tations are performed in a common coordinate system.
This facilitates coping with different driving contexts as
presented in Sec. VI.

Sec. II introduces the problem statement and Sec. III presents
the necessary preliminaries. In Sec. IV-V, our applied meth-
ods and proposed algorithm are described. Sec. VI demon-
strates our approach on numerical examples, followed by the
conclusion in Sec.VII.

II. PROBLEM STATEMENT

Let G = {g0, g1, . . . , gi, . . .} denote a grid with cells
gi of an arbitrary shape obtained through tessellation of
the position domain in a Cartesian reference frame F0 (see
Fig. 1). The cells gi are the individual assets of road areas
which can be combined into unions of assets Cj ⊆ G,
which we refer to as packages. We introduce the set V :=
{V1, V2, . . . , VN} of cooperative vehicles acting as bidders,
which can submit a bid for different sets Cj . We restrict the
set of permitted combinations P(t) ⊆ P(GC(t)), where P()
returns the powerset, to those Cj containing only conflicting
cells gi ∈ GC(t), GC(t) ⊆ G, requested from at least two
vehicles Vn at time instance t (see Fig. 1). It is assumed
that each vehicle Vn only bids its true value bn(t, Cj) of a
combination of assets Cj . The maximum bid for a package
Cj is b(t, Cj), and any tie-breaking rule [20] is accepted to
determine b(t, Cj).

We aim to find a distribution of sets Cj ∈ P(t) such that
the revenue is maximized (1a) and no single asset is assigned
more than once (1b) [20]:

max
δ(t,Cj)

∑
Cj∈P(t)

δ(t, Cj)b(t, Cj) (1a)

such that

∀gi ∈ GC(t) :
∑

Cj : gi∈Cj

δ(t, Cj) ≤ 1, (1b)

∀Cj ∈ P(t) : δ(t, Cj) ∈ {0, 1}, (1c)

where δ(t, Cj) denotes the allocation of package Cj to the
highest bidder Vn; δ(t, Cj) = 1 holds iff bidder Vn receives
package Cj at time instance t.

The optimization problem (1) is known as the winner
determination problem, which is NP-hard to solve [20], [21].
Moreover, allowing every possible combination of assets
gi ∈ GC(t) means that each bidder Vn has to evaluate
2|G

C(t)|−1 packages. However, we are able to attain computa-
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Fig. 1. Visualization of the grid G, the set of conflicting cells GC(t), the
packages Cj , and the set of permitted combinations P(t).

tional tractability by selecting a special structure of permitted
combinations P(t): we require P(t) to form a tree structure;
thus, an optimal allocation of packages can be found in
O(|GC(t)|2) time [20].

III. PRELIMINARIES

We describe the system dynamics of the n-th cooperative
vehicle in a local curvilinear coordinate system Fn by the
differential equation

ẋn(t) = fn(xn(t), un(t)), (2)

where xn ∈ Xn ⊆ Rp is the state, un ∈ Un ⊂ Rq is
the input, and t is the time. We denote the solution of (2)
for the input trajectory un(·) and initial state xn(0) with
χn(t;xn(0), un(·)). Please note that each vehicle may have
its own coordinate system Fn.

The reachable set is defined as the set of all states which
can be reached from an initial set of states Xn,0 at a given
time instance t. We extend this standard definition and
restrict the reachable set Rn(Xn,0, t) of vehicle Vn to all
collision-free reachable states. We therefore introduce the set
of forbidden states Fn(t) = {xn(t)|Qn(xn(t)) ∩ On(t) 6=
∅}, where Qn(xn(t)) ⊂ R2 and On(t) ⊂ R2 denote the
occupied space of the ego vehicle and the (time-varying)
obstacles, respectively. Thus,

Rn(Xn,0, t) =
{
χn(t;xn(0), un(·))

∣∣∣xn(0) ∈ Xn,0, (3)

∀τ ∈ [0, t] : un(τ) ∈ Un, χn(τ ;xn(0), un(·)) /∈ Fn(τ)
}
.

Moreover, we specify the relation hn : P(Xn) → P(G),
which returns the cells gi ∈ G occupied by vehicle Vn due
to its set of states Xn considering its shape, to determine the
set GC(t) of conflicting cells claimed by multiple vehicles:

GC(t) =
⋃

I∈P≥2(N )

⋂
n∈I

hn(Rn(Xn,0, t)), (4)

where P≥2(N ) denotes all subsets of the power set P(N )
with cardinality greater than one and N := {1, 2, . . . , N}.
We thereby assume the forward and backward transformation
from Fn to F0 to be given, see e.g. [22]. We further introduce



the negotiated reachable set of vehicle Vn at time t:

RN
n(Xn,0, t) =

{
xn(t) ∈Rn(Xn,0, t)

∣∣∣
hn({xn(t)}) ∩ GLn(t) = ∅

}
,

(5)

where GLn(t) ⊆ GC(t) denotes the set of unassigned grid cells
gi of vehicle Vn after the negotiation (1).

IV. CONFLICT RESOLUTION

Conflict resolution is performed at discrete time steps
k, which correspond to points in time tk = k∆t, where
∆t ∈ R+ is a constant time step. We identify the individual
driving areas of vehicles Vn iteratively for each time step k
by applying Alg. 1, which comprises the following steps:

1) computation of the reachable sets (3) (Alg. 1, line 3),
2) identification of conflicting cells GC(k) using (4)

(Alg. 1, line 4),
3) negotiation of conflicting cells GC(k) to determine the

optimal allocationWopt of gi ∈ GC(k) (Alg. 1, line 5),
4) determination of the negotiated reachable sets (5)

(Alg. 1, line 6).
Below, we elaborate steps 1) and 3) comprehensively and use
the notation [�n]Nn=1 = [�1, . . . ,�n, . . . ,�N ] to denote a
list of elements �n of vehicles Vn.

Algorithm 1
1: function CONFLICTRESOLUTION([BN

n(0)]
N
n=1, G)

2: for k = 1 to T do
3: [Bn(k)]Nn=1 ←REACHABLESETS([BN

n(k − 1)]Nn=1)
4: GC(k)←CONFLICTINGCELLS([Bn(k)]Nn=1, G)
5: Wopt ←NEGOTIATE([Bn(k)]Nn=1, GC(k))
6: [BN

n(k)]
N
n=1 ← NEGOTIATEDREACHABLESETS(

[Bn(k)]Nn=1,Wopt)
7: end for
8: return [∪kBN

n(k)]
N
n=1

9: end function

A. Reachable Set Computation

1) Vehicle Dynamics: We model the dynamics of vehicle
Vn in the local coordinate system Fn as two double integra-
tors in longitudinal ζn- and lateral ηn-direction with bounded
speed vn and acceleration un. After introducing the notation
� and � to specify the minimum and the maximum possible
value of a variable �, the dynamics is

s̈n,ζn(t) = un,ζn(t), s̈n,ηn(t) = un,ηn(t), (6a)
vn,ζn ≤ vn,ζn(t) ≤ vn,ζn , vn,ηn ≤ vn,ηn(t) ≤ vn,ηn ,

(6b)
|un,ζn(t)| ≤ an,ζn , |un,ηn(t)| ≤ an,ηn , (6c)

where sn,ζn(t) and sn,ηn(t) denote the position in longitu-
dinal and lateral direction, respectively.

Model (6) is an approximation of the real vehicle dynam-
ics, which deviates increasingly from a real vehicle the larger
the curvature of the road; the modeled vehicle would be able
to make a turn with an arbitrarily high velocity. However, we

compensate for this by setting appropriate constraints (6b)-
(6c). The use of a curvilinear coordinate frame facilitates
the formulation of certain properties and maneuvers, which
are highly relevant to our approach, e.g., lane-following,
stopping at an intersection, and avoiding driving backwards.

2) Reachable Set: Reachable sets are computed according
to [23]: we approximate the reachable set at time step k

by the union of base sets B(i)n (k), which are composed
of the Cartesian product of two convex polytopes in the
(sn,ζn , vn,ζn)- and (sn,ηn , vn,ηn)-plane:

Rn(BNn(k − 1), tk) ≈
⋃
i

B(i)n (k) =: Bn(k),

where BNn(k−1) denotes the negotiated reachable sets of the
previous time step k−1. The projection of base sets B(i)n (k)
in the position domain—in this paper referred to as drivable
area—yields axis-aligned rectangles.

The reachable sets are computed with reference to the
center of gravity of the vehicle; however, we need to consider
the shapes of vehicles for collision detection. Söntges et
al. [23] use the inner circle of the vehicle shape for collision
detection, whereas we approximate the shape of vehicles Vn
with three rotationally invariant disks with radius rn and
assume that the heading of the vehicles is aligned with ζn
in Fn. Please note that the reachable set computation is not
overapproximative due to the modified collision checks.

B. Negotiation of Conflicting Cells

Our negotiation scheme for resolving conflicts between
collaborative vehicles is inspired by the idea of auctions.
An auction requires a set of buyers competing for limited
resources; bids are used to express preferences over the
auctioned resources. In this work, cooperative vehicles act
as bidders, and the limited resource is the drivable space on
the road. In contrast to general auction design, we do not
introduce a pricing mechanism [21]. Furthermore, we apply
a common utility function to determine the bids for each
vehicle. The negotiation of conflicting road cells comprises
the following steps (see Alg. 2):

1) determination of permitted packages Cj ∈ P(k) on the
basis of GC(k) and their structuring in a tree T (see
Fig. 2b, Alg. 2, line 4),

2) evaluation of bids b(k, Cj) for Cj ∈ P(k) (Alg. 2,
line 5),

3) computation of the optimal allocation Wopt of permit-
ted packages Cj ∈ P(k) (Alg. 2, line 6).

In the remainder of this section, all necessary steps are
discussed in detail.

1) Tree Structure: The entire combination GC(k) includ-
ing all negotiable assets is the root node of the tree (see
Fig. 2b). At each level of the tree, we decompose the sets
Cj into disjoint parts, of which each part represents a set
Cl ∈ P(k). Thus, for all Cj , Ci ∈ P(k), we have Cj ∩ Ci ∈
{∅, Cj , Ci} [20] (see Fig. 2b).

As mentioned in Sec. II, using a tree structure to express
the set of permitted combinations P(k) of cells simplifies



Algorithm 2
1: function NEGOTIATE([Bn(k)]Nn=1, GC(k))
2: Wopt ← ∅
3: if GC(k) 6= ∅ then
4: T ←TREEOFPERMITTEDPACKAGES(GC(k))
5: ∪Cj∈P(k)b(k, Cj)←BIDS([Bn(k)]Nn=1, T )
6: Wopt ←OPTIMALALLOCATION(T , ∪Cj∈P(k)b(k, Cj))
7: end if
8: return Wopt

9: end function
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(a) Vehicle V1 is overtaking vehicle V2. Vehicle V1 requests cells
{g0, . . . , g10}, vehicle V3 requests cells {g0, . . . , g8}, and vehicle V2

requests cells {g9, g10}.
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(b) Possible tree structure using the decomposition strategy as explained in
Sec. IV-B.1.

Fig. 2. Exemplary grouping of conflicting cells according to Sec. IV-B.1.

problem (1) substantially. We further motivate the hierarchi-
cal structure of admissible packages through the following
observations: we are interested in negotiating connected re-
gions on the road surface to keep the driving area of vehicles
from becoming disjointed, which complicates trajectory plan-
ning. Moreover, vehicles have to obey traffic regulations and
restrictions imposed by the road network; thus, it is plausible
to cluster conflicting cells according to lanes. Since using a
tree structure facilitates the optimal allocation of the offered
packages in O(|GC(k)|2) time complexity, it is possible to
partition the road surface fine-granularly and split packages
such that they solely contain single assets. The restriction
that each level of the tree contains only disjoint packages
Cj can lead to a mismatch in offered packages and desired
packages, but overall, the aforementioned advantages of the

hierarchical structuring of admissible packages outweigh a
potential mismatch in offered and desired packages. We
therefore recommend applying the strategy below to group
conflicting cells (see Fig. 2; the numbering below coincides
with the legend in Fig. 2b):

1) Root: The root node consists of all conflicting cells
GC(k).

2) Connected Components: The connected components
are aggregated into packages Cj .

3) Road Network: Packages of cells Cj are grouped
according to the lanes of the road network. If a cell
cannot be uniquely assigned to a lane, we categorize
the cell randomly (see Fig. 2a, cell g8).

4) Longitudinal Spatial Coverage: The packages are de-
composed in longitudinal direction so that each new
package does not exceed a maximum longitudinal
spatial coverage.

5) Lateral Spatial Coverage: The packages are decom-
posed in lateral direction so that each new package
does not exceed a maximum lateral spatial coverage.

6) Singletons: The packages comprise only singletons.
It should be noted that not all steps 1)–6) have to be executed,
e.g., it is possible to apply 1) and 3) only such that the root
node is split according to the road network.

2) Bids: We do not pose any specific constraint on the
utility function to determine the bids bn(k, Cj) for each
package Cj ∈ P(k) and vehicle Vn at time step k. Moreover,
complementaries (b(k, {gi, gl}) > b(k, {gi}) + b(k, {gl}) for
i 6= l) and substitutes [21] (b(k, {gi, gl}) < b(k, {gi}) +
b(k, {gl}) for i 6= l) can be modeled. We use a common
utility function to all vehicles in this paper to avoid that
one vehicle could continuously outbid others due to different
scales and weights used to calculate bn(k, Cj). A conceivable
countermeasure is the introduction of a pricing mechanism,
which is the subject of future research. Furthermore, a
vehicle Vn can only bid on a package Cj iff it contains at
least one reachable cell of Vn: ∃gi ∈ Cj : gi ∈ hn(Bn(k)).

3) Optimal Allocation: The algorithm for finding the
optimal allocation of goods Cj ∈ P(k) proposed by Rothkopf
et al. [20] is recapitulated in Alg. 3: starting from the
deepest leaf Cmax in the tree (Alg. 3, line 6), we determine
its parent node Cparent (Alg. 3, line 7) and the children S
of Cparent (Alg. 3, line 8). Next, we compare the revenue
rev(S) =

∑
Cs∈S b(k, Cs) of all children of Cparent with bid

b(k, Cparent) (Alg. 3, lines 10-15):
• if b(k, Cparent) > rev(S) holds, sets Cs ∈ S cannot be

part of the optimal allocation (Alg. 3, lines 10 - 12).
• if b(k, Cparent) ≤ rev(S) holds, Cparent is excluded

from the optimal assignment (Alg. 3, lines 13 - 15).
The children S are removed from the tree T (Alg. 3, line 5),
and the process is repeated until Cparent becomes the root
node (Alg. 3, line 16): Cparent = GC(k).

C. Multiple Runs for Refinement

The negotiated driving corridors can be improved through
multiple runs of Alg. 1. The reachable set computation is



Algorithm 3 Optimal Allocation of Packages [20].
1: function OPTIMALALLOCATION(T , ∪Cj∈P(k)b(k, Cj))
2: T .INITIALIZE( ) . Set Wopt(Cl) = {Cl} for every leaf Cl.
3: S ← ∅
4: do
5: T .REMOVENODES(S)
6: Cmax ← T .GETDEEPESTLEAF( )
7: Cparent ← Cmax.GETPARENT( )
8: S ← Cparent.GETCHILDREN( )
9: rev(S)←

∑
Cs∈S b(k, Cs)

10: if b(k, Cparent) > rev(S) then
11: Wopt(Cparent)← {Cparent}
12: else
13: b(k, Cparent)← rev(S)
14: Wopt(Cparent)← ∪Cs∈SWopt(Cs)
15: end if
16: while Cparent 6= GC(k)
17: return Wopt(GC(k))
18: end function

based on the results of the previous time step only. Thus,
there might exist states in BNn(k) from which a trajectory
cannot be continued without leaving the negotiated driving
corridor BNn(i) in later time steps i ∈ {k+1, . . . , T} [23]. We
are able to remove a subset of those states by running Alg. 1
multiple times, since information about future time steps
from a previous run can be incorporated into the reachable
set computation. The interested reader is referred to [23] for
further information.

V. UTILITY FUNCTION AND TIE-BREAKING RULE

This section introduces the applied utility function (see
Sec. IV-B.2) and tie-breaking rule (see Sec. II) used in this
paper. Please note that both the utility function and tie-
breaking rule can be exchanged by other rules.

A. Utility Function

Let us introduce:
• the conflict-free reachable set: RCF

n (k) = {xn(k) ∈
Bn(k)|hn({xn(k)}) ∩ GC(k) = ∅};

• the conflicting reachable set depending on package Cj
that would be lost if package Cj is not assigned to
vehicle Vn: RC

n(k, Cj) = {xn(k) ∈ Bn(k)|hn({xn(k)}) ∩
Cj 6= ∅};

• the assigned reachable set which Vn can keep besides
RCF
n (k) given that package Cj is assigned to vehicle

Vn: RA
n(k, Cj) = {xn(k) ∈ Bn(k) \ RCF

n (k)|hn({xn(k)}) ∩
(GC(k) \ Cj) = ∅}.

The above sets are the basis for computing the utility of Cj
for each vehicle Vn to determine bn(k, Cj). For computa-
tional reasons, we approximate sets RCF

n (k), RC
n(k, Cj), and

RA
n(k, Cj) with the union of base sets (see Sec. IV-A.2); the

approximated sets are denoted with BCFn (k) := ∪iBCF(i)n (k),
BCn(k, Cj) := ∪iBC(i)n (k), and BAn(k, Cj) := ∪iBA(i)n (k),
respectively. On the one hand, we take the objectives of
cooperative vehicles Vn into account by applying utility
function UR

n(k, Cj) in the regular mode; on the other hand, we
introduce utility function US

n(k, Cj) to prevent the complete

loss of the reachable set Bn(k) of vehicles Vn in the survival
mode, since this would correspond to an empty driving
corridor for trajectory planning:

bn(k, Cj) =

{
UR
n(k, Cj), area(BCFn (k)) > A,

US
n(k, Cj), area(BCFn (k)) ≤ A,

(7)

where A is an adjustable threshold and area(�) returns
the size of the drivable area of sets �. As a reminder, the
reachable set projected onto the position domain is referred
to as the drivable area (see Sec. IV-A.2). Below, we elaborate
UR
n(k, Cj) and US

n(k, Cj) applied in the regular and survival
mode, respectively.

1) Regular Mode: If the conflict-free drivable area of
vehicle Vn is greater than A, we apply UR

n(k, Cj), which
computes the ratio of the utility of the reachable set BAn(k, Cj)
obtained through package Cj and the utility of the conflict-
free reachable set BCFn (k):

UR
n =

∑
i

(
uvel(BA(i)

n (k))+urange(BA(i)
n (k))

)
·area

(
BA(i)

n (k)

)
∑
i

(
uvel(BCF(i)

n (k))+urange(BCF(i)
n (k))

)
·area

(
BCF(i)

n (k)

) ,
with partial utility functions uvel and urange presented next.

In order to increase traffic flow, we reward an increase in
longitudinal speed from the previous time step k − 1 to the
current time step k:

uvel(B(i)) = y

(
vmaxζ(B(i))− vmaxζ(BNn(k − 1))

an,ζn ·∆t

)
,

where vmaxζ(�) returns the maximum velocity in ζn-
direction of sets �. We use the generalized logistic function
y to scale the utility between (0, 1].

Furthermore, we evaluate the covered distance in longitu-
dinal direction from time step k−1 to k, since the cooperative
vehicles should move forward along their reference path:

urange(B(i)) = y

(
pmaxζ(B(i))− pmaxζ(BNn(k − 1))

vn,ζn ·∆t+ 1
2 · an,ζn ·∆t2

)
,

where pmaxζ(�) returns the maximum longitudinal position
of sets �. Again, we use the generalized logistic function y
to scale the utility between (0, 1].

2) Survival Mode: We introduce two countermeasures
to avoid that the reachable sets of vehicles vanish at a
certain time instance: 1) if vehicle Vn has a reachable cell
gi ∈ Cj and area(BCFn (k)) ≤ A, no other vehicle Vm with
area(BCFm(k)) > A is allowed to bid on package Cj ; 2) we
switch the utility function as shown in (7) to:

US
n(k, Cj) =

area(BCn(k, Cj))
area(Bn(k))

.

B. Tie-Breaking

Tie-breaking must be performed when multiple vehicles
Vn bid bn(k, Cj) = b(k, Cj), since this means that several
optimal allocations of package Cj exist. In this paper, we
accept the bid of the vehicle with the largest conflicting
drivable area area(Bn(k) \ BCFn (k)); if there is a tie again,
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(a) Vehicles V1 and V2 at time step k = 0 and their planned trajectories
within the negotiated road areas of the second run.

negotiated drivable
area of V2

negotiated drivable
area of V1

(b) Negotiated drivable areas of vehicles V1 and V2 at time step k = 55
(first run).

Fig. 3. Scenario I: Roundabout. The driving direction is indicated by the white arrows.

TABLE I
PARAMETERS FOR NUMERICAL EXPERIMENTS.

parameter scenario identifier

symbol unit I II III IV

∆t [s] 0.1 0.1 0.1 0.1
T / 55 50 45 34
vn,ζn [m/s] 15.0 28.0 13.0 18.0
vn,ζn [m/s] 4.0 0.0 0.0 0.0
vn,ηn [m/s] 4.0 6.0 6.0 4.0
vn,ηn [m/s] −4.0 −6.0 −6.0 −4.0

an,ζn [m/s2] 2.5 4.0 4.5 2.0
an,ηn [m/s2] 3.0 6.0 4.5 6.5
A [m2] 0.0 0.0 0.0 0.0
rn [m] 1.3 1.2 1.2 1.3

we select the bid randomly.

VI. EVALUATION

We demonstrate the universal applicability of our algo-
rithm on four different scenarios. The selected parameters
for each scenario can be found in Tab. I and are similar for
all cooperative vehicles involved in a traffic scene. Please
note that we only depict the drivable area with reference
to the vehicle’s center of gravity in the following figures to
illustrate the available solution space for trajectory planning.
To demonstrate that the negotiated road areas can be used for
multi-vehicle trajectory planning, we show our first results
for each scenario. However, trajectory planning in reachable
sets is an ongoing research project and out of scope for this
paper.

A. Scenario I: Roundabout

We start with the deliberately simple scenario C-
DEU B471-2 1:2018a from the CommonRoad1 benchmark
collection [24], where two communicating vehicles V1 and
V2 cooperate such that vehicle V2 can safely enter the
roundabout (see Fig. 3a). Vehicle V1 plans to take the first
exit, while vehicle V2 aims to take the second exit. A regular
grid with tile size 0.5m×0.5m in the Cartesian reference
frame F0 is employed.

Fig. 4 shows the projected reachable sets Bn(18) of both
vehicles and the corresponding conflicting grid cells GC(18)

1http://commonroad.in.tum.de

projected B2(18)

projected B1(18)

GC(18) projected BN2(18)

projected BN1(18)

Fig. 4. (Left) Projected reachable sets Bn(18) of V1 and V2 and conflicting
cells GC(18) at time step k = 18; (Right) Projected negotiated reachable
sets BNn(18).

at time step k = 18 (left) and illustrates the projected
negotiated reachable sets BNn(18) (right). Vehicle V1 accel-
erates and passes vehicle V2 which enters the roundabout
afterwards. The negotiated drivable areas of the final time
step are depicted in Fig. 3b.

B. Scenario II: Urban Road

In this scenario (CommonRoad-ID: C-DEU B471-1 1 T-
1:2018a), vehicle V1 cooperates with the oncoming vehicle
V2 to evade the static obstacle in its lane (see Fig. 5). In
Fig. 5, we illustrate the result of the first and second run
of the algorithm: vehicle V1 swerves as soon as vehicle V2
passes. At time step k = 12, we are able to improve the
negotiated drivable area by running Alg. 1 a second time,
since states of the driving corridor of vehicle V1 leading to
a collision with the static obstacle or with vehicle V2 in a
future time step are removed. Additionally, Fig. 5 visualizes
the planned trajectories of vehicles V1 and V2 using the
negotiated drivable areas of the second run.

C. Scenario III: Crossing

Following the idea of Dresner et al. [4], we allow au-
tonomous vehicles to enter an intersection whenever it is
possible. As can be seen in Fig. 6, there are two cooperating
vehicles V1 and V2; vehicle V1 intends to turn left, while
vehicle V2 plans to move straight ahead. We show the results
after the first run of Alg. 1 in Fig. 6 in the left column. Two
driving strategies occur for vehicle V2: V2 can either pass
through the intersection before vehicle V1 (see Fig. 6, left
column, k = 30) or it can stop and wait until V1 has the
left the intersection (see Fig. 6, left column, k = 45). In this
scenario, it becomes apparent that our set-based method does
not only detect different cooperative maneuver options, but
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Fig. 5. Scenario II: Urban Road.

also facilitates selecting high-level plans. Driving corridors
without bottlenecks are preferred, since they are more robust
in terms of unpredicted changes in the environment. In this
scenario, crossing the intersection can irritate human drivers
and may lead to a collision, since the negotiated driving
corridor for this maneuver becomes temporally tight. As
illustrated in Fig. 6, the second maneuver variant—stopping
at the intersection—is preferred. We therefore restrict the
reachable set of V2 to stopping at the intersection for the
second run of Alg. 1 (see Sec. IV-C). However, we do not
incorporate information from the first run of Alg. 1 for the
reachable set computation of vehicle V1 during the second
run in order to fully utilize the released space of vehicle V2
(see Fig. 6, right column).

D. Scenario IV: Highway

We apply our algorithm on the mixed-traffic scenario C-
NGSIM US101 1:2017a from the CommonRoad benchmark
collection. We coordinate the motion of four cooperating
vehicles and restrict their movement to five lanes excluding
the highway on-ramp. As can be seen, our method is able
to allocate road areas for cooperative vehicles in challeng-
ing traffic situations with many non-communicating traffic
participants.

VII. CONCLUSION

We present an approach for negotiating road areas re-
quested by multiple vehicles to determine individual driving

k = 0

V1

V2

dynamic obstacle

First run:
k = 20

negotiated drivable
area of V1

negotiated
drivable

area of V2

k = 30

k = 45

Planned trajectories:

Second run:
k = 20

k = 30

k = 45

Fig. 6. Scenario III: Crossing. The driving direction is indicated by the
white arrows.

corridors for these vehicles. The optimal allocation of offered
packages can be performed with polynomial runtime com-
plexity. Since available combinations of assets are matched to
the vehicles valuing them the most, the conflict resolution is
transparent. This is particularly important when considering
legal issues that may arise if sub-optimality is introduced. Fu-
ture research will focus on the evaluation of different utility
functions to determine the bids of the cooperative vehicles.
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Fig. 7. Scenario IV: Highway. The driving direction is indicated by the
white arrows.

Furthermore, we plan to develop a pricing mechanism for
compensating vehicles handing over driving areas.
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