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Abstract

The growing importance of data-driven science and advances in computational
capacity o�er new opportunities for the analysis and visualization of geospatial
and heterogeneous data. In recent years visual analytics has emerged as a
relevant approach for gaining insights into various datasets. This includes
embedding statistical methods in the interactive environment of visual
analytics to help analysts understand and explore data. Apparently, much of
the data explored using visual analytics is inherently uncertain due to limited
knowledge, randomness and indeterminism, and vagueness. To address this
challenge, we propose to integrate a probabilistic graphical model, namely the
Bayesian Network, into a visual analytical system that allows us to model
uncertainty and combine qualitative and quantitative data for reasoning.

This dissertation addresses the challenges of analytical reasoning under
conditions of uncertainty when working with spatial data. It serves three
research objectives: (1) to evaluate the feasibility of the Bayesian Network in
representing conditional dependencies among heterogeneous spatial data; (2)
to implement visual analytics scenarios that can demonstrate human-data
discourses; (3) to build a prototype of a Bayesian Network-enabled visual
analytical system dedicated to geospatial data classification tasks.

The literature review has shown that the Bayesian Network provides an
e�ective framework for knowledge representation and reasoning under
conditions of uncertainty. Despite the wide application of this technique in
various fields of scientific research, its visual exploration is still limited to
cause-e�ect relationships among variables, and only scant attention has been
paid to the development of visualization support for the spatial component of
the data. The development of visual interfaces can support users who work on
spatial data integration, probabilistic methods, and visualization facility within
a single interface and, thus, experience straightforward human-computer
interaction processes. This research enhances the usability of probabilistic
modelling within visual analytics and opens new perspectives for the
application of Bayesian reasoning in GIScience and cartography. The
applicability of the Bayesian Network-enabled visual analytics is illustrated
based on two scenarios using land cover classifications and video surveillance
data.

Although further usability studies are needed, the researchwork reported in this
thesis marks a step forward towards innovative visualization approaches based
on probabilistic methods, which treat the uncertainty in the reasoning process
as an integral part of geospatial data analysis.
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Zusammenfassung

Die zunehmende Bedeutung der datenbasierten Wissenscha� sowie der
Einsatz datengetriebener Algorithmen verbunden mit dem technologischen
Fortschritt in der Rechenkapazität bieten neue Möglichkeiten für die Analyse
und die Visualisierung von heterogenen raumbezogenen Daten. Um
Erkenntnisse aus verschiedenen Datensätzen gewinnen zu können und den
Nutzern die explorative Datenanalyse weiter zu erleichtern, hat sich gerade die
visuelle Datenanalyse in den letzten Jahren als zielführender Ansatz bewährt.
Vor allem wurde auch die Einbindung statistischer Methoden in interaktive
Umgebungen weiter entwickelt. Es ist bewiesen, dass viele der mit Hilfe der
visuellen Analyse untersuchten Daten aufgrund von begrenztem Wissen,
Zufälligkeit, Unbestimmtheit sowie Unschärfe von Natur aus unsicher sind. Zur
Lösung dieses Problems wird vorgeschlagen, ein probabilistisches grafisches
Modell - das Bayes’sche Netz - in die visuelle Datenanalyse zu integrieren. Die
Integration dieses Modells ermöglicht Unsicherheiten zu modellieren und
gleichzeitig qualitative und quantitative Daten so zu kombinieren, dass
entsprechende Schlussfolgerungen aus den Daten gezogen werden können.

Diese Dissertation befasst sich mit den Herausforderungen des analytischen
Schlussfolgerns unter Beachtung von Unsicherheiten bei der Arbeit mit
Geodaten. Die drei Forschungsziele sind: (1) die Verwendbarkeit des
Bayes’schen Netzes beim Darstellen bedingter Abhängigkeiten zwischen
heterogenen raumbezogenen Daten; (2) die Implementierung visueller
Datenanalyse-Szenarien, die dem Nutzer eine Interaktion mit dem Datensatz
ermöglichen; (3) die Entwicklung eines Prototypen eines Bayes’schen
netzwerkfähigen visuellen Analysesystems, speziell für die Klassifizierung von
Geodaten.

Die Literaturrecherche hat gezeigt, dass das Bayes’sche Netz einen e�ektiven
Rahmen für die Wissensrepräsentation und das Schussfolgern unter
Unsicherheits-Bedingungen bietet. Obwohl das Bayes’sche Netz in vielen
verschiedenen Forschungsbereichen angewendet wird, ist die visuelle
Exploration immer noch auf die Ursache-Wirkungs-Beziehung von Variablen
beschränkt. Zudem wurde der Entwicklung einer Schnittstelle zur
Visualisierung der räumlichen Komponente der Daten bislang nur wenig
Aufmerksamkeit geschenkt. Die Entwicklung solcher visuellen Schnittstellen
kann Nutzern dabei helfen direkte Mensch-Computer-Interaktionsprozesse
auszuführen. Folglich können die Geodatenintegration, die probabilistischen
Methoden und die Datenvisualisierung innerhalb einer einzigen Schnittstelle
durchgeführt werden. Diese Forschungsarbeit zeigt, wie die Verwendbarkeit
probabilistischer Modellierung in der visuellen Datenanalyse verbessert und
neue Perspektiven für die Anwendung des Bayesschen Denkens in den
Bereichen GIScience und speziell Kartographie erö�nen. Die Anwendbarkeit
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der Bayes’schen netzwerkfähigen visuellen Datenanalyse wird in dieser Arbeit
anhand von zwei Szenarien veranschaulicht: Klassifikation von
Bodenbedeckung und Analyse von Daten aus Kameraüberwachungen.

Obwohl weitere Usability-Studien zur Nutzung des Bayes’schen Netzes im
Bereich der visuellen Datenanalyse erforderlich wären, ist diese
Forschungsarbeit ein Beitrag zu innovativen Visualisierungsansätzen auf der
Grundlage probabilistischer Methoden, die die Unsicherheit im
Argumentationsprozess als integralen Bestandteil der Geodatenanalyse
behandeln.
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Chapter 1

Introduction

Recognizing the increasing importance of data-driven science, it is crucial to
develop methods to handle heterogeneous data and address the issues related
to reasoning under uncertainty when using this data. This thesis is concerned
with developing a visual analytics-enabled Bayesian Network approach to
reasoning about spatial and heterogeneous data when a classification task is
performed. A method of probabilistic graphical modeling was adopted and
integrated within a visual analytics tool. Next is an introduction to the
motivation, followed by the research aims and objectives, research tasks, and
the thesis outline.

1.1 Motivation

The current state of technologies has triggered the acquisition of large amounts
of data. Thus, the term Big Data has become common among various fields of
scientific research, as data of diverse nature is generated by sensors, machines,
networks, and social media. Big Data is characterized by its variety, velocity,
validity, volatility, and veracity. The data veracity refers to the degree to which
this data is certain and reliable. However, uncertainty is a natural outcome of
scientific research and an inevitable characteristic of data handling processes;
therefore, assessment and visualization of data uncertainty have been the
focus of a substantial body of research. Both data and knowledge about the
data are associated with uncertainty, which should be integrated and visualized
in a manner that supports the reasoning process (Zuk & Carpendale 2007).
While statistical methods used to be a main driving force for data analysis, a
visual analytics approach has emerged as a solution that can visualize various
data and operate it using innovative data- and knowledge-driven modelling
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2 Chapter 1. Introduction

methods while taking advantage of qualitative and quantitative analytical
techniques.

Daniel Kahneman and Amos Tversky explored the measurement of probability
perception in the late 1970s (Tversky & Kahneman 1974) and proposed that
humans generally exaggerate the probability of rare events such as
earthquakes and floods, while at the same time they tend to underestimate the
probability of rather likely events as car accidents. For example, the danger
posed by nuclear power plants is o�en reported by media, although major
reactor accidents caused by the failure of cooling systems are rare and the
probability of a major accident occurring once in 20 - 25 years is roughly 1 in
100 000 (Lelieveld et al. 2012). Due to the fact that such a catastrophe would be
a threat to any population and is o�en reported by the mass media, we might
perceive the chances as being higher. At the same time, the odds of dying from
stomach cancer are 3 in 1 000 (Cancer Stat Facts: Stomach Cancer 2018). Thus,
sometimes the probability of di�erent events might be perceived equally only
because we have more information about some infrequent events. And when
we evaluate the probability of an event, we base our knowledge on journalists’
choices of topics and to our reliance on the availability heuristic (Kahneman
2011). In the same manner, when we analyze data, we o�en make judgments
based on our availability heuristic, as it is problematic to interpret the
numerical values. As a better alternative way to communicate information
about probability is achieved by data visualization.

Although visual analysis of uncertain spatial data has been a significant topic
that has drawn increasing attention in recent years from di�erent research
communities, the research outcomes have been limited by lack of a
complementary focus on uncertainty in reasoning processes (MacEachren
2015). Uncertainty in the reasoning process is a persistent challenge in
GIScience, as we are all unsure whether we perceive the visualized information
correctly. But despite the uncertainty in the data and in our understanding of
this data, a good visualization should support our cognitive processes in
drawing the correct conclusions. But when it comes to the procedure of
reasoning under uncertainty, how can we support users and provide an
iterative process for decision-making? How can we place a human in the loop
approach when it comes to reasoning under uncertainty?

In this work, we tackle the problem from a multidisciplinary perspective,
extracting heterogeneous spatial data from two di�erent domains (land cover
classification and locations of surveillance cameras), and investigating a visual
analytics approach as a combination of automated analysis and interactive
visualization for analytical reasoning under uncertain conditions.
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1.2 Research aims and objectives

In particular, this research aims to cover the following objective:

To support the reasoning process under uncertain conditions when performing
a classification task on spatial data through developing a visual analytics
application.

This main research objective can be further detailed by three interconnected
sub-questions:

1. How can a classification task on heterogeneous spatial data best be
performed within visual analytics?

2. Is it possible to combine analytical methods and Bayesian Network
techniques to enhance the reasoning process using spatial data?

3. How can we integrate Bayesian Network and visualization techniques to
address the complexity of decision-making processes under uncertainty
using spatial data?

To answer these research questions we define the following sub-objectives:

Objective 1: To test the feasibility of using a probabilistic graphical model,
namely the Bayesian Network, to represent conditional dependencies
among heterogeneous data in order to perform a classification task.

Objective 2: To develop a visual analytics framework that can facilitate the
understanding of data and uncertainty in the reasoning process using
Bayesian Networks.

Objective 3: To build a prototype of a visual analytics interface that can
integrate data, visualization, and computational capacity of Bayesian
Networks to facilitate human-computer interactions for data analysis
given subjective beliefs used in a selected application domain.
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1.3 Research tasks

This dissertation addresses the following research tasks:

• To define an approach to explicitly model uncertainty in reasoning using
a probabilistic graphical model, namely a Bayesian Network. This
approach should be anchored in a Bayesian interpretation of
relationships and dependencies among heterogeneous spatial data sets.
Besides, it should combine notions of human judgment, confidence,
belief, and evidence.

• To approach a classification task focused on heterogeneous spatial data
under conditions of uncertainty, we combine a visual analytics approach
and Bayesian Networks.

• To support users in introducing subjective beliefs for characterizing
conditional probabilities within a single user interface.

• To provide visualization support when results of the inference can be
observed in a spatial context.

• To exploit advances in visual analytics development by means of the
integration of spatial data and computational capacity.

1.4 Thesis outline

Chapter 2, Foundations and State-of-the-Art provides an introduction to the
subject and its value and relevance today, including some foundational
understanding of the theoretical and practical basis of data visualization, visual
analytics, and Bayesian reasoning.

Chapter 3, Uncertainty in the reasoning process for geospatial data introduces
approaches for reasoning under conditions of uncertainty and, in particular,
the methodology of probabilistic graphic models, namely Bayesian Networks,
which is concerned with reasoning under uncertain conditions in the case of
spatial data. This chapter provides the definition of reasoning under
uncertainty, and shapes a design approach that is adopted by the visual
analytics framework introduced in further sections.

Chapter 4, Visual analytics framework for supporting reasoning under
uncertainty introduces the visual analytics methodology and the step-by-step
approach of Bayesian Network integration. This chapter takes the reader
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beyond the theoretical aspects of the methodology towards the design issues
involved in establishing an e�ective visual analytics solution.

Chapter 5, Prototypical implementations of Bayesian Network-enabled visual
analytics goes hand-in-hand with the previous chapters, as it explores the
visual analytics prototype to communicate the data, probabilistic reasoning,
and outcomes of the reasoning process based on the selected application
domains.

Chapter 6, Conclusion and outlook come to a close by underlining the summary
of the thesis achievements and sharing some of the opportunities for future
work.





Chapter 2

Foundations and
State-of-the-Art

“ As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality. ”

Albert Einstein, Geometry and Experience, 1921

This chapter identifies a context of uncertainty in GIScience by presenting
definitions and design approaches for visualization. Section 2.2 introduces
conventional methods for reasoning under uncertainty, which include Naive
Bayes, rule-based expert systems, Dempster-Shafer theory, Bayesian Networks,
influence diagrams, fuzzy logic and fuzzy sets, rough sets, non-monotonic
logics, and neural networks. Moreover, this chapter investigates several
conceptual issues in the utilization of Bayesian logic for reasoning on
heterogeneous data and the role of visual analytics in the development of
uncertainty-aware applications.

2.1 Understanding uncertainty: concepts and
definitions, sources, reasoning, and visualization

Uncertainty is a natural outcome of scientific research, and it is an inevitable
characteristic of data handling processes. Although there are established
approaches in GIScience, data acquisition, processing, and visualization are
constantly a�ected by factors such as the dynamic nature of the measured

7
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phenomena, the limited capacity of the measuring instruments and processing
devices, and the human factor. Even if information from raw data is extracted
using sophisticated algorithms, this information still has some degree of
uncertainty. It occurs not only because of a lack of knowledge but also
disagreement over the knowledge that currently exists. Nevertheless,
well-informed decisions and decisions that particularly meet the problem of
coping with uncertainty in environmental modeling depend essentially upon
adequate data and knowledge of uncertainty. The literature on data
uncertainty shows a variety of approaches to defining it. And since uncertainty
touches most aspects of life (Tannert et al. 2007), it might be interpreted in
di�erent ways. Uncertainty can refer to noise in the information, statistical
variability, non-deterministic relationships between action and consequences,
or even the psychological reaction to di�icult problems (Kirschenbaum et al.
2014).

2.1.1 Concepts and definitions

In GIScience, data uncertainty is o�en defined as a di�erence between the
contents of a spatial database and the corresponding phenomena in the real
world (Goodchild 2008). Thomson et al. (2005) have proposed a typology for
categorizing uncertainty. Thomson et al. (2005) suggested categories such as
accuracy/error, precision, completeness, consistency, lineage, currency,
credibility, subjectivity, and interrelatedness. At the same time, Unwin (1995)
has claimed that accuracy and error are two di�erent things as they deal with
distinctive aspects of data quality. Data uncertainty can therefore be
considered as an umbrella term, where all the elements are closely related and
in each phase of the spatiotemporal data collection, processing, modeling and
visualization, di�erent aspects of uncertainty may be introduced

Several authors have accessed uncertainty components in a systematic way
(Thomson et al. 2005, Fisher et al. 2010) to describe di�erent qualitative and
quantitative aspects of data quality and its understanding. The uncertainty
within categories proposed by Thomson et al. (2005) might be seen from two
perspectives: uncertainty associated with the measurements of location, time,
attributes, and uncertainty associated with the understanding that includes
credibility of a data source, or the subjectivity of information. In principle, data
uncertainty can be seen as a function that combines multiple factors whose
relevance changes depending on a particular usage. Various data uncertainty
components are rather loosely structured as some of them can represent both
measurements and understanding. These components can be illustrated as a
gradient frommeasurements to understanding (see Fig. 2.1).
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Figure 2.1: Gradient of uncertainty components.

Furthermore, a description is given that represents various components related
to the data quality and uncertainty as they are defined in the literature.

Uncertainty "may be defined as a measure of the user’s understanding of the
di�erencebetween thecontentsof adataset, and the realphenomena that
the data are believed to represent" (Longley et al. 2011).

Accuracy is defined as closeness of agreement between a measured quantity
value and a true quantity value (De Bièvre 2012). In spatial data three
accuracy types may be distinguished:

• Positional:
Absolute shows "how closely all positions on a map or data layer

match, corresponding to the positions of features represented
on the ground in adesiredmapprojection system" (Stanislawski
et al. 1996);

Relative represents "how closely all the positions on a map or data
layer represent their corresponding geometrical relationships
on the ground" (Stanislawski et al. 1996);

• Thematic: how closely an object type is mapped compared to the
object type on the ground;

• Temporal: how closely an object is mapped at a particular time
compared to what is on the ground at the time of mapping.

Error is measured quantity value minus a reference quantity value (De Bièvre
2012). Error types:

• Systematic (bias);
• Random (noise).

Precision refers to the accuracy with which a measurement can be made,
recorded, or calculated (Fisher et al. 2010). It is estimated in terms of
standard deviation, variance, or coe�icient of variation. Precision types:
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• Numerical: number of significant digits of a measurement or
observation;

• Statistical conformity of repeated measurements to the reported
value.

Completeness is closeness of the data to be "100%" complete. The
completeness may refer to the data and/or models.

• Data completeness is a measurable error of omission observed
between the database and the specification (Veregin 1999).

• Model completeness is the agreement between the database
specification and the abstract universe that is required for a
particular database application (Veregin 1999).

Logical Consistency refers to the absence of apparent contradictions in a
database that can be related to the topology, redundancy in thematic
attributes, and inconsistency in time when di�erent entities appear at the
same location on twomaps of the same date (Veregin 1999).

• Positional;
• Thematic;
• Temporal.

Lineage describes the history of a data set and the processing steps used to
create the data.

Currency defines temporal gabs between actual time, data acquisition, and
occurrence.

Credibility/Reliability is the extent to which it is based on the reliable sources
or provided by trusted organizations.

Subjectivity is the amount of interpretation or judgment included (Thomson
et al. 2005).

Interrelatedness deals with source independence from other information
(Thomson et al. 2005).

Ambiguity dealswithdivergingperceptions in classificationof anobject (Fisher
1986).

Vagueness refers to the poor definition of class of object or individual object
(Fisher 1986).

Fitness for use defines the suitability of data for a particular use and user
(Dodge et al. 2008).
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Information entropy expresses the amount of information that can serve as
quantitative estimator of complexity (Jost 2006).

Generally, uncertainty can be classified into two main types aleatoric and
epistemic (Kiureghian & Ditlevsen 2009). Aleatoric uncertainty represents
statistical uncertainty and reflects inherent randomness in natural processes.
Thus, aleatoric uncertainty represents unknowns during observations.
Epistemic uncertainty is systematic and occurs due to the lack of knowledge
and limited capability of models to describe a phenomenon. Moreover,
epistemic uncertainty is characterized by alternative models. It emerges from
parameter estimations and may be represented using probability values, which
is why this type of uncertainty can be reduced if data of higher accuracy or
additional information are available. Hence, uncertainty is characterized as
epistemic if an analyst sees an opportunity to reduce it, and aleatoric if the
analyst cannot reduce it. Conventionally, both types of uncertainty occur in
real-world applications, and their influence is widely discussed in the scientific
community (Kiureghian & Ditlevsen 2009). Uncertainty sources are especially
di�icult to detect as there is o�en a combination of di�erent factors that
influence data collection, processing, and visualization.

2.1.2 Sources of uncertainty

Pang et al. (1997) identifies three primary sources of uncertainty: (a) acquired
from the measurements, numerical models or statistical variation, (b)
introduced a�er data transformation, unit conversion, and data fusion, and (c)
introduced through visualization processes. From a practical point of view,
these sources of uncertainty can be seen as random and non-random. Table 2.1
provides an extended view of sources of uncertainty considering their random
or non-random nature.
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Table 2.1: Sources of uncertainty in spatiotemporal data

Uncertainty source Random Non-random

Observed in sampled
data

Dynamic processes;
incomplete
measurements;
statistical variations;
errors in existing maps
used for digital data
creation;

Equipment errors;
unsuitable data
collection techniques.

Measures generated
bymodels,
simulations and data
processing

Inaccuracies in
digitizing (operator);
errors in model
coe�icients;
discretization of
geographic entities;
errors in attribute
entry; misclassification

Data conversion
algorithms;
inaccuracies in
digitizing (equipment);
data storage
(numerical precision,
data format);
uncertainty
propagation in
multiple overlay
operations;
interpolation;
rescaling; re-sampling.

Introduced by
visualization
processes

Seeing patterns that do
not exist, failure to
notice patterns and
relationships

Rendering on a device
screen,
approximations.
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2.1.3 Uncertainty visualization

According to Brodlie et al. (2012), it is possible to distinguish two main issues
related to uncertainty and visualization: (1) visualization of uncertainty, which
considers how we depict uncertainty specified with the data, and (2)
uncertainty of visualization, which examines how much inaccuracy occurs as
we process data through the visualization pipeline.

Adequate visualization of uncertainty may help answer scientific questions and
support decision-making processes; it is an ongoing research problem in the
GIScience community, and it has been placed in the focus of research by many
others. Current techniques for handling spatial-temporal uncertainty typically
rely on treating data and its uncertainty as separate features when represented
visually, through either intrinsic or extrinsic visualization, coincident/adjacent
display, or static/dynamic views (see Fig. 2.2) (Kinkeldey, MacEachren &
Schiewe 2014).

a

d

se

i

c
intrinsic / extrinsic

coincident / adjacent

static / dynamic

Figure 2.2: Uncertainty visualization cube according to Kinkeldey, MacEachren&
Schiewe (2014).

Recent metastudies of GIScience literature have focused on visualizing the
uncertainty of spatial data. MacEachren et al. (2005) and Smith Mason et al.
(2016) have shown a variety of approaches, including glyphs (Wittenbrink et al.
1996), isolines and isosurface (Rhodes et al. 2003), grid structures(Kinkeldey,
Mason, Klippel & Schiewe 2014), 3D (Wellmann & Regenauer-Lieb 2012), and
choropleth maps (Lucchesi & Wikle 2017). The importance of visualization of
uncertainty is o�en associated with the process of decision-making. Although
current visualization techniques o�er various approaches to handling
uncertainty, it is still a challenging problem, as work to date deals primarily
with visualizing ambiguous data rather than with reasoning under uncertainty
(MacEachren 2015).
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2.1.4 Uncertainty in reasoning process

In practice, all spatial data accrues some degree of uncertainty during
acquisition, processing, and visualization, which is multiplied by the
uncertainty in the reasoning process. Zuk & Carpendale (2007) have extended
Thomson et al. (2005)’s topology to the reasoning to guide the development of
visual representations for uncertainty. Table 2.2 demonstrates Zuk &
Carpendale (2007)’s extension.

Table 2.2: Uncertainty in reasoning process. Based on Zuk & Carpendale (2007).

Uncertainty
Category

Reasoning Definition

Currency/Timing Temporal gaps between assumptions and
reasoning steps

Credibility Heuristic accuracy and bias of analyst

Lineage Conduit of assumptions, reasoning, revision,
and presentation

Subjectivity Amount of private knowledge or heuristics
utilized

Accuracy/Error Di�erence between heuristic and algorithm
(e.g. Bayesian)

Precision Variability of heuristics and strategies

Consistency Extent to which heuristic assessments agree

Interrelatedness Heuristic and analyst independence

Completeness Extent to which knowledge is complete

In contrast to the standard approaches to uncertainty in GIScience, in Bayesian
reasoning, uncertainty is o�en associated with such factors as ignorance (due
to limits of our knowledge about a phenomena); randomness and
indeterminism (as not all events are determined by causal relationships and
there is always room for physical randomness); and vagueness (as the
statements we make are o�en vague) (Korb & Nicholson 2010). Bayesian
reasoning considers probability as a measure of our subjective degree of belief
based on our present state of knowledge. Therefore, the reasoning process is
subject to uncertainty when conditional relationships among variables are
given to quantify the likelihood of events.

Recently, researchers have shown an increasing interest in developing
techniques for decision-making, considering the states of uncertainty.
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Reasoning approaches vary from human reasoning to sophisticated
computational algorithms. For instance, Bayesian inference has gained
considerable recognition as an e�ective method for supporting
decision-making practices. Thus, various methods for representing and
reasoning with uncertainty have been developed, including fuzzy set theory,
formal logics (Bloch 2006), probabilistic clustering (Lin et al. 2017), and
Bayesian Networks, also called belief networks and causal probabilistic
networks (Stassopoulou et al. 1998). The summary of recently available
methods is given in section 2.2.

2.2 Approaches for representing knowledge in
uncertain domain

Data-driven science has boosted the development of various methods to
support the reasoning process on data and spatial data in particular. Providing
reliable decisions leading to intelligent actions by stakeholders who use the
data, it is crucial to address the uncertainty in the reasoning process. The
application of various methods to support decision-making practices has
grown exponentially over the last decade, and the complexity and the amount
of the data have also increased. This has created a high demand for automated
reasoning approaches. The decision-making under uncertainty can be
addressed from various perspectives (see, e.g., human reasoning, rule-based
expert systems, fuzzy set theory, rough sets, non-monotonic logics, evidence
theory (Dempster-Shafer theory), probabilistic models including naïve Bayes,
Bayesian Networks, influence diagrams, Neural Networks, etc.). All these
models involve inferences from the data with some degree of uncertainty. The
uncertainty might be given through descriptive IF-THEN, non-monotonic
statements, quantitative formalization as probability values, membership
function, or degrees of belief.

As pointed out by Box (1979) "all models are wrong, but some are useful", and
there is no method that can perform ideally on every given assignment. The
summary is given in Tables 2.3 and 2.4 indicates that every method has
advantages and drawbacks. Thus, the method selection essentially depends on
the aim of the analysis and data available.

2.2.1 Human reasoning

Human reasoning is a complex process that involves existing knowledge and
experience to make assumptions and draw conclusions. Although there are
various definitions of the human reasoning process, from the general point of
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view it can be divided into three kinds based on logical validity: deductive
(from a general knowledge to a specific case), inductive (from a specific case to
a general conclusion), and abductive (reasoning to the best explanation from
the observations).

Deductive reasoning makes valid conclusions, which must be true given that
their premises are true (Johnson-Laird 1999). In other words, deductive
reasoning is a top-down approach leading to a conclusion. A deduction is a
common approach in scientific research; a hypothesis is tested, and predictions
about possible consequences are made. Deduction is a stepwise approach,
where several premises can precede the inference. Example: "An airport is an
artificial object." Another assumption could follow this premise, "all artificial
objects are represented on a land cover map with a pixel value of 80". Those
statements would lead to the conclusion that "an airport is represented on a
land cover map with pixel value 80". In deductive reasoning, if the premise is
true for a class of things, it is also true for all members of this class.

By contrast, inductive reasoning starts with an observation, but it guarantees
neither that there is a conclusion nor that where there is a conclusion that it is
logically reached. Inductive reasoning gathers evidence, searches for patterns,
and forms a theory or hypothesis. This kind of argument is o�en used in science,
too. For example, basedonacollectionof observations about a landcover over a
long period of time, researchersmay be able to ascertainwhether the land cover
is shrinking.

Abductive reasoning typically begins with an incomplete set of observations
and proceeds to the best possible explanation for the set. This reasoning type
generates the kind of daily decision-making that does its best with the
information available, which o�en is incomplete and uncertain. Despite the
fact that the approaches based on logical validity are commonly accepted, the
human reasoning process is not simple and it does not follow a single path of
logical thinking. It draws no clear distinction between deduction, induction,
and abduction because it tends to exploit what we already know
(Johnson-Laird 2010). Artificial Intelligence (AI) combines inductive, deductive,
and abductive reasoning in a human-like manner and established structured
solutions to analyze complex problems even in the presence of missing,
incomplete and noisy information.

2.2.2 So� computing approaches

Rule-based expert systems

Rule-based expert systems are a common technique in knowledge-based AI
and are widely used in GIScience. For instance, Choi & Usery (2004) has
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suggested a rule-based expert system for urban mapping, where an interactive
question-and-answer sequence is integrated within Geographic Information
Systems (GIS) for spatial data mapping. By using a natural language, an expert
replies to a specific question in the manner Yes/No answer. However, despite
the common use, rule-based expert systems have an obvious drawback due to
limited ability to handle vague associations. For rule-based systems, only exact
reasoning is possible. They assume that perfect knowledge exists and each
question might be answered as true or false. In addition, this approach follows
a sequence of rules, so the reasoning outcome depends on the rule order that
may lead to divergent results if the order is changed.

Fuzzy logic and fuzzy sets

Given the limitation of rule-based approaches, fuzzy logic, introduced by Zadeh
(1965), is able to describe vagueness through a combination of symbolic and
numeric values. The fuzzy logic approach is based on the belief that all
premises are associated with a degree of membership. For example, fuzzy logic
represents the way people would think and which statements theymight make,
as for instance "It’s drizzling", "It’s pouring" “It’s raining cats and dogs”.
Defining the continuum of the logical values between 0 (false statement) and 1
(completely true), it is possible to describe the multi-value statements as
degrees of truth, or degrees of membership. In contrast to Boolean logic
(rule-based approaches) (Fig. 2.3(a)), fuzzy logic (Fig. 2.3(b)) can describe a
variation by describing assumptions as being partly true or partly false in the
interval [0,1]. Foody (1996) addressed the benefits of fuzzy sets classification for
a better representation of some vegetation from remotely sensed imageries as
they support continuum of land cover classes’ distribution. Therefore, the fuzzy
set approaches can capture the natural uncertainty and imprecision of class
definitions.

Rough set theory

Rough set theory was proposed by Pawlak (1982) in order to deal with
imprecise, inconsistent, incomplete information and knowledge. Rough set
theory represents a mathematical approach to describe our knowledge and
perception of data (Walczak & Massart 1999). In contrast to fuzzy set theory,
where the selection of the membership function is uncertain, rough set theory
uses two precise boundary lines to describe uncertain concepts. This approach
defines a set of lower and upper approximations, where the lower
approximation includes all the objects that definitely belong to the set,
whereas the upper set consists of the objects that may belong to the set. The
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(a) Boolean logic

(b) Fuzzy set logic

Figure 2.3: Range of logical values. According to boolean logic an element is
either in or outside of the range. The fuzzy set proposes a membership function
which assign the elements in the range of the interval [0,1].

data is o�en represented as tables, also called information systems, or
information tables, where condition and decision attributes are included. The
application of rough set theory is crucial in AI and cognitive science
applications which support decision-making and data mining. Sikder (2016)
proposed using the rough set approach for classification and prediction of land
cover classes, where he introduces approximate reasoning to support
knowledge discovery in land cover classification. Moreover, the extensive use of
rough set theory in GIScience includes such active domain applications as
landslide hazard (Peng et al. 2014), map generalization, and optimization of
spatial databases. Although rough set theory is an e�ective method for
knowledge acquisition, it is restricted by its dependence on complete
information tables, because in real-time applications, missing values and errors
might occur (Nabwey 2011).

Non-monotonic logics

The term "non-monotonic logic" (NML) refers to a family of formal frameworks
devised to capture and represent defeasible inference (Strasser & Antonelli
2018), in which reasoners draw conclusions approximately with the ability to
revise the assumptions based on new evidence. The deductive reasoning is
monotonic, which means that the arguments preserve the truth and are not
allowed to be changed. However, in the real-life most of the problems are
non-monotonic. In NML, the facts and rules are dynamic, which means that
they can be changed at any time. Therefore, in contrast to monotonic logic, in
NML, previous conclusions may be invalidated by new knowledge. This type of
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reasoning is similar to human reasoning in its approach. Although the NML
approach is widely used for reasoning in everyday environments, expert and
scientific systems, there are number of drawbacks such as disbelief
propagation, derivation of new beliefs from existing ones, contradictions in
beliefs that cannot be overcome within some application.

2.2.3 Evidence-based and probabilistic approaches

Evidence theory

Evidence theory, also called the Dempster-Shafer theory of evidence, was
introduced as an alternative approach to probabilistic techniques. At the
qualitative level, Dempster-Shafer theory provides a graphical description of a
knowledge base by modeling variables and their relations (Cobb & Shenoy
2003). Moreover, at the numerical level, a Dempster-Shafer theory of evidence
assigns a belief function to subsets of the variables in the domain of each
relation (Cobb & Shenoy 2003). Furthermore, to update knowledge within a
belief function, further evidence may be provided. Thus, this mathematical
model is based on reasoning with belief that defines all available evidence and
plausibility that refers to all evidence consistent according to a hypothesis.
Thus, the combination of the two aspects characterizes the probability interval
of the hypothesis. The mathematical approach is described through a belief
function, which can include combination of information from di�erent
resources.

A substantial number of applications of Dempster - Shafer Theory of evidence
in GIScience indicate that this approach is able to handle uncertainty,
imprecision, ignorance, and lack of data, and it can perform particularly well
with raster-based input for various environmental applications (Malpica et al.
2007). Although Dempster - Shafer Theory and Bayesian Networks are similar
in certain aspects, there are di�erences in graphic representations, numerical
details, semantics andmethods of performing inference (Cobb & Shenoy 2003).
As two approaches have di�erent semantics, they are used for di�erent
scenarios, where Dempster - Shafer evidence theory better facilitate
representation of non-causal knowledge whereas causal relationships are
better represented by conditional probabilities, thus Bayesian Networks.
Moreover, despite the extensive usage, computational complexity is the main
concern for developing Dempster - Shafer evidence theory within stand-alone
applications for geospatial data.
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Probabilistic theory based techniques

Probabilistic theory-based techniques are enabled to handle both epistemic
and aleatoric uncertainties, where uncertainty is modeled through the degree
of belief which substitutes knowledge about the whole system. The degree of
belief is expressed as a value of conditional probability for all possible events.

Due to wide applicability to various domains – for example, pattern recognition
data mining, data exploration and optimization, along with the ability to deal
with sparse training data, provide interpretable results, and establish
mathematically rigorous inference – probabilistic methods have a considerable
advantage over deterministic methods. Some common techniques are
summarized in Table 2.4.

Bayesian Network

Graphical models represent a large group of probabilistic methods. Among
these methods Bayesian Networks are distinguishable for their ability to be
versatile, extensible, and understandable for wide scientific community.
Bayesian Networks are well established modeling tool for expert systems,
where real world problems can be described through easily comprehensible
graphical representation of conditional dependencies, while based on solid
rules of probabilistic calculus.

Moreover, several studies have indicated that Bayesian Networks provide an
e�ective approach to assess data uncertainty. Thus, the use and visualization of
Bayesian Networks has received explicit attention (Chiang et al. 2005, Koiter
2006, Li et al. 2010, Cossalter et al. 2011, Taalab et al. 2015, Pietro et al. 2017,
Drury et al. 2017, Champion & Elkan 2017, Abebe et al. 2018). The Bayesian
Networks graphically represent uncertain quantities and decisions that reveal
probabilistic dependencies among the variables and related information flows
(Villa & Cozzani 2016). Bayesian Networks provide an e�ective mechanism to
deal with uncertainties and information from di�erent sources such as expert
judgment and observable patterns. In addition, Bayesian Networks allow
analysts to not only model the causal relationships, but also to visualize them,
which gives a transparent inferential mechanism. Despite the given
advantages, Bayesian Networks have some limitations too such as
computational complexity and di�iculty in specifying priors. When performing
Bayesian inference, the computational complexity is growing exponentially.
Thus, it requires both processing facility and e�ective visual support as
specification of priors may involve specialized knowledge about the data and
the context where this data is used.
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The literature on Bayesian Networks shows a variety of practical solutions in
di�erent domains (see Fig. 2.4). Pourret et al. (2008) o�ered a comprehensive
guide through diverse applications and demonstrated through case studies
how can expert knowledge be combined with computational capacity of
Bayesian Networks. The application examples include medical diagnosis,
genetic models, crime risk factors, spatial dynamics, terrorism attack
management, classification of Chilean wines, risk management, and human
cognition. Moreover, Pourret et al. (2008) highlighted versatility and modeling
power of Bayesian networks for users that come from various spheres of
research as engineering, computer science, medicine, bioinformatics, real
estate, finance, psychology and cognitive science. Due to computational power
and ability to model complex systems under uncertain conditions, Bayesian
networks became an increasingly popular method in GIScience too. To
represent constant interest towards Bayesian Networks within the GIScience
community we selected some publications over the last decade.

Applications of
Bayesian
Networks

Descriptive

Automated
insight

Large patterns

Anomalous
patters Multivariate

Diagnostic

Value of
information

Reasoning

Troubleshooting

Tracing
anomalies

Predictive

Supervised or
unsupervise

Anomaly
detection

Time series
Latent
variables

Prescriptive

Cost
based

decision-making

Decision
support

Decision making
under

uncertainty

Decision
automation

Figure 2.4: Applications of Bayesian Networks: Descriptive, diagnostic,
predictive, and prescriptive analytics.
Source: Bayes Server: www.bayesserver.com

https://www.bayesserver.com/docs/introduction/bayesian-networks
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Stassopoulou et al. (1998) investigated how the Bayesian Networks can be used
for assessing desertification risk of burned forest in Mediterranean region
combining information from di�erent sources. The study proved that the
results obtained were worse when the uncertainty in the data and uncertainty
in the inference were ignored.

Straub (2001) suggested to assess natural hazard risk such as rock-fall on roads
using Bayesian Networks. Moreover, Straub (2001) underlined that Bayesian
Networks are flexible and intuitive and they provide transparent inference
mechanism and simultaneously incorporate the concept of risk through
uncertainty definition.

Körner et al. (2009) proposed to analyze and visualize large trajectory data
using Bayesian Networks within GIS MapInfo so�ware package. The approach
has applied to Scalable Sparse Bayesian Network Learning algorithm in order
to generate a compact model of trajectory dependency structure which can be
used for e�icient visualization.

Landuyt et al. (2014) suggested to incorporate Bayesian Networks for
ecosystem service modeling. To realize themodeling, Landuyt et al. (2014) have
developed a Quantum GIS plug-in which enables pixel-based application of the
Bayesian Networks to map ecosystem service delivery and associated
uncertainties. The reported results are maps that can be used for
decision-making and regional ecosystem service accounting.

Celio et al. (2014) integrated spatially explicit Bayesian Networks to model land
use decisions in a pre - Alpine area in Switzerland along with biophysical data
and local expert knowledge. Celio et al. (2014) have used questionnaires in order
to collect information from local stakeholders and update the BayesianNetwork
model with important characteristics for land use decision-making in the case
study region. The outcome of the research indicated path-dependencies of land
use change that can be served as information for planners and policy makers.

Taalab et al. (2015) proposed Bayesian Networks for digital soil mapping that
integrate measured data and expert opinion. The results reported indicate that
such approach is e�ective for prediction of soil physical property and
qualitative prediction of soil taxonomic class under consideration of uncertain
expert knowledge. Additionally, Taalab et al. (2015) suggested the Bayesian
Network method as a feasible alternative to black-box data mining techniques
for soil properties modeling.

Chee et al. (2016) have demonstrated the use of spatial Bayesian Networks for
two study cases - one developed for adaptive management of eucalyptus
woodland restoration in south-eastern Australia, and another developed to
manage the encroachment of invasive willows into marsh ecosystems in
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east-central Florida. The proposed approach uses object-oriented concept
which supports the complex Bayesian Network modeling.

To sum up, the e�iciency of Bayesian Networks lays in providing uncertainty
estimates about the given alternatives when human reasoning can be
integrated. Therefore, the combination of computational consistency and
human comprehension makes this method favorable for the further integration
within a visual analytics application prototype that is proposed in Chapter 4.
Further details on Bayesian Network approach are given in Chapter 3.

The executive summary for prominent reasoning methods is given in Tables 2.3
and 2.4 and indicates that every method has advantages and drawbacks.
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2.3 Design approaches for promoting analytical
reasoning under uncertainty

Although uncertainty is essential part in any analytical and reasoning process,
there is a lack of research regarding the transparency of visual representation
and the inference algorithms used. The transparency is crucial for establishing
a reliable system and enabling an analyst to improve the decision-making. The
transparency process may be facilitated when the reasoning about data
supports elicitation of users’ prior knowledge in visualization interaction. In
this regard, the visual analytics may promote an understanding of the
reasoning process and provide mission-appropriate interactions that allow
analysts to have a true discourse with their information (Thomas & Cook 2005).
Therefore, the visual analytics approach has become an important tool for
gaining insights on various data sets. Typically, the visual analytics process (see
Fig. 2.5) combines automated analysis and visual means along with human
interaction in order to gain knowledge from data (Keim et al. 2010).

Keim et al. (2010) have defined a visual analytics process model that illustrates
the relationship between the data, model used by the analytical system,
visualization outcome and knowledge retrieved to support decision-making
process. The visual analytics process starts with data pre-preprocessing and
transformation. Further, either visual data exploration or automated data
analysis can be performed. In case of data analysis, a potential analyst can
refine the parameters involved in the modeling process, evaluate the findings,
and provide new input. When the visual data exploration is performed first, the
analyst can evaluate the visualized information, apply di�erent styles, zoom,
pan, and request details. Based on the findings from visual exploration the
model parameters can be also refined. Therefore, in both cases, the analyst can
gain knowledge from data, analytical reasoning, and visualization.

Uncertainty-aware visual analytics

In the literature, several approaches have been proposed to incorporate
concepts of uncertainty within visual analytics. Previous research has
demonstrated the potential of developing uncertainty-aware visual analytics.
Kinkeldey (2014) reported on the development of ICchange, an interactive
visual analytics application for exploratory analysis of land cover change.
Correa et al. (2009) suggested an uncertainty-aware visual analytics framework
targeted for housing data analysis in Boston. Their model is established based
on statistical methods of uncertainty modeling, propagation, and aggregation.
In complementary work, Bastin et al. (2013) investigated an approach based on
the Monte Carlo simulation for uncertainty propagation. This includes tools
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Figure 2.5: Visual analytics process model. Adopted from Keim et al. (2010)

that support elicitation, aggregation/disaggregation, visualization, and
uncertainty/sensitivity analysis. One of the first examples of a framework that
merges Bayesian statistics and visual analytics is proposed by House et al.
(2015). Their solution focuses on the human-computer interaction that helps
experts synthesize information in the data, interact with the data, and guide
automated, analytical procedures. In one recent study, integration of
uncertainty (confidence) visualization with computational methods in a visual
analytics application demonstrated how confidence in an estimate on multiple
interacting factors (based on weather predictions) can be simultaneously
visualized (Kumpf et al. 2018). Squicciarini et al. (2014) have demonstrated an
analytical framework called Abuse User Analytics (AuA) aimed to provide
information about the behavior of on-line social network users. The AuA
processes data users’ discussions, and renders information about users’
abusive activities. The analysis and visualization implemented within AuA
utilize Bayesian Networks to model the users’ choices and monitor changes in
their behavior in text-based communities.

As it has been mentioned above (section 2.2.3), probabilistic methods, and
Bayesian Networks in particular, have been proved as e�ective in assessing
uncertainty in the human reasoning and in the data sources. Consequently,
visual analytics approach might facilitate abstraction of numerical details from
Bayesian statistics and represent the modeling through qualitative
characteristics that promote human reasoning, and yet preserve the semantics
underlying Bayesian Networks. The implementation of uncertainty-aware
visual analytics using Bayesian Networks that considers spatial data contexts,
seems to o�er potentially useful tools for spatial data analysis.

This research contributes to e�orts that move beyond traditional
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intrinsic/extrinsic uncertainty visualization approaches by developing and
demonstrating methods that incorporate the visualization within a
model-based design using Bayesian Networks to describe data with inherent
uncertainty. Thus, the integration of visual analytical tools into contexts such as
classification tasks, where uncertainty is an important factor, could provide an
additional dimension that may facilitate more informed data exploration and
analysis that results in better decisions.

So�ware packages for Bayesian Networkmodeling

Development of Bayesian Network so�ware has been successful and several
packages (see Fig. 2.6 and 2.7) are available for commercial and educational
use. These include GeNIe/SMILE (Koiter 2006), HUGIN Expert (Madsen et al.
2003), BayesiaLab (Conrady & Jou�e 2015), and Netica (Woodberry & Mascaro
2012).

GeNIe is a graphical user interface to SMILE (Structural Modeling, Inference and
Learning Engine) (Koiter 2006). The development environment GeNIe was
created on the basis of Decision Systems Laboratory, University of Pittsburgh
between 1995 and 2015, and since 2015 it has been supported by commercial
company BayesFusion. Being free for use for academic purpose, this tool has
been widely exploited for various scientific projects. Although GeNIe graphical
modeling tool is powerful, it lacks the extension for spatial data.

HUGIN Expert is a general purpose tool for probabilistic graphical models such
as Bayesian networks and influence diagrams (Madsen et al. 2003). Along with
graphical user interface Hugin Expert o�ers API provided in the form of a library
that can be linked into applications written using the C, C++, Java, or Python
programming languages.

BayesiaLab (http://www.bayesia.com/) is a commercial so�ware that facilitates
Bayesian inference through visual environment. BayesiaLab provides an
e�ective graphic representation by adopting various symbols to map the
changes and characteristics of a network. Only recently BayesiaLab has
released an extension that deals with spatial data. The newest so�ware enables
the visualization of the values of nodes on Google maps and provides facility to
handle optimization problems such as travel, transportation, and logistics (see
Fig. 2.8).

Netica is another powerful so�ware incorporating Bayesian Networks for the
inference (Woodberry & Mascaro 2012). Due to the interest within GIScience
community, Netica extended the so�ware for dealing with spatial data, and
they provided facility for dealing with raster files.



34 Chapter 2. Foundations and State-of-the-Art

Although various tools for Bayesian Network inference exist and provide
rigorous modeling procedures, the complexity and lack of support for spatial
data prompt the development of further solutions that can assist users with
visual and analytical data analysis. These solutions should integrate the
computational power of Bayesian Networks and data visualization in visual
analytics form, which enables expert input and iterative approaches in the
reasoning processes applied to data analysis.
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(a) GeNIe/SMILE. The nodes can be visualized via bar chart or icon.

(b) HUGIN Expert

Figure 2.6: Visualization approaches for Bayesian Networks (GeNIe/SMILE and
HUGIN Expert).
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(a) BayesiaLab (Conrady & Jou�e 2015)

(b) Netica (Woodberry & Mascaro 2012)

Figure 2.7: Visualization approaches for Bayesian Networks (BayesiaLab and
Netica).
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(a) Graph view

(b) Map view

Figure 2.8: BayesiaLab extension for spatial data.
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2.4 Limitations of existing approaches and open
challenges

Over the past decade, a significant body of research in GIScience and
cartography was related to uncertainty assessment and its visualization. The
researchers typically deal with such complex and challenging topics as climate
change, location-based services, environmental impacts, and application of
deep learning algorithms for pattern recognition. Explanations and predictions
of investigated phenomena, or an area of interest, are fraught with
uncertainties, and it is a major challenge for scientists to manage these.
Similarly, uncertainty in data and reasoning is also a challenge for
cartographers, who visually communicate data to the broader public.

As the saying goes, a picture is worth a thousand words, and so data
visualization is a powerful way to convey information in a concise manner and
it can explain results of complex data analysis. However, as the amount of data
and the complexity of the required analysis grow, visual analytics has become a
common tool for gaining insights from the data. And given that uncertainty is
an imminent part of data and human knowledge, the necessity of its
integration has been highlighted by several authors (Correa et al. 2009, Bastin
et al. 2013, Kinkeldey 2014, MacEachren 2015).

Despite the significant advances in the approaches to assessing and visualizing
data uncertainty, the challenges for the development of uncertainty-aware
visual analytics are seen in the following:

• While data visualization techniques may represent data and uncertainty,
a visual analytics approach can enhance user experience with an
interactive interface and computational capacity. Therefore, it is crucial
to develop e�ective visual analytics that can accommodate data,
visualization, computational power, and human knowledge to support
the reasoning process transparently for the user.

• When di�erent analysts explore the same visual representation, they may
still have di�erent involvement and, thus, they would draw di�erent
conclusions as the previous experience and level of expertise vary. In
cases when decision-making is a central purpose of the visual
representation, the importance of analyst input should not be
underestimated.

• Commonly, deterministic approaches in data analysis do not take
variability into account, whereas probabilistic techniques enable
uncertainty to be quantified. The potential of the integration of
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probabilistic methods within visual analytics in the spatial context can
open new perspectives for the reasoning about spatial data.





Chapter 3

Uncertainty in the reasoning
process for geospatial data

“ All our knowledge begins with the senses, proceeds then to the
understanding, and ends with reason. There is nothing higher
than reason. ”

Immanuel Kant, The Critique of Pure Reason, 1781

This chapter introduces the theoretical foundations of reasoning under
conditions of uncertainty uncovering the human and Bayesian theories behind
this process. Furthermore, this chapter is mainly focused on the following
objective:

To give an overview of human reasoning processes and to test capability of
using a probabilistic graphical model, namely Bayesian Network, to represent
conditional dependencies among heterogeneous data in order to perform a
classification task.

3.1 Introduction

Reasoning is a crucial human brain operation that provides us with methods,
algorithms, beliefs, and logic for solving problems andmaking decisions. In the
process of human reasoning, visualization plays an important role, as people
o�en use such various representations as maps, diagrams, charts, and figures

41
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to support and/or generate their hypothesis. By examining the size, shape,
orientation, and color people can make judgments in their minds, even though
it may be simplified considering assumptions made. Thus, human reasoning is
o�en associated with some degree of fuzziness and uncertainty due to our
cognitive biases (see section 3.4.1). The judgments made may be expressed by
means of a natural language or visual representation.

Over the last decade, the amount of data generated on the daily basis has
increased dramatically due to the acquisition and processing advances of
current information communication technology. The data-driven approaches
in science can help to bridge the gap between the environment and society;
therefore, researchers from di�erent scientific fields have started paying
considerable attention to the challenges of working with the data and making
sense out of it. By applying sophisticated computational algorithms scientists
can extract important patterns from the data and make predictions for future
development.

With the scientific advances, numerical approaches to quantify the uncertainty
have become prominent, however, the qualitative information and expert
knowledge are still of paramount importance when dealing with
heterogeneous data. Furthermore, we describe how human reasoning is
perceived from historical perspectives and now, and how Bayesian Networks
can be utilized to indicate the probabilistic uncertainty as well as entropy when
dealing with heterogeneous and spatial data.

3.2 Reasoning under conditions of uncertainty

3.2.1 Human reasoning: historical perspective and current
interpretation

The role of human reasoning and certainty has been always a topic of
significant importance for philosophers, cognitive scientists, psychologists, and
scientists from other fields. And despite the progress in the methods and
theories, how human reasoning works is still a puzzle. To give a short overview,
some crucial ideas in epistemology that changed the course of philosophy of
science are briefly reviewed below.

The French philosopher and scientist René Descartes (1596 - 1650) was a
founder of the method in philosophy that defines knowledge in terms of doubt.
In Descartes’ works, doubt is understood as the opposite of certainty, where the
knowledge of the nature of reality was derived from the ideas of the intellect
and not from the senses (Newman 2016).
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Gottfried Wilhelm von Leibniz (1646 - 1716) also followed the rational approach
in his work "Meditations on Knowledge, Truth, and Ideas" (1684) about the
possibility and nature of human knowledge. Leibniz addressed a distinction
between truths of reasoning (reason or explanation can be discovered by
analysis) and truths of fact (reason cannot be discovered through a finite
process of analysis) (Look 2017). This distinction defines the nature of human
knowledge or cognition. According to Leibniz, human knowledge is intuitive
only for primary notations and propositions (Look 2017).

In contrast to the rationalist view, John Locke argued in his work "An Essay
Concerning Human Understanding" (1689) that we can know for certain, these
would include our own existence or the nature of mathematics and morality
(Uzgalis 2018). Locke defined probability as follows: "Probability is nothing but
the appearance of such an Agreement or Disagreement, by the intervention of
Proofs, whose connection is not constant and immutable, or at least is not
perceived to be so, but is or appears, for the most part to be so, and is enough
to induce the Mind to judge the Proposition to be true, or false, rather than the
contrary." Like Descartes, Locke based his account on intuition, where the
connection among ideas is presumed in belief.

David Hume (1711 - 1776) in his most influential work "A Treatise of Human
Nature" (1748) proposed an empirical investigation into human nature and
argued that a passion, rather than reason controls human choice. He claims
that inductive reasoning and our beliefs regarding cause and e�ect cannot be
justified by reason, but by mental habit and custom. According to Hume,
everything is subject to some degree of uncertainty, and science has to deal
with the fact that absolutely certain is not possible.

The German philosopher Immanuel Kant (1724 - 1804) in his contribution to
metaphysics, "Critique of Pure Reason" (1781) and its summary "Prolegomena
to Any Future Metaphysics" (1783), distinguished a priori from a posteriori
cognition and between analytic and synthetic judgments. According to Kant
and his "Critique", a priori is what one knows independently from experience,
and a posteriori is a knowledge one obtains from experience. An analytic
judgment is explanatory and does not contain new information, whereas a
synthetic judgment is one whose assertion includes information not contained
in the subject. Innovative ideas from "Critique of Pure Reason" redefined the
approach to how knowledge is structured and argued that scientific reasoning
is always uncertain, although technical reasoning can be pragmatic.

Rudolf Carnap (1891 - 1970) in his book "Philosophy and Logical Syntax" (1935)
redefined a method of logical analysis "to analyze all knowledge". Carnap
(1945) addressed the two di�erent probability interpretations: frequency and
degree of confirmation. Working on the latter concept, he defined the
probability of a statement as the degree of confirmation the empirical evidence



44 Chapter 3. Uncertainty in the reasoning process for geospatial data

gives to the statement.

Clarence Irving Lewis (1883 - 1964) argued that necessary truths are knowable a
priori, which means that we form expectations and make predictions about a
future outcome, conditional on actions we might make. Our beliefs constitute
empirical knowledge and past experience gives us a good reason (largely
inductive) for making these predictions (Hunter 2016). Therefore, Lewis
believed that knowledge is possible only where there is a possibility of error. In
his work "The Analysis of Knowledge and Valuation" (1946), he distinguished
three classes of empirical statements: expressive statements (something
certain and present in experience), terminating judgments (statements verified
empirically), and non-terminating or objective judgments (certain judgments if
terminating judgments accept them).

Hilary Putnam (1926 - 2016) was a Harvard-based philosopher, who contributed
to various fields of philosophy of science, and in particular metaphysics,
epistemology, logic and mathematics. Although Putnam has revisited his
thoughts on earlier made arguments from realism to pragmatism, he defined
knowledge as being framework-relative and the idea of truth as related to a set
of investigative interests and priorities.

By examining the history of skeptical approaches, we see that it is not easy to
define human knowledge. Moreover, emerging methodological advances in
psychology and cognitive science o�er new perspectives on human cognition,
reasoning, and decision-making.

An innovative approach to explaining the reasoning process under uncertainty
was proposed by Tversky & Kahneman (1974) and Kahneman & Tversky (1982).
In their research (Kahneman & Tversky 1982) they addressed variants of
uncertainty through psychological analysis that distinguishes two levels of
responses. The first reflects perceptional expectancies and surprise, and, the
second represents phenomenological examination. The latter deals with
experiences of doubt and uncertainty in judgments of subjective probability.
Kahneman and Tversky suggested that the uncertainty in judgments of
subjective probability can be di�erentiated into internal and external
attributions (see Fig. 3.1). For example, color, size and texture are normally
experienced as properties that belong to external objects, whereas feelings are
attributed to internal. Kahneman & Tversky (1982) emphasized that external
uncertainty can be approached two ways: (a) a distributional model, where the
case in question is an instance of a class of similar cases and its relative
frequencies are known or can be assessed; (b) a singular mode, where
probabilities can be estimated by the propensities of a particular case in hand.
Internal uncertainty is also seen two ways: (a) a reasonedmode, where analysis
and weighting of evidence are performed; (b) an introspective, where the
judgment is based on an introspective association.
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Uncertainty

External
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(Arguments)

Figure 3.1: Variants of uncertainty suggested by Kahneman & Tversky (1982)

In another study, Tversky & Kahneman (1974) conducted several experiments
on how people assess the probability of an uncertain event or the value of an
uncertain quantity. In the course of their research, Tversky and Kahneman
aimed to discover the heuristic principles and reasoning process based on
previous experience and current belief. The results of these experiments
revealed three heuristics that are employed to assess probabilities and to
predict values. These heuristics include representativeness, availability, and
adjustment from an anchor.

The representativeness heuristic determines how people evaluate the
probability that an event A belongs to a class or process B. In other words, this
heuristic involves judging the probability of an event based upon how similar it
is to our actual thinking of such an event. Just like other heuristics, it is a
mental shortcut that helps humans make decisions. For instance, people o�en
judge the probability that they can win the lottery next time based on whether
or not they won the last game. In reality, the lotto results are not dependent
upon each other and winning or losing is random.

The Availability heuristic involves judging about frequencies or probabilities of
a particular event based upon how fast andwell we can recall similar events. For
example, people might believe that catastrophes are more common than other
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transportation accidents because they can immediately recall someexamples of
crashes.

The adjustment from an anchor explains how people access numerical
predictions and why they tend to overestimate the probability of conjunctive
events and to underestimate the probability of disjunctive events. Tversky &
Kahneman (1974) suggested that the stated probability of the elementary event
provides a natural starting point for the estimation probability of any event,
which means that the initial anchor gives a great deal of influencing on the
future assessments.

The studies of cognitive heuristics reveal how individuals reason and make
decisions, and they can provide a solid ground for harmonizing the perceptual
features of visualizations. Although Tversky & Kahneman (1974) examined their
ideas on various common situations from everyday life, heuristics can be also
applied to visual and cartographic design, as o�en people have to take a
decision based on presented visual interface, where some information is
missing or uncertain. When it comes to sophisticated data or complex
analytical task personal knowledge and experience are o�en key features of
heuristic judgments. Technological advances o�er computational power to
emulate the reasoning process, decision-making, visual perception, and
linguistic comprehension. MacEachren (2015) addressed the importance of
integration of the principles about judgments under uncertainty within visual
analytics domain.

3.2.2 Bayesian epistemology

Bayesian epistemology emerged as a philosophical movement in the 20th
century, though its main formalization can be traced back to Reverend Thomas
Bayes (1701 - 1761) (Talbott 2016). Bayesian epistemology is a formalization of
inductive logic in combination with a new inductive test for epistemic
rationality, which involves updating on received new evidence and examining
the reasoning outcome. Reverend Thomas Bayes found a simple mathematical
formula (see Eq. 3.1) used for estimating conditional probabilities that now
plays a central role in Bayesian approaches for data analysis.

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
, (3.1)

where likelihood P(Y|X) represents how probable is the evidence given that the
hypothesis is true; prior P(X) shows how probable is the hypothesis before the
evidence observation; marginal P(Y) represents how probable is the new
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evidence under all possible hypothesis; and posterior P(X|Y) represents how
probable is the hypothesis given the observed evidence.

Bayesian approach to epistemology is based on principles, methods, and
problem-solving mechanisms that are consolidated by three main aspects
(Colombo et al. 2018): (1) uncertainty should be captured by a real-valued
function that measures degrees of belief; (2) degrees of belief, at any given
time, should satisfy the axioms of probability theory; (3) degrees of belief,
represented by determinate probabilities, should be updated in the light of
new information, typically by the canonical rule of conditionalisation.

Progress in the development of computational statistics in the last decade has
o�ered new tools for Bayesian inference and prediction, that are capable to
embrace the complexity of environmental modeling under uncertain
conditions. Imagine a situation when we have two or more alternative
responses to an environmental change. A farmer with a large land has noticed
that his land is a�ected by soil degradation. The major problems for soil
degradation might be caused by water and wind erosion, soil fertility decline,
water-logging, salinization, lowering of groundwater recharge. Besides, there
are underlying causes of degradation as for instance, land shortage, economic
pressure, poverty, and population increase. If the reason behind the soil
degradation lies in improper crop rotation which contributes to soil fertility
decline, then the land management strategy considering this factor might be
changed accordingly. But what if both improper crop rotation and
deforestation of nearby territories that leads to water erosion, contribute to the
soil degradation? A decision when several aspects might have the influence is
uncertain, and one should take into account possible outcomes weighted by
their impacts. Therefore, there is a great need to address the importance of
e�ective decision-making considering the uncertainty quantification. From a
practical perspective, Bayesian approaches provide an e�icient inferential
framework that allows experts to updating knowledge considering the expert
input.

3.3 BayesianNetwork for reasoning under conditions of
uncertainty

This research is focused on a particular type of probabilistic models named
Bayesian Networks. When the term Bayesian Network was introduced by Pearl
(1985), the main motivation was to develop a model for human inferential
reasoning. Being important in di�erent research fields, Bayesian Networks are
both mathematically rigorous and intuitively understandable (Kenett 2016).
Bayesian Networks are commonly used for applications where heterogeneous
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data is involved. Just to name few examples, Bayesian Networks are used in the
analysis of airport check-in processes (Pietro et al. 2017), agriculture (Drury
et al. 2017), urban area’s vulnerability to flooding (Abebe et al. 2018), and
prediction of natural disasters (Li et al. 2010). Taalab et al. (2015) studied
Bayesian Network application for prediction of soil properties and showed that
it is an e�ective technique for quantitative and qualitative prediction and a
reasonable alternative to black-box data mining techniques.

Before going into further details some key definitions are given in sections 3.3.1,
3.3.2, 3.3.3 and 3.3.4.

3.3.1 Events and their probabilities

In probability theory, an event is defined as an outcome of an experiment. When
you toss a coin, theoutcome is anevent. The samecanbevalid for a spatial event
in a broad sense. For instance, the land cover product Globeland30 shows forest
as a land cover class assigned to a given location, and this class at this location
can be considered as an event.

The probability of an event may be seen from three main fundamental
perspectives that are commonly accepted in modern statistics:

• frequentist interpretation views the probability from the point of view of
the frequency of occurrence of the event in a sample;

• propensity interpretation determines the probability by physical
properties;

• subjectivist interpretation determines the probability as a subjective
personal measure of the belief in that event.

The implication of the subjectivist view on probability is adopted in this work as
it allows analysts to deal with decision analysis. In other words, the subjectivist
interpretation of probability is defined from the perspective of a personal belief,
which can vary among di�erent experts or systems involved in the analysis.

An event can be a combination of di�erent events. If we are interested in
probability of union of two events (Fig. 3.2(a)), we consider combined
probability of these events P (Z) = P (X ∪ Y ).

When the main interest is the probability of events occurring together, we are
interested in the intersection of these events P (Z) = P (X ∩ Y ) (Fig. 3.2(a)).
And eventually, if events are mutually exclusive, this combination is disjointed
(Fig. 3.2(c)).
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(a) Event union (b) Event intersection (c) Event disjoint

Figure 3.2: Combination of di�erent events.

Joint probability

A joint probability refers to a statistical estimate that measures the likelihood
of two events occurring together (Fig. 3.2(b)). For instance, joint probability is
the probability of event X occurring together with event Y denoted as P (X,Y ).
P (X ∩ Y ) or P (X,Y ), which reads as the joint probability of X and Y.

It can be quantified as a number in an interval between 0 and 1 inclusive, where
0 is assigned to an impossible chance of occurrence and 1 indicates the certain
outcome of an event. An example joint probability distribution for variables
Snowing and Windy is shown in Table 3.1. The probability of wind and no snow
is 0.10 (or 10%). As the joint probability indicates only events that happen at the
same time, it is only applied to situations whenmore than one event can occur.
The joint probability values can be summed to one for discrete variables. If two
variables are independent (i.e. unrelated) then P (X,Y ) = P (X)P (Y ).

Table 3.1: Joint probability for an event intersection.

Snowing Windy = False Windy = True

False 0.70 0.10

True 0.1 0.1

Conditional probability

A conditional probability refers to a statistical estimate that measures the
likelihood of an event based on the occurrence of another event denoted as
P (X|Y ). Conditional probability is estimated based on multiplication of
probabilities of the preceding event by the updated probability of the
succeeding or conditional event. For example, the probability of Windy being
True, given that Snowing is True can be equal to 50%. This would be denoted as
P (Windy = True|Snowing = True) = 50%.
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Marginal probability

A marginal probability refers to a statistical estimate that measures the
probability of an event occurring unconditionally from other events. For
instance, in order to know the probability of snowing (from the example
above), we need to access the probability of P (Snowing) and sum up all the
probability values for Snowing = False, and Snowing = True (see Table 3.2). For
discrete variables, marginalization is performed by means of a probability
summary, and for continuous variables by means of integration.

Table 3.2: Marginalization for a variable.

Snowing Windy = False Windy = True Sum

False 0.70 0.10 0.80

True 0.1 0.1 0.2

Snowing = False Snowing = True

P (Snowing) 0.8 0.2

3.3.2 Bayesian updating

Bayesian Networks rely on the conditional probabilities of events that can be
updated if new information is available, as for example to represent the
conditional probability such statement can be made: given an event X , the
probability of the event Y is z. This statement can be represented in
mathematical notation as P (X|Y ) = z. This statement is true if events are
independent of each other.

The basic rule of conditional probability is P (X|Y )P (Y ) = P (X,Y ), where
P (X,Y ) is the probability of the joint event when both events have occurred.
For example, one’s belief in whether or not a city district has high criminality is
independent of his belief in whether or not it has a high percentage of families
that earn less than a minimum wage. However, one’s belief in whether or not a
scarcity of job opportunities is not conditionally independent of either of these
two factors since either could be stimulant for criminal behavior. Additionally, if
one happens to know that a district has high criminality level, his belief in
whether or not a high percentage of families that earn less than a minimum
wage it is no longer independent of his belief in whether or not there is a
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scarcity of job opportunities. If the jobmarket is poor that gives one a reason to
believe that the criminality is economically induced.

Updatingmechanism in Bayesian Networks is based on Bayes’ theorem (see Eq.
3.2). Using this theorem, the probabilities of event P (X) are updated based on
the new evidence related to event Y , in other words, it describes the probability
of an event based on the prior knowledge about events related to the event that
has been analyzed. The reasoning is based on the subjective degree of belief
(posterior probability). Using probabilistic theory allows to reason about events
andmake the best decision from the probabilistic point of view.

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
(3.2)

Based on equation 3.2 the posterior probability of P (X|Y ) can be estimated
using prior beliefs in the occurrence of event P (X) and event P (Y ) and the
probability of event Y given that X has occurred P (Y |X). This mechanism is
the basis for Bayesian inference. A substantial benefit of Bayesian Network is
also seen in the ability of this approach to combine frequentest and subjectivist
views of probability, thus the numerical probabilities can be extracted from the
databases and combined with the expert judgments.

3.3.3 Bayesian Network structure

TheBayesianNetwork is a probabilistic graphicalmodel built onBayes’ theorem
(see equation 3.2) and described by a mathematical model with qualitative and
quantitative components such as Directed Acyclic Graph (DAG) and Conditional
Probability Tables (CPTs), respectively (Darwiche 2008).

Directed acyclic graph

The e�ectiveness of the Bayesian Networks lies in their graphical model
structure, where the qualitative component is realized within a DAG. The nodes
in the DAG represent random variables and edges connect the variables. The
terms node and variable are used interchangeably. The nodes in the network
are commonly drawn as circles (see Fig. 3.3) labeled by the variable’s names
(Kenett 2016). The edges define probabilistic relations among the nodes.

Consider an example of a Bayesian Network given in Fig. 3.3, a network
structure is represented with nodes of two types, so called parents and
children. For instance, the nodeX1 is a parent node with two childrenX2 and
X3.



52 Chapter 3. Uncertainty in the reasoning process for geospatial data

Figure 3.3: A representation of causal dependencies among five variables
using Bayesian Network. Nodes represent variables and edges represent
dependencies among them.

Joint probability distribution

The DAG defines a factorization of the Joint Probability Distribution (JPD) of
Z = X1, X2, ..., Xn, o�en called the global probability distribution, into a set
of local probability distributions, one for each variable (Scutari 2009). The
factorization is performed applying Markov property, which characterizes the
process when the conditional distribution at each node depends only on its
parents. The equation 3.3 is valid for discrete variables, and 3.4 for continuous
(Scutari 2009), and define the probability of a state of a given child (Xi) node
quantified under conditions of the states of the parent nodesΠXi .

P (X1, ..., Xn) =
n∏

i=1

P (Xi|ΠXi) (3.3)

f(X1, ..., Xn) =
n∏

i=1

f(Xi|ΠXi) (3.4)

D-separation

D-separation (from direction-dependent separation) is a property of DAG that
indicateswhether anodeX is conditionally independent of another node Y, given
a third node Z. Considering the example given in Fig. 3.4, the nodes X and Y are
not connected, as there is a node Z in between. Besides, between X and Y there
is another node A.
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Figure 3.4: An illustration of d-separation (direction-dependent separation) in
the network.

Conditional probability tables

The quantitative component of the Bayesian Network is determined by CPTs.
Each CPT represents a table with a list of possible states for a node. CPTs
provide a mechanism to replace the uncertainty state with a numerical value in
the interval [0, 1] representing degrees of truth, belief or plausibility (Ortega
2010). The size of CPTs depends on the number of parents and grows
exponentially. A large number of nodes require additional data and\or expert
knowledge. CPTs express the probability of the state of each variable given its
parents and essentially represent the strength of the belief in the causality
(Luxhøj 2014) defined by the experts or learned from the data structure.

Learning algorithms

There are various structures utilized for the Bayesian Network modeling. Naive
Bayesian Networks are typically used for classification under assumptions that
all the variables are independent of each other and information about the
predicted variable is given. Naive Bayesian Network might be updated with the
training data to improve the prediction outcome, and such a network would be
called naive optimized Bayesian Network. More complex learning algorithms
could be divided into constraint-based and score-based algorithms (Scutari
2009). The Bayesian Network structure can be also defined based on an expert
knowledge.
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3.3.4 Ameasure of uncertainty

In order to quantitatively describe data uncertainty, various measures have
been proposed. These include scalar values like probability, error percentage,
distance (e.g. from the true value), standard deviation (Griethe & Schumann
2006), and the Shannon diversity index which is a quantitative estimator of
complexity (Jost 2006). According to Jost (2006) the Shannon Index (also called
Shannon-Wiener Index) is the most common diversity measure and it plays a
central role in information theory as a measure of information, choice, and
uncertainty (Spellerberg 2008). This index represents entropy, giving
uncertainty as to the outcome of a sampling process. In other words, the higher
the entropy (the higher the uncertainty) of a given location, the higher the
diversity across all the classes at this location.

−
n∑

i=1

Pi · ln(Pi), (3.5)

where pi is the probability associatedwith the state i of a target node. One of the
advantages of using the Shannon Index of diversity is that it represents a large
amount of information in one expression (Spellerberg 2008). Therefore, when
adopting this measure of uncertainty it is possible to communicate information
by giving only one estimate (see equation 3.5).
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3.4 A visual approach to human andBayesian reasoning

3.4.1 Visualization and heuristics

With an increasing amount of data, the information visualization has become a
conventional way of communication for wide public and research community.
The information visualization, as well as geospatial information visualization,
scale down the data into meaningful and abstract forms in order to convey the
relevant, significant, and informative phenomenon. Bertin (1983) proposed a
set of visual variables that enables a visual communication researchers to
represent the information about quantitative and qualitative data
characteristics into a visual format that allows the users to understand it
intuitively. Bertin identified seven "retinal variables" (Table 3.3): (1) location, (2)
size, (3) color hue, (4) color value, (5) grain, (6) orientation, and (7) shape. Later
on, this semiotics was extended with such variables as (8) color saturation
(Morrison 1974), (9) arrangement (Morrison 1974), (10) clarity (fuzziness)
(MacEachren 1992), (11) resolution (MacEachren 1992), and (12) transparency
(MacEachren 1992).

Table 3.3: Visual variables.

Visual
variable

Point Line Area

1 Location

2 Size

3 Hue

4 Value

5 Grain
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6 Orientation

7 Shape

8 Saturation

9 Arrangement

10 Fuzziness

11 Resolution

12 Transparency

Practically, the visual variables are utilized to convey information in an e�icient
manner allowing the user to derive meanings from the visual representations.
Analyzing a list of coordinates, reading a table with hundreds of values,
interpretation of a bar chart or localized points on the map require
concentration and some mental work. Though, some of the interpretation
tasks require more e�ort than others. And being familiar with visualization
means, one can interpret length of a bar charts intuitively in comparison to
analyzing a long list of values, where a cognitive task is much harder.

Thus, the visual representations can lessen the cognitive e�ort that readers
need to expand when interpreting complex data by converting that data into
visual genres (Jones 2015). Despite the beneficial aspect of the visual
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representation, the human visual system may also experience perceptual
conflicts due to physical illusions (disturbance of light, or our eyes) or/and
cognitive misinterpretations (see an example on Fig 3.5).

Figure 3.5: The Müller-Lyer illusion. Despite the equal length these lines are
perceived to be di�erent.

Information visualization and principles of judgments under uncertainty
present a challenge: How can we apply the studies about heuristics to the
visualization of data (in particular, geospatial data)?

Jones (2015) addressed this issue through exploration of heuristics of
representativeness, availability, and a�ect in information graphics. The
representativeness heuristic is applied when one explores a visual
representation and interpret this visual design based on the similarity to other
designs of the same genre (Jones 2015).

For instance, visualization of hurricane data (see example in Fig. 3.6) has been
discussed among visual communication researchers, as many people
misinterpret the probabilistic concepts that are being communicated by the
error cone (Broad et al. 2007, Cox et al. 2013). The researchers reported that
people tend to perceive the cone coverage as an exaggerated chance of being in
the hurricane’s path, whereas the outer side of the cone provided people with a
false sense of security (Cox et al. 2013). This interpretation seems to follow the
representativeness heuristic, where a typical reader might assume that the
map is like others of the same type shows definitive classes.

Klayman & Brown (1993) and Shafir et al. (1993) argue that humans are not
intuitive Bayesian statisticians, thus the a�ect heuristic (adjustment from an
anchor) explains why people tend to overestimate the probability of
conjunctive events and to underestimate the probability of disjunctive events.
A visualization example on reasoning about conjunctive or disjunctive events
can be given using adjacent displays.

The availability heuristic considers the available options in our memory and
imagination in order to make judgments about particular events, or in this
discussion visual representation. Thus, this heuristic type can lead us to react,
at least at the beginning, to the information that a visual representation
conveys and examine it based on the available knowledge about frequencies
and probabilities of a particular event based upon how fast and well they can
recall similar events. For instance, biases due to the retrievability of instances
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Figure 3.6: Error cone represents predicted hurricane track. Hurricane Katrina
forecast path on August 26, 2005 at 11 p.m. EDT. Source: National Hurricane
Center.

represent how the size of a class is judged by the availability of information that
can be easily retrieved (Tversky & Kahneman 1974). Such classes would appear
more numerous than other. When a certain issue is visualized, it can be
positively framed, therefore, people would see more evidence on this.
Although further studies are required to describe this heuristic type applied to
visualization perception, an example of an election map might help to uncover
some insights. According to availability heuristic, we overestimate the
frequency and magnitude of events that happened to occur more vivid. For
instance, when one has to decide to which candidate to give his/her vote, the
opinion will be formed based on the available information about the candidate,
exposure to the mass media information and personal experience. When a
prediction of winning is visualized with chances given without additional
information of the possible distribution, it can appear more numerous than
other (see Fig. 3.7). The election forecast, in this example, is visualized
according to the results of a simulation based on the poll data with some
degree of uncertainty (according to fivethirtyeight.com) due to ambiguous poll
data, undecided voters, and pooling errors. Despite the data uncertainty, Fig.
3.7 gives only a little information about an alternative outcome, thus provides
the users with a false impression about the election results.

Prevalent number of visualizations and maps have been created without
considering the uncertainty component, however, it is an inevitable issue if we
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Figure 3.7: Availability heuristic applied to the visualization domain. Source:
FiveThirtyEight.com.

want to improve the way how people understand the statistics. In fact, a wide
audience that consumes data visualization is exposed to probabilities and
statistical inference on a daily basis through mass media, newspapers, and
mobile applications. The misunderstanding of the processes behind summary
statistics and statistical inference can lead to misunderstanding of the data
visualized if the uncertainty is not communicated. One of the potential means
for addressing this problem is to integrate human and Bayesian reasoning
within a visual environment.
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3.4.2 Visualization and Bayesian reasoning

Previous studies indicate that despite the commonly applied task of updating
knowledge in the light of new evidence, people may perform inadequately. For
instance, we make a subjective probability judgment about the time we may
spend on the road going from A to B. And imagine you got informed about a
major car accident happened, how would these information change your
probability judgment? This would be a classical task of Bayesian reasoning. A
commonly used example is reasoning about diagnosis paradigm, which proves
that most people fail to give a correct answer in a Bayesian reasoning task (as
visualized in Fig. 3.8). Casscells et al. (1978) conducted a survey with a question:
"If a test to detect a disease whose prevalence is 1/1000 has a false-positive rate
of 5%, what is the chance that a person found to have a positive result actually
has the disease, assuming you know nothing about the person’s symptoms or
signs?". The most frequent answer was 95%, whereas the correct answer is
about 2%. If we consider that 1000 people are tested, 1 person has the disease,
and the test shows a positive result in 50 cases (5%). Therefore, the probability
that a person with a positive result has the disease is 1/50 (2%). As the Bayesian
reasoning approaches have opened up new perspectives for the
evidence-based decision-making, information visualization community
proposed to introduce a visual support for probabilistic data in order to
e�ectively communicate Bayesian algorithms.

95%

1000 tested, 1 diseased

5% false-positive

Negative or positive

50 false-positive

2% diseased

Negative or positive 95%

Figure 3.8: Reasoning about diagnosis paradigm

Integrated pictorial representations such as iconic symbols (Fig. 3.9) (Cole 1989,
Brase 2009, Ottley et al. 2016)), Venn circles/Euler diagram (Fig. 3.10) (Brase
2009, Rodgers 2014), and Venn circles with dots are ported to be an e�ective
means of representation for Bayesian reasoning problems (Brase 2009).
Although, according to studies (Brase 2009), people perform better at Bayesian
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reasoning tasks when they deal with pictorial representations as icon arrays in
comparison to continuous fields like Venn (Euler) diagram. Another way to
represent possible scenarios from a given state is decision tree visualization
(Gigerenzer & Ho�rage 1995, Martignon &Wassner 2002, Friederichs et al. 2014).
Each edge of the decision tree (Fig. 3.11) corresponds to a decisionmade, where
the probability value can be indicated. Each node in the decision tree is
responsible for representing a specific prediction.

Conditional probability judgments are o�en presented bymeans of a table (Fig.
3.12), also called contingency or conditional probability table (Cole 1989). In
such table, probabilistic values are usually given in numeric or frequency
format. In a similar manner, a heat map visualization approach can represent
probabilities using color value and hue (Fig. 3.13). A mosaic plot (Fig. 3.14) is
another commonly used graphical method that enables visualization of
frequencies of a contingency table where each box has a proportional size
according to the probability value (Chiang et al. 2005). To describe a simple
Bayesian task, a "beam cut" diagram (Fig. 3.15) can be used where each "slice"
represents the information in proportion (Gigerenzer & Ho�rage 1995). The
resulting proportion can also be visualized using probability curves (Cole 1989)
that indicate two populations and a vertical line that shows the threshold for
the test score (Fig. 3.16).

Figure 3.9: Iconic symbols
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B

C

Figure 3.10: Venn (Euler) diagram
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Figure 3.11: Decision tree

A B

C 0.70 0.30

D 0.1 0.9

Figure 3.12: Conditional probability
table
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Figure 3.13: Heatmap Figure 3.14: Mosaic plot
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Figure 3.15: "Beam cut" diagram
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Figure 3.16: Probability curve

3.5 Summary

This chapter broke down the topic of uncertainty in the reasoning process into
foundations of human and Bayesian reasoning, and summarized the visual
approaches to support the reasoning process.

This chapter introduced approaches for computational reasoning under
uncertainty and provided theoretical foundations for a method of Bayesian
Networks that is adopted for the visual analytics development (see Chapter 4).

Despite the fact that the Bayesian Networks are a commonly applied modeling
technique in di�erent applications, the visual exploration is limited to
cause-e�ect relationships among the variables, and only scant attention has
been paid to the development of visualization support for the spatial
component of the data. Therefore, the development of visual interfaces that
allow users to iteratively deal with Bayesian Network analysis in a spatial
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context might enhance the usability of this method and open new perspectives
for application of Bayesian reasoning in GIScience and cartography. The next
chapter will reveal how the computational capacity of Bayesian Networks can
be integrated with visual interfaces in order to support data analysis in spatial
context.





Chapter 4

Visual analytics framework for
supporting reasoning under
uncertainty

“ Bad reasoning as well as good reasoning is possible; and this fact
is the foundation of the practical side of logic. ”

Charles Sanders Peirce, 1877

This chapter takes a step towards uncertainty-aware visual analytics that
integrates a Bayesian Network for the reasoning about geospatial data. And,
thus, it is intended to address the following research objective:

To develop a visual analytics framework that can facilitate the understanding of
data and uncertainty in the reasoning process using Bayesian Network.

4.1 Introduction

Plato’s cave allegory (Plato 380 B.C.) gives a vivid illustration of the uncertainty
in the human perception, according to which, people live in the real world like
in a cave where they can only believe to their senses to understand the true
reality. They can judge the true world by the vague shadows on the walls of the
cave. In other words, we can only rely on portions of information and many
decisions we make are established on beliefs concerning the likelihood of

65
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uncertain events (Tversky & Kahneman 1974). Apart from the daily uncertainty
that human beings deal with, it is also a natural outcome of scientific research
and it is an inevitable characteristic of data handling processes. Although data
uncertainty and its visualization have been the focus of a substantial body of
research, the research outcomes have been limited due to a lack of a
complementary focus on uncertainty in reasoning processes within
visualization and visual analytics domain (MacEachren 2015).

Analytical reasoning is a crucial component of visual analytics along with
computation and interactive visual representation. The goal of analytical
reasoning is to gain insight from data, and visual analytics facilitates this
process and enables human reasoning about complex problems through visual
interfaces and computational methods that can process large, messy, and
heterogeneous data (Keim et al. 2010). Thomas & Cook (2005) have underlined
that visual analytics facilitate computational support for human reasoning
realized through so�ware development.

Significant research has been conducted to integrate statistical methods in the
interactive environment of visual analytics where data visualization provides
support to analysts in understanding and exploring the data. However, much of
the data explored with visual analytics is inherently uncertain due to limits of
our knowledge about a phenomenon, randomness and indeterminism, and
vagueness. And since uncertainty and its complement certainty are
fundamental parts of any analytical or reasoning process, it plays a crucial role
in the visualization process as it adds a cognitive constraint in the visual
perception (Zuk & Carpendale 2007). Accordingly, the impact of uncertainty in
reasoning process has a high potential to be exploited within the visual
support. Analog to human operators who are able to analyze the data based on
incomplete and noisy pieces of information, Bayesian statistics enables the
systematic probabilistic inference where estimation can be performed on
uncertain or incomplete data.

Moreover, uncertainty in the analytical reasoning might drive an interest to
explore the visualized data through an iterative mechanism according to which
the visualization outcome is empowered by the users and is represented in a
geographic context. Hence, the combination of visual analytics, Bayesian
models, and geospatial context can be seen as a constructive environment that
provides potential analysts with the interface that promotes choice and
quantifies uncertainty in the reasoning process. The Bayesian Networks, as a
type of probabilistic graphical models, provide a powerful technique for the
reasoning under uncertainty where both computer and expert input can be
taken into account. The mathematical basis behind Bayesian models (see the
Eq. 3.2) facilitates the assessment of an independent event occurrence given
the observed information. While common so�ware packages are focused on
the computational capacity and internal improvements of the processing



4.2. Requirements for visual analytics 67

algorithms, the geovisualization support can complement the inferential
process. Furthermore, we set requirements for the further development and
describe visual analytics and graphical set-ups that contribute to the
framework of Bayesian Network-enabled visual analytics for reasoning under
uncertainty on geospatial data.

4.2 Requirements for visual analytics when using a
probabilistic model on geospatial data

As it has been underlined in the Chapter 3, Bayesian Networks are graphical
models that provide techniques for reasoning in a consistent and
mathematically rigorous manner under conditions of uncertainty. The
integration of Bayesian Networks in visual analytics with a geographic context
where the user input is considered for the inference aims at:

• Integrating expert knowledge and reasoning in the states of uncertainty in
an interactive and iterative manner;

• Generating new knowledge from the inference outcome visualized on a
digital map;

• Putting emphasis on the visual significance of reasoning under
uncertainty.

From the above discussion, we set the following requirements for the analytical
reasoning process on geospatial information when using a probabilistic model:

• The Bayesian Network needs to be implemented in a way that it performs
inference on the data jointly with the expert input;

• The visual analytics needs to promote the awareness that the data can be
interpreted with certainty levels, and that the alternatives can be
specified;

• The visual analytics interface needs to represent an e�icient tool where
the data can be interactively integrated within its geographic extent.

Tomeet these requirementswepropose to provide following visualization tools:

• Data model view: visual representation of the cause-e�ect relationships
between observed and unobserved variables;
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• Computational view: visual representation of the model parameters
which can be edited by the analyst. This view facilitates the iterative data
exploration with formulated subjective beliefs about the data;

• Map view: visual representation of the reasoning outcome in the
geographic context with optional overlays with other related data sets
that can support the knowledge discovery.

4.3 Visual analytics set-up

4.3.1 Visual analytics process

As suggested by Keim et al. (2010), the visual analytics process combines
automatic and visual analysis methods along with human interaction. The
process aims to gain new knowledge through data exploration and support for
analytical reasoning. Building upon an overview of the visual analytics process
presented by Keim et al. (2010) (see Fig. 4.1), we propose a visual analytics
approach for spatial, heterogeneous data analysis that uses integrated
Bayesian Networks to support reasoning about spatial patterns in the context
of uncertain conditions. More specifically, we address the issue of
decision-making under uncertainty when performing a classification task.
When decision makers deal with classification problems, they o�en quantify
the likelihood of a given event on the basis of their personal knowledge. The
Bayesian Network-enabled visual analytics proposed here can facilitate
interaction between the analyst and a probabilistic model through visual
interface supporting expert input. Moreover the approach presented here
facilitates the iterative workflow between the user and visual content through
an interaction with data, visualization and models in order to extract
knowledge.

This research builds upon the related work and integrates Bayesian Network
within a new environment for analysis of spatial heterogeneous data where a
user is placed in the center of the analysis. The visual analytics approach
proposed here combines the analytics, spatial data, uncertainty in the
reasoning, and Bayesian inference in one visual interface.
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4.3.2 Visual analytics for reasoning under uncertainty

Even though uncertainty visualization techniques have been broadly discussed
in the data visualization community, it is still a disputed topic. Does uncertainty
visualization help infer from data? Or does it impede reasoning more than help
it?

Data uncertainty is o�en represented using such measures as probability,
entropy, confidence intervals, a margin of error, and variance, which can be
depicted using various visualization techniques (see, e.g., pie chart, bar chart,
line graph, violin plot, scatter plot, and cone of uncertainty). In practice, many
data visualization scenarios can be handled without representing data
uncertainty. According to Morss et al. (2008), when it comes to temperature
forecast, most people expect the temperature to fall within a range around a
predicted value; thus, they can infer uncertainty into the deterministic value. In
contrast to the temperature forecast that people may experience daily, the
visualization of uncertainty for hurricane forecasts is crucial as it can help make
emergency response decisions (Cox et al. 2013). Although various methods to
explicitly depict data uncertainty have been established in di�erent domains,
studies in cognitive science suggest that non-experts have an intuitive
understanding of uncertainty and the choice of uncertainty visualization
technique is task dependent (Hegarty et al. 2016). However, the persistent
challenge is related to uncertainty in reasoning on data.

As MacEachren (2015) has underlined, explicit attention should be focused on
the role of visual interfaces in reasoning under uncertainty, where an analyst
needs support in such scenarios when not only data but the problem itself,
options, potential outcomes, and implications of findings are uncertain. Thus it
is crucial to move the visualization component beyond explicit uncertainty
signification towards a visual and analytical process that may enable an analyst
to reason about hard problems in the context of uncertainty.

Visual interfaces play a significant role in information communication as they
accommodate recent advances in the graphics display along with cognitive
studies. In contrast to data visualization, visual analytics interfaces are enabled
to not only visually represent the data and its uncertainty, but it also provides a
data-driven and user-driven environment. This environment involves the user
in the process of visualization and analysis, which makes it easier to
understand the data complexity, reason about it and eventually reach an
evidence-based conclusion.

Bayesian inference aims to quantify the evidential strength of a hypothesis and
has been proven to be a powerful tool for modeling human cognition (Holyoak
& Morrison 2012). Bayesian inference workflow includes several stages such as
data learning, inference, and validation, where visual interfaces are practical in
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every step. By integrating Bayesian inference in the visual analytics process, the
uncertainty in the reasoning is operated through probability elicitation from the
expert input or data attributes.

4.3.3 Bayesian Network-enabled visual analytics workflow

Step 1: Data

The data processing circle includes such stages as: data collection, preparation
and input, storage, and eventually visualization. The data collection process
needs to satisfy the quality requirements and provide the basis for the spatial
analysis. Although it is common to use raw information for the visual analytics,
some steps of preprocessing are necessary, for instance, reclassification,
normalization and discretization. Despite the fact that Bayesian Networks work
with both data types, discrete and continuous, for purpose of complexity
reduction, the data used within the proposed visual analytics was aggregated
within a regular grid and, thus, discretized. The input data was integrated as
delimited text file; therefore, even large information volume can be analyzed.
The data storage is supported by Database Management System, which
provides reliable working environment. The data visualization is supported by
Java Script visualization libraries.

Step 2: Build Bayesian inference

In the approachproposedhere theDAG structure of BayesianNetwork is defined
for each particular application (as it is discussed in the Chapter 5). Thus, in order
to find out the distributionP (X|Y )with the prior probabilitiesP (X), which are
given internally, one should define the posterior distributionP (Y |X)within the
visual panels in the application. The inference is built upon Bayes’ theorem (see
Eq. 3.2). In order to definemeaningful results one should provide the probability
values that reflect one’s knowledge about the data.

Step 3: Construct amodel visualization

Here we propose a solution, which is a combination of three views: network
structure view, CPT view and map view. The Bayesian Network structure, DAG,
is visualized within the application to facilitate the understanding of the
conditional dependencies among variables. The CPT view enables an analyst to
introduce subjective beliefs as conditional probabilities with the help of
graphical user interface. A significant challenge in using Bayesian inference
within visual analytics is the priors’ elicitation, or in other words, the way how
subjective knowledge is determined through prior probabilities. The subjective
beliefs are provided for the selected variables that can influence the outcome
of the reasoning process. They represent the user knowledge considering the
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degree of uncertainty that is inevitably involved. The users can explore the map
and artifacts of the data. Based on the visual representation the user
knowledge might be updated with the new information, or questioned about
the validity of the introduced conditional probabilities. The inference output is
visualized using regular grid overlaid with the base map and thematic data.

Step 4: User feedback and parameter refinement

Bayesian Networks can be specified using expert knowledge or learned from
the data, or with combinations of both (Kenett 2016). The parameters of the
local distributions are elicited from experts via an interactive facility provided
by the visual analytics interface. Naturally, data uncertainty derived from the
data fusion method depends on the quality of the input datasets and expert
judgments. By refining the model parameters the reasoning outcome might
change.

Step 5: Update themodel visualization based on the feedback

Based on the refined parameters, the model can be updated with the expert
feedback that can be included in the posterior analysis. Bayesian updating
facilitates the updating of probability distribution of unobserved variables.

4.4 Graphical set-up

As several studies have indicated, Bayesian Networks provide an e�ective
approach to access data uncertainty, visualization of Bayesian Networks
received considerable attention. Zapata-Rivera et al. (1999) reported on the
utility of temporal order, color, size, proximity (closeness), and animation
techniques for mapping cause-e�ect relationships in a Bayesian Network
model. Chiang et al. (2005) proposed to integrate heat maps for visualizing the
conditional probability tables. The results obtained by Cossalter et al. (2011)
have demonstrated the utility of a "thought bubble line" to connect nodes in a
graph representation and their internal information at the side bar view. The
visualization approach suggested by Cossalter et al. (2011) aims to improve the
ability of experts to analyze large Bayesian Network models. Champion & Elkan
(2017) introduced two visualization techniques: inference di�s, for comparisons
of e�ects of evidence using concentric pie and ring charts, and relevance
filtering to guide the user to variables of interest in the model.

As it has been defined in section 3.3 the inference in Bayesian Networks allows
calculation of posterior probability distribution of unobserved variables in the
network. Thus, this posterior probability distribution is used to draw
conclusions according to the model structure. But the inference process is
complex and it is hard to understand for less experienced users. Apart from the
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visualization of the inference parameters, the outcome of the reasoning
process can be also visualized, and in case of spatial data the outcome, it can
be visualized in a geospatial context.

4.4.1 Bayesian Networkmapping

(a)

(b)

Figure 4.2: Bayesian Network visual representation.

Traditionally, Bayesian Networks are depicted using a graph representation
where variables (nodes) are drawn as circles or ovals and the edges, which
connect the nodes, represent probabilistic dependencies (see Fig. 4.2). The
visualization of Bayesian Networks may externalize the probabilistic
dependencies, thus facilitate the understanding of cause-e�ect relationships
among the variables. By highlighting a node, the system canmake a user aware
of a hierarchical structure that is important for the inference procedure. The
good practice for the network visualization is to show all the nodes without
overlays, minimize the edge crossings, and keep it compact, but readable.
Moreover, the color and size can also be used to illustrate the hidden properties
of a node, for instance, hierarchical position (parent/child).

Various visualization approaches have been proposed to represent the structure
of BayesianNetworks (Cossalter et al. 2011, Koiter 2006, Champion& Elkan 2017,
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Chiang et al. 2005). These approaches vary from simple representation as nodes
with connecting edges (see Fig. 4.2) tomore complex oneswhere each node has
color and size to represent the information it carries as it can be seen on Fig. 4.3.

(a) Bayesian Network visualization in VisNet based on Zapata-Rivera et al.
(1999)

(b) Bayesian Network visualization based on Champion & Elkan (2017)

Figure 4.3: Visualization approaches for Bayesian Networks.



4.4. Graphical set-up 75

In this research we adopt the simple representation in order to reduce the
visual complexity at this stage of the development. Moreover, we set the main
visual focus on the reasoning process which allows user input through CPT as it
is introduced in the section 4.4.2.

4.4.2 Conditional probability tables

The quantitative component of the Bayesian Network is determined by
Conditional Probability Tables (CPTs) and, in the system proposed, it can be
elicited from the analyst via visual interface. The Bayesian probability theory
entails a consistent mechanism to replace the uncertainty state with a value
that represents degrees of truth, belief or plausibility (Ortega 2010). The
interaction process within the application takes place through the CPT panel,
where the conditional probabilities can be adjusted in order to see how the
distributions change.

In general view, the belief that can be assigned within the CPTs and described
as a degree to which one believes in a statementX a�er observing a statement
Y . This basically defines the degree to which one believes in the statement X
before seeing Y with prior probability P (X), and how it e�ects the data if Y is
observed with the probability P (X|Y ). This inference is based on Bayes’
theory (Eq. 3.2). The benefit of providing the conditional probabilities about
the data within visual analytics application is seen in bridging the gap between
the users’ knowledge about the data and the visualization outcome. The user
input (subjective belief) can be specified using numerical value in the interval
[0, 1]. The aggregated sum of conditional probabilities equals to 1.

Commonly, in the so�ware packages that deal with Bayesian Networks, CPTs
are visualized as tables where probability values can be assigned through
tables, bar charts, pie chart, or heat maps. When it comes to visualization
approaches for CPTs, twomain challenges might occur. First, the CPTs can have
large size and they grow exponentially with the increasing number of
considered variables. And second, CPTs should be simultaneously presented
with a su�icient scope for users to filter and focus on one event combination.
The filtering is seen as a solution to reduce the visual clutter.

As it has been implemented within so�ware package GeNIe/SMILE, the CPT can
be visualized as a common table, but a selected column could be enriched with
a pie or bar chart visualization, where the probability distribution can be
interactively manipulated (see Fig. 4.4).

Chiang et al. (2005) proposed to visualize CPTs with heat maps (see Fig. 4.5(a)),
where the probability value of each cell is represented by a color tone. This type
of visualization provides the users a quick comparison among all entries within
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(a) CPT with pie chart visualization for a selected column

(b) CPT with bar chart visualization for a selected column

Figure 4.4: Visualization example of conditional probability tables from
GeNIe/SMILE so�ware package.

CPTs. Furthermore, it can separate the CPTs and provide a compact
representation for each event combination. However, with the increasing
number of CPTs visual cluttering might occur (see Fig. 4.5(b)).

Heat maps

Following the advances for the CPT visualization, we propose to combine heat
maps with a probability value given in each cell and filtering functionality which
helps to overcome the problem of visual cluttering.

As mentioned in the section 3.3.1, the Bayesian Network modeling enables
users to access the JPD. Thus, we propose to use heat maps for the visual
representation of JPD tables too. The aim of JPD visualization is to access the
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(a) Visualization of CPTs using heat maps according to Chiang et al. (2005)

(b) Visual cluttering of CPT heat maps. Based on Chiang et al. (2005)

Figure 4.5: Visualization of CPTs using heat maps according to Chiang et al.
(2005).

probability distribution of every possible event as defined by the combination
of the values of all variables (nodes). Thus, based on the visual representation,
the analyst may find out the information about the co-occurrence of classes
across the analyzed data. As it can be seen from Fig. 4.7, JPD is visualized as a
heat map showing the di�erence across values of variable combinations. In the
example given (Fig. 4.7), two heat maps represent data in two-dimensional
views, where each cell visualizes the product of the probabilities of the land
cover classes for GlobeLand30 and Co-Ordination of Information on the
Environment (CORINE), and for GlobeLand30 and Open Street Map (OSM).
These distributions provide a visual summary and may be used as a
probabilistic statement of interest. For example, the land cover derived from
the OSM includes some values of No Data. Thus, an analyst might be interested
in finding a corresponding class in GlobeLand30 for the missing values. It can
be concluded from Fig. 5.10 that most missing values in the OSM are classified
in GlobeLand30 as cultivated and bareland. Considering this information as
additional evidence, the strength of belief in these two classes for the OSM data
might be changed.
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Figure 4.6: Visualization of conditional probability tables using heat maps.

Figure 4.7: Visualization of joint probability distribution: Each cell shows the
product of the probabilities of the land cover classes. The higher color intensity
highlights the higher probability of class combinations.



4.4. Graphical set-up 79

Distribution

Conditional probabilities may be shown through the spread of possible values
in the interval [0,1] using an interactive bar chart, or a slider. This approach is
supported by a filtering functionality; therefore, it is suitable when the number
of value combinations is large. By implementing an interaction facility for the
definition of probability values, we provide an interface for the user to define
subjective beliefs. The probability values are given in the interval [0,1] with a
total sum of 1 for each variable combination. The pros of this approach are seen
in the simple representation and high interactivity.

Figure 4.8: Visualization of conditional probability tables using bar charts.

4.4.3 Outcome of the reasoning process

In general, the spatial data used for the Bayesian Network modeling can be
either continuous or discrete. The discrete data can be seen as an
approximation to describe the real world data. Therefore, for the reasoning
purpose, the data is discretized and aggregated within a grid structure. The grid
structures have di�erent forms and can be summarized by the following types:
polygon, diamond, hexagon, line, regular point, and random point grids (see
Fig. 4.9).
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(a) Polygon grid (b) Diamond grid (c) Hexagons

(d) Line grid (e) Regular point grid (f) Random point grid

Figure 4.9: Grid structure to visualize the outcome of the Bayesian Network
analysis

It is crucial to minimize the chance that uncertainty is perceived in a negative
way. Accordingly, the uncertainty representation should be considered as a
recommendation for better understanding of the classification process. Thus,
finding an appropriate visualization technique for the uncertainty, as it is
defined in this research, is a challenging task. As it has beenmentioned, diverse
approaches have been suggested to visually encode the spatiotemporal
uncertainty information and Kinkeldey, MacEachren & Schiewe (2014)
summarized them into three main categories: intrinsic/extrinsic visualization,
coincident/adjacent display, and static/dynamic views. As there is no
one-suits-all method, we take into account the data type we work with and the
analytical approach we apply as main fitness criteria. Thus, extrinsic
visualization techniques are chosen because the uncertainty visualization can
be integrated as an overlay with di�erent datasets.

The extrinsic visualization techniques incorporate additional graphical objects
to signify uncertainty (Kinkeldey 2014) and mainly make use of grid structures
overlaid with the data (Kinkeldey, Mason, Klippel & Schiewe 2014), glyphs
(Wittenbrink et al. 1996), or isolines. In this research we also chose to apply
extrinsic technique utilizing modified version of a regular point grid, where the
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circle radios represent an assigned value. Thus, the grid of proportional circles
characterize the geographic and thematic variability of a given location.
Moreover, the proportional circles are localized and can handle both numerical
and categorical data. Although we consider two di�erent scenarios of using
Bayesian Network within visual analytics, a similar visualization approach is
used. More details about the practical solutions can be found in Chapter 5.

The reasoning outcome of the Bayesian Network analysis can be represented in
di�erent forms, as for example it can be information entropy measured as
Shannon index or a likelihood of grid cell for belonging to a particular class.
When considering the representation of information entropy on a digital map,
the size of the circles can directly identify the amount of entropy measured as
the Shannon Index at a given location andmay be updated when new evidence
is set within the conditional probability panel. The larger the entropy, the larger
the circle symbol will be. This visualization approach is widespread, and easily
comprehensible. Each circle can be explored individually and analyzed based
on the classes that occurred at a location (Fig. 4.10). The circles can be also
analyzed in groups and provide the experts with information about a bigger
pattern within the given datasets.

(a) Grid overlay before the inference. (b) The circle size shows the amount of
information entropy.

Figure 4.10: Visualizing information entropy through point-based grid. The
proportional circles identify the amount of entropy measured as the Shannon
Index. The larger the entropy, the larger the circle symbol will be.

Moreover, the proportional circles can characterize the likelihood of di�erent
city zones being assigned to a particular characteristic. They represent the data
set discretely, showing patterns of interest, rather than representing an
interpolated value over the city district. The size and color of circles directly
signify the probability value at a given location and may be updated when new
evidence is set.
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(a) Grid overlay before the inference. (b) The circle size shows the likelihood of
di�erent city zones being assigned to a studied
characteristic

Figure 4.11: Visualizing likelihood of di�erent city zones being assigned to a
particular characteristic through point-based grid. The size and color of the
proportional circles characterize the likelihood of di�erent city zones being
assigned to a particular characteristics given the probability value in the interval
[0, 1].
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4.5 Summary

The development of Bayesian Network-enabled visual analytics with a
geospatial component has a potential to bridge the gap between current
spatial data analysis and visualization domain where uncertainty in reasoning
process may be of interest. The Bayesian Network approach, adopted and
implemented within a visual analytics application, facilitates Bayesian analysis
of multiple datasets and integrates expert knowledge to reveal the hidden
patterns considering the uncertain user knowledge.

In addition, this research contributes to the growing set of extrinsic
visualization approaches by developing and demonstrating a method of
proportional circles that incorporate the results of conditional reasoning within
a model-based design using Bayesian Network to infer from the data with
inherent uncertainty.





Chapter 5

Prototypical implementations of
Bayesian Network-enabled
visual analytics

“ That all our knowledge begins with experience there can be no
doubt. ”

Immanuel Kant, The Critique of Pure Reason, 1781

To examine the potential of visual analytics techniques with embedded
Bayesian Network described in the Chapters 3 and 4, we developed two
scenarios that represent a classification task relying on (a) land cover and (b)
locations of surveillance cameras. The implementation is based on Bayesian
Network inference algorithms and realized with such open-source so�ware and
libraries as R statistics, R shiny, Leaflet.js, Geoserver, PostGIS, and PostgreSQL.

This chapter is focused on the following objective:

To build a prototype of a visual analytics interface that can integrate data,
visualization, and computational capacity of Bayesian Networks to facilitate
human-computer interactions for data analysis given subjective beliefs used in
a selected application domain.

Each scenario is divided into four parts: data, experimental set-up, visual
encoding and interaction design, and results. The visual encoding and
interaction design describe how users see the visual representation and the
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techniques that allow them to interact with what they see. As the visualizations
and interactions are connected they are described in the same section.

5.1 Scenario 1. Global land cover classification

In this scenario, we demonstrate the development of a prototype for the
exploration of spatially heterogeneous data and uncertainty in classification of
land cover. We develop a visual analytics interface that leverages integrated
Bayesian Network model capabilities to support land cover analysis. Our
solution accommodates multiple land cover datasets and serves as a modeling
tool where patterns with the highest geographic and categorical variation
might be discovered through expert input. The prototype empowers human
operators to assess multiple land cover classifications, uncover uncertain
information and assign conditional probabilities based on expert beliefs, thus
perform inference using Bayesian Network.

Bayesian Network is a powerful tool for reasoning based on heterogeneous
data, as it allows modeling of uncertainty in the reasoning rules (through
conditional probability tables) and the uncertainty in data sources (through the
priors) (Stassopoulou et al. 1998). Several researchers (Aitkenhead & Aalders
2009, Krüger & Lakes 2014, Celio et al. 2014) have proved that Bayesian
Networks provide a versatile method for assessing uncertainty in land use -
land cover modeling, and it can combine diverse knowledge sources.
Accordingly, using a Bayesian Network enables analysts to define relations
between land cover variables in terms of the conditional distributions for each
land cover class and allows reasoning under the uncertainties that are
associated with these conditional distributions.

To assess the land cover classification uncertainty in di�erent datasets of the
same region, we introduce a scenario based on several land cover products. In
this scenario the following questions are asked:

• What is the most likely land cover class at each given location if three
datasets are examined?

• What are the uncertainties associated with the modelled outcome of
the experiment?

5.1.1 Data

To demonstrate an application of the Bayesian Network method for analysis of
land cover classifications, three major datasets were chosen, namely
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GlobeLand30, CORINE (GLC2006) and Volunteered Geographic data based on
OSM. These datasets are independently acquired and show classification of
land cover, with overlap for European Union (EU countries). This data is
commonly used for various environmental studies.

The prototype is introduced here and its potential is demonstrated through a
case study analysis of land cover data for Upper Bavaria, Germany. The study
area of Upper Bavaria reveals a su�icient diversity in the distribution of land
cover classes, thus provides a solid background for exploring the probability of
each land cover class. By analyzing di�erent products, it is possible to reveal
their diversity based on conditional dependencies among the classes and
provide an estimate of geographic and categorical variation. Fig. 5.1 represents
the intended workflow with the view to analyze how di�erent land cover maps
correspond to each other in order to find the areas that have the highest degree
of uncertainty in the classification. Further, the datasets used for this analysis
are introduced in the details.

Figure 5.1: A workflow for assessing land cover data uncertainty using Bayesian
Networks. Data: GlobeLand30 (GLC30), CORINE (GLC2006), and land cover
derived from Open Street Map (OSM).

GlobeLand30

In 2010 China launched a project with the aim to identify global land cover
classes in resolution of 30 meters. The GlobeLand30 data set is freely available
and comprise 10 major classes of land cover, including cultivated areas, forests,
grassland, shrub land, wetland, water bodies, tundra, artificial surfaces,
bareland and permanent snow and ice (see Table 5.1). The classification is
available for two base-line years, 2000 and 2010. The GlobeLand30 was
produced based on more than 20,000 Landsat and Chinese HJ-1 satellite
images (see www.globallandcover.com). Previous studies indicate the overall
classification accuracy can range from 46% (Sun et al. 2016) and up to 80%
(Brovelli et al. 2015, Chen et al. 2015, Arsanjani et al. 2016). Therefore, the data is
of heterogeneous quality. The color coding is altered from the original colors
o�ered by GlobeLand30 to satisfy the design needs of the visual analytics
prototype introduced in Chapter 4.
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Table 5.1: Land cover classification scheme based on
GlobeLand30.

Color code Land cover
class

Description

Cultivated lands. Lands used for agricultural
purposes, gardens, dry and irrigated
farmlands.

Forest. Lands covered with woods more
than 30%, including deciduous and
coniferous forest. Sparse woodland 10 - 30%.

Grassland. Lands covered with natural grass
with cover over 10%

Shrubland. Lands covered with shrubs over
30%, including deciduous and evergreen
shrubs. Desert step with cover over 10%

Wetland. Wetland plants, peat bogs, salt and
mangrove marsh, floodplains, lake marsh.

Water. Rivers, lakes, natural and fish
reservoir.

Tundra. Vegetated lands in polar regions.
This class is not present in the study area.



5.1. Scenario 1. Global land cover classification 89

Artificial surface. Lands modified by human
activities: industrial andmining areas,
settlements, urban green zones, artificial
water bodies.

Bareland. Lands with less than 10%
vegetation, sandy fields, bare rocks.

Permanent ice and snow.

Land cover derived fromOpen Street Map

Since the term Volunteered Geographic Information (VGI) was introduced by
Goodchild (2007), knowledgeable amateurs have contributed large amounts of
spatially referenced data to di�erent Web portals. Data acquired from VGI has
attracted much attention within remote sensing community too, as it can
significantly contribute to the validation of land cover classifications.
VGI-based approaches have been proposed, and on-line communities such as
GEO-Wiki (geo-wiki.org) are contributing to land cover data collection (Fritz
et al. 2009). Thus far, however, the coverage of the contributed data doesn’t
allow for exhaustive validation of large region datasets. In contrast to that, the
OSM contributors are very actively collecting a broad range of thematic data
with close to complete spatial coverage in certain areas (Ribeiro & Fonte 2015).
The OSM (openstreetmap.org) is, without any doubt, a massive and well
recognized project. The database consists of vector data, which is attributed
with a variety of geospatial labels and might serve as data source for di�erent
cartographic products. Since every contributor can freely edit the database, the
OSM data is heterogeneous in terms of quantity and quality. Assessing the
accuracy of the OSM is, hence, an essential task to facility the scientific usage of
this data source. Several studies have reported encouraging results in terms of
the overall accuracy and completeness (Helbich et al. 2012, Neis et al. 2012).
Thus, utilizing the OSM as a source for land cover data is a promising approach.
Since the OSM data is not specifically tailored to the needs of land cover map
validation, various methods for transforming the original data into a more
suitable representation have been developed (Fonte et al. 2015). While only a
portion of the OSM attributes is valuable for a derived land cover map, the
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coverage is still high enough to be usable, especially in urban areas (Ribeiro &
Fonte 2015).

10 - Cultivated

20 - Forest

30 - Grassland

40 - Shrubland

50 - Wetland

60 - Water bodies

70 - Tundra
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Figure 5.2: An overview of pre-processing steps for converting original OSM data
into land cover. Source: Chuprikova et al. (2017).

In this research, we established a workflow (Fig. 5.1.1) to convert raw OSM data
into land cover coverage. In order to preserve the entire content of the
database, a complete XML-encoded extract of the OSM database is used,
representing the study area, instead of pre-processed ESRI Shape Files, as
suggested by Fonte et al. (2016). For an e�icient processing of the large data
amount a PostGIS database is established. The OSM vector database is
attributed with a great variety of labels and serves as source information for
various cartographic products (Chuprikova et al. 2017). For the derivation of the
land cover map, a subset of the OSM tags, namely "amenity", "building",
"historic", "land use", "leisure", "natural", "shop", "tourism", and "waterway"
are considered. A mapping from the OSM attributes to the classes used in the
GlobeLand30 classification scheme is conducted for polygon features, since
point and line features don’t provide immediate information about the
coverage of an area. Exploiting additional information implicitly contained in
point and line features, might be possible in general, using assumptions about
specific feature classes, such as empirically determined road widths. In order to
keep the used data as noise-free as possible, this is omitted in this experiment.
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Due to the fact that GlobeLand30 classification consists of 10 classes, some
degree of ambiguity is possible as well as areas with missing data. In spite of
the heterogeneity of both OSM data and its user community, OSM provides a
dynamic source to evaluate the land cover classification and assist experts in
finding land cover patterns that are better mapped by citizens than by using
remote sensing techniques. In the final step, the vector data is rasterized to a
30m grid with an appropriate minimum mapping unit, merging small features
with their neighboring features. The total coverage of the obtained reference
map is about 71% of the total study area.

CORINE

The land cover mapping for the countries of European Union is realized within
the programme CORINE. Based on CORINE Land Cover (CLC) 2000 for Germany,
the data was updated and land cover product CLC2006 was produced as a
vector database. According to Keil et al. (2011) the main data sources of the land
cover and land use mapping were satellite images of Landsat 7 (for 2000) and
IRS-P6 LISS III as well as SPOT-4 and SPOT-5. This product is following common
European wide CLC nomenclature and consists of 44 classes, where 37 classes
are relevant for Germany. Therefore, CLC2006 is characterized as result of the
GIS derivation considering the land cover changes. The data is released in the
projections of Gauss-Kruger Zone 3, Gauss-Kruger Zone 4 or UTM Zone 32.

Several authors (Gallego 2001, Brovelli et al. 2015, Arsanjani et al. 2016) have
proposed to assess the land cover quality using CORINE datasets for di�erent
study areas. Arsanjani et al. (2016) studied the validation of GlobeLand30
against CORINE for the area of Germany and showed that overall accuracy is
92%. Another solution was described in Brovelli et al. (2015) who indicated that
the overall accuracy values of third level CORINE Land Cover are generally
higher than 80%. In both cases the validation was made using confusion matrix
that represents comparisons of a land cover map against the referenced
dataset. In this study CLC2006, further called CORINE, is used as a variable for
constructing Bayesian Network. Therefore, the vector map CLC2006 is gridded
for use in the modeling process. The resolution of the gridded map is 30m.
Moreover, the complexity of land cover classification is scaled down in order to
provide consistent classification for all the data sources. That is to say, 44
CORINE land cover classes are assigned to 10 classes in line with the
GlobeLand30 classification (see Table 5.2).
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Table 5.2: Reclassification of CORINE land cover classes relevant for the study
area based on the GlobeLand30 scheme.

Land cover classes CORINE, Pixel
values

GlobeLand30,
Pixel values

Cultivated 32 - 41 10

Forest 42 - 45 20

Grassland 46 - 47 30

Shrubland 48 - 49 40

Wetland 55 - 59 50

Water bodies 60 - 64 60

Tundra - 70

Artificial surfaces 21 - 31 80

Bareland 50 - 53 90

Permanent ice and
snow

54 100

5.1.2 Experimental set-up

Preprocessing

The details of the preprocessing procedure is listed below:

1. All datasets are cropped to the municipal boundary of Upper Bavaria;

2. The classes of OSM and CORINE are normalized to match the 10 classes
specified by GlobeLand30;

3. The datasets are then rasterized with 30m pixel resolution and aligned to
GlobeLand30 to ensure pixels covered the same land area.

Processing

The workflow for implementation of Bayesian Network for land cover
classification is illustrated in Fig. 5.1. As described in the section 3.3.3 the
underlying mathematical model of a Bayesian network is based on
components such as DAG and CPTs. The nodes in DAG represent random
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variables, and arrows among them describe dependencies among these
variables. The terms node and variable are used interchangeably. In this study
we treat the land cover classifications GlobeLand30 (A = ai), CORINE (B = bi),
and land cover derived from OSM (C = ci), as nodes for constructing the
Bayesian Network. Thus, the edges between the land cover nodes (parent
nodes) and the resulting node (child node R, where r1,. . . , rn are all possible
values) indicate the causality between values of the land cover variables (A, B,
andC) and the values of the resulting nodeR. Based on the DAG structure, the
quantitative part is described through conditional distribution within CPTs (see
Fig. 5.3). CPTs express the probability of the state of each variable given its
parents and essentially represent the strength of the belief in the causality
(Luxhøj 2014) defined by the experts or learned from the data structure. In this
study, we consider the application of Bayesian Networks to discrete data;
therefore the CPT lists the local probabilities that the child node R will acquire
from each combination of values of the parent nodesA,B, andC.

Figure 5.3: BayesianNetwork structure for the land cover data analysis. Example
for the land cover class cultivated.

Thus, the approach is developed based on the following setting. If we consider
that one of the nodes doesn’t have a parent, for instance GlobeLand30 A = ai
(named GLC30 in Fig. 5.3), the prior probability for this variable is assigned
based on the possible values: P (A = ai), where a1,. . . , an are all possible
values (instantiations) of variableAi. The possible values for GlobeLand30 (A =
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ai) are the land cover classes assigned to cultivated areas, forest, grassland,
shrubland, wetland, water bodies, artificial surfaces, bareland, and snow and
ice coverage. A similar process is applied for other nodes of the network that do
not have parents (nodes B and C). The resulting node R at the next level has
parents (A, B, and C); therefore, the conditional probability is assigned
applying the Markov property (Stassopoulou et al. 1998). Consequently, the
node Result (R = ri) contains the conditional probabilities of each node value
for a conditioning case. A conditioning case is a possible combination of values
(land cover classes) for the parent node, as can be seen in equation 5.1. The
process is organized in one-way direction, so that the child doesn’t transfer any
feedback to the parent. On this note, the Bayesian approach is able to model
the proportions of true values in selected pixels at each location across the
whole study area.

P (R = r|A = a,B = b, C = c) (5.1)

The CPTs are defined based on expert knowledge and fundamental laws of
geography (see Table 5.3). Land cover classes which are likely to represent
similar Earth’s characteristics are assigned to a high probability, while classes
unlikely to be overlapped - based on region, geography and expert
assumptions, are assigned to a low value. The self occurrence probability of
each class P (ai, bi, ci) is assigned the highest value, for example when
ai, bi, ci = forest.

Table 5.3: Land cover variables and their instances.

Land cover classification

GLC30,A = ai

CORINE,B = bi

OSM,C = ci

Result,R = ri P (R = ri|A = ai, B = bi, C = ci)

Based on the described analysis, the values of probabilities for each land cover
class at each location of the area of interest might be extracted. Using this
information, it is possible to predict which land cover class has a higher
potential to occur. Although a fused land cover map might be of interest in
some applications, here the main focus on the information about uncertainty.
According to Jost (2006) the Shannon Index (also called Shannon-Wiener
Index) is the most common diversity measure and it plays a central role in
information theory as a measure of information, choice, and uncertainty
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(Spellerberg 2008). This index represents entropy, giving the uncertainty as the
outcome of a sampling process.

Another important advantage of the Bayesian Network is that it provides an
e�icient representation of JPD. We utilize this measure in the application as it
can express all the probabilities of all combinations of di�erent values. The JPD
may answer any probabilistic questions of interest and provide information
about the co-occurrence of land cover classes.

Outcome

The simulation is realized using R statistics and package for the spatial
implementation of Bayesian Networks and mapping "bnspatial". The outputs
of this simulation procedure are posterior probability maps (see Fig. 5.4), and
themap of uncertainty measured as Shannon index (entropy) (see Fig. 5.5). The
maps of posterior probability depict updated prior probability of land cover
class occurrence considering the information from di�erent input datasets. The
map of uncertainty is elaborated to depict the diversity in the data and it
illustrates Shannon entropy applied for the land cover classification. Therefore,
the latter map shows the information entropy at each location. The aim of the
output maps is to highlight the areas with the highest degree of the uncertainty
and provide visual guidance for the further land cover validation as well as for a
deeper understanding of the dynamics related to the high uncertainty. As it can
be seen from Fig. 5.6, the uncertainty of a polygon is high, and when we
compare to the original data sets, it is evident that the highlighted area was
defined in inconsistent manner. Hence, the attention for the validation should
be placed at such areas. Moreover, the output data may be utilized to guide the
implementation of decision support tools.
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(a) Probability map of cultivated area

(b) Probability map of artificial area

Figure 5.4: Probability maps represent expected state of a target node (i.e. the
state with the highest relative probability).
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Figure 5.5: Information entropy map based on Shannon Index. The map
represents uncertainty quantified as diversity in the information outcome. A
higher degree of uncertainty means greater diversity in the land cover classes
among the three datasets.
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(a) Uncertainty (entropy) (b) GlobeLand30

(c) CORINE (d) OSM land cover

Figure 5.6: Scenario 1: An example of uncertainty in classification among land
cover products.
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5.1.3 Visual encoding and interaction design

Although Bayesian inference is an e�ective method for decision-making
practices, it commonly proceeds without reference to modern developments in
statistical graphics made possible by greater computational capacity (Kerman
et al. 2008). To demonstrate the connection between modeling and statistical
graphics, we combine the computational and visualization components for
uncertainty analysis of classified land cover data. The mechanism needed to
model, create, and interpret a visualization of uncertain patterns in land cover
classification is realized through the visual analytics application introduced
here.

Figure 5.7: Scenario 1: Three-tier architecture of the framework for land cover
uncertainty analysis

An implementation of the uncertainty-aware visual analytics application
requires interoperability of methods and data in an open system setting. The
application for land cover uncertainty analysis is established based on the
three-tier architecture illustrated in Fig. 5.7. This includes: (a) a Database
Management System (DBMS), namely PostgreSQL, (b) a Servlet Engine
(Geoserver and R server) and (c) a Client side tool (implemented with R Shiny).
The data is stored in the DBMS and rendered on the Web map, where the
analyst can explore the map layers and interact with the output of the
reasoning process. The prototype design is depicted in Fig. 5.8. The graphical
User Interface (UI) adopts a visual analytics approach to provide an interactive
visual interface, linked to data and computational methods, with support for
reasoning about land cover classification. The interface is divided into three
main sections illustrated in Fig. 5.8: Conditional Probability Panel, Map panel,
and Joint Distribution plots.
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Figure 5.8: Uncertainty-Aware visual analytics interface. The graphical UI
includes Conditional Probability Panel, Joint Probability Distribution plots, and
Map panel.

Conditional Probability Tables

The Conditional Probability Distribution panel is located in the upper le� part
of the application and it facilitates the interaction between the user and the
Bayesian Network. As discussed earlier, the probability of any land cover class
occurring is expressed as a prior or unconditional probability (see section
3.3.3). Due to the fact that the Bayesian Network structure is predefined and
the state of each node is described within the server side, the user interaction
takes place through definition of the conditional probabilities among the
classes within the resulting node R. The Bayesian Network structure can be
seen in Fig. 5.3. This process provides new evidence for the modeling. For
instance, consider a situation when two nodes (A and B) define that the land
cover class at a given location is Cultivated and another node (C) states that the
land cover class should be assigned to Grassland. In this case, the conditional
probability of the class Cultivated in the resulting node (R) should be updated
to a lower value if the subjective belief assumes that value of the node C is
reliable. By doing it, a user can compare the land cover classifications in a
non-deterministic manner considering the random nature of the phenomena.

The conditional probabilities are defined from the subjective point of view
when experts express their strengths of belief about the quality of land cover
classifications as probabilities. The subjective belief, for example, may assume
that urban structures are well mapped in the OSM data, so all the combinations
where the OSM data show urban structures should be considered as more
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probable. To assign meaningful beliefs, it is crucial to be familiar with the data
used for the analysis.

Figure 5.9: Conditional probability distribution panel facilitates the interaction
between the user and the Bayesian Network through a definition of strengths of
belief about the quality of land cover classifications as probabilities.

Joint Distribution plots

The Bayesian Network modeling enables experts to access the JPD. The JPD is
the probability distribution of every possible event, for example a land cover
class, as defined by the combination of the values of all the variables (nodes).
Thus, based on the visual representation of the JPD, an analyst may find out the
information about the co-occurrence of classes across the land cover products.

Figure 5.10: Joint probability distribution panel: The visual representation of
the JPD allows us to reason about the relationship betweenmultiple land cover
classes. The higher color intensity highlights the higher probability of class
combinations.

The table structure of JPD is visualized as a heat map showing the di�erence
across land cover classes’ combinations. Thus, as can be seen in Fig. 5.10, two
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heat maps represent data in two-dimensional views, where each cell visualizes
the product of the probabilities of the land cover classes for GlobeLand30 and
CORINE, and for GlobeLand30 and OSM. These distributions provide a visual
summary and may answer a probabilistic statement of interest. For example,
the land cover derived from the OSM includes some values of No Data. Thus, an
analyst may want to find a corresponding class in GlobeLand30 for the missing
values. As can be seen in Fig. 5.10, most of missing values in the OSM are
classified in GlobeLand30 as cultivated and bareland. Considering this
information as additional evidence, the strength of belief in these two classes
for the OSM data might be changed.

Map panel

Fig. 5.11 represents the outcome of the modeling in its spatial context, where
results of the inference are registered as a new temporal attribute, which is
further used for the visualization of estimated uncertainty on the digital map. In
this scenario, we chose to visualize information entropy among three datasets,
measured as the Shannon Index, by applying proportional circles that
characterize the geographic and thematic variability of a given location. The
larger the entropy, the larger the circle symbol will be. This visualization
approach is well-known, and easily comprehensible. Each circle can be
individually explored and analyzed based on the classes that occurred at the
corresponding location. Circles can be also analyzed in groups and provide
experts with information about apparent patterns within the land cover
classification. By comparing the land cover data of di�erent sources using
Bayesian Network modeling with an expert input, a user can discover the
principal di�erences across the land cover classifications and obtain a visual
representation of the uncertainty among di�erent datasets of the same theme.

Figure 5.11: Map view illustrates the categorical maps of land cover and with an
overlay of proportional circles that identify the amount of entropy measured as
the Shannon Index. The larger the entropy, the larger the circle symbol will be.
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5.1.4 Results

The prototype demonstrates the feasibility of accommodating both human and
Bayesian reasoning for the analysis of remote sensing data, especially for the
reasoning based on diverse sources with varying degrees of reliability. The
output of the analysis introduced is visualized on the digital map as an overlay
and illustrates uncertainty measured as Shannon entropy. Based on the given
visualization, it is possible to localize the places with high uncertainty in land
cover classes and provide a visual guide for further land cover validation as well
as for a deeper understanding of the land cover classification from Earth
Observation products. Further, we discuss three cases that can help to interpret
the results.

Case 1

(a) Bing Map Aerial (b) GlobeLand30 (c) CORINE

(d) LC from OSM (e) Open Street Map

Figure 5.12: Case 1. Missing lake: The Bayesian Network analysis facilitated the
discovery of water body area where the data sources disagreed in land cover
definition.

To illustrate the first case (Fig. 5.12), one part of a highly uncertain pattern
visualized on the map is selected. The specified location was interpreted as
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uncertain due to the high heterogeneity in the underlying data. Two of the
datasets (GlobalLand30 and land cover from OSM) appear to show that there is
a small lake and another dataset suggests a forest class. Even though CORINE is
a local dataset, and the minimum mapping unit is smaller than the lake size,
this information was not captured in CORINE.

Case 2

(a) Bing Map Aerial (b) GlobeLand30 (c) CORINE

(d) LC from OSM (e) Open Street Map

Figure 5.13: Case 2. Forest and shrubland: The analysis indicated that the
OSM data miss to define some land cover classes if the definition is vague for
a common user.

The second case (Fig. 5.13) shows an area covered by forest and/or shrubland.
Such areas are hardly detectable from the Earth Observation data, as they can
fall into both categories during the classification process depending on the
threshold set. However, the evidence obtained from GlobeLand30 and CORINE
states that this area has mixed characteristics, and one part of it is classified as
shrubland and another part as forest. In contrast, OSM data shows that this
area is assigned to forest. Considering the nature of OSM data, it can be
assumed that it is hard for a common user to distinguish the di�erence
between similar natural phenomena. Moreover, the information from JPD of
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GlobeLand30 and the OSM illustrates that class shrubland mostly co-occurs
with forest, bareland and shrubland. Therefore, there is some degree of
ambiguity in definition of the shrubland in OSM data.

Case 3

(a) Bing Map Aerial (b) GlobeLand30 (c) CORINE

(d) LC from OSM (e) Open Street Map

Figure 5.14: Case 3. Grassland and cultivated areas: the OSM data is o�en more
detailed andprecise in recognizing particular land structures. For example a golf
course should be labeled as grassland rather than cultivated area.

The third case (Fig. 5.14) shows that OSM data is more detailed and precise in
recognizing particular land structures. Some areas of vegetation are hard to
classify from Earth Observation data due to their similarity. For instance,
cultivated areas represent lands for agriculture, gardens, and irrigated and dry
farmlands, whereas the lands covered by natural grass belong to the class of
grassland. The land cover classification process might introduce some degree
of ambiguity. Thus, as can be seen in Fig. 5.14, a misinterpretation of grassland
occurs, a golf course in this example was classified as cultivated area, though it
should be rather labeled as grassland or artificial land. Such cases, may be
better resolved when volunteered geographic data is used to improve training
sites for the classification procedure.
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5.2 Scenario 2. Video surveillance

In the second scenario, we present a visual analytics application for spatial and
heterogeneous data analysis that uses integrated Bayesian Network to support
reasoning about classification task of surveillance camera distribution. The
application is based on the publication for EuroVis Workshop on
Reproducibility, Verification, and Validation in Visualization (EuroRV3)
(Chuprikova et al. 2018). More specifically, we address the issue of
decision-making in terms of classification under uncertainty. When decision
makers deal with classification problems, they o�en quantify the likelihood of a
given class on the basis of their personal knowledge. The application provides
a visual analytics interface that supports expert input to the Bayesian
Network’s probabilistic model. The classification task is conducted using
locations of surveillance cameras in public places in the city of Moscow. The
provision of multiple kinds of surveillance cameras may increase the chance
that if anything happens in a location it will be possible to: (a) notice that
something happened, and (b) gain some information about what happened
and perhaps who was responsible for the happening. The application would
also allow an analyst to explore the likelihood of an undesirable/unsafe
happening without it being noticed (or without it being noticed soon enough to
counteract). Interactive visualization enables an analyst to participate in the
data exploration and reason about the information provided by the data
considering the state of uncertainty that is inherently incorporated during the
data exploration (Chuprikova et al. 2018).

5.2.1 Data

As firstly described in the novel 1984 by George Orwell, camera surveillance
turned out to be a reality for most of the big cities, where privacy was sacrificed
for technological advances that high-tech can give to the public. Despite the
debates of whether closed-circuit television (CCTV), also known as camera
surveillance should be installed in public spaces since decades it has become a
critical tool for a variety of tasks such as law enforcement, personal safety,
tra�ic control, resource planning, and security of assets (Upmanyu et al. 2009).
Being a large city Moscow has got more than 2,500 surveillance cameras
installed in mass gathering places, such as subway exits, squares, shopping
malls, to name a few. These cameras operate seven days a week and 24 hours a
day to provide material to the authority and citizens to ensure the safety of
residents when necessary. The cameras gather information in the form of video
and screenshots. The citizen can request the data by contacting a relevant
authority within 5 days a�er an accident. In order to localize the camera
position, the data can be visualized on a map, thus in an event of an incident,
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the camera location and coverage can be found. Apart from mass gathering
places, more than 20 000 of video surveillance cameras are installed in
common areas of residential complexes to monitor the e�iciency of public
utilities in terms of area cleaning, garbage disposal, gardening and land
improvement, control compliance with the rules of parking vehicles, and
increase the level of safety of residents in the city of Moscow. The current
research leverages data acquired from the open portal of the municipality of
Moscow. The primary input information includes data from video surveillance
cameras in the city installed in: (a) mass gathering places, (b) common areas of
residential complexes, and (c) public points of police assistance. The point data
from the cameras was aggregated to a hexagonal grid (see Fig. 5.15), with a size
selected to be as geographically precise as possible while containing one or
more cameras from each category in most cells. The density of the cameras in
each grid cell is described as high, medium and low. The qualitative description
of the cameras’ density is given in order to process this information in the
Bayesian Network. In addition, this description facilitates human reasoning
with uncertain knowledge (Osseiran 2001). The point grid, which is used for the
final visualization, represents centers of the hexagons and provides an
overview over the whole city area.

(a) Locations of video surveillance cameras (b) Hexagonal grid with center points

Figure5.15: Video surveillancedatapreprocessing. Thepointdata fromthevideo
surveillance cameras (le�) and is aggregated to hexagonal grids (right).

5.2.2 Experimental set-up

In this scenario, we apply Bayesian Networks to represent probabilistic
knowledge about spatially referenced locations of video surveillance cameras.

The qualitative component is a graphical model structure of the dependencies
among the variables. The DAG consists of nodes (random variables) and edges
that connect these nodes (see Fig. 5.16). Nodes are the labeled circles. Edges
define probabilistic relations among nodes. Here, our aim to explore the
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geographic coverage provided by three kinds of public security cameras,
particularly for use in monitoring activity associated with potential mass
gathering events. The three data sets are: residential complex cameras (R),
mass gathering cameras (M), and police station surveillance cameras (P). Each
is depicted in the Bayesian Network as a node. Such discrete nodes are also
called parent nodes, as they do not have predecessors. Furthermore, the
parent nodes R, M, P, and the "Mass event” node are described by prior
probability distributions. For the nodes, R, M, and P the prior probability
distributions are given based on the density of the locations within a given grid
cell and characterized using qualitative values: high, medium, and low.

Figure 5.16: Scenario 2: Bayesian Network structure for reasoning about public
surveillance data.

The quantitative component of the Bayesian Network is determined by CPTs
and can be elicited from an analyst via the visual analytics interface. The
interaction process is realized through the CPT panel, where the conditional
probabilities can be adjusted in order to see how the distributions change. The
node X (Monitored) is a child node of R, M, and P; therefore, it is defined by a
probability distribution over its outcomes (highly monitored, medium
monitored, low monitored), conditional on the outcomes of its predecessors
(nodes R, M, and P) (see Fig. 5.17). The size of the CPTs in the Bayesian Network
is exponential in the number of parent nodes. In the case given, three nodes
can generate a table with 27 columns. Given that the node X includes a prior
probability distribution with three outcomes (highly monitored, medium
monitored, low monitored), the CPT for this node has three rows, therefore,
there are 81 possible intersections.
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Figure 5.17: Conditional probability table for the node X "Monitored". The CPT
can be interactively elicited from the analyst.
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5.2.3 Visual encoding and interaction design

The prototypical design of the visual analytics application is illustrated in Fig.
5.18. The numerical values of subjective belief in the interval [0, 1] are
introduced as interactive heat maps within panels "Monitored" (Fig. 5.17) and
"Safety”. In the panel "Monitored", a potential analyst can insert values within
the CPT based on how the given data are related. For example, one assumes
that a high density of police and residential complex cameras and a medium
density of mass gathering cameras result in the city zone being classified as
"highly monitored" with a given probability. Such an assumption may be
inferred from the fact that mass gathering cameras have a wider angle of
observation, thus fewer cameras are needed to cover an area seamlessly. The
same procedure is valid for the node "Safety" as it is defined by outcomes of its
predecessors: "Monitored" and "Mass Event". The numerical parameters of the
CPTs are visualized and users can interactively change them according to their
own subjective beliefs. The inference outcome is registered in the data attribute
and it includes a categorical value "noticed/unnoticed" and a numerical value,
which is the value of the conditional distribution.

Figure 5.18: Uncertainty-aware visual analytics interface. The interface is
developed using data of public surveillance cameras installed inmass gathering
places, common areas of residential complexes, and points of police assistance.

The map panel, shown in Fig. 5.19, represents the outcome of the modeling in
its spatial context. In this scenario, we chose proportional circles to indicate the
likelihood of di�erent city zones being monitored. The proportional circles
represent the data set discretely, showing patterns where the cameras’
coverage is dense, rather than representing an interpolated value over the city
district. The size and color of circles directly signify the probability value at a
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given location and may be updated when new evidence is set (for instance,
evidence of a mass gathering event or updated conditional distribution with
CPT for "Monitored"). The map panel also includes zoom, selection, and layer
controls, map legend, and an overview map for a rapid navigation.
Additionally, the user can browse the map and obtain details about each point.

Figure 5.19: Mappanel. The size andcolor of theproportional circles characterize
the likelihoodof di�erent city zones beingmonitored given the probability value
in the interval [0, 1].

5.2.4 Results

This visual analytics application has been prototypically implemented using
interoperable methods from an open system setting. The prototype is
supported by a three-tier architecture including Database Management System
(DBMS), namely PostgreSQL, Servlet Engine (GeoServer and R) and Client side
components (R Shiny). It adopts R packages bnlearn, that provides Bayesian
Network structure, parameter learning and inference (Scutari 2009), and gRain
that implements propagation algorithm in Bayesian Network (Højsgaard 2013).

This scenario demonstrates the usefulness of an uncertainty-aware visual
analytics application for reasoning about surveillance camera data from three
sources in Moscow: mass gathering places, residential complexes, and points of
police assistance. The connections among spatial data, Bayesian Network
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modeling, visualization, and the users allows interactive examination of city
areas monitored by public camera facilities under the subjective judgment of
the spatial data availability, quality, and relevance. The application has the
flexibility of providing probabilistic predictions based on user input and the
Bayesian Network model structure; therefore it combines both human and
Bayesian reasoning. The user interaction involves user-defined quantitative
input and an interactive map. The analysis is directly driven by inputs of the
analysts. The output of the analysis is visualized using proportional circles to
signify the probability of public safety under consideration of a mass event
occurrence. The results of the analysis of heterogeneous public security data
aim to complement the existing city models with insights for designing
e�ective city planning strategies and supporting decision-making in
environmental modeling.
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5.3 Summary

In spite of the awareness of spatial data uncertainty and its significance, little
attention has been given to reasoning/decision-making under conditions of
uncertainty (MacEachren 2015). Taking classification tasks based on uncertain
and heterogeneous spatial data as case studies, we combine a visual analytics
approach with Bayesian statistics to address four objectives:

• Evaluate the feasibility of using a probabilistic graphical model, namely a
Bayesian Network, to represent conditional dependencies utilizing
heterogeneous spatial data;

• Provide visualization support where results of the inference can be
observed in a spatial context;

• Support users to express their subjective beliefs as conditional
probabilities;

• Advance the power of visual analytics by integrating spatial data and
computational capacity.

The capabilities of our approach are demonstrated by means of two
classification scenarios based on di�erent datasets. The two scenarios are
intended to support the land cover classification on the one hand and the city
zone classification the other hand. The visual analytics applications combine
probabilistic inferential method, namely Bayesian Network, applied to spatial
data and an interactive visual interface that supports human reasoning. The
uncertainty-aware prototypes are able to integrate data, computational
capacity, and visualization facility to support human-computer interaction
processes for each application, and have thus revealed the potential of
advanced visual analytics.

However, the findings have a number of possible limitations. These include the
low quality of existing reference data, low quality of volunteered contributions
to the OSM, and the vagueness of prior expert knowledge about the data, as
Bayesian Network requires robust domain knowledge to assign meaningful
probabilities. In spite of these shortcomings, Bayesian Network has been
proved versatile and useful for handling incomplete and diversified data. Its
integration with visual analytics approach enhances the computational
capability to discover patterns of interest under uncertain reasoning process.

In future research, we plan to conduct a usability study with a group of analysts
to evaluate the feasibility of the approach in di�erent scenarios. Another issue
to be tackled is scalability of the interface design when more data is fused into
the Bayesian Network as the conditional probabilities will grow exponentially.





Chapter 6

Conclusion and outlook

6.1 Summary of thesis achievements

The main focus of this research is on the visual analytics approach that
integrates Bayesian data analysis and human reasoning about spatial data.
More specifically, we proposed a design framework to support the reasoning
process under uncertain conditions, such as performing a classification task on
spatial data and developed a visual analytics prototype, which is capable of
obtaining probabilistic predictions based on user input and Bayesian updating;
therefore it combines both human and Bayesian reasoning.

Foundational research works provided relevant definitions of uncertainty,
introduced the available methods for assessing uncertainty in the reasoning
process, and approaches for visual representations within so�ware packages
and analytical applications. Based on the literature reviewed, we have
concluded that Bayesian Networks can provide an e�ective framework for
knowledge representation and reasoning. Unlike "black-box" techniques (i.e,
neural networks), Bayesian Networks are capable of considering a large
number of interrelated variables and their instances that are cognitively
meaningful and interpretable. In comparison to rule-based systems, Bayesian
Networks are logical in their probability calculus; they manage uncertainty and
reflect new evidence. Although Bayesian Networks are a widely applied
modeling technique in di�erent research fields, there a lack of coherent
approaches that combine probabilistic reasoning and visualization means, in
particular for the spatial data component.

The applicability of the Bayesian Network-enabled visual analytics is
demonstrated on two scenarios using land cover classifications and video
surveillance data. The prototyped systems integrate data, computational
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capacity, and the human-computer interaction process. The analysis is driven
directly by inputs of analysts through the user interface. The outcomes of the
analysis are visualized on interactive maps with proportional circles to signify
the probability of an unobserved event.

Targeting a classification task focused on heterogeneous spatial data under
conditions of uncertainty, we combine a visual analytics approach and
Bayesian statistics to serve the following objectives:

Objective 1: To test the feasibility of using a probabilistic graphical model,
namely the Bayesian Network, to represent conditional dependencies
among heterogeneous data in order to perform a classification task.

Chapter 3 presents the main methodological driving force behind the
approach of modeling uncertainty in a reasoning process when dealing
with spatial data. It creates the following findings:

• Bayesian Networks are an e�ective communication approach as it
can aggregate knowledge from diverse sources in a graphical
structure. The graphical structure is able to map cause-e�ect
relationships among variables, which reduces the need for human
involvement in probability computing.
• Bayesian Networks are able to handle missing or incomplete data
e�iciently. Due to the fact that Bayesian Networks are based on the
probability method, which is basically a mathematical perspective
on uncertainty, even if an event is unpredictable, the laws of
probability can help assess the possible outcome.
• By using probabilistic methods, it is not possible to determine the
future outcome, but we can reduce uncertainty and gain a better
understanding about an event under examination. Uncertainty can
be assessed as entropy or probability associated with a targeted
node of the network.
• The mathematically rigorous method of Bayesian Networks can be
potentially empowered by visualization for reasoning under
conditions of uncertainty.
• Apart from the advantages, Bayesian Networks undergo some
limitations in terms of the computational complexity and the large
number of parameters required to be assigned by an analyst.

Objective 2: To develop a visual analytics framework that can facilitate the
understanding of data and uncertainty in the reasoning process using
Bayesian Networks.

Chapter 4 investigated the potential of visual analytics approach to
integrate computational facility of Bayesian Networks with visualization
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methods, thus facilitate the understanding of the processes and results of
spatial data analysis with inherent uncertainty. To this end, the visual
analytics system enables domain experts to compute the joint
probability distribution between all combinations of variables given in
the network. Exploration and assessment of the complex estimation is
facilitated by a visual interface comprising multiple views: map, CPTs,
and network panels.

The visual analytics framework made the following contributions:

• Benefiting analysts with the power of visual analytics of diverse
spatial data and their relationships;

• Supportingusers inovercoming the limitationsofBayesianNetworks
and providing a visual interface that allows the input of subjective
beliefs;

• Visualizing the output of the analysis on a digital map using
proportional circles to signify the probability (or measure of
entropy) of a predicted variable/event.

• Enabling analysts to share insights with others.

Objective 3: To build a prototype of a visual analytics interface that can
integrate data, visualization, and computational capacity of Bayesian
Networks to facilitate human-computer interactions for data analysis
under subjective beliefs in a selected application domain.

Chapter 5 illustrates the capabilities of the proposed uncertainty-aware
visual analytics prototype. The approach extends an established
technique for reasoning about spatial data, where uncertainty is
integrated through visualization support. We illustrate the capabilities of
our proposed uncertainty-aware application visual analytics by
presenting two case studies.

• The prototype proposed is realized using spatial data, Bayesian
Network modeling, visualization, and the users as components in
order to examine the spatially heterogeneous data under the
subjective judgment of spatial data availability, quality, and
relevance.

• The first prototype dedicated to exploring the di�erences of land
cover classifications considering user input on how similar or
dissimilar the land cover classes are.

• The second prototype serves the classification task using
surveillance camera data from three sources. The results of this
analysis may provide new insights for e�ective city planning.
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• The prototypical case studies demonstrate how an analyst can be
involved in statistical inference by means of visual interface. The
results of the analysis aim to complement existing spatial models
with insights, thus support decision-making in environmental
modeling.

• The prototypes developed were tested in a small group of users and
require further investigation of their performance.
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6.2 Research applicability to other domains

This research has demonstrated that the Bayesian Network method has the
potential to provide an e�ective and versatile technique for spatial data
analysis. Moreover, due to the broad applicability of Bayesian Network-enabled
visual analytics, we expect that the results described will be of interest to other
system designers who are considering similar problems. See some proposed
scenarios in Fig. 6.1.

Geomarketing solutions

An increasing amount of social and economic data available for geospatial
analysis creates a demand for new visual and analytical approaches to analyze
it. Thus, Bayesian Network-enabled visual analytics may o�er a novel
technique that supports prior knowledge awareness and user involvement
using interactive visualization. Bayesian Network-enabled visual analytics may
utilize data to uncover the structure of the relationships and dependencies
among demographic, social, and economic factors. For instance, a
classification task can be conducted using socio-economic data to analyze how
urban demography a�ects the distribution of cars in the city (Chuprikova &
Meng 2019). The application would also allow an analyst to explore the data
under an alternative perspective, where interactive visualization enables an
analyst to participate in the data exploration and reason about the information
provided by the data considering the state of uncertainty that is inevitably
incorporated during the data exploration.

Social communications

A potential field of research that may benefit from visual analytics application
is social communication in the spatial context where reasoning under
conditions of uncertainty is considered. Social communication, social
connectivity, community involvement or social distance go beyond of what one
can evaluate if only one source of information is considered. But these fields of
research integrate such aspects as physical and human infrastructure,
economic and education background, social networks, languages, and so on.
In this regard, the involvement of uncertainty in the reasoning process
qualitative and quantitative data plays an important role.
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Innovation ecosystems development

A mapping of innovation ecosystems is another rising field of research where
uncertainty in the reasoning process cannot be ignored and a visual analytics
approach can help derive new insights from the data. To investigate the
potential of entrepreneurship and economic development, approaches that
integrate historical and current data, predictive analytics, expert knowledge,
and visualization can support researchers and decision-makers in visualizing
entrepreneurial ecosystems, anticipating the development, and interpreting its
driving forces and impacts.

Research applicability

Descriptive

e.g., Location-based consumer
analysis

Diagnostic

e.g., Behavior-based social
media data analysis

Predictive

e.g., Time series-based
predictive analysis for

environmenal applications

Prescriptive

e.g., Uncertainty-aware visual
analytics for cost analysis in

geospatial context

Figure 6.1: Research applicability to other domain
A�er: Bayes Server: www.bayesserver.com

https://www.bayesserver.com/docs/introduction/bayesian-networks
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6.3 Outlook

Extending the heuristics implications in cartography
Although the previous chapters have emphasized that some major advances
have been made in addressing issues of reasoning under conditions of
uncertainty in GIScience, there is still a long way to go to develop and test such
systems that can accommodate analytical reasoning considering prior expert
knowledge. The growing interest in uncertainty in reasoning and awareness of
their importance and impact in cartography and geographical information
systems will eventually drive the scientific community to integrate
human-computer interaction, taking into account data, visualization, expert
knowledge and statistics to build new approaches for deriving knowledge from
large amounts of data. In this regard, the cognitive shortcuts, or heuristics,
which simplify the decisions, especially when they are taken in instances of
uncertainty, are importance aspects in the reasoning process to consider.
Generally, there are di�erent heuristics, some of which are of general purpose
such as representativeness, availability, and adjustment from an anchor (for
more details see Section 3.4.1). In order to explicitly address the potential
negative implications of these three reasoning heuristics, there is a need to
conduct further research that will apply cognitive psychology studies to
user-interface design.

Extending themethodology for Big Data
The further development of Bayesian Network-enabled systems requires us to
find a more informative way of representing the amount of information
condensed in a Bayesian Network. The solution is seen in interactive
approaches that visually synchronize the graphical network structure and
conditional probability tables. To implement a fully adjustable modeling
process, a user interface component can integrate visual tools for making
changes in Bayesian Network nodes and edges.

Extending the design methodology for application that can include both
uncertainty in data and in reasoning process
Another crucial challenge is to integrate data uncertainty along with
uncertainty in the reasoning process into one coherent system. The reliability
of the resulting systemmay significantly increase as it would combine di�erent
data aspects and expert input.

Usability testing
Moreover, an evaluation of Bayesian Network-enabled visual analytics is
necessary to define how easy a design approach is for a group of representative
users. To evaluate the user interface design and functionality strategies such as
heuristics review and usability testing can be adopted and implemented one
a�er another:
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• Heuristics review is a prominent approach for the initial evaluation,
which include looking at the user interface and expressing the evaluator’s
opinion on whether it meets the usability heuristics. The following
workflow can be adopted when the heuristics review is conducted:

1. Define a target group intended to use the application and tasks they
may perform (e.g., ecologists for the Scenario 1 (Section 5.1); urban
planners for the Scenario 2 (Section 5.2)).

2. Determine the goals and set of heuristics. The heuristics should
evaluate the goals set. Recent studies indicate various heuristics
that can be applied during the evaluation. At least nine basic
usability heuristics can be identified (Nielsen & Molich 1990): simple
and natural dialog; speak the user’s language; minimize user
memory load; be consistent; provide feedback; provide clearly
marked exits; provide shortcuts; good error messages; prevent
error.

3. Select evaluators among usability experts that have experience in
data visualization. It is suggested to evaluate the user interface with
around five experts, and additional resources spend on alternative
usability testing methods.

• Cognitive walkthrough is used to evaluate the visualization product with
newor occasional users. This approach is using amore specific procedure,
which simulated the user’s problem at each step of the evaluation when
the user’s response is registered. This method gives particular attention
to the cognitive aspects of users’ experience (Ning et al. 2019).

1. Define the user and their goals when working with the user
interface. For instance, ecologists within Scenario 1 (Section 5.1)
may be interested in the uncertainty of the land cover products. The
urban planners within the Scenario 2 (Section 5.2) may want to find
out the city districts with the highest density of the monitoring
facilities.

2. Specify the representative tasks the target users may conduct.

3. Describe the correct actions that the users should make to solve the
intended task.

4. Record the walkthroughs during the interface exploration.

Moreover, the next step in the development of Bayesian Network-enabled visual
analytics is to test the application performance using performance metrics. As
the computational so�ware approach is developed to calculate and display the
inference output, its prototypemust be evaluated to ensure that it performs in a
time-e�ective manner.
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