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Abstract

In this thesis, we address the thermodynamics and the phase diagram
of the BCS-BEC crossover in the presence of spin imbalance at by
a Luttinger-Ward approach. The latter gives rise to a Schwinger-
Dyson equation for the interacting fermionic Green’s function G, that
we numerically solve within the ladder approximation in a fully self-
consistent manner. G allows to compute all thermodynamic quantities
and therefore to obtain quantitative results for the universal scaling
functions associated with the strong-coupling fixed point of the uni-
tary Fermi gas at zero density, discussed by Nikolič and Sachdev [1].
Apart from the transition to a homogeneous superfluid, we observe the
instability to an FFLO state characterized by an order-parameter that
varies periodically in space and whose phase boundary extends from
the BCS-side of the crossover to the unitary limit. This result agrees
with the qualitative picture obtained by Son and Stephanov [2] within
an effective field theory approach. Solving the self-consistent equations
requires an efficient numerical Fourier transformation of functions vary-
ing over many orders of magnitude. To accomplish that task we use a
combination of a logarithmic and a spline-interpolated, discrete Fourier
transform and a specifically-designed subtraction scheme for the known
analytic asymptotics. Finally, we consider transport properties of the
unitary gas in the quantum critical regime above the quantum critical
point. In particular, the heat conductivity is computed by a large-N
approach and we compare the shear viscosity with universal quantum
bounds.
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Zusammenfassung

In dieser Arbeit wird der Einfluss von Spinungleichgewicht auf das
Phasendiagram und die Thermodynamik des BCS-BEC Crossovers
untersucht. Dazu wird der Luttinger-Ward Formalismus verwendet,
aus dem wir, innerhalb der Leiternäherung eine Schwinger-Dyson Gle-
ichung für die Greensche Funktion G der Fermionen ableiten und
selbstkonsistent lösen. Mithilfe von G berechnen wir die thermody-
namischen Größen und erhalten quantitative Ergebnisse für die uni-
versellen Skalenfunktionen, die mit dem stark wechselwirkenden RG
Fixpunkt des unitären Gases bei verschwinder Dichte, welcher von
Nikolič und Sachdev [1] beschrieben worden ist, verknüpft sind. Neben
dem Übergang zur räumlich homogenen Supraflüssigkeit finden wir
auch eine FFLO-Phase, die durch einen periodischen Ordnungspa-
rameter charakterisiert ist. Diese erstreckt sich bei sehr niedrigen
Temperaturen von der BCS-Seite des Crossovers bis hin zum stark
wechselwirkenden unitären Grenzfall. Diese Resultat steht im Ein-
klang mit dem Bild von Son und Stephanov [2], welches auf einer
effektiven Feldtheorie beruht. Die selbstkonsistente Lösung benötigt
eine effiziente, numerische Fouriertransformation von Funktionen, die
über viele Größenordnungen variieren. Dazu verwenden wir eine
Kombination aus einer logarithmischen und einer diskreten Fouri-
ertransformation und subtrahieren die führende analytische Asymp-
totik in hinreichend hoher Ordnung. Abschließend betrachten wir
Transporteigenschaften des unitären Fermigases im quantenkritischen
Regime über dem quantenkritischen Punkt. Insbesondere berech-
nen wir die Wärmeleitfähigkeit des unitären Fermigases mit Hilfe
einer large-N Entwicklung und vergleichen die Scherviskosität mit uni-
versellen, quantenmechanischen Schranken.
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Chapter 1

Introduction

The experimental achievement of cooling trapped fermionic atom clouds at JILA [3],
Innsbruck [4] and MIT [5] below the threshold for the condensation of molecules
formed by fermionic pairs in the year 2003, added a new chapter to the story
of fermionic superfluidity, which had begun almost a century ago in 1911, when
Kammerlingh Onnes [6] discovered superconductivity in Hg below temperatures
of 4.19 K. While conventional superconductors are well described by the BCS
theory [7] of Bardeen, Cooper and Schrieffer in terms of a coherent state formed
by electronic Cooper pairs [8], the observation of superconductivity above 30 K in
the ceramic compound La-Ba-Cu-O by Bednorz and Müller [9] opened the route
to novel superconducting systems and increasingly higher critical temperatures.
Currently, H2S holds the record of the highest transition temperature ever achieved
with Tc � 203 K [10], however, it requires the enormous pressure of 155 GPa. In
contrast, at ambient pressure the largest known Tc � 133 K [11] has been realized in
the cuprate Hg-Ba-Ca-Cu-O. So far, these systems unfortunately lack a complete
theoretical description [12].

The motivation to study superfluidity also in ultracold fermionic atoms relies on
the unique properties of these systems. They provide the only neutral condensed
matter example for fermionic superfluids, apart from 3 He, where the phase tran-
sition takes place in the mK regime, as observed by Osherhoff et al. [13, 14] in
1972 (for an overview see Ref. [15]). In particular, at ultralow temperatures the
mutual interactions of the atoms can be described in terms of the scattering length
a [16, 17] only. Quite importantly, the latter can be adjusted freely by Feshbach
resonances [18]. Moreover, the standard model Hamiltonian of an instantaneous,
zero-range interaction due to Gorkov applies in quantitative terms. As was first
considered by Eagles [19] and Leggett [20] in the ground state, this enables one to
realize the BCS-BEC crossover from a superfluid of Cooper pairs in the presence
of weak attractive interactions to the Bose-Einstein condensate of tightly bound
diatomic molecules at very strong attractions. In addition, the corresponding finite-
temperature transition to a normal state has first been discussed by Nozières and
Schmidt-Rink [21]. Furthermore, the gas at resonance, where the scattering cross
section becomes unitarily limited due to the divergence |a| Ñ 8, realizes a novel
strong-coupling RG fixed point, as observed by Nikolič and Sachdev [1]. This quan-
tum critical point gives rise to a universal thermodynamic phase-diagram. The scale
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Chapter 1 Introduction

invariance of the unitary gas, which was first implicitly noted by Ho [22], is related
to the fact that the unitary gas exhibits both scale and conformal invariance in
addition to the Galilean invariance, as was shown by Nishida and Son [23]. Quite
remarkably, this entails scaling laws not only for thermodynamic quantities but
even for transport coefficients.

Another interesting direction for investigations is provided by the fermionic spin
degree of freedom. In particular, the response to a population imbalance of the
allowed spin orientations or equivalently a Zeeman field h, which couples only to
the spin, has been addressed soon after the advent of BCS theory in 1957. In 1962
Clogston [24] and Chandrasekhar [25] found that the spin-balanced BCS ground
state is stabilized by its excitation gap ∆0 against values of h below the critical field
hc � ∆0{

?
2 but turns normal again for larger h. While Sarma [26] investigated the

T ¡ 0 case, Fulde and Ferrell [27] and independently Larkin and Ovchinnikov [28]
showed that the transition to the normal phase is actually preempted by a new kind
of superfluid state. This FFLO-state is characterized by a periodically modulated
order-paramter, where the Cooper pairs acquire a finite center-of-mass momen-
tum. Unfortunately, the orbital effects of the electronic motion usually prevent
the study of Zeeman fields in bulk superconductors, which is why lower dimen-
sional organic superconductors [29] with in-plane magnetic fields are considered
as promising candidates for the detection of FFLO-type order. Neutral fermionic
atoms in turn allow to control the densities of the hyperfine states individually,
which led to the first experimental studies by Patridge et al. [30, 31] and Zwier-
lein [32] on spin-imbalanced ultracold atom samples in the strong-coupling regime.
Furthemore, Shin et al. have observed the Clogston-Chandraskhar(CC) limit at
the Feshbach resonance by phase-contrast imaging of a trapped gas [33,34], as well
as the equation of state [35]. More recently the CC threshold of the unitary gas has
also been investigated by Navon et al. [36]. From the theoretical perspective Son
and Stephanov [2] developed a qualitative, yet very complete picture for the ground
state of the BCS-BEC crossover in the presence of finite spin-imbalance in terms
of an effective field theory. The latter predicts, besides the balanced superfluid at
small h and the trivial fully-polarized gas at large h, several partially polarized
superfluid phases. In particular, it includes an FFLO-phase, which extends beyond
the unitary limit onto the bosonic side of the crossover.

Our aim in the present thesis is to extend a previous Luttinger-Ward study of the
balanced BCS-BEC crossover by Haussmann et al. [37] to the presence of Zeeman
fields and to obtain a quantitative description of the phase diagram. This diagram-
matic method includes the effects of strong interactions by resumming particle-
particle ladders, responsible for the transition to the symmetry-broken phase, to
arbitrary order. Quite importantly, we solve the resulting Schwinger-Dyson equa-
tion for the fermionic single-particle Green’s function fully self-consistently, without
incorporating further approximations and use the Tan relations [38–40] as a consis-
tency check. Apart from thermodynamics, we also consider transport properties of
the unitary gas. In this regard, we discuss the shear viscosity η and the quantum

2



bounds appearing in universal ratios η{s and η{n, where s denotes the entropy den-
sity and n the total density. Finally, we perform a large-N expansion to compute
the heat conductivity

The thesis is organized as follows: In Chapter 2 we review the standard de-
scription of interactions in ultracold atomic systems and focus in particular on
Feshbach resonances before we turn to the universal phase diagram of the imbal-
anced Fermi gas in the ground state in Chapter 3. In Chapter 4 we set up the
Luttinger-Ward formalism. Moreover, we introduce the particle-particle ladder ap-
proximation for the interactions and the resulting Schwinger-Dyson equation for
the fermionic Green’s function, as well as the vertex function. We show the results
for the phase diagram and the thermodynamic quantities in Chapter 5. The follow-
ing two chapters are dedicated to the numerical solution of the Schwinger-Dyson
equation. Chapter 6 presents the two kinds of Fourier transformations that we use:
a logarithmic one and a discrete one in combination with a spline interpolation,
while Chapter 7 summarizes how we subtract the analytically known asymptotics
of the Green’s and vertex functions. In addition, we develop a similar subtraction
for the expressions of the pressure, the internal energy and the entropy. Then we
turn to transport in Chapter 8, before we close the thesis with an outlook on how
the Luttinger-Ward computations can be extended to capture also the symmetry-
broken phase in Appendix A.

A list of the papers that have been published during this PhD-project can be
found in Appendix E.
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Chapter 2

Many-body physics with ultracold
Fermions

This chapter summarizes the framework that underlies the description of the physics
encountered in ultracold fermionic atoms. In Section 2.1 we start with an overview
how to formulate the interactions at the two-particle level in ultracold quantum
gases and how Feshbach resonances can be used to adjust the scattering properties.
In Sec. 2.2 we introduce the single-channel model and the related renormalization
scheme, which provides the central basis for the remainder of the thesis. After-
wards, in Sec. 2.3 we present the results for the BCS-BEC crossover that have been
obtained so far, thereby relating the thesis with previous work and motivating the
study on spin imbalance, presented here. Finally, we review the Tan relations in
Sec. 2.4, which give rise to a convenient way to present thermodynamics and also
will play an important role in the evaluation of our data.

2.1 Interactions in ultracold gases and Feshbach resonances

This chapter provides a summary of the well-established effective theory for ultra-
cold interactions [16,17] in terms of the scattering length a, which underlies many
phenomena in the entire field of ultracold atoms [41]. Furthermore, we introduce
the concept of Feshbach resonances and the related tunability of the interaction
strength. An in-depth review on this special topic has been provided by Chin et.
al. [18]. Finally, we take a short detour and consider the stability of strongly attrac-
tive Fermion systems at finite density, which also touches the interaction properties
of bound dimers. We follow the lectures by Zwerger [42], where further details can
be found.

2.1.1 Two-body scattering of ultracold atoms

In general, a gas is a low-density system, where the mean spacing between particles
� n�1{3 is much larger than the range of the interaction potential. Consequently,
the many-body Hamiltonian can be restricted to include a sum of two-body in-
teractions only. However, at very low temperatures one automatically enters the
regime of a degenerate gas, which is characterized by nλ3

T " 1, with the thermal de
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Chapter 2 Many-body physics with ultracold Fermions

Broglie wavelength λT � ~
a

2π{pmT q. Here ~ denotes the reduced Planck’s con-
stant, m the particle mass and T the temperature, while we have set the Boltzmann
constant to unity. Physically, this criterion implies that the atoms cannot be con-
sidered anymore as individual, point-like particles, since the associated quantum
wave packets overlap and therefore quantum mechanical scattering theory has to
be applied. At large separations, neutral atoms interact with a van der Waals force,
due to spontaneously induced dipole-dipole interactions. They yield an attractive
two-body potential of the form

VvdWprq � �C6{r6 , (2.1)

when the atoms are far apart. The positive coefficient C6, depends on the chemical
element. The corresponding values of the experimentally relevant alkali atoms are
listed in Ref. [16]. In turn, the short-distance behavior constitutes a genuine many-
body problem, since it includes all the electronic degrees of freedom of the two atoms
that participate in the scattering process. Consequently, it is hard to determine
V pr Ñ 0q a priori from theoretical considerations. However, in the situation kF re !
1 and kthre ! 1, where kF denotes the Fermi wave vector1 kF � n1{3, kth � 1{λT
the typical thermal momentum and re the effective range introduced in eq. 2.4
below, one can deploy a description based on an effective interaction. The latter
does not require a precise knowledge of the complete potential, yet leads to a very
simple characterization of the interactions in terms of a single parameter. To obtain
such a simplified description, we first note that the asymptotics of VvdW gives rise
to an intrinsic length scale, called van der Waals length

lvdW � 1

2

�
mC6

~2


1{4
(2.2)

and a related van der Waals energy EvdW � ~2{pml2vdWq. In general, the range
of the interactions is on the order of lvdW, as we will see below. Thus, we find a
separation of length scales

lvdW ! n�1{3 ! λT , (2.3)

which defines the ultracold regime of dilute quantum gases. Under these conditions
all but the s-wave scattering channel are frozen out due to the angular momentum
barrier. The latter is determined by the potential range and accordingly is on the
order of the van der Waals energy, which exceeds the thermal energy by far. The
associated quantum mechanical s-wave scattering amplitude is isotropic and takes
the low-energy form [43]

fpkq � 1

cot δ0pkq � ik
Ñ �1

1
a � 1

2rek
2 � ...� ik

, (2.4)

1We will define the proportionality later on, when we have introduced the density imbalance.
Here only the order of magnitude matters.
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2.1 Interactions in ultracold gases and Feshbach resonances

Open channel

Closed channelBound state

Figure 2.1: Schematic representation of a Feshbach resonance. r denotes the dis-
tance between the atoms, which scatter at vanishing incident energy.
The bound state just below the incident energy E � 0 is close to reso-
nance.

when the collision takes place at energy E � ~2k2{m Ñ 0. In this limit the
interactions are described by the scattering length a and the effective range re
only. Typically, both are on the order of the van der Waals length, unless V prq
exhibits a zero-energy resonance, where one additional bound state is about to
be present. Thus, knowledge of these two parameters suffices to describe the two-
body interactions in ultracold quantum gases. Nevertheless, a and re depend on the
scattering properties at short distances2. Yet, a theoretical solution of the involved
short-range problem becomes obsolete, if one admits an experimental input for
a and the limits kF re ! 1 kthre are satisfied, which renders the effective range
irrelevant.

2.1.2 Feshbach resonances

A particularly interesting feature of ultracold atoms is provided by Feshbach res-
onances3, which were introduced to the field of cold atoms by Tiesinga et al. [48].

2A toy model which illustrates the relations of the involved length scales is discussed in
Refs. [44, 45]. In those papers the short-range properties are simply replaced by an infinitely
high potential barrier at a short-distance cutoff rc ! lvdW. As a result, both the scales a
and re are set by lvdW, however, by fine-tuning rc one can either reach the limit a " lvdW or
re " lvdW, while the other variable remains of order O plvdWq.

3This concept has originally been developed in the context of nuclear reactions by Feshbach [46]
and for configuration interactions in many-electron atoms by Fano [47].
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Chapter 2 Many-body physics with ultracold Fermions

They allow to tune the scattering length to values a " lvdW, while keeping re of the
order of the van der Waals length by adjusting an external magnetic field4 B. This
limit entails a regime of strong interactions, since the gas parameter na3 reaches
values much larger than unity and the standard perturbation expansion in its pow-
ers breaks down. The physical mechanism behind Feshbach resonances originates
from the existence of different scattering channels. It is depicted schematically in
Figure 2.1. In the following, we will describe the physical picture encountered at
the experimentally relevant Feshbach resonance at B0 � 832G in 6Li, that has been
measured by Zürn et al. [51]. We choose the magnetic field B � Bêz to point along
the z direction without loss of generality. For field strengths on the order of B0 the
electron spins become almost perfectly polarized, because they react to the external
field with a coupling strength that is by a factor of the ratio proton mass over elec-
tron mass mp{me � 2000 larger than the coupling between the nuclear spins and
B. Accordingly, collisions of two initially well-separated atoms mainly take place
in the electronic triplet configuration, that is called the open channel. In contrast,
in the limit of vanishing scattering energy the singlet channel is closed, due to its
additional Zeeman energy ∆E � ∆µB. The latter arises from the difference of
the magnetic moments ∆µ of the triplet and singlet channels adds to the van der
Waals asymptotics in equation (2.1). As we detail in a moment, it originates from
the different combinations of electronic and nuclear spin projections on the mag-
netic field axis encountered in the two channels. However, at shorter distances the
singlet potential becomes much more attractive than its triplet counterpart, since
the spatial part of the scattering wave function occupied by the two Fermions, is
symmetric. Thus, the singlet potential exhibits many bound states, whose energies
can be detuned against the energy of the incoming open-channel atoms by varying
B. At any finite magnetic field the electron triplet is not a perfect eigenstate of
the Hamiltonian and every scattering event will have an admixture of the singlet
configuration. In particular, there exists a finite off-diagonal potential Ŵ pxq that
couples the triplet and the singlet channel. Physically, it originates from the fact
that quanta of electronic and nuclear spin projections on the z-axis can be ex-
changed during the collision, as only the total hyperfine angular momentum mF

z is
conserved by the reduced rotational invariance in the presence of B � êz. The dif-
ferent coupling strengths between B and the nuclear and electronic spins therefore
give rise to a finite ∆µ and consequently, one can shift the singlet potential relative
to the triplet potential by the Zeeman effect. If one adjusts B, such that one of the
bound states of the singlet potential comes energetically close to resonance with the
incident open-channel state, it will drastically influence the scattering properties.
Phenomenologically, the dependence of the scattering length on the magnetic field

4In thesis we only consider magnetic Feshbach resonances. However, they can be induced by
optical methods, too, as was first proposed in [49] and realized in 87Rb [50]. See also [18].
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2.1 Interactions in ultracold gases and Feshbach resonances

B can be parametrized as

a pBq � abg

�
1� ∆B

B �B0



Ñ � ~2

mr�ν pBq � ... , (2.5)

where the resonance is characterized by a width ∆B in magnetic units around the
resonant field strength B0. Its scale is set by the background scattering length abg,
which would be obtained, if the closed channel were completely neglected. Close
to resonance, it suffices to include only the resonant contribution, which leads to
the second parametrization above. It describes the Feshbach resonance in terms of
the detuning νpBq � ∆µpB �B0q of the open and the closed-channel bound state.
Furthermore, a new intrinsic length scale r� has been introduced for the width of
the resonance. Physically, its inverse quantifies the coupling strength of the open
and closed channels independent of the parametrization of the resonance, which
will become clear in equation (2.12) below.

A simple model that describes the conversion of pairs of fermionic atoms from the
open channel to bound-state dimers is the two-channel model or equivalently the
Bose-Fermi resonance model, first considered in this context by Holland et al. [52]
and Timmermans et al. [53]. Its effective Hamiltonian

ĤFeshbach �
»
x

�¸
σ

ψ̂:σpxq
�
� ~2

2m
∇2



ψ̂σpxq � Φ̂:pxq

�
� ~2

4m
∇2 � νcpBq



Φ̂pxq

� g̃

»
x1
χp|x� x1|q

�
Φ̂:

�
x� x1

2



ψ̂�pxqψ̂�px1q � h.c.

	�
,

(2.6)

allows in particular to compute the resonant contribution of the scattering ampli-

tude (2.4). The fermionic field operators Ψ̂σ pxq
�

Ψ̂:
σ pxq

	
annihilate (create) an

open-channel atom. The index refers to the hyperfine state, which we formally
denote as σ ��, �. Furthermore, the so-called dimer field Φ̂pxq, which obeys Bose
statistics, represents the closed-channel bound state, whose energy is shifted by
the bare detuning νcpBq � ∆µpB � Bcq with respect to the open channel. Both
channels are coupled by the Yukawa-like term in the second line. The form factor
χ p|x� x1|q regularizes the theory by cutting-off the transfer between the open and
closed channel at large separations of the �� Fermion pair and the closed channel
dimer, while its rotational isotropy restricts the interactions to the s-wave channel.
It is normalized by the condition

³
d3xχp|x|q � 1, such that the overall interaction

strength of the two channels is given by the coupling constant g̃. A convenient
choice for the form factor in momentum space is a Lorentzian

χpqq � 1

1� q2σ̃2
, (2.7)
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Chapter 2 Many-body physics with ultracold Fermions

which implies a further length σ̃ that quantifies the cut-off scale5. From the argu-
ments below, it will turn out that σ̃ is of order lvdW. At the level of two atoms with
opposite spins the Yukawa interaction in eq. (2.6) leads to an-off diagonal potential
Ŵ , which acts in the center-of-mass reference frame as [42,55]

Ŵ |φresy � g̃
¸
k

χpkq||ky (2.8a)

Ŵ ||ky � g̃χpkq |φresy , (2.8b)

on the zero-momentum bound state |φresy and the open-channel scattering state
||ky � |k,�ky, consisting of two atoms carrying opposite momenta �k. The
Schrödinger equation for the eigenenergy E � ~2k2

0{m can be solved by plugging
in the ansatz

|Ψy �
?
Z|φresy �

¸
k

αpkq||ky . (2.9)

Eliminating the closed-channel admixture Z yields an effective scattering problem
for the open-channel state, whose solution is demonstrated explicitly in Refs. [42]
and [55]. As a result, the scattering amplitude reads

fpkq � m

4π~2

g̃2χ2pkq
νcpBq � ~2k2

m � mg̃2

~2 � ³
q

χ2pqq
k2�q2�i0

, (2.10)

which in the low-energy limit is consistent with the form of equation (2.4), whose
two lengths become [56]

1

a
� �mr

�

~2
νc pBq � 1

2σ̃
(2.11a)

re � �2r� � 3σ̃

�
1� 4σ̃

3a



. (2.11b)

Quite importantly, the intrinsic length scale r�, introduced in the phenomenolog-
ical parametrization of the Feshbach resonance (2.5) is connected to the coupling
constant g̃ by

r� � 4π~4

m2g̃2
. (2.12)

Thus, indeed, it quantifies the coupling strength between the two channels. Fur-
thermore, the scattering length acquires the phenomenologically suggested form,

5Alternatively, a Gaussian form factor is used in Ref. [54]. However, the Lorentzian cut-off yields
results that coincide more closely with those from single-channel computations, as will become
clear in a moment.
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2.1 Interactions in ultracold gases and Feshbach resonances

too. Yet, the position of the Feshbach resonance, where the scattering length di-
verges, is shifted from the bare Bc by an amount

∆µpB0 �Bcq � ~2

2mr�σ̃
. (2.13)

From a physical point-of-view, this difference originates from the level repulsion
of the interacting states, induced by the off-diagonal coupling g̃. Furthermore, it
provides a way to determine the value of the cut-off length scale σ̃ by matching
this resonance shift to the results from microscopic computations for potentials
with van der Waals tails [57]. This procedure leads to the identification σ̃ �
ā � 0.956 lvdW [56], which therefore essentially coincides with the van der Waals
length6.

On the two-particle level one can classify Feshbach resonances in terms of the
resonance strength sres, defined as the ratio of the two relevant microscopic length
scales

sres � ā

r�
. (2.14)

Feshbach resonances satisfying sres " 1 are called open-channel dominated. In this
case, the open and closed channel are strongly coupled according to relation (2.12).
The name relates to the fact that the closed-channel admixture Z is negligible, as
long as the detuning remains within the resonance width, i.e. for values of B that
satisfy |B�B0| À |∆B|. Indeed, for a ¡ 0, the dressed bound state can be written
as a linear combination similar to eq. (2.9). Close to resonance it has a universal
binding energy εB � ~2{pma2q � ν2{ε�, that depends quadratically on the detuning
ν � ∆µ pB �B0q, divided by the characteristic energy ε� � ~2{pmpr�q2q. Applying
the Hellman-Feynman theorem to the binding energy, reveals that [18,42]

Z � B p�εBq
Bνc � 2

|ν|
ε�

� 2
r�

a
� 2

r�

|abg|
|B �B0|
|∆B| , (2.15)

vanishes linearly with the magnetic field upon the approach to resonance. To
confirm this result, one first uses a from (2.11a) and subsequently the parametriza-
tion (2.5). As stated above, if sres " 1, Z remains much smaller than one over a
wide range of detunings, as abg typically is of the order of the van der Waals length.
In addition, the effective range in (2.11b) is positive and tends to re Ñ 3σ � lvdW.
This agrees very well with the result re � 2.92ā obtained from the computations
for a single-channel potential with 1{r6-asymptotics [45].

The opposite limit of sres ! 1 gives rise to closed-channel dominated resonances,
since the admixture of the closed-channel state can be neglected only for very
small detunings ν ! ε�. Furthermore, we observe that the effective range in equa-
tion (2.11b) tends to �2r�, which is negative but has an absolute value much larger

6The quantity ā appears in the discussion of the toy model for vdW interactions [44] and is the
standard choice to denote the length scale for the short-distance physics.
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Chapter 2 Many-body physics with ultracold Fermions

than lvdW. Consequently, re cannot be neglected and one does not expect to find
universal many-body physics in the sense that interactions are described in terms
of the tunable scattering length only.

From an experimental perspective the element 6Li, which is frequently used for
experiments on the strongly-interacting regime of the BCS-BEC crossover, for ex-
ample at MIT [58] and at ENS [59], has an open-channel dominated Feshbach
resonance7 at B0 � 832G [51] with a resonance strength sres � 59. Therefore,
we will focus in the remainder of the thesis on open-channel dominated Feshbach
resonances.

2.1.3 A short note on stability

One important question in the context of strongly attractive Fermions concerns
the stability of a trapped gas. Typically, three-body losses limit the lifetimes of
ultracold atomic clouds. In such a process three atoms approach each other within
a small volume, whose spatial extend is comparable to the effective range or equiv-
alently lvdW. Two of them then form a dimer in one of the deeply bound states of
the atomic potentials, while the third atom carries the binding energy in form of
kinetic energy and thereby heats the system via two-body collisions with the back-
ground atoms. One might expect that the three-body loss rates increase, when the
attractions are enhanced, which makes configurations of three atoms close to each
other more favorable. However, in case of two-component fermionic gases two of the
atoms necessarily have identical spin orientations and the Pauli exclusion principle
suppresses the probability for the occurrence of these configurations. Therefore,
one encounters lifetimes long enough for equilibration to take place. In contrast,
the lifetime of unitary Bosons tends to zero. A more in-depth discussion of this
issue may be found in Ref. [42].

Regarding Fermions, the short-distance asymptotics of the three-particle wave
function at zero energy is restricted by dimensional analysis to Ψpr Ñ 0q �
a�3{2pr{aqγF pΩq � ApaqrγF pΩq, as discussed by Petrov et al. [60]. The variable
r �

a
r2

12 � r2
13 � r2

23 is called the hyperradius, while F pΩq contains the angular
degrees of freedom, Furthermore, the authors compute the dominant anomalous di-
mension γ � �0.2273.... The resulting relaxation rate α3paq � |Apaq|2 into deeply
bound states, obeys the power law

α3paq � const
~ lvdW

m

�
lvdW

a


3�2γ

, (2.16)

where the proper dimensions of cm3{s are obtained by inserting corresponding
factors of lvdW. The numerical constant depends on the short-distance physics and

7It turns out that 6Li has a background scattering length that exceeds the van der Waals length.
Under these circumstances Z is suppressed over an even larger range of magnetic fields around
the resonance.
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2.2 Single-channel model and renormalization

cannot be calculated from the effective Hamiltonian (2.6). Experiments on both
40K [61] and 6Li [62] agree with eq. (2.16). However, the available accuracy does
not allow to compare with the theoretical prediction for γ.

The fundamental question for the study of many-body effects is whether thermal
equilibrium can be reached fast enough by two-particle collisions, before three-
body losses distort the cloud too strongly. At unitarity the two-particle scattering
rate scales like Γ2 � nσscattvF � εF {~, as the total scattering cross-section σscatt

is trivially related to the differential cross-section dσscatt{dΩ � |fpkq|291{k2
F in

accordance with eq. (2.4). Regarding the three-body loss rate Γ3 � � 9N3{N � nα
we make use of the fact that the power law in eq. (2.16) saturates at scales kFa � 1
in finite density systems. Hence, we find for the ratio

Γ3

Γ2
� ~nα

�
a�1 Ñ kF

�
εF

� pkF lvdWq4�2γ ! 1 , (2.17)

where the last inequality follows from the hierarchy of length scales (2.3), realized
in an ultracold gas. Consequently, the unitary gas is stable enough to thermalize.
For example at the 832.18 G resonance in 6Li one encounters lifetimes of up to one
minute [63].

Another important aspect of stability concerns the interaction strength between
single atoms and bound dimers, as well as the mutual dimer-dimer interaction at
positive scattering lengths. In the first case one considers a dimer, represented
by the universal two-body bound state wave function φ0prq � expp�r{aq{p?2πarq
of spatial extent a, and an additional atom at a distance R " a. The solution
of the Schrödinger equation for three-body wave function acquires the asymptotic
form [64]

Ψpr,Rq � φ0prq
�

1� aad

R

	
, (2.18)

with the atom dimer scattering length aad � 1.18. In the dimer-dimer problem
one has two bound states at distance R " a, which gives rise to the asymptotic
result [60]

Ψpr1, r2,Rq � φ0pr1qφ0pr2q
�

1� aad

R

	
, (2.19)

with a dimer-dimer scattering length add � 0.6a ¡ 0. The positivity of both scat-
tering lengths implies repulsive interactions and the encountered molecular BECs
are stable. An alternative derivation of the latter value, based on a diagrammatic
method, has been given in Refs. [65, 66].

2.2 Single-channel model and renormalization

After having summarized the basic physics of magnetic Feshbach resonances in the
context of ultracold Fermions, we can now transform the two-channel model (2.6)
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Chapter 2 Many-body physics with ultracold Fermions

into a single-channel model, which is more convenient regarding the computations of
the thermodynamic quantities within the Luttinger-Ward formalism. As ĤFeshbach

is quadratic in the dimer field Φ̂, the latter can be formally integrated out, which
gives rise to a quartic fermionic coupling in the pairing channel. With the abbre-
viations x � pt,xq in real space and q � pω,qq in momentum space, the new form
of the interaction term reads at the level of the action

g̃2

»
x,x1

»
y,y1

χp|y|q Ψ̂:
�

�
x� y

2

	
Ψ̂:

�

�
x� y

2

	
G�1

Φ,0

�
x� x1

�
Ψ̂�

�
x1 � y1

2



Ψ̂�

�
x1 � y1

2



χp|y1|q

� g̃2

»
Q,q,q1

χp|q|qχp|q1|qΨ̂:
�

�
Q

2
� q



Ψ̂:

�

�
Q

2
� q



G�1

Φ,0 pQqΨ̂�

�
Q

2
� q1



Ψ̂�

�
Q

2
� q1



.

(2.20)

GΦ,0pQq denotes the bare propagator of the dimer field. In this new formulation
the scattering amplitude of two Fermions with opposite spin in their center-of-mass
frame is given by

fpkq � m

4π~2
g̃2χ2pkqG�1

Φ pE � 2εk,Q � 0q , (2.21)

where the incoming Fermions carry momenta �k and the scattering takes place at
the total energy E � 2εk. Quite importantly, the propagator GΦpQq is dressed by
repeated inclusions of fermionic bubbles, which are the only possible diagrammatic
corrections at the two-particle level. Note also that the isotropy of the form factor
χp|x|q gives rise to a purely s-wave interaction. As discussed in Ref. [42], inserting
the propagator with the interaction contributions corresponding to the bubbles

G�1
Φ pE � 2εk,Q � 0q � �~2k2

m
� νcpBq � g̃2m2

~2

»
q

χpqq2
k2 � q2 � i0�

, (2.22)

returns exactly the result from the two-channel model in eq. (2.10) for fpkq. Con-
sequently, the scattering amplitude obtained in this way admits the identical low-
energy expansion in terms of the scattering length and effective range given in
eq. (2.11a) and (2.11b), respectively.

To simplify the model, one replaces the full scattering amplitude by fpkq �
�1{pa�1 � ikq, which merely depends on the scattering length. From quantum
mechanics it is known that this particular form of the scattering amplitude arises
for all k from a Fermi pseudo-potential. However, in the context of Feshbach
resonances this approximation is justified only, if the effective range corrections
can be neglected at all relevant momentum scales. In other words the condition

kF re ! 1 , (2.23)

which is termed the zero-range limit, must be satisfied. Open-channel dominated
resonances comply re � lvdW (see eq. (2.11a)) and thus automatically realize this
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2.2 Single-channel model and renormalization

relation, due to the separation of length scales in a quantum gas (2.3)8. For a closed-
channel dominated resonance in contrast, the effective range approaches re Ñ �2r�,
where in this case r� " lvdW according to eq. (2.14), such that the zero-range limit is
ruled out. Furthermore, as discussed by Zwerger [42], the density of closed-channel
bound states close to resonance in a homogeneous system is given by

nbpB � B0q � r�C̃ k4
F

4π
, (2.24)

which entails a closed channel admixture Z̃ � 2nb{n at the many-body level. Here
C̃ � C{k4

F denotes the dimensionless contact density, defined in eq. (2.53) below,
that in particular is finite around the Feshbach resonance. In case of only two
atoms one recovers Z from eq. (2.15). With the result from above we have for the
closed channel admixture of a strongly interacting, dilute gas Z̃ � c̃ r�kF , which
can only be neglected in case of an open-channel dominated resonance. In contrast,
in case of closed-channel dominated resonance one always has to take into account
the bound-state. However, the weak coupling between the open and the closed
channel allows to effectively replace the dimer field in the two-channel model (2.6)
by its expectation value

g̃

»
x1
χ
�|x� x1|� Φ̂:

�
x� x1

2



Ñ ∆pxq , (2.25)

which gives rise to a c-number-valued gap function. The resulting Hamiltonian ac-
quires the standard BCS form [67] throughout the crossover and mean-field theory
can be applied. This procedure underlies the works of Parish et al. [68], Sheehy
and Radzihovsky [69] and Veillette and Radzihovsky [70], but gives rise to the BCS
universality class, where the energy cutoff Ē � ~2{pmā2q � EvdW remains mani-
fest [42]. For example the critical temperature kBTc � Ē expp�π{p2kF |a|qq depends
on the non-universal energy scale Ē ! εF , while the proportionality constant is of
order one. In fact, this approach amounts to a high-density expansion in inverse
powers of kF |re| � kF r

� " 1 around a narrow Feshbach resonance (see footnote 8),
as discussed in Ref [69], which actually contradicts the notion of a gas.

Returning now to the open-channel dominated resonances, which we concentrate
on in this thesis, we introduce the single-channel model

Ĥ �
»
x

�¸
σ

ψ̂:σ pxq
�� ~2

2m
∇2

�
ψ̂σpxq � ḡpΛq ψ̂:�pxqψ̂:�pxqψ̂�pxqψ̂�pxq

�
, (2.26)

which is characterized by the bare coupling constant ḡpΛq. For convenience, we
choose it as the scattering length in Born approximation of the full atomic inter-

8Note that kF lvdW ! 1 poses a stronger constraint than the frequently applied criterion kF r
� ! 1,

which characterizes a so-called broad Feshbach resonance. In contrast, a narrow Feshbach
resonance is defined by the opposite limit kF r

� " 1. We will refrain from distinguishing the
influence of interactions in this way, since it explicitly depends on the density.
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Chapter 2 Many-body physics with ultracold Fermions

action potential V pxq

ḡ pΛq � 4π~2aB pΛq
m

�
»
d3xV pxq . (2.27)

The high-momentum cutoff Λ keeps track of the physically finite effective range.
As a result, it scales inversely proportional Λ � 1{re to re and the zero-range
limit is obtained by Λ Ñ 8. On a technical level Λ is required to regularize the
otherwise divergent loop integrals and implies a fine-tuning scheme for the limit
Λ Ñ 8, which ascertains that the physical scattering length a is recovered. The
necessity of this procedure can already be observed at the two-body level where
the Lippmann-Schwinger equation

f̃pkÑ k1q � vpk� k1q �
»

d3q

p2πq3
v pk1 � qq f̃pkÑ qq

k2 � q2 � iε
, (2.28)

determines the exact scattering amplitude f̃ � �4πf . The function vpkq denotes
the momentum-space representation of the rescaled potential mV pxq{~2. Substi-
tuting the latter by 4πaBpΛq and taking the low-energy limit f̃ Ñ 4πa � mg{~2 ,
which defines the physical coupling constant g, the Lippmann-Schwinger equation
becomes

1

g
� 1

ḡ pΛq �
»
q Λ

1

2εq
. (2.29)

The integral is restricted to momentum scales q   Λ, while higher momenta are
sharply cut-off, such that the integral is rendered finite. Note that the value of
ḡpΛq has to be adjusted carefully, such that the right-hand side returns the correct
physical g, that is consistent with the left-hand side. In particular, the limit Λ Ñ8
requires the bare coupling constant to vanish ḡpΛ Ñ 8q Ñ 0�. This observation
will affect the diagrammatic expansion performed in Section 4 on the Luttinger-
Ward formalism. Finally, note that the Lippmann-Schwinger equation (2.28), which
provides a convenient and exact reformulation of the Schrödinger equation for two-
body scattering problems, already contains all orders of the interaction. Therefore,
the renormalization prescription (2.29) already resums arbitrary orders of the in-
teraction. An illustration how to perform perturbative renormalization and how it
relates to the formulation used here is given in the review by Braaten and Ham-
mer [71], which however focuses on the scaling limit re{a Ñ 0. Furthermore, the
Λ-dependence gives rise to a flow of the coupling constant, which in turn determines
the fixed points and the universal phase diagram, discussed in the next section.

2.3 Quantum critical point and universal phase diagram of
the BCS-BEC crossover

From the point of view of critical phenomena the single-channel model (2.26) gives
rise to a universal phase diagram for the BCS-BEC crossover, as was first discussed
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2.3 Quantum critical point and universal phase diagram of the BCS-BEC crossover

by Nikolič and Sachdev [1]. The central insight that one gains from this perspective
is the existence of a new, strongly interacting quantum critical point, located at
the Feshbach resonance at 1{a � 0 and at zero chemical potentials9 µ� � 0 � µ�
or equivalently µ � 0 � h. We define µ as the average chemical potential and h as
the potential difference, which plays the role of the Zeeman field, via

µ � 1

2
pµ� � µ�q (2.30a)

h � 1

2
pµ� � µ�q , (2.30b)

where the latter controls the spin imbalance. Without loss of generality we assume
that h ¡ 0, thereby defining the �-atoms as majority component.

Let us return to the phase diagram. When one continuously increases the chem-
ical potentials µ� and µ� of the two spin-components, starting at �8, the ground
state of the system undergoes a quantum phase transition from the vacuum state
to a finite density state, irrespective of the value of a�1. The vacuum formally is an
incompressible state, since the density remains fixed upon changing the chemical
potentials as long as one does not cross the phase boundary. In turn, the detailed
nature of the finite-density phase depends both on the scattering length a and on
the chosen values of the chemical potentials. From the point of critical phenomena
one mostly discusses the onset of a finite population and the characterization of
the underlying states. The three quantities 1{a, µ, h exhaust the list of relevant
perturbations around the fixed point, whereas a finite temperature always leads to
a breaking of scale invariance due to the compact imaginary time interval.

In the following, we discuss the basic features of the RG flow towards the infrared
regime and the consequences that arise for the phase diagram. Furthermore, we
summarize the results known in the literature for h ¥ 0 and state the open questions
in connection with a finite population imbalance, which are addressed in this thesis.

2.3.1 RG-flow

We first consider T � 0 and vanishing chemical potentials, such that all correla-
tion functions reduce to vacuum expectation values. In this situation the cutoff-
dependence of the coupling constant can be determined from (2.29), assuming a
sharp cutoff at qmax � Λ. In d-dimensions we have

ḡpΛq � g

1� g Ωd
p2πqd

m
~2pd�2qΛ

d�2
, (2.31)

where Ωd � 2πpd{2�1q{Γpd{2�1q denotes the surface of a units sphere. With the def-
inition of the dimensionless coupling constant udpΛq � 2Ωdm{pp2πqd~2qΛd�2ḡpΛq,

9Furthermore, the authors argue that both the single-channel (2.26) and the two-channel
model (2.6) belong to the same universality class.
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Chapter 2 Many-body physics with ultracold Fermions

Figure 2.2: Left: RG flow in d � 3 with the unstable fixed point at u�3 � �2 (disk),
representing the Feshbach resonance, and the stable one at u3 � 0
(circle). Right: Universal ground state phase diagram of the BCS-BEC
crossover without spin imbalance, following Ref. [1].

the latter result gives rise to the flow equation [1]

βdpuq � dud
dl

� p2� dqud � u2
d

2
, (2.32)

which describes the change of ud, when the cutoff scale is reduced via Λ Ñ e�lΛ,
with l ¥ 0. Quite remarkably, this relation is exact to all orders in the coupling
constant, as in the vacuum state only particle-particle ladder diagrams contribute
to the renormalization of ḡpΛq within the field theory (2.26). Other diagrams
would require the presence of additional particles [72,73]. Note that the Lippmann-
Schwinger equation (2.28), which (2.31) is based upon, exactly represents the quan-
tum mechanical equivalent of this particular class of diagrams.

In three dimensions the flow equation has a stable fixed-point at u3 � 0 and an
unstable one at u�3 � �2, which corresponds to the unitary gas at the Feshbach
resonance. A graphical representation of the flow is given in Fig. 2.2. Moreover,
detunings away from u�3 can be identified with finite values of the inverse scattering
length, i.e. δu3 � u3 � u�3 � �ā{a. For initial values u�3   u3   0 the flow is
directed towards u3pl Ñ 8q Ñ 0� corresponding to a weakly attractive Fermi
gas in the limit a Ñ 0�. In the absence of two-particle bound states at negative
scattering lengths, the onset of a finite density of particles is reached, when at least
one of the chemical potentials µσ is positive. The increase of the densities with

the chemical potential follows like in the non-interacting case nσ9µ3{2
σ , since in the

presence of just a single-component Fermi gas s-wave interactions are ruled out by
the Pauli principle, while pairing effects, caused by the attraction in the case of a
two-component gas, only give rise to exponentially small corrections.

On the other hand starting the flow at u3   u�3, the coupling constant is driven
towards u3pl Ñ 8q Ñ �8 or correspondingly a Ñ 0�, indicating very strong,
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2.3 Quantum critical point and universal phase diagram of the BCS-BEC crossover

attractive interactions. Therefore, particles of opposite spin form tightly-bound
molecules with bosonic statistics. The chemical potential for these dimers is given
by µB � µ� � µ� � εB � 2µ � εB, where εB � ~2{pma2q denotes the binding
energy of the two-body s-wave bound state, which indeed exists at a ¡ 0. From
a fermionic perspective, a finite dimer density nd is admitted already above the
threshold µB � 0 or equivalently above µ � �εB   0. Apart from the possibility
to create molecules, a single-component gas forms, if µ� ¡ 0 and simultaneously
µ� ¤ �εB � µ�. We discuss the possible phases in this regime, including possible
mixtures of dimers and unpaired atoms, in more detail in Chap. 3. If a finite
nd is present, a weakly-coupled, stable BEC forms, since both the dimer-dimer
interactions with scattering length add � 0.6a ¡ 0 [60] as well as the interactions
between dimers and excess atoms with aad � 1.18a ¡ 0 [64] are of a repulsive
nature. In addition, they only give rise to small corrections, due to the limit
a Ñ 0�. As d � 3 is above the upper critical dimension of the condensation
transition [72], mean-field theory applies and in the limit nda

3 Ñ 0 the system is
described by the Gross-Pitaevskii equation, which yields a linear dependence on
the bosonic chemical potential nd � µB{gdd, with the coupling constant gdd �
4π~2add{mB � 2π~2add{m for the molecules of mass mB � 2m [42].

Both of the latter limits share the common feature that one automatically enters
a perturbative regime in the dilute limit, which is caused by the smallness of the
gas parameters na3 ! 1 or nda

3 ! 1, respectively. The corresponding theories are
either the BCS theory, if a   0, which takes pairing effects into account or for
positive a the theory of a BEC of weakly repulsive diatomic molecules. The name
BCS-BEC crossover refers to the fact, that the ground-state at finite and equal
spin-populations forms a superfluid, irrespective from the value of a. Moreover,
the thermodynamic quantities evolve smoothly through the unitary limit a�1 � 0
when changing the scattering length from negative to positive values or vice versa.
Further information on this subject can be found in the book [74] and in the
reviews [41,75,76].

In contrast to the BCS or BEC limit, the strongly interacting regime in the
vicinity of the critical point a�1 � 0 can never be treated by an expansion in
terms of a small gas parameter. However, the fact that µ � h � 1{a � 0 defines a
scale-invariant fixed point allows to obtain a large amount of information about the
system, despite the presence of strong correlations, since the existence of the fixed
point gives rise to a universal regime, where scaling theory applies [72]. Universality
in the context of ultracold atoms means that the only relevant intrinsic length
scale is the (inverse) scattering length a�1, which can be tuned by an external
magnetic field, according to eq. (2.5). This implies that thermodynamic quantities
follow from universal scaling functions, whose arguments are given by the ratios
of the relevant perturbations T, µ, h and a�1 around the critical point. The range
of validity of these scaling forms is restricted to energy scales smaller than the
microscopic energy scale Ē � ~2{pmā2q � EvdW or equivalently to lengths scales
larger than the corresponding microscopic length ā � lvdW, respectively. Beyond
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Chapter 2 Many-body physics with ultracold Fermions

those boundaries non-universal effects, for example due to the finite effective range,
have to be taken into account.

The standard grand potential, which contains all thermodynamic information,
becomes in this setup

ΩpT, µ�, µ�, 1{a, V q � �T log Tr exp r�βpĤ � µ�N̂� � µ�N̂�qs
� �T log Tr exp r�βpĤ � µN̂ � h δN̂qs � ΩpT, µ, h, 1{a, V q ,

(2.33)

where N̂ corresponds to the total particle number operator, while δN̂ measures
the difference of the spin populations. Within the universal regime one can now
express the pressure, which is directly proportional to the grand potential, in terms
of a universal scaling function fp

ppT, µ, h, a�1q � �ΩpT, µ, h, a�1q
V

� pp0qpT, µqfp
�
βµ, βh,

λT
a



, (2.34)

where

pp0qpT, µq � 2
T

λ3
T

Li5{2p�eβµq (2.35)

defines the pressure of a non-interacting, balanced Fermi gas [77] and

Lispzq �
8̧

k�1

zk

ks
(2.36)

denotes the polylogarithm. Using the standard thermodynamic relations for the
density and the definitions eqs. (2.30) and (2.33), one can determine the total
density n and the density difference δn via

n � n� � n� �
� Bp
Bµ



T,h,a

(2.37a)

δn � n� � n� �
�Bp
Bh



T,µ,a

. (2.37b)

Note that in a phase with equal spin populations, that is δn � 0, the thermody-
namic potential does not depend on h. This will be of interest especially in the
T � 0 case, where thermal fluctuations of the particle number are absent. Further-
more, we introduce the spin polarization

σ � n� � n�
n� � n�

� δn

n
, (2.38)

that varies between σ � 0, in the spin-balanced situation, where n� � n{2 � n�
and σ � 1 in the fully polarized case n� � n, n� � 0. To study the ground state
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2.3 Quantum critical point and universal phase diagram of the BCS-BEC crossover

properties in the crossover regime at finite 1{a � 0 a more convenient representation
of fp is obtained by rescaling all energies by the binding energy (also for a�1   0,
despite the absence of a two-body bound state). In the corresponding units µ̄ �
2µ{pεBq and h̄ � 2h{εB, where the factor of two has been introduced for later
convenience, the pressure scaling function reads

pp0, µ, h, a�1q � pp0qp0, µqf p�qp pµ̄, h̄q . (2.39)

This form, which has been introduced in Ref. [78] generalizes previous formulations

for the ground state thermodynamics [79,80]. In particular, f
p�q
p , whose superindex

refers to the sign of a�1, indicates that the ground-state phase diagram separates
into three regimes. In the limit µ̄ ! 1 one recovers either the BCS physics, if a�1  
0, or the weakly-repulsive BEC, if a�1 ¡ 0. On the other hand the unitary regime,
where the pressure reduces to a function of merely two arguments pp0, µ, h, 0q, is

encountered for µ̄ " 1. Since the scaling function f
p�q
p has to smoothly cross over

from finite scattering lengths to the limit a�1 Ñ 0�, where the scattering length
has to drop out, it can only depend on the ratio µ̄{µ̄ � µ{h at the resonance.
Therefore, we obtain the following evolution of the scaling form

f p�qp pµ̄, h̄q Ñ fpph{µq , (2.40)

for the approach to unitarity. In Chapter 3 we show the universal phase boundaries
in the h̄ vs. µ̄ representation at 1{a � 0 and for positive and negative scattering
length. In Section 5 we use our Luttinger-Ward data to determine quantitatively
at which value of µ̄ the crossover between the weak and strong coupling regimes
takes place.

At finite T the scaling function of the unitary gas becomes fppβµ, βh, 0q �
fppβµ, βhq, which has first been noted by Ho [22]. So far, mainly the restriction
fppβµ, 0q to the balanced case has been addressed both theoretically and experi-
mentally. The obtained results will be detailed in the next section, but for now we
focus on the general statements that can be deduced from the scaling arguments.
In particular, fppβµ, βhq gives rise to a set of universal numbers, that characterize
the thermodynamic properties of the gas at resonance and therefore have attracted
considerable interest. First of all, there is the critical temperature of the normal-
to-superfluid transition θc � Tc{εF , where εF � ~2{p2mqp3π2nq2{3 denotes the
Fermi-energy of an ideal Fermi gas of the same density n. In addition, the ground
state pressure at h � 0 acquires the form

pp0, µ, 0, 0q � pp0qp0, µqfpp0q � ξ�3{2
s pp0qp0, µq , (2.41)

which is directly proportional to the Pauli pressure of an ideal Fermi gas, according
to (2.39) and (2.40). The proportionality constant is called the Bertsch parame-
ter10 ξs. Another universal quantity of interest is the ratio ph{µqc, describing the

10The power ξ
�3{2
s follows from the original definitions of the chemical potential µ and the pressure

p of the balanced unitary gas at T � 0 in terms of the density: µ � ξsεF rns and p � ξsp
p0qrns,

which yields p � ξ
�3{2
s 2{5 � p3π2mµ{~2q3{2µ5{2 � ξ

�3{2
s pp0qp0, µq.
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Chapter 2 Many-body physics with ultracold Fermions

Clogston-Chandrasekhar limit of the unitary gas. In particular, it is one of the
goals of this work to determine ph{µqc.

We postpone the summary of the available results on these universal numbers
to the next section on the BCS-BEC crossover, but first note, that these scaling
arguments rely on the observation that the scattering length is the only relevant
internal length scale, which drops out in the unitary limit. As a result, the unitary
gas obeys the standard relation [22]

p � 2

3
ε , (2.42)

between the pressure and the energy density ε of any scale-invariant system with
Galilean symmetry, which usually is encountered in the noninteracting case. The
origin of this equation and the behavior away from unitarity are summarized in
Chapter 2.4, that deals with the Tan relations for systems with zero-range interac-
tions11.

Furthermore, also transport properties of the unitary gas are influenced by the
scale invariance. In particular, the conformal symmetry at the Feshbach resonance
implies that the bulk viscosity

ζpT q � 0 (2.43)

vanishes [81] identically in the normal phase. We return to the generalization for
the superfluid phase, where one actually distinguishes between three different bulk
viscosities, in Section 8. A more thorough discussion can be found in Ref. [42].

2.3.2 The BCS-BEC crossover of the balanced Fermi gas

After the first experimental realizations of strongly interacting Fermi gases in the
regime |kFa| " 1 by O’Hara et al [82] in 2002 and the creation of molecular,
fermionic BECs [3–5], many experimental groups began to investigate the physics
of strongly interacting Fermi gases and the BCS-BEC crossover [62, 83–85]. In
particular, Chin et al. [86] used rf spectroscopy to reveal fermionic pairing caused
by the many-body character of the system. Direct experimental evidence for the
existence of a fermionic superfluid both at positive and negative scattering lengths
was given by Zwierlein et al., who showed that a vortex lattice persists, while
sweeping the scattering length back and forth through the Feshbach resonance. A
major experimental step has been achieved in 2012 by Ku et al. [58], who measured
the universal pressure and density equations of state of the unitary, spin-balanced
Fermi gas from in-situ imaging with unprecedented precision. Furthermore, Ku et
al. observed the normal-to-superfluid phase transition and determined the critical
temperature T � 0.16...T {TF and the Bertsch parameter ξs � 0.37... introduced

11Alternatively, eq. (2.42) can be quite easily proven from the relation Ω � U � TS � µN � hN
together with the standard thermodynamic derivatives and the equation (2.34) at 1{a � 0.
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2.3 Quantum critical point and universal phase diagram of the BCS-BEC crossover

in eq. (2.41). The latter value results from using the most precise detection of the
Feshbach resonance in 6Li at 832.16G by Zürn et al. [51].

Motivated by the experiments a great theoretical effort has been expended to
improve the understanding for the phase diagram beyond the original mean field
approaches by Eagles [19], Leggett [20] and Nozières and Schmidt-Rink [21]. In
particular, the measurements by Ku et al. [58] allow for a parameter-free com-
parison between the experimental results and the predictions of different quantum
many-body theories on a quantitative level. A fully self-consistent Luttinger-Ward
computation based on ladder-diagrams consisting of interacting Green’s functions
has been developed by Haussmann [87] already in 1994 for the normal fluid and later
extended to the superfluid phase by Haussmann et al. [37]. It yields Tc � 0.16TF
right at the resonance in very good agreement with the experiment. Furthermore,
this method is able to obtain quantitative results for the thermodynamics of the
Fermi gas also at finite values of the scattering length, e.g. the critical temperature
θ � Tc{εF as a function of the dimensionless coupling constant v � 1{pkFaq is
depicted in Fig. 2.3. In this thesis we will extend this approach to finite Zeeman
fields h � 0. Moreover, due to the availability of precise experimental data and the
scale invariance of the unitary Fermi gas, a variety of nonperturbative quantum
many-body methods has been applied to the system at infinite scattering length,
including Quantum Monte Carlo approaches [88–90], an ε expansion both around
d � 2 and d � 4 dimensions [91, 92] and Bold Diagrammatic Monte Carlo com-
putations [93]. We will summarize the main approaches and their results below.
Further information can be found in the reviews by Bloch et al. [41], the book
edited by Zwerger [74] and the lectures by Zwerger [42].

Before we describe the strongly interacting regime around unitarity, let us first
briefly review the asymptotic behavior in the BCS and BEC limits, which will
also serve as checks for our results in the spin-imbalanced case. For v Ñ �8 one
encounters the weak-coupling limit, that can be described by applying the BCS-
pairing mechanism to ultracold Fermions [94]. The critical temperature and the
T � 0 superfluid excitation gap are of the form obtained by Gorkov and Melik-
Barkhudarov [95] already in 1961:

Tc � 8eγ

p4eq1{3πe2
εF expp�π

2
|v|q (2.44)

and

∆0 � 8

p4eq1{3e2
εF expp�π

2
|v|q , (2.45)

which are asymptotically exact results for the basic underlying model (2.26) In
particular, their ratio gives rise to the universal value from BCS theory

∆0

Tc
� πe�γE � 1.76 , (2.46)
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Figure 2.3: Critical temperature as function of the dimensionless coupling strength
for spin balance, from [37]. The red line indicates the physical transition
line, while the blue one is an artifact of the Luttinger-Ward method,
which is explained in the text.

where γE � 0.577... denotes the Euler-Mascheroni constant. The prefactor of Tc
and ∆0 includes corrections from density fluctuations by taking into account all
second order contributions of the interactions exactly [96]. In fact, this entails a
change of the physical coupling strength by

g Ñ g

�
1� gNp0q1� 2 ln 2

3



, (2.47)

with Np0q referring to the density of states at the Fermi level. The standard BCS
theory without these induced interaction corrections yields a critical temperature
that is enlarged by a factor of p4e2q1{3 � 2.22. Note that the asymptotic crit-
ical temperature from the Luttinger-Ward approach [37] in Fig. 2.3 follows this
BCS asymptotics, due to the absence of particle-hole fluctuations in the underly-
ing particle ladder approximation (see also Section 4.4.2). From the perspective of
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universality we can transform eq. (2.44) to

T̄c � 8eγ

p4e2q1{3πe2
µ̄ exp

�
� π

2
?
µ̄



, (2.48)

where we have defined the dimensionless temperature T̄ � T {pεB{2q in analogy
to µ̄ and h̄ in the zero-temperature scaling function (2.39). Furthermore, we have
identified µ � εF , which holds in the BCS limit up to exponentially small correc-
tions of order ∆2. Finite critical temperatures are only possible for µ̄ ¡ 0, which
is a prerequisite for a finite density of atoms.

In the opposite limit of v Ñ 8, the dimer-dimer interactions become negligible
and one expects to recover asymptotically the critical temperature of an ideal BEC,
consisting of nd � n{2 pairs of mass mB � 2m, which reads [16]

TBEC
c � 2π

rζp3{2qs3{2
~2n

2{3
d

md
� 0.218 εF . (2.49)

Away from the extreme BEC limit the mutual interactions of dimers imply addi-
tional corrections . The leading contribution in the weak coupling limit nd a

3
dd ! 1

yields an increase of the critical temperature [97–99]

Tc
TBEC
c

� 1� c n
1{3
d add � ... , (2.50)

where c � 1.31 [100, 101] denotes a numerical constant. Physically, this effect can
be interpreted as a reduction of the volume per particle due to the repulsion, which
effectively increases the phase space density nλ3

T in comparison to the ideal gas and
therefore the critical temperature grows.

Despite the continuous nature of the normal-to-superfluid transition, the Luttinger-
Ward formalism turns out to give rise to a weak first order transition, as shown
in Ref. [37], which is signaled by a hysterisis of the normal solution with ∆ � 0
and the superfluid branch with finite order parameter. This effect has already been
observed a long time ago in a Luttinger-Ward study of the weakly-interacting BEC
transition [102]. To remedy the problem in the context of the BCS-BEC crossover,
one fixes Tc at a given v by the criterion that the involved jump of the entropy
between the normal and superfluid solution is minimal at this temperature. This
construction yields indeed a maximum of the Tc curve in the vicinity of v � 1, as
can be seen in Fig. 2.3. The additional (blue) line gives the critical temperature,
below which no solution with vanishing order parameter exists.

Equation (2.49) can also be written in the universal formulation, like eq. (2.48).
Using the relations nd � gddµB from the Gross-Pitaevskii equation and gdd �
2π~2add{m one obtains with add � 0.6a [60]

T̄BEC
c � p2πq1{3

p0.6 ζp3{2qq2{3
pµ̄� 1q2{3 , (2.51)
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which yields physical critical temperatures for µ̄ ¥ �1, due to the energy gain of
�εB{2 per Fermion upon forming a pair. At even lower values of the dimensionless
chemical potential only the vacuum remains.

As mentioned in the introduction to this section, special focus has been given
to the unitary limit. Experimentally, the scaling function fppβµ, 0, 0q has been
measured at MIT by a direct integration of the in-situ density profiles from the
non-degenerate regime βµ � �1.6 [93] into the superfluid phase [58]. The phase
boundary to the superfluid has been observed at pβµqc � 2.5, which corresponds
to the critical temperature Tc � 0.16 εF . Furthermore, the Bertsch parameter has
been determined from an extrapolation to zero temperature as ξs � 0.37 (including
the corrected position of the Feshbach resonance in 6 Li [51]).

From the theoretical perspective several methods have been developed that agree
very well with the experimental measurments. The Luttinger-Ward theory by
Haussmann et al. [37,87] finds θcpv � 0q � 0.16 and ξs � 0.36. Regarding the crit-
ical temperature, quantum Monte Carlo computations yield θc � 0.152p7q [88] and
θc � 0.171p5q [89]. A more recent Monte-Carlo study by Goulko and Wingate [90]
also investigated the superfluid regime, where the results are consistent both with
the MIT experiment and the Luttinger-Ward approach.

In addition, it turns out to be useful to consider the unitary Fermi gas also in
d � 2 or d � 4 dimensions, where it either becomes equivalent to an ideal Fermi gas
or an ideal Bose gas, as has been realized in Ref. [103]. Therefore, it is amenable to
an ε-expansion around both dimensions, which has been first performed by Nishida
and Son [91]. An overview of this method is given in Ref. [104]. A Borel-Padé
approximation to match the two expansions in ε � d � 4 and ε � d � 2 up to
next-to-leading order yields for the critical temperature Tc � 0.183 � 0.014 [92].
Furthermore, the value of the Bertsch parameter has been obtained in a similar
manner, after extending the ε � d � 4 expansion to third order [105], by a Padé
resummation, which finds ξs � 0.365� 0.01 [106].

The most successful theoretical approach in the sense of both the best agreement
with the experimental data and control over the systematic errors has been followed
by Van Houcke et al., who performed a bold diagrammatic Monte Carlo simulation
(BDMC) for the pressure equation of state of the unitary Fermi gas in the normal
regime above Tc [93]. The BDMC results can be further improved by performing
a Borel resummation [107] of the underlying asymptotic series. In fact, Rossi even
proved for the unitary gas that this series of diagrams, which actually has vanishing
convergence radius, is Borel resummable [108].

The phase diagram of the balanced unitary Fermi gas at finite temperatures is
depicted in Fig. 2.4, which in this form has first been discussed by Enss [109]. At
T � 0 and µ   0 no particles are present and one encounters the vacuum state in
accordance with Fig 2.2. The onset of a finite density of Fermions takes place at the
quantum critical point at vanishing µ, such that for positive µ the low-temperature
superfluid state forms. Due to the scale invariance, all phase boundaries are straight
lines, whose slopes are given by universal numbers. Specifically for the critical
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Figure 2.4: Phase diagram of the balanced unitary Fermi gas. The black line in-
dicates the phase transition between the normal and superfluid state,
while the dashed line refers to the crossover between the non-degenerate
dilute gas and the quantum critical regime, following Ref. [109].

temperature of the superfluid transition one finds the ratio pT {µqc � 1{pβµqc � 0.4.
Furthermore, as discussed by Sachdev [72,73], just above the vacuum in the regime
T ! |µ| a non-degenerate gas is created from thermal particle fluctuations. When
one increases the temperature even further, the system crosses over at T � |µ| to
the quantum critical regime µ ! T - The latter is theoretically challenging due to the
absence of well-defined quasiparticles, which for examples renders the calculation
of transport properties difficult. We return to this issue in Chapter 8.

2.3.3 BCS-BEC crossover and spin imbalance

In the presence of spin imbalance the phase diagram in the strongly interacting
regime of the crossover is much less understood. As a convenient starting point,
we therefore briefly review the well-known results of the imbalanced Fermi gas in
the weak coupling limit, which historically has been deduced from BCS theory in
the context of superconductors, see e.g. the book by Saint-James [110]. This al-
lows us to introduce the necessary concepts for the description of the BCS-BEC
crossover at finite Zeeman fields, before summarizing more recent results on ul-
tracold Fermions. Like in the balanced situation, the scaling theory around the
fixed-point at unitarity provides a number of theoretical insights for the strong
coupling regime. In particular, the phase boundaries in the ground state exhibit a
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Chapter 2 Many-body physics with ultracold Fermions

universal representation, which is detailed in Chap. 3.
The finite-temperature phase boundaries for the weak coupling BCS regime

are depicted in Fig. 2.5 in units of the gap ∆0 at zero temperature, while the
projection to the ground state can be found in the universal h̄ � µ̄ representa-
tion in Fig. 3.1 in the next chapter. Finite temperatures in the connection with
a Zeeman field have been studied first by Sarma [26], who found a tricritical
point T at ph{∆0, T {∆0qT � p0.61, 0.31q, where the order of the phase transition
changes. For critical temperatures larger than pT {∆0qT the transition is continu-
ous and the endpoint at h � 0 is located at the inverse of the universal BCS-ratio
pπ expp�γEqq�1 � 0.57, according to eq. (2.46). For temperatures below pT {∆0qT
the criterion of vanishing order parameter (dashed line), which assumes a second
order phase transition between the normal and BCS state, predicts a backbending
of the BCS-phase. However, due to the first order character of the transition en-
countered in this temperature range, the BCS phase remains the global minimum
of the free energy and extends further to the blue line, which for T Ñ 0 terminates
at the Clogston-Chandrasekhar(CC) limit hc � ∆0{

?
2 [24, 25]. Within the region

between these two boundaries a Sarma state [26] may exits as a metastable phase.
The latter realizes a spin-imbalanced fermionic superfluid with two Fermi spheres of
unequal size k� ¡ k�, but with Cooper pairs with vanishing center-of-mass momen-
tum Q � 0, like in the standard BCS scenario. More specifically, the Sarma phase
is characterized by a spectral gap below the Fermi level εF� of the majority compo-
nent, since pairing affects the states around the smaller Fermi energy εF�   εF� of
the minority species in order to form Cooper pairs with Q � 0. As was shown by
Fulde and Ferrell [27] and independently by Larkin and Ovchinnikov [28], super-
fluidity, however, does not immediately break down for fields beyond hc. Instead,
Fermions with opposite spin can form Cooper pairs with a finite QFFLO � 0, which
provides a compromise between the tendency to pair and the mismatch of the two
Fermi seas, induced by h. Larkin and Ovchinnikov furthermore investigated the
thermodynamic stability of different spatial modulations of the order parameter.
They found that the state which minimizes the free energy exhibits the spatial
periodicity ∆pxq � cospQFFLO � xq [28] and therefore is more favorable than the
plane-wave state ∆pxq � exppiQFFLO �xq, used by Fulde and Ferrell [27]. Moreover,
in the ground state the magnitude |QFFLO| satisfies the relation [28]

~vFQFFLO � 2.4h , (2.52)

where vF � ~kF {m denotes the Fermi velocity obtained from the total density
kF � p3π2nq1{3. At zero temperature the FFLO phase, is located within the range
1{?2   h{∆   0.754 in the phase diagram 2.5. Solving the gap equation at finite
temperatures with the option of a finite pairing vector Q yields the continuous
N-FFLO transition line [110], which is plotted with red color in Fig 2.5. In fact, a
later study by Buzdin and Kachkachi [111] and Combescot and Mora [112] revealed
that the internal structure of this line is more complicated, since it has a first order
part in the vicinity of the tricritical point, too. Furthermore the FFLO-ordered
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2.3 Quantum critical point and universal phase diagram of the BCS-BEC crossover

phase itself may consist of various subphases, which are distinguished by different
spatial structures of the order parameter, for details see the review [113].

Let us return to ultracold quantum gases of fermionic atoms. The fact that
the individual populations of the trapped hyperfine states can be easily controlled
in experiments, in contrast to the superconducting electronic condensed matter
systems, motivated the study of the BCS-BEC crossover in the presence of spin
imbalance, where the strongly coupled regime near unitarity attracted special in-
terest. The experimental work on trapped Fermions with unequal populations of
the hyperfine states was started in 2006 by Patridge et al. [30, 31] and by Zwier-
lein et al. [32]. Shin et al. [35] focused on the equation of state. Moreover, Shin
et. al were also the first to measure the Clogston-Chandraskhar(CC) limit of the
unitary gas [33, 34]. Using phase-contrast imaging, they found the universal ratio
ph{µqc � 0.95 for the transition out of the balanced superfluid in the limit T Ñ 0.
This ratio was also investigated by Navon et al. [36], who extracted ph{µqc � 0.88
from the experimental data.

On the theoretical side, a qualitative, yet very complete picture of the phase
diagram of the imbalanced Fermi gas at zero temperature, including an FFLO phase
even at positive scattering lengths, has been obtained by Son and Stephanov [2]
from a description based on effective field theory. We will discuss their results
in detail in the next chapter, dedicated to the phase diagram in the ground state.
Using the expansion around a narrow Feshbach resonance, which allows for a mean-
field description within BCS theory, the phase diagram as function of h and pkFaq�1

has been computed by Sheehy and Radzihovsky [69] in the ground state and at finite
temperatures by Parish et al. [68]. Moreover, a related large-N expansion has been
performed to leading order by Nikolič and Sachdev [1], as well as to next-to-leading
order by Veillette et al. [70]. Apart from that, a Quantum Monte Carlo computation
by Goulko and Wingate [89] investigated the critical temperature of the unitary gas
with small imbalance and a very recent work by Rammelmüller et al. [114] obtained
the universal density scaling function npβµ, βhq{np0qpβµ, βh � 0q of the resonant
gas from a complex Langevin method. However, so far no quantitatively reliable
results for the pressure scaling function fppµ, h, λT {aq at arbitrary temperatures
and scattering lengths have been obtained beyond the mean-field level.

Motivated by the results of the Luttinger-Ward study by Haussmann et al. [37]
for the spin-balanced Fermi gas, which agree very well with the measurments by Ku
et al. [58], it is the main goal of this thesis to extend this approach to finite Zeeman
fields and thereby obtain quantitative results about the phase diagram and the
thermodynamic quantities that can be tested experimentally. Another argument
in favor of this method, is the possibility to study both resonant and non-resonant
interactions at finite T , including the possibility to extrapolate towards T � 0,
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Figure 2.5: Phase diagram of the imbalanced gas in the weak coupling BCS limit.
The black line indicates the second order phase transition between the
normal and the BCS superfluid that ends at the tricritical point T.
Between the black dashed line and the blue line the Sarma solution
may exist as a metastable state. The blue line also indicates the first
order transition between the homogeneous superfluid and the FFLO
state. The red phase boundary marks the continuous transition to the
normal state.

2.4 Tan relations and their consequences for the
thermodynamics of Fermi gases with zero-range
interactions

To close this introductory chapter we state the Tan relations in Sec. 2.4.1. First
we consider the microscopic definition in the context of the zero-range limit of the
interaction potential before we turn to their implications for the thermodynamic
properties of the Fermi gas. Afterwards in Sec. 2.4.2, we turn to further thermody-
namic quantities, like the specific heat, the compressibility and the Landau-Placzek
ratio, which are also influenced by the Tan relations. However, we will concentrate
mainly on the unitary gas.
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2.4 Tan relations and further thermodynamic properties

2.4.1 Tan relations

Quite remarkably, as discovered by Shina Tan [38–40], fermionic quantum many-
body systems with zero-range interactions satisfy a number of exact relations in
three dimensions12. They involve a central new observable: the extensive Tan
contact C. Since these relations follow from an operator product expansion [117],
they hold irrespective of the state of the system. Therefore, C attains a state-
dependent value, while the form of the equations remains invariant. In this section,
we will first introduce the contact from a microscopic perspective and then focus
on its implications for the laws of thermodynamics. Both points of view will play
a role for the implementation of the Luttinger-Ward formalism, later on. Again,
we follow the lectures [42] but generalize some of the equations to the situation
with finite spin-imbalance. Further details on the Tan relations and their physical
consequences, in particular also on nonequilibrium observables, can be found in the
review by Braaten [118].

Microscopically, the contact is related to the short-range correlations of the sys-
tem. In a spatially inhomogeneous system the contact density Cpxq becomes a
function of the position x. It is defined via the zero-range limit of the expectation
value [42]

~4

m2
Cpxq � lim

ΛÑ8
ḡ2pΛqxÔcpxqy � lim

ΛÑ8
ḡ2pΛqxΨ̂:

�pxqΨ̂:
�pxqΨ̂�pxqΨ̂�pxqy . (2.53)

This product of operators times the squared bare coupling constant ḡ2pΛq turns
out to be finite, when the cutoff is sent to infinity. This can be verified from the
physical assumption that the total energy density ε � xĤy{V � xĤkin � Ĥinty{V
must be finite and a smooth function of 1{a. Hence, taking the derivative of ε with
respect to the scattering length, must yield a well-defined quantity, too. Applying
the Hellmann-Feynman theorem gives rise to

Bε
Ba �

B
BaḡpΛqxÔcpxqy �

ḡ2pΛq
ag

xÔcpxqy , (2.54)

where we have used (2.31) with d � 3 and the relation g � 4π~2a{m. In the
following, we restrict our discussion to spatially homogeneous systems, where the
contact density becomes a constant Cpxq � C. This microscopic definition of C will
entail a connection to the vertex function of the Luttinger-Ward formalism, detailed
in Section 4.5. Furthermore, we obtain a direct consequence for the thermodynamic
properties of a system with zero-range interactions, since we can combine the last
two equations, such that

Bε
Ba�1

� � ~2

4πm
C , (2.55)

12Equivalents of the Tan relations also exist in d � 1 [115] and d � 2 [116].
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Chapter 2 Many-body physics with ultracold Fermions

which is a special formulation of the Tan adiabatic theorem from eq. (2.59) for
homogeneous systems. In particular, knowledge of the contact density as a function
of a allows to determine the energy density by integrating the above equation
starting from the non-interacting limit. In addition, the total energy density is
the sum of the kinetic and interaction energy densities: ε � εkin � εint. Since
εint � ḡpΛqxÔcpxqy � Λ Cpxq diverges in the limit Λ Ñ 8, also εkin does in order
to obtain a finite ε. In case of a homogeneous system we have for the complete
expression

ε �
¸
σ

»
d3k

p2πq3 εknσpkq � ḡ�1pΛqh
4C
m2

, (2.56)

where nσpkq denotes the momentum distribution of the spin component σ. We can
eliminate the cut-off dependence by replacing the bare coupling constant via (2.29)
and find the Tan energy theorem [38].

ε �
¸
σ

»
d3k

p2πq3 εk
�
nσpkq � C

k4

�
. (2.57)

From this relation we immediately conclude that the momentum distribution must
acquire an asymptotic tail� C{k4 to render the total energy density finite. When we
implement the self-consistent equations of the Luttinger-Ward approach in Chap-
ter 4, we have to keep this interaction-induced asymptotics in mind, because the
formalism requires the repeated calculation of Fourier transforms of the single-
particle Green’s function Gσσ pk, τq, which is related to the momentum distribution
via nσpkq � Gσσpk, 0�q. Consequently, the numerical routines must be able to deal
with algebraically decaying functions.

Furthermore, equation (2.55) implies that the contact density is also connected
to the change of the scaling functions (2.34) and (2.39) upon a variation of the
scattering length. To gain further insight concerning this relation, we consider the
Tan contact from general thermodynamic grounds. The many-body problem of a
dilute fermionic quantum gas, that exhibits an open-channel dominated Feshbach
resonance, is quite special, since the interactions depend only on a single observable
quantity, namely the scattering length, which in addition can be tuned by vary-
ing the external magnetic field strength. Therefore, one can extend the standard
dependence of the free energy F on the variables T , V and Nσ by the new argu-
ment 1{a, which is conjugate to the macroscopic, generalized thermodynamic force
X1{a [119], such that the differential dF reads

dF pT, V,Nσ, 1{aq � �SdT � pdV �
¸
σ

µσdNσ �X1{a d
�

1

a



. (2.58)

Performing the Legendre transformation from the microcanonical internal energy
UpSq, as function of the entropy S, to F pT q, as function of the temperature, while
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keeping the other arguments fixed, reveals that we can identify this force with the
contact C. This follows from

X1{a �
� BF
Bp1{aq



T,V,Nσ

�
� BU
Bp1{aq



S,V,Nσ

� � ~2

4πm

»
d3x Cpxq � � ~2C

4πm
,

(2.59)

where we have inserted the result (2.55) on the right-hand side to be consistent
with the microscopic approach. This thermodynamic identity is called the Tan
adiabatic theorem [38]. In the grand canonical formulation it reads� BΩ

Bp1{aq


T,V,µ,h

� � ~2

4πm
C (2.60)

or expressed in terms of the universal pressure scaling function (2.34) we have� Bp
Bp1{aq



T,µ,h

� pp0qpT, µq
� Bfp
BpλT {aq



βµ,βh

� ~2

4πm
C . (2.61)

Another intriguing relation for a uniform system is the Tan pressure relation

p � 2

3
ε� ~2

12πma
C , (2.62)

which results from a simple scaling argument. To see this and also for later conve-
nience, we introduce the variables

N � N� �N� (2.63a)

δN � N� �N� . (2.63b)

Now, the free energy can be written in terms of a scaling function fF in a similar
manner as fp in eq. (2.34). Assuming that the quantum many-body problem with
attractive zero-range interactions has a well-defined thermodynamic limit, where
F is an extensive quantitiy, we define fF via

F pT,Nσ, V, 1{aq � NεF fF pθ, δN{N, vq , (2.64)

Here we have used the total density n � n��n� to set the overall length and energy
scales by the inverse Fermi wave vector kF and the corresponding Fermi energy εF

kF � p3π2nq�1{3 (2.65a)

εF � h2k2
F {p2mq (2.65b)

of the corresponding spin-balanced, ideal Fermi gas. We will stick to this notation
throughout the remainder of the thesis. In particular, this definition has to be
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distinguished carefully from the definition kFσ � p6π2nσq1{3 and εFσ � ~2k2
Fσ{p2mq

of a single-component Fermi gas with spin orientation σ, which is frequently used
in the literature, too. Furthermore, on the right-hand side of equation (2.64) we
have introduced the reduced temperature

θ � T

εF
(2.66)

and the dimensionless interaction strength

v � 1

kFa
(2.67)

and for later convenience we also define the dimensionless chemical potential

µ̃ � µ

εF
(2.68)

and the Zeeman field

h̃ � h

εF
. (2.69)

If we rescale aÑ a{?λ, T Ñ λT and V Ñ λ�3{2V , while the particle numbers Nσ

remain fixed, we obtain from the scaling form of the free energy

F pλT,Nσ, λ
�3{2V,

?
λ{aq � λF pT,Nσ, V, 1{aq . (2.70)

Taking the derivative of this equation with respect to λ in combination with the
standard form of dF in (2.58) yields the Tan pressure relation (2.62) by setting
λ � 1. The latter relation also leads to the conclusion that the unitary gas satisfies
the scale-invariance condition p � 2{3 ε from eq. (2.42), since C is finite for all
sets of thermodynamic parameters, as discussed in [42], while 1{a � 0 vanishes
at resonance. In Chap. 4.7 we will use the Tan pressure relation to construct a
consistency check for the numerical results of the Luttinger-Ward approach.

Physically, the Tan contact originates genuinely from interaction effects. As
discussed by Zwerger [42], the zero-range interactions imply the following short-
range correlations: The number of � atoms located within a sphere of radius b,
with re   b ! n�1{3, λT scales linearly with the radius N�pb Ñ 0q � C{p4πn�q �
b, in contrast to a noninteracting gas, where N� scales with the volume of the
sphere due to the trivial correlations between the spin components. Similarly, the
noninteracting Green’s functions (4.10) do not show an algebraic tale � C{k4 but an
exponential behavior. From a macroscopic perspective the Tan contact measures
how the thermodynamic properties of the system change with the scattering length.
In particular, in the weakly interacting BCS and BEC limits of the spin-balanced
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gas the C can be determined from standard expansion of the of the ground-state
energy density in terms of the gas parameter na3. For aÑ 0� this yields [42]

C � k4
F

�
2kFa

3π


2 �
1� 12p11� 2 ln 2q

35π
kFa� ...



, (2.71)

where the leading term arises from the mean-field interaction εMF � gn2{4 � ak6
F .

In the opposite limit aÑ 0� one finds asymptotically [42]

C � k4
F

�
4

3πkFa
� 0.6

�
kFa

3π


2

� ...

�
, (2.72)

whose dominant term arises from the contribution of the two-body bound states
ε � n{2εB � ... to the total energy density. Regarding the strongly interacting
regime, the contact density has been computed at arbitrary interaction strengths
for the balanced Fermi gas within the Luttinger-Ward approach [37]. At unitarity
the numerical result therefrom for the ground state gives rise to a universal number
s0 � 0.102, with Cp1{kFa � 0q � s0k

4
F . Experimentally, the contact has been

measured via Bragg spectroscopy [120, 121]. The obtained result c0 � 3πs0 �
3.17� 0.09, which involves both trap-averaging and the extrapolation to T � 0, is
close to the theoretical prediction c0 � 3.02.

Taking the opposite, noninteracting limit, the contact density vanishes like a2,
as can be seen from eq. (2.71), in agreement with the previous arguments that C is
intrinsically related to the zero-range interactions. Similarly, in a single-component
Fermi gas the contact density is also C zero, since the zero-range interactions affect
only atoms of opposite spin. In the limit of extreme imbalance C scales to zero
linearly with the density n� of minority atoms, that are immersed in a background
of majority atoms with finite density n�, as noted by Punk et al. [122]. This
conclusion follows from the expansion of the total energy density in the presence
of a small density of minority atoms n�

ε � 3

5
n�εF� � µ�n� � ... . (2.73)

The first term describes the energy of the bare Fermi sea of the majority component,
while the second one incorporates the lowest order energy gain by adding a small
density of impurities, which is characterized by µ� [80]. Using the definition (2.55)
we indeed obtain the linear relation [122]

C � 4πm

~2

� Bµ�
Ba�1



n� . (2.74)

The Luttinger-Ward computation presented in the following chapters allows to
extract the contact density as function of the temperature, the scattering length and
the Zeeman field. In particular, we are able to extend the theoretical predictions
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regarding C in the strong coupling regime to finite spin imbalance. Furthermore,
we develop a consistency check for the numerical results, which is based on the
Tan pressure relation (2.62). Now we turn to further thermodynamic quantities in
connection with the Tan contact, which are also accessible by our computations.

2.4.2 Further thermodynamic relations

Apart from the crossover within the superfluid at very low temperatures also the
finite temperature phase transition between the normal and the superfluid poses
an interesting problem. Since this transition is a continuous one, it is revealed by
sharp features appearing in the second derivatives of the thermodynamic potential,
which in the context of ultracold Fermions has first been pointed out in Ref. [58].
Examples for such quantities are the specific heat per particle c̃V � CV {N �
T {N pBS{BT q, which within the formulation (2.64) can be written as

c̃V � � 1

N

�B2F

BT 2



N,δN,V,1{a

� �θB
2fF
Bθ2

, (2.75)

similarly to the isothermal compressibility κT � �V �1pBV {BpqT , which has been
measured by Ku et. al [58] in case of the unitary spin-balanced gas. With
p � �BF {BV with N, δN, T, 1{a fixed, we obtain from eq. (2.64) at 1{a � 0 and
arbitrary spin imbalance

κ
p0q
T

κT
� p

pp0q
� θ2 B2fF

Bθ2
. (2.76)

In order to normalize the pressure and the compressibility we have divided them by

their non-interacting counterparts pp0q � 2{5nεF and κ
p0q
T � 3{p2nεF q. Comparing

the latter two equations gives rise to the simple relation

c̃V � 3

2θ

�
p

pp0q
� κ

p0q
T

κT

�
, (2.77)

which implies an upper bound on the specific heat

c̃max
V � 3

2θ

p

pp0q
, (2.78)

since any stable system requires a non-negative κT . In particular, this relation also
holds at the critical temperature below which the unitary gas becomes superfluid.
This transition belongs to the universality class of the d � 3 XY-model [123], which
implies the corresponding specific heat exponent α � �0.01 and the universal am-
plitudes c�{c� � 1.05, such that the leading, nonanalytic temperature dependence
of the specific heat is given by

c̃V ptq � cV pTcq � c�|t|�α � ... , (2.79)

36



2.4 Tan relations and further thermodynamic properties

as a function of the dimensionless temperature t � pT � Tcq{Tc � pθ � θcq{θc. The
very small and negative value of α yields a finite value c̃V pθcq, which is very difficult
to detect, since the associated peak becomes very narrow. Using the experimental
data of the unitary gas [58] pc � 0.51pp0q near the critical temperature θc � 0.16 of
the finite system, we conclude for the bound (2.78) c̃V ¤ c̃max

V � 4.8. Comparing
that result to the largest measured value c̃V � 2.3 [58], we find that the observed
peak roughly exhausts 50% of the allowed bound, probably because of the finite
size of the sample and the limited resolution of the experimental devices.

The way to formulate thermodynamic relations in terms of scaling relations has
been crucial for the experiment by Ku et al. [58]. As detailed by Zwierlein [124],
the high-precision measurement of the equation of state of the unitary balanced
gas is based on the representation for the pressure in terms of the density, which
we can readily generalize to arbitrary scattering lengths and spin imbalances

ppT, n, δn, 1{aq � pp0qf̃ppθ, σ, vq , (2.80)

where the spin polarization σ is defined in (2.38). Using this definition to compute
the isothermal compressibility κT , we find

κT

κ
p0q
T

�
�
f̃p � 2

5
θ pBθf̃pq � 1

5
v pBvf̃pq

��1

, (2.81)

where no derivative with respect to σ � δN{N appears, since the compressibility
is only sensitive to changes of the volume at fixed particle numbers Nσ. The last
term, which is related to the Tan contact, obviously vanishes at unitary, which was
crucial for the experimental procedure. Based on the observed data for the pressure
p and κT as a function of p one can integrate the differential equation for pBθf̃pq at
unitarity and obtain the dimensionless temperature [58]

θ � θi exp

�» p{pp0q
pp{pp0qqi

dy

�
y � κ

p0q
T

κT
pcyq

��1 

, (2.82)

where the pair of initial conditions tθi, pp{pp0qqiu can be chosen from the nondegen-
erate regime at high temperatures.

In the more general setting of finite scattering lengths and spin imbalance, how-
ever, the gas is not scale invariant and the last term in eq. (2.81) yields a finite
contribution. In a trap the function vBvf̃p is nontrivial, since even the prefactor v
depends on position via the density profile npxq. In particular, this term can be
related to the Tan contact. The latter is a function of the thermodynamic variables,
such that we can define

CpT,N, δN, V, 1{aq � V k4
F f̃Cpθ, σ, vq , (2.83)
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with an intensive, dimensionless scaling function f̃C for the contact density. With
this definition we can relate the derivative Bvf̃p to the contact

Bf̃p
Bv � kF

pp0q

� Bp
Ba�1



T,N,δN,V

� � kF

pp0q
B
BV

BF
Bpa�1q �

kF

pp0q
B
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However, a direct application of the right-hand side requires to measure the contact
and its derivatives locally in the trap, which has not been achieved so far.

Finally, we discuss the Landau-Placzek ratio of the unitary Fermi gas. In general,
it is defined as the relative difference of the specific heats at fixed pressure and fixed
volume

LP :� Cp
CV

� 1 , (2.85)

which can be rewritten in the form [119]

LP � Tα2
p

cV κT
. (2.86)

The thermal expansion coefficient

αp � 1

V

�BV
BT



p

� κTγ cV (2.87)

includes the Grüneisen parameter γ [125], which for the unitary gas reduces to the
universal number γ � 2{3 due to the scale invariance condition p � 2{3ε [42]. The
thermal pressure coefficient is also related to the Grüneisen parameter via

βV �
� Bp
BT



V

� γ cV � αp
κT

. (2.88)

Furthermore, scale invariance implies the special relation [42]

TβV � 5

2
p� 3

2

1

κT
. (2.89)

Based on these considerations we can express the Landau-Placzek ratio of the
unitary Fermi gas in the form

LP � 5

3
pκT � 1 , (2.90)

which contains only quantities that are directly accessible in the experimental setup
of Ku et al. [58]. To obtain this particular form we have replaced one factor of αp
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2.4 Tan relations and further thermodynamic properties

in equation (2.86) via eq. (2.87) and the other one by the combination of eqs. (2.88)
and (2.89). Alternatively, we can use these relations to write

LP � 2

3
θ
κT

κ
p0q
T

c̃V . (2.91)

This reveals that LPpT Ñ 0q � T 4 because of the scaling c̃V � T 3 in the limit
of very small temperatures where only phonons contribute to the internal energy

of the superfluid, while κT {κp0qT Ñ 1{ξs approaches a universal constant. In the
high temperature regime we can apply the virial expansion to LP. In particular,
including the first nontrivial virial coefficient a2 � �3{p4?2q [126] of the unitary
gas leads to the asymptotic behavior [42]

p � nT p1� 1?
2πθ3{2 � ....q . (2.92)

This implies that the Landau-Plazcek ratio of the unitary gas reads

LP � 2

3
� 5

3
?

2πθ3{2 � ... , (2.93)

such that the value of the ideal classical gas LP
p0q
cl � 2{3 is approached from above.

Consequently, LP is a nonmonotonic function. A quantitative comparison between
the Luttinger-Ward theory and the experimental data can be found in Fig 5.12.
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Chapter 3

Universal ground state phase diagram of
the imbalanced Fermi gas

In this chapter we present the universal phase diagram in the ground state in the
h̄ � 2h{pεBq vs. µ̄ � 2µ{εB representation introduced above the definition of
the pressure scaling function f�pµ̄, h̄q at T � 0, defined in eq. (2.39). The phase
boundaries themselves are revealed as nonanalyticities in f�pµ̄, h̄q. As discussed in
Sec. 2.3.1, the latter allows to split the discussion into the cases 1{a   0, 1{a � 0 and
1{a ¡ 0. We begin with the universal phase diagram in the well-understood weak
coupling regime for negative scattering lengths, that we have already discussed at
finite temperatures in Sec. 2.3.3 and which allows to draw general conclusions about
the structure of the phase diagram beyond the weak coupling limit. Afterwards,
we turn to the unitary limit, where fp � fph{µq (see. eq. (2.40)) depends only on
h{µ, and close the chapter with the case of positive scattering lengths. A similar
presentation can be found in Ref. [78].

3.1 Phase diagram for 1{a   0 and general aspects of the
T � 0 phase diagrams

We begin with the discussion of the ground state phase diagram in the weak cou-
pling limit, shown in Fig. 3.1. To obtain a finite density of particles at least
µ� � µ � h has to be positive, which translates to the condition h � |µ| for the
transition from the vacuum. For µ� ¡ 0 and µÓ   0 the system forms a fully
polarized, non-interacting Fermi sea of � spins denoted by NΩ�

. It extends up to
the saturation field line hs � µ, while for h   hs a finite density of minority atoms
accumulates. The given criterion for hs is equivalent to µ� � 0, which marks the
onset of a finite density of �-atoms in an ideal Fermi gas. In the BCS limit we have
the same criterion for hs, because pairing only gives rise to an exponentially small
corrections to the thermodynamic potential and therefore to all thermodynamic
functions, as can be seen from eqs. (A.19) and (2.45). The normal phase NΩ�¡Ω�

,
which emerges for h̄   h̄s at µ̄ ¡ 0, consequently has two Fermi seas with two
different volumes Ω� and Ω�. Possibly, this phase is unstable towards p-wave su-
perfluidity in a spin-triplet configuration, where the interactions responsible for the
pairing are mediated by the minority component. In the weak coupling limit this

41



Chapter 3 Universal ground state phase diagram of the imbalanced Fermi gas

has first been discussed by Kagan. [127], however, for weakly repulsive interactions
kFa ! 1 and more recently by Patton and Sheehy at unitarity [128]. In the follow-
ing, however, we will neglect this possibility and assume a normal Fermi liquid in
this regime, which is consistent with experiments at ENS [129]. For even smaller h
we recover the s-wave superfluid order already discussed in Sec. 2.3.3. To find the
T � 0 phase boundaries of the superfluid states with different orders, expressed in
terms of the universal variables, we combine the CC-criterion hc � ∆0{

?
2, as well

as the FFLO equivalent hFFLO � 0.754∆0, with the asymptotically exact form of
the gap from eq. (2.45). As a result, one finds

h̄cpµ̄ ! 1q � p2{eq7{3?
2

µ̄ e�π{p2
?
µ̄q (3.1a)

h̄FFLOpµ̄ ! 1q � 0.754 p2{eq7{3µ̄ e�π{p2
?
µ̄q , (3.1b)

for the dimensionless fields, where we have again made use of the weak-coupling
substitution εF Ñ µ, which is correct up to terms of order ∆2. In particular, note
that the spin-balanced superfluid SF0 ceases to exist for Zeeman fields larger than
hc. Since the entire phase diagram is described in terms of a single unique scaling
function, as we have discussed in the context of eq. (2.40), all phases and their
boundaries have to be smoothly connected to the limit 1{aÑ 0. This means that
for µ̄ " 1 all the three functions h̄s, h̄c and h̄FFLO must cross over to the linear
phase boundaries of the unitary limit, shown in Figure 3.2, unless one would hit
another phase transition. The continuation is indicated by the dashed parts of the
h̄c and h̄FFLO curves in Fig. 3.1. Furthermore, the existence of an FFLO phase at
unitary is consistent with the effective field theory picture developed by Son and
Stephanov [2] (see Fig 3.4), which will be discussed in more detail below. As will
be shown in Chapter 5, the presence of an FFLO instability at 1{a is also confirmed
by the Luttinger-Ward formalism deployed in this thesis.

Leaving the weak-coupling limit several conclusions from this well-understood
regime can be generalized to arbitrary interaction strengths. First of all, strongly
negative chemical potentials always entail a vacuum phase. By increasing µ� or
equivalently µ, while simultaneously keeping either small µ� or large h enters a
fully polarized phase NΩ�

from the vacuum. Decreasing h in this situation makes
the occupation of the minority component more favorable until its onset is finally
encountered at the saturation field line hs. On the other hand the balanced su-
perfluid SF0 extends from h � 0 to its boundary at the critical field line h̄c ¡ 0,
since the existence of a finite energy gap for single-fermion excitations stabilizes
the superfluid order against finite h ¥ 0.

Another general result for arbitrary interaction strengths has been obtained by
Sachdev and Yang [130], who related the population difference to the volumes of
the Fermi seas Ω�,Ω� in form of a Luttinger theorem

δn � Ω� � Ω�

p2πq3 . (3.2)
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Figure 3.1: Universal phase diagram for negative scattering length. The various
phases are denoted as normal phase NΩ�

for the fully polarized ideal gas,
NΩ�¡Ω�

for the partially polarized normal phase, SF0 for the balanced
superfluid and FFLO for the inhomogenous superfluid. The dashed
continuation of h̄c and h̄FFLO indicates the crossover toward the unitary
regime.

This relation holds for spatially homogeneous phases with or without order. How-
ever, in case of a broken translation invariance, like in FFLO phases, one has to
take the right-hand side modulo the volume of the first Brilliouin zone connected
to the emergent spatial periodicity. As a result, any phase with finite δn requires
at least on Fermi sea.
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Chapter 3 Universal ground state phase diagram of the imbalanced Fermi gas
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Figure 3.2: Phase diagram for the ground state at resonance. The labeling of the
phases is the same as in fig. 3.1.

3.2 Phase diagram at 1{a � 0

After these considerations about the global structure of the phase diagram, we turn
now to the unitary case, which is shown in Fig. 3.2. The fact that all phase bound-
aries are straight lines originates again from the scale invariance. As discussed
above eq. (2.40), the pressure scaling form of the unitary gas at zero temperature
can be written as fpph{µq, whose arguments are reduced to the single ratio h{µ.
Since phase transitions are encoded in fp as nonanalyticities, universal values of
h{µ exhaust the forms of the phase boundaries in analogy to the finite temperature
phase diagram of the balanced unitary gas, represented in Fig. 2.4. Due to the ab-
sence of interactions, the emergence of a fully polarized gas from the vacuum takes
place at h � |µ|, like on the BCS side. The saturation field line in turn acquires a
slope of ph{µqs ¥ 1, because of the strong attractions between a single �-impurity
and the Fermi sea of the background �-atoms, which gives rise to the formation
of a Fermi polaron. The precise value of this ratio follows from the argument by
Chevy [80] that µ� is equal to the ground state energy gain of the polaron. Using
the BDMC results from Prokof’ev and Svistunov, who find pµ�{µ�q � �0.615 [131]
at unitarity, one obtains

�
h

µ



s

� 1� µ�{µ�
1� µ�{µ� � 4.19 . (3.3)
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3.2 Phase diagram at 1{a � 0

Regarding the partially polarized normal phase NΩ�¡Ω�
, located between h̄s and

h̄FFLO, results by Patton and Sheehy [128] from a non-self-consistent diagrammatic
theory for the attractive branch of the unitary Fermi gas yield the very low critical
temperature Tc � 0.03 εF� for p-wave pairing. As already mentioned, we will not
consider this kind of order any further and assume instead a Fermi liquid.

The CC-limit ph{µqc at unitarity has been addressed in several studies. A com-
parison of the available results to the Luttinger-Ward value can also be found in
Table 5.1 in Section 5.3.1. Lobo et al. [132] determine the ratio ph{µqc � 0.96, while
the more recent FRG-computation by Boettcher et al. [133] finds ph{µqc � 0.83.
The leading order 1{N -expansion yields ph{µqc � 0.807... [1], which, however, be-
comes substantially changed to ph{µqc � 1.974... [70] by the inclusion of the next-
to-leading order. The result from the ε � 4 � d expansion from Nishida and Son
yields ph{µqc � 1.15 [92], which is obtained from their result phc{∆0q � 0.878 in
leading order, together with ∆0{µ � 1.31 [91]. The extrapolation of our Luttinger-
Ward data, presented in Chapter 5, to zero temperature yields ph{µqc � 1.09�0.05
in close agreement with the ε-expansion, but considerably larger than the quantum
Monte Carlo and FRG approaches. From the experimentally side, the Clogston-
Chandrasekhar limit of the unitary gas has been determined by Shin et al. [34],
who obtained ph{µqc � 0.95. However, to determine the chemical potentials of the
homogeneous system from the trap, one requires the following conversion formula
of the observables Rc, denoting the radius of the balanced superfluid in the center of
the trap, and the radius R�, measuring the maximal spatial extent of the majority
component in the trap

µ�
µ�

�
2
�
ξs pnsp0q{n0q2{3 � 1

�
1�

�
Rc
R�

	2 � 1 . (3.4)

The right-hand side depends explicitly on the universal value of the Bertsch param-
eter ξs , introduced in eq. (2.41). In addition, only the measurable ratio nsp0q{n0

of the superfluid density in the center of the trap nsp0q and the density of the fully
polarized gas n0, inferred from the outer tails, enters this relation. Inserting the
experimental data nsp0q{n0 � 1.72 and Rc{R� � 0.43 into the equation above gives
the result ph{µqc � 0.95 quoted in the paper by Shin et al. [34], provided that one
assumes ξs � 0.42. With the more accurate choice ξs � 0.37 one finds the appre-
ciably larger value ph{µqc � 1.35 for otherwise identical parameters. Similarly, the
experiment by Navon et al. [36] estimates a rather small ratio ph{µqc � 0.88, which
is, however, also based on the assumption ξs � 0.42.

In addition to the transition to the homogeneous superfluid, our Luttinger-Ward
theory furthermore predicts a symmetry-broken phase with FFLO order, whose
phase boundary is located at ph{µqFFLO � 1.28� 0.15. To determine this number
we again have performed an extrapolation of our data to the ground state. Since
in this region of the phase diagram the convergence of the self-consistent Green’s
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Chapter 3 Universal ground state phase diagram of the imbalanced Fermi gas

functions is rather difficult to achieve, the error bars remain large, but its existence
is in agreement with the effective field theory of Son and Stephanov [2]. In contrast,
the FRG-study by Roscher et al. [134] indicates that an inhomogeneous unitary
superfluid only appears for sufficiently strong mass imbalances m�{m� ¥ 3. This
agrees with works based on mean-field and large N approaches, which predict the
FFLO phase to be limited to the fermionic side of the crossover regime, that is for
1{pkFaq ¤ �2.86 [68] or 1{pkFaq ¤ �0.46 [70]. A fully conclusive and quantitative
answer for this issue, will certainly require further investigations.

3.3 Phase diagram for 1{a ¡ 0

The most involved phase diagram emerges in the BEC limit of the crossover, pre-
sented in Figure 3.3. The transition from the vacuum to a single-component Fermi
gas at h̄ � |µ̄| terminates already at µ̄ � �1 and h̄ � 1, where several phases
meet. The vertical line at µ̄ � �1 and h̄ ¤ 1 is the continuation of the vacuum
to BEC transition of Fig. 2.2 to finite fields h̄. Indeed, for µ̄ ¡ �1 a finite density
of dimers nd populates the system, since the condition 2µ � �εb is satisfied (see
the discussion below (2.32)), whereas a fully polarized state has a higher energy
of 2µ� � 2pµ � hq ¡ �εB . Furthermore, the h̄s and h̄c lines terminate in the
BEC limit at the common end point µ̄ � �1 and h̄ � 1. Their form can be esti-
mated from the energy density εpn�, n�q of a system consisting of pn� � n�q excess
atoms of the majority component and nd � n� bound pairs in terms of a mean-field
approximation

εpn�, n�q � 3

5
constpn� � n�q5{3 � n�εB � gadn�pn� � n�q � 1

2
gddn

2
� . (3.5)

This equation becomes exact in the dilute limit, which indeed is realized around
the point pµ̄ � �1, h̄ � 1q. The prefactor const � p6π2q2{3~2{p2mq results from the
standard form of a non-interacting, single-component Fermi gas. The interactions
among the dimers are quantified by the coupling constant gdd � 2π~2add{m, with
the scattering length add � 0.6a [60], while the mean-field interactions between
atoms and dimers are determined by gad � 3π~2aad{m, with the associated atom-
dimer scattering length aad � 1.18a [64]. From (3.5), together with the standard
relations µσ � Bε{Bnσ and the definitions of the chemical potentials µ and h (2.30),
one can deduce the form of the saturation and critical field lines, hs and hc, in the
vicinity of µ̄ � �1 and h̄ � 1. The first, given by the condition n� � 0, reads

hs � const

�
2µ� εB
gad


2{3
� εB

2
� pµ� εB

2
q , (3.6)

which is equivalent to the universal form

h̄s �
�

2π

1.18


2{3
pµ̄� 1q2{3 � 1� pµ̄� 1q . (3.7)
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Figure 3.3: Universal phase diagram for positive scattering lengths. BEC refers to a
spin balanced Bose-Einstein-Condensate, while BEC�Ω� denominates
a BEC in combination with a Fermi sea of excess atoms. Ω� ¡ Ω� is a
symmetry-broken phase with two finite, but unequal Fermi seas. The
splitting point S, the polaron-to-molecule transition point M and the
tricritical point T are discussed in the main text.

Quite surprisingly, the range of validity of this simple ansatz, which entails the
relation [122,131]

µÓ � �εB � µ� � gadn� , (3.8)

for the energy of the a single impurity, extends beyond the point M, that labels
the polaron-to-molecule transition. Physically, at this point the state of a single
impurity, immersed in a Fermi sea of �-atoms, changes from a polaron on the
fermionic side µ̄ ¡ µ̄M of M to a molecule for µ̄   µ̄M. The location of the point M
and the nature of the associated many-body ground state have been studied both
by a BDMC computation [131] as well as by a variational ansatz for a molecular
bound state [122]. Converting their results 1{pkF�aq � 0.9 and µ� � �2.2µ� to
our units, yields for M the coordinates pµ̄ � �0.74, h̄ � 1.97qM, which indeed lie
on the curve (3.7), as can be seen in Figure 3.3. Due to the change of the impurity
character at M, for Zeeman fields just below h̄s one encounters either a BEC in
combination with a finite volume Ω� of the Fermi sea of excess atoms, if µ̄ ¤ µ̄M or
a fermionic superfluid Ω� ¡ Ω� with two finite, yet unequal Fermi seas, if µ̄ ¥ µ̄M.
Possible realizations of the latter are a Sarma or an FFLO phase [2]. Another point
of interest on the saturation field line is the tricritical point T, where the transition
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Chapter 3 Universal ground state phase diagram of the imbalanced Fermi gas

from the BEC+Ω� state, becomes first order. In Fig. 3.3 the first-order segment of
hs between T and M is indicated by a thick line. In a canonical formulation with
fixed δn rather than predefined chemical potentials, the system becomes unstable
to phase separation along this first-order line, which implies the coexistence of a
less-imbalanced superfluid δn   δSF and a normal gas with a spin imbalance [68]
larger than δn. The variational Monte Carlo approach by Pilati and Giorgini [135]
determines T at 1{pkF�aq � 1.7, which equals pµ̄ � �0.96, h̄ � 1.31qT.

Like h̄s, also the critical field line, which satisfies the condition n� � n{2 � n�,
can be obtained from eq. (3.5) and we find

hc � εB
2
� p3aad

add
� 1qpµ� εB

2
q (3.9)

or

h̄c � 1� 4.9pµ̄� 1q , (3.10)

where the slope follows from inserting the numerical values of the scattering lengths.
In fact, this result for hc is identical to the criterion that a finite polarization appears
in the superfluid, when the field strength reaches the minimum of the single-particle
excitation energy ∆, i.e. hc � ∆ as argued by Son and Stephanov [2] and using
the result for ∆ by Giorgini et al. [75]. The rather large slope of h̄c signals that
the mean-field expansion for h̄c is confined to a small convergence radius around
pµ̄ � �1, h̄ � 1q, since otherwise h̄c and h̄s cross. Regarding the approach to
the unitary regime, f p�qpµ̄, h̄q has to approach the strong coupling-regime µ̄ " 1
continuously, in analogy to f p�qpµ̄, h̄q on the BCS-side. As a result, h̄s and h̄c must
converge to straight lines of universal slopes ph{µqs and ph{µqc. In Fig. 3.3 we use
again dashed lines to indicate the continuation towards the Feshbach resonance.
Furthermore, h̄c must contain the splitting point S, which has been introduced by
Son and Stephanov [2] based on a characterization of the minimal energy ∆ of the
single-particle excitations in the balanced superfluid. More precisely, for v ¤ vS

the low-energy part of this spectrum is given by fermionic excitations, that carry
a finite momentum |k|0 ¤ kF . In contrast, for v ¡ vS one encounters bosonic
quasi-particles with minimal energy at vanishing k0 � 0. Punk et al. [136] have
obtained vS � 0.8 by evaluating the minimum of the dispersion extracted from
the single-particle spectral functions. The latter were obtained from an analytic
continuation of the Matsubara-frequency Luttinger-Ward Green’s functions to real
frequencies. Based on this value, together with the Luttinger-Ward results ∆S �
0.95εF and µS � �0.54εF from [37], we can assign the coordinates pµ̄ � �0.84, h̄ �
1.48qS to the splitting point. As becomes apparent in Fig. 3.3, the location of
S is not captured by the simple mean-field equation (3.10). Furthermore, it has
to be noted, that Pilati and Giorgini [135] obtain vS � 0.53 for an equivalent of S
from the thermodynamic criterion that the superfluid undergoes a first-order phase
transition to a phase-separated state for v ¤ vS, while a related approach [137] finds
vS � 0.66. Up to now, there is no conclusive explanation for this mismatch.
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Figure 3.4: Phase diagram according to Ref. [2] around the splitting point. The
fermionic imbalanced superfluid contains an FFLO state and possibly
also a Sarma phase. The Luttinger-Ward theory predicts the Lifshitz
point L close to the unitary limit.

The fact that the minimum of the single-particle dispersion changes character
at the splitting point allowed Son and Stephanov to develop an effective field the-
ory, valid in the neighborhood of S [2]. The resulting phase diagram is depicted
in Figure 3.4 in terms of the variables h{∆ and v � 1{pkFaq. Again, ∆ refers
to the minimal single-particle excitation energy, which is attained at |k0| ¤ kF
for v ¤ vs, whereas k0 � 0 for, v ¥ vs, such that h{∆ � 1 for v ¥ vS, where
the balanced superfluid SF0 can be continuously polarized. Furthermore, the im-
balanced superfluid, which on the fermionic side of S always possesses two Fermi
seas, itself likely consists of two phases. Immediately above hc an inhomogeneous
FFLO phase is observed in the effective field theory, while in the triangle SML a
homogeneous Sarma phase might be found. Its thermodynamic stability, however,
has not yet been conclusively proven. The Lifshitz point L labels the endpoint
of the phase boundary between FFLO and the fully polarized phase N�. Our
Luttinger-Ward computations suggest that this point is actually located close to
the unitary limit, see the results in Chap 5. In addition, we can translate the
point M to the representation in terms of 1{pkFaq and h{∆. The excitation gap
on the bosonic side of the splitting point can be estimated by the mean-field form

of the minimum of the single-particle dispersion ∆ �
b
µ2

M �∆2
0, where ∆0 refers

to the anomalous expectation value in the superfluid phase (4.7) at zero temper-
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ature. Inserting the Luttinger-Ward result ∆0pvMq � 1.19εF [37], we obtain the
coordinates pv � 1.13, h{∆ � 1.66qM. This agrees very well with the result from
our Luttinger-Ward computations pv � 1.13, h{∆ � 1.65qM, which determines M
from the condition that the gas becomes fully polarized at the critical line. Since
the transition between SF0 and the BEC+ΩÒ is continuous on the bosonic side
of S, while the polaron-to-molecule transition of an impurity atom is encountered
at M, the line S-M most likely coincides with the boundary for the existence of a
finite Fermi sea Ω� at positive interaction strengths. This has also been assumed
in Fig 3.3.

50



Chapter 4

Luttinger-Ward theory for BCS-BEC
crossover in the presence of spin
imbalance

The computation of the scaling function fppβµ, βh, λT {aq for arbitrary values of
the thermodynamic parameters T, µ, h and a in the strongly interacting crossover
regime around the unitary limit requires a nonperturbative approach. In this work
we follow the formalism developed by Luttinger and Ward [138], who represent the
grand potential ΩrGs as functional of the interacting fermionic Green’s function G.
The general properties of the latter are introduced in Sec. 4.1. Next, we summarize
the definitions of the Fourier transformations, which will appear quite frequently,
in Sec. 4.2. In part 4.3 we discuss the Feynman rules for the single-channel model,
before we turn to the Luttinger-Ward formalism itself. Its general properties and
the equations of motion for G derived from Ω[G] can be found in Sec. 4.4, together
with the ladder approximation for the interactions in the imbalanced Fermi gas.
Then we define a suitable vertex function for the ladder approximation in 4.5, which
signals the instability towards Cooper pairing. We give the specific form of the self-
energy and the corresponding Schwinger-Dyson equation in Sec. 4.6. Finally, we
derive expressions for the pressure, internal energy and entropy as functionals of G
in Sec. 4.7.

4.1 Finite temperature fermionic Green’s functions

Green’s functions provide a valuable tool to investigate physical questions both in
high energy and in condensed matter physics. In thermodynamic problems the
single-particle fermionic Green’s functions G allow to compute the grand potential
Ω, even in the presence of two-body interaction operators [67]. Since Ω is the
central object of the Luttinger-Ward formalism, the Green’s functions will play an
important role throughout the thesis. Here we give the definitions required for
the imbalanced Fermi gas and list the general properties, that will be used in the
following chapters. In addition, we introduce the noninteracting Green’s functions,
which later on provide a starting point for the self-consistent equations.

In the context of thermodynamics one usually works with the imaginary time
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formalism, where the Green’s functions for the fermionic degrees of freedom are

given as thermal expectation values of the field operators Ψ̂σpxq
�

Ψ̂σpxq:
	

, that

annihilate (create) an atom of spin orientation σ ��, � along the z-axis at position
x. As mentioned below eq. (2.6) the spin index actually refers to the hyperfine
state that arises from the addition of the nuclear and electronic spins. Due to
the fermionic statistics, the field operators obey the canonical anticommutation
relations

tψ̂σpxq, ψ̂:σ1pyqu � δσσ1δpx� yq (4.1a)

tψ̂σpxq, ψ̂σ1pyqu � 0 � tψ̂:σpxq, ψ̂:σ1pyqu . (4.1b)

The imaginary time evolution takes place in the imaginary time interval τ P r0, ~βs
and is given by Ψ̂σ px, τq � exppτK{~qΨ̂σpxq expp�τK{~q, obtained from the
Heisenberg time evolution with the grand-canonical HamiltonianK � H�°σ µσNσ

of operators in real time t, followed by a Wick rotation τ � it. The normal Green’s
functions, which are finite both above and below the critical temperature, are de-
fined as [67,139]

Gσσpx� x1, τ � τ 1q � �
A
T
�
Ψ̂σ px, τq Ψ̂:

σ

�
x1, τ 1

��E
, (4.2)

where T denotes the time-ordering operator. Furthermore, we focus only on sys-
tems that are both homogeneous in space and imaginary time, which restricts the
dependence on the coordinates to the differences τ � τ 1 and x� x1. Moreover, the
fact that the single-channel model (2.26) admits only interactions in the s-wave
channel, implies that Gσσ px, τq � Gσσpr, τq is only a function of the radial coor-
dinate r � |x|. In the presence of a finite Zeeman field h will lead to unequal
G�� px, τq � G�� px, τq, such that we are required to keep track of the spin indices.
To simplify the notations it is convenient to introduce the Green’s function

G px, τq � tG�� px, τq ,G�� px, τqu , (4.3)

which gathers the spin components in a vector. Unequal spin populations will also
be reflected in the individual spin densities nσ, that follow immediately from the
normal Green’s functions via the standard relation

nσ � Gσ
�
x � 0, τ � 0�

�
. (4.4)

In general, a fermionic Green’s function obeys antiperiodic boundary conditions
with respect to shifts of the imaginary time interval, i.e. it satisfies

Gpx, ~β � τq � �Gpx,�τq . (4.5)

This property will turn out to be useful in the numerical implementation of the
equations of motions for G in Chapter 7.
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4.1 Finite temperature fermionic Green’s functions

The normal Green’s functions obviously are invariant under the global Up1q
transformation Ψ̂σpxq Ñ exppiϕqΨ̂σpxq, with ϕ P R, connected to the particle
number conservation. However, below the critical temperature this symmetry is
spontaneously broken, which gives rise to anomalous expectation values. These
manifest in a mathematical manner the presence of Cooper pairs on the BCS side
of the crossover or the appearance of a Bose Einstein condensate of dimers on the
BEC side of the crossover. Since we only consider s-wave pairing, which takes place
in relative spin-singlet configurations, only Gorkov functions

Fσσ̄px� x1, τ � τ 1q � �
A
T
�
Ψ̂σ px, τq Ψ̂σ̄

�
x1, τ 1

��E
F�σσ̄px� x1, τ � τ 1q � �

A
T
�
Ψ̂:
σ px, τq Ψ̂:

σ̄

�
x1, τ 1

��E (4.6)

with opposite spin orientations exist, where σ̄ denotes the spin orientation com-
plementary to σ. They respect an antiperiodicity condition analogous to eq. (4.5),
while the spatial homogeneity and isotropy imply the same restrictions on the
position and imaginary time arguments like in the case of the normal Green’s
function (4.2). From a physical perspective one can extract the superfluid order
parameter ∆ from the Gorkov functions via

∆ � lim
ΛÑ8

ḡpΛqF��px � 0, τ � 0�q � � lim
ΛÑ8

ḡpΛqF��px � 0, τ � 0�q . (4.7)

The short-time and short-distance limit on the right-hand side, however, is not well
defined and requires the renormalization scheme introduced in eq. (2.29), which
yields the relation

∆

g
�

»
d3k

p2πq3
�
F��pk, τ � 0�q � ∆

2εk

�
(4.8)

in momentum space, with the standard single-particle dispersion relation εk �
~2k2{2m. Note that all quantities involved in the latter equation are well-defined in
the zero-range limit. Furthermore, this implies that the anomalous Greens function
has a large momentum tail F��pkÑ8, τ � 0�q � �∆{2εk � 1{k2. In fact, this tail
is already observed at the mean field level, as is further discussed in Appendix A.2.
For the explicit definitions of the involved Fourier transformation, especially with
respect to the sign conventions, see the next section.

To close this discussion about the thermal single-particle Green’s functions we
return to the normal phase. Setting the bare coupling constant ḡ in the Hamiltonian
to zero, reduces the problem to the case of a two-component, ideal Fermi gas, which
gives rise to the well established form of the noninteracting Green’s functions1 in
momentum and frequency space [67,139]

Gp0qσσ pk, ωnq �
1

i~ωn � ξk,σ
, (4.9)

1Note that in Ref. [37] a different sign convention has been used for Gp0qσσ .
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

with the standard short-hand notation ξk,σ � εk�µσ. The frequencies ~ωn � p2n�
1qπT, n P Z denote the standard fermionic Matsubara frequencies, which guarantee
the antiperiodic boundary conditions (4.5). In addition, the Fourier transformation

of Gp0qσσ pk, ωnq to imaginary time is also known in closed form [67,139]

Gp0qσσ pk, τq � θpτqe�ξk,στ p1� nF pξk,σqq � θp�τqe�ξk,στnF pξk,σq , (4.10)

where nF pξkq refers to the Fermi-Dirac distribution

nF pξk,σq � 1

exppβξk,σq � 1
. (4.11)

As we have seen in eq. (4.4), the density is encoded in the real-space Green’s
function Gσσ px, τq. Unfortunately, there exists no analytic way to perform the
Fourier transformation k Ñ x at arbitrary τ . Furthermore, we note the limiting

behavior Gp0qσσ pk, τ � 0�q Ñ 1, for k Ñ8, which renders the function nonintegrable
in momentum space, such that the direct application of numerical methods to this
Fourier transformation is ruled out. In fact, the necessity to construct a suitable
subtraction scheme to solve the self-consistent equations is intimately connected to
this particular limit of the Green’s function. We also introduce

Gp0q pk, ωnq � tGp0q�� pk, ωnq ,Gp0q�� pk, ωnqu (4.12)

in analogy to eq. (4.3). Before we turn to the Luttinger-Ward formalism, that
allows to include contributions from the interactions, we will first establish the
Fourier transformations and consider the Feynman rules in order to incorporate
the interactions.

4.2 Notations and Fourier transforms

Since Fourier transformations represent the most frequently encountered, nontriv-
ial mathematical operation in the computations to come, it is useful to state the
required definitions in this section and to incorporate the simplifications based on
spatial isotropy. We will only deal with fermionic and bosonic correlation func-
tions of the general form f px, τq, which can be distinguished by their boundary
conditions on the imaginary time interval τ P r0, ~βs

fpx, ~β � τq � 	f px, τq . (4.13)

The upper sign refers to the fermionic case, already encountered in eq. (4.5),
whereas the lower one entails the periodicity of bosonic correlators. In particu-
lar, due to these boundary conditions, the Fourier transformation from frequency
space to τ actually becomes a Fourier series, that only involves a discrete set of
frequencies. For an antiperiodic function f px, τq these are the fermionic Matsubara
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frequencies ~ωn � p2n� 1qπT , n P Z and we define the Fourier transform of f and
the corresponding inverse transformation as

f pk, ωnq �
»
d3x

» ~β

0
dτ e�ipk�x�ωnτqf px, τq (4.14a)

f px, τq �
»

d3k

p2πq3
1

~β
¸
n

eipk�x�ωnτqf pk, ωnq . (4.14b)

Bosonic functions f px, τq in turn are transformed to the bosonic Matsubara fre-
quencies ~Ωn � 2πnT , n P Z and the corresponding Fourier transforms read

f pQ,Ωnq �
»
d3x

» ~β

0
dτ e�ipQ�x�Ωnτqf px, τq (4.15a)

f px, τq �
»

d3Q

p2πq3
1

~β
¸
n

eipQ�x�Ωnτqf pQ,Ωnq . (4.15b)

Note that we use capital letters to distinguish bosonic functions in frequency and
momentum space from fermionic ones.

Finally, all the functions f px, τq discussed in the following chapters only depend
on the modulus r � |x|, like the Green’s function G px, τq in eq. (4.3). This implies
rotational invariance also in momentum space2, such that f pk, τq is only a function
of k � |k|. In addition, the Fourier transforms effectively become one-dimensional

f pk, τq �
»
d3x e�ik�xf px, τq � 2πi

k

» 8

�8
dr r e�ikrfpr, τq (4.16a)

f px, τq �
»

d3k

p2πq3 e
ik�xf pk, τq � 1

p2πq2ir
» 8

�8
dk k eikxfpk, τq , (4.16b)

which can easily be verified by introducing standard polar coordinates.

4.3 Feynman rules

In the following, we summarize the Feynman rules of the normal phase both in real
and momentum space in Figure 4.1. The non-trivial spin structure of the Green’s
function gives rise to important constraints with respect to the allowed diagrams,
when the components of G are combined with interaction lines representing the
two-body operator in the Hamiltonian (2.26). As usual, in real space the normal
Green’s function Gσσ px, τq connects two external points with identical spin indices
and has a directed particle flow from the creation (annihilation) to the annihilation
(creation) operator, when τ is positive (negative), corresponding to the propagation
of particles (holes). In momentum space one consequently also has to indicate the
direction of the momentum. To symbolize the contact interaction ḡpΛqδpx�x1q we

2We consider an arbitrary momentum argument k, which can be replaced by any other vector
Q, since this step is independent of the quantum statistics.
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

Figure 4.1: The Feynman rules for the various Green’s functions and the bare in-
teraction potential, as discussed in the main text. The left column
contains the real space and imaginary time representation whereas the
right column shows the corresponding lines in momentum and Matsub-
ara frequency space.

use a wavy line, despite the possibility to contract it to a single point by its locality.
The reason behind this notation is, that it allows to keep track of the spin indices
in a very simple manner. Since the spin is conserved during every collision, we have
identical spin indices in the incoming and outgoing Green’s function lines at each
endpoint of the interaction lines. Moreover, the s-wave nature of the interactions
enforces that the fermionic atoms scatter in spin singlet configurations, due to
the Pauli principle. This entails opposite spin indices at the endpoints of a single
interaction line. Therefore, the particle flow at these endpoints cannot be reversed,
as the interatomic potential consists of exactly one annihilation and one creation
operator of each spin species, corresponding to one incoming and one outgoing
Green’s function line per spin index. As discussed in Appendix A, these assignments
become more involved once anomalous propagators are included.

4.4 Luttinger-Ward formalism for the imbalanced Fermi gas

4.4.1 General setup of the Luttinger-Ward formalism

In any problem of equilibrium statistical mechanics the quantity of prime interest
is the partition function or the related thermodynamic potential. In the grand-
canonical ensemble one considers the grand-potential

ΩpT, µσ, V q � �T log Tr e�βpH�
°
σ µσNσq, (4.17)

with an arbitrary Hamiltonian H. In the following, we assume that H admits the
standard separation into a sum of a quadratic part H0, which can be diagonalized
in a straight-forward manner, and a contribution Hint from the interactions. As
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4.4 Luttinger-Ward formalism for the imbalanced Fermi gas

shown by Luttinger and Ward [138] for a fermionic system, Ω can be expressed as
an exact functional of the interacting single-particle Green’s function G, defined in
eq. (4.3), which reads

ΩrGs � β�1
�
TrtlnrGs � r1�G�1

0 Gsu � ΦrGs� . (4.18)

Here G0 denotes the known, time-ordered Green’s function associated with H0 �°
σ µσNσ in the imaginary-time formalism, while the Luttinger-Ward functional

ΦrGs contains all the effects of interactions in terms of a sum of all topologically al-
lowed, closed, skeleton diagrams. These are defined as the set of all connected Feyn-
man diagrams without external points, where the interaction vertices are linked
directly, that is without further self-energy insertions, by lines representing the
dressed G. The physical Green’s function is determined from the stationarity con-
dition

δΩ

δG
� 0 , (4.19)

which gives rise to a Dyson equation

G�1 � G�1
0 � ΣrGs . (4.20)

The self-energy ΣrGs itself depends on the Green’s function via the functional
derivative

ΣrGs � δΦrGs
δG

. (4.21)

Therefore, the pair of equations (4.20) and (4.21) has to be solved self-consistently,
which allows to include interactions in a non-perturbative manner. Alternatively,
one can interpret the Luttinger-Ward formalism as the search for a functional
ΩrGs that is stationary, when G satisfies the exact Dyson equation (4.20). This
immediately leads to eqs. (4.18) and (4.21).

A crucial feature of the Luttinger-Ward approach is its conserving nature, that
was proven by Kadanoff and Baym [140]: The grand potential ΩrGs and the derived
quantities thereof satisfy all thermodynamic relations, irrespective of the approxi-
mations invoked on ΦrGs, provided that the physical G is inserted. Obviously, this
property and the non-perturbative treatment of the interactions motivate the ap-
plication of the method to the imbalanced Fermi gas. Furthermore, the Luttinger-
Ward method originally was developed for normal fermionic quantum fluids, yet
the extension to superfluid phase, where anomalous propagators are present, has
been accomplished by Haussmann et al. [37].

The Luttinger-Ward functional in eq. (4.18) represents a special instance of a 2PI
(two-particle irreducible) effective action. 2PI means that one has to cut more than
two Green’s function lines in any diagram that is part of ΦrGs to separate it into
two disconnected subdiagrams. The self-energy in turn is per definition 1PI [141],
which agrees with equation (4.21), since the functional derivative removes exactly
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

Figure 4.2: The Luttinger-Ward functional in the ladder approximation includes
all ladders up to an infinite number of rungs l. The spin constraints
impose that one of the legs is exclusively formed by G��, while in the
other one only G�� appears.

one Green’s function line from the 2PI diagrams of ΦrGs. A related equilibrium
approach, that works both for bosonic and fermionic statistics, has been developed
by De Dominicis and Martin [142,143], who additionally allow for finite field expec-
tation values in case of spontaneously broken symmetries and even for two-particle
Green’s functions, which have to satisfy stationarity conditions in analogy to (4.19).
In case of the BCS-BEC crossover the connection between both methods has been
discussed by Haussmann et al. [37] and in the thesis by Cerrito [144].

4.4.2 The particle-ladder approximation

Since the exact form of the Luttinger-Ward functional ΦrGs from eq. (4.18) is not
known in closed analytical form, we have to introduce suitable approximations
and chose a class of diagrams that fulfills two conditions: On the one hand it
must be capable to describe the physically relevant processes and on the other
we must be able to find an analytical expression for ΦrGs, which is numerically
tractable. The strong interactions in the crossover regime and the fact that pairing
even in the weakly coupled BCS-theory is a nonperturbative effect, imply that
we have to take into account scattering events of arbitrary order in the dilute
gas. An approximation that meets these requests is given by the restriction to the
particle-particle ladder, which is also called the T-matrix approximation [67]. The
corresponding diagrams are depicted in Fig. 4.2. On the level of the Luttinger-Ward
functional the particle-particle ladder contains all ladders with an arbitrarily large
number of rungs, that are closed by two backward-propagating Green’s functions
corresponding to two holes. In the normal phase the particle flows in the upper
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4.4 Luttinger-Ward formalism for the imbalanced Fermi gas

and the lower leg run in parallel, while the constraint on the spin indices from
the interaction lines in Fig. 4.1 enforces opposite spins in the two legs. Therefore,
we only have to take into account the direct ladder diagrams from Fig. 4.2, since
exchange ladders, which essentially consist of a single Green’s function line with a
definite spin orientation, are inconsistent with the condition of spin-singlets at the
vertices.

The T-matrix is known to give rise to the BCS instability for arbitrarily weak
interactions, where the ladders can be computed with the bare Green’s function
Gp0q and therefore is in agreement with the first request. The system becomes
unstable towards the formation of Cooper pair at the critical temperature

TBCS
c � 8eγE

πe2
εF e

�π|v|
2 . (4.22)

By construction, this theory does not account for particle-hole fluctuations and thus
misses the quantitatively important factor p4eq�1{3 from the Gorkov and Melik-
Barkhudarov corrections [95] in eq. (2.44). Unfortunately, we are not able to in-
clude them in our theory, since the resulting internal momentum structure of the
self-energy diagrams is beyond the scope of our current numerical capacities. In the
case of a weakly repulsive gas of Fermions the ladder approximation has been used
by Galitskii [145] to consider the repeated interactions in the dilute limit, which
gives rise to a power series in kFa for the ground state energy. In the context of
ultracold atoms the ladder diagrams or very similar structures frequently appear,
for example in the theory of Nozières and Schmitt-Rink [21], in the large-N ex-
pansions [70] and in the theory of Gaussian fluctuations developed by Sa de Melo,
Randeria and coworkers [146,147]. Interestingly, the latter approach yields for the
ground state energy of the superfluid exactly the same power series in kFa as one
obtains in the repulsive case, in addition to the condensation energy. In the limit
of a strongly imbalanced Fermi gas, the Chevy ansatz [80] for Fermi polaron co-
incides with an impurity Green’s function that bears self-energy corrections from
the non-self-consistent T-matrix [148]. In case of the BCS-BEC crossover without
spin-balance a fully self-consistent T-matrix theory has been established by Hauss-
mann et. al., both for the normal [87, 149] and the superfluid phase [37, 150]. We
emphasize the importance of the self-consistency for the quantitative agreement
with the experimental results. As discussed already in Section 2.3.2, the result for
the critical temperature of the balanced unitary gas θc � 0.16 turns out to coincide
very well with the measured value in contrast to the non-self-consistent NSR-result
of θc � 0.22. Therefore, we also maintain the self-consistency in the presence of a
finite Zeeman field. Note however, that the particle-particle ladder approximation
of Luttinger-Ward functional ΦrGs is chosen to describe the fermionic pairs in a
nonperturbative manner. The repulsive interactions of the bound state molecules
at positive scattering lengths in turn are taken into account only approximately.
As discussed by Haussmann [149], the lowest order diagrams that effectively de-
scribe dimer-dimer scattering processes in terms of the fermionic Green’s functions
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yield the mean-field result add � 2a, instead of the exact result add � 0.6a [60].
By the self-consistent summation of higher order diagrams the effective dimer-
dimer scattering length of the Luttinger-Ward formalism might be changed from
the mean-field result, but we do not expect to find the physical values of add � 0.6
and aad � 1.18 [64], introduced in Sec. 2.1.3. We will return to this point in Sec. 5.6,
where we extrapolate our numerical results to the ground state and compare them
to the universal phase boundaries (2.51) and (3.7) at positive a.

Regarding the second condition of a tractable form of the approximate Luttinger-
Ward functional, we have compute the sum depicted in Fig. 4.2 in closed form. To
simplify the expression we first define the the particle-particle bubble χ pQ,Ωnq,
that is the convolution of the co-propagating Green’s functions, which appears
repeatedly in the ladder diagrams

χ pQ,Ωnq � 1

β

¸
m

»
d3k

p2πq3 G�� pk, ωmqG��pQ� k,Ωn � ωmq . (4.23)

At this stage, the definition of this function has to be considered as purely formal,
since the integral is UV divergent in the limit of Λ Ñ8 due to the slow decay of the
Green’s functions for large momenta. We will rectify this issue in the next section
on the vertex function. Based on χ pQ,Ωnq, we can write for the Luttinger-Ward
functional

ΦrGs
V

� �
8̧

l�1

p�1ql
l

ḡlpΛq
¸
n

»
d3Q

p2πq3 rχ pQ,Ωnqsl

�
¸
n

»
d3Q

p2πq3 log r1� ḡpΛqχ pQ,Ωnqs ,
(4.24)

where the 1{l weight takes into account the symmetry factor of the ladder diagrams.
Since ΦrGs contributes to the pressure via the grand potential p � �Ω{V , it should
not contain any divergences, caused by the cutoff-dependence. In fact, the product
ḡpΛqχ pQ,Ωnq turns out to be finite in the zero-range limit Λ Ñ 8, as will be
shown below. Surprisingly however, the Hartree diagram, which is given by the
l � 1 term in Fig. 4.2, vanishes in the zero range limit. This follows from its
contribution to the grand potential ΩH � ḡpΛqn�n�V Ñ 0, since ḡ Ñ 0 according
to the renormalization scheme (2.29) in the zero-range limit. Before we turn to the
vertex function in the next section, we state the final form of the grand-potential,
that we use to describe the imbalanced Fermi gas in the normal phase

ΩrGs
V

� 1

β

¸
n

¸
σ��,�

»
d3k

p2πq3
�
logrGσσ pk, ωnqs �

�
1� Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

	�

� 1

β

¸
n

»
d3Q

p2πq3 log r1� ḡpΛqχ pQ,Ωnqs .

(4.25)
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4.5 The vertex function Γ

Strictly speaking the Luttinger-Ward approach (4.18) is built upon the dressed,
single-particle Green’s function only and no higher order Green’s functions are re-
quired. However, it will turn out to be very useful to additionally define the bosonic
vertex function Γ px, τq, too. First of all, it contains physical information, because
it both allows to extract the Tan contact parameter, discussed in Section 2.4, and it
signals the phase transition by a zero at small momenta in the inverse vertex func-
tion Γ�1pQ Ñ 0,Ωn � 0q, which indicates the appearance of a Goldstone mode,
due to the spontaneously broken Up1q symmetry. In addition, it helps on a formal
level to organize the equations of motion for G.

4.5.1 Definition and physical properties

The vertex function Γ is defined as the amputated and connected part of the two-
particle Green’s function [141], that in general depends on four space-time argu-
ments. In a homogeneous system the arguments can be reduced to one center-of-
mass momentum and two relative momenta. The same holds true also for the fre-
quency arguments. Physically a system exhibits a phase transition, when a certain
mode becomes infinitely susceptible to an external perturbation, which is signaled
by a divergence of Γ in the corresponding momentum channel. In the following, we
include only the s-wave pairing instability, which is the dominant one in the case
of ultracold fermionic quantum gases. In the absence of competing instabilities it
suffices to take a very simple dependence of the vertex function Γ px, τq on a single
coordinate pair px, τq into account, which describes the center-of-mass propagation
of a ��-pair of atoms through the medium. The resulting vertex function reads [42]

Γpx, τq �ḡpΛq δpτqδpxq � ḡ2pΛq xT
�
ψ̂�ψ̂�

	
px, τq

�
ψ̂:�ψ̂

:
�

	
p0, 0qy . (4.26)

Its form is compatible with the bare δpx � x1q potential in the single-channel
model (2.26), since a perfectly local potential will always give rise to a vertex
function that only contains the non-trivial center of mass dynamics of the pairs, as
argued in Ref. [150]. More precisely, the vertex can be written as

Γpx1, τ1,x2, τ2,x3, τ3,x4, τ4q � Γ

�
τ1 � τ2

2
� τ3 � τ4

2
,
x1 � x2

2
� x3 � x4

2



δpx1 � x2qδpτ1 � τ2qδpx3 � x4qδpτ3 � τ4q ,

(4.27)

which implies that the physics of the relative degrees of freedom, i.e. the form of the
scattering wave function of the pairs has been completely discarded. Consequently,
we are not able to describe p-wave pairing within our theory. Furthermore, Γ px, τq
is invariant under the exchange of the spin labels �Ø�, which is a consequence
of the symmetry of the bare potential. Furthermore, the vertex satisfies periodic
boundary conditions in imaginary time Γpx, β � τq � Γ px, τq, which follows from
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the definition of the time ordered-product. Hence, Γ describes a bosonic function
in agreement with the propagation of pairs.

The short-distance and short-time limit of the vertex is related to the Tan contact
density C (2.53), as was noted in Ref. [151],

~4

m2
C � |∆|2 � Γpx � 0, τ � 0�q . (4.28)

Γ represents the connected part of the expectation value of the quartic operator in
the definition of C, whereas the term with the gap parameter originates from the
anomalous, disconnected contraction, which only exists below Tc. Note that there
is no contribution from the Hartree diagram, which represents the disconnected
contraction based on normal Green’s functions, since it vanishes in the zero-range
limit (see Sec. 4.4.2).

The Fourier transform of the vertex functions yields the pair propagator Γ pQ,Ωnq,
that only depends on the center-of-mass momentum Q of the pair and a bosonic
Matsubara frequency Ωn. In the absence of an FFLO-type order parameter the
momentum dependence is further simplified to Γ pQ,Ωnq, due to the isotropy of
the system. In any case, for a single momentum argument we can directly obtain
the inverse of the vertex function Γ�1 pQ,Ωnq � 1{Γ pQ,Ωnq, since Γ is diagonal
in momentum space. The inverse vertex is related to the Thouless criterion [152],
which is an example of a general Ward identity [141]. The Thouless criterion as-
certains the existence of a gapless Goldstone mode, when the Up1q symmetry is
spontaneously broken by Cooper pairing. As discussed in Refs. [37, 150], it can be
expressed in the present theory as

¸
β�1,2

�
Γ�1 pQ,Ωn � 0q�

αβ

�
∆
∆�



β

�
�

0
0



(4.29)

for phases without FFLO order, where ∆ refers to the order parameter from
eq. (4.7) with trivial momentum dependence. The matrix indices of Γ�1 account
for the Nambu structure in the presence of finite anomalous expectation values in
the superfluid phase, see also Appendix A. In the normal phase, where the Nambu
structure of all quantities reduces to diagonal elements, this equation is satisfied
automatically, since the superfluid order parameter vanishes identically. The ap-
proach to the superfluid transition is then indicated by a divergence of the pair
propagator ΓpQ,Ωn � 0q. This singularity either emerges in the limit Q Ñ 0,
in the case of a standard homogeneous superfluid, or it is encountered at a finite
Q, corresponding to a finite center-of-mass momentum of the Cooper pairs in an
FFLO-phase.

4.5.2 The vertex in the ladder approximation

Since the Luttinger-Ward formalism is only based on G, we are free to define
a vertex function as long as it meets the physical constraints from the previous
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4.5 The vertex function Γ

Figure 4.3: Diagrammatic representation of the Bethe-Salpeter equation (4.30) for
the vertex Γ pQ,Ωnq in the ladder-approximation. The spins indicate
the spin-symmetric particle-particle bubble that is inherited by the ver-
tex function.

section. A suitable form for Γ pQ,Ωnq is obtained by removing the two hole Green’s
functions in the ladder diagrams of ΦrGs, depicted in Fig. 4.2. An equivalent result
can be obtained by taking out any other pair of Green’s functions that connect the
same rungs. However, if one opened each leg of the ladder between two different
pairs of rungs, as would be allowed in a higher effective action formulation like the
approach of de Dominics and Martin [142,143], the resulting vertex function would
acquire a momentum structure with a non-trivial dependence on relative momenta.
Therefore, we stick to the first construction and note that the resulting Γ pQ,Ωnq
satisfies the Bethe-Salpeter equation shown in Fig. 4.3

Γ pQ,Ωnq � ḡpΛq � ḡpΛqχ pQ,ΩnqΓ pQ,Ωnq . (4.30)

Its solution can be easily expressed, due to the simple momentum dependence, as

Γ pQ,Ωnq � 1
1
ḡ � χ pQ,Ωnq

� 1
1
g �M pQ,Ωnq

. (4.31)

Formally, it represents the resummation of the geometric series generated by the
particle-particle bubble diagram χ pQ,Ωnq, defined in (4.23). In the zero-range
limit χ pQ,Ωnq is replaced by its renormalized counterpart

M pQ,Ωnq � lim
ΛÑ8

�
χ pQ,Ωnq �

»
q Λ

1

2εq



, (4.32)

where we have again made use of the connection between the bare and the physical
coupling constant from eq. (2.29). The fact, that χ pQ,Ωnq itself is ill-defined can
already be observed at the level of bare Green’s functions after performing the
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internal Matsubara sum with the techniques outlined in Appendix B

M p0q pQ,Ωnq �
»

d3k

p2πq3
�

1

β

¸
m

Gp0q�� pk, ωmqGp0q�� pQ� k,Ωn� ωmq � 1

2εk

�

�
»

d3k

p2πq3
�

1� nF pξk�Q{2,�q � nF pξk�Q{2,�q
�i~Ωn � ξk�Q{2,� � ξk�Q{2,�

� 1

2εk

�

�
»

d3k

p2πq3
�

1� nF pξk�Q{2,�q � nF pξk�Q{2,�q
�i~Ωn � 2εk � εQ

2 � 2µ
� 1

2εk

�
.

(4.33)

The leading order contribution of the first term for large k Ñ8 is canceled identi-
cally by the second term, that originates from the renormalization. Fortunately, it
will turn out that the complete UV-behavior and the related divergences, that have
to be regularized in the limit Λ Ñ 8, actually only arise from the diagrams with
noninteracting Green’s functions, whereas all interaction contributions to G only
give rise to corrections that are finite in the zero-range limit. Similar considerations
on the UV-asymptotics can also be found in the review on BDMC-computations
in the context of ultracold atoms by van Houcke et al. [153]. As an example, the
large Q asymptotics of the renormalized bubble diagram is exclusively determined
by the combination of the terms without the Fermi distributions, since the latter
vanish exponentially for QÑ8. More precisely, we can compute this asymptotics
for Ωn � 0 exactly via

»
d3k

p2πq3
�

1

�i~Ωn � 2εk � εQ
2 � 2µ

� 1

2εk

�
� m2

p2π~2q2
»
dk

pi~Ωn � εQ
2 � 2µq

k2 � m
~2 pi~Ωn � εQ

2 � 2µq

� �m
3{2

4π~3

�εQ
2
� 2µ� i~Ωn

	1{2
.

(4.34)

In the limit of Q Ñ 8 or |Ωn| Ñ 8 we conclude that the absolute value of M
diverges algebraically. Moreover, summing the vertex function in eq. (4.31) directly
over all Matsubara frequencies is not well-defined and the same holds true for the
momentum integral. Instead, these operations have to be understood as Fourier
transforms, which is explained in further detail below. However, the algebraic
behavior will require special subtractions before the vertex is amenable to numerical
methods, see Chapter 7.
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On the contrary, if the dependence on Λ is kept manifest in the theory, one finds

»
d3k

p2πq3
1

�i~Ωn � 2εk � εQ
2 � 2µ

� m

2π2~2

�
�Λ�

Λ»
0

dk
m
~2 pi~Ωn � εQ

2 � 2µq
k2 � m

~2 p εQ2 � 2µ� i~Ωnq

�
�

� m

2π2~2

�
�Λ� m1{2

~2

c
εQ
2
� 2µ� i~Ωn arctan

�
� Λ

m1{2
~

b
εQ
2 � 2µ� i~Ωn

�


�
� .

(4.35)

After subtracting the term linear in Λ in analogy to the renormalization scheme
above, this form reproduces eq. 4.34, under the condition that Λ is much larger
than any other scale. In the opposite limit |m1{2aεQ � 2µ� i~Ωn{~| " Λ, how-
ever, the previous asymptotics gets cut off and we have instead the leading order
Λ3{p2π2pεQ{2� 2µ� i~Ωnqq Ñ 0. This result depends explicitly on the cutoff and
therefore changes with the renormalization scheme, while the renormalized theory
probes the universal low-energy physics in the zero-range limit.

Finally, we note in passing that in the case Ωn � 0 the zero in the denominator
of M p0q pQ,Ωnq in eq. 4.33 gets compensated by the zero in the numerator. As dis-
cussed by Pethick and Smith [16], the Fermi edges become sharper with decreasing
temperature, which leads to a log T {εF divergence and ultimately to the exponen-
tially small BCS temperature in eq. (4.22) from the Thouless criterion in the weak
coupling limit 1{g �M p0qpQ � 0,Ωn � 0q � 0.

Now, with a concrete form for the vertex available, we can now proceed with the
determination of the self-energies, which are the last missing piece, before we can
write down the Schwinger-Dyson equation.

4.6 Self-energies and the self-consistent equations for G

4.6.1 Self-energy diagrams

In order to determine the physical Green’s functions we have to solve the Dyson
equation (4.20), where the self-energy is obtained from ΣrGs � δΦrGs{δG, see
eq. (4.21). This functional derivative can be visualized as taking out one of the
Green’s functions linking any two of the rungs of the ladders in Fig. 4.2, which
yields diagrams of the kind shown in Fig. 4.4. Translating the Feynman diagram
into a formula, we have above Tc

Σσσ pk, ωnq �
»

d3Q

p2πq3
1

β

¸
m

Γ pQ,ΩmqGσ̄σ̄ pQ� k,Ωm � ωnq , (4.36)

where we have utilized the specific diagrammatic form of the vertex, defined in
the previous section. Note that the spin indices of the self-energy Σσσ coincide
with those of the removed Green’s function Gσσ, while the Green’s function on the
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

Figure 4.4: Diagrammatic representation of the self-energy ΣrGsσσ as functional
derivative of ΦrGs in Fig. 4.2. Note that the vertex is closed with a
Green’s function of opposite spin σ̄.

right-hand side carries the opposite spin orientation in accordance with the spin
structure imprinted by the particle-particle ladder.

4.6.2 The self-consistent equations for G

We are now in the position to formulate the self-consistent equations of motion
for the Green’s function from the previously defined functions. The first step is
to compute from a given Green’s function G pk, ωnq, the particle-particle bubble
diagram M pQ,Ωnq defined in eq. (4.32). For the numerical evaluation we Fourier
transform the Green’s function to real space, where the convolution encountered in
the unrenormalized function χ from eq. (4.23) can be replaced by the product

χ px, τq � G�� px, τqG�� px, τq . (4.37)

This is well defined in real space, except for τ Ñ 0� at x � 0, as can be seen from
the dominant part of the Gσσ px, τq in eq. (7.11), which therefore will be treated ana-
lytically. To perform the ensuing back transformation to momentum and frequency
space, we single out the parts from the bare Green’s functions, which require the
renormalization. These can be computed with the analytic considerations in (4.35)
above, while we treat the remaining terms by numerical means. We detail this
procedure for the determination of M pQ,Ωnq in Chapter 7. Next we calculate the
vertex function Γ pQ,Ωnq according to the geometric series (4.31), before we turn
to the computation of the self-energies (4.36), which we carry out again in real
space where it attains the product form

Σσσ px, τq � Γ px, τqGσ̄σ̄ p�x,�τq . (4.38)

Then, we Fourier transform the self-energies back to Σσσ pk, ωnq, which enters the
Schwinger-Dyson equation (4.20) and gives rise to an updated Green’s function
after inverting the equation. With the resulting G the procedure is started over
again from equation (4.37) until convergence is reached in the sense that the current
G is a fixed point of the self-consistency loop. A pictorial representation of this
procedure can be found in Fig. 4.5. In total, we have obtained a closed set of equa-
tions that only involve Fourier transformations and component-wise products, for
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Figure 4.5: Self-consistent loop for the Green’s functions. In the horizontal direc-
tion either Fourier transforms or multiplications have to be performed.
The vertical step on the right is based on the Bethe-Salpeter equa-
tion (4.30), while its counterpart on the left represents the Schwinger-
Dyson equation (4.20).

which highly optimized algorithms exist. However, due to the specific asymptotics
of the functions encountered in the BCS-BEC crossover, we have to use Fourier
transformations that are specifically designed to the problem. We introduce these
transformations in Chapter 6.

4.7 Thermodynamic Quantities

Having solved the self-consistent equations from the previous section, knowledge
of the physical Green’s function suffices to determine the Luttinger-Ward grand
potential ΩrGs (4.18), which gives access to all thermodynamic quantities. Observ-
ables like the spin densities nσ and the contact density C are easily obtained from
G px, τq or Γ px, τq, respectively, via the short-distance and short-time limits (4.4)
and (4.28). In order to determine thermodynamic quantities like the entropy it is
in principle possible to directly use relations like S � �pBΩ{BT qV,µσ , which, how-
ever, requires to compute derivatives of numerical data. Since these operations are
quite sensitive to computational uncertainties, it is preferable to express the en-
tropy Sand the internal energy U as functionals of G and Γ, similar to the pressure,
which can be directly read-off from prGs � �ΩrGs{V . To find these functionals,
we extend the results used by Haussmann et. al [37] and by Cerrito [144] for the
latter observables to a finite spin imbalance, yet only in the normal phase.

Common to p, U and S is that they can be split into two contributions. A simple
mean-field term is obtained by both replacing the dressed Green’s function G by
its bare counterpart Gp0q from eq. (4.12), and the full vertex Γ by the bare coupling
constant ḡpΛq. Above Tc these terms will reduce to the noninteracting results. The
remainders can be gathered in a functional that includes the interaction effects.
This separation turns out to be useful to perform the renormalization in the zero-
range limit, which affects only the lowest order interactions. The effects from higher
orders have to be treated numerically, but all of them can be interpreted as Fourier
transform to x � 0 and τ Ñ 0�. Therefore, we can utilize the same methods as
in the self-consistent loop, yet, we have to find a form for these terms, which can
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

be reliably Fourier transformed. This last step involves a new subtraction scheme,
which is detailed in Section 7.3 on the numerical implementations.

4.7.1 Pressure functional

Let us first focus on the result for the pressure p � �Ω{V , which follows from
the ladder approximation to ΩrGs in eq. (4.25). Applying the identity logrGσσs �
logrGp0qσσ s� logrpGp0qσσ q�1Gσσs to the first term and plugging the Bethe-Salpeter equa-
tion into the last term, yields

prG,Γs � �
»

d3k

p2πq3
1

β

¸
σ,n

log
�
Gp0qσσ pk, ωnq

�

�
»

d3k

p2πq3
1

β

¸
σ,n

"
log

�
Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

�
�
�
1� Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

�*

�
»

d3Q

p2πq3
1

β

¸
n

"
log

�
ḡ pΛq Γ�1 pQ,Ωnq

� *
.

(4.39)

This form singles out the mean-field term in the first line, while the other two lines
vanish identically upon the replacements G Ñ Gp0q and Γ Ñ ḡpΛq. In particular,

the Matsubara sum and the k integral of logrGp0qσσ pk, ωnqs are well known and yield
the pressure pp0qpT, µσq � �T {λ3

T Li5{2r� exp pβµσqs [154] of a single-component
ideal Fermi gas, in analogy to eq. (2.34) for a balanced two-component gas. Conse-

quently, the first line is equivalent to the pressure p
p0q
imbpT, µ, hq of a noninteracting,

spin-imbalanced Fermi gas

p
p0q
imb � � T

λ3
T

�
Li5{2

�
�eβµ�

	
� Li5{2

�
�eβµ�

	�
. (4.40)

Physically, the sum can be understood from the fact that in the absence of in-
teractions both spin species form individual Fermi gases within the same volume
but without any interspecies correlations. Because of the extensivity of the grand
potential both contributions add together Ω � Ω� � Ω�, which immediately leads
to the given form of the pressure.

Finally, we consider the second line of eq. (4.39) and note that it scales like
ω�3
n for large Matsubara frequencies. The stated power law can be proven from

the universal 1{ωn behavior for |ωn| Ñ 8 of any Green’s function [67], which
arises from the contribution of the equal-time anticommutation relations (4.1) to
the equation of motion of the Green’s functions, irrespective of the presence of
interactions. Therefore, we can Taylor expand the logarithm in the limit of large
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frequencies, which yields

log
�
Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

�
�
�
1� Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

� |ωn|Ñ8
ÝÝÝÝÝÑ

1

2
pGp0qσσ pk, ωnq�1 Gσσ pk, ωnq � 1q2 � ... � 1

2
G2
σσ pk, ωnqΣ2

σσ pk, ωnq � ... .

(4.41)

In the last step we used the Dyson equation (4.20). With the asymptotics of the
self-energy Σσσ pk, ωnq � 1{?iωn, derived in eq. (7.57), we obtain the desired cubic
decrease. We can interpret the sum and the momentum integral of this expression
as Fourier transformations to the origin in real space and imaginary time, which,
due to the fast decay, can be performed by numerical means. For later convenience
we abbreviate this contribution in terms of the auxiliary functional

H1rGs � �
»

d3k

p2πq3
1

β

¸
σ,n

�
log

�
Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

�

�
�
1� Gp0qσσ pk, ωnq�1 Gσσ pk, ωnq

�	
.

(4.42)

Finally, the Matsubara sum of the logarithm in the equation for the pressure (4.39)
remains. As the inverse vertex for large Ωn is dominated by the leading order bubble

diagram from eq. (4.35), that grows like M p0q pQ,Ωnq � α
� εQ

2 � 2µ� i~Ωn

�1{2
,

with α � �m3{2{p4π~3q, the sum is mathematically not-well defined, no matter
which coupling constant is inserted. To regularize the expression, we first rewrite
it in the form

log
�
ḡpΛqΓ�1 pQ,Ωnq

� �
�
�log

�
�1�

Γ�1 pQ,Ωnq � α
b

εQ
2 � d

2 � i~Ωn

α
b

εQ
2 � d

2 � i~Ωn

�
�

� log

�
gα

c
εQ
2
� d

2
� i~Ωn

�
� log

�
ḡpΛq
g

��
,

(4.43)

where we have separated the dependence on the bare coupling constant and fur-
thermore have introduced an auxiliary, negative chemical potential3 d ¡ 0, which
of course does not alter the asymptotics. We will return to this trick, when we
construct the subtraction schemes for the numerical implementation in Sec. 7.
In practice, we choose the numerical value d � 150T , which drastically simpli-
fies the evaluation of the terms. Computing the Matsubara sum of the constant
logpḡpΛq{gq, yields a Dirac distribution δpτq. Since the convergence factor enforces
the evaluation in the limit τ Ñ 0�, this contribution vanishes. Therefore, the
pressure depends only on physical quantities, as required for any observable. The

3Negative in the sense that it appears with the opposite sign compared to standard chemical
potentials.

69



Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

first term now asymptotes as Ω
�1{2
n , which decays to zero and thus can formally

be summed by introducing an oscillating convergence factor exppiΩn0�q. These
convergence factors appear quite often in frequency sums and guarantee finite re-
sults in the limit τ Ñ 0�, thereby measuring the actual particle excitations that
contribute to the thermodynamics rather than the holes [67, 154]. A similar pro-
cedure for the grand potential, however with bare ladders, is used by Diener et
al. [147]. Yet, this behavior still is not very satisfactory, since it is not amenable
to a numerical treatment. Therefore, we will construct a subtraction scheme for
this term, that improves its numerical properties, but we postpone the precise def-
initions to Sec. 7.3, since it requires the explicit form of the decomposition of the
vertex function in analytical and numerical parts presented in Sec. 7.2.

Regarding the second term in (4.43), we still encounter a function that asymp-
totically grows. Yet, we can consider it in terms of a generalized Fourier transform
(see App. C or the book by Gel’fand and Shilov [155]), which also exist for alge-
braically or logarithmically diverging functions. Accepting this interpretation, we
can include the standard convergence factor exppiΩn0�q, which allows to rewrite
the Matsubara sum as a contour integral (see App. B) in the complex plane by
the replacement iΩn Ñ z, while the integrand has to be multiplied by the Bose
distribution nBpzq � rexppβzq � 1s�1. Shifting the arcs of the contour towards in-
finity, their contributions vanishes exponentially, either due to nBpzq � expp�βzq
for Repzq Ñ �8 or because of exppz0�q for Repzq Ñ �8. Therefore, the only
relevant contribution comes from the integral along the branch cut of the square
root on the positive real axis, which starts out at pεQ � dq{2. Thus, for arbitrary
momenta this integral has a uniform suppression of nBpd{2q � expp�βd{2q, even
after the integral over momenta has been performed. For our choice of d the term
is on the order of 10�11 and will be neglected in the following. Consequently, we
define the second beyond-mean-field contribution to the pressure

HlogrΓs � 1

2

»
d3Q

p2πq3
1

β

¸
n

eiΩn0� log

�
�1�

Γ�1 pQ,Ωnq � α
b

εQ
2 � d

2 � iΩn

α
b

εQ
2 � d

2 � iΩn

�
� .

(4.44)

All in all, the pressure finally reads

p � p
p0q
imb �H1rGs �Hlog rΓs . (4.45)

4.7.2 Internal energy

The internal energy is given by the expectation of the Hamiltonian U � xHy, which
consists of a kinetic and potential energy part. As discussed in connection with the
Tan relations in Sec. 2.4, the momentum distribution for zero-range interactions
exhibits quite generically an algebraic tail nσpkq � C{k4, such that the kinetic
energy diverges and only the total energy is meaningful. Therefore, we decompose
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U in analogy to p in a noninteracting and a higher order part and carefully discuss
the limit Λ Ñ8. Similar arguments can be found in [37,144]. The energy density
ε � U{V of the single-channel Hamiltonian (2.26) reads

ε �
¸
σ

»
d3k

p2πq3 εk Gσσpk, τ � 0�q � ḡpΛq
»
d3x

A
Ψ̂:

� pxq Ψ̂:
� pxq Ψ̂� pxq Ψ̂� pxq

E
,

(4.46)

where Gσσpk, τ � 0�q is identical to the momentum distribution nσpkq, see equa-
tion (2.57). The second term actually includes the two-particle Green’s function
G2, that in general can be written as a sum of disconnected products of single-
particle Green’s functions plus the connected part, which includes the vertex [141].
In a mathematical form this means

G2p1, 2, 3, 4q � Gp1, 2qGp3, 4q �Gp1, 3qGp2, 4q �Gp1, 4qGp2, 3q
�Gp1, 11qGp2, 21qΓp11, 21, 31, 41qGp31, 3qGp41, 4q , (4.47)

where each argument refers to the set of px, τq coordinates, as well as to spin ori-
entation and a sum or an integral over the primed indices is understood implicitly.
The first line corresponds to the disconnected contributions to G2, which in the
energy density give rise to the Hartree, the Fock and the particle-particle bub-
ble diagram χ of two co-propagating Fermions, according to the definition (4.23).
Since the Hartree diagram vanishes in the zero-range limit and the Fock diagram
corresponds to an anomalous contraction of opposite spin indices, which does not
exist above Tc, we obtain the following expression for ε in momentum space [37]

ε �
¸
σ

»
d3k

p2πq3 εk Gσσpk, τ � 0�q

� ḡpΛq
»

d3Q

p2πq3
1

~β
¸
n

rχ pQ,Ωnq � χ pQ,ΩnqΓ pQ,Ωnqχ pQ,Ωnqs .
(4.48)

In the second term the factors of G, that connect vertex function in G2 with the
external points, have been contracted into χ pQ,Ωnq. Note that at this stage, we
use the unrenormalized version of the particle-particle bubble, since the zero-range
limit has not been performed yet and the expression still contains ḡpΛq.

In fact, it turns out to be more convenient for the numerics to compute the ”grand
canonical” energy density xH{V � µ�n̂� � µ�n̂�y. Obviously ε can be recovered by
adding µ�n��µ�n� � µn�h δn, which is obtained from the self-consistent Green’s
function directly. Using the momentum-space representation of the bare Green’s
function (4.9), we find

ε� µn� h δn � �
»

d3k

p2πq3
1

β

¸
σ,n

!�
Gp0qσσ pk, ωnq�1 � i~ωn

�
Gσσ pk, ωnq

)

�
»

d3Q

p2πq3
1

β

¸
n

�
Γ pQ,Ωnq
ḡ pΛq � 1

�
,

(4.49)
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where the last term results from equation (4.48) by inserting Bethe-Salpeter equa-
tion (4.30). From the latter we arrive at the necessary intermediate form ḡpχ �
χΓχq � χΓ, which yields the above expression by replacing χ � Γ�1 � 1{ḡ. From
the last equation we can determine the mean-field contribution in a similar way as
in the pressure functional. Here we find

pε� µn� h δnqp0q � �
»

d3k

p2πq3
1

β

¸
σ,n

!�
Gp0qσσ pk, ωnq�1 � i~ωn

�
Gp0qσσ pk, ωnq

)

�
»

d3k

p2πq3
1

β

¸
σ,n

pεk � µσqGp0qσσ pk, ωnq ,
(4.50)

where the Matsubara sum can be solved once more in the presence of a convergence
factor exppiΩn0�q. In the symmetric phase we recover again the result for ideal
Fermions

pε� µ�n� � µ�n�qp0q � 2

3

T

λ3
T

�
Li5{2

�
�eβµ�

	
� Li5{2

�
�eβµ�

	�
� µ�
λ3
T

Li3{2
�
�eβµ�

	
� µ�
λ3
T

Li3{2
�
�eβµ�

	
,

(4.51)

which follows from the trivial scale invariance pp0q � 2εp0q{3 in the absence of
interactions together with the density of a single-component ideal Fermi gas

np0qpT, µσq � � 1

λ3
T

Li3{2p�eβµσq . (4.52)

To find the non-trivial term, we first consider the last integral in eq. (4.49) with
the vertex. Following the same steps as in equation (2.59) of Ref. [37], it can be
rewritten as

�
»

d3Q

p2πq3
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β

¸
n

�
Γ pQ,Ωnq
ḡ pΛq � 1

�

�
»
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p2πq3
1

β

¸
n

rΓ pQ,Ωnqχ pQ,Ωnqs

� 1

2

»
d3k

p2πq3
1

β

¸
σ,n

rΣσσ pk, ωnqGσσ pk, ωnqs

� 1

2

»
d3k

p2πq3
1

β

¸
σ,n

!
Gp0qσσ pk, ωnq�1

�
Gσσ pk, ωnq � Gp0qσσ pk, ωnq

�)
.

(4.53)

To obtain the final result one uses first the Bethe-Salpeter equation (4.30), before
exchanging the order of the bosonic and the fermionic integral, where the latter
implicitly appears in χ pk, ωnq, given in eq. (4.23). This generates the self-energy
from eq. (4.21), which together with the Dyson equation (4.20) last line from the
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4.7 Thermodynamic Quantities

equation above, where ḡpΛq has dropped out. Combining this intermediate step
with (4.49) and (4.50) yields for the higher order contribution to the grand canonical
energy density

H2rGs � ε� µn� hσ � pε� µn� hσqp0q

� �1

2

»
d3k

p2πq3
1

β

¸
σ,n

!�
Gp0qσσ pk, ωnq�1 � 2i~ωn

� �
Gσσ pk, ωnq � Gp0qσσ pk, ωnq

�)

� �1

2

»
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p2πq3
1

β

¸
n,σ

!�
Gp0qσσ pk,�ωnq�1

� �
Gσσ pk, ωnq � Gp0qσσ pk, ωnq

�)
,

(4.54)

where the first bracket has been simplified by noting

Gp0qσσ pk,�ωnq�1 � Gp0qσσ pk, ωnq�1 � 2i~ωn .

This defines a new auxiliary functional H2rGs, where the integrand scales asymp-

totically like ω
�3{2
n and thus the Matsubara sum exists. One can verify this

statement by inserting the Dyson equation with the asymptotics Gσσ91{ωn and

Σσσ �
?
iωn

�1
from eq. (7.57). In practice, we will separate further terms, which

can be treated by other means to improve the numerical quality, see Sec. 7.3.
Altogether, we have for the combination of internal energy with the pairs of

conjugated chemical potentials and spin densities

ε� µn� hσ � pε� µn� hσqp0q �H2rGs . (4.55)

4.7.3 Entropy

For thermodynamic consistency of the Luttinger-Ward theory within the ladder
approximation the entropy SrG,Γs must satisfy the thermodynamic identity4

ΩrG,Γs � U rG,Γs � TSrG,Γs � µN rGs � h δN rGs . (4.56)

Solving for the entropy density yields

S

V
�

�
S

V


p0q
� 1

T
pHlogrΓs �H1rGs �H2rGsq , (4.57)

where the noninteracting contribution reads�
S

V


p0q
� p

p0q
imb

T
� pε� µn� hσqp0q

T
. (4.58)

4In the previous work [37] the entropy SrΓ, Gs was derived from a many-body theory by De-
Dominicis and Martin [142,143], where S plays the role of the basic functional equivalent to Ω
in the Luttinger-Ward formalism applied here. However, within the ladder approximation it
was shown that the thermodynamic identity is obeyed, at least in the spin balanced case. This
result can be generalized to the presence of a finite h as the chemical potentials are added as
Lagrange multipliers without affecting the form of the functionals.
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Chapter 4 LW-theory for the BCS-BEC crossover in the presence of spin imbalance

4.7.4 Consistency check

We close this chapter by discussing a nontrivial consistency check for our thermo-
dynamic functions in the particle-particle ladder approximation. It is based on the
Tan pressure relation (2.62). Note that the Tan relations in general are obeyed ex-
actly in a Luttinger-Ward formulation, independent of the detailed form of ΦrGs,
as was shown by Enss [109]. With the help of the functionals for the pressure and
the internal energy eqs. (4.45) and (4.55) the Tan pressure relation can be written
as

p
p0q
2 �HlogrΓs �H1rGs � 2

3

�
pε� µn� hδnqp0q �H2rGs

�
� 2

3

¸
σ

µσGσσpx � 0, τ � 0�q

� m

12π~2a
Γpx � 0, τ � 0�q ,

(4.59)

where the sum over the Green’s functions corrects for the additional terms in ε �
µn � hδn and the Tan contact is expressed via (4.28). In this way we can relate
all the thermodynamic functions, which allows to test the numerical quality of our
data.
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Chapter 5

Numerical results of the Luttinger-Ward
theory

In the following, we present the numerical data from the self-consistent solution for
the Green’s function for the thermodynamic properties of the BCS-BEC crossover
in the presence of finite spin imbalance. We first start in Sec. 5.1 with the phase
boundary between the normal and either a homogeneous or an FFLO-type super-
fluid. A first check on our results is provided by the comparison to the known phase
diagram in the weak coupling limit, which can be found in Sec. 5.2. Then we focus
on the thermodynamics of the unitary Fermi gas in Sec. 5.3, where we discuss the
phase diagram as well as the scaling functions for the thermodynamic quantities,
before we compare our results for the Landau-Plazcek ratio to the experimental
data for the spin-balanced unitary gas. Afterwards, we also show the thermody-
namic properties of the system in the strongly interacting regime but away from
resonance, where we choose the interaction strengths v � �0.75 and v � 0.75 as
representative values in Sec. 5.4. In Sec. 5.5 we provide a check on the accuracy of
our computations, which is based on the Tan pressure relation, see Sec. 4.7.4. In the
next Section 5.6 we return to the universal representation of the thermodynamics
and show our results for the scaling functions of the phase boundaries discussed in
Chapter 2. We close the discussion on the results by studying the FFLO-instability
in further detail in Sec. 5.7.

5.1 Phase diagram of the BCS-BEC crossover with spin
imbalance

One of the primary goals in the context of the thermodynamics of the BCS-BEC
crossover is to quantitatively determine the critical temperature for the phase tran-
sition to the superfluid. In Sec. 5.1.1 we first state the criterion, which we apply to
the vertex function Γ, to decide whether a set of parameters is located on the phase
boundary. Then we present the phase diagram in the form h̃cpv, θq throughout
the crossover. Furthermore, we extract the coordinates of the polaron-to-molecule
transition point M, which has been discussed in the context of the universal phase
diagram for the ground state at positive a, see Fig. 3.3 and the discussion in Sec. 3.3.
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Chapter 5 Numerical results of the Luttinger-Ward theory

5.1.1 Determination of the phase transition

As discussed in Section 4.5, the instability to the symmetry-broken phase is in-
dicated by a divergence of the vertex function ΓpQ,Ωn � 0q or equivalently by
a zero of its inverse ΓpQ,Ωn � 0q�1. Approaching the low-temperature phase
from the normal fluid, we are able to distinguish between two different types of
superfluid order. Either the zero in Γ�1 occurs at Q � 0 representing an insta-
bility to a homogeneous superfluid or at Q ¡ 0, when an FFLO order develops
below Tc. Typical instances for the inverse vertex in both scenarios are depicted
in Fig.5.1. In the numerics, we are not able deal with a genuine divergence of Γ
and therefore cannot resolve the zero exactly but merely approach it as close as
possible. In the case of the homogeneous superfluid we can make use of the scaling
Γ�1pQ Ñ 0,Ωn � 0q � Q2, which in the weak coupling limit has been pointed
out already by Abrikosov et al. [139]. Since all the terms that are included during
the self-consistent loop do not alter this power law notably1 in the vicinity of the
phase transition, we fit the small Q-limit of our dimensionless numerical function
for2 |Γ̂�1pQ̃,Ωn � 0q| � |p2πq3{2Tλ3

TΓ�1pQ,Ωn � 0q| to a simple parabola a� bQ̃2,
with Q̃ � Q{kF and constant coefficients a, b ¡ 0. Physically, the offset a represents
the remaining excitation gap and measures the distance to the phase transition. If
the fitting routine yields a   10�7, we take the corresponding parameter set as crit-
ical. On the other hand for an FFLO instability the range of momenta around the
critical QFFLO is too small to reliably impose a power-law scaling for the momen-
tum behavior and we can only try to minimize the inverse vertex as far as possible,
while a stable convergence of the Green’s function is retained. In this situation we
accept |Γ�1pQFFLO,Ωn � 0q| ¤ 10�5 to determine on the phase boundary.

5.1.2 Phase diagram

A scan of the dimensionless temperatures θ � T {εF , Zeeman fields h̃ � h{εF and
interaction strengths v in combination with the criteria for the inverse vertex from
the previous section gives rise to the phase diagram presented in Figure 5.2. The
shown surface separates the normal phase, which is encountered for h̃ above the
surface, from the symmetry-broken states in the parameter space below it. In par-
ticular, the red part of the critical manifold signals the instability to a conventional
superfluid, while the phase transition to FFLO-order is colored in blue. In agree-
ment with the physical expectation that pairing becomes more efficiently inhibited
with stronger Zeeman fields, we observe for every fixed v a decrease of θc with
growing h̃. The further one approaches the BCS limit of the crossover, i.e. for

1In a theory, which is capable to describe the critical behavior properly, one should recover the
correct scaling ΓpQ,Ωn � 0q � 1{Q2�η with the critical exponent η � 0.038 [123] of the 3d
XY-model. In the Luttinger-Ward theory a finite anomalous dimension might arise from the
nonperturbative resummation of diagrams during the self-consistent loop. However, so far our
results do not allow to conclusively extract it.

2In fact Γ�1pQ,Ωn � 0q   0, thus we introduce the following absolute value.
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5.1 Phase diagram of the BCS-BEC crossover with spin imbalance
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Figure 5.1: Typical examples for the inverse vertex function Γ�1pQ,Ωn � 0q at
the phase transitions. The Q2 behavior for Q Ñ 0 of the red curve
implies the instability towards a homogeneous superfluid. FFLO order
is signaled by a zero at a finite QFFLO (blue curve). At large momenta
we find the linear asymptotics from eq. (4.35).

v ¤ �2, the smaller become the values of θc and h̃c up to which the superfluid
phase exists, as can be anticipated from the BCS asymptotics θc � expp�π|v|{2q
and hc, hFFLO � ∆0 � expp�π|v|{2q. On the other hand in the BEC limit, we
encounter a superfluid phase also at substantial Zeeman fields h̃ ¥ 1 at all temper-
atures 0 ¤ θ ¤ θBECc , where the upper bound is determined from the ideal BEC
condition (2.49) for aÑ 0�. In this regime the two-body binding energy εB � 1{a2

becomes the dominant energy scale of the system. Since h has to compete with this
large energy to break up pairs, the distortion of the superfluid by unpairing the
molecules becomes less efficient in this limit, while the depletion of the condensate
by thermal fluctuations remains more or less unaffected. Nevertheless, the combi-
nation of the Zeeman field with finite temperature effects leads to a reduction of the
critical temperature compared to the balanced case also in the BEC limit. In the
h̃ � 0 plane, we retrieve the critical temperature curve of the balanced gas, known
from the previous Luttinger-Ward study by Haussmann et al. [37], who have shown
that the limiting behavior in the BCS (4.22) and BEC (2.49) regime is described
correctly (apart from the GMB [95] corrections). We will provide arguments that
our approach reproduces these well understood limits as well, yet in the universal
formulation in terms of T̄ , µ̄ and h̄, which is postponed to Sec. 5.6. Note, however,
that we merely approach the phase transition from the normal fluid. Therefore,
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Chapter 5 Numerical results of the Luttinger-Ward theory

Figure 5.2: Critical temperature throughout the BCS-BEC crossover as function of

v � 1{pkFaq and h̃ � h{εF . The red region indicates the transition
to a homogeneous superfluid while an FFLO superfluid is found below

the blue wedge. The maximal critical temperature T
pFFLOq
c � 0.03εF

is located on the BCS side at v � �1. At unitarity we only detect this
order at the very lowest temperatures and it has only minute extent
on the bosonic side. The black dot marks the point M, see the next
section.

we do not resolve the weak first order character of the phase transition, which is
artificially found in the Luttinger-Ward approach along the entire phase boundary,
but only recover the monotonous θc,lower-curve from Fig. 2.3, which in the unitary
limit attains the value θcpv � 0, h̃ � 0q � 0.152.

The FFLO wedge extends at the lowest achievable temperatures of θ � 10�3 from
the extreme BCS limit even beyond unitarity to the bosonic side of the crossover
up to interaction strengths of v À 0.2. Unfortunately, for these large interactions
strengths the precise location of the FFLO instability depends considerably on the
choice for the numerical threshold of a zero in Γ�1pQ,Ωn � 0q. This is caused
by the geometry of the phase diagram in the neighborhood of the Lifshitz point L
in Fig. 3.4, which marks the endpoint of the normal-to-FFLO phase boundary at
T � 0. Around L the phases of different order shrink to very narrow slivers, which
leads to a competition between the instabilities of the vertex at finite or zero Q in
a rather broad range of interaction strengths. Consequently, locating L precisely
by an extrapolation towards T � 0 is not possible. Despite these difficulties, the
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5.1 Phase diagram of the BCS-BEC crossover with spin imbalance

Luttinger-Ward approach gives strong evidence that L is to be found in the vicinity
of the unitary limit, in contrast to mean-field methods that observe the endpoint
of the FFLO phase at 1{pkFaq � �2.86 [68] or 1{pkFaq � �0.46 [70]. Regarding
the extent of this unconventional phase to finite temperatures, we first observe
that a minimal h̃, whose value depends on v, is required to create FFLO-order.
This observation is in line with the weak-coupling result that FFLO requires a
finite spin imbalance. Once we are above this minimal Zeeman field, there is only
the transition towards the nonhomogeneous phase, which is reliably detected. An
interesting point with respect to experimental realizations is that we obtain the
maximal critical temperature for FFLO at θ � 0.03 on the fermionic side of the
crossover for interaction strengths �0.9 À v À �0.4.

5.1.3 Determination of the polaron-to-molecule transition point M

Our Luttinger-Ward data allows to estimate the coordinates of the polaron-to-
molecule transition point M from the observation that M is identical to the starting
point of the phase boundary between the fully polarized normal and the paritally
polarized superfluid, which extends from M to the extreme BEC limit (compare
Fig. 3.4). In Fig. 5.3 we show the critical polarization in the regime 0.5 � v � 2.5
at the lowest available temperatures of θ � 0.005. Indeed, we obtain σc � 1 beyond
a certain coupling strength. To determine the location of M, we first note that the
hs curve and the boundary of the partially polarized, normal phase NΩ�¡Ω�

with
the imbalanced, fermionic superfluid meet at M with different slopes. We assume
that this behavior is mapped to a non-differentiable form of the critical polarization
at the onset of the constant σc � 1 shown here. Therefore, we linearly continue
the branch of the σcpvq curve, with σ   1 towards the crossing with σ � 1. This
determines vM � 1.13�0.03, where we have estimated the errors from the v-values
of the neighboring data points. This procedure is shown in the inset of Fig. 5.3.
Furthermore, we obtain for the chemical potentials at this point pµ̃ � �1.16, h̃ �
2.73q. Together with the order parameter ∆0pv � 1.13q � 1.19εF from [37], we find
h{∆ � 1.65, where we use again the mean-field form ∆ �

a
µ2 �∆2

0. This result
coincides very well with the coordinates pv � 1.13, h{∆ � 1.66qM obtained from
the BDMC data [131], as discussed in Sec. 2.3.3. Unfortunately, the results for
the universal coordinates pµ̄Mq � �0.91 and ph̄Mq � �2.14 deviate notably from
the BDMC results pµ̄ � �0.74, h̄ � 1.97qM. A similar discrepancy between the
formulation based on density units with energy scale εF and the representation in
terms of half the binding energy εB{2 arises on the BEC side in Sec 5.6, where we
discuss the universal representations of the phase boundaries. In general, density
units appear more favorable when comparing the results to other methods or known
asymptotics. So far, we have not found a conclusive explanation for this fact, except
for the trivial observation that εB � v2 depends quadratically on the dimensionless
coupling strength, which introduces a large rescaling in the BEC limit v Ñ8. This
can lead to enhanced errors, since our theory accounts for the dimer-dimer and the
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Figure 5.3: Critical polarization σ at the lowest available temperatures. The in-
set shows how we extract the coordinates of the polaron-to-molecule
transition point M from the onset the maximal polarization σ � 1.

atom-dimer interactions only in an approximate manner.

5.2 Comparison to weak coupling

In the weak coupling limit v ! �1 the self-consistent theory reduces to diagrams
with bare Green’s functions Gp0q. To check whether our approach is consistent with
the standard results in this regime, we compare our data to the established form
of the phase diagram depicted in Figure 2.5.

The smallest interaction strengths, where we reach temperatures that can be con-
sidered as essentially zero, are around v Á �2.5. To obtain a quantitative compar-
ison at these finite couplings, however, we have to take into account the deviations
from the pure weak-coupling theory. Figure 5.4 shows both our Luttinger-Ward
results for h̃FFLOpT Ñ 0q and θcph � 0q and their corresponding BCS asymptotics
from eqs. (4.22) and

h̃FFLOpT � 0q � 0.754
8

e2
e�π|v|{2 , (5.1)

respectively. While the Zeeman field at v � �2 is still described by the BCS asymp-
totics at the 5%-level, we observe that the critical temperature of the spin-balanced
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5.2 Comparison to weak coupling

system already deviates by 23% from the analytic expression. The pronounced dif-
ference in the behavior of both quantities can be understood from the fact that the
polarization induced by h̃ suppresses interaction effects and therefore brings the
system closer to the limit of weak interactions. On the other hand, in the balanced
situation, interactions have the largest influence, such that the critical tempera-
ture at h � 0 is more strongly affected by beyond-mean-field corrections than the
critical FFLO field at T � 0. To compare our results with the pure weak coupling
limit in a T {∆0 vs. h{∆0 diagram we present our critical data ph̃cpvq, θcpvqq at a
given v in the following way

1

∆
(BCS)
0 pvq

�
h̃pvq

δh̃T�0
c pvq ,

θcpvq
δθbal
c pvq

�
. (5.2)

Here ∆
(BCS)
0 pvq refers to the corresponding BCS gap at zero temperature and van-

ishing Zeeman field from eq. (2.45). Furthermore, we include two rescaling fac-
tors to incorporate the effects of the finite interaction strength from the limit
v Ñ 0�: δh̃T�0

c pvq, which describes the deviation of the Zeeman field from the
FFLO-asymptotics and its temperature counterpart δθbal

c pvq for the spin-balanced
BCS-limit. The results of this transformation are depicted in Fig. 5.5 for the inter-
action strengths v � �2.5, v � �2.3 and v � �2.1, where the values of δh̃T�0 and
δθbal
c can be determined from Fig. 5.4. The used values read

v �2.5 �2.3 �2.1

δθbal
c 0.78 0.76 0.74

δh̃T�0
c 0.95 0.95 0.95

. (5.3)

Note that we have assumed a constant factor for the Zeeman field, since we cannot
achieve low enough temperatures for the corresponding larger values of βh of order
103, where δh̃T�0

c must tend to one. Regarding the values of δθbal
c , we observe a

growing deviation towards unitarity, in agreement with the expectation that the
BCS asymptotic becomes less precise the larger v. Regarding Fig. 5.5, our data
collapses for all interaction strengths and shows good agreement with the theory
line, in particular for the transition to the homogeneous BCS state. However, in
case of the FFLO transition we observe slight noise and the phase boundary appears
to be shifted towards the CC-line. Here we encounter the problem that we try to
minimize the inverse vertex as far as possible, but we have no sharp criterion for
criticality available like the scaling behavior of the vertex function for the transition
to the homogeneous superfluid. Furthermore, since the Luttinger-Ward formalism
in general gives rise to weak first order transitions it tends to artificially enlarge
phases and our approach from the normal fluid leads to critical temperatures below
the physical Tc. Usually this effect is small in the BCS limit of the crossover, yet,
it becomes more pronounced, when one normalizes the results by the gap, which is
exponentially sensitive to v.
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Figure 5.4: Comparison between the BCS asymptotics and the Luttinger-Ward re-
sult as function of v. Especially the critical temperatures deviate con-
siderably from the weak coupling form in the regime v � �2.
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Figure 5.5: Comparison to the weak coupling results from Fig. 2.5: We observe
a scaling collapse of our data in the representation (5.2) for different
interaction strengths v � �2.5 (circles), v � �2.3 (diamonds) and
v � �2.1(triangles). The scaling factors are given in the main text.
Yellow symbols: homogeneous superfluid, blue symbols: FFLO.
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5.3 Thermodynamics of the unitary Fermi gas

5.3 Thermodynamics of the unitary Fermi gas

After convincing ourselves, that our Luttinger-Ward approach is able to reproduce
the weak-coupling limit, we turn now to the strong coupling regime near 8 scatter-
ing length. In this chapter we focus on the unitary gas, for which we first show the
phase diagram in Sec. 5.3.1, before we discuss the thermodynamic scaling functions
in Sec 5.3.2. Finally, we compare the Luttinger-Ward theory in the spin-balanced
case to the experimental results by Ku et al. in Sec. 5.3.3, where we present in
particular the Landau-Placzek ratio.

5.3.1 Phase diagram of the unitary gas

The phase diagram of the resonant gas in the ph{µq vs. pT {µq plane is presented
in Figure 5.6. Once again, we obtain the highest critical temperature for the spin
balanced gas, since spin imbalance suppresses pairing. At h � 0 the onset of the
superfluid phase is encountered at pT {µqc � 0.38, which corresponds to the inverse
of pβµqc � 2.65. At lower temperatures the superfluid exists also in the presence
of finite Zeeman fields. Moreover, below temperatures of pT {µq � 0.15 we observe
a backbending of the critical field curve, which resembles the dashed line in the
weak-coupling limit, shown in Fig 2.5, found originally by Sarma [26]. In fact, by
approaching the phase transition from the high-temperature phase without anoma-
lous expectation values we probe the lowest temperature below which the normal
phase ceases to exist and thereby we generalize the criterion used by Sarma to
the regime of strong interactions. This particular form of the phase boundary in-
dicates a region where the phase transition is of first order and agrees with the
existence of a tricritical point along the ph{µqc curve, where the phase transition
changes its character. Furthermore a tricritical point at finite T is consistent with
the picture, due to Parish et al. [68], who show the evolution of the latter point as
function of v from the BCS limit through unitarity to the BEC side. In particu-
lar, the tricritical temperature decreases monotonically with the coupling until it
reaches T � 0 at the endpoint T (see Fig. 3.3) at v � 1.7 [135], beyond which the
balanced superfluid can always be polarized in a continuous manner. To reliably
determine the position of the tricritical point, however, requires the data from the
symmetry-broken phase. In the zero-temperature limit we observe the universal
ratio ph{µqc � 1.09� 0.05 from extrapolating the critical line. An overview of the
results on the ratio ph{µqc that have been obtained by various methods can be
found in Table 5.1, while a more thorough discussion of the ground state phase
diagram has already been given in Sec. 2.3.3. In the regime T {µ ¤ 0.01 we also
detect the FFLO instability, as we have already seen in Fig. 5.2. For the unitary
gas we extract ph{µqFFLO � 1.28 � 0.15. The large error bar in comparison to
the CC-field, results from the steep slope of the short FFLO-N boundary. In the
frequently used representation based on the Fermi energy we extract the following
ground state values tµ̃c � 0.395, h̃c � 0.430u for the Clogston-Chandrasekhar limit
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and tµ̃FFLO � 0.400, h̃FFLO � 0.500u for the zero-temperature limit of the FFLO
phase boundary. These pairs have been obtained from the data point at the small-
est available temperature, which are θmin

CC � 0.003 and θmin
FFLO � 0.001, respectively,

and agree with the universal ratios ph{µqc and ph{µqFFLO within the error of the
extrapolation to T � 0.

From an experimental point of view, one rather considers fixed densities than
chemical potentials. In this picture the first order regime of the phase transition
is unstable to phase separation, which means that a superfluid with smaller δn �
n� � n� and normal fluid with a higher δn coexist. In Figure 5.7 we show the spin
polarization σ from eq. (2.38) as a function of the critical temperature Tc in units
of TÒ � p6π2n�q2{3, which we compare to the experimental data by Shin et al. [34].
To perform the change of units we note that we can obtain the individual densities
via

n� � n
1� σ

2
(5.4a)

n� � n
1� σ

2
, (5.4b)

from n and σ, which are provided by the numerical evaluation. At h � 0, we
recover the critical temperature Tc{T�pδn � 0q � 0.152... � θcph � 0q. For finite
imbalances the critical temperature decreases in agreement with the simultane-
ously growing polarizations, which correspond to increased Zeeman fields in the
grand-canonical discussion above. In the temperature regime T {T� À 0.06 we ob-
serve again a backbending of the phase boundary, like in Fig. 5.6. In fact, this
is the region of the phase diagram, where the system is expected to show phase
separation. The tricritical point that is identical with the onset of the latter has
been experimentally observed at δn{n � 0.20 and T {T� � 0.07 by Shin et al. [34].
Incorporating phase separation into the Luttinger-Ward theory will increase the
theoretical prediction for the phase with a superfluid fraction towards larger spin
polarizations and therefore change the backbending form of the phase boundary.
Yet, this procedure requires computations in the presence of anomalous expecta-
tion values, which have not been implemented so far. All in all, our theory curve
seems to predict critical temperatures that are above those seen in the experiment.
Whether these deviations originate from systematic errors of the Luttinger-Ward
approach or from experimental uncertainties cannot be answered from the currently
available data. Furthermore, we omit the FFLO-data, which in this representation
almost collapses to a line at basically zero temperature, where the important effects
of phase separation cannot be taken into account by the current approach.
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Figure 5.6: Phase diagram of the unitary gas. For temperatures below T {µ  
0.38 � pβµq�1

c the gas becomes superfluid, provided the Zeeman field
does not exceed the temperature-dependent critical field represented by
the black line. Its extrapolation to zero temperature yields ph{µqc �
1.09 � 0.05. At the very lowest temperatures an FFLO phase appears
to emerge, indicated by the blue region. The backbending of the ph{µqc
curve for temperatures T {µ À 0.15 is due to the first order character of
the phase transition in this temperature range.

Method ph{µqc
1{N (LO) [1] 0.807

1{N (NLO) [70] 1.947
Lobo [132] 0.96

Boettcher [133] 0.83
ε-expansion [92] 1.15
Luttinger-Ward 1.09

Table 5.1: Different theoretical results for ph{µqc. See also the detailed discussion
in Sec. 3.2.
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Figure 5.7: Phase diagram of the unitary gas. The black curve represents the
Luttinger-Ward data, while the blue points correspond to the exper-
imental data by Shin et. al. [34]. Below the black line one finds a
homogeneous superfluid, whereas at lower temperatures the system is
unstable to phase separation (PS), which, however, is beyond the scope
of the current numerics.
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5.3.2 Universal scaling functions of the unitary Fermi gas

Apart from the normal-to-superfluid transition, the unitary gas has also attracted
particular interest, because it realizes a strongly interacting quantum gas, that
exhibits scale invariance. Therefore, we present the Luttinger-Ward results for the
thermodynamic properties of the gas at resonance in further detail. In particular,
we have derived an expression for the pressure in eq. (4.45) as a functional of the
Green’s and vertex functions. The results for p are represented in Figure 5.8, where
we show the scaling function

p̂pβµ, βhq � ppT, µ, h, 1{a � 0q
p
p0q
imbpT, µ, hq

, (5.5)

which is normalized by the pressure of an imbalanced, ideal Fermi gas, see also
eq. (4.40). In the special case of a balanced gas at h � 0 this function has been
determined directly in the experiment by Ku et al. [58, 93]. In particular, we
reproduce the result p̂ppβµqc � 2.65, 0q � 2.73 from the Luttinger-Ward study of
Haussmann et al. [37]. Following the critical line, colored in black, the dimensionless
pressure first decreases until it reaches a very shallow minimum at βµ � 9, beyond
the plotted range. This minimum has no deeper physical origin but arises from the
ratio of two monotonically decreasing functions, which is not necessarily monotonic
itself. In the limit of a large Zeeman field βh Ñ 8 the critical pressure converges
to p̂ � 1.5, which is another universal number of the unitary gas. The precise value
cannot be estimated in a simple manner, since at the superfluid phase boundary
one always finds finite densities of both species (see also Fig. 5.10) and therefore
the system remains strongly interacting despite the large value of βh. Leaving the
critical region either by increasing the temperature or the Zeeman field, p̂ quickly
converges to one, corresponding to the non-interacting limit. This is to be expected,
since one approaches either the non-degenerate limit nλ3

T ! 1 of a dilute classical
gas with increasing T , or the limit of a single-component ideal Fermi gas with
δnÑ 1, when βh grows.

A similar picture arises from the study of the densities. In Figures 5.9 and 5.10,
we show both the scaling functions of the total density fn, defined via

npT, µ, h, 1{a � 0q � n
p0q
imbpT, µ, hqfnpβµ, βhq (5.6)

and the equivalent fn� for the minority component

n�pT, µ, h, 1{a � 0q � n
p0q
imb pT, µ, hq

2
fn�pβµ, βhq . (5.7)

The factor of 1{2 has been introduced for convenience, such that by definition
fnpβµ, 0q � fn�pβµ, 0q, which makes comparison of the two functions easier. Here
the normalization refers to the density of the noninteracting, imbalanced Fermi gas

n
p0q
imbpT, µ, hq � np0qpT, µ� hq � np0qpT, µ� hq , (5.8)
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Figure 5.8: Pressure scaling function p̂ of the unitary gas defined in eq. (5.5). The
black line indicates the phase transition.

where the density of a single component is defined in eq. (4.52). The overall shape
of both density functions is similar to the pressure scaling function p̂. In general,
the density scaling functions decrease away from the critical region either due to
an enhanced imbalance associated with by increasing βh or due to approaching the
non-degenerate limit βµ Ñ �8. In particular, under the influence of a growing
Zeeman field at fixed βµ the system evolves to a single-component Fermi gas of �
atoms, which is also reflected in the scaling functions: fn approaches one, while fn�
vanishes in this regime, which is consistent with the observation that p̂ Ñ 1 with
increasing βh. In turn, close to the critical region both the total density and the
minority density appear enhanced compared to the non-interacting situation, no
matter what βµ and βh. Obviously, this is caused by the attractive interactions,
which play a relevant role at the phase transition. Furthermore, the instability to
the superfluid requires a minimal, finite density of minority atoms to form pairs,
which implies a finite total density. Similarly, Rammelmüller et al. [114] have
observed how the density equation of state of the imbalanced unitary Fermi gas
approaches the balanced gas and therby also the phase transition, when βµ is
increased at fixed βh. If one follows the boundary to the superfluid from h � 0,
one starts out from the absolute maximum of the scaling functions fnppβµqc, h �
0q � fn�ppβµqc, h � 0q � 3.3, which agrees with [37]. Leaving the balanced case
along the critical line, one first observes a decrease from the maximum, which passes
through a very shallow minimum at βh � 8 (too shallow to be visible in figs. 5.9
and 5.10) and then converges to fn � 2.7 and fn� � 2.1, respectively, for βh " 1.

Finally, the Tan contact is a quantity of particular interest, since it measures
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5.3 Thermodynamics of the unitary Fermi gas

Figure 5.9: Total density of the unitary gas. The black line indicates the boundary
to the superfluid phase.

short-distance correlations and contains substantial information both about ther-
modynamic and dynamic properties, as we have discussed in Sec. 2.4. The dimen-
sionless contact density C̃ � C{k4

F of the resonant gas is shown in Figure 5.11 as a
function of θ and h̃. It attains a maximal value of C̃ � 0.09 at the transition to the
superfluid at h̃ � 0. Remarkably, the value of C̃ does not vary significantly along
the critical line for different values of h̃. In general, the contact remains almost
constant upon changes in the temperature at a fixed value of h̃, also away from
the critical region. As expected, it quickly approaches zero, when the Zeeman field
is increased. In particular, we can extract the behavior of the contact density in
the low-temperature and strong polarization limit, given in equation (2.74). In this
limit we indeed observe a linear behavior C � 6π2skF�n�, with a universal prefactor
s � 0.09, which agrees very well with the result s � 0.08 derived from the polaron
ansatz by Punk et al [122].
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Figure 5.10: Scaling function for the minority component fn� � 2n�{np0q. The
black line indicates the boundary to the superfluid phase.

Figure 5.11: Dimensionless contact density C̃ � C{k4
F of the unitary gas. The black

line indicates the boundary to the superfluid phase.
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5.3.3 Comparison of the Luttinger-Ward theory to the experimental
results for the balanced, unitary Fermi gas

In this subsection we compare our Luttinger-Ward results to the experimental data
for the spin-balanced, unitary gas by Ku et al. [58]. In particular, we focus on the
Landau-Placzek ratio LP defined in eq. (2.85) and show our results in Fig 5.12.
On the experimental side LP follows from the representation (2.90). Since the
latter explicitly involves the isothermal compressibility, we show κT compared to
the experimental observations in Fig. 5.13. While the normal fluid regime is di-
rectly accessible from the Luttinger-Ward approach presented here, the data in
the symmetry broken phase for the paragraph for equal spin populations are taken
from Haussmann et al. [37]. Regarding the Landau-Plazcek ratio, we obtain a very
good agreement with the experimental data. Merely, the precise determination
of the critical value is not possible due to the sharp features and the multivalued
regime in the vicinity of Tc, which is an artifact of the first order transition in
the Luttinger-Ward theory, see Ref. [37]. The compressibility κT � �V �1BV {Bp
necessarily involves a derivative of the thermodynamic data, which in general leads
to an enhancement of numerical errors. However, our data for the disordered phase
allows to compute κT directly from a simple spline interpolation of the pressure.
This is possible because of the very small numerical inconsistencies, see Sec. 5.5 on
the Tan errors. Therefore, we can also use the equivalent thermodynamic relation
κT � n�2Bn{Bµ that essentially yields the same curve for the compressibility. To
obtain a smooth compressibility below Tc, we have used a simple model fit to the
data from [37] which both respects the asymptotics cV � T 3 and pÑ ξsp

p0q in the
limit T Ñ 0 and the critical temperature θc � 0.16. Like in the case of LP, we
obtain a very good agreement with the experimental observations.
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Figure 5.12: Landau-Plazcek ratio of the unitary Fermi gas. Superfluid regime:
Blue (from Ref. [37]), Red: Normal phase, Black: Experiment from
Ref. [58].
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Figure 5.13: Compressibility κT {κp0qT . Superfluid regime: Blue (from Ref. [37]),
Red: Normal phase, Black: Experiment from Ref. [58]

92



5.4 Thermodynamics in the strongly interacting crossover regime

5.4 Thermodynamics in the strongly interacting crossover
regime

For comparison with the unitary and the weak-coupling case we show our thermody-
namic results for two additional coupling strengths: v � �0.75, where the FFLO-
order been observed at the largest critical temperature θc � 0.03 and v � 0.75
slightly on the bosonic side of the crossover.

5.4.1 Thermodynamic quantities at v � �0.75 and v � 0.75

We will focus both on the spin polarization σ and the internal energy U{pnεF q
as functions of the reduced temperature θ and the Zeeman field h̃. The structure
of σ, which is depicted at v � �0.75 in Fig. 5.14 and for v � 0.75 in Fig. 5.15,
respectively, has a very similar global structure. At h̃ � 0 σ vanishes, since this
corresponds to the spin-balanced gas. At fixed θ we find an increase of σ with
growing h̃, which is the expected effect of the Zeeman field, until it saturates at
σ � 1 for large enough h̃. In the ground state the saturation is observed for both
interaction strengths for values of h̃ Á 2. At finite temperatures the Zeeman field
in case of the positive scattering length has to be slightly larger to fully polarize the
system compared to the fermionic regime, since the stronger attractive interactions
on the BEC side depolarize the system more effectively. At a given Zeeman field
in turn we find for both v only a minor decrease of σ with growing θ due to the
enhanced thermal fluctuations.

Regarding the critical region, the phase transition on the fermionic side is only
possible for temperatures below θ � 0.09 and we detect the FFLO phase for tem-
peratures smaller than θ � 0.03. The largest critical σ � 0.17, which is encountered
in the ground state at h̃ � 0.20, is non-zero, consistent with a transition to FFLO.
In addition, the critical curve shows a backbending like at unitarity (see Fig. 5.6),
which hints towards a tricritical point. In the bosonic case only a monotonic phase
boundary with a homogeneous superfluid exists. The maximal θc � 0.20 is reached
by the spin-balanced gas. The other endpoint of the critical line at θ � 0 and
h̃c � 1.62 is accompanied by a large polarization σc � 0.6. The nature of the
superfluid, and also the order of the transition in the vicinity of this point unfor-
tunately remains open. Since v ¤ vM � 1.13 and the instability of the vertex is
observed at Q Ñ 0 one might find a Sarma phase. Yet, without data about the
symmetry-broken phase this issue cannot be answered conclusively.

Like the spin polarization also the global structure of the internal energies, which
are presented in Fig. 5.16 for the fermionic and respectively in Fig. 5.17 for the
bosonic side, bears many similarities. At fixed h̃ we observe an almost linear
growth with θ. This corresponds to the enhanced average energy at fixed density,
which is controlled by the temperature. Furthermore U{pnεF q is a monotonically
increasing function of the Zeeman field. This can be understood from the growth
of the spin imbalance associated with a larger h̃. An enlarged value of σ reduces
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Figure 5.14: Spin polarization σ at v � �0.75. Along the red line the instability
towards a homogeneous superfluid is encountered, while along the red
line the transition to an FFLO state has been detected.

the effects of the attractions, such that the internal energy also grows. Whereas
the critical value of U{pnεF q � 0.45 is nearly independent of the temperature at
v � �0.75, we observe a smooth evolution from the minimal value U{pnεF q � 0.21
in the absence of a finite polarization to the maximum U{pnεF q � 0.80 in the
ground state on the BEC side at v � 0.75. Finally, note that for positive scattering
lengths we cannot compute reliably the thermodynamic functions for large h̃ " 1,
while the temperature simultaneously approaches zero. In this regime, which for
v � 0.75 is encountered at θ À 0.05 and h̃ Á 3, one actually expects a fully polarized
ideal gas. However, our numerics overestimate the minority density, which at large
enough attractions and low enough temperatures artificially leads to condensation.
Nevertheless, we can determine the asymptotic value of U{pnεF qpθ � 0, h̃Ñ8q �
3{5 � 22{3 � εB{p2εF q � 1.51, which arises from the energy of 3{5n�εF,� of the bare
Fermi sea compared to the zero of the energy, which we have chosen as the balanced
ground state n{2εB. The additional factor 22{3 arises from our convention for the
Fermi energy (2.65b) in terms of a two-component, balanced gas. As can be seen
in Fig. 5.17 our data has converged quite well to this result. In the absence of two-
body bound states at the negative v � �0.75 we obtain U{pnεF qpθ � 0, ˜hÑ8q �
3{5 � 22{3 � 0.95, which is also well obeyed by our data.
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Figure 5.15: Spin polarization σ at v � 0.75. The black line marks the phase
transition to the homogeneous superfluid.

Figure 5.16: Internal energy U{pnεF q at v � �0.75. Along the red line the insta-
bility towards a homogeneous superfluid is encountered, while along
the red line the transition to an FFLO state has been detected.
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Figure 5.17: Internal energy U{pnεF q at v � 0.75. The black line marks the phase
transition to the homogeneous superfluid.
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5.4.2 Phase diagram at v � �0.75

To close this section we present the phase diagram at v � �0.75 in analogy to
the unitary limit, shown in Fig. 5.6. To this end, we rescale the temperature and
Zeeman field by the chemical potential3 µ, which attains an almost constant value
µ̃pv � �75q � 0.69 along the critical line. The corresponding Figure 5.18 can be
found below. However, it is to be noted, that this diagram does not represent a
genuine scaling function like in the case of unitarity. Here any change away from
the critical line would affect the density and therefore alter the coupling strength
v � 1{pkFaq. Nevertheless, we can gain further insight from this representation.
The superfluid phase at v � �0.75 appears only at values below T {µ � 0.13, which
is considerably smaller than the unitary value T {µ � 0.38 due to the weaker at-
tractions. As mentioned earlier, the phase boundary also shows a backbending
behavior for T {µ À 0.05. Furthermore, the FFLO phase makes up a substantial
part of the phase boundary, which prevents a continuation of the ph{µqc curve to-
wards zero temperature, in contrast to unitarity. Thus the internal structure of the
symmetry-broken phase cannot be revealed. Yet, we can extrapolate ph{µqFFLO to
its ground state value, which yields 0.32�0.03. This results from extrapolating the
datapoints at the lowest available temperatures linearly, while we have estimated
the error from ph{µqFFLO value of the data point located at the minimal value of
T {µ, which would correspond to a sharp turn of the phase boundary towards the
ph{µq axis.

3Since µ has a zero in the ground state on the bosonic side at ν � 0.41 [144], which will strongly
affect this representation we only show the fermionic case.
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Figure 5.18: Phase diagram at v � �0.75. For h{µ À 0.03 we observe the transition
to an FFLO phase (blue). The phase boundaries within the superfluid
cannot be determined. Dashed line: extrapolation to T � 0.

5.5 Tan errors

In Sec. 4.7.4 we have provided a consistency check for our numerics, which is based
on the Tan pressure relation (2.62). The relative errors

δTan �
�����p�

2
3ε� ~2

12πmaC
p

����� , (5.9)

where the individual terms are evaluated according to eq. (4.59), are depicted for
several Zeeman fields in Fig. 5.19. In general, we observe δTan ¤ 0.01 up to a few
exceptions, where the error is of the order of a few percent. Away from the critical
region we encounter at most errors on the 10�3 level, while for the vast majority
of data points δTan is even in the regime of 10�4. The largest errors appear in
the critical region, where the absolute value of vertex function |ΓpQ,Ωn � 0q|
increases substantially at the unstable center-of-mass momentum Q. In practice
we deal with values of the vertex of up to 106, when the transition to a homogenous
superfluid is approached, or with the slightly smaller value of 10�5, which we accept
as an FFLO instability. Consequently, sampling the numerical integrals in HlogrΓs
close to the phase transition becomes more difficult. However, for most of the
pv, θq coordinates the deviations remain on the order of δTan � 10�3, even close
to the phase transition. Note that the errors at large βh increase towards the
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BEC side of the crossover. This is related to the opposite regimes of the two
chemical potentials, i.e. βµ� " 1, while βµ� ! �1. As detailed in Chap. 7, the
BCS subtraction scheme for large chemical potentials should therefore be applied
to G��, whereas G�� should be treated by the BEC scheme. However, we have not
implemented that combination and work within the BCS scheme for both Green’s
functions, since the error remains below 2%.
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Figure 5.19: Tan errors for fixed βh � 0 (top left), βh � 5 (top right), βh � 52
(bottom left) and βh � 104 (bottom right). In the white regions the
system is in the symmetry-broken state.

5.6 Scaling functions for the BCS-BEC crossover

The RG analysis by Nikolić and Sachdev [1] has turned out to yield significant
insight into the phase diagram of the BCS-BEC crossover. In particular, it revealed
the existence of universal scaling functions like eq. (2.34). One important feature
of the Luttinger-Ward formalism is that it provides quantitative results for these
scaling functions. In this chapter we discuss the phase boundaries as a function of
µ̄ � µ{εB in an interval that covers several orders of magnitude both at positive
and negative values of the scattering length. In the following, we will focus on the
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balanced case at finite temperatures as well as on the T Ñ 0 limit in the presence
of a Zeeman field. These cases allow to compare our results to the known BCS
and BEC asymptotics, while we can also study the crossover towards the strongly
interacting regime.

5.6.1 Negative scattering lengths

We first consider the fermionic side with a   0, where in the BCS limit µ̄ ! 1 we
have for the critical temperature of the balanced gas

T̄ pµ̄ ! 1, h̄ � 0q � 8eγE

πe2
µ̄ e�π{p2

?
µ̄q , (5.10)

while in the ground state we encounter the FFLO phase at a critical dimensionless
Zeeman field

h̄FFLOpµ̄ ! 1, T̄ � 0q � 0.754
8

e2
µ̄ e�π{p2

?
µ̄q . (5.11)

These functions follow from the weak coupling asymptotics (2.48) after eliminating
the GMB factor p4eq�1{3, since our theory does not take particle-hole fluctuations
into account, as discussed in Sec. 4.4.2. In analogy to the universal phase boundaries
discussed in Sec. 2.3.3, one replaces εF Ñ µ, with exponentially small corrections
of order ∆2.

The results for the phase boundaries are depicted in Fig. 5.20 and Fig. 5.21,
respectively. The black lines represent our data obtained from the self-consistent
Green’s functions, whereas the blue and red dashed lines show the limiting asymp-
totics for µ̄ ! 1 and µ̄ " 1. In the weak coupling limit µ̄ ! 1, we find excellent
agreement with with the equations (5.10) or (5.11), provided we take into account
that the substitution εF � µ only works deep in the BCS-limit, where the correc-
tions from the pairing are exponentially small. Therefore, we replace the chemical
potential µ̄ by µ̄{0.91, which corresponds to our result µ̃ � 0.91 at the minimal
interaction strength v � �4, in the the asymptotic form of T̄ pµ ! 1, 0q from above.
For the ground state we proceed analogously, but with µ̄Ñ µ̄{0.83, since we obtain
µ̃pv � �2q � 0.83. In the insets we zoom into the µ̄ ! 1 regime, which reveals that
these adjustments of the asymptotics indeed match our data much better than the
original forms. Regarding the strongly interacting limit µ̄ " 1, we encounter a linear
behavior as expected from the discussion of the Figures 2.4 and 3.2. For the criti-
cal temperature of the balanced gas the slope is given by pθc{µ̃q1{a�0 �� 0.380 in
agreement with the θc,lower data from Haussmann et al. [37]. The crossover between
the weak and the strong coupling regime takes place at a chemical potential µ̄ � 8.
Regarding the ground state phase diagram, the slope of the critical Zeeman field has
been determined by fitting a linear function to the data as phFFLO{µq1{a�0 � 1.25,
which is consistent with the FFLO-transition encountered in Fig. 5.6. In this case
we observe the crossover around µ̄ � 50, which takes place at a much larger value
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compared to the finite temperature balanced case. This agrees with our previous
observation in Sec 5.2 that the Zeeman field follows the weak-coupling asymptotics
to up to much larger coupling strength, since the induced imbalance suppresses the
effects of the interactions.
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Figure 5.20: Crossover of the Luttinger-Ward T̄c (black) at h̄ � 0 from the rescaled
BCS asymptotics (5.10) (dashed blue) towards the linear behavior at
unitarity with universal slope (dashed red). Inset: Luttinger-Ward
data (black) vs. rescaled (blue) and original (dashed blue) BCS result.
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Figure 5.21: Universal phase boundary at T � 0 from Luttinger-Ward: h̄FFLO

(black) connects smoothly the rescaled BCS curve (5.11) (blue dashed)
to µ̄ " 1 (red dashed) with universal slope at unitarity. Inset: same
color-coding as in Fig. 5.20.

5.6.2 Positive scattering lengths

We can perform a similar analysis also for the case of positive a, where the weak
coupling expansion in the limit pµ̄ � 1q ! 1 for T̄ ph̄ � 0q is given in eq. (2.51),
while the saturation field h̄spT̄ � 0q follows from eq (3.6). Note that the Luttinger-
Ward approach detects h̄s, which corresponds to the normal-to-superfluid phase
boundary in the limit a Ñ 0�, since any admixture of minority atoms gives rise
to a superfluid component (see Figs. 3.3, 3.4). Beyond the point M the Luttinger-
Ward approach yields the phase boundary between the partially polarized normal
and and imbalanced fermionic superfluid, which either realizes a Sarma or an FFLO
phase.

However, the asymptotic forms in the BEC limit contain either the scattering
length add in the balanced case or aad at very strong imbalance, which will not
be correctly recovered within the ladder approximation, as we have discussed in
Sec. 4.4.2. Therefore, we expect that we have to use a rescaling procedure like on
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the fermionic side of the crossover and propose the ansatz

T̄cpµ ! 1, h̄ � 0q � p2πq1{3
pλdd ζp3{2qq2{3

pµ̄� 1q2{3 (5.12a)

h̄spµ ! 1, T̄ � 0q �
�

2π

λad


2{3
pµ̄� 1q2{3 � 1� pµ̄� 1q , (5.12b)

where we have introduced two positive fudge parameters λdd, λad. They represent
the ratios λdd � add{a and λad � aad{a. In an exact theory they must reproduce
the physical results λdd � 0.6 [60] and λad � 1.18 [64], however, we allow them to
deviate from these values in order to determine effective scattering lengths for our
theory.

The universal phase diagram at positive a is depicted in Fig. 5.22, where we
have determined λdd � 2.2, which is equivalent to a Luttinger-Ward scattering
length aLW

dd � 2.2a, by fitting the ansatz for the BEC limit to our data. This
result indicates that aLW

dd deviates even more strongly from the exact result than
the mean-field value aMF

dd � 2a. Nevertheless, the modified asymptotics with the
given value of λdd agrees very well with the Luttinger-Ward results. We note that
a more reliable estimate for the size of add in the Luttinger-Ward formalism could
be obtained both from the inclusion of the higher critical temperature θc,upper that
however requires the superfluid phase and from a formulation in terms of density
units, which show a less pronounced dependence on v. In particular, the deviation
between both θc curves in Fig. 2.3 is on the order of 10% around v � 3. Increasing
the temperature on the left-hand side of eq. (5.12a) will bring the ansatz (5.12a)
considerably closer to the exact result, as can be seen in the inset of Fig. 5.22. In
the strong coupling limit the scaling function converges to a linear behavior, whose
slope matches the unitary result pT̄ {µqc � 0.38 like in the analogous Fig. 5.20 for
negative a. Finally, the crossover between the regimes µ̄ � 1 ! 1 and µ̄ " 1 takes
place around µ̄� 1 � 5.

Let us now turn to the ground state phase diagram of the imbalanced gas, which
is presented in Fig. 5.23. Here the situation becomes even more problematic, since
we actually obtain datapoints for µ̄   �1, where in an exact theory one encounters
the vacuum. In this case the introduction of λad does not suffice to reconcile our
data with the exact form (3.6). We therefore conclude that our numerics does not
determine the energy of the two-particle bound state correctly, which gives rise to
an erroneous transformation of the chemical potential. Most likely this is related
to the evaluation of G�� within a suboptimal scheme, as discussed in the context
of the relatively large Tan errors, which emerge in this regime, see Sec. 4.7.4. The
statement, that the binding energy contains errors is supported by the extended
ansatz

h̄sp�̄1µ ! 1, T̄ � 0q �
�

2π

λad


2{3
pµ̄� 1� δε̄Bq2{3 � p1� δε̄Bq � pµ̄� 1� δε̄Bq ,

(5.13)
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Figure 5.22: Crossover of the universal critical temperature T̄ pµ̄, ¯h � 0q (black),
that coincides in the regime µ̄ � 1 ! 1 with the rescaled BEC-
limit (5.12a) (blue dashed line). For µ̄ " 1 one encounters the
linear behavior at unitarity with the universal value of the slope
pT̄ {µ̄q � 0.38 (red dashed line). Inset: Weak coupling limit: Luttinger-
Ward data (black), rescaled scattering length (blue), exact scattering
length add � 0.6a (blue dashed).

which allows a shift of the binding energy by another fudge parameter δε̄B. Fitting
our data to this simple model yields λad � 0.54 and δε̄B � 0.02. The small shift of
the binding energy about two percent is on the order of the observed δTan, while
the effective scattering length becomes aLW

ad � 0.54a. Of course this model is not
very rigorous, but we obtain very good agreement between the Luttinger Ward data
(black) and this ansatz (dashed blue) even up to µ̄ � 1, as can be seen from the inset
of Fig. 5.23. In contrast, both the single-parameter ansatz (5.12b) and the exact
result with the exact value λad � 1.18 deviate considerably. Regarding the strongly
interacting regime µ̄ " 1, we again observe a smooth crossover towards a linear
behavior, which coincides with the universal ratio ph{µqFFLO � 1.25 encountered
in the unitary limit. In this case we find the crossover scale between the limiting
behaviors at chemical potentials µ̄�1 � 10. At the point M, that belongs to h̄s, we
do not detect any sharp change of the scaling function, neither at our Luttinger-
Ward result µ̄M � �0.91 nor at the more accurate BDMC value µ̄M � �0.74 from
Prokof’ev et al. [131]. However, these authors also showed that the energies of the
polaron and the molecule cross in an almost perfectly smooth manner at M, which
must be reflected in the behavior of h̄sin the vicinity of µ̄M.
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Figure 5.23: Zero temperature projection of the universal normal-to-superfluid
phase boundary at positive scattering lengths (black). In the BEC
limit this line is equivalent to the saturation field and we observe a
smooth crossover from the extended weak coupling ansatz (5.13) in
the regime µ̄ � 1 ! 1 towards the strongly interacting regime µ̄ " 1,
where the unitary ratio ph̄{µ̄qFFLO � 1.25 is approached.

5.7 Properties of the FFLO phase

Within the BCS regime the FFLO phase itself is subdivided into several phases that
are distinguished by different geometries of the order parameter [113]. To investi-
gate them in the presence of strong interactions, however, requires to include both
anomalous expectation values but also a vertex function Γ pQ,Ωnq, that does not
exhibit rotational invariance in momentum space. Such a non-trivial momentum-
dependence currently is far beyond the scope of the numerics, since it requires to
perform a genuine matrix inversion to solve the Bethe-Salpeter equation (4.30).

Nevertheless, we are able to analyze the momentum scale, at which the divergence
in ΓpQ,Ωnq occurs, as a function of the other thermodynamic variables. Apart
from the overall amplitude of the order parameter, knowledge of the approximate
size of the spatial modulation is crucial for experimental detection of a spatially
varying order parameter. In particular, if ∆pxq varies on the typical interparticle
distance or even below, it will be impossible to resolve the modulation. A similar
problem arises, if the wavelength of the oscillation of ∆pxq is on the order of several
sample sizes. We show the temperature dependence of the critical momentum
Q̃FFLO � QFFLO{kF in Fig. 5.24 for two different coupling strengths v � �1.5 and
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Figure 5.24: Variation of the center of mass momentum Q̃FFLO � QFFLO{kF with
the reduced temperature at two different interaction strengths.

v � �0.75. The critical temperature of the latter coupling strength is close to the
maximal θc � 0.03 for the FFLO transition. Q̃pθq turns out to be a monotonically
decreasing function of θ. We also observe an appreciably larger critical polarization
σ (not shown) at v � �0.75 compared to v � �1.5, which in a Fermi liquid
picture gives rise to a more pronounced mismatch of the Fermi seas. Based on this
representation, we conclude that the stronger attractions at v � �0.75 allow for
pairing with larger Q � pkF� � kF�q. Typical values of the FFLO vector at this
coupling are on the order of Q̃FFLO � 0.1. Together with the standard experimental
densities n � 1013cm�3 [63], we infer a spatial variation of λ � 2π{Q � 90 µm.
Finally, note that we cannot reliably determine the onset of a finite Q̃FFLO at the
largest critical temperatures, since we have to use a threshold Q̃0 ¡ 0 to decide
which momenta in our numerical grid really indicate a nonhomogeneous order and
which belong to the exponentially dense LFT4 grid at the origin Q � 0.

Apart from the temperature dependence of Q̃FFLO also its relation to the Zeeman
field at T � 0 is of interest. Larkin and Ovchinnikov [28] predicted for the weak
coupling limit in the vicinity of the transition point a sinusoidal order parameter
∆pxq � ∆ cos pQFFLO � xq, whose wave vector satisfies

~QFFLOvF � 2.4h , (5.14)

with the Fermi velocity vF � ~kF {m. This translates to Q̃FFLO � 1.2h̃. We
present both h̃ and Q̃FFLO in Fig. 5.25. In the weak coupling limit we observe at

4For the definition of the logarithmic Fourier transform (LFT) see Sec. 6.1.
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Figure 5.25: Critical field and corresponding center-of-mass-momentum of the pairs
in the ground state as function of the interaction strength.

the lowest available temperatures for the smallest available interaction strengths
around v � �2.5 Q̃FFLO{h̃ � 1.23 close to the weak-coupling result. An important
source for the remaining discrepancy arises from the extrapolation of Q̃FFLO to
zero temperature, where the considerable slope of the Q̃FFLOpθq curves at fixed
v (see Fig. 5.24) only allows to predict the ground state behavior very with an
uncertainty a the percent level. Furthermore, also the finite interaction strength,
which implies µ̃ � 0.86 and h̃FFLO � 0.95 leads to deviations from the genuine
weak-coupling limit. Approaching the unitary limit both h̃ and Q̃FFLO grow as
functions of the coupling strength, however, the latter increases more slowly. The
increase is expected from physical arguments, since the stronger the attractions
the stronger a Zeeman field is required to destabilize the superfluid state, while
FFLO pairing remains favorable for larger spin polarizations, in analogy to the
situation a finite temperatures. In addition, h̃ specifies the difference pµ��µ�q{2 of
the external parameters, while Q̃FFLO is a measure for the mismatch of the Fermi
levels of the interacting system, at least as long as a Fermi liquid picture applies.
Since this is indeed consistent with experimental observations of the imbalanced
unitary gas [129], we conclude that the strong attractions give rise to a renormal-
ization of the spin-dependent kFσ, thereby diminishing the population imbalance
and resulting in a Q̃FFLO, which is smaller relative to h̃ than in the weak coupling
limit (5.14). Note that this implies a crossing of Q̃FFLOpvq and h̃pvq curves, which
we indeed observe around v � �2.3.
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Numerical Fourier Transformations

Fourier transformations between the Matsubara frequencies and momentum space
on the one hand to real space and imaginary time on the other constitute the main
numerical operation that has to be performed repeatedly for the computation of
the Green’s functions and the thermodynamic quantities of the imbalanced Fermi
gas, see Sec. (4.6.2) on the self-consistent equations. The standard method to deal
with this task is the fast Fourier transform (FFT) due to Cooley and Tukey [156].
It reduces the numerical complexity from a grid of N points to N logN compared
to N2, which arises in case of a discrete Fourier transform (DFT) [157] obtained by
directly discretizing the Fourier integrals. However, the FFT requires an equidistant
grid, which is quite inconvenient for the application to the imbalanced Fermi gas
and many other problems where one needs the Fourier transform of functions that
exhibit nontrivial variations over several orders of magnitude, e.g. in power law
decays. In contrast, the DFT in principle runs on any grid. In the Fermi gas the low-
momentum degrees of freedom have to be resolved with sufficient accuracy because
they give the major contribution to the thermodynamic properties at ultralow
temperatures and furthermore the phase transition to the superfluid is encoded
in a zero of Γ�1pQ Ñ 0,Ωn � 0q. Concurrently, at momenta much larger than
any inverse length scale one expects algebraic tails like in the Green’s function
Gpk, τ � 0�q � C{k4, see eq. (2.57). Since all thermodynamic quantities can
be considered as Fourier transforms to px � 0, τ � 0�q, as discussed in Sec. 4.7,
they incorporate a sum over these algebraic tails. Consequently, also the large
momentum asymptotics of G and Γ have to be sampled with sufficient precision.
Using equidistant lattices for an ordinary FFT would imply an immense number
of data points, which makes this method unfeasible for the BCS-BEC crossover
problem. For example, let us consider a k�4 asymptotics and demand that the
error from truncating the integral at kmax shall be below the 10�8-level, which
requires kmax � 104 in for the Fourier transformation in d � 3 given in eq. (4.16).
Using a step width ∆k � 10�2 yields the huge number N � 106 of necessary grid
points.

One way out is offered by the logarithmic Fourier transformation (LFT), de-
veloped first by Haines and Jones [158] in a geophysical context. It combines a
logarithmic grid, that covers all relevant short and long length scales, with the
efficient N logN scaling of the FFT algorithm. In Sec. 6.1 we review the major
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properties of the LFT. In addition, the Haines and Jones deduced some rather
strong conditions on the class of functions to which the method can be applied and
on the range of the intrinsic ”trade-off parameter” kp of the transformation. In the
present thesis we1 show that many of these restrictions actually can be lifted, which
turns out to be quite important for the application to the imbalanced Fermi gas.
Moreover, we prove in Sec. 6.1.2 that the LFT converges exponentially fast towards
the exact result in the limit N Ñ8. Furthermore, we discuss its capability to also
transform non-integrable functions numerically, which from a mathematical point
of view have to be interpreted within the framework of generalized functions. These
properties make the LFT a useful approach not only for the imbalanced Fermi gas
but also for a wider set of problems in theoretical physics that include Fourier
transforms of functions varying over many orders of magnitude. Possible examples
are generic correlation functions in frequency space, correlators at critical points
or glass transitions, where light scattering spectra are measured over ten orders of
magnitude, see for example the work by Steffen et al. [159]. Further details and
examples can be found in Lang and Frank [160].

Despite being quite powerful, however, it must be emphasized that the LFT can-
not be applied to all kinds of functions. For instance, the transformation between
Matsubara frequencies and the imaginary time involves the Fourier sum evaluated
at the exact ωn or Ωn. The LFT, which is designed to approximate Fourier inte-
grals, might be extended to converge to a discrete sum2. However, the translation
of the uniform difference of 2πT between two successive Matsubara frequencies to
the logarithmic grid would involve the combination of several LFTs, each acting on
an individual subset of frequencies, which in practice becomes very cumbersome.
For the ωn,Ωn Ø τ transformation we therefore resort to a DFT in combination
with a spline interpolation, which has been underlying previous Luttinger-Ward
studies of the BCS-BEC-crossover [37, 87]. Originally, this method had been de-
veloped to treat the mode-coupling theory of the liquid-glass transition [161]. An
overview of this approach can be found in the thesis by Cerrito [144]. We have
extended the method from cubic to fifth order splines, which we both utilize and
to a more direct cancellation of poles appearing in the course of the computations.
The details of the implementation are given in Section 6.2. Furthermore, we apply
the spline DFT also to the transformation between momentum and real space in
situations, where 1 ! βµσ ! βεQmax , as the LFT in general undersamples functions
that show fast variations on an intermediate scale. Since the neighborhood of the
Fermi levels is relevant for the fermionic Green’s functions, we use in this situation
an enhanced density of grid points around k � ?

βµσ, which can only be treated
by a DFT. In the vicinity of the phase transition with a finite FFLO pairing vector
QFFLO we have implemented a similar method to faithfully resolve the emerging
divergence of the vertex function in this regime of momenta. The full procedure

1This work was done in collaboration with Johannes Lang.
2The DFT, presented in Sec. 6.2, distinguishes in a similar manner between sums and integrals.
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regarding the imbalanced Fermi gas is detailed in Section 7.4.

6.1 Logarithmic Fourier Transformation (LFT)

6.1.1 Definition

To introduce the LFT we will stick to the standard definition used in physics for
the Fourier transform of a function f̂ptq from the time domain to the (angular)
frequency ν

fpνq � FT pf̂qpνq �
» 8

�8
dtf̂ptqeiνt , (6.1)

while the inverse transform is given by

f̂ptq � FT �1pfqptq �
» 8

�8

dν

2π
fpνqe�iνt . (6.2)

At this stage we assume that the functions fpνq, f̂ptq P L1 are integrable, such
that Riemann-Lebesgue is applicable, while δ distributions are excluded. Below
we discuss an extension to generalized functions. Moreover, one can readily adopt
this definition for the effectively one-dimensional Fourier transforms (4.16) arising
from the radial symmetry of G and Γ in momentum and real space. We define the
logarithmic frequency and time coordinates3 ω, τ P R via

ν � ζν0e
ω and t � ηt0e

τ , (6.3)

where ζ � �1 � η keep track of the signs of the original arguments, while the
prefactors ν0 and t0 carry the correct units. In the following, we set them to
unity to simplify the notation, however, they can be easily reintroduced. After
performing the coordinate transformation to the logarithmic variables the inverse
Fourier transformation (6.2) acquires the form of a convolution

f̂pt � η|t|q � e�kpτ
¸
ζ��1

»
dω

2π

�
fpζeωqep1�kpqω

�
ekppω�τq�iζη exp pω�τq

����
τ�ln |t|

. (6.4)

This representation admits to chose a real trade-off parameter kp [158], which at
this point is irrelevant from the perspective of the exact transformation, but will
allow us to optimize the numerical properties of the LFT. Upon rewriting the

3They must not be confused by the Matsubara frequencies or the imaginary time. In this chapter
we explain the general mathematical properties of the LFT independent of a specific physical
framework.
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convolution as the product of Fourier transforms, we find

f̂pη|t|q �
e�kpτ

2π

¸
ζ��1

FT sÑτ

�
FT ωÑs

�
fpζeωqep1�kpqω

	
psqFT �1

uÑs

�
ekpu�iζηe

u
	
psq

�
pln |t|q .

(6.5)

The FT �1
uÑs transformation does not depend on f and can be computed in closed

form as

FT �1
uÑs

�
ekpu�iζη exp puq

	
psq � 1

2π
piζηqis�kpΓpkp � isq , (6.6)

where Γpkp� isq denotes the Gamma function. This identity has to be understood
as the analytic continuation of the integral representation of the Gamma function»

du

2π
ekpu�iζη exppuqe�isu � 1

2π
piζηqis�kpΓpkp � isq , (6.7)

which is only valid in the limited regime 0   kp   1, as emphasized in [158],
to the set kp P RzZ�0 . Non-positive integers have to be excluded to avoid the
evaluation of the Gamma function at its poles if s � 0. Since we are interested
in performing the LFT repeatedly, we compute the required values of Γpkp � isq
during the initialization and tabulate them. In any case, modern algorithms, like
Spouge’s approximation [162], allow to efficiently obtain numerical results for the
Gamma function without severe loss of computational efficiency.

Let us return to equation (6.5), which reveals the role of the trade-off parameter:
kp ¡ 0 (kp   0) improves the convergence properties both for τ " 1 and ω " 1 (τ !
�1 and ω ! �1) while the convergence in the opposite limits τ ! �1 and ω ! �1
(τ " 1 and ω " 1) simultaneously deteriorates. In fact, the fundamental request
that the Fourier transform FT ωÑs

�
fpζeωqep1�kpqω� psq exists, which is required to

obtain a meaningful LFT, gives rise to a restriction on the range of kp. Suppose
the asymptotic exponential behavior |fpζeωq| Ñ exppaωq in the limit ω Ñ �8 and
|fpζeωq| Ñ exppbωq for ω Ñ 8, with real coefficients a, b, which arises from power
law tails of fpνq. Then the trade-off parameter has to satisfy

1� b   kp   1� a (6.8)

to render the Fourier transformation well-defined. We immediately conclude that
only functions with b   a can be transformed by the LFT. Since the analytic
continuation of the Γ function in eq. (6.6) merely excludes non-positive integers
as possible choices for kp, we are now able to define the Fourier transform of any
function fpζνq via the LFT, provided FT ωÑs

�
fpζeωqep1�kpqω� psq can be controlled

by an appropriate value of the trade-off parameter. For example, the nonintegrable
function 1{p1 � νq has a � 0 and b � �1, which can be perfectly treated by the
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choice kp � 1{2. However, δptq-distributions or its derivatives, which originate
from monomials like νc, c P N0 can never be handled by the LFT, as a � c � b
contradicts the condition (6.8).

Another way to interpret kp arises from the point of view of complex analysis.
Changing kp can be understood as shifting the Fourier integral onto a contour
running through the complex plane. Deformations of this contour are sensitive to
the analytic structure of fpνq and offer a large amount of information about the
mathematical properties of the LFT. In particular, these considerations allow to
estimate the numerical errors of the LFT, see Sec. 6.1.2 below. Inserting eq. (6.6)
into eq. (6.5) yields the final form of the LFT

f̂pη|t|q �
e�kpτ

p2πq2
¸
ζ��1

FT sÑτ

�
FT ωÑs

�
fpζeωqep1�kpqω

	
piζηqis�kpΓpkp � isq

�
pln p|t|qq ,

(6.9)

under the condition that a suitable choice of kp exists. The transformation from
t Ñ ν can be obtained in the same fashion, however, with an additional factor of
2π and the replacement η Ñ �η on the right-hand side.

Up to now we have considered analytic properties and have seen that one can
apply the LFT even to nonintegrable functions. However, the major advantage of
the LFT becomes apparent, when one introduces the logarithmic grids

ν�n � �eωn with ωn � ∆ωpn� ω̄q
t�n � �eτn with τn � ∆τpn� τ̄q (6.10)

of N equidistant points labeled by n P t1, 2, ..., Nu for the numerical evaluation,
since using regular grids allows to perform the Fourier transforms in (6.9) with the
widely available, efficient FFT algorithms. The auxiliary space of the variable s is
discretized analogously by sn � ∆spn� s̄q. Furthermore, these grids give rise to a
certain degree of flexibility. The step sizes ∆ω and ∆s allow to sample the relevant
scales of the function and scale like 1{N to recover the exact integral in the limit
N Ñ 8. The shifts ω̄ and s̄, which usually are set to �N{2 to treat positive and
negative exponents symmetrically, can be used to optimally position the center of
the grid. The points τn in the image space can be selected such that one resolves
the most interesting range of τ values. We will come to restrictions and optimal
parameter choices below, after having discussed the convergence properties. To
compute f̂pη|t|q for η � �1 completely, we have to execute altogether six FFTs,
as well as six componentwise products, which both involve the multiplication of
f in auxiliary space with the Gamma function and the final multiplication with
expp�kpτnq. Since the numerical complexity of these products scales only linearly
with the system size, which also is the case for summing the results from ζ � �1,
the overall cost remains on the order of the FFT algorithm N logN , yet with an
enlarged prefactor of Op1q from the additional operations.
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One question of great importance for the usefulness of the LFT is, which class
of functions can be treated reliably . The necessary equidistant choice of the log-
arithmic grid implies an exponentially large density of points for ν Ñ 0 while for
|ν| Ñ 8 one obtains an exponentially increasing separation between two successive
grid points. Regarding the imbalanced Fermi gas, this is the desired behavior to
include low-momentum degrees of freedom with high precision, while the slowly
varying algebraic tails of the correlation functions are sampled with a sufficient
amount of points, too. Severe difficulties arise however, if f varies significantly on
intermediate scales, that cannot be assigned to the asymptotics close to the origin,
even by exhausting all the freedoms of (6.10). In the case of ultracold Fermions
this indeed happens for large βµσ, where a pronounced peak structure due to the
Fermi levels appears around k � kFσ at weak coupling. We cannot identify kFσ
with the lowest momentum scale, because then we would cut off the relevant limit
Q ! kF , where the phase transition occurs. An analogous situation appears for
the transition to an FFLO state, where QFFLO is found on the order of 0.1kF ,
see Fig. 5.24. To keep numerical uncertainties under these conditions as small as
possible we switch to a DFT method with an enlarged number of data points in
the neighborhood of either QFFLO and/or kFσ.

From a general perspective also oscillating functions, whose characteristic fre-
quency is not damped out in the limit |ν| Ñ 8, but remains an important feature
of the asymptotics, pose a very difficult task to the LFT: The discrete set of ωn
will drastically undersample the periodic variations in the regime |ωn " 1| and
consequently give rise to poor numerical results. A reliable approach would require
a fine grid on any frequency scale which inevitably leads to inconveniently large
N and hampers an efficient evaluation. A prototype example for such a function
is given by fpνq � sinpνqgpνq with an integrable, algebraically decaying function4

gpνq. The fact that fpνq oscillates with a fixed frequency of order one on all ν scales
downgrades the convergence of the LFT to the exact result from an exponential
behavior to an algebraic one. As we will see in the next section, this happens due
to the fundamental analytic structure of the LFT.

6.1.2 Convergence properties

We can promote the rather qualitative arguments of the last paragraph regarding
which classes of function are tractable by the LFT to precise statements about how

4In this simple example the Fourier transformation results in pgpt� 1q� gpt� 1qq{p2iq, where the
algebraic function gpνq actually can be treated by the LFT. Note, however, that the uniform
shift of the original argument t� 1 requires an interpolation in τ .
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fast the numerical approximation5

f̂N pη|tn|q �

e�kpτn
¸
ζ��1

Ņ

l�1

∆s

2π
eislτnpiζηqisl�kpΓpkp � islq

Ņ

m�1

∆ω

2π
fpζeωmqep1�kpqωmeiωmsl

(6.11)

converges to the exact Fourier integral in the limit N Ñ 8. In fact, we can show
that the deviation between eq. (6.9) and eq. (6.11) vanishes exponentially with N ,
if fpζ exppωqq exppp1 � kpqωq is analytic and integrable in a strip of finite width
around the real axis in the complex ω-plane.

Before coming to the proof it is worth studying the implications on f as a function
of ν, which helps to understand both the following arguments and the conditions
for the application of the LFT. The analyticity of fpζ exppωqq implies that we can
expand f as a Taylor series around any real ω0. On a formal level this means�����

8̧

n�0

�
dn

dωn
fpζeωq



ω�ω0

pω � ω0qn
n!

�����   8 , (6.12)

for any ω P C that satisfies Rζω0 : |ω � ω0|   Rζω0 , where the existence of a finite

convergence radius Rζω0 ¡ 0 is guaranteed by the analyticity. The maximal width
of the analytic strip is defined as

Rp1q � inf
ζ��
ω0PR

Rζω0
, (6.13)

which implies that Rζω0 Û 0 in the limits ω0 Ñ �8 in order to obtain a nonzero
Rp1q ¡ 0. In view of the applicability of the LFT it is useful to translate the
analytic properties of f as function of ω back to the original argument ν. Inverting
the variable transformation (6.3) within the disk around ω0 � logpζν0q P R, where
the series (6.12) converges, yields:

| logpζνq � logpζν0q|   Rζω0
. (6.14)

To estimate the size Rζν0 ¡ 0 of the analytic region around ζν0 we parametrize

ζν � ζν0 �Rζν0
eiϕ, if ζν0 Ñ8 (6.15a)

1

ζν
� 1

ζν0
�Rζν0

eiϕ, if ν0 Ñ 0 , (6.15b)

with a real phase ϕ and solve for the value of Rζν0 ¡ 0 that satisfies the bound (6.14)
as closely as possible. As a result, we find

Rζν0
À |eRζω0 � 1|

#
|ν0| , if ζν0 Ñ8
|ν0|�1 , if ν0 Ñ 0

, (6.16)

5We assign the factors of 1{p2πq to the sums over ω and s for later convenience.
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an at least linearly increasing analytical regime in ν. This excludes any noninte-
grable divergences of fpνq on the real axis, which would render the Fourier trans-
form ill-defined in any case, but also discontinuities or cusps that yield slowly
decaying oscillations in the t domain. Note, however that equation (6.16) does not
imply that fpνq is integrable at ν Ñ 0 or ν Ñ �8. Indeed, as we have already dis-
cussed above, f may actually diverge algebraically, as long as a trade-off parameter
exists, such that satisfies (6.8).

Now, one may ask what kind of functions are analytic in a strip in the complex
ω plane? Constraints on the width Rp1q arise both from the asymptotically larger
or small ω, where the behavior of fpζωq has to be integrable, but also from nonan-
alyticities in the complex plane at finite Reω. We begin with discussing the first
scenario and turn to the second case below. First of all, if the asymptotics of the
function admits the representation fpζ expωq exppp1� kpqωq � expppb� 1� kpqωq
for ω Ñ8, introduced above eq. (6.8), f remains exponentially small and analytic,
upon continuation to finite Imω � 0. This argument can be analogously repeated
for ω Ñ �8, where b has to be replaced by a. These kind of functions, which
we will call algebraic functions in the following, due to their ν dependence, are
thus ideally suited to be treated with the LFT, since their asymptotics give rise to
exponentially fast convergence. A more careful treatment is required in the case
of seemingly harmless, exponentially decaying functions. We consider the simple
example of a function fpζνq � exprαpζνqcs, which is governed by a single, domi-
nant exponent c P R in the limit ζν Ñ 8 (ζν Ñ 0). Oscillating functions can be
included by α P Czt0u, while the proportionality factor may contain any algebraic
function of ζν. Formulated in terms of ω � x� iy, x, y P R, we have��eανc �� � ���eexppcxqrRepαq cospcyq�Impαq sinpcyqs

��� . (6.17)

Consider x Ñ 8 (x Ñ �8), then c ¤ 0 (c ¥ 0) reduces the problem to the
previously discussed algebraic functions. The most interesting situation is encoun-
tered, if c ¡ 0 (c   0). In this case a negative Repαq is mandatory as otherwise
the original function fpνq grows exponentially and its Fourier transform does not
exist, not even in the sense of generalized functions. Here the trade-off parameter
cannot be used to improve the convergence, since it is not able to influence the
super-exponential dependence on x. Moreover, the latter will inevitably lead to an
also super-exponential increase away from the real ω-axis, even if Repαq   0. More
precisely, this happens once the argument of the square-brackets in (6.17) becomes
positive, that is for |y| larger than

ymax �
����1c arctan

�
Reα

Imα


���� . (6.18)

Note that for |y|   ymax the function fpνq still vanishes exponentially fast for
|x| Ñ 8. In case of |y| � ymax the function reduces to the algebraic type, which can
possibly be controlled by choosing kp. In accordance with the previous definition,
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ymax corresponds to Rp1q, unless a singularity at finite ω is encountered closer to
the real axis. Therefore, all real, negative α allow for a finite strip of width π{2.
However, recall the simple example fpνq � gpνq sinpνq from the last paragraph.
In this case we have c � 1, α � i and thus Rp1q � ymax � 0, which can only
give rise to an algebraic convergence of the discrete approximation to the Fourier
transformation as N Ñ8.

So far we have estimated the size of the analytic strip from the asymptotic
behavior of the function. However, Rp1q may also be limited by a nonanalyticity
at finite frequencies. In the following, we estimate this width from the directly
accessible representation of f as function of the physical variable ν. The resulting
criterion can also be used in numerical applications to test the possible convergence
of the LFT. Afterwards, we translate the result to ω, which finally determines Rp1q.
First of all, we note that the condition that fpζ exppωqq is analytic around the
real ω axis in a strip of finite width rules out any nonanalytic behavior at real ω
and therefore also for real ν. This limitation on f has been expected, since any
nonanalyticity, even an integrable one, destroys the point-wise convergence of the
Fourier transformation [163]. Let us therefore assume that a pole or the beginning

of a branch cut of f is located at ν̂ � ν0 � iRζν0 , with ν0 P Rzt0u, ζ � sgnpν0q
and Rζν0 ¡ 0, which measures the distance of ν̂ from the real axis. In this case the
Laurent series of f around ν̂ can be written as

fpνq � λ

pν � ν0 	 iRζν0qm
� ... , (6.19)

where λ is a complex parameter and m ¡ 0. The ellipsis refers to more regular
terms that are not of importance for the determination of the width of the analytic
strip. This form gives rise to the n-th order derivative

���f pnqpν0q
��� � |λ| pn�mq!

m! pRζν0qm�n
(6.20)

at ν0 on the real axis. The latter condition can be used, even in a numerical ap-
plication, where one computes the finite differences approximating the derivatives,
to test the existence of a nonanalyticity and if necessary to extract Rζν0 . To obtain
an estimate for the related Rζω0 , which will determine the convergence properties
of the LFT, we note that the translation of ν̂ to the logarithmic variable marks
exactly the distance from the real ω axis, where the power series (6.12) around
ω0 � logpζν0q ceases to converge. Application of the root criterion yields for the
width of the analytic strip

lim sup
nÑ8

�����
�
dn

dωn
fpζeωq



ω0

pRζω0qn
n!

�����
1{n

� 1 . (6.21)
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Using the chain rule, the derivative

�
dn

dωn
fpζeωq



ω0

�
ņ

j�1

ajf
pjqpν0qνj0

can be written in terms of a sum with real coefficients aj that have a maximum

of order
�
n
n{2

� � 2n around j � n{2, due to the derivatives acting on νj0, where

we have inserted the Stirling formula n! � pn{eqn � ... for n Ñ 8. Returning to
the root criterion (6.21), we simply estimate

�
dn

dωn fpζeωq
�
ω0
� f pnqpν0qνn0 with a

prefactor of order one due to the factorial growth of the f pjq, see eq. (6.20). Note
that we could have used any index of order n, since the final result will only be
influenced by subleading corrections of the Stirling formula, which can only give rise
to corrections of Rζω0 by factors of order one. All in all, we find for the constraint
on the width Rζω0 , which is caused by the nonanalytic behavior at ν̂,

Rζω0
� e�ω0Rζν0

. (6.22)

The analytic strip and therefore also the speed of convergence with the number
of grid points is more severely limited at large ω0 corresponding to large ν0, too,
while the limit ω Ñ �8 or ν Ñ 0 does not suffer at all from the pole or branch cut
at ν̂. This can be explained from the fact that the origin of ν is sampled with an
exponentially dense grid that is well suited to treat the fast variations around ν0. In
the opposite limit of ν0 " 1, however, the sampling density decreases exponentially
and the LFT does not provide very accurate results, if the function fpνq is modu-
lated on very short scales around ν0. Fortunately, in the majority of systems and
especially in effective field theories the physically relevant nonanalyticities appear
on a low-momentum scale, which has to be sampled with a high density, such that
no genuine restriction arises from the previous consideration.

Now we present the proof for the exponential convergence of the LFT.

Theorem: Let f be a function that is analytic in a strip of width Rp1q ¡ 0 in
the logarithmic variable ω and the Fourier transform of fpζ exppωqq exprp1� kpqωs
exists due to an appropriate choice of the trade-off parameter kp. Then

������
e�kpτn

p2πq2
¸
ζ��1

FT sÑτ

�
FT ωÑs

�
fpζeωqep1�kpqω

	
piζηqis�kpΓpkp � isq

�
pτnq

�e�kpτn
¸
ζ��1

Ņ

l�1

∆s

2π
eislτnpiζηqisl�kpΓpkp � islq

Ņ

m�1

∆ω

2π
fpζeωmqep1�kpqωmeiωmsl

������Ñ 0

(6.23)
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vanishes exponentially fast in the limit N Ñ8 for all τn of the grid.
To verify this statement we begin by examining the deviation

Eζ1psq � Iζ1 psq � Sζ1psq (6.24)

between the innermost, exact integral of the LFT in eq. (6.9)

Iζ1 psq �
»
dω

2π
fpζeωqep1�kpqωeisω (6.25)

and the numerical approximation in terms of the discrete sum

Sζ1psq �
¸
mPZ

∆ω

2π
fpζeωnqep1�kpqωneisωn . (6.26)

First of all, we note that the product fpζeωqep1�kpqω, apart from being analytic
in a strip of width Rp1q, decays exponentially like expp�Rp2q|ω|q with a positive
constant Rp2q � min r|a� 1� kp|, |b� 1� kp|s for |ω| Ñ 8 under the conditions

stated above. Its Fourier transform Iζ1 psq therefore is also analytic in a strip of width

Rp2q around the real s-axis and the asymptotics is given by Iζ1 psq � expp�Rp1q|s|q,
see e.g. the book by Titchmarsh [164]. Due to the integrability of fpζeωqep1�kpqω,

also the sum Sζ1psq is finite and the exponential decrease gives rise to exponentially
small truncation errors. Therefore, we have extended the sum in eq. (6.26) to all
m P Z. For reasons of notational simplicity, we assume in the following that ω̄ is
an integer. Then Sζ1psq can be treated by the contour integration techniques for
bosonic Matsubara sums (see Appendix B)

Sζ1psq �
#¶

dz
2πifpζe�izqp1� nBpzqqe�izp1�kp�isq , Repsq   0¶
dz
2πifpζe�izqnBpzqe�izp1�kp�isq , Repsq ¡ 0

. (6.27)

Here, ω � �iz and nBpzq denotes the Bose function with inverse temperature
βω � 2π{∆ω. Other values of ω̄ would require to adjust the statistical functions,
e.g. half-integers imply a Fermi-Dirac distribution, but the convergence remains
unchanged.

For |s|   βw we deform the integration contour in (6.27), such that it runs along
two infinitely long, straight lines BR� at Re z � �Rp1q, see Fig. 6.1. Because of the
holomorphic structure of the integrand Sζ1psq, there are no contributions arsing from

nonanalyticities. Regarding the integral Iζ1 psq we shift the integration countour
in the same fashion to B

R
p1q
�

or B
R
p1q
�

. Thereby we select the half-plane with

respect to signpsq, that yields an exponentially small prefactor for the integrand.

By combining the expressions for Sζ1psq and Iζ1 psq, we obtain for the error from
eq. (6.24)

Eζ1psq � �
»
BR�

dz

2πi
fpζe�izqnBpzqe�p1�kp�isqiz

�
»
BR�

dz

2πi
fpζe�izqp1� nBpzqqe�p1�kp�isqiz .

(6.28)
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Figure 6.1: The plot shows the shift of the original contours encompass the imag-

inary axis to BRp1q� at constant, finite real part �Rp1q. The red dot
and the red zigzag line symbolize a pole and a branch cut, respectively.
Rp1q is determined from the real part of closest non-analyticity to the
imaginary axis.

Parametrizing the nonvanishing contours by z � �Rp1q� iu, with u P R, yields the
form

Eζ1psq � ep�βω�|s|qR
p1q
F ζ1 ps,Rp1qq . (6.29)

The exponential prefactor arises from evaluating the integrand at the constant real
part of the integration contours, where we have included the uniform exponential
prefactor expp�βωRp1qq of the Bose distribution. The function F ζ1 ps,Rp1qq denotes
the result of the contour integral from the remainder of the integrand. In partic-
ular, F ζ1 ps,Rp1qq can be interpreted as Fourier transformation uÑ s of a function
that vanishes exponentially fast for |u| Ñ 8, since the distance of the contours
from the imaginary z axis does not exceed Rp1q, such that fpζ exppu 	 iRp1qqq is
located within the analytic region, such that the power series in eq. (6.12) yields
finite results and the complete integrand acquires an exponentially small prefactor
� expp�Rp2q|u|q. Therefore, F ζ1 ps,Rp1qq is well-defined and bounded. In total, we
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obtain an exponentially small error Eζ1 for all |s|   βω � N . For the practi-
cal implementation, we conclude that we can obtain this favorable scaling of the
convergence, as long as ∆ω � 2π{βω can be chosen small enough, such that even
expr�pβω�|s�N |qRp1qs yields a sufficient suppression of the error to achieve the re-
quested precision. We return to this point, in the next subsection, when we discuss
the optimal parameter settings for the LFT.

The next step is to compare the final s Ñ τ transformation in (6.9) with its
numerical counterpart in (6.11). First, we consider the exact integral

Iζ2 pτq �
»
ds

2π
Γpkp � isqpiζηqis�kpIζ1 psqeisτ . (6.30)

Due to the exponential decay of Iζ1 psq for real |s| Ñ 8 and the asymptotic behavior

���Γpkp � isqpiζηqis�kp
���9

#?
2π|s|kp�1{2e�π|s| , ζηsÑ8?
2π|s|kp�1{2 , ζηsÑ �8 , (6.31)

(see e.g. the book Freitag and Busam [165] for the complex form of the Stirling

formula) that can only lead to an algebraic growth, Iζ2 pτq is well-defined. The
corresponding deviation reads

Eζ2pτq �
»
ds

2π
Γpkp � isqeisτ piζηqis�kpIζ1 psq

�
Ņ

l�1

∆s

2π
Γpkp � islqeislτ piζηqisl�kpSζ1pslq .

(6.32)

In order to treat this error in the same way as Eζ1psq, first note that for sufficiently

small ∆ω � 1{N , we can replace Sζ1pslq by Iζ1 pslq at the expense of an exponentially
small error. The latter can be estimated via�����

Ņ

l�1

∆s

2π
Γpkp � islqeislτ piζηqisl�kpEζ1pslq

����� ¤ CNkp�1{2 ep�2π{∆ω�|sN |qRp1q Ñ 0 ,

if 2π{∆ω ¡ |sN |. Here we have made use of the exponential scaling of Eζ1psq
in eq. (6.29), while we have inserted the worst power law increase from eq. (6.31)
times the summation interval and a positive constant C of order one. Once we have
substituted Sζ1pslq by Iζ1 pslq in E2pτq, we can again extend the sum to all integer

values, since |Iζ1 psq| itself becomes exponentially small for |s| Ñ 8, provided that
the maximal value |sN | already probes this exponential decay. This condition is
necessary anyway, in order to keep the truncation errors of the second numerical
Fourier transformation in eq. (6.11) under control. Later on, we will derive a
condition on βω from this observation. Assuming, without loss of generality, that τ̄
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is an integer number, we are in the position to rewrite Eζ2pτq as a contour integral
in the complex plane6

Eζ2pτq � �
»
B
R
p2q
�

dz

2πi
nBpzqΓpkp � zqezτ piζηqz�kpIζ1 p�izq

�
»
B
R
p2q
�

dz

2πi
p1� nBpzqqΓpkp � zqezτ piζηqz�kpIζ1 p�izq

� Eζ2,Γpτq .

(6.33)

Here the B
R
p2q
�

denote two lines parallel to the imaginary z-axis at a distance Rp2q,

marking the boundaries of the region in which Iζ1 psq is analytic, in analogy to the

construction for Eζ1psq (see eq. (6.28) and the discussion below). We have also
introduced the Bose-Einstein distribution nBpzq with inverse temperature βs �
2π{∆s. Furthermore, when one shifts the contour to B

R
p2q
�

one has to take the

poles of Γpkp � zq at non-positive integers �m with m P N0 that are located
between �Rp2q   z   Rp2q into account. In this regard, one should also forbid
combinations of kp � Rp2q P Z�0 to avoid a crossing the contours with the poles.
This new contribution from the Γ function is summarized in the expression

Eζ2,Γpτq �
tRp2q�kpu¸
m�r�kps
^m¥0

p�1qm
m!

nBpkp �mqIζ1 p�ipkp �mqqepkp�mqτ piζηqm

�
t�kpu¸

r�Rp2q�kps
^m¥0

p�1qm
m!

p1� nBpkp �mqq Iζ1 p�ipkp �mqqepkp�mqτ piζηqm ,

(6.34)

with the residues Resp�mq Γpzq � p�1qm{m! [165]. The first line arises from the

positive real parts 0   Re z   Rp2q, while the second one originates from the neg-
ative ones �Rp2q   Re z   0. Therefore, the exponential behavior of the Bose
distributions � expp�βspm � kpqq overcomes the exponential function in the nu-
merators, provided βs ¡ |τ |. This corresponds to the previous criterion βω ¡ s

and will not pose a severe restriction. Note that Eζ2,Γ is known in analytical form

except for the function Iζ1 , which we can compute with exponential precision, as
discussed above. As we present in the next subsection, we can improve the total
result for the LFT by removing the erroneous contribution Eζ2,Γ up to the remaining

6Note that we have to understand Iζ1 psÑ izq as the analytic continuation of the integral (6.25),
which in most cases is only known numerically. Fortunately, we need this expression merely on
a formal level to estimate the errors, whereas performing the analytic continuation numerically
is not required.
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uncertainty on the order of Eζ1 . Finally, following the same arguments that have
led from eq. (6.28) to eq. (6.29), we obtain for the total error

Eζ2pτq � ep�βs�|τ |qR
p2q
F ζ2 pτ,Rp2qq � Eζ2,Γpτq , (6.35)

where the F ζ2 pτ,Rp2qq denotes a well-defined, bounded function, that cannot over-
come the exponential prefactor. Taking both terms into account we conclude that
we again obtain an exponentially small error for |τ |   βs.

Due to the dependence βω, βs � N the total error |Eζ1psq � Eζ2pτq| vanishes
exponentially with N Ñ 8, provided the relations βω ¡ |sN | and βs ¡ |τN | hold.
Furthermore, we determine the overall rate of the exponential convergence as

R � minpRp1q, Rp2qq . (6.36)

Moreover, the conditions on βω and βs can in principle always be satisfied by an
appropriate choice of the grid parameters in eq. (6.10). Finally, we reemphasize that
the choice of kp is quite important, as it also controls the size of the contribution

to Eζ2pτq from the proximity of the contour to the poles of the Gamma function
via the Bose prefactor. We will see in the next section how the numerical results
can be improved by subtracting this additional contribution.

6.1.3 Optimal parameter settings

Having shown that one can achieve exponentially fast convergence of the numerical
approximation of the LFT towards the exact expression, we now address the issue
of how the transformation parameters can be optimally chosen and how many grid
points are necessary to obtain a predefined precision. We postpone the effect of
round-off errors due to a finite floating point precision to the end of the section and
focus first on the error sources specific to the LFT. First of all, we have to consider
uncertainties arising from discretizing the integrals, which leads to the expressions
Eζ1psq and Eζ2pτq in eqs. (6.24) and (6.32). Further errors arise from truncating the
resulting sums to a finite interval.

In this section we focus on the class of algebraic functions, whose integrability
depends on a suitably choice of the trade-off parameter kp. On the other hand,
if the function scales exponentially in any of the limits ζν Ñ 0 or ζν Ñ ζ8, its
transformation properties cannot be improved by kp and we will only be able to
compute the Fourier transform, if the exponential behavior on its own gives rise
to a decreasing function, according to eq. (6.17). In this case we can discard the
corresponding limitations on kp derived in eq. (6.8). However, one should keep in
mind that kp " 1 will pose problems for the numerics, due to the algebraic growth
� |s|kp in eq. (6.31) and should be avoided. Returning to algebraic functions, the
optimal trade-off parameter

kopt � 1� a� b

2
(6.37)
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renders the tails of fpζ exppωqq exppp1�kpqωq symmetric for ω Ñ �8 and therefore
leads to the minimal truncation errors at both ends of the sampled interval. If we
demand the truncation errors to be of order ε ! 1, i.e |fpζ exppω1,N qq exppp1 �
kpqω1,N q| ¤ ε we find the condition

∆ωN � 4

b� a
logpεq , (6.38)

by inserting the asymptotic forms |fpζeωq| � exppaωq for ω Ñ �8 and |fpζeωq| �
exppbωq for ω Ñ 8. From the general theory of Fourier transformations [164], it

follows that Sζ1psq � expp�Rp1q|s|q, due to the analytic properties of the integrand
in eq. (6.25). However, since the difference between sum and integral gives rise to

the error Eζ1psq � expp�βωRp1q � |s|Rp1qq from eq. (6.24), it only makes sense to

include values |s|   smax � βω{2 � π{∆ω, because for larger s the function Sζ1psq
has already fallen below the error. To be consistent, we require the same truncation
error of order ε for the sum over l in (6.11), that is |Sζ1psmaxq| � expp�Rp1qsmaxq   ε.
With the given value of smax we eventually obtain the minimally necessary number
of points

∆ω � �πR
p1q

log ε
(6.39a)

N � 4

pa� bqπRp1q plog εq2 . (6.39b)

Consequently, the number of points and their inverse density grow only logarith-
mically with increasing precision ε Ñ 0. In the case of a different kp � kopt the
scaling remains unaltered but with larger prefactors. Below, we discuss a scenario,
where such a configuration of the transformation, nevertheless, might be useful.

So far we have only considered the transformation from ω Ñ s. However, one
might suspect that an exponentially small error Eζ2pτq requires a very small ∆s ! 1,
such that N actually becomes larger than the estimate (6.39b). The width of

the strip Rp2q is determined by the closest nonanalyticity of Sζ1psq in the complex
s plane. Using kopt from eq. (6.37) yields Rp2q � pa � bq{2, according to the
discussion below eq. (6.26). In analogy to the argument for smax, we conclude from

the asymptotics of Iζ2 pτq � expp�Rp2qτq and the error Eζ2pτq � exppp�βs�|τ |qRp2qq
that the evaluation of the LFT only makes sense for |τ | ¤ τmax � βs{2 � π{∆s.
Demanding that the error Eζ2pτq does not degrade the overall accuracy ε, that is

|Eζ2pτmaxq| � expp�βsRp2q{2q ¤ ε, yields

∆s � �πR
p2q

log ε
� πpb� aq

2 log ε
, (6.40)

which scales in a similar manner as ∆ω in (6.39a) with 1{ log ε. Note that the
restriction on τmax does not severely limit the transformation, as τmax � | log ε| and
thus tmax � 1{ε covers a considerable range of times up to the inverse precision.
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Furthermore, recall that Rp2q only takes into account the analytic properties
of Sζ1psq. Apart from them, Eζ2pτq in equation (6.32) also contains the contribu-

tions arising from the poles of the Gamma function Eζ2,Γpτq (6.34). After the final
multiplication with expp�kpτq (see Def. (6.9)), the pole at �m gives rise to the
exponential behavior

am
p�1qm
m!

piζηqm
e2π|kp�m|{∆s � 1

emτ , (6.41)

which is known up to a single numerical prefactor am. This behavior entails an
option to further reduce the numerical uncertainties of the LFT, if some knowledge
about the expected asymptotics of f̂ is available. In the standard case of a function
f̂pτ Ñ τmaxq Ñ 0, we start with the smallest value of m, which we fit to the
τ Ñ τmax asymptotics of f̂pη exppτqq. This is possible, if in the regime of the
largest τ -values that have been taken into account, the function has decayed and
merely errors remain. Usually this is revealed by a sudden change of fpτ Ñ τmaxq
to a more slowly decay, which cuts off the mathematically correct behavior. To
obtain the latter one needs a better cancellation of the numerical terms, which in
turn requires to extend the grid beyond ωmax. Subsequently, we can subtract the
fit, before increasing m by one and repeating the procedure. This can continued
until either m runs out of the bounds of the sums in Eζ2,Γpτq or if the result �
expp�mτmaxq has become negligible. If the function carries too much information
in the the limit τ Ñ τmax, which can happen in the case of generalized Fourier
transformations, one can also try to eliminate the contributions from the Γ function
from the intermediate stage in eq. (6.9), before multiplying with expp�koptτq. At
this level one has computed the Fourier transformation of an integrable function,
which necessarily satisfies the Riemann-Lebesgue Lemma, and thus approaches
zero for large enough τ values. Our LFT configuration for the imbalanced Fermi
gas automatically subtracts the leading two poles from the final result, since the
encountered functions always decay sufficiently fast.

Up to now, round-off errors due to finite numerical precision have been entirely
ignored in the current discussion. In fact the discussed parameter choices give rise
to an accuracy f̂pζ exppτqq � ε expp�koptτq, where the exponential factor arises
from the final multiplication of the LFT method in eq. (6.9). A simple example,
that reveals the influence of round-off errors, is encountered for negative kp in the
limit of large τ " 1. In general, we can write the result of the LFT in the form
f̂pη exppτqq � expp�koptτqfredpη, τq, where the reduced function fred is integrable
and vanishes in the limit τ Ñ 8, due to the Lemma of Riemann-Lebesgue for
Fourier transformations. From a numerical perspective, however, this decay is cut
off at τcut, independently of the truncation errors, when the asymptotics of fred

hits the threshold of the precision δ of the internal operations (typically machine
precision), i.e. |fredpη, τcutq| � δ. For τ ¡ τcut the correct decrease is replaced by
noise on the level of δ. Multiplication with the exponential factor then gives rise to
an erroneous exponential growth � δ expp|koptτ |q. Thus, the LFT can only access

125



Chapter 6 Numerical Fourier Transformations

τ -values smaller than τcut. As the exact function decays in this limit anyway, no
relevant information is contained in the asymptotics and this restriction on the im-
age space does not limit the quality of the results. A more severe problem appears,
if the function is not integrable for ν Ñ 8 and therefore requires kp ¡ 0. In this
case the enhanced round-off errors emerge for τ Ñ �8, which is equivalent to the
origin in the time-domain. In fact, the larger b ¡ �1, the worse are the integra-
bility properties of f . A larger b, indeed, automatically yields a more pronounced
dynamic compression, which means that the interval of τ values, where the result
can be distinguished from the errors, that is |f̂pη exppτqq| ¡ ε expp�kpτq, shrinks
with growing b, since kp necessarily has to be increased to guarantee the existence
of the LFT, according to (6.8).

One solution to this problem is to continue the function from the regime of trust-
worthy τ values towards τ Ñ �8. This can be achieved either by extrapolating
the reliable data directly or if possible by fitting the data to a known analytic form.
Another solution, which, however, requires more computational resources, is to re-
peat the computation with different values of the trade-off parameter. Thereby one
resolves a different interval in the time-domain for each value of kp. The complete

function f̂pηtq is then obtained by combining the results. To keep the truncation er-
rors on the order of ε additional grid points must be included, such that (6.39b) is no
longer satisfied. In this situation one can make use of the shifts ω̄ and s̄ to rearrange
the grids for an optimal sampling of the tails. To estimate the new values of N and
ω̄ we take ∆ω from eq. (6.39a) in order to obtain the same error estimate from the

truncation of Sζ1psq and demand that |fpζ exppω�N qq exppp1� kpqω�N q|   ε for an
arbitrary, but allowed kp. Using the most general form of the ωn grids from (6.10)
together with the asymptotics fpζeωq � exppaωq, exppbωq yields

ω̄ � log ε

p1� a� kpq∆ω (6.42a)

N � b� a

p1� b� kpqp1� a� kpqπRp1q plogpεqq2 . (6.42b)

Note that this choice of the parameters reduces to ω̄ � �N{2 and N given by
eq. (6.39b), if the optimal trade-off parameter kopt � 1� pa� bq{2 is inserted.

6.1.4 Examples

After having discussed the theoretical properties of the LFT, we will now consider
two examples of physical interest. Many more examples and the application to
convolutions can be found in Ref. [160]. First of all, we study the LFT of a func-
tion that mimics the tail of the fermionic Green’s function in the problem of the
imbalanced Fermi gas Gσσp|k| Ñ 8, τ � 0�q Ñ C{k4. To this end, we define

f1pνq � 1

1� ν4
, (6.43)
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which can be Fourier transformed analytically with the three-dimensional transfor-
mation (4.16) to

f̂1ptq �
sin

�
t?
2

	
4πt

e
� t?

2 . (6.44)

Including the additional factor of ν from the integration measure, we deduce the
coefficients a � 1, b � �3 for the asymptotics, such that the optimal trade-off
parameter reads kopt � 0. To avoid the poles of the Γ function, we instead use
kp � �0.2. Due to the poles at ν � �?�i, the analytic region has a width of
R � π{4 in the logarithmic argument ω. Demanding a precision ε � 10�12 from
the truncation errors, we obtain from the estimates in eq. (6.39) N � 310 and
∆ω � 0.09, which corresponds to ωN � 13.95. Since these numbers are simple
estimates, we choose slightly more conservative values N � 325 and ∆ω � 0.08,
to guarantee a sufficient sampling density. Furthermore, we shift the grid of ω
points by ω̄ � �N{2�1.5, such that the maximal exponent is 14.5. The remaining
parameters of the transformation read ∆s � 0.22 and ∆τ � 0.08, while the other
shifts of the grids are set to the standard choice s̄ � �N{2 � τ̄ . Because of

the form of the error Eζ2pτq given in eq. (6.32) we expect a large contribution
from the pole of the Γ at m � 0, since kp � �0.2 does not give rise to a strong
exponential suppression. To improve our result, we subtract the last τ -point, which
corresponds to the form of this error after multiplying with exppkpτq according to
the LFT prescription (6.9). In Fig. 6.2 we compare the LFT result (black) to the
exact expression (red) and show the deviation in blue. The latter turns out to
be suppressed by at least seven orders of magnitude in comparison to f̂1ptq. The
error starts to take over, once t is large enough, such that the exponential factor
dominates the exact result of (6.44). However, this happens just when f̂1ptq has
dropped below the 10�15 level.

To further demonstrate the capability of the LFT, let us also discuss the related
example

f2pνq � 1

1� ν2
(6.45)

in d � 3, too, which is nonintegrable but can be Fourier transformed to a Yukawa
potential with the decay constant set to one

f̂2ptq � e�t

4πt
. (6.46)

From the three-dimensional asymptotics we have a � 1 and b � �1. According
to the condition (6.8), a trade-off parameter kp between zero and one makes the
function amenable to an application of the LFT. In particular, we conclude the
optimal value for the trade-off parameter kopt � 1. Fig. 6.3 shows the result
for N � 800 points compared to the exact solution. The other parameters are:
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Figure 6.2: Comparison between the LFT output (black) with the exact re-
sult (6.44)(red) and the difference between them (blue).

∆ω � 0.08, ∆ω � 0.05 � ∆τ , while for the shift variables s̄ and τ̄ the value �N{2
has been assigned. In this example we have furthermore used two values for the
trade-off parameter: kp � 1 with ω̄ � �N{2 and kp � 0.7 with ω̄ � �N{2 � 10
to reveal the role of kp. The shift in the ω grid establishes the same truncation
errors in order to obtain a valid comparison. In total, we obtain the same features
as in the previous example. The 1{t decay is very well described by the LFT. The
error only dominates for t Á 20, where f̂2ptq has already decreased below values of
10�17. The two choices of the trade-off parameter indeed reveal the effect on the
convergence properties, that we have discussed earlier: The smaller kp decreases
the error at small t, while at large t the error becomes enhanced compared to
the optimal choice, as stated earlier. All in all, we conclude that LFT is able to
transform also nonintegrable functions with very small errors at a grid size which
does not exceed the grid of the previous integrable case by far.
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Figure 6.3: Comparison between the LFT output (black) with the exact re-
sult (6.46)(red) and the deviations for kp � kopt (blue) and kp � 0.7
(green).

6.2 Discrete Fourier Transformation (DFT)

As we have discussed in the previous section, we cannot treat every Fourier trans-
formation in the problem of the imbalanced Fermi gas with the LFT. If we have to
compute a Fourier series between Matsubara frequencies and imaginary time or a
Fourier integral with prominent features on intermediate scales like the Fermi level
in the weak coupling limit, that satisfies at low temperatures 1 ! βµσ ! βεkmax or
QFFLO � kF , we instead apply a DFT in combination with a spline interpolation.
We use splines of third and fifth order. In the following, we set up the general con-
struction of a spline interpolation in Sec. 6.2.1, where we focus on quintic splines,
before we combine them with the Fourier transformation in Sec. 6.2.2.

The general form of the two cases under consideration read

f̂ptq �
¸
nPZ

e�itνnfpνnq (6.47a)

f̂ptq �
8»

�8

dν

2π
e�itνfpνq , (6.47b)

where the νn , n P Z form a set of equidistant frequencies, like the Matsubara
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frequencies. Furthermore, we have seen in Chap. 4 that the Green’s and the ver-
tex function possess algebraic tails, which arise from the bare Green’s function

Gp0qσσ pk, ωnq in eq. (4.9) and the lowest order pair propagatorM pQ,Ωnq in eq. (4.33).
Therefore, we again have to consider functions fpνq that vary slowly over several
orders of magnitude. To sample them properly with a grid of feasible size N we
have to choose a subset tνju1¤j¤N � tνnunPZ with exponentially growing distance
pνj�1�νjq for |m| " 1, that sufficiently covers both the limits νn Ñ 0 and |νn| Ñ 8,
in analogy to the LFT. For the Fourier integral the same grid construction applies,
yet we can freely select the points in the integration grid as long as we include
enough points to sample the asymptotically important scales. To improve the nu-
merical results of the transformations we use the spline interpolation to bridge the
gap between the missing νn or equivalently the large distances between neighboring
grid points for the integral.

6.2.1 Creation of a quintic spline

We state first the general framework of spline interpolations before we focus on
fifth order splines. For the construction of cubic splines, we refer the reader to the
textbook by Ahlberg et al. [166]. To construct the spline we assume that the pairs
of frequencies and function values pνj , fj � fpνjqq, with 1 ¤ j ¤ N , are given.
The corresponding spline interpolation corresponds to a set of N � 1 piecewise
polynomials S1¤j¤N�1pνq, where Sjpνq is defined on the interval between νj and
νj�1. At the boundaries of these intervals one imposes continuity conditions on the
Sjpνq to obtain a smooth function. More precisely, one writes

Sjpνq �
lmax̧

l�0

a
plq
j pν � νjql , (6.48)

where lmax gives the spline order, which in our case is lmax � 3 or lmax � 5. The

pN � 1qplmax � 1q spline coefficients a
plq
j can be determined from the continuity

conditions. The first of them demands that the spline indeed interpolates the
available function values, that means for 1 ¤ j ¤ N � 1

Sjpνjq � fj ñ a
p0q
j � fj (6.49a)

SN�1pνN q � fN . (6.49b)

Furthermore, one requires the spline to be as smooth as possible, which gives rise
to boundary conditions for the derivatives at the ν2¤j¤N . In the application to

Fourier transformations the smoothness helps to suppress artifacts in f̂ptq, which
arise from the discontinuities of some higher order derivative at the interpolation
points. The corresponding equations for the derivatives read

dk

dνk
Sj�1pνj�1q � dk

dνk
Sjpνj�1q , (6.50)

130



6.2 Discrete Fourier Transformation (DFT)

with k P t0, 1, ..., lmax � 1u and 2 ¤ j ¤ N � 1. These conditions imply for the
polynomials (6.48)

k! a
pkq
j�1 �

lmax̧

l�k
a
plq
j p∆νjql�k

l!

pl � kq! , (6.51)

where we also have introduced ∆νj � νj�1 � νj , which is a special instance of the
difference operator

∆p�qj :� p�qj�1 � p�qj . (6.52)

Altogether, eqs. (6.49a) and (6.50) entail N � lmaxpN � 2q constraints, such that
lmax � 1 spline coefficients remain undetermined. To compensate for the missing
information one has to add boundary conditions on the spline at ν1 and νN . One
possibility are ”clamped” splines7 that are defined by equating the first plmax�1q{2
derivatives of the actual function and the spline at the endpoints ν1 and νN

dk

dνk
S1pν1q � dkf

dνk
pν1q (6.53a)

dk

dνk
SN�1pνN q � dk

dνk
fpνN q , (6.53b)

with 1 ¤ k ¤ plmax � 1q{2. We will come to the special implementation of the
boundary conditions for our spline DFT below.

The general strategy to solve for the spline coefficients is to find a linear set
of equations for the second highest coefficient aplmax�1q, whose solution allows to
determine the remaining coefficients. We present this procedure for quintic splines,
which are less frequently applied. First, we use eq. (6.51) with the maximally
allowed k � lmax � 1 � 4 to eliminate the coefficient of the highest order

a
p5q
j � ∆a

p4q
j

5∆νj
� g

p0q
j

∆νj
, (6.54)

which can be written in this compact way by the help of the difference opera-

tor (6.52) and the auxiliary function g
p0q
j . In the following, we will introduce more

of them. They share the common features, which can easily verified in the case of

g
p0q
j , that they all depend linearly on the set of variables tap4qj u and in addition only

include the given set of step widths t∆νju between adjacent frequencies of the grid.

7In fact, the choice of boundary conditions does not matter, if the grid has been chosen appro-
priately. Either the function becomes negligibly small, which happens e.g. for |ωn| Ñ 8 or we
sample the boundary with a high enough density of grid points like at the borders of imaginary
time interval τ Ñ 0� or β�. In contrast, a dependence on the boundaries indicates that the
grid truncates important frequency scales or undersamples the function. Therefore, we are not
forced to compute the derivatives of f at ν1 and νN , which are necessary for clamped splines,
with a high numerical precision.
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Next, we use the continuity equation, equivalent to the k � 0 version of eq. (6.51),
to solve for the lowest order unknown coefficient

a
p1q
j � ∆a

p0q
j

∆νj
� a

p2q
j ∆νj � a

p3q
j ∆ν2

j � g
p1q
j ∆ν3

j , (6.55)

with the new auxiliary function

g
p1q
j � a

p4q
j � g

p0q
j . (6.56)

Notice that g
p1q
j indeed is a linear function of the tap4qj u and apart from that only

depends on the frequency points. Now we can use the smoothness of the first
derivative (from eq. (6.51) with k � 1) in the form

∆a
p1q
j � 2a

p2q
j ∆νj � 3a

p3q
j ∆ν2

j � 4a
p4q
j ∆ν3

j � 5g
p0q
j ∆ν3

j (6.57)

to remove a
p1q
j from the equations. To this end, we apply the ∆-operator to the

continuity equation (6.55) and insert eq. (6.57), which yields

a
p2q
j�1∆νj�1 � a

p2q
j ∆νj �∆

�
∆a

p0q
j

∆νj

�
�∆pap3qj ∆ν2

j q � 3a
p3q
j ∆ν2

j

� 4a
p4q
j ∆ν3

j � 5g
p0q
j ∆ν3

j �∆
�
g
p1q
j ∆ν3

j

	
.

(6.58)

Now we have to eliminate a
p2q
j in the last equation. To do so, we first replace a

p2q
j�1

with a
p2q
j by the help of the relation (6.51) for the second derivative (k � 2)

a
p2q
j�1 � a

p2q
j � 3a

p3q
j ∆νj � 6a

p4q
j ∆ν2

j � 10g
p0q
j ∆ν2

j (6.59)

and then solve (6.58) for a
p2q
j . We obtain

a
p2q
j �

∆

�
∆a

p0q
j

∆νj



∆νj�1 �∆νj

� 3a
p3q
j ∆νj �

∆
�
a
p3q
j ∆ν2

j

	
∆νj�1 �∆νj

� 1

∆νj�1 �∆νj
g
p2q
j , (6.60)

where we have defined

g
p2q
j � 2a

p4q
j ∆ν2

j p2∆νj � 3∆νj�1q � 5g
p0q
j ∆ν2

j p∆νj � 2∆νj�1q �∆
�
g
p1q
j ∆ν3

j

	
.

(6.61)

The next step is to get rid of a
p3q
j . Using the latter two equations to determine

∆a
p2q
j , which we equate with the expression for ∆a

p2q
j from the constraint on the
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second derivative (6.59), gives rise to the relation

3a
p3q
j�1∆νj�1 �∆

�
a
p3q
j�1∆ν2

j�1 � a
p3q
j ∆ν2

j

∆νj�1 �∆νj

�
�

� ∆

�
���

∆

�
a
p0q
j

∆νj



∆νj�1 �∆νj

�
���� 6a

p4q
j ∆ν2

j � 10g
p0q
j ∆ν2

j �∆

�
g
p2q
j

∆νj�1 �∆νj

�
,

(6.62)

that merely depends on the sets of tap3qj u and tap4qj u. To find an expression for the

coefficient a
p3q
j of the cubic term in the spline, we shift all the appearing indices

to j, which can be accomplished with the continuity of the third derivative from
eq. (6.51), with k � 3

a
p3q
j�1 � a

p3q
j � 4a

p4q
j ∆νj � 10g

p0q
j ∆νj . (6.63)

Note that we have to perform this replacement twice for the second term on the
left-hand side of eq. (6.62). Finally, we get

a
p3q
j �

∆

�
� ∆

∆a
p0q
j

∆νj

∆νj�1�∆νj

�
�

∆νj�2 �∆νj�1 �∆νj
� 1

∆νj�2 �∆νj�1 �∆νj
g
p3q
j , (6.64)

where we have introduced one last function

g
p3q
j � 6a

p4q
j ∆νjp2∆νj�1 �∆νjq � 10g

p0q
j ∆νjp3∆νj�1 �∆νjq

�∆

�
1

∆νj�1 �∆νj

�
p4ap4qj ∆νj � 10g

p0q
j ∆νjq∆ν2

j�1 � g
p2q
j

	�
.

(6.65)

Having come this far, we are now in the position to formulate the central equation,

whose solution determines the a
p4q
j . To this end, we use eq. (6.64) to compute

∆a
p3q
j , which we set equal to same expression obtained from eq. (6.63). This yields

4a
p4q
j ∆νj � 10g

p0q
j ∆νj �∆

�
g
p3q
j

∆νj�2 �∆νj�1 �∆νj

�
� ∆

�
��������

∆

�
� ∆

∆a
p0q
j

∆νj

∆νj�1�∆νj

�
�

∆νj�2 �∆νj�1 �∆νj

�
��������

loooooooooooooooooomoooooooooooooooooon
�:bj

,

(6.66)
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which constitutes a linear set of equations for the a
p4q
j in terms of the distances

between the grid points and the known function values a
p0q
j on the right-hand

side. Writing out the recursive definitions of the subsidiary functions gives rise
to a lengthy expression, which, however, can be easily handled on a computer. A
close inspection additionally reveals that equation (6.66) couples the five indices
j to j � 4. This statement, in fact, holds for an arbitrary 2n � 1 order spline,

since one can, at least formally, continue the procedure to use the solution for a
plq
j

to determine an equation for the next spline coefficients of order l � 1. Like in

the scheme presented above, one first computes ∆a
plq
j from the equation for a

plq
j ,

which has to match the the corresponding lth continuity condition. The subsequent
application of the difference operator always increments the number of coupled
grid indices by one. From the right-hand side of eq. (6.66) one can estimate the
form of the continued fraction generated by this procedure, however, writing down

the subsidiary functions g
plq
j for the left-hand side remains a non-trivial task. In

contrast, in the simpler case of a cubic spline one has only three coupled coefficients.

We now turn to the boundary conditions, which complete the set of equations
required to determine the spline completely. So far, the expression (6.66) consti-

tutes N � 5 linear equations for the N � 1 coefficients a
p4q
j . To obtain the missing

four relations we impose the set of convenient conditions on the forth derivative of
the spline

S
p4q
1 pν1q � S

p4q
2 pν2q � 0 � S

p4q
N�1pνN�1q � S

p4q
N�1pνN q . (6.67)

We choose these simple constraints, which are easily implemented, since the form
of the spline interpolation at the borders of the sampled interval and in particular
deviations between the spline and the exact function at the level of the fourth
derivative have no notable influence on the Fourier sums or integrals, provided
the grid samples the boundaries sufficiently. Therefore, the specific choice of the
conditions, is not important. We will return to this issue in Sec 7.4, where we
give the concrete numerical grids. Translating the latest equations to the form of
eq. (6.66), we have

4∆ν1a
p4q
1 � 0

4∆ν2a
p4q
2 � 0

4∆νN�1a
p4q
N�1 � 0

4∆νN�1a
p4q
N � 0 ,

(6.68)

where the role of the seemingly unnecessary prefactors will be explained in a

moment. Furthermore, we have defined the fourth derivative at νN via a
p4q
N �

4!pap4qN�1 � 5g
p0q
N�1∆νN�1q, such that we can write the equations (6.66) and (6.68)
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Figure 6.4: Band matrix with five non-zero diagonals. The components between
the dotted lines follow from eq. (6.66), while the four black squares on
the main diagonal represent the boundary conditions (6.68). Empty
spots are zero.

in terms of the standard form of a linear system of equations

Ņ

j�1

pAqi,j ap4qj � bj . (6.69)

The first two equations are given by the two boundary conditions at ν1 and ν2,
while the last two lines of this system follow from the remaining two boundary
conditions. In this form we have to deal with a pentadiagonal matrix, which is
pictorially presented in Fig. 6.4. This formulation extends the more-frequently used
case of a cubic spline, where the corresponding system can be written in terms of a
tridiagonal matrix. To implement the spline in the code for the imbalanced Fermi
gas, where we have to recompute the interpolation after every update that G and
Γ acquire from the self-consistent loop, it is crucial to rewrite the solution to the
linear system in the following form

a
p4q
j �

Ņ

i,l�1

�
A�1

�
jl
pBqlk ap0qk . (6.70)

Here we have introduced a new matrix B via bi �
°
ipBijqap0qj , since the right-

hand side of (6.66) depends only linearly on the function values a
p0q
j � fj . As A

and B only contain the given distances ∆νj it suffices to invert A only once during
the initialization step, provided we use a fixed grid. Subsequently we calculate the
matrix product A �B also just once. Then the computation of the spline coefficient
reduces to a matrix times vector operation of standard OpN2q complexity, which
therefore does not degrade the general scaling of a standard DFT. Apart from
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the aspect of efficiency this also allows us to compute the interpolation matrices
with an enhanced precision of 40 digits. This is important to obtain the inverse
of A without large numerical uncertainties, since A contains the ∆νj , which cover

many orders of magnitude. Once the set of the a
p4q
j has been determined, the other

coefficients follow from backward insertion into the equations (6.54), (6.64), (6.60)
and (6.55). However, as we will see in the next section, the DFT does not even
require the entire set of coefficients.

6.2.2 Spline-based DFT

With the interpolation described in the previous subsection we can now proceed
and compute the Fourier series or integral (6.47). Numerically, we can find a unique
expression, which approximates both of them

f̂ptq �
Ņ

j�1

j�1̧

n�j
∆νe�itνnfpνnq . (6.71)

The outer sum runs over the points νj of the predefined grid, where the function
values fj � fpνjq are known, while the inner sums considers a fictitious finer grid in
between the νj , where fpνq is approximated by the spline interpolation. Moreover,
note that the inner sums have to be considered as trapezoid sums, that is the first
and the last point have to be weighted by 1{2, to avoid double-counting of the
boundaries. Furthermore ∆ν incorporates the uniform weight of the discretized
integration intervals of this artificial grid in case of the Fourier transformation8.
The exact integral is recovered for ∆ν Ñ 0. If one deals instead with a Fourier
series, one can simply set ∆ν � 1. These trapezoid sums can be computed in closed
form [37]

f̂ptq �
N�1̧

j�1

lmax̧

l�0

a
plq
j I

plq
j ptq , (6.72)

in terms of the spline coefficients and the functions

I
plq
j ptq � e�itνj

�
i
B
Bt

l �∆ν

2i
cot

�
∆ν t

2


�
1� e�it∆νj

��
. (6.73)

A derivation9 of the I
plq
j ptq is given in the thesis by Cerrito [144]. Obviously, the

second factor cancels the divergence of cotp∆ν t{2q � 1{t for t Ñ 0 such that f̂ptq
8Since we can evaluate the spline at arbitrary frequencies, we can formally introduce a regular

grid in between two adjacent νj .
9Note the different sign convention of the Fourier transformation.
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is analytic in this limit. For numerical purposes it is convenient to rewrite this
expression as

f̂ptq �
lmax�1¸
l�0

J plqptq
�
a
plq
1 e�itν1 � a

plq
N�1e

�itνN
�

� J plmaxqptq
N�1̧

j�1

a
plmaxq
j

�
e�itνj � e�itνj�1

�
,

(6.74)

with the new definitions

J plqptq �
�
i
B
Bt

l �∆ν

2i
cot

�
t∆ν

2


�
. (6.75)

Equation (6.74) allows to express f̂ptq exclusively in terms of all highest-order spline
coefficients and the coefficients of arbitrary order at the boundary. Thus the back-
ward insertion, discussed at the end of the previous section, becomes unnecessary
for the lower order coefficients in the bulk of the splines. Consequently, this repre-
sentation is to be preferred, since the number of operations is reduced. In fact, the
relation between (6.72) and (6.74) can be shown for arbitrary spline orders by first
noting

I
plq
j ptq � J plqptq �e�itνj � e�itνj�1

�� l�1̧

k�0

�
l

k



J pkqptqp∆νjql�ke�itνj�1 . (6.76)

According to eq. (6.72) we have to multiply by the a
plq
j and sum over j and l to

obtain f̂ptq. For the first sum on the right-hand side this yields

N�1̧

j�1

lmax̧

l�0

a
plq
j J

plqptq �e�itνj � e�itνj�1
� � N�1̧

j�1

a
plmaxq
j J plmaxqptq �e�itνj � e�itνj�1

�

�
lmax�1¸
l�0

J plqptq
�
a
plq
1 e�itν1 � a

plq
N�1e

�itνN
	

�
N�2̧

j�2

lmax�1¸
l�0

∆a
plq
j J

plqptqe�itνj�1 ,

(6.77)

where the last line results from a shift of the summation index, which allows to
introduce the difference operator. The first two sums on the right hand side already
correspond to the representation of f̂ptq in (6.74). Therefore, it remains to show
that the additional sum in the last line cancels the second contribution of eq. (D.10).
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We combine the two terms and use the continuity conditions (6.51) to replace the

∆a
plq
j and we get

N�2̧

j�1

e�itνj�1

lmax̧

l�0

�
J plqptqaplqj

l�1̧

k�0

�
l

k



J pkqptqp∆νjql�k �

lmax̧

k�l�1

�
k

l



a
pkq
j p∆νjqk�l

�
� 0 ,

(6.78)

The fact that this expression indeed vanishes, can be seen from interchanging the
summation order in of one of the terms in eq. (6.78) via

lmax̧

l�0

l�1̧

k�0

gpl, kq �
lmax̧

k�0

lmax̧

l�k�1

gpl, kq ,

which holds for an arbitrary function gpl, kq, followed by relabeling l Ø k. Conse-
quently, we have proven the equivalence of eq. (6.72) and (6.74).

In addition, one should also notice that the functions J plqptq from (6.75) involve

singularities, when t approaches zero, in contrast to the I
plq
j ptq as mentioned below

eq. (6.73). Nevertheless, the complete expression for f̂ptq must be analytic in this
limit due to the equivalence of (6.72) and (6.74), which we have just shown. Hence,
if one expands f̂ptq around t � 0 the negative powers coming from the Laurent series
of the individual terms must cancel identically. This implies that we can subtract
from f̂ptq a zero in form of the sum of all these poles and and by rearranging the
individual terms obtain a regularization term-by-term. The singular behavior of
the terms present in (6.74) can always be written as

J plqptq e�itνj tÑ0ÝÝÝÝÑ
��

i
B
Bt

l � 1

it


� ļ

k�0

p�iνjtqk
k!

� p�iql�1pl � 1q!
ļ

k�0

p�iνjqk
k! tl�1�k .

(6.79)
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Summing this form of the asymptotics over l and j according to eq. (6.74) yields

f̂ptq �
lmax�1¸
l�0

�
J plqptq � p�iql�1pl � 1q!

tl�1


�
a
plq
1 e�itνN � a

plq
N�1e

�itνN
�

�
lmax�1¸
l�0

p�iql�1pl � 1q!a
plq
1 pe�itν1 �°l

k�0
p�itν1qk

k! q � a
plq
N�1pe�itνN �

°l
k�0

p�itν1qk
k! q

tl�1

�
�
J plmaxqptq � p�iqlmax�1plmax � 1q!

tlmax


N�1̧

j�1

a
plmaxq
j

�
e�itνj � e�itνj�1

�

�
N�1̧

j�1

p�iqlmax�1plmax � 1q!�

�
a
plmaxq
j

�
pe�itνk �°lmax

k�0
p�itνjqk

k! q � pe�itνj�1 �°lmax
k�0

p�itν1qk
k! q

�
tlmax�1

,

(6.80)

where we have rearranged the terms such that all the individual contributions are
now finite for t Ñ 0. Therefore, we have achieved a formula that can be applied
in the numerical implementation to all ranges of t values and that is based on the
efficient evaluation provided by eq. (6.74), which requires only a subset of spline
coefficients. In addition, if one considers a Fourier integral the brackets including
the J plqptq vanish identically, since in the limit ∆ν Ñ 0 only the singular terms
survive. The above equation thus includes the regularized representation for a
continuous transformation, too. Within the computations it is furthermore helpful
to replace both the J plqptq and the exponential functions by their Taylor series of
sufficiently high order, when the arguments become small, to avoid creating errors
by the subtractions.

6.2.3 Comparison cubic vs. quintic interpolation

As a concrete example, let us consider the function

f pk, ωnq � 1

~2ω2
n � ε2

k � µ2
(6.81)

to benchmark the advantages of the quintic spline over the cubic one. Within our
numerics we have to transform functions that have similar properties, however,
in this case we can find the imaginary time representation analytically with the
methods outlined in Appendix B

f pk, τq � 1

2~
b
ε2
k � µ2

�
e�τ

?
ε2k�µ2{~

e�β
?
ε2k�µ2 � 1

� eτ
?
ε2k�µ2{~

eβ
?
ε2k�µ2 � 1

�
(6.82)

139



Chapter 6 Numerical Fourier Transformations
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Figure 6.5: Comparison of the DFT based on cubic (blue) and quintic (red) spline
interpolation with the exact result from eq. (6.82) (black), with βµ � 1.

In particular, in the limit τ Ñ 0�, the result will be dominated by the 1{εk-behavior
of the prefactor, which yields an algebraic tail. In Fig. 6.5 we compare this analytic
result to our DFT, either computed with a cubic and with a quintic interpolation as
a function of10 k̂ � ~k{p2mT q at fixed τ � 10�4β. For k̂ À 3000 the quintic spline
yields smaller errors by a factor of approximately 10�3, while for larger values the
situation is reversed and the cubic spline is better, but only by a factor of at most
10�2. This observation also applies more generically to the functions encountered
in the problem of the imbalanced Fermi gas. In particular, we will always observe
a fast decrease of the functions at a certain momentum scale, since we include only
finite τ ¡ 0 in our grid, such that a Gaussian decay is always present at large
enough k. The onset of the decay, where the function under consideration starts
to vary very quickly, is described much more reliably by the higher order spline.
The errors at k̂ Ñ8 in turn, giving rise to erroneous plateaus, can be more easily
identified and removed if necessary, since we know the exponents of the power law
tails of all numerical functions exactly.

10This normalization, which we use for our internal computations is introduced in more detail in
the next chapter.
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Chapter 7

Numerical implementations of the
self-consistent equations

This chapter deals with the specific form of the Green’s and vertex functions that we
encounter in the imbalanced Fermi gas. We first present a convenient choice for the
units in terms of the temperature in Sec. 7.1, before we detail each of the steps for
the self-consistent loop in Sec. 7.2 and focus in particular on a suitable subtraction
scheme to obtain functions that can be reliably Fourier transformed with numerical
methods. As we have already seen in Sec. 4.7 also the thermodynamic quantities
show algebraic tails such that we are forced to treat them separately. We present
our approach for them in Sec 7.3 and finally we briefly summarize further methods
to obtain an efficient code with stable convergence in Sec. 7.4.

7.1 Notation and units for the numerical implementation

In this paragraph we show how we conveniently represent the Green’s and the vertex
functions in dimensionless form for the self-consistent computations. Since both the
Matsubara frequencies and the imaginary time interval depend on the temperature,
we can reduce the numerical effort by assigning a fixed value of β during the
initialization stage of the code. Then the matrices required for the DFT from
Sec. 6.2 and also the β-dependent, predefined functions of the subtraction schemes
introduced in the next sections have to be generated only once. In practice, we
set β � 1, which is equivalent to expressing the external thermodynamic variables
in units of the temperature, like µ̂ � βµ, ĥ � βh. Imaginary frequency arguments
reduce to either ω̂n � βωn � πp2n � 1q or Ω̂n � 2πn, whereas we measure wave
vectors as k̂ � ~k{?2mT , such that the bare dispersion relation becomes βεk � k̂2.
We abstain from the more standard definition of the unit length in terms of λT to
avoid additional factors of 2

?
π, which would unnecessarily clutter up our notation

below. Moreover, the imaginary time interval is rescaled to τ̂ P r0, 1s and positions
become x̂ � ?

2mTx{~. Within this notation the dimensionless Green’s function
reads Ĝpk̂, ω̂nq � TG pk, ωnq in momentum and frequency space, which yields for
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the bare Green’s function from eq. (4.9)

Ĝσσ
�
k̂, ω̂n

	
� 1

iω̂n � k̂2 � µ̂σ
. (7.1)

The coupling constant g carries units of energy times volume, which are necessary
for the correct dimensionality of the bare interaction potential ḡpΛqδpx � x1q. In

dimensionless form we obtain ĝ � β
?

2mT
3
g{~3 and analogously for the vertex

function

Γ̂
�
Q̂, Ω̂n

	
� β~3

?
2mT

3 Γ pQ,Ωnq , (7.2)

which follows from writing the Bethe-Salpeter equation (4.30) in these units. In
the next paragraphs we will represent all quantities according to these conventions.
Therefore, we leave out the caret accents again, as there is no risk of confusion.

7.2 Subtraction scheme for the self-consistent loop in the
normal phase

In this section we describe in detail the separation of analytical and numerical parts
of the Green’s and vertex functions as well as the self-energies along the set of self-
consistent equations derived in Section 4.6.2. We start out with the single-particle
Green’s function, which is the central object of the Luttinger-Ward formalism. In
fact, it will turn out that we have to implement two different subtraction schemes,
one for the case µ� Á 1, realized in the BCS limit and one for values µ� À 1 on the
BEC side of the crossover.

7.2.1 Green’s function

Given a dressed Green’s function, we can write it in general as

Gσσ pk, ωnq � 1

Gp0qσσ pk, ωnq�1 � Σσσ pk, ωnq
, (7.3)

due to the Dyson equation. For instance, an expression of this kind results from
each of the self-consistent loops. As already discussed in Chap 4 the large-frequency
behavior is given by Gσσ � 1{ωn, which is already fixed by the equations of motion
for the non-interacting Green’s function [67], which is defined in dimensionless
form in eq. (7.1). Starting out from the dressed Green’s function the next step
is to compute the particle-particle bubble χ px, τq, which is the product of the
components of G px, τq (see Fig. 4.5 and eq. (4.37)). Since the algebraic decay of the
Green’s function renders it nonintegrable, we have to find a decomposition of Gσσ
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such that the problematic terms can be treated analytically, while the remainder
can be Fourier transformed by numerical means. We use the following definition

Gσσ pk, ωnq � Gp0qσσ pk, ωnq � δGσσ pk, ωnq
� Gp0qσσ pk, ωnq �

�
Gσσ pk, ωnq � Gp0qσσ pk, ωnq

�
,

(7.4)

with the quickly decaying, auxiliary Green’s function

δGσσ pk, ωnq � Gσσ pk, ωnq � Gp0qσσ pk, ωnq

� � Σσσ pk, ωnq
Gp0qσσ pk, ωnq�1 pGp0qσσ pk, ωnq�1 � Σσσ pk, ωnqq

� pωnq�5{2 ,
(7.5)

where we have inserted the Dyson equation (4.20). The scaling follows from the
leading order behavior of the self-energy Σσσ pk, ωnq � pωnq�1{2 from eq. (7.57)

below, together with the asymptotics of the bare Green’s function Gp0qσσ pk, ωnq �
1{ωn. Consequently we can perform FT ωnÑτ pδGσσq with the DFT from Chapter 6.
In contrast, the slow asymptotic decay for large Matsubara frequencies of the first

term in the decomposition Gp0qσσ pk, ωnq � ω�1
n gives rise to the discontinuity in

imaginary time, which we have already encountered in eq. (4.10)

Gp0qσσ pk, τq � θpτqe�pk2�µσqτ �1� nF pk2 � µσq
�� θp�τqe�pk2�µσqτnF pk2 � µσq .

(7.6)

Altogether we have in pk, τq space

Gσσ pk, τq � Gp0qσσ pk, τq � δGσσ pk, τq , (7.7)

which now has to be transformed to px, τq. Unfortunately, the closed form of the
bare Green’s function in real space is not known and we have to treat it numerically.
However, in the limit τ Ñ 0� the Green’s function converges to

Gp0qσσ

�|k| Ñ 8, τ � 0�
�Ñ 1 , (7.8)

as the Fermi-Dirac distribution vanishes exponentially at finite temperatures and
energies εk " 1. Therefore, the bare Green’s function is also not integrable in
momentum space for τ Ñ 0� and we have to find a suitable decomposition of

Gp0qσσ pk, τq before we can solve the self-consistent equations. This procedure is
depicted in Fig. 7.1 to clarify the different steps. Note that we consider the interval
τ P r0, 1s only and use the antiperiodicity (4.5) of the fermionic Green’s function,
if values of the imaginary time outside of the latter interval are required. We will
partition the interacting Green’s function in the following way

Gσσ pk, τq � Gana
σσ pk, τq � Gnum

σσ pk, τq , (7.9)
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where Gana
σσ refers to the part that will be treated analytically, while Gnum

σσ denotes
its numerical counterpart. In particular, the latter can be written as

Gnum
σσ pk, τq �

�
Gp0qσσ pk, τq � Gana

σσ pk, τq
�
� δGσσ pk, τq , (7.10)

while we choose for the analytical part Gana
σσ pk, τq � � expp�τpk2 � µσqq that

includes the bothersome limit (7.8). Moreover, this function can be transformed in
closed form to real space as well as to Matsubara frequencies, due to its Gaussian
behavior in k or its exponential dependence on τ , respectively. The representations
of Gana

σσ in the different coordinates read

Gana
σσ pk, ωnq � 1� e�pk2�µσq

iωn � k2 � µσ
(7.11a)

Gana
σσ pk, τq � �e�τpk2�µσq (7.11b)

Gana
σσ px, τq � �e

� r2

4τ
�µστ

p4πτq3{2
, (7.11c)

that indeed only depend on r � |x|. Note that a further complication arises from
the τ Ñ 1 limit, where we find Gana

σσ pk Ñ 0, τ � 1�q � exppµσq, which becomes
exponentially large when µσ " 1. In particular, this happens in the BCS regime,
where the chemical potential of at least the majority component is positive and the
calculation of the critical temperatures requires to correctly determine exponen-
tially small terms of order expp�TF {Tcq. Thus any difference between a numerical
function and Gana

σσ pk, τq is prone to severe loss of precision. To circumvent this
problem we utilize the definition of (7.11) only in the BEC regime, that is in prac-
tice for µ�   �2, whereas we retain for µ� ¡ �2 solely the first two orders of the
Taylor-expanded product1

e�τpk
2�µσq~ � e�τk

2
�
1� µστ �O

�
pµστq2

	�
, (7.12)

such that the growth with µσ is reduced from an exponential to a linear behavior.
We point out that we cannot truncate the Taylor series already after the lowest
order Opµ0

σq, as the Opτq term will turn out to be connected to a 1{?τ singularity
in Γ px, τq, which should better not be included in the numerical part. Taking the

1As long as |µ�| � 1, the final results do not depend on the exact criterion that distinguishes
between the two regimes and we find a broad interval, where both variants yield identical
results within the Tan errors.

144



7.2 Subtraction scheme for the self-consistent loop in the normal phase

Figure 7.1: Subtraction scheme for the Green’s function that is applied both in the
BCS and the BEC cases.

form of eq. (7.12), we find the following Fourier transforms

Gana
σσ pk, ωnq � 1� e�k2

iωn � k2
� µσ

1� e�k2 �
1� k2 � iωn

�
piωn � k2q2 (7.13a)

Gana
σσ pk, τq � �e�τk2 p1� µστq (7.13b)

Gana
σσ px, τq � � e�

r2

4τ

p4πτq3{2
p1� µστq . (7.13c)

We refer to the subtraction scheme based on this modified form for Gana
σσ pk, τq as

the BCS code, despite the fact that it is in practice also applied at unitarity. The
first definition (7.11) in contrast is called the BEC code. Obviously, the explicit

form of Gp0qσσ pk, τq � Gana
σσ pk, τq, which contributes to Gnum

σσ pk, τq in equation (7.9)
depends on whether the BEC or the BCS version is used. Also the particle-bubble,
the vertex and the self-energy acquire different decompositions in the two scenarios.

7.2.2 Particle-particle bubble

BCS case

To present the computations we begin with the BCS case, based on the partition of
the Green’s function given in eq. (7.13). The first step in the self-consistent loop is
to compute the particle-particle bubble diagram, which becomes a product in real
space, according to (4.37). After splitting the Green’s function in analytical and
numerical terms, χ px, τq reads

χ px, τq � Gana
�� px, τqGana

�� px, τq �
¸
σ

Gana
σσ px, τqGnum

σ̄σ̄ px, τq

� Gnum
�� px, τqGnum

�� px, τq .
(7.14)
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The computation of the vertex function via the Bethe-Salpeter equation (4.30)
requires χ pQ,Ωnq and thus the back transformation first to momentum space and
subsequently to Matsubara frequencies. Regarding the x Ñ Q transformation
the task is to find a numerically stable partition of the particle-particle bubble, in
analogy to the approach for the Green’s function from the previous paragraph. The
purely analytical term obtained from Gana

σσ px, τqGana
σ̄σ̄ px, τq is a Gaussian, whose

Fourier transform to momentum space defines

χana pQ, τq � �
1� 2µτ � �

µ2 � h2
�
τ2
� e�

Q2τ
2

16
?

2π3{2τ3{2 . (7.15)

The chemical potential prefactors arise from the spin-symmetric combinations of
µ� and µ� in the product of Gana

σσ px, τq with Gana
σ̄σ̄ px, τq according to eqs. (7.13)

and (7.14). In the τ Ñ 0� limit the analytical part scales like τ�3{2 due to the
� τ�3 singularity of the configuration space function. This divergence is the worst
that we will encounter in the following and requires further work, when we compute
the transformation to imaginary frequencies.

To improve the numerical transforms of the mixed term of equation (7.14), which
also involves Gana

σσ px, τq � τ�3{2 for τ Ñ 0�, we use the identity

¸
σ

Gana
σσ px, τqGnum

σ̄σ̄ px, τq �
¸
σ

�
Gana
σσ px, τq pGnum

σ̄σ̄ px, τq � Gnum
σ̄σ̄ px � 0, τqq

� Gana
σσ px, τqGnum

σ̄σ̄ p0, τq
�
.

(7.16)

The last term can be transformed to momentum space analytically and acquires
only a constant numerical prefactor, which is why we call expressions of that kind
semi-analytic terms, indicated by the index s-a. The usefulness of this rewriting
can be motivated by the behavior in the limit of small imaginary times of the first
contribution. As already mentioned Gana

σσ px, τq increases like τ�3{2 for position ar-
guments around x � 0 up to a scale x2{p4τq À 1. On the other hand for position
arguments |x| Á 4

?
τ the function Gana

σσ px, τq vanishes quickly due to the Gaussian
factor. Gnum

σσ px, τq, in turn, can be considered constant for small r À ?
τ , as it

varies on a much larger scale and in particular it is well-defined for τ Ñ 0� for
all x. Therefore, the combination Gana

σσ px, τq pGnum
σ̄σ̄ px, τq � Gnum

σ̄σ̄ px � 0, τqq regu-
larizes the τ�3{2 divergence to a τ�1{2 dependence. This is very convenient for the
numerical x Ñ Q transformation, because the contribution from the minimal τ
value in the grid becomes much smaller. Furthermore, the position argument ap-
pears only in the combination r2{τ , which gives rise to an additional factor τ3{2 and
thus cures the 1{?τ behavior before the transformation to Matsubara frequencies.
Moreover, we do not introduce problems in the limit of |x| Ñ 8 by this subtrac-
tion, since Gana

σσ px, τqGnum
σ̄σ̄ px � 0, τq is suppressed by the Gaussian form of the first

term. Consequently, we can simply add the first term of eq. (7.16) to χnum pk, τq.
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We dub this method ”δ-trick”, as it amounts to substituting Gnum
σ̄σ̄ pQ� k, τq by

Gnum
σ̄σ̄ px � 0, τq p2πq3δpQ� kq in the convolution

Gana
σσ px, τqGnum

σ̄σ̄ px, τq � FT QÑx

�»
d3k

p2πq3G
ana
σσ pk, τqGnum

σ̄σ̄ pQ� k, τq


,

in order to obtain the semi-analytic part above and reflects the slow variations of
Gnum
σσ px, τq in real space. In total, we find for the function χ pQ, τq
χ pQ, τq � χana pQ, τq � χs-a pQ, τq � χnum pQ, τq

� χana pQ, τq �
¸
σ

Gana
σσ pQ, τqGnum

σ̄σ̄ px � 0, τq � χnum pQ, τq , (7.17)

with χana pQ, τq defined in (7.15), while the total numerical part becomes

χnum pQ, τq � FT xÑQ

�¸
σ

Gana
σσ px, τq  Gnum

σ̄σ̄ px, τq � Gnum
σ̄σ̄ px � 0, τq (

� Gnum
�� px, τqGnum

�� px, τq
�
.

(7.18)

Now we have to perform the remaining transformation χ pQ, τq Ñ χ pQ,Ωnq, where
we consider each of the contributions in eq. (7.17) individually. First of all, the
transformation of χana pQ, τq, given in eq. (7.15), can be obtained in closed form,
however, a representation in terms of an ordinary Fourier integral fails due to the
non-integrable τ�3{2 contribution encountered in the τ Ñ 0� limit. Instead one
has to apply the theory of Fourier transformations of generalized functions, which
is explained e.g. in the book by Gel’fand and Shilov [155]. Within this extended
notion of Fourier transforms the authors obtain

FT τÑω

�
θpτq
τ3{2



�
?

2π
a
|ω| r�1� i signpωqs (7.19)

for a time argument τ , which covers the complete positive real axis. This result
forms the basis for the transformation of χana pQ, τq Ñ χana pQ,Ωnq. Here we only
state the final form

χana pQ,Ωnq � E0 pQ,Ωnq � µE1 pQ,Ωnq � pµ2 � h2qE2 pQ,Ωnq

� �1

16
?

2π3{2

�
2e�Q

2{2 �
?

2π
a
Q2 � 2iΩn erf

�c
Q2 � 2iΩn

2

��

� µ

8π
a
Q2 � 2iΩn

erf

�c
Q2 � 2iΩn

2

�

� pµ2 � h2q

�
��� �e�Q2{2

8
?

2π3{2 pQ2 � 2iΩnq
�

erf

�b
Q2�2iΩn

2



16π pQ2 � 2iΩnq3{2

�
��� ,

(7.20)
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where the abbreviation erf denotes the error function and refer the reader to Ap-
pendix C for further details on the underlying calculations. The most slowly decay-
ing function E0 reflects the singular τ�3{2 behavior of the leading order χana pQ, τq
by the increase E0 �

a
Q2 � 2iΩn for large frequencies or momenta, which math-

ematically originates from (7.19). In fact, this is intimately connected to the large
Ωn and Q asymptotics of the renormalized pair propagator M pQ,Ωnq in the zero
range-limit, see Sec. 4.4.2. Taking the T Ñ 0 limit of the finite temperature results
discussed here, M pQ,Ωnq is exactly recovered as the error functions exponentially
converge to one for large absolute values of their arguments. However, it is to be
noted, that we have not made use of the renormalization scheme (2.29) here, whose
purpose is to render all correlation functions physical and in particular establishes
the link 1{g �M pQ,Ωnq � 1{ḡ � χ pQ,Ωnq between the renormalized and bare
particle-particle bubble from eq. (4.23). In three dimensions, the bare and the
physical coupling constants are related via

1

g
� 1

ḡ
� mΛ

2π2~2
,

where the constant second term is assigned to the pair propagator. Transforming
it to imaginary times yields a contribution � Λδpτq. Since χ can be depicted as a
Feynman diagram, it includes all possible imaginary time orderings [67]. However,
from the definition of the time ordering operator, which is based on step functions
θpτq, we conclude that we always approach τ Ñ 0� in the sense of a limit. There-
fore, the contribution � Λδpτq can never be seen in the formalism based on Fourier
transforms, irrespective of the value of Λ, even in the limit Λ Ñ8. Effectively, this
is equivalent to dimensional regularization, where the scaleless integral

³
ddq1{p2εqq

vanishes. As we will only work with Fourier transforms in the following, we simply
set ḡ Ñ g and do not distinguish any more between χ and M , but only use the
first notation for the remainder of the thesis.

Another conclusion that is drawn in App. C in relation to the form of these new
analytical terms in eq. (7.20), is that including higher orders of µτ in the analytic
Green’s function Gana

σσ pk, τq of equation (7.13) does not improve the asymptotics
of χana pQ,Ωnq in eq (7.20) any further, since all of them include the same pQ2 �
2iΩnq�1 terms in Matsubara frequency space as E2 pQ,Ωnq.

From a computational point of view the error functions cannot be evaluated
very efficiently due to the complex arguments. Therefore, we have constructed
the terms such that the chemical potentials only appear as prefactors, while the
nontrivial error functions are computed once during the initialization and tabulated
for the self-consistent loop. After a change of the parameters µ, h or g it suffices
to load the corresponding data arrays and piece together χana pQ,Ωnq according to
equation (7.20). We will return to this point when we repeat the procedure for the
BEC version.

In the semi-analytic term of eq. (7.17) we can repeat the δ-trick by invoking the
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identity¸
σ

Gana
σσ pQ, τqGnum

σ̄σ̄ px � 0, τq �

�
¸
σ

�
Gana
σσ pQ, τq �Gnum

σ̄σ̄ px � 0, τq � Gnum
σ̄σ̄ px � 0, τ � 0�q�

� Gana
σσ pQ, τqGnum

σ̄σ̄ px � 0, τ � 0�q
�
,

(7.21)

where the last term again can be transformed in closed form to Ωn. The remainder
of eq. (7.17) together with the first line must be transformed by numerical methods.
All in all, we obtain

χ pQ,Ωnq � χana
fin pQ,Ωnq � χs-a

fin pQ,Ωnq � χnum
fin pQ,Ωnq

� χana pQ,Ωnq �
¸
σ

Gana
σσ pQ,ΩnqGnum

σ̄σ̄

�
x � 0, τ � 0�

�� χnum
fin pQ,Ωnq ,

(7.22)

where χana
fin pQ,Ωnq � χana pQ,Ωnq is given in eq. (7.20). Note that the fermionic

Green’s function in the semi-analytic χs-a
fin pQ,Ωnq is transformed to bosonic Mat-

subara frequencies, which yields

Gana
σσ pQ,Ωnq � e�Q2 � 1

Q2 � iΩn
� µσ

e�Q2 ��
Q2 � iΩn

�� 1
�� 1

pQ2 � iΩnq2
, (7.23)

in the BCS scheme. Consequently, this term gives rise to a 1{Ωn asymptotics.
The same decay is obtained from the purely numerical term χnum

fin pQ,Ωnq from the
higher orders of the product µστ in the single-particle Green’s function, as argued
above. The final form of the numerical function reads

χnum
fin pQ,Ωnq �

FT τÑΩn

�¸
σ

Gana
σσ pQ, τq �Gnum

σ̄σ̄ px � 0, τq � Gnum
σ̄σ̄ px � 0, τ � 0�q�� χnum pQ, τq

�
,

(7.24)

with χnum pQ, τq from equation (7.18). The decay for large frequencies can be ex-
plained from the finite value that all of these semi-analytic and numerical functions
attain at τ � 1�, which yields a discontinuity upon performing the bosonic periodic
continuation beyond the imaginary time interval τ P r0, 1s.

BEC code

We repeat the computation of the particle-particle bubble for the case where Gana
σσ

is given by the BEC definition (7.11). The decomposition of χ px, τq in analytical
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and numerical terms (7.14) remains formally unchanged

χ px, τq � Gana
�� px, τqGana

�� px, τq �
¸
σ

Gana
σσ px, τqGnum

σ̄σ̄ px, τq

� Gnum
�� px, τqGnum

�� px, τq .
(7.25)

Like in the BCS regime, we first transform to momentum space. The exclusively
analytical term yields

χana pQ, τq � e�
Q2τ

2

16
?

2π3{2τ3{2 e
2µτ , (7.26)

due to the Gaussian form. In fact, we can move on and transform the function
χana pQ, τq to pQ,Ωnq again with the methods explained in App. C. However, the
result involves erfp

a
pQ2 � 2µ� 2iΩnq{2q, which has to be reevaluated whenever

the chemical potential is changed. This consumes too much computation time as
discussed above in the BCS case and we are forced to resort to a Taylor expansion
of the τ dependence. To this end, we write equation (7.26) as

χana pQ, τq � χana
fin pQ, τq � χnum

p1q pQ, τq �

e�
Q2τ

2

16
?

2π3{2τ3{2
�
1� 2µτ � 2µ2τ2

�� e�
Q2τ

2

16
?

2π3{2τ3{2
�
e2µτ � 1� 2µτ � 2µ2τ2

�
,

(7.27)

where the first term represents the final form of the function that is treated an-
alytically in the τ Ñ Ωn transformation, while χnum

p1q is added to the numerical

contribution. Comparing χana
fin pQ, τq to the expression for χana pQ, τq in the BCS

case, given in equation (7.15), we can immediately write down the result in Mat-
subara frequencies

χana
fin pQ,Ωnq � E0 pQ,Ωnq � µE1 pQ,Ωnq � 2µ2E2 pQ,Ωnq (7.28)

in analogy to equation (7.20).
Returning to the remaining terms of the decomposition for χ px, τq we apply the

δ-tricks in an identical manner to the mixed products Gana
σσ px, τqGnum

σ̄σ̄ px, τq as in
eqs. (7.16) and (7.21). The function χ pQ, τq in the BEC code thus acquires the
form

χ pQ, τq � χana
fin pQ, τq � χs-a pQ, τq � χnum

fin pQ, τq
� χana

fin pQ, τq � χs-a pQ, τq � χnum pQ, τq � χnum
p1q pQ, τq , (7.29)

which is the counterpart to equation (7.17) from the BCS code. Finally, the re-
maining Fourier transform τ Ñ Ωn can be executed, which gives rise to

χ pQ,Ωnq � χana
fin pQ,Ωnq � χs-a

fin pQ,Ωnq � χnum
fin pQ,Ωnq

� χana
fin pQ,Ωnq �

¸
σ

Gana
σσ pQ,ΩnqGnum

σ̄σ̄

�
x � 0, τ � 0�

�� χnum
fin pQ,Ωnq .

(7.30)
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Note that the semi-analytic terms in the BCS and BEC scheme are formally equiv-
alent but differ by the functional form of Gana

σσ . In particular, the Green’s function
evaluated at bosonic arguments reads in the BEC scheme

Gana
σσ pQ,Ωnq � 1� e�pk2�µσq

iΩn �Q2 � µσ
, (7.31)

whereas the numerical function χnum
fin pQ,Ωnq is obtained via

χnum
fin pQ,Ωnq �

FT τÑΩn

�¸
σ

Gana
σσ pQ, τq �Gnum

σ̄σ̄ px � 0, τq � Gnum
σ̄σ̄ px � 0, τ � 0�q�

� χnum pQ, τq � χnum
p1q pQ, τq

� (7.32)

and contains the additional function χnum
p1q introduced above.

Within both schemes we have been able to separate the troublesome leading
asymptotics of the particle-particle bubble χ pQ,Ωnq �

a
Q2 � 2iΩn in the limit

of large Matsubara frequencies or momenta from the numerical parts. Note that
this is possible, because the latter power law arises from the diagram with bare
Green’s functions, as discussed in Sec. 4.5.2. Here we even have subtracted the
next-to-leading order � 1{

a
Q2 � 2iΩn, such that the numerical terms merely give

rise to 1{Ωn tails, which will be quite convenient for the construction of the vertex.

7.2.3 Subtractions for the vertex function

BCS code

The vertex function is given by the solution (4.31) to the Bethe-Salpeter equa-
tion (4.30) that is a scalar in the normal phase. Using the results for the particle-
bubble diagram we can write

Γ pQ,Ωnq � 1
1
g � χana

fin pQ,Ωnq � χs-a
fin pQ,Ωnq � χnum

fin pQ,Ωnq
. (7.33)

From the vertex we have to compute the self-energy, which is accomplished in real
space, cf. equation (4.38). We start with the Matsubara-Fourier series to obtain

Γ pQ, τq. Since the vertex scales asymptotically like Γ � ?
iΩn

�1
, according to

equation (7.20), we are forced to also develop a decomposition for Γ pQ,Ωnq that
allows to deal with the numerically troublesome terms in an analytical manner.
We separate the construction into two steps, where in the first one only terms that
scale like � Ω�2

n are transformed numerically. Afterwards, we will see how to extend
the approach to compute even terms of order OpΩ�2

n q exactly, which considerably
improves the quality of our results.
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Due to the behavior χnum pQ,Ωnq � Ω�2
n for large Matsubara frequencies Ωn,

only the analytical part is responsible for the non-integrable asymptotics. There-
fore, we consider the following expansion for large Matsubara frequencies based on
eq. (7.20)

1
1
g � χana

fin pQ,Ωnq
� 1

E0
� 1

gE2
0

� µE1

E2
0

� 1

g2E3
0

�OpΩ�2
n q , (7.34)

where care has to be taken to include all relevant orders. Unfortunately, directly
subtracting the terms on the right hand side from Γ is impossible, since the Fourier
transforms of negative powers of the error functions are not known. Nevertheless,
we can separate the dominant asymptotics from these contributions by the help of
the definitions

Esub
0 pQ,Ωnq �

16π erf
�b

1
2 pQ2 � d� 2iΩnq

�
a
Q2 � d� 2iΩn

(7.35a)

Esub
1 pQ,Ωnq �

p16πq2 erf
�b

1
2 pQ2 � d� 2iΩnq

�
Q2 � d� 2iΩn

(7.35b)

Esub
2 pQ,Ωnq � �8

?
2π

Q2 � d� 2iΩn
e�

1
2pQ2�dq �

8π erf
�b

1
2 pQ2 � d� 2iΩnq

�
pQ2 � d� 2iΩnq3{2

,

(7.35c)

whose transformations to pQ, τq can be obtained by considering the results of Ap-
pendix C. Here, we have again made use of the freedom to introduce an auxiliary
negative chemical potential d, like in Sec. 4.7, whose only effect is to shift the ar-
guments without changing the asymptotics. Choosing d sufficiently large renders
many exponential terms effectively irrelevant, like the first one in Esub

2 above, while
the error functions simultaneously can be replaced by one. In practice, d � 150
provides good results. As before, these additional error functions do not depend on
any physical parameter that will change when we scan the whole phase diagram,
which is crucial to run the code efficiently, as discussed in the previous section.
Combining these functions with the expansion (7.34), yields the asymptotic prop-
erties

1

E0
� Esub

0 � d

pQ2 � 2iΩnq3{2
�OpΩ�2

n q , (7.36)

which actually does not yet fulfill the desired OpΩ�2
n q behavior. This problem will

be solved in combination with Esub
2 in a moment. Furthermore, we have

1

gE2
0

� 1

g
Esub

1 � OpΩ�2
n q , (7.37)
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as well as

µE1

E2
0

� 1

g2E3
0

� d

pQ2 � 2iΩnq3{2
�
�

4µ� 512π2

g2
� d



Esub

2 pQ,Ωnq � OpΩ�2
n q ,
(7.38)

where the slowly decaying d{ �Q2 � 2iΩn

�3{2
term is the remainder of (7.36), which

has been canceled now. Therefore, we can finally complete the first stage of the
vertex decomposition indicated by the index p1q and bring together the intermediate
steps from above. To this end, we partition the vertex in the form

Γ pQ,Ωnq � Γana
p1q pQ,Ωnq � Γnum

p1q pQ,Ωnq , (7.39)

where the analytical part becomes

Γana
p1q pQ,Ωnq � Esub

0 pQ,Ωnq � 1

g
Esub

1 pQ,Ωnq �
�

4µ� 512π2

g2
� d



Esub

2 pQ,Ωnq ,
(7.40)

while the numerical function reads

Γnum
p1q pQ,Ωnq � Γ pQ,Ωnq � Γana

p1q pQ,Ωnq �

�
�

1
1
g � χ pQ,Ωnq

� 1
1
g � χana

fin pQ,Ωnq

�
� 1

1
g � χana

fin pQ,Ωnq
� Γana

p1q pQ,Ωnq

�
�
µE1 �

�
µ2 � h2

�
E2

� �
1
g � E0

	
� 1

g2

E2
0

�
1
g � χana

fin pQ,Ωnq
	 � χs-a

fin pQ,Ωnq � χnum
fin pQ,Ωnq

1
g � χ pQ,Ωnq

�
�

1

E0 pQ,Ωnq �
1

gE2
0 pQ,Ωnq



� Γana

p1q pQ,Ωnq .
(7.41)

This cumbersome sorting of the terms is necessary because it groups them in a
way that avoids large differences in the asymptotics, since the subtractions in the
definition of Γnum

p1q have to cancel over several orders of magnitude. An additional

complication arises from the fact that 1{g�χana pQ,Ωnq has a zero at Ωn � 0 around
Q � Op1q. The corresponding divergence is not physical and does not appear in
the full expression 1{g � χ pQ,Ωnq. It originates from the used analytic form,
which is an expansion for asymptotically large arguments, in the opposite limit.
To cure this problem one adds and subtracts an auxiliary functions δχ pQ,Ωnq via
χana

fin pQ,Ωnq Ñ χana
fin � δχ pQ,Ωnq and χnum

fin pQ,Ωnq Ñ χnum
fin pQ,Ωnq � δχ pQ,Ωnq,

which leaves the physical vertex invariant but removes the zero. In practice on uses
a Gaussian δχ � exp p�bQ2q with a suitable prefactor b of order one that adjusts
the width such that the zero is lifted, while the asymptotics remain unchanged.
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To keep the notation simple, we will not include δχ explicitly in the following
discussion and only emphasize its role when it is necessary.

To achieve the same level of accuracy for the transformation Γ pQ,Ωnq Ñ Γ pQ, τq
as in the Fourier transform of Gσσ pk, ωnq Ñ Gσσ pk, τq, where only terms of ω

�5{2
n

have been treated numerically, we will now also determine the terms of order pΩnq�2

exactly (up to one irrelevant exception). This gives rise to two further subtractions,
which can be assigned to the analytic and semi-analytic part of the vertex. The
first one

Γsub
a pQ,Ωnq � � p16πq4

�
1

g3
� d

256π2g
� µ

64π2g



1

pQ2 � d� 2iΩnq2
, (7.42)

is obtained by extending the expansion (7.34) to the next order2

1
1
g � χana

�

� 1

E0
� 1

gE2
0

� µE1

E2
0

�
�
µ2 � h2

�
E2

E2
0

� 1

g2E3
0

� 2µE1

gE3
0

� 1

g3E4
0

�OpΩ�5{2
n q .

(7.43)

The first three and the fifth terms already have been captured by the subtrac-
tions (7.35). The leading behavior of the last two contributions give rise to the
1{g3 and the µ{g terms of Γsub

a , whereas the d dependent term in (7.42) arises from
the 1{Ω2

n correction of 1{pgE2
0q, due to the introduction of the auxiliary chemical

potential d. In this analysis, we have completely neglected the correction from
E2{E2

0 , which actually also shows an Ω�2
n behavior. However, a careful inspection

of the definition (7.35c) reveals that the prefactor of this contribution carries a
Gaussian weight in the momentum Q. Since the numerical noise arising from this
term in the Ωn Ñ τ transformation solely emerges at Q " 1, the uncertainties
are strongly suppressed and it suffices to compute the Fourier transform merely
numerically.

Besides these exclusively analytical terms we find at this order a contribution
originating from the semi-analytical parts of χ pQ,Ωnq in equation (7.22). Including
them in the asymptotic expansion of the vertex function (7.43) gives rise to the
leading order combination �χs-a pQ,Ωnq {E2

0 pQ,Ωnq � 1{Ω2
n. Therefore, we treat

this dominant term in closed form, which yields the second subtraction

Γsub
b pQ,Ωnq � 256π2

¸
σ

Gσσ
�
x � 0, τ � 0�

� 1

pQ2 � d� 2iΩnq pQ2 � d� iΩnq .

(7.44)

2Here the error functions in the highest order terms are expanded themselves, as we only aim for
subtracting the dominant asymptotics.
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As χnum pQ,Ωnq � Ω
�5{2
n the purely numerical part need not be taken into account

at all for the construction of the subtraction scheme, which exemplifies the utility of
treating sufficiently many terms analytically. Indeed, the ability to leave only terms

of order Ω
�5{2
n to the numerical transformations relies on the precise knowledge of

the asymptotic behavior of the semi-analytical and numerical terms.

To begin with actually Fourier transforming the vertex, we summarize its final
form

Γ pQ,Ωnq � Γana pQ,Ωnq � Γnum pQ,Ωnq (7.45a)

Γana pQ,Ωnq � Γana
p1q pQ,Ωnq � Γsub

a pQ,Ωnq � Γsub
b (7.45b)

Γnum pQ,Ωnq � Γnum
p1q pQ,Ωnq � Γsub

a pQ,Ωnq � Γsub
b pQ,Ωnq . (7.45c)

Being equipped with these definitions we can now proceed with the transformation
to imaginary time. The pQ, τq-forms of the various contributions to Γana read

Γana
p1q pQ, τq � � p2πq3{2e�τ

Q2

2
� τd

2

�
4

π
?
τ
� 32

?
2π

g
� 2

?
τ

π

�
4µ� 512π2

g2
� d


�

(7.46a)

Γsub
a pQ, τq � p16πq4

�
1

g3
� d

256π2g
� µ

64π2g




�

�
��τ �1� nB

�
Q2 � d

2




e�τ

Q2�d
2 � β

e�pτ�βq
Q2�d

2�
1� e�τ

Q2�d
2

	2

�
�� (7.46b)

Γsub
b pQ, τq � 64π2

¸
σ

Gnum
σσ

�
x � 0, τ � 0�

�

�

�
��e

�Q2�d
2

τ
�

1� nB

�
Q2�d

2

		
Q2 � d

� e�pQ2�dqτ �1� nB
�
Q2 � d

��
Q2 � d

�
�� .

(7.46c)

The first equation can be verified by equation (C.16) from Appendix C. The latter
two are simple bosonic Matsubara frequency sums, that can be evaluated by the
methods outlined in Appendix B. Note that all Bose functions nB and the second
term of (7.46b) are suppressed by at least expp�d{2q � 10�33 and can be neglected
in the rest of the computations. Therefore, it also suffices to derive an analyti-
cal expression for the simplified functions in configurations space. In turn, since
Γnum pQ,Ωnq does not exhibit a product structure like the particle-particle bubble,
we cannot further improve the properties of its Fourier transform by δ-tricks and di-
rectly compute Γnum px, τq, instead. To obtain the complete expression for Γ px, τq,
we focus now on the Q Ñ x transformation of the analytical and semi-analytical
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contributions summarized in (7.46). We notice that Γana
p1q pQ, τq and Γsub

a pQ, τq re-
duce to simple Gaussians, which are easily transformed to x, after discarding the
negligible terms. Furthermore, the more involved transformation of Γsub

b pQ, τq is
detailed in Appendix D.1. As a result, we find

Γana
p1q px, τq � � e

�r2
2τ

� dτ
2

�
4

πτ2
� 1

g

32
?

2π

τ3{2 � 2

πτ

�
4µ� 512π2

g2
� d


�
(7.47a)

Γsub
a px, τq � � 65536π4

�
1

g3
� d

256π2g
� µ

64π2g



�
�
e�

r2

2τ
e
�dτ

2

8
?

2π3{2?τ

�
(7.47b)

Γsub
b px, τq �p256π2q

¸
σ

Gnum
σσ

�
x � 0, τ � 0�

� �e�?dr
8πr"

� 1� erf

�
r � 2

?
dτ

2τ

�

� e2
?
dr

�
��?π

�
��Γ

�
��1

2
,

�
r �?dτ

	2

2τ

�
��� Γ

�
��1

2
,

�
r � 2

?
dτ

	2

4τ

�
��
�
�

�
�


p1� erf

�
r �?dτ?

2τ

�
q
*
. (7.47c)

Quite importantly, both Γsub
a px, τq and Γsub

b px, τq show a Gaussian decay for
r � |x| " ?

τ . On the other hand, in the short distance regime both functions
approach a constant value. In particular, at x � 0 the curly bracket in equation
(7.47c) vanishes identically and cancels the prefactor which is proportional to 1{r.
Furthermore, the 1{?τ behavior of equation (7.47b) for τ Ñ 0� is integrable and
will be promoted to a function that is linear in τ by Fourier transformation to mo-
mentum space. Hence, both the new subtractions can be transformed to momenta
without problems even when they are multiplied by Gσσ px, β � τq, which happens
in the computation of the self-energy (cf. equation (4.38)). Therefore, we will
assign them to the numerical part of the vertex in real space and imaginary time,
despite having the analytical expressions available. They have only been introduced
to lower the exponent of the leading frequency asymptotics in Γnum pQ,Ωnq. Before
we finally move on to Σσσ, we terminate this section on the subtraction scheme for
the vertex function with the complete expression for Γ px, τq

Γ px, τq � Γana
fin px, τq � Γnum

fin px, τq
� Γana

p1q px, τq �
�
Γsub
a px, τq � Γsub

b px, τq � Γnum px, τq
�
,

(7.48)

where Γnum px, τq is defined as the Fourier transformation of Γnum pQ,Ωnq in equa-
tion (7.45) above.
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BEC code

If µ�   �2, we evaluate the BEC code, which means that the form of the an-
alytical Green’s function is given by eq. (7.11). However, the computation of
Γ px, τq does not involve important changes regarding the subtraction scheme.
First of all, the form of Γ pQ,Ωnq in equation (7.33) resulting from the inver-
sion of the Bethe-Salpeter equation remains valid. Of course, when one inserts the
particle-particle bubble χ pQ,Ωnq according to equation (7.22), its building blocks
follow from eqs. (7.28), (7.31) and (7.32). The distinction between the analyti-
cal parts of the particle-particle bubble in the BCS and BEC approaches reduces
to merely exchanging the prefactor of the function E2 pQ,Ωnq from µ2 � h2 in
eq. (7.20), valid in the BCS case, to its bosonic counterpart 2µ2, as follows from
eq. (7.28). As argued below the extended expansion of Γ pQ,Ωnq in (7.43), how-
ever, the function E2 pQ,Ωnq plays no role in the analytic subtractions constructed
for the Fourier transformation of the vertex function. Therefore, the BEC versions
of Γana

p1q px, τq ,Γsub
a px, τq and Γsub

b px, τq are identical to the definitions (7.47) for

the BCS scheme. Also the complete function Γ px, τq is formally given by equa-
tion (7.48) like in the BCS case and one merely has to keep in mind the differ-
ent form of χ, when one creates the numerical contribution Γnum

p1q px, τq, given in

eq. (7.41).

7.2.4 Self-energy

BCS code

The self-energy in real space reads in temperature units

Σσσ px, τq � �Γ px, τqGσ̄σ̄ px, 1� τq , (7.49)

according to equation (4.38), where we have also made use of the antiperiodicity
of the Green’s function. In order to close the self-consistent loop we have to know
Σσσ pk, ωnq, which eventually updates the Green’s function and we can restart
by computing the next particle-particle bubble from the new Gσσ pk, ωnq. The
Fourier transformation of the self-energy turns out to be numerically more involved
than the functions we have encountered thus far. This is because the vertex has
its main contribution coming from the τ Ñ 0� boundary of the imaginary time
interval, while the counter-propagating Green’s function is peaked at the τ Ñ
1� side. In the previous cases only one of these endpoints played a role in the
Fourier transformations, whereas the other one only added negligible contributions.
Inserting the decompositions both for Γ and Gσ̄σ̄, we obtain

�Σσσ px, τq � Γana
fin px, τqGana

σ̄σ̄ px, 1� τq � Γnum
fin px, τqGana

σ̄σ̄ px, 1� τq
� Γana

fin px, τqGnum
σ̄σ̄ px, 1� τq � Γnum

fin px, τqGnum
σ̄σ̄ px, 1� τq . (7.50)

As usual, we first transform back to momenta. The product Γana
fin px, τqGana

σ̄σ̄ px, τq
contains six terms, as can be seen from equations (7.11) and (7.47a), together with
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the identification Γana
fin px, τq � Γana

p1q px, τq defined in eq. (7.48). However, all of

them depend on position only via a common Gaussian prefactor expr�r2{p2τq �
r2{p4� 4τqs and their Fourier transformation yields

�Σana
σσ pk, τq �

�
4

πτ2
� 32

?
2π

τ3{2g
� 2

πτ

�
4µ� 512π2

g2
� d


�
r1� µσ̄ p1� τqs

� ek2 τpτ�1q
2�τ �d τ

2

�
τ

2� τ


3{2
.

(7.51)

We observe that the worst τ divergence of Σana
σσ pk, τq, which we encounter in the

limit τ Ñ 0�, is a τ�1{2 singularity in the very first term. In contrast, the limit τ
to 1� does not cause any problems.

To transform the semi-analytic terms of the self-energy decomposition (7.50) we
again apply the δ-trick introduced in equation (7.16), which relies on the product
structure in real space, and write

Γana
fin px, τqGnum

σ̄σ̄ px, 1� τq � Γnum
fin px, τqGana

σ̄σ̄ px, 1� τq �
� Γana

fin px, τq rGnum
σ̄σ̄ px, 1� τq � Gnum

σ̄σ̄ px � 0, 1� τqs
� rΓnum

fin px, τq � Γnum
fin px � 0, τqsGana

σ̄σ̄ px, 1� τq
� Γana

fin px, τqGnum
σ̄σ̄ px � 0, 1� τq

� Γnum px � 0, τqGana
σ̄σ̄ px, 1� τq .

(7.52)

The Fourier transforms of the last two lines can be obtained exactly and the only
restriction on their precision arise from the accuracy of the numerical prefactors.
In total, we obtain for the self-energy as function of pk, τq

Σσσ pk, τq � Σana
σσ pk, τq � Γana

fin pk, τqGnum
σ̄σ̄ px � 0, 1� τq

� Γnum px � 0, τqGana
σ̄σ̄ pk, 1� τq � Σnum

σσ pk, τq , (7.53)

with the numerical contribution

�Σnum
σσ pk, τq � FT rÑk

�
Γana

fin px, τq rGnum
σ̄σ̄ px, 1� τq � Gnum

σ̄σ̄ px � 0, 1� τqs
�

� FT rÑk

�
rΓnum

fin px, τq � Γnum
fin px � 0, τqsGana

σ̄σ̄ px, 1� τq
�

� FT rÑk

�
Γnum

fin px, τqGnum
σ̄σ̄ px, 1� τq

�
.

(7.54)

Now it remains to transform from imaginary time to Matsubara frequencies, where
we first concentrate on the analytic part. Unfortunately, the transformation of
the term as a whole in closed form is ruled out due to the complicated form of
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the exponential function in Σana
σσ pk, τq, given in eq. (7.51), which depends in a

convoluted manner on the combinations τ , 1�τ and 2�τ . Thus, we separate from
the entire analytic expression only the leading 1{?τ asymptotics, which would give
rise to poor numerical results, despite being integrable from the point of view of
standard calculus. More precisely, we write

Σana
σσ pk, τq � Σana

fin, σσ pk, τq � Σnum
p1q, σσ pk, τq

� Σana
fin, σσ pk, τq �

�
Σana
σσ pk, τq � Σana

fin, σσ pk, τq
�
,

(7.55)

where the second term approaches a constant value for τ Ñ 0�. Therefore, it is
tractable by the DFT-routine, while the explicit form of the remaining analytical
part reads

Σana
fin, σσ pk, τq � �

?
2

π
?
τ
e�k

2τ{2 . (7.56)

For convenience, we have not used a Taylor expansion but kept the leading expo-
nential form in order to avoid introducing an artificial polynomial dependence on
k, which then would have to cancel perfectly with the numerical parts. The Fourier
transform of this new function follows from eq. (C.16). As a result, we have

Σana
fin, σσ pk, ωnq � �

2 erf

�b
pk2�2iωnq

2



?
π
?
k2 � 2iωn

, (7.57)

which confirms, that the self-energy indeed asymptotically behaves like 1{?2iωn
for |ωn| Ñ 8, as stated previously. Interestingly, the dispersion relation pk2{2 �
iωnq in the self-energy resembles a bosonic pair of twice the Fermion mass, yet
evaluated at a fermionic Matsubara frequency. This behavior originates from the
product (7.49) of the vertex and the Green’s function that determines Σσσ px, τq
and mixes bosonic and fermionic degrees of freedom. In particular, the mixing can
already be observed in the purely analytical term Σana

σσ pk, τq, given in eq. (7.51). It
exhibits a leading exponent �k2τ{2 which carries an additional factor 1{2 compared

to the bare fermionic Green’s function Gp0qσσ pk, τq, see eq. (7.6). Physically, the
branch cut from

?
k2 � 2iωn arises from the scattering continuum at sufficiently

large energies, which is also encountered in the theory of Gaussian fluctuations, as
discussed by Diener et al. [147]. Furthermore, this UV behavior of the self-energy is
consistent with the results from the BDMC approach to the unitary Fermi gas [153],
too. In addition, the absence of a constant that survives the large-frequency limit
reflects the fact that the Hartree diagram vanishes, when the cutoff Λ is sent to
infinity.

Returning to the decomposition in eq. (7.53), the next step is to determine the
dependence of the semi-analytic terms on ωn. Instead of directly transforming them
numerically, we extend the separation between exact and numerical contributions
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by adding and subtracting the dominant numerical function values. These are
attained at that end point of the imaginary time interval, at which the numerical
function is peaked. We find

Γana
fin pk, τqGnum

σ̄σ̄ px � 0, 1� τq � Γnum px � 0, τqGana
σ̄σ̄ pk, 1� τq �

� Γana
fin pk, τq rGnum

σ̄σ̄ px � 0, 1� τq � Gnum
σ̄σ̄ px � 0, 1qs

� rΓnum px � 0, τq � Γnum px � 0, τ � 0qsGana
σ̄σ̄ pk, 1� τq

� Γana
fin pk, τqGnum

σ̄σ̄ px � 0, 1q � Γnum px � 0, τ � 0qGana
σ̄σ̄ pk, 1� τq ,

(7.58)

where the second and the third line now contain functions that approach zero at
both ends of the τ -interval, which results in a more quickly decaying asymptotics
of the numerical functions. Furthermore, the last line is readily Fourier trans-
formed to frequency space by using the analytical expressions (7.42) for Γana

fin pk, ωnq
and (7.13) for Gana

σ̄σ̄ pk, ωnq, respectively. Note however that the vertex is now
evaluated at fermionic Matsubara frequencies3 and that the inverted time argu-
ment in Gσ̄σ̄ pk, 1� τq yields �Gana

σ̄σ̄ pk,�ωnq. The remainder of the self-energy
Σσσ pk, τq (7.53) has to be transformed by the DFT and we finally obtain

Σσσ pk, ωnq � Σana
fin, σσ pk, ωnq � Σs-a

σσ pk, ωnq � Σnum
fin, σσ pk, ωnq �

� Σana
fin, σσ pk, ωnq �

�
Γana

fin pk, ωnqGnum
σ̄σ̄ px � 0, βq

� Γnum
σ̄σ̄

�
x � 0, 0�

�
Gana
σ̄σ̄ pk,�ωnq

�
� Σnum

fin, σσ pk, ωnq .

(7.59)

The analytical part Σana
fin, σσ pk, ωnq is defined in (7.57), whereas the semi-analytic

part is contained in the square brackets and the remaining terms are gathered in
the final numerical contribution

Σnum
σσ pk, ωnq � FT τÑωn

�
Σnum
p1q, σσ pk, τq

�
� FT τÑωn

�
Σnum
σσ pk, τq

�

� FT τÑωn

�
Γana

fin pk, τq �Gnum
σ̄σ̄ px � 0, 1� τq � Gnum

σ̄σ̄

�
x � 0, 1�

�� �

� FT τÑωn

� �
Γnum px � 0, τq � Γnum

�
x � 0, 0�

��
Gana
σ̄σ̄ pk, 1� τq

�
.

(7.60)

The additional function Σnum
p1q, σσ pk, τq can be found in eq. (7.55), while all the

contributions to the exclusively numerical function Σnum
σσ pk, τq are listed in equa-

tion (7.54). The semi-analytical terms are explained above in eq. (7.58).

3The fact that all frequencies in eq. (7.42) come with a prefactor of two gives the fermionic ωn
effectively a bosonic character.
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BEC-code

We will now recapitulate the computation of the self-energy within the BEC-
subtraction scheme. The original real-space product of the vertex and the counter-
propagating Green’s function (7.49) remains unaltered, however, we have to use
the analytical Green’s function Gana

σσ px, β � τq defined in eq. (7.11) and construct
the vertex according to the rules described in the BEC subsection 7.2.3. With
Γana

fin px, τq from equation (7.47a), which is identical to the BCS-definition, the an-
alytical multiplication Γana px, τqGana

σ̄σ̄ px, β � τq gives rise to a Gaussian that can
be easily transformed to momentum space

Σana
σσ pk, τq � �

�
4

πτ2
� 32

?
2π

τ3{2g
� 2

πτ

�
4µ� 512π2

g2
� d


�

� ek2 τpτ�1q
2�τ � d

2
τ�µσ̄p1�τq

�
τ

2� τ


3{2
.

(7.61)

In comparison to (7.51) in the BCS case, the chemical potential appears now reex-
ponentiated, as expected. Furthermore, the problematic τ Ñ 0� behavior stays the
same, because it arises exclusively from Γana

fin px, τq. Extracting the τ�1{2 divergence
yields

Σana
fin, σσ pk, τq � �

?
2

π
?
τ
e�

1
2
pk2�dqτ , (7.62)

where we have included the d dependence, in contrast to eq. (7.50) in the BCS
scheme. This also changes the result in Matsubara frequencies to

Σana
fin, σσ pk, ωnq � �

2 erf

�b
k2�d�2iωn

2



?
π
?
k2 � d� 2iωn

. (7.63)

The semi-analytic functions can be treated analogously to the BCS code. However,
recall that we have to plug in Gana

σ̄σ̄ pk, τq from eq. (7.11) both in the semi-analytic
and the numerical functions, which still are formally defined via eq. (7.54). Re-
garding the final Matsubara transformation, we can resort to the form

Σσσ pk, ωnq � Σana
fin, σσ pk, ωnq � Σs-a

σσ pk, ωnq � Σnum
fin, σσ pk, ωnq �

� Σana
fin, σσ pk, ωnq �

�
Γana

fin pk, ωnqGnum
σ̄σ̄ px � 0, 1q

� Γnum
σ̄σ̄

�
x � 0, 0�

�
Gana
σ̄σ̄ pk,�ωnq

�
� Σnum

fin, σσ pk, ωnq

(7.64)

from the BCS case. We also use again the function Σana
fin, σσ pk, τq from equa-

tion (7.56) in order to regularize Σana
σσ pk, τq, as the small τ -dependence has not

changed in the BEC scheme. Therefore, the resulting, additional part Σnum
p1q, σσ px, τq
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is still defined as the difference Σnum
p1q, σσ px, τq � Σana

σσ px, τq�Σana
fin, σσ px, τq, however,

Σana
σσ pk, τq is of course given by eq. (7.61). Finally, in the semi-analytical terms

and in the numerical part Σnum
σσ pk, ωnq, which is formally equivalent to eq. (7.60),

we have to use the BEC expression for the Green’s functions from eq. (7.11).

7.3 Evaluation of the thermodynamic functions

Once the Green’s functions have converged for a given set of thermodynamic pa-
rameters µ, h, g, it remains to compute the thermodynamic quantities. Some, like
the densities, can be immediately read off from G, whereas the pressure, the internal
energy and the entropy require the computation of furtherG dependent-functionals,
as described in Section 4.7. The corrections to the ideal gas contributions, unfortu-
nately, require rather involved subtractions to obtain quantitatively reliable results.
Similarly to the situation we have encountered during the implementation of the
self-consistent loop in the previous section, these originate from the slowly decaying
asymptotics of the Green’s and vertex functions. Below, we first give the directly
accessible quantities converted correctly into density units, before turning to the
more complicated functionals H1, H2 and Hlog, which require further methods.

7.3.1 Directly accessible quantities

From the components of the Green’s function G px, τq we infer the densities via
the standard limit of short times and distances according to eq. (4.4). Within the
unit system explained in Section 7.1 and the decomposition Gσσ � Gana

σσ �Gnum
σσ , we

obtain

nσ � ~3n̂σ

p2mT q3{2 � � ~3

p2mT q3{2
�
Ĝana
σσ px̂ � 0, τ̂ � 1q � Ĝnum

σσ px̂min, τ̂maxq
�
, (7.65)

where the caret on the density expectation refers to our temperature units. Fur-
thermore, we have used the antiperiodicity (4.5) to project the τ Ñ 0� limit into
the available time interval. The analytic part is given in eq. (7.13) or eq. (7.11), de-
pending on whether the BCS or the BEC code is employed. In the numerical part,
we have to use the gridpoint with minimal space and maximal time coordinate.
With the densities we can immediately determine the dimensionless parameters
θ, µ̃ and h̃ from eqs. (2.66), (2.68) and (2.69). The dimensionless coupling constant
v � 1{pkFaq acquires the form

v � 4π

?
θ

ĝ
, (7.66)

due to g � 4π~2a{m and ĝ � βp2mT q3{2g{~3. The last quantity of this class is the
dimensionless contact density C̃, which follows from the vertex function according

162



7.3 Evaluation of the thermodynamic functions

to equation (4.28) where the anomalous contribution above Tc vanishes

C̃ � �θ
2

4

�
Γ̂ana px̄ � 0, τ̂ � 1q � Γ̂num px̂min, τ̂maxq

�
. (7.67)

Here we used the bosonic periodicity of Γ whose analytic part is defined in equa-
tions (7.47a) and (7.48) for both the BCS and the BEC code.

7.3.2 General strategies for the auxiliary functionals

To compute the functionals H1, H2 and Hlog several conceptual steps are required
that we summarize here before tackling each term individually.

First of all, one has to interpret the the Matsubara sums as Fourier transfor-
mations to τ Ñ 0�, as explained in Sec. 4.7. This renders all the formulas finite,
whereas the naive interpretation as sums yields ill-defined results. Furthermore,
after the transformation to imaginary time we solve the momentum integrals by
performing an LFT or DFT to x � 0. Thus, we can use the same routines as in
the self-consistent loop.

Despite the fact that all expressions are physical in terms of Fourier transforms,
we are forced to find representations that allow for a numerical treatment. Prob-
lematic are functions of the arguments Xf � iωn � k2 or Xb � Q2 � 2iΩn that
asymptotically vanish too slowly. To achieve terms amenable to processing with
our DFT and LFT functions, we subtract the corresponding asymptotic behavior,
yet as function of Xf

d � Xf �d or Xb
d � Xb�d, respectively. Here we utilize again

the auxiliary chemical potential d ¡ 0, which does not affect the leading asymp-
totics but renders many terms negligible. Schematically we get for a function f
that symbolizes any of the terms in H1, H2 or Hlog:

fpXf,bq �
�
fpXf,bq �

¸
α

pcαXf,b
d qα

�
�
¸
α

pcαXf,b
d qα , (7.68)

where the sum contains all powers of the argument Xf,b such that the difference

in the brackets decays at least as quickly as
�
Xf,b

��2
. Due to the form of the

individual functions, we are not able to separate another factor of 1{
?
Xf,b like in

the previous sections. The remaining sum is known analytically up to the possibly
numerical constants cα and must be evaluated via complex contour integration
including a convergence factor exppz0�q where z refers to the complex integration
frequency. However, poles and branch cuts only appear for z � d. Consequently,
those terms are suppressed by exp p�dq and can for large enough d (in practice
d � 150) safely be neglected.

Another helpful identity is Parseval’s theorem, which we apply both to fermionic
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and bosonic Matsubara sums

¸
n

fpωnqgpωnq � �
» 1

0
dτfpτqgp1� τq (7.69a)

¸
n

fpΩnqgpΩnq �
» 1

0
dτfpτqgp1� τq. (7.69b)

We will encounter situations, where either both factors are known analytically and
we can find a solution in closed form to the integral on the right (at least in terms
of a generalized Fourier transformation) or at most one factor is given by a purely
numerical function of imaginary time. In this case the numerical τ integral will
be well-defined due to the integrability of the appearing functions in the compact
integration interval. Therefore, the representation in terms of the integration over
imaginary times is advantageous compared to the sum over infinitely many Matsub-
ara frequencies, that becomes numerically difficult for slowly algebraically decaying
function. Technically, we perform the integral by a bosonic DFT to Ωn � 0.

A last point to mention before going into the details of the evaluation of the aux-
iliary functionals concerns numerical noise created by the subtraction in eq. (7.68),
which originates mostly in the finite precision of the error functions. To get rid of
these problems we switch for large arguments |Xf,b| " 1 to an asymptotic expansion
of fpXf,bq, such that the subtracted powers cancel identically and the remainder
can be dealt with numerically.

7.3.3 Computation of H1rGs

We start with the functional H1rGs, given in (4.42), which we can express in terms
of δGσσ from eq. (7.5)

H1rGs � �
»

d3k

p2πq3
¸
σ,n

�
� log

�
1� Gp0qσσ pk, ωnq�1 δGσσ pk, ωnq

	

�
�
Gp0qσσ pk, ωnq�1 δGσσ pk, ωnq

	�
(7.70)

For large |Xf | the logarithm may be Taylor expanded revealing the integrand’s

asymptotic behavior ppGp0qσσ q�1δGσσq2 � pXf q�3, which can be easily transformed
numerically. However, to obtain a smooth function we must replace the log by its

Taylor series up to tenth order, when |y| � |ppGp0qσσ q�1δGσσq|   10�3. We do this by
combining terms of comparable size via

logp1� yq � y �
y2p1{2� yp1{3� yp1{4� yp1{5� yp1{6� yp1{7� yp1{8� yp1{9� y{10qqqqqqqq ,

(7.71)

since otherwise the difference in eq. (7.70) leads to numerical noise.
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7.3.4 Subtraction scheme for H2rGs

To evaluate H2rGs from eq. (4.54) we first recall its definition

H2rGs � �1

2

»
d3k

p2πq3
¸
n,σ

!�
Gp0qσσ pk, ωnq�1

��
δGσσ pk, ωnq

)
, (7.72)

where we have made use of the identity Gp0qσσ pk, ωnq� � Gp0qσσ pk,�ωnq and Defini-
tion (7.5) from the previous paragraph. With the latter we find the scaling of the

integrand prGp0qσσ s�q�1δGσσ � pXf q�3{2, which numerically is quite inconvenient, de-
spite being sumable. To deal with this issue we separate the term in the following
way

rGp0qσσ pk, ωnq�1s�δGσσ pk, ωnq � fa,σ pk, ωnqΣσσ pk, ωnq � fb,σ pk, ωnq �

�

�
�� rpGp0qσσ q�1s��
Gp0qσσ

	�2

�
�� pk, ωnqΣσσ pk, ωnq

�

�
��rpGp0qσσ q�1s�δGσσ � rpGp0qσσ q�1s�Σσσ�

Gp0qσσ

	�2

�
�� pk, ωnq .

(7.73)

The function fb asymptotes like pXf q�5{2 and is therefore directly amenable to our
numerical methods. In fact, it contributes

Hnum
2,b rGs �

¸
σ

»
d3k

p2πq3
¸
n

fb,σ pk, ωnq

�
¸
σ

FkÑr�0 rFωnÑτ�0 rfb,σ pk, ωnqss
(7.74)

to H2rGs. Regarding the first part including fa,σ � rpGp0qσσ q�1qs�{
�
Gp0qσσ

	�2
, we use

Parseval’s theorem (7.69) to represent it as an integral over imaginary time. The
function fa,σ can be transformed to imaginary time by standard contour integration,
which yields

fa,σ pk, τq � FT ωnÑτ

�
rpGp0qσσ q�1qs�
pGp0qσσ q�2

�
pk, τq

� r2ξk,σnF pξk,σq � p2ξk,στ � 1qsnF p�ξk,σqe�τξk,σ ,
(7.75)

with the dimensionless form of the single-particle energies ξk,σ � k2�µσ. The self-
energy acquires different forms with respect to the BCS or BEC scheme. We will
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first focus on the BCS version and then briefly state the changes when the BEC
code is used. Combining the equations (7.55) and (7.53), we have the following
decomposition for the self-energy

Σσσ pk, τq � Σana
fin, σσ pk, τq � Σnum

p1q, σσ pk, τq
� Σs-a

σσ pk, τq � Σnum
σσ pk, τq . (7.76)

Now we have to integrate the product of fa,σpk, 1� τq with all the contributions of
the self-energy Σσσ pk, τq before the momentum integral will be performed by an
efficient one-dimensional LFT. Note that only Σfin, σσ pk, τq exhibits a singularity �
1{?τ for τ Ñ 0�, which will be treated analytically anyway. All other contributions
to the self-energy are finite within the entire imaginary time interval. Translating
them back to ωn, however, leads to an ω�1

n asymptotics due to the discontinuous
behavior at τ � 0 or τ � 1. Therefore, also the purely numerical part scales like
fa,σ pk, ωnqΣnum

σσ pk, ωnq � ω�2
n and we cannot not improve the asymptotics any

further, since we can only subtract analytically known terms.
To show the explicit calculations we begin with the analytic part, which can be

written as

�
» 1

0
dτfa,σpk, 1� τqΣana

fin, σσ pk, τq � p1� µσ̄q rnF p�ξk,σqhana
1 pµσ,kq

� nF pξk,σqnF p�ξk,σqhana
2 pµσ,kqqqs

(7.77)

where the factor p�1q on the left-hand side originates from Parseval’s theorem for
Fermions and we have introduced the functions

hana
1 pµσ,kq � �

?
2

π

�
4pk2 � µσq
2µσ � k2

e�
k2

2

� e�k
2�µσ

?
2πp2k4 � 4µ2

σ � k2p1� 6µσqq erf

�b
µσ � k2

2

�
p2µσ � k2q3{2



.

(7.78a)

hana
2 pµσ,kq � � 4pk2 � µσq?

π
a

2µσ � k2
e�k

2�µσ erf

�c
µσ � k2

2

�
. (7.78b)

These new functions hana
1 and hana

2 can be computed from the methods outlined in
App. C, since the integral over the imaginary time can be interpreted as Fourier
transform τ Ñ Ωn � 0. The zeros in the denominator at µσ � k2{2 are canceled
identically by the error functions in the numerator, whose Taylor expansion around
the origin reads [167]

erfpyq � 2y?
π
� 2y3

3
?
π
�Opy5q .
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In practice, one must, however, explicitly define a function that resorts to this
expansion, when |2µσ�k2|   10�7 to avoid numerical noise. Furthermore, both hana

1

and hana
2 carry a Gaussian prefactor that allows to integrate eq. (7.86) numerically

over the momentum variable. Hence, we obtain the next contribution to H2rGs
Hana

2a rGs�
¸
σ

p1�µσ̄qFT kÑr�0 rnF p�ξk,σqhana
1 pµσ,kq

� nF pξk,σqnF p�ξk,σqhana
2 pµσ,kqqqs .

(7.79)

Now we have to combine fa,σ with the semi-analytic terms Σs-a
σσ , which we split as

(see eq. (7.58))

Σs-a
p1q, σσ pk, τq � Gnum

σ̄σ̄ px � 0, 1�qΓana
fin pk, τq (7.80a)

Σs-a
p2q, σσ pk, τq � Gana

σ̄σ̄ pk, 1� τqΓnumpx � 0, 0�q . (7.80b)

Computing the first integral yields the function

hs-a
p1qpσ, µ, h, g, d,kq � �

» 1

0
dτfa,σpk, 1� τqΣs-a

p1q, σσ pk, τq �

Gnum
σ̄σ̄ px � 0, 1�q

#
nF p�ξk,σq

�
�
hs-a
p1q,11pµσ,kq �

hs-a
p1q,12pµσ,kq

g
�
�

4µ� 512π2

g
� d



hs-a
p1q,13pµσ,kq

�

� nF pξk,σqnF p�ξk,σq

�
�
hs-a
p1q,21pµσ,kq �

hs-a
p1q,22pµσ,kq

g
�
�

4µ� 512π2

g
� d



hs-a
p1q,23pµσ,kq

�+
.

The explicit expressions for these new functions are given in Appendix D.2. Since
the integrals can again be interpreted as Fourier transform to Ωn � 0 and the
integrands consist of products of integer and half-integer powers of τ with an expo-
nential function of τ , these results can be derived from the general formulas given
in App. C. Like in the purely analytic case above, the complete set of hs-a

p1qij are
well-defined and acquire a Gaussian prefactor in k space. Hence, we integrate nu-
merically over momenta by a one-dimensional Fourier transform to x � 0 and sum
over both spin components, which yields

Hs-a
2a1 �

¸
σ

FT kÑr�0

�
hs-a
p1qpσ, µ, h, g, d,kq

	
. (7.81)

The second semi-analytic term from eq. (7.80b) is treated in the same fashion

hs-a
p2qpσ, µ, h, g, d,kq � �

» 1

0
dτfa,σpk, 1� τqΣs-a

p2q, σσ pk, τq �

Γnum
fin px � 0, 0�q

�
nF p�ξk,σqhs-a

p2q,1pµσ̄,kq � nF pξk,σqnF p�ξk,σqhs-a
p2q,2pµσ̄,kq

�
,

(7.82)
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where the functions hs-a
p2q,1 and hs-a

p2q,2 can be found in App. D.2. The latter expression
contributes

Hs-a
2,a2 �

¸
σ

FT kÑr�0

�
hs-a
p2qpσ, µ, h, g, d,kq

	
(7.83)

to H2rGs. Finally, we have to consider the self-energies Σnum
p1q, σσ and Σnum

σσ pk, τq. For
the first we actually have an analytic expression available, however, the function
is well-behaved enough in τ that we can directly use our numerical routines like in
the self-consistent loop. In this case we obtain

Hnum
2,a rGs �

¸
σ

»
d3k

p2πq3
» 1

0
dτfa,σpk, 1� τqpΣnum

p1q, σσ pk, τq � Σnum
σσ pk, τqq

�
¸
σ

FkÑr�0

�
FτÑ0

�
fa,σpk, 1� τqpΣnum

p1q, σσ pk, τq � Σnum
σσ pk, τqq

��
,

(7.84)

with a DFT to the bosonic Matsubara frequency Ωn � 0. Finally, we can piece
together the complete expression for the auxiliary functional H2rGs in the BCS
case

H2rGs � Hana
2a rGs �Hs-a

2a1rGs �Hs-a
2a2rGs �Hnum

2a rGs �Hnum
2b rGs . (7.85)

Now we have to repeat the computation in the BEC scheme. Fortunately, the
overall approach remains identical and we merely have to incorporate the changes
that arise from the different form of the Green’s functions. First of all, the integral

�
» 1

0
dτfa,σpk, 1� τqΣana

fin, σσ pk, τq � eµσ̄ rnF p�ξk,σqhana
1 pµσ,kq

� nF pξk,σqnF p�ξk,σqhana
2 pµσ,kqqqs ,

(7.86)

acquires a slightly different dependence on the chemical potentials, since they ap-
pear in the exponent according to eq. (7.62), when the BEC code is used. Further-
more, the functions hana

1 and hana
2 have to be redefined, due to the d dependence

of Σana
fin, σσ pk, τq in contrast to the BCS case. Their new definitions can be found

in App. D.2. Similarly, we also have to adjust the definition of the functions hs-a
p2q,1

and hs-a
p2q,2, since they include Gana

σ̄σ̄ pk, τq. Again their BEC definitions are listed
in App. D.2. Once all the new BEC forms of the auxialliary functions have been
inserted the definitions in eq. (7.85) can be reused to calculate H2rGs.

7.3.5 Evaluation of HlogrΓs

As we have already discussed in Sec. 4.7, the original form of the functional HlogrΓs
in eq. (4.43) was not well-defined and we had to construct a suitable subtraction
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7.3 Evaluation of the thermodynamic functions

scheme. We introduced the parameter d, which rendered the unpleasant terms
irrelevant and we finally arrived at the representation in eq. (4.44), which in di-
mensionless units becomes

HlogrΓs � 1

2

»
d3Q

p2πq3
¸
n

eiΩn0� log

�
1� Γ�1 pQ,Ωnq � α

a
Q2 � d� 2iΩn

α
a
Q2 � d� 2iΩn

�

� 1

2

»
d3Q

p2πq3
¸
n

eiΩn0� log

�
�1�

Γ�1 pQ,Ωnq � α
b
Xb
d

α
b
Xb
d

�
� .

(7.87)

Note that we have redefined the parameter α � �m3{2{p4π~3q from Sec. (4.7) to
the new form α{?2 � �1{p16πq in dimensionless units, which conveniently absorbs
most of the numerical factors in the original expression. The mathematical expres-
sion of Hlog still requires the convergence factor, since otherwise the Matsubara sum

diverges. This can be seen from the asymptotics Γ pQ,Ωnq � α
�
Xb

��1{2�Op1{Xbq,
which follows from the asymptotic form of the analytic terms in the vertex (7.34),
that imply a scaling � pXbq�1{2 for the logarithm. In this form we cannot utilize
our Fourier transform routines and have to develop for one last time a subtraction
scheme. Again we will start with the BCS code.

To gain further insight into the asymptotics of HlogrΓs we first expand the full
integrand in detail, where we make us of the definitions (7.33) and (7.20)

log

�
�1�

Γ�1 � α
b
Xb
d

α
b
Xb
d

�
� � log

�
�1�

1
g � χana � χs-a � χnum

α
b
Xb
d

�
�

� log

�
�1�

1
g � E0 � α

b
Xb
d � µE1 � pµ� hq pµ� hqE2 � χs-a � χnum

α
b
Xb
d

�
� . (7.88)

Listing the asymptotic behavior of all the terms, we have 1{g � pXbq0, both�
E0 � αpXb

dq1{2
�

and E1 � pXbq�1{2, while finally E2 and pχs-a � χnumq � pXbq�1.
For further details we refer to Section (7.2.2). To achieve a function that is benign
enough for a numerical approach we separate all contributions of the logarithm,
that asymptotically approach zero at more slowly than � pXbq�5{2 and treat them
separately. To this end, we make use of the Taylor expansion of the logarithm and
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define the new auxiliary function

hlog pQ,Ωnq �

log

�
�1�

1
g � E0 � α

b
Xb
d � µE1 � pµ� hq pµ� hqE2 � χs-a � χnum

α
b
Xb
d

�
�

�
1
g � E0 � α

b
Xb
d � µE1 � pµ� hq pµ� hqE2 � χs-a � χnum

α
b
Xb
d

(7.89a)

�
1
g2 � 2

g

�
E0 � α

b
Xb
d � µE1 � pµ� hq pµ� hqE2 � χs-a � χnum

	
2α2Xb

d

�

�
E0 � α

b
Xb
d � µE1

	2

2α2Xb
d

(7.89b)

�
1
g3 � 3

g

�
E0 � α

b
Xb
d � µE1

	
3α3pXb

dq3{2
(7.89c)

� 1

4g4α4pXb
dq2

, (7.89d)

where the labeling of the lines from a to d indicates the order of the Taylor
expansion, in which the individual subtractions appear. Including terms up to
quartic order is necessary to make hlog scale as pXbq�5{2. Now the latter can
be transformed numerically at the expense of solving the Matsubara sums and
momentum integrals of the 22 separated terms manually. We will turn to this task
now.

First of all, we note that we can simply neglect all powers of 1{pgαXb
dq, since

rewriting the sum by a contour integration yields an exponential suppression from
the Bose function nBpd{2q, that originates from the nonanalyticities in the denom-
inators. In practice, these terms are on the order of 10�11, if d � 150, which is way
below the precision of the other computations. Therefore, we immediately get rid
of four terms.

All terms linear in the functions Ei can be transformed in closed form up to
exponentially small corrections by the help of Parseval’s theorem (7.69). We will

discuss the procedure on the example of E0 � α
b
Xb
d, which appears in the first

order contribution from line (7.89a). In fact, we always consider the difference

E0 � α
b
Xb
d as one entity to obtain an asymptotic decrease rather than a growth.

In contrast, the other error functions are treated as individual functions for the
back transformation to imaginary time. To apply the theorem we have to find the

representation of E0�α
b
Xb
d and 1{

b
Xb
d in imaginary time. For the latter we use
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the exact Fourier transform

FτÑΩn ru1 pQ, τqs pΩnq � FτÑΩn

�
��e

τpQ2�dq
2?

2πτ

�
��

�
erf

�b
1
2X

b
d

	
b
Xb
d

�
1�

�
erf

�b
1
2X

b
d

	
� 1

	
b
Xb
d

, (7.90)

which results from eq. (C.16). The term in the brackets vanishes exponentially
with d " 1, according to eq. (C.2) and will be neglected in the following. Now we
have to consider the Fourier transform of E0�αpXb

dq1{2 to τ . First we rewrite this
function as

pE0 � Esub
0 q �

�
Esub

0 � αpXb
dq1{2

	
,

where the second part behaves like expp�d{2q due to the asymptotics of the error
function and therefore needs not be taken into account any further. We note that
the remainder can be interpreted as the inverse Fourier transform of

FτÑΩn

�
�e�

τ
2
Q2

�
1� e�

τd
2

	
16
?

2π3{2τ3{2

�
� � E0 pQ,Ωnq � Esub

0 pQ,Ωnq , (7.91)

according to App. C. Plugging both Fourier transforms with the correct prefactors
into Parseval’s theorem (7.69) results in

P ana
10 � �

»
d3Q

p2πq3
¸
n

E0 � α
b
Xb
d

α
b
Xb
d

�

� e�
d
2

»
d3Q

p2πq3 e
�Q2

2

» 1

0
dτ

e
τd
2 � 1

2πτ3{2?1� τ
� � de�

d
4

8
?

2π3{2

�
I0

�
d

4



� I1

�
d

4


�
,

(7.92)

where we abbreviate Parseval with the letter P , while the index 10 refers to the
linear order term that arises from E0. Notice that the integral above factorizes
into a simple Gaussian one over all momenta and a well-defined integral over the
imaginary time interval because the integrand is integrable both at the τ Ñ 0� and
the τ Ñ 1� boundaries. A derivation of this result, where I0 and I1 denote modified
Bessel functions of the first kind, is given in App. D.3. The other analytic Parseval
terms obtained below can be calculated in a similar manner. We reemphasize
that the second ”�” holds only up to exponentially small corrections. Moreover,
the exponential prefactor cancels the exponential growth of the Bessel functions
identically, leading to sensible results for the thermodynamic quantities. In the
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linear order subtraction in eq. (7.89) also the functions E1 and E2 appear, which
can treated in a similar manner by the Parseval trick. They corresponding results
read

P ana
11 � � 1

p2πqq3{2 e
� d

4 I0

�
d

4



(7.93)

P ana
12 � � 1

27{2π3{2 e
�βd

4

�
I0

�
d

4



� I1

�
d

4


�
, (7.94)

yielding the total analytic contribution of the first order

P ana
1 � P ana

10 � µ P ana
11 � pµ� hqpµ� hqP ana

12 . (7.95)

The quadratic order can be computed analogously, where we first note that

FT τÑΩn ru2 pQ, τqs � FT τÑΩn

�
1

2
e�

τ
2 pQ2�dq

�
� 1� e�

1
2
Xb
d

Xb
d

. (7.96)

The exponential in the numerator can again be neglected for all frequencies and mo-
menta thanks to d. We repeat the procedure as before and use Parseval’s theorem
on all the error functions, which gives

P ana
20 � 2e�

d
2

π

�
2� 2e

d
2 �

?
2πd erfi

�c
d

2

��
(7.97)

P ana
21 � 4

?
2e�

d
2?

πd
erfi

�c
d

2

�
(7.98)

P ana
20 � 4

πd3{2

�?
d�

?
2FD

�c
d

2

��
, (7.99)

where erfipzq � erfpizq{i and FD denotes the Dawson integral

FDpxq � e�x
2

» x
0
dyey

2
.

Summing them together yields the analytic Parseval term of the quadratic order

P ana
2 � P ana

20 � µ P ana
21 � pµ� hqpµ� hqP ana

22 . (7.100)

Finally, we deal with the cubic order in line (7.89c) in the same way. For the
Parseval trick we first need the Fourier transformation of pXb

dq�3{2, which is

FT τÑΩn ru3 pQ, τqs � FT τÑΩn

� ?
τ?

2π
e�

τ
2

�
Q2 � d

��

�
1�

�
erf

�b
Xb
d

2



� 1



pXb

dq3{2
�
?

2e�
1
2pQ2�dq

?
πXb

d

, (7.101)
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where only the first term has to be considered, whereas the remainder is expo-
nentially small in d. Using this result we go on and compute the two analytical
Parseval terms and the total cubic contribution

P ana
30 � �32

?
πe�

d
2?

2

�
2� e

d
4

�
pd� 2qI0

�
d

4



� dI1

�
d

4



�
(7.102)

P ana
31 � �64

?
πe�

d
4?

2

�
I0

�
d

4



� I1

�
d

4


�
(7.103)

P ana
3 � P ana

30 � µ P ana
31 . (7.104)

Taking all analytic Parseval results together, we can solve eleven of the 22 subtrac-
tion terms of eq. (7.89) in closed form. Now we will deal with the two χs-a � χnum

contributions of eq. (7.89a), which we can compute with the numerical analog of
the analytical Parseval trick:

P num
1 �

»
d3Q

p2πq3
¸
n

χs-a pQ,Ωnq � χnum pQ,Ωnq
α
b
Xb
d

�FT QÑr�0

�
FT τÑΩn�0

�
u1pQ, 1� τqχ

s-a pQ, τq � χnum pQ, τq
α

��
(7.105)

P num
2 �

»
d3Q

p2πq3
¸
n

χs-a pQ,Ωnq � χnum pQ,Ωnq
α2Xb

d

�FT QÑr�0

�
FT τÑΩ�0

�
u2pQ, 1� τqχ

s-a pQ, τq � χnum pQ, τq
α2

��
, (7.106)

where the functions u1 and u2 are defined in equations (7.90) and respectively
in (7.96).

Now only the single term pE0�αpXb
dq1{2�µE2

1{p2α2Xb
dq � pXbq�2 from line (7.89b)

is left. It cannot be transformed by Parseval’s theorem again, since the expressions
in imaginary time are unknown in case of the quadratic numerator. Neverthe-
less, we deal with an analytical expression and we can proceed by subtracting the
problematic asymptotics, yet in terms of Xb

d:

hlast : �

�
E0 � α

b
Xb
d � µE1

	2

p2α2Xb
dq

�

�
��
�
E0 � α

b
Xb
d � µE1

	2

p2α2Xb
dq

�
�
d

32π � µ
8π

�2

α2pXb
dq2

�
�
�

�
d

32π � µ
8π

�2

α2pXb
dq2

. (7.107)

With this step we have achieved that the term in brackets asymptotically scales like
pXbq�5{2, whereas the additional term can be neglected as its poles are shifted by
d{2 and thus give rise to exponentially small and therefore negligible contributions.
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Now we can perform the Matsubara sum and the momentum integration, which
yields

Hlast �
»

d3Q

p2πq3
¸
n

hlast pQ,Ωnq � FT QÑr�0FT ΩnÑτ�0� rhlast pQ,Ωnqs (7.108)

Now we are done with all parts of the auxilliary functional HlogrΓs and summarize
its final form

HlogrΓs � Hnum
log rΓs � P ana

1 � P num
1 � 1

2

�
2 pP ana

2 � P num
2 q

g
�Hlast



� 3

3g2
P ana

3 .

(7.109)

The last issue we have to deal with regards the adjustments required for the BEC
code. In this case we have to recall that in the expansion of the analytic part
χana

fin pQ,Ωnq from eq. (7.28) the prefactor of E2 changes from µ2 � h2 to 2µ2,
which implies the same replacement for the prefactors of the analytic Parseval
terms (7.95) and (7.100). Additionally, one could also use the fact that χnum

p1q pQ, τq
from eq. (7.27) is known analytically in imaginary time. Then one can treat this
contribution in imaginary time by the Parseval trick. However, we have not imple-
mented this additional decomposition, since χnum

p1q pQ,Ωnq does not cause numerical
problems.

7.4 Further specifications on the numerical
implementations

In this section we summarize the numerical specifications of the code for the imbal-
anced Fermi gas. We begin with the grids for Fourier transformations in Sec. 7.4.1
and turn afterwards in Sec. 7.4.2 to the convergence criteria. Special focus is given
to the the regime close to the critical temperature, which is the most difficult situ-
ation to find a solution for the Green’s function due to the vicinity of a divergence
in |ΓpQ,Ωn � 0q|.

7.4.1 Grids for the Fourier transformations

In case of the transformations between τ Ø ωn or τ Ø Ωn, respectively, we use a
spline DFT described in Sec. 6.2. Starting in imaginary time we use cubic splines,
while the for the inverse transformation we have implemented also quintic splines.
The additional precision from the higher degree of the interpolation turns out to be
useful for the Γ pQ,Ωnq Ñ Γ pQ, τq transformation, which after transformation to
real space is multiplied by the Green’s function Gσ̄σ̄p�x, 1�τq with reversed particle
flow to obtain the self-energy. As mentioned previously, this step is particularly
sensitive to numerical noise because Γ px, τq is peaked around τ � 0�, whereas
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Gσ̄σ̄p�x, 1 � τq attains its largest values around the opposite boundary τ � 1�,
such that each factor enhances the errors in the other one.

In frequency space we separate G and Γ into real and imaginary parts. Since
all real parts are even functions and all imaginary parts are odd functions, we use
these symmetries to work exclusively on positive Matsubara frequencies. In case
of the bosonic frequencies our grid of in total N � 512 points contains all the
eighty smallest Ωn. Larger frequencies are joined with an exponential scaling, such
that Ωmax � 2π1010. Since the slowest asymptotics in frequency space that we

have to treat numerically in the self-consistent loop scales like Ω
�5{2
n , we estimate

the truncation errors from the finite interval as Ω
�3{2
max À 10�16 just below machine

precision. With this maximal frequency, faster asymptotics, as would appear in
higher order derivatives, are irrelevant. On the other hand, we describe the limit
of small Matsubara frequencies exactly, anyway. Therefore, the choice of boundary
conditions for the spline interpolation does not matter, as already stated in Sec. 6.2.
For the fermionic frequencies we use the same grid shifted by π.

To sample the imaginary time interval we define the auxiliary function

fpnq � 1� 2

π
arctanpe�pn�N{2�1{2qαq , (7.110)

where we choose the parameter α � 10{p55πq � 0.058, which is responsible for
distances between adjacent τ points close to the boundaries. The τ points are then
calculated via

τn � fpnq � fp1q
pfpNq � fp1qq p1� 2δq � δ , (7.111)

where n P t1, 2, ..., 512u. This construction samples the imaginary time interval
symmetrically up to exponentially small corrections below the floating point pre-
cision. Furthermore, we obtain an exponentially dense grid at the boundaries,
where the major contributions of the G and Γ are located. The additional variable
δ � 10�9 directly controls the smallest τ point. Note that the exponentially dense
points at the boundaries τ Ñ 0� and τ Ñ 1� entail exponentially small weights for
the Fourier integrals, such that the boundary conditions again do not matter for the
spline DFT. Unfortunately, one encounters numerical errors from the phase factors
exppiτmaxΩnq � 1 in the limit of large Matsubara frequencies due to the limited
numerical precision. To improve the results of the Fourier transform we use instead
the shifted interval τn P r�0.5, 0.5s, since in the DFT the problematic boundary
terms are now multiplied with the smallest function values from the center of the
original interval.

Regarding the transformation between real and momentum space, the standard
routine is an LFT on a grid of N � 512 points both in x or k. Since we use
the same grid for bosonic and fermionic functions, we do not distinguish between
the letters k and Q in the following. The grid parameters in the formulation of
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eq. (6.10) read

∆k � 3

80
, k̄ � �N

2
� 1� logp100q

∆k
� �134.2 (7.112a)

∆s � 5π

48
, s̄ � �N � 1

2
(7.112b)

∆x � 3

80
, x̄ � �N

2
� 1� logp3q

∆x
� �286.3 . (7.112c)

The smallest momentum kmin � 0.0068 resolves the low-momentum degrees of
freedom. On the other hand, the largest momentum kmax � 1.4 � 106 gives rise
to k2

maxτmin{2 � 1000, such that also in the bosonic functions the Gaussian decay
at large momenta is resolved. See for example the analytical the particle-particle
bubble (7.15), whose Gaussian behavior is inherited by the numerical functions.
Choosing kmax too small, in turn, yields an almost constant function in case of the
smallest τ Ñ 0, which cannot be transformed by the LFT due to the restriction
eq. (6.8). In real space we have the contribution x2

min{p4τminq � 0.13 from fermionic
functions, which samples the typical behavior expp�x2{p4τqq densely enough to
obtain smooth plateaus in the numerical functions at the smallest x and τ values.
To improve the results from the LFT, we extrapolate the height of these plateaus
to x � 0 and add the corresponding term to the Fourier transform. The used trade-
off parameters are kp � �0.1 for k Ñ x and kp � �0.5 for x Ñ k, respectively.
For the computations of the thermodynamic quantities that can be considered as
a transformation to x � 0 we use kp � �0.8 to improve the results at the origin.

On these grids the code runs with about ten loops per second on a modern
desktop computer.

However, in the weak coupling limit the critical temperature θc � expp�π|v|{2q
becomes exponentially small and conversely we have to deal with large chemical
potentials, especially of the majority component µ̂� � µ� h. This leads to a sharp
variation of Gσσ pk, τq around k2 � µσ, which causes problems for the LFT, see
Sec. 6.1.2. Therefore, we switch to a DFT with an increased number of grid points
around the dressed Fermi energy. Technically, we define an extra grid with 2100
k points between 6.4 and 60. In the interval 6.4 ¤ k ¤ 11, we distribute 240
points according to the square-root scaling k1{2{3 to obtain a sampling with an
approximately constant step width in the quadratic k2 argument of the Green’s
and vertex functions. The remaining 1960 points between 11   k   60 follow the
power law k2{3.2{3 to reach larger momenta. Nevertheless, even this choice keeps
the sampling density below 1, in contrast to the exponentially growing steps of
the LFT grid. Note that, we have to compute all the analytical functions on this
very large grid during the initialization. To determine the spin-dependent, dressed
Fermi levels, we search for the sign change of ReGσσpk, ωn � πqp�1q as function
of k for both spin components. If the obtained k0σ ¥ 6.4, which corresponds to
the onset of the denser grid, we increase the sampling density by up to 200 extra
points around the corresponding Fermi edge. In case of an overlap of the dense
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intervals around both Fermi levels or an overlap with a region where the LFT grid
has the higher sampling density, we reduce the number of points correspondingly
for the sake of computational effort. Moreover, we use cubic splines here, since
the required DFT matrices (see (6.70)) have to be created during the loop and the
resulting tridiagonal matrix can be solved more quickly. In practice, this allows
to treat µ̂� À 2000. In case of an FFLO instability we use a similar construction
with another grid of 400 extra points between k � 1 and k � 5 with equidistant
spacings of 1{100. If the dominant value of |ΓpQ,Ωn � 0q| appears at a finite Q,
where the differences between neighboring points of the LFT grid are larger than
1{100 we use up to 200 points of the FFLO grid to sample the vertex functions
sufficiently well around its maximum. Of course the larger number of grid points
slows the evaluation down, but we still achieve a few loops per second.

7.4.2 Stabilization of the convergence

As we have seen in Sec. 7.2, all the analytic functions that appear in the subtrac-
tion schemes depend on the variables µ, h and g only via a prefactor that in turn
does not vary with momentum and frequency or position and time, respectively.
Therefore, the parts that are genuine functions of the latter arguments are static
with respect to µ, h and g and can be computed once during the initialization and
stored for the self-consistent loop. We will return to that issue below, since it is
also quite important for the convergence in the critical regime. The main step of
the self-consistent loop is to compute from the current Green’s function Gcurr the
next Green’s function Gnext. Close to the phase transition, where |ΓpQ,Ωn � 0q|
becomes increasingly large at the unstable momentum Q, however, the Green’s
function becomes very sensitive and the convergence very unstable, since the large
value of the vertex influences G via the self-energy. Therefore, it can be necessary
to reduce the rate with which the Green’s function is updated via

Gnext � δGrGcurrs � p1� δqGcurr , (7.113)

where the update parameter δ has to be chosen in p0, 1s and GrGcurrs denotes the
Green’s function that would be obtained from the self-energy after a single iteration
withGcurr. With this prescription we accept a Green’s as the self-consistent solution
to the Schwinger-Dyson equation, if the criterion

1

δ

¸
k,ωn

|Gnext �Gcurr| ¤ 10�8 . (7.114)

Here the sum runs over all grid points and the prefactor takes into account for the
reduced updates. Away from the critical region, where we can always work with
δ � 1, we achieve convergence within ten to 50 iterations. When one approaches
the critical temperature and the update parameter has to be reduced it turns out
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to be very helpful to fix the inverse vertex at a certain value Γ�1
0

Γ�1pQ,Ωn � 0q � Γ�1
0 � 1

g
� χpQ,Ωn � 0q , (7.115)

instead of directly iterating the computations for the loop. To satisfy the equation
with the current particle-particle bubble χpQ,Ωn � 0q one adjusts the coupling con-
stant g. This criterion is of course applied to the momentum, where |ΓpQ,Ωn � 0q|
exhibits its maximum, which can change during with the iterations. Typically, the
variations of g are small and since we are interested in phase diagram the entire
BCS-BEC crossover, we can scan the entire phase diagram without any extra cost.
Here we make again use of the fact that g appears as simple prefactor in the analyt-
ical parts, which can be updated very efficiently. Much more importantly, this way
reduces the number of required iterations from several hundred down to around 50
for the transition to the homogeneous superfluid. In case of the FFLO instability
still 500-1000 iterations are needed. Yet, without fixing the vertex the code would
run on the order of 104 times, since the convergence is very unstable and the update
parameter δ has to be chosen very small. In this not only the large vertex makes the
Green’s function very sensitive, but also the fact that the momentum Q at which
the maximum of |Γ�1pQ,Ωn � 0q| is detected changes with the iterations, which
worsens the convergence. In particular, this becomes problematic in the vicinity of
the Lifshitz point L (see Figure 3.4), where superfluid phases with Q � 0 and finite
QFFLO neighbor each other and the unstable momentum can jump between both
types of order. Therefore, we use a reduced update also for the vertex function in
analogy to eq. (7.113) and distinguish between the current vertex function Γcurr,
the vertex that is obtained from the current Green’s function ΓrGcurrs and finally
the vertex that shall be used in the next loop Γnext. In this case we use a local
version

Γnext pQ,Ωnq � Γcurr pQ,Ωnq �
�

ΓrGcurrs � Γcurr

1� αΓ
1{4
curr

�
pQ,Ωnq , (7.116)

where α � 10. This model leads to large updates of the small parts of the ver-
tex, while the region of the emergent singularity that signals the phase transition
changes much more slowly. As a result, the convergence is improved. To avoid
stabilizing a wrong solution with an unphysical type of order for the given set of
parameters one has to test the obtained preliminary Green’s function by relaxing
the above condition on the vertex and check that it remains a solution of the un-
biased loop. Unfortunately, it is very difficult to find a model for the update that
works for all set of thermodynamic variables and for example it can be helpful to

increase the parameter α or use Γ
1{2
curr in the denominator.

For the transition to the homogenous superfluid we can determine the critical
point very precisely. First we find a physical Green’s function at a fixed value of the
inverse vertex that is already close to zero, i.e. Γ�1

0 � �10�4. The corresponding
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physical inverse vertex satisfies Γ�1pQmin,Ωn � 0q � Γ�1
0 , where Qmin is the

minimal momentum in the numerical grid. Then we fit the curve pa � bQ2q, with
fit parameters a, b to the low-momentum behavior of Γ�1pQmin,Ωn � 0q and set the
critical inverse vertex to Γ�1

c � bQ2
min. Finally, we run the code with Γ�1

c inserted
into the fixing criterion for the vertex (7.115). This yields the quadratic scaling
of the vertex function at the critical point, shown in Fig. 5.1. If |bQ2

min| ¤ 10�7,
we choose Γ�1

c � �10�7, since the numerical Fourier transforms cannot produce
cancellations below that level. Nevertheless, we have guaranteed a critical vertex
of at least |ΓcpQ Ñ 0,Ωn � 0q| � 107 even in this situation. In case of an
FFLO instability, we unfortunately do not resolve the momentum regime around
QFFLO well enough to apply an equivalent fitting routine, since it is located outside
of the exponentially dense region of the LFT grid. Therefore, we try maximize
|ΓcpQFFLO Ñ 0,Ωn � 0q| as good as possible. Due to the worse convergence (see
the discussion above) we accept in the FFLO case |ΓcpQFFLO Ñ 0,Ωn � 0q| ¡ 105

as critical.
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Chapter 8

Transport properties of the unitary Fermi
gas

The high degree of control over the external parameters and the isolation from the
environment of trapped ultracold Fermi gases allows to extend the investigation of
the physical properties beyond the static, thermodynamic quantities to dynamical
aspects. In this regard, the spectral functions and the response to an RF field
have been investigated both experimentally and theoretically1. For details on this
rich field we refer the reader to the lectures by Zwerger [42]. In the following,
we will focus on transport properties of the balanced unitary Fermi gas, which
is the most interesting case in the strongly interacting regime of the BCS-BEC
crossover. Further details can again be found in Ref. [42]. Like in any fluid, the long-
wavelength excitations at small frequencies can be described by hydrodynamics
both in the normal and in the superfluid phase. The crucial input to this theory
are the transport coefficients, which describe the dissipation of local currents that
transport the conserved quantities particle number, momentum and energy. In a
normal fluid one has the heat conductivity κ, the shear viscosity η and the bulk
viscosity ζ. In a superfluid the latter has to be replaced by three independent
variables ζ1,2,3 [169], since below Tc both the normal and the superfluid current are
involved in transport processes, which gives rise to a richer hydrodynamic behavior.

In addition, the spin degree of freedom entails a spin conductivity σs and a spin
diffusion constant Ds related by an Einstein relation Ds � σs{χs, where χs is the
equilibrium spin susceptibility. A recent review on spin transport has been provided
by Enss and Thywissen [170]. In this thesis, however, we will consider mainly the
first class of transport coefficients from above.

In the following, we give a short overview over known results regarding the trans-
port properties of the unitary Fermi gas in Sec 8.1. Then we discuss Luttinger-Ward
results for the scaling functions of the shear viscosity in Sec. 8.2, which allows to
study the ratios η{s and η{p~nq and in particular their universal quantum bounds,
where s denotes the entropy density. In Sec. 8.3 we calculate the heat conductivity
in the quantum critical regime within a large-N expansion.

1Quite recently also the out-of-time-order-correlations of the unitary Fermi gas have been studied
by a Boltzmann equation [168].
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Chapter 8 Transport properties of the unitary Fermi gas

8.1 General results for the hydrodynamic behavior of the
unitary gas

The hydrodynamic properties of the Fermi gas at infinite scattering length are
strongly influenced by the enhanced symmetry. In particular, the scale invariance
of the unitary gas implies the operator identity Tr Π̂ � °3

i�1 Π̂ii � 2ε̂, where Π̂
is the stress tensor and ε̂ is the operator for the energy density, see Ref. [42].
In a general system in thermal equilibrium the expectation value xΠ̂y � pδij is
identical to the pressure p, which in the case of the unitary gas immediately leads
to the relation p � 2{3ε of a non-relativistic, scale invariant system. As has been
shown by Son [81], in a nonequilibrium context the conformal symmetry of the
resonant gas gives rise to the remarkable fact that the bulk viscosities ζ � 0 in
the normal fluid or ζ1,2 � 0 in the superfluid vanish identically. Note that ζ2

determines the change of the pressure in an isotropic compression of the normal
fluid via δp � �ζ2divvn, where vn denotes the velocity of the normal component
of the superfluid. Therefore, ζ2 corresponds to the single bulk viscosity ζ of the
symmetric phase. Furthermore, below Tc a change of pressure can be created by
a counterflow of the normal and superfluid component that is described by ζ1 via
δp � �ζdivrρspvs � vnqs, where ρs and vs are the superfluid mass density and
velocity, respectively [171]. Experimentally this has been confirmed above Tc by
Elliot et al. [172] from the ballistic growth of the mean-squared radius of a trapped
cloud of unitary Fermions after releasing them from a strongly anisotropic trap.

Microscopically, the frequency-dependent viscosities follow from the Kubo for-
mula, which involves the retarded correlation function of the stress tensor Π̂ij [173]

χij,klpq � 0, ωq � i

~

»
dt

»
d3x eiωtθptq

A�
Π̂ijpx, tq, Π̂jkp0, 0q

�E
. (8.1)

In particular, from the odd imaginary parts one can extract the shear viscosity as
function of ω

Re ηpωq � Imχxy,xypq � 0, ωq
ω

, (8.2)

while the transport coefficient follows from the well-defined dc-limit

η � lim
ωÑ0

Re ηpωq . (8.3)

As has been observed by Taylor and Randeria [76], the shear viscosity has an
algebraic tail in the high-frequency limit ηpωq � C{?ω, that depends on the Tan
contact density C introduced in Sec. 2.4. Furthermore, ηpωq satisfies a subtracted
f-sum rule at arbitrary scattering lengths [76,173,174]

2

π

» 8

0
dω

�
Re ηpωq � ~3{2C

15π
?
mω

�
� p� ~2C

4πma
, (8.4)
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where the subtraction regularizes the algebraic high-frequency tail, while on the
right-hand side the equilibrium values of the pressure and the Tan contact den-
sity appear. The function ηpωq has been obtained in the normal phase from a
Luttinger-Ward computation of the response functions (8.1) by Enss et al. [173],
which at least within this formalism is finite in the zero-range limit. Furthermore,
the Fourier-transformed linear response functions χij,klpq � 0, tq are retarded, ther-
mal correlations functions in real time, which exhibit a scaling behavior in the
vicinity of the quantum critical point at µ � 0 � 1{a � h (see Sec. 2.3.1) like
their static thermodynamic counterparts. However, in the case of linear response
scaling is encountered in the time argument, too. Thus the shear viscosity can be
written in terms of a scaling function, whose prefactor follows from dimensional
analysis, provided that η indeed is finite in the limit Λ Ñ 8, which rules out an
anomalous dimension [42]. In general, a scaling form for the transport coefficient
η can be given also away from resonance and at finite Zeeman fields, in analogy to
the thermodynamic functions in Chapter 2. However, since we focus here on the
unitary, spin-balanced gas, we omit the variables 1{a � 0 and h � 0 and write

ηpT, µq � ~
λ3
T

fηpβµq . (8.5)

Both the high and the low temperature limits of fη can be deduced from general
arguments. In the limit of a nondegenerate gas one finds [173,175]

ηcl � 15

8
?

2

~
λ3
T

, (8.6)

The scaling T 3{2 follows from the surprising observation that the shear viscosity of
a classical gas does not depend on its density [176]. Representing η at unitarity in
terms of temperature and density, enforces the following functional dependence on
dimensional grounds [81]

ηpT, nq � ~nαpθq . (8.7)

This reveals the scaling α � θ3{2 � pT {εF q3{2, in the high-temperature limit in

order to cancel the prefactor n � ε
3{2
F . The classical temperature dependence has

been experimentally confirmed by Joseph et al. [177].
In the contrary limit of low temperatures the unitary gas becomes superfluid. In

the case of 4He Landau and Khalatnikov [178] have shown that phonon-phonon in-
teractions in the normal fraction give rise to a shear viscosity that actually diverges
in the zero-temperature limit ηpT Ñ 0q � T�5

ηpT Ñ 0q � ρnpT qm
2n2c3

s

~2

213p2πq7
13! � 9pu� 1q4

�
~cs
kBT


9

, (8.8)

where the normal fluid component arises from the phonon contribution ρnpT q �
2π2~{p45csqpkBT {~csq4. The dimensionless coupling constant u � d log cs{d log n
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arises from the nonlinear corrections to the hydrodynamic equations, which entail
phonon-phonon scattering. In case of the unitary gas, where in analogy to 4He at
the lowest temperatures only phonon-like Goldstone modes with linear dispersion
exist, Rupak and Schäfer [179] have found a similar result. In the Fermi gas with
infinite scattering length the sound velocity cs � vF

a
ξs{3 depends on the density

and the Bertsch parameter2. Due to vF � n1{3, we have u � 1{3, which is a
universal constant in contrast to the case of superfluid 4He. From the high- and
low- temperature limits (8.6) and (8.8), respectively, it is possible to deduce the
asymptotic behavior of the viscosity scaling function fη, defined in eq. (8.5). Using
in the latter limit µ � ξsεF , one finds [42]

fηpβµq Ñ
#

3
8
?

2
, βµÑ �8

0.005pβµq13{2 , βµÑ8 . (8.9)

Below in Fig. 8.1 we present Luttinger-Ward results for the viscosity scaling func-
tion. Before coming to that we emphasize that the stated asymptotics imply a
non-monotonic behavior of the ratios

η

s
� ~
kB

fηpβµq
fspβµq and

η

~n
� fηpβµq
fnpβµq � αpβµq , (8.10)

upon varying the chemical potential at a fixed temperature T ! Ē from the non-
degenerate limit βµ ! �1 through the quantum critical regime µ ! T into the
superfluid regime βµ " 1. The corresponding scaling functions for the thermody-
namic variables entropy density s � S{V and the total density n are defined via3

spT, µq � kB
λ3
T

fspβµq (8.11a)

npT, µq � 1

λ3
T

fnpβµq . (8.11b)

The resulting functions from the Luttinger-Ward theory can again be found in the
next subsection. Before discussing them we give general arguments why the two
ratios from above individually attain a minimum, whose value scales linear with ~
and therefore contains information about the quantum nature of the system. In
the non-degenerate regime one recovers the results from the virial expansion of the
classical gas, where the identification nλ3

T � 2z, with the fugacity z � exppβµq
becomes valid. Using the equation of state of an ideal classical gas, one finds
the asymptotic behavior fspβµ ! �1q � |βµ| expp�|βµ|q and fnpβµ ! �1q �

2The relation between the speed of sound and ξs can be verified from the general hydrody-
namic relation mc2s � pnκT q

�1 and the scale invariance of the unitary gas that implies for the
compressibility κT � κp0q{ξs.

3In this section we we have reintroduced kB .
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expp�|βµ|q, such that the ratios of the shear viscosity (8.10) grow exponentially,
since fη approaches a constant. In the opposite limit of T Ñ 0 the density of the
fermionic system scales as n � pξsµq3{2, which entails fnpβµ " 1q � pβµq3{2. The
entropy density in turn scales like s � kBpkBT {~csq3 due to the phonon contribution
of the normal component and we find fspβµ " 1q � pβµq�3{2, which follows from
cs � vF � µ1{2. Consequently, we obtain the power laws η{s � pβµq8 and η{p~nq �
pβµq5 upon approaching the ground state at fixed chemical potential. As both
ratios diverge in both the limits βµ ! �1 and βµ " 1 η{s and η{~n must attain a
minimum at finite βµ. From the Luttinger-Ward results [173] for the shear viscosity
one finds a minimum pη{sqmin � 0.6~{kB at βµ � 1.13   pβµqc � 2.65 above Tc. In
contrast, the minimum of η{n in turn seems to be located in the superfluid regime,
which is also indicated by experiments [177]. We will provide plots of the universal
ratios in Sec. 8.2 below and estimate the position of the extremum in the latter
ratio.

In fact, such minima as function of the temperature are expected quite generi-
cally, as was pointed out by Schäfer and Teany [180]. However, the result pη{sqmin �
0.6~{kB [173] found for the unitary gas is only about a factor seven larger than
the smallest value η{s � ~{p4πkBq ever obtained. The latter is encountered in the
conformally invariant, relativistic N � 4 supersymmetric Yang-Mills theory [181],
while any perturbation away from this particular model entails a growth of η{s.
Therefore, Kovtun, Son and Starinets (KSS) [182] have conjectured this value to
be the minimal possible ratio for η{s in any physical system. Regarding Galilean
invariant systems the unitary Fermi gas has the smallest η{s-ratio so far observed,
which makes it the most perfect nonrelativistic fluid presently known4.

In the quantum critical regime µ ! T the shear viscosity can be accessed by
a Boltzmann approach within a large-N expansion, as is discussed by Enss [109].
Setting N � 1 one finds η{s � ~{kBfηp0q{fsp0q � 0.74~{kB, which is close to
the minimal ratio obtained from the Luttinger-Ward computation. Since the heat
conductivity κ has not been studied very thoroughly we provide in Sec. a similar
computation in a 1{N expansion in the most interesting quantum critical regime.
The results allow to determine the Prandtl number within the large-N formalism,
which is connected to the question whether the scale-invariant unitary gas with
Galilean symmetry can be mapped to a gravity theory in the sense of the AdS-CFT
correspondence (for a review see the book by Ammon and Erdmenger [183]). But
let us first turn to the Luttinger-Ward results for the scaling functions introduced
above.

4Water, whose hydrodynamics properties can be described by classical physics has a minimal η{s
ratio of only about 25 times the (KSS) value [173].
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8.2 Viscosity scaling functions

We come now to the Luttinger-Ward results for the scaling functions relevant for the
shear viscosity. First of all, we present in Fig. 8.1 the scaling function fη defined in
eq. (8.5). The data for this monotonically growing function has been taken from the
Luttinger-Ward computation in the normal phase by Enss et al. [173], who checked
the correct asymptotics (8.6) in the case of large temperatures. Unfortunately, so
far there is no data for the symmetry-broken phase available, such that the known
asymptotics fη � 0.005pβµq13{2 (see eq. (8.9)) in the opposite limit T Ñ 0 cannot
be seen. Interestingly, the slope of fη becomes very small in the vicinity of the
critical point. However, whether dpfηqpdβµqc � 0 is satisfied exactly remains an
open question. Next we show the thermodynamic scaling functions fspβµq and
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Figure 8.1: The scaling function of the shear viscosity fη of the unitary gas in the
normal phase as function of βµ. The data for η is taken from Ref. [173].

fnpβµq in Figs. 8.2 and 8.3, respectively. In both cases the symmetric phase is
depicted in red and obtained from the Luttinger-Ward computations presented in
the previous chapters of this thesis. The data for the ordered phase has been
taken from Ref. [37] and is shown in blue. We observe a maximum in fs close
to the critical value pβµqc � 2.65, which automatically favors a minimum in the
ratio η{s � ~fη{pkBfsq. On the other hand fn shows a monotonous growth with
βµ. Note that the multi-valued regime in the vicinity of the phase transition is an
artifact of the Luttinger-Ward theory [37].

Based on the above results we present the ratio η{s in dimensionless form in
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Figure 8.2: Scaling function fspβµq for the entropy density. Red: Normal fluid
regime from the Luttinger-Ward approach presented in this thesis, Blue:
Superfluid from Ref. [37].

-1 0 1 2 3 4 5
0

20

40

60

80

Figure 8.3: Scaling function fnpβµq for the density. Red: Normal fluid regime from
the Luttinger-Ward approach presented in this thesis, Blue: Superfluid
from Ref. [37].
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Figure 8.4: Shear viscosity to entropy density ratio fη{fs � kBη{p~sq above Tc.
The data for η has been taken from Ref. [173]. The curve attains a
minimal value of 0.6 at βµ � 1.13.

Fig. 8.4. We indeed observe a minimum of pη{sqmin � 0.6~{kB located at βµ � 1.13.

Regarding the ratio α � η{p~nq, where the minimum is found in the superfluid
regime, as can be seen in Fig. 8.5, we use a simple ansatz to extrapolate the known
normal fluid regime to temperature regimes below Tc. This can be most easily be
done as function of θ � T {TF , for which we write the ansatz

αpθ ¤ θcq � 0.005 � 3?π
8

ξ13{2
s θ�5 �A�Bθ , (8.12)

in agreement with the scaling relation η{p~nq � pβµq5 given in the previous section.
The prefactor of the leading term is fixed by the asymptotics fη � 0.005pβµq13{2 �
0.005ξ

13{2
s θ�13{2, which follows from the ground state relation of the unitary gas
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µ � ξsεF and from rewriting the density scaling function

fn � nλ3
T �

8

3
?
π
θ�3{2 . (8.13)

The additional parameters are adjusted from imposing continuity conditions on
both αpθcq and its derivative α1|θc without affecting the known dominant behavior
for T Ñ 0. These two conditions seem to be reasonable, since fη does not indicate
any singular behavior in the vicinity of the phase transition and furthermore both
Bn{BT and Bn{Bµ � n2κT are continuous at the critical temperature. This follows
from the representation n � λ�3

T fn and the fact that the compressibility itself
shows the same critical behavior (2.79) at Tc as CV {N [42]. The density itself is of
course finite at a continuous transition. The result from this ansatz can be found
in Fig. 8.5. Indeed, we observe a minimum αmin � 0.35 at θmin � 0.12. Using
the Luttinger-Ward data from Haussmann et al. [37] the latter value translates to
pβµqmin � 3.01. These numbers of course depend on the form of the ansatz (8.12)
and serve only as a first estimate.

0.0 0.2 0.4 0.6 0.8 1.0
0

1
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Figure 8.5: The shear viscosity to density ratio α � η{~n of the unitary gas in the
normal phase as function of T {TF . The data for η is taken from [173].

8.3 Heat conductivity of the unitary Fermi gas

In this section we present a large-N computation to determine the heat conductivity
of the spin balanced, unitary Fermi gas in the quantum critical regime µ ! T ,

189



Chapter 8 Transport properties of the unitary Fermi gas

where the lack of well-defined quasiparticles renders the determination of transport
properties difficult [42]. The large-N approach, which has been previously used
on the shear viscosity by Enss [109], however, allows to formulate the problem in
terms of a Boltzmann equation. To obtain a description of the interaction effects at
next-to-leading order in N we first review the corresponding representation of the
thermodynamic partition function in Sec. 8.3.1, before we describe the solution of
the Boltzmann equation, that eventually yields the heat conductivity, in Sec. 8.3.2.
We close the chapter by considering the Prandtl number in Sec. 8.3.3.

8.3.1 Large-N expansion of the action

Before we actually turn to transport properties, it is useful to consider thermody-
namic quantities in the large-N formalism, because we can obtain an expression
for the scattering cross section that will enter the Boltzmann equation in the next
section. Usually, in a large-N approach one introduces Nf copies5 or ”flavors”
of the physical degrees of freedom of the system. In our case this extends the
fermionic field operators Ψ̂σ Ñ Ψ̂σ,a by an additional flavor index a P t1, 2, ... , Nfu.
In particular, this procedure assigns to every Feynman diagram an inverse power
of Nf , which in the limit Nf Ñ 8 allows to organize the expansion for the cor-
relation functions according to these Nf prefactors. Of course all diagrams with
the leading power of Nf have to be resummed. A convenient starting point for
large-N computations is provided by the coherent state path integral representa-
tion of the grand-canonical partition function Zpβ, µq (see the book by Altland and
Simons [154]). For the Fermi gas with Nf flavors it reads

Z pβ, µq �
» ¹

σ,a

Dψ̄σ,aDψσ,ae�
1
~Srψ̄σ,a,ψσ,as , (8.14)

where the ψσ,a denote the corresponding Grassmann variables of the fermionic
quantum fields. After promoting the action S for the single-channel model (2.26)
to a large-N version, it becomes

S � S0 � Sint �
β~»
0

dτ

»
d3x

!¸
σ,a

ψ̄σ,a px, τq
�
~Bτ � ~2∇2

2m
� µσ



ψσ,a px, τq

� ḡpΛq
Nf

¸
a,b

ψ̄�,a px, τq ψ̄�,a px, τqψ�,b px, τqψ�,b px, τq
)
. (8.15)

Note that we have rescaled the coupling constant by a factor 1{Nf to keep the
ratio between kinetic and interaction terms of the action fixed. Regarding trans-
formations in the new flavor space, the action is invariant under Spp2Nf q transfor-
mations, which generalizes the SUp2q-symmetry of the fermionic spin 1{2 degree of

5We reserve the variable N for the total particle number, which is proportional but not identical
to Nf .
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8.3 Heat conductivity of the unitary Fermi gas

freedom [1]. The original physical action without additional flavors is recovered by
setting Nf � 1.

We proceed by decoupling the quartic interaction term via a Hubbard-Stratonovich
transformation in the Cooper channel that in turn introduces the complex bosonic
field φ. Although we have not used any approximations so far, this channel will
certainly include the kind of ladder diagrams that have turned out to be important
in the Luttinger-Ward computations discussed in the previous chapters of this the-
sis. From a technical perspective, we interpret the Fermion-Fermion interaction of
the original action S as the standard solution of bosonic Gaussian integrals

1

N

»
Dφ�Dφ exp

�»
dx

�
Nf

ḡpΛqφ
�pxqφpxq �

¸
a

�
φpxqψ̄�,apxqψ̄�,apxq � h.c.

��� �

� exp

�
�� ḡpΛq

Nf

¸
a,b

»
dx ψ̄�,apxqψ̄�,apxqψ�,bpxqψ�,bpxq

�
� .

(8.16)

Recall that for large enough values of the cutoff Λ the bare coupling constant ḡpΛq
is negative according to the renormalization scheme eq. (2.29) and therefore the
integral over φ and φ� is convergent. Furthermore, we have defined the shorthand
notation x � px, τq and

³
dx � ³~β

0 dτ
³
d3x. N symbolizes the unimportant nor-

malization and will be omitted again in the following. Inserting this identity in the
combination of equations (8.14) and (8.15) only quadratic terms in the Fermion
fields ψσ,a and ψ̄σ,a remain in the partition function

Z �
»
Dψ̄σ,aDψσ,aDφ�Dφ e�

1
~SBFrψ̄,ψ,φ�,φs (8.17a)

SBFrψ̄, ψ, φ�, φs �
»
dx

�
� Nf

ḡpΛqφ
�pxqφpxq �

»
dx1

¸
a

Ψ̄apxqG�1px� x1qΨapx1q
�
,

(8.17b)

where the action now appears invariant under OpNf q transformations in flavor
space. Here Ψapxq � pψ�,apxq, ψ̄�,apxqq collects the fermionic variables within a
Nambu spinor and

G�1px� x1q � δpx� x1q
�

~Bτ � ~2∇2

2m � µ� �φpxq
�φ�pxq �~Bτ � ~2∇2

2m � µ�

�
(8.18)

denotes the matrix-valued, inverse Gorkov Green’s function. The signs in the G�1
22

element can be easily checked by using the anticommutation relations of Grassmann
variables tψσ,a, ψ̄σ1,bu � 0 � tψσ,a, ψσ1,bu and the fermionic antiperiodicity ψσ,apτ �
0q � �ψσ,apτ � βq, together with partial integration. Apart from being Gaussian
the path integral over the Grassmann fields factorizes in the flavor index and can
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Chapter 8 Transport properties of the unitary Fermi gas

thus be evaluated in closed form. The resulting purely bosonic partition function
reads

Z �
»
Dφ�Dφ e�

1
~SBrφ�,φs (8.19a)

SB � �Nf

»
dx

� |φpxq|2
ḡpΛq � T

V
Tr logG�1rφ�pxq, φpxqs

�
, (8.19b)

where Tr indicates a trace over the Nambu index. The number of flavors now
only occurs in the prefactor of the bosonic action, which in the limit of large
Nf " 1 allows for a controlled stationary phase expansion around the saddle point
of SB. The saddle point value xφy follows from δSB{δφ � 0 and describes the
physical order-parameter configuration. In the quantum critical regime T {µ " 1 the
expectation value of the Hubbard-Stratonovich field vanishes identically, since we
are deep in the symmetric phase in agreement with the critical threshold pT {µqc �
0.38 from Fig. 3.2. Expanding the action to quadratic order in the fluctuations φ
around xφy � 0 yields

SB

Nf
� ~V

»
d3k

p2πq3
¸
σ,n

log
�
�Gp0qσσ pk, ωnq

�
�
»

d3Q

p2πq3
1

β~
¸
n

|φ pQ,Ωnq |2 1

ḡpΛq

�
»

d3Q

p2πq3
1

β~
¸
n

|φ pQ,Ωnq |2
»

d3k

p2πq3
1

β

¸
m

Gp0q�� pk, ωmqGp0q�� pQ� k,Ωn � ωmq

�~V
»

d3k

p2πq3
¸
σ,n

log
�
�Gp0qσσ pk, ωnq

�
�
»

d3Q

p2πq3
1

β~
¸
n

|φ pQ,Ωnq |2
�

1

g
�M p0qpQ,Ωnq

�
,

(8.20)

up to corrections of order Opφ4q. Note that we have replaced the bare coupling con-
stant by the renormalized one via eq. (2.29), and we recognize the particle-particle
diagram M p0q pQ,Ωnq with bare Green’s function lines from eq. (4.33). There-
fore, we obtain for the propagator of the Hubbard-Stratonovich field the vertex
Γp0q pQ,Ωnq � p1{g �M p0qq, that is the geometric series of all particle ladder dia-

grams, whose legs are formed by Gp0qσσ . Furthermore, the two bare Green’s functions
in the saddle-point contribution Opφ0q, which originate from the diagonal elements
of the Gorkov Green’s function in the absence of a superfluid order parameter can

both be written in terms of the forward propagating Gp0qσσ pk, ωnq. The technical
procedure based on the correct choice of convergence parameters is explained in
detail in App. A of Ref. [147]. Here we argue that from a physical point of view
this term is to be expected in the given from, since the Nf � 8 contributions rep-
resents an ideal two-component Fermi gas, while interaction effects only appear at
finite Nf . With this Gaussian form of SB and the fact that away from the critical
region we have Re Γp0q pQ,Ωnq   0, we can perform the remaining path integral
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8.3 Heat conductivity of the unitary Fermi gas

from eq. (8.19a) and find for the grand potential Ωpµ, T q � �T logZ

Ω

Nf
� 2 Ωp0q � TV

Nf

»
d3Q

p2πq3
¸
n

log Γp0q pQ,Ωnq �OpN�2
f q . (8.21)

Here Ωp0q � �pp0qV denotes the noninteracting contribution from evaluating the
action at the trivial saddle point configuration, while the pressure of an ideal Fermi
gas is given in eq. (2.35). For the computation of the related standard Matsubara
sum and the momentum integral for Ωp0q we refer the reader to the book of Altland
and Simons [154].

The inclusion of higher order monomials of φ beyond the quadratic order in the
expansion of the action SB around the saddle point gives rise to contributions that
are suppressed by higher inverse powers of Nf . Diagrammatically, this can be most
easily verified by considering the exact Bose-Fermi theory from eq. (8.17), as has
been discussed also by Enss [109]. Since in this particular formulation of the model
the Bose propagator scales like N�1

f , while each closed Fermion loop introduces a
factor Nf , only the closed RPA loop diagrams (see Fetter and Walecka [67]) add
a contribution of Op1q to the partition function. The resummation of all these
fermionic loops is identical to the sum of particle-particle ladders Γp0q that appears
in the bosonic action SB.

Finally, let us return to M p0q pQ,Ωnq from equation (4.33). Simplifying also the
finite temperature parts will be quite helpful for the next chapter. In particular,
we can perform the angular integrals analytically, which gives rise to [109]

Γp0q pQ,Ωnq�1 � m

4π~2a
� m3{2

4π~3

c
εQ
2
� iΩn � 2µ

� m

2π~2Q

» 8

0
dp

p

eβpεp�µq � 1
log

�
iΩn � 2µ� εp � εQ�p
iΩn � 2µ� εp � εQ�p

�
.

(8.22)

For the scattering processes that influence the transport properties in the next
chapter, we need the vertex also in real frequencies iΩn Ñ Ω � i0�, where the
choice of the infinitesimal imaginary part ensures retarded scattering processes and
therefore causality. Since we have an analytical expression available, the analytic
continuation can be easily accomplished. In the following, the real frequency coun-
terpart of the vertex function is denoted by the T-matrix

T pQ,Ωq � Γp0qpQ, iΩn Ñ Ω� i0�q . (8.23)

Now we have gathered all the prerequisites from the large-N approach that are
necessary for the computation of the heat conductivity of the balanced unitary
Fermi gas in the quantum critical regime.
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8.3.2 Heat conductivity from Boltzmann equation

If we expose a physical system to a stationary temperature gradient ∇xT , it will
respond with a heat current density jQ. In a linearized description, applicable to
situations close to thermal equilibrium, the heat conductivity κ relates jQ and ∇xT
via Fourier’s law

jQ � �κ∇xT , (8.24)

provided that simultaneously the particle current vanishes jN � 0 [169,184], i.e. one
excludes convection. The goal of this paragraph is to determine κ in the quantum
critical regime for the unitary gas, which is not directly amenable to kinetic theory
because of the absence of well-defined quasiparticle excitations. In contrast, both in
the regimes βµ ! �1 and βµ " 1 one does not encounter this problem. In the first
case of a nondegenerate, dilute gas one can apply classical transport theory, while
deep in the superfluid regime transport can be described in terms of the phonon
modes [179]. In the case of βµ � 0, in turn, the large-N expansion justifies the
treatment with a Boltzmann equation, as we will discuss below.

In the standard statistical mechanics formulation the local particle and heat
current densities are given by

jN px, tq �
»

d3p

p2π~q3
p

m
fpx,p, tq (8.25a)

jQpx, tq �
»

d3p

p2π~q3
p

m
εpfpx,p, tq , (8.25b)

with the single-particle distribution function fpx,p, tq. Of course this formulation
for a quantum mechanical problem is only possible if the gradients and currents
vary on macroscopic length scale rather than on a microscopic one, where the
simultaneous measurement of position and momentum contradicts the Heisenberg
uncertainty principle [169]. In case of the unitary Fermi gas this does not really
imply a severe restriction, since we are interested in currents that vary on scales
that are large compared to the interparticle spacing. In a homogeneous, unitary gas
in thermal equilibrium the distribution function reduces to the isotropic momentum
distribution fpx,p, tq � feqppq � nF ppq, such that both currents vanish. However,
this function differs from the Fermi-Dirac distribution due to the strong interaction
effects that have to be taken into account nonperturbatively. As we have discussed
in detail in the previous chapters, one can treat the thermodynamic properties
with the Luttinger-Ward formalism. However, to obtain a simple estimate for the
heat conductivity, which requires to include at least weak nonequilbrium effects,
we use the large-N expansion from the preceding subsection. In this formulation
interactions are suppressed by inverse powers of Nf . In particular, the leading
interaction contribution from the NSR-like T -matrix acquires already a factor 1{Nf ,
see eq. (8.21). Therefore, also the self-energies, which still follow from (4.36),
are of order Op1{Nf q. This justifies the application of a Boltzmann equation to
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8.3 Heat conductivity of the unitary Fermi gas

compute the distribution function f , as has first been argued by Enss [109], since
the lifetime of the excitations is of order τσ � Nf � 1{ Im Σσσ. Moreover, the
excitations propagate freely between two subsequent scattering events (with 1{Nf

corrections to the bare dispersion from Re Σσσ) and finally only particle-particle
scattering has to be taken into account, since particle-hole diagrams are further
suppressed in 1{Nf . The Boltzmann equation that considers the time evolution of
the distribution function f1 � fpx1,p1, tq reads [169,184]

Bf1

Bt � 9x1 �∇xf1 � 9p1 �∇pf1 � � 1

N
I rf1s . (8.26)

The collision term on the right-hand side

� 1

Nf
Irf1s �

� 1

Nf

»
d3p2

p2π~q3
|p1 � p2|

m

»
dΩ

dσ

dΩ
rf1f2p1� f11qp1� f21q � p1� f1qp1� f2qf11f21s

(8.27)

describes the averaged gains and losses from scattering events 1� 2 Ø 11 � 21 with
other excitations in the presence of the Pauli blockade of occupied quasiparticle
states, where the indices refer to the position and momentum arguments of the
individiual excitations. Physically, the Pauli suppression is weakened considerably
by the attractive interactions of the unitary Fermi gas, because already feqppq is
no longer a free Fermi Dirac distribution nF ppq.

The differential cross section is related to the on-shell T-matrix from eq. (8.23)

dσ

dΩ
�

��� m

4π~2
T pQ � p1 � p2, ω � εp1 � εp2q

���2 , (8.28)

which only depends on the center-of-mass variables, as we have discussed in Sec. (4.5).
Note that the non-trivial dependence on the center-of-mass momentum and energy
already signals the presence of a background medium. The effect of the Pauli
blockade from the ladder diagrams can be found in Ref. [67]. This situation has to
be contrasted to an expansion around the nondegenerate limit, where the fugacity
z � exppβµq vanishes. In this case one recovers the vacuum scattering amplitude
f0pkq � p�1{a � ikq�1 in the T-matrix T pQ � 0, ω � ~2k2{m,µ � 0q � f0pkq,
where the implicit limit i0� ensures the correct poles structure with bound states
in the upper complex half plane.

In the following, we present a solution to the Boltzmann equation in the quantum
critical regime, which allows to determine κ. First, we make use of a very simple
ansatz for the distribution function, which gives rise to a first value of κ. Afterwards
we will include corrections to the approximation in order to obtain a better result
for the heat conductivity.
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Since the linear regime of eq. (8.24) exists only close to equilibrium, one expects
the local Fermi-Dirac function

nloc
F px,p, tq � 1

eβpxqpεp�µpxqq � 1
, (8.29)

with position-dependent temperature T pxq and chemical potential µpxq, that vary
slowly in space, to be a suitable ansatz for the distribution function. In a situation
without convection the pressure has to be spatially uniform, because otherwise a
mechanical net force acts on the particles, which creates a finite jN . Hence, we also
have omitted an average velocity of the Fermions that would appear in the form
upxq � p in the local Fermi-Dirac distribution. Furthermore, to really guarantee
jN � 0 we will choose ∇xµ appropriately below. To describe dissipation it is
not sufficient, however, to merely take a local equilibrium into account, because
of the fundamental property Irnloc

F s � 0 of the collision term in the Boltzmann
equation [169,184], which implies the absence of dissipation and therefore no well-
defined transport coefficients. Instead, we use the ansatz

fpx,p, tq � nloc
F px,p, tq � nF ppqp1� nF ppqqφppq , (8.30)

where φppq describes the deviations from local equilibrium, while the prefactor has
been chosen for later convenience. In particular, it vanishes exponentially in the
limits pÑ 0 and pÑ 8. Now we insert this ansatz into the Boltzmann equation
and use the semi-classical approximations 9x � p{m and 9p � �∇x ppT, µq � 0 for
the motion of the phase space elements of size p∆x,∆pq centered around px,pq.
This yields

nF pp1q p1� nF pp1qq p1

m

�
εp1 � µ

T 2
∇xT � 1

T
∇xµ



� � 1

Nf
Irφ1s , (8.31)

where we have expanded the left-hand side to linear order in the gradients of
the temperature ∇xT and the chemical potential ∇xµ. Within this order we can
replace T pxq and µpxq by their averages T and µ taken over the entire sample.
Furthermore, we consider both the gradients and the 1{Nf terms as small in the
sense that to first order no further interaction corrections to the Fermi distribution
appear in the streaming terms, while on the right-hand side we have replaced T pxq
and µpxq by T and µ. The linearized collision term reads

Irφ1s �
»
d3p2

p2πq3
|p1 � p2|

m

»
dΩ

dσ

dΩ
nF pp1qnF pp2q

�
1� nF pp11q

� �
1� nF pp12q

�
�
"
φ1 � φ2 � φ11 � φ21

*
,

(8.32)

where φ1 � φpp1q etc. The linearized collision operator has several general proper-
ties, which we state here without proof. The derivations are detailed in the books
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by Jäckle [184] and by Smith and Jensen [169]. In the space of deviation func-
tions tφu I is a linear, positive semi-definite and symmetric integral operator, i.e³
p φIrφs ¥ 0 and

³
p ψIrφs �

³
p Irψsφ. In addition, the five collision invariants ψi:

the particle number pi � 0q, the three momentum components pi � 1, 2, 3q and the
energy pi � 4q, which are guaranteed by the exact collision term, remain collision
invariants of the linearized operator. Technically, this means Irψis � 0 for all i.

Let us now turn to the streaming terms on the left-hand side of the linearized
Boltzmann equation. Since we have fixed the pressure p � const and the temper-
ature profile T pxq, it is convenient to express thermodynamic quantities in terms
of a local Gibb’s free enthalpy GpT pxq, N, pq � µpT pxq, pqN . Consequently, we
can write for the gradient of the chemical potential to first order in the thermal
gradient

∇xµpxq �
� Bµ
BT



p

∇xT � �s̃∇xT , (8.33)

where s̃ � S{N is the entropy per particle in global equilibrium. We can express
s̃ by the help of the grand potential ΩpT, µ, V q from the previous section. In par-
ticular, it is sufficient to consider only the noninteracting Nf � 8 limit, where
Ω Ñ Ωp0q � �pp0qV , since at next-to-leading order in Nf the effects of interactions
merely appear in the collision terms on the right-hand side of the Boltzmann equa-
tion. Using the form of the pressure pp0qpµ, T q from eq. (2.35) and the definition of
the polylogarithm (2.36) we find in the quantum critical regime µ ! T

s̃ � �
�
�
BΩp0q
BT

	
µ,V�

BΩp0q
Bµ

	
T,V

� 5Li5{2p�1q
2Li3{2p�1q �

5p4�?2qζp5{2q
2p4� 2

?
2qζp3{2q � 2.83344 . (8.34)

This is a pure number because in the quantum critical regime one has npµ �
0, T q � 2.67λ�3

T and S{V � 2.32nkB � T 3{2 [109]. Therefore, the total entropy
vanishes also at µ � 0 in the limit T Ñ 0, since the particle number NpT Ñ 0q
approaches zero in the vacuum state, in agreement with Fig. 2.3. Note that the
scaling with temperature follows quite generally from the scaling arguments of the
previous sections, while the given numerical prefactors follow from the leading order
Nf � 8. Without loss of generality we choose the temperature gradient to point
along the z-axis, such that the linearized Boltzmann equation (8.31) reads

nF pp1q p1� nF pp1qq
�
εp1 � T s̃

T



p1,z

m

BzT
T

� � 1

Nf
Irφ1s , (8.35)

where we have put µ � 0, which corresponds to the quantum critical regime.
A standard procedure in the context of the Boltzmann equation is to choose the

deviation φppq from local equilibrium proportional to the inhomogeneity on the
left-hand side. In fact, if one considers just a single ansatz function for φ, the
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determination of the transport coefficient from the Boltzmann equation reduces to
the computation of a single number instead of the solution of an integral equation,
as is discussed by Jäckle [184] based on the maximum principle for transport coef-
ficients. First, we will follow this simple approach here, too, but later on allow for
a more general form of φ, which gives corrections on the order of 10% to this first
solution. For now we set

φpp̂q � pp̂2 � s̃qp̂z , (8.36)

since the prefactor is irrelevant, as will become clear below. Moreover, we have
defined the dimensionless momentum

p̂ � 1?
2mT

p , (8.37)

which implies6 βεp � βp2{2m � p̂2. In this formulation the Fermi-Dirac distribu-
tion in the quantum critical regime automatically reads nF pp̂q � pexppp̂2q � 1q�1,
while the Boltzmann equation becomes

nF pp̂1q p1� nF pp̂1qqφpp̂1q
?

2mT

m

BzT
T

� � 1

Nf
Irφpp̂1qs . (8.38)

First of all, with the ansatz for φ from above, the particle current jN indeed vanishes
due to the given value of s̃ from eq. (8.34). This can be easily proven by inserting φ
into the definition (8.25a) and introducing standard polar coordinates. The radial
integral can be solved analytically by noting nF pp̂2qr1�nF pp̂2qs � �Bp̂2 nF pp̂2q and
the identity [67]» 8

0
dp̂ p̂n nF pp̂2q � 1

2

�
1� 2p1�nq{2

	
Γ

�
1� n

2



ζ

�
1� n

2



, n ¡ �1 , (8.39)

which is closely related to the µ � 0 case of the standard Fermi-Dirac integrals,
which yield polylogarithms [77]. The heat current in turn becomes

jQ � 2Nf

»
d3p

p2π~q3 εp
p

m
nF ppqr1� nF ppqsφpp̂q

� Nf

3π2

"
7 Γp5

2
qζp5

2
qp1� 2�3{2q � 5 Γp3

2
qζp3

2
qp1� 2�1{2q

*
mT 3

~3
êz

� ̂p0q � 2Nf
mT 3

~3
êz � 0.17718 � 2Nf

mT 3

~3
êz

� 1.11325 � 2Nf
T 2

~λ2
T

êz ,

(8.40)

6In this chapter we consider momenta rather than wave vectors, which is the typical notation
in the context of distribution functions. This explains the differences with respect to the
appearance of ~ compared to Chap. 7.
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8.3 Heat conductivity of the unitary Fermi gas

where êz is the unit vector along the z-axis. Consequently, the heat current and the
temperature gradient are aligned in parallel, as expected in an isotropic medium.
To determine κ we first multiply both sides of the Boltzmann equation (8.35) by
2Nfφpp̂1q{p2π~q3 and integrate over p1. Due to the vanishing particle current we
find

jQ � pBzT qêz � �2T 2

»
d3p1

p2π~q3φpp̂1qIrφpp1qs , (8.41)

which we rewrite by the help of Fourier’s law (8.24) as

κ � j2Q

2T 2
³ d3p1

p2π~q3φpp̂1qIrφpp1qs
. (8.42)

Now it remains to solve the integral in the denominator, where the collision integral
is given in eq (8.32). Since the momentum component pz is a collision invariant,
Irpzs � 0 and we can simplify the integral»

d3p1

p2π~q3φpp̂1qIrφpp̂1qs �
»

d3p1

p2π~q3 p̂
2
1 p̂1,zIrφpp̂1qs . (8.43)

The calculation of this integral is most easily accomplished in the center-of-mass
system, where the momenta of the four excitations read p1 � k � Q{2, p2 �
�k�Q{2, p11 � k1 �Q{2 and p12 � �k1 �Q{2. Since the scattering processes are
elastic and the single-particle dispersion is isotropic the magnitude of the relative
momenta is conserved |p1 � p2| � |p11 � p12|, such that k1 � k. Furthermore, we
define the short-hand notations x � cosr=pQ,kqs and x1 � cosr=pQ,k1qs. Then we
have for combination of the deviations from local equilibrium

φpp̂1q � φpp̂2q � φpp̂11q � φpp̂12q � k̂Q̂pxk̂z � x1k̂1zq , (8.44)

while the prefactor formed by the Fermi-Dirac distributions can be conveniently
written as [109]

nF pp1qnF pp2qp1� nF pp11qqp1� nF pp12qq �
1

4gpQ̂, k̂, xqgpQ̂, k̂, x1q (8.45)

with

gpQ̂, k̂, xq � cosh

�
k̂2 � Q̂2

4

�
� cosh

�
k̂Q̂x

	
. (8.46)

To compute the denominator we first represent it in dimensionless form»
d3p1

p2π~q3 φpp̂1qIrφpp̂1qs �
?
mT

~3

T

~

»
d3p̂1

p2πq3 φpp̂1qÎrφpp̂1qs , (8.47)
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which entails the dimensionless T-matrix

T pQ, kq � ~3

m3{2T 1{2 T̂ pQ̂, k̂q . (8.48)

The integral over the dimensionless collision term can now be written in terms of
the transformed momenta

»
d3p̂1

p2πq3 φpp̂1qÎrφpp̂1qs � 27{2
» 8

0

dk̂

p2πq3 2k̂4

» 8

0

dQ̂

p2πq3 Q̂
3

�����T̂
�
Q̂, 2k̂2 � Q̂2

2

������
2

�
»
dΩQ

»
dΩk

»
dΩk1

�
k̂2 � k̂Q̂x� Q̂2

4

��
k̂z � Q̂z

2

�
xk̂z � x1k̂1z

4gpQ̂, k̂, xqgpQ̂, k̂, x1q ,

(8.49)

where the additional factor of 27{2 originates from the definition of the momenta p̂ �
p{?2mT . Next we consider the integrals over solid angles related to the three vector
variables Q, k and k1 in the second line. Most conveniently, one first integrates
over the angles of the relative momenta. To this end, one introduces the unit vector
êQ � Q{Q parallel to the center-of-mass momentum to measure the polar angles of
the relative momenta. Afterwards, the final integration over the angular degrees of
freedom of Q is performed in the coordinate system êx, êy, êz, defined by ∇T � êz.
For the first integration we create a new orthonormal system ê1, ê2, êQ, where the
exact definition of the first two vectors turns out to be irrelevant. In this basis the
relative momenta become

k � k
�a

1� x2 cospϕkQqê1 �
a

1� x2 sinpϕkQqê2 � xêQ

	
(8.50a)

k1 � k
�a

1� x2 cospϕk1Qqê1 �
a

1� x2 sinpϕk1Qqê2 � xêQ

	
, (8.50b)

where ϕkQ and ϕk1Q denote the azimuthal angles of k and k1 in the coordinate
system ê1, ê2, êQ. Their z-components kz � k�êz � k cos θ and k1z � k1�êz � k cos θ1

in the original coordinate system can be written as

cos θ � cospϕQ � ϕkQq sin θQ
a

1� x2 � cos θQ x (8.51a)

cos θ1 � cospϕQ � ϕk1Qq sin θQ
a

1� px1q2 � cos θQ x
1 , (8.51b)

which is the cosine relation of spherical trigonometry [169]. Here ϕQ and θQ refer
to the azimuthal and the polar angle of Q with respect the coordinate system
êx, êy, êz, such that we have for the vector component Qz � Q cos θQ. Now we
insert these definitions into eq. (8.49). Fortunately, many terms vanish either due
to the azimuthal integrations or because of the symmetry of the function gpQ̂, k̂, xq,
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8.3 Heat conductivity of the unitary Fermi gas

defined in eq. (8.46). We arrive at the much shorter expression»
d3p1

p2π~q3 φpp̂1qIrφpp̂1qs � 1

p2πq3
» 8

0
dk̂ k̂7

» 8

0
dQ̂ Q̂4

�
�����T̂

�
Q̂, 2k̂2 � Q̂2

2

������
2 �
WpQ̂, k̂, 2qWpQ̂, k̂, 0q �WpQ̂, k̂, 2q2

�
,

(8.52)

where we have introduced the functions

WpQ̂, k̂, nq �
» 1

�1

dxxn

gpQ̂, k̂, xq (8.53)

for the averages over the polar angles. In particular, WpQ̂, k̂, nq � 0, if n odd,
while the results for n � 0 and n � 2 can be given in analytic form. With the
abbreviations a � 2k̂2 � Q̂2{2 and b � k̂Q̂, we have [109]

WpQ̂, k̂, 0q � �2 log
�
cosh

�
a�b

2 q� cosh�1
�
a�b

2

��
sinhpaqb (8.54a)

WpQ̂, k̂, 2q � �
2eapcothpaq � 1q

�
a3 � 3ab2 � aπ2 � 3b2 log

�
ea�eb

1�ea�b
�	

3b3

� 4eapcothpaq � 1q
�
bLi2p�eb�aq � bLi2p�ea�bq � Li3p�eb�aq � Li3p�ea�bq

�
b3

.

(8.54b)

Now the remaining radial integrals in eq. (8.52) have to be solved numerically.
Fortunately, we can directly use standard integration routines, since the hyperbolic
functions in the WpQ̂, k̂, nq give rise to a Gaussian suppression at large momenta,
which cannot be overcome by the residual terms and the T-matrix, that at most
diverge algebraically. Regarding the limit i0� in the latter, one can use a finite
imaginary part ε and decrease its size until convergence is reached. In practice, we
obtain a precision of 10�7 with ε � 10�8. All in all, we find»

d3p1

p2π~q3 φpp̂1qIrφpp̂1qs � 0.016316 , (8.55)

which implies for the heat conductivity of the unitary Fermi gas in the quantum
critical regime

κ � 1.70514N2
f

T

~λT
�OpNf q . (8.56)

This follows from inserting the integrated collision term into eq. (8.42), with the
current jQ given in eq. (8.40). Note that the leading order of κ carries a factor N2

f ,
which indicates the ill-defined notion of a transport coefficient in the absence of
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any interactions. In case of the shear viscosity, that has been obtained in a similar
approach by Enss [109], one finds in analogy

η � 3.214917
N2
f ~
λ3
T

�OpNf q . (8.57)

We reemphasize that the large-N expansion includes corrections from the finite
density of the medium, that are included even by the bare particle ladders in
the leading order T-matrix from eq. (8.23). For the high-temperature regime a
computation of κ, based on the Boltzmann equation with the vacuum scattering
cross section, yields at unitarity [185]

κcl � 225

64
?

2

T

~λT
� 2.485...

T

~λT
, (8.58)

which differs from the result in the quantum critical regime obtained here.
Recall that we have simply set the deviation from the local equilibrium φ pro-

portional to the inhomogeneity of the Boltzmann equation and the question arises
how strongly the value of the heat conductivity depends on this particular choice.
To improve the result we extend the ansatz for φ by further functions. To this end,
we introduce the scalar product

xχ|ψy :�
»

d3p̂

p2πq3 χpp̂q rnF pp̂q p1� nF pp̂qqs ψpp̂q, (8.59)

for dimensionless functions of the variable p̂. An expansion of φ is most conve-
niently performed in an orthonormal basis with respect to this particular bilinear
form. In other words, we have to find a set of polynomials χpiqpp̂q, i P N0 of
arbitrary degree that satisfy

xχpiq|χpjqy � δij @ i, j . (8.60)

Since the temperature gradient is the only term that breaks the rotational invari-
ance of the system, we will only consider basis functions of the form

χpiqpp̂q � Ni p̂z
�
d
piq
0 � d

piq
1 p̂2 � d

piq
2 p̂4 � ...� d

piq
i p̂2i

	
, (8.61)

with real coefficients that describe currents along the z axis. Here Ni denotes
the normalization, while the function is analytic in p̂, apart from the factor p̂z,
and we have the freedom to set the coefficient of the highest power to unity, i.e

d
piq
i � 1 in every χpiq. This enables us to compare the results more directly to the

previous computation. Note that these functions by construction have vanishing
overlap with the collision invariants φ � 1 for the particle number conservation,
the momentum components φ � p̂x,y and the isotropic energy φ � p̂2. Therefore,
also the components of the particle current jN, x and jN, y vanish. The remaining
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8.3 Heat conductivity of the unitary Fermi gas

current jN, z will be considered below. To compute the coefficients d
piq
j one first

calculates the scalar products of the χpiq, which can be done analytically by the help
of eq. (8.39). Subsequently, one demands the orthogonality of the basis functions,
which results in a system of linear equations for the coefficients. In practice, we
can take into account only a finite number of the χpiq, however, when one extends
the truncated set the previously determined coefficients do not change, due to the
mutual orthogonality of the χpiq. We use the five polynomials of smallest degree

χp0qpp̂q � 10.7907p̂z

χp1qpp̂q � 6.71951p̂z
��s̃� p̂2

�
χp2qpp̂q � 2.50655p̂z

�
10.734� 7.53193p̂2 � p̂4

�
χp3qpp̂q � 0.675374p̂z

��51.0212� 53.6366p̂2 � 14.1822p̂4 � p̂6
�

χp4qpp̂q � 0.142871p̂z
�
292.171� 409.854p̂2 � 162.174p̂4 � 22.8065p̂6 � p̂8

�
,

(8.62)

which entails a very good convergence of the heat conductivity. Quite impor-
tantly, the function χp0q represents the collision invariant p̂z. The exact solution
to the Boltzmann equation, which includes arbitrarily many basis functions can
therefore be written as a unique linear combination

φpp̂q �
8̧

j�1

cj χ
pjqpp̂q , (8.63)

which excludes χp0q, because the orthogonality of the basis vectors will ensure
jN, z � 0. Consequently, the particle current vanishes, as requested by the definition
below eq. (8.24).

Within this formulation for the function space the Boltzmann equation itself can
be written as

�
nF pp̂2

1q
�
1� nF pp̂2

1q
�� χp1qpp̂1q

N1

?
2mT

m

BzT
T

� � 1

Nf

¸
j

cjIrχpjqpp̂1qs . (8.64)

Multiplying both sides of the equation with χpiq for i ¥ 1 (i � 0 yields only a trivial
statement about the momentum conservation) and integrating over

³
d3p̂1{p2πq3

transforms the Boltzmann equation into a linear equation for the vector c �
pc1, c2, c3, ....q, which reads

?
2BzT

N1

?
mT

ê1 � � 1

Nf

4T

~
A � c . (8.65)

On the left-hand side, where only the first entry yields a nonvanishing contribution,
we have profited again from the orthogonality of the basis functions. The compo-
nents of the dimensionless matrix A, where the prefactor arises from making the

203



Chapter 8 Transport properties of the unitary Fermi gas

internal momentum integral over p2 dimensionless, contain the integrals

Ai,j �
»

d3p̂

p2πq3 χ
piqpp̂1q Î

�
χpjqpp̂1q

�
. (8.66)

These can be computed like above, in the center-of-mass frame. Due to the higher
degree of the polynomials they now also include higher order angular averages
WpQ̂, k̂, 2nq with n ¡ 1. The latter can be calculated analytically, for example
with Mathematica. The remaining integrals over the Q̂ and k̂ require a numerical
evaluation, however, the integrands still decay exponentially and can be integrated
with standard routines. Since the collision term of the linearized Boltzmann equa-
tion is in general a positive, symmetric operator [169, 184] also the matrix A is
symmetric with positive diagonal components. If one truncates the basis at a max-
imal index imax, A reduces to an imax�imax matrix. Including the indices 1 ¤ i ¤ 4
and 1 ¤ j ¤ 4, we find

A �

�
���

0.736699 �0.279182 0.158146 �0.0969151
�0.279182 1.09841 �0.472149 0.274414
0.158146 �0.472149 393.907 �0.572904
�0.0969151 0.274414 �0.572904 231.815

�
��
 . (8.67)

To check the dependence of κ on imax ¤ 4, we can solve the system of equations
for a basis of up to four functions by taking out the corresponding square matrix
from the left upper corner of A. For convenience, we absorb all the dimensionful
quantities in a redefinition of the coefficients

c � Nf
λT BzT
4
?
πT

ĉ , (8.68)

for which we find

imax � 1 : ĉ � p�0.202010q
imax � 2 : ĉ � p�0.223541,�0.056817q
imax � 3 : ĉ � p�0.223543,�0.056808, 0.000022q
imax � 4 : ĉ � p�0.223544,�0.056802, 0.000022,�0.000026q .

(8.69)

By comparing the coefficients for different imax, we observe that the leading order
coefficients ĉ1,2,3 are well converged. Furthermore, ĉ1 is the dominant index, while
the higher components decrease quickly. Nevertheless, taking more than one basis
vector into account changes ĉ1 by an amount of 10%, which will affect the heat
conductivity in a similar manner. Since the result for ĉ1 appears to be well con-
verged, we do not continue to consider polynomials with higher powers, because
this coefficient completely determines the heat current

jQ, z � 2Nf

»
d3p

p2π~q3 εp
pz
m
nF ppq p1� nF ppqq c1χ

p1qpp̂q � N2
f 4
?
πĉ1ĵ

p0q
Q

T

~λT
BzT .
(8.70)
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Fourier’s law (8.24) allows us to read off the heat conductivity from the prefactor.
While we recover the result (8.56) in case of imax � 1, the inclusion of higher order
polynomials entails the heat conductivity

κ � 1.8869N2
f

T

~λT
�OpNf q , (8.71)

which mirrors the growth of the coefficient ĉ1. The fact that κ increases within
this larger basis space is consistent with the maximum principle for the transport
coefficients [169,184].

8.3.3 The Prandtl number of the unitary gas in the quantum critical
regime

The Prandtl number Pr is quite generally defined as the ratio of the shear viscosity
and the heat conductivity [169,184]

Pr � ν

DT
� ηcp
κnm

, (8.72)

where ν is the kinematic viscosity ν � η{pnmq and DT � κ{pnmcpq is the ther-
mal diffusion constant that appears in the heat diffusion equation BtT px, tq �
DT∇2T px, tq. The specific heat cp per volume at constant pressure is given by

cp � T

V

�BS
BT



T,N

. (8.73)

Using the scale invariance of the resonant gas p � 2{3ε we have S � 5pV {2T �
µN{T , which follows from Ω � U � TS � µN � �pV . Then we can calculate the
specific heat at fixed p, which yields

cp � � S

V T
� 5p

2V

�BV
BT



N,p

�
� Bµ
BT



p

n � � 5p

2n

� Bn
BT



p

, (8.74)

after setting µ � 0. Notice, that one should not discard the µ term in the expression
for the entropy above directly, since its derivative pBµ{BT qp � �S{N does not
vanish but reduces instead to eq. (8.34). With this identity we obtain as the final
result to leading order in Nf

cp � � 5p

2n

�� Bn
BT



µ

�
�Bn
Bµ



T

� Bµ
BT



p

�
� � 5p

2n

�� Bn
BT



µ

�
�Bn
Bµ



T

s̃

�

� 3.20873
Nf

λ3
T

.

(8.75)

To obtain the numerical value one uses the pressure and the density of the ideal
Fermi gas with h � 0 from eqs. (2.35) and (5.8), which represent the Nf Ñ 8
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limit, where the system consists of Nf identical copies of noninteracting Fermions
according to eq. (8.21) for the large-N grand potential. With the result for the
shear viscosity by Enss [109], given in eq. (8.57), we find for the Prandtl number
of the unitary gas in the quantum critical regime

Pr � 0.5686�OpN�1
f q , (8.76)

where we have inserted the value for κ from eq. (8.71) derived from the extended
ansatz for the distribution function. Note that the leading order contribution is in-
dependent of the number of flavors, since both transport coefficients scale quadrat-
ically with Nf , while the density in the denominator of the Defintion (8.72) cancels
the factor of Nf in cp. In case of the simpler ansatz with a single polynomial, that
led to eq. (8.56), one obtains Pr � 0.6292 �OpN�1

f q , which is closer to the value

of the nondegenerate gas Prcl � 2{3 [169, 184]. Since the shear viscosity has been
computed with a single ansatz function, the large-N Boltzmann result will increase,
if one includes also higher order polynomials for η. However, the estimated growth
is about 2% -3% such that the result remains below Prcl [175]. In fact, the large-N
approach does take into account finite-density corrections, as discussed above, and
we therefore do not expect to recover the result from the regime of small fugacities
z � exppβµq Ñ 0, where a virial expansion is possible. Braby et al. [185] indeed
obtain Pr � 2{3 in the high-temperature limit from the Boltzmann approach with
the vacuum cross section. They also compute the Prandtl number at smaller T
and for arbitrary scattering lengths, where they obtain values larger than Prcl for
all parameters in the absence of the medium.

Quite remarkably, the Prandtl number is also connected to the question whether a
gravity dual in the sense of an AdS-CFT correspondence can be constructed for the
unitary Fermi gas, which is symmetric under conformal transformations. However,
the mapping to a gravitational description so far has only been established for
Lorentz-invariant, conformal field theories. As argued by Rangamani et al. [186]
the construction of a gravity dual for a nonrelativistic conformal field theory, like
the unitary gas, entails Pr � 1. Due to the discrepancy with the result Pr � 0.57
obtained here, the existence of a gravity dual for the unitary gas seems to be rather
unlikely, but of course it cannot be ruled out as long as higher order corrections
remain unknown.
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Conclusion

In this thesis we have studied the thermodynamics of a spin-imbalanced Fermi
gas in the vicinity of an open-channel dominated Feshbach resonance. Based on a
Luttinger-Ward formalism we have obtained quantitative results for the universal
scaling functions of the thermodynamic quantities in the symmetric phase T ¥
Tc both for finite and infinite scattering length a, which arise from the strongly-
coupled quantum critical point at 1{a � 0 and vanishing chemical potentials [1].
Furthermore, we have determined the phase boundary to the symmetry-broken
phase, where we have detected either an instability to a homogeneous superfluid
or to a spatially periodic FFLO superfluid, depending on the temperature, the
scattering length and the Zeeman field h. Regarding the first, the extrapolation to
zero temperature yields the universal value ph{µqc � 1.09� 0.05 for the Clogston-
Chandrasekhar limit of the unitary gas. The phase boundary of the normal-FFLO
transition extends for sufficiently strong h and low enough temperatures beyond the
unitary limit also to positive scattering lengths in agreement with the qualitative
predictions by Son and Stephanov [2]. At unitary we obtain the universal ratio
ph{µqFFLO � 1.28 � 0.15 the ground state phase transition. The largest critical
temperatures of Tc � 0.03εF are encountered on the fermionic side of the crossover
in the regime v Á �1, where the order-parameter varies typically on the scale
QFFLO � 0.1kF .

The Luttinger-Ward formalism allows to include the strong interactions close
to infinite scattering length to all orders, which gives rise to a Schwinger-Dyson
equation for the spin-dependent single-fermion Green’s function Gσσ that we have
solved fully self-consistently. For the numerical computations we both have devel-
oped a discrete Fourier transform that uses a spline interpolation of up to quintic
order and moreover have also applied a logarithmic Fourier transformation. The
mathematical properties of the latter have been investigated in further detail in this
thesis. We have proven that the LFT convergences to the exact result exponentially
fast in the number of grid points, provided that the function under consideration is
analytic in a strip of finite width around the real axis of the logarithmic variable.
Furthermore, the choice of the trade-off parameter kp allows to treat also Fourier
transforms numerically that are only defined in the sense of generalized functions.

Apart from thermodynamic quantities, we have considered transport properties
of the balanced unitary gas. We present Luttinger-Ward results for the scaling
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functions of the shear viscosity fη. Afterwards, we compute the heat conductivity
κ in the quantum critical regime T " µ within a large-N expansion. The latter
allows to apply a Boltzmann equation, which takes the presence of a finite density
into account. Within a suitable set of basis functions we obtain to leading order
in the number of flavors Nf κ � 1.8869N2

fT {p~λT q and for the Prandtl number

Pr � 0.5686, which is below the classical result Prcl � 2{3.
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Appendix A

Outlook on the implementation of
Luttinger-Ward formalism in the
symmetry-broken phase

In this appendix we summarize the general properties of the anomalous Green’s
functions of the spin-imbalanced Fermi gas that appear below Tc. Then we briefly
derive their mean-field forms both in pk, ωnq and pk, τq space, which provide a start-
ing point for the self-consistent Luttinger-Ward computations in the symmetry-
broken phase, discussed afterwards. In particular, their asymptotic behavior will
require an extension of the subtraction schemes discussed in Chap. 7. To close the
appendix we give a short outlook on the self-consistent loop.

A.1 General properties of the anomalous propagators

Recall the Definition (4.6) of the anomalous Green’s functions

Fσσ̄px� x1, τ � τ 1q � �
A
T
�
Ψ̂σ px, τq Ψ̂σ̄

�
x1, τ 1

��E
F�σσ̄px� x1, τ � τ 1q � �

A
T
�
Ψ̂:
σ px, τq Ψ̂:

σ̄

�
x1, τ 1

��E
,

(A.1)

which suggests that there are four new components of the single-particle Green’s
function G. Fortunately, not all of them are independent, but can be expressed
instead in terms of a single Gorkov Green’s function

F px, τq � F�� px, τq , (A.2)

whereas for the remaining spin combinations the following identities hold

F��� px, τq � pFp�x, τqq� (A.3a)

F�� px, τq � �Fp�x,�τq (A.3b)

F��� px, τq � � pFpx,�τqq� . (A.3c)

Regarding the first and last equation, it will turn out that within our approxima-
tions all anomalous functions can be chosen real, such that the complex conjugate
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is inconsequential. Note however, that in the presence of finite spin imbalance
the identification F�� px, τq � �F px, τq due to spin-singlet pairing, which has been
used in the previous work on the Luttinger-Ward theory for the balanced BCS-BEC
crossover [37,144,150] does not hold and we have to stick to the more general equa-
tions given above. These identities can be derived easily from the definitions (A.1).
Here we prove the general relation between F�� and F in equation (A.3b), since
the spin-imbalanced case usually is not discussed in standard textbooks like Fetter
and Walecka [67] or Abrikosov, Gorkov and Dzyaloshinsky [139]. To this end, we
first make use of the spatial homogeneity and shift the position argument, before
we use the cyclic properties of the trace:

F�� px, τq ��1

Z

"
θpτqTr

�
e�βHe

τ
~HΨ̂Ópxqe�

τ
~HΨ̂�p0q

�

� θp�τqTr
�
e�βHΨ̂�p0qe

τ
~HΨ̂Ópxqe�

τ
~H

�*

��1

Z

"
θpτqTr

�
e�βHe

τ
~HΨ̂Óp0qe�

τ
~HΨ̂�p�xq

�

� θp�τqTr
�
e�βHΨ̂�p�xqe

τ
~HΨ̂Óp0qe�

τ
~H

�*

��1

Z

"
θpτqTr

�
e�βHΨ̂Óp0qe�

τ
~HΨ̂�p�xqe

τ
~H

�

� θp�τqTr
�
e�βHe�

τ
~HΨ̂�p�xqe

τ
~HΨ̂Óp0q

�*
�� F��p�x,�τq � Fpr, β � τq .

(A.4)

In the very last step we have make use of the rotational invariance and have replaced
�x by r � |x|. The remaining two identities follow analogously. A convenient way
to summarize all components of the Green’s function G is to arrange them in
a Nambu structure, which is indicated by the line below the symbol. Here the

Nambu spinor Φ �
�

Ψ̂�, Ψ̂
:
�, Ψ̂�, Ψ̂

:
�

	
contains all four field operators, in contrast

to the spinor with two components that we have used for the large-N expansion
of the action of the spin-balanced system, see Sec. 8.3.1. In this extended basis G
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A.2 Green’s functions at the mean-field level

reads

G px, τq � � @
T
�
Φ px, τqΦ:p0, 0q�D

�

�
���
G�� px, τq F px, τq 0 0
pFp�x, τqq� �G��p�x,�τq 0 0

0 0 G�� px, τq �Fp�x,�τq
0 0 �pFpx,�τqq� �G��p�x,�τq

�
��
 .

(A.5)

The upper and lower block-diagonal submatrices can be exchanged by flipping all
spin indices with the help of eq. (A.3c). After transforming G px, τq from equa-
tion (A.5) to momentum and Matsubara frequeny space, we obtain

G pk, ωnq ��
���
G�� pk, ωnq F pk, ωnq 0 0
pFpk,�ωnqq� �G��p�k,�ωnq 0 0

0 0 G�� pk, ωnq �Fp�k,�ωnq
0 0 �pFp�k, ωnqq� �G��p�k,�ωnq

�
��
 .

(A.6)

Retaining the spin indices, we extract the following exact relations between the
interacting anomalous Green’s in momentum and Matsubara frequency space from
the Nambu Green’s function G pk, ωnq

F�σ̄σ pk, ωnq � pFσσ̄pk,�ωnqq� (A.7a)

Fσ̄σ pk, ωnq � �Fσσ̄p�k,�ωnq . (A.7b)

As a short-hand notation we introduce furthermore

G �
�
Gp1q 0

0 Gp2q



. (A.8)

Explicit expressions for G, that satisfy all these general properties, arise within
BCS-mean-field theory. Since the latter provides a starting point for the self-
consistent Luttinger-Ward computations in the symmetry-broken phase, we will in
the following derive explicitly the mean-field form of G in the presence of a finite
Zeeman field.

A.2 Green’s functions at the mean-field level

To obtain the equations of motion for G on the mean-field level, we follow the
derivation given in Ref. [67]. First, we factorize the quartic interaction operator V̂
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Appendix A Luttinger-Ward formalism in the symmetry-broken phase

of the single-channel Hamiltonian (2.26) via

V̂ � ḡ

»
d3x Ψ̂:

�pxqΨ̂:
�pxqΨ̂�pxqΨ̂�pxq

� ḡ

»
d3x xΨ̂:

�pxqΨ̂:
�pxqyΨ̂�pxqΨ̂�pxq � ḡ

»
d3x Ψ̂:

�pxqΨ̂:
�pxqxΨ̂�pxqΨ̂�pxqy

� ḡ

»
d3xxΨ̂:

�pxqΨ̂:
�pxqyxΨ̂�pxqΨ̂�pxqy

� ∆�
»
d3x Ψ̂�pxqΨ̂�pxq �∆

»
d3x Ψ̂:

�pxqΨ̂:
�pxq �

|∆|2
ḡ

�: V̂MF ,

(A.9)

where we have inserted the definition of the superfluid gap ∆ � ḡxΨ̂�pxqΨ̂�pxqy �
�ḡxΨ̂�pxqΨ̂�pxqy from eq. (4.7). The final form of the mean-field operator has then
been obtained by making use of the spatial homogeneity of the system, which leads
to a position-independent expectation value ∆. Note that this simplification dis-
cards any FFLO-type order. Like in the study of the normal phase, our theory
will only be able to detect an instability of the homogenous superfluid towards an
inhomogeneous superfluid phase by a divergence at finite Q � 0 for Ωn � 0 in
one of the eigenvalues of matrix-valued vertex function ΓpQ,Ωn � 0q in Nambu
space, see eq. (A.25) below. The spatial structure of the order parameter, which
requires to determine the anomalous propagator F pk, ωnq as a function of a general
momentum variable k, including the angular coordinates (see the paper by Larkin
and Ovchinnikov [28] from 1964) remains beyond the scope of our Luttinger-Ward
approach. In the construction of VMF we have only taken into account quadratic
terms proportional to the anomalous expectation values, since the Hartree contri-
butions, formed by the diagonal parts of the Green’s function, vanish anyway in
the zero-range limit Λ Ñ8, as discussed in Sec. 4.4.2.

Substituting V̂ by V̂MF yields the quadratic Hamiltonian1

HMF �
¸
σ

»
d3x Ψ̂:

σpxq
�
�~2∇2

2m
� µσ



Ψ̂σpxq

�∆�
»
d3x Ψ̂�pxqΨ̂�pxq �∆

»
d3x Ψ̂:

�pxqΨ̂:
�pxq �

|∆|2
ḡ

,

(A.10)

that determines the linear mean-field equations of motion for the fermionic field
operators. They are obtained from the Heisenberg equations in imaginary time

1The electronic problem may also include the minimal coupling of the motional degrees of free-
dom to a magnetic vector potential Apxq, that is responsible for the Meissner effect and the
formation of vortex lattice in type II superconductors, see Ref. [67].
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A.2 Green’s functions at the mean-field level

~ Bτ Ψ̂σ � rHMF, Ψ̂σs or ~ Bτ Ψ̂:
σ � rHMF, Ψ̂

:
σs, respectively, and read

~
B
Bτ Ψ̂σ px, τq � �

�
~2∇2

2m
� µσ



Ψ̂σ px, τq �∆σΨ̂:

σ̄ px, τq (A.11a)

~
B
Bτ Ψ̂:

σ px, τq � �
�
~2∇2

2m
� µσ



Ψ̂:
σ px, τq �∆�σ̄Ψ̂σ̄ px, τq , (A.11b)

where we have identified � with �1 and � with �1. The equations of motion for
all the components GMF

σσ px, τq, FMF
σσ̄ px, τq and F�MF

σσ̄ px, τq of the Green’s function
at the mean-field level can now be calculated by taking the τ derivative of the
definitions (4.2) and (4.6), while the time-derivative of the operators is replaced by
the set of equations (A.11). This results in�

�~ BBτ �
�
~2∇2

2m
� µσ


�
GMF
σσ px, τq �∆σF�MF

σ̄σ px, τq � ~ δpτqδpxq (A.12a)�
~
B
Bτ �

�
~2∇2

2m
� µσ̄


�
F� MF
σ̄σ px, τq �∆�σ GMF

σσ px, τq � 0 . (A.12b)

The Dirac δ distributions originate, as usual in equations of motions for Green’s
functions, from the τ derivative and the equal-time anticommutation relations (4.1).
Note that our order parameter carries an additional factor p�1q in comparision to
Ref. [67], where the Hamiltonian is defined with the coupling constant�ḡ. The time
evolution of FMF

σσ̄ px, τq in turn is related to the reversed normal Green’s functions
GMF
σσ p�x,�τq�

~
B
Bτ �

�
~2∇2

2m
� µσ̄


�
FMF
σσ̄ px, τq �∆σ GMF

σ̄σ̄ p�x,�τq � 0 . (A.13)

To solve these coupled, linear differential equations, we Fourier transform them
to momentum and frequency space, which yields algebraic equations that allow to
extract the final mean-field Green’s functions. As a result, we find

GMF
σσ pk, ωnq � pi~ωn � ξk,σ̄q

pi~ωn � ξk,σq pi~ωn � ξk,σ̄q � |∆|2

� �pi~ωn � ξk,σ̄q
~2ω2

n � 2hσi~ωn � E2
k � h2

(A.14a)

F�MF
σ̄σ pk, ωnq � σ∆�

pi~ωn � ξk,σq pi~ωn � ξk,σ̄q � |∆|2

� �σ∆�

~2ω2
n � 2hσi~ωn � E2

k � h2
(A.14b)

FMF
σσ̄ pk, ωnq � σ∆

pi~ωn � ξk,σq pi~ωn � ξk,σ̄q � |∆|2

� �σ∆

~2ω2
n � 2hσi~ωn � E2

k � h2
, (A.14c)
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with the additional definitions ξk � εk � µ and Ek �
b
ξ2
k � |∆|2, which is the

standard dispersion relation of Bogoliubov quasiparticles in BCS theory. In the
case of vanishing Zeeman field these results agree with the Nambu-Gorkov Green’s
functions in Ref. [67], up to the additional phase exppiπq � �1 assigned to the
order-parameter. Furthermore, the anomalous Green’s functions are only even in
ωn, if h � 0, but they satisfy the exact relations in eq. (A.7b). Consequently, only
for h � 0, where ξk,σ � ξk � ξk,σ̄, the simplified relation Fσ̄σ pk, ωnq � �Fσσ̄ pk, ωnq
holds, as mentioned above.

Recall the subtraction scheme for the normal phase from Chap 7, where the

bare Green’s function Gp0qσσ gives rise to the problematic UV behavior, which has
to be separated to solve the self-consistent loop numerically. In the symmetry-

broken phase the mean-field Green’s functions are the equivalent of Gp0qσσ pk, ωnq,
since the latter is exactly recovered within BCS theory in the case ∆ � 0. We
note the asymptotics GMF

σσ pk, ωnq � 1{ωn for |ωn| Ñ 8, which is identical to the

scaling of Gp0qσσ , while FMF
σσ̄ pk, ωnq � 1{ω2

n and FMF
σσ̄ pk, ωnq � 1{ω2

n. Regarding the
self-consistent computation of the Green’s function G below Tc, the fact that the
diagonal parts show the same power-law behavior for large Matsubara frequencies
allows to reuse large parts of the subtraction scheme developed for the normal
phase, whereas the faster decay of the anomalous Green’s function poses a much
easier problem with merely two additional subtractions (see below).

Moreover, we can express these functions in terms of a Dyson equation at the
mean-field level

GMF pk, ωnq�1 � Gp0q pk, ωnq�1 � ΣMF pk, ωnq (A.15)

with the bare Green’s function in Nambu space

Gp0q pk, ωnq � diag
�
Gp0q�� pk, ωnq ,�Gp0q�� p�k,�ωnq,Gp0q�� pk, ωnq ,�Gp0q

�� p�k,�ωnq
�
.

(A.16)

and the constant mean-field self-energy

ΣMF pk, ωnq �

�
���

0 ∆ 0 0
∆� 0 0 0
0 0 0 �∆
0 0 �∆� 0

�
��
 . (A.17)

Like in the normal phase, also in the case of finite ∆ the Fourier transformation
to imaginary time can be performed in closed form by using Matsubara sums and
contour integrals. A concrete example of the calculation is provided in Appendix B.
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A.3 Luttinger-Ward approach with Nambu structure

The mean-field Green’s functions in imaginary time read for τ ¡ 0

GMF
σσ pk, τq � � 1

2

�
1� ξk

Ek



e�pEk�σhqτ{~

�
1� nF pEk � σhq�

� 1

2

�
1� ξk

Ek



epEk�σhqτ{~nF pEk � σhq (A.18a)

FMF
σσ̄ pk, τq � � σ∆

2Ek

�
e�pEk�σhqτ{~

�
1� nF pEk � σhq�� epEk�σhqτ{~nF pEk � σhq

�
(A.18b)

F�MF
σ̄σ pk, τq � �σ∆�

2Ek

�
e�pEk�σhqτ{~

�
1� nF pEk � σhq�� epEk�σhqτ{~nF pEk � σhq

�
.

(A.18c)

In contrast to the normal fluid GMF
σσ pk, ωnq involves excitations with energies that

are given by the positive or negative BCS quasiparticle energy �Ek shifted by
the Zeeman field h. Negative imaginary times follow again from the anti-periodic
boundary conditions (4.5) of fermionic Green’s functions. Finally, we note that the
symmetry Fσσ̄pk, ωnq � �Fσ̄σ pk, ωnq, which arises in the balanced case from the
spin-singlet pairing, entails in an isotropic system the additional relation Fσσ̄pk, β�
τq � �Fσσ̄ pk, τq. This follows from the general properties of the Gorkov Green’s
functions and can be easily checked for FMF

σσ̄ pk, τq.

A.3 Luttinger-Ward approach with Nambu structure

A.3.1 Feynman rules

We summarize the Feynman rules in the symmetry-broken phase both in real and
momentum space in Figure A.1. Unlike their normal counterparts, the anomalous
Green’s function Fσσ̄ px, τq links points of opposite spin. Moreover, since it is the
expectation value of two annihilators Ψ̂σ, its particle flow is directed outwards at
both endpoints of the line. Analogously, F�σσ̄ px, τq shows a purely inward flow.
Nevertheless, each end point of every interaction line has a definite spin index with
one creation and one annihilation operator. Therefore, each of these points has one
line of incoming and one of outgoing particle flow.

A.3.2 Ladder approximation for the superfluid phase

The first order diagrams in the symmetry-broken state also admit a Fock diagram.
Whereas the Hartree diagram vanishes in the Λ Ñ 8 limit, the Fock diagram
remains finite, because the gap parameter itself has to be renormalized according
to equation (4.8). As a result, we find an additional mean-field contribution to the
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Figure A.1: The Feynman rules, including the anomalous propagator.

grand-potential

ΩF � � ḡpΛq
2

»
d3x F��

�
0, τ � 0�

�
F���

��0, τ � 0�
�

� ḡpΛq
2

»
d3x F��

�
0, τ � 0�

�
F���

��0, τ � 0�
� � � |∆|

2

ḡpΛqV ,
(A.19)

where the volume V ensures that ΩF is an extensive quantity. In fact, this term
is identical to the constant contribution to the mean-field potential V̂MF (A.9) and
gives rise to the mean-field Dyson equation (A.15), when one computes the self-
energy via δΩF {δG.

Regarding the higher order diagrams, we follow the procedure introduced by
Haussmann [150] and consider ladders of arbitrary length with identical Green’s
functions in both legs between any two subsequent rungs. This admits four building
blocks for the ladder diagrams. First of all, we have the combination G��G�� with
back and forward propagating flows, which is the generalization of the particle-
particle bubble χ pQ,Ωnq from the normal phase above Tc. Furthermore, we have
to consider the purely anomalous pair propagators, which consist either of the
combination F�� F�� or F��� F���. These two combinations are not invariant under
a gauge transformation themselves but can be closed in a gauge-invariant manner,
which yields admissible contributions to the grand potential ΩrGs. Notice that Ω
itself must not depend on the specific choice of the phase of the order parameter, as
it is directly related to the pressure. Combinations of a diagonal and an off-diagonal
Green’s functions between two adjacent rungs are forbidden by the constraints
on the spin and Nambu indices, whereas pairs of Fσσ̄F:σ̄σ can only be closed by
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A.3 Luttinger-Ward approach with Nambu structure

exchange ladders. Their momentum structure resembles particle-hole ladders in
the normal phase and cannot be described in terms of the center-of-mass variables
only and therefore they have to be neglected. Formally, the four fundamental
blocks taken into account for the particle-particle ladders can be organized in a
4 � 4 matrix for the bubble diagram in Nambu space, which in the presence of
finite h reads

χ pQ,Ωnq �
�
χp1q pQ,Ωnq 0

0 χp2q pQ,Ωnq


. (A.20)

Due to the spin symmetry of the interaction potential both 2 � 2 components of
the particle-particle bubble coincide, i.e. χp1q pQ,Ωnq � χp2q pQ,Ωnq, where

χ
p1q
αβ pQ,Ωnq �

»
d3k

p2πq3
�

1

β

¸
m

G
p1q
αβpk, ωmqGp2q

αβpQ� k,Ωn� ωmq
�
, (A.21)

while the 2 � 2 Green’s functions Gp1,2q are defined in eq. (A.8). Note that the
approximation described above entails a component-wise product without summa-
tion over the Nambu indices α, β � 1, 2 on the right-hand side. The resulting
Luttinger-Ward functional ΦrGs in the presence of a superfluid order parameter is
topologically equivalent to Fig. 4.2 from the symmetric phase, however the lines
are now given by the Nambu pair propagator χαβ pQ,Ωnq. Hence, the summation
of all contributions to the Luttinger-Ward functional can be performed in analogy
to Sec. 4.4.2, which yields

ΩrGs
V

� 1

2β

»
d3k

p2πq3
¸
n

Tr

"
log rG pk, ωnqs �

�
1�Gp0q pk, ωnq�1G pk, ωnq

�*

� 1

2
ḡpΛqF��px � 0, τ � 0�qF���px � 0, τ � 0�q

� 1

2
ḡpΛqF��px � 0, τ � 0�qF���px � 0, τ � 0�q

� 1

2β

»
d3Q

p2πq3
¸
n

Tr
�
log

�
1� ḡpΛqχ pQ,Ωnq

��
.

(A.22)

The trace now contains a sum over the indices of pGqab, with a, b � 1, ..., 4 and the
normalization has been adjusted in order to recover the result of a two-component
ideal Fermi gas if one sets ḡ � 0. In the following subsection we bring the self-
consistent Dyson equation for the Green’s function G in a form that is equivalent
to the normal phase, discussed in Sec. 4.6.2. To simplify the necessary steps, we
will mostly use the representation based on the 2� 2 submatrices.

A.3.3 Self-consistent loop

Like in Chap. 4, the first step in the self-consistent loop is the computation of the
bubble diagram χ, which below Tc has a non-trivial Nambu structure. Further-
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more, it has to be renormalized, due to the asymptotics of the mean-field Green’s
function (A.14). Again, we denote the physical function as M � diagpM p1q,M p2qq,
with

M
p1q
αβ pQ,Ωnq �

»
d3k

p2πq3
�

1

β

¸
m

G
p1q
αβpk, ωmqGp2q

αβpQ� k,Ωn� ωmq � δαβ
2εk

�
, (A.23)

while the property M p1q pQ,Ωnq � M p2q pQ,Ωnq is inherited from χ pQ,Ωnq given
in eqs. (A.20) and (A.21). Note that the dominant asymptotics F � 1{ω2

n from
eq. (A.14) renders the off-diagonal elements finite from the beginning, whereas we
have inserted the renormalization prescription of eq. (2.29) to obtain well-defined
diagonal components in the zero-range limit. For the numerical implementation we
again use the real space representation of the unrenormalized function

χαβ px, τq � G
p1q
αβ px, τqGp2q

αβ px, τq , (A.24)

since interpreting the τ Ñ Ωn transformation in terms of a generalized Fourier
transformation automatically introduces the correctly renormalized forms, as we
have already argued below equation 7.20. The vertex function follows from the
solving the Bethe-Salpeter equation, which still can be depicted as in Fig. 4.3. Its
solution, however, now requires the inversion of a 2� 2 matrix

Γ
p1q
αβ pQ,Ωnq �

�
1

g
�M p1q pQ,Ωnq


�1

αβ

, (A.25)

while the spin symmetry again entails for the form of the vertex function in the
extended Nambu basis Γ � diagpΓp1q,Γp2qq, with Γp1q � Γp2q. Finally, the self-
energy is given by the componentwise product

Σ
pAq
αβ pk, ωnq �

»
d3Q

p2πq3
1

β

¸
m

Γ
p1q
αβ pQ,ΩmqGpĀqβα pQ� k,Ωm � ωnq . (A.26)

The spin restriction from the s-wave interaction is incorporated by the possible
pairs pA, Āq � p1, 2q or pA, Āq � p2, 1q, while the special combination of exchanged
Nambu indices on the Green’s function in comparison to the vertex function re-
sults from the original truncation of the Luttinger-Ward functional considered in
Section A.3.2. The convolution will again be computed in real space

Σ
pAq
αβ px, τq � Γ

p1q
αβ px, τqG

pĀq
βα p�x,�τq . (A.27)

We can solve the resulting loop self-consistently in the same fashion as in the
normal fluid, depicted in Fig. 4.5. Apart from Fourier transforms and multiplica-
tions one now has to invert the 2 � 2-matrices to obtain the vertex (A.25) and in
the solution for the updated Green’s function

G
pAq
αβ pk, ωnq �

�
pGp0qqpAq pk, ωnq � ΣpAq pk, ωnq

	�1

αβ
, (A.28)
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which results from inserting the self-energy into the standard form of the Dyson
equation.

Below Tc a more fundamental problem, however, arises from the number of vari-
ables and physical constraints. The additional parameter ∆ is fixed by the gap
equation eq. (4.8). Furthermore, the spontaneously broken symmetry implies the
Thouless criterion eq. (4.29), which is connected to the existence of gapless Gold-
stone modes in the superfluid phase. Since this type of excitation dominates the
thermodynamics in the T Ñ 0 limit, it is quite important to satisfy the Thou-
less criterion. Unfortunately, the ladder approximation violates this equation by
a term of order Op∆3q on the right-hand side [150]. A possible resolution of this
problem, developed by Haussmann et al. [37], is to release the gap equation by the
introduction of a so-called modified coupling constant via

∆ � gmod

»
d3k

p2πq3
�
Fpk, τ � 0�q � ∆

2εk



. (A.29)

As is detailed in Ref. [37], one can partially cure this ad-hoc definition with a further
modified coupling constant g̃mod in the mean-field part ΩF of the Luttinger-Ward
functional, defined in eq. (A.19). This procedure leads to differences between the
three interaction strengths g, gmod and g̃mod of about Á 10% around the strong
coupling limit and it spoils the scale invariance at unitarity on the level of a few
percent. Nevertheless, thermodynamic properties can still be obtained in good
agreement with the experimental data. For example one finds ξs � 0.36 for the
Bertsch parameter [37].

A.4 Subtraction Scheme for the Self-consistent Loop in
the Superfluid Phase

In this section we repeat the procedure of creating suitable subtractions for the
Green’s and vertex functions in the presence of a finite order parameter ∆. For-
tunately, we can transfer all of the results from the normal fluid case, addressed
in Sec. 7.2. The additional anomalous contributions turn out to allow for a much
simpler treatment due to the asymptotic F � ω�2

n on the mean-field level, see
equation (A.14), such that we only have to discuss two new terms. We return
now to the dimensionless representation from Sec. 7.1 and we additionally define
∆̂ � β∆. Similarly to the the normal case we do not write the carets explicitly, as
there exists no possibility of confusion.

A.4.1 Green’s Function

In the normal-fluid problem all the non-integrable asymptotics arise from the prop-

erties of the bare Green’s function Gp0qσσ . In the ordered phase the mean-field Green’s
functions provide a starting point for the self-consistent loop. By inspection of the
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exact function GMF
σσ pk, τq in equation (A.18a), we infer that for k2 " µ, h,∆ it can

be approximated by

GMF
σσ pk, τq Ñ �

�
1� ∆2

4k4
�Opk�6q



e�pk2�µσ�Opk�2qqτ , (A.30)

plus exponentially small terms from the Fermi functions. This leads to the limit-
ing behavior G

�
k2 " µ, h,∆, τ Ñ 0�

� Ñ �1, which is identical to what we have

found for Gp0qσσ pk, τq in equation (4.10). The next correction ∆2{p4k2q is alge-
braic in the momentum, in contrast to the purely Gaussian decay in case of

Gp0qσσ pk, τq. This reflects the fact that in the symmetry-broken phase even the inter-
actions at the mean-field level give rise to a finite contact parameter that results in
the high-momentum tail δCSF{k4 � m2|∆|2{p~4k4q of the momentum distribution
nσpkq � Gσσpk, τ Ñ 0�q, as discussed below eq. (2.57). Regarding the relation
C � �m2Γp0, 0�q{~4 � δCSF with the short-distance and short-time limit of the
vertex function via eq. (4.28) reveals that δCSF corresponds to the disconnected,
anomalous contraction arising from the microscopic definition of the contact den-
sity C � limΛÑ8 ḡ2pΛqxψ̂:�pxqψ̂:�pxqψ̂�pxqψ̂�pxqy (see eq. (2.53)). Apart from the
appearance of Γp0, 0�q, it has to be noted that δCSF itself also acquires correc-
tions from the beyond-mean field interactions, because they influence Fσσ̄ px, τq
and consequently change the value of ∆.

However, since k�4 decays fast enough to be Fourier transformed numerically,
we only have to take care of the leading order that exactly agrees with the behavior

of the bare Green’s function Gp0qσσ pk, τq. Therefore, we can inherit the definitions
for the analytical part Gana

σσ pk, τq from the subtraction scheme applied above Tc,
see Sec. 7.2. All functions Gana

σσ pk, ωnq ,Gana
σσ pk, τq and Gana

σσ px, τq can be found in
eq. (7.13) for the BCS (βµ ¥ �2) or in eq. (7.11) for the BEC code (βµ   �2). In
total, the decomposition of analytical and numerical parts for the diagonal elements
of the Green’s function reads as before

Gσσ pk, τq � Gana
σσ pk, τq � Gnum

σσ pk, τq , (A.31)

where the numerical part is now given by the function

Gnum
σσ pk, τq � �

GMF
σσ pk, τq � Gana

σσ pk, τq�� δGσσ pk, τq . (A.32)

Again δGσσ pk, τq denotes the Fourier transform of the genuine interaction contri-
butions δGσσ pk, ωnq � Gσσ pk, ωnq�GMF

σσ pk, ωnq. The transformation to real space
follows then in analogy to the normal phase.

Next, we have to consider the anomalous Green’s function FMF
σσ̄ pk, τq, given in

(A.18b), whose real space and imaginary time equivalent is not known in closed
form. From now on, we choose a positive value of the gap parameter, without loss
of generality. Both endpoints of the imaginary time interval give rise to algebraic
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tails for large momenta k2 " µ, h,∆, which read

FMF
σσ̄ pk, τq Ñ

#
� �

σ∆
2k2 �O

�
k�4

��
e�pk2�µσ�Opk�2qqτ , τ Ñ 0��

σ∆
2k2 �O

�
k�4

��
e�pk2�µσ�Opk�2qqp1�τq , τ Ñ 1�

. (A.33)

The integration measure of the effectively one-dimensional k Ø x Fourier trans-
formation (4.16) turns the leading �∆{p2k2q term encountered at the boundaries
of the imaginary time interval to a nonintegrable 1{k decay. Consequently, we also
have to construct a suitable subtraction scheme for the off-diagonal components of
G pk, τq, which involves only integrable functions in the numerical parts. We define
the analytical function as

Fana
σσ̄ pk, τq � �σ∆

2k2

�
e�k

2τ � e�k
2p1�τq

	
, (A.34)

where we not only discard the next-to-leading order algebraic k�4 tail, but also the
complete dependence on the chemical potentials. In the normal Green’s function
Gana
σσ , µ and h had to be considered at least to first order to be able to deal with
τ�1{2 divergences in the self-energy Σana

σσ px, τq analytically. Here, in contrast, the
k�2 factor prevents such singularities in the self-energy and we only retain the
leading asymptotics. Thus merely a dependence on ∆ remains in form of a simple
prefactor. This fact will prove to be crucial for the computation of the anomalous
particle-particle diagram in the next section. Eventually, the suspicious ∆{p2k2q
term in eq. (A.34) does not give rise to an artificial divergence in the limit k Ñ 0,
because the bracket renders the function well-defined. Based on this definition we
find

Fana
σσ̄ pk, ωnq � � σ∆

ω2
n � k4

�
1� e�k

2
	

(A.35a)

Fana
σσ̄ pk, τq � �σ∆

2k2

�
e�k

2τ � e�k
2p1�τq

	
(A.35b)

Fana
σσ̄ px, τq � � σ∆

8πr

�
erf

�
r

2
?
τ



� erf

�
r

2
?

1� τ


�
. (A.35c)

To obtain the px, τq representation, one has to regularize the k-integral in the
sense of generalized functions, according to eq. (C.12). However, in this case one
has to treat both positive and negative values k separately and to shift the nonzero
integration boundary Ñ �8. Sending r Ñ 0 leads to

Fana
σσ̄ px � 0, τq � �σ∆

8π3{2

�
1?
τ
� 1?

1� τ

�
, (A.36)

where we have made use of the Taylor expansion of the error function, given in
eq. (C.3). The latter form acquires singularities for τ Ñ 0� or τ Ñ 1�. Basically,
this behavior rephrases the non-integrability of the analytic part (A.35b) in these
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limits. However, Fana
σσ̄ px, τq diverges more weakly than Gana

σσ px � 0, τ Ñ 0�q �
τ�3{2, giving rise to much more convenient properties of the particle-particle bubble,
which we discuss below. Before doing so, we introduce the subtraction scheme for
the anomalous propagator

Fσσ̄ px, τq � Fana
σσ̄ px, τq � Fnum

σσ̄ px, τq , (A.37)

with

Fnum
σσ̄ px, τq � �

FMF
σσ̄ px, τq � Fana

σσ̄ px, τq�� δFσσ̄ px, τq (A.38)

where δFσσ̄ px, τq denotes the interaction effects beyond mean-field.

A.4.2 Particle-particle bubble

To compute the particle bubble diagram in Nambu space, we first recall that the
full matrix can be written as a block-diagonal matrix χ � diagpχp1q, χp1qq with two

identical 2�2 subblocks. Next we note that χ
p1q
αβ pQ,Ωnq, defined in eq. (A.21) con-

sists only of two independent functions: one diagonal, normal function equivalent
to the case above Tc and one anomalous off-diagonal part. To see this, we begin

with the convolution for χ
p1q
22 pQ,Ωnq. A transformation of the integration variable

and a reordering of the Matsubara sum reveal

χ22 pQ,Ωnq � χ
p1q
11 p�Q,�Ωnq , (A.39)

such that knowledge of one diagonal element of χp1q immediately determines the
other one by complex conjugation. In a similar manner, we find for the off-diagonal
part

χ
p1q
21 pQ,Ωnq � χ

p1q
12 p�Q,�Ωnq� . (A.40)

Therefore, we concentrate in the following on the computation of χ
p1q
11 pQ,Ωnq and

χ
p1q
12 pQ,Ωnq and use these two relations to achieve the full matrix χ. This also

reduces the numerical effort.
Regarding the computation of χ11 pQ,Ωnq, there are no changes compared to the

symmetric phase, since we use the identical Gana
σσ px, τq as basis of all the decompo-

sitions. The off-diagonal function includes the terms

χ
p1q
12 px, τq � Fana

σσ̄ px, τqFana
σ̄σ px, τq � Fana

σσ̄ px, τqFnum
σ̄σ px, τq

� Fnum
σσ̄ px, τqFana

σ̄σ px, τq � Fnum
σσ̄ px, τqFnum

σ̄σ px, τq ,
(A.41)

where the purely analytic term unfortunately contains the squares of error func-
tions, whose Fourier transforms are not available in closed form. To solve this
problem one could try to further subtract appropriate approximations from the
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product Fana
σσ̄ px, τqFana

σ̄σ px, τq. This, however, turns out to be difficult, because
one has to take into account both the exponential behavior at large x " ?

τ and si-
multaneously the 1{τ and 1{p1� τq singularities in the opposite limit x ! ?

τ . Any
expansion around either limit breaks down in the other one and leads to large errors.
Since Fana

σσ̄ px, τq does not depend on the thermodynamic parameters except for the
prefactor and we first integrate over x, we compute FT rÑQ rpFana

σσ̄ Fana
σ̄σ q px, τqs only

once during the initialization on a sufficiently dense grid and store the values for
the iterations in the self-consistent loop. Furthermore, we estimate the scaling
FT rÑQ rpFana

σσ̄ Fana
σ̄σ q px, τqs �

?
τ in the limit τ Ñ 0�, which follows from rescaling

the Fourier integral of p∆{8πrq2 erf2pr{2?τq, which exhibits the worst divergence
in the regime of small τ . The nonanalytic

?
τ behavior resembles the subtraction

in the normal phase that gives rise to E2 pQ,Ωnq defined in eq. (7.20). However,
since Fana

σσ̄ px, β � τq � �Fana
σσ̄ px, τq, we conclude for the convolution

χ
p1qana
12 pQ,Ωnq � FT τÑΩn,rÑQ rpFana

σσ̄ Fana
σ̄σ q px, τqs � χ

p1qana
12 pQ,�Ωnq ,

which rules out a contribution of 1{Ωn to the asymptotic behavior and we encounter

a decay of at least χ
p1qana
12 pQ,Ωnq � Ω

�3{2
n . Furthermore, we have verified the latter

power law numerically. Consequently, for the computation of the vertex functions
and the self-energies, which appear in the following steps of the self-consistent loop,
we can directly use the equations outlined in the previous subsection. We apply
again the scheme developed in Chap 7, since the dominant asymptotics always
originates from the diagonal elements and coincides with the normal phase. On
the other hand, the new anomalous terms always vanish fast enough to be treated
numerically.
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Appendix B

Matsubara sums

B.1 General framework

The evaluation of fermionic or bosonic Matsubara sums
°
n fp~ωnq or

°
n fp~Ωnq,

is a standard problem in finite-temperature equilibrium field theory both in frame-
works with Galilean [67, 154] and Lorentz invariance [187]. In addition, this tech-
nique can be applied to obtain statements about the analytical properties and error
estimates of the LFT, confer Section 6.1.2. Usually one rewrites the sum of interest
as a contour integral in the complex frequency plane, where the contour γ encircles
the imaginary axis in the mathematically positive sense (see Fig. B.1). Provided
that fpzq itself has no singularities for imaginary z, this procedure reads

1

β

¸
n

fp~ωnq � �
¾
γ

dz

2πi
gpzqfpzq or

1

β

¸
n

fp~Ωnq �
¾
γ

dz

2πi
gpzqfpzq ,

(B.1)

with an auxiliary function gpzq that has first order poles with known residues at
the fermionic or bosonic Matsubara frequencies. Standard choices for gpzq are

gpzq �
#
nF pzq
�nF p�zq

pFermionsq or gpzq �
#
nBpzq
�nBp�zq

pBosonsq , (B.2)

where nF pzq denotes the Fermi-Dirac and nBpzq the Bose-Einstein distribution

nF,Bpzq � 1

eβz � 1
, (B.3)

and the upper (lower) sign refers to Fermions (Bosons). The distribution functions
have residues of 	1{β at the ωn or Ωn, respectively, which legitimates equation
(B.1). This identity allows to deform the contour by the help of Cauchy’s theorem
and thereby to compute the integrals via the residue theorem and related techniques
from complex analysis, e.g in the presence of branch cuts. For convenience one tries
to choose gpzq such that the contour does not contribute anymore once it is shifted
towards infinity.
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Appendix B Matsubara sums

Figure B.1: Graphical representation of the contour integration for Matsubara
sums: Left initial contour γ that encircles the fermionic (green) or
bosonic (red) Matsubara frequencies. Right: Example for a deformed
γ that includes one pole (red point) and one branch cut (red line).

B.2 Mean-field Green’s functions

As a concrete example, we will compute the diagonal mean-field Green’s functions
GMF
σσ pk, τq in the symmetry-broken phase for τ ¡ 0 from the imaginary frequency

solution to the mean-field equations (A.14a). We use (B.1) to write for the Fourier
transformation

GMF
σσ pk, τq � 1

β

¸
n

e�iωnτGMF
σσ pk, ωnq

�
¾
γ

dz

2πi
nF p�zq e�zτ{~ pz � εk � σ̄hq

pz � pEk � σhqq pz � pEk � σhqq .
(B.4)

In this case we use gpzq � �nF p�zq such that the integrand shows an exponential
decay both for Re z Ñ �8, since τ ¡ 0. Now we can deform γ to a circle in the
limit of infinite radius, as depicted in Fig. B.1. Because of the asymptotics the
integral along the arcs vanishes and we can evaluate the integral by virtue of the
residue theorem

Gp0qσσ pk, τq � �Resz1 � Resz2 , (B.5)

where z1 � Ek � σh and z2 � �Ek � σh refer to the simple poles of the integrand
and the sign is due to orientation of the contour. Inserting the residues recovers
the result (A.18a). The anomalous functions from eqs. (A.18b) and (A.18c) can be
obtained along the same lines.
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Appendix C

Generalized Fourier transformations and
analytical results

In this appendix we prove many of the analytic expressions for the Fourier trans-
forms between imaginary time and Matsubara frequencies. In particular, we show
how to deal with the non-integrable function χana pQ, τq � τ�3{2 for τ Ñ 0� that
we encountered in eq. (7.15) in the self-consistent loop of the Luttinger-Ward for-
malism.

C.1 Properties of the error function

Before we start with the Fourier transforms we state several mathematical prop-
erties of the error function, that are required later. The error function, which has
already appeared quite frequently, is an entire function defined by [167]

erfpzq � 2?
π

» z
0
dt e�t

2
. (C.1)

In particular, it converges exponentially to one for asymptotically large arguments,
or more precisely [167]

erfpzq � 1� e�z2

?
πz

, (C.2)

for |z| Ñ 8 and | argpzq|   3π{4. Note that we always encounter erf p?zq in this
thesis, where the square root restricts the phase to the first and fourth quadrant
of the complex z-plane and we never leave the range of validity of the last result.
Finally, we state the Taylor series of the error function [167]

erfpzq � 2?
π

8̧

n�0

p�1qnz2n�1

n!p2n� 1q . (C.3)

For positive z one can relate the error and the Gamma functions by the identity

erfp?zq � 1?
π

�
Γ

�
1

2



� Γ

�
1

2
, z


�
, (C.4)
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which can be verified by transforming the integration variable in the definition (C.1)
via t Ñ u2 and rewriting the integral in terms of the Gamma and the incomplete
Gamma function

Γpaq �
» 8

0
ta�1e�t (C.5a)

Γpa, zq �
» 8

x
ta�1e�t . (C.5b)

C.2 Generalized Fourier transforms

In this section we follow the book by Gel’fand and Shilov [155], who discuss the
theory of generalized functions, which are also called distributions, and their Fourier
transforms in detail. Here we will focus on the properties that are necessary to
understand the origin of the analytic formulas encountered in Secs. 7.2 and 7.3.
From a physicist’s perspective a generalized function f acts on a set of suitable test
functions ϕ : RÑ C via a scalar product

xf |ϕy P C . (C.6)

If f is an ordinary function this bilinear form is identified with the integral

xf |ϕy �
»
dx f�pxqϕpxq . (C.7)

Possible test functions are the Schwarz functions, which are both analytic and
asymptotically decay faster than any polynomial. Therefore, the Schwarz space
is a subset of L1rRs and the Fourier transform ϕ̂pkq � FT xÑk pϕpxqq exists1. A
standard example for a Schwarz function is given by expp�x2q, while the most
frequently encountered distribution, which cannot be considered as an ordinary
function is the Dirac δ-distribution, which satisfies

xδ|ϕy � ϕp0q . (C.8)

Regarding the Fourier transform f̂ of a distribution f , the following defining iden-
tity holds [155]

xf |ϕy �
»
dx f�pxqϕpxq �

»
dxf�pxq

�»
dk

2π
ϕ̂pkqeikx

�

�
»
dk

2π
ϕ̂pkq

�»
dxfpxqe�ikx

��
� 1

2π

»
dkf̂pkqϕ̂pkq � 1

2π
xf̂ |ϕ̂y ,

(C.9)

1In this short section we use the sign convention of the Fourier transformation between a one-
dimensional position argument x and the conjugated momentum k.
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which is equivalent to Parseval’s theorem for ordinary functions. In particular,
we can deduce the Fourier transform of the δ distribution by imposing the last
condition

xδ̂|ϕ̂y � xδ|ϕy � ϕp0q �
»
dk

2π
ϕ̂pkq � 1

2π
x1|ϕ̂y , (C.10)

which indeed yields δ̂ � 1. Apart from the definition (C.9) one can also show that
the rules that apply to Fourier transforms of ordinary functions extend to the more
general framework, as is shown in further detail in [155]. For example the Fourier
transform of a distribution can be inverted and regarding derivatives we have

d

dk
FT xÑkpfq � FT xÑkpixfq

FT xÑkp d
dx
fq � p�ikqFT xÑkpfq

(C.11)

The last concept from the theory of generalized functions, that we require for the
imbalanced Fermi gas, concerns the regularization of functionals with algebraic
divergences. In particular, we consider the case of the unit interval, corresponding
to the range of dimensionless imaginary times. Given the generalized function
fpxq � xλppxq, with λ ¡ �1 and an arbitrary real and analytic function ppxq, the
scalar product with the test function ϕ can be written as

xxλppxq|ϕpxqy �
» 1

0
dxxλppxqϕpxq �

�
» 1

0
dxxλ

�
ppxqϕpxq � pp0qϕp0q � x

d

dx
ppxqϕpxq��

x�0
�

...� xpn�1q

pn� 1q!
dn�1

dxn�1
ppxqϕpxq��

x�0

�

� 1

λ� 1
pp0qϕp0q � 1

λ� 2

d

dx
ppxqϕpxq��

x�0
� ...

...� 1

pn� 1q!pλ� nq
dn�1

dxn�1
ppxqϕpxq��

x�0
,

(C.12)

for any integer n ¥ 0, which can be seen from repeated partial integration. Since
the right-hand side is an analytic function of λ ¡ �1, we can analytically continue
the above result to the extended domain λ R Z� and merely have to exclude the
poles at negative integers, as discussed in Ref. [155]. Thus we have created a
well-defined interpretation of functionals that do not exist in the ordinary sense of
integrals. In practice, one takes as many terms into account on the right-hand side
as are required to regularize the expression and the integral exists.
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C.3 Generalized Fourier transforms in the context of the
imbalanced Fermi gas

Being equipped with these notions we can go ahead and confirm the form of the
various analytical terms that appeared during the construction of the subtraction
scheme in Chap. 7. To keep the notation simple, we return to the temperature units
from Sec 7.1, where we have set β � 1. First, we calculate the Fourier transform
of τ�1{2e�Aτ to an arbitrary real frequency ω, which can be set to a Matsubara
frequency later on. Here A P R represents any combination of the variables k2, Q2

or d. The corresponding mathematical expression can be understood as a function
h of the complex variable A� iω

hpA� iωq � FT τÑωpτ�1{2e�Aτ q �
» 1

0
dτ τ�1{2eiωτe�Aτ , (C.13)

which is well-defined due to the compact integral and the integrability of 1{?τ .
Instead of considering this integral on the real axis, we can equivalently interpret

it as a contour integral

hpA� iωq � pA� iωq�1{2
»
γrA�iωs

duu�1{2e�u , (C.14)

where γrA� iωs describes the straight line from the origin to A� iω in the complex
u plane. In particular, for ω � 0 and A P R� the expression reduces to a real
integral, which can be identified with the definition (C.1)

hpAq � A�1{2
» A

0
u�1{2e�u � ?

π
erfp?Aq?

A
(C.15)

Since this equation is valid for all A P R� and the expression on the right-hand
side is analytic on this set we can analytically continue the function to complex
arguments with finite imaginary part iω, as is explained e.g. in the book by Freitag
and Busam [165]. Due to the uniqueness of the analytic continuation, we have
determined the Fourier transform of

FT τÑωpτ�1{2e�Aτ q � ?
π

erfp?A� iωq?
A� iω

, (C.16)

which we have already used for the definitions of E0 pQ,Ωnq in eq. (7.20) or in
eq. (7.57) for the analytic part of the self-energy. We can draw even further im-
portant insights from this result. According to equation (C.11) we can increase the
power of τ in eq. (C.16) by steps of one and obtain the Fourier transform by taking
derivatives with respect to ω on the right-hand side. For example we find

FT τÑω

�
τ1{2e�Aτ

	
� �e

�pA�iωq

A� iω
�
?
π

2

?
π

erfp?A� iωq?
A� iω

3 , (C.17)
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which has been used for the function E2 pQ,Ωnq in eq. (7.20). Moreover, we note
that taking higher derivatives or equivalently increasing the power of τ does not
give rise to a faster asymptotics for |ω| Ñ 8, since the first term always gives rise to
a 1{ω-decay. The latter originates form the finite value of the integrand at τ � β,
which implies a discontinuity, when one extends the bosonic function periodically
to the entire imaginary time axis.

Let us finally come to the non-integrable case of τ�3{2 expp�Aτq. According
to the notion of regularization from eq. (C.12), we have to use the first order
subtraction, with p � expp�Aτq. In mathematical terms we get

xτ�3{2e�Aτ |ϕpτqy �
» 1

0
dτ

1

τ3{2
�
e�Aτϕpτq � ϕp0q�� 2ϕp0q . (C.18)

Partial integration leads to

xτ�3{2e�Aτ |ϕpτqy � �2e�Aϕp1q � 2

» 1

0
dτ

1?
τ

��Ae�Aτϕpτq � e�Aτϕ1pτq�
� �2xδpτ � 1qe�Aτ |ϕpτqy � 2xτ�1{2e�Aτ | �Aϕpτq � ϕ1pτqy ,

(C.19)

where the prime indicates the derivative with respect to τ . Using the defining
identity of the Fourier transforms we can write this expression as

xτ�3{2e�Aτ |ϕpτqy � xFT τÑω

�
τ�3{2e�Aτ

	
pωq|ϕ̂pωqy

� �2xe�Aeiω|ϕ̂pωqy � 2xFT τÑω

�
τ�1{2e�Aτ

	
| �Aϕ̂pωq � FT τÑωrϕ1pτqspωqy .

(C.20)

Assuming a periodic test function ϕpτ � 1q � ϕpτq and ω � Ωn, which is the
relevant case for the particle-particle bubble χ that carries bosonic arguments, the
Fourier transform of the derivative brings an additional factor of �iω. Since this
identity holds true for an arbitrary periodic ϕ, we conclude

FT τÑΩn

�
τ�3{2e�Aτ

	
� �2e�pA�iΩnq � 2

?
π
a
A� iΩn erf

a
A� iΩn , (C.21)

where we have inserted the previous result (C.16). Indeed, this Fourier transform
is of the form of E0, defined in (7.20).
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Appendix D

Additional explanations and definitions
for the Luttinger-Ward computations

D.1 Computation of Γsub
b px, τq

We briefly discuss how to obtain the function Γsub
b px, τq given in eq. (7.47c). First

of all, we note

e�pQ2�dqτ

Q2 � d
�

» 8

τ
dτ 1e�pQ

2�dqτ 1 . (D.1)

Computing the k Ñ r Fourier transform of this expression yields

» 8

τ

e
� r2

4τ 1�dτ 1

8π3{2pτ 1q3{2

� e�
?
dr

8πr

�
1� erf

�
r � 2

?
dτ

2
?
τ

�
� e2

?
dxp1� erf

�
r � 2

?
dτ

2
?
τ

�
q
�
.

(D.2)

The result in the second line can be easily verified by taking the τ derivative in
order to recover the integrand. The definitions required for the error function are
given in the beginning of the previous appendix. The remaining terms can be
treated analogously, where we have also made use of the identity (C.4) that relates
the error function and the incomplete Gamma function on the real axis.

D.2 Auxiliary functions for the thermodynamic quantities

We list all the auxiliary functions required for the precise computation of H2rGs in
Sec 7.3.4. We begin with the various contributions to the first semi-analytic term
defined in eq. (7.81), which does not depend on whether the BCS or BEC code
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runs.

hs-a
p1q,11pµσ,kq �

16
?
πe�

1
2
pk2�dq

pd� k2 � 2µσq3{2
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� e
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(D.3a)
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32πe�k2�µσpk2 � µσq erf

�b
d�2µσ�k2

2



qa

d� 2µσ � k2
(D.3d)

hs-a
p1q,22pµσ,kq �

512π2pµσ � k2qpe 1
2
pd�2µσ�k2q � 1q

k2 � 2µσ � d
e�

1
2
pd�k2q (D.3e)

hs-a
p1q,23pµσ,kq � �16e�

1
2
pk2�dqpk2 � µσq

pd� k2 � 2µσq3{2

�
�?

2π
a
d� k2 � 2µσ � e

1
2
pd�k2�2µσqπ erf

�c
1

2
pd� k2 � 2µσq

�� (D.3f)

234



D.2 Auxiliary functions for the thermodynamic quantities

BCS code

Next, we turn to the second semi-analytic term from eq. (7.82) in the BCS scheme

hs-a
p2q,1pµ, h,kq �

�1

ph� 2k2 � µq3
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BEC code

It remains to give the new definitions in the BEC scheme. First of all, the purely
analytical contributions have to be adjusted, which yields

hana
1 pµσ̄,kq � �

?
2

π

�
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and

hana
2 pµσ̄,kq � 4pµσ � k2q?

π
a
d� k2 � 2µσ

erf

�c
d� k2 � 2µσ

2
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Furthermore the auxiliary functions for the second semi-analytic term read

hs-a
p2q,1pµ, h,kq �

e�pk2�µ�hq

4pk2 � µq2
�
� 4pk2 � µq2 � 2hp�1� e2pk2�µq � 2k2 � 2µq



(D.8)
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hs-a
p2q,2pµ, h,kq �

2e�hph� k2 � µq sinhpk2 � µq
µ� k2

. (D.9)

D.3 Calculation of the first analytic Parseval term

Finally, we show how one achieves the result for the first analytical Parsival term
P ana

10 defined in eq. (7.92). We consider the corresponding integral without prefac-
tors, which reads» 1

0
dτ

edτ{2 � 1

τ3{2?1� τ

� πd
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2

» 1
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To obtain the form on the right-hand side we have partially integrated the denom-
inator two times in a row. Next we focus on the first integral, where we shift the
integration interval from τ P r0, 1s to the symmetric choice τ P r�1{2, 1{2s, before
rescaling to τ P r�1, 1s. Then we have

�d
2

2
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8
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(D.11)

where we have used the definition (9.6.18) for the modified Bessel functions from
Ref. [167]. The second integral can be solved by transforming the integration
variable via sin θ � ?

τ , which yields

�d
2

2
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0
dτ arcsinp?τqedτ{2 � �d

2

2

» π{2
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We rescale the integration interval to θ P r0, πs and notice the convenient rewriting

�d
2

8
ed{4

» π
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dθ θ

d
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4

d
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, (D.13)

such that one last partial integration results in

�πd
2
ed{2 � d

4
ed{4

» π
0
dθ e�d{4 cos θ � �πd

2
ed{2 � π

d

2
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In the last step we have applied defintion (9.6.19) from Ref. [167]. Note that the
first term cancels the remaining constant in eq. (D.10) and we obtain» 1

0
dτ

edτ{2 � 1

τ3{2?1� τ
� π

2
ded{4 pI0pd{4q � I1pd{4qq , (D.15)

which indeed is of the form of P ana
10 .
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List of publications

During the PhD-project the following papers have been published (in chronological
order):

• J. Lang, B. Frank and J. C. Halimeh: ”Concurrence of dynamical phase
transitions at finite temperature in the fully connected transverse-field Ising
model”, Phys. Rev. B. 97, 174401 (2018)

• B. Frank, J. Lang and W. Zwerger ”Universal phase diagram and scaling
functions of imbalanced Fermi gases”, ArXiv e prints arXiv:1804.03035
JETP 127(5), 812 (2018) (special issue in honor of L. P. Piteavskii’s 85th
birthday)
For the extended abstract see: JETP Vol. 154 (5), 953 (2018)

• J. Lang, B. Frank and J. C. Halimeh: ”Dynamical Quantum Phase Transi-
tions: A Geometric Picture”, Phys. Rev. Lett. 121, 130603 (2018)

• J. Lang and B. Frank: ”Fast logarithmic Fourier-Laplace transform of non-
integrable functions”, ArXiv e prints arXiv:1812.09575
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