
Technical University of Munich, Germany

Chair of Computational Modeling and Simulation

Machine Learning - based Image Segmentation

Bernhard Mueller

Bachelor’s thesis

for the Bachelor of Science program Civil Engineering

Author: Bernhard Mueller

Supervision: Prof. Dr.-Ing. André Borrmann

Alexander Braun, M.Sc.

Issue Date: April 2, 2018

Submission Date: September 3, 2018

Abstract

Image processing tasks hold an important position in machine learning research today.

Photogrammetric pictures of the physical environment contain high-level information about

surrounding objects and, therefore, get processed in a variety of applications, like autonomous

driving systems or medical examinations. The construction industry as well exhibits high

potential of digitization, standardization, and automation of processes. This thesis proposes an

approach for automated object detection and segmentation on construction site photos, based

on a Convolutional Neural Network (CNN). The presented method allows a pixel accurate identifi-

cation of objects like worksite elements on images of building sites. It offers an implementation of

the Mask R-CNN (He et al., 2017) for the application in construction monitoring that allows almost

real-time processing of photos or videos. The gained information can be used for the analysis of

construction progresses and for quality assurance, for instance in the course of automated

monitoring tools like progressTrack (Braun et al., 2018).

Based on a dataset of construction site photos captured by unmanned aircraft vehicles (UAVs),

the network is trained to segment separate building elements, in the course of this thesis

realized for formwork elements. The results contain a classification of the instances, a localiza-

tion in the form of bounding boxes and a pixel by pixel segmentation of every detected object. It is

implemented in Python, using a TensorFlow backend and the ResNet-101 (He et al., 2016) and

FPN (Lin et al., 2017) backbone architecture of Mask R-CNN.

Zusammenfassung

Automatisierte Bildverarbeitung besitzt einen hohen Stellenwert in der Forschung des

Maschinellen Lernens. Aufnahmen der Umgebung, die detaillierte Informationen über

umliegende Objekte bereitstellen, werden bereits heute ausgewertet für eine Vielzahl von Anwen-

dungen, wie Systemen des autonomen Fahrens oder medizinischen Untersuchungen. Auch die

Bauindustrie besitzt ein hohes Potential der Digitalisierung, Standardisierung und Automa-

tisierung von Prozessen. Diese Arbeit stellt eine Methode zur automatisierten Lokalisierung und

Segmentierung von Objekten auf Baustellenfotografien vor. Auf Grundlage eines

Convolutional Neural Networks (CNN) erfolgt die pixelgenaue Ausweisung von Objekten, wie

beispielsweise Baubehelfselementen, auf visuellen Aufnahmen von Baustellen. Das entwickelte

Programm wurde umgesetzt auf Grundlage einer auf das Bauwesen angewandten Implemen-

tierung des Mask R-CNN (He et al., 2017), das eine Verarbeitung von Bild- und Videomate-

rial nahezu in Echtzeit ermöglicht. Die Auswertung der Bildinformationen kann genutzt werden

für Analysen des Bauprozesses sowie zur Qualitätssicherung, beispielsweise im Rahmen einer

automatisierten Baufortschrittsüberwachung in Projekten wie progressTrack (Braun et al., 2018).

Anhand eines Datensatzes von Baustellenfotos, bestehend aus Luftaufnahmen unbemannter

Drohnen, wurde ein CNN trainiert auf die Segmentierung von Baustellenelementen, im Rah-

men dieser Arbeit umgesetzt für Schalungselemente. Die Ergebnisse einer Bildverarbeitung

beinhalten die seperate Klassifizierung aller erkannten Objekte, deren Lokalisierung sowie eine

pixelgenaue Ausweisung auf dem entsprechenden Foto. Das CNN ist implementiert in Python,

basierend auf einem TensorFlow Backend sowie der ResNet-101 (He et al., 2016) und FPN

(Lin et al., 2017) Backbone-Architektur des Mask R-CNN.

IV

Contents

1 Introduction 1

1.1 Related Work . 2

2 Theoretical Background 4

2.1 Term of Machine Learning . 4

2.2 Machine Learning Techniques . 5

2.3 Supervised Learning . 5

2.3.1 Model Structure . 5

2.3.2 Regression Problems . 10

2.3.3 Classification Problems . 11

2.4 Neural Networks . 14

2.4.1 Activation Function . 15

2.4.2 Backpropagation . 16

2.4.3 Weight Initialization . 16

2.5 Convolutional Neural Networks . 17

2.5.1 Feature extraction . 17

2.5.2 Convolutional Layer . 18

2.5.3 Pooling Layer . 21

2.5.4 Fully Connected Layer . 22

2.6 Computer Vision . 23

2.6.1 Tasks . 23

2.6.2 Architectures . 24

2.6.3 Instance Segmentation . 28

3 Dataset 33

4 Methods 34

4.1 Workflow . 34

4.2 Data Preprocessing . 35

4.3 Basic Model Architecture . 37

4.4 Training Process . 38

4.5 Model Adjustment and Evaluation . 39

4.6 Subsequent Output Processing . 41

5 Discussion 42

A Glossary of Terms 43

Bibliography 48

VI

List of Abbreviations

AI Artificial Intelligence

AP Average Precision

BIM Building Information Modeling

CAD Computer Aided Design

CNN Convolutional Neural Network

DNN Deep Neural Network

DPM Deformable Part Model

FAIR Facebook AI Research

Fast R-CNN Fast Region-based Convolutional Neural Network

FCIS Fully Convolutional Instance-aware Semantic Segmentation

FPN Feature Pyramid Network

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

LR Learning Rate

ML Machine Learning

mAP mean Average Precision

MS COCO Microsoft Common Objects in Context

MSE Mean Squared Error

NN Neural Network

R-CNN Regions with CNN features

R-FCN Region-based Fully Convolutional Network

RBF Radial Basis Function

ReLU Rectified Linear Unit

ResNet Residual Neural Network

RoI Region of Interest

RoIPool Regions of Interest Pooling Layer

RPN Region Proposal Network

SENet Squeeze-and-Excitation Network

SGD Stochastic Gradient Descent

SVM Support Vector Machine

VOC Visual Object Classes

1

Chapter 1

Introduction

Buildings and construction sites are unique in geometry, structure and external conditions,

however similar in planning and construction processes and workflows. Taking this fact into

account, the construction sector exhibits high potential of process optimization by standard-

ization and automation. Digital tools like Building Information Modeling (BIM) offer integrated

approaches to unify planning operations, combine information and manage interfaces. The

monitoring and documentation of construction progresses is a complex and time-consuming

task as it commonly is realized manually by a construction manager. An automated and

holistic documentation of the construction progress (Braun et al., 2015) simplifies these

operations and can be used for further analyses: It enables comparisons of the as-built inter-

mediate results to as-planned BIM models and documents states of the progress in temporal

perspectives, thus allowing fully automated monitoring and defect identification at an early stage.

Machine learning networks are powerful tools to automate differentiated tasks in a large

number of application areas. Recently, Artificial Intelligence (AI) and Machine Learning (ML) are

highly focused fields of research, whose development made much progress in the last few years.

Computer vision as a branch of ML is applied in systems exemplary for autonomous driving,

medical examinations or geodetical investigations. In civil engineering tasks as well, ML applica-

tions can contribute to the improvement of methods and processes.

This thesis proposes a ML approach for object detection and segmentation on construction site

photos. It offers a Convolutional Neural Network (CNN) implementation of the Mask R-CNN

(He et al., 2017), which allows the detection and segmentation of building elements during

the construction workflow by means of captured construction site photos. The network is

trained on a dataset of 747 aerial photographs of construction sites to detect construction

objects, in the specific case of this thesis formwork elements. The construction elements

get individually classified, localized and pixel-wise segmented in a nearly real-time process.

The process- and computer vision-based software tool progressTrack (Braun et al., 2018)

offers one approach for the standardization and automation of progress monitoring.

1.1. Related Work 2

Braun et al. present a method in which photos of construction sites, captured by unmanned

aerial vehicles (UAVs), are processed to reconstruct a 3D model of the construction progress.

This 3D model is then compared to a BIM model of the project planning, to verify the matching

of built and planned progress. In that context, the described network is applied to preprocess the

captured photos and segment temporary components like formworks, which are then filtered out

to improve the consistency of the processed 3D model.

The structure of the thesis is divided into two parts: The first part provides an overview of the

theoretical background of ML. It explains the theory and mathematical concepts of supervised ML

and the structure of NNs and CNNs. The following explains computer vision processes, including

the development of CNN’s for computer vision and state of the art networks of today. In specific,

the task of instance segmentation and the Mask R-CNN network architecture are avowed, which

is implemented in the approach of this thesis. The second step is a summary of the practical

implementation. It describes the used dataset and illustrates the workflow of the implementation,

finished by a discussion of the achieved results and an outlook toward the further procedure.

1.1 Related Work

Construction Monitoring Tools

Several studies of image processing on construction site photos have been conducted over the

last few years. Wu et al. (Wu et al., 2010) offered an approach of object recognition based

on 3D CAD and image filtering methods. Kim et al. (Kim et al., 2013) used image processing

methods like mask filters or noise removal on photos for automated 4D CAD model updating.

Chi and Caldas (Chi and Caldas, 2011) presented an estimate to detect mobile heavy equip-

ment and workers on visual input data based on a NN, using videos from CCTVs on construction

sites as a basis for automated safety monitoring systems. A method of finding concrete areas

in photos, proposed by Zhu and Brilakis (Zhu and Brilakis, 2010) was done by use of parameter

optimization. Implementations of Deep Neural Networks (DNN’s) were presented by Gil et al.

(Gil et al., 2018) who applied the Inception-v3 (Szegedy et al., 2015) for image classifica-

tion by job-type, or Fang et al. (Fang et al., 2018) by a method detecting non-hardhat-use

from surveillance videos based on an implementation of the Faster R-CNN (Ren et al., 2017).

Kim et al. (Kim et al., 2018) used the R-FCN (Dai et al., 2016) architecture to detect construction

equipment. Hamledari et al. (Hamledari et al., 2017) proposed a method of estimating the state

of indoor building progress, which is done by a computer vision-based detection of components

of under-construction indoor partitions. Cho et al. (Cho et al., 2018) presented an approach

to assess real-time safety conditions of scaffolds by combining strain-gage sening with a SVM.

Ha et al. (Ha et al., 2018) used a VGG-16 network (Simonyan and Zisserman, 2015) compared

with a BIM to estimate an image-based indoor localization of users possessing a mobile device.

1.1. Related Work 3

Image Segmentation

Image segmentation tasks can be categorized in the areas of semantic segmentation and

instance segmentation. Whereas semantic segmentation CNN architectures process and

segment the whole image as one instance, instance segmentation networks separate different

image regions and process all detected objects individually (see 2.6.1). Semantic segmenta-

tion networks are offered in two methods: a processing and classification of separate pixels

or a processing of the whole image at once. Pixel-wise implementations from Farabet et al.

(Farabet et al., 2013) or Pinheiro and Collobert (Pinheiro and Collobert, 2014) used sliding

windows on the images to classify and segment the pixels in small batches. As shared

features were not reused between the overlapping patches, these models resulted to be

ineffective. Long et al. (Long et al., 2015) proposed a method of processing whole images at once

using a fully convolutional network. To reduce the number of parameters, the network performs

downsampling and upsampling throughout the processing. In 2017, Lin et al. (Lin et al., 2017)

presented the RefineNet, a multi-path refinement network for the improvements of tasks like

semantic segmentation. By implementation of residual connections and residual pooling,

RefineNet exploits information like high-level semantic features over the downsampling process.

Today, the Mask R-CNN (He et al., 2017) as state of the art network architecture for

instance segmentation outperforms other approaches made in this area. Among the further

models for instance segmentations, selected CNN architectures are mentioned in the following:

Badrinarayanan et al. (?) offered the SegNet architecture, an encoding-decoding framework

with dilated convolutions. The SegNet used a novel technique of upsampling which involves

storing the max pooling indices. Chen et al. (Chen et al., 2018) used ”atrous convolution”,

convolution with unsampled filters to control the resolution and field of view of used filters.

Ronneberger et al. (Ronneberger et al., 2015) offered the U-Net, a convolutional network for

biomedical image segmentation. The FCIS method of Li et al. (Li et al., 2017) predicts a

set of position-sensitive output channels simultaneously for object classes, boxes, and masks,

making their network fast, thus exhibiting systematic errors on overlapping instances and cre-

ating spurious edges. Zagoruyko et al. (Zagoruyko et al., 2016) adapted the Fast R-CNN

(Girshick, 2015) by skipping connections, creating a MultiPath network while methods from

Bai et al. (Bai and Urtasun, 2017) or Arnab and Torr (Arnab and Torr, 2017) use semantic

segmentation methods and cut pixels of the same category into different instances.

4

Chapter 2

Theoretical Background

2.1 Term of Machine Learning

Machine Learning (ML) constitutes a field of Artificial Intelligence (AI) and defines the study

and modeling of learning processes and algorithms, that gives computers the ability to

learn without being explicitly programmed. ”A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E” (Michalski et al., 1983).

The main idea of ML models is structured as follows: A model consisting of several algorithms is

trained on input data, generating a decision structure to make as accurate as possible predictions

applied on new data.

Early research in this area was done in the 1950’s, due to low computing power mostly of a

theoretical nature. One of the first pioneers to be listed is Arthur Samuel, who worked on a

successful machine learning approach for the game of checkers (Samuel, 1959). Since comput-

ing performance increased, research focused on more advanced models. Yann LeCun presented

a noteworthy and pioneering research with the implementation of document recognition by means

of gradient-based learning (LeCun et al., 1998) in 1998, which was a foundation stone for all

following projects. In the last decade, machine learning became an increasing importance, as in

the course of high computing power and modern technologies it presents a very powerful tool.

A glossary of common terms used in the illustrated areas Machine Learning, Convolutional

Neural Networks and Computer Vision is documented in Appendix A.

2.2. Machine Learning Techniques 5

2.2 Machine Learning Techniques

The first step of solving a problem using machine learning is to choose an appropriate model.

Depending on the subjects being addressed, there are basically two different techniques of ma-

chine learning (MathWorks, 2016):

Machine Learning

Supervised Learning

Regression Classification

Unsupervised Learning

Clustering

Figure 2.1: Machine learning techniques

Whereas supervised learning methods are used to generate reasonable predictions for the

response to new data based on a known set of input data, unsupervised learning is applied

to find hidden patterns or implicit structures in data (MathWorks, 2016).

2.3 Supervised Learning

A supervised learning model is a network that computes training data with given features and

results for the requested output with the purpose to apply the learned relations on new data.

2.3.1 Model Structure

The basic model structure of a supervised learning model can be seen in figure 2.2:

Training Set

Preprocessing

Loss FunctionOptimization Gradient Descent

Hypothesis Function
Input (X)

Features

Output (Y)

Predicitions

Learning Process

Figure 2.2: Supervised learning model structure

2.3. Supervised Learning 6

Hypothesis function

The objective of a supervised learning task is, given a training set, to learn a function

h : X → Y so that h(x) becomes a precise predictor for the corresponding value of Y ,

through use of the input features X. This function h is called a hypothesis function (Ng, 2012):

Depending on the kind of problem, the given dataset, the input features and the model

architecture, different approaches of hypothesis functions are used. A linear function h(x) for

n input features is mathematically defined as (Ng, 2012):

h(x) = b+ w1x1 + ...+ wnxn = b+
n∑
i=1

wixi = b+ wTx︸ ︷︷ ︸
vectorized notation

(2.1)

The features X are combined with different weights w, which get iteratively adjusted during the

learning process to find the best working parametrization. The b term is called the bias term. The

bias term is not multiplied with a feature and is implemented to initialize the hypothesis function.

In addition to linear functions, several inclusions of the features are possible. An exemplary

hypothesis function may be assembled by the mathematical terms:

h(x) = b + w1x1 + w2x
2
1︸ ︷︷ ︸

polynomials

+ w3x1x2︸ ︷︷ ︸
combinations

+ w4
√
x1︸ ︷︷ ︸

roots

+ w5 log x1︸ ︷︷ ︸
logarithms

(2.2)

Loss function

The loss function L(w, b) defines a function that measures for each value of (wi, b), how close

the predicted outputs h(x(i)) for every example x(i) from the training set are to the correspond-

ing y(i) (Ng, 2012). Over the learning process of a model, the main objective is to optimize

the hypotheses. The quality of the hypothesis function can be measured by the value of the

loss function. Therefore, for the improvement of the hypothesis function, the loss function is

minimized. A proven loss function which is commonly used in regression problems is for example

the Mean Squared Error (MSE) function, computing the mean of the squared distances from h(x)

to Y (Ng, 2012):

L(w, b) =
1

m

m∑
i=1

(hw,b(x
(i))− y(i))2 (2.3)

Gradient descent

The loss function can be numerically minimized by an impact estimation of small variations of the

hypothesis function parameter values on the loss function. This is measured by the gradient of

the loss function with respect to the different weights θi = {wi, b} (LeCun et al., 1998).

2.3. Supervised Learning 7

The simplest minimization procedure is the gradient descent algorithm, where the weights θ are

iteratively adjusted as follows (Ng, 2012):

θi := θi − α
δ

δθi
L(θ) (2.4)

All parameters θi get updated by the negative gradient of the loss function, derived

after the according θi, which leads the loss function to a (local) minimum. The process of gradient

descent iteratively repeats until the parameter updates converge to a threshold value near 0, in

other words, until the loss function reaches the minimum. The parameter α is called the learning

rate, one of the hyperparameters (Ng, 2012). The value of the learning rate determines the range

of steps of adjustment in one iteration of gradient descent. In addition to gradient descent, more

sophisticated methods can be used to minimize the loss function. A widely applied method is the

Stochastic Gradient Descent (SGD) algorithm (Ng, 2012). In SGD, the parameter updates no

longer occur after a computation of the loss function for all training examples x(i), but rather after

the computation of the loss function for a single training example (Ng, 2012):

for i = 1 to m { θi := θi − α
δ

δθi
L(i)(θ) } (2.5)

In particular, at given training sets with a large number of training examples, stochastic gradient

descent often is more computationally effective, even apart from the fact that one stochastic

gradient descent update step, processing only one training example separately, not necessarily

computes the steepest descent every time.

Optimization

During the learning process, a continuous adjustment of the model takes place, to map the factual

research issue as good as possible. For the optimization of the network, there are different

techniques and adjustment screws, the hyperparameters. The most important hyperparameters

to be highlighted are the model architecture, the learning rate α and the regularization term.

Model architecture

The choice of a model architecture is the commencement of the development of a ML network.

The first step is to build an initial architecture containing suitable functions to the problem.

Whereas for example loss function algorithms like MSE are suitable for linear regression

problems, approaches like Log Loss are implemented for classification problems (as further

explained in 2.3.2 and 2.3.3). The properties of hypothesis function, loss function, and

gradient descent algorithms have an important impact on the quality and efficiency of the

network. As a second step during the learning process, modifications of the algorithms and com-

parisons to other functions get implemented, to evaluate the most efficient working combinations.

2.3. Supervised Learning 8

The functions and parameters to be the best in use derive not only from the required results

and the computing capacity but also from the type of input data and the kind of features.

The dataset has to be represented by input features that can be processed numerically. Data

information like prices, volumes or weights are distinctively defined by their units and therefore

can be implemented simply by value. The correct representation of information that is not

clearly categorized requires higher effort. The feature interpretation for example of emotions in

sentiment analysis is a sophisticated task, as these complex information are hardly comparable.

In image detection problems, the data of the images are scanned and further processed by

different filters (see 2.5.2). The evaluation of the most effective representation of features

and the most important features being implemented also presents a task of optimization.

In Neural Networks like CNNs, furthermore the number of neurons and layers have to be chosen

and adjusted.

Learning rate

After choosing an architecture, in general the learning rate α (2.4) is the first hyperparameter

to be adjusted. A learning rate that is too large and therefore adjusting too big steps in the

weight updates can lead to a jump over the minimum of the loss function, whereas a learning

rate being to small is computationally ineffective (Jacobs, 1988). A comparison of learning rate

values for a gradient decent update of the loss as a function of the weights with one parameter

w is exemplary shown in figure 2.3. Since the gradient descent algorithm numerically adjusts the

weights, the size of the steps has great impact on its performance (Ng, 2012).

w

L(w)

w

L(w)

w

L(w)

small α appropriate α large α

Figure 2.3: Comparison of learning rate values

Regularization

The hypothesis function h(x) consists the bias term b and terms of the weights multi-

plied by features wTx. For a good working hypothesis, an appropriate ratio of those two

parts is highly important. Disproportional high influence of bias or rather the other weights

leads to the phenomenom of an underfitting or overfitting hypothesis function (Ng, 2012).

2.3. Supervised Learning 9

Underfitting is referred to the situation when the bias term has too much impact on the hypothesis

function. In figure 2.4 in the left plot, an example of a highly underfitting hypothesis function is

illustrated. The plot shows output labels Y as a function of one input feature X for a training

set containing 5 training examples. The hypothesis function underfitting the training set has

a too powerful initialization term and, as a consequence, the parameters wTx, that adapt

the training examples, have nearly no impact.In other words, the function is underfitting the

task, which frequently appears at a lack of features (Ng, 2012). A correction is possible by

the implementation of new features, the combination of existing features (2.2) or by use of

regularization.

The right plot of figure 2.4 shows an overfitting hypothesis function. Because of the high feature

impact, the hypothesis function fits the training examples perfectly. By contrast applied on new

data, the algorithm fails to make correct predictions. This phenomenon is based on the fact,

that an overfitting hypothesis function does no longer represent the factional characteristic of the

coherences in the data set (Ng, 2012). Overfitting often occurs at a lack of training data, whereas

remedy can be provided by an extension of the data set, a reduction of the implemented features

or by the use of regularization.

X

Y

X

Y

X

Yh(x)

x

x

x

x
x

h(x)

x

x

x

x
x

x

x

x

x
x

h(x)

unterfitting regularization overfitting

Figure 2.4: Underfitting vs. overfitting

Regularization methods are implemented tools to accomplish a balanced hypothesis function.

A simple regularization technique is the implementation of a correction parameter λ, whose value

regulates the proportion of impact of the single terms in the hypothesis function. The parameter

λ can be implemented for example to the gradient descent algorithm (2.4) in addition to the loss

function (Ng, 2018). For this application of regularization, the bias term b has to be separated to

let the correction take effect:

b := b− α δ

δwi
L(wi, b) (2.6)

wi := wi − α[
δ

δwi
L(wi, b) +

λ

m
wi] (2.7)

Whereas a large value of λ reduces the impact of the weights wi, a small value balances an

oversized bias term.

2.3. Supervised Learning 10

2.3.2 Regression Problems

Supervised learning problems can be categorized into two different issues: regression prob-

lems and classification problems. The two tasks essentially differ in their type of model output.

Classification models are built to classify data among different given categories. Therefore, the

output of a classification model consists of a sum of discrete specified values. Regression

models process functional values from continuous functions as an outcome. The possible

number of output values of a regression model is thus not originated from a number of

predefined values, but rather infinitely high. (Ng, 2012)

As an illustration, a classification task is for example to evaluate the likelihood of rain,

possessing two output values: [rain/no rain]. A regression task would be to estimate the

amount of precipitation, with arbitrarily output values of the unit [mm].

Polynomial Regression

In regression problems, the main task is to compute a hypothesis function that adjusts the

correlations between input features X and labels Y from training data. When new, unlabeled

data are inserted, the function then calculates the likeliest predictions of the corresponding labels.

A simple way to implement a regression problem is polynomial regression. In this linear model

type consisting of one layer and therefore one hypothesis function and one loss function,

polynomial hypothesis functions (2.2) and the MSE function (2.3) for computation of the loss

are commonly used. A set of training examples and an appropriately learned hypothesis function

may exemplarily appear as:

X

Y

X

Y

x

x
x

x

x

x
x xx

x

x
x

x

h(x)

x

x
x

x

x

x
x xx

x

x
x

x

Training Set

Learning Process

Hypothesis Function

Figure 2.5: Regression function model

In nonlinear models like Convolutional Neural Networks (CNNs) with multiple layers, the principle

of the regression model is the same: A hypothesis function is developed, which maps the problem

statement as exactly as possible. In contrast to models with one layer, every neuron in the

network contains a kind of hypothesis function, whose outputs get computed by the following

neuron and so on. The processed results in this manner can be combined to create more complex

connections.

2.3. Supervised Learning 11

2.3.3 Classification Problems

Classification problem models take over the classification and categorization tasks of data for

training sets with known results. The classification model generates decision boundaries on the

basis of labeled input data, constituted by a hypothesis function. Decision boundaries represent

the policy for the classification of output estimations. A dataset with appropriately learned

decision boundaries may exemplarily be from this shape:

X

Y

X

Y

x

x

x
x

x
x

x

x

x
x

x

x

x

x
x

x xx

x

x
x x

x x
x

xx
x x

x

x

x
x

x
x

x

x

x
x

x

x

x

x
x

x xx

x

x
x x

x x
x

xx
x x h(x)

Training Set

Learning Process

Decision Boundaries

Figure 2.6: Classification function model

The output of a classification model is discrete-valued, whereby the number of output values is

depending on the problem to be processed. There are two different classification tasks: binary

classification and multi-class classification.

In a binary classification model, a binary classification is made. The classification consists of

a positive and a negative class with an output of a single number in the range of y ε {0, 1}.
X

X

Y

h(x)1

0

boundary

Figure 2.7: Sigmoid function

The value of this number expresses the probability of the positive

class, a value of y = 0.75 as an example implies a probability of

75% for the predicted class. The computation of input features to

such a value can be done by a logistic function like the sigmoid

function (Ng, 2012), displayed in figure 2.7:

h(x) =
1

1 + e−wT x
(2.8)

For every input feature, a probability is computed. The classifica-

tion is then set up by a defined value of probability as a boundary.

Whereas an input value far away from the boundary represents a high likelihood of

one class, an input value close to the boundary provokes an uncertain prediction.

Another approach of a classification hypothesis function is the Support Vector Machine (SVM)

method, which is further explained in the next subsection.

2.3. Supervised Learning 12

Multi-class classifications categorize data in different classes of an arbitrary number. In the

case of multi-class classification, two different possibilities of computation can be highlighted:

A commonly used linear method of multi-class classification is the one vs. all principle. A one vs.

all solution of a multi-class classification problem operates on the principle of one binary classifi-

cation model for each class, which are computed consecutively. For each model, the two output

values are firstly the class to be predicted and secondly all other classes in sum as a negative

output. In a model with several hypothesis functions, like NNs, there are approaches with one

classification model for all classes. In these approaches, an output prediction contains a vector

with the length of the predicted classes, whose several items represent the probabilities for each

class. Subsequently, the prediction for the classification is decided by the highest probability.

Support Vector Machines

Probably one of the best and commonly used classificaton hypothesis functions is the SVM

learning algorithm (Ng, 2000). The main idea of SVMs is to generate a hyperplane classifier:

The training data are mapped into a higher-dimensional feature space constructing a seperating

hyperplane with maximum margins between the elements from the different classes, as shown in

figure 2.8. This yields a nonlinear decision boundary in input space realized by a linear decision

hyperplane (Schölkopf, 1998).

X

Y

X

Z

Y

x

x
x

x

x
x

x

xx
x
x

x
x

xx

x

xx
x x

x
x xx

x
xx

xxx

h(x)
Hyperplane

Input Space

Feature Map

Feature Space

Figure 2.8: Feature space generation

For an output of two discrete values y = {−1, 1} (positive or negative classified), the functional

margin of a training example can be defined as (Ng, 2000):

γ(i) = y(i)(wTx+ b) (2.9)

The prediction for the specific training example i is correct if γ(i) is positive. Considering the

condition that y has the value (minus) one, the margin increases by a large (wTx + b) term,

whereas a large margin means a high chance of correct prediction. The margin can be maximized

by minimizing ||w||2 (Schölkopf, 1998).

2.3. Supervised Learning 13

The hypothesis function h(x) is therefore extended by another dimension, a feature space

computed by vector inner products. The combination of so-called kernels k, (nonlinear) ap-

proaches like radial basis functions or sigmoid functions instead of the linear function (wx + b),

corresponding with decision functions in the input space, the SVM hypothesis function can map

an optimal margin classifier with a good performance on high-dimensional problems, containing

numerous features (Schölkopf, 1998):

hw,b = h(

n∑
i=1

k(x, x(i)) + b) (2.10)

2.4. Neural Networks 14

2.4 Neural Networks

The combination of machine learning computations into a network is a commonly used technique

in machine learning today. An artificial Neural Network (NN) is a computational model based on

the structure of the brain (Kasneci et al., 1997). In a brain, billions of neurons are connected

and work together according to the following principle: A neuron has many receptors, called

dendrites, which receive input informations from other neurons. In the cell body, the informations

get processed and exported by means of an output wire, the axon (figure 2.9). An artificial NN,

like exemplary in figure 2.10, is an artificial approach of this structure, whereas an artificial neuron

(figure 2.11) also operates in a simplified way like its natural archetype.

Dendrites Axon Terminals

Figure 2.9: Neuron of a brain

Neural Networks from a technical view give a way of generating nonlinear, complex hypotheses.

A neural network combines several ”neurons”, nodes of the network that all compute a kind of

hypothesis function (Hagan et al., 1996). Using this technique, nonlinear patterns and decisions

can be mapped. In figure 2.10, a possible architecture of a neural network is demonstrated.

x1

x2

bias

L1

Input Layer

bias

L2

bias

L3

Hidden Layer

Neuron

bias

L4 L5

Output Layer

hw, b(x)

Figure 2.10: Neural network architecture

2.4. Neural Networks 15

The input and output of a NN are similar to a linear model. In the first layer of the network,

the input layer, all input features and a bias term are inserted. The following layers, in the

architecture of figure 2.10 L2-4, are called hidden layers. The term hidden layer refers to the

characteristic that typically their input and output cannot be interpreted. In every neuron of the

hidden layers, the computation of a hypothesis function, called activation function is done, which

can be seen in figure 2.11 (Ng, 2017). The final layer, called output layer, computes interpretable

values for the desired output. Depending on the task to be processed, the output layer computes

an output of different sizes, for instance, a multi-class classification model (see 2.3.3) generates

a vector with a length of the number of predicted classes. Thus, the output of a NN is a prediction

for a requested y, computed in a high-grade nonlinear way. When all neurons in a layer are

connected to all neurons in the previous layer, the layer is called a Fully Connected Layer.

2.4.1 Activation Function

Every neuron calculates a kind of hypothesis function, based on its input from the previous

neurons. In general, two operations are executed: as a first step, the input values of the

neuron xi are combined with weights wi, the neuron’s parameters (see figure 2.11 (left)). As a

second step, the adopted input z gets computed by an activation function f(z), to be seen in

figure 2.11 (right) (Ng, 2017). The activation function is a kind of classification hypothesis func-

tion that returns a positive value a for a positive z and an a → 0 for a negative z. Frequently

used activation functions are the sigmoid function (2.8), the tanh function or the Rectified Linear

Unit (ReLU) function (Nair and Hinton, 2010)

f(z) = max(0, z) (2.11)

which is plotted in figure 2.12. The ReLU function outputs zero for every negative z and the value

of z for every positive z. A neuron with implemented ReLU therefore gets activated by a positive

result of z and does not get activated by computation of a negative z. In machine learning

applications like Computer Vision tasks (2.6.1) using this technique, neurons that compare dif-

ferent patterns on an image get activated depending on the accordance to the respective pattern.

Input Neuron Output

z = wTx a = f(z)

Figure 2.11: Computations of a single neuron

z

f(z)

f(z)

0

0

Figure 2.12: Rectified Linear Unit (ReLU)

2.4. Neural Networks 16

2.4.2 Backpropagation

The training process of a NN is structured as follows: in a forward step, the input features get

computed through all layers of the network, followed by a backward step optimizing the weights

by use of gradient descent. At the end of the forward step, the network calculates a loss, on

which all gradients have to be updated. Therefore, gradient descent is applied to all neurons, in

other words on all weights of the NN. The gradients for the different layers can be computed in a

backward pass. Starting at the last layer, where the loss is calculated by a loss function using the

output hw,b(x) and requested y, the gradients of the different weights get calculated backward.

This method is called backpropagation (Ng, 2017).

The weights (W (i), b(i)) for any layer i consequently update in every iteration with use of a loss

function L by the update rule (Ng, 2017):

W (i) =W (i) − δL

δW (i)
(2.12)

b(i) = b(i) − δL

δb(i)
(2.13)

In a training scenario, the network computes the forward and backward steps several times.

In many epochs, the input features get processed, the results evaluated and the weights

corresponding to the loss adopted until in best case, the loss converges to zero.

2.4.3 Weight Initialization

Before the training process starts, the weights of the network have to be initialized. A lack

of initialization and therefore all weights set to zero causes problems in the backpropagation

step as all gradients will be zero (Ng, 2017). An initialization with unique values of the weights

also is not expedient: After computing the input features in the first layer, the activations of all

neurons would be the same as the calculation was done with same values for their weights.

This effect will occur at all layers of the NN, a phenomenon called symmetry (Ng, 2017).

To avoid symmetry in the network, all weights get initialized with different values (near zero).

A simple approach would be a random initialization. In Deep Neural Networks (DNNs),

networks with a large number of layers, it is important to scale the values of initialization, depend-

ing on the depth of the layers (Glorot and Bengio, 2010): a forward calculation through the layers

has a multiplicative effect on the weights, as small values processed over many layers converge

toward zero. To maintain activation and gradient variances, a normalized initialization is done. A

commonly used technique is Xavier initialization (Ng, 2017):

w(i) ∼ N(0,

√
2

n(i) + n(i+1)
) (2.14)

where n represents the number of neurons.

2.5. Convolutional Neural Networks 17

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specifically designed to process the variability of

multidimensional shaped input (LeCun et al., 1998) as a CNN is a form of a NN with convo-

lutionally extracted features. A CNN, also known as ConvNet, basically consists of three different

layer types: Convolutional (Conv) layers (2.5.2), Pooling layers (2.5.3) and Fully connected (FC)

layers (2.5.4). A possible model architecture of a CNN is exemplarily illustrated in figure 2.13.

In
100x100x3

C1
96x96x8
15x15

P2
48x48x8

max pooling

C3
48x48x64

5x5

P4
24x24x64

max pooling

FC5
1024

Out
100

Figure 2.13: Convolutional neural network architecture

2.5.1 Feature extraction

A NN inputs all features as single values xi (see figure 2.10). The input is therefore a vector by

dimension [nx1] with n as the number of input features. In tasks like image processing, the input

of a network typically is an image, whose pixels are the processed features. To be able to process

images in a NN, the features would have to be extracted to a vector by stringing together all the

pixels. This procedure does not scale larger images, as for example an image of size [100x100x3]

(100 pixels width, 100 pixels height, 3 color channels (RGB)), see figure 2.13 ”In”, would lead to

neurons with 100*100*3 = 30.000 weights each. For larger images, this fully connected structure

due to the increasing number of weights would be computationally expensive and can lead to

overfitting problems if training data are scarce (LeCun and Bengio, 1995).

The approach of CNNs is to process input features no longer unfolded, as rather in their original

shape (Ng, 2017): The input data, for instance, the image of figure 2.13, is processed as a matrix

by dimension [100x100x3]. The weights to compute the input features are also no longer a vector,

but rather a matrix that is combined with the matrix of input features of the input image. Instead

of computing the features in a fully connected layer architecture, the idea is to build a locally

connected network: The neurons are locally connected to a small region of the previous layer, in

the case of image processing, to a region of pixels.

2.5. Convolutional Neural Networks 18

The weight matrices have a smaller dimension than the input matrix and ”scan” the image as

so-called filters (2.5.2). As in every Conv layer the neurons are combined with a defined region

of the previous layer, the deeper a hidden layer in the CNN is located, the larger its connected

area to the initial input gets. Feature extraction takes place over all Conv layers and Pool layers

usually up to an FC layer, that fully combines all information and calculates final predictions.

Theoretically, an arbitrary number of Conv layers and Pool layers can be combined in a CNN,

finally processed by an FC layer as output layer. A CNN containing a huge number of hidden

layers is called a Deep Neural Network (DNN).

2.5.2 Convolutional Layer

A Convolutional (Conv) layer computes input from previous layers, partitioned in local regions

by the separate neurons (Ng, 2017): A matrix filled with weights slides over all features of the

previous layer and computes a value in every step of moving. The size of the matrix specifies

the receptive field of each neuron (Karpathy et al., 2016): Every neuron is locally connected to

an input volume of the previous layer by the size of the matrix. Applied matrices can vary in

width and height, but always have the same depth as the input. The matrix size and therefore

the receptive field can be varied during the learning process and is one of the hyperparameters

of the network. Another hyperparameter is the depth of the Conv layer: it corresponds to the

number of scanning matrices (filters) that are applied. Every matrix produces an output, often

called activation map (see figure 2.15). In the network of figure 2.13, the Conv layer C1 contains

8 filters by dimension [15x15x3] that produce 8 activation maps and therefore possesses a depth

of 8, whereas C3 is assembled by 64 activation maps.

The matrix in figure 2.15 by dimension [2x2x1] contains 2 ∗ 2 ∗ 1 = 4 weights. As the output

contains 4 neurons, the activation map would consist of 4 ∗ 4 = 16 weights + 1 bias. Processing

larger input volumes and using scanning matrices with a larger dimension leads to a huge number

of weights in every layer. As an example, the Conv layer C1 of figure 2.13 using different weights

for every neuron would consist of

98 (width C1) ∗98 (height C1) ∗15∗15∗3 (filter dimension) ∗8 (number of filters) = 51.861.600

weights plus additional bias. To reduce calculation effort, CNNs use parameter sharing

(Karpathy et al., 2016). Instead of setting different weights for every neuron of the activation

map, one matrix, called filter, uses the same weights on all neurons. The number of weights thus

decreases to

15 ∗ 15 ∗ 3 (filter dimension) ∗ 8 (number of filters) = 5.400

and, with adding a bias for every filter, to 5.408 parameters.

2.5. Convolutional Neural Networks 19

Parameter sharing is in specific a reasonable method when every point of an image shall be

scanned for the same patterns and thus by identical weights for every neuron in one activation

map. An activation map in the Conv layer can then be computed as a convolution of the neuron’s

weights with the input volumes which is, furthermore, eponymous for the layer.

The application of different weight sets as a filter (also called kernel) is a commonly used

method. Figure 2.14 shows example filters learned by Krizhevsky et al. in the AlexNet CNN

architecture (Krizhevsky et al., 2012). Each of the 96 filters is by size [11x11x3], shared by

55*55 neurons in every activation map and learned by the first Conv layer on [224x224x3] images.

Figure 2.14: Filter examples, from (Krizhevsky et al., 2012)

An example of the computation steps in a Conv layer with one filter by dimension [2x2x1]

processed on a [3x3x1] input image can be seen in figure 2.15:

0

1

2

-1

Output
2x2x1

1

0

0

1

0

1

0

1

1

Input
3x3x1

1

-1

-1

1

Filter
2x2x1

0

1

2

0

Activation Map
2x2x1

ReLU

Figure 2.15: Calculation steps in an activation map

The receptive field of the neurons is set to [2x2x1], so in every computation step, a [2x2x1]

region of the image gets processed. The calculation is done by an elementwise multiplica-

tion of the input values with the filter values, which is subsequently summed up to produce a

single output value (Karpathy et al., 2016). One exemplary computation is highlighted in red

in figure 2.15. The calculation is implemented in CNNs by means of a matrix multiplication.

The output matrix then usually gets processed by an activation function like the tanh func-

tion, the sigmoid function (2.8) or as in figure 2.15 by use of the ReLU function (2.11).

Scanning the images, a filter like shown in figure 2.14 gets activated, in other words, calculates

high values in its activation map when the pattern in the image is similar to the filter.

2.5. Convolutional Neural Networks 20

Spatial Arrangement

Three hyperparameters determine the dimension of a Conv layer (Karpathy et al., 2016):

the depth, the stride and the value of zero-padding. Usually, as deeper located layers in the

CNNs decrease in width and height, they increase in depth to balance the amount of informa-

tion. The depth of a Conv layer depends on the number of filters of the layer. The width and

height hinge on the stride, with which a filter slides over the input and the value of so-called zero-

padding. With a stride of 1, the filter moves one pixel after every computation. A stride of 2 leads

the filter to move two pixels at a time. An increasing number of the stride produces smaller output

volumes spatially and reduces the overlap of processed image regions. Figure 2.16 shows a

[2x2x1] filter output with stride 1 (top) compared with a stride of 2 (bottom), applied on an [4x4x1]

input image.

0

0

1

-2

2

-1

0

0

0

Output
3x3x1

0

1

0

0

0

1

0

1

1

0

1

1

1

0

1

1

Input
4x4x1

1

-1

-1

1

Filter
2x2x1

0

1

0

0

Output
2x2x1

0

1

0

0

0

1

0

1

1

0

1

1

1

0

1

1

Input
4x4x1

1

-1

-1

1

Filter
2x2x1

Figure 2.16: Filter calculation: stride 1 (top) vs. stride 2 (bottom)

The input size must be divisible by the filter stride, as only a natural number of steps can be

executed (Karpathy et al., 2016). A technique to adjust the input size is zero-padding: Along

the borders of the input, rows with values set to zero are attached to pad the input to a bigger

size. Noticing, a (commonly used) pixel overlapping stride higher weights all pixels as they got

2.5. Convolutional Neural Networks 21

processed multiple times in various steps, except the pixels at the borders, zero-padding also

balances this effect. Figure 2.17 shows an example with zero-padding of an amount of 1 applied

to a [2x2x1] filter, computing a [2x2x1] image with a stride of 2, achieving a same-dimensional

output.

1

-2

-2

1

Output
2x2x1

0

0

0

0

0

1

2

0

0

2

1

0

0

0

0

0

Input
2x2x1

1

-1

-1

1

Filter
2x2x1

Figure 2.17: Zero-padding

The spatial size of an activation map can be computed as a function n(W,F, P, S) of the hyper-

parameters input volume size W , receptive field of the neurons F , amount of zero-padding P

and the value of the stride S (Karpathy et al., 2016):

n(W,F, P, S) =
W − F + 2P

S
+ 1 (2.15)

2.5.3 Pooling Layer

As a CNN contains a huge number of parameters, which increases massively by increasing

the layer dimensions, it is important to reduce the number of weights and neurons to better

the computational performance and prevent overfitting problems. A commonly used method to

progressively reduce the spatial size of the representation are Pooling layers, that are inserted

in-between successive Conv layers in a CNN. A pooling layer operates independently on every

activation map of the input and resizes it spatially (Karpathy et al., 2016). In the CNN architecture

showed in figure 2.13, two Pooling layers P2 and P4 are implemented, using the technique of max

pooling. A Pooling layer does not contain any parameters but reduces the input volume by means

of mathematical operations. The size of an input volume by dimension [W1xH1xD1], decreased

by a Pooling layer, can be computed, with given receptive field of the neurons (pooling filter size)

F and the stride S, by the formula (Karpathy et al., 2016)

W2 =
W1 − F

S
+ 1 H2 =

H1 − F
S

+ 1 D2 = D1 (2.16)

whereby the height and width of the volume decreases and the depth remains unchanged.

2.5. Convolutional Neural Networks 22

Commonly used methods for pooling are max pooling (Zeiler and Fergus, 2014) or average

pooling (Boureau et al., 2010). In a max pooling operation, at every step, the filter takes the

maximum value over the processed input values, discarding all other activations. The most

common form of pooling is a max pooling layer with filters by size [2x2] and a stride of 2

(Karpathy et al., 2016). In average pooling, the filter computes the average values of the pro-

cessed input values. Figure 2.18 shows a max pooling operation compared to an average pooling

operation, for a filter by size [2x2] applied on an input volume by size [4x4].

4

3

2

4

2

2

1

2

Output
2x2

4

2

1

2

1

1

2

3

0

2

1

2

1

1

1

4

Input
4x4

max pooling

average pooling

Figure 2.18: max pooling vs. average pooling

2.5.4 Fully Connected Layer

The last layer of a CNN commonly is a Fully Connected (FC) layer. As with ordinary NNs, in a

Fully Connected layer, every neuron is connected to all elements of the previous layer. An FC

layer at the end of a CNN is used to compute the final predictions and, therefore, is by dimension

of the desired output, for example for multi-class classifications it has the shape of a vector. In the

architecture of figure 2.13, FC5 by size [1024x1x1] is implemented to predict values for a multi-

class classification consisting of 100 classes. The values of the FC layer finally are computed by

an interpreting function, in the case of classification for instance by a softmax function or a SVM.

Optimization

As it is computationally expensive to compute the initial gradient descent in every backpropa-

gation step, it is common in CNNs to use smaller batches for gradient learning, as the SGD

algorithm (2.2). An approach of SGD that usually produces higher converge rates in deeper

networks is called Momentum update (Sutskever et al., 2013), a technique that accumulates a

velocity vector in direction of the update steps across iterations and combines this vector with the

new update steps. Momentum update steps ”smooth out” backpropagation. A commonly used

method for regularization for CNNs, in addition, is dropout (Srivastava et al., 2014), that randomly

suspends neurons in every training step.

2.6. Computer Vision 23

2.6 Computer Vision

2.6.1 Tasks

Computer vision can be described as the computational transformation of data from images

or videos into either a decision or a new representation. Whereas the human brain divides

visual signals into different channels with separate kind of information, a computer vision system

computes a grid of input values that have to be interpreted, patterned and transformed by dif-

ferent numerical operations (Bradski et al., 2013). As it is nearly impossible to hard code such

operations, computer vision is a highly focused research area in machine learning. Currently,

huge improvements for many different computer vision tasks are obtained, which can exemplarily

be seen in selected projects of 1.1.

The main fields of activity in computer vision can be categorized into three core areas: classifi-

cation, detection, and segmentation tasks. The different tasks require a diverse CNN structure,

in specific diverse model output dimensions. A categorization approach is made in figure 2.19.

Computer Vision

Classification

Localization

Semantic Segmentation Object Detection

Instance Segmentation

Figure 2.19: Computer Vision tasks

The input of CNNs for computer vision tasks are images, usually by size [width x height x 3] with

3 channels (RGB). The separate tasks differ in the network’s outputs.

Image classification is the traditional image processing task in machine learning. An input

image is classified in a scheme of an arbitrary amount of classes. The output contains one

vector, comprising probabilities for all classes. In a localization task, further, a localization of

the classified object is made. A localization is a kind of regression (2.3.2), whereby coordinates

of bounding boxes for the object are computed. A classification plus localization model thus

produces a classification probability with in addition bounding box coordinates as an output.

A semantic segmentation model computes a classification for all pixels of the image and

segments the whole image in different predefined classes. A segmentation model outputs a

mask by the same size as the input image [width x height x 1] (with a depth of 1, as one mask

is produced). Object detection and instance segmentation tasks localize and segment various

objects in images, implemented by an image fragmentation during the computation process,

which is further explained in 2.6.3.

2.6. Computer Vision 24

2.6.2 Architectures

LeNet

In the field of Computer Vision, there are several common CNN architectures. A key progress

definitely was the document recognition CNN from LeCun et al. in 1998 (LeCun et al., 1998):

As a first of its kind, a CNN with gradient-based learning and computation of image data as an

input was successfully applied. Figure 2.20 shows the architecture of the developed LeNet-5.

In this approach, input data in form of a [32x32] pixel sized gray scaled image gets computed

by a CNN with five hidden layers. In the first Conv layer C1, six feature maps are produced by

[5x5] filters, which get subsequently pooled by Subsampling layer S2. In the following layers,

several feature maps get computed, that decrease by dimension and increase in quantity. At the

end of the CNN, a FC layer combines the information and with the execution of an Euclidean

Radial Basis Function (RBF) finally the possible output predictions are made (the RBF computes

radial distances of all possible classes to the predictions and decides by means of the lowest

difference).

Figure 2.20: Architecture of LeNet-5, from (LeCun et al., 1998)

In training mode, the MSE function was used to compute the loss. The LeNet-5 was trained in

20 epochs on a dataset containing 60.000 training images and 10.000 test images and achieved

a test error rate of 0.8%.

The development of CNN architectures can be seen on the basis of image processing

results based on datasets like the CIFAR-100 (Krizhevsky, 2009), MS COCO (Lin et al., 2015),

PASCAL Visual Object Classes (VOC) (Everingham et al., 2014) or the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015). The ILSVRC is an annual

competition of image classification at larger scales, based on the ImageNet dataset, which con-

tains about 1.5 million labeled images and consists of different challenge tasks like classification,

object localization and object detection.

Figure 2.21 shows the top 5 error rates (error rate for a classification task its target is in top 5

predictions) of the winning networks on ILSVRC through the years. The plot vividly demonstrates

that error rates decreased over the years as the networks increased in depth.

2.6. Computer Vision 25Revolution of Depth

Slides from Kaiming He’s presentation
Figure 2.21: ILSVRC top-5 winning error rates, from (He et al., 2016)

AlexNet

One of the first Convolutional networks for Computer Vision tasks was the AlexNet (Krizhevsky

et al., 2012), designed by the Supervision Group. In 2012, the AlexNet won the ILSVRC,

outperforming the other participating networks with a top-5 test error rate of 15,3% (according

to (Krizhevsky et al., 2012)), compared to the runner-up with a rate of 26,2%. The architecture

of the AlexNet was similar to the LeNet, even though in addition deeper and bigger, containing 7

hidden layers, about 650.000 neurons and 6 million parameters. The AlexNet was one of the first

networks stringing together Conv layers directly, instead of alternating Conv layers with Pooling

layers.

GoogLeNet

The ILSVRC 2014 winner was the GoogLeNet (Szegedy et al., 2015), also known as Inception-

v1, designed by Szegedy et. al from Google, a network that also used a CNN inspired by the

LeNet. Its main contribution was the development of an Inception Module, which increased the

depth and width of the network by simultaneous decreasing the number of parameters.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles

7

Figure 2.22: GoogLeNet, from (Szegedy et al., 2015)

2.6. Computer Vision 26

An inception module, displayed in figure 2.23, is a kind of Conv layer, that computes filters of

different sizes in parallel paths concatenating them at the end (Szegedy et al., 2015). Due to the

concatenation of various filters, the filter sizes could decrease. This procedure and, in addition,

the implementation of [1x1] convolutions before the computational expensive bigger convolutions

as well as the replacement of an FC layer at the end of the network by an average pooling

layer dramatically reduced the number of parameters. Compared to the AlexNet’s 60 million

parameters, GoogLeNet only contained about 4 million parameters, even though it was 22 layers

deep. The architecture, which can be seen in figure 2.22, was composed by several Inception

Modules, arranged with max pooling layers along the lines of LeNet.

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

Figure 2.23: Inception Module, from (Szegedy et al., 2015)

ResNet

Residual Neural Network (ResNet) (He et al., 2016) was the winner of ILSVRC 2015. This archi-

tecture introduced so-called skip connections, as it reformulates the layers as learning residual

functions with reference to the layer inputs, instead of learning unreferenced functions. Figure

2.24 shows a residual learning building block of He et al., where this method is implemented.

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 33, 48] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[35] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [35], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [40]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 47]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [44, 45], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 44, 45] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 33, 48] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [33, 48]. In [43, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [38, 37, 31, 46] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [43], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [41, 42]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2771

Figure 2.24: Residual learning, from (He et al., 2016)

Instead of mapping the underlying layers by the function H(x) := F (x), a residual mapping

of H(x) := F (x) + x is implemented. The idea of ResNet is, that it is easier to optimize the

residual mapping than to optimize the original, unreferenced mapping, as no more completely

new parameters have to be learned but rather differences to the previous layer. ”To the extreme,

if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an

identity mapping by a stack of nonlinear layers” (He et al., 2016).

2.6. Computer Vision 27

The implementation of a plurality of layers in ResNet as a deep CNN also became possible

because of the massive implementation of a method called batch normalization (Ioffe and

Szegedy, 2015). Batch normalization included layer normalization for each training mini batch

in the learning process and demonstrated a way of solving problems arising by the layer

normalization of Deep CNNs.

The architecture of ResNet-34, a ResNet comprising 34 layers, can be seen in figure 2.25 at

the top, compared with a 34 layer plain CNN (bottom). The winning ResNet, ResNet-152, was

extended to a depth of 152 layers, according to the same principle.

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

0]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1×

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

40
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2

5
6
,4

8
0]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

0]
.

A
22

4×
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
ri

zo
nt

al
fli

p,
w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
ri

gh
t

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
2]

an
d

tr
ai

n
al

lp
la

in
/r

es
id

ua
ln

et
s

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-

ba
tc

h
si

ze
of

25
6.

T
he

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
s

ar
e

tr
ai

ne
d

fo
ru

p
to

60
×

10
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

13
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
rc

om
pa

ri
so

n
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,

w
e

ad
op

t
th

e
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

0,
12

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(i
m

ag
es

ar
e

re
si

ze
d

su
ch

th
at

th
e

sh
or

te
r

si
de

is
in

{2
24

,2
56

,3
8
4,

4
80

,6
40

})
.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

35
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4 7
73

Figure 2.25: ResNet-34, from (He et al., 2016)

ResNets are currently by far state of the art CNN models and used in various networks as

backbone architecture today. Latest approaches of ResNet-backboned architectures are the

advanced ResNeXt (Xie et al., 2017) or the Inception-v4 (Szegedy et al., 2016), which combine

the techniques of residual networks and inception modules. The winner of the latest ILSVRC in

2017 was the Squeeze-and-Excitation Network (SENet) (Hu et al., 2017), a network also based

on residual learning with ”Squeeze-and-Excitation” blocks, that adaptively recalibrates channel-

wise feature responses by explicitly modeling interdependencies between channels. Figure 2.26

shows an analysis of Deep Neural Networks (DNN) (Canziani et al., 2017). On the left, the

networks are plotted depending on the reached top-1 score and, in addition, compared by their

parameter size, displayed in size of the circles, and the amount of needed operations (right plot).

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥106 to 155⇥106 params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200 MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Figure 2.26: DNN Comparison, from (Canziani et al., 2017)

2.6. Computer Vision 28

2.6.3 Instance Segmentation

Instance segmentation is a task whereat various objects in images are located and pixel by

pixel segmented. A CNN output for an instance segmentation task therefore has to consist of a

classification for the object, a bounding box computation and another classification for every pixel

inside the predicted area to segment the classified object. As a CNN needs a predefined output,

a prediction for various objects needs to be computed in two steps: At first, the model selects

an area for every object wherein the object gets detected and segmented. In a second step, a

bounding box and pixel-wise segmentation of the separate areas takes place.

R-CNN

To compute different areas for various objects, in 2012 a pioneering technique, combining region

proposals with a CNN, called Regions with CNN features (R-CNN) (Girshick et al., 2012), was

developed. R-CNN outperformed the method OverFeat (Sermanet et al., 2013), then state of the

art, in ILSVRC 2013. It achieved a mean Average Precision (mAP) in the detection dataset of

31.4% compared to 24.3% of OverFeat.

The architecture of R-CNN was structured in four modules: The first module (figure 2.27 No.

2) generates about 2000 region proposals by means of Selective Search (Uijlings et al., 2013),

a method that uses a data-driven grouping-based strategy with a variety of grouping criteria,

generating high-quality object locations in any scales and aspect ratios. The regions then get

processed to mean-substracted [227x227x3] images as input for the second module.

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a signifi-
cant performance boost. Since we combine region propos-
als with CNNs, we call our method R-CNN: Regions with
CNN features. We also present experiments that provide
insight into what the network learns, revealing a rich hier-
archy of image features. Source code for the complete sys-
tem is available at http://www.cs.berkeley.edu/
˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [26] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [12], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [16], a biologically-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [32] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-
gorithm. LeCun et al. [23] provided the missing algorithm
by showing that stochastic gradient descent, via backprop-
agation, can train convolutional neural networks (CNNs), a
class of models that extend the neocognitron.

CNNs saw heavy use in the 1990s (e.g., [24]), but then
fell out of fashion, particularly in computer vision, with the
rise of support vector machines. In 2012, Krizhevsky et al.
[22] rekindled interest in CNNs by showing substantially
higher image classification accuracy on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10].
Their success resulted from training a large CNN on 1.2
million labeled images, together with a few twists on Le-
Cun’s CNN (e.g., max(x, 0) rectifying non-linearities and
“dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
object detection results on the PASCAL VOC Challenge?

We answer this question decisively by bridging the
chasm between image classification and object detection.
This paper is the first to show that a CNN can lead to dra-

1

Figure 2.27: R-CNN architecture, from (Girshick et al., 2012)

The second module (figure 2.27 No. 3) is a CNN that computes the input images to a fully con-

nected feature vector. R-CNN used a slightly modified version of the AlexNet (Krizhevsky et al.,

2012) as CNN backbone architecture. The third module (figure 2.27 No. 4) is a set of class-

specific linear SVMs, one per class, to classify the object in the region proposal. Finally, R-CNN

runs a linear regression model as employed in DPM (Felzenszwalb et al., 2009) on the region

proposals to generate bounding boxes for the object, to reduce localization errors.

As R-CNN achieved very well detection performance, however, it had notable drawbacks

(Girshick, 2015): For every image with each about 2000 region proposals, thus 2000 images

had to be processed. In addition, three different models (CNN, classifier and regressor) had to

be trained separately. This led R-CNN to be hard and expensive to train and slow at test-time.

2.6. Computer Vision 29

Fast R-CNN

Ross Girshick, first author of R-CNN, solved these problems with a further development of

the algorithm in 2015, called Fast Region-based Convolutional Neural Network (Fast R-CNN)

(Girshick, 2015). As the name indicates, Fast R-CNN proposed a method based on the R-CNN

algorithm, improving speed and expense. Figure 2.28 illustrates the architecture of Fast R-CNN:

Instead of computing various region proposals as individual images, the network processes the

whole image with several Conv and Pooling layers to produce a Conv feature map. Then, a

Regions of Interest Pooling Layer (RoIPool) (He et al., 2014) extracts a feature vector for each

object proposal directly on the Conv feature map. This RoI feature vector subsequently gets

processed by a sequence of FC layers, branched in two output layers: a softmax classification

layer that classifies every class of the object, adding a ”background” class as negative class, and

a regression layer that outputs bounding boxes of the object. Fast R-CNN used the architectures

of the AlexNet (Krizhevsky et al., 2012) from R-CNN and the VGGNet (Simonyan and Zisserman,

2015), runner-up in ILSVRC 2014, as backbone architecture.
SPPnet also has notable drawbacks. Like R-CNN, train-

ing is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs,
and finally fitting bounding-box regressors. Features are
also written to disk. But unlike R-CNN, the fine-tuning al-
gorithm proposed in [11] cannot update the convolutional
layers that precede the spatial pyramid pooling. Unsurpris-
ingly, this limitation (fixed convolutional layers) limits the
accuracy of very deep networks.

1.2. Contributions

We propose a new training algorithm that fixes the disad-
vantages of R-CNN and SPPnet, while improving on their
speed and accuracy. We call this method Fast R-CNN be-
cause it’s comparatively fast to train and test. The Fast R-
CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe
[13]) and is available under the open-source MIT Li-
cense at https://github.com/rbgirshick/
fast-rcnn.

2. Fast R-CNN architecture and training
Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set
of object proposals. The network first processes the whole
image with several convolutional (conv) and max pooling
layers to produce a conv feature map. Then, for each ob-
ject proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map.
Each feature vector is fed into a sequence of fully connected
(fc) layers that finally branch into two sibling output lay-
ers: one that produces softmax probability estimates over
K object classes plus a catch-all “background” class and
another layer that outputs four real-valued numbers for each
of the K object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

2.1. The RoI pooling layer

The RoI pooling layer uses max pooling to convert the
features inside any valid region of interest into a small fea-
ture map with a fixed spatial extent of H × W (e.g., 7 × 7),
where H and W are layer hyper-parameters that are inde-
pendent of any particular RoI. In this paper, an RoI is a
rectangular window into a conv feature map. Each RoI is
defined by a four-tuple (r, c, h, w) that specifies its top-left
corner (r, c) and its height and width (h, w).

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (RoIs) are input into a fully convolutional
network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h × w RoI win-
dow into an H × W grid of sub-windows of approximate
size h/H × w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pool-
ing is applied independently to each feature map channel,
as in standard max pooling. The RoI layer is simply the
special-case of the spatial pyramid pooling layer used in
SPPnets [11] in which there is only one pyramid level. We
use the pooling sub-window calculation given in [11].

2.2. Initializing from pre-trained networks

We experiment with three pre-trained ImageNet [4] net-
works, each with five max pooling layers and between five
and thirteen conv layers (see Section 4.1 for network de-
tails). When a pre-trained network initializes a Fast R-CNN
network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI
pooling layer that is configured by setting H and W to be
compatible with the net’s first fully connected layer (e.g.,
H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-
max (which were trained for 1000-way ImageNet classifi-
cation) are replaced with the two sibling layers described
earlier (a fully connected layer and softmax over K +1 cat-
egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a
list of images and a list of RoIs in those images.

2.3. Fine-tuning for detection

Training all network weights with back-propagation is an
important capability of Fast R-CNN. First, let’s elucidate
why SPPnet is unable to update weights below the spatial
pyramid pooling layer.

The root cause is that back-propagation through the SPP
layer is highly inefficient when each training sample (i.e.
RoI) comes from a different image, which is exactly how
R-CNN and SPPnet networks are trained. The inefficiency

1441

Figure 2.28: Fast R-CNN architecture, from (Girshick, 2015)

By computing the image once and applying the region proposals on the Conv feature map,

instead of processing every region proposal in the CNN separately, Fast R-CNN got significantly

more computationally efficient. By replacing the three individual ML models with one combined

model, Fast R-CNN was in addition a lot easier to train, as the CNN, classification and regres-

sion could be adjusted together. It trained 9x faster than R-CNN, was 213x faster at test-time,

actually achieving a 4% higher mAP measured on PASCAL VOC 2012 (Everingham et al., 2010)

(Girshick, 2015).

Faster R-CNN

One remaining bottleneck was the region proposal generation. As Fast R-CNN achieves near

real-time predictions, when ignoring the time spent on region proposals, the used method to

propose object regions, Selective Search (Uijlings et al., 2013), was quite expensive (at 2

seconds per image) (Ren et al., 2017). In 2015, a team at Microsoft Research introduced a

Region Proposal Network (RPN) that shares full-image convolutional features with the detec-

tion network, thus enabling nearly cost-free region proposals. An RPN, a fully convolutional

2.6. Computer Vision 30

network that simultaneously predicts object bounds and objectness scores at each image posi-

tion, merged with Fast R-CNN for object detection to one single network was the result of their

work, called Faster R-CNN (Ren et al., 2017).

Instead of running a separate Selective Search algorithm, the architecture of one single CNN

including a RPN was introduced. Faster R-CNN uses the Conv feature maps, used by the region-

based detector of Fast R-CNN, for generating region proposals, which is illustrated in 2.29. 3

image

conv layers

feature maps
Region Proposal Network

proposals

classifier

RoI pooling

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.

into a convolutional layer for detecting multiple class-
specific objects. The MultiBox methods [26], [27] gen-
erate region proposals from a network whose last
fully-connected layer simultaneously predicts mul-
tiple class-agnostic boxes, generalizing the “single-
box” fashion of OverFeat. These class-agnostic boxes
are used as proposals for R-CNN [5]. The MultiBox
proposal network is applied on a single image crop or
multiple large image crops (e.g., 224⇥224), in contrast
to our fully convolutional scheme. MultiBox does not
share features between the proposal and detection
networks. We discuss OverFeat and MultiBox in more
depth later in context with our method. Concurrent
with our work, the DeepMask method [28] is devel-
oped for learning segmentation proposals.

Shared computation of convolutions [9], [1], [29],
[7], [2] has been attracting increasing attention for ef-
ficient, yet accurate, visual recognition. The OverFeat
paper [9] computes convolutional features from an
image pyramid for classification, localization, and de-
tection. Adaptively-sized pooling (SPP) [1] on shared
convolutional feature maps is developed for efficient
region-based object detection [1], [30] and semantic
segmentation [29]. Fast R-CNN [2] enables end-to-end
detector training on shared convolutional features and
shows compelling accuracy and speed.

3 FASTER R-CNN
Our object detection system, called Faster R-CNN, is
composed of two modules. The first module is a deep
fully convolutional network that proposes regions,
and the second module is the Fast R-CNN detector [2]
that uses the proposed regions. The entire system is a

single, unified network for object detection (Figure 2).
Using the recently popular terminology of neural
networks with ‘attention’ [31] mechanisms, the RPN
module tells the Fast R-CNN module where to look.
In Section 3.1 we introduce the designs and properties
of the network for region proposal. In Section 3.2 we
develop algorithms for training both modules with
features shared.

3.1 Region Proposal Networks
A Region Proposal Network (RPN) takes an image
(of any size) as input and outputs a set of rectangular
object proposals, each with an objectness score.3 We
model this process with a fully convolutional network
[7], which we describe in this section. Because our ulti-
mate goal is to share computation with a Fast R-CNN
object detection network [2], we assume that both nets
share a common set of convolutional layers. In our ex-
periments, we investigate the Zeiler and Fergus model
[32] (ZF), which has 5 shareable convolutional layers
and the Simonyan and Zisserman model [3] (VGG-16),
which has 13 shareable convolutional layers.

To generate region proposals, we slide a small
network over the convolutional feature map output
by the last shared convolutional layer. This small
network takes as input an n ⇥ n spatial window of
the input convolutional feature map. Each sliding
window is mapped to a lower-dimensional feature
(256-d for ZF and 512-d for VGG, with ReLU [33]
following). This feature is fed into two sibling fully-
connected layers—a box-regression layer (reg) and a
box-classification layer (cls). We use n = 3 in this
paper, noting that the effective receptive field on the
input image is large (171 and 228 pixels for ZF and
VGG, respectively). This mini-network is illustrated
at a single position in Figure 3 (left). Note that be-
cause the mini-network operates in a sliding-window
fashion, the fully-connected layers are shared across
all spatial locations. This architecture is naturally im-
plemented with an n⇥n convolutional layer followed
by two sibling 1⇥ 1 convolutional layers (for reg and
cls, respectively).

3.1.1 Anchors
At each sliding-window location, we simultaneously
predict multiple region proposals, where the number
of maximum possible proposals for each location is
denoted as k. So the reg layer has 4k outputs encoding
the coordinates of k boxes, and the cls layer outputs
2k scores that estimate probability of object or not
object for each proposal4. The k proposals are param-
eterized relative to k reference boxes, which we call

3. “Region” is a generic term and in this paper we only consider
rectangular regions, as is common for many methods (e.g., [27], [4],
[6]). “Objectness” measures membership to a set of object classes
vs. background.

4. For simplicity we implement the cls layer as a two-class
softmax layer. Alternatively, one may use logistic regression to
produce k scores.

Figure 2.29: Faster R-CNN architecture, from (Ren et al., 2017)

The Regions of Interest (RoI) are generated by the RPN, that outputs bounding boxes by inputting

a Conv feature map. The RPN, shown in figure 2.30, slides a spatial window by size [3x3]

over the feature map, mapping it to an intermediate layer. This feature map is fed into two

sibling FC layers, a bounding box regression layer (reg) and a classification layer (cls). At each

sliding-window location, the RPN predicts k region proposals, thus generating an output of 2k

classification scores (object / no object) and 4k regression values (bounding box coordinates).

The k proposals, parameterized relative to k reference boxes, called anchors, possess 3 different

scales and aspect ratios. With a given Conv feature map by size [W x H], the RPN produces

W ∗H ∗ k anchors. Each anchor box that is due to its classification score likely to be an object

then is passed into Fast R-CNN to generate a classification and tightened bounding boxes.

2.6. Computer Vision 31
4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥ H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7 ⇥ 7 ⇥ (64 + 96 +
64 + 64) ⇥ 1536 + 1536 ⇥ 5 ⇥ 800 = 27 ⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

Figure 2.30: RPN architecture, from (Ren et al., 2017)

The RPN had an additional computing cost of 10 ms per image. Thus, Faster R-CNN achieved a

frame rate of 5 fps on GPU for the VGGNet (Simonyan and Zisserman, 2015), although achieving

state of the art mAP’s on MS COCO (Lin et al., 2015) and PASCAL VOC (Everingham et al., 2014)

(Ren et al., 2017).

Mask R-CNN

The combination of object detection and semantic segmentation is a pixel-wise segmentation of

the located objects. This task, called instance segmentation, was explored in 2017 by Facebook

AI Research (FAIR) with Mask R-CNN (He et al., 2017). Mask R-CNN extends Faster R-CNN

by adding an additional branch for object mask predictions in every Region of Interest (RoI) in

parallel with the branches for classification and bounding box regression.

The RoIPool of Fast R-CNN was not designed for pixel by pixel alignment between network input

and output, as a pooling of the RoI in the Conv feature map leads to a misalignment during

unpooling at the mask generation by performing coarse spatial quantization for feature extraction

(He et al., 2017). To fix this misalignment, Mask R-CNN introduced a quantization-free layer,

called RoIAlign, that preserves exact spatial locations. Instead of rounding selected image pixels

in the pooled feature map, a bilinear interpolation (Jaderberg and Deepmind, 2015) to compute

the exact values of the input features was done.

or bins (i.e., we use x/16 instead of [x/16]). We use bi-
linear interpolation [22] to compute the exact values of the
input features at four regularly sampled locations in each
RoI bin, and aggregate the result (using max or average),
see Figure 3 for details. We note that the results are not sen-
sitive to the exact sampling locations, or how many points
are sampled, as long as no quantization is performed.

RoIAlign leads to large improvements as we show in
§4.2. We also compare to the RoIWarp operation proposed
in [10]. Unlike RoIAlign, RoIWarp overlooked the align-
ment issue and was implemented in [10] as quantizing RoI
just like RoIPool. So even though RoIWarp also adopts
bilinear resampling motivated by [22], it performs on par
with RoIPool as shown by experiments (more details in Ta-
ble 2c), demonstrating the crucial role of alignment.

Network Architecture: To demonstrate the generality of
our approach, we instantiate Mask R-CNN with multiple
architectures. For clarity, we differentiate between: (i) the
convolutional backbone architecture used for feature ex-
traction over an entire image, and (ii) the network head
for bounding-box recognition (classification and regression)
and mask prediction that is applied separately to each RoI.

We denote the backbone architecture using the nomen-
clature network-depth-features. We evaluate ResNet [19]
and ResNeXt [45] networks of depth 50 or 101 layers. The
original implementation of Faster R-CNN with ResNets
[19] extracted features from the final convolutional layer
of the 4-th stage, which we call C4. This backbone with
ResNet-50, for example, is denoted by ResNet-50-C4. This
is a common choice used in [19, 10, 21, 39].

We also explore another more effective backbone re-
cently proposed by Lin et al. [27], called a Feature Pyra-
mid Network (FPN). FPN uses a top-down architecture with
lateral connections to build an in-network feature pyramid
from a single-scale input. Faster R-CNN with an FPN back-
bone extracts RoI features from different levels of the fea-
ture pyramid according to their scale, but otherwise the
rest of the approach is similar to vanilla ResNet. Using a
ResNet-FPN backbone for feature extraction with Mask R-
CNN gives excellent gains in both accuracy and speed. For
further details on FPN, we refer readers to [27].

For the network head we closely follow architectures
presented in previous work to which we add a fully con-
volutional mask prediction branch. Specifically, we ex-
tend the Faster R-CNN box heads from the ResNet [19]
and FPN [27] papers. Details are shown in Figure 4. The
head on the ResNet-C4 backbone includes the 5-th stage of
ResNet (namely, the 9-layer ‘res5’ [19]), which is compute-
intensive. For FPN, the backbone already includes res5 and
thus allows for a more efficient head that uses fewer filters.

We note that our mask branches have a straightforward
structure. More complex designs have the potential to im-
prove performance but are not the focus of this work.

ave
RoI

RoI
14×14
×256

7×7
×256

14×14
×256

1024

28×28
×256

1024

mask

14×14
×256

class

box
2048RoI res5

7×7
×1024

7×7
×2048

×4

class

box

14×14
×80

mask

28×28
×80

Faster R-CNN
w/ ResNet [19]

Faster R-CNN
w/ FPN [27]

Figure 4. Head Architecture: We extend two existing Faster R-
CNN heads [19, 27]. Left/Right panels show the heads for the
ResNet C4 and FPN backbones, from [19] and [27], respectively,
to which a mask branch is added. Numbers denote spatial resolu-
tion and channels. Arrows denote either conv, deconv, or fc layers
as can be inferred from context (conv preserves spatial dimension
while deconv increases it). All convs are 3⇥3, except the output
conv which is 1⇥1, deconvs are 2⇥2 with stride 2, and we use
ReLU [31] in hidden layers. Left: ‘res5’ denotes ResNet’s fifth
stage, which for simplicity we altered so that the first conv oper-
ates on a 7⇥7 RoI with stride 1 (instead of 14⇥14 / stride 2 as in
[19]). Right: ‘⇥4’ denotes a stack of four consecutive convs.

3.1. Implementation Details

We set hyper-parameters following existing Fast/Faster
R-CNN work [12, 36, 27]. Although these decisions were
made for object detection in original papers [12, 36, 27], we
found our instance segmentation system is robust to them.

Training: As in Fast R-CNN, an RoI is considered positive
if it has IoU with a ground-truth box of at least 0.5 and
negative otherwise. The mask loss Lmask is defined only on
positive RoIs. The mask target is the intersection between
an RoI and its associated ground-truth mask.

We adopt image-centric training [12]. Images are resized
such that their scale (shorter edge) is 800 pixels [27]. Each
mini-batch has 2 images per GPU and each image has N
sampled RoIs, with a ratio of 1:3 of positive to negatives
[12]. N is 64 for the C4 backbone (as in [12, 36]) and 512
for FPN (as in [27]). We train on 8 GPUs (so effective mini-
batch size is 16) for 160k iterations, with a learning rate of
0.02 which is decreased by 10 at the 120k iteration. We
use a weight decay of 0.0001 and momentum of 0.9. With
ResNeXt [45], we train with 1 image per GPU and the same
number of iterations, with a starting learning rate of 0.01.

The RPN anchors span 5 scales and 3 aspect ratios, fol-
lowing [27]. For convenient ablation, RPN is trained sep-
arately and does not share features with Mask R-CNN, un-
less specified. For every entry in this paper, RPN and Mask
R-CNN have the same backbones and so they are shareable.

Inference: At test time, the proposal number is 300 for the
C4 backbone (as in [36]) and 1000 for FPN (as in [27]). We
run the box prediction branch on these proposals, followed
by non-maximum suppression [14]. The mask branch is
then applied to the highest scoring 100 detection boxes. Al-
though this differs from the parallel computation used in
training, it speeds up inference and improves accuracy (due
to the use of fewer, more accurate RoIs). The mask branch

4

Figure 2.31: Mask R-CNN architecture, from (He et al., 2017)

2.6. Computer Vision 32

The design of Mask R-CNN is illustrated in 2.31. The backbone architecture of Mask R-

CNN is a combination of the ResNet (He et al., 2016) and a Feature Pyramid Network (FPN)

(Lin et al., 2017), an extension that better represents objects at multiple scales. Figure 2.32

shows the principle of the FPN, which uses a top-down architecture with lateral connections to

build an in-network feature pyramid from a single-scale input, thus extracting RoI features from

different levels of the feature pyramid according to their scale, instead of extracting them from

one feature map. On top of the backbone architecture, the branches for classification, bounding

box regression and mask generation are added (figure 2.31).

5x5

5x5

5x5

160x160 [128x128]

80x80 [64x64]

320x320 [256x256]

14x14

14x14

14x14

Figure 4. FPN for object segment proposals. The feature pyramid
is constructed with identical structure as for object detection. We
apply a small MLP on 5×5 windows to generate dense object seg-
ments with output dimension of 14×14. Shown in orange are the
size of the image regions the mask corresponds to for each pyra-
mid level (levels P3−5 are shown here). Both the corresponding
image region size (light orange) and canonical object size (dark
orange) are shown. Half octaves are handled by an MLP on 7x7
windows (7 ≈ 5

√
2), not shown here. Details are in the appendix.

On the test-dev set, our method increases over the ex-
isting best results by 0.5 points of AP (36.2 vs. 35.7) and
3.4 points of AP@0.5 (59.1 vs. 55.7). It is worth noting that
our method does not rely on image pyramids and only uses
a single input image scale, but still has outstanding AP on
small-scale objects. This could only be achieved by high-
resolution image inputs with previous methods.

Moreover, our method does not exploit many popular
improvements, such as iterative regression [9], hard nega-
tive mining [35], context modeling [16], stronger data aug-
mentation [22], etc. These improvements are complemen-
tary to FPNs and should boost accuracy further.

Recently, FPN has enabled new top results in all tracks
of the COCO competition, including detection, instance
segmentation, and keypoint estimation. See [14] for details.

6. Extensions: Segmentation Proposals

Our method is a generic pyramid representation and can
be used in applications other than object detection. In this
section we use FPNs to generate segmentation proposals,
following the DeepMask/SharpMask framework [27, 28].

DeepMask/SharpMask were trained on image crops for
predicting instance segments and object/non-object scores.
At inference time, these models are run convolutionally to
generate dense proposals in an image. To generate segments
at multiple scales, image pyramids are necessary [27, 28].

It is easy to adapt FPN to generate mask proposals. We
use a fully convolutional setup for both training and infer-
ence. We construct our feature pyramid as in Sec. 5.1 and
set d = 128. On top of each level of the feature pyramid, we
apply a small 5×5 MLP to predict 14×14 masks and object
scores in a fully convolutional fashion, see Fig. 4. Addition-
ally, motivated by the use of 2 scales per octave in the image
pyramid of [27, 28], we use a second MLP of input size 7×7
to handle half octaves. The two MLPs play a similar role as
anchors in RPN. The architecture is trained end-to-end; full
implementation details are given in the appendix.

image pyramid AR ARs ARm ARl time (s)
DeepMask [27] ! 37.1 15.8 50.1 54.9 0.49
SharpMask [28] ! 39.8 17.4 53.1 59.1 0.77
InstanceFCN [4] ! 39.2 – – – 1.50†

FPN Mask Results:
single MLP [5×5] 43.4 32.5 49.2 53.7 0.15
single MLP [7×7] 43.5 30.0 49.6 57.8 0.19
dual MLP [5×5, 7×7] 45.7 31.9 51.5 60.8 0.24
+ 2x mask resolution 46.7 31.7 53.1 63.2 0.25
+ 2x train schedule 48.1 32.6 54.2 65.6 0.25

Table 6. Instance segmentation proposals evaluated on the first 5k
COCO val images. All models are trained on the train set.
DeepMask, SharpMask, and FPN use ResNet-50 while Instance-
FCN uses VGG-16. DeepMask and SharpMask performance
is computed with models available from https://github.
com/facebookresearch/deepmask (both are the ‘zoom’
variants). †Runtimes are measured on an NVIDIA M40 GPU, ex-
cept the InstanceFCN timing which is based on the slower K40.

6.1. Segmentation Proposal Results

Results are shown in Table 6. We report segment AR and
segment AR on small, medium, and large objects, always
for 1000 proposals. Our baseline FPN model with a single
5×5 MLP achieves an AR of 43.4. Switching to a slightly
larger 7×7 MLP leaves accuracy largely unchanged. Using
both MLPs together increases accuracy to 45.7 AR. Increas-
ing mask output size from 14×14 to 28×28 increases AR
another point (larger sizes begin to degrade accuracy). Fi-
nally, doubling the training iterations increases AR to 48.1.

We also report comparisons to DeepMask [27], Sharp-
Mask [28], and InstanceFCN [4], the previous state of the
art methods in mask proposal generation. We outperform
the accuracy of these approaches by over 8.3 points AR. In
particular, we nearly double the accuracy on small objects.

Existing mask proposal methods [27, 28, 4] are based on
densely sampled image pyramids (e.g., scaled by 2{−2:0.5:1}

in [27, 28]), making them computationally expensive. Our
approach, based on FPNs, is substantially faster (our mod-
els run at 4 to 6 fps). These results demonstrate that our
model is a generic feature extractor and can replace image
pyramids for other multi-scale detection problems.

7. Conclusion
We have presented a clean and simple framework for

building feature pyramids inside ConvNets. Our method
shows significant improvements over several strong base-
lines and competition winners. Thus, it provides a practical
solution for research and applications of feature pyramids,
without the need of computing image pyramids. Finally,
our study suggests that despite the strong representational
power of deep ConvNets and their implicit robustness to
scale variation, it is still critical to explicitly address multi-
scale problems using pyramid representations.

2124

Figure 2.32: FPN architecture, from (He et al., 2017)

Mask R-CNN outperformed all single-model entries on instance segmentation, bounding

box object detection and person keypoint detection tasks of the MS COCO challenges

(Lin et al., 2015). Today, it is kind of state of the art CNN architecture for instance segmenta-

tion tasks.

33

Chapter 3

Dataset

The Mask R-CNN requires pre-labeled visual input data like photos or videos. As the

implementation is made for an instance segmentation of construction elements, the ap-

plied dataset consists of a set of construction site photos. The network trains on 747

photographs of different time steps at various construction sites. The images are for the most

part captured as aerial photographs by UAVs, complemented by some photos captured by

cameras from the ground. Two exemplary extracts of the dataset can be seen in figure 3.1.

Figure 3.1: Aerial (left) and from ground taken (right) construction site photo

The image size of the used photos is in a range of [4000x3000] to [6000x4000] pixels.

The network processes all images as JPEG files by size [2048x2048]. To reduce overfitting,

the dataset images are multiplied by augmentation to a number of 4482 images (see 4.2). The

dataset is split into a training set, a validation set and a test set at the ratio of approx. 75%,

15% to 10%. The model trains on the training set, containing 3376 images, and on 672 valida-

tion images, whereas the segmentation results are evaluated on the test set, consisting of 434

images. In the course of further development of the construction site instance segmentation tool,

the dataset will continuously be enlarged.

34

Chapter 4

Methods

4.1 Workflow

The main purpose of this research is the development of a construction site object segmenta-

tion tool. It is realized as an implementation of the Mask R-CNN (He et al., 2017), applied on

construction site photographies. The development of the tool is structured in six work steps and

can be seen in figure 4.1, whereas the four dark gray colored steps constitute the actual machine

learning application.

Data Preprocessing

Basic Model Architecture

Training Process

Model Adjustment

Evaluation Process

Subsequent Output Processing

Learning Process

Figure 4.1: Tool development workflow

4.2. Data Preprocessing 35

4.2 Data Preprocessing

The input of the network includes two types of data: images to be learned from as well as mask

coordinates of desired labeled objects in the image. The data preprocessing task includes the

production and preparation of the input data for the implementation in Mask R-CNN.

Labeling

For the learning process, the CNN needs a dataset comprizing images with prelabeled and

pre-segmented objects as input data. For image labeling, a variety of tools are available and can

be accessed free of charge. The input dataset (described in 3) is labeled by use of the online

labeling platform Labelbox. As the first stage of development, the instance segmentation is in

the course of this thesis applied to formwork elements. Therefore, all formwork elements in the

photos are labeled, realized by separate polygons. For instance, one labeled training image can

be seen in figure 4.2. The coordinates of the created mask polygon labels are saved in the WKT

markup language format as JSON files for further processing.

Figure 4.2: unlabeled (left) and labeled (right) construction site photo

Label Processing

The annotations of the labels then get further processed and adjusted. Labels accidentally

containing only one or two coordinates are unusable, as with these labels no surface can be

spanned. The ”defect” labels, as well as annotation entrys of unlabeled images, get filtered out

of the produced JSON file by means of RegEx operations. For the Mask R-CNN, the MS COCO

(Lin et al., 2015) data format is used as label input data format. Inputting the labels in this data

format enables an inclusion of the MS COCO datasets to the dataset without much effort, if

necessary for further tasks. Consequently, as the last step, a modification of the data format

takes place.

4.2. Data Preprocessing 36

Augmentation

To avoid overfitting effects, during the training process the dataset is increased by use of

data augmentation techniques. For the creation of new training examples, a series of image

processing tools is applied to the images. The images are augmented in such a manner, as other

photos under real conditions could appear, to generate realistic and useful instances and allow

more accurate predictions on new images. The used modification techniques are image flips,

image distortion and adjustment of brightness and contrast. The dataset is multiplied by a factor

of six, thus generating five additional training examples from one image. Every construction

site photo gets distorted in width by a ratio of 0.8 as well as 1.2, whereas the scaling simulates

photos captured under more respectively less acute perspectives. As the CNN interprets images

as NumPy arrays comprizing single digits, such modifications, that change the values of adjacent

pixels, can be used to generate largely independent new training examples. All three variations

then are flipped horizontally, thus doubling the images. The produced images subsequently are

modified in brightness and contrast by multiplication with randomly generated factors, in a range

of 0.6 to 1.4 with regard to the initial value, imitating different lighting conditions. The generated

instances of one training example can exemplarily be seen in figure 4.3.

distortion: 0.8 distortion: 1.0 distortion: 1.2

Figure 4.3: Augmentated images in initial orientation (top) and horizontally flipped (bottom)

Partitioning

Finally the dataset, i.e. the images inclusive their related annotations, are randomly partitioned

into a training set, a validation set and a test set. The split is made in a relation of approximately

75% training data, 15% validation data and 10% test data.

4.3. Basic Model Architecture 37

4.3 Basic Model Architecture

The task of this thesis is the development of a pixel accurate tool to select construction elements

and equipment. As a typical instance segmentation challenge, a CNN for instance segmentation

is applied. Today, the Mask R-CNN (He et al., 2017) outperforms other segmentation network

architectures (Chen et al., 2018), achieving higher Average Precisions (AP’s) than for example

the winners of MS COCO challenge (Lin et al., 2015). As state of the art network architecture,

the Mask R-CNN is implemented, whereas a description of the theoretical construction and

the model structure is given in 2.6.3. For this implementation, a ResNet-101 (He et al., 2016)

and a FPN (Lin et al., 2017) backbone architecture are used, based on a TensorFlow backend.

The configurations for this project relate to the base configurations used to train the MS COCO

dataset, apart from a few adaptions. An extract from the used configurations can be seen in

figure 4.4.

Conf igu ra t i ons :
BACKBONE resnet101
BACKBONE STRIDES [4 , 8 , 16 , 32 , 64]
BATCH SIZE 2
DETECTION MAX INSTANCES 100
DETECTION MIN CONFIDENCE 0.80
GPU COUNT 1
IMAGES PER GPU 2
IMAGE MAX DIM 2048
IMAGE MIN DIM 2048
IMAGE RESIZE MODE square
IMAGE SHAPE [2048 2048 3]
LEARNING MOMENTUM 0.9
LEARNING RATE 0.001
MINI MASK SHAPE (56 , 56)
NUM CLASSES 2
POST NMS ROIS INFERENCE 1000
POST NMS ROIS TRAINING 2000
ROI POSITIVE RATIO 0.33
RPN ANCHOR RATIOS [0 . 5 , 1 , 2]
RPN ANCHOR SCALES (64 , 128 , 256 , 512 , 1024)
STEPS PER EPOCH 1700
TRAIN ROIS PER IMAGE 256
USE MINI MASK True
VALIDATION STEPS 50
WEIGHT DECAY 0.0001

Figure 4.4: Extract of the Mask R-CNN configuration

4.4. Training Process 38

Depending on the capability of the system the training was executed on (see 4.4), a different

amount of images per GPU and GPUs working parallel was used. The computed batch size

results by multiplication of the number of GPUs with the number of images per GPU. The maximal

number of instances, detected in the images, is set to 100, whereas the threshold of confidence

for detections is set to 80%. Given the fact, that the processed images were captured at long

distances, thus containing a lot of image content of small size, the photos had to be computed by

large resolution. As a compromise of short training durations (see 4.4) and minimal information

loss, the configuration uses a processing resolution by size [2048x2048]. All images are adapted

into this resolution by size correction and zero padding to a quadratic size. The implementation

uses a learning rate of 0.001, a momentum of 0.9 and weight decay regularization of 0.0001.

To reduce the training durations, it computes the masks as mini masks of shape [56x56]. The

amount of implemented classes is set to two, containing one class for formwork elements and a

background class. During the training process, the model produces a number of 256 RoI’s with

a positive ratio of approximately 33%. The RPN creates anchors with ratios of 0.5, 1.0 and 2.0,

in scales between 64 and 1024 pixels. The training epochs include one-time processing of all

training images, thus the steps per epoch depend on the size of the training set. The number

of computed images per epoch is calculated by multiplication of steps per epoch and the batch

size. The number of images computed for validation after every epoch is set to 100.

4.4 Training Process

Transfer Learning

Starting from weights pre-trained on other images can dramatically decrease the required amount

of training data, as the pre-trained weights have already learned common image features

(Pan and Yang, 2010). As the available dataset only contains about 750 images, the model

uses this technique, called transfer learning, for training. The tool trained starting with weights

pre-trained on the MS COCO dataset (Lin et al., 2015). This dataset has a volume of approxi-

mately 200.000 labeled images with 80 object categories, that, not even containing construction

site photos or classes, though worked very well as origin.

Training Epochs

The pre-trained weights in the deeper layers of the network already fit relatively well and merely

have to be finetuned. However, the head network layers have to be adjusted more thorough,

resulting in a model that trains in three stages: in stage one, the network heads are trained to an

extent up to 50 epochs. In every epoch, every image of the training set gets processed once. For

one training epoch with a batch size of two and the augmented training set comprizing narrowly

3400 images, hence in one epoch, 1700 steps get computed. In stage two, all layers from ResNet

stage 4 and up get finetuned in 30 epochs. Finally, the model finetunes all layers corporately for

another 30 epochs, using one-tenth of the learning rate.

4.5. Model Adjustment and Evaluation 39

Timing

The Mask R-CNN implementation with ResNet-101 and FPN backbone architecture is a fairly

large model and needs high-performance GPU computing power. The computation of one photo

in a [2048x2048] resolution approximately needs a GPU with at least 8 GB of RAM. An evaluation

of the training runtimes on different NVIDIA GPUs and in addition on a CPU can be seen in figure

4.5, whereas because of a lack of memory the runtime analysis on the NVIDIA GeForce 660Ti

and NVIDIA Quadro P2000 was executed with smaller image resolutions. The model mainly

trained on an NVIDIA Tesla P100 GPU, respectively an NVIDIA DGX-1 system, comprizing 8

Tesla P100 GPUs. In inference mode, the model runs at∼500ms on an NVIDIA Tesla P100 GPU.

Tabelle 1

Training Runtime

CPU 8500

GeForce 660 Ti 1956

Quadro P2000 374 1,66666666666667

Tesla P100 125

DGX-1 30

Tr
ai

ni
ng

 ru
nt

im
e

in
 [h

]

1

10

100

1000

10000

CPU GeForce 660 Ti Quadro P2000 Tesla P100 DGX-1

30

125
374

1956

8500

�1

Figure 4.5: Training runtime analysis

4.5 Model Adjustment and Evaluation

Training process

The first hyperparameter to be set was the learning rate. The learning rate of the COCO

config (4.3) performed well and was adopted for further training, whereas after every adjust-

ment of the dataset its functionality was verified. Using higher computing capability GPUs,

an increase of the image processing resolution from initial [800x800] to [2048x2048] pixels

was possible, maintaining moderate runtimes. During the training process, an analysis of the

training and validation loss curves visualized at an early stage, that with the initial amount

of approximately 750 images, in the relatively deep model overfitting effects appeared. A

typical indication for overfitting, a large gap between the training loss and the validation loss

as a function of the training progress, can be seen with the plotted error curves in figure 4.6.

4.5. Model Adjustment and Evaluation 40

To minimize overfitting, the dataset size thereafter was, as a first step, quadrupled and then

sextupled. The summed training and validation loss of classification, bounding box and mask

generation, for comparing the three different dataset sizes, are (smoothed out) plotted as a func-

tion of the training epochs in figure 4.6, whereas the loss curves during 50 epochs of network

head training are shown. The dataset enlargement by means of augmentation reduced the gaps

between training and validation loss curves by 70%, thus almost halving the absolute value of the

validation losses.

Tabelle 1

Steps initial quadrupled sextupled initial quadrupled sextupled

1 1,7305231094360400 1,405320167541500 1,3129549026489300 1,4856598377227800 1,2172646522522000 1,1337311267852800 2 1,5 1

2 1,3536930084228500 1,1599581241607700 1,06328547000885 1,3672014474868800 1,155482530593870 1,0308622121810900

3 1,2226837873458900 1,0646573305130000 0,9835948348045350 1,3431363105773900 1,1270171403884900 0,9903056621551510

4 1,1499361991882300 0,9954307079315190 0,9059485793113710 1,3178669214248700 1,0065350532531700 0,922662615776062

5 1,0832651853561400 0,9561194777488710 0,851433515548706 1,2132580280304000 0,9948955774307250 0,9056537747383120

6 1,0577725172042800 0,908488929271698 0,8207969069480900 1,2219372987747200 0,9496377110481260 0,841966450214386

7 0,995703399181366 0,8732369542121890 0,7796669006347660 1,2768126726150500 0,9135390520095830 0,8771618604660030

8 0,9514283537864690 0,8399915099143980 0,7490147948265080 1,168888807296750 0,9371982216835020 0,8776969909667970

9 0,9274004697799680 0,824596643447876 0,720328152179718 1,17829430103302 0,9178872108459470 0,8363624811172490

10 0,9018561244010930 0,8006963133811950 0,6897878646850590 1,1772031784057600 0,9272472858428960 0,8223164081573490

11 0,8682863712310790 0,7801741361618040 0,682148814201355 1,1820034980773900 0,8332706093788150 0,7814638018608090

12 0,8476808667182920 0,7545310854911800 0,6549867391586300 1,1433138847351100 0,8753545880317690 0,7262259125709530

13 0,8078964352607730 0,7330707311630250 0,638503909111023 1,2591975927352900 0,9045220017433170 0,7443159222602840

14 0,7760061621665950 0,7131049036979680 0,62431401014328 1,1737349033355700 0,8441457748413090 0,7935085296630860

15 0,7826949954032900 0,7032396197319030 0,6109452843666080 1,137121319770810 0,8556132912635800 0,7632710933685300

16 0,7570250034332280 0,6859771609306340 0,5973690152168270 1,1303611993789700 0,8125230669975280 0,7504116296768190

17 0,7210676670074460 0,6763821840286250 0,5790429711341860 1,1131502389907800 0,8437187075614930 0,7553533911705020

18 0,721123993396759 0,6698213815689090 0,5727636814117430 1,1146485805511500 0,8056327104568480 0,7470676302909850

19 0,6953051686286930 0,6477553248405460 0,5516086220741270 1,1516013145446800 0,8717000484466550 0,7649445533752440

20 0,6792035698890690 0,6386629343032840 0,5459364652633670 1,2471033334732100 0,8672993183135990 0,7187787890434270

21 0,6727162003517150 0,6329841613769530 0,5310368537902830 1,0730284452438400 0,786745548248291 0,7438235878944400

22 0,6611997485160830 0,6129410862922670 0,5244166851043700 1,1897063255310100 0,8044717311859130 0,7173711061477660

23 0,6379684805870060 0,6081224679946900 0,5118829011917110 1,111323356628420 0,7882163524627690 0,7394524812698360

24 0,626704752445221 0,6007397770881650 0,5065089464187620 1,161598563194270 0,8118855357170100 0,7201172709465030

25 0,6249650716781620 0,584045946598053 0,49756020307540900 1,149520754814150 0,808363676071167 0,6687465906143190

26 0,604547917842865 0,5792112350463870 0,49195796251297000 1,1836929321289100 0,7723336815834050 0,6793769598007200

27 0,6117686629295350 0,5712604522705080 0,48924991488456700 1,1889430284500100 0,7926361560821530 0,6557202339172360

28 0,5829458832740780 0,5701738595962520 0,4798710346221920 1,1474144458770800 0,790936291217804 0,7107831835746770

29 0,5798537731170650 0,5479596853256230 0,47410961985588100 1,1844549179077100 0,7693520784378050 0,6933903694152830

30 0,5663278698921200 0,5469555258750920 0,4630988538265230 1,1376783847808800 0,8089100122451780 0,6347492337226870

31 0,5584394335746770 0,5413233637809750 0,45755115151405300 1,0881229639053300 0,7822255492210390 0,6860700845718380

32 0,5580012202262880 0,5428047776222230 0,448813796043396 1,1449145078659100 0,7295721769332890 0,6966759562492370

33 0,5409117937088010 0,5281082391738890 0,4414854049682620 1,2189093828201300 0,8098266124725340 0,6792144775390620

34 0,5378406047821040 0,5206816792488100 0,43725576996803300 1,092210292816160 0,8110795617103580 0,6792760491371150

35 0,5279951691627500 0,5103952884674070 0,4320012629032140 1,2374902963638300 0,8008125424385070 0,6845012903213500

36 0,536946177482605 0,507841169834137 0,42771708965301500 1,158972144126890 0,7871987819671630 0,7085291743278500

37 0,5166081190109250 0,49628332257270800 0,4219340682029720 1,1830145120620700 0,8177917003631590 0,6538493633270260

38 0,5223842859268190 0,4897255599498750 0,41528165340423600 1,1343660354614300 0,7845561504364010 0,6650108098983760

39 0,49783727526664700 0,4867507517337800 0,4126601815223690 1,1815884113311800 0,7656384110450740 0,6398296356201170

40 0,49335506558418300 0,48168694972991900 0,4071522355079650 1,1723389625549300 0,7896162271499630 0,697868824005127

41 0,47945231199264500 0,48493093252182000 0,40130841732025100 1,2052161693573000 0,8258935213088990 0,6611588597297670

42 0,4777701795101170 0,4780564308166500 0,3944171369075780 1,1599211692810100 0,8028292059898380 0,6725117564201350

43 0,4764957129955290 0,4654591977596280 0,3940736949443820 1,262274980545040 0,7788504958152770 0,6487077474594120

44 0,4663832187652590 0,4624899625778200 0,3913971185684200 1,1786627769470200 0,7714308500289920 0,7201675772666930

45 0,4559853672981260 0,45606034994125400 0,37797144055366500 1,215343952178960 0,7790017127990720 0,6582023501396180

46 0,451076865196228 0,45307910442352300 0,3771229386329650 1,2074733972549400 0,7070610523223880 0,641647458076477

47 0,4567168653011320 0,45020362734794600 0,375149667263031 1,1640225648880000 0,7794041633605960 0,7242700457572940

48 0,451419860124588 0,44279181957244900 0,3682229816913600 1,2855074405670200 0,8351514935493470 0,6413211226463320

49 0,4417373239994050 0,4431387782096860 0,363908588886261 1,2186638116836500 0,8071775436401370 0,6719099879264830

50 0,43747979402542100 0,43355318903923000 0,3634544909000400 1,1966056823730500 0,7802073955535890 0,6799396872520450

51 0,43747979402542100 0,43355318903923000 0,35694029927253700 1,1966056823730500 0,7802073955535890 0,6757277846336360

52 0,4417373239994050 0,4431387782096860 0,35068660974502600 1,2186638116836500 0,8071775436401370 0,6486657691001890

Lo
ss

0

0,4

0,8

1,2

1,6

2

Training Epochs
1 10 20 30 40 50

initial
quadrupled
sextupled

initial
quadrupled
sextupled

Validation Loss

Training Loss

�1

Figure 4.6: Loss curves over the network head training epochs

Figure 4.6 also demonstrates that the augmentation forfeits efficiency with increasing extent.
Considering, that with an increasing dataset

size the runtime extends, the best cost-benefit

ratio of augmentation has to be assessed. Figure

4.7 shows an approximation of the loss trend as

well as the runtime increase as a function of the

dataset size multiplication by augmentation. Taking

this function into account, the dataset was not fur-

ther augmented. However, it has to be mentioned,

that the approximation function of the validation loss

trend is quite vague, as it is derived only out of

the averages of three tested dataset augmentation

factors. For further improvement of accuracy, an

inclusion of new images is recommended.

Tabelle 1

Validation Loss Runtime Runtime

1 1,17864 1

2 2

3

4 0,79194 4

5

6 0,63475 6

7

8 8

10 10

Ru
nt

im
e

Fa
ct

or

2

4

6

8

10

Lo
ss

0,25

0,5

0,75

1

1,25

Dataset Augmentation Factor
1 2 4 6 8

Validation Loss Runtime

�1

Figure 4.7: Loss vs. runtime

4.6. Subsequent Output Processing 41

Final Results

The validation of the training process takes place by use of the training and validation sets.

The error results, however, get evaluated on the test set. The test set (see 3) contains 434

images and gets processed for evaluation after the training runs. The common metric to measure

the accuracy of object detection and instance segmentation models is the mAP score, which is

evaluated for this implementation. The mAP can be interpreted as the average over all classes, of

the precisions at different recall values, and is an extension of the AP. For every image, the recall

and precision value is calculated. The mAP then sums up precisions over the various recalls and

averages them over the test set.

Considering the values of precision and recall, it can be ascertained that the mean recall value

is lower than the model’s precision. As the model’s accuracy depends on the quality of the input

data, the fact that the recall, in other words, the ability of the model to identify all correct instances,

achieves poor values, may be a result of the lack of labeling of occasional objects. As an analysis

of the labeled data supports this presumption, a thorough revision of the labeled data is proposed

to improve further accuracy.

The mAP of this tool increased with augmentation of the dataset and optimization during the

training process. Without augmentation, the mAP reached a maximal value of 0.66, using the

described configurations. Augmenting the dataset, the model in its first stage of development

finally achieved an mAP of 0.91 on the test set.

4.6 Subsequent Output Processing

For the application of the image segmentation tool, the predictions of the model can be processed

and saved in different data formats. In the course of the automated construction progress mon-

itoring tool progressTrack (Braun et al., 2018), the model outputs the predicted results in three

ways: The bounding boxes and prediction probabilities of the objects in the processed images

are written into a JSON file. The predicted masks are saved as NumPy binary files and optically

displayed in a PNG image file.

42

Chapter 5

Discussion

The evaluation of the model shows acceptable results for the instance segmentation tool in this

first development stage to be employed. A further improvement and extension of the tool is

planned and will be implemented in the near future. The next strategic objectives to be pursued

are the upgrading to segment further construction elements and an enhancement of the use

of information that can be gained by processing the images. At an operating level, this will

be implemented with a revision and enlargement of the dataset, including a labeling of other

elements and corresponding model training with the improved data. Further output processing

operations and investigations of the practicality are planned to extend the range of application

possibilities.

It may be noted here that, even apart from object detection and computer vision, machine learning

is a very powerful tool to perform a variety of tasks and relatively easy to implement, actually

without much prior knowledge. If the development continues in the way as it has been doing over

the last years, which can be expected, a plurality of jobs, today exercised by a human, will in the

not too distant future be performed by computer applications. This evolution will also take place in

civil engineering, whereas applications like automated monitoring or crack detection tools merely

represent the beginning.

43

Appendix A

Glossary of Terms

The machine learning terms defined in this glossary are, unless otherwise stated, derived and

enhanced based on the Google Developers Machine Learning Glossary (Google Developers,

2018).

accuracy

The fraction of correct predictions in a classification model, defined as:

Accuracy =
Correct Predictions

Total number of examples

activation function

A function that takes in the weighted sum of all of the inputs from the previous layer and then

generates and passes an output value to the next layer. Typically used activation functions are

ReLU, the sigmoid or the tanh function.

backpropagation

The primary algorithm for performing gradient descent on neural networks. First, the output

values of each node are calculated (and cached) in a forward pass. Then, the partial derivative

of the error with respect to each parameter is calculated in a backward pass through the graph.

44

batch

The set of examples used in one iteration (one gradient update) of model training.

The training set of preprocessed data is split into several batches.

bias

An intercept or offset from an origin. A bias term in machine learning models is referred to an

initial value in each layer of the network.

convolutional layer

A layer of a neural network in which a convolutional filter passes along an input matrix. The con-

volutional layers process input features, learning optimal weights by means of backpropagation.

dataset

The collection of (preprepared) examples used to train and validate the ML model.

decision boundary

The separator between classes learned by a model in binary class or multi-class classification

problems. During the training process, the decision boundary best fitting to the according

problem is evaluated.

feature

An input variable used in making predictions. During development of an ML model, different

input features are tested, evaluated and combined to find most effective combinations.

fully connected layer

A layer in a CNN that is fully connected to the previous layer, which means that every neuron in

this layer is connected to every neuron in the previous layer. A FC layer typically is located at the

end of a CNN.

45

gradient descent

A technique to minimize loss by computing the gradients of loss with respect to the model’s

parameters, conditioned on training data. Informally, gradient descent iteratively adjusts param-

eters, gradually finding the best combination of weights and bias to minimize loss.

hidden layer

A synthetic layer in a neural network between the input layer (the features) and the output layer

(the prediction). A neural network contains one or more hidden layers.

hyperparameter

Parameters of the ML model that are optimized for the best prediciton results. Hyperparameters

are for example the Learning Rate (LR) or the model architecture.

learning rate

A scalar used to train a model via gradient descent. During each iteration, the gradient descent

algorithm multiplies the learning rate by the gradient. The resulting product is called the gradient

step.

loss

A measure of the distance of model’s predictions to its label. Typically used loss functions are for

example MSE for linear regression models or Log Loss for logistic regression models.

neuron

A node in a neural network, typically taking in multiple input values and generating one output

value. The neuron calculates the output value by applying an activation function to a weighted

sum of input values.

normalization

The process of converting an actual range of values (through division and substraction) into a

standard range of values, typically [-1, 1] or [0, 1].

46

one vs. all

Given a classification problem with n different classes, a one-vs.-all solution consists of n

separate binary classifiers for each class.

overfitting

Phenomenon of a model fitting the training data so closely, that the decision boundaries no

longer map correct predictions on new data.

pooling

Pooling, less formally called subsampling or downsampling, is an operation reducing a matrix

created by earlier layers to a smaller matrix.

precision

Precision identifies the frequency with which a model was correct when predicting the positive

class, defined as:

Precision =
True Positives

True Positives + False Positives

recall

Recall presents the frequency, how many possible positive labels the model correctly identified,

defined as:

Recall =
True Positives

True Positives + False Negatives

Rectified Linear Unit (ReLU)

An activation function by formula:

f(x) = max(0, x)

regularization

The penalty on a model’s complexity, regularization helps prevent overfitting.

47

sigmoid function

A function that maps logistic or multinomial regression output to probabilities, returning a value

between 0 and 1. The sigmoid function is defined as:

y =
1

1 + e−σ

test set

A subset of the data set that you use to test a ML model after the model has gone through initial

vetting by the validation set.

In combination with training set and validation set part of the dataset.

training set

A subset of data used to train a ML model.

In combination with validation set and test set part of the dataset.

validation set

A subset of data - disjunct from the training set - that is used to adjust hyperparameters.

In combination with training set and test set part of the dataset.

weight

A coefficient for a feature in a linear model, or an edge in a deep network. The goal of training

a linear model is to determine the ideal weights for each feature. If a weight is 0, then its

corresponding feature does not contribute to the model.

BIBLIOGRAPHY 48

Bibliography

Arnab, A. and P. H. Torr (2017, jul). Pixelwise instance segmentation with a dynamically in-

stantiated network. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Volume 2017, pp. 879–888. IEEE.

Bai, M. and R. Urtasun (2017, jul). Deep watershed transform for instance segmentation. In

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2017, Volume 2017, pp. 2858–2866. IEEE.

Boureau, Y.-L., J. Ponce, and Y. LeCun (2010). A theoretical analysis of feature pooling in visual

recognition. Proceedings of the 27th international conference on machine learning (ICML-

10) (December 2016), 111–118.

Bradski, G., A. Kaehler, and G. Bradski (2013). Learning OpenCV: Computer vision with the

OpenCV library, Volume 53.

Braun, A., S. Tuttas, A. Borrmann, and U. Stilla (2015). Automated progress monitoring based

on photogrammetric point clouds and precedence relationship graphs. In Proceedings of the

32nd International Symposium on Automation and Robotics in Construction and Mining, pp.

274–280.

Braun, A., S. Tuttas, U. Stilla, and A. Borrmann (2018). Process- and computer vision-based

detection of as-built components on construction sites. In Proceedings of the 35th International

Symposium on Automation and Robotics in Construction and Mining.

Canziani, A., A. Paszke, and E. Culurciello (2017, may). An Analysis of Deep Neural Network

Models for Practical Applications. arXiv , 1–7.

Chen, L. C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2018). DeepLab: Semantic

Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected

CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(4), 834–848.

Chi, S. and C. H. Caldas (2011, jul). Automated Object Identification Using Optical Video Cam-

eras on Construction Sites. Computer-Aided Civil and Infrastructure Engineering 26(5), 368–

380.

BIBLIOGRAPHY 49

Cho, C., J. Park, K. Kim, and S. Sakhakarmi (2018). Machine Learning for Assessing Real-Time

Safety Conditions of Scaffolds. In 35th International Symposium on Automation and Robotics

in Construction (ISARC 2018).

Dai, J., Y. Li, K. He, and J. Sun (2016). R-FCN: Object Detection via Region-based Fully Convo-

lutional Networks.

Everingham, M., S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman

(2014). The Pascal Visual Object Classes Challenge: A Retrospective. International Journal

of Computer Vision 111(1), 98–136.

Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman (2010). The pascal visual

object classes (VOC) challenge. International Journal of Computer Vision 88(2), 303–338.

Fang, Q., H. Li, X. Luo, L. Ding, H. Luo, T. M. Rose, and W. An (2018, jan). Detecting non-

hardhat-use by a deep learning method from far-field surveillance videos. Automation in Con-

struction 85, 1–9.

Farabet, C., C. Couprie, L. Najman, and Y. LeCun (2013). Learning Hierarchical Features for

Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8).

Felzenszwalb, P. F., R. B. Girshick, D. Mcallester, and D. Ramanan (2009). Object Detection

with Discriminatively Trained Part Based Models. IEEE Transactions on Pattern Analysis and

Machine Intelligence 32(9), 1–20.

Gil, D., G. Lee, and K. Jeon (2018). Classification of Images from Construction Sites Using a

Deep-Learning Algorithm. Proceedings of the 35th International Symposium on Automation

and Robotics in Construction (ISARC 2018).

Girshick, R. (2015, dec). Fast R-CNN. In Proceedings of the IEEE International Conference on

Computer Vision, Volume 2015 Inter, pp. 1440–1448. IEEE.

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2012). Rich feature hierarchies for accurate

object detection and semantic segmentation. Proceedings of the IEEE conference on computer

vision and pattern recognition, 580–587.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep feedforward neural

networks. PMLR 9, 249–256.

Google Developers (2018). Machine Learning Glossary. In Machine Learning Glossary.

https://developers.google.com/machine-learning/glossary/ (accessed 2018-05-31).

Ha, I., H. Kim, S. Park, and H. Kim (2018). Image-based Indoor Localization using BIM and Fea-

tures of CNN. Proceedings of the 35th International Symposium on Automation and Robotics

in Construction (ISARC 2018).

BIBLIOGRAPHY 50

Hagan, M. T., H. B. Demuth, M. H. Beale, and O. D. Jess (1996). Neural Network Design,

Volume 2. PWS Publishing Co.

Hamledari, H., B. McCabe, and S. Davari (2017, feb). Automated computer vision-based de-

tection of components of under-construction indoor partitions. Automation in Construction 74,

78–94.

He, K., G. Gkioxari, P. Dollar, and R. Girshick (2017). Mask R-CNN. In Proceedings of the IEEE

International Conference on Computer Vision, Volume 2017-October, pp. 2980–2988.

He, K., X. Zhang, S. Ren, and J. Sun (2014). SPP: Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition. European Conference on Computer Vision (ECCV), 1–14.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep Residual Learning for Image Recognition. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Hu, J., L. Shen, and G. Sun (2017, sep). Squeeze-and-Excitation Networks. arXiv .

Ioffe, S. and C. Szegedy (2015). Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift.

Jacobs, R. A. (1988, jan). Increased rates of convergence through learning rate adaptation.

Neural Networks 1(4), 295–307.

Jaderberg, M. and G. Deepmind (2015). Spatial Transformer Networks. arXiv , 1–14.

Karpathy, A., F.-F. Li, and J. Johnson (2016). CS231n: Convolutional Neural Networks for Visual

Recognition. CS231n Convolutional Neural Networks for Visual Recognition, 1–2.

Kasneci, E., G. Kasneci, C. K. Thomas, and W. Rosenstiel (1997). Artificial Neural Networks,

Volume 4.

Kim, C., B. Kim, and H. Kim (2013, nov). 4D CAD model updating using image processing-based

construction progress monitoring. Automation in Construction 35, 44–52.

Kim, H., H. Kim, Y. W. Hong, and H. Byun (2018). Detecting Construction Equipment Using a

Region-Based Fully Convolutional Network and Transfer Learning. Journal of Computing in

Civil Engineering 32(2), 04017082.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. Science Depart-

ment, University of Toronto, Tech., 1–60.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). ImageNet Classification with Deep Convo-

lutional Neural Networks. Advances In Neural Information Processing Systems, 1–9.

LeCun, Y. and Y. Bengio (1995). Convolutional Networks for Images, Speech, and Time-Series.

The handbook of brain theory and neural networks.

BIBLIOGRAPHY 51

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE 86(11), 2278–2323.

Li, Y., H. Qi, J. Dai, X. Ji, and Y. Wei (2017, nov). Fully convolutional instance-aware seman-

tic segmentation. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Volume 2017-Janua, pp. 4438–4446.

Lin, G., A. Milan, C. Shen, and I. Reid (2017). RefineNet: Multi-path refinement networks for

high-resolution semantic segmentation. In Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, Volume 2017-Janua, pp. 5168–5177.

Lin, T.-Y., C. L. Zitnick, and P. Doll (2015). Microsoft COCO : Common Objects in Context. pp.

1–15.

Long, J., E. Shelhamer, and T. Darrell (2015). Fully convolutional networks for semantic seg-

mentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, Volume 07-12-June, pp. 3431–3440.

MathWorks (2016). What is Machine Learning? https://de.mathworks.com/content/dam/math

works/tag-team/Objects/i/88174 92991v00 machine learning section1 ebook.pdf (accessed

2018-04-05).

Michalski, R. S., J. G. Carbonell, and T. M. Mitchell (Eds.) (1983). Machine Learning - An Artificial

Intelligence Approach. Berlin, Heidelberg: Springer Berlin Heidelberg.

Nair, V. and G. E. Hinton (2010). Rectified Linear Units Improve Restricted Boltzmann Machines.

Proceedings of the 27th International Conference on Machine Learning (3), 807–814.

Ng, A. (2000). Margins: Intuition. Intelligent Systems and their Applications IEEE pt.1(x), 1–25.

Ng, A. (2012). 1. Supervised learning. In CS229: Machine Learning, Stanford University, Vol-

ume 1, pp. 1–30.

Ng, A. (2017). Deep Learning. In CS229: Machine Learning, Stanford University, Volume 1, pp.

1–3.

Ng, A. (2018). Machine Learning: Regularized Linear Regression. In Ma-

chine Learning: Lecture notes, Coursera. https://www.coursera.org/learn/machine-

learning/supplement/pKAsc/regularized-linear-regression (accessed 2018-06-10).

Pan, S. J. and Q. Yang (2010, oct). A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering 22(10), 1345–1359.

Pinheiro, P. and R. Collobert (2014). Recurrent convolutional neural networks for scene labeling.

Proceedings of the 31st International Conference on International Conference on Machine

Learning 32(June), 82–90.

BIBLIOGRAPHY 52

Ren, S., K. He, R. Girshick, and J. Sun (2017). Faster R-CNN: Towards Real-Time Object De-

tection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 39(6), 1137–1149.

Ronneberger, O., P. Fischer, and T. Brox (2015). U-Net: Convolutional Networks for Biomedical

Image Segmentation. In Medical Image Computing and Computer Assisted Intervention -

MICCAI 2015, pp. 234–241.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252.

Samuel, A. L. (1959, jul). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development 3(3), 210–229.

Schölkopf, B. (1998, jul). SVMs - A practical consequence of learning theory. IEEE Intelligent

Systems and Their Applications 13(4), 18–21.

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun (2013). OverFeat: Inte-

grated Recognition, Localization and Detection using Convolutional Networks. pp. 1312.6229.

Simonyan, K. and A. Zisserman (2015). Very Deep Convolutional Networks for Large-Scale

Image Recognition. International Conference on Learning Representations (ICRL), 1–14.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). Dropout:

A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning

Research 15, 1929–1958.

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013). On the importance of initialization and

momentum in deep learning. ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings (2010), 8609–8613.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi (2016). Inception-v4, Inception-ResNet and

the Impact of Residual Connections on Learning.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich (2015, jun). Going deeper with convolutions. In Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, Volume 07-12-June,

pp. 1–9. IEEE.

Uijlings, J. R., K. E. Van De Sande, T. Gevers, and A. W. Smeulders (2013). Selective search for

object recognition. International Journal of Computer Vision 104(2), 154–171.

Wu, Y., H. Kim, C. Kim, and S. H. Han (2010). Object Recognition in Construction-Site Images

Using 3D CAD-Based Filtering. Journal of Computing in Civil Engineering 24(1), 56–64.

BIBLIOGRAPHY 53

Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He (2017, jul). Aggregated residual transformations

for deep neural networks. In Proceedings - 30th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Volume 2017-Janua, pp. 5987–5995. IEEE.

Zagoruyko, S., A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár (2016). A

MultiPath Network for Object Detection. Proceedings of the British Machine Vision Conference.

Zeiler, M. D. and R. Fergus (2014). Visualizing and Understanding Convolutional Networks.

Computer Vision-ECCV 2014 8689, 818–833.

Zhu, Z. and I. Brilakis (2010, nov). Parameter optimization for automated concrete detection in

image data. Automation in Construction 19(7), 944–953.

Declaration

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources

used are acknowledged as references. The thesis was not previously presented to another

examination board and has not yet been published.

Munich, September 3, 2018

Bernhard Mueller

Bernhard Mueller

bernhard.mueller@tum.de

	Introduction
	Related Work

	Theoretical Background
	Term of Machine Learning
	Machine Learning Techniques
	Supervised Learning
	Model Structure
	Regression Problems
	Classification Problems

	Neural Networks
	Activation Function
	Backpropagation
	Weight Initialization

	Convolutional Neural Networks
	Feature extraction
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer

	Computer Vision
	Tasks
	Architectures
	Instance Segmentation

	Dataset
	Methods
	Workflow
	Data Preprocessing
	Basic Model Architecture
	Training Process
	Model Adjustment and Evaluation
	Subsequent Output Processing

	Discussion
	Glossary of Terms
	Bibliography

