
From Molecular Dynamics towards
a Node-Level Auto-Tuning Library for
N-Body Simulations
Fabio A. Gratl†, Nikola Tchipev†, Steffen Seckler†, Philipp Neumann‡, Hans-Joachim Bungartz†
f.gratl@.tum.de, n.tchipev@tum.de, seckler@in.tum.de, philipp.neumann@uni-hamburg.de, bungartz@in.tum.de, † Technical University of Munich, ‡ Universität Hamburg

Molecular Dynamics (MD) Simulations
Applications:

Chemical Engineering:
cavitation, surface tension,
gas separation, etc..

Goals:

•High node-level performance in arbitrary
scenarios.
•Minimize time to solution.

Main Challenges:

•Drastic impact of simulation variables on time to solution.
•Performance depends on many variables that can change

during runtime.

ls1-mardyn

Highly parallel MD Code

• Language: C++.
•Small rigid, multi-centered molecules
•Double, single and mixed precision
• Implemented Interactions:

– 12-6 Lennard-Jones
– Coulomb
– Charge
– Dipole
– Quadrupole
•Highly efficient reduced memory mode

enabling largest known
MD simulation: 2 · 1013 molecules.

Node-Level Challenges

Factors affecting performance

•Number of particles
•Particle density distribution
⇒ Can change over time!
•Number of Lennard Jones centers
•Cutoff radius
•Heterogeneous Hardware

Can change time to solution and
performance by orders of magnitude!

Potential Solutions

•Vectorization of Kernels
•Container (Linked Cells, Verlet Lists)
•Traversal patterns

Available Traversal Options
c08

• 8-way coloring scheme (3D).
⇒One barrier per color.
• Load balancing via OpenMP.

slice
•One slice per thread.
•Only one lock per thread.
•No load balancing.

Results
Homogeneous Scenario

• Large scenario: 1.3 million molecules
•Homogeneously distributed

•OpenMP with 8-way coloring scheme
•Different platforms

Comparison of OpenMP schemes:
Towards Auto-Tuning

Inhomogeneous Scenarios
•Medium size: 40.000 molecules

Small Scenarios
•Small size: 1000 molecules

Library Goals
•Optimal performance on arbitrary scenarios

– Simulation needs to be able to also handle domains
with low particle count or inhomogeneous particle distributions.

⇒Specialized approaches needed.

•More modular code structure
– Since different scenario settings benefit from dedicated techniques, these

need to be easily exchangeable.
– Example: Cell traversal pattern (see above)

? Direct Sum, c08, slice, . . .

⇒Auto-Tuning
– Instead of the user, the code should find the optimal

combination of techniques.
– Too many combinations possible to test all.
⇒ Performance Modeling (e.g. automated empirical with ExtraP).

– Reevaluate combination during runtime and adapt appropriately.
– Provide flexibility through "strategy" software pattern.

Outlook: AutoPas

Vision
•Base to build full N-Body Simulations on

top of.
•Manages node-level performance inter-

nally via Auto-Tuning with Performance
Modeling.
•Modular C++ Template design to dynami-

cally select optimal SIMD, OpenMP, Datas-
tructures, etc. at runtime.

First results

There is no silver bullet
⇒We want to export containers, traversals and kernels to make

them available as a library.

References
[1] N. Tchipev, A. Wafai, C. W. Glass, W. Eckhardt, A. Heinecke, H.-J. Bungartz, and P. Neumann, “Optimized force calculation in molecular

dynamics simulations for the intel xeon phi,” in European Conference on Parallel Processing, pp. 774–785, Springer, 2015.

[2] N. Tchipev and et al., “Twetris: Twenty trillion-atom simulation.” submitted, 2018.

[3] N. Tchipev, A. Costinescu, S. Seckler, P. Neumann, and H.-J. Bungartz, “Towards autotuning between openmp schemesfor molecular
dynamics on intel xeon phi,” 2017. SIAM CSE ’17.

Intel R© Parallel
Computing Center

TUM & LRZ

We thank the Intel Parallel Computing Center “ExScaMIC-
KNL” and the Federal Ministry of Education and Research,
Germany, project “Task-based load balancing and auto-
tuning in particle simulations” (TaLPas), grant number
01IH16008 for financial support of this research.


