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Abstract

To acquire similar intelligence and abilities as living creatures and be operated within

the real world, robots need to perceive their environment via sensors, make immediate

action decisions, and possess excellent locomotion skills to interact with the environ-

ment. As their counterparts in nature, animals exhibit distinct abilities and outperform

state-of-the-art robots in almost every aspect of life. These characteristics always find

their roots in the advanced neural systems of many animals, where everything is sophis-

ticatedly processed according to different function purposes and exhibits a hierarchical

organization of the motor system sharing surprising similarities. However, investigating

the underlying mechanism of the neural circuit and model it to control locomotion is by

no means a trivial problem since it involves the interaction of the brain, body, and their

environment in closed perception-action loops.

In order to mimic both structural and functional principles in living creatures, this the-

sis presents a biological-inspired hierarchical control architecture and takes a snake-like

robot as an agent to perform autonomous locomotion tasks. The main point of the con-

trol architecture is to offer an efficient way not only to model the principles underly-

ing neural structures devoted to locomotion control, but more importantly to imple-

ment them to control autonomous field robots. This control architecture consists of two

parts: a high-level SNN (Spiking Neural Network) sub-controller that is responsible for

processing sensor information and making decisions; a low-level CPG (Central Pattern

Generator) sub-controller that generates joint commands for desired actions. The SNN

sub-controller takes spike-encoded information from sensors, learns knowledge based

on dopamine modulated STDP (Spiking-Timing-Dependent Plasticity), and generates

spike-decoded action commands for the CPG sub-controller. The CPG sub-controller

consists of mutual connected neurons that directly receive action decision from the SNN

and generate joint commands for motors. Meanwhile in the context of this thesis, snake-

like robots are studied to demonstrate the performances of the proposed controller and

their slithering gait is utilized to perform three different autonomous locomotion tasks.





Zusammenfassung

Um in der realen Welt zurechtzukommen, müssen Roboter ähnlich intelligent und fähig

sein wie Lebewesen. Dies erfordert, dass sie ihre Umwelt mittels Sensoren wahrnehmen,

sich in Echtzeit für eine Handlung entscheiden und über hervorragende Fortbewegungs-

mittel verfügen mit denen sie mit ihrer Umgebung interagieren können. Das Tier, als

natürliches Gegenstück des Roboters, weist ausgeprägte Fähigkeiten auf und übertrifft

sogar die modernsten Roboter in nahezu jeder Disziplin. Der Urspring hierfür ist immer

das hochentwickelte Nervenstystem des Tiers, das alle Informationen - im Bezug zur er-

forderlichen Funktion - differenziert verarbeitet. Diese Systeme verfügen über eine hier-

archische Oranisation des Bewegungsapparats und weisen untereinander erstaunliche

Ähnlichkeiten auf. Nichtsdestotrotz ist die Analyse des zugrundeliegenden Mechanis-

mus des neuronalen Netzes, sowie dessen Übetragung in ein Modell für Bewegungskon-

trolle alles andere als trivial. Der Mechanismus besteht aus der Interkation des Gehirns,

des Körpers und der Umgebung in einer geschlossenen Wahrnehmungs-Handlungs-

Schleife. In dieser Arbeit wird eine biologisch inspirierte, hierarchische Steuerungsarchi-

tektur vorgestellt mit der ein schlangenähnlicher Roboter autonome Fortbewegungsauf-

gaben löst. Dies wird durch die Nachahmung von sowohl den strukturellen, sowie den

funktionalen Prinzipien von Lebewesen ermöglicht. Der Hauptgrund für diese Kontrol-

larchitektur ist die daraus resultierende effiziente Modellierung der Prinzipien von neu-

ronalen Strukturen für Bewegungskontrolle, sowie die weitaus bedeutendere Implemen-

tierung hiervon in autonomen Robotern. Die Architektur besteht aus zwei Teilen: auf

hoher Ebene ist ein SNN (Spiking Neural Network) Sub-controller für die Verarbeitung

von Sensordaten und Handlungsentscheidungen verantwortlich, während auf niedriger

Ebene ein CPG (Central Pattern Generator) Sub-controller zuständig für die Gelenkkom-

mandos und somit für die Bewegung des Roboters ist. Der SNN Sub-controller nimmt

impulskodierte Information von Sensoren auf, lernt mittels Dopamin-moduliertem STDP

(Spike-Timing-Dependent-Plasticity), und erzeugt wiederum impulskodierte Komman-

dos für den CPG Sub-controller. Der CPG Sub-controller besteht aus gegenseitig verbun-



denen Neuronen, die direkt Handlungsentscheidungen von dem SNN bekommen und

daraus Gelenkkommandos für die Motoren generieren. Gleichzeitig werden im Rahmen

dieser Dissertation schlangenähnliche Roboter untersucht, um die Leistung des vorge-

stellen Controllers zu demonstrieren. Desweiteren wird die Schlangengangart für drei

verschiedene autonome Fortbewegungsaufgaben verwendet.
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Chapter 1

Introduction

Sophisticated robotic intelligence has the great potential to take over more and more tasks that were

used to be carried out only by biological intelligence in every aspect of life. As the core and founda-

tion for bionic robots, achieving excellent locomotion ability is always regarded as the most challeng-

ing control tasks. Looking at the animal kingdom, the ability to move is essential to all their members

and has been deeply rooted in their evolution process of both nervous and physical systems. There-

fore, the problem of locomotion control for mobile robots can be regarded as taking inspiration from

living creatures and then apply their working principles to mimic similar capabilities.

For all kinds of bionic robots, the locomotion control is never a trivial task when it comes to the

perception, decision-making, and interaction with their environment. However, even simple ani-

mals appear to manage their locomotion skills exceptional well with extreme adaptabilities in com-

plex and challenging environment. With longtime research and understanding, it is even more sur-

prising to observe how a universal paradigm for neural mechanisms underlying diverse locomotion

emerges from studies performed on very different animals with very different forms of motion: The

slow aquatic swimming of the a marine mollusca, and the terrestrial perfect running of a cheetah;

the amphibious undulation movements of a snake, and the aerial flight of a bird, are all regulated by

neural motor systems whose structures share surprising similarities [1]. All these examples exhibit

a hierarchical organization of the motor systems that consists of three parts: a high-level brain con-

troller that is responsible for information processing and decision making, a low-level spinal-cord

controller to transfer neural activities to motor commands, and the motor actuation components

such as fins, legs, and wings (See Figure 1.1). These three factors consist of the main research topics

of this work and will be investigated in greater detail.

Typically solutions to the aforementioned aspects refer to the control algorithms and the gait

design in robotic domain. For robotic control algorithms, traditional model-based control via the

1
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Figure 1.1: The main functional features of the motor system reduced from many animals. Adapted
from [2].

kinematics and dynamics of a robot and the geometrics of the environment has always been limited

to a situation that all the key information is known and all the unpredictable constrains are overly

simplified. Therefore, this kind of control strategy is not well suited to solve complex locomotion

tasks where the robot is too complicated to be modeled and the environment conditions are hard to

forecast, let along maintain high stability and adaptability. To deal with these challenges, artificial

neural networks (ANNs) emerged and have achieved amazing intelligence that can process natural

language [3], analysis and recognize images [4], and outperform human intelligence in complicated

mind sports [5]. However, they basically learn specific tasks relying on massive computing resources,

lengthy time, and regardless power consumption and meanwhile bring significant latency [6]. In

self-driving cars for example, the overall computation consumes a few thousand watts compared to

the human brain, which only needs around 20 watts of power [7]. These are considerable disadvan-

tages, especially in mobile applications where real-time responses are important and energy supply

is limited.

Furthermore, robots have to maintain some vital activities with no need for taking descending

high-level control signal, such as balance ability and some rhythmic actions. In most cases, this issue

has been neglected but essential for wild applications where the stability is particularly required.

On the one hand, this can ensure the robot stability and remain at a satisfied stats once there is
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some fatal problems of the brain level controller. On the other hand, this function can lead to power

efficiency, since there is no need to keep running heavyweight energy-intensive controllers all the

time if there is no further information to be processed or the robot is just required to sustain its

action forms once the locomotion is initiated by the signal from higher control.

In order to execute specific movement and obtain good locomotion skills, robots are normally

designed to mimic the structural functions of their counterparts in nature. However, robots usually

lack of enough degrees of freedom and as flexible as biological muscles. Besides, robots also have

to consider how to incorporate essential sensors to their locomotion skills, which are necessary to

acquire inner and outer information and this usually bring more difficulties to control them.

To sum up, this thesis attempts to propose a hierarchically universal control paradigm that reveal

the underlying neural mechanisms of locomotion and use it to perform autonomous locomotion

tasks with bionic mobile robots.

1.1 Motivations

Considering all the aforementioned perspectives involved to perform autonomous locomotion tasks

with a bionic mobile robot, our motivations in this thesis are to present how it can be generally solved

and give out some implementations. Specially, the motivations are three-fold as follows.

1.1.1 Why Spiking Neural Networks?

In this thesis, spiking neural networks (SNNs) are chosen as our high-level controller to process infor-

mation and make a sequence of action decisions accordingly. For living creatures, biological neurons

use impulses or spikes to process information and communicate, making seemingly simple organ-

isms able to perceive and act in the real world exceptionally well and outperform state-of-the-art

robots in almost every aspect of life. While computations within conventional ANNs can be un-

derstood as approximation of the impulse rate over time, event-based networks or spiking neural

networks perform computations based on individual spikes taking the precise timing into account

as well. Therefore, SNNs are always been introduced as the third generation of ANNs [8].

Due to their functional similarity to the brain, SNNs have the capabilities for processing informa-

tion and learning in a much better fashion, both in terms of energy and data, e.g. building large-scale

brain model [9] or using neurally inspired hardware such as the SpiNNaker board [10] or Dynamic

Vision Sensors (DVS) [11]. Moreover, SNNs have offered solutions to a broad range of specific im-

plementations, such as fast signal-processing [12], speech recognition [13], robot navigation [14],

3
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and other problems solved by non-spiking neural networks. A comprehensive review on controlling

robots based on spiking neural networks will be discussed in the following chapter.

1.1.2 Why Central Pattern Generators?

In this thesis, central pattern generators (CPGs) are chosen as our low-level controller that receive

descending command from SNNs and carry out the joint position commands for desired action.

CPGs, as the key component of the motor system that usually located in the spinal cord of verte-

brates or in relevant ganglia in invertebrates, is a neural circuit that can produce a rhythmic motor

pattern even without need for sensory feedback or high-level descending control [2]. In fact, many

biology experiments have demonstrated that CPGs receive essential signals from high-level neurons

to initiate the locomotion and directly generate the commands to control effector organs [2].

In the domain of robotics control, due to the capability of self modulation, CPGs offer an ideal

candidate for practical engineering solutions to for locomotion control of robots, especially those

with multiple joints or DOFs and even of hyper-redundant robots. More deep review about the CPG-

inspired robotic control methods can be found in [15, 16].

1.1.3 Why Snake-like Robots?

In order to examine the performance of the control architecture, snake-like robots are taken as an

example to carry out different autonomous locomotion tasks in this work. Inspired by their skillful

locomotion abilities of real snakes, snake-like robots carry the potential of being one kind of promis-

ing mobile robotic applications capable of traveling and performing in diverse and challenging en-

vironments, such as disaster rescue, underwater exploration, and industrial inspection [17].

Nowadays, snake-like robots are being studied for practical implementations in many fields as

shown in Figure 1.2. For example, the snake robot designed from Carnegie Mellon University (CMU)

was tentatively implemented in the Mexican earthquake ruins and tired to rescue survivors in 2017 [18].

A flying snake from Tohoku University can use steerable jets of water like rockets and fly into burn-

ing buildings to extinguish fires [19]. Like other snake-like robots, this one has the potential to be

able to wiggle its way into windows or other gaps in a structure, with the benefit of carrying and

directing water as it goes. The snake-like robots from Norwegian University of Science and Tech-

nology (NTNU) were designed for underwater manipulation and inspection [20]. Snake-like robots

are also deployed for military and public safety tasks, such as inspection, surveillance, and disabling

bombs. Anyway, their inherent redundant bodies provide them excellent traversability in irregu-

lar terrain that surpasses the mobility of conventional mobile robots such as wheeled, tracked, and
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(a) Earthquake scene. (b) Firefight scene

(c) Underwater inspection scene (d) Counter-terrorism scene

Figure 1.2: (a). Mexican Red Cross worker holds the snake robot in preparation for a search mission at
a collapsed building, image courtesy of Carnegie Mellon University. (b). Fire fighting snake-like robot,
image courtesy of Tohoku University/National Institute of Technology. (c). Underwater snake-like robot
for inspection scene, image courtesy of Norwegian University of Science and Technology. (d). Sarcos
Guardian snake-like robot for anti-terrorist scene, image courtesy of Sarcos Robotics.

legged robots, but meanwhile make them difficult to be modeled or controlled precisely.

1.2 Challenges

Although state-of-the-art locomotion control tasks cover diverse methods according to different

kinds of bio-robotics, there still lacks of a universal paradigm to perform autonomous locomotion

from the sensory end to the action end. To mimic the structures and functionalities of the motor sys-

tem in the nervous system, this paradigm does not only need to assemble all the existing solutions

properly, but also new challenges have to be settled. We identify a few new challenges as follows:

• Spiking neural networks: Since SNNs use non-differential spikes to communicate, the well-

known error back-propagation mechanism is no longer applicable for training SNNs. Also for
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the same reason, there has been a void of practical learning rules for mobile applications [21].

On the one hand, it is intricate to encode sensory information into spikes or decode motor

commands from spikes based on different strategies. On the other hand, using efficient SNN

learning rules for practical mobile applications is still being explored. The questions are:

How to effectively encode sensory information from spikes and decode motor commands from

spikes?

How to generally train an SNN for mobile robotic applications?

• Central pattern generators: Even CPGs have been investigated and applied to control the

locomotion of robotics, a lightweight CPG model is still in need to run on microprocessors with

limited computing power [22]. On the basis of the CPG modulation functionalities, a smooth

gait transition process need to be explored to ensure minimal undesired movement and reduce

the torque produced by sudden jump of joint positions [23]. Therefore, the questions are:

How to design a CPG model that is fast-oriented but meanwhile still maintains satisfied accu-

racy?

Can such a CPG controller contribute to smooth the gait transition process?

• Locomotion of snake-like robots: In this work, the snake-like robot is taken as the agent to

perform autonomous locomotion tasks. However, the serpentine locomotion of a snake-like

robot is rather non-trivial due to its redundant degree of freedoms, especially in terms of steer-

ing and the inevitable swing of its head module [24], which make it even more difficult to per-

form autonomous locomotion tasks [17]. The questions hereby are:

How to agilely steer the locomotion of a snake-like robot?

How to somehow effectively utilize the sensors mounted on the head module to acquire environ-

mental information?

This thesis aims to give partial answers to these challenges and propose a biological-inspired

hierarchical control architecture for performing autonomous and take a snake-like robot as the agent

for demonstration. The detailed state-of-the-art related work is given in the next Chapter.

1.3 Thesis Outline and Contributions

Driven by the aforementioned motivations and challenges, a biological-inspired hierarchical control

architecture is proposed in this thesis to mimic both functional and structural principles of the mo-

tor neural systems in living creatures, which involves an SNN-based sub-controller as the decision-
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making layer, a CPG-based sub-controller as the locomotion generation layer. In order to apply the

control architecture into practical implementations, snake-like robots and their locomotions are

studied as well. The thesis is constructed with three parts after the introduction chapter: Survey,

Theory, and Applications as depicted in Figure 1.3. The first part (Chapter 2) briefly gives us a survey

on the robotics control based on learning-inspired spiking neural networks and a short background

about the snake-like robots. We first highlight the primary impetuses of SNN-based robotics tasks in

terms of speed, energy efficiency, and computation capabilities. We then classify those SNN-based

robotic applications according to different learning rules and explicate those learning rules with their

corresponding robotic applications. We also briefly present some existing platforms that offer an in-

teraction between SNNs and robotics simulations for exploration and exploitation. Afterwards, the

development of snake-like robots are introduced with several well-know examples, as well as their

typical locomotion control methods. The details of the subsequent chapters are listed below and

their contributions are summarized as well.

• Chapter 3: Slithering gait.

In Chapter 3, we design a slithering gait for a planar snake-like robot to perform autonomous

locomotion tasks. In order to make the robot agile, maneuverable, and be capable to efficiently

acquire environmental information, we propose three methods aiming at improving its loco-

motion skills. Meanwhile, the superiorities of the proposed slithering gait is demonstrated by

simulation. The detailed contributions are listed in the following:

– Inspired by real snakes and on the basis of serpentine curve [25], the slithering gait is

steered by shifting the serpentine curve center of each joint and shaped like a frustum.

The relationship between the kinematic characteristics and the gait parameters are ana-

lyzed in detail, including the stability, forward velocity, and steering radius.

– We propose an orientation compensation algorithm for decreasing the flapping of its

head module when the robot slithers forward. The first joint is constantly used to adjust

the head position to face the forward direction of the locomotion. To prove the effective-

ness of the algorithm, a group of simulations are conducted by measuring the orientation

angles of the head. As a result, the yaw angle is decreased by 90% compared with the un-

adjusted locomotion.

• Chapter 4: Central pattern generator.

In this chapter, a lightweight CPG model with fast computing time is designed to control the

locomotion of a snake-like robot. Its computing advantages are presented by comparing with
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other state-of-the-art CPG models. Meanwhile, the function that smooth the gait transition

process is investigated as well. Specifically, the detailed contributions are listed below:

– Based on the gradient theory, we proposed a lightweight CPG model with fast computing

time ability based on the gradient theory. Our CPG model is at least three times faster

than the other widely adopted CPG models introduced in the literature, demonstrated by

running different converge behaviors on MCU (Micro Control Unit).

– Our CPG model is used to generate the joint commands for controlling the snake-like

robot moving under different gait transition processes. Extensive simulations and pro-

totype measurements are conducted on the robot trajectory and output torque for the

change of both body shape and locomotion speed. The results prove that the CPG-based

method can effectively avoid undesirable movement and abnormal torque.

• Chapter 5: Spiking neural network.

In this chapter, a general paradigm for modeling spiking neural networks is introduced. It

contains the neuron and synapse model, the R-STDP learning rule, the information encoding

and decoding strategies, and its development environment. The contributions of this chapter

are as follows:

– We demonstrate the sensory information encoding strategies for three different sensors,

i.e. the RGB vision sensor, the proximity sensor, and the dynamic vision sensor. All these

sensors are used for implementing autonomous locomotion tasks.

– With the existing motor decoding method [26], we propose a general SNN architecture

with fully connected neurons using R-STDP synapses. By injecting different sensory in-

formation and giving proper rewards, the SNN is directly to learn the synaptic weights all

by itself according to different tasks.

• Chapter 6: Autonomous locomotion.

In this chapter, we first look back all the key components of the the biological-inspired hier-

archal controller and then give the architecture by combing them together. Then, three dif-

ferent autonomous locomotion tasks are given, namely, target tracking, wall following, and

obstacle avoidance. In autonomous locomotion applications, the snake-like robot must be

adaptive to different situation. In target tracking as an example, the robot has to change its ve-

locity and moving direction to follow the moving target correspondingly. According to the pro-

posed paradigm, different sensors are used to acquire environmental information and drive
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Figure 1.3: The outline of thesis.

the snake-like robot to perform each task. The training details and testing tasks are also pre-

sented with detailed analysis.

• Chapter 7: Prototype experiment.

In this chapter, a snake-like robot for 3D locomotion is designed and used for prototype ex-

periments. The total current is measured to represent the torque generated by its joints and

analyzed to demonstrate the effectiveness of our proposed CPG controller.

• Chapter 8: Conclusion and future work. In this chapter, this thesis is concluded with its ad-

vantages compared with other learning-based control algorithms and existing possible future

work.
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Chapter 2

Background

In this chapter, we will mainly present a survey of the robotics control based on learning-inspired

spiking neural networks and briefly introduce the state-of-the-art of snake-like robots, especially

focusing on the locomotion control algorithms.

2.1 SNN-inspired Learning

2.1.1 Theoretical Background

Before studying in deep of robotics control based SNNs, it is worth briefly summarizing the biological

mechanisms taking place in human nervous system. Therefore, this section serves as a short sum-

mary of the theoretical foundations as well as the vocabulary that is used in the following sections.

An in-depth introduction of SNNs can be found in [27], [28], [29] and [30].

2.1.1.1 Biological Background

Even today’s understanding of the human brain remains rather incomplete and challenging, some

insights into our neural structure have been made over the past couple of decades. Since the initial

discovery of neurons as the basic structure of the nervous system at the beginning of the twentieth

century, a rough concept of how neurons might work has been developed. At the very basis, neurons

can be understood as simple building blocks processing incoming information in the form of short

pulses of electrical energy into output signals. By connecting neurons to huge networks, complex

dynamics emerge that can process information and make sense of our world. This basic concept

can be found all over nature, ranging from simpler organisms like jellyfish with a couple of thou-

sand neurons to humans with an estimated number of 86 billion neurons on average in our nervous

system [33, 34].
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Figure 2.1: Structure of the nervous system. (a) This figure is attributed to Quasar Jarosz at English
Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130.. (b) The
figure is attributed to Thomas Splettstoesser (https://www.scistyle.com) - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=41349545

The structure of a typical neuron of the human brain embedded in a salty extra-cellular fluid is

shown in Figure 2.1(a). Incoming signals from multiple dendrites alter the voltage of the neuronal

membrane. When a threshold is reached, the cell body or soma sends out an action potential - also

called spike or pulse - itself. This process of generating a short (1ms) and sudden increase in voltage

is usually referred to as spiking or firing of a neuron. After firing, it is followed by a short inactive

period called the refractory period, in which the neuron cannot send out other spikes regardless of

any incoming signals.

Once the membrane potential threshold has been reached and the neuron fires, the generated

output spike is transmitted via the axon of a neuron. These can grow quite long and branch out to a

multitude of other nervous cells at the end.

At the end of an axon, the axon terminal, incoming signals are transmitted to other nervous cells,

such as other neurons or muscular cells. There is now overwhelming evidence that synapses are in

fact one of the most complicated part of a neuron. On top of transmitting information, they work

as a signal pre-processor and play a crucial part in learning and adaption for many neuroscien-

tific models. When a traversing spike reaches an axon terminal, it can cause a synaptic vesicle to

migrate towards the presynaptic membrane, as shown in Figure 2.1(b). At the presynaptic mem-

brane, the triggered vesicle will fuse with the membrane and release its stored neurotransmitters

into the synaptic cleft filled with the extra-cellular fluid. After diffusing into this gap, neurotransmit-

ter molecules have to reach a matching receptor at the postsynaptic side of the gap and bind with

them. Directly or indirectly, this causes postsynaptic ion-channels to open or close. The resulting ion

flux initiates a cascade that traverses the dendritic tree down to the trigger zone of the soma, chang-
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ing the membrane potential of the postsynaptic cell. Therefore, different neurotransmitters can have

opposing effects on the excitability of postsynaptic neurons, thus mediating the information trans-

fer. These effects that make postsynaptic cells either more or less likely to fire action potentials are

called excitatory postsynaptic potential or inhibitory postsynaptic potential, respectively. The de-

pendence of postsynaptic potentials on different amounts and types of neurotransmitters released

and the resulting number of ion-channels activated is often referred to as synaptic efficacy in short.

After a while, neurotransmitter molecules are released again from their receptors into the synaptic

cleft and either reabsorbed into the presynaptic axon terminal or decomposed by enzymes in the

extra-cellular fluid.

The properties, characteristics, and capacities of synapses as signal pre-processors, e.g. chances

of vesicle deployment or regeneration and amount of receptors, are not fixed, but always changing

depending on the short and long-term history of its own and outside influences. Neuro-hormones

in the extra-cellular fluid can influence both the pre and postsynaptic terminals temporarily, i.e. by

enhancing vesicle regeneration or blocking neurotransmitters from activating ion-gate receptors. All

these effects that change the influence of incoming spikes on the postsynaptic membrane potential

are usually referred to as synaptic plasticity and form the basis of most models of learning in neuro

and computer-sciences.

2.1.1.2 From McCulloch-Pitts to Backpropagation

In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote a theoretical

paper on how neurons might work describing a simple neural network model using electrical circuits

[35]. Capable of performing mathematical operations with boolean outputs, these first generation

neural networks fire binary signals once a threshold of summed incoming signals is reached in a

neuron. They have been successfully applied in powerful artificial neural networks such as multi-

layer perceptrons and Hopfield nets [36].

With the advent of more powerful computing, this concept was later extended by introducing

continuous activation functions, e.g. sigmoid [37] or hyperbolic tangent functions, to handle analog

inputs and outputs as well. In fact, it has been proven that sufficiently large neural networks with

continuous activation functions can approximate any analog function arbitrarily well by altering the

network information flow through their synaptic weights [38]. The most commonly used and power-

ful supervised learning algorithm that takes advantage of continuous activation functions by using

gradient-descent on an error function is called backpropagation [39].

However, second generation neurons do not model electrical pulses that have been described in

13
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their biological counterparts, their analog information signals can actually be interpreted as an ab-

stracted rate coding. Over a certain period of time, an averaging window mechanism can be used to

code pulse frequencies into analog signals giving these models a more biologically plausible mean-

ing.

2.1.1.3 Spiking Neural Networks

Following its biological counterpart, a third generation of neural networks [40, 41] has been intro-

duced that directly communicates by individual sequences of spikes. Instead of using abstracted

information signals, they use pulse-coding mechanisms that allow for the incorporation of spatial-

temporal information that would otherwise be lost by averaging over pulse frequencies. It becomes

clear that these neural network models, referred to as Spiking-Neural-Networks (SNNs), can be un-

derstood as an extension to second generation neural networks and can, in fact, be applied to all

problems solvable by non-spiking neural networks [42]. In theory, it has been shown that these mod-

els are even more computationally powerful than perceptrons and sigmoidal gates [40].

Due to their functional similarity to biological neurons [43], SNNs have become a scientific tool

for analyzing brain processes, e.g. helping to explain how the human brain can process visual infor-

mation in an incredibly short amount of time [44]. Moreover, SNNs promise solutions for problems

in applied engineering as well as power efficient, low-latency alternatives to second generation neu-

ral networks, e.g. for applications in robotics [45].

2.1.2 Primary Motivation and Framework

In this section, we will briefly establish the research and application impetuses of SNN-based robotics

control from multiple aspects. Core points and a major framework for generally organizing an SNN

for robotic implementation are introduced as well.

2.1.2.1 Primary Impetuses

As the third generation of the neural network model, SNNs have attracted more and more attention

and gradually become an interdisciplinary research hotspot for neuroscience as well as robotics. For

clarity and simplicity, the fascinating features of SNNs, which apply well to robotic controllers, can

be summarized as follows.

Biological Plausibility From the perspective of neuroscience, SNNs once again raise the level of

biological realism by directly using individual sequences of spikes in communication and compu-

tation, like real neurons do [46]. Experimental evidence accumulated during the last few years has

14
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Figure 2.2: Number of publications whose abstract contains the terms "robot" and "spiking neural net-
work" in the IEEE Explore and Elsevier Scopus database, respectively. Number of publications whose title
contains the terms "robot" and its main text contains the term "spiking neural network" in the Springer
database. All the data is from 2000 to 2016.

indicated that many biological neural systems use the timing of single-action potentials (or "spikes")

to encode information [40], rather than the traditional rate-based models. show how the exact mod-

eling of time in spiking neural networks serves as an important basis for In [47] It is explained that

how the exact modeling of time in spiking neural networks serves as an important basis for powerful

computation based on neurobiological principles.

Speed and Energy Efficiency Despite the hardware upgrades that make large neural networks ap-

plicable to real-world problems, it usually does not apply to robotics platforms with limited energy

and computing resources. Since SNNs are able to transmit and receive large volumes of data encoded

by the relative timing of only a few spikes, this leads to the possibility of very fast and efficient imple-

mentations. For example, experiments have demonstrated that visual pattern analysis and pattern

classification can be carried out by humans in just 100 ms, in spite of the fact that it involves a min-

imum of 10 synaptic stages from the retina to the temporal lobe [48]. On the other hand, in terms

of energy efficiency, maintaining sufficient working of the nervous system to perform various tasks

requires a continuous energy supply [49]. Yet, the human brain only needs remarkably low power

consumption, which is around 20 Watts of Power [7].

15



2. BACKGROUND

Computational Capabilities Recently, established experiments in vivo have indicated that SNNs

are capable of processing the information sufficiently using a relatively small number of spikes to

drive learning and behavior [50, 51, 52, 53]; meanwhile, they can also handle a large-scale net-

work containing up to a trillion neurons like elephants [54]. Furthermore, SNNs are superior to

non-spiking ones for utilizing the temporal information, referring to the precise timing of events

to acquire the exact information with incredible precision and accuracy. For instance, the auditory

system of the barn owl is able to locate sources of sound in the horizontal plane with a precision of

1 to 2 degrees, which equates to a temporal difference of only a few microseconds (5µs) between the

arrival of sound waves at the left and right ears [55].

Information Processing Instead of using abstracted information signals, SNNs use pulse coding

mechanisms that allow incorporating spatial-temporal information that would otherwise be lost by

only averaging over pulse frequencies. This ability to learn and act in a dynamic environment, rich

with temporal information, is a necessary quality for biological systems and for artificial systems

that seek to perform similar tasks. Neurobiologists used weekly electric fish as a model to study the

processing from stimulus encoding to feature extraction [56, 57]. They found that although pyrami-

dal cells do not accurately convey detailed information about the time course of the stimulus, they

reliably encode up- and down-strokes of random modulations by bursts of spikes. In addition, a

problem referred to as "dynamic binding", has at best remained elusive to implement in neural net-

works, referring to different types of sensor information together in an assembly. SNNs are able to

efficiently detect conjunctions of primitives (features) anywhere on a-large-input grid in an efficient,

position-invariant manner. Examples such as data classification and image recognition tasks can be

found in [58, 59] and [60, 61, 62]

In conclusion, these fascinating features make SNNs suitable for pursuing autonomy for robotics

implementations. However, there is an implicit knowledge gap since SNNs are just investigated at the

theoretical level, rather than widespreadly adopted to practical robotics applications. Even so, the

growing knowledge of spiking neural networks and their increasingly popularity consistently draw

more research attention and have led to more and more SNN-based implementations, as illustrated

in Figure 2.2.

2.1.2.2 Research Orientations

The major research orientations of SNNs have focused on three aspects: SNN modeling, training,

and implementations, which will be detailedly discussed or briefly introduced with other reference
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SNN Creation

• Determine the topology of the SNN

• Determine the neuron model of each layer in the SNN

SNN Initialization

• Initialize the weights and bias of each synapse

• Determine the learning rule of the SNN

SNN Learning 

• Determine training target

• Episode termination and restart

SNN Implementations

• Validation in pre-defined scenario

• Exploration and optimization in unknown scenarios

Perception

Robot

Actuations

Encoding

Decoding

Encoding

Decoding

Figure 2.3: General design framework for SNN-based robot control.

readings in the following sections. A general design framework for SNN-based robot control is shown

in Figure 2.3. Most robot control tasks chasing autonomy could be described as a cycle including

three steps, namely, perception, decision, execution [63]. Robots usually use their sensors and actu-

ators to sense and interact with the environment. However, the SNNs can be regarded as the brains to

make decision, which build up a bridge between perception and execution, by taking encoded infor-

mation from environment and outputting decoded motor commands for robots. To be specific, first,

the architecture and mathematical model of an SNN should be determined including the neuron

and synapse. Neurons are known to be a major signaling unit of the nervous system, and synapses

can be seen as signal transmitters that communicate among neurons. For this reason, modeling of

an SNN is of great importance to characterize its properties. Then, the SNN should be initialized

and trained with specific parameters and learning rules, as conventional neural networks. Choos-

ing an appropriate learning rule directly impact the performance of the networks. For an SNN, the

most common learning rule is the Hebbian rule, which will be detailed explained in the following

section. Finally, after training the SNN successfully, it should be validated in other scenarios and be

optimized if necessary.

2.1.3 Modeling of Spiking Neural Networks

At the very beginning of the construction of an SNN for robot control, an appropriate SNN control

model should be decided on. The basic task is to determine the general topological structure of the

SNN, as well as the neuron models in each layer of the SNN.

17



2. BACKGROUND

2.1.3.1 Neuron Models

Generally, neuron models can be expressed in the form of ordinary differential equations. In the

literature, many different mathematical descriptions of spiking neural models have been proposed,

processing excitatory and inhibitory inputs using internal state variables. The most influential mod-

els used for SNNs are the Hodgkin-Huxley model [64] as well as the Integrate-and-Fire model and its

variants [65]. To find an appropriate one among existing diverse neuron models, there is usually a

trade-off to be balanced between the biological plausibility and complexity (Figure 2.4). A detailed

comparison of the neuro-computational properties of spiking and bursting models can be found in

[66].

Hodgkin-Huxley Model As the starting point for detailed neuron models which describe the dy-

namics of biological neurons, Hodgkin-Huxley is defined as:

One of the most widely used models is the so-called Leaky-Integrate-and-Fire (LIF) model [67]

that can be easily explained by the principles of electronics. These models are based on the assump-

tion that the timing of spikes, rather than the specific shape, carries neural information [68]. The

sequences of firing times are called spike trains and can be described as

S(t ) =∑
f
δ(t − t f ), (2.1)

where f = 1,2, . . . is the label of a spike and δ( · ) is a Dirac function defined as

δ(x) =
{
+∞ if x = 0

0 if x 6= 0
(2.2)

∫ ∞

−∞
δ(t )d t = 1 (2.3)

. Passing a simplified synapse model, the incoming spike train will trigger a synaptic electric current

into the postsynaptic neuron. This input signal i (t ) induced by a presynaptic spike train S j (t ) can,

in a simple form, be described by the exponential function [27]:

i (t ) =
∫ ∞

0
S j (s − t )exp(−s/τs )d s. (2.4)

Here, τs denotes the synaptic time constant. This synaptic transmission can be modeled by low-pass

filter dynamics.

The postsynaptic current then charges the LIF neuron model increasing the membrane potential

u according to

τm
du

d t
(t ) = ur est −u(t )+R

(
i0(t )+∑

w j i j (t )
)

. (2.5)
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Figure 2.4: Ranks different neuron models by biological plausibility, which is defined by the number of dif-
ferent spiking behaviors or features a model can reproduce and by the computational complexity needed
to simulate a model. Adapted from [66].

where τm = RC is the time constant of the neuron membrane, modeling the voltage leakage, depend-

ing on the resistance R. ur est is the potential value after each reset. i0(t ) denotes an external current

driving the neural state, i j (t ) is the input current from the j-th synaptic input and w j represents the

strength of the j-th synapse. Once the membrane potential u reaches a certain firing threshold ϑ, the

neuron fires a single spike and its membrane potential is set back to ur est . Usually, this spiking event

is followed by a refractory period in which the neuron stays inactive and can’t be charged again.

It is worth pointing out that biological studies highlight the presence of another operational unit

cell assemblies [69] in the brain, which are defined as a group of neurons with strong mutual excita-

tory connections and tend to be activated as a whole. A deeper review of spiking neuron models can

be found in [70].

2.1.4 Information Encoding and Decoding

The term neural encoding refers to representing information from the physical world (such as di-

rection of a moving stimulus) in the activity of a neuron (such as its firing rate). On the other hand,

information decoding is a reverse process to interpret from neuron activity to electrical signal for

actuators (such as muscle or motor). How the brain encodes information is to think of two spaces:

the physical space and neural space. The physical space can be the physical properties of objects,

such as color, speed, and temperature. Neural space consists of properties of a neuron, such as firing

rate in most cases.

A number of neural information encoding methods have been proposed, such as binary cod-

ing [71], population coding [72], temporal coding, and the most commonly used rate coding [73, 74].
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For binary coding, neurons are only modeled to take two values on/off, but it ignores the timed nature

and multiplicity of spikes altogether. Due to is simplicity, this coding mechanism was used in early-

stage implementations. Besides, binary coding is also used to represent pixel value of an image. For

rate coding, it is inspired by the observation that neurons tend to fire more often for stronger (sensory

or artificial) stimulus. Scientists usually use a concept in probability theory known as the Poisson

process to simulate spike trains that have characteristics close to real neurons. As the most intuitive

and simple coding strategy, rate-coding has been adopted by most robotic implementations. For

temporal coding, it is motivated by the evidence founded in neuroscience that spike-timing can be

remarkably precise and reproducible [75]. With this encoding strategy, information is represented

with the timing when the spike occurs. However, the underlying mechanism is still not so clear. The

aforementioned coding solutions is usually for one single neuron. However, sometime a population

of neurons is used as a whole to encode information. This is strongly supported by the brain of living

creature, where functions are controlled by one area of neuron populations.

The goal of neural decoding is to characterize how the electrical activity of neurons elicit activ-

ity and responses in the brain. The most common used scheme for decoding is rate-based, where

stronger neuron activity usually means higher motor speed or force. In [26], a steering wheel model

based on an agonist-antagonist muscle system was proposed according to the spike numbers of out-

put neuron.

2.1.4.1 Synaptic Plasticity Models

Once the neuron model is decided on, the synapse model should be carefully chosen to connect

those neurons inside and among the layers of SNNs. By influencing the membrane potentials of each

connected neuron, synaptic plasticity was first proposed as a mechanism for learning and memory

on the basis of theoretical analysis (Hebb, 1949). Up to this day, the synaptic plasticity models used

for practical implementations are typically very simple. Based on an input-output relationship be-

tween neuronal activity and synaptic plasticity, they are roughly classified into two types, which are

rate-based and spike based, that differ in the type of their input variables.

Rate-based The first and most commonly used definition of a firing rate refers to a spike-count av-

erage over time [68]. The rate-based model is a popular approach for converting conventional ANNs

into a spiking neural network that can still be trained by backpropagation. It has been successfully

used in many aspects, especially in experiments on the sensory or motor system [76, 77, 78, 79].

20



2.1 SNN-inspired Learning

Spike-based Spike-based learning rules were developed in [80], [81], [82], [83], and [84]. Experi-

ments showed that the synaptic plasticity is influenced by the exact timing of individual spikes, in

particular, by their order [85][86]. If a presynaptic spike preceded a postsynaptic spike, a potentiation

of the synaptic strength could be observed, while the reversed order caused a depression. This phe-

nomenon has been termed as Spike-Timing-Dependent-Plasticity (STDP) or anti-STDP for the ex-

act opposite impact and explains the activity-dependent development of nervous systems. In other

words, neural inputs that are likely to have contributed to the neurons’ excitation are strengthened,

while inputs that are less likely to have contributed are weakened. As for neuro-engineering, STDP

has demonstrated to be successfully implemented as the underlying neural learning mechanism in

robots and other autonomous systems in both simulated and real environments.

In the past, different mathematical models of STDP have been proposed, e.g. by [87]. For this

work, the weight update rule under STDP as a function of the time difference between pre and post-

synaptic spikes was defined as

∆t = tpost − tpr e (2.6)

ST DP (∆t ) =
{

A+e−∆t/τ+ , if ∆t ≥ 0

−A−e∆t/τ− , if ∆t < 0
, (2.7)

with A+ and A− representing positive constants scaling the strength of potentiation and depression,

respectively. τ+ and τ− are positive time constants defining the width of the positive and negative

learning window. For deeper insights into the influence of the STDP mechanism, readers could refer

to [88, 89, 90].

A comparison of rate-based and spike-based spiking neural networks used for MNIST classifica-

tion is shown in [91].

2.1.4.2 Network Models

The SNN network model resembles the synapse model in that it simulates synaptic interactions

among neurons. Typical examples of neural networks consisting of neurons of these types are clas-

sified into two general categories:

Feed-forward Networks As the first and simplest type of network topology, information in feed-

forward networks always travels from the input nodes, through hidden nodes (if any), to the out-

put nodes and never goes backwards. In the biological nervous system, feed-forward networks are

mainly found to acquire and transmit external information. Therefore, similarly, networks of this

type are usually adopted for low-level sensory acquisition in robotic systems, such as vision [92],
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tactile sensing [93], and olfaction [94].

Taking the work from [21] as an example, a two-layer feed-forward SNN was trained for a lane

keeping vehicle. The control scheme is shown in Figure 2.5. In this work, the dynamic vision sen-

sors (DVS) was used to detect the land markers by generating a sequence of events. The input layer

consisted of 8×4 Poisson neurons and connected to the two LIF output motor neurons with R-STDP

synapses in an “all to all" fashion. The learning phase was conducted by repeatedly training and

switching the robot from the start positions in the inner and outer lanes. In comparison with other

three learning methods, namely, the deep Q-learning (DQN), DQN-SNN, and Braitenberg Vehicle,

the R-STDP SNN exhibited the best accuracy and adaptability in different lane scenarios.

Recurrent networks Different from the feed-forward networks, recurrent neural networks (RNNs)

transmit their information with a directed cycle and exhibit dynamic temporal behaviors. It is worth

pointing out that recurrent neural networks are recursive neural networks [95] with a certain struc-

ture such as a linear chain. Living organisms seem to use this mechanism to process arbitrary se-

quences of inputs with their internal memory stored inside RNNs. As for robotics implementations,

RNNs are widely used for vision [96], planning [97, 98], and dynamic control [72].

In [97], a recurrent SNN is proposed for solving planning tasks, which consists of two populations

of neurons, namely, the state neuron population and the content neuron population. (See Figure 2.6)

The state neuron population consists of K state neurons, which control all the state of a freely moving

target. In their finite horizon planning task, the agent spatial position is controlled by ni ne state

neurons. These state neurons are wired to each other and the content neuron populations by R-STDP

synapse. The context neurons produce spatiotemporal spike patterns that represent high-level goals

and context information. In this case, its average firing rate represents the target spatial position at

different time step. A final reward is only received if the agent passes through two obstacles, one at

time T /2 and one at time T . They show that the optimal planning policy can be learned using the

reward modulated update rule in a network where the state neurons follow winner-take-all (WTA)

dynamics. Due to the probability, in each time step exactly one state neuron is active and encodes the

current position of the agent. Their results demonstrated a successful planner trajectory planning

task using a recurrent SNN.

2.1.5 Learning and Robotics Applications

Changes in the strength of synaptic connections between neurons are thought to be the physiolog-

ical basis of learning [99]. These changes can either be gated by neuromodulators that encode the
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Figure 2.5: Control architecture of feed-forward SNN. A R-STDP SNN is used to achieve lane-keeping task.
The sensor input is the event sequence from DVS and the two LIF output neurons are used to decode
motor speed. All these neurons are connected with R-STDP synapse in an “all to all" fashion.

presence of reward or inner co-activation among neurons and synapses. In control tasks presented

in this section, the network is supposed to learn a function that maps some state input to a control or

action output. When successfully learned, the network is able to perform simple tasks such as wall

following, obstacle avoidance, target reaching, lane following, taxi behavior or food foraging. In most

cases, the network input directly comes from the robot’s sensors, which range from binary sensors,

e.g. olfactory, to multi-dimensional continuous sensors, such as cameras. In other cases, the in-

put can be pre-processed data, e.g. coming from electroencephalography (EEG) data. Similarly, the

output can range from one-dimensional, binary behavior control to multi-dimensional continuous

output values, e.g. for motor control, as well.
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Figure 2.6: Control architecture of recurrent-SNN. A recurrent layer of state neurons is used to control
the state of the agent and receives signals from the content population, which decides the target position
according to different time step.

Initially, solving simulated control tasks was done by manually setting network weights, e.g. in

[100] and [101]. However, this approach is limited to solving simple behavioral tasks such as wall

following [102] or lane following [26], it is usually only feasible for very small network architectures

with few weights.

Therefore, a variety of training methods for SNNs in control tasks has been researched and pub-

lished. Instead of focusing on criteria such as field of research, biological plausibility or the specific

task, this section is meant to serve as a classification of published algorithms into the basic underly-

ing training mechanisms from a robotics and machine learning perspective. In the first part of this

section, some implementations of SNN control are introduced that use some form of Hebbian-based

learning. In the second part, publications are shown that try to bridge the gap between classical rein-

forcement learning and spiking neural networks. Finally, some alternative methods on how to train

and implement spiking neural networks are discussed.

2.1.5.1 Hebbian-Based Learning

One of the earliest theories in neuroscience explaining the adaption of synaptic efficacies in the brain

during the learning process was introduced by Donald Hebb in his 1949 book The Organization of

Behavior [103]. Often summarized by the phrase "Cells that fire together, wire together", his idea is

usually expressed in mathematical terms as

∆wi j ∝ vi v j , (2.8)
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where wi j refers to the change of synaptic weight between the presynaptic neuron i and the postsy-

naptic cell j ; and v represents the activities of those neurons, respectively.

Hebbina-based learning rule that rely on the precise timing of pre and post-synaptic spikes play a

crucial part in the emergence of highly non-linear functions in SNNs. Learning based on Hebbs rule

has been successfully applied to problems such as input clustering, pattern recognition, source sepa-

ration, dimensionality reduction, formation of associative memories, or formation of self-organizing

maps [104]. Furthermore, different biologically plausible learning rules have been used for using

Spiking Neural Networks in robot control tasks. However, as the basic underlying mechanism stays

the same, training these networks can be achieved in different ways as follows (See Table 2.1). In the

table, the two-wheel vehicle means a vehicle with two active wheels.

Unsupervised Learning According to STDP, if a presynaptic spike preceded a postsynaptic spike,

a potentiation of the synaptic strength could be observed (Long Term Potentiation (LTP)), while the

reversed order caused a depression (Long Term Depression (LTD)). Because of the absence of direct

goals, correction functions or a knowledgeable supervisor, this kind of learning is usually catego-

rized as unsupervised learning [104]. Learning based on STDP rule has been successfully applied

to many problems such as input clustering, pattern recognition, and spatial navigation and mental

exploration of the environment.

[105] used this approach to train a behavior controller based on SNN to achieve obstacle avoid-

ance using ultrasonic sensory signals with a mobile robot. Compared with other classical NNs, they

demonstrated that SNN needs fewer neurons and is relatively simple. Afterwards, they [106] ex-

tended their navigation controllers with with wall-following and goal-approaching abilities. In a

similar research, [107] presented an SNN based on an unsupervised learning paradigm to allow the

robot to autonomously learn how to navigate in an unknown environment. Their controller allowed

the robot to learn high-level sensor features, based on a set of basic reflexes, depending on some

low-level sensor inputs.

Supervised Learning In non-spiking neural networks, many successes in recent years can be sum-

marized as finding ways to efficiently learn from labeled data. This type of learning, where a neural

network mimics a known outcome from given data is called supervised learning. A variety of dif-

ferent neuroscientific studies has shown that this type of learning can also be found in the human

brain [108], e.g. in motor control and motor learning [109], [110]. But despite the extensive explo-

ration of these topics, the exact mechanisms of supervised learning in biological neurons remain
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Figure 2.7: Supervised Hebbian training of a synapse: The weight of the synapse between pre and post-
synaptic neurons, Npr e and Npost , is adjusted by the timing of the pre-synaptic spike-train ss yn and ex-
ternal post-synaptic training signal str ai n .

unknown.

Accordingly, a simple way of training SNNs for robot control tasks is by providing an external

training signal that adjusts the synapses in a supervised learning setting. As shown in Figure 2.7,

when an external signal is induced into the network as a post-synaptic spike-train, the synapses can

adjust their weights, for example, using learning rules such as STDP. After an initial training phase,

this will cause the network to mimic the training signal with satisfactory precision. Even though

this approach provides a simple, straight-forward way for training networks, it is dependent on an

external controller. Especially for control tasks involving high-dimensional network inputs, this may

not be feasible.

Several models have been proposed on how this might work, either by using activity templates

to be reproduced [111] or error signals to be minimized [112], [110]. In the nervous system, these

teaching signals might be provided by sensory feedback or other supervisory neural structures [113].

One of these models that is primarily suitable for single-layer networks is called supervised Heb-

bian learning (SHL). Based on the learing rule derived in 2.8, a teaching signal is used to train the

postsynaptic neuron to fire at target times and to remain silent at other times. It can be expressed as

wnew
i j = wol d

i j +αvi t j , (2.9)

where wi j again is the synaptic efficacy between a presynaptic neuron i and a postsynaptic neuron

j , α is the learning rate, vi is the presynaptic neurons activity and t j represents the postsynaptic

teaching signal.

[114] used this basic approach to train a spiking model of the cerebellum to control a robotic arm

with 2 degrees of freedom in a target-reaching task taking joint angles and speeds, as well as target

position as inputs. In contrast to other STDP learning rules, only long-term depression was externally

induced by a training signal, which relied on the motor error, namely the difference between the

desired and actual state. In a similar experiment, [115] trained a single-layer network to control a

robotic arm with 4 degrees of freedom in 3D space. As inputs, joint angles and the spatial direction of

the end-effector were used, while outputs consisted of four motor-command neurons. The training
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Figure 2.8: Classical Conditioning by Pavlov. (1) Before Conditioning, the dog starts to salivate when it
sees food. (2) When a bell rings, the dog doesn’t salivate. (3) During Conditioning the bell is rung shortly
before the food is presented. (4) After conditioning, the dog will start salivating if the bell is rung. [116]

signal was computed using an inverse kinematics model of the arm, adjusting the synaptic weights

with a symmetric STDP learning rule. More examples can be found in Table 2.1 with an order by

descending year.

Classical Conditioning Classical conditioning [117] refers to a learning procedure in which a bio-

logically potent stimulus (e.g. food) is paired with a previously neutral stimulus (e.g. a bell). It will

result that the neutral stimulus comes to elicit a response (e.g. salivation), which is usually elicited

by the potent stimulus. In the famous experiment on classical conditioning [118] (See Figure 2.8),

Pavlov’s dog learns to associate an unconditioned stimulus (US), in this case food, and a conditioned

stimulus (CS), a bell, with each other. While, it is not clear how the high-level stimuli given in his

experiment are processed within the brain, the same learning principle can be used for training on a

neural level as well. Figure 2.9 shows how a synapse based on the STDP learning rule can associate

US and CS provoking a response even in the absence of US.

Following this principle, bio-inspired robots can learn to associate a CS, e.g. sensory information,

with a US that functions as an external reinforcer. That way, robots can learn to follow the desired

behavior based on sensory inputs. [119], [107], and [120] showed how classical conditioning can be

used in an obstacle avoidance and target reaching task. In an SNN with two output motor neurons,

distance and vision sensors function as CS, while contact and target sensors work as US causing an

unconditioned response. In a similar experiment, [121] carried out different classical conditioning

tasks in a controlled virtual environment using infrared, ultrasound and visual neurons as CS and

vibration neurons as US. [105][106] constructed a controller that stimulated two motor neurons as

US. A single-layer SNN using proximity sensor data as CS input was then trained in tasks such as
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Figure 2.9: Classical Conditioning with STDP synapse between Npr e and Npost : An unconditioned stimu-
lus (US) A or B causes the post-synaptic neuron Npost to fire. The conditioned stimulus (CS) firing shortly
before its associated US will adjust its weights so that Npost will fire even in the absence of US. Due to the
Hebbian learning rule, the synaptic weight is unchanged when the other, unrelated stimulus causes Npost
to fire.

obstacle avoidance and target reaching. [122] used light sensors in a target-reaching task to punish

wrongful behavior. [123], [124], and [125] implemented a virtual ant that learns to associate olfactory

sensor input with different behaviors through a single-layer SNN. The robot was able to learn to

recognize rewarding and harmful stimuli as well as simple navigation in a simulated environment.

In order to successfully learn such behavioral tasks, some unconditioned stimulus has to be given

for every relevant conditioned stimulus that the robot should learn. This also means that the robot

will not learn to associate stimuli that are delayed in time. Taken together, using classical condi-

tioning for robot control basically means constructing an external controller that provides uncondi-

tioned stimuli for every relevant state input, which may not be feasible in many tasks.

Operant Conditioning While classical conditioning is concerned with passively associating con-

ditioned and unconditioned stimuli with each other, operant conditioning consists of associating

stimuli with responses and actively changing behaviors thereafter. Conceptually, operant condition-

ing is closely related to reinforcement learning and its agent-environment interaction cycle. Instead

of developing a formal mathematical model, operant conditioning has been mainly researched in

biological and psychological domains. Despite advances in the understanding of operant condition-

ing, it is still not clear how this type of learning is implemented on a neural level.

In this context, [126] and [127] developed a spiking OC model that consists of an input feeding

cue neuron, an action neuron and a predictor neuron that receives rewards or punishments. With
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Figure 2.10: Reward-modulated STDP synapse between Npr e and Npost : Depending on the post-synaptic
output spike-train, a reward r is defined that modulates the weight change of the synapse.

this simple basic architecture and learning rules such as habituation and STDP, they were able solve

simple OC-related tasks in a simulated environment, such as pushing blocks. In another publication

by [128] and [129] a reward-dependent STDP learning rule was implemented on a robot to allow

for OC learning and demonstrated in a maze task. Interestingly, the developed learning rule closely

resembles previously discussed modulated STDP learning rules, which will be discussed in the next

section.

Reward-Modulated Training In Figure 2.10 the learning rule for reward-based training is shown.

Using one or more chemicals emitted by a given neuron to regulate diverse populations of neurons

is know as neuromodulation [130]. As one of the neuromodulators, dopamine neurons forming the

midbrain dopaminergic cell groups are crucial for executive functions, motor control, motivation,

reinforcement and rewards. Most types of neurological rewards increase the level of dopamine in

the brain, thus stimulating the dopamine neurons [131]. Inspired by dopaminergic neurons in the

brain, the effects of STDP events are collected in an eligibility trace and a global reward signal in-

duces synaptic weight changes. In contrast to supervised training as discussed before, rewards can

be attributed to stimuli, even if they are delayed in time. This can be a very useful property for robot

control, because it might simplify the requirements of an external training signal leading to more

complex tasks. A simple learning rule combing models of STDP and a global reward signal was pro-

posed by [132] and [133]. In the R-STDP, the synaptic weight w changes with the reward signal R.

The eligibility trace of a synapse can be defined as,

ċ(t ) =− c

τc
+ω(∆t )δ(t − spr e/post )C1 (2.10)
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where c is an eligibility trace. spr e/post means the time of a pre- or post-synaptic spikes. C1 is a

constant coefficient. τc is a time constant of the eligibility trace. δ( · ) is the Dirac delta function.

ẇ(t ) = R(t )× c(t ) (2.11)

where R(t ) is the reward signal.

In the literature, a variety of algorithms has been published using this basic learning architecture

for training. Even though they are all based on the same mechanism, the rewards can be constructed

in different ways.

1. Rewarding Specific Events: The most straight-forward implementation of reward-based learn-

ing resembling classical reinforcement learning tasks uses rewards associated to specific events.

[134] trained a simple, single-layer SNN in several food foraging tasks consisting of 4 input

sensor neurons and 4 output motor neurons. In a separate network, other reward-related sen-

sor neurons stimulated a dopaminergic neuron that in turn modulated the synaptic weight

change. With this simulation setup, the robot was able to learn food-attraction behavior and

subsequently unlearn this behavior when the environment changed. By shifting the dopamine

response from the primary to a secondary stimulus, the robot was able to learn, even with

large temporal distance, between correct behavior and reward. [135] showed an SNN model

of a fruit fly that is able to execute both first and second order conditioning. In a simple task,

the simulated fly learned to avoid getting close to an olfactory target emitting electric shocks.

Furthermore, the same behavior can be transferred to a secondary stimulus that is associated

to the primary stimulus without emitting electric shocks itself.

2. Control Error Minimization: As opposed to rewarding specific events, dopamine-modulated

learning can also be used in an optimization task to minimize an objective function. This is

usually achieved by strengthening or weakening the connections that lead to changes in the

objective function based on their eligibility traces. [136] used this basic architecture to train an

SNN to follow a trajectory. The network consisted of lateral state variables as inputs, a hidden

layer and an output layer population decoding the lateral control output. Learning is achieved

by minimizing the error between decoded actual and desired output, which is provided by an

external linear controller.

3. Indirect Control Error Minimization: For some potential applications of SNNs, e.g. neuropros-

thetic devices implanted in the brain, direct manipulation of synaptic weights might not be

possible. Therefore, an indirect approach to training SNNs was shown by [137] that induces
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changes in the synaptic efficacy through input spikes generated by a separate critic SNN. This

external network was provided with control input as well as feedback signals and trained us-

ing a reward-based STDP learning rule. By minimizing the error between control output and

optimal control law, it was able to learn adaptive control of an aircraft. Similar ideas were pre-

sented by [138], [139], [140], and [141] who trained a simple, virtual insect in a target reaching

and obstacle avoidance task.

4. Metric Minimization: The same principle can also be applied to minimize a global metric

that might be easier to construct and calculate than an external controller. [142] proposed

a spiking-neuron model of the motor cortex which controlled a single-joint arm in a target-

reaching task. The model consisted of 144 excitatory and 64 inhibitory neurons with proprio-

ceptive inputs cells and output cells controlling the flexor and extensor muscles. A global re-

ward or punishment signal was given depending on the change of hand-target distance. [143]

and [144] extended this architecture later. Similarly, [145] used a biomimetic cortical spiking

model composed of several hundred spiking model-neurons to control a two-joint arm. With

proprioceptive sensory input (muscle lengths) and muscle excitation output, the network was

trained by minimizing the hand-target distance. [146] extended the same basic architecture in

order to develop a brain-machine interface. Extracellularly recorded motor cortical neurons

provide the network inputs used for prosthetic control. By pressing a button, the user can re-

ward desired movements and guide the prosthetic arm towards a target. Using a miniaturized

microprocessor with resistive crossbar memories implemented on a two-wheeled differential

drive robot, [147] and [148] showed how an STDP-based learning rule could lead to target ap-

proaching and obstacle avoidance behavior. Although, in this case, learning was implemented

using if-then rules that relied on distance changes from target and obstacles, it is conceptu-

ally identical to reward-modulated learning. This can easily be seen by exchanging the if-rules

with a reward of +1 or −1.

5. Reinforcing Associations: [149] introduced a tactile robot that uses a network architecture

inspired by the insular cortex. As in classical conditioning, a dopamine-modulated synap-

tic plasticity rule was used to reinforce associations between conditioned and unconditioned

stimuli.
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2.1.5.2 Reinforcement Learning

In the previous subsection, a variety of approaches was presented for training SNNs based on Heb-

bian learning rules. This was done either by providing a supervised training signal through an ex-

ternal controller or by using a reward-based learning rule with different ways of constructing the

reward. The latter type of learning, however, was shown to successfully train SNNs in simple tasks

solely based on delayed rewards. In general, all of these approaches have been trained in tasks that

don’t require looking very far ahead, as reinforcement learning theories usually do.

In classical reinforcement learning theory, on the other hand, learning to look at multiple steps

in advance in a Markov Decision Process (MDP) is one of the main concerns. Therefore, several

algorithms have been published combining SNNs with classical reinforcement learning algorithms.

Temporal Difference The learning rule in which one looks at one or more steps forward in time

was introduced as temporal difference learning. Hereby, [150] and [151] used place cells to repre-

sent the state space in an MDP and single-layer SNNs for state evaluations and policies. Both al-

gorithms were able to learn to navigate in a simple grid-world after some training. With a similar

approach, [152] presented a robot controller inspired by the control structures of biological systems.

In a self-organizing, multi-layered network structure, sensory data coming from distance and orien-

tation sensors was gradually fused into state neurons representing distinct combinations of sensory

inputs. On top, each individual state neuron was connected to 3 output motor neurons. By fusing

the sensory input into distinct state neurons and connecting them to action neurons, a simplified

TD learning rule could be used to set each synaptic weight in the last layer individually. Performance

of this controller was demonstrated in a wall-following task.

While these state representations work very well for relatively small state spaces, they are usually

bound to fail for larger, high-dimensional state spaces. In fact, these approaches can conceptually

be seen as an SNN implementation of table-based Q-learning.

Model-based Although for robot control tasks, such as those shown in this paper, model-free rein-

forcement learning methods seem favorable, two recent publications are at least worth mentioning

that presented SNN implementations of model-based reinforcement learning algorithms. [97] pre-

sented a recurrent spiking neural network for planning tasks that was demonstrated on a real robot

in an obstacle avoidance task. [153] implemented a biologically realistic network of spiking neurons

for decision making. The network uses local plasticity rules to solve one-step as well as sequential

decision making tasks, which mimics the neural responses recorded in frontal cortices during the

32



2.1 SNN-inspired Learning

execution of such similar tasks. Their model reproduced behavioral and neuro-physiological data

on tasks ranging from simple binary choice to multi-step sequential decision making. They took a

two-step maze navigation task as an illustration. During each state, the rat was rewarded with differ-

ent values according to its actions. The reward was modeled as an external stimuli. The SNN learned

a stable policy within 10 ms.
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2.1.5.3 Others

Except for the two aforementioned major methods, there are also other training methods for SNNs

in robot control tasks as follows (See Table 2.2).

Evolutionary Algorithms In nature, evolution has produced a multitude of organisms in all kinds

of shapes with survival strategies optimally aligned to environmental conditions. Based on these

ideas, a class of algorithms has been developed for finding problem solutions by mimicking elemen-

tary natural processes called evolutionary algorithms [158]. Generally, evolutionary processes can

be understood as some form of gradient-descent optimization. Therefore, a typical problem using

these algorithms is getting stuck in local minima. In applications in robot control, evolving SNNs

have been shown to work well in mostly static environments. Due to the training principle of trial

and error, there are usually difficulties in dynamically changing environments.

[159] showed a vision-based controller in an irregularly textured environment that navigated

without hitting obstacles. The predefined SNN consisted of 18 sensory-input receptors connected

to 10 fully-connected hidden neurons and 2 motor-output neurons. Using static synaptic weight

values, the algorithm was used to search the space of connectivity by genetically evolving only signs

of weights. With a population of 60 individuals, fitness was evaluated by summing up over motor

speeds at every time step, and new generations were created using one-point crossover, bit muta-

tion and elitism. [160] later extended this approach to evolving SNN weights as well using adaptive

crossover and mutation probabilities. They were able to evolve good SNN controllers in a small

number of generations in a wall-following scenario. [161] presented a quadrotor neurocontroller

that performed a hovering task in challenging wind conditions. With a feed-forward network taking

the differences between current position and target position as input and pitch, roll and thrust as

output, weights and topology were evolved to minimize the spatial error. In a target-reaching and

obstacle-avoidance task using binocular light sensors and proximity sensors, [162] evolved an SNN

by minimizing the control error in order to mimic an external controller signal. [163] used a feed-

forward network architecture of predefined size to control a toy car. Based on speed, localization and

road boarder input signals, the network controlled speed regulation and turn direction, and evolved

its weights using a genetic algorithm.

Self-Organizing Algorithms [164] formulated a synaptic learning rule that enforced connections

between neurons depending on their activities. With this self-organization algorithm that resem-

bles other Hebbian-based learning methods, they were able to learn obstacle avoidance and simple
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2.1 SNN-inspired Learning

navigation behavior.

Liquid State Machine As a particular kind of SNN, an LSM usually consists of a large assemblage of

neurons that receives time-varying input from external sources as well as from other neural units [165].

All mixed and disorderly neuron units are randomly generated and then arranged under the activa-

tions of recurrent spatio-temporal patterns of the connections obtained from the time-varying in-

put. Hence, the LSM is regarded as a large variety of nonlinear functions which is able to compute

the output as linear combinations of the input. LSMs seem to be a potential and promising theory to

explain brain operation mainly because neuron activities are not hard coded and limited for specific

tasks. [166], [72] and [167] showed how liquid state machines can be trained for robot control tasks.
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2.1 SNN-inspired Learning

2.1.6 Simulators and Platforms

With the fast development of neurology and chip industry, large-scale neural simulators using spik-

ing neural networks have been studied to achieve the same capabilities as animal brains in terms

of speed, efficiency, and mechanism. For examples, SpiNNaker [170] is a million-core system for

modeling large-scale SNNs in real time. TruthNorth [171] contains 1 million programmable spiking

neurons and only consumes less than one hundred milliwatts. Other neuromorphic computing plat-

forms such as Neural Grid [172], NeuroFlow [173] can be found and introduced in [174]. Meanwhile,

a growing number of dynamic simulators has been developed to assist robotic research [175], such

as Gazebo [176], ODE [177], and V-Rep [178]. Those simulators greatly facilitate the research process

that involving mechanical design, virtual sensors simulation, and control architecture.

Although adequate tools exist to simulate either spiking neural networks [179, 180], or robots

and their environments [181, 182], tools that offer researchers joint interaction, including a realistic

brain model, robot, and sensory-rich environment, are in need. Some existing platforms are listed

in Table 2.3.

iSpike [183], as the first attempt to combine spiking neural networks and robots, is a C++ library

that provides an interface between SNN simulators and the iCub humanoid robot. It uses a biologi-

cally inspired approach to convert the robot’s sensory information into spikes that are passed to the

neural network simulator, and it decodes output spikes from the network into motor signals that are

sent to control the robot. CLONES [184] communicates between the Brian neural simulator [185]

and SOFA [186] and is also an interface used for shared memory and semaphores. A more generic

system which permits dealing with simulated robotic platforms is AnimatLab [187], which provides

functionalities such as robot modeling, two neural models, and plugins for importing other models.

Recently, the first release of the HBP Neurorobotics Platform (NRP) [188, 189] was presented,

which was developed within the EU Flagship Human Brain Project. For the first time, it provides sci-

entists with an integrated toolchain to connect pre-defined and customized brain models to detailed

simulations of robot bodies and environments in in-silico experiments. In particular, NRP consists

of six key components, which are essential to construct neurorobotics experiments from scratch. It

can be seen that the NRP provides a complete framework for the coupled simulation of robots and

brain models. The Brain Simulator simulates the brain by bio-inspired learning algorithms such as

a spiking neural network to control the robot in a silico neurorobotics experiment. The World Sim-

ulator simulates the robots and their interacting environment. The Brain Interface and Body Inte-

grator (BIBI) builds a communication channel between brain models and robot models. The Closed

Loop Engine (CLE) is responsible for the control logic of experiments as well as for the data commu-
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nication between different components. The Backend receives requests from the frontend for the

neurorobotics experiment and distributes them to the corresponding component, mainly via ROS.

The Frontend is a web-based user interface for neurorobotics experiments. Users are able to design

a new experiment or edit existing template experiments.
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2.2 Snake-like Robots

Snake robots, as a class of hyper-redundant mechanisms, can use their many degrees of freedom

to achieve a variety of locomotion capabilities [191]. There are several review articles expound-

ing the mechanism, modeling, and locomotion control research results. A general overview can

be found in [17, 192, 193]. Perception-driven obstacle-aided locomotion of snake-like robot is pre-

sented in [194]. A preliminary review on metrics for snake-like robots locomotion can be found

in [195].

2.2.1 Mechanism of Snake-like Robots

Based on their mechanical structures, snake-like robots can be roughly divided into two types: plan-

ner snake-like robot with passive wheels [196, 197] and 3D snake-like robots with orthogonal modu-

lar joints [198, 199, 22, 200]. This type of configuration is also extended into the fish-like robots [201,

202] and reptile-like robots [203, 204]. In this thesis, we name the first kind as the wheeled snake-like

robot and the second kind as the modular snake-like robot.

Figure 2.11: The first snake-like robot, Active Cord Mechanisms known as ACM III, was developed by Hirose
in 1972 [205].

2.2.1.1 Wheeled Snake-like Robots

The first snake-like robot, ACM III (See Figure 2.11), was developed by Hirose in 1972 [205]. This

robot was a successful prototype to demonstrate the serpenoid curve, which was inspired by real

snakes and used to model their later undulations. The robot was equipped with passive wheels (two

for each body module) to simulate the frictional anisotropy of snake skin [206], which was known as
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2.2 Snake-like Robots

Figure 2.12: Salamander robot developed by Ijspeert [204].

Figure 2.13: The Unified Snake robot (left) consists of 14 body modules, one head module, and one tail
model. One of its identical body modules (right), developed by Choset [210].

side-slip constraints at that time. Hereafter, Hirose developed a series of ACM snake-like robots with

similar mechanical configuration, such as ACM-R3 [207], ACM-R5 [208], and ACM-R7 [209]. Gen-

erally speaking, ACM III defines the wheeled snake-like robots, where a string of body modules are

connected by parallel joints and equipped with passive wheels. Many other snake-like robots with

this type of configuration were designed afterwards and a good review of this can be found in [17].

This kind of snake-like robots mainly move on flat surfaces in 2D space, therefore the traversability

in challenging terrain is great limited.

It is worth mentioning that this type of mechanical design has also been widely used for fish-

like robot or reptile-like robots, for example, the salamander robot developed by Ijspeert [204] (See

Figure 2.12).

43



2. BACKGROUND

Figure 2.14: The SEA snake-like robot (left) consists of 13 body modules, one head module, and one tail
model. One of its identical body modules (right), developed by Choset [211].

2.2.1.2 Modular Snake-like Robots

To increase their 3D locomotion abilities, another kind of snake-like robots without passive wheels

was investigated. Inspired by [212, 213], Howie Choset designed one kind of snake-like robot that

rely solely on their internal shape changes to locomote [214, 210]. As we can see in Figure 2.13, this

kind of snake-like robot consists of identical modules, except for the head and tail module. All the

modules are orthogonally connected to the adjacent modules and allows a full 180◦ rotation.

Afterwards, Choset redesigned their body module by changing its driving mechanism [211]. An

series elastic actuator (SEA) was added to the output shaft of each module, where the motor position

is transferred into torque (See Figure 2.14). As the snake-like robots are required to travel through

narrow environment or with obstacles, the SEA unit is used to change the body stiffness under torque

control. However, this kind of modular snake-like robots sacrifice their speed and stability to some

degree due to their inherent locomotion skills. Especially under the slithering gait, their head module

usually wiggle from side to side and hence the sensors mounted in the head module can not acquire

stable information to aid autonomous locomotion.

2.2.2 Locomotion Control of Snake-like Robots

On the basis of the two kinds of snake-like robots, the locomotion control methods differ as well.

For the wheeled snake-like robots, the control methods generally aim at generating the serpentine

curve by calculating each joints angle. And the locomotion control methods hereby can be classified

into three types: sinusoid-based, CPG-based, and model-based. The sinusoid-based method [196]

is achieved to control the snake-like robot, by observing the morphology of real snakes, imitating

the serpenoid curves with simple sine-like signals. It was firstly presented by Hirose [25] as ser-

penoid curve, which is a mathematical description of lateral undulation. Ma proposed another

model serpentine curve to describe the snakes locomotion by modeling their muscle characteristics
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2.2 Snake-like Robots

and proved a higher efficiency than the serpenoid curve by running simulations [196].

The CPG-based method is similar to sinusoid-based method, where the target wave is generated

by neural modulated method instead of defining a sinusoid wave directly. When a snake-like robot

has to change its motion state, such as speed, body shape, and moving direction, there will be a

sudden change in the joint positions that either potentially damaging the robot or affecting the loco-

motion by mistake [22]. In the effect of CPG, this kind of sudden change can be smoothly transferred

than the sinusoid-based method. And then a smooth gait transition can be further achieved and

implemented in autonomous tasks [23].

Different from the first two kind control methods, the model-based method is to analyze the

locomotion using its kinematics and dynamics. Since the interaction between the ground and the

modular snake-like robot is too complicated, the model-based method is mainly used for wheeled

snake-like robots. Prautsch and Mita proposed a dynamic model of a wheeled snake-like robot based

on Lagrange’s equations of motion [215]. Afterwards, similar methods are also used to different loco-

motion, such as lifting the head module in the air [216] and travel through ascending and descending

Steps [217]. While, several crucial bottlenecks of this method limit its use, where the redundant de-

grees of freedom of a snake-like robot really complicate its dynamics and the interaction against the

uneven ground is almost unpredictable for calculation.

For the modular snake-like robot, the locomotion is also driven by sinusoid signals, but prop-

agate along the joints in the lateral and dorsal respectively. The gait equation [199] is an abstract

expression of gaits of a snake-like robot by describing joint angles as parameterized sinusoidal func-

tions. It allows for the emergence of complex behaviors from low-dimensional representations with

only few key parameters, greatly expanding their maneuverability and simplifying user control [218].

Inspired by this, researchers developed several biological gaits for snake-like robots to move inside

and outside door environment [200].

2.2.3 Gaits of Snake-like Robots

At first glance snakes look rather sluggishly in the locomotion, since they degenerate limbs and lack

other appendages as well, with which to propel their cylindrical bodies. In fact, many snakes are fast

movers, efficient climbers, excellent swimmers, adept burrowers, and some can even fly. Normally,

there are four typical and common kinds of gaits, namely, lateral undulation, concertina locomotion,

rectilinear crawling, and sidewinding.

As the most widely adopted gait, slithering, also called serpentine crawling or lateral undulation,

is shown in Figure 2.15. With this gait, the snakes constantly contract their bodies from side to side

45



2. BACKGROUND

Figure 2.15: Typical serpentine locomotion is invariably exhibited by Tropidonotus when the animal is
moving through grass or over a substratum of sufficiently irregular surface [219].

to create a S-shape body wave propagating from head to tail. By pushing against the ground where

the bodies bend, the snakes propel themselves forward Serpentine movement works efficiently on

rough land or in water, but fails on slippery surfaces. One important fact is that, even the bodies

undulate heavily, their head can remain steady and focus on the moving direction stably.

Like their biological counterparts, snake-like robots locomote using cyclic motions to generate

propulsion. For wheeled snake-like robot, the most common gait is slithering, which is inspired by

serpentine locomotion. Since one important factor for locomotion of real snakes is the anisotropic

friction property of their skin, the passive wheels are used to imitate this property by offer very low

friction in direction of rotation and high friction in lateral direction. On the basis of slithering gait,

Ma [220] presented a locomotion control based on CPG of a wheeled snake-like robot. By smoothly

changing the body shape, the robot could adapt to different space widths and also exhibit obstacle

avoiding behaviors. Pfotzer et al. [216] proposed a navigation approach for reconfigurable snake-like

robots to autonomously overcome unknown and challenging obstacles like stairs or large steps.

For modular snake-like robots that rely solely on their internal body shape change, the most

common gaits are rolling, sidewinding, slithering, and helix locomotion [199]. Since missing those

passive wheels, the slithering gait is fundamentally different. There are two wave propagating along

the lateral and dorsal plane of the snake body. The dorsal wave propels the robot forward like a

worm and the lateral wave forms the body into an S shape to supply balancing pivots. After giv-

ing solutions to decrease the shaking of the snake robot, Bing first presented the model of slithering

gait and achieved a target tracking task [24]. Helix is a gait crawl inside of pipes and climb outside
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of poles. This gait is mainly used for pipeline inspection and surveillance purposes [221]. Modu-

lar snake-like robots can move to the sideways quickly under the rolling and sidewinding gait, since

they remove the passive wheels as the constraint. By using the gait equation, most complex modes

of snake locomotion can be described by the superposition of waves: horizontal and vertical body

waves propagating with different phase difference. Zhen et al. modeled the rolling gait by changing

its rolling shape to cross obstacles [222]. Sidewinding is another efficient gait for locomotion over

at ground. Hatton et al. identified the stability of sidewinding and its conditions for sidewinding

on the slope [223]. Furthermore, Gong et al. modified the gait for steering purpose by transform-

ing the amplitude of the gait equation into a function depending on the element index. Although

these 3D gaits enhanced the locomotion ability of snake-like robots, it is still far from autonomous

locomotion [224, 225, 226].
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Chapter 3

Locomotion Foundation: Slithering
Gait Design

In this work, a snake-like robot is taken as the agent to perform a series of autonomous locomotion

tasks. In order to dynamically cope with different task situations, it has to be capable of offering

great maneuverability such as accelerating or decelerating, steering, and stability. In this chapter, the

slithering will be further modeled on the basis of the serpentine curve [196] and analyzed in terms of

its steering, body shape regulation, and head position control.

In the 1940s, Gary first described and analyzed the four main types of locomotion observed in

snakes by using sinusoid curves. Among them, the slithering gait has been observed in nearly all

kinds of snakes. Under slithering gait, every part of the snake’s body and tail glides forward simul-

taneously and faithfully follows the path taken by the head. Gary also took a three-segment snake

as an model to visualize the fundamental relationship between the sinusoidal form of the body and

the ability of the axial muscles to propel the animal in serpentine movement [227]. Inspired by the

locomotion of biological snake, Hirose proposed the serpenoid curve that greatly simplified the slith-

ering control by neglecting the dynamic interaction within the body and environment [228]. In 1999,

Ma [196] employed the muscle characteristics of snakes to model their lateral undulation, named the

serpentine curve. Ma showed that snake locomotion according to the serpentine curve has a higher

locomotive efficiency than locomotion according to the serpenoid curve. We will further investigate

the modeling of slithering gait on the basis of the serpentine curve.
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3. LOCOMOTION FOUNDATION: SLITHERING GAIT DESIGN

θ(S)

α

Figure 3.1: Illustration of the serpentine curve in one period.

3.1 Modeling of Slithering Gait

The curvature of the serpentine curve ρ is shown in Figure 3.1 and described as

ρ =−αb sin(bs) (3.1)

, where α is initial bending angle of the curve, b = 2π
L is a proportional constant with L as the wave-

length of the curve in one cycle, and s is the length of the serpentine curve. After integrating the s

in (3.1), we can obtain the angle θ along the serpentine curve as,

θ(s) =αcos(bs) (3.2)

If we discretize the serpentine curve into a series of linkage and joint to represent the body of a

snake-like robot, the joint angle φ can be calculated as

φ= θ(s + l )−θ(s − l ) =−2αsin(bl )sin(bs) (3.3)

, where 2l is the length of each module of a snake-like robot. For the i th joint, we can obtain its joint

angle φi as

φi =−2αsin(bl )sin(b ×2l (i −1)) (3.4)

φi =−2αsin(bl )sin((i −1)β) (3.5)

, where s = 2l (i −1) represents the curve length of the i th module. β = 2bl is a constant parameter.

Then, in order to make each module go through all the serpentine curve, we integrate the time t into

(3.3) to propagate the wave. Therefore, we can get the joint angle of each module as a function of

time as

φi = A sin(ωt + (i −1)β) (3.6)
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Figure 3.2: (A) The snake robot (red line) with effective traveling length le moving along a circle (black line)
with radius r . (B) Our snake robot with module length l0. Illustration of joint angle φ and global module
angle θ.

, where ω and A = −2αsin(bl ) represent the frequency and the amplitude of the slithering curve,

respectively.

The amplitude of the wave domains the body shape when the robot is slithering forward. On the

other hand, the frequency determines the speed of the robot. Therefore, with this standard serpen-

tine curve, we can control the motion state of the snake-like robot.

For most situations of diverse tasks, a snake-like robot will start to move from an initial position

that all body modules are usually aligned as a straight line. Therefore, a damping function (1−e−λt ),

is used to smooth the start-up process, where λ is used to adjust the convergence rate. Then the

serpentine wave equations is shown as

φi = A(1−e−λt )sin(ωt + (i −1)β). (3.7)

For now, this serpentine curve is still not sufficient for performing practical tasks, since it only changes

the robot’s speed or drives it forward. In the following sections, we will further investigate the slith-

ering gait to make it more suitable for autonomous locomotion tasks.

3.2 Radius Control

Steering direction agilely during locomotion is one of the most critical skills for many animals to

survive in the wild. Based on the observations during different turning locomotions, snakes usually

impose an amplitude modulation to steer their bodies for high maneuverability [218]. Inspired by

this, our snake-like robot also steers its moving direction by adding a bias to the amplitude A in (3.7)

as

φi = A(1−e−λt )sin(ωt + (i −1)β)+C (3.8)
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, where C is a bias value. This bias slithering gait is further used for investigating the steering control.

A snake-like robot slithers forward based on the assumption that there is no slide in the lateral

plane between the body and the ground [227]. Given this assumption, the rear modules of the robot

will follow the trajectory of their previous module, which is consistent with the locomotion of real

snakes. Figure 3.2A illustrates the relationship between a biased slithering snake robot and a turning

radius. rd is the turning radius andα is the steering angle after traveling one effective body length le .

Thus, the turning radius can be calculated as,

rd = le

α
(3.9)

Since the rear modules of the snake are following their previous module, the change of the heading

direction can be determined by adding up the single module angles with respect to a global frame.

Thus, the steering angle α can be computed by summing over the joint angle θ in (3.8) as

α=
N∑
1
φ=

N∑
1

[C + A× sin(ωt + (i −1)β)] (3.10)

After averaging over a period of time, the sum of the sine function part approximates zero. Thus, it

leads to a simple relation between the bias C and the heading angle α as

α= N ×C (3.11)

, where N is the number of joints.

On the other hand, the effective body length le in one period should be further calculated. Since

the bias C only shifts the body curve perpendicularly along the body length direction, it will be suf-

ficient to analyze the average body length le without regarding the bias C and the steering angle α.

Since the time t only propagates the wave along the body and does not affect the body length le , we

manually set t = 0 for reasons of simplicity. As shown in Figure 3.2B, each module contributes an

effective length that is parallel to the forward direction. In this case, the effective boy length le is the

sum of the effective module length lk of all modules as:

le =
N∑

k=1
lk (3.12)

lk = l0 ×cos(θk −θsnake ) (3.13)

, where k is the module index and θsnake is the global angle of the snake robot, which is manually set

as 0. l0 is the length of each module.

According to our assumption, the rear modules of the robot will follow the trajectory of their

previous module. Then, the joint angle φk is the result of concatenated local joint angles, which is
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Figure 3.3: The relation between the amplitude bias and the turning radius is depicted. The blue solid line
is the theoretical value according to (3.16). The red square and the blue diamond marks are the measured
radius when the snake turns left and right, respectively. Meanwhile, other parameters are set as A = 20◦,
β= 2

9π, and ω= 1.5π.

calculated as:

φk =
k∑

p=1
φp = A×

k∑
p=1

sin(β×p) (3.14)

. Now with all quantities being computed, a look back on the introducing (3.9) and (3.11) leads to:

C = le

N rd
(3.15)

With above equations, the turning radius can be calculated as:

rd =
l0 ×∑N

k=1 cos(A×∑k
p=1 sin(β×p))

C
(3.16)

, under the condition that the slithering parameters in (3.8) are previously known.

To verify our proposed turning method, we run a series of simulation experiments to compare the

ground truth steering radius and the theoretical radius calculated by equations. We adopt an 8-joint

planer snake-like robot to run two groups of simulation experiments, in which the robot is required

to turn left or right with a range of expected turning radius. Meanwhile, the measured turning radius

is extracted by plotting out the trajectory of the snake-like robot over a period of time.

The results are illustrated in Figure 3.3. First, with the amplitude setting as A = 20◦, the theoret-

ical relationship between the turning radius r and the bias C is depicted with a blue line. Then, by

varying the turning radius from 1m to 10m, the snake-like robot turns left with a decreasing bias.
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Figure 3.4: The measured turning radius comparison with setting amplitude as 30◦. From left to right, the
expected radii are 1 m, 4 m, 8 m and 12 m. The measured radius is calculated by two least-squares fitting
of circle. The trajectory of the head module of the snake robot is represented by blue solid points. The
calculated circle is represented by red dash line. Moreover, the fitting residue is depicted with a color bar,
since only part of the trajectory are sampled.

The measured turning radius is marked with red square. By varying the amplitude bias from −10m

to −1m, the robot turns right with a decreasing bias and marked with green diamond The results

clearly exhibit that our method can calculate the inverse relationship between the turning radius

and the amplitude bias correctly, no matter turning left or right.

An trajectory example is shown in Figure 3.4 as a case study. We manually set up the amplitude as

A = 30◦, since the robot mostly travel around with this body shape value. Four different turning radii

are 1 m, 4 m, 8 m and 12 m. The trajectory of the head module of the snake robot is represented by

blue solid points. The calculated circle is represented by red dash line. Moreover, the fitting residue

is depicted with a color bar, since only part of the trajectory are sampled. From these results, we can

conclude that our proposed method can achieve steer the robot around precisely, no matter with a

large or a small turning radius. It is worth mentioning that the robot exhibits larger turning radius

error, when we increase the amplitude over 60◦. This is because the robot slides much more, due to
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the strong body undulation and thus the aforementioned assumption is not valid anymore.

3.3 Body Regulation

With the radius control method, we can navigate the snake-like robot to the direction as we expect.

However, the robot has to sense the environment during movement in order to perform autonomous

locomotion tasks. Under the slithering gait, the robot shapes its body as the serpentine curve, in

which the head module is wavering with the rest of the body in the meantime. This side to side

swing makes its head very difficult to concentrate on its target while slithering forward. To tackle this

problem, we first introduce the body regulation method to decrease the head swing. This method is

also inspired by real snakes that they usually shape themselves into a triangle-like shape where the

motion range is decreased from the head to the tail (See Figure 2.15).

First, we adopt the linear reduction P to linearize the body curve of the snake-like robot from

head to tail, defined as

P = (
k

N
· y + z) ∈ [0,1],∀k ∈ [0, N ] (3.17)

, where z and y are the linear reduction parameters. Then, the gait equation is extend as,

φi = P · A(1−e−λt ) · sin(ωt + (i −1)β) (3.18)

. Under the effect of the body regulation, the amplitude for each joint is defined as a linear function

dependent on the module number k.

To further validate the effectiveness of our proposed method, we also conduct a series of simula-

tion experiments and the results are shown in Figure 3.5. First, the snake-like robot is controlled to

slither forward and the orientation data of the head module is measured in the meantime. As shown

in Figure 3.5 A, the orientation of the head module with time is presented in the world coordinate,

in which the z direction is upward perpendicular to the ground and the x direction is align with the

forward direction. Therefore, the alpha angle along the z direction shows a sine-wave curve, while

the beta and gamma are zero.

As shown in Figure 3.5 B, three groups of linear reduction parameters are used and the alpha

angles are plotted, respectively. For y = 0 and z = 1, the effect of the linear reduction is prohibited

as a reference (blue line). For y = 0.5 and z = 0.5, the alpha orientation is significantly decreased

from 60◦ to 25◦ (green line). When we further strengthen the linear reduction to y = 0.8 and z = 0.2,

the alpha angle is reduced to 10◦ (red line).

If the linear reduction goes to y = 1 and z = 0, the snake-like robot will move like a fish that

solely pushes the body with those rear parts. However, there will bring another problem along with
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Figure 3.5: Left: the orientation angle of the head module in the world coordinate during slithering loco-
motion, in which the z direction is upward perpendicular to the ground and the x direction is align with
the forward direction. Right: alpha orientation angle performance under three different groups of linear
reduction parameters.

the linear reduction method that it will greatly exacerbate the torque output of those rear modules

and incur potential damage on those motors. Therefore, we take the linear coefficient starts at y = 0.3

for the head module and ends at z = 0.7 for the tail module in this thesis.

3.4 Head Orientation Control

In previous sections, we have modeled the slithering gait to drive the locomotion, aiming at the sta-

bility, body shape, and steering ability. In order to perceive the environment properly and effectively,

we use the body regulation to reduce the head swing movement. However, it is still not sufficient

to be adopted for autonomous locomotion tasks, since this undulatory motion inevitably causes the

head module swinging from side to side, even it has been limited to a range of ±10◦. The head swing

will bring negative influences for further advanced locomotion control based on those sensors lo-

cated at the head module, especially the vision sensor inside. The aforementioned linear reduction

method can limit the head swing in some way, but meanwhile the head module will seriously drag

down the locomotion speed and aggravate the torque burden of the rear modules. In this section,

we will seek solutions inspired by real snakes to eliminate this harmful swing or orientation by using

locomotion compensation.

When we observe the real snakes, we can always find out that the snake will lift its head or preax-

ial body up and aim at the front direction during the locomotion or attack. Even for sidewinders like

a rattlesnake, it can adjust its head posture to look at the direction of locomotion under the sidewind-

ing gait that push the body to its sideway 1. This is important for snakes since they can observe the

1https://youtu.be/B3NbPUTD5qA
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3.4 Head Orientation Control

Figure 3.6: Top view of the backbone curve of the snake robot with and without head compensation (left
and right).

Φk

β

one wave

M θsnake

Figure 3.7: This diagram shows how to use the first joint to compensate the head orientation in order to
make the robot aim at the front direction all the time during the locomotion.

environment effectively during the locomotion, which is helpful to avoid natural enemies or find the

quarry.

As shown in the left of Figure 3.6, the head will swing along with the body periodically under an

unadjusted undulation motion. If the body is a continuous sinusoid-like curve, the direction of the

head will be align with the tangential direction of the body. However, in the right figure, the head is

aiming at the forward direction constantly by compensating the angle at the head joint all the time.

For real snakes, they can travel with the rear part of the body and attack with the front part of the

body. This agile motion is achieved by using their flexible muscles and ball socket skeletons. For

our snake-like robot, we will use the first joints to compensate the yaw orientation angle during the

slithering locomotion.

As depicted in Figure 3.7, the compensation angle for the first joint is γ, the joint angle for the

57



3. LOCOMOTION FOUNDATION: SLITHERING GAIT DESIGN

0 2 4 6 8 10 12 14 16
Time (second)

70

35

0

35

70

105

O
ri

e
n
ta

ti
o
n
 (

a
n
g
le

)

without head control
with head control

0 2 4 6 8 10 12
Time (second)

50

0

50

100

150

O
ri

e
n
ta

ti
o
n
 (

a
n
g
le

)

without head control
with head control

Figure 3.8: The head control results compared with the one without head control. The figure in the left is
the straight slithering and the right one shows the results from a left turning with r = 5 m.

k th module is φk . We still assume that the rear modules of the robot will follow the trajectory of their

previous module in an ideal situation that the snake will not slide sideways. Therefore, in the global

coordinates, the i th module angle can be calculated as,

φi = γ+
i∑

j=2
φ j (3.19)

Besides, for one whole sinusoid wave, there are M joints. The summation of those evenly distributed

module angle should be zero in the coordinate of the snake, which can be described as,

M∑
1
φi = 0 (3.20)

The phase difference summation from the first module to the Mth module should be 2π. Therefore,

in the global frame, we can calculate the heading direction of the snake θsnake as,

M∑
1
φi = (M +1)×θsnake (3.21)

θsnake =
1

M +1
×

M∑
1
φi (3.22)

The phase difference summation from the first module to the Mth module should be 2π. There-

fore, after integrating (3.19) into (3.20), we can get

M∑
i=1

(γ+
i∑

j=2
φ j ) = (M +1)×θsnake (3.23)

. Then we can derive the compensation angle γ as

γ= θsnake −φ1 (3.24)
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3.5 Discussion

To further examine our proposed method, we run a serious of simulation experiments. By run-

ning simulations, we can obtain the orientation angles of the head module during slithering and the

results are shown in Figure 3.8. Compared to Figure 3.5, the alpha (yaw) angle is greatly decreased

at 90% from 50◦ to 5◦ roughly, with our head compensation method. Besides, we also investigate the

practicability and effectiveness of our method when the robot is turning itself. As shown in the right

of Figure 3.8, the robot is performing a steering action with r = 5m. The orientation angle is shifting

around in the world coordinate but still maintains a stable fluctuation. The result with head control

(green curve) exhibits clearly small range of orientation compare to the one without head control

(blue curve).

3.5 Discussion

In this chapter, we present the model of our slithering gait, which will be adopted to perform au-

tonomous locomotion tasks. First, the slithering gait is modeled based on the serpentine curve and

formalized with simple interface to control the motion state, such as speed and body shape. Sec-

ond, we investigate the radius control to steer the snake-like robot accurately. Then, in order to

strengthen the sensing ability, we reshape the body curve of the snake-like robot with our linear re-

duction method. Finally, to further limit the head orientation to an acceptable range on the basis of

the body regulation, we use the first joint to compensate the head movement and make it aim at the

forward direction roughly.
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Chapter 4

Low-Level Control: Central Pattern
Generator

As the key component of motor system in living creatures, central pattern generators (CPGs) have

many vital features including producing the rhythmic motor pattern, taking action commands from

high-level controller or sensory feedback, and smoothing locomotion processes [23]. In this chapter,

a low-level central pattern generator (CPG) controller will be modeled and implemented to gener-

ate the rhythmic signal for driving the slithering gait. Furthermore, the CPG controller is used for

smoothing the gait transition process. Under its effect, the joint torque is greatly decreased and the

locomotion is smoothed during gait transition process.

4.1 Mathematical model of CPG network

Likewise the long chain-type body of a snake, our CPG controller also takes the chain-type network

structures which is formed by a chain of oscillators coupling the neighbor oscillators. Inspired by

Kopell [229], we design an oscillator model for the chain-coupled CPG network based the conver-

gence behavior of the gradient system, which can adjust the output signal’s frequency, phase differ-

ence, and amplitude as required.

The concept of Gradient System comes from the gradient field [230]. For any point M in space

region G , there is a certain scalar function V (M) corresponding to point M . Then, V (M) is one cer-

tain scalar field in space region G . If there is a gradient function gradV (M) corresponding to the

point M , then a gradient field can be determined. The gradient field is generated by the scalar field

V (M), which is called the potential of the gradient field. In space region G , the potential of any point

decreases against the gradient direction , as shown in (4.1).
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x1 y1 xi yi xj yj xn yn

CPG1 CPGi CPGj CPGn

Phase φ1 φi φj φn

Phase Difference θ1 θi θj θn-1

Figure 4.1: Parameters setting of CPG net with chain-type.

d x

d t
=−∂V

∂x
, ∨x ∈G (4.1)

If the gradient system has a minimal value x∗ in G , then all the vector x will converge to x∗, which

satisfies:

∂V

∂x

∣∣∣∣
x=x∗

= 0,
∂2V

∂x2

∣∣∣∣
x=x∗

> 0 (4.2)

The gradient system has an important property; any initial state x0, will converge to the minimal

value in region G during finite time and remain stable since then. According to (4.2), we can design

a chain-type CPG network to realize a fixed phase difference among all the CPG models. The phase

differences among all CPGs can be seen as a group of state vectors. A global convergence gradient

system is assumed in G , which is composed of those state vectors. The vectors in G will converge to

the extreme point of the gradient system in finite time. If the extreme point of the gradient system

is different from the target phase vector we set, the CPG network will converge to the desired phase

difference from any position in finite time. As shown in Figure 4.1, the chain-type CPG network is

composed of n neurons with the same parameters. Suppose that the phase of the i th CPG is ϕi (t ),

and the phase difference between two neighbouring CPGs i th , j th is θi (t ), then the desired phase

difference decided by the gait generator is θ̃i .

Consider the chain-type CPG network as a directed graph. The topological structure of the chain-

type CPG network can be described by the incidence matrix. Set the incidence matrix T = {ai , j }(n−1)×n

and satisfies:

{ai , j } =


−1, from j to i

1, from i to j

0, i and j are not adjacent

(4.3)
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Therefore, the incidence matrix T for chain-type CPG network is

T =


1 −1 0

1 −1
. . .

. . .

0 1 −1


(n−1)×n

. (4.4)

Thus, the relationship between the phase difference and the phase vector is as follows:

Θ= TΦ (4.5)

where phase difference vector isΘ= [θ1,θ2, ...,θn−1]T , the phase vector isΦ= [ϕ1,ϕ2, ...,ϕn−1,ϕn]T .

In order to design the potential function,Ψi is used as the generalized coordinates of the gradient

system, which satisfies:

Ψi =


ϕ1 −ϕ2 = θ1, i =1

ϕn−1 −ϕn = θn , i =n-1

ϕi+1 +ϕi−1 −2ϕi = θi−1 −θi , otherwise

(4.6)

Then the potential function of a parabolic system is as follows:

V (Ψ) =
n∑

i=1
µi (ψi − ψ̃i )2 (4.7)

where µi is the coefficient of the convergence velocity and ψ̃i is the generalized coordinates of the

desired phase differences. According to (4.1), V (Ψ) can be seen as the gradient system. ψ̃i is the

desired phase difference, represented in the new coordinate constructed by vector Ψ. Thus, the

gradient system described by the new coordinateΨ is:

dV (Ψ)

d t
=−∂V (ψ1,ψ2, ...,ψn)

∂(ψ1,ψ2, ...,ψn)
(4.8)

Transfer the equation into the original coordinateΘ, we get:

dθi

d t
=−∂V (Ψ)

∂θi
=−∂V (Ψ)

∂(ψi )

∂ψi

∂θi
(4.9)

Then we can expend (4.9) into:

dθi

d t
=



−2µ1(θ1 − θ̃1)−2µ2(θ1 −θ2 − θ̃1 + θ̃2), i =1

2µn−1(θn−1 −θn − θ̃n−1 + θ̃n)

−2µn(θn−1 − θ̃n−1), i =n-1

2µi−1(θi−1 −θi − θ̃i−1 + θ̃i )

−2µi (θi −θi+1 − θ̃i−1 + θ̃i+1), otherwise

(4.10)
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Finally, the gait generator model for the chain-type CPG-network is obtained as follows:
ϕ̇1

ϕ̇2

...

ϕ̇n

=


ω1

ω2

...

ωn

+ A


ϕ1

ϕ2

...

ϕn

+B


θ̃1

θ̃2

...
˜θn−1

 (4.11)

where A is,

A =



−µ1 µ2 0

µ2 −2µ2 µ2

. . .
. . .

. . .

µn−1 −2µn−1 µn−1

0 µn −µn


n×n

(4.12)

and B is,

B =



1 0

−1 1

−1
. . .

. . . 1

0 −1


n×(n−1)

(4.13)

ωi in (4.11) is the integration constant, which is also the frequency of the CPG signal. To output

the same frequency signals, we set ω1 =ω2 = ... =ωn . The convergence rate of the system is decided

by the matrix A, which increases with the value of µi .

Next, two PD controllers are adopted to ensure the convergence of the amplitude [231] and the

amplitude bias,

r̈i = ai [
ai

4
(Ri − ri )− ṙi ] (4.14)

c̈i = ai [
ai

4
(Ci − ci )− ċi ] (4.15)

where, the parameter Ri determines the stable amplitude. The parameter Ci dominates the biased

value of the stable amplitude. ri , ci are the amplitude and the amplitude bias of the i th oscillator,

respectively. In summary, the single neuron CPG model can be written as,

ϕ̇i = ωi + A{i , :} ·Φ+B{i , :} ·Θ̃

r̈i = ai [ ai
4 (Ri − ri )− ṙi ]

c̈i = ai [ ai
4 (Ci − ci )− ċi ]

xi = ci + ri sin(ϕi );

(4.16)

where A{i , :} is the i th row vector in (4.12), B{i , :} is the i th row vector in (4.13). Φ is the vector of

the CPG neurons’ phase, and Θ̃ is the vector of the phase difference among the CPG neurons. The
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Figure 4.2: CPG output waves with changing parameters. The upper figure shows four CPG output signals.
The bottom figure shows different sets of CPG parameters. Phase difference changes from 0 to π, with θ

changing from 0 to π, at t = 10s. Frequency changes from 1Hz to 0.5Hz, with ωi changes from 2π to π, at
t = 10s. Amplitude bias rises up from 0 to 12 at t = 20s, and then falls off to 0 at t = 30s. Amplitude goes up
from 20 to 30 at t = 30s

state variable ϕi is the phase of the i th oscillator, respectively. The positive constants ai and bi

are used to adjust the convergence speed of the amplitude. The variable xi is the rhythmic output

signal integrated by the phaseφi , the amplitude ri , and the amplitude bias ci . To evaluate the output

signals of the proposed CPG model, we plot four CPG outputs by adjusting the parameters with time,

as seen in Figure 4.2. The CPG network changes the phase difference θ from 0 to π, the frequency ω

from 0.5Hz to 1Hz, respectively, at t = 10, then linearly changes the amplitude bias C from 0◦ to 15◦,

between t = 10 and t = 20. The amplitude R is changed from 20◦ to 30◦, at t = 30.

To evaluate the convergence speed of the proposed CPG model, we define the convergence tol-

erance as (4.17), where n is the number of CPG neurons and the target phase difference among the

CPG network is set as 0. Therefore, the signals will reach the peak value at the same pace in finite

time. When the tolerance is below 1%, the convergence is treated as finished.

tol er ance =
n−1∑
i=1

(
1

n −1
| (xi −x j ) |), j = i +1 (4.17)

The parameter µ in (4.12), is related to the speed of the synchronization. Based on the tolerance

definition in (4.17), the relationship between the convergence rate and the parameter µ is shown in

Figure 4.3. Therefore, we can conclude that the convergence rate increases with µ.
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Figure 4.4: The execution time on Atmega 328 for 10 iteration of four kinds of CPG models. Each iteration
step is 5ms. Gradient, Kuramoto, Hopf, and VDP are short for the CPG models based on the Kuramoto
oscillator, the Hopf oscillator, and the Van der Pol oscillator, respectively.

4.2 Comparison with other CPG models

Those widely adopted CPG models are based on different nonlinear oscillators; for example, the

Kuramoto oscillator model was adopted by Ijspeert and Shugen Ma [231] [232], the Hopf oscillator

model was adopted by Seo and Slotine [233], and the Van Der Pol oscillator was adopted by Yu [234].

Many of these models can generate waves with desired properties, like frequency, amplitude and

phase difference. However, the execution time on MCU (Micro Control Unit) is rarely investigated,

a critical factor that influences the performance of the CPG model in real-life implementations. To

examine the advantage of the proposed CPG model, experiments are conducted on an Arduino Nano

board(Atmel Atmega 328) to inspect the online execution time of those CPG models.

The fourth-order Runge-Kutta is adopted to solve the differential equations of a three-CPG net-

work. To ensure the solution accuracy of coupled differential equations, we set the CPG output pe-
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Figure 4.5: Changing in frequency from 1Hz to 2Hz, at four different times in a single period.

riod as 50ms and the step-size as 5ms. The online executing experiment results are shown in Fig-

ure 4.4. We can observe that the online execution time for ten steps of the proposed CPG model is

about 10ms, which can easily satisfy the required signal output period. Since the total online exe-

cution involves on-bus data transmit, other CPG models may consume more that 50 milliseconds,

which means a potential failure of output period. Therefore, the conclusion can be made that the

proposed CPG model is lighter in weight compared to other CPG models.

4.3 Smooth Transition of Slithering Gait

This section will discuss the effectiveness of the control method based on our proposed CPG model

for smoothing the control signals during gait transition contrasted with the sinusoid-based method.

The slithering gait is then modelled and achieved, based on our CPG method for further evaluation

in simulations and experiments.
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Figure 4.6: Changing in amplitude from 30◦ to 60◦, at four different times in a single period.

4.3.1 Gait transition analysis

As presented in the literature, a smooth transition is dependent on maintaining the gait properties

during the transition, not maintaining gait properties will cause undesired movement. Normally, the

transition process requires a change of parameters of control signals, including frequency, ampli-

tude, amplitude bias, and phase difference. However, the sinusoid-based control method inherently

depends on time that can not be changed continuously. During the gait transition process, each joint

position will change to another sinusoid wave, which probably has different values and direction.

In contrast, the CPG-based control method can generate continuous output signals due to self-

adjusting ability. As a result, when the transition occurs, the CPG can smoothly switch to the new

state of parameters. The numerical analysis results are shown in Figure 4.5, Figure 4.6, and Figure 4.7.

In Figure 4.5(a)-(d), the frequency of the signal is changed from π to 2π, at t = 14s, t = 14.5s,

t = 15s, and t = 15.5s, respectively. Since the sinusoid-based method inherently relies on time, it

generates different discontinuous waves at different times. An obvious set-point jump over 30◦ and a

change of wave traveling direction can be observed in Figure 4.5(b) and Figure 4.5(c). In contrast, our

CPG-based method exhibits a continuous transition process, no matter when the transition occurs.
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Figure 4.7: Changing in amplitude bias from 0◦ to 30◦, at four different times in a single period.

In Figure 4.6(a)-(d), the amplitude of the signal is changed from 30◦ to 60◦, at t = 13.5s, t = 13.75s, t =
14s, and t = 14.25s, respectively. As shown in Figure 4.7(a)-(d), the discontinuity can also be observed

when changing the amplitude bias from 0◦ to 30◦, at t = 13.5s, t = 13.75s, t = 14s, and t = 14.25s,

respectively. In general, although the discontinuity results are not as obvious as Figure 4.5, the CPG-

based method still exhibits more smooth waves compared to the sinusoid-based method. According

to the results, the time-varying discontinuous waves will cause undesired movement when all the

errors are integrated to the joints of the robot. Therefore, it is meaningful to adopt the CPG-based

method for scenarios with frequent gait parameter transitions.

4.3.2 Slithering gait transition

As a promising type of gait of a snake-like robot for autonomous locomotion, slithering is adopted

by snakes to move forward with a S-like shape. The challenge to utilize this gait, is stability due to the

relatively small base, compared to other gaits such as sidewinding or rolling. Especially in an object

tracking scenario, the snake-like robot is required to change the locomotion speed and direction

according to the target. The slithering gait is modeled in Chapter 3.

In order to track and follow moving objects, the snake-like robot is required to change locomo-
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Figure 4.8: Illustration of the first three CPG outputs when the snake-like robot performs slithering gait.
The robot slithers forward until t = 10s, then turns to left until t = 20, finally turns back and accelerates.

tion speed and direction. These are directly related to the frequency and amplitude bias in (7.1). The

slithering gait transition process is depicted in Fig. 4.8 and the corresponding CPG signals are listed

below. The CPG output waves for the first three modules are represented by the solid line, dotted

line, and dash line, respectively. These CPG commands can make the snake-like robot slither for-

ward before t = 10s. Then, the snake changes direction to the left by increasing amplitude bias Codd

in (7.1). At t = 20s, the robot accelerates and turns back by doubling the frequency ωeven , ωodd , and

decreasing amplitude bias Codd . No obvious sudden change of output waves can be observed during

the process.

4.4 Simulations
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Figure 4.9: Trajectory and torque comparison for the starting of slithering.

Two aspects will be demonstrated in simulations via a scenario of tracking a moving target com-
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Figure 4.10: Trajectory and torque comparison for slithering acceleration.
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Figure 4.11: Slithering body shape change, at t = 9 s, from a = 40◦ to a = 60◦.

paring the CPG-based method with the sinusoid-based method. The CPG-based control method

has two advantages. First, the CPG-based control method can ensure smooth gait trajectory, when

the body shape and locomotion speed are changed. Second, the CPG-based control method can

effectively decrease the abnormal torque during transition.

The trajectories and torque comparison results are shown in Fig. 4.9, 4.10, 4.11, and 4.12. The

slithering process are shown in Fig. 4.9(a) and Fig. 4.9(b). The trajectories of head and tail modules

of the robot are represented by a solid and dash line, respectively. At the initial position, the snake

robot lies along the x axis and the head coordinates are (0,0). By comparing the two figures, one can

see that the sinusoid-based method generates an inclination angle deviated from the body direction.

However, the CPG-based method trajectory is almost aligned with the body direction indicating an

accurate locomotion direction control effect. The torque curves are shown in Fig. 4.9(c). The dash

line exhibits jitter phenomenon when the snake starts to move, the torque curve of the proposed
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Figure 4.12: Trajectory and torque comparison for the steering of slithering.

CPG-based method fluctuates slightly at initiation of movement.

During the tracking process, the snake-like robot is required to accelerate or decelerate. Fig 4.10

shows the acceleration process. The CPG-based method maintains the direction of movement when

doubling the forward speed (Fig. 4.10(a)). On the contrary, the sinusoid-based method deflects to

another direction when accelerating (Fig. 4.10(b)). Meanwhile, a sudden change of the torque curve

can be observed in Fig. 4.10(c).

To increase the throughput capacity for narrow terrain, a change in body shape is necessary. By

adjusting the amplitude, the snake robot can contract the body, as shown in Fig. 4.11. After the

transition, the trajectories of the robot shrink together and continue moving forward. In contrast

to the CPG-based method (Fig. 4.11(a)), the sinusoid-based trajectories (Fig. 4.11(b)) deviate slightly

from the previous direction. The torque generates a jerky jump of set points, as shown in Fig. 4.11(c).

Another requirement for tracking locomotion ability is turning direction (Fig. 4.12). The snake-

like robot turns to the left when t = 30. Although it is not so obvious, the discontinuity of the body

trajectories are still apparent, as compared to Fig. 4.12(a) and Fig. 4.12(b). The sharp edge of the tra-

jectories in the enlarge figure is not acceptable, especially for unstable direction turning locomotion.

As expected, the torque curves (Fig. 4.12(c)) demonstrate an abnormally large value.
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Chapter 5

High-Level Control: Spiking Neural
Networks

As the core component and the foundation of the nervous system, high-level controller is responsible

for perceiving information from environment and making action decision accordingly. Due to the

superiorities of SNNs as introduced in Chapter 2, we will adopt SNNs as the high-level controller to

further implement autonomous locomotion tasks. Therefore, in this chapter, we will first introduce

the modeling of our SNN, the encoding and decoding strategy, and its learning rule.

5.1 Neuron Model

As the functional and structural unit of an SNN, neurons are responsible for information process-

ing by receiving, processing, generating, and propagating spikes within its network. There are many

neuron models mimicking the function characteristics of biological neurons, such as integrate-and-

fire (IF) neuron, Hodgkin-Huxley neuron, and leaky integrate-and-fire neuron. These models are

based on the assumption that the timing of spikes rather than the specific shape carries neural in-

formation. In the scope of this thesis, we adopt the leaky integrate-and-fire (LIF) neuron model with

alpha-function shaped synaptic currents to construct our SNNs.

Generally, an SNN consists of many synapses that connect presynpatic neurons to a postsynaptic

neurons. One example is given in Figure 5.1, where pre-neuron i is connected to post-neuron j and

its synaptic strength is wi j . Then this connection can be modeled as the sequence: the spike train

generated by the pre-neuron will trigger a synaptic electric current into the post-neuron.

First, a sequence of firing times are called spike trains and can be described as

S(t ) =∑
t
δ(t − t f ), (5.1)
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Figure 5.1: An example of a synaptic connection and the STDP curve. The learning curve of the STDP
mechanism with A+ = 1.0 and A− = 1.0. τ+ and τ− setting as 20ms in (5.5). If δt > 0, STDP exhibits a
potentiation effect on the synapse connection. Otherwise, it shows a depression effect.

where f = 1,2, ... is the label of a spike and δ( · ) is a Dirac function.

Passing a simplified synapse model, the incoming spike train will trigger a synaptic electric cur-

rent into the postsynaptic neuron. This alpha-function shaped synaptic current induced by a spike

train S j (t ) can be described as

i (t ) =
∫ ∞

0
S j (s − t )exp(−s/τs )d s. (5.2)

Here, τs denotes the synaptic time constant. In the literature, a function with the form x ·exp(−x) is

often called an α-function.

The postsynaptic current then charges the LIF neuron model. Mathematically we write

C
du

d t
= ur es − 1

R
u(t )+ (i0(t )+∑

w j i j (t )) (5.3)

to describe the effects on the membrane potential u over time. This can be explained from the per-

spective of electronics, which corresponds to charging a capacity C with current I through the re-

sistance R. i0(t ) denotes an external current driving the neural state, i j (t ) is the input current from

the j th synaptic input and w j represents the strength of the j th synapse. Meanwhile, this circuit

will slowly leaks the voltage away over time. Once u crosses a certain threshold uth , the neuron will

fire a spike δ and its membrane potential u is set back to ur es . Inspired by the refractory period of

biological neuron, the LIF neuron model will turn to an inactive state and can not be charged again.

Figure 5.2 shows the neural activity of a LIF neuron driven by external injected current and synap-

tic current. The time-based external injected current i0(t ) is shown by blue solid line. As we can ob-

serve, the membrane potential u(t ) (green line) of the LIF neuron increases under the effect of i0(t )

and leaks away all the time. Once u(t ) crosses the threshold Vth , it will emit a spike (black bar) and

maintain at the reset value ur es during the refractory time τr e f . On the other hand, under the effect
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Figure 5.2: The neural activity of a LIF neuron driven by the external injected current i0(t ) or the synaptic
current from the j th neuron. All these signals are time-based. A. The external injected current i0(t ). B.
The incoming spike train from j th neuron and its synaptic current i j (t ). C. The membrane potential u(t ).
D. The output spike train generated by the LIF neuron.

of the spike train (black bar) from the presynaptic neuron, the synaptic current also has an impact on

u(t ). As we can see, the synaptic current i j (t ) (red line) rises as long as there is a spike and decays un-

der the effect of an alpha function. Since we build and simulate our SNN in NEST [235], the neuron

model i a f _psc_al pha is used to implement a leaky integrate-and-fire model with alpha-function

shaped synaptic currents.

5.2 Synaptic Plasticity

Once the neuron and synaptic models are decided on, the synapse plasticity model should be care-

fully chosen to dynamically change those neuron connections inside and among the layers of SNNs.

Synaptic plasticity is the ability of synapses to strengthen or weaken their activities over time and

is used to optimize the performance of an SNN for a given task. The process of parameter adapta-

tion is called learning and the procedure for adjusting the weights is referred to as a learning rule.

Therefore, a biological plausible model of synaptic plasticity will be discussed in this section.

5.2.1 STDP Learning Rule

There are several learning rules proposed based on the accumulated biological findings on synaptic

plasticity, from LTP to R-STDP. As the most important theory in neuroscience explaining the adaption

of synaptic efficacies in the brain during the learning process, the spike-timing-dependent plasticity

(STDP) learning rule [236] has been successfully proven by neuroscience experiments [237, 238] (see
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[239] for a review; [240] discusses more recent in-vivo results).

For this study, the weight update rule under STDP as a function of the time difference between

pre- and postsynaptic spikes is defined as:

∆t = tpost − tpr e (5.4)

W (∆t ) =
{

A+e−∆t/τ+ , if ∆t ≥ 0

−A−e∆t/τ− , if ∆t < 0
(5.5)

∆w = ∑
tpr e

∑
tpost

W (∆t ) (5.6)

, where w is the synaptic weight, ∆w is the change of the synaptic weight, and tpr e and tpost stand

for the timing of the firing spike from pre-neuron and post-neuron. A+ and A− represent positive

constants scaling the strength of potentiation and depression, respectively. τ+ and τ− are positive

time constants defining the width of the positive and negative learning window.

5.2.2 R-STDP Learning Rule

Because of the absence of direct goals, correction functions or a knowledgeable supervisor, STDP-

based learning is usually used for unsupervised learning tasks and not well suited for filed appli-

cations that lack of experience or knowledge in advance. On the other hand, neuroscience studies

show that the brain modifies the outcome of STDP synapse using one or more chemicals emitted by

a given neuron and known as neuromodulation. While, as one of the key substrates for the brains

functions founded in some brain structures, neural modulation signals offers field robots an inspi-

rational way to learn and evolve.

A learning rule that incorporates a global reward signal in combination with STDP was proposed

by Izhikevich [132] and Florian [133] and called reward-modulated spiking-timing-dependent plas-

ticity (R-STDP). It is based on the standard rule for STDP, modeling the synaptic weight change in de-

pendence on the time difference between firing times of pre- and post-synaptic neurons (Figure 5.1).

Since R-STDP can modulate an SNN with external signal that even sparse or delayed, this method

is well suited for mobile robotic tasks. Instead of instantaneously applying these weight changes

to synapses as done in STDP, these changes are collected in an eligibility trace to serve those de-

layed reward signals. The eligibility function is inspired by the residence time distribution, since the

neuromodulatory is chemical signal. Actually, there are evidences that humans utilize the eligibility

trace to solve the credit-assignment problem when learning from sparse and delayed reward [241].

And R-STDP can reinforce firing patterns occurring on a millisecond timescale even when they are

followed by reward that is delayed by seconds.
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Figure 5.3: Learning curve of the R-STDP mechanism extended from [242]. The spike trains from the pre-
and postsynaptic neuron are shown with red and green vertical bars. The time-based reward signal is
shown in the second subplot. Under the effect of R-STDP, the eligibility trace is plotted according to the
first two subplots. Consequently, the weight of the synapse is presented in the last subplot.

In the R-STDP, the synaptic weight w changes with the reward signal R. The eligibility trace c of

a synapse can be defined as,

ċ(t ) =− c

τc
+W (∆t )δ(t − spr e/post )C1 (5.7)

where the contribution of all spike pairings with the second spike time at t − spr e/post is modeled

in Figure 5.3. spr e/post means the time of a pre- or post-synaptic spikes. c(t ) decays exponentially

with the time constant τc . The decay rate controls the sensitivity of plasticity to delayed reward. C1

is a constant coefficient to modulate the decay rate. ∆ is the Dirac delta function. W is the synaptic

change under STDP mechanism defined in (5.5).

One of the key problems in reinforcement learning is that the receipt of a reward is often de-

layed after the action or neural pattern (See Figure 5.3) [243]. By combining the eligibility trace with

the global reward signal, a simple learning rule can be defined changing the weight of a synapse in

proportion to the product of eligibility trace and reward signal, defined as

ẇ j i (t ) = r (t )× c j i (t ), (5.8)

where w j i is the weight of a synapse from neuron i to neuron j , c j i (t ) is an eligibility trace of this

synapse which collects weight changes proposed by STDP, and d(t ) results from a neuromodulatory

signal.
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Figure 5.3 shows the learning curve of the R-STDP mechanism. In the first subplot, the pre- and

post spike trains are displayed with red and green bars. Three groups of spikes in the correlation

time period are outlined with black boxes. Under the STDP effect of pre- and post spike pairs, the

eligibility trace c(t ) is shown with blue line in the third subplot. The time-based reward signal r (t ) is

shown in the second subplot. The weight w(t ) is plotted with blue line according to (5.8). Specifically,

the first spike pair exhibit a potentiation effect, therefore, the eligibility trace c(t ) increases under the

STDP mechanism. Meanwhile, since the reward signal r (t ) = 0, the weight w(t ) does not change.

For the second spike pair, the synapse weight increases under the combined action of r (t ) and c(t )

according to (5.8). Because the third spike pair results in a depression effect, the eligibility trace c(t )

decreases accordingly. Therefore, the weight w(t ) is weekended as well.

5.3 Information Encoding

The term neural encoding refers to representing information from the physical world (such as di-

rection of a moving stimulus) in the activity of a neuron. Therefore, it is essential to investigate how

to encode different types of sensory information into spike trains. A number of neural information

encoding strategies have been proposed, such as binary encoding [71], population encoding [72],

temporal encoding [244], and the most commonly used rate encoding [73]. In this section, we will

take target tracking task as an example to introduce some common sensor information encoding

methods.

5.3.1 Vision Sensor Based Binary Encoding

Just as vital as the visual system to living creatures, the vision sensor is one of the most effective and

widely used sensors for field robots to perceive information of the environment. In an autonomous

obstacle climbing experiment, Arena et al. [167] used a vision sensor to acquire the height infor-

mation of an obstacle and then controlled an insect robot to step over it. Similarly, Floreano [168]

equipped a Khepera robot with a linear camera to sense the wall with black and white vertical stripes

of random size at irregular intervals.

In this work, we also use the vision sensor to perceive some of the environmental information

for performing autonomous tasks (See Chapter 6). Take RGB image as an example for information

encoding, one solution is to transfer the image pixel value into spike trains with different firing rate.

For reasons of simplicity, we first blur it into lower resolution according to the input neuron number

of the SNN. Then, the image is filtered by extracting one specific color, e.g. the red channel, as shown

in Figure 5.4. Every pixel has an intensity value in the range of [0, 255] according to its RGB value. This
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RGB image Low resolution RGB filtered Spike train

Figure 5.4: Steps for encoding an image into spikes. A. The blurred image with a resolution. B. The filtered
image, with reds as the target. C. The mask of the filtered image. D. The spikes for the input layer of the
SNN.

value is then normalized and multiplied by the maximum firing rate. Finally, the value is transferred

into Poisson-distributed spike trains by setting as the mean firing rate.

5.3.2 Proximity Sensor Based Continuous Encoding

Another crucial sensing method for living creatures is to measure or sense the world by auditory

sense, for example, the auditory system of the barn owl is able to locate sources of sound in the hor-

izontal plane with a precision of 1 to 2 degrees, which equates to a temporal difference of only a few

microseconds (5µs) between the arrival of soundwaves at the left and right ears [55]. Inspired by this,

distance measuring equipments, such as sonar or radar, are developed for performing navigation

and ranging tasks. As for field robots, proximity sensor is mainly used to achieve similar functions

and returns the distance to the target in the effective range.

Take proximity sensor as an example for rate encoding (See Figure 6.12), the strategy is to stimu-

late an IF neuron with the sensor readings as

dui

d t
= a ×xi +b

ms
. (5.9)

The parameter b is used to enable the input neuron firing a spike every 1
b ms, even when there is

no stimulus. This is essential since the proximity sensor may detect nothing within its range. For

the network itself, this serves the purpose of helping to generate spikes for low input values in the

time window and thus enabling learning via STDP for inputs that would otherwise not have fired the

input neurons. With the factor a, the build-up of the membrane potential can be scaled, limiting

the amount of spikes generated in T for a maximum input to (a +b)×T . One example is given in

Figure 6.12, where a is set to 0.2 and b = 0.025. This results in generation of one spike per time

window for minimal/no input and 11 spikes for maximum input.
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Figure 5.5: An example of encoding continuous value from proximity sensor into spikes. The red dash line
is the firing threshold and the blue line describes the membrane potential. The parameters are a = 0.2,
b = 0.025 and xi = 0.5 in a time window T = 50ms.

5.3.3 Neuromorphic Vision Sensor

As one of the neuromorphic hardware, the dynamic vision sensor (DVS) is a biologically inspired

vision sensor that can mimic the retina and generate spikes in response to the pixel-level changes in

illumination caused by movement. Compared to a conventional frame-based camera, a DVS offers

great advantages in terms of data rate, speed, and dynamic range [245], especially for mobile scenes.

Moreover, spikes generated by a DVS can be directly fed into Spiking Neural Networks (SNNs) for

vision processing and motion control. The DVS is suitable for autonomous locomotion control of

the robots that work in critical scenarios with either bad light conditions or rough terrain.

Using DVS camera in simulation is not as good as a real one, since the events are acquired by

comparing the intensity of illumination of the pixels in consecutive image frames. Unfortunately,

this means that pixel events are not independent anymore and are only emitted in batches at every

time-step with the same time stamp. Therefore, the simulation time-step length determines the dvs

time resolution as well. Usually, this will set the DVS time resolution to a much lower frequency than

a real device, which is a drawback of this kind of DVS simulation. In order to get more simulated DVS

data, we accumulate ten consecutive DVS frames and count every event regardless of the polarity.

An example is shown in Figure 5.6, a lane track is sensed by a simulated DVS.
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Figure 5.6: Conversion of consecutive DVS frames into state input for reinforcement learning. This is
done by dividing the original 128×128 DVS frames into small 4×4 regions and counting every event over
consecutive frames regardless of increase or decrease illumination. Furthermore, the image is cropped at
the top and bottom resulting in a 32×16 image.

5.4 Motor Based Information Decoding

In the previous section we have studied how a neuron can encode information from different kinds

of sensors. On the other hand, information decoding is the reverse process to interpret from neuron

activity to electrical signal for actuators (such as muscle or motor). For living creatures, the brain

generates the decoded control signals to actuate their muscles for desired actions. For robots, a

motor usually serves as the actuator to generate locomotion. Therefore, we will also investigate how

can a neuron decode the spikes to motor control signals.

For human beings, a body joint is usually controlled by the contraction and flexion of the agonist

and antagonist muscle for the purpose of accuracy and rapidity. Since we steer our snake-like robot

by regulating the amplitude bias as (3.8), it can also be regarded as steering a two-wheel car with

differential turning radius. In this thesis, a steering wheel model based on an agonist-antagonist

muscle system is inspired by [246]. Instead of turning angles, the amplitude bias is computed and

added or subtracted for steering left or right and the frequency is adjusted for changing travel velocity

as well .

First, the output spike count is scaled by the possible maximum output nmax :

ml e f t/r i g ht
t = nl e f t/r i g ht

t

nmax
∈ [0; 1] (5.10)

nmax = Tsi m

Tr e f r ac
, (5.11)
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where Tsi m denotes the simulation time step length and Tr e f r ac describes the refractory period

length of the LIF neuron. Based on the difference of the normalized activities ml e f t
t and mr i g ht

t

and a turn constant k, the amplitude bias C is calculated as

C = k · at , where at = mle f t
t −mr i g ht

t ∈ [−1; 1]. (5.12)

When the snake cannot see the target, the network will receive no input and both outputs will be

zero. In this case the network should still move to the previous turning angle as it remembers, since

the target get lost continuously in one side of the vision. To address this issue, the bias for the current

step Ct is further calculated as

Ct = τ ·C + (1−τ) ·Ct−1, (5.13)

with τ=

√√√√ (mle f t
t )

2 + (mr i g ht
t )

2

2
. (5.14)

Thus far, we have a decoding method that translate the discrete network’s spiking pattern into con-

tinuous motor control signals to steer a snake-like robot.

5.5 The Neurorobotic Platform

With the aforementioned knowledge, we can now build up our spiking neural network for perform-

ing autonomous locomotion tasks. In this section, we will introduce the implementation framework

which is the neurorobotics platform (NRP) including constructing the SNN, running physical cal-

culation, and communicating between the brain and the actuator of the robot. A screenshot of the

snake-like robot in the NRP is presented in Figure 5.7.

Compared to the classic robot control paradigm, neurorobotics are controlled by simulated ner-

vous systems which mimic the biological brain at different levels of detail. While existing approaches

are able to simulate either biological realistic brain model or bio-inspired robots and their interact-

ing world, there is so far no work to facilitate the easily establishment of an interactive research plat-

form of robotics and neuroscience. We therefore developed the neurorobotics platform (NRP) in the

scope of the European Union–funded Human Brain Project. The NRP facilitated a direct link be-

tween robotics and neuroscience, enabling a seamless and efficient exchange of knowledge between

these two fields. In the following, we briefly describe the architecture and the key components of

the NRP. For a detailed introduction of the NRP, we strongly refer to our report paper [188] and our

official website1.

1http://neurorobotics.net/
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Figure 5.7: A screenshot of the snake-like robot inside NRP.

5.5.1 Functional Architecture of the NRP

The Neurorobotics Platform is composed of six key software components (see Figure 5.8) which are

needed to construct neurorobotics experiments from scratch. It can be seen that the NRP provides

a complete framework for coupled simulation of robots and brain models. The Brain Simulator sim-

ulates the brain by bio-inspired learning algorithms such as spiking neural network to control the

robot in a silico neurorobotics experiment.The World Simulator simulates the robots and their inter-

acting environment. The Brain Interface and Body Integrator (BIBI) builds a communication chan-

nel between brain models and robot models. The Closed Loop Engine (CLE) is responsible for the

control logic of experiments as well as for the data communication between different components.

The Backend receives requests from the frontend for the neurorobotics experiment and distributes

them to the corresponding component, mainly via ROS. The Frontend is web-based user interface

to neurorobotics experiments. Users are able to design a new experiment or editing and visualizing

existing template experiments.

5.5.2 Key Components in the NRP

5.5.2.1 Brain Simulator

In the NRP, the Brain Simulator is implemented with spiking neural network (SNN) [29] to simulate

a brain circuit. The current supported brain simulator is NEST [235], which is a simulator for spiking

neural network models that focus on the dynamics, size and structure of neural systems rather than

on the exact morphology of individual neurons. NEST is one of the most used neural simulations

in the neuroscience community. It is supported through the use of PyNN [247] abstraction layer
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Figure 5.8: Functional architecture of the NRP consisting of six key software components: Brain Simulator,
World Simulator, Brain Interface and Body Integrator, Closed Loop Engine, Backbend, and Frontend.

that makes it enjoy the same interface with different software simulators as well as neuromorphic

processing hardware, e.g., dedicated computer architecture for the SNN models such as SpiNNaker.

5.5.2.2 World Simulator

In order to couple with the accurate brain simulation to perform a realistic neurorobotic experiment,

a realistic simulation of the physic world for both the robot and the environment (in which the robot

interacts) is required. The Gazebo is chosen and extended as the world simulator inside the NRP.

It offers physics simulation at a much higher degree of fidelity, a suite of sensors, and interfaces

for both users and programs. This dynamic simulation can be computed with different supported

software libraries like ODE [177] and Bullet [248]. For communicating with the simulated robot, we

use the Robot Operating System (ROS) [249] as a middle-ware. The platform uses the asynchronous

event-based communication through ROS topics.

5.5.2.3 Brain Interface and Body Integrator

The Brain Interface and Body Integrator (BIBI) is the crucial component in the NRP because it estab-

lishes the connection between the robot and brain simulation. The BIBI is composed of a bunch of

Transfer Functions which can be defined by the users. We defined two main types of TFs inside the

NRP: the Robot to Neuron TFs (R2NTFs) and the Neuron to Robot TFs (N2RTFs). The R2NTFs trans-

late the robot output signals such as images and joint states into neuron signals such as spikes, elec-

tric currents or firing rates (which satisfy the specific input formats of the neuron simulation). The

N2FTFs convert the neural signals from neurons into the motor commands for robot motors. There-
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fore, the perception-action loop of the interaction of the brain, body and environments is closed by

these two types of transfer functions which fill the gaps between a neural controller and the robot

sensory output.

5.5.2.4 Closed Loop Engine

The Closed Loop Engine orchestrates the two simulations and the data transfer. It is responsible for

the synchronization and data exchanges among the above three components. The CLE guarantees

that both simulations run at the same time-step, and the TFs run at the end of the simulation steps.

A typical execution of a time-step is: after the physics and neural simulations have completed their

execution in parallel, the TFs receive and process data from the simulations and produce an output,

which is the input for the execution of the next step. The idea behind the proposed synchronization

mechanism is to let both simulations run for a fixed time step, receiving and processing the output

of the previous steps and yielding data that will be processed in the future steps by the concurrent

simulation [188].

5.5.2.5 Backend

The backend is acting as the bridge to connect the user interface and other core components of

the NRP. On the user interface end point, it exposes a web server implementing RESTful APIs. It is

the first handler for user request, and forwards processed user requests vis ROS on the other end

point. The backend in turn provides lists of actions to the user interface which contains simulation

listing, simulation handling, simulation creation, experiment listing and manipulation, and backend

diagnostic information.

5.5.2.6 Frontend

The Frontend serves as the user interface to the NRP. For the purpose of being accessed and used

easily by a broader user base, it is implemented as a web based application using standard web tech-

nologies and supporting cross-platform. The Frontend is composed of an Experiment Simulation

Viewer and Editors for designing and editing an experiment. The main features of the ESV is that it

embeds a high-fidelity 3D view that allows the user to navigate through the virtual environment with

the robot model. In order to facilitate users to easily design the experiment from the user interface,

the Frontend provide the user with a complete list of editors, Environment Editor, Brain Editor, Trans-

fer Function Editor and Experiment Workflow Editor, to configure all the aspects of an experiment.
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Chapter 6

Autonomous Locomotion
Implementations

In this chapter, the overall control architecture is first presented. In order to demonstrate and ex-

amine the effectiveness of our proposed controller, three autonomous locomotion tasks will be per-

formed, namely, target tracking, target tracking with obstacle avoidance, and maze traveling. For

each task, details will be given including the reward definition, learning process, and the validation

performance.

6.1 Control Architecture Overview

After introducing knowledge about the SNN, CPG, and the slither gait of a snake-like robot. On the

basis of them, we now present an overview of our biological-inspired hierarchical controller that

integrates with the knowledge in this chapter. This serves as a full view of how those sub-controllers

are structured and implemented for performing autonomous locomotion tasks.

6.1.1 Background

With more and more in-depth research findings in neurosicence, the locomotion control system or

motor system in a large variety of animals, have been convinced of being organized hierarchically [1,

250, 251, 252], in which behaviors or functions are divided and assigned to different groups and

further subdivided into smaller functional units.

As their counterparts in robotics, the behaviors of bionic robots are also controlled with the sim-

ilar framework. Nagata et al. [253] presented a structured hierarchical neural network to control

mobile robots with expected behaviors such as capture and escape. Their controller combines a rea-

son network and an instinct network. The robot behaves according to the reason network when it
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is given sensory information on which its action should be based, and behaves according to the in-

stinct network when it is not receiving such sensory information, and when it must take a series of

actions for a certain period of time. Espinal et al. [254] proposed a method to design Spiking Cen-

tral Pattern Generators (SCPGs) to regulate the walking frequency of a hexapod robot. This work

offered an immature to regulate the activities of the CPG controller for changing locomotion, how-

ever, failed to integrate the environment by sensing any information. Similar work can also be found

in [255, 256, 257], where the CPG is evolved or modulated by sensory information.

6.1.2 Hierarchical Control Architecture

Inspired by the aforementioned studies, we adopt a hierarchical paradigm to control the autonomous

locomotion of a snake-like robot, which consist of two parts: the nervous system for making decision

and the skeletal system for generating movement (See Figure 6.1). Specifically speaking, the nervous

system has two components, namely, the high-level SNN-based controller and the low-level CPG-

based controller. The skeletal system adopts a slithering gait to perform autonomous locomotion

tasks in the scope of this thesis.

As the high-level controller in the nervous system, spiking neural network is implemented to

processes the information from different kinds of sensors and compute the action decisions corre-

spondingly. Different from other ANNs, SNN controller take time-based spikes as input, therefore,

the sensor information is first transmitted into a sequence spikes and then fed into the SNN. Mean-

while, it can also take central feedback from CPG controller which affects the local control. The

functions inside the high-level controller is structured as a dendrogram, in which the nervous sys-

tem is treated as the vertice connecting the sensing system and the motor system. Therefore, each

sub-SNN controller is responsible for one specific action, such as regulating the body shape, speed,

or direction. With this framework, the high-level controller can cope with multiple tasks parallelly as

long as there is some mechanism to schedule those functions. The output of the SNN controller is

a combination of action commands matching with the lower CPG-based controller, such as speed,

turning direction, and other gait parameters. The learning rule for out SNN controller is mainly built

on the R-STDP mechanism. In Chapter 5, great details of our proposed SNN controller are given in

terms of information processing, modeling, and its learning rule.

Inside the nervous system, CPG is regarded as the most vital component, since it maintains some

of the fundamental rhythmic activities controlled by instinct. Similarly in this thesis, the CPG is also

adopted as the lower level controller that is responsible for receiving the descending action com-

mand and meanwhile sending the joint angles to our snake-like robot. Specifically, the CPG con-
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Figure 6.1: The biological-inspired hierarchical control architecture of a snake-like robot for performing
autonomous locomotion tasks.

troller will modulate the joint commands as long as there is a gait transition process regarding the

the travel speed, direction, or the body curve. Meanwhile, the low-level CPG controller also take

charges in reflex actions when there is no descending control signal from higher level controller.

This is not only more stable for locomotion control, but also be energy efficient if there is no need

to keep executing the heavyweight energy-intensive controllers all the time. The implementation

details of our proposed CPG controller are given in Chapter 4.

The slithering gait is regarding as the promising motion morphology for a snake-like robot due to
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the fact that its moving direction is almost align with the visual direction. Therefore, it is adopted to

perform several kinds of autonomous tasks. Inspired by the gait equation, we simplify the gait con-

trol by defining parameters that are directly related to the motion state, namely, the speed, turning

radius, and body shape. These motion state parameters are controlled by the CPG controller. Under

its effect, a smooth gait transition process can be guaranteed when conducting different motions.

This gait is further modeled and analyzed in Chapter 3.

Generally speaking, the working flow for our controller is to: 1. Sensing the environment. 2. Mak-

ing action decision . 3. Generating joint command. 4. Perform action and interacting with the envi-

ronment. With the proposed hierarchical controller, we will implement three different autonomous

locomotion tasks and compare the results with other learning-based ANNs in Chapter 6.

6.2 Snake-like Robot Details

Figure 6.2: An illustration of snake-like robot for target tracking task.

This section mainly describes the components of the snake-like robot model and its equipped

sensors. Figure 6.2 first depicts an overview of the snake-like robot performing the target tracking

task. The wheeled snake-like robot model consists of eight vertical joints and nine identical mod-

ules, including one head module for mounting sensors. This structure was inspired from the ACM

series snake-like robot, which also uses the same number of modules. Figure 6.3 shows the technical

drawings of the first two modules from the snake-like robot model. According to the requirements

of different tasks, selected sensor is deployed at the head module. Take target tracking task as an

example, a vision sensor is deployed at the front center of the head module.
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Figure 6.3: The technical details of the wheeled snake-like robot from the top and side view. The perspec-
tive angle of the camera is 90◦ with its range limited by the near-clipping plane and the far-clipping plane.
The rasterized area is cropped for the reason of simplicity.

6.3 Target Tracking Task

Since visual motion detection is essential for the survival of many species, we will first implement

an autonomous target tracking experiment for our planar snake-like robot. The target is recognized

by its red color pixel and its position information is encoded using the binary encoding strategy

introduced in section 5.3.

6.3.1 Target Movement

In real life, the target usually moves randomly to the robot agent. Therefore, we have pre-designed

the trajectories for training and testing. The training trajectory is calculated as a sinusoid curve as{
xt ar g et = t +x0

yt ar g et = s · At ar g et sin(π× t/τt ar g et )+ y0
(6.1)

, where xt ar g et , yt ar g et are the coordinate position of the target and x0, y0 are its initial positions.

At ar g et and τt ar g et are constant parameters to modulate the trajectory curve. s is a factor of +/−1

that alternates the target’s direction every time the simulation resets so that the robot is confronted

equally with the target going left or right with respect to its vision sensor. In addition, we also de-

sign three more challenging tracks for evaluating the SNN controller as unknown scenes, which are

a double-frequency sinusoid curve as the training scene, a zigzag curve, and a ladder curve (See
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Sine Track

ZigZag Track

Double-frequency Sine Track

Ladder Track

Figure 6.4: The pre-designed target trajectories. The first sine track is used as training task. The other three
tracks are used as testing tasks.

Fig. 6.4). In all these tracks, there is a green dot that indicates the starting position and a short straight

line for the beginning process.

6.3.2 Information Encoding

64 pixel

64 pixel

24 pixel

24 pixel

Infrared image

4 1

Input state

Transformation

Figure 6.5: State visual input representation for target tracking task.

As shown in Figure 6.3, the RGB vision camera is deployed at the front center of the head module

of the snake-like robot. Its perspective projection angle is 90◦ with a resolution 64 × 64 pixels. For

reasons of simplicity, we just cut off the rasterized part of the image since these visual information is
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meaningless for representing the target.

The mapping process is visualized in Figure 6.5. The incoming image from the camera is trans-

lated into the network’s state, which is then given to the input neurons as follow: First, the image

resolution of 64 × 64 pixels is reduced to 16 × 64 pixels by cropping the top and bottom by 24 px

each. Every pixel has an intensity value in the range of [0,255] according to their infrared radiation.

This value per pixel is normalized, so that the sum of the intensities of 16 pixels varies between 0

and 16. Again, the resulting value is normalized and then multiplied by the maximum firing rate of

300H z. This value is then assigned to the corresponding spike generator for which it is the mean fir-

ing rate. For each outgoing connection the spike generators output unique spike trains adhering to

Poisson statistics. Therefore, each spike generator is connected one-to-one to a parrot neuron: one

such neuron will replicate the incoming spike train and forward it unchanged to it’s entire outbound

sub-network.

6.3.3 Reward Definition
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Distance (m)

-1.0

-0.5

0

0.5

1.0

R
e
w

a
rd

Right Turn Neuron Left Turn Neuron

Figure 6.6: The reward definition for target tracking task.

As the synaptic plasticity is modeled as R-STDP, a value for this reward-like variable needs to be

calculated every simulation step. This value should somehow reflect the good or bad actions taken

by the robot. First, the image from the vision sensor is processed by only extracting its red color.

Second, the image moments is calculated to compute the centroid of the target d in the visual field,

which ranges from [−1,1] and 0 indicates the middle position in the visual field. Thus, the reward r

is defined according to the position d as,

d = 2· M10

M00 ·64
−1, d ∈ [−1,1]. (6.2)

r = 2

1+e−d ·γ −1, with γ= 8. (6.3)
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M10 and M00 are the first-order and zero-order moment of the image. γ is used to modulate the

gradient of the reward curve. From Fig. 6.6, we can see that the reward r is zero when it is located

at the center of the visual field. Thus, the reward modulation stops working and the two steering

neuron activities are balanced to each other to drive the snake forward. The reward gets steep when

it deviates to the boundaries and turns to its maximum or minimum value when it exceeds ±0.6.

This can help the robot do its best from loosing the target outside of the visual field.

6.3.4 SNN Architecture

Spike generators

Output

calculateRadius()

Input

Parrot neurons

r

LIF neurons

Spike detectors

Figure 6.7: A graphical abstraction of the structure of the network without a hidden layer.

Figure 6.7 shows the architecture of the target tracking SNN controller. The vision sensor data

is first scaled to stimulate Poisson neurons, yields a single network with 8× 2 = 16 input neurons.

The input layer is then processed by the same amount of parrot neurons for insuring the same spike

train for the same image input. Afterwards, the input layer is connected to two LIF output neurons

in an ”all to all” fashion using R-STDP synapses. The output neurons are an implementation of the

Leaky-Integrate-and-Fire (LIF) neurons. To register the spikes of these neurons they are connected

one-to-one to spike detectors. The detected spikes of these two neurons are then transformed into
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a turning radius as explained in (3.16). In order to reduce the complexity involved in the control

task, the reward signal in this work was directly set at each simulation time step instead of doing it

indirectly by exciting a pool of dopaminergic neurons first.

6.3.5 Training Details
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Figure 6.8: Training details of the target tracking controller. The time steps lasting in each episode is shown
at the top. The green dash line indicates the maximum time steps 1,500. The reward and the synaptic
weights are shown over the number of simulation steps.
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Figure 6.9: Learning progress of the R-STDP controller over every 8,000 steps (1step = 50ms). Learned
connection weights to the left and right motor neuron of the R-STDP controller are shown in last row after
4,000 simulation steps.
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Figure 6.10: Learning progress of the R-STDP controller over every 8,000 steps (1step = 50ms). Learned
connection weights to the left and right motor neuron of the R-STDP controller are shown in last row after
4,000 simulation steps.

In Figure 6.8, the training progress of the R-STDP controller for autonomous target tracking is

shown as well as its reward. Specifically, it shows the time steps in each episode until that the robot

loses the target for 20 consecutive time steps or reaches the maximum steps 2500. A simulation

step is equivalent to 50 ms both for the simulation of the SNN and the robot simulator itself. Corre-

spondingly, the dopamine reward varies irregularly at the beginning and levels off to zero over time

steps. In the beginning of the training procedure, the snake-like robot will just slither forward, since

all connection weights for both steering neurons have been set to the same initial value. Therefore,

during the first 30 episode, trials are mostly terminated when the target makes its first turn and drifts

out of the vision field of the robot. Each time the robot loses its target, it will periodically induce

high reward values in the beginning to change the synaptic weights. Consequently, the high reward

over a longer period of time causes a significant change in the connection values. Shortly before

step 20,000, the snake-like robot has learned to follow the target at its first turn, but it still deviates
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from its optimize course. At this point, we can clearly see the time step in each episode is growing

steadily. Afterwards, the controller has successfully learned to follow the target regardless how the

target turns. Episodes are only terminated once the robot has reached the maximum steps, there-

fore, the reward changes after step 23,000 are considerably smaller than before and tends to be zero,

which is the most ideal situation.

The learned weights after 25,000 simulation steps are shown in Figure 6.9. We can find out that

these synapses resemble the spatial pattern of the tracking tasks, in which the SNN tends to drive

the target to the visual center once there is a deviation and this function gets stronger when it is

closer and closer to the boundaries. This phenomenon is well resembled by the synaptic weights

and shown with a color map in the figure.

Finally, we load the well trained synaptic weights to the SNN and execute the controller on the

training scenario. The deviation of the target in the visual field is shown in Figure 6.10 and with its

error histogram. From the fluctuation of the distance curve, we can see that the head module of the

robot still wiggle side to side due to its inherent motion pattern. On the other hand, the curve also

resemble the sine-like trajectory of the target. The tracking accuracy is presented by the distance

error in the visual field, which is around 0.188 in this case. From that, we can clearly see that the

snake-like robot tracks the target well.
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(a) Double-frequency sine track.
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(b) Ladder shape track.
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(c) Zigzag track.

Figure 6.11: Three testing tracks. In each task, the target track is presented with blue solid line and the
robot trajectory is marked with red dash line.

6.3.6 Performance

To examine the adaptability and practicality of the proposed controller, another three tracking tra-

jectories are used to run the SNN controller (See Fig. 6.4). Meanwhile, these results are shown by

plotting the trajectories of the target and robot at the same time. For the first sine-wave trajectory, we

have double the frequency as the training scene to enhance the tracking difficulty. From Fig. 6.11(a)

we can see that the robot follows the path of the target steadily, even it doubles its frequency as the
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training sine track. For the second ladder trajectory in Fig. 6.11(b), it is even more difficult com-

pared with the first one due to those sharp corners. Then we can observe that the robot follows it

closely while sometimes cuts across short path to keep going with the target. For the third triangular

trajectory in Fig. 6.11(c), the robot has difficulty in following the target precisely due to its ordinary

maneuverability. However, it keeps cutting short path when the target makes a sharp turn, yielding

a sine curve matching the target triangular path.
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6.4 Tracking with Obstacle Avoidance

6.4 Tracking with Obstacle Avoidance

As shown in Figure 6.1, the high-level SNN control can consist of multiple sub task controllers for

dealing with complex tasks. For example, in a target tracking scenario, we inevitably have to get

avoid of some obstacles in the target tracking path. Therefore, in this section, we will explore our

proposed controller for performing tasks with multiple functions based on the target tracking task

by adding obstacle avoidance capability. Besides, the sub controller for obstacle avoidance will take

proximity sensors as input and transfer them into event-based signals (See Figure 6.12).

As

Figure 6.12: The distribution of proximity sensors.

6.4.1 Task Description

When a robot is marching forward, it will always have opportunities to run across some obstacles

and hinder its task. Once it encounters such situations, the robot has to avoid those obstacles due to

higher priority. Therefore, a controller selection mechanism that decides the proper action has to be

investigated.

To be more specific, we first present the task scenario for training and testing as shown in Fig-

ure 6.13 In order to train the SNN, two scenarios are used to train the target tracking and obstacle

avoidance, respectively. Figure 6.13(a) shows the environment for the target tracking controller. In

this scene, there is no obstacle but the target ball and the snake-like robot. As introduced before,

the target ball will moving along the predefined path marked in the figure. For this trajectory, the

robot will make two left turns and one right turn in a sequence. If trained like this problems arise,

the robot makes two left turns for every right turn. This means one side of the SNN will get more

positive rewards and the other side more negative rewards. This bias in the training results in a SNN

that is biased towards left turns. To prevent this each path is present mirrored a second time. At first
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Figure 6.13: The training environments for obstacle avoidance tasks.

the robot changed after each episode from one to the other. This again leads to biased training. The

robot will learn one path better and episodes in that direction will be much longer. This results in

getting even better in this direction while still being bad in the other. If the training rate is to high the

robot can even forget how to take one turn. To prevent this the robot keeps track how long it trained

on each path and tries to train an equal amount on both.

The obstacle avoidance controller is trained in an environment with two obstacles and paths

(See Figure 6.13)(b). One is the mirrored version of the other for the same reason as with the target

following controller. The obstacle avoidance SNN needs to learn to avoid collisions with the obstacle

while letting the target following SNN successfully track the target. This controller is evaluated in

the training environment since different learning rates do not affect the outcome as long as they are

reasonable.

6.4.2 Information Encoding

In this task, we have two types of sensors that are being used for acquiring information form the

environment: the infrared vision sensor for the moving target and the proximity sensors for obstacle

detection. For the vision sensor, it has been introduced in previous section (See Figure 6.5). For

the proximity sensors, we deploy four of them equally distributed along the two sides of the head

module, as seen in Figure 6.12. The four sideway sensors are using for detecting a possible obstacle
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Figure 6.14: The evaluation environment consists of two rooms connected by a corridor. The robot follows
the target from one room to the other and back.

or wall, while the middle one is used for detecting the distance between the target and the robot itself

in order to track it with speed control.

Algorithm 1 Proximity data preprocessing

1: function PREPROCESSING(di st ances, dmax )
2: for i ∈ [di st ances.si ze] do
3: if di st ances[i ] < 0 or di st ances[i ] > dmax then
4: di st ances[i ] = dmax

5: end if
6: di st ances[i ] = 1− di st ance[i ]

dmax
7: end for
8: return di st ances
9: end function

After obtaining the sensor information, we have to transfer them into spikes.

6.4.3 Reward Definition

Two rewards will be given to the SNN controller since we need to achieve target tracking and obstacle

avoidance functions at the same time.

6.4.3.1 Reward for Obstacle Avoidance

The rewards for the obstacle avoidance SNN are given event based. This means both output neurons

will receive no reward, if the episode is not terminated or there is no obstacle detected So rewards are

only given at the end of each episode and only to the neuron that received a input, which happens if

there is a obstacle detected on the opposing side. Then, a positive reward of 1 is given for a collision.

Since each neuron is only connected to the proximity sensors on the opposing side of the snake,
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this leads to obstacle avoidance. For example, if the snake collides with a obstacle on the left side,

the left proximity sensors will have a big input the positive reward strengthens the connection. And

thus the right neuron will fire more frequently next time. This leads to effective obstacle avoidance.

In fact it will lead to a obstacle avoidance that will learn to turn away as much as possible from any

obstacle. This would cause the snake from loosing sight of the target and must therefore be prevented

by the second case. When no collision happens but the robot looses sight while avoiding an obstacle

the neuron that was evading the obstacle receives a reward of −1. This negative reward causes the

network to fire less next time. The network will learn to not just turn away from obstacles, but to turn

away form obstacles as little as possible to avoid collisions while tracking the target.

Algorithm 2 Reward for obstacle avoidance SNN

1: function GET_REWARD(terminate, collision, obstacle_detected)
2: if terminate and obstacle_detected then
3: if collision then
4: return 1
5: else
6: return −1
7: end if
8: end if
9: return 0

10: end function

6.4.4 SNN Architecture

For this multi-function task, the SNN controller consist of two sub SNN, namely one for the target

tracking and one for the obstacle avoidance. These two SNNs are organized based on our proposed

controller architecture in Figure 6.1. Each of these two SNNs are discussed as follows.

6.4.4.1 Target Following Controller

The target following controller receives as input a 16×4 pixel infrared image and returns the spike

trains of the two output neurons. It has a simple feed forward architecture consisting of a input layer

that is directly connected to the output layer in an all to all fashion. The input layer consist of 64

Poisson generators which transform the preprocessed input values to spike trains. The output layer

consists of the left and right neuron. The connections are separated into two groups depending on

the output neuron at which they end.
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6.4.4.2 Obstacle avoidance controller

The goal of the obstacle avoidance controller is to keep a certain distance to obstacles. This be-

haviour is achieved by connecting the left neuron to the proximity sensors that detect the right side

for obstacles. When they detect an obstacle the left neuron can fire and move the robot away from

the obstacle. The sensors on the left side are connected to the right neuron for the same reason. This

connection pattern corresponds to the coward behaviour of Braitenberg vehicles[258]. Yet the goal is

not to train this controller to fear obstacles, but to keep a distance that prevents collisions, whenever

possible without loosing track of the target.

Algorithm 3 Controller selection

1: function CHOOSE_ANGLE(αt f , βoa)
2: if obstacles are detected then
3: if

∣∣αt f
∣∣> ∣∣βoa

∣∣ and sgn(αt f ) = sgn(βoa) then
4: return αt f

5: else
6: return βoa

7: end if
8: else
9: return αt f

10: end if
11: end function

6.4.4.3 Controller Selection

Neither of the two controller is able to solve the proposed problem alone, but by working together

they can archive target tracking while avoiding obstacles on the sides. The pseudocode 3.2 details

which output angle is given to the snake car robot. The main goal is to track the target, so in general

the target following controller has the command and his output angle is used to follow the target.

Once the proximity sensors sense a obstacle that is close to the snake the obstacle avoidance con-

troller becomes active and moves the snake away form the obstacle. There is one important edge

case. If the obstacle avoidance controller becomes active and suggests a right turn to prevent a col-

lision with a obstacle to the left, the target could be already be moving farther to the right. Then the

target following controller also wants to move to the right to follow the target. This already prevents

a collision, so following is the better choice. The choose angle function selects between the output of

the target following angle αt f and the obstacle avoidance angle αoa . First a decision is made based

on the presence or absence of obstacles. Then if some are present the edge case is checked. This

happens by comparing the absolute value and the signs of the angle. If the signs are equal the one
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with the bigger absolute value is chosen If they have different signs then obstacle avoidance angle is

returned.

6.4.5 Training Details
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Figure 6.15: The training details of the target following controller.

Figure 6.15 shows the training progress of the target following SNN. The network is trained for

40000 steps. The first graph shows the duration of the 43 episodes completed during training. In the

first 21 episodes vision of the target is lost in under 250 steps. The robot fails to track the target in the

first 12s of an episode. This part of the training is only 5% or 2000 steps of the whole training process,
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Figure 6.16: The training details of the obstacle avoidance controller.

but the weights change the most in this phase. Then weights hit the maximum and minimum weight

values and then the snake manages to complete a episode successfully. This transition can be best

seen in the second graph. Here the averaged dopamine reward at each time step is shown. The graph

starts with fast changing high rewards until the robot manages to complete the path for the first time.

After this the rewards fall into a regular oscillation, that is composed from the shape of the track and

the movement of the robot head module. The robot completes all other 22 episodes without loosing

track of the target. This part are the other 95% of the training time, around 3800 steps. Each episode

lasts for 1700 steps, or 1.5mi n, the time needed for the target to complete the training path.
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Figure 6.17: The performance in one episode of the target following controller in an unknown environ-
ment.
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Figure 6.18: Performance of the controllers in the evaluation environment.

Figure 6.16 shows the training progress of the obstacle avoidance SNN. Again the first graph

shows the steps in each episode. At step 200 the target arrives at the obstacle and after step 500

the target passed the obstacle. Figure 6.13 shows the training path with obstacle. The initial weights

are assigned at random. The second graph shows the rewards at each time step. Rewards are given

only at the end of each episode.

6.4.6 Performances

Like examining the target tracking task using unknown scenarios, we also build up testing tasks for

the obstacle avoidance controller. Figure 6.18 shows the performance of the target following con-

troller in one episode. The controller is evaluated in an unknown environment. The graph shows the

angle between the direction the robot looks and the direction from the robot to the target, at each

time step for one episode. On the right a histogram of the errors is given. The average error e = 0.148

is equal to an average angle error of e = 8,4798◦. To evaluate the collaboration of the controllers the

unknown environment from Figure 6.14 is used. One episode is shown in Figure 6.18.
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6.5 Wall Following Task

Wall following, as one of the robot self navigation abilities, is essential for some of rescue or military

tasks. In this section, we will control the snake-like robot to conduct a wall-following task, which

uses a DVS to sense the environment. Furthermore, this task also serves as an example for taking

neuromorphic sensors as input for our controller.

6.5.1 Task Description

The wall following scenario is an eight-shaped maze consisting of an inner wall and a outer wall. The

distance between them is 5m (See Figure 6.19). Each straight segment is 10m and the angle between

two segments is set as 45◦. It is designed with the idea in mind that the snake encounters as many

right as left turns if it starts alternately in both directions. Then it will experience all the situations

equally. For a whole round in the positive direction, the snake first needs to turn left, then six times

right, two times left, six times right and finally left again. If the snake stays perfectly in the middle

between the two walls for a whole round, the length of the covered track would amount to 160m. The

other way round is exactly the opposite.
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Figure 6.19: Dimensions of the eight-shaped maze. The sections are numbered increasingly for the posi-
tive travel direction. The snake finishes the maze successfully if it crosses the finish line.
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6.5.2 Information Encoding

Similar to the setup in Figure 6.3, a DVS replaces the infrared camera and will be located at the

same position. Different from the conventional vision sensors, the DVS generates sparse, event-

based output that represents the positive and negative relative luminance change of a scene (See

Figure 6.21). By letting the pixels operate asynchronously sending out events nearly instantaneously

on an address-event bus, no complete image frames exist in the system. The output consists of a

stream of precisely-timed, individual events representing local changes in temporal contrast.

First, since we mainly focus on the events generated by the walls, the bottom of the DVS image is

cropped and results the size changed from the original size of 128×128 to 128×80. Then, to increase

the events in one time step and reduce the computing burden, the resolution is decreased to 8×5.

Although the DVS image frames will be cropped and reduced to a lower resolution as well as the

infrared camera, there is still one more step to process them. Due to the event-based nature of the

DVS data, events coming from each simulation step do not always contain sufficient information for

the network to make meaningful decisions. Therefore, the state input was computed by condensing

information of ten consecutive DVS frames into a single image.

6.5.3 Reward Definition
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Figure 6.20: Reward given by the R-STDP controller with cr = 0.00025, which is the value used in the
simulation.

Similarly to the target tracking task, the reward modulates the neurotransmitter concentration

of the R-STDP synapses and is defined with the following considerations: If the snake is close to the

left part of the wall, it needs to turn right to stay in the middle position. Therefore, the left output
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neuron needs to fire more spikes than the right neuron. Thus, the neurotransmitter concentration of

the right neuron should be high and the concentration for the left low. Additionally, to compensate

for the sideways motion of the robot there should be a corridor around the middle that counts as the

optimal position of the snake. These considerations lead to the reward signal being defined as cubic

function dependent on the distance to the center position between the two walls:

rle f t/r i g ht =−/+ (
d 3 ·cr

)
, (6.4)

where d is the distance to the center position and cr is a scaling constant. The reward is depicted in

Figure 6.20.

6.5.4 SNN Architecture

Figure 6.21 shows the architecture of the wall following SNN controller. In order to feed them effec-

tively into an SNN they have to be ”spread” again in time across a simulation time step. Therefore,

instead of generating spikes directly from DVS events, the pixel values of the 4×4 images are used to

excite Poisson neurons to fire with the respective rate during a simulation time step. Similar to the

SNN architecture for target tracking, the input layer is then connected to two steering motor neurons

with R-STDP synapse. Under the effect of the dopamine modulation defined in (6.4), all the synapse

will be updated according to the performance of the robot. According to different DVS input pattern,

the SNN will compute a desired turning radius as explained in (3.16).

6.5.5 Training Details

First, the training progress of the SNN controller for wall following is shown in Figure 6.22. To be

specific, the robot will be terminated and reseted once it hits the wall in either side, which is depicted

by the deviation distance of 0.25 m to the middle line. Then the robot will take the other direction. At

beginning, the robot will go straight forward, because all connection weights for both motor neurons

have been set to the same initial value 200. Therefore, during the first 1,000 steps, trials are mostly

terminated at the first turn in both directions when the robot misses the turn and the lane-center

distance exceeds 0.25 m. Each time the robot fails a turn, it will periodically induce high reward

values in the beginning of changing the synaptic weights. As a consequence, the reward over a period

of time causes a significant change in the synapse values. After step 500, the robot has learned to take

the first turn, but it still deviates from the optimal lane-center position. Finally, the controller has

learned to manage the full lap both left and right without causing a reset. Following both lanes close

to the optimal lane-center position means low reward values as well. Therefore, the weight changes

after step 10000 are considerably smaller than before.
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Figure 6.21: A graphical abstraction of the structure of the network for the wall following task.

The final synaptic weights are depicted in Figure 6.22. One can clearly see that the middle left

and middle right corner have the greatest influence on the left and right output motor neurons,

respectively . For example, if the snake is too close to the right wall, it needs to turn left to return

to the middle position. Turning left is achieved if the right motor neurons fires more spikes than

the left motor neuron, explaining why the right half of the synaptic weights connecting to the left

motor neuron are high excitatory and their counterparts connecting to the left motor neuron are

low inhibitory. Another remarkable property of the synaptic weights distribution is that the right
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Figure 6.22: The final weights of the wall following controller.

weights have a greater influence over the controller than the left ones. A reason for this might be

that the snake traveled more steps in the negative direction than in the positive resulting in more

encountered right than left turns. It is also visible that the left and right weights complement each

other. A synapse with a high value from the left weights results in a synapse with a high value from

the right weights and the other way round. The strongest changes in synaptic weights happen in

the beginning of the training, which can be seen in Figure 6.23. First, the right motor neurons are

changed excitatorely because the snake encounters a left turn in the first episode resulting in a lot of

DVS events on the right half. After the first episode reset, the snake travels in the opposite direction

and encounters a right turn, explaining the rise in weights of the left motor neuron and the drop of

the weights of the right motor neurons. After these initial changes, the weights only change slightly
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Figure 6.23: Weights over steps plotted for the controller. The vertical lines mark new episodes.

as the snake gets less and less reward by staying close to middle and finishing each episode reaching

the starting position again.
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6.5.6 Performances

In order to further examine the performance of the wall following controller. It is evaluated on six

scenarios with heights varying from 0.5m to 3m as these wall heights could be encountered in a real

world deployment of the robot. The terminology is as follows: The six scenarios are referred to as

scenario_0_5, scenario_1, etc. whereby the number in the end depicts the wall height.

The controller’s performance is evaluated based on the following values that are only calculated

for scenarios that the controller is able to cope with. A controller can cope with a scenario if it man-

ages to finish one round of the maze.

First, the mean of the distance to the middle position between the two walls over one episode

is determined. Second, an error value is used to asses how well a controller performs on a scenario

given that it is able to finish one round. The error is defined as the mean of the absolute values of the

distance to the middle position. And third, the length of the covered track is used as an additional

assessment of how well a controller performs that can finish one round.

6.5.6.1 Different Wall Heights

As a first evaluation of the controller’s ability to cope with new situations, the snake is tested on six

eight-shaped maze scenarios with wall heights that vary from 0.5m to 3m. These heights are chosen

for evaluation as they could be encountered in a real-world deployment of the robot, for example, in

a collapsed factory building or something similar. The six scenarios are referred to as scenario_0_5,

scenario_1, etc. whereby the number in the end depicts the wall height. Figure 6.24 shows DVS

frames from the six different scenarios.

As Figure 6.25 shows, the controller is able to finish a full round of the eight-shaped maze in each

scenario. One can see the course over the maze the snake takes in the distance over steps plot of

scenario_0_5, for example. Whereas during left turns, which take place as the first, eighth, ninth, and

last turn the snake moves closer to the outer wall resulting in a negative distance value, during right

turns the snake moves closer to the inner wall resulting in a positive distance. The snakes position’s

in the maze are also depicted in Figure 6.26 where the paths of the snake from the different scenarios

are laid on top of each other.

For a better comparison, the mean value, the error value, and length of the traveled distance are

displayed in Table 6.1. The test on scenario_2 can be seen as the comparative basis as the snake was

trained on this scenario and thus reaches the second best value for the error with 0.263m and the

best value for the mean with 0.005m. The values for scenario_1_5 have the same scale with a mean
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(a) scenario 0.5m wall (b) scenario 1.0m wall

(c) scenario 0.5m wall (d) scenario 1.0m wall

(e) scenario 0.5m wall (f ) scenario 1.0m wall

Figure 6.24: Raw DVS frames from the scenarios with different wall height.

value of −0.008m and a slightly better error value of 0.253m. The length of the traveled distance is

about one meter longer for scenario_1_5 with 170.56m compared to 169.49m.
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Figure 6.25: Plot of the distance to the middle position over the traveled distance for the scenarios with
different wall heights. The dashed vertical lines mark the 16 turns in the maze whereas the first one is a left
turn, followed by six right, two left, six right, and a final left turn until the snake is at the starting position
again.

For the other scenarios, the following trends are recognizable: The more wall height gets re-

moved, the higher the mean value becomes. In numbers this means 0.217m for scenario_1, and

0.258m for scenario_0_5. These numbers show that for these two scenarios, the snake moves closer

to the inner wall leading to smaller traveled distances of 163.42m and 163.75m, respectively. The

reverse is observable for the higher wall heights with a mean value of −0.019m for scenario_2_5 and

−0.080m for scenario_3 resulting in higher values for traveled distances of 170.55m and 172.21m, re-

spectively. This behaviour can also be seen in Figure 6.26 where the blue path results from the snake

in scenario_0_5 moving close to the inner wall and thus needing less distance to finish the maze, and
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Figure 6.26: The paths of the snake in the different wall heights scenarios laid on top of each other.

the yellow path resulting from the snake in scenario_3 resulting in more distance.

For the error value, the following trend is recognizable: The more wall height gets removed (in

case of scenario_1 and scenario_0_5) or added scenario_2_5 and scenario_3), the greater the error

becomes having its highest value for scenario_0_5 with 0.414m and its second highest for scenario_3

with 0.359m. As Figure 6.24 shows, these two scenarios differ the most from scenario_2 leading to

DVS events in the top of the frame in case of scenario_3 or missing events in the middle area of the

frame in case of scenario_0_5.

Table 6.1: Comparison of the mean value, error value and length of the traveled distance for the eight-
shaped maze scenarios with wall heights ranging from 0.5m to 3m.

Wall Height [m]

0.5 1.0 1.5 2.0 2.5 3.0

Mean [m] 0.258 0.217 −0.008 0.005 −0.019 −0.080

Error [m] 0.414 0.280 0.253 0.263 0.291 0.359

Length [m] 163.75 163.42 170.56 169.48 170.55 172.21
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Chapter 7

Prototype Validation for CPG

Apart from the wheeled snake like robot in Chapter 6, a modular snake-like robot exhibits better

locomotion ability in three-dimensional terrain. In this chapter, we will introduce our snake-like

robot designed for field locomotion with diverse indoor and outdoor gaits. Besides, the function that

CPG can smooth the gait transition process are demonstrated with our modular snake-like robot.

7.1 Mechanical Design

Our snake-like robot has a modular design, consisting 13 actuated modules and a head module, as

seen in Figure 7.1. Those modules communicate with each other via I2C bus. All the output shafts

are alternately aligned with the robot’s lateral and dorsal planes to generate 3D locomotion. Each

module is connected to the adjacent modules and allows a full 180◦ rotation.

Figure 7.1: The snake-like robot is slithering forward. This snake-like robot is modular designed. Each
joint axis is orthogonal to its neighbors with a rotation range of ±90◦ .

Each module contains a servo and a set of gears to actuate the joint. The DC servo (DS1509MG)
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has a maximum torque of 12.8K g ·cm and drives a gearbox with a reduction factor of 3.71. For the

electronic hardware part, each module has an Arduino Nano board, a printed circuit board and an

angle sensor. The Arduino Nano board runs three tasks: control- ling the servo, reading the joint an-

gle, and communicating with the other modules. Table 7.1 summarizes the technical specifications

of our snake robot.

Table 7.1: Overview of Snake-like robot specifications

Items Discriptions

Dimensions
Diameter 60mm

Length 70cm

Mass
Module 0.3kg

Full 2kg

Actuation
Max Torque 12.8kg.cm

Max Speed 0.07sec/60◦

Power 7.4V DC

Communication I2C Bus

Sensing Angular Sensor MLX90316KDC

7.2 Gaits

For our modular snake-like robots, there are several typical indoor and outdoor gaits, such as rolling,

sidewinding, and slithering. By setting different parameters, these gaits can be obtained from the

extended gait equation, which is described as,

φ(n, t )odd =Codd +P · Aodd · sin(Ωodd ·n +ωodd · t )

φ(n, t )even =Ceven +P · Aeven · sin(Ωeven ·n +ωeven · t +δ)

Ωodd/even = xodd/even × 2π
N

P = ( n
N · z + y) ∈ [0,1], ∀n ∈ [0, N ]

(7.1)

φodd and φeven present the angle value for the odd or even joint at time t , where n is the joint index.

For both the rolling and sidewinding gait, the amplitude bias Codd/even is set as 0, the linear

reduction P is also cut off by setting z = 0 and y = 1, and the spatial frequencyΩodd/even is 0 as well.

Two aspects are demonstrated in simulations, compared with sinusoid-based control method.

First, the CPG-based control method can ensure smooth gait trajectory, when the body shape and

locomotion speed are changed. Second, the CPG-based control method can effectively decrease the

abnormal torque during the transition.
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Figure 7.2: Screenshots of the amplitude changes from 20◦ to 40◦ of rolling gait. From left to right, the
figures show the 20◦ rolling, the state before transition, the jerky movement during transition, and the 40◦
rolling after transition, respectively. Due to space limit, other frequency changing and sidewinding gait
experiments are shown in the attached video.

7.3 CPG Validation

In Chapter 4, the characters of the proposed CPG model has been provided via numerical simulation

and online execution experiments. Meanwhile, simulations are performed to prove that CPG-based

method can achieve smooth transition for a snake-like robot, when the body shape or the locomo-

tion speed is changed. Now, we report the results of a set of experiments conducted on our modular

snake-like robot (See Figure 7.1) to demonstrate that our CPG-based method can ensure smooth

transition of the body shape and locomotion speed.

The CPG network is implemented on a Master Arduino Nano board, which is located in the tail

module and spreads the commands to each module via I2C bus. Meanwhile, it will receive the feed-

Table 7.2: Descriptions of the extended gait equations

Items Descriptions

φodd , φeven Joints commands in lateral and dorsal planes

Codd , Ceven Body shape offset in lateral and dorsal planes

Aodd , Aeven Amplitude in lateral and dorsal planes

Ωodd ,Ωeven Spatial frequency in lateral and dorsal planes

ωodd , ωeven Time frequency in lateral and dorsal planes

N Module numbers

P Linear dependency

x Cycle numbers

n Module subscript

δ Phase difference

y , z Linear coefficient
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(a) Sin-based method for frequency changes from
0.75Hz to 1.5Hz of rolling gait.
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(b) CPG-based method for Frequency changes from
0.75Hz to 1.5Hz of rolling gait.
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(c) Sin-based method for amplitude changes from 20◦
to 40◦ of rolling gait.
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(d) CPG-based method for amplitude changes from
20◦ to 40◦ of rolling gait.
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(e) Sin-based method for frequency changes from
0.75Hz to 1.5Hz of sidewinding gait.
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(f ) CPG-based method for frequency changes from
0.75Hz to 1.5Hz of sidewinding gait.
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(g) Sin-based method for amplitude changes from 20◦
to 40◦ of sidewinding gait.
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(h) CPG-based method for amplitude changes from
20◦ to 40◦ of sidewinding gait.

Figure 7.3: Voltage measurements of the high-load resistance. The left column figures are sinusoid-based
method measurements. The right column figures are CPG-based method measurements.

back angle position of each module. Every slave module runs a PD controller to control the servo

such that the joint can reach the desired position.

As an illustration of undesired movement, the body shape transition in rolling gait is shown in

Figure. 11. The amplitude Aodd/even is changed from 20◦ to 40◦. As shown in Figure 7.2, the four

figures from left to right, present the body shape of 20◦ rolling, the body shape before transition, the

jerky movement during transition (the curve of the arc should increase, not decrease), and the body

shape of 40◦ rolling. The undesired movement can not be observed in the contrast experiments, as

shown in attached video.
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The output torque of the snake-like robot is directly related to the current. Therefore, by mea-

suring the current of the robot, we can obtain the changing trend of the output torque. A 0.1Ω/50W

high-load resistance is stringed into the circuit and the voltage of the resistance is measured by os-

cilloscope. Thus, the changing trend of the torque can be present by the voltage measurements.

As seen in Figure 7.3, the results of sinusoid-based method and CPG-based method are in the left

column and the right column, respectively. The average value is presented with solid lines and the

standard deviation of each figure is represented with σ . Figure 7.3(a, b) describe the frequency tran-

sition of rolling gait, from 0.375H z to 0.75H z. The transition of the sinusoid-based method happens

at t ≈ 73s, when an abnormal torque is generated. However, the transition of the CPG-based method

does not show obvious abnormal torque. The amplitude transition of rolling gait from 20◦ to 40◦ is

shown in Figure 7.3(c, d), the similar abnormal torque happens at t ≈ 70s in the left. On the contrary,

by adopting the CPG-based method, the voltage measurements exhibit relative smooth processes.

In order to ensure the accuracy of the experiments, sidewinding gait is also conducted, changing

the frequency and the amplitude as well. In Figure 7.3(e, f), frequency is adjusted from 0.375H z to

0.75H z at t ≈ 72s. In Figure 7.3(g, h), amplitude is adjusted from 20◦ to 40◦ at t ≈ 68s. Both the fig-

ures in the left show the abnormal torque when start the transition process. On the opposite side, the

CPG-based method, the voltage measurements exhibit no abnormal torque during the transition.
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Chapter 8

Conclusion and Future Work

This conclusion chapter will bring together and summary the main contributions of our biological-

inspired hierarchical controller in this thesis, together with its pros and cons. Meanwhile, it makes

suggestion for the further improvement of this work and speculates on future research direction for

bio-inspired locomotion control of field robots.

8.1 Primary Contributions of the Thesis

The main contributions of this work lie in the development of the biological-inspired hierarchical

controller consisting of the low-level CPG controller and the high-level SNN controller. Meanwhile,

three autonomous locomotion tasks are performed on a snake-like robot based on the proposed

controller. To be specific, the contributions are summarized as follow:

1. The spiking neural network:

• A survey of robotics control based on learning-inspired SNNs. In chapter 2, the primary

impetuses of SNN-based robotics tasks is first highlighted in terms of speed, energy effi-

ciency, and computation capabilities. Those SNN-based robotic applications according

to different learning rules are classified and those learning rules are explicated with their

corresponding robotic applications.

• General SNN framework for mobile robot tasks. In chapter 5, the general learning rule

of an SNN for field operation tasks is given, together with some sensor encoding and

motor decoding strategies and an implementation paradigm. Under this paradigm, we

have implemented three different autonomous locomotion tasks.

• Dopamine modulation assignment within SNNs with hidden layer. In chapter 6, a dopamine

modulation assignment method is given for implementing SNNs with hidden layers. With
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this method, we successfully trained SNNs with separated hidden layer and agnostic hid-

den layer for performing tracking task.

2. The central pattern generator:

• Modeling of the central pattern generator. Based on the gradient theory, a lightweight

CPG model with fast computing time is designed to control the locomotion of a snake-

like robot. The CPG model is at least 3 times faster than the other widely adopted CPG

models in the literature and demonstrated with experiments.

• Gait transition smoothness. Simulations and prototype measurements are conducted

on the robot trajectory and output torque for the change of both body shape and loco-

motion speed. The results prove that the CPG-based method can effectively avoid unde-

sirable movement and abnormal torque.

3. The slithering gait of a wheeled snake-like robot:

• Modeling of the slithering gait. In order to perform autonomous locomotion tasks, a

slithering gait of a snake-like robot is further modeled on the basis of the serpentine curve

in terms of speed control, steering control, and body shape regulation.

• Steering and head control. A precise steering control of the snake-like robot is intro-

duced and demonstrated by simulations. A head control method is proposed to over-

come the head module swinging from side to side by strengthening the environment

perceiving capabilities.

4. Implementations:

• Autonomous locomotion tasks. In order to demonstrate and examine the effectiveness

of the proposed control architecture, the target tracking, wall following, and obstacle

avoidance tasks are implemented. The training details are given and analyzed, together

with their performances in different testing scenarios.

• SNN training discussions. According to different tasks, different SNN architectures are

analyzed and the impact of different training factors are also discussed.

8.2 Shortcomings of the Control Architecture

Even we have achieved the aforementioned contributions, a number of limitations should to be

noted regarding the present study.
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• Gait transition: In chapter 4 section 4.3, we have introduced out gait transition process in

terms of changing speed, body shape, and steering direction, controlled by CPG-based con-

troller. However, in some circumstances, we have to change the gait type instead of only

changing its properties, which is mainly dominated by the phase β in (3.8). Different from

other parameters like the amplitude or frequency, the phase modulation process will signifi-

cantly disturb the overall locomotion behavior of the snake-like robot.

• Spatial encoding: In chapter 6, we have utilized conventional camera as the vision sensor,

from which the information is binary encoded based on spiking rate. However, other features

of the visual image have been neglected, such as the color information or the depth informa-

tion.

8.3 Future Work

In this section, the possible future work is given from three aspects, namely, the underlying mecha-

nism of spiking neural network, the locomotion skill of snake-like robots, and the practical training

methods for field robots.

8.3.1 Implementations with modular snake-like robot

As we all know, wheeled snake-like robots can move smoothly on the ground under serpentine gait.

But their applications are greatly limited in wild field environment, since they lack of satisfactory

traversability in diverse terrain. On the other hand, modular snake-like robots have great potential

of being implemented in complex surroundings, since they mainly propel themselves by twisting or

pushing the bodies.

Even so, there are a lot of unsolved tasks involving both the mechanism and control algorithms.

For instance, the head module of the modular snake-like robot waggles around to contribute to the

locomotion, which brings great difficulties for sensing the environment.

8.3.2 Practical training methods for field robots

In order to learn an expected behavior or function, the robot has to repeatedly explore and exploit

the environment until it learns the task successfully. First, different from the robotics arm that can

reset themselves to the initial position easily, it is nearly impossible to set field robots to the exact

initial states automatically, especially when the training process can be easily up to hours and even

days. Second, during this unpredictable process, the robot may break itself anytime or can not make
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sure to repeat each episode without deviations. Hu et al. [259] present an automated learning envi-

ronment for developing control policies directly on the hardware of a modular legged robot, which

is relocating the robot to the initial position using a resetting mechanism. Even this brilliant relocat-

ing system help this legged robot to achieve reinforcement learning, many field robots still face this

critical training problem.

One possible solution is to learn the task with simulations first and them transfer the experience

to its prototype counterpart. To make sure the consistence works, we have to increase the similarity

between the simulation and prototype experiment, which is usually difficult to model.

8.3.3 Spiking neural network

Although an increasing amount of work has been done to explore the theoretical foundations and

practical implementations of SNNs for robotics control, many related topics need to be investigated,

especially in the following areas.

8.3.3.1 Biological Mechanism

Despite the extensive exploration of the functions and structure of the brain, the exact mechanisms

of learning in biological neurons remain unknown. To be specific for some of those related to robotics

applications:

1. How is diverse information coded in many neural activities other than the rates and timing of

spikes?

2. How are memories distinguished, stored, and retrieved in such an efficient and precise man-

ner?

3. How do brains simulate the future, since it involves the concept of "previous steps," thus re-

quiring some form of memory?

As long as we can constantly address these unsolved mysteries of the brain, the robots of the future

definitely can achieve more advanced intelligence.

8.3.3.2 Designing and Training SNNs

None of the currently suggested algorithms are general-purpose able, at least in principle, to learn

an arbitrary task in the way that backpropagation (through time) and its variants (with all their limi-

tations) do for rate neurons [28]. Therefore, there is no general design framework that could offer the

functionalities of modeling and training, as well as those substantial tools for the conventional ANNs
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do, for instance, Tensorflow [260], Theano [261], and Torch [262]. The nature of this situation is that

training these kind of networks is notoriously difficult, especially when it comes to deep-network ar-

chitectures. Since error backpropagation mechanisms commonly used in ANNs cannot be directly

transferred to SNNs due to non-differentiabilities at spike times, there has been a void of practical

learning methods.

Moreover, training should strengthen the combination with the burgeoning technologies of re-

inforcement learning, for instance, extending SNN into deep architecture or generating continuous

action space [263]. In the future, combining the R-STDP with a reward-prediction model could lead

to an algorithm that is actually capable of solving sequential decision tasks such as MDPs as well.

8.3.3.3 Combination with Neuromorphic Devices

Another important general issue that needs extensive research and is not clearly defined is how to

integrate SNN-based controllers into neuromorphic devices, since they have the potential to offer

fundamental improvements in computational capabilities such as speed and lower power consump-

tion [174]. These are of vital importance for robot applications, especially in mobile applications

where real-time responses are important and energy supply is limited. An overview of how to pro-

gram SNNs based on neuromorphic chips can be found [264].

SNNs computation can highly benefit from parallel computing, substantially more so than con-

ventional ANNs. Unlike a traditional neuron in rate coding, a spiking neuron does not need to receive

weight values from each presynaptic neuron at each compution step. Since at each time step only a

few neurons are active in an SNN, the classic bottleneck of message passing is removed. Moreover,

computing the updated state of membrane potential is more complex than computing a weighted

sum. Therefore communication time can computation cost are much more well-balanced in SNN

parallel implementation as compared to conventional ANNs.

8.3.3.4 Interdisciplinary Research of Neuroscience and Robotics

Another barrier that needs to be removed comes from a dilemma for the researchers of neuroscience

and robotics: Roboticists often use a simplified brain model in a virtual robot to make a real-time

simulation, or neuro-scientists develop detailed brain models that are not possible to be embedded

into the real world due to their high complexity. An ongoing solution is the Neurorobotics Platform,

which offers adequate tools to model virtual robots, high-fidelity environments, and complex neural

network models for both neuroscientists and roboticists.
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Appendix

Simulation parameters for the snake-like robot is shown in Table A.1. Common simulation param-

eters for SNNs are shown in Table A.2 The target tracking, obstacle avoidance, and wall following

controllers are listed in Tables A.3, A.4, A.5, respectively.

Table A.1: Simulation Parameters for the snake-like robot.

Parameter Value Unit

Slithering Gait Amplitude A = 40 degree

Initial Temporal Frequency ω= 0.5

Initial Bias C = 0 degree

Spatial frequency β= 0

converge factor λ= 0

Steering Model Turn constant ctur n = 0.5

Maximum radius 25 m

Minimum Radius r = 1 m
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Table A.2: Simulation Parameters for the SNN simulation.

Parameter Value Unit

LIF Neuron NEST Model iaf_psc_alpha px

Resting membrane potential EL =−70.0 mV

Capacity of the membrane Cm = 250.0 pF

Membrane time constant τm = 10.0 ms

Time constant of postsynaptic excitatory currents τs yn,ex = 2.0 ms

Time constant of postsynaptic inhibitory currents τs yn,i n = 2.0 ms

Duration of refractory period tr e f = 2.0 ms

Reset membrane potential Vr eset =−70.0 mV

Spike threshold Vth =−55.0 mv

Constant input current Ie = 0.0 p A

Network Simulation Simulation Time per Step 50.0 ms

Time Resolution 0.1 ms

Table A.3: Simulation Parameters for target tracking task.

Parameter Value Unit

SNN Input Infrared Vision Resolution 64×64 px

Crop Top and Bottom 24 px

SNN Input Resolution 16×4 px

R-STDP Maximum Synapse Value 2500.0

Minimum Synapse Value −2500.0

Maximum Initial Random Synapse Value 501.0

Minimum Initial Random Synapse Value 500.0

Time Constant of Reward Signal τn = 200.0 ms

Time Constant of Eligibility Trace τc = 1000.0 ms

Reward Factor scaling the Reward Signal λ= 0.0015

Constant scaling Strength of Potentiation A+ = 1.0

Constant scaling Strength of Depression A− = 1.0
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Table A.4: Simulation parameters for obstacle avoidance.

Parameter Value Unit

SNN Input 1 Infrared Vision Resolution 64×64 px

Crop Top and Bottom 24 px

SNN Input Resolution 16×4 px

SNN Input 2 Proximity Sensor 0.1−1 m

R-STDP Maximum Synapse Value 3000.0

Minimum Synapse Value 0

Maximum Initial Random Synapse Value 501.0

Minimum Initial Random Synapse Value 500.0

Time Constant of Reward Signal τn = 200.0 ms

Time Constant of Eligibility Trace τc = 1000.0 ms

Reward Factor scaling the Reward Signal λ= 0.0015

Constant scaling Strength of Potentiation A+ = 1.0

Constant scaling Strength of Depression A− = 1.0

Table A.5: Simulation Parameters for wall following task.

Parameter Value Unit

SNN Input DVS Resolution 128×128 px

Crop Bottom 48 px

SNN Input Resolution 8×5 px

R-STDP Maximum Synapse Value 10000.0

Minimum Synapse Value −1000.0

Maximum Initial Random Synapse Value 201.0

Minimum Initial Random Synapse Value 200.0

Time Constant of Reward Signal τn = 200.0 ms

Time Constant of Eligibility Trace τc = 1000.0 ms

Reward Factor scaling the Reward Signal λ= 0.00025

Constant scaling Strength of Potentiation A+ = 1.0

Constant scaling Strength of Depression A− = 1.0
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