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Multirate partitioned multi-physics
Motivation
The efficient simulation of multi-
physics phenomena is an important
task in research and industry. Current-
ly, there is a high demand for flexi-
ble time stepping methods that allow
to account for multirate characteristics
(i.e. different resolution in time) of the
different physical domains [1]. Shell and tube heat exchanger [2].
Our goal
We look for an algorithm that supports high order multirate time stepping. On this poster two
different multirate coupling schemes are presented and applied to a model problem [3,4].

Partitioned heat equation
The partitioned heat equation is used as a mo-
del problem:

(ρcp)m
∂um

∂ t
−λm∆um = 0, x ∈Ωm

um = 0, x ∈ ∂Ω.

The material properties (λm,(ρcp)m) may differ,
if different materials are used on the subdo-
mains. We add coupling conditions at the inter-
face Γ = Ω1∪Ω2:

u1 = u2, x ∈ Γ

λ1
∂u1

∂n1
=−λ2

∂u2

∂n2
, x ∈ Γ

The first coupling condition guarantees consis-
tency of temperature u, the second consistency
of heat flux q on Γ.

Figure from [2].

Discretization
Spatial discretization is realized through the application of FEM. We only consider uniform mes-
hed that are matching at the coupling interface.

Time stepping takes place inside a common time window
[
T0,Tf

]
. Implicit Euler with constant

timestep size ∆tm is used. Differing timestep sizes ∆t1 6= ∆t2 allow us to implement multirate time
stepping for the two subdomains Ω1,2.

preCICE
The coupling library preCICE [5] is used for realization of the partitioned approach. preCICE
follows a library approach that allows minimally invasive coupling, where the solvers are treated
as black-boxes [6]. The solvers are extended by a simple adapter interfacing with the preCICE
API, while implementation details of the solvers remain hidden [7]. preCICE is written in C++
and offers API bindings for different languages (Python, C, Fortran).
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Black-box coupling with preCICE
We use the following black-box solvers:

•Dm accepts the temperature uΓ as a Dirichlet boundary condition, solves the heat equation on
Ωm and returns the flux qΓ corresponding to the solution um.

•Nm accepts the flux qΓ as a Neumann boundary condition, solves the heat equation on Ωm

and returns the temperature uΓ corresponding to the solution um.

For details refer to [8]. On basis of the solvers we implement the following coupling schemes
using preCICE:
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We use an underrelaxation scheme provided
by preCICE to speed up convergence:
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Neumann-Neumann (NN)
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We implemented the following acceleration
scheme in our adapter:
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For both coupling schemes we use an optimal underrelaxation parameter θopt to speed up
convergence [3, 9]. Remark: The analysis to determine θopt only applies to the 1D, non-multirate
case. However, we also use it for 2D multirate scenarios as an estimator (see [3]).

Numerical Experiments
We evaluate the performance of the two coupling schemes through the number of coupling
iterations (k) needed to reduce the residual of uΓ below a certain threshold (tol).

1D without multirate
We use this setup to validate our implementation of DN and NN coupling in preCICE:

• 1D heat equations on Ω1,2
• different material combinations on Ω1,2 (Air-Steel, Air-Water, Water-Steel).
• use θopt from [3] for NN and from [9] for DN.
• use non-multirate setup: MR1/1 (∆t1 = ∆t2 = Tf )

Obervations: Convergence after a single iteration for all tested material combinations and
coupling schemes. Good agreement of preCICE implementation and reference implementation
in pure Python.

2D with multirate
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• 2D heat equations on Ω1,2

•materials combination Water-Steel

• use θopt

• use multirate setups:

−MR5/5 (∆t1,2 = Tf/5)

−MR5/2 (∆t1 = Tf/5, ∆t2 = Tf/2)

Obervations: Good convergence for
identical timestep size, convergence
degrades for NN if ∆t1,2 differ. Good
agreement of preCICE implementati-
on and reference implementation.

Conclusions & Outlook
•DN and NN multirate coupling schemes can be implemented in preCICE by extending the

adapter correspondingly.
• For DN coupling the acceleration schemes of preCICE can be used, for NN coupling the

relaxation scheme had to be implemented in the adapter.
• The proposed coupling schemes allow for multirate time stepping in preCICE.
• The use of Quasi-Newton acceleration schemes with multirate time stepping requires further

research.
• A high order waveform relaxation approach as in [2,5] should be evaluated next.


