
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Medientechnik

Virtual Manipulations with Force Feedback
in Complex Interaction Scenarios

Mikel Sagardia Erasun

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Sami Haddadin
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Eckehard Steinbach

2. Prof. Dr. Gabriel Zachmann

Die Dissertation wurde am 15.11.2018 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 10.10.2019 angenom-
men.

Eskerrik asko itxaroteagatik, Ana.

Abstract

Haptic feedback applied to object manipulations in Virtual Reality (VR) extends user
interactivity to the physical domain. With the haptic modality, users not only see or
hear as they manipulate, but they are also able to feel contacts through the sense of
touch, which leads to increased user performance. Multimodal environments comprising
haptic feedback can be used in a plethora of applications, such as to verify mechanical
designs or to train assembly technicians or surgeons. These realtime virtual simulations
help to reduce the need of expensive real environments and contribute to accelerating
and improving the product or knowledge generation process.

However, haptic rendering and display are still active fields of research, in part, due
to the challenging technical requirements that they face when considering even practi-
cal real-life scenarios: collision forces that belong to a wide impedance range need to
be computed and displayed for any geometry every 1ms in order to guarantee system
stability.

This thesis studies haptic rendering algorithms that wholly solve those requirements
and that can be applied in realistic VR simulations. New methods for achieving fast and
accurate collision and force computation in complex scenarios are presented. These meth-
ods are validated in the context of several virtual simulations and robotics applications
and, additionally, evaluated in user studies that reveal general insights on multimodal
haptic interaction.

After identifying the major needs in the state-of-the-art of haptic rendering, the
contributions are presented in four parts. First, a new unified method for computing
collision, distance, and penalty forces between arbitrarily complex geometries at 1 kHz is
introduced. The approach is based on the principles of the Voxelmap Pointshell (VPS)
algorithm, but it re-defines the used queries and data structures, which consist of mul-
tiresolution signed distance fields and point-sphere trees.

Second, a novel constraint-based method for contact motion computation and force

v

rendering is presented. The approach runs robustly at 5µs, it is easy to implement,
and it can be applied on top of many penalty-based approaches, increasing their contact
stiffness, and considerably reducing object overlap even with non-watertight thin shells.

Third, the integration of the aforementioned algorithms into virtual environments,
physics simulators, and robotics frameworks is shown; that accounts for the suitability
of the methods for a great variety applications. Special focus is set on an immersive
virtual car assembly platform which deals with large multibody scenarios. The presented
assembly platform synthesizes the major components characteristic of complex virtual
reality setups.

And, finally, the introduced methods are evaluated in two comprehensive user studies.
The first shows how haptic rendering must be parametrized for optimum human perfor-
mance, considering also different haptic devices. The second explains the differences
between real and virtual manipulations, dissecting the effects of multimodal rendering
methods and display devices, and pointing out guidelines for improved haptic interaction.

Kurzfassung

Das haptische Feedback erweitert die Benutzerinteraktivität auf die physische Domä-
ne, unter anderem in Anwendungen der virtuellen Realität (VR), an denen Objekte
manipuliert werden. Mit der haptischen Modalität können Benutzer während der Mani-
pulationsaufgabe nicht nur sehen oder hören, sondern sie können auch Kontakte durch
den Tastsinn fühlen; dies führt zu einer erhöhten Interaktionsperformanz. Multimodale
Umgebungen mit haptischem Feedback können in einer Vielzahl von Anwendungen ein-
gesetzt werden, beispielsweise zur Überprüfung mechanischer Konstruktionen oder zum
Trainieren von Montagetechnikern oder Chirurgen. Diese Art von virtuellen Echtzeitsimu-
lationen reduziert den Bedarf an teuren realen Prototypen und trägt zur Beschleunigung
und Verbesserung des Produkt- oder Wissenserzeugungsprozesses bei.

Das haptische Rendern und seine Wiedergabe ist jedoch immer noch ein aktives
Forschungsfeld, zum Teil aufgrund der anspruchsvollen technischen Anforderungen, die
auch in einfachen Szenarien gelten: Kollisionskräfte müssen über ein weites Impedanz-
Spektrum für beliebige Geometrien im Kilohertz-Takt berechnet und an den Benutzer
übertragen werden, um die Systemstabilität zu gewährleisten.

In dieser Arbeit werden haptische Algorithmen für das Kontaktrendering untersucht,
die diese Anforderungen vollständig erfüllen und in realistischen VR-Simulationen an-
gewendet werden können. Es werden neue Methoden vorgestellt, um eine schnelle und
genaue Kollisions- und Kraftberechnung in komplexen Szenarien zu erreichen. Diese Me-
thoden werden in mehreren virtuellen Simulationen und Robotikanwendungen validiert
und in Benutzerstudien evaluiert, die allgemeine Einblicke in die multimodale haptische
Interaktion liefern.

Nach der Identifizierung der wichtigsten Erfordernisse im Stand der Technik des hap-
tischen Renderns, werden die Beiträge in vier Teilen berichtet. Zunächst wird ein neues
vereinheitlichtes Verfahren zur Berechnung von Kollisionen, Abständen und Kontaktkräf-
ten zwischen beliebig komplexen Geometrien bei 1 kHz eingeführt. Der Ansatz basiert

vii

auf den Prinzipien des Voxelmap-Pointshell-Algorithmus (VPS), definiert jedoch sowohl
die verwendeten Methoden neu, als auch Datenstrukturen, die aus Distanzfeldern und
Punkt-Kugel-Hierarchien mit mehreren Auflösungen bestehen.

Zweitens wird ein neuartiges Verfahren zur Berechnung der Kontaktkräfte vorgestellt,
das auch die eingeschränkte Bewegung bei Kontakt simulieren kann. Der Ansatz gehört
zu den sogenannten constraint-based Methoden, funktioniert robust mit einer Rechenzeit
von 5µs, ist einfach zu implementieren und kann in Kombination mit vielen sogenannten
penalty-based Methoden verwendet werden. Er ermöglicht eine höhere Kontaktsteifigkeit
und erheblich reduzierte Objektüberlappungen, auch bei nicht wasserdichten, dünnen
Objekten.

Drittens wird die Integration der vorgenannten Algorithmen in virtuelle Umgebun-
gen, Physiksimulatoren und Robotikanwendungen gezeigt; alle diesen Beispiele bestätigen
die Eignung der vorgestellten Methoden für eine Vielzahl von Anwendungen. Besonderer
Fokus liegt auf einem immersiven virtuellen Fahrzeugmontagedemonstrator, der sich mit
großen Mehrkörperszenarien befasst. Der vorgestellte Demonstrator stellet die Haupt-
komponenten dar, die für komplexe virtuelle-Realität-Umgebungen charakteristisch sind.

Schließlich werden die eingeführten Methoden in zwei umfassenden Benutzerstudi-
en evaluiert. Die Erste zeigt, wie das haptische Rendern für eine optimale Mensch-
Maschine Interaktion parametrisiert werden muss, wobei auch verschiedene haptische
Geräte berücksichtigt werden. In der Zweiten werden die Unterschiede zwischen realen
und virtuellen Manipulationen untersucht. Dabei werden die Auswirkungen multimodaler
Rendering-Methoden und haptischer Eingabegeräte analysiert und Richtlinien für eine
verbesserte haptische Interaktion synthetisiert.

Acknowledgments

This thesis originated during my work at the Institute of Robotics and Mechatronics
of the German Aerospace Center (DLR). The Institute is an incredible hub of brilliant
engineers that create game-changing robotic systems. That would be impossible without
the support of the former and current directors, Prof. Gerd Hirzinger and Prof. Alin
Albu-Schäffer, to whom I am very grateful, not only for nourishing such a fruitful en-
vironment, but also for their trust in me along all these years. I am also very grateful
to my former head of department Christoph Borst and my former team leader Carsten
Preusche. They believed in me and gave me the freedom to pursue my research interests
at all times.

I would also like to thank Prof. Eckehard Steinbach, Prof. Gabriel Zachmann, and
Prof. Jorge Juan Gil, for their academic guidance. Prof. Steinbach, my supervisor at the
Technical University of Munich and first thesis examiner, provided me with invaluable
comments and corrections of this work. Prof. Zachmann, from the Technical University
of Bremen, has always been keen and ready to share his world-class knowledge and
experience in collision detection. Prof. Gil was my master’s thesis supervisor at Tecnun;
he introduced me to the topic of haptics and put me in contact with the DLR.

I am also very grateful to all my colleagues at the DLR for their helpfulness; I feel
blessed of having had the chance to be part of such a great team, so full of talent and
kindness. My greatest thanks go to all the colleagues that belong or have belonged
to the Telepresence and Virtual Reality Group, especially to Thomas Hulin, Philipp
Kremer, and Katharina Hertkorn. This thesis could not have been possible without
the wise mentoring, help, and effort of Thomas or without the expertise of Philipp and
Katharina. Similarly, all other inestimable group members and co-workers that helped
me with my work are: Simon Schätzle, Bernhard Weber, Bendikt Pleintinger, Michael
Panzirsch, Ribin Balachandran, Jordi Artigas, Ingo Kossyk, Stefan von Dombrowski,
Florian Schmidt, Robert Burger, Neal Lii, and Cornelia Riecke. Thank you also to my

ix

colleagues Korbinian Nottensteiner and Theodoros Stouraitis, who intensively used the
results of my research and pushed me to improve my work.

Likewise, I would like to thank to all the past and present members of the project
Virtual Reality for On-Orbit Servicing from the facility Simulation and Software Tech-
nology of the DLR in Braunschweig: Robin Wolff, Johannes Hummel, Janki Dodiya,
Andreas Gerndt, Sebastian Utzig, Andreas Bernstein, and Simon Schneegans.

During my research endeavors, I have participated in several cooperations; to all
my peers and project partners, thank you for all the fruitful exchanges and for showing
me the way for professional growth. Particularly, I will always kindly remember Ralf
Rabätje, former head of the Volkswagen VR Lab, Jérôme Perret, from Haption GmbH,
and René Weller, from the Technical University of Bremen.

Finally, I would like to deeply thank to my parents aita eta ama, my sisters Aintzane
eta Itziar, my dear wife Ana, and all my friends in Munich, for their love, encouragement,
and understanding. Ana, my greatest and most profound thank you to you for your love
and patience in the final phase of the thesis.

Contents

Abstract v

Kurzfassung vii

Acknowledgments ix

Contents xi

1 Introduction 1
1.1 Problem Definition and Motivation . 2
1.2 Overview and Key Contributions . 5

2 Background 7
2.1 Human Haptic Sensory System . 7

2.1.1 Physiological and Neurological Aspects 8
2.1.2 Psychophysical and Psychological Aspects 10

2.2 Immersive Virtual Environments with Haptic Feedback 13
2.2.1 Human Factors . 13
2.2.2 Multimodal Rendering . 14
2.2.3 Physics Engines: Motion Computation 15
2.2.4 Interaction Devices and Techniques 16
2.2.5 Kinesthetic Haptic Devices and Control Issues 18
2.2.6 Telerobotics . 23
2.2.7 Haptic Communications . 25
2.2.8 Applications . 25

2.3 Collision Computation and Force Rendering 26
2.3.1 Object Representations . 31

xi

xii CONTENTS

2.3.2 Collision Computation . 36
2.3.2.1 Collision Output . 36
2.3.2.2 Basic Methods . 38
2.3.2.3 Discrete versus Continuous Collision Detection 43
2.3.2.4 Multibody Scenarios (Techniques for the Broadphase) . . 44
2.3.2.5 Acceleration Strategies 45

2.3.3 Collision Response: Force Rendering 50
2.3.3.1 Overview of Output in Collision Response 50
2.3.3.2 Three Force Rendering Paradigms 51
2.3.3.3 Direct versus Indirect Force Display: Virtual Coupling . . 55
2.3.3.4 Degrees-of-Freedom (DoF): Three (Forces) versus Six (Forces

and Torques) . 57
2.3.3.5 Enhancements for Fidelity and Realism: Friction, Shad-

ing, and Transients . 58
2.3.3.6 Deformation . 59

2.4 Summary, Conclusions, and Perspectives 62

3 Collision Computation 65
3.1 Introduction . 65

3.1.1 Related Work . 66
3.1.2 Contributions . 67

3.2 Data Structures . 68
3.2.1 Generation of Basic Primitives . 69

3.2.1.1 Voxelized Structures (Voxelmaps) 69
3.2.1.2 Point Clouds (Pointshells) 72

3.2.2 Properties and Limitations . 75
3.2.2.1 Properties . 76
3.2.2.2 Limitations . 78

3.2.3 Enhanced Voxelmaps: Signed Distance Fields 79
3.2.3.1 Generation of the Structures in the Enhanced Voxelmap . 80
3.2.3.2 The Signed Distance Voxelmap Function V (P) 81
3.2.3.3 Comparison of the Signed Distance Function V (P) Calls 84

3.2.4 Enhanced Pointshells: Point-Sphere Trees 85
3.2.4.1 Point Qualities . 88
3.2.4.2 Hierarchy Generation . 89

3.3 Proximity and Collision Queries with Complex Objects 93
3.3.1 General Hierarchical Traverse . 94

3.3.1.1 Input Data . 96

CONTENTS xiii

3.3.1.2 Output Data . 96
3.3.1.3 Collision Computation (pc = 0, ηc = 1, qc = 0) 97
3.3.1.4 Distance Computation (pc ≥ 0) 99
3.3.1.5 Segmented Hierarchical Traverse (ClusteredM) 100

3.3.2 Time Critical Level-of-Detail Traverse (ηc < 1, qc > 0) 100
3.3.2.1 Maximum Allowed Computational load (ηc) 101
3.3.2.2 Minimum Required Quality (qc) 102
3.3.2.3 Spatio-Temporal Coherence 103
3.3.2.4 Discussion . 103

3.4 Experiments and Results . 104
3.4.1 Discussion of Scenario 1: Sphere and Cube 105
3.4.2 Discussion of Scenario 2: Stanford Bunny and Utah Teapot 109

3.5 Summary, Conclusions, and Perspectives 112

4 Force Rendering 115
4.1 Introduction . 116

4.1.1 Related Work . 116
4.1.2 Contributions . 118

4.2 God Object Heuristic . 118
4.2.1 Penalty-Based Contact Computation (#1) 122
4.2.2 Correction of the Previous Proxy Frame (#2) 123

4.2.2.1 Computation of the Correction Rotation (θ) 124
4.2.2.2 Computation of the Correction Translation-Rotation Dis-

tribution Factor (λ) . 127
4.2.2.3 Assembly of the Final Correction Step 128

4.2.3 Computation of the Unconstrained Motion (#3) 129
4.2.4 Computation of the Constrained Motion (#4) 130
4.2.5 Filtering of the Proxy Pose (#5) 131
4.2.6 Coupling Forces Applied to the Haptic Device (#6, #7, #8) . . . 132
4.2.7 Six-DoF Friction (#4) . 132

4.3 Theoretical Discussion of Methods . 134
4.4 Experiments and Results . 138
4.5 Summary, Conclusions, and Perspectives 142

5 Applications 143
5.1 Introduction . 144

5.1.1 Related Work . 144
5.1.1.1 Virtual Assembly (VA) Systems 144

xiv CONTENTS

5.1.1.2 Physics Simulators . 146
5.1.2 Contributions . 146

5.2 Virtual Assembly with Haptic Feedback 148
5.2.1 Simulation Framework . 148

5.2.1.1 Multibody Collision Computation Module 148
5.2.1.2 Game Control . 153
5.2.1.3 Completing the Jigsaw Puzzle: Communication, Track-

ing, and Visualization . 153
5.2.2 Interaction Devices and Techniques 154

5.2.2.1 The Bimanual Haptic Device HUG 154
5.2.2.2 The Vibrotactile Arm Band VibroTac 154
5.2.2.3 Workspace Navigation . 156
5.2.2.4 Collaboration with Additional Haptic Interfaces 157

5.2.3 Exemplary Scenario: Car Assembly Sequence 158
5.2.3.1 Performance Results . 160

5.3 Integration into the Physics Engine Bullet 161
5.3.1 Data Structures and Workflow in Bullet 162
5.3.2 Integration Interfaces . 163
5.3.3 Experiments and Results . 164

5.3.3.1 Tests with a Bouncing Ball 164
5.3.3.2 Tests with the Stanford Bunny 165

5.4 Other Application Environments . 168
5.4.1 A Virtual Reality Platform for On-Orbit Servicing Simulations . . 168
5.4.2 Ultrapiano: Playing a Virtual Piano with Ultrasound-Imaging . . . 170
5.4.3 Robotic Autonomous Assemblies Using Virtual Models 170
5.4.4 Realtime Collision Avoidance for Mechanisms with Complex Ge-

ometries . 171
5.4.5 Shared Grasping: Semi-Autonomous Robotic Grasping Using Vir-

tual Models . 172
5.5 Summary, Conclusions, and Perspectives 173

6 Evaluation of Methods 175
6.1 Introduction . 176

6.1.1 Related Work . 177
6.1.2 Contributions . 179

6.2 Study 1: Evaluating Haptic Rendering Methods 180
6.2.1 Experimental Design and Implementation 181

6.2.1.1 Tested Scenario: Tasks and Exercises 181

CONTENTS xv

6.2.1.2 Apparatus and Varied Factors 184
6.2.1.3 Sample, Procedure, and Collected Data 186

6.2.2 Results and Discussion . 189
6.2.2.1 Haptic Devices: Ergonomy and Workload 189
6.2.2.2 Exercises: Performance and Contact Perception 190

6.2.3 Study 1: Summary of Lessons Learned and Discussion 199
6.3 Study 2: Comparing Real and Virtual Manipulations 201

6.3.1 Experimental Design and Implementation 201
6.3.1.1 Synthetic Haptic Feedback 201
6.3.1.2 Tested Scenario: Tasks and Exercises 202
6.3.1.3 Apparatus and Varied Factors 203
6.3.1.4 Secondary Task and Auditory Privation 206
6.3.1.5 Sample, Procedure, and Collected Data 207

6.3.2 Results and Discussion . 208
6.3.2.1 Regular Exercises . 208
6.3.2.2 Secondary Task and Auditory Privation 214

6.3.3 Study 2: Summary of Lessons Learned and Discussion 217
6.4 Summary, Conclusions, and Perspectives 219

7 Epilogue 223

A Used Haptic Devices 227
A.1 The HUG . 227
A.2 The Sigma.7 . 229

B Implementation and Performance Issues 231

C Virtual Reality and Haptics: Evolution of Relevance 235

D Publications by the Author 239

Bibliography 243

List of Symbols 271

List of Figures 283

List of Tables 285

List of Algorithms 287

Chapter 1

Introduction

Witnessing the renaissance that Virtual Reality (VR) is experiencing in the past years,
it is clear that both visual and auditory feedback have significantly evolved; this holds for
the rendering methods and display devices used to respectively compute and deliver these
two feedback modalities with the purpose of creating plausible virtual worlds. In contrast,
haptic feedback seems not to be as mature – yet many common physical interactions in
everyday life would not be possible without this sensory modality. That is in part due to
the unique and challenging nature of haptics, which comprises both the sense of touch and
proprioception, i. e., the ability to process and comprehend kinesthetic or contact force
phenomena occurring in muscles and tendons. Indeed, the haptic sense is distributed
on the whole body, it requires action and physical interaction, and it is very sensible to
undesired artifacts. Additionally, haptic feedback needs to be generated and provided at
least at 1 kHz due to human sensibility and system stability reasons.

This thesis addresses kinesthetic haptic feedback in virtual reality environments. The
main focus lies on kinesthetic haptic rendering, which consists in creating synthetic
contact force signals displayed to the user via a haptic device or interface. For that, effi-
cient collision and force computation algorithms have been conceived and implemented,
taking into account the human haptic sensory system and the technical requirements
around it. These algorithms have been successfully integrated in virtual assembly and
robotic applications, and their effectiveness has been demonstrated with user studies that
consider all virtual reality system components in a holistic manner.

Haptics, and, in particular, kinesthetic feedback, can revolutionize interactive virtual
simulations and, in consequence, many industries and domains in which object manipu-
lation is necessary. For instance, thanks to it designers and engineers are able to verify

1

2 CHAPTER 1. INTRODUCTION

non-expensively and instantaneously new virtual prototypes, or assembly technicians and
medical doctors can train with specific virtual models; even machines can boost their
physical interaction abilities with virtual haptic models that help them understand video
images and sensed forces during the interaction with the physical world. This thesis tries
to contribute with a step forward in these directions.

1.1 Problem Definition and Motivation

Figure 1.1 shows the components of an interactive virtual reality setup which provides
haptic feedback in addition to the presentation of video and audio. In such an environ-
ment, the user moves a haptic device in order to dynamically and intuitively change the
configuration of virtual objects. The haptic device should ideally not be felt by the user
during manipulations free of contact in the virtual environment, but it should reflect
realistic resistance forces as soon as the moved virtual object collides. The inter-related
components necessary for such a setup can be classified in these groups:

(a) Virtual Models: geometries (usually triangle meshes) of the objects to be manipu-
lated in the scenario are transformed into framework-specific data structures which
contain the necessary information for the simulation (e. g., physical or topological
properties).

(b) Rendering Loops: often parallel haptic, graphic, audio, and motion (i. e., physics
engines) loops produce, respectively, contact forces, images, sounds and object
movement displayed to the user; each loop runs at different temporal update rates,
uses its corresponding data structures and shares information with the others.

(c) Simulation of Scenario and Application: the task performed by the user (e. g., a
virtual assembly) is usually controlled by a system logic module (e. g., a finite state
machine) that ensures a coherent workflow; interaction techniques are defined in
the simulation environment, in close relation to the available interaction devices,
allowing actions such as navigation or selection of objects.

(d) Information Transport : it is fundamental to guarantee an appropriate communica-
tion channel for each feedback modality with the corresponding transmission rate;
in particular, haptic feedback is bilateral (displacements are read from the user,
forces are sent) and requires a challenging update rate of 1 kHz, therefore, com-
pression techniques can be applied on signals across channels with lower qualities;
haptic control is also essential to guarantee the stability of the haptic manipulator
and avoid low fidelity or even dangerous interactions.

1.1. PROBLEM DEFINITION AND MOTIVATION 3

(c
)

Si
m

ul
at

io
n:

Sc
en

ar
io

 &
 A

pp
lic

at
io

n
(a

)
V
irt

ua
l M

od
el

s
(b

)
Re

nd
er

in
g

Lo
op

s
(d

)
In

fo
rm

at
io

n
Tr

an
sp

or
t

(e
)

H
um

an
 U

se
r

an
d

In
te

rfa
ce

s

H
ap

tic
 R

en
de

rin
g

G
ra

ph
ic

 R
en

de
rin

g

M
ot

io
n

Re
nd

er
in

g

Au
di

o
Re

nd
er

in
g

C
ol

lis
io

n
C

om
p.

Fo
rc

e
C

om
pu

ta
tio

n

G
eo

m
et

rie
s

Da
ta

 S
tru

ct
ur

es

In
te

ra
ct

io
n

Te
ch

ni
qu

es
Si

m
ul

at
io

n
 L

og
ic

H
ap

tic
 D

ev
ic

e
G

ra
ph

ic
 D

is
pl

ay

Au
di

o
Di

sp
la

y

H
ap

tic

P
er

ce
pt

io
n

H
um

an
 C

on
ta

ct
 P

er
ce

pt
io

n

Vi
su

al

P
er

ce
pt

io
n

A
ud

io

P
er

ce
pt

io
n

Haptic Control

1
kH

z

po
se

&
fo

rc
e

so
un

d

Communication

30
 H

z

48
 k

H
z

im
ag

e

Fi
gu

re
1.

1:
A
V
irt
ua
lR

ea
lit
y
(V

R
)
si
m
ul
at
io
n
w
ith

ha
pt
ic

fe
ed
ba
ck

pr
ov
id
es

th
e
us
er

w
ith

ha
pt
ic

co
nt
ac
t
in
fo
rm

at
io
n
(u
su
al
ly

in
ad
di
tio

n
to

gr
ap
hi
c
an
d/

or
au
di
o
fe
ed
ba
ck
)
du

rin
g
th
e
m
an
ip
ul
at
io
ns

pe
rf
or
m
ed

in
an

in
te
ra
ct
iv
e
en
vi
ro
nm

en
t.

T
he

us
er

m
ov
es

a
vi
rt
ua
lo

bj
ec
t
w
ith

th
e

ha
nd

co
up

le
d
to

a
ha
pt
ic
de
vi
ce
;i
n
th
e
ab
se
nc
e
of

co
lli
si
on

,t
he

us
er

ca
n
m
ov
e
fr
ee
ly
,w

he
n
th
e
ob

je
ct

in
te
rs
ec
ts

w
ith

an
ot
he
r
on

e
in

th
e
vi
rt
ua
l

sc
en
ar
io
,c

ol
lis
io
n
fo
rc
es

ar
e
di
sp
la
ye
d
th
ro
ug

h
th
e
ac
tu
at
or
s
of

th
e
ha
pt
ic

de
vi
ce
.
Su

ch
si
m
ul
at
io
ns

ar
e
ca
lle
d
m
ul
tim

od
al
,b

ec
au
se

th
ey

ta
rg
et

m
ul
tip

le
se
ns
es

w
ith

de
di
ca
te
d
sy
nt
he
tic

fe
ed
ba
ck

m
od

al
iti
es
,a

im
in
g
at

hi
gh

er
le
ve
ls
of

im
m
er
si
on

,p
re
se
nc
e,

an
d
us
er

pe
rf
or
m
an
ce
.

4 CHAPTER 1. INTRODUCTION

(e) Human User and Interfaces: the haptic device, graphic display (e. g., a HMD or
head-mounted display), and audio display (e. g., headphones) present, respectively,
haptic, graphic, and audio feedback to the user; the human perception of each
modality is integrated in the cortex to generate contact and, ultimately, (virtual)
reality perceptions. Therefore, the human user interacts with all simulation loops;
in particular, he/she closes the haptic loop, being mechanically and energetically
coupled to the physical events in the scenario.

This thesis presents a virtual car assembly platform for which those listed items have
been implemented and integrated. More specifically, the main contribution lies on the
investigation, development, and evaluation of new kinesthetic haptic rendering methods
able to comply with the components and requirements of such a complex multimodal and
interactive virtual reality system. The presented or similar platforms can be used with
training and verification purposes, shortening and making less expensive product design
cycles. Additionally, the introduced collision and force rendering algorithms are a core
element for many robotic and virtual reality applications performing realtime simulation
and prediction.

Preliminary Studies

Prior to the contributions presented in this work, preliminary research was carried out
by the author of this thesis. First, methods for generating the basic data structures
necessary for the Voxelmap-Pointshell (VPS) haptic rendering algorithm [MPT99] were
developed [Sag08]. These methods were integrated in an early re-implementation of the
VPS, which was evaluated in two studies; a detailed description of their content is out of
scope, but the insights of both works are briefly outlined, since they motivate the paths
selected for the current thesis.

In the first study, a benchmark for force rendering performance and quality was de-
veloped [SHPH09], [WSM+10]. Using well defined synthetic scenarios, the suit computes
the deviation of force magnitude and direction values from expected analytical ones.
The experiments pointed out to the need of higher resolutions in the data structures,
particularly in colliding areas. This is in conflict with the requirement for performance;
however, the trade-off is successfully addressed in this thesis.

In the second study, force feedback was compared to visual and vibrotactile feedback in
a user study in which participants had to perform virtual peg-in-hole exercises [SWH+12],
[WSHP13]. Altogether, the results showed that the delivered force feedback was supe-
rior for collision display in terms of movement precision, mental workload, and spatial
orientation. The importance of correct visual display of contacts was also verified in the

1.2. OVERVIEW AND KEY CONTRIBUTIONS 5

study. All in all, these conclusions motivate the need of kinesthetic haptic rendering
algorithms able to simulate collisions realistically.

1.2 Overview and Key Contributions

This thesis is divided in six additional chapters to this one and four appendices; in the
following, the constributions and contents of each of them are summarized:

Chapter 2 reports related works covering three basic aspects: (i) human haptic psy-
chophysics, (ii) architecture and general human factor details concerning virtual
reality systems with haptic feedback, and (iii) technical methods for collision and
force computation. In particular, the thorough review provided for this last point
presents an up-to-date and complete snapshot of the state-of-the-art on kinesthetic
haptic rendering and its evolution during the last decades.

Chapter 3 presents a unified collision, proximity, and penalty force computation method
able to handle arbitrarily complex rigid geometries at an update rate of 1 kHz. The
approach is based on the principles of the Voxelmap-Pointshell (VPS) haptic ren-
dering algorithm [MPT99], but it re-defines and optimizes data structures and
online query methods for time-budgeted applications requiring high object reso-
lutions in collision areas. The researched and developed methods are tested in
replicable experiments. The resulting engine can be applied for haptic rendering in
virtual environments or for robotic applications that need collision and proximity
information between complex rigid geometries.

Chapter 4 introduces a constraint-based force rendering method able to optimize over-
lapping object configurations to surface contact states and to compute stiff and
realistic contact forces. The approach can be used on top of a penalty-based hap-
tic rendering algorithm (the one from Chapter 3 is employed). As shown in the
experiments, and in contrast to similar algorithms, the method runs robustly at
∼ 20 kHz, without dedicated threads.

Chapter 5 reports the integration of the previous haptic rendering methods into virtual
reality and robotic applications. In it, the presented virtual car assembly platform
represents the most complete framework; it considers all components necessary for
such immersive systems and provides solutions for multibody haptic environments.
Additionally, the integration of the presented collision computation methods into
the physics engine Bullet [Cou03] is covered, and five further simulation and robotic
applications using the conceived algorithms are described.

6 CHAPTER 1. INTRODUCTION

Chapter 6 evaluates and analyzes the researched algorithms in two user studies. In
them, the multimodal nature of contact perception is considered and general in-
sights for virtual manipulations with haptic feedback are provided. Whereas the
first study deals with the optimum parametrization of haptic systems for best per-
formance and perception indicators, the second looks in detail into the causes that
originate the difference between virtual and real manipulations with haptic feed-
back.

Chapter 7 concludes with the most important insights derived from the previous chap-
ters and points out to future perspectives.

Appendix A describes in detail the haptic devices HUG [HHK+11] and Sigma.7 [THH+11]
used in the experiments and evaluations presented in this thesis.

Appendix B compiles relevant implementation issues related to the data structures
presented in Chapter 3.

Appendix C reports the evolution of the importance of different terms related to col-
lision and force computation in virtual reality.

Appendix D provides with a list of publications by the author and their weight in the
contributions of the thesis.

Chapter 2

Background and Related Work

This chapter presents the background and state-of-the-art related to the contributions
of this thesis. It is composed of three main inter-related sections that, nonetheless, can
be read separately with the desired order. Section 2.1 introduces the human haptic
sensory system, building up from physiological aspects to psychological considerations.
Section 2.2 discusses technical issues and human factors that affect any virtual reality
system that conveys haptic feedback; it is basically a deeper description of the elements
presented in Figure 1.1 from Chapter 1. Finally, Section 2.3 reviews the most important
technical works dealing with haptic rendering, i. e., collision detection and response for
haptic interaction.

2.1 Human Haptic Sensory System

The haptic sense or the sense of touch is the essential feedback channel or mode with
which humans perceive contacts during interactions with the environment. Two subsys-
tems can be identified for it [LK09]: (i) the cutaneous or tactile sense, necessary for the
perception of surface properties, and (ii) the kinesthetic or proprioceptive sense, which
leads to the perception of weight and movement properties.

The latter proprioceptive sense is strongly related to the vestibular system, which pro-
duces body motion signals that ensure, ultimately, balance and spatial orientation [LJ00].
Furthermore, haptic signals are integrated together with visual and auditory cues in the
brain in order to form correct contact percepts necessary for high performance interac-
tion. The rest of this section introduces the fundamental physiological (Section 2.1.1)
and psychological (Section 2.1.2) concepts necessary to understand how humans process

7

8 CHAPTER 2. BACKGROUND

Motor
Cortex

Somato-
sensory Cortex

(S1 & S2)

Primary
Auditory Cortex

Primary
Visual Cortex

Muscle

Tendon Spindle
(Length)

Tongue,
Swallow

Face

Hand
Arm

Trunk,
Legs

Tongue,
Pharynx

Face

Hand
Arm

Section of the
Spinocerebral Tract

Neurological System

Proprioceptive Mechanoreceptors

Epidermis

Dermis

Sub-
cutis

Tactile Mechanoreceptors

Pacini (Vibration)

Merkel
(Pressure)

Meissner (Pressure)Tactile System

Proprioceptive
System

Neurological Integration

Golgi
(Tension)

Ruffini
(Stretching)

Afferent (sensory)

Efferent (motor)

S1

S2

Figure 2.1: Human haptic sensory system. Proprioceptive mechanoreceptors (re-drawn and adapted
from [PG12]) are located in muscles and tendons, whereas the tactile mechanoreceptors (re-drawn
and adapted from [LK09]) can be found in the skin. Most important perception functions of each
mechanoreceptor are in parentheses. Efferent or motor neurons (blue) command movements for
exploration to the muscles from the motor cortex, while afferent or sensory neurons (green) carry
sensory stimuli encoded as electrical impulses from the mechanoreceptors to the somatosensory cortex.
Primary (S1) and secondary (S2) somatosensory cortices are distinguished.

those contact percepts.

2.1.1 Physiological and Neurological Aspects

Figure 2.1 illustrates the most important elements of the human haptic sensory system.
Manipulation of objects making use of haptic sense occurs thanks to mechanoreceptors
and motor peripherals (i. e., muscles) connected through afferent (sensory) and efferent
(motor) neurons to the somatosensory and motor cortices, respectively. These afferent
fibers end up in two types of mechanoreceptors: tactile or proprioceptive∗.

Tactile mechanoreceptors are located in the skin and they can be classified ac-
cording to (i) the size of their reception field (small/large: I/II) and (ii) the adaptation
rate (slow/fast: SA/FA) [HB08]. Receptors with small receptive fields (I) have sharp
borders and rapidly increasing activation thresholds, whereas receptors with large fields
(II) have less defined perimeters and gradually increasing thresholds. On the other

∗It is worth to mention that another class of haptic afferents named nocireceptors is in change of
detecting pain and thermal changes [HB08]. These receptors consist basically of free nerve endings and
are located in skin and connective tissue. Since they are not as significant as the previous during regular
manipulations, further description is omitted.

2.1. HUMAN HAPTIC SENSORY SYSTEM 9

hand, the adaption property is related to the response during indentation stimuli: slow
mechanoreceptors (SA) respond to both dynamic (i. e., advancing into and retracing from
skin) and static indentation phases (i. e., steady maintained indentation), whereas fast
mechanoreceptors (FA) signal only under dynamic stimuli [GW08].

The mechanoreceptors in the non-hairy hand skin have been the most studied ones,
as expected, as the hand is the most usual manipulation tool for humans; however, the
receptors in the whole body skin are similar [GW08]. Altogether, as shown in Figure 2.1,
the four tactile mechanoreceptors with their functions according to [HB08] and [LK09]
are:

• Merkel disks [slow adapting, small field: SA I; ∼ 80− 120 nm diameter]: pressure,
very-low-frequency vibrations (< 5 Hz approx.), coarse texture, patterns, stable
precision grasp and manipulation

• Meissner corpuscles [fast adapting, small field: FA I; ∼ 100 − 150µm length]:
pressure, low-frequency vibration (5 − 40 Hz approx.), stable precision grasp and
manipulation

• Ruffini corpuscles [slow adapting, large field: SA II; ∼ 200 − 300µm length]:
stretching, direction of object motion and force, stable precision grasp and ma-
nipulation, finger position

• Pacini corpuscles [fast adapting, large field: FA II; ∼ 2 mm length]: high-frequency
vibration (40− 400 Hz approx.), fine texture, stable precision grasp and manipula-
tion

Proprioceptive mechanoreceptors are located in muscles, tendons, and joints,
and have been less studied than their tactile counterparts. Two types are distinguished,
with the following functions [HB08]:

• Muscle spindles [∼ 1− 2 mm length]: measurement of the muscle length changes

• Golgi tendon organs [up to 1.6 mm length]: measurement of the tension exherted
by muscles

It is worth to mention that the aforementioned Ruffini and Pacini tactile mechanorecep-
tors also appear in joints [HB08], where they contribute to proprioceptive sensation. It
is still not well understood how data from proprioceptive and tactile afferents is inte-
grated [GW08] to obtain information of the environment objects and their manipulation.

Receptor potentials are converted into action potentials and propagated in usually
three relaying or synaptic connection steps along the myelinated axons of the afferent

10 CHAPTER 2. BACKGROUND

fibers until reaching the somatosensory cortex: the dorsal root ganglia, the spinal
cord, and the thalamus [HY08]. Interestingly, responses of single afferent neurons are
ambiguous, whereas responses of populations have more clear meanings [GW08]. Indeed,
changes in stimulated populations can be mapped to the evolution of perceived shape
fragments during exploration.

The processing of afferent signals in the somatosensory cortex occurs in well-defined
areas and stages [HY08]. The primary somatosensory cortex (S1 in Figure 2.1) receives
the afferent signals; this region is further divided in parallel subregions associated to
different functions (i. e., proprioceptive, cutaneous, or processing of both). Nevertheless,
these subregions are extensively connected, and there appears to be an internal hier-
archical structure of neurons with different roles. Beyond the primary somatosensory
cortex, signals go to the secondary somatosensory cortex (S2 in Figure 2.1), which pro-
cesses tactile memory, and to posterior areas (Broadmann 5 and 7) where multi-sensory
integration occurs.

Finally, it is noteworthy that functional Magnetic Resonance Imaging (MRI) studies
support the distinction of two main subsystems within the somatosensory system [LK09]:
(i) the what subsystem, which processes the properties of surfaces (e. g., material at-
tributes: roughness, stickiness, etc.) and objects (e. g., geometry and structure charac-
teristics: shape, curvature, volume, etc.), and (ii) the where subsystem, which determines
the layout and localization of those surfaces and objects in the world with respect to the
body’s reference frame.

2.1.2 Psychophysical and Psychological Aspects

Beyond the anatomical and neurological mechanisms, it is essential bearing in mind
human physical abilities and psychological strategies that appear during haptic inter-
actions. In fact, these have a direct effect on the parametrization of immersive virtual
environments, and can be exploited in the design of haptic interfaces, as sought by Tan
et al. [TSEC94].

At this stage, it is important to clarify that the act of perceiving can be described as
the comprehension or inference of a distal stimulus (i. e., source of sensory signal) after
processing the proximal stimulus (i. e., sensation created by signals on receptors) [RA93].
Hence, considering all sensory channels available, perceiving consists in creating an in-
ternal representation of the reality (aka. percept) after integrating multimodal (i. e.,
multisensory) signals.

2.1. HUMAN HAPTIC SENSORY SYSTEM 11

Human Psychophysical Limitations

One of the essential principles in human psychophysics is the Weber-Fechner law [Fec60],
which states that the minimum change in magnitude of a stimulus that can be perceived
is proportional to the previously perceived magnitude. The principle applies to all senses
and several dimensions; in particular, it has been exploited by Hinterseer et al.[HHC+08]
as a mean for haptic data compression in overloaded communication channels (see Sec-
tion 2.2.7).

This minimum differential threshold or discrimination value is often referred to as Just
Noticeable Difference or JND, and usually comes expressed as a percentage of magnitude.
In this sense, the JND has an average value between 7− 10% for force perception over a
range of 0.5− 200 N with a minimum resolution of 0.06 N [Jon00]. Similar JND averages
have been determined for other proprioceptive characteristics, such as: limb position
(7%) and movement (8%), stiffness (17%), viscosity (19%), and inertia (28%).

Other important threshold values consist in the bandwidth and the optimum oper-
ation ranges. In this respect, Shimoga [Shi93] reported that fine vibrations of 10 kHz
can be detected by the human hand. However, the 1 kHz maximum frequency is ac-
cepted in kinesthetic haptics as a convention due to technical issues, as explained by
Basdogan and Srinivasan [BS02] (see Section 2.2.5). Further considering kinesthetic ap-
plications, O’Malley and Goldfarb performed several human performance measurements
during square and round ridge detection and discrimination with varied force and stiffness
magnitudes. A performance improvement saturation was found for force magnitudes of
3− 4 N [OG02] and stiffness values of 220 N/m [OG04]. Nevertheless, note that a stylus-
like and desktop-sized haptic interface was used in the experiments.

Tan et al. [TSEC94] and Lederman and Klatzky [LK09] provide further descriptions
of evaluation methods and practical values related to human haptic capabilities, ranging
from the study of factors that affect sensitivity (i. e., body part, application surface)
to the spatiotemporal resolving of the skin and the perception of surface properties,
respectively.

Exploratory Procedures, Haptic Invariants, and Priors

Lederman and Klatzky [LK87] described a systematic relationship between object prop-
erties and (free) manipulations required to perceive them. This idea was synthesized
in a set of eight exploratory procedures that comprises the most important manual ex-
ploration patterns used for determining object properties with the haptic sense – these
exploratory procedures are: (i) lateral motion for texture, (ii) pressure for hardness,
(iii) static contact for temperature, (iv) unsupported holding for weight, (v) enclosure
for global shape and volume, and (vi) contour following for global and exact shape; ad-

12 CHAPTER 2. BACKGROUND

ditionally, functional testing actions are classified as (vii) part motion testing, and (viii)
specific function testing.

During these stereotypical explorations humans can look for specific haptic cues or
well-defined signals that provide information about the shape of the object being touched.
These cues are the footprint of mechanical invariants that relate object shape with the
(deformable) finger-pad shape, either during static or dynamic palpation. For example,
a blindfolded person who rolls the fingers on a curved edge relates implicitly the lin-
ear and angular velocities of the fingers with the curvature of the edge; however, it is
the sense of touch (i. e., tactile and kinesthetic sensations) the actual modality used for
processing that relationship. Indeed, Robles de la Torre and Hayward [RdlTH01] have
shown that humans identify and locate shape features based on the perceived force cues,
independently of surface geometry. Furthermore, the fact that humans are able to recog-
nize the properties of surfaces implies that there are prior knowledge structures accessed
during explorations. Along these lines, Hayward [Hay08] analyzed typical invariants and
discussed their applications, among others, in haptic interface design.

Multimodal Integration

In order to be able to improve perception quality, it is essential to understand how the
brain combines information from different modes (i. e., senses or feedback modalities) and
the positive and negative effects of each mode on others. There is evidence that proves
how haptic perceptual tasks demand visual and multisensory cortical areas, supporting
the idea of a meta-modal brain organized around task processing instead of separate
processing of sensory information [LS08].

Srinivasan et al. [SBB96] found out that the display of visually stiffer virtual springs
(achieved by artificially constraining the visual elongation) leads to the perception of
haptically stiffer ones. In contrast, Ernst et al. [EBB00] later showed that active and
consistent haptic feedback can dominantly reinforce the perception of slants displayed
with conflicting visual cues (i. e., disparity and texture). This gave rise to the gen-
eralized multisensory integration framework proposed by Ernst and Banks [EB02]: as
demonstrated by the authors, integrated percepts are a linear combination of unimodal
sensory cues weighted by their relative reliability. This weighting reliability is inversely
proportional to the variance or error estimated for each cue or mode. Hence, sensory
dominance is governed by the reliability of the sensory inputs; moreover, it can depend
on the task and/or prior experiences. Similar experiments with multisensory tasks have
also produced results consistent with this model [HR09].

Regarding the bi-modal audio-haptic interaction, DiFranco et al. [DBS97] showed that
virtual surfaces taped with haptic devices are generally perceived harder when display-

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 13

ing pre-recorded sound cues that are typically associated with tapping harder surfaces.
Avanzini and Crosato came up with similar insights using synthetic audio cues [AC06].
In summary, taking into account these multisensory integration mechanisms, contact
percepts can be modulated beyond the limitations of display devices.

2.2 Immersive Virtual Environments with Haptic Feedback

After having introduced the nature of human haptic perception in detail, this section
deals with the most relevant components of virtual environments (VE) that consider
that sense in feedback generation. Basically, the elements illustrated in Figure 1.1 and
their interactions are described.

2.2.1 Human Factors

Stanney [SMK98] divided the human factors related to virtual interactions into three
areas: (i) human performance, (ii) health and safety, and (iii) social impact. The second
area is largely related to cybersickness (discussed thereafter), and the last one to addiction
and de-sensitization towards violence (not in the scope of this work).

Stanney further identified three factors affecting this first area, human performance:
(i) the navigational complexity in the VE, (ii) the degree of presence experienced by the
user, and (iii) task and user characteristics, i. e., difficulty, experience, learning effects,
spatial capabilities, etc.

From a more current and broader perspective, the first factor could be viewed rather
as interaction complexity ; interaction devices and techniques in VE are introduced in Sec-
tion 2.2.4. In the following, the practical remaining topics related to human factors are
elaborated: cybersickness, and presence issues.

Cybersickness

Cybersickness is the most common malady that appears during and even hours after the
exposure to immersive VEs [SMK98]. When watching moving imagery, users experience
the classical symptoms of motion sickness, which range from headaches to vomiting. Al-
though the mechanisms are still not completely clear, three cause theories have been
proposed, as summarized by LaViola [LJ00]: (i) the sensory conflict originated by con-
tradictory signals from the vestibular and visual systems, (ii) as ingesting poison affects
visual and vestibular channels, directly and uncommonly stimulating those could trigger
similar reactions as when consuming a harmful substance, and (iii) virtual images display
physically atypical or altered environments that cause a postural instability state until
new control strategies are learned. Several mitigating factors have also been identified:

14 CHAPTER 2. BACKGROUND

accurate and non-delayed position tracking, fast enough visual rendering in peripheral
areas, interaction while sitting instead of standing, visualization of coherent rest frames,
gradual exposure, and providing control to the user.

Presence Terminology

Slater [Sla03] addressed the terminology around the concept of feeling present in a VE.
According to the author, while immersion is an objectively measurable fidelity indicator
of a technology, presence is the subjective perception of “being there”, a psychological
reaction to immersion. Typically, presence has been evaluated with questionnaires, such
as the widely used from Witmer and Singer [WS98]. Additionally, as presence refers to
the form, involvement refers to the interest in the content; one might feel very present
in a simulation, but dislike what occurs in it.

Following this terminology, Bowman and McMahan [BM07] argued that, rather than
focusing on presence constructs, it is immersion benefits (e. g., spatial understanding,
peripheral awareness, etc.) resulting from implemented immersion technologies (i. e., in-
creased field of view) that should be measured to gain insights on the application effective-
ness or human performance. Furthermore, the authors pointed out that the goal should
be to find sufficiently (i. e., minimally) realistic immersion components that increase user
performance and sensation of presence. Altogether, the definition, measurement, and
relationship between these concepts of immersion, realism, presence, involvement, and
effectiveness is still an active field of research.

2.2.2 Multimodal Rendering

Synthetic rendering of a modality consists in creating artificial signals for a sensory
channel, which are then displayed with an appropriate device. In the context of virtual
manipulations, the most important sensory modalities are vision (graphic rendering),
hearing (audio rendering) and touch (haptic rendering); their integration has been dis-
cussed in Section 2.1.2. For almost any virtual simulation, the visual channel is essential.
Additionally, for manipulations, displaying contacts through kinesthetic haptic render-
ing is the most natural and effective method to achieve highest performance [SWH+12],
[WSHP13]. However, kinesthetic contacts can also be augmented by other sensory modal-
ities, or substituted by them, when complex and expensive haptic systems are not avail-
able. It has been proven that rendering several feedback modes increases user perfor-
mance during virtual assembly tasks. In particular, Petzold et al. [PZFea04] reported
that best results are attained when haptic feedback is augmented with either visual or
audio cues.

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 15

Sreng et al. [SBG+07] presented a very interesting approach for multimodal rendering
of contacts in haptic interactions. Visual, audio, and haptic cues are superimposed to dif-
ferent collision events (impact or detachment) and states (frictional sliding). These cues
include: particles and bubbles, drawing lines following contacts, instantaneous Gaussian-
like sounds or longer roughness sounds after preliminary modal analysis of the objects, or
haptic force transients. All effects are parametrized with the contact dynamic properties,
such as normal or tangent velocities.

An important technical detail is the computational frequency required by each modal-
ity: 60Hz are necessary for rendering images in the visual loop [SMK98], 48 kHz for
sounds in the audio loop [SBG+07], and 1 kHz [BS02] for rendering contacts in the hap-
tic loop, as already mentioned. That difference in minimum update rates has popularized
parallel architectures that handle modularly each feedback mode [OL06]. In these cases,
synchronization and low latency (∼ 25 ms) are essential.

For the haptic sense, further psychophysical limitations translated into technical re-
quirements have been discussed in Section 2.1.2. Stanney [SMK98] reports additional
guidelines for other senses. For instance, the visual signal should be rendered with stereo
images, which require correct image disparities and custom interpupillary distance; be-
sides, a proper resolution and field of view (desirable 100 ◦) are to be used on the display
device. Regarding audio rendering, binaural sound synthesis for correct source localiza-
tion is helpful.

2.2.3 Physics Engines: Motion Computation

In the game development community, physics engines deal with (i) collision detection
and (ii) motion computation of virtual objects. These engines perform collision detec-
tion usually with simplified geometries to reach interactive rates. Therefore, in general,
interactive virtual frameworks comprising haptic feedback compute collisions and forces
with own methods. Along these lines, note that haptic simulations are also possible
without physics engines if no motion needs to be rendered. In this sense, only the motion
computation or rigid body simulation functionalities from physics engines are considered
in this work.

Computational frequencies of 500Hz have been used in the physics loop [SBG+07];
however, depending on the application, achieving the visual update rate (60Hz) suffices.
Several physics libraries have appeared in past years, such as Nvdia PhysX [Nvi01], Bul-
let [Cou03], ODE (Open Dynamics Engine) [Smi01], or Havok [RC11a]. Boeing and
Bräunl [BB07], and more recently, Hummel et al. [HWS+12], have evaluated and com-
pared some of these freely available engines. The latter work highlights the large differ-
ences between them, constraining the choice to the application domain.

16 CHAPTER 2. BACKGROUND

Bender et al. [BETC14] provide a comprehensive review of approaches used in interac-
tive rigid body simulation, covering common models and numerical methods. In general,
once contact manifolds are detected, the dynamic state of the rigid body is solved from
the equations that govern its dynamics (e. g., Newton-Euler); then, this dynamic state is
integrated to obtain future positions, giving place to body motion. Baraff reported an
easy and elegant method for motion rendering following these ideas [Bar97a], [Bar97b].
In contrast to the high complexity characteristic of the collision computation problem,
in theory, motion rendering of an unconstrained rigid body can be reduced to the step-
forwarding of a 6D state variable under well-know laws. However, other issues must be
handled, such as stability and physically correct parametrization.

2.2.4 Interaction Devices and Techniques

A plethora of consumer input and output (I/O) devices for immersive VR interactions
have appeared since the advent of the so-called “second wave of VR” in 2012 with the
Oculus Rift∗. Anthes et al. [AGHWK16] give an overview, providing a classification of
devices and highlighting the most important ones for each category.

In general, input devices can generate discrete events (e. g., buttons) or continu-
ous streams of signals (e. g., tracking) [BKLJP01]. Common categories include (notable
examples in parentheses): flysticks or similar controllers (Razer Hydra†), gamepads, joy-
sticks, treadmills (Virtuix Omni‡), and tracking devices for the whole body (Kinect§) or
body parts and hand gestures (Leap Motion¶, Thalmic Myo‖, Kinfinity Glove∗∗). Human
voice can be also considered to be an input device if speech recognition is applied.

On the other hand, output devices can be fully immersive (i. e., real world fully
occluded) or semi-immersive [BKLJP01]. Typical classes for the visual sense comprise:
head mounted displays or HMDs (Oculus Rift††, HTC Vive‡‡) and multi-screen systems
like CAVEs [CNSD93], or powerwalls§§. Regarding output devices for the sense of
touch, most usual are vibrotactile vests (Subpac¶¶) or armbands (VibroTac [SEWP10])
Additionally, kinesthetic haptic devices fall also in this category; these are discussed in
detail in Section 2.2.5.

∗https://www.oculus.com
†https://www.razerzone.com/
‡http://www.virtuix.com
§https://developer.microsoft.com/en-us/windows/kinect
¶https://www.leapmotion.com
‖https://www.myo.com

∗∗http://kinfinity-solutions.com
††https://www.oculus.com
‡‡https://www.vive.com/eu/
§§http://www.lcse.umn.edu/research/powerwall/powerwall.html
¶¶http://subpac.com

https://www.oculus.com
https://www.razerzone.com/
http://www.virtuix.com
https://developer.microsoft.com/en-us/windows/kinect
https://www.leapmotion.com
https://www.myo.com
http://kinfinity-solutions.com
https://www.oculus.com
https://www.vive.com/eu/
http://www.lcse.umn.edu/research/powerwall/powerwall.html
http://subpac.com

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 17

For all these devices, management and communication software frameworks are nec-
essary. Taylor et al. [TIHS+01] presented in 2001 the VRPN (Virtual Reality Peripheral
Network) library∗∗∗, a device-independent and network-transparent interface for VR pe-
ripherals of extended use in distributed settings. VRPN is now integrated into the OSVR
(Open Source Virtual Reality) framework [BPT15]∗, which provides abstraction, man-
agement, and analysis functionalities (e. g., configuration, fusion, gesture detection) for
many devices and VR platforms. Additionally, visualization tools have been extended
from scene graphs (Coin3D†, OpenSceneGraph‡) to VR frameworks (InstantPlayer§),
and, more recently, to game engines that already support interaction devices and enable
authoring (Unity¶, Unreal Engine‖).

Interaction

Human-machine interaction techniques used to act within VEs are in close relationship
with the integrated I/O devices. First of all, it is worth highlighting the difference
between natural and intuitive interactions, as done by Zachmann [ZR01]. While the first
is related to interactions similar to the ones occurring in the real physical world (e. g.,
touching and manipulating with our hands and fingers), the second refers to simplified
metaphors that link abstract actions and expected outcomes. Intuitive interactions have
proven to be very efficient, for instance, in the form of WIMP elements (Window, Icon,
Menu, Pointer), or as gestures with the advent of smartphones in recent years.

According to Bowman et al. [BKLJP01] interaction techniques can be classified into
three main categories:

• Navigation techniques, which should enable spatial awareness for travel and way-
finding and be as lightweight as possible for the user to focus on the real task.
Therefore, the motor and cognitive abilities requested by these techniques alleviated
(e. g., by providing proper velocity and constraint control). Typical metaphors
include: tracked body motion, hand space movement, steering, teleportation, and
path drawing.

• Selection and Manipulation techniques are performed with the hands, and are often
related to the 6D positioning of grabbed objects. Counter-intuitively, non-realistic

∗∗∗https://github.com/vrpn/vrpn
∗http://osvr.github.io
†https://bitbucket.org/Coin3D/coin/wiki/Home
‡http://www.openscenegraph.org
§http://www.instantreality.org
¶https://unity3d.com
‖https://www.unrealengine.com/en-US/

https://github.com/vrpn/vrpn
http://osvr.github.io
https://bitbucket.org/Coin3D/coin/wiki/Home
http://www.openscenegraph.org
http://www.instantreality.org
https://unity3d.com
https://www.unrealengine.com/en-US/

18 CHAPTER 2. BACKGROUND

techniques have been shown to outperform more realistic ones, and limiting degrees-
of-freedom (DoF) can increase performance. Usual metaphors comprise: pointing
and ray-casting, grabbing of objects at hand-reach, growing of virtual arms for
catching, and the manipulation of the relative virtual world scale.

• System Control techniques are used to change the state of the system to perform
meta-tasks (e. g., configuration of the VR) and should be as transparent as possible.
Typical metaphors include: gestures, voice commands, and menus.

2.2.5 Kinesthetic Haptic Devices and Control Issues

The haptic device or interface is fundamental in immersive virtual manipulations with
haptic feedback. It consists in an electro-mechanical system that tracks user movements
(e. g., position and velocity of the hand holding the device endeffector) and simultaneously
displays virtual or remote contacts. Therefore, it is both an input and output (I/O)
device. Note that kinesthetic haptic interfaces are considered in this section, i. e, devices
that display forces through forces or torques applied on their joints, usually through
motors. As a general requisite, it is expected that a haptic interface should cope with
human haptic sensitivity ; additionally, it should function as seamlessly as possible, and
in a secure way.

Figure 2.2 depicts the five devices integrated in the context of the presented work: the
Falcon [Sta97], the Sigma.7 [THH+11], the Virtuose6D [GFL04], the Wearable Haptic
Interface (WHI) [KDK10], and the HUG [HHK+11]. In particular, the Sigma.7 and the
HUG were employed in the experiments reported in this document and they are described
in detail in Appendix A. It is worth to mention that many of the early works in haptics
were performed using the Phantom device [MS+94], one of the first commercially available
interfaces. The Phantom is desktop-sized, with a serial kinematic and a stylus-formed
endeffector.

The following paragraphs introduce the most relevant design elements of haptic in-
terfaces, as well as a classification. Furthermore, the minimum or ideal requirements are
discussed, alongside with control issues that have a direct impact in the perception of
the user.

Design Elements: Mechanism, Sensors, and Actuators

A haptic device consists of a set of actuators and sensors arranged around a mechanism
with several degrees-of-freedom (DoF). The mechanism is built with links connected
with joints in series (e. g., Virtuose6D) or parallel (e. g., Falcon). The handle grabbed
and moved by the user in which the mechanism “ends” is called endeffector. The resulting

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 19

Figure 2.2: Exemplary haptic
interfaces, integrated in this
work: the Falcon [Sta97],
the Sigma.7 [THH+11], the
Virtuose6D [GFL04], the
Wearable Haptic Interface
(WHI) [KDK10], and the
HUG [HHK+11]. These devices
cover the whole workspace-force
domain and have also different
degrees-of-freedom (DoFs). In
particular, the Sigma.7 and
HUG interfaces were used for
the experiments reported in this
document and are throughly de-
scribed in Appendix A. Pictures
of the Sigma.7 and Virtuose6D
are courtesy of Force Dimension
and Haption, respectively. Max. Workspace [m]

M
ax

. (
Pe

ak
) F

or
ce

 [N
]

0
F: 0.1 m, 8.9 N

S: 0.13 m, 20 N V: 0.66 m, 35 N

W: 0.5 m, 40 N

H: 0.94 m, 150 N 3 Pose and Force DoFs

6 Pose and Force DoFs
3+ Pose DoFs (passive), 3 Force DoFs (active)

UPPER BODY

Falcon (F)
Novint

Sigma.7 (S)
Force Dimension

Virtuose6D (V)
Haption

WHI (W)
TU Berlin, DLR

HUG - LWR (H)
DLR

DESKTOP

mechanism kinematic should avoid the human operator from reaching joint limits and
falling in singularities, which are degenerate configurations that restrict the mobility of
the endeffector. Besides of that, the mechanism should not have unbalanced weights
during operation, which can be achieved with passive mechanical elements, with elec-
tronics and software (e. g., HUG), or both (e. g., Sigma). In general, a mechanism and
its kinematics can be evaluated by analyzing the singular values of the Jacobian matrix
that relates joint and endeffector velocities [HO08]; for instance, the product of all values
accounts for the overall manipulability, and the ratio between the extreme values for the
isotropy. The elasticity of the mechanical structure can also be a factor to be considered
in these evaluations. As a final note, it is worth to mention that mechanisms can be
designed for single handed or bi-manual manipulation [TML14].

The sensors measure the position and forces (torques) of the joints. Rotary optical
encoders that operate at least at 1 kHz [BS02] are typical. Additionally, they should be
able to measure minimum values of 0.1 N, 1 mm, and 2 ◦ [FDS90]. Worse resolutions can
have negative effects on the noise, the maximum stiffness, and stability. The actuators
are usually DC motors able to exert custom torques. Low values should be sought for
friction, torque-ripple (torque span in a revolution), and backlash (clearance or lost mo-
tion due to gaps between gear teeth) [HO08]. Furthermore, back-drivability or interactive
transmission between input and output has been shown to be beneficial [PV14].

20 CHAPTER 2. BACKGROUND

Classification: Workspace, Force, Degree-of-Freedom (DoF)

In the last decades, a big variety of interfaces have appeared, some of them very application-
oriented, others focusing on specific challenges, and many balancing technological and
performance trade-offs. From a practical point of view, it is possible to classify them
with the values of a trinomial: the size of their effective workspace, the forces they are
able to display, and their actuated mechanical degrees-of-freedom (DoF). Devices that
share similar values for these three properties are expected to have similar behaviors.

The effective workspace of a device can be measured with the space volume covered
by it or its maximum axis length. The latter typically ranges from 0.1 m (desktop) to 1 m

(upper body), trying to match the human limb movements that it is targeting, e. g., wrist
(Falcon) or whole arm (HUG), while minimizing link length and size; certainly, a smaller
structural mass leads to smaller inertias and, ultimately, less fatigue. Devices can be
grounded, i. e., fixed to a static base, or ungrounded, usually fixed to the operator’s body,
as an exo-skeleton (WHI). The felt stiffness is lower with the latter, but they have largely
extensible workspaces, since the user can freely move in space wearing the device. In order
to artificially enlarge the virtual or remote workspace, scaling and indexing or workspace
drift control strategies have been proposed [CK05]. Along these lines, it is worth to
mention that hand exo-skeletons constitute a particular category of haptic devices which
focuses only on the local workspace of the hand; usually, designing a powerful mechanism
that fits in such a small volume for so many (finger) DoFs is a very challenging task.

The maximum applicable force accounts for the hardness of the displayable contacts.
Usually, higher force values are related to higher device mass and felt inertia, given that
heavier motors are required. It is important to distinguish between maximum peak and
maximum continuous or controllable forces; high peak forces might be fundamental if
transients on contact events are going to be applied [KFN06]. It has been shown that
human fingers can handle up to 40 N [SIT89], however, 10 N are rarely exceeded in normal
interactions [MS+94]. The maximum controllable force reaches ∼ 65 N for the wrist and
∼ 100 N for the elbow and shoulder [TSEC94].

The DoFs of the haptic interface constitute the base directions in which the endef-
fector can be moved by the user. The user can apply motion along passive DoFs, but
only active DoFs are additionally actuated. The first haptic interfaces had 3 active DoFs
(translations recorded, forces applied), and with the time, devices with 6 DoFs have ap-
peared (translations and rotations recorded, forces and torques applied). The human arm
has in practice 7 DoFs, considering the null space movement of the elbow; moreover, the
human hand has more than 20 DoFs, depending on the used kinematic approximation.
As expected, higher numbers of DoFs can increase dexterity, but result in more complex
and heavier mechanisms.

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 21

Figure 2.3: Energy gain in discrete-time simulations de-
picted with one-DoF, as pointed out in [BS02]. The force f
on an ideal (real) spring of stiffness K wanders from point 0
(relaxed) to point 1 (stressed) along the blue slope when it
is stretched ∆x, following Hooke’s law; as the spring is re-
leased, it goes back to 0 along the blue line again. A virtual
spring modeling that same ideal one follows a stair-wise path
(in red) when elongated the same amount ∆x due to the
sampling time T and the time delay td(t). That path leads
to an energy gain (shadowed pink area) which might cause
instabilities if not properly dissipated.

x

f = Kx Δx

Δx
K

0

atan(K)

T + td(t)

1

relaxed

stretched

virtual

real

energy
gain

Z-Width: Range of Applicable Impedances

As stated by Massie and Salisbury [MS+94], when using a haptic interface, (i) free space
must feel free and (ii) solid virtual objects must feel solid. The Z-Width or dynamic range
of displayable impedances (i. e., force and velocity relationships, Z) is an indicator of how
close a device is from that goal: (i) on free movement, the impedance displayed should
be non-existent (i. e., neither inertia nor friction effects in any direction, Z = 0 kg/s),
whereas (ii) on contact it should be able reach unlimited values (i. e., infinitely massive
objects, Z →∞), while still being stable; however, this is mechanically not possible, and
haptic devices work in practice within the (smaller) Z-Width range ([Zmin > 0, Zmax ∈
R]). Colgate and Brown [CB94] investigated the most important factors for maximizing
the Z-Width of haptic interfaces: device damping, sensor resolution, sampling rate, and
filtering.

Control of Haptic Interfaces

Two main control architectures are used for haptic devices: (i) admittance control, in
which user forces are measured and positions are commanded to the device to constraint
user motions, and (i) impedance control, in which user motion is measured and forces
are commanded to the device. Certainly, the latter is the most widespread approach.
Additionally, when possible, impedance-type devices are designed to be back-drivable
and to have low friction and inertia so that open-loop force control is accurate enough
for stable and performant operation [HO08].

However, any active electro-mechanical system can still become unstable, e. g., if more
energy is generated than dissipated during its operation. Instabilities are characterized
by buzzing, vibrations, or even uncontrolled fast motions that can harm the system and
the operator. Hence, they decrease the usability of the system and can make it dangerous.
Figure 2.3 illustrates how the energy gain that leads to instabilities appears in discrete

22 CHAPTER 2. BACKGROUND

Figure 2.4: Passive (blue) and stable (green) regions,
as well as the optimal operation point (red), according
to [Hul17]; despite it is a schematic illustration, the relative
proportions are realistic. Dimensionless regions are plotted
on the domain defined by the virtual stiffness K and damp-
ing B for a sampling time T (ideally T ≤ 1 ms), a given time
delay td (ideally td = 0 ms), and a total mass m (device and
human arm). Regions shrink if td increases. The optimum
operation point depends on the selected cost function c (or-
ange contours), e. g., minimum settling time, system energy,
etc. Note that the stable region completely contains the
passive one; additionally, the optimum operation parameters
according to the selected cost function (cmin → Kopt, Bopt)
are not necessarily at the boundary of the stable region.

stable

passive

optimum

unstable

K T
2/m

B T /m

(K,B)opt

cost

electro-mechanical systems that exert forces [BS02] (e. g., kinesthetic haptic interfaces).
The energy gain area of the figure increases with the stiffness of the virtual spring (K),
the sampling time (T), and time delay (td)∗. In general, if the energy gain exceeds the
amount of energy that the human arm and the inherent friction of the mechanism can
absorb or dissipate, the system is in risk of instability. A common and practical approach
for dissipating the energy gain consists in applying virtual damping (B) to the spring
model; however, contacts might feel sticky at some point, and damping itself can cause
unstable bahaviors in discrete systems if an upper limit is crossed [Hul17]. In this respect,
systematic research has been done in the last decades to find out the correct parameters
necessary for guaranteeing stability and good performance. Developed approaches can be
classified as passivity or stability-based methods. Additionally, optimal control techniques
have also been presented, seeking the most advantageous parameter values for given
system behavior goals. Figure 2.4 shows the relationship between these approaches.

Passivity-based approaches are probably the most studied ones. They try to control
the system so that net energy flow in it is zero, assuming the human operator can interact
stably with a passive system. Colgate and Schenkel [CS97] discovered the now popular
time-invariant passivity condition required by any system composed of a haptic device
and a spring-damper virtual contact model (with no time delay):

b >
KT

2
+ |B|, (2.1)

∗Furthermore, in the simplified model of Figure 2.3, the energy area is linear on the stiffness and
quadratic on the time variables; in other words, halving the computation time of a haptic rendering algo-
rithm can have the impact of quadrupling the maximum displayable stiffness – or vice versa. Nonetheless,
the relationship is not that straightforward in practice, if all factors in the system are considered in the
model.

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 23

being b the continuous-time damping of the device, and K, B, and T the discrete stiff-
ness, damping, and sampling time of the virtual wall simulation, respectively. Another
contribution by Colgate et al. [CSB95] is the virtual coupling method, which is explained
in Section 2.3.3.3, in the context of haptic rendering. Later, Hannaford and Ryu [HR02]
presented a time-variant approach that implemented a passivity observer and a passivity
controller; basically, the observer measures the energy in the system and the controller
activates a variable damping able to dissipate any energy surplus detected by the ob-
server. Many other works have been published in this line, but the main limitation of
passivity-based methods remains to be that they are too conservative: a passive system
is stable, but a stable system does not need to be passive.

As an alternative, stability-based approaches try to find out the parameter bound-
aries (usually K, B, and T) within which under any input signal (e. g., step or impulse
inputs), the system does not have an oscillatory response of increasing amplitude, but
the reaction signal rather converges to a steady value within a finite time period. A
notable contribution was done by Adams and Hannaford [AH99], analyzing a simple but
complete model that covered most relevant factors.

Finally, optimal control approaches look for parameter values that minimize some
user defined cost functions in the stable region. These costs can be, for instance, the
settling time until the amplitude of the response oscillation decays below a certain per-
centage of the steady response value, or the mechanical energy over the time of the
oscillation. In this respect, Hulin [Hul17] has recently provided decisive and practical
insights using a complete system model that takes into account the human operator.

As shown in Figure 2.4, the passive region can be several orders of magnitude smaller
than the stable one, and the optimal operation point usually does not lie on the stability
boundaries.

2.2.6 Telerobotics

Telerobotics (or telepresence) applications have several similarities with virtual manipu-
lations with haptic feedback. In them, the human operator controls with a master robotic
interface (haptic device) a slave manipulator set in a remote environment ; this control is
possible thanks to a communication channel that transmits information between the end-
points. If bilateral control is used, both sides are input and output, and position-force
data is interchanged. Niemeyer et al. [NPH08] distinguished at least three categories
when classifying control architectures used in telerobotics: (i) direct control, with which
the operator is fully coupled with the remote manipulator’s actions, (ii) shared control,
which distributes manipulator control between the user’s coarser actions and a local au-
tonomy, and (iii) supervisory control, in which the operator interacts usually with more

24 CHAPTER 2. BACKGROUND

abstract commands and the remote manipulator can perform almost autonomously.
Especially in direct control approaches, the properties of passivity/stability (see Sec-

tion 2.2.5) and transparency are fundamental, and unfortunately conflicting goals, as
shown by Lawrence [Law93]. Transparency accounts for how close the impedances (Z) of
the master (Zm) and slave (Zs) sides can be. As explained in Section 2.2.5, there should
be no impedance on the master side during collision-free movements (Zm = Zs = 0 kg/s

or N m s/rad) and the impedance should be able to reach unlimited values in contact
situations (Zm = Zs → ∞). Nevertheless, the range of impedances is limited to the
achievable Z-Width of the device ([Zmin, Zmax]). In this sense, the Z-Width is a mea-
surement of achievable transparency. Transparency has also been studied from a human
perception perspective by Hirche and Buss [HB12], considering JND thresholds.

On the other hand, in all methods that go beyond direct control, a central task consists
in predicting and rendering contacts using virtual models. Furthermore, accurate world
and robot models are necessary as autonomy of systems increases. A known example
is the ROTEX experiment performed by Hinzinger et al. [HBDH93], in which the first
robotic manipulator in space was controlled from earth using predictive graphics under
delays up to 7 s.

A type of shared control method are virtual fixtures [Ros93], which consist in hap-
tic overlays (e. g., support planes) that assist the operator during the task by reducing
workload and increasing performance. Virtual fixtures have also been implemented in as-
sembly simulations, as done by Tching et al. [TDP10]. A recent survey of this type of tech-
niques is provided in [BDRyB14]. Focusing more on visual assistance, Hertkorn [Her15]
presented recently a shared control approach for telerobotic grasping; with it, the oper-
ator moves a robotic hand-arm system to the target object, the cameras detect it, and
feasible contact regions and grasp qualities are displayed so that the operator decides to
grab the object or change the pose.

Model-Mediated Telemanipulation

Model-mediated telemanipulation can be considered a shared control approach which
presents a solution to stability issues and the degraded intuitiveness characteristic of
bilateral telemanipulations functioning under large delays; this is achieved by relaying
the user interaction to a local virtual model of the remote environment. Mitra and
Niemeyer [MN08] presented a proof-of-concept for one degree-of-freedom (DoF). The
scene, assumed to be static, was registered with the collisions detected with the slave
manipulator and modeled with planes. The authors showed how their method works
with delays of 1 s, during which the operator interacted locally with the virtual model
computed in runtime.

2.2. IMMERSIVE VIRTUAL ENVIRONMENTS WITH HAPTIC FEEDBACK 25

More recently, the popularization of optical depth sensors has led to approaches able
to model more complex environments. For instance, Xu et al. [XCANS14] presented
a three-DoF model-mediated teleoperation framework using streamed point clouds. In
that work, a time-of-light camera at the slave side registers and filters the point cloud of
the remote scenario (at max. 25Hz); additionally, the physical properties (i. e., contact
stiffness and dry friction coefficient) of the environment are estimated through the force
sensors at the endeffector. For the communication, human perception deadbands are ex-
ploited by sending only values out of the JND thresholds, which reduces the transmission
rate. During the interaction, the operator sees the images of the master environment,
but feels the forces computed by a haptic rendering algorithm [RC13a] which uses the
point cloud. In other words, although the user moves the slave through the master, the
contacts recorded at the remote side are not displayed, but rather used to build and up-
date a local model on the master side, which is used to render the applied virtual forces.
In the subjective user evaluations, 9 out of 10 subjects failed to distinguish between the
measured and these applied virtual forces.

2.2.7 Haptic Communications

The correct transmission of haptic information, i. e., without lags or delays, is key for
stable and transparent interactions. Unfortunately, the 1 kHz update rate convention
leads to high packet loads that may worsen transmission quality. Those points hold true
especially for telepresence interactions (see Section 2.2.6), in which, as opposed to virtual
simulations, the communication does not occur locally, but end-points might be located
far away from each other; in those situations, packet loss is often unavoidable, degrading
the quality of experience (QoE) with artifacts like bouncing, stickiness, or roughness.

Steinbach et al. [SHE+12] summarized additional issues that appear in haptic com-
munications and provided a survey of common approaches to tackle them. Some methods
have already been mentioned, for instance: (i) passivity-based techniques that observe
the energy flow in the system and damp it to guarantee stability (Section 2.2.5), (ii)
perceptual coding approaches which send data only when JND thresholds are violated
relieving channel load (Section 2.1.2), and (iii) model-mediated strategies that build lo-
cal virtual representations with which is interacted under large delays (Section 2.2.6).
Regarding packet loss and error-resilience, (iv) redundant channels built with multiple
UDP connections (User Datagram Protocol) are used.

In the context of virtual simulations, predictive filters have also been employed for
situations in which computation time could exceed 1 ms. In this sense, Hou and Sou-
rina [HS16] continuously directed computed virtual forces to a buffer rather than to the
user; in a separate thread, linear regression was applied on the last 300 values of the

26 CHAPTER 2. BACKGROUND

buffer to predict the next force and torque vectors, which were subsequently smoothened
using a B-spline function also aware of previous prediction values. Those smoothened
values were the finally displayed forces.

2.2.8 Applications

Collision computation and virtual force rendering have many applications in several fields
of robotics, such as motion planing [PM11], telepresence with large delays [NPH08], or
even autonomous robotic applications that can be learned with physically-based virtual
models [CB17].

Virtual environments with haptic feedback in which human users interact in realtime
have also been shown to have a wide range of application fields. The most popular are
probably medical simulations [CMJ11] and virtual prototyping [SVO11], [Xia16]. With
these interactive simulators, doctors and engineers can verify techniques and prototypes,
respectively, and train for real world operations, decreasing risk and required processing
time.

Beyond these use cases, virtual environments with haptic feedback have been suc-
cessfully used for rehabilitation [BDSR06], [JCRR09], scientific visualization augmented
with haptics [COPG15], atomic or molecular manipulations [TRC+93], modeling and
creative arts [LBF+02], education [Bar10], and games and entertainment, as shown by
Novint∗, the company that produced the Falcon [Sta97] haptic interface. Furthermore,
these examples can be multi-user or collaborative [KKT+04].

Hannaford and Okamura [HO08] and Lin and Otaduy[LO08] provided more references
to selected applications using haptic feedback. Similarly, Chapter 5 reports varied and
practical implementations of use cases in which the technologies presented in this work
are deployed and showcased.

2.3 Realtime Collision Computation and Kinesthetic Force
Rendering

In interactive physically-based simulations with haptic feedback, (i) collisions between
objects must be detected, (ii) contact forces must be rendered, and, in some cases, (iii)
the motion of the manipulated object needs to be resolved or adjusted. These three
processes occur usually in sequence, and the input of each of them is the result of its
predecessor. In particular, force rendering and display has to run at 1 kHz, as explained
in Section 2.2.5. Among the three, collision computation is usually the computationally

∗http://www.novint.com

http://www.novint.com

2.3. COLLISION COMPUTATION AND FORCE RENDERING 27

most expensive task, reaching worst-case performances of O(n2) if naïve techniques are
followed. Given that, and also due to the fact that it is required in many applications,
collision computation has been extensively studied in the past three decades in fields like
computer graphics, robotics, and virtual reality.

Table 2.1 and Table 2.2 collect more than 100 relevant works that report methods
applied in the fields of collision detection and (kinesthetic) force rendering. The publica-
tions cover the advances in the last three decades and are ordered chrono-alphabetically.
Almost 70 features which account for the attributes of the algorithms were detected.
These features belong to the type of output delivered by the algorithms, the used data
structures, and the implemented methods. As the reader might see, most algorithms
make use of a combination of different data structures and methods. For each feature,
the most significant works have been highlighted with a shaded cell. Additionally, for
each work, a maximum of two other related works from the table have been selected,
in case of strong influences detected. Note that Table 2.2 also classifies the methods
presented in this thesis.

These tables do not cover surveys, comparisons, or user evaluations, but only the tech-
nical methods that have considerably shaped the landscape of haptic rendering. Upon
interest, the reader might also consult other reviews and classifications that have been
presented in past years. For instance, Lin and Manocha [LM04] summarized the most
important methods for collision and proximity queries. Later, Lin and Otaduy [LO08]
presented a book which collects all relevant haptic rendering techniques published un-
til 2008. More recently, Otaduy et al. [OGL13] have surveyed and classified the most
important force rendering methods.

The rest of this section explains in a structured manner the classification features
from the tables, and it is organized as follows: after a brief overview, most common data
structures are introduced in detail in Section 2.3.1. These object representations are used
by collision detection techniques explained in Section 2.3.2 and by force rendering meth-
ods presented in Section 2.3.3. Finally, Section 2.3.3.6 briefly discusses how deformation
can be handled in computer haptics.

Overview

A fundamental pre-processing step common to all collision computation and force ren-
dering algorithms lies in generating data structures for all objects in the scene, which
commonly consists in converting a polygon soup (i. e., unstructured lists of polygons)
into a more useful object representation for the task at hand. Indeed, typical polygonal
structures used for visualization are often poorly suited for collision computation. A
proper object representation should consider defining constraints such as whether bodies

28 CHAPTER 2. BACKGROUND

T
ab

le
2.

1:
W
or
ks

on
co
lli
si
on

de
te
ct
io
n
an
d
fo
rc
e
re
nd

er
in
g
cl
as
si
fie
d
ac
co
rd
in
g
to

to
pi
cs

(P
ar
t
1/
2,

co
nt
in
ua
tio

n
in

Ta
bl
e
2.
2)
.

Fi
rs

t A
ut

ho
r

Ye
ar

Re
fe

re
nc

e
Re

la
te

d

 DoF
 Force Paradigm
 1 kHz
 Collision
 Force Computation
 Distance
 Closest Features
 Penetration
 Volume
 Time of Impact (Cont.)
 Constrained Movement
 Continuous Gradient
 Deformation
 Motion
 Friction
 Topology Modification
 Force Transients
 Shading
 Texture / Material Props.
 Multimodal (+ Vibration)
 Any / Multiple
 General Polyhedra
 Convex Hulls
 Strict Convex Hulls
 Convex Decomposition
 Mesh: Neighbour Map
 BVH
 Spheres (+ k-IOS, Sects.)
 Cones
 AABBs
 OBBs
 k-DOPs
 Swept Volumes (+ SSV)
 Spatial Partitioning
 k-d Trees
 Fields / Voxelmaps
 Octrees
 Mixed Basic Shapes
 Configuration Space
 Depth Images
 Point Clouds
 Streamed Point Clouds
 Parametric / NURBS
 CSGs
 FEM Models
 Particle Systems
 Tetrahedra Mesh
 Deformable
 Voronoi Marching
 GJK / Simplex
 SAT
 Gauss' Principle
 Optimization
 Virtual Coupling
 LoD
 Coherence
 Spatial Ordering
 Priority Queues
 Probabilistic
 Prediction / Learning
 Intermediate Rep.
 Breaking Forces
 Multibody
 Multirate
 GPU
 Stability Considered
 Transparency Cons.

G
au

ss
18

63
[G

au
29

]
6

C
—

x
x

x
x

x
x

G
ilb

er
t

19
88

[G
JK

88
]

6
—

x
x

x
x

x
x

M
oo

re
19

88
[M

W
88

]
6

P,
C

x
x

x
x

x
x

x
x

x
x

x
Ba

ra
ff

19
89

[B
ar

89
]

6
C

x
x

x
x

x
x

x
x

Li
n

19
91

[L
C9

1]
—

—
x

x
x

x
x

x
x

x
Dw

or
kin

19
93

[D
Z9

3]
[L

C9
1]

6
P

x
x

x
x

x
x

x
x

x
x

x
x

x
Ze

ille
r

19
93

[Z
ei

70
]

6
—

x
x

x
x

x
x

x
x

Ba
ra

ff
19

94
[B

ar
94

]
6

C
x

x
x

x
x

x
x

x
Co

lg
at

e
19

94
[C

B9
4]

—
—

x
x

x
x

M
irt

ic
h

19
94

[M
C9

4]
[L

C9
1]

—
I

x
x

x
x

x
x

x
x

x
x

x
Q

ui
nl

an
19

94
[Q

ui
94

]
6

—
x

x
x

x
x

x
Ad

ac
hi

19
95

[A
KO

95
]

3
P

x
x

x
x

x
Co

lg
at

e
19

95
[C

SB
95

]
6

—
x

x
x

x
x

x
Co

he
n

19
95

[C
LM

P9
5]

[L
C9

1]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
x

x
Zi

lle
s

19
95

[Z
S9

5]
3

C
x

x
x

x
x

x
x

x
G

ot
ts

ch
al

k
19

96
[G

LM
96

]
6

—
x

x
x

x
x

x
Hu

bb
ar

d
19

96
[H

ub
96

]
6

—
x

x
x

x
x

x
M

or
ge

nb
es

se
r

19
96

[M
S9

6]
[Z

S9
5]

3
C

x
x

x
x

x
x

x
v.

 d
. B

er
ge

n
19

97
[v

dB
97

]
[G

LM
96

]
6

—
x

x
x

x
x

x
Ca

m
er

on
19

97
[C

am
97

]
[G

JK
88

]
6

—
x

x
x

x
x

x
x

Hu
ds

on
19

97
[H

LC
+9

7]
[G

LM
96

],
[C

LM
P9

5]
6

—
x

x
x

x
x

x
x

x
x

x
x

Ru
sp

in
i

19
97

[R
KK

97
]

[Z
S9

5]
, [

Q
ui

94
]

3
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Sa
lis

bu
ry

19
97

[S
T9

7]
3

C
x

x
x

x
x

x
x

x
x

x
x

Th
om

ps
on

19
97

[T
JC

97
]

3
P

x
x

x
x

x
x

x
x

x
Jo

hn
so

n
19

98
[J

C9
8]

[T
JC

97
]

6
—

x
x

x
x

x
x

x
x

x
x

Kl
os

ow
sk

i
19

98
[K

HM
+9

8]
[G

LM
96

]
6

—
x

x
x

x
x

M
irt

ic
h

19
98

[M
ir9

8]
[L

C9
1]

—
—

x
x

x
x

x
x

x
x

x
x

Za
ch

m
an

n
19

98
[Z

ac
98

]
[K

HM
+9

8]
, [

G
LM

96
]

6
—

x
x

x
x

Ad
am

s
19

99
[A

H9
9]

—
—

x
x

x
x

v.
 d

. B
er

ge
n

19
99

[v
dB

99
]

[G
JK

88
]

6
—

x
x

x
x

x
Ho

19
99

[H
BS

99
]

[Z
S9

5]
, [

G
LM

96
]

3
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
La

rs
en

19
99

[L
G

LM
99

]
[G

LM
96

],
[L

C9
1]

6
—

x
x

x
x

x
x

x
x

x
x

x
G

re
go

ry
19

99
[G

LG
T0

5]
[G

LM
96

]
3

P
x

x
x

x
x

x
x

x
x

x
x

M
cN

ee
ly

19
99

[M
PT

99
]

6
P

x
x

x
x

x
x

x
x

x
x

x
Ne

lso
n

19
99

[N
JC

99
]

[J
C9

8]
, [

TJ
C9

7]
6

P
x

x
x

x
x

x
x

x
x

x
x

Su
19

99
[S

LY
99

]
[C

LM
P9

5]
6

—
x

x
x

x
x

x
x

x
x

x
x

Eh
m

an
n

20
00

[E
L0

0]
[L

C9
1]

6
—

x
x

x
x

x
x

x
x

x
x

x
G

re
go

ry
20

00
[G

M
E+

00
]

[C
LM

P9
5]

, [
LC

91
]

6
P

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Ha
yw

ar
d

20
00

[H
A0

0]
3

—
x

x
x

M
irt

ic
h

20
00

[M
ir0

0]
[M

ir9
8]

—
P

x
x

x
x

x
x

x
x

x
x

x
x

v.
 d

. B
er

ge
n

20
01

[v
dB

01
]

[G
JK

88
]

6
—

x
x

x
x

x
x

x
Eh

m
an

n
20

01
[E

L0
1]

[L
C9

1]
6

—
x

x
x

x
x

x
x

x
x

x
x

x
Ja

m
es

20
01

[J
P0

1]
3

C
x

x
x

x
x

x
x

x
x

x
x

Re
nz

20
01

[R
PP

+0
1]

[M
PT

99
]

6
P

x
x

x
x

x
x

x
x

x
Ha

rw
in

20
02

[H
M

02
]

[Z
S9

5]
, [

ST
97

]
3

C
x

x
x

x
x

x
x

Ki
m

20
02

[K
LM

02
]

[E
L0

1]
, [

EL
00

]
6

—
x

x
x

x
x

x
x

Lu
nd

in
20

02
[L

YG
02

]
3

C
x

x
x

x
x

x
x

x
x

x
Re

do
n

20
02

[R
KC

02
a]

[G
LM

96
]

6
—

x
x

x
x

x
x

Re
do

n
20

02
[R

KC
02

b]
6

C
—

x
x

x
x

x
x

Co
nt

i
20

03
[C

KB
03

]
[Z

S9
5]

3
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Fu
hr

m
an

n
20

03
[F

SG
03

]
—

P
x

x
x

x
x

x
x

x
x

x
x

W
an

20
03

[W
M

03
]

[M
PT

99
]

6
P

x
x

x
x

x
x

x
x

x
x

x

O
ut

pu
t

Da
ta

 S
tru

ct
ur

es
M

et
ho

ds
 /

To
pi

cs
 /

Te
ch

no
lo

gi
es

2.3. COLLISION COMPUTATION AND FORCE RENDERING 29
T
ab

le
2.

2:
W
or
ks

on
co
lli
si
on

de
te
ct
io
n
an
d
fo
rc
e
re
nd

er
in
g
cl
as
si
fie
d
ac
co
rd
in
g
to

to
pi
cs

(P
ar
t
2/
2,

co
nt
in
ue
d
fr
om

Ta
bl
e
2.
1)
.

Fi
rs

t A
ut

ho
r

Ye
ar

Re
fe

re
nc

e
Re

la
te

d

 DoF
 Force Paradigm
 1 kHz
 Collision
 Force Computation
 Distance
 Closest Features
 Penetration
 Volume
 Time of Impact (Cont.)
 Constrained Movement
 Continuous Gradient
 Deformation
 Motion
 Friction
 Topology Modification
 Force Transients
 Shading
 Texture / Material Props.
 Multimodal (+ Vibration)
 Any / Multiple
 General Polyhedra
 Convex Hulls
 Strict Convex Hulls
 Convex Decomposition
 Mesh: Neighbour Map
 BVH
 Spheres (+ k-IOS, Sects.)
 Cones
 AABBs
 OBBs
 k-DOPs
 Swept Volumes (+ SSV)
 Spatial Partitioning
 k-d Trees
 Fields / Voxelmaps
 Octrees
 Mixed Basic Shapes
 Configuration Space
 Depth Images
 Point Clouds
 Streamed Point Clouds
 Parametric / NURBS
 CSGs
 FEM Models
 Particle Systems
 Tetrahedra Mesh
 Deformable
 Voronoi Marching
 GJK / Simplex
 SAT
 Gauss' Principle
 Optimization
 Virtual Coupling
 LoD
 Coherence
 Spatial Ordering
 Priority Queues
 Probabilistic
 Prediction / Learning
 Intermediate Rep.
 Breaking Forces
 Multibody
 Multirate
 GPU
 Stability Considered
 Transparency Cons.

O
ut

pu
t

Da
ta

 S
tru

ct
ur

es
M

et
ho

ds
 /

To
pi

cs
 /

Te
ch

no
lo

gi
es

Ha
se

ga
wa

20
04

[H
S0

4]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
Kl

ei
n

20
04

[K
Z0

4]
6

—
x

x
x

x
x

x
Co

ns
ta

nt
in

es
cu

20
05

[C
SC

05
]

4
I,P

x
x

x
x

x
x

x
x

Jo
hn

so
n

20
05

[J
W

C0
5]

6
P

x
x

x
x

x
x

x
x

x
x

x
O

ta
du

y
20

05
[O

L0
5a

]
[E

L0
0]

, [
EL

01
]

6
P

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
Du

rie
z

20
06

[D
DK

A0
6]

6
C

x
x

x
x

x
x

x
x

x
x

x
x

x
Fü

nf
zig

20
06

[F
UF

06
]

[Z
ac

98
],

[G
LM

96
]

6
—

x
x

x
x

x
Ku

ch
en

be
ck

er
20

06
[K

FN
06

]
—

—
x

x
x

x
M

cN
ee

ly
20

06
[M

PT
06

]
[M

PT
99

]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
x

x
O

ta
du

y
20

06
[O

L0
6]

[O
L0

5b
]

6
P

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
Za

ch
m

an
n

20
06

[Z
W

06
]

6
—

x
x

x
x

x
x

x
Zh

an
g

20
06

[Z
LK

06
]

[E
L0

1]
, [

EL
00

]
—

—
x

x
x

x
x

x
x

x
x

x
x

Es
ca

nd
e

20
07

[E
M

K0
7]

[M
ir9

8]
6

—
x

x
x

x
x

x
x

x
x

x
x

O
rte

ga
20

07
[O

RC
07

]
[R

KC
02

b]
, [

RK
C0

2a
]

6
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Zh
an

g
20

07
[Z

KM
07

]
[E

L0
1]

6
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Ba
rb

ič
20

08
[B

J0
8]

[M
PT

99
]

6
P

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Fa
ur

e
20

08
[F

BA
F0

8]
6

P
x

x
x

x
x

x
x

x
x

Ru
ffa

ld
i

20
08

[R
M

B+
08

]
6

I
x

x
x

x
x

x
x

x
x

x
G

ar
re

20
09

[G
O

09
]

6
C

x
x

x
x

x
x

x
x

x
Ta

ng
20

09
[T

KM
09

]
[L

G
LM

99
],

[Z
LK

06
]

—
—

x
x

x
x

x
x

x
W

el
le

r
20

09
[W

Z0
9b

]
6

P
x

x
x

x
x

x
x

x
x

x
La

ut
er

ba
ch

20
10

[L
M

M
10

]
6

—
x

x
x

x
x

x
x

x
x

x
x

x
x

Ri
zz

i
20

10
[R

LB
10

]
3

C
x

x
x

x
x

x
x

x
Ch

an
20

11
[C

CB
S1

1]
[O

RC
07

],
[M

PT
06

]
6

C
x

x
x

x
x

x
x

x
x

x
x

x
Pe

te
rli

k
20

11
[P

ND
+1

1]
6

C
x

x
x

x
x

x
x

x
x

x
Le

ep
er

20
12

[L
CS

12
]

[S
T9

7]
3

C
x

x
x

x
x

x
x

x
x

x
x

x
x

Pa
n

20
12

[P
M

11
]

6
—

x
x

x
x

x
Sr

ee
ni

20
12

[S
C1

2]
[S

T9
7]

3
C

x
x

x
x

x
x

x
x

Ta
ng

20
12

[T
M

O
T1

2]
6

P,
I

x
x

x
x

x
x

x
x

x
W

an
g

20
12

[W
CW

+1
2]

3
I

x
x

x
x

x
x

x
x

Zh
an

g
20

12
[Z

K1
2]

[L
G

LM
99

]
6

—
x

x
x

x
x

x
x

x
x

Ch
an

20
13

[C
BS

13
]

[S
T9

7]
, [

SS
B1

3]
3

C
x

x
x

x
x

x
x

x
x

x
x

x
Zh

en
g

20
13

[Z
LS

W
F1

3]
6

P
x

x
x

x
x

x
x

x
x

Pa
n

20
13

[P
SC

M
13

]
6

—
x

x
x

x
x

x
x

Pa
n

20
13

[P
ZM

13
]

[G
LM

96
],

[Z
KM

07
]

6
C

x
x

x
x

x
x

x
x

x
x

x
Ry

dé
n

20
13

[R
C1

3a
]

3
C

x
x

x
x

x
x

x
x

Ry
dé

n
20

13
[R

C1
3b

]
[M

PT
06

],
[O

RC
07

]
6

C
x

x
x

x
x

x
x

x
x

x
x

x
x

x
W

an
g

20
13

[W
ZZ

X1
3]

[O
RC

07
]

6
C

x
x

x
x

x
x

x
x

x
He

rm
an

n
20

14
[H

DB
+1

4]
6

—
x

x
x

x
x

x
x

x
Xu

20
14

[X
CA

NS
14

]
[R

C1
3a

]
3

C
x

x
x

x
x

x
x

x
x

Zh
an

g
20

14
[Z

KM
14

]
[L

G
LM

99
],

[Z
KM

07
]

6
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
Co

re
nt

hy
20

15
[C

O
PG

15
]

[S
T9

7]
3

C
x

x
x

x
x

x
x

x
x

Ki
m

20
15

[K
LR

15
]

6
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Ag
ui

le
ra

20
16

[A
M

F1
6]

3
—

x
x

x
x

x
x

x
x

x
x

Ho
u

20
16

[H
S1

6]
6

C
x

x
x

x
x

x
M

ou
st

ak
as

20
16

[M
ou

15
]

6
P

x
x

x
x

x
x

x
x

x
x

Xu
20

16
[X

B1
6]

[B
J0

8]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Ka
lu

sc
hk

e
20

17
[K

W
Z1

7]
[W

Z0
9a

]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
x

Pa
rk

20
17

[P
PM

17
]

6
—

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Xu
20

17
[X

B1
7]

[B
J0

8]
, [

O
RC

07
]

6
P,

C
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Ch
ap

te
r 3

[M
PT

99
],

[B
J0

8]
6

P
x

x
x

x
x

x
x

x
x

x
x

x
Ch

ap
te

r 4
[S

T9
7]

, [
O

RC
07

]
6

C
x

x
x

x
x

x
Ch

ap
te

r 5
6

P,
C

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

30 CHAPTER 2. BACKGROUND

are rigid or deformable, whether topology is constant or can interactively change (e. g.,
material subtraction), geometrical complexity (e. g., objects can be simplified to convex
shapes), and resolution. Moreover, the methods inherent of the data structure used for
accessing the conforming primitive features of the object (e. g., points, faces, etc.) should
be fast and robust. Except in some sections from this review chapter, this work considers
rigid bodies that are not altered during simulation but which are defined with arbitrarily
complex geometries.

Once object data structures are created, the collision detection pipeline could be
regarded as a filter which delivers colliding features (e. g., object points in collision) out
of some moving objects in space, as described by Zachmann [Zac01]. The process is
interfaced with a (i) front end queue which stores objects, commands and queries from
external modules or users. Then, for each frame or cycle, (ii) broadphase and (iii)
narrowphase collision detection are performed, one after the other. In the broadphase
(global level), moved objects are processed to determine the likely colliding pairs, whereas
in the narrowphase (object level) object pairs are checked for exact contact features.
The survey of this section focuses on narrowphase methods, which in some cases can
also be applied to the broadphase; techniques that belong exclusively to the broadphase
are described in Section 2.3.2.4, where multibody scenarios are discussed. Chapter 3
describes a narrowphase algorithm and Section 5.2 from Chapter 5 reports, among others,
a collision computation framework for multibody scenarios.

Although closest or contact features are the most usual result in collision detection,
other types of outputs can be expected, such as overlap volume, collision time, or even
the constrained movement of the penetrating object to the collision surface. In this
respect, a common problem faced in physically-based virtual manipulations is the pop-
through [ZS95] or tunneling effect. This occurs when the collisions of points against
thin shells or non-watertight objects (i. e., objects in which no interior volume can be
differentiated) are missed. This is the case when a point is on different sides of a surface
in two consecutive time steps, but not close enough to it so that it is classified as colliding.
Several approaches that tackle that issue are discussed in this section, and, in particular,
Chapter 4 provides a fast and robust method targeting the phenomenon.

Contact information can be directly or indirectly used in force computation, de-
pending on the adopted force rendering paradigm; this feature is registered in Table 2.1
and Table 2.2, and can be penalty-based (P in the tables), constraint-based (C), and
impulse-based (I), as later explained in this section. Another important property of force
rendering approaches are the degrees-of-freedom (DoF) or dimensions of the computed
values, which are usually three (forces) or six (forces and torques); this is strongly related
to the capabilities of the used haptic interface. Beyond regular contact forces, several
additional outputs are also possible, such as friction or material properties. Due to sta-

2.3. COLLISION COMPUTATION AND FORCE RENDERING 31

(e) AABB:
Axis Aligned

Bounding Box

(d) SSV:
Swept Sphere Volume

(b) k-DOP:
Discrete

Oriented Polytope

(a) Convex Hull
(CH)

(c) OBB:
Oriented

Bounding Box

(f) Bounding Sphere

(g) Triangle Mesh (h) Convex
Decomposition

(i) Inner Spheres (j) Point Cloud (k) Implicit Field /
 Parametric Function

(l) Discrete Field /
Voxelmap

Figure 2.5: Polygon soups are usually pre-processed to create object representations or data struc-
tures used during collision and force computation. Upper row, (a)-(f): Bounding Volumes (BV),
ordered from (left) tight and computationally expensive to (right) loose and computationally light;
BVs allow for conservative but fast overlap checks and are usually organized in hierarchical repre-
sentations (see Figure 2.7). Bottom row: (g)-(j) Representations based on sets of discrete primitive
features or elements; (k)-(l) Representations based on fields, continuous or discrete. Data structures
must allow for fast and robust access of the primitive features that conform the object (e. g., points,
faces, etc.), and might have to consider deformation or different resolution levels.

bility and perception reasons (seeSection 2.2.5), displayed forces must be rendered at
1 kHz. In order to cope with such a high computational speed, some methods use multi-
rate approaches with asynchronous loops, in which the dedicated force rendering thread
computes forces using the latest available contact information (usually less frequent) and
the current device pose.

2.3.1 Object Representations

Figure 2.5 illustrates the most common object representations used for collision and force
computation. A proper description of these data structures is fundamental, since they
strongly influence the methods used in realtime queries. It is worth to mention that
efficient data structures often encode (offline) necessary pre-computations that are used
in online calculations, relieving the computation effort in critical situations. Furthermore,
one must be aware of the accuracy achieved with the used representation, compared to
the original object; this is especially true for representations that break down and simplify
the object into sets of discrete primitive features.

32 CHAPTER 2. BACKGROUND

Object modeling or Computer-Aided Design (CAD) tools such as Blender∗ or Creo†

export generally polygon soups. These lists of unordered polygons represent polyhedra,
and can be structured as triangle meshes, which usually describe connected neighborhood
maps: in them, each geometric primitive feature in the structure (i. e., vertices, edges,
and faces) is aware of and can access its neighbor features∗. This attribute is fundamental
for many collision detection approaches explained in Section 2.3.2 (e. g., [LC91]). Several
requirements or additional properties can be applied to general polyhedra, such as normal
vectors for all features, or convexity of the shape†, which would change the topology of
a general polyhedron. Convex meshes have been extensively used in many works (e. g.,
[GJK88]), because in contrast to non-convex or concave meshes, discarding overlaps
between them requires easier and computationally less expensive methods. Along these
lines, convex decompositions of general or non-convex geometries are also common (e. g.,
[EL00]); with them, the original polyhedron is divided in a set of convex patches.

Polyhedra are often enclosed in part or entirely by basic shapes or Bounding Vol-
umes (BV). Thanks to them, conservative but much faster overlap or proximity queries
can be performed; if two BVs do not intersect, their contained geometries will not either.
Typical BVs include: spheres [Qui94], [Hub96], swept spheres or capsules [LGLM99],
Axis Aligned Bounding Boxes (AABB) [CLMP95], [vdB97], Object Oriented Boxes
(OBB) [GLM96], Discrete Oriented Polytopes (k-DOP) [KHM+98], [Zac98], and Convex
Hulls (CH) [GME+00]. Note that all of them are convex.

At least three factors need to be taken into account when it comes to choosing the
appropriate BV: (i) the complexity of the BV geometry, (ii) the fitting efficiency of the
enclosing volume, and (iii) the ease of update after motion. Usually, the simpler the
BV (i. e., less bounding faces or constituting vertices), the easier and faster will be the
collision queries – but also the more conservative; hence, a trade-off must be often met.
Common measurements of the enclosing efficiency of a BV are the volume ratio between
the BV and the enclosed polyhedron, as well as the Hausdorff distance, which is the
maximum Euclidean distance between the contained and the enclosing surfaces. The
third factor is mostly related to rotations, which have a bigger impact on BVs defined
by fixed planes or directions (e. g., world frame directions, as in the case of AABBs). In
those situations, every plane must be rotated each cycle by affine transformations, or, if
that is not desired due to other algorithmic constraints, BVs need to be recomputed so
as to comply with the allowed directions.

∗https://www.blender.org/
†https://www.ptc.com/en/products/cad/creo
∗For instance, a triangular face is composed of three neighbor edges and three vertices, has at least

six edges converging to its vertices, and at least six contiguous faces.
†The shortest Euclidean segment (straight line) between any two points inside a convex shape is

contained in the convex shape. If that is not possible, the object is non-convex or concave.

https://www.blender.org/
https://www.ptc.com/en/products/cad/creo

2.3. COLLISION COMPUTATION AND FORCE RENDERING 33

In particular, spheres are the simplest and easiest to update BVs‡, leading to faster
overlap checks and updates, but worse fittings. On the other hand, CHs are the most
general and usually better fitting BVs, but they also require the most expensive overlap
checks. Ideally, a CH is the convex polytope which optimally (with the lowest volume)
encapsulates a geometry. Many works have focused on the computation of accurate and
approximate CHs for in several fields related to computer graphics or robotics (e. g.,
[BDH96], [MG09]). Aforementioned k-DOPs are closely related to CHs, which encapsu-
late objects with k intersecting half-spaces or oriented planes, approximating the CH.

Less common BVs include sphere sectors [FUF06] and cones that enclose face normal
vectors instead of the faces themselves [JWC05]. In addition, Inner Sphere Trees (IST)
consisting of spheres that bound the object in its interior by greedily filling it have also
been proposed [WZ09a], as well as BVs that result from combining several BVs, such
as the Intersections of Spheres or k-IOS [ZK12], built of k intersecting spheres that ap-
proximate minimally bounding ellipsoids, or CHs dilated with spheres and tori [EMK07].
The last two BVs have the property of being strictly convex, which implies in practice
that the distance between BVs is always continuous and derivable; that property is very
interesting for path planing and optimization algorithms.

Finally, it is worth noting that most data structures based on BVs are organized in
Bounding Volume Hierarchies (BVH), which consist in trees of nodes with differ-
ent sizes that enclose all the parts of the object (e. g., Sphere BVHs [Qui94] or OBB
BVHs [GLM96], among others). Section 2.3.2.5 further deals with BVHs and their asso-
ciated methods.

Beyond polytopes and BVs, Point Clouds have become a usual representation for
objects in recent years; this is probably due to public domain libraries that have appeared
and enable processing them, such as the Point Cloud Library [RC11b], or also due to the
emergence of low cost 3D scanners like the Kinect∗ that make possible registering them
inexpensively. Point clouds are basically point sets placed on the object surface, optimally
with a uniform distribution and surface normals. These sets can be unconnected and
unordered point soups (e. g., as in [MPT99]) or, more commonly, they can be embedded
in more complex data structures that allow for fast access of neighbor elements for each
point in the set. Among others, these structures can be sphere hierarchies [KZ04], k-d
trees [LCS12], or similar. It is common to locally create implicit planes or surfaces from
a point or point subset at runtime, as well as local implicit distance functions [KZ04],
[LCS12].

Two particular and strongly related types of point clouds are depth maps (aka. depth

‡Only four real values are necessary to describe a sphere in 3D space; additionally, spheres are
rotationally invariant due to their symmetry, which reduces queries only to the translational space.

∗https://developer.microsoft.com/en-us/windows/kinect

https://developer.microsoft.com/en-us/windows/kinect

34 CHAPTER 2. BACKGROUND

images or Z-buffers) and streamed point clouds. The first are pixelmaps of proximity val-
ues that account for the distances of the surfaces in the scene from a viewpoint. These
can be obtained from 3D scanners or virtual images, and can be efficiently used for colli-
sion computation [KLR15]. The second type are continuously (usually at 30Hz) updated
depth images of real environments (obviously, registered and delivered through 3D scan-
ners). Several collision and force rendering algorithms have been recently proposed, e. g.,
against single interaction points [LCS12], [RC13a], distance fields [RC13b], or sphere
trees [KWZ17]. With streamed point clouds, sensor noise filtering and downsampling are
important issues to consider. Methods with streamed point clouds have led to a quali-
tative improvement of model-mediated telepresence applications [XCANS14], since they
allow for the interactive registration of unstructured remote environments, as explained
in Section 2.2.6.

Spatial Partitioning or subdivision techniques have also been applied for managing
and representing object geometries. With them, object space is segmented or embedded
in 3D grids consisting of smaller space cells; these grids are usually uniform (same cell
size in all three directions) and often encoded as hashed look up tables. Each cell in
the grid can point to an object or object part, which can be represented in various
forms: OBB [GLGT05] or AABB trees [PSCM13], bounding planes [AMF16], vertices
or points [SC12], spheres [RMB+08], occupancy values (solid or free space) [MPT99],
distance-to-surface values [XB14], or density values (typical in medical scans)[CCBS11].

A special non-uniform spatial partition often used for point clouds is the k-d tree [LCS12],
[KLR15], which is basically a binary search tree with k depth levels or dimensions. On the
other hand, uniform grids are often arranged in octrees, hierarchical structures in which
each node is divided in eight children of finer resolution. Some collision computation
methods using octrees are: [MPT99], [PSCM13], [HDB+14], and [AMF16]. Moreover,
uniform grids that contain occupancy and distance values are occasionally referred to as
voxelmaps [MPT99].

Implicit Representations consist in scalar fields in which each point x in space is
associated with a scalar or field value, following a locally or globally known relationship
f(x) = 0. In other words, and focusing on the 3D Euclidean space, they are mappings
with the form f : R3 → R. Typical field values comprise density values, occupancy
values, and distance values.

The last type of value corresponds to distance fields, with which for any given point
x its distance to the surface of the represented object can be obtained. Additionally,
iso-surfaces can be implicitly defined with them by fixing the field value. If interior and
exterior spaces can be distinguished in a distance field, it is considered to be a signed
distance field. Furthermore, implicit representations can be discretized using spatial par-
titioning, giving rise to the aforementioned voxelmaps. Although field values in voxelmap

2.3. COLLISION COMPUTATION AND FORCE RENDERING 35

cells are discrete, continuous and smooth responses can be computed for every point x

with local (trilinear) interpolation; usually, this requires processing the scalars in the
neighboring voxels of the queried point.

Several relevant works have been presented on distance fields with applications in
many areas [S+03], [JBS06]. Some of them have focused on data structures for collision
computation [FSG03], [XB14]. Indeed, efficiently implemented distance fields are very
attractive for such time-critical applications, since they provide fast and straightforward
proximity responses, being able to achieve O(1) independently of the complexity of the
represented object.

Parametric Representations can be used to describe complex but highly smooth
surfaces. NURBS (Non-Uniform Rotational B-Splines) are a particular and well known
example of them. These are one of the most used surface data structures in CAD (Com-
puter Aided Design) environments, because of their compact representation, high conti-
nuity, and exact derivation of surface normals [TJC97]. In a parametric representation,
the object is framed in a control mesh constituted by strategic vertices or control points;
for each control mesh patch, well-known basis functions are evaluated and weighted as a
function of mesh surface parameters, and they piecewise define the object surface. Hence,
following the notation of implicit representations, 3D parametric surfaces are mappings
of the form f : R2 → R3, i. e., from 2D parameter space on a control mesh to 3D points
on a surface.

Constructive Solid Geometries or CSGs are formed combining mixed basic shapes
(e. g., boxes, spheres, cylinders, cones, or even Platonic polyhedra) in binary trees using
Boolean operators (e. g., union, intersection, difference); note that those basic shapes are
often defined with closed-form analytical expressions. Additionally, they can be used as
analytically defined BVs without any binary trees [vdB99].

CSGs are common in CAD or solid modeling environments designed for manufac-
turing applications. Not surprisingly, typical modeling actions in those programs (e. g.,
extrusions, protrusions, etc.) are conceived to resemble common operations in traditional
additive and subtractive machining, which in turn, resemble the Boolean operations with
basic volumes that form CSGs. Usually, CSGs lack of explicit features common and use-
ful in polyhedra (i. e., faces, edges, or vertices), but have the advantage of containing
design history is embedded in the tree. Although not usual for collision detection and
haptic rendering anymore, several works have been published using CSGs, e. g., [Zei93]
or [SLY99]. Determining whether a point is inside a CSG is broken down to checking
this point against the underlying primitives and deducing then the answer by following
the correct boolean operations.

Although it is not inherently an object representation, it is necessary bearing the
Configuration Space when describing data structures. This is the space of all three

36 CHAPTER 2. BACKGROUND

translation and three rotation values, i. e., the 6D space defined in R3 × SO(3). For all
feasible relative configurations between the pair of queried objects, all the points leading
to collision or overlap are detected, forming a manifold of 6D points in the configuration
space known as contact space. This structure simplifies the problem of handling two
geometries to handling only one point against the new computed 6D geometry (the
contact space itself), but at the cost of increasing the dimensionality of the operation
space or the complexity of the processed geometry (e. g., number of vertices).

In addition to collisions, generalized penetrations (with translational and rotational
components) can be computed in the configuration space [ZKM07], even artificially forc-
ing continuous penetration values [ZKM14]. The construction and refinement of the
contact space has also been accelerated with support vector machines [PZM13], usual in
machine learning.

The contact space is strongly related to the Minkowski sums, or more precisely, the
Minkowski subtractions [GJK88]. These are computed by adding to each point contained
in one geometry all the mirrored points (i. e., negative) of the other geometry. This struc-
ture has interesting applications in collision detection and path planing, and therefore,
it has been widely exploited, as further explained in Section 2.3.2.2.

Typical structures used for computing deformations are particle or mass-spring
systems [CKB03] and tetrahedron meshes [SSB13]. It is worth to mention that these
data structures used for computing deformation are usually not employed in collision
checks. Instead, they are commonly embedded in other representations introduced so
far, such as BVs, which need to be quickly updated during the interaction. Efficient
methods have been proposed for updating them, such as predicting for each vertex the
trespassing of its enclosing BVs according to their velocity, and modifying in each time
step the BVs of which violation is most imminent [ZW06].

Similarly, rather than using the structures employed for deformation computation,
intermediate representations are processed for force computation. These are basically
abstractions of the complex environment (e. g., as tangential planes) located closely to
the operator’s hand or tool pose [AKO95]. These local simplifications can be force
transfer model linearizations [GO09] or compliant spring-damper mechanisms [PND+11].
Whereas slower loops take care of simulating deformations, update and processing of
collision structures and intermediate representations needs to happen at 1 kHz if haptic
interaction is to be guaranteed.

2.3.2 Collision Computation

Collision computation comprises the processes of detecting contacts and providing mea-
surable witnesses that describe them. It is often the bottleneck in physically-based rigid

2.3. COLLISION COMPUTATION AND FORCE RENDERING 37

body simulations, and it precedes to collision response, which deals with force render-
ing and motion simulation. The following sections introduce most common methods for
collision computation from the literature, which are strongly dependent on the object
representations explained so far.

2.3.2.1 Collision Output

A pair of independent rigid bodies A and B are disjoint if they do not share any space:
A ∩B = ∅; or, otherwise, colliding : A ∩B 6= ∅. This collision state is of overlap, if they
share the same volume space, or of surface contact, if their surfaces are touching without
any shared volume space. Furthermore, collision between them can be determined in
several stages or levels of information:

• Binary collision output, which simply states whether the pair of objects A and B
is colliding or disjoint. Considering objects are commonly represented by discrete
elements or features fA and fB∗, even a binary collision check can have quadratic
complexity in a worst case scenario where each feature of one object must be tested
against all the features of the other object [Cha84].

• If objects are disjoint, the Euclidean distance d between them or the shortest path
length for surface contact can be determined:

d(A,B) = min d(fA, fB), ∀fA ∈ A, fB ∈ B, (2.2)

with the feature pair that realizes (2.2) being the closest feature pair. If features
were points, d(fA, fB) =

»
‖fA − fB‖2. Although the closest features are not nec-

essary for determining the distance between objects (e. g., when distance fields are
used), these are interesting for many applications and have been computed already
by the earliest algorithms (e. g., [GJK88], [LC91]). In general, there might be
several closest feature pairs (e. g., in the case of two parallel planes facing each
other); in this respect, the distance vector formed by them is not inherently con-
tinuous in time and the distance magnitude is not differentiable. Since path and
motion optimization algorithms often require differentiable distance and constraint
functions, several proximity computation methods with continuous gradient out-
put have been developed. Some of them use strictly convex geometries introduced
in Section 2.3.1, such as sphere combinations [ZK12], torii, or convex hulls inflated
by the previous [EMK07]. Others tackle the problem by projecting the vertices

∗The type of feature is given by the chosen object representation; for instance, a polygonal mesh is
constituted by vertices, edges, and faces, whereas a bounding volume hierarchy (BVH) has its BV nodes
as features.

38 CHAPTER 2. BACKGROUND

of the configuration space onto a hypersphere to make distance and penetration
computations close to the real ones but continuous and differentiable [ZKM14].

• If A and B are colliding, the penetration depth p that accounts for the size of
their overlap is defined as the minimum path length necessary to bring the objects
to surface contact:

p(A,B) = min ‖p‖2 | (A+ p) ∩B = ∅, (2.3)

considering one object (B) still for the sake of simplicity, and without loss of gen-
erality. Although this classical definition is used by many works (e. g., [KLM02],
[KLM04]), it is effective only in the translational space. Other definitions have also
been provided, such as the generalized penetration [ZKM07], which considers the
rotational space as well. Analogous discontinuity properties as with the distance
hold for the penetration depth, especially for the points lying at the medial axis of
the penetrated object [TMOT12].

• Penetration volume is another measure that accounts for the size of the over-
lap, Vol(A ∩ B). In contrast to penetration depth, this metric has been less ex-
ploited, probably because it usually requires additional computations; common
methods include summing up volume slices between penetrating surface features
[HS04], [FBAF08], or directly using volumetric elements that are checked for over-
lap [WZ09a].

• Finally, the time of impact can be provided. This value is characteristic of
continuous collision detection (CCD) methods which consider continuous motion
rather than static configurations sampled at each time stamp. If an object pair
transitions from a disjoint state (instant t0) to a collision state (t1) in two successive
time stamps, the exact collision instant is given by

t = min t ∈ [t0, t1] | A(t) ∩B = ∅, (2.4)

again, considering one object (B) is still. In addition to the time of impact, the
relative object configuration on collision (A(t), B) is interesting in order to simulate
realistic overlap-free interactions. CCD methods that approximate the collision
time and configuration are explained in Section 2.3.2.3.

Collision computation leads to the processing of further response phenomena, such
as forces, motion, deformation, and topology modification (i. e., material subtraction).
These will be reviewed in Section 2.3.3.1.

2.3. COLLISION COMPUTATION AND FORCE RENDERING 39

(a) (b) (c)

Figure 2.6: Common methods in collision and distance queries. (a) The Separating Axis Theorem
(SAT) states that two convex objects do not overlap if and only if there exists an axis on which the
projections of the objects are disjoint; in contrast to axes e1 and e2, axis e3 has disjoint projections,
thus objects A and B are not colliding. (b) The distance from origin O to the Minkowski subtraction
A⊕−B determines the distance (d) or penetration between objects A and B. (c) Exterior Voronoi
regions of all the features (vertices, edges, faces) of object A are shadowed; the closest feature fB of
object B must be (at least partially) in the exterior Voronoi region of the closest feature fA of object
A (blue), and vice versa; Closest features are tracked on the exterior Voronoi tesselation following
the direction of the cell boundaries that are violated.

2.3.2.2 Basic Methods

This section explains some essential theorems and approaches that have had a significant
impact in the field of computational geometry and collision detection, and which have
a direct application in collision computation; Figure 2.6 illustrates them. Note that
all these and similar basic methods are commonly broken down to algebraic operations
between basic elements in Euclidean geometry, such as points, lines, planes, or surfaces
expressed in closed form. These operations are considered prior knowledge and are not
reviewed in this chapter; in this respect, the interested reader might consult [AM01],
[Moe97], and [Ebe99].

Separating Axis Theorem (SAT)

The Separating Axis Theorem (SAT) states that two convex objects overlap with each
other if and only if there exits no axis on which their projections are disjoint ; or, in
other words: two convex objects do not overlap in case there exists an axis on which their
projections are disjoint (see Figure 2.6(a)). An axis with disjoint projections accounts
for the existence of a separating plane that fences off the two convex objects in two
separate half-spaces. The application of the theorem consists in finding a separating axis
among relevant candidates; in practice, for 3D convex polyhedra it suffices to evaluate
the projections on the directions of face normals and their cross products.

This theorem is widely used in collision detection, especially with overlap checks be-

40 CHAPTER 2. BACKGROUND

tween simple BVs, such as OBBs [GLM96] or AABBs [vdB97]. The amount of candidate
axes to be checked increases quadratically with the number of features, thus, it has been
proposed to reduce the pool of candidate axes to those which lead to highest probabil-
ities of correct test results [vdB97]. The notion of the separating plane inherent to the
SAT has also been applied to more complex convex geometries using machine learning
techniques [Zac00]. The idea consists in incrementally improving a plane which would
separate the vertex set of one convex object from the other’s with a perceptron; the
method stops if the plane is found or after a maximum number of iterations. Although
not as efficient as the previous ones, linear programming or optimization approaches can
be used to obtain the coefficients of the separating plane [LM04].

Minkowski Sums, Minkowski Subtractions

The Minkowski subtraction of two convex objects A and B is the Minkowski sum of one
object (A) and the mirrored of the other (−B), defined as

A⊕−B = {a− b : a ∈ A,b ∈ B}, (2.5)

where a, b are primitive features (e. g., vertices) of objects A, B, respectively (see Fig-
ure 2.6(b)). This structure is called Configuration Space Obstacle (CSO) in the literature
and has two important properties:

(i) convex objects A and B overlap if and only if the origin point O of the space in
which they are defined is inside their Minkowski subtraction or CSO,

(ii) the distance from the origin O to the surface of the CSO is either the distance or
the penetration between A and B, depending on whether O is outside or inside the
CSO.

Hence, the problem of collision and proximity computation between two convex objects
(A and B) is reduced to checking a point against the convex hull that encloses the
CSO. The popular Gilbert-Johnson-Keehrti or GJK algorithm [GJK88] exploits these
properties to determine iteratively the distance between convex polyhedra. The approach
is similar to the well-known Dantzig’s simplex algorithm [Dan63] employed in linear
programming. First, a small subset of witness or support points located on the surface
of the convex set is defined. The key idea is to iteratively update this subset walking on
the surface until the solution point is found. The walking direction is given by the point
in the subset which minimizes the distance to the origin.

Several enhancements have been applied to the original GJK algorithm, such as,
using hill-climbing by starting with the vertex that yielded the solution in the previous

2.3. COLLISION COMPUTATION AND FORCE RENDERING 41

cycle [Cam97], support of several geometric shapes in addition to polyhedra (i. e., boxes,
cones, spheres, cylinders) [vdB99], and computing penetration depth [vdB01].

Feature Tracking Based on Exterior Voronoi Marching

Given a convex hull A, the exterior Voronoi region of any of its features fi (i. e., vertex,
edge, face) located on its surface ∂A is the set of exterior points that are closest exclusively
to that feature; thus, the exterior Voronoi region of fi in 3D space can be formally defined
as

V (fi) = {x ∈ R3, x /∈ A : d(x, fi) < d(x, fj); ∀i 6= j, ∀fi, fj ∈ ∂A}, (2.6)

being d(·, ·) the selected distance function (usually the two-norm for the Euclidean dis-
tance); Figure 2.6(c) illustrates the case for a triangle.

The pair of closest features of convex polyhedra has an interesting property: each
closest feature must be fully or partially contained by the exterior Voronoi region of its
closest pair. The popular Lin-Canny (LC) algorithm [LC91] exploits that property for
detecting and tracking closest features. In a preprocessing step, a mesh of features is
constructed so that each feature is aware of its direct neighbor features. Additionally,
exterior Voronoi cells are computed for each feature by setting orthogonal planes to the
face features. In runtime, closest pairs of features are iteratively determined by marching
on the exterior Voronoi regions. If the candidate pair determined in the previous iteration
satisfies the aforementioned property for closest features, the candidate features are the
solution and the seed or initial guess for the next cycle. If not, a new candidate pair is
defined by selecting neighbor features; this selection happens following the direction of
the Voronoi cell boundaries (planes) that are violated by any of the candidate features.
Since object configurations change minimally from frame to frame, a greedy walk in the
neighborhood of the current approximation leads to a local solution, which turns out to
be global due to the convexity of the polyhedra. Hence, the method is able to achieve
fast and near to constant computation times after initialization.

The approach works with non-convex geometries after applying convex decomposi-
tion (see, for instance [GME+00]), but with the cost of quadratic complexity on the
number of convex parts. Similarly, multi-resolution hierarchies of convex hulls have been
successfully used with the method [EL00]. A significant improvement of the method was
presented with the V-Clip (Voronoi Clip) algorithm [Mir98]. The key idea on which the
method builds up consists in clipping parametrized candidate closest edges with planes
of the Voronoi regions. Depending on the resulting intersection points, further decisions
on marching directions can be taken, converging ultimately to the solution. This im-
provement avoids iteratively computing distances between features or performing unsta-

42 CHAPTER 2. BACKGROUND

ble divisions, which boosts computational speed and robustness. Moreover, penetration
computation is also supported. Altogether, the LC algorithm and its derivates have been
and are still widely employed, as recorded in Table 2.1 and Table 2.2.

Other Basic Methods

A large body of works uses implicit representations for collision and proximity queries,
and to lesser extent, parametric geometry descriptions. As introduced in Section 2.3.1,
implicit fields map space points x to scalar values through a global or local field function
f(x) = 0 – the most common scalar distance values are considered in this section. Given
f(x), it is straightforward evaluating the collision state and distance/penetration of a
point. Instead, the most complex tasks consist in (i) selecting the relevant features that
are checked in the field function, and (ii) building or locally computing the field function
itself.

For the first task, the aforementioned methods can be used, often in combination
with Bounding Volume Hierarchies (BVH) explained in Section 2.3.2.5. For the second,
several methods have been presented:

• If f(x) is a global closed-form function, no additional computations must be carried
out to use the field function [ST97].

• When regular grids (e. g., voxelmaps) are used to discretely store distance fields,
linear [SSeS14a] or trilinear interpolation [BJ08] can be used to locally approxi-
mate the distance field function f(x). That requires fast and robust access to the
neighbor cell values. Many works based on the principles of the widely extended
Voxelmap-Pointshell (VPS) algorithm [MPT99], [RPP+01], [MPT06], follow these
methods, such as the approach presented in Chapter 3. In these approaches, points
sampling the surface of an object are tested against the discrete implicit distance
field of the other object.

• Depth maps computed from different perspectives (e. g., three orthogonal direc-
tions) also implicitly encode a discrete field that can be locally processed to render
iso-surfaces [KLR15]; similarly, support planes or height maps set on the faces or
vertices of the convex hull of the object have also been proposed [Mou15]: each
discretely sampled point of a support plane maps to a distance value related to
the proximity of object’s surface, and, in runtime, point penetrations are obtained
after evaluating them in support plane mappings.

• In the case of point clouds, it is possible to fit planes or surfaces in regions close
to the interaction tool, and to build distance functions to them [KZ04]; similarly, a

2.3. COLLISION COMPUTATION AND FORCE RENDERING 43

weighted average of these points can be computed to obtain the local approximation
to the scalar field function and its gradient [LCS12]. In order to narrow down the
subset of points close to the tool, several techniques have been proposed, such as
sphere trees [KZ04], k-d trees [LCS12], or, in the case of streamed point clouds,
simply accessing the points inside the projection of the tool’s bounding box on the
depth map [RC13b].

Note that an important property of the field function is that its gradient ∇f(x)

accounts for the normals of its iso-surfaces (i. e., geometric loci of same field value); thus,
the closest path to collision should be aligned with ∇f(x).

As far as parametric representations are considered, it is common exploiting the con-
trol mesh as a first step for collision queries, either by projecting interaction points on
it [TJC97], or by using BVs that enclose mesh parts [JC98]. When closest or collid-
ing mesh points are found, these can be easily mapped onto underlying smooth sur-
faces [TJC97], and, afterwards, tracked in function of the object motion [NJC99]. To
that purpose, first, the movement of the endeffector point in the Euclidean space can be
projected onto the tangent plane of the parametric surface; this projection can be then
used to compute a first order approximation of the parametric velocity of the previous
closest point, which leads to the current closest point on the surface.

2.3.2.3 Discrete versus Continuous Collision Detection

The techniques for collision and proximity queries introduced so far provide an output
given a static or discrete configuration for a pair of objects A and B. However, it is
possible to detect collisions for a whole cycle or the time period between two discrete
instants – this is done by continuous collision detection techniques, sometimes referred
to as spatio-temporal or 4D collision computation methods. These algorithms provide
the exact impact time, as defined in Section 2.3.3.1, as well as the impact or surface
proxy configuration. In general, continuous methods consist in discrete collision queries
that are applied along a trajectory or a time interval defined by the initial and a target
pose or instant. Therefore, while they make it possible not to miss any collision, they
also tend to be computationally more expensive. Most approaches can be classified as
methods using (i) swept volumes, (ii) motion interpolation and iterative advancement,
(iii) point motion parametrization.

Swept volumes consist in spaces that simple BVs (e. g., AABBs or spheres) might
occupy along a period of time. These can be computed in runtime if the initial and target
poses of the object they encapsulate are known [Mir00], or by predicting the parabolic
flight given their pose and velocity [DZ93]. Swept volumes can also be pre-computed,
common when collision avoidance is performed with the links of robotic manipulators

44 CHAPTER 2. BACKGROUND

and their environment [HDB+14]. In general, collision computation with swept volumes
is very conservative: when a pair collides, their underlying BVs do not need to necessarily
overlap within the analyzed time period.

Methods that apply motion interpolation bring iteratively objects close to each
other with an interpolated motion which comprises translation and rotation and connects
given initial and final states [ZLK06]; this interpolated motion can be linear [TMOT12]
or even a screw-like [RKC02a]. Each approaching step can be defined by applying subdi-
vision and interval bisection along the trajectory [CCBS11], or targeting configurations
of expected collision [TKM09]. At each step, discrete collision detection is performed;
in order to alleviate the computational load, this is preferably done by refining the ac-
curacy with the number of performed iterations [TKM09] or testing prioritized features
each time [CCBS11].

Interval arithmetics [RKC02a] is an elegant approach for tackling continuous colli-
sion detection with motion interpolation: instead of computations with floating point
numbers, intervals of values are employed, being all basic (arithmetic) operations with
intervals well defined. Once a pair of features (defined with initial-target value inter-
vals) is found to be colliding, interval subdivision can be carried out to refine the impact
moment.

Finally, motion parametrization is usually applied to points and vertices. This
can be done by describing the trajectory of a point as a function of time, given its initial
pose and velocity [MW88]; if two sets of vertices collide, the system of their parametric
representations must have a real root for the time parameter. Another approach consists
in testing for collision the line segment formed by the initial and target positions of
the analyzed point. This method has been used for single interaction points [GLGT05],
[HBS99], [RLB10], and for point clouds [XB17].

Altogether, continuous collision computation is common when constraint-based force
rendering methods (explained in Section 2.3.3.2) are applied. Due to their computational
load, it is also common to perform continuous collision detection in a slower separate
loop and to resolve forces with a faster thread that accesses available contact feature
information (e. g., see [ORC07]).

2.3.2.4 Multibody Scenarios (Techniques for the Broadphase)

Approaches for multibody scenarios or environments with several objects are commonly
known as broadphase techniques. These employ similar methods explained so far (mainly
for the narrowphase), but usually work with coarser resolutions that seek to determine
only the likely colliding object pairs.

In worst case, collision computation in a multibody environment can reach a O(n2)

2.3. COLLISION COMPUTATION AND FORCE RENDERING 45

complexity, in the number of objects. However, in practice, considering common large
(sparse) scenarios (e. g., [Mir00]), rarely do all objects collide against each other. Sim-
ilarly, for articulated mechanisms (e. g., [MW88], [PM11]), collision pairs can be auto-
matically sorted out (e. g., contiguous links of a robot).

A known method for handling the general multibody case is the sweep and prune algo-
rithm [CLMP95], which has been widely employed in the community (e. g., by [HLC+97]
and related). This approach encapsulates the objects from the scene in AABBs that
are continuously updated with their movement. Then, following the SAT (see Sec-
tion 2.3.2.2), intersections between those BVs are detected by projecting them on the
three coordinate axes; these projections are basically intervals which are stored in incre-
mentally sorted lists, while registering all overlaps. If a pair yields overlap in all three
coordinate axes, exact contact detection can be performed in the narrowphase. The
approach runs in O(n + m), being n the objects and m the overlapping AABBs; high
numbers of objects can be handled, but keeping low densities to ensure low m values.

Other algorithms employ continuously updated priority queues in which each element
points to a pair of objects that might collide, ordered according to their expected impact
time [DZ93], [Mir00]. Additionally, spatial partitioning or subdivision has been exploited
to filter out non-colliding object pairs [HDB+14]. This consists in marking each space
regions or cell with the objects within it; cells with several object occupations lead to all
object pairs to check.

This thesis also presents methods to tackle multibody scenarios in Section 5.2 from
Chapter 5.

2.3.2.5 Acceleration Strategies

Due to its complexity, collision computation tends to become a bottleneck in the sim-
ulation pipeline. Several methods have been proposed to speed it up and this section
collects the most important ones.

Bounding Volume Hierarchies (BVH)

Bounding Volume Hierarchies (BVH) consist of nodes of BVs that are ordered in trees,
as illustrated in Figure 2.7. Each node encapsulates a part of the object, and its size
depends on the level of the tree where it is located: the root node bounds all the ob-
ject, whereas nodes close to the leaf level contain smaller object parts or limited sets of
primitive features. The nodes are connected with links that establish children and parent
relationships, so that each parent node bounds all object parts contained by its children
recursively.

46 CHAPTER 2. BACKGROUND

Level III (leaves)Level IILevel I (root)

1 2

3

4

6

5

7

A B C F
GD

E

1

2 3

4 5 6 7

A

B C

D E F G

D4 D5 E4 E5 D6 D7 E6 E7 F4 F5 G4 G5 F6 F7 G6 G7

B2 B3 C2 C3

A1

Bounding Volume Hierarchies (BVH)

Bounding Volume
Test Tree (BVTT)

depth-first
breadth-first

Figure 2.7: Bounding Volume Hierarchies (BVH) of the Stanford bunny and the Utah teapot; in
the shown example, BVHs use spheres as node BVs and are binary trees, i. e., they have two children
per node. Root nodes (level I, nodes 1 and A in red) contain all children nodes and primitive mesh
parts. Leaf nodes, here in level III, point to primitive mesh parts. A BVH can be created bottom-
up if leaf primitive features are clustered recursively, or top-down if the root BV is split recursively.
The Bounding Volume Test Tree (BVTT) combines one-by-one nodes from two BVHs and it can
be traversed depth-first if whole branches are evaluated for collision in a row (e. g., left to right), or
breadth-first if each level is checked from root to leaf level.

Thanks to the BVHs, conservative proximity and collision checks between BV nodes
are done recursively and refined progressively, determining very fast regions in the un-
derlying objects that might be close to each other or in collision. For instance, in the
example of Figure 2.7, if the distance between two sphere nodes is greater or equal than
the current distance approximation, the sets of descendant sphere nodes can be culled,
otherwise, the children nodes must be further examined. Once leaf nodes are reached,
primitive features can be checked using the techniques explained in Section 2.3.2.2.

BVHs have several relevant features:

• The shape of the nodes can be any of the BVs introduced in Section 2.3.1, such as
spheres [Qui94], [Hub96], swept spheres or capsules [LGLM99], AABBs [CLMP95],
[vdB97], OBBs [GLM96], k-DOPs [KHM+98], [Zac98], and CHs [GME+00]. As
mentioned, a trade-off between fitting and testing efficiency must be found, with
the simplest BVs usually being the preferred ones.

• A defining property of the tree is the degree or branching factor, i. e., the number
of children nodes each (parent) node has; this value influences the height of the
hierarchy, i. e., how many levels it has from the root node downwards, and how
many nodes of a given resolution each level has. Optimum values for the degree

2.3. COLLISION COMPUTATION AND FORCE RENDERING 47

have been discussed [KHM+98], with binary trees probably being the most common
ones, i. e., trees with degree 2.

• The building approach can be bottom-up or top-down and it can affect the distri-
bution of the nodes. The former starts with leaves or primitives and builds upwards
grouping nodes close to each other taking advantage of any local information. The
latter starts with the highest root node that encapsulates the whole object, which
is then recursively split into smaller nodes; typical splitting heuristics include even
or isotropic volume or primitive distribution along directions aligned with the ones
determined after principal component analysis (PCA). It is worth to mention that,
whereas each node’s BV can fully contain all its children and leaf primitives, in
wrapped hierarchies [WZ09b] each BV contains exclusively all primitive leafs, with-
out conservatively enclosing children node BVs. Thus, tighter representations are
achieved.

• A fundamental characteristic is how the runtime traverse is done. Commonly, the
Bounding Volume Test Tree (BVTT) is defined as the tree composed of nodes that
combine the nodes of the two tested BVHs. The BVTT has the same amount of
levels as the BVHs, but the number of nodes in each level is the product of the
nodes of the BVHs in that level. Checking two BVHs implies traversing the BVTT,
and the most common approaches for that are depth-first and breadth-first. The
former starts in the root and explores one branch after the other, each of them as
deep as possible. The latter starts also in the root but visits all the nodes in a
level before jumping to the next level. While the first focuses in specific regions at
a time, the second refines the sampling on the object gradually reaching the leaf
nodes only at the end.

The cost of computing collisions with BVHs (i. e., the cost of traversing the BVTT)
has been defined to be [GLM96], [KHM+98]:

TBVTT = NvCv︸ ︷︷ ︸
BV check

+ NpCp︸ ︷︷ ︸
primitive check

+ NuCu︸ ︷︷ ︸
BV update

(2.7)

with N being the number and C the unitary cost of each of the types of checks or
updates. Clearly, all terms are in conflict; for instance, a tight BV decreases Nv and
Np, it but increases Cv and potentially Cu. In general, the appropriate number of BV
checks (Nv) can significantly decrease the number of more costly primitive checks (Np).
However, worst case scenarios in which most of the surface is checked for proximity or
collision lead to higher computation times than in situations in which primitive features
are checked alone.

48 CHAPTER 2. BACKGROUND

BVHs make possible Level-of-Detail (LoD) ormulti-resolution checks, especially when
breadth-first traverse is employed. If for each node a simplification or a sample of the
underlying primitive features is stored (e. g., a simplified mesh or a set of points), each hi-
erarchy level represents an approximation of the original object with a different resolution.
Then, nodes can be further refined if the details of the children are perceptible [OL05],
or graceful degradation [BJ08] in time-critical situations. This strategy requires refining
the collision output every node check.

Spatio-Temporal Coherence

Under sampling frequencies of 1 kHz, the configuration of objects will change minimally
from frame to frame – in other words, objects that are far away will remain so, and regions
in collision will probably still collide for successive time stamps. If not an acceleration
technique, this notion of spatio-temporal coherence is at least a fundamental assumption
with strong practical applications:

• Queues of object, node, or primitive pairs to be checked can be priorized or ordered
according to their expected time to collision [LGLM99], [Mir00], [MPT06]. In the
lack of this time value, it can be approximated by assuming an upper bound or
maximum velocity and the current distance to collision. If that time lasts longer
than the cycle time itself, the pair can be safely neglected; when the expected times
are correctly updated, many superfluous checks are avoided.

• Previous colliding objects, nodes, or primitive features can be the seed or start-
ing point for each computation cycle. The LC algorithm (see Section 2.3.2.2) is
able to achieve close-to-constant computation times [LC91]. Similarly, front track-
ing [EL01] techniques have been used for BVHs; these consist basically in starting
the traverse with nodes from a lower level to which they were previously colliding,
instead of the root node itself.

GPU versus CPU

In the past decade, a shift in the focus of processor architectures has been happening:
parallelism is increasingly sought (achieved with Graphics Processing Units or GPUs)
in contrast to the more traditional single core clock rate approaches (related to Central
Processing Units or CPUs). That shift of focus should be regarded considering the devel-
opment of General Purpose GPU (GPGPU) frameworks, such as CUDA∗ or OpenCL†,

∗https://www.khronos.org/opencl/
†https://developer.nvidia.com/cuda-zone

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone

2.3. COLLISION COMPUTATION AND FORCE RENDERING 49

which have provided with abstraction interfaces for leveraging the power of GPUs for
computations not necessarily related to graphics.

Although the methods explained so far are in theory agnostic with respect to the used
architecture, GPGPU implementations do require specific designs that take into account
the particular architectural and memory hierarchy characteristics of GPUs. In general,
data structures need to be built in such a way that different parts of them (i) can be
concurrently loaded in relatively small memory portions (compared to CPU implementa-
tions), and (ii) independently processed by threads that run relatively simple functions,
known as kernels. Therefore, the use of hierarchical representations is a challenge.

Several works have started exploiting highly parallel architectures. Given the afore-
mentioned technological constraints, some approaches define kernel functions for each of
the (or selected) primitive features of the moved object; in these processes the features
are tested against the environment, e. g., points against distance fields [ZLSWF13] or
spheres against streamed point clouds [KWZ17]. Other works dealing with BVHs cluster
queries that correspond to adjacent configurations in the same process [PM11]. In order
to take advantage of the full capacity offered by GPUs, smart workload balancing tech-
niques applied to BVHs have also been presented [LMM10]. In that contribution, tasks
or instantiated kernels, which process small work units consisting of node pairs to be
tested, are launched concurrently in separate cores. The result of processing each work
unit may be a new set of children node pairs to be checked, which are added to the work
queue of the task. Every task keeps its own work queue, which is accessible only locally,
without needing synchronisation or coordination between tasks. Meanwhile, a balancing
is performed between cores with a global counter.

Probabilistic Approaches

Given the computational cost of collision detection, some methods opt for avoiding
to check features or elements with a low likelihood of overlap. As mentioned in Sec-
tion 2.3.2.2, the number of axis tests has been efficiently decreased for the SAT method
applied to AABBs [vdB97]. More recently, probabilistic overlap tests with BVHs which
have collision confidence values as output have been used [PPM17]. For that, upper
bounds of multidimensional Gaussian probabilities for collision are derived, since dis-
tribution densities cannot be obtained in a closed-form, and approximating them with
Monte Carlo methods is computationally too expensive for realtime applications. This
and similar methods could be of interest in several robotic applications.

Moreover, machine learning methods that incrementally compute contact configura-
tion spaces by minimizing sampling have been exploited [PZM13]. This can be done by
iteratively refining the resolution of the contact configuration space with support vector

50 CHAPTER 2. BACKGROUND

machines (SVM), which are basically the samples used to determine the hyperplane that
separates colliding and non-colliding regions in the highly dimensional sample space; in
other words, SVMs are the key samples that are close to the contact boundary and there-
fore implicitly define it. In the refining process, given a configuration which needs to be
tested, the nearest sample neighbors are processed to find the closest one. This closest
sample is then projected on the contact space approximation defined by the support
vectors, leading to a contact configuration.

Probabilistic approaches are not restricted to collision computation. Hou and Sou-
rina [HS16] presented a predictive force filter for smooth haptic rendering. The computed
contact forces are continuously directed to a buffer rather than to the user. In a parallel
thread, linear regression is applied on the last 300 values of the buffer to predict the next
force and torque vectors, which are subsequently smoothened using a B-spline function
also aware of previous prediction values.

2.3.3 Collision Response: Force Rendering

Once collisions are registered, contacts must be resolved by simulating body motion
and/or rendering contact forces to the user who is moving the object in contact. With
respect to the collision computation process, these computations can occur (i) concur-
rently to it (e. g., [MPT99]), (ii) sequentially after it (e. g., [Mir96]), or (iii) in parallel
processes separate from it (e. g., [OL06], [ORC07]).

This third group of modular or multirate approaches decouple collision and force com-
putation with asynchronous threads to tackle the challenging 1 kHz frequency required in
haptics. Linearized contact force models that speed up the display process can be used,
for instance, analytical Taylor expansions of force expressions which predict the forces in
the haptic thread (running at 1 kHz) using the slower but more accurate force and force
gradient values computed in the contact thread [OL06].

Independently of the execution instant in time, this section presents the most com-
mon collision response methods from the literature, focusing on (kinesthetic) force
rendering.

2.3.3.1 Overview of Output in Collision Response

Resolving collisions can produce the following outputs or effects:

• Contact forces and torques are the most important values necessary for kinesthetic
haptic feedback. As already mentioned in the overview of Section 2.3, the contact
resolution principle or paradigm and the number of degrees-of-freedom (DoF) (three

2.3. COLLISION COMPUTATION AND FORCE RENDERING 51

for forces, six for forces and torques) are defining factors. These properties are
elaborated in the following Section 2.3.3.2 and Section 2.3.3.4, respectively.

• The computation of the constrained movement of the manipulated colliding object
(tool) and motion of other objects in the environment is essential to build a plausi-
ble interaction. While the second is usually solved by integrating the Newton-Euler
equations of motion (see Section 2.2.3), the first refers to an inherent problem in
collision computation: in the physical reality objects do not overlap upon collision,
but in simulations overlaps are often unavoidable to detect collisions. This issue
is tackled with constraint-based or virtual coupling algorithms, presented in Sec-
tion 2.3.3.3 and Section 2.3.3.2, respectively.

• Physical contact effects, such as friction, force transients, texture, or shading, in-
crease the contact realism and enhance the overall haptic experience. Indeed, in
the physical reality, surfaces are not perfectly slippery, transitions from free to con-
tact states are markedly salient, and material properties like roughness are clearly
perceptible. These topics are reviewed in Section 2.3.3.5.

• Object deformation and topology modification (e. g., due to material subtraction /
destruction with holes created interactively) are realistic effects that can be pro-
duced by collisions between deformable and destroyable objects. Although not
in the focus of this thesis, haptic rendering works dealing with them are briefly
explained in Section 2.3.3.6.

• Finally, multimodal effects that provide collision feedback with visual, audio, or
vibrotactile cues can be used to augment collision awareness or display contacts in
the absence of appropriate kinesthetic haptic feedback devices. These effects have
already been discussed in Section 2.2.2.

2.3.3.2 Three Force Rendering Paradigms

Rigid body simulation and force rendering methods are often classified into three paradigms
depending on the used contact model∗:

∗See, for instance, the argumentation given by [CSC05], [WZZX11], [WZZX13], or [YWZX15] to this
respect. However, it is noteworthy that hybrid approaches appear commonly, thus, that classification into
those three categories should not be taken strictly. Interestingly, the seminal work in [Bar89] classifies
contact simulation methods as penalty-based and analytical (analogous to constraint-based). Along these
lines, the more recent survey in [OGL13] distinguishes also only soft constraint (i. e., penalty-based)
and hard constraint (i. e., constraint-based) methods in haptic rendering, providing an elegant formal
description of each paradigm.

52 CHAPTER 2. BACKGROUND

• Impulse-based methods modify or correct the velocity of the colliding object by
applying small impulses (distributed along several cycles) to prevent object overlap.
They follow the principles of energy and momentum conservation and can be often
modeled with the equation of the coefficient of restitution e, which evaluates the
elasticity of the collision in terms of the velocities (ẋ) of the colliding objects (A,B)
before and after the collision:

‖ẋA − ẋB‖2,after
‖ẋA − ẋB‖2,before

= e ∈ [0, 1]. (2.8)

• Penalty-based methods approximate constraints or contact forces by penalizing
constraint violations in their normal directions (n) with spring forces that increase
with the penetration value (p) or a similar penalty metric, such as overlap volume;
they cannot avoid overlaps and lead to softer contacts, but are usually easy to im-
plement and computationally inexpensive. Thus, the penalty force fP with stiffness
kP can be modeled in general as

fP =
∑
i

fi =
∑
i

kPpini. (2.9)

• Constraint-based methods impose rigid constraints accurately to the body config-
uration and/or dynamics so that no inter-penetration between objects occurs; in
other words, the configuration of the object is optimized subject to the unilateral
collision constraints. Usually, these methods are more complex and computation-
ally expensive, but lead to stiffer and more realistic force values. Once the trans-
formation xVC that represents the difference between the constrained (optimized,
in contact) and unconstrained (original, overlapping) is found, the constraint force
can be computed with the appropriate stiffness (kC):

fC = kCxVC. (2.10)

Damping terms proportional to the velocity can be added to the force models of each
paradigm. Furthermore, torque values with respect to the object origin can be computed
as the cross product between the lever distance from the force application point and the
force itself.

In comparison to impulse-based approaches, notably more penalty-based and constraint-
based methods have been published in the last years; this work itself presents the defi-
nitions and implementations of a penalty-based haptic rendering algorithm in Chapter 3
and constraint-based method in Chapter 4. Each of the chapters provides a deeper re-
view of related works concerning each paradigm and the developed algorithms. For a

2.3. COLLISION COMPUTATION AND FORCE RENDERING 53

(a) Object B will
collide with A

(b) Penalty-based
force computation

(c) Constraint-based
force computation

B

A Moved
with device Device / Handle

Proxy

Figure 2.8: Schematics of penalty- and constraint-based haptic rendering approaches. Penalty-
based methods require object overlap in order to compute forces out of an intersection metric (e. g.,
penetration, volume, etc.). On the other hand, constraint-based approaches restrain the virtual object
to the contact surface upon contact and the forces are determined from the difference between the
device pose and the constrained virtual object. Therefore, whereas the foremost important task for
penalty approaches consists in computing the intersection magnitude, for constraint-based methods,
the computation of a realistic constrained movement of the virtual object is the major process. In the
constraint-based approaches, the unconstrained (xc) and constrained (xc) motions are distinguished,
as well as the difference between both (xVC).

schematic though technical understanding of the differences between both paradigms,
consider Figure 2.8.

One of the first notable examples of impulse-based approaches was presented by
Mirtich [Mir96]. In it, after tracking closest features with the LC algorithm [LC91]
(see Section 2.3.2.2), micro-impulses are applied to colliding pairs. These are modeled as
differential equations and evaluated with local contact and object properties (e. g. relative
velocity on contact point or mass distribution, respectively). Altogether, all contact types
are unified (i. e., colliding, rolling, sliding, resting), easing the implementation.

Later, Constaninescu et al. [CSC05] developed a hybrid contact rendering method
which implements impulsive and penalty forces; the first paradigm is applied when the
objects move against each other (increasing overlap), whereas the second one is for rest-
ing cases or when objects move away from each other. The impulsive forces lead to an
underdetermined system (i. e., more variables than equations) which is tackled with the
assumption of Newton’s restitution law, i. e., considering that pre- and post-collision ve-
locities are related with a scalar that accounts for the elasticity of the collision. A similar
approach based on the difference in velocities was presented by Wang et al. [WCW+12]
for a bone-burring application.

Ruffaldi et al. [RMB+08] also worked with an impulse-based haptic rendering method
applied to implicit sphere trees embedded in voxelized distance fields. The method com-
putes a cumulative impulse from the subset of colliding voxel pairs, considering only

54 CHAPTER 2. BACKGROUND

pairs with a relative velocity that would not resolve the penetration in the next cycle.
This process starts with the pair realizing the largest penetration, for which the first cor-
rection impulse (i. e., necessary velocity change) is calculated; this value is temporarily
integrated for updating the velocities of the colliding voxels, and successive voxel pairs
are then processed iteratively in the same manner.

The use of penalty-based forces modeled as springs on contact points appears in the
earliest rigid body dynamics simulators due to its mentioned simplicity [MW88]. This
model defines implicitly a conservative force field that tries to restore a non-penetrating
state when objects overlap; in other words, the penalty force is the negative gradient of
a penalty energy [TMOT12]. This holds for any penalty metric used, such as penetra-
tion [MPT99] or volume [WZ09a].

Despite the popularity of penalty-based approaches (see Table 2.1 and Table 2.2),
several drawbacks must be pointed out: (i) if not corrected, objects visually overlap
when collision forces are computed, (ii) many redundant contact points lead to an irreg-
ular distribution of the stiffness along all possible directions, resulting in lower effective
stiffness values in order to keep stability, (iii) in some cases it is unclear which piece
of internal volume should be associated with which surface, which might lead to force
discontinuities, and finally, (iv) the pop-through or tunneling effect occurs with thin shells
or non-watertight objects, as mentioned in the overview of Section 2.3.

Several approaches have been proposed to tackle these issues, such as (i) virtual
coupling [CSB95] (explained in Section 2.3.3.3), (ii) weighting the stiffness in all the
directions for each set of contact points to balance its overall distribution [XB16], or
(iii, iv) continuous collision detection (see Section 2.3.2.3). However, there is one way to
work them all out: constraint-based haptic rendering.

Baraff has been one of the first authors to present constraint-based approaches for
contact force and motion computation following a linear programming or optimization
formulation: the idea consists in optimizing object configurations to avoid interpenetra-
tion upon contact; necessary contact forces that lead to them can be determined along
the optimization process or after it. A heuristic method is proposed for solving the
optimization problem in [Bar89], whereas in [Bar94] the task is tackled with a method
based on the Dantzig’s pivoting algorithm [CD68]. Although not suited for haptic update
rates, these works cover all basic dynamic formulations necessary for plausible computer
simulations that are referenced later on in the literature.

Zilles and Salisbury [ZS95] presented the first three-DoF constraint-based haptic ren-
dering method for general polyhedra explored with a single point. In their implemen-
tation, two tool poses are considered: (i) the Haptic Interaction Point (HIP), which
describes the endpoint of the haptic device in the virtual world, and (ii) the proxy or god

2.3. COLLISION COMPUTATION AND FORCE RENDERING 55

object, which follows the HIP but remains constrained to the surface upon contact∗. It is
important to note that, although the user moves the HIP, only the god object proxy is vi-
sualized. First, the pose of the god object proxy is computed as an optimization problem:
the potential energy of the spring between god object and HIP is minimized constraining
the proxy to the three closest face planes detected beforehand. Using Lagrange multipli-
ers, the problem is transformed into a system of linear equations, which resolved, leads to
the coordinates of the god object. Lastly, contact forces are rendered by a spring-damper
system set between the god object and the HIP; this impedance-based force computation
is very common under constraint-based algorithms, which usually spend most resources
in determining the constrained god object pose.

Ruspini et al. [RKK97] applied the method to spherical proxies and polyhedra em-
bedded in sphere hierarchies, and later, Ortega et al. [ORC07] presented the first gener-
alization of the god object method for six-DoF. The major contribution of this multirate
(i. e., multi-threaded) method lies in the simulation of the god object, i. e., in computa-
tion of the proxy pose. To that purpose, Gauss’ least constraints principle [Gau29] is
used. A rigid body under no constraints will follow the regular Newtonian motion equa-
tions with its given unconstrained acceleration. Assuming quasi-statics (i. e., velocity
is considered negligible), the authors model the unconstrained acceleration proportional
to the displacement vector pointing from the previous proxy pose to the current device
pose. Gauss’ principle states that the motion of a constrained body will deviate as lit-
tle as possible from the unconstrained motion, minimising the kinetic norm or squared
difference between the constrained and unconstrained accelerations. Hence, the problem
is approached as a constrained optimization in motion-space, being the constraints the
proxy’s contact points from previous cycle. Formulations in motion-space, in contrast to
more common contact-space, lead to improvements in conditioning, memory, and com-
putational efficiency [RKC02b]. Wilhemsen’s nearest point method [Wil76] is used to
find the solution efficiently. Once the constrained acceleration is obtained, explicit Euler
integration leads to the sought current proxy pose. As a last step, continuous collision
detection [RKC02a] is performed for the travel between the last two proxy poses in order
to detect the set of contact points (including surface normals) for the next god object
simulation cycle.

Constraint-based methods based on other principles have also been presented, such as
the three-DoF haptic algorithm for implicit functions by Salisbury and Tarr [ST97]. For
obtaining the proxy pose, first, the closest surface point to the device point is calculated

∗Zilles and Salisbury coined the term god object, used thereafter to categorize similar constraint-based
algorithms to theirs. However, as noted by the authors, that designation had been previously used by
Dworkin and Zeltzer [DZ93] with another meaning: virtual objects in physical simulations controlled by
human users, and hence, being their motion not solely governed by dynamics laws.

56 CHAPTER 2. BACKGROUND

Figure 2.9: Virtual coupling between the hap-
tic or device handle held by the user (not visual-
ized) and the virtual tool which collides with the
environment. The stiffness (kVC) and damping
(bVC) applied to the the relative translation (x)
and rotation (r) between both frames renders
the force and torque values applied to the user.
The stability is not dictated by the virtual stiff-
ness of the computed collisions, but by the pa-
rameters of the virtual coupling spring-damper
system. Colgate et al. [CSB95] introduced the
concept of virtual coupling and pointed out to
the conditions necessary for the spring-damper
parameters to guarantee passive interactions.

Virtual Tool

Haptic Handle

by steepest descent; the gradient and the penetration value of the of the implicit function
at the device point give the step. Then, that point is tracked in two steps per cycle
while the device point moves in solid volume: (i) the new device point is projected on
the tangent plane of the previous proxy point (using the gradient) and (ii) the closest
surface point of that projection is found by steepest descent, i. e., the new proxy point.
This idea has been used in several other works, for instance, with signed distance fields
or density fields [LYG02], and even with deformable models [CBS13].

2.3.3.3 Direct versus Indirect Force Display: Virtual Coupling

Independently of the force computation paradigm, two force display approaches can be
distinguished in the literature: (i) direct and (i) indirect methods. With the first, the
user is rigidly coupled to the virtual probe with which the collision forces are computed;
thus, direct, immediate control is possible, but at the cost of possible instabilities if the
environment stiffness increases. The second group of methods apply the virtual coupling
technique, introduced by Colgate et al. [CSB95] and illustrated in Figure 2.9.

When virtual coupling is used, the user does not directly move the virtual object or
tool, but instead, a device handle linked to it through a spring-damper system. The
virtual object is the one visualized and used to compute collisions. In free space, the
virtual object moves together with the device handle controlled by the user (through the
haptic device), but upon contact, it is pushed by the environment surface while the user
can still move the handle anchored to it. Thus, the displayed forces correspond to the
spring-damper system between them that becomes active on collision, not to the contact
forces of the virtual object. This implies that even when the stiffness of the contact might
tend to infinity, the displayed stiffness is limited to the one of the virtual coupling, which
is beneficial for controlling the stability. The authors further provide the conditions for

2.3. COLLISION COMPUTATION AND FORCE RENDERING 57

the stiffness and damping values in order to guarantee a passive system (hence, also
stable) if the virtual coupling and the environment are updated in synchrony. However,
softer and not the most transparent interactions could be perceived by the user.

Since constraint-based haptic rendering algorithms also use a very similar dual object
representation, they could be considered to be virtual coupling methods. However, in
general, virtual coupling methods do not optimize any proxy configuration as constraint-
based approaches; they simply implement the spring-damper system between the visu-
alized colliding tool and the handle. In that sense, virtual coupling can be used with
penalty-based approaches, either by applying the penalty forces to the spring-damper
system, or integrating the pose of the virtual tool from them.

Several variations have been proposed for the virtual coupling technique. Renz et
al. [RPP+01] presented an approach which considers both the human user and the de-
vice, improving stability. In order to determine the virtual coupling parameters, Wan
et al. [WM03] applied quasi-static equilibrium (i. e., sum of all forces equals to zero,
neglecting effects of dynamics) on the system formed by the human hand grabbing the
handle, the visualized virtual object, and the coupling spring between both of them. On
the other hand, Otaduy et al. [OL06] employed non-linear saturated stiffness functions
for the virtual coupling between the (integrated) virtual object pose and the handle pose.

2.3.3.4 Degrees-of-Freedom (DoF): Three (Forces) versus Six (Forces and Torques)

The Degrees-of-Freedom (DoF) supported by an algorithm during haptic interaction
is a central property to take into account. Thee-DoF methods are usually related to
force rendering, while six-DoF approaches deal with force and torque rendering, and are,
therefore, more complex. In three-DoF algorithms, the tool is typically represented as
a point (or sphere) and the environment as a more complex geometry, whereas six-DoF
methods support body-versus-body scenarios. In order to exploit the full potential of a
six-DoF algorithm, a haptic interface able to display torques is necessary. Given that
technical challenge, and also due to the algorithmic complexity, three-DoF approaches
were more common at the beginning of computer haptics (see Table 2.1). One of the
first approaches to handle six-DoF with complex geometries was the VPS algorithm
(see Section 2.3.2.2) from McNeely et al. [MPT99].

As far as methods for torque computation are concerned, most principles and ap-
proaches have already been introduced: (i) application of lever arms from force appli-
cation point to grasping point of center of mass (e. g., [MPT99]), (ii) the use of energy
and momentum conservation (e. g., [Mir96]), (iii) twist forces related to the rotation
necessary to match unconstrained and constrained tools (e. g., [CSB95]), or (iv) torques
as result of optimization (e. g., [Bar89], [ORC07]).

58 CHAPTER 2. BACKGROUND

Although for some applications six-DoF could be necessary, in other cases three-DoF
is sufficient; this is especially interesting when six-DoF haptic interfaces (usually more
expensive) are not available. Along these lines, researches have analyzed the implications
of using three- versus six-DoF interactions. Wu et al. [WKH11] showed that, instead of
being processed independently, force and torque are integrated in contact perception.
Verner and Okamura [VO09] compared user performance during virtual drawing tasks
without force feedback and with force feedback using different DoF. The use of force
(three-DoF) and force-torque (six-DoF) conditions led to significantly smaller stylus pen-
etration values (∼ 16×) compared to the condition without haptic feedback; while the
six-DoF condition was the best, the three-DoF condition seemed to be close to it. No
completion time differences were found. Weller and Zachmann [WZ12] also compared
three- and six-DOF interactions, this time in a bi-manual multi-player game where users
had to pick objects with virtual hands. The six-DoF condition was shown to be superior
in all objective and subjective metrics compared to the three-DoF case. In conclusion, it
seems that the choice of DoF is very application-specific, and probably more research is
needed in the area.

2.3.3.5 Enhancements for Fidelity and Realism: Friction, Shading, and Transients

Haptic information that arises during physical manipulations does not barely consist
of contact forces; in addition to preventing grasped objects to slip away, several object
properties can be recognized in the interaction, such as geometry, roughness, or material.
That requires the realistic application of effects like friction, shading, texture, initial
contact transients, or vibrotactile signals.

Among them, friction is probably the most studied one [ASB07]. Friction forces
resist to the relative motion of surfaces and are often represented with the Coulomb dry
friction model. This model defines the friction force ffr to be tangent to the contact plane,
opposedly aligned with the relative velocity, and within the cone defined by the normal
force fn and the aperture angle arctanµ:

‖ffr‖ ≤ µ‖fn‖. (2.11)

The friction coefficient µ is characteristic of the materials in contact and remains
constant for each of the static of kinetic regimes the model foresees; the former refers to
resistance forces that occur in absence of slipping, whereas the latter to situations with
moving surfaces that are triggered when the static friction boundary is surpassed.

Harwin and Melder [HM02] extended the three-DoF god object method in [ZS95] to
provide friction forces using a similar approach as in [ST97], which employs the Coulomb
model. A friction cone with apex in the device point and base on the tangent plane of

2.3. COLLISION COMPUTATION AND FORCE RENDERING 59

the proxy is defined. The friction coefficient determines the aperture or angle of the cone.
As the device moves, the proxy follows it constrained to the surface, however: if the old
proxy pose is inside the cone base of the new device pose, the proxy will not move (static
friction); in contrast, if the old proxy pose is outside of the new cone base, it will move
until the base boundary (kinetic friction), not to the surface point closest to the device.

Beyond the Coulomb model, Hayward and Armstrong presented a very complete
friction computation method for haptic rendering based on the Dahl model [HA00].
That model plausibly describes the change of the strain function upon friction, defined
as the difference between a fixed point on the moving object and an adhesion point.
The work improves the model canceling the drifting effect and provides a set of useful
approximations. Both scalar and vectorial versions are discussed, but no torque friction
is considered. The method is time-invariant and yields the four friction regimes observed
in the physical reality: sticking, creeping, oscillating, and sliding.

Besides friction resistance, it is fundamental to filter edgy polygonal representations
or discrete feature samplings to create smooth surface perceptions; in this respect, Mor-
genbesser and Srinivasan presented a force shading algorithm [MS96] that has been
widely used. The approach resembles the Phong shading used in computer graph-
ics [Pho75]. At runtime, the contact normal of the proxy is a replaced by the average
of its polygon’s vertex normals; the distance from the proxy to the polygon vertices is
used as the weighting. In the reported experiments, users had to distinguish between
different polygonal bumps and completely cylindrical shapes. Results show that for the
unshaded bumps, participants usually succeeded in identifying the shape; in contrast,
under shading, the cylindrical bump was more frequently chosen than any other shape.

Similar shading and smoothing techniques have been successfully implemented by
many authors to convey texture details, see for instance [RKK97], [ORC07], and [Mou15].
It is common to modulate the magnitude and direction of forces with oscillatory signals
with amplitudes and frequencies obtained from contact and material information. Re-
lated vibration models have also been proposed, e. g., for bone-burring scenarios [WCW+12].

Finally, Kuchenbecker et al. [KFN06] showed that contact realism can be increased
when high frequency transients are overlaid on collision events. While even common
physical contact stiffness values are too high to be continuously displayed for most haptic
devices, it is possible to exert short high force peaks that mimic initial contact pertur-
bations. The authors implement that idea by triggering decaying transients on contact
situations. These transients are superposed to regular contact forces, and include models
such as fixed width pulses, exponentially decaying sinusoids, and acceleration matching
functions; the latter consist in filtered force-acceleration transfer function models. Pa-
rameters such as duration, amplitude, and frequencies are obtained after observing real
recordings, and a library of models is set up ready to be looked up at collision events.

60 CHAPTER 2. BACKGROUND

At runtime, transient magnitudes can be scaled with the incoming velocity (related to
the hand and device momentum which must be canceled). A thorough user study was
conducted in which participants had to evaluate (without visual feedback) the realism of
a tapping task compared to real wood tapping. Several real scenarios and virtual models
and parameters were systematically randomized. The results show that transients have
the highest fidelity among the virtual scenarios. Moreover, it is suggested that these
could be more significant than stiffness or penetration values when it comes to displaying
hard realistic contacts.

2.3.3.6 Deformation

Deformation has been throughly studied in computer graphics, but still remains very
challenging in computer haptics. Collision and force computation with deformable objects
is not in the focus of this work, however, this section provides a brief overview of the
most relevant methods. For deeper insights, the reader might consider the reviews by
Teschner et al. [TKZ+05] and Nealen et al. [NMK+06].

In general, collision computation, force rendering and deformation are treated as
separate problems computed in independent threads that share critical information. As
introduced in Section 2.3.1, particle or mass-spring systems [CKB03] and tetrahedron
meshes [SSB13] are common for rendering deformation. In both cases, nodes (particles
or vertices) are interconnected with one another, and their displacement upon external
forces is computed. Tetrahedron meshes are common when the Finite Element Method
(FEM) is used to solve deformation equations (boundary value problems) defined in
continuous but discrete mass cells (usually, the tetrahedra themselves). With mass-spring
systems, the mass is concentrated at the node points and the forces are propagated along
the linking spring edges. While FEM produces more accurate deformations, mass-spring
systems are computationally less expensive; however, constant volume deformation is
difficult to model with them.

Independently of the used methods, it is common to speed up the processing of equa-
tion systems that lead to the deformed configuration with several shortcuts; for instance,
the Sherman-Morrison formula for incrementally updating the inverse of the equation
system, pre-computed basis deformation functions [JP01], modified Gauss-Seidel algo-
rithms that converge to the solution of the chosen contact model very fast given an error
tolerance [DDKA06], etc.

Intermediate representations have also been investigated as a method to support
haptic update rates with deformable objects, as done by Garre et al. [GO09]. In their
work, the deformable object or tool that interacts with the environment has a rigid part,
the handle, which is connected to the haptic device. The coupling force between both

2.3. COLLISION COMPUTATION AND FORCE RENDERING 61

parts is linearized and fed to a virtual coupling model that renders the forces perceived
by the user. For updating the linearized coupling force model, the velocity values of the
handle, the tool, and the environment need to be solved from a nonlinear complementarity
problem. During the simulation, the framework runs in two separate loops; a visual
loop simulates the deformations of the tool using FEM at 30Hz, whereas the haptic
loop evaluates the updated linearized coupling force with the current handle state and
delivers the subsequent forces at 1 kHz to the user who is moving the device. Peterlik
et al. [PND+11] presented a related approach with an intermediate representation in
the context of surgical simulations with haptic feedback. In this case, the intermediate
representation is a system of compliant mechanisms that is shared by the slow dynamics
loop, which updates the model according to the deformations of the objects using FEM,
and the fast haptics loop, which evaluates the contact force on the model. In other
words, the intermediate representation extracts from the FEM model used to compute
deformations the mechanical compliance in contact used to render forces.

One elegant six-DoF haptic rendering method which covers all the necessary processes
for interaction with deformable objects was presented by Barbič and James [BJ08]. The
method builds up on the VPS algorithm [MPT99], which computes contact forces between
distance fields and point clouds. These data structures are embedded in reduced FEM
models [SSB13], which receive as input values the computed contact forces. Since the
point coordinates of the point cloud are anchored in the FEM model, their deformed
positions can be obtained straightforwardly. In the case of the distance fields, a low
resolution deformable point cloud is embedded during data structure generation. The
deformed point coordinates of this auxiliary point cloud are used to locally update the
values of the distance field computed for the resting configuration. A similar approach
is followed by Chan et al. [CBS13], in this case with intensity fields embedded in FEM
tetrahedral meshes. In oder to obtain the field values of the deformed environment, first,
the barycentric coordinates of the queried point in the deformed tetrahedron where it
lies are computed. Substituting these coordinates in the rest configuration leads to the
equivalent material point to query in the (undeformed) intensity field.

Finally, related to but beyond deformation, some simulations consider object topol-
ogy change in scenarios that cover material substraction or cutting. These are usual in
medical simulations, in which tissue dissection is common, either with organs or bones.
In this respect, Courtecuisse et al. [CJA+10] presented a realtime haptic simulation of
soft tissue manipulations, including cutting. The method uses co-rotational FEM models
that handle large displacements and geometrical non-linearities. When a tissue is cut, its
mesh is modified, as well as the FEM model and the matrix elements in the equations of
motion. To that purpose, the deformable model is meshed into set of volume elements
which are connected together by a topological map. The state and model matrices are

62 CHAPTER 2. BACKGROUND

expanded with element subtraction and subdivision operations, and the efficient update
of inverse matrices necessary for stepping forward the dynamic state is tackled using the
Sherman-Morrison method, among others. On the other hand, Wang et al. [WCW+12]
presented an impulse-based haptic rendering framework for the specific scenario of dental
bone-burring with a rapidly rotating spherical spindle. The environment (e. g., tooth or
bone) is represented with a mesh, whereas the tool (i. e., the spherical burring spindle)
is modeled with points on its cutting edges. Rays are shot from the tool center to the
points on the edges to detect point and triangle pairs which are colliding. The mesh
is reconstructed replacing all vertices of burred triangles to be on the boundary of the
spherical spindle.

However, bone-burring scenarios have been handled more commonly using voxelmaps,
due to their efficient data structure update capabilities and minimal to non-existent topol-
ogy changes upon material subtraction. Additionally, this way, patient-specific data
structures can be obtained from Magnetic Resonance Imaging (MRI) Computer Tomog-
raphy (CT) models. Zheng et al. [ZLSWF13] presented a training simulator for dental
surgeries using a re-implementation of the VPS for GPUs. A density field embedded in
a voxelmap is created from CTs for the teeth, recreating different tissue hardness values.
Since drilling is simulated, the field values change during the interaction in the burred
regions, and the visualization model is constantly updated using the marching cubes
technique [LC87]. Specific spindle tools are supported, placing on their cutting edges
the points used for collision and force calculation (i. e., pointshell points). The rotational
speed and angle of incidence of the spindle are considered in the force and torque com-
putation, respectively, improving training realism. Kim and Park [KP09] presented a
similar penalty-based approach, but using distance fields for the tool and intensity fields
and point clouds for the teeth. The authors additionally defined a bone removal rate
function to gradually subtract tissue elements on contact.

Other works have focused on proper force rendering methods in bone-burring sce-
narios using volume-based data structures. Agus et al. [AGG+03] derived an analytical
contact force and bone erosion model based on the Hertz’s elastic contact theory [Her96];
geometric and elastic parameters are taken into account and the model is discretized for
voxelmaps. Wu et al. [WYW+09] discovered and applied a linear relationship model for
resistance force and forward velocity.

2.4 Summary, Conclusions, and Perspectives

This chapter provides an answer to three background questions to be clarified before
designing any virtual reality environment enabling haptic manipulations:

2.4. SUMMARY, CONCLUSIONS, AND PERSPECTIVES 63

(i) how does the human haptic sensory system work and which are its requirements
and limitations?

(ii) which are the components of a virtual reality system with haptic feedback, how are
they inter-related and which effects do they have on the user?

(iii) which collision and force computation methods for haptic rendering have been
proposed, taking into account the human haptic sensory system (i) and matching
the technological puzzle of virtual reality systems (ii)?

All in all, the answers try to give a comprehensive picture of the state-of-the-art covering
both technological and human factors.

Section 2.1 deals with the first question, describing physiological, neurological, and
psychophysical aspects in the processing of kinesthetic and tactile sensations. Taking as
basis the properties of mechanoreceptors and processing structures in the sensory-motor
cortex, the cornerstones for designing an efficient and realistic haptic simulation are
higher level elements like (i) the perceivable frequency resolution, (ii) the JNDs related
to different dynamic magnitudes (e. g., forces, stiffness, etc.), and (iii) the multimodal
contact percept formation.

Section 2.2 concentrates on the second question and describes in detail the compo-
nents of the system picture in Figure 1.1 from Chapter 1 (Introduction). Beyond the
technical requirements for aural, visual, and haptic modalities, human factors such as
cybersickness, immersion, and presence are discussed. Additionally, the motion compu-
tation of virtual objects in the scene is briefly explored, as well as interaction techniques
and the recently flourished and multiplied interaction devices, covering most types of
interfaces. In particular, especial attention is set on haptic devices, which are key for
properly providing synthetic haptic information. Their workspace, force capabilities,
and actuated DoFs define the type of manipulation the user is able to carry out, and
their dynamic range of impedances affects significantly the quality of contact perception;
with respect to this last point, stability issues are discussed, which are mainly governed
by (i) the contact stiffness boundary specific for each system and (ii) the 1 kHz update
rate convention for pose-force signals. Additionally, related applications and fields like
telerobotics are introduced. Understanding the interplay of all these system components
is essential to build an effective virtual reality environment with haptic feedback, as the
one reported in Chapter 5.

Finally, Section 2.3 analyzes the third question and provides a thorough survey on
haptic rendering methods. The section elaborates the method property classification
done in Table 2.1 and Table 2.2, which yield an accurate snapshot of the evolution of
collision and force computation since its early days to date. Object representation is

64 CHAPTER 2. BACKGROUND

exposed in detail, since efficient data structures contain pre-computed collision and force
information in their definition. Similarly, different collision and force computation out-
puts are also precisely described, as they are the basis principles on which methods are
based on. Beyond these definitions, most common collision computation methods and
acceleration strategies used in practice are reported, considering the variations and im-
provements along the years. Regarding force computation, all three major rendering
paradigms are discussed, as well as the effects of different DoFs and the use of virtual
coupling. The section finishes with notes on fidelity enhancements (e. g., friction, ini-
tial contact transients) and a brief overview on how deformation is handled in haptic
interactions. Altogether, literature suggests that collision detection is the bottleneck in
haptic rendering, and that it can be decoupled from force and deformation computation.
Additionally, these points come to light: (i) implicit representations oftentimes yield
accurate information very fast, (ii) wrapped BHVs for discrete sets of elements signif-
icantly accelerate computations and enable time-critical LoD processing, and (iii) the
high spatio-temporal coherence of the collision detection problem should be exploited.

These insights are the starting point for the core technical and scientific contributions
from Chapter 3 and Chapter 4, in which novel collision, proximity, and force computation
methods are presented. The compilation of these algorithms constitutes a missing piece
in the literature for the efficient and robust solutions provided and their unified and self-
contained character. With them, rigid objects can be processed for distance or collision
independently of their geometrical complexity faster than at 1 kHz velocities, and issues
such as time-critical queries, constrained motion, realistic stiff contacts, the tunnelling
effect, or large multibody environments are addressed and solved to the core. Further-
more, these techniques are integrated into several simulation and robotics applications
in Chapter 5, which validates their versatility.

Lastly, note that Chapter 6 revisits the concepts evolved in all previous chapters, in-
cluding this one. Indeed, the major elements of a haptic simulation system are evaluated,
focusing, in particular, on the parameters of the haptic device and the developed haptic
rendering methods.

Chapter 3

Collison and Proximity Queries

This chapter presents the first and most fundamental method used in the rest of the
work: a distance and collision computation algorithm able to deliver closest features and
six-DoF collision forces between complex rigid geometries at 1 kHz (or faster).

The presented collision detection and force computation algorithm is based on the
Voxelmap-Pointshell (VPS) algorithm [MPT99]. That approach uses voxelmaps and
pointshells as data structures to compute penalty-based six-DoF collision forces between
rigid bodies. Within this work, all offline and online processes were re-defined and im-
plemented from the scratch, improving several key elements; this chapter presents (i) the
definition, properties, and generation methods of the aforementioned basic data struc-
tures out of polygonal models, (ii) how these data structures are optimized for faster and
more accurate online collision queries, (iii) a unified proximity and collision computation
algorithm able to perform at 1 kHz or in time-budgeted conditions, and (iv) benchmark-
ing experiments that account for the performance of different implemented methods and
the global algorithm.

This chapter uses parts from the following peer-reviewed publications written by the
author of this work: [SHPH08], [SH13], [SSeS14a], and [SHH+15].

3.1 Introduction

As explained in Chapter 2, penalty-based collision computation algorithms use object
inter-penetration to compute repulsion forces. Those repulsion forces can be of three-
DoF, i. e., the user interacts with a point-probe in a virtual environment and feels only
force vectors through the haptic interface, and of six-DoF, i. e., a more complex object-

65

66 CHAPTER 3. COLLISION COMPUTATION

probe is used and both forces and torques (i. e., wrenches) are displayed to the user.
Penalty-based methods are known for being fast, robust and easier to implement than
other paradigms, and probably the Voxelmap Pointshell (VPS) algorithm is one of the
most referenced of them.

The Voxelmap-Pointshell (VPS) algorithm was originally published in 1999 by Mc-
Neely et al. [MPT99], and it has been re-implemented and improved several times ever
since. In the original paper, the authors defined voxmaps or voxelmaps to be regular 3D
grids consisting of voxel elements which contained four basic layer values: inner, surface,
proximity, and outer, depending on the voxel position with respect to the polygons of
the original model in the grid. Voxelmaps represented usually large and complex en-
vironments (e. g., inner aircraft geometries) with a voxel edge length of around 5 mm.
The user could interact with that voxelized environment using smaller probes modeled as
pointshells; these data structures were basically point clouds (around 500 points) consti-
tuted of the surface voxel centers with their respective inwards pointing normals, repre-
senting the probe. In order to compute the penalty forces of a time step, the penetration
of points lying in surface or inner voxels was measured along the normal of the point;
these unitary normal vectors scaled with the computed point penetration and summed up
yielded the total penalty force. The method could perform at near-to-constant computa-
tion frequencies (achieved sweeping the same total amount of probe points each cycle),
which were as a high as 1 kHz if the number of points was kept under a threshold. Addi-
tionally, it was (and is) independent of the number of triangles or non-convex features,
since these have no effect in the discrete domains formed by voxels and points.

3.1.1 Related Work

Renz et al. [RPP+01] improved pointshell models by projecting the points on the polyg-
onal surface, which leads to smoother forces. Additionally, they presented a design
framework for virtual coupling [CSB95] which eased the configuration of different haptic
interfaces. Virtual coupling was also proposed in the original VPS algorithm as a mean
to improve stability (see Section 2.3.3.3): the visualized proxy of the probe was connected
to the virtual handle moved by the user through a spring-damper system; the penalty
forces were integrated according to the Newton-Euler equations of motion to obtain the
pose of the proxy and the force values given by the spring-damper system were the ones
displayed to the user. Wan and McNeely [WM03] further researched into the virtual
coupling applied to the VPS and presented a quasi-static approximation for computing
the proxy pose.

McNeely et al. [MPT06] improved their implementation with layered distance fields
and by ignoring redundant polyhedral surface interactions. Spatial accuracy was also

3.1. INTRODUCTION 67

(a) (d) (e)(b) (c)

Pi ni

fP
G

(f)

Figure 3.1: Different representations of the Stanford Bunny: (a) Triangle mesh with 35606 vertices;
(b) Voxelized representation of the bunny (surface voxels in red); (c) Voxelized representation of the
bunny (first inner layer in green). (d) Several point tree levels of the bunny coded with colors; (e)
Two successive sphere tree levels of the bunny (the red transparent is the upper level); (f) Basic
principle of collision computation with the data structures: The normal vectors ni of the pointshell
points Pi are weighted by their penetration in the voxelmap to compute the penalty forces fP.

improved sacrificing the constant computation time characteristic of the first publication.
Barbič and James [BJ08] extended the VPS algorithm for reduced deformable objects
using point-sphere hierarchies for faster level-of-detail (LoD) collision detection. Later,
Xu and Barbič [XB14] improved the previous re-implementation of the VPS with a
robust and automatic approach for generating signed distance fields for arbitrary triangle
meshes.

Data structures and force computation methods from the VPS have also been applied
to constraint-based haptic rendering approaches. For instance, Chan et al. [CCBS11]
applied the god object proxy computation method of [ORC07] to point-sampled objects
(pointshells) which interacted with volume-embedded surfaces (voxelmaps). Rydén and
Chizeck [RC13b] presented a similar approach which additionally supported continuously
streamed point clouds.

Algorithms based on or similar to the VPS approach have also been recently em-
ployed in several robotics applications, such as mobile manipulation planing using the
GPU [HDB+14], grasp planing [Her15], assembly planing [NSSB16], or even tracking of
complex objects and mechanisms making use of the GPU [SNF14].

3.1.2 Contributions

This work puts the basis for a completely new re-implementation of the VPS principles.
New point-sphere hierarchies (pointshells) and signed distance fields (voxelmaps) are
defined and generated from arbitrary polygonal models, shown in Figure 3.1.

In a similar fashion as in [BJ08], voxelmaps can contain floating point distance fields
in this work. However, a mixed data structure is implemented which supports approx-
imative layer values, real distances which can be locally interpolated in contact areas,
and closest points on surface.

68 CHAPTER 3. COLLISION COMPUTATION

Similarly to [BJ08], point-sphere hierarchies are implemented on top of the plain
point-soup. However, a down-top building approach starting with the highest point
sampling resolution where points are uniformly distributed is followed. Additionally,
point clusters are bounded with minimal enclosing spheres [FG04], in contrast to the
approach in [BJ08], where sphere centers are located on the object’s surface. Thanks to
the sphere trees presented in this work, it is possible to quickly and accurately recognize
likely colliding areas. Moreover, the point tree enables LoD traversal of the surfaces,
which makes possible to provide with a fair contact manifold on an established time
budget, even for extremely non-convex geometries.

Once data structures are generated offline in few seconds, the presented collision
computation method takes place traversing the point-sphere hierarchy in a breadth-
first fashion, similarly as in [BJ08]. Since, all necessary geometry properties and pre-
computable values are encoded in a LoD manner in the data structures, a full traverse
can deliver contact data in 1 ms.

Altogether, the contributions are presented as follows:

• Section 3.2 explains how the aforementioned voxelmap and pointshell data struc-
tures are generated from polygonal models. All methods necessary for fast gen-
eration (on the CPU) of signed distance fields embedded in voxelized structures
and point-sphere trees that sample the object in a multi-resolution manner are dis-
cussed. Additionally, the different functions and properties of these data structures
are formally derived and illustrated.

• Section 3.3 presents the unified proximity and collision computation algorithm. The
algorithm provides the closest features (points), six-DoF penalty forces, and con-
tact manifolds or colliding point sets. For each arbitrary geometry pair, the offline
generated voxelmap and pointshell models are used. The method achieves compu-
tation frequencies of 1 kHz and can perform in time-critical conditions gradually
improving the quality of the response depending on the time budget.

• Section 3.4 shows the performance of the algorithm with meaningful and repro-
ducible experiments. Methods related to different LoDs are compared between
each other and against ground truth or expected values.

As concluded in Section 3.5, such a versatile collision computation framework is
suitable for many applications beyond haptic simulations which require the handling of
arbitrary geometries.

3.2. DATA STRUCTURES 69

v = 0

v = -1

v = 1

v = 1

v = 2

-1

-2

-1

0

0

T3

T1

T2v1

v2

v3

sx

sy

sz

C

P

n

(b) (c) (d)

s

bx

by

Nx

Ny

s

(a)
x

y

0
X

Y
1 2 ...

Figure 3.2: Generation of the basic primitives: (a) A triangle mesh of the Stanford Bunny in an
empty voxelized grid (simplified coarse resolution). (b) A triangle checked for collision against the
voxels in its bounding box. (c) After detecting surface voxels (in red), outer and inner layers are
computed with the Scanline algorithm. Surface voxels have voxel value v = 0, each n-th inner layer
v = n, and outer layer v = −n, respectively. (d) Each surface voxel center Ci is projected onto the
mesh to obtain pointshell points (Pi). The normal vector ni of a point Pi is the normalized gradient
of the voxel value in the voxel of the point: ni ∼∇v(Pi).

3.2 Data Structures

This section introduces the definition and computation of the basic primitives (Sec-
tion 3.2.1), the properties of the data structures and the basic algorithm (Section 3.2.2),
as well as the definition and computation of the enhanced data structures (Section B and
Section B).

3.2.1 Generation of Basic Primitives

Figure 3.2 illustrates the most important stages for generating the basic primitives. In the
following, first the computation of plain voxelmaps from polygonal models is introduced,
and second, the creation of the plain or basic pointshells. The section finishes discussing
some relevant implementation issues.

3.2.1.1 Voxelized Structures (Voxelmaps)

The first step for creating the voxelmap consists in placing the triangle mesh T in the
voxelmap V, which represents a 3D regular grid yet to be filled (Figure 3.2(a)). All
voxels store a voxel value v ∈ N (initialized with v = −1), and they are contained in the
set

V = {v1, . . . , vi, . . . , vNV} = {vi}NVi=1, (3.1)

70 CHAPTER 3. COLLISION COMPUTATION

being NV the total amount of voxels or voxel values v. This number can be factorized in
the number of voxels or cells per axis:

NV = NxNyNz. (3.2)

The bounding box of the voxelmap bV is determined by the bounding box of the
mesh bT = (bx, by, bz)

T and the voxel edge length or voxel size s is chosen by the user;
usually, the value of s is such that the largest bounding box axis i of the triangle mesh T
is divided in a maximum number of Ni ≤ 300 cells, given the memory limits of current
computers:

max{Nx, Ny, Nz} =

¢
max{bx, by, bz}

s

•
≤ 300. (3.3)

After this parametrization and the creation of all sets and values with the correct
sizes, all triangles of the mesh are visited and the voxels which intersect with them are
marked with the surface voxel value v = 0 (Figure 3.2(b)). This process requires (i)
selecting candidate voxels within the bounding box of each triangle that might collide
with the triangle and (ii) performing collision checks between voxels (cubes) and trian-
gles. Selection is performed by observing the projection of the triangle on each of the
orthogonal planes of the coordinate axes. If the voxel is clearly above or below the pro-
jections, its collision is automatically discarded for the sake of performance. Otherwise,
an accurate intersection check must be carried out.

Those collision checks between candidate voxels and the triangles are computed using
the Separating Axis Theorem (SAT), already introduced in Section 2.3.2.2. To recall,
the SAT states that two convex objects collide with each other if and only if there is an
axis on which their projections overlap. If no such axis exists, both objects are disjoint.
In 3D space, the axes to be checked for collision are the normal vectors of the faces and
the cross products between each pair of edges. As displayed in Figure 3.2 (b), for each
triangle composed of vertices {T1, T2, T3}, its edge and normal vectors can be defined as:

v1 = T2 − T1, v2 = T3 − T2, v3 = T1 − T3, nT =
v1 × v2

‖v1 × v2‖
. (3.4)

On the other hand, the voxel is determined with its center C (considered to be the
origin during each check) and its voxel size s. Altogether, there are 13 axes to be checked
for overlap [AM01], which can be classified into three groups:

1. The three coordinate axes {s1, s2, s3}, representing the normal vectors to the faces
of the voxel. The three vertices of the triangle are projected on each axis to check
whether the projection of the triangle overlaps with the projection of the voxel,
which is a region of width s centered in the origin.

3.2. DATA STRUCTURES 71

2. The normal vector of the triangle nT . The vertices of the voxel that define the
vector which is aligned with nT are checked for their relative position against the
plane of the triangle.

3. The nine pij axes that result from performing the cross product between the edges
of the voxel and the triangle: pij = si×vj , ∀i, j ∈ {1, 2, 3}. A detailed explanation
of the procedure is given in [Sag08].

A triangle-voxel pair is not colliding if and only if all the tests in the 13 axes yield
no overlap. As soon as an overlap between a projected triangle-voxel pair on one of the
13 axes is detected, the voxel is marked as surface-voxel.

After having traversed all the objects detecting each surface-voxel, the inner and outer
parts of the model are recognized on the voxmap using the Scanline [KS87] algorithm
extended to 3D [Ott05]. The algorithm works with a Last In First Out (LIFO) stack that
speeds up the filling process and starts at a corner-voxel of the virtual model. Afterwards,
layers are added to the voxelized surface: the first outer layer is formed by voxels with
value v = −1, whereas the first inner layer is created with voxels of value v = 1. The
absolute voxel value increases linearly according to the number of layers away from the
surface, as shown in Figure 3.2(c) and (d). The voxel connectivity can be chosen to
be 6-connected (default), 18-connected, or 26-connected. Note, additionally, that the
number of inner and outer layers can be selected; in that case, the initial computation
of the voxelmap bounding volume bV must be accordingly modified at the beginning of
the computation.

An important feature of the voxelmaps consists in the fast access they provide to
specific space regions, and therefore, also concrete geometry parts. This property is
essential for creating pointshell structures or enhanced signed distance fileds, and even
for online collision and proximity queries. Targeted voxelmap regions can be scanned
by accessing the neighborhood NV given seed or voxel of interest. In practice, this
neighborhood consists in a cube of width of 2n + 1 voxels, with n being the number of
layers outwards from that first seed voxel. This results in a family of n neighborhoods,
NV,n, therefore, composed of (2n+ 1)3− 1 voxels each. Usually NV,1 and NV,2 are used,
depending on the desired accuracy. For instance, if P is a point in space which lies
in a voxel with center C and discrete voxelmap coordinates X, Y, Z, the neighborhood
NV,n=1(P) = NV,n=1(C) is the set of voxels with the following discrete coordinates:

72 CHAPTER 3. COLLISION COMPUTATION

NV,n=1(P) : { (X− 1, Y− 1, Z− 1), (X− 1, Y− 1, Z), (X− 1, Y− 1, Z + 1),

(X− 1, Y, Z− 1), (X− 1, Y, Z), (X− 1, Y, Z + 1),

(X− 1, Y + 1, Z− 1), (X− 1, Y + 1, Z), (X− 1, Y + 1, Z + 1),

(X, Y− 1, Z− 1), (X, Y− 1, Z), (X, Y− 1, Z + 1),

(X, Y, Z− 1), (X, Y, Z + 1),

(X, Y + 1, Z− 1), (X, Y + 1, Z), (X, Y + 1, Z + 1),

(X + 1, Y− 1, Z− 1), (X + 1, Y− 1, Z), (X + 1, Y− 1, Z + 1),

(X + 1, Y, Z− 1), (X + 1, Y, Z), (X + 1, Y, Z + 1),

(X + 1, Y + 1, Z− 1), (X + 1, Y + 1, Z), (X + 1, Y + 1, Z + 1) }.

(3.5)

The generation complexity of the primitive voxelmap is worst case O(n + m), with
n being the number voxels and m the number of triangles. The factor m is negligible
in regular situations, but it must be considered in case the object has large amounts of
triangles and the chosen resolution is very low (e. g., a unique voxel containing thou-
sands of triangles). Using a resolution of about s = 5 mm, usual generation times range
from few seconds for desktop-sized objects to few minutes for car-sized objects. The
data structures can be saved into files for later use; file size ranges from few kilobytes
for desktop-sized objects and few hundreds of megabytes for car-sized objects. Exem-
plary computation time, file size and snapshots with varied resolutions are provided
in [SHPH08] and in Figure 3.16.

3.2.1.2 Point Clouds (Pointshells)

The point cloud or pointshell P of a triangle mesh T is obtained from its previously gener-
ated voxelmap V by projecting the surface voxel centers (C) on their respective (closest)
triangles. Additionally, normal vectors pointing inwards the object are computed. The
primitive pointshell consists basically in the set P:

P = {(P,n)1, . . . , (P,n)i, . . . , (P,n)NP} = {(P,n)i}NPi=1, (3.6)

with (P,n) ∈ R3+3 being the pair point-normal and NP the total amount of pairs or
pointshell points.

Figure 3.2(d) illustrates the steps necessary for generating such a set P. Similarly as
in the voxelmap generation, all triangles are traversed, visiting all surface voxels within
the triangle bounding box. Given a voxel center C ∈ R3, its projection P onto the
triangle is computed with quadratic programming, as explained below. There exists a
closed-form analytical solution to it and the approach has been shown to be up to 37%

faster than using algebraic projections [Sag08].

3.2. DATA STRUCTURES 73

In order to obtain the analytical expression of the projected point P , first, a point
rT on the triangle with vertices {T1, T2, T3} is expressed in the local triangle coordinates
(u1, u2) [Ebe99]:

rT (u1, u2) = r0 + u1r1 + u2r2 = T1 + u1(T2 − T1) + u2(T3 − T1)

subject to


0 ≤ u1 ≤ 1

0 ≤ u2 ≤ 1

u1 + u2 ≤ 1.

(3.7)

The quadratic function that defines the squared distance between C and and rT is:

q(u1, u2) = ‖rT (u1, u2)− C‖2. (3.8)

The value of q is minimum on the projection point P , which leads to the formulation of
the quadratic programming problem:

min q(u1, u2) = a1u
2
1 + 2a2u1u2 + a3u

2
2 + 2a4u1 + 2a5u2 + a6

subject to


g1(u1, u2) = u1 ≥ 0

g2(u1, u2) = u2 ≥ 0

g3(u1, u2) = 1− u1 − u2 ≥ 0,

(3.9)

where all ai values are easily obtainable scalars:

a1 = ‖r1‖2, a2 = rT1 r2, a3 = ‖r2‖2,
a4 = rT1 (r0 − C), a5 = rT2 (r0 − C), a6 = ‖r0 − C‖2.

(3.10)

Note that only u1 and u2 are unknown in (3.10). Their solution values (u∗1, u∗2) yield
the projection point P = rT (u∗1, u

∗
2) and its distance to the voxel center C:

»
q(u∗1, u

∗
2). In

order to obtain them, the Karush-Kuhn-Tucker (KKT) conditions are applied to (3.10).
This results in the following nonlinear system with five equations and five unknowns
(variables u1, u2 and the Lagrange multipliers λi, ∀i ∈ {1, 2, 3}):{

∇q(u1, u2)−∑i λi∇gi(u1, u2) = 0

λigi = 0.
(3.11)

This system in (3.11) yields the set of seven solutions shown in Table 3.1. One
corresponds to a point on the triangle and the other six to points on the boundary: three
on each of the edges and three on each of the vertices. The real solution from the set
of seven is the one which fulfills the conditions in (3.7) and additionally leads to real
λi ≥ 0. This projection method is a backbone function or tool used in several data
structure improvements explained in later sections.

74 CHAPTER 3. COLLISION COMPUTATION

Table 3.1: List of seven solutions to the system in (3.11). Each of them corresponds to one point
inside the triangle or at the boundary (edges or vertices). The values of ai are parameters defined
using the vertices of the triangle (see (3.10)). With this set, a general closed-form solution is given
to the problem of projecting any point on any triangle (parametrized as in (3.7)).

u1 u2 λ1 λ2 λ3

rT
a2a5−a3a4

a3a1−a2
2

a2a4−a5a1

a3a1−a2
2

0 0 0

v1 −a4
a1

0 0
2(a5a1−a2a4)

a1
0

v2
a4−a3−a5+a2
2a2−a1−a3

a4−a5−a2+a1
−2a2+a1+a3

0 0
2(a2(a4+a5+a2)−a3(a1+a4)−a5a1)

−2a2+a1+a3

v3 0 −a5
a3

2(a3a4−a2a5)
a3

0 0

T1 0 0 2a4 2a5 0

T2 1 0 0 2(a2 + a5 − a1 − a4) −2(a1 + a4)

T3 0 1 2(a2 + a4 − a3 − a5) 0 2(a5 − a3)

The pointshell generation is performed in two phases. In the first one, all the projected
points are computed using the presented optimization method, but only the projected
points that lie inside the triangle are stored into the structure of the pointshell, tagging
the surface voxels to which they belong to as projected. The rest of the boundary-points
are stored separately, indexing also the voxel from which they were projected. Adding
a point Pi to the pointshell P requires also checking that the new point is at least
half a voxel size (s/2) away from any other added point. To that purpose, a support
structure which matches surface voxels and projected points is used. Therefore, instead
of checking each candidate point against all other added points (quadratic complexity),
only the added points linked to the surface voxels surrounding the candidate point are
checked.

In the second phase, all the separately stored boundary points are traversed checking
whether their origin voxels were already tagged as projected. If not, the boundary point
is added to the pointshell, tagging its origin voxel as projected ; otherwise, the point is
rejected.

After generating pointshell points, the next step consists in computing the inwards
pointing normal vector n associated to each one. This is in part motivated by the fact
that normal vectors generated by CAD programs point sometimes in the wrong direction.

The normal vectors are obtained analyzing the neighborhood NV of the pointshell
point Pi in the voxelmap (see (3.5)). Setting the origin in the voxel where the point is
located, all the vectors that go from this origin voxel center Ci to each of the neighbor
voxel centers Cj are weighted by their voxel value increment (vi → vj) and summed
up to obtain the gradient of the voxel value ∇v = ∇v(Ci). Recall that the voxelmap

3.2. DATA STRUCTURES 75

has inner (positive) and outer (negative) layers which increase their absolute value as
they get away from the surface layer. Since Pi lies within the voxel with center Ci, its
gradient is approximated with the gradient of the voxel center, i. e., ∇v(Pi) ' ∇v(Ci).
The normal vector ni of the pointshell point Pi is the normalized value of the gradient
∇v(Pi):

∇v(Pi) ' ∇v(Ci) = ∇vi =
∑

vj∈NV (Pi)

∆vij∆Cij =
∑

vj∈NV (Pi)

(vj − vi)(Cj − Ci),

n(Pi) ' n(Ci) = ni =
∇v(Pi)

‖∇v(Pi)‖
.

(3.12)
The computation of the gradient and the normal summarized in Section 3.12 is an-

other backbone function or tool used in other steps during the enhancements of the data
structures.

After all normal vectors have been computed, the pointshell P is complete. Its
associated voxelmap and the support structure that matches surface voxels and projected
points are destroyed. Therefore, unlike the voxelmap, such a resulting point cloud is at
this stage an unstructured point soup without any topological information that relates
neighboring points.

As in the case of the primitive voxelmap, the generation complexity is worst case
O(n+m), with n being the number of voxels and m the number of triangles. Usual gen-
eration times last about few seconds for desktop-sized objects (e. g., with s = 5 mm and
around 8000 poinsthell points). However, the time required for computing a pointshell
will always be longer than the one of a voxelmap alone, since a voxelized structure has
to be computed prior to the point cloud. Given that the number of points strongly in-
fluences the computation time during online collision queries, only smaller (desktop-size)
objects are represented with pointshells, leaving voxelmaps for larger ones. Additionally,
while primitive voxelmaps can represent arbitrarily complex objects (their memory foot-
print being the limit), pointshells can model correctly only watertight voxelmaps. Even
if an object is non-watertight, it might lead to a watertight voxelmap in case the voxel
size s is bigger than the holes of the object. However, if the geometry is a thin shell,
it has no inner regions (i. e., all v ≤ 0), thus, no correct inwards pointing normal vec-
tors can be computed at the surface as defined in (3.12). Therefore, non-watertight thin
shells cannot be modeled as pointshells, but only as voxelmaps. This issue is revisited
in Chapter 4.

As with the voxelmaps, pointshell data structures can be saved into files for later
use; file size ranges usually from few kilobytes to few (less than ten) megabytes – ASCII

76 CHAPTER 3. COLLISION COMPUTATION

encoding is used, without compression, for human readability. Exemplary computation
time, file size, and snapshots with varied resolutions are provided in [SHPH08] and in Fig-
ure 3.16. Finally, note that Appendix B reports relevant implementation and performance
issues related to the primitive data structures introduced in this section.

3.2.2 Properties and Limitations

In the classical VPS [MPT99] algorithm, the penalty collision forces are computed as
spring-like forces following Hooke’s law. With the data structures and functions explained
so far, this can be approximated by

fP = kP

∑
v(Pi)>0

v(Pi)ni, (3.13)

with kP being the penalty stiffness equal for all points. In words, all the normal vectors
(force directions) of the colliding points in the pointshell (v(Pi) > 0) are weighted by
their penetration v(Pi) and summed up to yield the total penalty force fP. As explained
in the previous section, the access to the voxel value v is O(1) and, subsequently, the
collision force query in (3.13) has O(n) complexity, being n the number of checked points.
That leads to a central and general characteristic of the VPS:

Voxelmaps can model arbitrarily complex objects with the maximum possible
resolution (given memory limits) without affecting the computation time of
collision queries; on the other hand, the number of points of the point clouds
which are checked for collision increases linearly the required computation
time.

Clearly, controlling the number of points checked while keeping the resolution as high as
possible is essential for improving time performance. This issue is addressed in Section B.

The classical VPS and the primitive data structures presented so far have other
specific properties that can be exploited or limitations that should be taken into account.
All these are presented in the following subsections.

3.2.2.1 Properties

Two major properties can be defined:

P1 If the number of elements (points or voxels) for a given resolution (voxel size s) is
known, the number of elements for any resolution can be estimated.

P2 The physical meaning of the penalty collision forces is related to the overlapping
volume.

3.2. DATA STRUCTURES 77

Figure 3.3: Volumetric nature of the forces:
(a) A pointshellP is penetrating into a voxelmap
V. The intersection volume V is enclosed within
the surfaces Ain (red, surface of the pointshell)
and Aout (blue, surface of the voxelmap). If the
resolution of the models is high, i. e., s → 0,
pointshell points can be represented as the posi-
tion variable x constrained to Ain and collision
forces can be ultimately computed as a volume
integral. (b) In the special case where Aout is
planar, forces are directly proportional to the in-
tersection volume (with s → 0), as in the case
of buoyancy forces.

(a) (b)

δA

δV
Ain

Aout
x

n(x)

x

y

z V

P

x
y

z

v(x) = − y V

P

V

f

Ain

Aout

The first property P1 is derived from the principle that the real object area A and
volume V are invariant for any discretization. Let I be the subset of V related to the
inner or solid voxels (v ≥ 0):

I = V|v≥0, I ⊆ V. (3.14)

The number of points in P (NP) and the number of solid voxels in I (NI) can be
used to approximate the area (Ã) and the volume (Ṽ), respectively, if the corresponding
resolution or voxel size s is known:

NP s
2 = Ã, NI s

3 = Ṽ. (3.15)

Assuming that the ratio between the real and approximated area or volume is close to
constant, for a pair of different resolutions s1 and s2, it holds:

NP,1
NP,2

' s2
2

s2
1

,
NI,1
NI,2

' s3
2

s3
1

. (3.16)

This is particularly interesting for point clouds, since their number of elements is linearly
proportional to the computation time. In this line, if a pointshell with a given resolution
s1 leads to a certain expected time budget ∆t1, a smaller computation time ∆t2 can be
achieved with the resolution s2 defined as

s2
2 =

NP,1
NP,2

s2
1 =

∆t1
∆t2

s2
1 ⇒ s2 =

∆t1
∆t2

s1. (3.17)

The second property P2 is illustrated in Figure 3.3. In there, a pointshell P overlaps
with a voxelmap V giving an intersection volume V bounded with the surfaces Ain (red,
surface of the pointshell) and Aout (blue, surface of the voxelmap). If the resolution is

78 CHAPTER 3. COLLISION COMPUTATION

increased by decreasing the voxel size s → 0, the force associated to a colliding point x
acting on a surface element δA of the pointshell is

δf(x) = kPv(x)n(x)δA, x ∈ Ain. (3.18)

As pointed out in [Bar07], the total penalty force can then be defined as a surface
integral, which is equivalent to a volume integral after some operations:

fP = kP

∫
Ain

v(x)n(x)δA∫
Ain

δA
1
= kP

∫
Ain∪Aout

v(x)n(x)δA

Ain

2
= −kP

∫
V ∇v(x)δV

Ain
. (3.19)

In step 1, the surface integral is extended to Aout without any effect on the total
value, since v(x) = 0 ∀x ∈ Aout, being Aout the surface of the voxelmap. In step 2,
the divergence theorem is applied, revealing the volumetric nature of the penalty forces.
As a result, forces can be interpreted as proportional to the sum of the gradients of the
distance field ∇v(x) acting on each overlapping volume element δV.

In the particular case of planar voxelmap contact surfaces displayed in Figure 3.3 (b),
contact forces turn out to be proportional to the total overlap volume:

v(x) = −y ⇒ ∇v(x) = (0,−1, 0)T ⇒

⇒ fP = −kP

∫
V ∇v(x)δV

Ain
= kP

V

Ain
(0, 1, 0)T.

(3.20)

Therefore, VPS penalty forces are closely related to the buoyancy forces. It is important
to consider this physical meaning of the forces, especially when collisions against thin
shells occur, as explained in the next section.

3.2.2.2 Limitations

Figure 3.4 illustrates the two major difficulties the VPS algorithm faces: (i) the aliasing
due to discretization and (ii) the tunneling effect, characteristic of thin shells.

Aliasing occurs when continuous analog signals are sampled. In the case of VPS, this
sampling refers to the discrete points on the surface of the pointshell and the regular
voxel grid of the voxelmap, and it can affect both the magnitude and the direction of the
forces, as analyzed in [WSM+10]. For lower resolutions (larger voxel size s), forces and,
ultimately, geometries become more indistinguishable. Since the pointshell resolution is
governed by the time budget, it is reasonable to address the subject through voxelmaps.
In this line, the issue of aliasing is tackled in Section B by increasing the accuracy of
the distance values provided by the voxelmap. This can be interpreted as a conventional

3.2. DATA STRUCTURES 79

(a) (b) (c)

Figure 3.4: Pitfalls of computing collisions with voxelmaps and point clouds: (a) Signed distance and
force aliasing can increase when low resolutions are used, especially in round regions. (b) Voxelized
thin shell. (c) Tunneling effect or pop-though effect characteristic of penalty-based algorithms when
thin shells are checked for collision: Since no inner region is distinguished, overlap volumes are formed
only with surface voxels; hence, forces tend to be too weak and objects can end up going through
(green points).

low pass filter that removes undesired high frequency artifacts caused by the spatial
discretization not aligned with the modeled object surfaces.

The tunneling effect, also called pop-through effect [ZS95], is named after the quantum
tunneling, in which a particle tunnels through a barrier that it should not cross. In col-
lision computation, it occurs when penalty-based algorithms are used to render collision
forces against non-watertight thin shells. As displayed in Figure 3.4 (c), no inner regions
are distinguished for such thin surfaces. If a point manages to go through the solid sur-
face (green points), it does not contribute to the collision force anymore, as it otherwise
would. In other words, taking into account the volumetric force model in (3.20), overlap
volumes are formed only with surface voxels of the thin shells; therefore, forces tend to
be too weak and objects can end up going through, because the user is not fed with a
large enough restriction. This issue is solved in Chapter 4 with a novel constraint-based
algorithm for force rendering and proxy simulation.

3.2.3 Enhanced Voxelmaps: Signed Distance Fields

The primitive voxelmap presented in Section 3.2.1 is enhanced for higher accuracy by
adding two additional structures on top of V:

(i) A set S (implemented as an array) of NS surface voxel elements (v = 0), in which
each surface voxel stores

- the projected point S of the voxel center C on the object

- and the three vertices T1, T2, T3 of the projection triangle (see Figure 3.2),

denoted as

80 CHAPTER 3. COLLISION COMPUTATION

S = {(S, (T1, T2, T3))iS}
NS
iS=1. (3.21)

(ii) A set W of NW = NV elements or voxels in which each voxel contains:

- a floating point signed distance value w from the voxel center C to the object’s
closest triangle,

- and the index iS of the closest surface voxel in the previous structure S,

denoted as

W = {(w, iS)iW}
NW
iW=1. (3.22)

This added information increases the precision provided by the primitive voxelmap,
yet at the cost of memory requirements, as discussed later in this section. More impor-
tantly, the user can choose the resolution (voxel size, s) and the ultimate accuracy (layer
values, floating point distance values) depending on the application.

The input structures necessary to build the enhanced voxelmap are the primitive
voxelmap introduced in Section 3.2.1 and the triangle mesh of the object.

3.2.3.1 Generation of the Structures in the Enhanced Voxelmap

In order to generate the enhanced voxelmaps, first, the surface voxel structure S is
created in a similar fashion as the primitive pointshell: all triangles are traversed and the
surface voxels in their bounding boxes are projected employing the methods explained
in Section 3.2.1. The sign of the distance in the surface voxels is determined by observing
the direction of the vector that points from the voxel center C to the projected point with
respect to the gradient of the voxel value (as computed in (3.12)): if the dot product of
both is positive, the distance is negative, otherwise it is positive – recall that the gradient
or normal vectors point inwards the object.

Second, the floating point distance structure W is created using S. All voxels are
traversed and their closest surface voxel is computed performing iterative gradient descent
in the discrete voxelmap, as illustrated in Figure 3.5. Let C be the voxel center of a point
P in an iteration, then the next P ′ closer point to the surface will be

P ′ = C + ξ∇ s v(C)︸ ︷︷ ︸
step length

n(C) = C + ξ∇ s v(C)
∇v(C)

‖∇v(C)‖
, (3.23)

where ξ∇ = 0.8 for the first iteration and ξ∇ = 1.0 for the successive ones (values obtained
experimentally). This form factor controls the search velocity in the gradient descent.

3.2. DATA STRUCTURES 81

Figure 3.5: Gradient or steepest descent in the voxelmap: The
closest surface voxel of a voxel center C where a point Pi lies is
found by moving in the direction of the voxel value gradient in
C: n(C) = ∇v(C)

‖∇v(C)‖ . The gradient is computed with the voxel
values in the neighborhood of C, NV(C), as defined in (3.12).
The magnitude of the step is given by the voxel size s weighted
by σ, being ξ∇ = 0.8 for the first iteration and ξ∇ = 1.0 for the
successive ones until a voxel with v = 0 is found. The distance
from C to the triangle stored in the closest surface voxel found
is computed as explained in Section 3.2.1. Triangles stored in
the neighbor voxels of the closest surface voxel are also checked
to minimize the limitations of the gradient descent in discrete
coordinates.

0

0

-1

1

112

-1

-2

-2

-3

-3

-3

-3

-3

-3

-4 -4 -4 -4 -4

-4

-4

-5

P

S

X
Y

1 2 3 4 5 6

1
2
3
4
5
6
7

C

0

-5

s
0

The computation finishes as soon as P ′ lies in a voxel with v = 0 (surface voxel), which
usually occurs in 2 − 3 iterations. The default neighborhood is of width 3 (i. e., NV,1,
see (3.5)). Once the surface voxel is found, the closest surface point S is computed by
projecting the original point (or voxel center) on the triangle defined by the vertices
stored in the surface voxel, following the optimization method explained in Section 3.2.1.

Depending on the voxel size s (i. e., discretization factor), this heuristic could lead to
incorrect surface voxels, particularly as the voxel layer value v(C) increases. In order to
reduce that error, all the triangles associated to the surface voxels in the neighborhood
of the closest surface voxel are checked, taking the one which yields the smallest distance
value.

This gradient descent method is an essential function also integrated in the primitive
voxelmap that can be used to deliver surface voxels associated to any point in space
during online queries.

The generation complexity is worst case O(n+m), with n being the number of voxels
and m the number of triangles. As in the case of primitive data structures, the factor
m is negligible in regular situations, but it must be considered in case the object has
large amounts of triangles and the chosen resolution is very small. Using a resolution of
around s = 5 mm, usual generation times are of about 1 − 3 minutes for desktop-sized
objects. The time required for creating an enhanced distance field will always be longer
than the one of a primitive pointshell alone. In fact, generating a distance field consists
in building (i) a primitive voxelmap, (ii) a structure similar to the pointshell (S), and,
finally, (iii) a field with the same amount of elements as the primitive voxelmap but with
more accurate and expensive computations per voxel (W).

As for the primitive data structures, enhanced voxelmaps can be saved in files for
later use. If pre-computed gradient vectors and additional support information are stored
per voxel, files sizes easily reach tens of megabytes for regular resolutions (s = 5 mm,

82 CHAPTER 3. COLLISION COMPUTATION

desktop-size objects). Exemplary computation time, file size and snapshots with varied
resolutions (s) are provided in [SHPH08] and in Figure 3.16. The files size, and more
importantly, the resulting memory footprint, are a clear limitation factor when it comes
to choosing between primitive layered voxelmaps or floating points distance fields. It is
worth to mention that in the latter enhanced voxelmaps only one triangle is registered
per voxel. This is not relevant in regular situations (i. e., average triangle area at least
bigger than s2), but it might lead to accuracy losses when the density of triangles per
voxel increases.

3.2.3.2 The Signed Distance Voxelmap Function V (P)

Given a point and its associated normal vector (P,n(P)), the signed distance voxelmap
function V (P) is defined to yield during realtime operations the signed distance of the
point with respect to the surface encoded in the voxelmap. This signed distance can
be the smallest Euclidean distance to collision (V (P) ≤ 0, non colliding) or the point
penetration value (V (P) > 0, colliding) in the object modeled by the voxelmap. In the
latter case, the penalty collision force fi and torque ti associated with the colliding single
point Pi (and its normal ni) of the pointshell are defined as spring-like forces that follow
Hooke’s law of elasticity:

fi = kPV (Pi)ni, ti =
−−→
GPi × fi, (3.24)

being kP the penalty stiffness gain and
−−→
GPi the vector from the center of mass (CoM)

of the pointshell G to the point Pi. In practice, in order to avoid computing the vector,
all poinsthell points are defined with respect to the center of mass (CoM) G, which is
shifted to the origin (i. e., G = (0, 0, 0)T).

Three different implementations of the signed distance function are defined (in the
order of increasing accuracy):

VL, distance function using layered voxel values (v),

VS , distance function employing the stored surface points (encoded in S), and

VI , distance function which interpolates the neighbouring floating point distance values
(enconded in W).

The layered distance function, illustrated in Figure 3.6 (a,b), can be computed
with both the primitive and the enhanced voxelmap and is given by

VL(P) = ξV s v(P) + nTd, (3.25)

3.2. DATA STRUCTURES 83

0

00

0

00

0

0

-1 -1 -1

1

v (Pi) = 0

ni

fi

di

s
Ci

Pi

C

(a) (b) (c) (d)

P

V

P

V

S(P)
P =V
P

P =QP

z
x

y ∇w

P

wz

wC = w (C)

wy

wx

d

∆x = s
∆X = 1

Figure 3.6: (a) Voxelized and point-sampled objects in collision. Each voxel has its voxel layer value
v related to its penetration in the voxelmap, and each point Pi its inwards pointing normal vector ni.
(b) A single point penalty force fi can be computed scaling the normal vector with its penetration.
(c) Distance computation between a signed distance field A and a point-sphere B: if bounding boxes
do not overlap, the first consists in projecting the sphere centers and points PA on the bounding box
of the distance field P

′

B ; then, distance values can be interpolated or the closest surface point of the
projected point can be found using the surface map. (d) A voxel (blue) surrounded by its neighbor
voxel values (red). A valid neighborhood (orange) is selected for linear interpolation of the distance
or penetration using the gradient ∇v built out of the neighbor voxel values vx, vy, and vz.

with d =
−−→
PC being the vector from the point P to the voxel center C and ξV the voxel

form factor applied to the voxel size s. This form factor can range from ξV = 1, for cases
in which the voxel value gradient is aligned with any of the voxelmap axes, to ξV =

√
3,

when the gradient is aligned with any of the voxel diagonals; in practice, its value is
usually fixed to the mean ξV = 1

2(1 +
√

3), although ξV = 1 yields the most conservative
distance to collision computation.

Whereas the first term ξV s v(P) from (3.25) refers to the global approximated signed
distance in the voxelmap, the second term nTd accounts for the local distance within
the voxel. This second term is particularly relevant in case the point is in a surface voxel
(v = 0), but negligible for high voxel values or small voxel sizes.

The distance function which accesses the surface points stored in the surface
voxel structure S is defined as

VS(P) = ‖P − S(P)‖ (3.26)

with S(P) being the closest point S constrained to the surface encoded in the voxelmap
for a point P in space. This point is obtained in two steps, similarly as when W is
generated: first, the voxel ofW where P lies (analogous to Table B.1 (c)) and which con-
tains the index of the closest surface voxel in S is determined; second, the pre-computed
projected point of that surface voxel is taken, which is the delivered approximation of
S. This process is schematically shown in Figure 3.6 (c). In the figure, the special case

84 CHAPTER 3. COLLISION COMPUTATION

in which the poinsthell P is completely out of the boundaries of the voxelmap V is de-
picted; in such a situation, the closest boundary voxel to the point P must be found in
a previous step (see Table B.1 (c)), and then, W and S are accessed to obtain S(P), as
described.

In summary, S(P) can be interpreted as a surface map function, which, given a point
on the pointshell PP, yields its closest point on the surface of the voxelmap PV:

S : R3 → R3, PV = S(PP)

such that


v(PV) = 0,

δ2 = ‖PV − PP‖2
{

min δ2 if V (PP) < 0 (outside),

max δ2 otherwise.

(3.27)

However, given that the S points stored in S are the projections of the surface voxel
centers, the optimum value for δ2 is not garanteed with the implemented approach. One
possible improvement would consist in projecting the PP point on the triangle stored
in the surface voxel detected in S (see Section 3.2.1, Table 3.1). Yet, this enhancement
decreases computation time performance and is not practicable for large amounts of
points every haptic cycle.

The interpolation distance function which accesses the floating point distance
values w stored in the structure W is defined as

VI(P) = −(∇w)Td + wC , (3.28)

where d =
−−→
PC, as previously, wC = w(C) the floating point distance value in the voxel

where P is (by default, the value in voxel center C(P)), and

∇w =
1

s

Ç
wx − wC

∆X
,
wy − wC

∆Y
,
wz − wC

∆Z

åT

. (3.29)

As illustrated in Figure 3.6 (d), the discrete step sizes are ∆X,∆Y,∆Z ∈ {−1, 1}; their
values are chosen depending on the octant of the voxel where P lies. The neighboring
floating point distances wx, wy, wz are selected accordingly. This function VI is consid-
ered the most accurate among all three, since local linear interpolation of distances is
performed for the queried point using previously generated real distance values.

3.2.3.3 Comparison of the Signed Distance Function V (P) Calls

Figure 3.7 displays accuracy differences between the three signed distance function calls
VL, VS , and VI ; additionally, Table 3.2 summarizes all structures and calls with their
performance properties. These qualitative values are later quantitatively analyzed in the

3.2. DATA STRUCTURES 85

(b) (c)

D
E
F

Interpolation, I Interpolation, I

Surface Point, S Layers, L

Difference, I - S Difference, I - L

-56.50 mm

44.59 mm

0.0

-56.50 mm

44.59 mm

0.0

(a)

C

Figure 3.7: The Utah Teapot (2330 triangles) with a bounding box of 236.2 mm × 115.7 mm ×
147.0 mm is voxelized with a resolution of s = 2 mm (voxel size), yielding a voxelmap of 122×61×77
voxels. (a) Surface voxel layer (red, v = 0) and first inner layer (green, v = 1) are shown. 500× 250
pixels of the sagittal plane are rastered computing their signed distance V (P) value. The point normal
vector is the gradient of the voxelmap in its respective voxel. Distances are coded in color: warm for
positive (inner) values, cold for negative (outer). Gray values denote areas where no significant data
is available: The layered representation (V) was compressed to contain values around the surface only
(6 inner and 4 outer layers). (b) Interpolated section (ground truth, VI), surface point map section
(VS), and difference of both, which is bounded to [C,D] = [−2.80, 3.40] mm; (c) Interpolated
section (ground truth, VI), layer distance section (VL), and difference of both, which is bounded to
[E,F] = [−3.19, 4.29] mm.

benchmarking experiments presented in Section 3.4. Although the results are clearly
object and resolution dependent, they depict thoroughly the performance of the different
calls in the voxelmap.

The differences in computation time are due to the operations performed and the
amount of data accessed during each call. In the case of VL, the unique value v has to be
detected in V for a (poinsthell) point P in space. On the other hand, VS and VI require
accessing four values each: iS , Sx, Sy, Sz and wx, wy, wz, wC , respectively.

The distance field sections in Figure 3.7 were generated rasterizing for each of the
voxel section 4×4 points on average. The interpolation distance function VI is considered
the ground truth. The surface point distance function VS overestimates (turquoise)
penetration values compared to VI ; on the other hand, distances are underestimated
(yellow) except in the overestimation stripes that emerge in high curvature surface points.
In both cases, the error is bounded to 1.7s.

The error is the biggest with layered distance function VL, as expected, but still
bounded to 2.15s. Aliasing issues, characteristic of discretized data structures, manifest
clearly as alternating under- and overestimation regions. However, it is important to

86 CHAPTER 3. COLLISION COMPUTATION

Table 3.2: Summary of structures, values, and queries that are defined in primitive and enhanced
voxelmaps (V). Speed and accuracy are coded with values in seven-point scala ranging from −−−
(very slow/inaccurate) to + + + (very fast/accurate), being ∼ mediocre, but acceptable. All queries
can be called during online interactive simulations, but those with a speed equal or less than ∼ should
be used with a unique or few points every haptic cycle.

Online Calls

Sets Values Function Speed Accuracy

Primitive V V {v}iV=NV
iV=1 v ∈ N VL(P) ++ +

Gradient1 S(P) ∼ ∼

Enhanced V V {v}iV=NV
iV=1 v ∈ N VL(P) ++ +

S {(S, (T1, T2, T3))}iS=NS
iS=1 S, T ∈ R3 VS(P) + ++

W {(w, iS)}iW=NW=NV
iW=1 w ∈ R, iS ∈ N VI(P) ∼ + + +

Gradient1 S(P) ∼ ∼
Fast2 S(P) ++ +

1 Gradient S(P) delivers the voxel center C of the closest surface voxel of P after performing gradient
descent as defined in (3.23).
2 Fast S(P) delivers the pre-computed closest point of P accessing S.

bear in mind that the sections depict the results of one single point; in real situations,
hundreds of points might collide, attenuating the aliasing effect considerably, as later
discussed in Section 3.4. More importantly, the error in critical regions (voxels close to
the surface) produced by VL is not much bigger than the one produced by VS , while
lighter data structures are achieved using only V. This makes the primitive voxelmaps
very useful structures for large objects or situations in which the computational speed
and memory space have priority over accuracy.

As mentioned, Section 3.4 provides more results related to the different signed dis-
tance function calls. Among others, the effect of different voxelmap resolution is analyzed.

3.2.4 Enhanced Pointshells: Point-Sphere Trees

The primitive pointshell or point cloud described in Section 3.2.1 is a list of unordered
6D points that represent the original mesh. This data structure is enhanced to obtain
the enhanced pointshell, which encodes multiresolution point neighborhood information.
That improvement is performed as follows:

(i) The set of points P defined in (3.6) is extended to contain a quality value q for
each point related to the curvature; the updated set of 7D points is

3.2. DATA STRUCTURES 87

P = {(P,n, q)1, . . . , (P,n, q)i, . . . , (P,n, q)NP} = {(P,n, q)i}NPi=1. (3.30)

(ii) A set C of NC elements or clusters c is defined:

C = {c1, . . . , ci, . . . , cNC} = {ci}NCi=1. (3.31)

This set contains the information with which points are hierarchically organized
in levels or subsets that sample the object completely with different resolutions or
point densities. Additionally, a sphere tree is built upon the point hierarchy in
order to detect faster relevant regions during realtime calls. The elementary unit
in C, the cluster c, represents a surface patch on the object and which is sampled
by points and it is defined as

c =

Ç
L,K, (R,X), {&(P,n, q)j}, {&ccj},&cp, qmax

å
, (3.32)

where

– L is the level where the cluster is, being the highest level L = 1 and the level
of the leaves L = NL;

– K is the number of cluster points, which satisfies 1 ≤ K ≤ NK , with NK

being the branching factor in the tree (NK = 4 default);

– (R,X) are the radius R and the center X of the minimally bounding sphere
that contains all children points recursively branched until the leaf level;

– {&(P,n, q)j}Kj=1 are the memory addresses of the K cluster points, with Pj=1

being the cluster parent point which represents the whole cluster; the addresses
point to elements in P;

– {&ccj}Kj=1 are the addresses of the K children clusters associated to the cluster
points; note that each children cluster recursively contains addresses of other
cluster points and children clusters; the addresses point to elements in C;

– &cp is the address of the parent cluster in C;

– and qmax is the maximum quality value of all points that are recursively
branched from the cluster until the leaf level.

In close relationship to C, the FIFO (First in First Out) queue or set of clusters Q is
additionally defined. This is not an intrinsic structure of the pointshell P, but it supports

88 CHAPTER 3. COLLISION COMPUTATION

ni

Ci

Cj

Ck

nj

nk∆Cij

∆nij

∆Cik

∆nik
min maxavg

0.2670.0 0.632
min maxavg

0.2710.0 0.597

(a) (b) (c)

Figure 3.8: Point quality values q (m−1) related to the curvature: (a) The quality value qi of a
point Pi is computed observing the variation of the normal vector (∆nij) in the surrounding voxel
centers (Cj) within the neighborhood of the point NV,2(Pi). (b) Pointshell representation of the
Stanford Bunny with a bounding volume of 105 mm × 206 mm × 160 mm: 5584 points are created
using a voxel size s = 4 mm. Normal vectors are flipped to point outwards and coded in color (yellow
to red) according to the quality value q of the point. (c) Poinsthell representation of a cube with
2000 mm edge length: 9602 points are created using a voxel size s = 50 mm. Normal vectors are
again flipped and coded in color according to q.

the ordered access to clusters during realtime calls:

Q = {ci}NQi=1, Q ⊆ C (3.33)

At the beginning of each proximity or collision query, this queue is empty, Q ← ∅;
during the query, it is filled with clusters that are detected to be likely colliding and
emptied step by step again by the end of the haptic cycle. This section presents how P
and C are created, whereas Section 3.3 explains in greater detail how Q is defined and
used for collision checks between complex geometries.

The input structures necessary to build the point-sphere tree are the primitive data
structures of the object introduced in Section 3.2.1.

3.2.4.1 Point Qualities

Quality values q represent geometry variations nearby a pointshell point P . In this way,
points with low q values can be sorted out during realime collision checks if the time
budget is low, as later explained in Section 3.3.2.

Figure 3.8 illustrates the computation of point quality values q during data struc-
ture generation and displays some exemplary cases. As shown in there, the underlying
primitive voxelmap is used in the process. First, given a 6D pointshell point (Pi,ni)
which lies in the voxel with center Ci, the normal vectors nj of the voxels within the
surrounding neighborhood NV,2 are calculated according to (3.12). Second, the normal
and displacement variation vectors of each neighboring voxel are computed:

3.2. DATA STRUCTURES 89

∆nij = nj − ni = (∆nij,x, ∆nij,y, ∆nij,z)
T, (3.34)

∆Cij = Cj − Ci = (∆Cij,x, ∆Cij,y, ∆Cij,z)
T. (3.35)

And finally, the quality q is evaluated as the total normal vector variation per distance
unit swept in the neighborhood:

q(Pi) =
∑

Cj ,nj ∈NV,2(Pi)
⇔j=1, ..., NN

‖∆nij‖
‖∆Cij‖

. (3.36)

Note that the quality value q is directly related to the curvature of the object in the
point P . Indeed, as suggested in [Mas03], the curvature approximation can be extracted
from the matrix Q which relates ∆nij and ∆Cij . To this end, first, the variation vectors
in (3.34) and (3.35) are redefined by considering only their components parallel to ni:

∆nij ← (nj − ni)− ((nj − ni)
Tni)ni = (∆nij,x, ∆nij,y, ∆nij,z)

T (3.37)

∆Cij ← (Cj − Ci)− ((Cj − Ci)Tni)ni = (∆Cij,x, ∆Cij,y, ∆Cij,z)
T (3.38)

Next, Q is defined as


∆Ci1,x ∆Ci1,y ∆Ci1,z

∆Ci2,x ∆Ci2,y ∆Ci2,z
...

...
...

∆CiNN ,x ∆CiNN ,y ∆CiNN ,z

Q =


∆ni1,x ∆ni1,y ∆ni1,z

∆ni2,x ∆ni2,y ∆ni2,z
...

...
...

∆niNN ,x ∆niNN ,y ∆niNN ,z

 ⇔ CQ = N,

(3.39)
with NN being the number of neighbor voxels around Pi. This is a linear regression
problem and the optimum Q can be isolated applying the pseudo-inverse of C.

Principal component analysis of Q reveals that the last eigenvector is parallel to ni,
since both variation vectors in (3.37) and (3.38) have been projected on the tangent
plane of ni. Therefore, Q can be reduced to the rank-2 shape operator which has the
two principal curvatures κ1, κ2 as eigenvalues.

In that sense, the point quality could be also defined as the mean curvature 1
2(κ1+κ2).

However, the implementation in (3.36) is considerably faster, numerically more robust,
and, although it does not yield the curvature, it fulfills the sought purpose: the definition
of an indicator which describes geometry change to be able to filter out geometrically
less meaningful points during time critical calls.

90 CHAPTER 3. COLLISION COMPUTATION

Figure 3.9: (a) The K = NK closest points of
a seed point are searched (NK = 4 here). The
first K − 1 points and the seed constitute a clus-
ter, whereas the last point will be the seed for the
next cluster (green). For each cluster, a parent
point (closest to the CoM of the cluster) is selected
(red). The algorithm successively steps to create
the next upper level by clustering the just created
parent points. (b) Minimally bounding spheres are
computed for each cluster. These encapsulate all
points within the cluster recursively reachable until
the leaf level.

(a) (b)

(a) L = 1 (b) L = 4 (c) L = 5 (d) L = 6 (e) L = 7

. . .

. . .

ROOT LEAVES

Figure 3.10: Different hierarchy levels of the the same Stanford Bunny as in Figure 3.8 (s = 4 mm,
5584 points) are shown: Sphere tree levels are displayed at the top row and the corresponding point
tree levels at the bottom row. Note that each point tree level samples the whole geometry with a
different resolution. The hierarchy has a branching factor of NK = 4 (points per cluster), which
results in NC = 1916 clusters (and, hence, spheres) divided in NL = 7 levels.

3.2. DATA STRUCTURES 91

3.2.4.2 Hierarchy Generation

Point-sphere hierarchies are completely encoded in the previously introduced cluster set
C and are built bottom-up starting with the leaf points (all the points in P, thus, the
finest resolution). First, clustering and hierarchy level definition is performed, and then,
minimally bounding spheres are computed for each cluster recursively. The whole process
is outlined in Figure 3.9 and an exemplary point-sphere hierarchy is shown in Figure 3.10.

When clustering is carried out, points are grouped into clusters of K points according
to their similarity. This similarity is currently defined as the regular Euclidean distance,
but other criteria are possible, such as the geodesic distance, or implementations that
take into account the normal vectors or quality values of the points. The branching factor
NK (default, NK = 4) is the actual parameter defined by the user in order to control
the number of points in a cluster, with K automatically adjusted. In regular situations,
K = NK , except when there are not enough points or the distance between them is above
a given threshold, as detailed later.

The first point or seed point is randomly chosen and the next most similar K points
are located in the neighborhood. At this stage, the support structure which matches
surface voxels and projected points mentioned in Section 3.2.1 is used in order to avoid
quadratic complexity during the search. A cluster of K elements is formed using the
initial seed point and the next K − 1 closest neighbors. The Kth closest neighboring
point is used as the initial seed point for the next cluster. Before jumping to the next
cluster, the point in the cluster closest to the average or center of mass (CoM) is selected
as the cluster parent point. This process is repeated until all the elements belong to
some cluster. When this occurs, the algorithm starts grouping the parent points of the
previously defined clusters. The stopping criterion of this recursion is met when the top
level of the tree which contains only one cluster is reached. This one cluster is the root
cluster in level L = 1.

Given a branching factor NK , each level L > 1 in the hierarchy will have approxi-
mately NK times more points than the previous higher level L− 1:

NP,L = NKNP,L−1, NP,L =

¢
NP

(NK)L−1

•
, (3.40)

with NP being the total number of points in P and NP,L the number of points in level
L. The points in each level sample the whole object surface with a different resolution s
which can be modeled with (3.16) and (3.40):

sL = sL−1

√
NK . (3.41)

Additionally, the total number of levels NL can be estimated from (3.40) as

92 CHAPTER 3. COLLISION COMPUTATION

NL =
†
logNK

NP
£
, (3.42)

and it is the level number of the leaf points, that consist of all points in P.
The explained sequential clustering approach can yield clusters containing points that

are much further away from each other than on average in the level. That occurs because
the only criterion for building the next adjacent cluster is finding the closest point to
the current cluster; additionally, it is not guaranteed that a list of closest points not
assigned to clusters is going to be as compact as a proper cluster. In order to eliminate
those exceptions, a distance threshold is defined between a parent point Pi and the other
cluster points Pj :

‖Pi − Pj‖ ≤
3

4
NKs

√
3(
√
NK)NL−L; (3.43)

this heuristic threshold distance in (3.43) is obtained assuming that points should be a
maximum of 3

4NK voxels away from each other (worst case, in diagonal) and considering
that the resolution between levels varies according to (3.41). When a point yields a
distance value above the threshold, it is pulled out from the cluster and assigned to a
neighboring cluster in which it fulfills the threshold criterion. Therefore, although the
target size of a cluster is always NK , the real number of points K of each cluster is
determined on the fly. It may happen that a point which was pulled out does not fulfill
the threshold for any neighboring cluster; in that case, a single-point cluster is created
with it. Relaxing (3.43) helps to eliminate the number of single-point clusters, but it
lowers the average compactness of all the other clusters.

After a level L is clustered, all generated clusters are added to C in their order of
creation. As a result, the first clusters of C belong to the last level L = NL and contain
leaf points, and the very last cluster in C is the root cluster c1 in level L = 1. Every
time a cluster c is added to the hierarchy, all available cluster values necessary in (3.44)
are registered: L, K, the addresses in P of the K cluster points and also the reciprocal
addresses between children and parent clusters (i. e., {&ccj} and &cp). Note that although
the number of clusters NC is determined at the end of the clustering process, it can be
estimated as

NC '
NL∑
i=0

(NK)i. (3.44)

After building the point-tree, the sphere-tree is created upon it. To that purpose,
bounding spheres for each cluster are computed recursively. Minimally bounding spheres
[FG04] are calculated using the CGAL library [FGH+16] (see Figure 3.9 (b)). Each
cluster sphere contains all the cluster points and all the children cluster points until

3.2. DATA STRUCTURES 93

Table 3.3: Summary of structures, values, and queries that are defined in primitive and enhanced
pointshells (P).

Sets Values Online Call Description

Primitive P P {(P,n)iP}
iP=NP
iP=1 P,n ∈ R3 All 6D points in P form an

unordered list which is completely
accessed in realtime calls without
hierarchies.

Enhanced P P {(P,n, q)iP}
iP=NP
iP=1 P,n ∈ R3, q ∈ R Only selected 7D points referenced

from clusters in Q are accessed.
C {ciC}

iC=NC
iC=1 see (3.32) Addresses to clusters (c) in C are

pushed to the queue Q for later
access during realtime calls. Each c
contains addresses to points in P.

Q {ciQ}
iQ=NQ
iQ=1 Q ⊆ C The FIFO queue Q is not a

constant structure in P (as P or C),
but is created every haptic cycle
by adding likely colliding
clusters from C.

reaching the leaf level. Thus, the result is an optimally wrapped sphere-tree, similar to
the one defined in [WZ09b], where each cluster sphere contains all its children points,
but not the children spheres. All points to be enclosed are detected by simply following
the children cluster addresses stored in each cluster during the point-tree generation. In
this phase, the maximum quality value qmax along all the points within the sphere is also
computed and saved in the cluster.

This sphere hierarchy enables rapidly locating likely collision areas performing sphere
checks, as explained in Section 3.3. Figure 3.10 shows the point-sphere tree of the Stan-
ford Bunny and Table 3.3 summarizes and compares the most important structures of
primitive and enhanced pointshells.

Enhanced pointshells can also be saved in files. All files used for this work were gener-
ated in less than 20 seconds and have a size smaller than 2 MB using resolutions slightly
smaller than s = 5 mm in desktop-sized objects. Refer to [SHPH08] and Figure 3.16 for
more information on generation time, file size, and further exemplary snapshots.

94 CHAPTER 3. COLLISION COMPUTATION

3.3 Proximity and Collision Queries with Complex Objects

This section builds on the data structures and functions introduced and presents how
LoD, time-critical proximity and collision queries can be performed between arbitrarily
complex geometries. Three basic elements should be recalled:

(i) The three signed distance voxelmap functions V (P) defined in (3.25), (3.26), and
(3.28) (Section B). The three are considered interchangeable in this section unless
one is specified due to accuracy reasons.

(ii) The definition of six-DoF forces in (3.24) (Section B).

(iii) The clusters from the set C used to populate the FIFO queue Q, in (3.31), (3.32),
and (3.33) (Section B).

A brute force approach (for CPU implementations) for detecting the minimum dis-
tance or collision forces between two objects consists in representing one with a voxelmap
and the other as a pointshell, and then checking all points in P, as proposed in the orig-
inal VPS [MPT99]. This procedure has the advantage of yielding almost constant-time
collision data, but the drawback of being limited to few thousands of points is the 1 kHz

update rate for haptics is to be reached.
A more efficient technique consists in using the sphere-tree for discarding non-colliding

regions and narrowing the likely colliding ones. The FIFO queue Q is used for that
purpose, as explained in detail in the next Section 3.3.1. Algorithm 3.1 shows this
general hierarchical traverse (called at least every 1 ms) of the point-sphere tree in order
to compute distance values and six-DoF collision forces between voxelmap and pointshell
structures that can represent complex geometries. This traverse is graphically outlined
in Figure 3.11.

Two types of traverses are explained for the same Algorithm 3.1: (i) a general traverse
detailed in the next section Section 3.3.1 and (ii) a time-critical traverse which can reduce
the resolution described in Section 3.3.2. Both deliver the same type of information, but
with different resolutions.

3.3.1 General Hierarchical Traverse

First, the input and output data of Algorithm 3.1 are defined:

3.3.1.1 Input Data

(i) Voxelmap V and pointshell P data structures. The voxelmap can be either a basic
layered structure or an enhanced signed distance field (with V, S, andW), whereas

3.3. PROXIMITY AND COLLISION QUERIES WITH COMPLEX OBJECTS 95

Algorithm 3.1: (pd, fP, tP, Q, S(Q), η,M) = collisionQuery(V,P, d, pc, ηc, qc)

Data: Signed distance field (voxelmap) V containing V, S, and W; Point-sphere hierarchy
(pointshell) P containing P and C, transformed into voxelmap coordinates with VHP;
Safety margin d; Critical distance pc; Critical load ηc; Critical quality qc.

Result: Signed distance pd between voxelmap and pointshell; Penalty forces fP and torques
tP; Closest features (points) on pointshell Q and voxelmap S(Q); Computational
load η; Optionally, contact manifoldM. Values in voxelmap coordinates.

//Get critical level from load in last loop; if first loop or ηc = 1, Lc = NL

1 Lc ← Q.getCriticalLevel(ηc)
//Reset FIFO queue with root cluster that bounds all points

2 Q ← ∅
3 Q.setCriticalQuality(qc)
4 c1 ← C.getRootCluster()
5 Q.push(c1)

//Initialization of output values
6 pd ← 0, fP ← 0, tP ← 0, Q← c1.P1, η ← 0,M← ∅
7 while Q 6= ∅ do
8 c← Q.pop()
9 if V (c.X) + d+ c.R ≥ −pc then

//Sphere of cluster c is colliding or closer than critical distance pc
//Check parent point for collision

10 if unchecked(c.P1) AND V (c.P1) + d ≥ 0 then
//Cluster parent point colliding → Compute forces and extend manifold

11 fP ← fP + (V (c.P1) + d)c.n1; tP ← tP + c.P1 × (V (c.P1) + d)c.n1

12 M.tryAdd(c.P1, c.n1, V (c.P1) + d)

//Save parent point as closest feature if it optimizes distance
13 if V (c.P1) + d > pd then
14 pd ← V (c.P1) + d; Q← c.P1

//Check all cluster points for collision if c belongs to the critical level Lc

15 if c.L == Lc then
16 for k = 2 to K do
17 if V (c.Pk) + d ≥ 0 then

//Point in last level colliding → Compute forces and extend manifold
18 fP ← fP + (V (c.Pk) + d)c.nk; tP ← tP + c.Pk × (V (c.Pk) + d)c.nk

19 M.tryAdd(c.Pk, c.nk, V (c.Pk) + d)

//Save cluster point as closest feature if it optimizes distance
20 if V (c.Pk) + d > pd then
21 pd ← V (c.Pk) + d; Q← c.Pk

//Push children of colliding or close-to-collision sphere
22 Q.tryPush(c.{&cck}Kk=1, c.qmax)

23 else
//Sphere is not colliding or at least further aways than the critical distance pc
//Save distance if its sphere distance optimizes pd

24 if V (c.X) + d+ c.R > pd then
25 pd ← V (c.X) + d+ c.R

26 ρ← computeCorrectionFactor()
27 (fP, tP)← (ρfP, ρtP)
28 η ← computeLoad()
29 Q.saveLoad(η)
30 S(Q)← V.getSurfacePoint(Q)
31 return (pd, fP, tP, Q, S(Q), η,M)

96 CHAPTER 3. COLLISION COMPUTATION

(a) (b)
checked colliding

! FIFO Queue

c1 POP Sphere
check

NO
COLLISION

Pop from front until
queue is empty

Check parent point for
collision and store

corresponding force &
penetration/distance

Push back all children
clusters of current
colliding cluster

PUSH

... ...

... ...

children clusters

cluster points

parent point

sphere
... ...

FAR

COLLISION
CLOSE

Figure 3.11: Graphical explanation of the unified proximity and collision computation procedure
in Algorithm 3.1: (a) The algorithm is summarized in block diagrams. (b) Breadth-first traverse
(green arrow) of the clusters in the point-sphere tree through the last three levels. Blue spheres and
points represent checked elements, while red elements are the colliding ones. The algorithm converges
to the collision area in the lower right part.

the pointshell must be an enhanced point-sphere tree (with P and C). Addition-
ally, all elements in P are given in voxelmap coordinates with the homogeneous
transformation VHP.

(ii) Safety margin d with which the voxelmap is artificially dilated. This value is
typically set to be similar to the voxel size s and produces breaking forces in
the safety region defined by the layer created by d, as well as more conservative
distance-to-collision values. It is also used during constraint-based force rendering,
explained in Chapter 4. However, if no breaking forces and rather real distance
values are required, it can be set d = 0.

(iii) Critical distance or distance computation threshold pc. This value controls distance
computation with point-sphere trees. If pc = 0, a poor distance approximation pd
(see output data) is going to be provided, but the algorithm is going to be extremely
fast (less than 10µs) in non-overlapping configurations. Intuitively, pc defines the
voxelmap isosurface which contains the volume in which pointshell points need to
be evaluated in order to determine accurate distance-to-surface values.

(iv) Critical load 0 ≤ ηc ≤ 1 and quality 0 ≤ qc ≤ 1. These values control, respectively,
the deepest level visited and the minimum relative point quality in time-critical
traverses, explained in Section 3.3.2. If ηc = 1.0, the critical level will be the
deepest level in the hierarchy, i. e., Lc = NL; with qc = 0.0, no points are filtered
out due to low quality values.

3.3. PROXIMITY AND COLLISION QUERIES WITH COMPLEX OBJECTS 97

3.3.1.2 Output Data

(i) The signed distance pd between the voxelmap and pointshell structures. If pd > 0,
objects overlap, being pd the maximum penetration value; if pd < 0, objects are
a distance |pd| apart from each other; otherwise, if pd = 0, objects are in surface
contact. Note that the value pd is the distance computed with a voxelmap dilated
with a safety margin d

pd = p+ d, (3.45)

with p being the real distance/penetration between geometries, evaluated as the
maximum signed distance value across all points on the pointshell:

p = max{V (Pi)}, Pi ∈ P. (3.46)

(ii) Penalty force fP and torque tP vectors computed according to (3.24). These values
are computed with the voxelmap dilated with the safety margin d.

(iii) Closest points on pointshell Q and voxelmap S(Q), computed on the real surface,
without considering the safety margin d for voxelmap dilation. If p > 0, in order
to solve the overlap, the objects need to be translated the distance p so that Q
matches S(Q).

(iv) Computational load η, evaluated essentially as the ratio between colliding and
checked elements (points and spheres). The value of η is related to time-critical
traverses, thus, its definition is elaborated in Section 3.3.2.

(v) Contact manifoldM = {Pi,ni, V (Pi)}NMi=1 , which contains information of colliding
points. In the implementation, addresses to the points in P together with their
penetration V (Pi) are registered. The setM is empty if objects are disjoint, i. e.,
pd < 0.

3.3.1.3 Collision Computation (pc = 0, ηc = 1, qc = 0)

As already mentioned, the FIFO queue Q is the main support structure with which
collision and proximity computation can be performed as shown in Algorithm 3.1. First,
Q must be cleared (line 2) and filled with the root cluster c1 which has the sphere that
bounds all points in P (line 4). Note that Q is more than a simple set; it also has methods
(it is implemented as a class) with which inclusion and extraction of selected elements
to or from it can be performed in a FIFO ordered manner. Besides that, the structure
handles the last or critical level Lc, as further explained later in Section 3.3.2.

In the loop (line 7), a cluster c is popped (line 8) every iteration from Q until the
queue is empty, and it is checked whether cluster c’s sphere collides (line 9). If the cluster

98 CHAPTER 3. COLLISION COMPUTATION

sphere collides, children clusters are added to Q (line 22) for later processing (for they
might also collide), and the collision forces of the parent point are computed (lines 10-
11) in case its signed distance is positive. If the sphere is not colliding, the inter-object
signed distance pd is checked (line 13) and updated (line 14) if necessary, but no children
clusters are added to Q: since the current cluster sphere is not colliding and bounds all
points divided into children clusters, it can be assured that none of them is colliding. If
accurate distance computation is not performed (i. e., qc = 0), the sphere collision check
of line 9 can be simplified as

V (c.X) + d︸ ︷︷ ︸
distance sphere center

+ c.R︸︷︷︸
sphere radius

≥ 0, (3.47)

which basically tests whether the center of the sphere is at least as far as its radius
from the surface of the voxelmap object – recall that the points in the outer region yield
negative distance values.

In case the cluster belongs to the critical level (Lc = NL if ηc = 1), the rest of
K − 1 children points are also checked for collision, as done with the cluster parent
point; in this sense, line segments 10-11 and 17-18 are analogous, but applied to parent
and children points, respectively. This loop is schematically outlined in Figure 3.11 (a).
Given the structure of C and Q, clusters are swept in a breadth-first manner, level by
level (see Figure 3.11 (b)).

The type of distance function VL, VS , or VI (Section B) is deliberately not specified,
since any of them can be used. Note that the safety margin d is always added to the signed
distance function. Additionally, as previously indicated, six-DoF forces are computed
according to (3.24), but the safety distance d is considered in them; therefore, breaking
forces are computed only if the objects overlap in the safety region.

As in the case of Q, the contact manifold M is implemented as a class which has
methods for selecting the points that are trying to be added and these can be ordered
inside the structure in clusters, as further explained in Section 3.3.1.5.

The force and torque values explained so far increase with the area in contact; how-
ever, in real situations, the contact normal forces are independent of the contact areas:
for instance, a long stick or cylinder should experience a similar contact stiffness when
colliding with the tip or the long lateral side against a large plane. Therefore, the penalty
forces computed in the main loop of Algorithm 3.1 should be inversely scaled with the
magnitude (or area) of the contact surface. That scaling is achieved with the correction
factor ρ (lines 26 and 27), defined as:

3.3. PROXIMITY AND COLLISION QUERIES WITH COMPLEX OBJECTS 99

Figure 3.12: Distance computation between a
signed distance field (voxelmap, Utah Teapot) and
a point-sphere tree (pointshell, Stanford Bunny).
The distance field is dilated by the safety margin d
(shadowed blue) and several iso-surfaces are illus-
trated. Three levels (L = 1, 2, 3) of the sphere tree
are shown: discarded spheres with dashed lines,
colliding or close spheres with continuous, filled
shapes – darker regions indicate higher collision
probability. The inter-object distance pd between
the dilated voxelmap and the pointshell is com-
puted if spheres are identified to be closer than the
critical distance pc. Closest features Q and S(Q)
are separated by a distance p (without dilation).

| |
| |

ρ =



(
ln(0.01NP,Lc + e)

ln(N c
P + e)

)2
1

0.01NP,Lc

if N c
P < 0.01NP,Lc

1

N c
P

otherwise,

(3.48)

where NP,Lc is the total number of points that can collide in the critical level Lc and
N c
P is the number of colliding points. If the critical level is the last level (i. e., Lc = NL),

NP,Lc corresponds to the total number of points in the pointshell (NP).
The exponent 2 and the threshold percentage of colliding points 1% were obtained

empirically after several experiments, and the natural number ln(e) = 1 avoids singular-
ities. The heuristic in (3.48) basically divides the force values by the number of colliding
points (equivalent to the surface magnitude) if more than 1% of all possible points collide;
on the other hand, that scaling is amplified if less than 1% of all possible points collide.
Through that amplification, the relevance of collisions consisting of few points (which
would have been otherwise faded out) is recovered. Other authors have approached the
issue by adapting the stiffness of individual contacts employing a Gauss map of the
normal distribution [XB16].

Finally, the last lines in Algorithm 3.1 handle the computational load (explained
in Section 3.3.2) and the closest feature on the voxelmap S(Q) (explained in the following
subsection).

3.3.1.4 Distance Computation (pc ≥ 0)

The input variables d and pc, and the output variables Q, S(Q), and pd control and
predict the inter-object distance, respectively. Their relationship during an exemplary
distance computation process is shown in Figure 3.12. While d artificially widens the

100 CHAPTER 3. COLLISION COMPUTATION

voxelmap reducing the distance between the objects exactly by d, the distance compu-
tation threshold pc controls the accuracy of proximity queries. A value of pc = 0 renders
coarse unusable distance values, but, in turn, it demands only one sphere check if objects
are far away. On the other hand, very high pc values could imply checking all spheres
and points, subsequently increasing the computational effort.

In practice, the value of the current distance computation threshold pc(k) is set
outside the call of Algorithm 3.1 by slightly increasing the value of the previous real
inter-object distance p(k − 1):

pc(k) = 1.1 |p(k − 1)| = 1.1 |pd(k − 1)− d(k − 1)|. (3.49)

Assuming the worst case scenario in which objects are approaching each other, the defini-
tion in (3.49) leads to close-to-optimum performance, since it (i) assures that the spheres
closer than pc (and the points within them) are going to be visited while (ii) discarding
further ones.

Once Q is iteratively improved (lines 14 and 21) in the hierarchy traversal with
sphere checks (line 9) extended to distance pc, S(Q) is computed applying the surface
map function in (3.27) to Q in case S is available, or with the gradient descent function
in (3.23) otherwise.

3.3.1.5 Segmented Hierarchical Traverse (Clustered M)

The contact manifoldM is especially interesting for applications that require contact sur-
face information, e. g. in grasp planing [Her15]. It is also possible to perform constraint-
based force rendering having the set of colliding points as input, as analyzed in Chapter 4.
In this line, reducing the number of possibly colliding points to the most significant ones
can be essential. The segmented hierarchical traverse achieves that by re-defining how
colliding points are added to the contact manifoldM.

Given a user specified level L (usually 2 ≤ L ≤ 5), a unique deepest point is tracked
for each of the m clusters in that level L. In other words, the object is divided into m
segments and the deepest penetrating point is delivered for each of them. No changes
are performed in Algorithm 3.1, but the structure M internally sorts the added points
(lines 12 and 19). This is implemented fixing m elements in M before the online calls,
one for each of the cluster branches in level L; during collision computation, every time
a colliding point increases the penetration value of the previously registered point in its
corresponding segment or branch, it is admitted to replace it.

Other handling policies are also implemented in the contact manifold M, like com-
pletely rejecting the inclusion of any point (computationally less expensive), or admitting
only the first n points with the highest penetration values from the whole P.

3.3. PROXIMITY AND COLLISION QUERIES WITH COMPLEX OBJECTS 101

The segmented hierarchical traverse is compared to the convex decomposition ap-
proach [MG09] from the Bullet Physics Engine [Cou03] in Chapter 5. That approach
segments the object in m convex hulls that preserve the shape of the object; then, the
segmented parts are checked for collision with the GJK algorithm [GJK88]. Each convex
segment can deliver a contact manifold consisting of at most one contact point.

3.3.2 Time Critical Level-of-Detail Traverse (ηc < 1, qc > 0)

In this section, three methods implemented in order to perform time critical queries are
explained:
(i) graceful traverse breaks on an upper level than the leaf level if the previous com-

putational load exceeds a given threshold,

(ii) filtering out clusters with too low point quality values, and

(iii) avoiding collision checks in successive cycles if objects are already far apart.

3.3.2.1 Maximum Allowed Computational load (ηc)

The load value η is a parameter computed and saved every cycle (lines 28 and 29)
which is essential to determine whether successive traverses should stop at upper levels
than the leaf level due to reduced time budgets. It consists of the sum of two load ratios
related to the amount of spheres and points (omitted in the pseudo-code for clarity):

η = ωC
Nv
C

NC
+ ωP

N c
P

Nv
P
, (3.50)

where
Nv
C is the number of spheres (or clusters) visited or checked for collision,

NC the total number of spheres,

N c
P the number of colliding points,

Nv
P the number of points visited or checked for collision (which are inside the colliding

spheres),
and ωC = ωP = 0.5 are the weighting factors chosen for the sphere and point loads,
respectively.

Together with the critical load ηc provided in each query, the load η in (3.50) is used
to compute the critical or last level Lc that the traverse reaches (lines 1 and 15). If at
the beginning of the query (line 1) in the call instant k it is η(k− 1) > ηc(k), the critical
level is decreased one unit, and increased if η(k − 1) < ηc(k). Note that°

NL

2

§
≤ Lc ≤ NL, (3.51)

102 CHAPTER 3. COLLISION COMPUTATION

(a) Lc = 6 / 6, qc = 0.0 (b) Lc = 5 / 6, qc = 0.0 (c) Lc = 4 / 6, qc = 0.0 (d) Lc = 3 / 6, qc = 0.0

(e) Lc = 6 / 6, qc = 0.4 (f) Lc = 6 / 6, qc = 0.6 (g) Lc = 6 / 6, qc = 0.8 (h) Lc = 6 / 6, qc = 0.95

Figure 3.13: Time critical queries with varied load and quality thresholds: A pointshell of the
Stanford Bunny (s = 0.006 m, 2468 points, 845 clusters, K = 4, NL = 6) is partially introduced
into the voxelized cube from Figure 3.8 and the points are colored depending on their collision status
(projected on XY plane): Yellow, non-colliding points; Red, colliding points; Green, checked but non-
colliding points; Blue, checked and colliding points. (a)–(d) Critical level Lc is decreased. Checked
points converge to the collision regions. This convergence is less clear as Lc decreases, since the
regions covered by the clusters increase and cluster children points must be checked in level Lc (what
would be avoided if the algorithm were let to continue deeper in the hierarchy). (e)–(h) Critical
quality ratio qc is increased, allowing to check only clusters with larger gradient variation for higher
values. Further descriptive values are given in Table 3.4.

and Lc = NL in the initialization.

Similarly as in [BJ08], graceful LoD degradation is achieved with this approach. As-
suring that a whole level is checked before stopping the traverse guarantees that all points
have the same weight in the force computation. Note, additionally, that each upper level
(lower L) still samples the whole object with uniform density. This graceful degradation
by means of adjusting the last critical level according to the previous computational load
is illustrated in the first row of Figure 3.13 for different Lc values. Table 3.4 provides the
most important descriptive values related to the figure.

If practical application issues are considered, pre-defined worst case hierarchy tra-
verses can be performed during initialization (e. g., check all cluster spheres and points
for collision) in order to predict the critical load ηc for an object pair to match the goal
computation time in those worst cases.

3.3. PROXIMITY AND COLLISION QUERIES WITH COMPLEX OBJECTS 103

Table 3.4: Descriptive values during time critical queries with varied load and quality thresholds.
The table is related to the scenarios depicted in Figure 3.13. Parameters from (3.50) are evaluated
for each critical level or quality threshold.

Points

Colliding Visited and ...

Spheres Points yes no colliding not coll.

Lc qc Nv
C NC N c

P Nv
P red, • yellow, • blue, � green, � η

(a) 6 0 664 845 1509 1713 1509 959 1509 204 0.83
(b) 5 0 194 845 387 476 1509 959 387 89 0.52
(c) 4 0 54 845 98 141 1509 959 98 43 0.38
(d) 3 0 14 845 25 40 1509 959 25 15 0.32

(e) 6 0.4 632 845 1431 1606 1509 959 1431 175 0.81
(f) 6 0.6 446 845 1014 1119 1509 959 1014 105 0.72
(g) 6 0.8 247 845 563 605 1509 959 563 42 0.61
(h) 6 0.95 66 845 117 119 1509 959 117 2 0.53

3.3.2.2 Minimum Required Quality (qc)

Another similar method for time critical calls consists in admitting only clusters in Q
(line 22) that have a relative quality value (see Section 3.2.4.1) at least as high as the
user specified critical quality qc, i. e., iff

qmax

max{qmax}C
≥ qc. (3.52)

The maximum quality value across all clusters max{qmax}C is computed before the sim-
ulation; the critical quality threshold qc is registered in Q at the beginning of every call
(line 3), and the current cluster quality qmax is passed when clusters are pushed (line 22).
The second row of Figure 3.13 and Table 3.4 show the effect of varying qc.

3.3.2.3 Spatio-Temporal Coherence

Finally, the last method for time critical queries exploits the spatio-temporal coher-
ence [MPT06] characteristic of collision detection. The idea behind it is based on the
notion that if two objects are far away from each other, they are going to remain similarly
far away in the next cycle. Therefore, if the distance is known and a realistic maximum
velocity is assumed (derived from expected human hand movements), a period of time
can be easily established in which the objects will not collide; maintaining the process

104 CHAPTER 3. COLLISION COMPUTATION

idle or simply not calling the collision queries during that period of time saves consider-
ably resources. This approach is applied to multi-body scenarios and further discussed
in Section 5.2.

3.3.2.4 Discussion

The three approaches that implement time critical queries introduced so far can be used
in combination. Limiting the computational load with ηc takes advantage of the multi-
resolution nature of the point-sphere tree: in the defined breadth-first traverse, the whole
object is rasterized with increasing resolution every level, thus improving the contact
answer until a load (time) threshold is achieved. In this sense, this approach is sensible
when contact forces are in focus, rather than distances between objects. In contrast,
requiring a minimum quality with qc is more reasonable for tracking the distance between
edgy objects. Instead of assuring uniform point densities as in the previous method, non-
uniform point densities are simulated, favoring regions with higher geometry variation or
less smooth areas.

Avoiding to carry out calls between separated objects due to spatio-temporal co-
herence can satisfactorily lead to thousands of idle cycles, but at the cost of not having
any real up-to-date information during those idle cycles. Therefore, this approach is
practicable only when force rendering is important, and accurate inter-object distance is
not desired.

3.4 Experiments and Results

In previous sections some features of the presented methods have been evaluated inde-
pendently. This section deals with the assessment of the global proximity and collision
computation algorithm from Section 3.3 applied to specific 3D geometries. Two synthetic
scenarios have been considered in which distance and collision data are computed and
compared varying different factors:

(i) A sphere (pointshell) is partially introduced into a cube (voxelmap) with the same
edge length as its diameter. Figure 3.14 illustrates the scenario and its parameters.
A plain pointshell (P, P) and a point-sphere tree (C, C) are tested, as well as
the three different signed distance computation functions: VL, VS , and VI . The
combination yields up to four curves for each of the evaluated contact variables. The
results are displayed in Figure 3.15. In this experiment, the behavior of the different
data structures is compared; the simple environment enables the straightforward
computation of expected or ground truth distance and penetration signals.

3.4. EXPERIMENTS AND RESULTS 105

(ii) The Stanford Bunny (pointshell) is translated and rotated towards the Utah Teapot
(voxelmap) according to the parameters shown in Figure 3.16. Two resolutions of
the point-sphere tree are used (C(1) and C(2)), as well as two different resolutions for
the layered signed distance computation function (VL(1) and VL(2)); the maximum
and minimum resolutions (or voxel sizes) of each pair have a ratio of 2. The
combination yields up to four curves for each of the evaluated contact variables.
The results are plotted in Figure 3.17. In this experiment, the effect of varying the
resolution is evaluated in a more complex scenario.

These simple experiments are easy to replicate, yet assess some of the most important
properties of the collision and force rendering algorithms. It is worth to mention that
none of the presented time-critical approaches were activated during the experiments
in order to have a more simple and fair quality assessment. In terms of relative size
and density of elements (i. e., points and voxels), the following combinations from each
scenario were chosen to be equivalent:

(i) Scenario 1: Point-sphere tree and layered signed distance function – C, VL (green
in Figure 3.15)

(ii) Scenario 2: High resolution of point-sphere tree and normal resolution of the vox-
elmap – C(2), VL(1) (green in Figure 3.17)

It must be considered that these two experiments were carried out following pre-
defined trajectories, without coupling any of the objects to a haptic device; this enables
a more controlled and analytical evaluation. Further benchmarks and comparisons of the
presented penalty-based haptic rendering algorithm in which human users interact with
haptic interfaces are provided later in this work, as additional features are introduced:

• Next Chapter 4 presents a constraint-based force rendering approach that is imple-
mented on top of the penalty-based algorithm introduced in this current chapter;
in this line, the force values of both algorithms are collated in Section 4.4.

• Section 5.3 in Chapter 5 presents the integration of the penalty-based algorithm of
the current chapter into the physics engine Bullet [Cou03]; the presented algorithm
is compared to two approaches available in Bullet.

• Section 5.2 in Chapter 5 presents a virtual assembly framework that features a
realistic assembly sequence of car parts into an engine bay; the presented algorithm
is employed and evaluated in it.

• Section 6.2 in Chapter 6 presents the results of a user study in which the introduced
penalty algorithm is compared to the constraint-based algorithm of next Chapter 4.

106 CHAPTER 3. COLLISION COMPUTATION

step ~10 step ~300 step ~420

y

0

2

1

0.25

3.5

1.25

haptic rendering

Figure 3.14: Sphere and cube benchmarking scenario (all length sizes in m): a sphere is progressively
introduced into a cube yielding to some extent predictable contact data at each step; Figure 3.15
plots the behavior of the different explained methods in this scenario. Closest discrete points are
represented with small red and green features and joined with a blue line. Collision forces and torques
are represented with magenta and cyan (imperceptible) vectors, respectively. The pointshell of the
sphere has a resolution s = 0.025 m (16299 points, 5607 clusters, 4 children per cluster, 8 levels).
The cube is voxelized with s = 0.04 m (151 × 151 × 151 voxels taking into account the added 50
outer layers).

3.4.1 Discussion of Scenario 1: Sphere and Cube

This subsection discusses the curves in Figure 3.15. Probably the most important values
are the penetration error, force, torque, and computation time for different combinations.
It is worth to mention that the regions in which haptic rendering should occur have been
bounded between vertical dashed, gray lines. In fact, if device stiffness and damping
were correctly set in a haptic interaction with two rigid bodies as in this scenario, the
resultant penetration region should be much smaller, probably about a tenth of the area
marked with dashed lines, and around step 300. Overall, all curves present a reasonable
and in most cases expected shape, and the computation time remained always under the
1 ms threshold in the mentioned haptic rendering region.

Penetration Error � The penetration error diagram (third) results from combining the
first relative position y (ground truth) and the second computed penetration plots. Ide-
ally, the penetration error should be 0 voxels. The interpolation method (black) produces
the best result (highest accuracy), followed by the layered distance function (green) and
the surface point distance function (blue). This last one presents bumps at the surface
boundary and in inner voxels which are probably due to errors in the model originated
in the generation of the structure S according to the heuristic introduced in Section B.
Those errors do not appear in all models, as shown, for instance, in Figure 3.7; in any

3.4. EXPERIMENTS AND RESULTS 107

0 50 100 150 200 250 300 350 400 450
0

2

4

y
 [

m
]

0 50 100 150 200 250 300 350 400 450
−2

−1

0

1

p
e

n
e

tr
a

ti
o

n
 [

m
]

P, V
L
* C, V

L
C, V

S
C, V

I

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

p
e

n
.

e
rr

o
r

[v
o

x
e

l]

P, V

L
* C, V

L
C, V

S
C, V

I

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

fo
rc

e
 [

N
*]

P, V

L
*

C, V
L

C, V
S

C, V
I

0 50 100 150 200 250 300 350 400 450
0

0.02

0.04

0.06

to
rq

u
e

 [
m

N
m

*]

P, V

L
*

C, V
L

C, V
S

C, V
I

0 50 100 150 200 250 300 350 400 450
0

0.5

1.0

1.5

c
o

m
p

.
ti
m

e
 [

m
s
]

P, V

L
* C, V

L
C, V

S
C, V

I

0 50 100 150 200 250 300 350 400 450
0

0.5

1

lo
a

d
 [

−
]

0 50 100 150 200 250 300 350 400 450
0

4k

8k

c
.

p
o

in
ts

 [
−

]

steps

Figure 3.15: Cube and sphere benchmarking results; the scenario is described in Figure 3.14. General
values applicable to all or most methods are plotted in one curve for each diagram (sphere position,
algorithm load, and number of colliding points). Values of specific methods are plotted in several
curves and appropriately designated in the legend. P, V ∗L : plain pointshell (P) and plain voxelmap (V),
accessing the signed distance function VL defined in (3.25) – only the global distance component
is computed in case there is no collision. C, VL: hierarchized pointshell (C) and plain voxelmap
(V), accessing the signed distance function VL defined in (3.25); C, VS : hierarchized pointshell (C)
and enhanced voxelmap (S), accessing the signed distance function VS defined in (3.26); C, VI :
hierarchized pointshell (C) and enhanced voxelmap (W), accessing the signed distance function VI
defined in (3.28). The region in which haptic rendering should happen is bounded between two dashed
vertical lines. The force and torque magnitudes are marked with * because these values usually need
to be amplified by a gain before application. The used computer was an Intel(R) Core(TM) 2 Quad
with CPUs at 2.66GHz and running Open Suse 42.2 Leap 64B (not realtime).

108 CHAPTER 3. COLLISION COMPUTATION

case, this a subject for further investigation. The layered distance function in combina-
tion with the plain pointshell (red) has the same penetration values as its counterpart
with the hierarchized pointshell (green) in penetration configurations, but it presents a
saw shape with the amplitude of a voxel unit. That is because the layered distance func-
tion V ∗L from the red curve was modified to deliver distance values only with the global
component in (3.25), neglecting the local distance term. Hence, the zig-zag features the
error introduced when the penetration into the voxel is ignored, as done in the early
versions of the VPS algorithm [MPT99].

Force and Torque � While few differences are appreciable between the force values
of different combinations, the torques obtained with the surface point approach (blue)
differ from the values of the rest of the combinations. That difference comes from the
penetration error discussed in the previous paragraph; in contrast to the penetration
values, force and torque values correspond not only to one point, but to the sum of
values of all points plotted in the last diagram of Figure 3.15. Additionally, it needs to
be taken into account that the units marked with ∗ (i. e., N∗ and Nm∗) refer to unscaled
magnitudes: in real interactions, device stiffness and damping values would have to be
applied to those values, obtaining signals up to 2–3 orders of magnitude larger, depending
on the haptic interface. It is also worth to mention that in this scenario no torques should
appear ideally; however, due to imperfections in the triangulation of the sphere and the
distribution of the points, small values arise. Note that most values lie below 10µNm∗
in regular situations for the haptic rendering region, though.

Computation Time � The effect of using a point-sphere tree (all except red) over the
plain pointshell (red) is clear in terms of computation time: a hierarchy leads to ∼ 3×
lower computation times when distances are computed in collision-free configurations
and up to ∼ 30% smaller time values in worst case overlap configurations (boundary
of haptic rendering region). This change in the improvement ratio is due to the cost
associated to the bounding volume traverse, as explained in Section 2.3.2.5. The inter-
polation method (black), although the most precise, is the one which takes longest for
computing the values, as expected. The layered distance function (green), on the other
hand, presents the smallest computation times, while achieving similar error values as
the interpolation method. Although the accuracy could vary with different geometries
and the same resolution, the time should be similar for the same amount of colliding
points and spheres.

Conclusions � The previous results can be summarized d as follows:

3.4. EXPERIMENTS AND RESULTS 109

(i) Signed distance values computed with the layered function (VL) are close to the
most accurate ones provided by the interpolation function (VI); while the surface
point function (VS) presents better accuracy in other irregular geometries (see Fig-
ure 3.7), it might present higher errors if the heuristic used for building the models
fails.

(ii) The force and torque values behave closely to the expected ones; the discrete nature
of the models could lead to force and torque residuals, but these are probably
imperceptible by users.

(iii) The computation time is significantly lower for distance, penetration and force
computation if the point-sphere hierarchy is used, even in worst case configurations.
The time improvement is expected to be even better if time-critical approaches are
used.

3.4.2 Discussion of Scenario 2: Stanford Bunny and Utah Teapot

This subsection discusses the curves in Figure 3.17. As in the previous experiment,
penetration values, forces, torques, and computation times are analyzed. This experiment
is fully synthetic: no such large penetrations and trajectories would be achieved if a haptic
device were coupled to one of the objects. Overall, all curves present a reasonable and in
most cases expected shape, and the computation time remained always under the 1 ms

threshold.

Penetration and Penetration Difference � Distance and penetration signals seem to
be similar at an overview scale (second diagram); the penetration difference plot (third)
results from subtracting the values of the combination with both finest resolutions (black)
to the other three; the difference is scaled to the finest voxel size of the voxelmap (s =

1 mm). Few patterns are visible, except that the combination of resolutions equivalent
to scenario 1 (green) presents the highest peaks of almost ±5 voxels. That is due to the
decrease of the resolution of the voxelmap.

Force and Torque � The torque-force ratio is considerably larger compared to the
one in the previous experiment, meaning that in the current scenario torque values are
significant and cannot be neglected. The resolution of the voxelmap makes a difference in
both force and torque signals around step 250 (ear of inverted bunny penetrating teapot).
Recall from Figure 3.8 that the ear has a high surface normal variation; modeling the
bunny with half the resolution implies re-sampling it with a 4× lower point density, which
leads to lost normal directions in areas with high curvature as the ear. This could explain
why those differences in magnitude appear in the vectorial space when the resolution of

110 CHAPTER 3. COLLISION COMPUTATION

r

!

0.2

0.08

C(1), s = 0.0046
4200 points, 7 levels

1.7 sec., 0.4 MB

C(2), s = 0.0023
16928 points, 8 levels

8.0 sec., 1.7 MB

VL(1), s = 0.002
200x159x175 voxels

3.2 sec., 4 MB

VL(2), s = 0.001
338x217x248 voxels
10.4 sec., 12.6 MB

step ~30 step ~50 step ~120 step ~125 step ~200

step ~220 step ~250 step ~300 step ~350 step ~380

Figure 3.16: Bunny and Teapot benchmarking scenario (all length sizes in m), data structures
(including generation time and file size), and snapshots: a Stanford Bunny is progressively introduced
into a Utah Teapot by translating (r) an rotating (φ); Figure 3.17 plots the behavior of the proximity
and collision computation algorithm under different resolutions in this scenario. Closest discrete
points are represented with a small red and green features and joined with a blue line. Collision
forces and torques are represented with magenta and cyan vectors, respectively. Note that the torque
vectors have a scaling factor of 10× compared to the forces in order to properly visualize them. All
pointshells have 4 children per cluster and all voxelmaps 50 outer layers. The voxelmap-pointshell
combination VL(1) + C(2) is equivalent to the cube and sphere scenario in Figure 3.14 in terms of
relative resolution.

the pointshell is altered. Visually, the combination with the finest resolution (black) has
the smoothest curves, as expected, followed by the combination equivalent to scenario
1 (green), and then the rest; in this sense, the resolution of the pointshell seems to be
the most relevant one, both for the quality or smoothness of curves and the computation
time, as explained in the next paragraph.

Computation Time � The effect of the resolution associated to the pointshell is notable,
as expected: halving the voxel size of the pointshell (i. e., double resolution, 4× more
points) leads to 5 − 6× higher computation time values in worst case configurations
(around step 325); however, further benchmarking is necessary to assess the general
relevance of this quantitative value. More interestingly, there seems to be an unexpected

3.4. EXPERIMENTS AND RESULTS 111

0 50 100 150 200 250 300 350 400
0

0.1

0.2

r
[m

]

0 50 100 150 200 250 300 350 400
0

200

400

φ
 [
d
e
g
]

0 50 100 150 200 250 300 350 400
−0.05

0

0.05

0.1

p
e
n
e
tr

a
ti
o
n
 [
m

]

V
L
(1) + C(1) V

L
(1) + C(2) V

L
(2) + C(1) V

L
(2) + C(2)

0 50 100 150 200 250 300 350 400
−5

−2.5

0

2.5

5

p
e
n
.
d
if
f.
 [
v
o
x
e
l]

0 50 100 150 200 250 300 350 400
0

5

10

15

fo
rc

e
 [
m

N
*]

0 50 100 150 200 250 300 350 400
0

0.25

0.5

0.75

to
rq

u
e
 [
m

N
m

*]

0 50 100 150 200 250 300 350 400
0

0.5

1.0

1.5

c
o
m

p
.
ti
m

e
 [
m

s
]

0 50 100 150 200 250 300 350 400
0

0.5

1

lo
a
d
 [
−

]

0 50 100 150 200 250 300 350 400
0

3k

6k

c
.
p
o
in

ts
 [
−

]

steps

Figure 3.17: Bunny and Teapot benchmarking results; two resolutions for each of the data structures
are used, as shown in the scenario description from Figure 3.16. This results in four curves of combined
resolutions, as properly tagged in the legend. The computation with point-sphere trees (C) and layered
signed distance functions (VL) is plotted only. In the case of the penetration difference diagram (third
from above), the penetration of the combination with finest resolutions (VL(2) + C(2)) is subtracted
to the penetration of each of the other combinations and divided by the finest voxel size (s = 0.001 m).
The force and torque magnitudes are marked with * because these values usually need to be amplified
by a gain before application. The used computer was an Intel(R) Core(TM) 2 Quad with CPUs at
2.66GHz and running Open Suse 42.2 Leap 64B (not realtime).

112 CHAPTER 3. COLLISION COMPUTATION

effect on the time caused by the resolution of the voxelmap. As explained in Section 3.2.1,
the voxelmap is implemented as an std::vector array in C++, and accessing a random
voxel value of a point should run with O(1) complexity, independently of the resolution
used for the voxelmap, if the whole array is assumed to be allocated in a unique memory
chunk [Ric14]. Yet, in the plot, a voxelmap with half voxel size (i. e., roughly 8× more
elements) requires 20% larger computation times when roughly 4000 points are colliding
(around step 325). In practice, the consequences of this fact are probably negligible, since
configurations with such high penetrations are automatically avoided through displayed
forces and the time-critical methods should prevent from having more than 3000 colliding
points, independently of the area percentage in contact.

Conclusions � The previous results can be synthesized as follows:
(i) The layered signed distance value VL works robustly even with coarse resolutions

if high resolutions are used for pointshells; the most notable errors due to coarse
voxelmap resolutions appear probably in the penetration values.

(ii) The resolution of the hierarchized pointshell significantly affects the computation
time, as expected, but can be controlled with time-critical methods; higher resolu-
tions of the voxelmap led to unexpected higher computation time values in worst
case configurations, but that effect can be probably neglected in regular scenarios.

3.5 Summary, Conclusions, and Perspectives

This chapter presented the theoretical definition and an implementation basis of a penalty-
based haptic rendering approach able to render six-DoF forces in 1 kHz between arbitrary
geometries. The method follows the principles of the Voxelmap-Pointshell (VPS) algo-
rithm [MPT99]; in that sense, it could be considered a complete re-implementation of
the VPS, from the scratch, with novel improvements. The chapter covers the algorithms
for data structure generation and their properties, the proximity and collision computa-
tion queries, and reproducible experimental results considering varied parameters that
benchmark different functionalities.

Signed distance fields embedded in voxelmaps and point-sphere trees or pointshells
which sample objects with several point densities are generated in few seconds and used
during distance and collision computation. Voxelmaps contain sets of distance values
at different accuracy levels, being possible to compute the distance of a given point
with respect to the surface of the object modeled with three different functions. Point-
sphere trees are traversed in a breadth-first manner, improving in each tree level the
delivered contact output. Additionally, time-critical queries are possible within that
traverse scheme, according to the minimum required depth in the hierarchy (i. e., point

3.5. SUMMARY, CONCLUSIONS, AND PERSPECTIVES 113

density) or culling point clusters with low additional geometry information. Along these
lines, and in contrast to previous works, the new contributions presented in this chapter
can be summarized as follows:

(i) fast and robust data structure generation algorithms,

(ii) multi-resolution properties for both data structures and methods to exploit it,

(iii) compact point-sphere trees with minimally bounding spheres, which are built bottom-
up exploiting local information,

(iv) a unified collision, signed distance (i. e., distance or penetration), and penalty force
computation algorithm, and

(v) time-critical queries that are able to filter out regions with low geometrical vari-
ation, or that carry out conservative coarse checks for situations with low time
budgets.

All signed distance computation functions for different LoDs were compared between
each other and against ground truth values, validating their performance. Errors vary
from negligible to the voxel size in different configurations, being bounded to the res-
olution used. Regular and time-critical hierarchy traverses improve considerably the
required computation time compared to the classical VPS approach and are able to
achieve complete loops with tens of thousands of points in less than 1 ms.

As far as the data structures are concerned, future work should address GPGPU
implementations for generation, since the explained methods for polygonal model con-
version practically break down to the same processes at voxel or point level. In contrast,
GPGPU is not that straightforward for realtime proximity and collision queries if hi-
erarchical traverses are to be used. Additionally, researching into methods for collision
computation between deformable objects that still behave with a similar efficiency as the
presented approach is also interesting.

The penalty-based haptic rendering algorithm presented in the current chapter was
integrated into a virtual assembly simulation platform and into the physics engine Bul-
let [Cou03], as thoroughly explained in Chapter 5. Additionally, further benchmarking
experiments and results of comparisons to two other algorithms from Bullet are provided.
Chapter 6 presents user studies which compare and validate the current penalty-based ap-
proach and constraint-based force rendering method from the following Chapter 4.

Chapter 4

Constraint-Based Force Rendering

Collision detection and force computation between complex geometries are essential tech-
nologies for virtual reality and robotic applications, as shown in Chapter 2. Penalty-based
haptic rendering algorithms as the VPS re-implementation presented in previous Chap-
ter 3 provide a fast collision computation solution; however, these methods cannot avoid
the undesired interpenetration between virtual objects, and have difficulties with thin
non-watertight geometries. In contrast, god object methods or constraint-based haptic
rendering approaches have shown to solve this problem, but are typically complex to
implement and computationally expensive.

This chapter presents an easy-to-implement god object approach applied to six-DoF
penalty-based haptic rendering algorithms. Contact regions are synthesized to penalty
force and torque values and these are used to compute the position of the god object proxy
on the surface. Then, the pose of this surface proxy is used to render stiff and stable six-
DoF contacts with friction. Independently of the complexity of the used geometries, the
implementation of the presented method runs in only around 5µs and the results show a
maximal penetration error of the resolution used in the penalty-based haptic rendering
algorithm.

In other words, the methods introduced in this chapter extend the more general
proximity and collision computation algorithm from the previous chapter for more robust
and realistic force rendering: object interpenetration is minimized, visualizing the moved
probe proxy on the surface, and stiff contacts are rendered even with thin shells.

This chapter uses parts from the following peer-reviewed publication written by the
author of this work: [SH16].

115

116 CHAPTER 4. FORCE RENDERING

4.1 Introduction

Penalty-based methods detect the overlapping error (usually penetration or volume) to
either compute a force or simulate a plausible motion upon contact using the Newton-
Euler equations. On the other hand, constraint-based approaches prevent overlap be-
tween objects. Basically, the user controls the device pose or the haptic tool, but a proxy
or so-called god object is visualized. Even though the device object would go through the
other geometry, that god object would always remain on the surface boundary. In this
sense, the focus lies on determining the constrained movement of the object. Forces are
rendered out of the difference between the device and the proxy pose.

Constraint-based methods are in narrow relationship with the concept of virtual cou-
pling [CSB95]. Usually some type of virtual coupling is performed during realtime sim-
ulations even with penalty-based haptic rendering algorithms, i. e., the virtual object
does not match the device pose. That difference can be realized by making the device
follow the virtual object coupled with a spring (and a damper), or, in the case of god
object methods, it is given by the proxy constrained to the surface. The displayed force
is related to the coupling distance between the device and the virtual object.

4.1.1 Related Work

To the best of my knowledge, Zilles and Salisbury coined the term god object for their
constraint-based three-DoF haptic rendering algorithm [ZS95] in 1995∗. This method
gives rise to a series of works based on optimization approaches. In case of contact,
in order to obtain the pose of the proxy on the surface, the authors minimized the
energy of a spring between the penetrating point linked to the haptic device (known)
and a parametrized proxy point, constrained to the collision plane. The problem is easily
solvable by using Lagrange multipliers. Similarly, Ruspini et al. [RKK97] minimized the
distance between the penetrating point and the proxy, but constrained the region outside
of several contact half-planes. In both cases, the idea is related to the Gauss’ principle of
least constraints [Gau29], which states that the motion of a mechanical system satisfies
the minimum of the differences’ norm between the constrained (proxy) and unconstrained
(haptic device) accelerations. Redon et al. [RKC02b] analyzed the advantages of this
principle for rigid body simulations and Ortega et al. [ORC07] applied it for six-DoF
haptic rendering. The method proposed by the last authors computes the force rendering
in a separate asynchronous thread in order to achieve the 1 kHz update rate necessary
for haptic interaction [BS02], since the used continuous collision detection [RKC02a], in

∗However, the expresion god object had already been used by Dworkin and Zeltzer [DZ93] with
another meaning: they referred to objects that move at their own will in a physics simulation, e. g.,
objects moved by a human hand.

4.1. INTRODUCTION 117

combination with the god object pose simulation, exceeds that performance threshold
when contact regions increase. This decoupling opens up the possibility to testing other
collision detection methods and experimenting with simplifications in the proxy pose
computation.

In recent years, several optimization-based approaches have also been presented.
Chan et al. [CCBS11] applied the Gauss’ least constraints principle for six-DoF haptic
rendering using volumetric medical imaging and point clouds formed by unordered ob-
ject vertices. Rydén and Chizeck [RC13b] applied the same basic principle of rigid body
mechanics to streamed point clouds and voxelmaps to obtain six-DoF haptic rendering.
Wang et al. [WZZX13] adapted the quadratic programming approach from [ORC07]
to the six-dimensional configuration space. These authors use a sphere-based collision
detection and then minimize the distance between the proxy and the device.

It is also possible to constrain the god object to the surface without explicitly for-
mulating the task as an optimization problem. In this sense, Salisbury and Tarr [ST97]
presented a very interesting three-DoF haptic rendering algorithm for implicit surfaces.
The method works as follows: first, when the device point penetrates the surface, its
closest surface point is detected with a deepest descend algorithm, and a support tan-
gent plane is computed on it; then, in each cycle, the projection of the device point on
the tangent plane is computed, which leads to the closest surface point using the same
deepest descend algorithm. The tangent plane is updated every cycle. Displayed forces
are related to the distance between the device and the surface point. This algorithm
has been exploited in recent years for three-DoF haptic interaction with streamed point
clouds by Leeper et al. [LCS12], and with deformable volumetric medical image data by
Chan et al. [CBS13]. The heuristic approach presented in this thesis works with a similar
idea as the one presented by Salisbury and Tarr for six-DoF haptic rendering.

Besides collision forces, friction is an important contact phenomenon which con-
tributes to manipulation realism, particularly in virtual interactions with haptic feedback.
The reader is referred to [ASB07] for a brief but thorough glimpse on basic concepts re-
lated to this topic. That work describes and presents simulation results of several friction
models applied to a one-DoF system. Additionally, most important phenomena, model
properties, advantages and disadvantages are discussed.

Unfortunately, many collision, movement and friction simulation methods from com-
puter graphics such as the work in [KEP05] usually require longer computation times
than the 1 kHz necessary in haptics. Therefore, simplifications or heuristics are required.
Hayward et al. [HA00] presented a very complete three-DoF friction model suited for
haptic rendering. They improved the Dahl friction model cancelling the drifting effect
and provided a set of useful approximations. Their model yields the four friction regimes
observed in physical reality: sticking, creeping, oscillating, and sliding. Harwin and

118 CHAPTER 4. FORCE RENDERING

Melder [HM02] presented a three-DoF friction computation method similar to the one
introduced in [ST97]. The method is easy to implement and applied upon the god object
algorithm presented in [ZS95]: a cone is placed on the penetrating device point and the
proxy is allowed to move until the boundary of the intersection between the cone and the
surface. This approach allows for static (dry) and kinetic (sliding) friction. Kawasaki
et al. [KOKM11] extended the previous approach to six-DoF. Their method is able to
compute friction moment based on the torsion angle between the god and device refer-
ence frames. Additionally, they implemented the model in a hand-finger force feedback
device to provide finger torque friction and conducted a user study on torque friction
perception.

4.1.2 Contributions

The presented heuristic operates in the configuration space (six-dimensional pose) of rigid
bodies with arbitrary geometry and provides with six-DoF constraint (frictional) forces
and correct proxy pose simulation with 1 kHz. Upon contact, the proxy is constrained
to the surface using the forces and torques and the penetration depth computed by a
penalty-based algorithm. These penalty forces inherently model contact geometry and,
thus, restrict the motion of the object. The contributions (and the overview of the
chapter) are summarized as follows:

• A six-DoF god object simulation and constraint force computation heuristic which is
fast, robust and easy to implement on any penalty-based haptic rendering algorithm
that provides signed distances (Section 4.2).

• A six-DoF friction model applied to the god object heuristic that comprises static,
kinetic, and viscous friction regimes (Section 4.2.7).

• Experimental results that show the behavior of the presented method in several
usual and worst-case scenarios (Section 4.4).

As it is concluded in Section 4.5, following the provided implementation steps, it is
possible to easily convert virtually any penalty-based haptic rendering algorithm to be a
constraint-based approach which benefits from the advantages of both paradigms: ease,
speed, stability, and stiffness.

4.2 God Object Heuristic

This section presents step by step the god object simulation and force rendering method
giving implementation details. Nevertheless, initializations and division-by-zero, satura-

4.2. GOD OBJECT HEURISTIC 119

p = pd
 − d

fP
A
B
C

d

S’(k − 1)

S(k − 1)W

D(k)

S(k)

ΔHsurf
 =

S’ H S

S’ H D

D H S

k

k − 1

tP

Q

pd
 = 0

pd
 > 0

pd
 < 0

ΔHpen

Figure 4.1: Overview of the god object simulation in two consecutive time steps k − 1 (previous)
and k (current). Main frames corresponding to the world (W), the device (D) and the proxy or god
object that remains on the surface (S) are displayed. In the presented method, first the previous
surface frame is corrected to S′(k − 1). Then, the motion from this S′(k − 1) to the current device
pose D(k) is constrained with the force and torque values fP, tP computed by the penalty-based
collision detection algorithm. This yields the new current god object pose S(k).

tion, and similar checks are omitted for the sake of clarity. Furthermore, the two-object
scenario is considered: the first object is moved by the user via the haptic device with
respect to the second one; if relative movements are observed, one can assume the second
object stands still without loss of generality – although it may actually be moving.

As convention, bold capital symbols (H) denote homogeneous transformation matri-
ces in R4×4, bold small symbols (x, h) vectors in R3 or R6, and small italic symbols (p)
scalars in R. Points, lines and surfaces in R3 are denoted with capital italic symbols (P ,
L) and a vector between two given points P and Q is denoted

−−→
PQ. In the case of poses

(translation and rotation), the matrix representation is used for homogeneous coordi-
nate transformations and the vector representation for all other transformations.Values
are transformed from one representation to another with functions like setMatrix(),
getRotation() or getTranslation(). Additionally, a transformation from the coordi-
nates W to D is denoted WHD. All values correspond to the current cycle (k) except
when properly indicated (e. g., H = H(k) vs. H(k − 1)). The reader is referred to the
Notation appendix (page 271) for further details on conventions and used symbols.

As shown in Figure 4.1, there are three main frames:

W The world frame, which will be considered fixed in the center of mass of the still

120 CHAPTER 4. FORCE RENDERING

object.

D The haptic device frame, which corresponds to the end-effector of the device moved
by the user.

S The proxy, god or surface frame, which corresponds to the object that remains on
the surface. It is important to note, however, that a small penetration can occur
due to the error committed in the previous cycle. Therefore, this frame is corrected
to solve its penetration p, which leads to S′.

Also, the body frame B is used when deducing mass distribution properties of the
object; the original geometry is supposed to be defined in this coordinates, located in its
center of mass G. In the same line, the eigen frame E results from performing a principal
component analysis of the body.

The goal of the method is to compute a constrained proxy pose WHS of the moved
object with respect to the other (still) object given the coordinates of the haptic device’s
end-effector WHD. WHD is the pose of the moved object commanded by the device,
which can penetrate the other object. On the other hand, WHS is the pose of the proxy
or god-object which tries to remain on the surface in case of collision. The computation
of the proxy pose constrained to the surface results from restricting the transformation
from the previous proxy pose to the current device pose with the penalty contact forces
related to the proxy.

Figure 4.2 gives an overview of the whole procedure that is repeated every haptic
cycle (1ms). All eight steps depicted in it are described in detail in their respective
subsections. A brief summary is given here to convey a global idea of the procedure:

#1 Penalty Contacts (Section 4.2.1): Penalty-based collision detection is performed
using the previous god object pose. An important requirement is that one object is
slightly dilated with a safety margin d to avoid real penetration between the objects
approaching each other and to obtain less noisy, more robust collision forces. The
value of d could be optimized online, but it is fixed to d = 3mm in the simulations
after empirical trials, since it already produces a stable behavior. This step yields
the signed distance or penetration value pd and the penalty forces fP and torques
tP.

#2 Correction Step (Section 4.2.2): If the god object is penetrating (pd ≥ d) in the
previous cycle, its corrected non-penetrating pose is computed, minimizing the
error introduced in the previous cycle. This step is the one that required the longest
section in this work, but, still, it is the one with the fastest computation times,
since analytical correction formulae for any geometry and contact configuration are
derived.

4.2. GOD OBJECT HEURISTIC 121

Penalty Contacts
#1

Correction Step
#2

Unconstrained Motion
#3

Constrained Motion
#4

Filter Proxy Pose
#5

fP, tP, pd, d

Haptic Device
#8

fVC, tVC

fD, tD

W H D (k)

W H S (k − 1)

S’ H D ⟷	xu, ru

ΔHpen
 ⟶	S’(k − 1)

W H S (k − 1)

Apply k D, b D
#7

ΔHsurf
 ⟶	W H S(k)^

Constraint Force
#6

W H S (k) ⟷	S(k)
 k ⟶	k − 1

Figure 4.2: Workflow of the god object simulation and force rendering method. Shadowed boxes
#2 – #6 are core steps that define the presented approach; the other steps could be changed without
altering considerably the result, particularly the presented approach is suited for other penalty-based
contact rendering algorithm (step #1). The whole procedure is repeated every 1ms, being the contact
computation (step #1) the one which lasts longer. Note that the procedure is fed with the god object
pose of the previous cycle WHS(k − 1), as well as the current device pose WHD(k).

#3 Unconstrained Motion (Section 4.2.3): The movement of the god object is computed
as if no collision constraints were present.

#4 Constrained Motion (Section 4.2.4): The unconstrained motion is corrected with
the contacts computed in step #1. The friction is also computed in this step #4
in the object configuration space (Section 4.2.7). The constrained motion leads to
the current (unfiltered) god object or proxy pose.

#5 Filter Proxy Pose (Section 4.2.5): The current god object pose is smoothened with
a low pass filter.

#6 Constraint Force (Section 4.2.6): Constraint forces fVC, tVC are proportional to the
difference between the current device and the god object pose, or, in other words,
linear to the forbidden movement performed by the device. Friction forces are
intrinsically considered (Section 4.2.7).

#7 Apply kD, bD (Section 4.2.6): Stiffness and damping factors are multiplied to the
constraint forces in order to achieve the desired hard contact on the device while
still being stable.

122 CHAPTER 4. FORCE RENDERING

#8 Haptic Device (Section 4.2.6): Device forces fD, tD are commanded to the haptic
device and the pose of the end-effector is read (every 1ms).

The coordinates of the deepest colliding point Q are unknown but its penetration pd
is provided by the penalty-based collision computation. Note in Figure 4.1 that three
regions are distinguished for its value:

A, pd ≥ d: There is overlap between the objects. If the unconstrained motion of the
device frame moves in opposite direction of the penalty forces fP and torques tP ,
it must be constrained to the surface.

B, 0 < pd ≤ d: There is no overlap between objects but the deepest colliding point Q
is inside the safety layer, which has a width d over the surface. The approach is
similar to the previous case, except for slight modifications in several steps, properly
indicated.

C, pd < 0: There is no overlap between objects. In this case, the god object pose is
the device pose, S(k) = D(k), and therefore, there is no constraint coupling force
to display, fVC, tVC = 0.

The cases in which Q lies on either A or B are considered, since the last case of the region
C has the mentioned trivial solution.

4.2.1 Penalty-Based Contact Computation (#1)

The first step is accomplished performing a penalty-based collision computation based on
the Voxelmap-Pointshell (VPS) algorithm [MPT99] presented in the previous Chapter 3.

Given a point P from the pointshell, its signed distance (or penetration) value is
computed according to (3.25):

V (P) = VL(P) = ξV s v(P) + nTd + d, (4.1)

where ξV = 1
2(1+

√
3), s is the voxel edge size (constant in uniform grids) and d the vector

from the point to the center C of the voxel where it is located. The safety distance d
dilates the voxelmap artificially, as previously introduced. This margin is used to predict
collision and restitution constraints with respect to the movement, as explained in later
sections.

As explained in Chapter 3, all points with V (Pi) > 0 are colliding with the dilated
voxelmap. The deepest colliding point Q has a penetration of pd = maxi{V (Pi)}. Addi-
tionally, single penalty forces and torques (expressed in the center of gravityG) associated
to each points with V (Pi) > 0 are defined as

4.2. GOD OBJECT HEURISTIC 123

fi = kPV (Pi)ni, ti =
−−→
GPi × fi. (4.2)

The total penalty force {fP, tP} is the sum of all single forces {fi, ti}. These values are
already penalty forces that can be displayed to the user. However, penalty-based haptic
rendering has the disadvantages mentioned in Section 4.1.

A constraint-based approach could be developed using the whole contact manifold
computed in this step. Nevertheless, the goal is to make the presented god object simula-
tion method available for any penalty-based collision computation algorithm other than
the one presented in this work; therefore, only the most common four values are used:
fP, tP, pd, d. Any algorithm able to provide them can be used instead of the reimplemen-
tation of the VPS from Chapter 3.

4.2.2 Correction of the Previous Proxy Frame (#2)

In this section the step ∆Hpen necessary to obtain the corrected surface frame S′(k− 1)

out of the previous god object pose WHS(k−1) is computed. If the method were perfect,
no correction would be necessary. However, since contacts are linearized, the predicted
proxy might minimally penetrate the surface and it is necessary to resolve this overlap
for minimizing the introduced error.

First, several parameters used throughout all sections are defined. Then the gen-
eralized mass matrix in the center of mass G is composed of the real mass (MB) and
the inertia tensors (JB) of the body with mass m, computed out of the data structures
defined in Section 4.2.1:

M =

[
MB 0

0 JB

]
=

[
mI 0

0 mσJ

]
∈ R6×6, (4.3)

with I the identity matrix and

σ = 3

det

Å
1

m
JB

ã
. (4.4)

Preferably, the normalized version of the inertia tensor is used, J, of which all elements
are close to 1. While J changes the direction of vectors when premultiplied, it is the
inertia coefficient σ the factor that mainly changes their length. As the reader will see
in the following sections, the mass m drops from the equations. Hence, it has no effect
on the god object simulation, only σ and J do.

In the same line, the following normalized directions are defined out of the penalty
forces and torques (in object S(k − 1) coordinates):

124 CHAPTER 4. FORCE RENDERING

ux = uf =
fP
‖fP‖

, ut =
tP

‖tP‖
, ur =

J−1ut

‖J−1ut‖
. (4.5)

Their associated magnitudes are the real effective penetration p and the force-torque
lever distance δ:

p = pd − d, δ =
‖tP‖
‖fP‖

. (4.6)

At this point, the translation (∆xp) and rotation (∆rp) vectors necessary to solve
the penetration p of the god object in the previous time stamp are defined:

∆xp = λpux,

∆rp = θ (λ, p)ur.
(4.7)

In this last equation (4.7), there are two important (still) unknown parameters asso-
ciated to the current penalty values: θ is the correction rotation step, whereas λ ∈ [0, 1]

is the translation-rotation distribution factor. If λ = 1, then θ = 0, hence, the frame
S(k − 1) is only translated a distance p along the ux direction to obtain the corrected
S′(k − 1). On the other hand, if λ = 0, then θ = θmax, hence, the frame S(k − 1) is only
rotated θmax units around ur to obtain the corrected S′(k − 1). Usually, the real values
lie somewhere in between. In the next two sections, analytical closed form formulae for
θ(λ, p) and λ are provided.

4.2.2.1 Computation of the Correction Rotation (θ)

In this section, the case θ = θmax will be considered, i. e., the penetration p is fully
transformed into a rotation. It is assumed that the equivalent system presented here can
fully solve the penetration by rotating. The correct optimum expression for θ(λ, p) ∈
[0, θmax] that automatically regulates that assumption is provided at the end of the
subsection.

A first approximation of the rotation required for fully solving the penetration could
be

θmax '
p

δ
⇒ θ ' p

δ
(1− λ). (4.8)

Unfortunately, (4.8) overestimates the necessary rotation in some cases. Therefore,
that approximation is improved working on the equivalent system shown in Figure 4.3.
This system is built essentially using the eigen ellipsoid of the object and the penalty
contact forces and torques from step #1 (Section 4.2.1). This eigen ellipsoid results from
the principal axis analysis of the inertia tensor.

4.2. GOD OBJECT HEURISTIC 125

QL

A

fP

r

!

G

Q’L

p

r

"

$

! QL

A

fP S

Pi , fi , ti , pi

r

!

G

P1

Pn

tP
e1

e2
L

E

L

Figure 4.3: Computation of the correction rotation θ. On the left, the equivalent system of a
2D Stanford Bunny is built, consisting of the eigen-ellipsoid E(JB) and the force application line
L(fP, tP), on which the equivalent deepest colliding point QL with penetration p lies. The distance
from QL to the center of mass G is the rotation radius r. On the right, a region is zoomed where the
point QL is rotated around G with its radius r (with exaggerated dimensions for the sake of clarity).
The rotation θ brings Q to Q′L, which is distance p away from QL along the force application line L.
The rotation θ(p, δ, r) should fully solve the penetration p; its value is deduced in Section 4.2.2.1.

For that purpose, and before starting the simulation, the eigen values s1, s2, s3 and
eigen vectors e1, e3, e3 are computed using the inertia tensor JB of the body on G. The
rotation which brings from the body coordinates B to the eigen coordinates E is

BRE = [e1 e3 e3] ∈ R3×3. (4.9)

On the other hand, the eigen ellipsoid E centered in G and expressed in the eigen
coordinates {x1, x2, x3} is

E(JB) ≡
3∑
i=1

x2
i

a2
i

=
x2

1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1, (4.10)

with the axis lengths ai computed out of the eigen values sj

a2
i =

5

2

3∑
j=1

(−1)αsj , α = 0 iff j 6= i, α = 1 otherwise. (4.11)

Additionally, the force application line L expressed parametrically in the eigen coor-
dinates E is

L(fP, tP) ≡ δ EuA + µ Euf =

δ BRE (ut × uf)︸ ︷︷ ︸
A=
−→
GA

+µ BREuf =

(δ1, δ2, δ3)T + µ (u1, u2, u3)T.

(4.12)

126 CHAPTER 4. FORCE RENDERING

The unitary vector EuA from (4.12) points from the center of mass G to A, whereas Euf

is the unitary force direction. The point A is the closest single force application point
for the wrench {fP, tP}. It is not a material point on the body, but it is considered to
be a material point of the equivalent system, composed by E(JB) in (4.10) and L(fP, tP)

in (4.12). Note that in the eigen coordinates E, G = 0 = (0, 0, 0)T, however, it is still
named for correctness and general validity.

Since E equivalently displays the mass distribution of the body, QL is defined to be
the closest point on the line L to the ellipsoid E. The distance from QL to the center of
mass G is the rotation radius r, a key value to define the rotation θ:

r = ‖
−−−→
GQL‖, such that min ‖L|QL

− E‖2. (4.13)

As it can be seen in Figure 4.3, r ≥ δ. To find QL, first, L is substituted in E, which
leads to

3∑
i=1

δ2
i + 2δiuiµ+ u2

iµ
2

a2
i

= 1. (4.14)

This expression in (4.14) is a second order equation in µ, with all values δi and ui

known. If it has two real roots µ1, µ2, the line L intersects with the ellipsoid E, what leads
to two possible force application points QL,1 and QL,2 substituting µ1 and µ2 in (4.12),
respectively. In case both points are different, QL is selected to be the one which satisfies
the condition that the force is in opposite direction to the ellipsoid’s surface normal:

QL = QL,i s. t. ∇E|QL,i

Euf ≤ 0, i = 1, 2, (4.15)

being ∇E = (2x1/a
2
1, 2x2/a

2
2, 2x3/a

2
3)T the gradient of the eigen ellipsoid, thus, its

parametrized surface normal.
However, if no real roots exist for (4.14), the line L and the ellipsoid E are disjoint,

hence, we are dealing with the case shown in Figure 4.3 (left). Instead of treating
the problem as a constrained optimization, it is possible to solve QL using projective
geometry. Few operations using homogeneous coordinates lead to the point S on E

which is closest to L:

S =
−→
GS =

(a2
1δ1, a

2
2δ2, a

2
3δ3)T»

(a2
1δ

2
1 + a2

2δ
2
2 + a2

3δ
2
3)
. (4.16)

With S known, QL can easily be determined:

QL =
−−−→
GQL =

−→
GA+ ((

−→
AS)T Euf)

Euf . (4.17)

4.2. GOD OBJECT HEURISTIC 127

The values of the rotation radius r and the force lever δ are enough to estimate the
maximum rotation θ the body requires to fully solve a penetration p. The reader is
referred to the right part of Figure 4.3, where QL is rotated an angle θ around G with
a radius r, as if it was a material point. The resulting rotated position Q′L is a distance
p away from QL along the direction of the forces Euf . From the figure, one can deduce
the following relationships between angles and distances

γ =
π − θ

2
, β =

θ

2
+ α, sinα =

δ

r
. (4.18)

Since p is expected to be small with respect to the size of the object, so will be θ;
therefore, it can be considered

α� θ ⇒ β ' α ⇒ sinβ ' sinα. (4.19)

Additionally, due to the small value of θ, the arc and the segment joining QL and Q′L
will be very similar:

QLQ′L ' Q̇LQ′L ⇒ p

sinβ
' rθ. (4.20)

Therefore, using (4.18) and (4.19) in (4.20) yields

θ ' p

r
(1− λ) sinα =

δ

r2
p(1− λ). (4.21)

Note that if r = δ, the approximation in (4.8) is obtained, in other words, using the
first approximation in (4.8) instead of (4.21) increases the possible correction rotation in
a factor of r/δ.

4.2.2.2 Computation of the Correction Translation-Rotation Distribution Factor
(λ)

Since in the correction step the object is moved from S(k−1) to S′(k−1), the translation
and rotation of that movement are distributed (λ) by minimizing the required kinetic
energy ec, computed as

ec =
1

2
m‖ẋG‖2 +

1

2
ωT

Ö
(mσJ)︸ ︷︷ ︸

JB

ω

è
. (4.22)

The linear (ẋG) and angular (ω) velocities required for the correction during time
step ∆t are

128 CHAPTER 4. FORCE RENDERING

ẋG =
∆xp
∆t

=
λp

∆t
ux,

ω =
∆rp
∆t

=
θ(λ, p)

∆t
ur.

(4.23)

Introducing ẋG and ω from (4.23) into (4.22), it is obtained

ec =
m

2∆t2

Ä
λ2p2 + στθ2

ä
, (4.24)

with

τ =
uT

r ut

‖J−1ut‖
=

(
J−1ut

)T
ut

‖J−1ut‖2
. (4.25)

For a minimum value of kinetic energy ec on λ, the equation (4.24) must satisfy

∂ec
∂λ

= 0 ⇒ λp2 + στθ
∂θ

∂λ
= 0. (4.26)

If the definition of θ from (4.21) is introduced into (4.26) and solved for λ, the
analytical value of the translation-rotation distribution is obtained:

λ =
1

1 +
r4

στδ2

∈ [0, 1]. (4.27)

4.2.2.3 Assembly of the Final Correction Step

At this point, the correction step transformation matrix ∆Hpen which transforms from
S(k − 1) to S′(k − 1) can be assembled using the translation and rotation step vectors
from (4.7):

∆Hpen ←


setMatrix(ξp∆xp, ξp∆rp) if Q ∈ Añ

I 0

0 1

ô
∈ R4×4 otherwise.

(4.28)

The gain ξp = 0.2 helps regulate the speed with which the object is moved to the
surface – instead of doing it suddenly, it is performed exponentially along several haptic
cycles. Note that if the deepest pointQ 6∈ A (i. e., pd ≤ d⇔ p ≤ 0), the corrected previous
god frame must be the same as the uncorrected one: S′(k− 1) = S(k− 1). However, the
correction step vectors ∆xp and ∆rp from (4.7) still have to be computed, since they
are used when computing the unconstrained motion in step #3 (next Section 4.2.3). In
that case (Q 6∈ A), since p < 0, their meaning does not refer to the movement required
to solve penetration, but to the movement allowed before collision occurs.

4.2. GOD OBJECT HEURISTIC 129

A

B

S’
D(k)

x u, ⊥

x u, ∣∣

S(k)

x u

u x

S

C

(a)

B

S’

S(k)=D(k)

x u, ⊥
x u, ∣∣

x u

u x

S

C

(b)

Δx p
A A

B
S’= S

D(k)

x u, ⊥

x u, ∣∣ − x c, ∣∣

S(k)

x u

u x

C

(c)

B

S(k)=D(k)

x u, ⊥ x u, ∣∣

x u u x

C

(d)

Δx p
Ax c, ∣∣ S’= S

Figure 4.4: Computation of the constrained movement xc out of the unconstrained xu using the
movement direction constraint ux. For simplicity, a 2D version using only translations is shown – the
computation of constrained rotation is analogous, but using ru and ur instead. Big dots represent
the deepest colliding point Q (with penetration p) of the object in different frames. Blue vectors
display the intended unconstrained movement from S′(k− 1) to D(k). Green vectors are the parallel
(‖) and orthogonal (⊥) components of xu with respect to ux which are allowed. Red vectors are
the parallel components of xu which are not allowed. The constrained motion xc is the sum of all
allowed components. Subfigures (a) and (b) correspond to the case Q ∈ A, whereas (c) and (d) to
the case Q ∈ B, being d the safety distance.

With ∆Hpen from (4.28) (in object coordinates S(k − 1)), the corrected pose of the
god object in the previous iteration (k − 1) (in world coordinates W) is

WHS′(k − 1) = WHS(k − 1)∆Hpen, (4.29)

being WHS(k − 1) the god object pose delivered in the previous iteration (k − 1).
From here on, the corrected frame S′(k − 1) is used instead of S(k − 1), and all

movement constraint direction vectors are transformed to it:

ux ← S′ux = ∆Rpenux

ur ← S′ur = ∆Rpenur,
(4.30)

being

∆Rpen ← getRotationMatrix(∆Hpen). (4.31)

Although the deduction provided in this subsection might appear relatively long, it
is computed in few microseconds, because analytical formulae that provide a correction
for any object in any configuration have been derived.

4.2.3 Computation of the Unconstrained Motion (#3)

The unconstrained motion of the god object is the transformation from the previous
corrected god frame S′(k − 1) to the current device frame D(k), as shown in Figure 4.1:

130 CHAPTER 4. FORCE RENDERING

S′HD = WH−1
S′

WHD. (4.32)

This unconstrained motion is broken down into its translation (xu) and rotation (ru)
parts

xu ← getTranslation(S′HD)

ru ← getRotation(S′HD)
(4.33)

and decompose each of them in parallel (‖) and orthogonal (⊥) components with
respect to the movement constraint directions (ux and ur, respectively):

xu = xu,‖ + xu,⊥; ru = ru,‖ + ru,⊥, (4.34)

where

xu,‖ = (xT
uux)ux; xu,⊥ = xu − xu,‖;

ru,‖ = (rTuur)ur; ru,⊥ = ru − ru,‖.
(4.35)

4.2.4 Computation of the Constrained Motion (#4)

Figure 4.4 summarizes the computation of the constrained motion vectors xc and rc. Es-
sentially, the parallel components of the unconstrained vectors are cancelled or shortened
in order to obtain the constrained vectors. For the sake of brevity, the procedure with
translation vectors (x, ux) is explained only; The computations with rotation vectors are
completely analogous, but using rotation constraint direction vector ur.

As for the unconstrained motion, the constrained movement vector is the summation
of its parallel and orthogonal components with respect to the motion constraints (ux):

xc = xc,‖ + xc,⊥, (4.36)

where always

xc,⊥ = xu,⊥. (4.37)

On the other hand, the parallel component of the unconstrained motion are allowed
iff it does not increase penetration in a linearized contact model based on ux. If Q ∈
A⇔ p ≥ 0 (see Figure 4.4 (a) and (b)), the contact constraint model leads to

xc,‖ =

 xu,‖ if (xu,‖)
Tux ≥ 0,

0 otherwise.
(4.38)

4.2. GOD OBJECT HEURISTIC 131

Otherwise, if Q ∈ B⇔ −d < p ≤ 0 (Section 4.4 (c) and (d)):

xc,‖ =

 xu,‖ if (xu,‖)
Tux ≥ 0,

−min{‖xu,‖‖, ‖∆xp‖}ux else.
(4.39)

Recall from Section 4.2.2.3 that the correction vectors ∆xp,∆rp denote the minimum
motion to solve penetration for the case Q ∈ A and the minimum motion to reach contact
for the case Q ∈ B.

The difference between the unconstrained and constrained motion vectors is called
restricted or friction parallel movement:

xr,‖ = xu,‖ − xc,‖. (4.40)

This vector, displayed in red in Figure 4.4, is the parallel component which is not
allowed and a key value for computing friction in Section 4.2.7.

At this point, the transformation ∆Hsurf in Figure 4.1 which transforms from S′(k−1)

towards S(k) can be assembled:

∆Hsurf = S′(k−1)HS(k) ← setMatrix(xc, rc). (4.41)

With this step transformation along the surface, the current but still unfiltered god
object or proxy is computed:

WĤS(k) = ∆Hsurf WHS′(k − 1). (4.42)

This transformation could be used to define the final god object frame, but better
results were observed applying some filtering to it, as explained in next Section 4.2.5.

4.2.5 Filtering of the Proxy Pose (#5)

A simple discrete exponential six-DoF low pass filter is applied to WĤS(k) based on the
previous proxy pose WHS(k−1) in order to smoothen the movement of it on the surface.
The filter was tested with many complex geometries and several parameter values; with
the presented configuration no additional overlaps or artifacts have been observed. For
an optimum behavior, the cut-off frequency fc is linearly evaluated from the difference
between WĤS(k) and WHD(k):

WHS(k)← LowPass(WHS(k − 1),WĤS(k),WHD(k)︸ ︷︷ ︸
∆→ fc ∈ [1,60]Hz

). (4.43)

132 CHAPTER 4. FORCE RENDERING

The value taken by fc depends on the stiffness of the haptic device and the contact
configuration, but it is scaled to the range [1, 60] Hz. A typical contact situation with a
distance from S(k) to D(k) of about 7mm can reach a value of fc ' 20Hz.

This filtered god object pose WHS(k) describes the proxy frame S(k). It is used

(i) to visualize the non-penetrating object,

(ii) to compute the coupling constraint force as explained in the next Section 4.2.6,

(iii) and to obtain the penalty contact manifold in the next cycle (k + 1), as explained
in Section 4.2.1.

4.2.6 Coupling Forces Applied to the Haptic Device (#6, #7, #8)

Finally, the constraint coupling forces are computed in the step # 6 (see Figure 4.2).
For that, the difference between the haptic device pose and the virtual god-object pose
is computed first:

DHS(k) = WH−1
D (k).WHS(k). (4.44)

Then, after obtaining the vector representation of (4.44),

xVC ← getTranslation(DHS(k)),

rVC ← getRotation(DHS(k)),
(4.45)

virtual coupling stiffness constants are applied to it:

fVC = kVC,x xVC; tVC = kVC,r rVC. (4.46)

The stiffness constants were experimentally set to be kVC,x = 1 and kVC,r = 0.025

(unit-less factors).
As a last step, the maximum virtual stiffness (kD) and the corresponding damping

(bD) of the haptic device are applied to fVC, tVC before displaying them to the user
as fD, tD. In the experiments (see Section 4.4), the HUG was used, consisting of two
DLR/KUKA Light Weight Robot transformed into a haptic device [HSA+08], as already
explained and further described in Appendix A. The usual constant values for the haptic
device are kD = 4000N/m and bD = 20Ns/m. However, in the simulations, moderate
(kD = 2000N/m) and low (kD = 200N/m) stiffness values are used. Lower constants
allow deeper penetrations of the device, which is more challenging, and it also becomes
visually more noticeable how the god object remains on the surface.

4.2. GOD OBJECT HEURISTIC 133

Figure 4.5: Friction model which operates in the
pose configuration space of the object (case Q ∈ A
displayed, (c) from Figure 4.4). The apex of the fric-
tion cone is placed in D(k) and its axis is the opposite
of the restricted parallel movement defined in (4.40):
−xr,‖. The angle of the cone is defined with the static
(µx,s) and/or kinetic (µx,k) friction coefficients. The
current proxy frame S(k) is moved to the boundary of
the cone using xfr. Static, kinetic and viscous friction
are possible for both translations and rotations. In this
figure, the final pose of S(k) due to kinetic friction is
displayed with a filled green dot.

S’= S

D(k)

x r, ∣∣S(k)
x u

u x

x fr

S0(k)

x u, ⊥

! x,k ! x,s

x u, ∣∣

4.2.7 Six-DoF Friction (#4)

In order to compute friction forces, it is operated in the object configuration space,
restricting the constrained movement of the proxy xc with a friction restriction movement
xfr:

xc = xc,‖ + xc,⊥ + xfr. (4.47)

This friction restriction movement is computed using the allowed perpendicular mo-
tion xu,⊥ and the forbidden parallel motion xr,‖ introduced in (4.40):

xfr ← computeFriction(xr,‖,xu,⊥). (4.48)

Algorithm 4.1 summarizes the computation of xfr and Figure 4.5 illustrates it for
translations. The presented method is similar to approaches presented by [ST97], [HM02],
[KOKM11], all introduced in Section 4.1.1. The basic idea consists in, first, computing
friction cones with apex in D(k) and axis parallel to ux, and then, sliding S(k) to the
cone boundaries, achieved by adding xfr to the constrained movement xc. As shown
in Algorithm 4.1, there can be friction only if there is forbidden parallel motion (‖xr,‖‖ >
0), i. e., the user is applying a force/movement in opposite direction to the surface. In
that case, the friction vector xfr will always point in the opposite direction to xu,⊥ and
its length will depend on the type of movement and friction associated to it:

(i) Static friction – If the perpendicular movement is fully contained in the static
friction cone, the object will not move perpendicularly, i. e. xfr = −xu,⊥. The
aperture of the static cone is defined with the static friction coefficient µx,s.

(ii) Kinetic friction – If, on the contrary, the perpendicular movement is outside of the
friction cone, a new (smaller) kinetic cone is computed and the length of xfr is
set to reach the boundary of the cone. Hence, the object will move, but less than

134 CHAPTER 4. FORCE RENDERING

in the frictionless case and tangential forces proportional to the length of xfr are
going to be present. The aperture of the kinetic cone is defined with the kinetic
friction coefficient µx,k.

(iii) Viscous friction – In the case kinetic friction occurs, the length of xfr is additionally
increased proportionally to the perpendicular velocity (xu,⊥) using the factor µx,v.

Note that the presented friction model works also with rotations with the same al-
gorithm but using the rotation vectors (rc, rr,‖, ru,⊥, xfr) and friction coefficients (µr,s,
µr,k, µr,v) instead. In the case of rotations, the computations are more difficult to illus-
trate, but, when applying friction, essentially, the amount of rotation from S′(k − 1) to
S(k) is decreased without altering the axis of rotation.

Friction coefficients can be measured or looked up in tables. In the experiments, the
most stable behaviors were achieved by choosing first the static friction coefficients µx,s

and µr,s (≈ 0.2) and then fixing µk ≈ 0.9µs and µv ≈ 0.01µs.

Algorithm 4.1: xfr = computeFriction(xr,‖, xu,⊥)

Data: Allowed perpendicular motion xu,⊥ and not allowed parallel motion, xr,‖.
Result: Motion restriction due to friction, xfr.

// Initialize default friction restriction
1 xfr = 0

2 if ‖xr,‖‖ > 0 then
3 if ‖xu,⊥‖ < µx,s‖xr,‖‖ then

// Static friction
4 xfr = −xu,⊥
5 else

// Kinetic friction

6 xfr = −µx,k‖xr,‖‖
xu,⊥

‖xu,⊥‖
// Viscous friction

7 xfr ← xfr − µx,vxu,⊥

8 return xfr

4.3 Theoretical Discussion of Methods

In this section, god object approaches based on the Gauss’ least constraint principle [Gau29]
are discussed. The work presented by Ortega et al. [ORC07] is taken as a reference, since
it is considered to be the main contribution on which many others are based. Addition-
ally, this method is compared with the heuristics presented in the previous Section 4.2.
It is worth to mention that the solution by Ortega et al. has not been implemented

4.3. THEORETICAL DISCUSSION OF METHODS 135

within this work, hence, the matter is studied theoretically and rather analogies between
methods are pointed out, for finally giving some insights on why the heuristics introduced
in this work performs as good as shown in Section 4.4, despite of the approximations.
Thorough formal, experimental and quantitative comparisons are left for future work.

First, the 6D contact wrench corresponding to one colliding point Pi is defined con-
catenating its penalty forces and torques from (4.2):

ci(V (Pi)) = (fTi , t
T
G,i)

T

= (V (Pi)n
T
i , (
−−→
GPi × fi)

T)T

= V (Pi) (nT
i , (
−−→
GPi × ni)

T)T ∈ R3+3.

(4.49)

Note that the wrench ci is attached to the center of inertia G and that, unlike for
the approach proposed by Ortega et al., its length is proportional to the penetration
(V (Pi)) of the colliding point. Section 4.2 works with two separate 3D vectors instead of
generalized 6D pose vectors for clarity, and it operates with translations and rotations
instead of accelerations to avoid integrating, which can lead to numerical errors. However,
to facilitate comparisons, 6D generalized acceleration vectors will be employed in this
section (always on G), defined as a = (ẍT, r̈T)T ∈ R3+3.

The acceleration is called unconstrained, au, when no contact wrenches ci are consid-
ered. On the other hand, it will be constrained, ac, if collisions are considered. In other
words, the unconstrained acceleration describes the movement of a free body, whereas the
constrained acceleration is related to the movement of the same body but under certain
contacts. Making the assumption of quasi-statics (i. e., velocity is zero at the beginning
of every cycle), Ortega et al. define the unconstrained acceleration to be proportional to
the movement step from the previous god object pose (S) to the current device pose (D):

au = kS
Ä
(xT

D, r
T
D)− (xT

S , r
T
S)
äT
, (4.50)

where the gain kS is empirically chosen (kS = 0.5 for Ortega et al.).
One of the main goals of the god object method consists in determining the constrained

acceleration related to this unconstrained acceleration; integrating it, the pose of the god
object is obtained. For that, Gauss’ least constraint principle is applied. This fundamen-
tal principle states that the constrained acceleration state of a body minimizes a kinetic
distance function g(a) ∈ R subject to all contact constraints hi(a) ∈ R, ∀i = 1, . . . , N :

min g(a) = 1
2(a− au)TM(a− au)

s.t. hi(a) = cTi a ≥ 0.
(4.51)

The mass and inertia matrix MB ∈ R6×6 has already been introduced in (4.3). The
constraint functions hi(a) represent unilateral contacts that do not allow the object to

136 CHAPTER 4. FORCE RENDERING

accelerate in the opposite direction of the contact forces and torques. Obviously, all
penalty forces that satisfy this condition have no effect in the computation of the god
object pose.

Ortega et al. use Wilhemsen’s nearest point algorithm [Wil76] to solve this quadratic
programming problem in (4.51). Instead, the algebraic solution is provided here for
discussion. First, the variable change z = a− au is applied to (4.51), which yields

min g(z) = 1
2z

TMz

s.t. hi(z) = cTi z + cTi au = cTi z + bi ≥ 0,
(4.52)

then, Lagrange multipliers are introduced and the Karush-Kuhn-Tucker conditions are
used to obtain the following linear system with 6 + N scalar unknowns (z and hi) and
equations:  ∇g(z) +

N∑
i=1

λi∇hi(z) = 0 (6 eqs.)

λihi(z) = 0 (N eqs.).
(4.53)

After some operations in (4.53), the optimum z which leads to the constrained accel-
eration can be obtained:

zmin = ac − au = −M−1
N∑
i=1

λici, (4.54)

with

λ = (λ1, . . . , λi, . . . , λN)T = F−1b, (4.55)

and being

b = (cT1 au, . . . , c
T
i au, . . . , c

T
Nau)T ∈ RN ,

F =
î
cTi Mcj

ó
∈ RN×N , ∀i, j = 1, . . . , N.

(4.56)

Equations (4.54) and (4.55), and parameters in (4.56) give the solution of the con-
strained acceleration ac for a rigid body with mass matrix M and a set of penalty
contacts {ci}. The pose of the god object can be obtained integrating this ac in two
steps. The contact matrix F is symmetric and assumed to be invertible in general. The
values bi = cTi au must be negative so that their corresponding Lagrange multipliers λi
are positive; if not, λi = 0, i. e., the direction of contact wrench ci would be conform to
the unconstrained acceleration, thus, it would have no constraining effect.

As stated by Ortega et al., “the constrained acceleration is the non-euclidean pro-
jection of the unconstrained on the set of all possible accelerations". The value of z is

4.3. THEORETICAL DISCUSSION OF METHODS 137

related to the difference between the accelerations caused by this projection and it is in-
terestingly the weighted sum of all contact wrenches, being the Lagrange multipliers the
weighting factors. In fact, in the heuristics presented in this work, the component which
is parallel to the contact wrench is also removed from the unconstrained displacement
vector if it is pointing in the opposite direction (see Section 4.2.4).

However, there are two fundamental differences in the presented approach with re-
spect to the method by Ortega et al.:

(i) In their work, the authors perform continuous collision detection along the uncon-
strained movement path, and the set of contact wrenches corresponds to a surface
manifold in which all points have the same relevance; in contrast, the contact set
in the presented heuristics corresponds to the error of the previous god object pose,
and each contact is weighted with its penetration, with deeper contact points being
more relevant.

(ii) Their contact set is computed asynchronously in a separate thread and its update
rate is around one order of magnitude slower than the force display frequency
(1 kHz); on the other hand, in this work, the god object simulation and force display
are carried out sequentially and below the 1ms computation time (see Section 4.4),
which helps to distribute any error caused by approximations or the method itself
along more computation cycles. In other words, the god pose computation and error
compensation is virtually distributed onto several cycles that occur faster.

Therefore, since all contact wrenches are already weighted with their corresponding
penetrations, one could assume that all effective Lagrange multipliers are similar (λ̃ '
λi ∀i), which would simplify (4.54) considerably. This can be realized in practice by
considering the sum of all (weighted) contact wrenches c̃ =

∑
ci(V (Pi)) = (fTP , t

T
P)T to be

the only contact wrench, which leads to an approximation of the constrained acceleration
ãc ' ac in (4.54):

ãc =


au −

c̃Tau
c̃TM−1c̃︸ ︷︷ ︸

λ̃

M−1c̃ if c̃Tau < 0, c̃TM−1c̃ 6= 0

au else.

(4.57)

The formula for the constrained acceleration in (4.57) would be the equivalent to
the corrections performed to the unconstrained displacement vector xu in the presented
heuristics (see Section 4.2.4). If the assumption made (i. e., the Lagrange multipliers
can be considered similar in case contact wrenches are weighted with penetration) is not
good enough, the approximative contact wrench c̃ does not solve the overlap of the god

138 CHAPTER 4. FORCE RENDERING

object on the direction related to the biggest and most significant multipliers properly;
as a result, the overall approximate contact wrench becomes bigger in the directions of
the unsolved contacts in the next cycle, and hence, it is resolved with higher priority.
In other words, the algorithm regulates in several cycles the errors introduced due to
simplifications, given its fast computational velocity. No case could be found where the
heuristics fail to work.

Overall, the heuristics presented in this work are considered to be much easier to
understand and implement, since it is based on a very intuitive idea: restriction of move-
ments to the contact surface, using for that the desired unconstrained movement step
and the penalty forces as averaged surface normal. Additionally, the quadratic program-
ming approach is avoided; quadratic programming is essentially a more general problem
that increases implementation and computational complexity. Besides that, it is directly
operated on the configuration space of the object, computing translations and rotations,
which spares integrating accelerations. Therefore, in its simplicity, the presented heuris-
tic method is very fast and robust and it is computed right after the contact computation
step avoiding asynchronous parallel loops which could lead to sudden force artifacts.

4.4 Experiments and Results

Several benchmarking experiments were performed, three of them shown in Figure 4.6
and in the video accessible under

Fast and Robust Six-DoF God Object Heuristic for Haptic Rendering of
Complex Models with Friction @ Vimeo
https://vimeo.com/190217647

As mentioned in Section 4.2.6, the HUG haptic device was used (see Section A) with
moderate (kD = 2000N/m) and low (kD = 200N/m) stiffness values. The first scenario
in Figure 4.6(a) consists in interacting with the Stanford Bunny and the Utah Teapot
(both desktop sized). Second, the same bunny hits a thin surface to check that it does
not pop through (b). And finally, a peg object is introduced into a hole, in such a way
that roughly 90% of all its points collide (c). Figure 4.7 shows the results of the first
bunny-teapot scenario and Figure 4.8 of the second bunny-plane environment. Contact
and computation time values are plotted for hitting, sliding and scenario specific tasks.
The third scenario is portrayed in the aforementioned video and extensively analyzed
in Chapter 6. Further realistic assembly simulations are also featured in the follow-
ing Chapter 5.

In all tested scenarios, stable, stiff and realistic forces were always generated, and the
god object proxy remained visually on the surface. The penetration (pd, Section 4.2.2)

https://vimeo.com/190217647

4.4. EXPERIMENTS AND RESULTS 139

Figure 4.6: Three benchmarking sce-
narios: (a) the Stanford Bunny col-
lides against The Utah Teapot and the
bunny’s ear is introduced into the han-
dle of the teapot, (b) The Stanford
Bunny collides against a thin plane,
(c) A classical peg-in-hole benchmark.
Green objects are the ones voxelized.
The red mesh is the representation of
the (unconstrained) object moved by
the user, whereas the blue one is the
god object constrained to the surface of
the green object. Yellow boxes highlight
challenging areas where the computa-
tion of the constrained object is suc-
cessfully achieved.

(a)

(b) (c)

stayed below the used voxel size, which defines the maximum resolution. Moreover, in the
case of the bunny-plane benchmark (Figure 4.8), that error was below the voxel half size
threshold most of the time. Additionally, the total computation time (steps #1 – #7)
stayed always easily below the 1ms convention even when several thousands of colliding
points were reached. Besides that, the results in Figure 4.7 and Figure 4.8 show that the
presented god object method requires only around 5µs for collision cases (see computer
specifications in the captions of the figures).

The applied forces in the plots (fD, tD) are the values sent to the haptic device after
multiplying the stiffness and damping constants to the constraint or virtual coupling
forces and torques (fVC, tVC), as explained in Section 4.2.6. Thus, curve shapes are
similar. On the other hand, the penalty forces and torques (fP, tP) correspond to the
VPS forces (step #1, Chapter 3) obtained with the god object proxy constrained but
slightly penetrating the surface. As small and differently shaped as they seem, they are
the very first value necessary for computing the other plotted force values. Since the god
object algorithm works in the object configuration space, friction is represented as the
friction restriction movement xfr shown in Figure 4.5 and computed in Algorithm 4.1.

In both scenarios, the applied force values increase when objects are pushed against
each other harder (segments A–B). The insertion of the bunny ear into the teapot handle
(from instant C on) in Figure 4.7 is a notable non-convex task. As expected, the force-
torque ratio decreases in favor of bigger torques than usual, since the user is applying a
lever force once the ear has been introduced through the handle. A similar behavior can
be observed between the translational and rotational friction components.

It is worth to mention that the two experiments in Figure 4.7 and Figure 4.8 were

140 CHAPTER 4. FORCE RENDERING

0

10

20

30

40

50

A
p

p
lie

d
 F

o
rc

e
s
 [

N
]

A

B C

0

1

2

3

4

5

A
p

p
lie

d
 T

o
rq

u
e

s
 [

N
m

]

Forces f
HD

 [N]

Torques t
HD

 [Nm]

0

0.5

1

1.5

2
x 10

−3

f P
 [

N
*]

0

0.5

1

1.5

2
x 10

−4

t P
 [

N
m

]Penalty Forces (f) [N] Penalty Torques (t) [Nm*]

0

0.005

0.01

0.015

0.02

f V
C
 [

N
*]

0

0.5

1

1.5

2
x 10

−3

t V
C
 [

N
m

]Constraint Forces (f) [N] Constraint Torques (t) [Nm*]

0

0.01

0.02

0.03

x
fr
 [

m
m

]

0

0.1

0.2

0.3

r fr
 [

m
ra

d
]

Friction Translation (x) [mm] Friction Rotation (r) [mrad]

−1

0

1

2

3

P
e

n
.

[m
m

]

0

15

30

45

60

C
o

ll.
 P

o
in

ts
 [

#
]

0 5 10 15 20 25 30 35 40 45 50 55
0

0.1
0.2
0.3
0.4
0.5

t p
 [

m
s
]

Simulation Time [s]

0 5 10 15 20 25 30 35 40 45 50 55
0
5
10
15
20
25

t c
 [

u
s
]Penalty / VPS (p) [ms] Constraint / God Object (c) [us]

Figure 4.7: Experimental results of the presented method for the scenario displayed in Figure 4.6(a),
where the Stanford Bunny (point-cloud, 5587 points in 7 levels) collides against the Utah Teapot
(voxelized distance field, 360× 299× 315 voxels with 2mm voxel edge length). Computed force and
torque values (applied, penalty, and constraint), friction movement corrections (µs = 0.2, µk = 0.9µs,
µv = 0.01µs), penetration, colliding points, and computation time are shown. The device constants
were kD = 2000 N/m and bD = 17 Ns/m. Units marked with a * (penalty and constraint forces)
are not the real units, since their respective values are multiplied by additional gains to obtain them.
The computation time is divided into the one related to the penalty-based method (step #1) and the
one of the god object method (steps #2 – #7). From start time to marker A objects are separated;
Between A – B the bunny knocks the teapot with increasing forces; Between B – C the bunny slides
around the teapot; From C until the end of the simulation one ear of the bunny is introduced into the
handle of the teapot. The used computer was an Intel(R) Core(TM) 2 Quad with CPUs at 2.66GHz
and running Suse SLED 11 32B (not realtime).

4.4. EXPERIMENTS AND RESULTS 141

0

10

20

30

40

50

A
p
p
lie

d
 F

o
rc

e
s
 [
N

]

A B C

0

1

2

3

4

5

A
p
p
lie

d
 T

o
rq

u
e
s
 [
N

m
]

Forces f
HD

 [N] Torques t
HD

 [Nm]

0

1

2

3
x 10

−3

f P
 [
N

*]

0

1

2

3
x 10

−4

t P
 [
N

m
]Penalty Forces (f) [N] Penalty Torques (t) [Nm*]

0

0.01

0.02

0.03

f V
C
 [
N

*]

0

0.5

1

1.5
x 10

−3

t V
C
 [
N

m
]Constraint Forces (f) [N] Constraint Torques (t) [Nm*]

0

0.01

0.02

0.03

x
fr
 [
m

m
]

0

0.05

0.1

0.15

r fr
 [
m

ra
d
]

Friction Translation (x) [mm] Friction Rotation (r) [mrad]

−1

0

1

2

3

P
e
n
.
[m

m
]

0

35

70

105

140

C
o
ll.

 P
o
in

ts
 [
#
]

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

t p
 [
m

s
]

Simulation Time [s]

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

t c
 [
u
s
]Penalty / VPS (p) [ms] Constraint / God Object (c) [us]

Figure 4.8: Experimental results of the presented method for the scenario displayed in Figure 4.6(b),
where the Stanford Bunny (point-cloud, 5587 points in 7 levels) collides against a thin plane (vox-
elmap, 250 × 250 × 1 solid voxels with 2mm voxel edge length). Computed force and torque
values (applied, penalty, and constraint), friction movement corrections (µs = 0.2, µk = 0.9µs,
µv = 0.01µs), penetration, colliding points, and computation time are shown. The device constants
were kD = 2000 N/m and bD = 17 Ns/m. Units marked with a * (penalty and constraint forces)
are not the real units, since their respective values are multiplied by additional gains to obtain them.
The computation time is divided into the one related to the penalty-based method (step #1) and the
one of the god object method (steps #2 – #7). From start time to marker A objects are separated;
Between A – B the bunny knocks the plane with increasing forces; Between B – C the bunny slides
on the thin plane; From C until the end of the simulation the bunny is placed on the edge of the
plane and then pushed against it. The used computer was an Intel(R) Core(TM) 2 Quad with CPUs
at 2.66GHz and running Open Suse Leap 42.2 64B (not realtime). Note that the operating system
is different compared to the previous experiment in Figure 4.7.

142 CHAPTER 4. FORCE RENDERING

carried out with the same computer but different operating systems (and architectures),
as mentioned in the captions. This should barely affect the plotted contact magnitudes,
but it has an effect on the computation time.

4.5 Summary, Conclusions, and Perspectives

This chapter presented an easy-to-implement constraint-based force computation method
that can be applied to penalty-based haptic rendering algorithms. The method is used
to extend the VPS re-implementation introduced in Chapter 3.

Constraint-based or god object methods usually simulate and visualize a god object or
proxy constrained to the contact surface; the users move with the device the penetrating
virtual probe (not visualized) and the proxy tries to follow it avoiding penetration. In
the presented method, the penalty forces fP and torques tP of the god object or surface
proxy in the previous time step are computed. These six-DoF forces are used to correct
with a heuristic the previous surface proxy pose and to define the movement constraint
applied to it. The god object tries to follow the movement of the device or probe in the
next time step, but only the translations and orientations that are not opposite to the
directions defined by fP and tP are allowed – this yields the next surface proxy pose.
The constraint force is the virtual coupling force resulting from the difference between
the pose of the device and the god object pose constrained to the surface.

As shown in the results, the method simulates the surface proxy and computes six-
DoF collision forces with the advantages of both paradigms (penalty- and constraint-
based) even with complex objects (e. g., non-convex and non-watertight): computa-
tional speed (only around 5µs) and accuracy (error bounded by the resolution of data
structures). Additionally, the algorithm computes six-DoF static and dynamic frictional
forces.

A theoretical comparison of the presented method to the well-known god object
method from Ortega et al. [ORC07] is also discussed. Future work will cover the ex-
perimental comparison to that method and the extension of the presented algorithm to
multi-body scenarios.

The constraint-based haptic rendering algorithm presented in the current chapter is
integrated into a virtual assembly simulation platform, as explained in Chapter 5, and
evaluated in Chapter 6 in comparison to the penalty-based algorithm from Chapter 3.

Chapter 5

Integration, Applications, and
Interaction Techniques

This chapter builds upon the haptic rendering algorithms introduced in Chapter 3 and
Chapter 4, and presents the definition and implementation of the following application
frameworks:

(i) Section 5.2: A platform for bi-manual virtual assembly simulations with haptic
feedback in large environments, supporting multiple complex objects directly im-
ported from CAD tools. Performance results are provided for an exemplary car
assembly sequence.

(ii) Section 5.3: The integration (in form of a plug-in) of the presented collision detec-
tion methods into the Physics Engine Bullet [Cou03]. Benchmarking experiments
with Bullet’s three native algorithms show the outperforming efficiency of the meth-
ods introduced in this work, especially when complex objects are handled.

Additionally, Section 5.4 briefly presents five more applications in which the methods
from the previous chapters have been integrated successfully, covering, amongst others,
robotic planing and manipulation, and maintenance or rehabilitation simulations.

Section 5.3 and Section 5.2 in this chapter use parts from the following peer-reviewed
publications written by the author of this work: [SSeS14a], [SSeS14b], and [SHH+16].
Besides, additional material from publications (co-) authored by the author of this work
or colleagues appears properly cited in different parts from Section 5.4.

143

144 CHAPTER 5. APPLICATIONS

5.1 Introduction

For a realistic and immersive interaction in virtual assembly environments with haptic
feedback, (i) collisions between objects and assembly features must be similar to the ones
in the physical reality, (ii) the employed user interfaces must operate synchronized and
according to the capabilities of the human senses, and (iii) natural or at least intuitive
interaction techniques must be provided. Figure 1.1 from Chapter 1 illustrates these
components and their interplay, and Section 2.2 from Chapter 2 thoroughly describes
them, considering all major technical and human factors. The reader might revisit those
contents for refreshing the picture of the global state-of-the-art; in the following, concrete
immersive simulators and methods are briefly reviewed.

5.1.1 Related Work

Related work has been split into two subsections for easier reading, each of them re-
lated to one of the main sections in this chapters: Virtual Assembly (VA) Systems
(Section 5.1.1.1) and Physics Simulators (Section 5.1.1.2).

5.1.1.1 Virtual Assembly (VA) Systems

Several non-commercial VA systems with haptic feedback have been presented in
the past years. Seth and Vance [SVO11], and more recently Liu et al. [LYFH15] have
surveyed the field, the latter focusing on physically-based interactions. In the following,
selected VA platforms and applications that appeared in the last decade are described.
Most of them are desktop-based and many use different versions of the Phantom∗ device
for force feedback. Additionally, in many of them, conventional physics engines are used
for collision computation, which often force to simplify geometries or keep a moderate
complexity in the scene. In the system presented in this work, on the other hand, upper
body movements are supported and the collision detection engine allows for large-scale
scenarios with several complex objects (non-convex) composed of millions of triangles.

The MIVAS platform [WGP+04] is a multimodal VA system with which the users
can manipulate complex objects in a CAVE (cave automatic virtual environment) with
a virtual hand avatar moved through a CyberGrasp† hand exo-skeleton. Collision forces
are displayed at the fingers. Manipulations with a virtual hand can lead to very natural
interactions, but can also become uncomfortable due to the complexity of the interface.
Additionally, the system receives voice inputs.

∗http://www.geomagic.com/en/
†http://www.cyberglovesystems.com/cybergrasp/

http://www.geomagic.com/en/
http://www.cyberglovesystems.com/cybergrasp/

5.1. INTRODUCTION 145

SHARP [SSV06], on the other hand, is a bimanual virtual assembly simulator that
uses two Phantoms and physically-based modeling with the Boeing VPS collision com-
putation algorithm. Their system supports head-mounted displays (HMD) and also a
CAVE, and they compute swept volumes for later assembly analysis.

Similarly, the work in [HV07] presents a system where complex parts (which are
simplified for collision detection) can be bimanually manipulated with Phantom Omni
devices. The authors test the performance of the system while handling some motor parts
and in a drop-peg-in-hole scenario when using low- and high-end desktop computers.

Also bimanual, IMA-VR [GRV+10] is a multimodal platform that focuses on training
assembly skills. The dominant hand controls the haptic device (their own developed
LIFhAM or a Phantom) and the motion of the non-dominant hand is captured for ges-
ture commands. Diverse direct and indirect aids are implemented in the simulation to
accelerate the learning of the trainee, including tele-mentoring, in which trainers can
guide the movement of the apprentice.

In [XLR11], HVAS is described, a virtual assembly system that implements a hi-
erarchical scene graph divided into several layers, from the assembled product itself to
polygons. A Phantom device is used and the authors prove in a user study that their
geometry constraints and guidance forces improve performance.

HAMS [GBMCL+14] is another example of a bimanual haptic assembly and manu-
facturing system that is able to handle manipulation with two Phantoms. The authors
perform collision feedback with a mixed approach in which part collision detection and
assembly constraints are displayed. Trajectories are visualized with colored spheres which
encode movement properties for later analysis. The system is additionally validated with
questionnaires after a user study where assemblies of realistic objects such as a bearing
puller or a gear oil pump are performed.

Bimanual and covering upper body movements, VR-OOS [SHH+15] is a virtual reality
system for satellite on-orbit servicing simulations based on the previous version of the
setup presented in this work. Interactions are possible with two DLR/KUKA Light
Weight Robots used as haptic devices. The system focuses on collision detection and
physical motion simulation of parts in a space environment. The goal of the authors is to
research on systems able to test maintenance scenarios in space and eventually generate
(virtual) experience data for astronauts or robotic systems.

More recently, VMASS [AAAAD16] was presented, a virtual manufacturing assembly
simulation system which focuses on the integration of several interfaces and software
modules with the goal of providing the most adequate feedback to trainees. The system
consists of a powerwall (but supports also HMDs) and objects are manipulated with a

146 CHAPTER 5. APPLICATIONS

Phantom Desktop and a 5DT∗ data glove with vibrotactile feedback.

5.1.1.2 Physics Simulators

Important research has been conducted in the past years regarding multibody dynamics
simulation; for instance, some of the big steps and compilations can be found chronolog-
ically in [Bar92], [Erl05], and [BETC14]. Since this work focuses on contact rendering,
it is beyond its scope analyzing different movement simulation methods and engines;
instead, evaluation works that compare off-the-shelf frameworks were considered, such
as [SR06] or [BB07].

Along these lines, a relatively recent evaluation [HWS+12] showed after performing
exhaustive benchmarking tests amongst five publicly available engines that Bullet [Cou03]
behaves indeed robustly and ranks always in the best positions – except when restitution
scenarios are tested. Due to these good results, and also due to the fact that it is
a popular, actively maintained engine with a clear nice-to-use open source code, this
engine was selected for the present work.

Bullet has several collision computation modules that detect contact manifolds for
objects with complexities beyond basic shapes (i. e., spheres, boxes, or cones). In partic-
ular, the VPS re-implementation presented in Chapter 3 is benchmarked in Section 5.3.3
alongside with the following native methods in Bullet:

• The well-known Gilbert-Johnson-Keerthi (GJK) Algorithm [GJK88], which com-
putes distances between convex shapes using their Minkowski sums. This algorithm
was also extended to compute penetration values [vdB01].

• The Hierarchical Approximate Convex Decomposition (HACD) presented by Mamou
and Ghorbel [MG09], which finds convex patches in an initial non-convex object
by hierarchically clustering and decimating the mesh. The result is a convex de-
composition to which the GJK algorithm can be applied.

• The GImpact [Leo07] algorithm, a collision detection method that handles arbitrary
meshes.

5.1.2 Contributions

As mentioned, most of the VA systems are desktop-based and use physics engines that
simplify geometries for collision rendering. Yet, real assembly scenarios can be large
and consist of multiple complex objects. In that sense, this chapter brings up a novel

∗http://www.5dt.com

http://www.5dt.com

5.1. INTRODUCTION 147

system to the playground and enhances a commonly used physics engine, tackling those
aforementioned shortcomings.

Concretely, Section 5.2 introduces:

• The definition and implementation of a bi-manual and large-scale virtual assembly
platform with haptic feedback.

• A multi-body collision detection and force computation framework for complex
geometries which builds on the methods explained in Chapter 3 and Chapter 4.

• Intuitive navigation and selection techniques suited for large-scale environments.

• User collaboration methods allowing for several haptic devices to interact with the
scenario.

• The extension of collision cues to the arm/elbow with vibrotactile feedback (beyond
hands/palms), interesting for large-scale environments.

• Exemplary experiments with an interactive assembly sequence of real car parts
(courtesy of Volkswagen AG).

Additionally, Section 5.3 describes:

• The definition and implementation of a plug-in for the physics engine Bullet [Cou03]
which seamlessly integrates the collision computation algorithm from Chapter 3.
Thanks to the plug-in, developers can use the collision methods presented in this
work through the widespread interfaces from Bullet.

• Benchmarking experiments in which three collision computation algorithms inte-
grated in Bullet (GJK, GJK with convex decomposition, and GImpact) are com-
pared to the methods from the plug-in; the approaches from this work outperform
the ones available in Bullet, especially for increasingly complex geometries.

As far as the VA platform is concerned, analyzing the effect of using either a desktop-
sized or a larger interface for the presented scenario is certainly an important step, which
is in part researched in Section 6.2 following a wider focus.

As mentioned, Section 5.4 presents five additional frameworks featuring the methods
presented so far. However, these are concisely described, since they are considered to be
further from the common theme of the thesis.

148 CHAPTER 5. APPLICATIONS

(a) (b) (c) (d) (e)

Figure 5.1: Point sampled and voxelized representations of a virtual electronic box and a screw
driver. (a) Partially voxelized screw driver (s = 3 mm, 83 × 77 × 21 voxels). (b) Close up of the
voxelized screw driver. (c) Sagital section of the voxelized screw driver: distance (turquoise-blue)
and penetration (yellow-red) values embedded in the voxelized structure. (d) Point-sphere tree of the
electronic control box: one sphere level in green and two successive point levels (s = 4 mm, 10507
points, 3506 clusters in NL = 7 levels). (e) Close up of the two last point levels: the blue set contains
on average K = 4 times more points than the yellow set, which is also contained in the blue set.

5.2 Virtual Assembly with Haptic Feedback

This section presents a virtual reality platform which addresses and integrates some of
the currently challenging research topics in the field of virtual assembly: realistic and
practical scenarios with several complex geometries, bimanual six-DoF haptic interaction
for hands and arms, and intuitive navigation in large workspaces. Special focus is put
on the collision computation framework (Section 5.2.1), which is able to display stiff
and stable forces in 1 kHz using a combination of penalty- and constraint-based haptic
rendering methods from Chapter 3 and Chapter 4, respectively. Interaction with multiple
arbitrary geometries is supported in realtime simulations (Section 5.2.2), as well as several
interfaces, allowing for collaborative training experiences. Performance results for an
exemplary car assembly sequence which show the readiness of the system are provided
(Section 5.2.3).

5.2.1 Simulation Framework

This section deals with the different software engines used in order to create the realtime
multi-body assembly simulation.

5.2.1.1 Multibody Collision Computation Module

Given the critical rendering frequency of 1 kHz required in haptics, building a multibody
environment that dynamically handles several complex objects is not straightforward. In
the following, the general structure and the workflow of the library are introduced, as a

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 149

O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

Pointshells Voxelmaps

Haptic Structures' Database

Collision Detection and
Force Computation Engines

Relations Objects

Force / Manifold

Pose

Visu

Force / Manifold

Pose

Visu

Force / Manifold

Pose

Visu

(f,
 t,

 m
) 1N

(f,
 t,

 m
) 12

(f,
 t,

 m
) 2N

∑

∑

∑

Collision Matrix

O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

State Matrix

The Bimanual Haptic Device HUG

2 x (6 + 1) DoF

x, r
f, t

x, r
f, t

State Machine

Object 1

Object 2

Object N

…

∑ Force / Manifold

Pose

Visu

Visualization (IGD InstantPlayer)

Movement Simulation (Physics Engine)

x, r
f, t

Object 3 Sigma.7 Omega.3

x, r

f, t

x, r

CO
NT

RO
L

s

God Object Heuristic

VPS Hierarchical

Penalty-Based Method

Constraint-Based Method

{v}

Falcon

Additional Haptic Devices for Collaboration

Figure 5.2: Overview of the multi-body simulation framework focusing on collision computation.
The collision detection module contains a data base of all object in the scene. Several haptic devices
or other modules can be connected to the objects or other appropriate input ports of it; for instance,
a physics engine or a game state machine can define the movement of an object. The framework
presented in this work uses InstantPlayer∗ as visualization tool, but other scene graphs could be
connected as well. The system is easily scalable. The images of the Omega.3 and the Sigma.7 are
courtesy of Force Dimension, Switzerland.

basis for later explanations about the methods used to alleviate the computational effort
and deliver contact information for each object in 1msec.

Collision forces between object pairs are solved using the penalty- and constraint-
based methods introduced in Chapter 3 and Chapter 4, respectively. These are imple-
mented as C++ shared libraries, dynamically loaded by the multibody framework. The
forces sent to the user are rendered by the constraint-based god object method by de-
fault, whereas the re-implementation of VPS is used for detecting collisions between all
objects. Figure 5.1 shows some snapshots of the used data structures and objects.

An overview of the multibody library architecture which works beyond the object pair
is visualized in Figure 5.2. The scenario is described to the system in a configuration file
in which, basically, a list of all objects and their properties is specified, such as name,
stiffness, haptic data structure filenames, etc. The parser processes the configuration
file and loads all necessary entities into: a database with all haptic structures, object
nodes within the framework and the relation links between the objects. Each object
node has its own Input/Output (I/O) ports for forces, poses and visualization data. The
module receives the poses of the objects and writes their corresponding forces into them.
Additionally, there are a collision matrix port and configuration state matrix port. The
first summarizes in an object vs object table if an object pair is colliding. The second is
a user interface for enabling/disabling collision detection between a specific object pair,
also implemented in an object vs object table. Objects can be attached to user interfaces,

150 CHAPTER 5. APPLICATIONS

j

Object[j]

readStateMatrix()

{CollPair}
{Object}

{Voxmap}
{Pointshell}
...

start()

writeCollMatrix()

stop()

...

M
et
ho

ds

&Object[i]
&Object[j]
...

cprData

computeCollForce()
getPoses()
compPenaltyForces()
updtForceBuffers()

pause()

resume()

At
rib
ut
es

objectData

readPose()

updateForceBuffer()
sumForces()
computeVC()
writeForces()

Pose
ForceBuffer
{&CollPair}
{&Object}
...

objData

M
et
ho

ds
At
tri
bs

.

CollPair[i,j]At
tri
bu

te
s

Environment

fi

xi

M
et
ho

ds
At
tri
bu

te
s

Object[i]

i
j

i

fj

xj

Figure 5.3: Multibody library architecture. The class Environment contains and supervises the
states of all Objects and CollPairs. Each Object contains both haptic structures that represent
it. CollPairs call the collision computation method that checks the contacts between the Objects
they relate.

e. g., to the bimanual haptic device HUG [HHK+11] (see Section A.1), or to a physics
engine that integrates the collision forces to obtain object poses. The communication
between the collision computation module and the devices is realized using thread-safe
shared memories and the UDP communication protocol.

In the following, the architecture of the C++ implementation is described; it consists
of three main classes, as shown in Figure 5.3:

1. Instantiations Object[i] of class Object represent a body i in the scenario. The
class contains the ports for pose (xi) and force (fi) data available to the user
and methods (e. g., readPose()) associated to them. Objects[i] contain both
voxelized and point-sampled representations and use the appropriate one for each
situation (see Figure 5.1).

2. The instance CollPair[i,j] of the class CollPair uses the pose information (xi
and xj) from its associated Objects in order to compute forces according to the
algorithms introduced in Chapter 3 and Chapter 4. Each of the instantiations of
CollPair is related to a cell in the collision matrix.

3. The class Environment contains arrays of Objects and CollPairs, all intercon-
nected. In Environment, the collision matrix is written and the configuration
state matrix read. All data structures can be accessed by the user via this class,
and therefore, the class also has methods to start() and stop() the functions of

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 151

Objects and CollPairs.

The architecture resembles a graph, where Objects are nodes that store poses and
forces and the CollPairs are links that generate force data in dedicated threads after
reading poses. The system is asynchronous and the usual workflow is the following (see
Figure 5.3):

(i) The callback thread function computeCollForce() from CollPair[i,j] is contin-
uously executed. First, it calls all corresponding readPose() in order to update
pose data: xi from Object[i] and xj from Object[j].

(ii) Next, penalty force computation is carried out as explained in Chapter 3, which
yields fij and its corresponding contact manifold.

(iii) After that, the thread function passes the penalty force to all related objects
via updateForceBuffer(). This last method performs several operations on the
ForceBuffer before sending the total force to the user. The ForceBuffer is an
array that contains a force cell for each algorithm that is using the Object. The
total penalty force upon the object is the sum of all forces in the ForceBuffer.

(iv) If the module decides to send the force to the user, first, all penalty forces are
summed. Different sending policies are supported: for example, it could be pre-
ferred to send total force values every time a new force arrives, or every time the
cell with the oldest update time stamp is refreshed. Issues due to lack of synchro-
nization have not been experienced yet. If that were the case, the ForceBuffer
would have to be extended, for instance, to extrapolate force values with history
data every time a force summation needs to be delivered. This analysis is left for
future work.

(v) Next, if the current object is held by the user, the constraint-based force rendering
explained in Chapter 4 [SH16] is executed with the penalty force summation and
the biggest penetration value.

(vi) Finally, force and visualization data are sent to their corresponding object ports.

In those large-scale environments with multiple objects, one of the main challenges
consists in dealing with the quadratic nature of collision detection. Several strategies
have been proposed to reduce the computational complexity, such as sweep and prune of
pairs using bound boxes [CLMP95]. To cope with multibody environments while keeping
the 1 kHz frequency required by haptics, these techniques are exploited in the current
work: (i) object grouping and parallelization, (ii) spatio-temporal coherence [MPT06],
and (iii) graceful degradation [BJ08].

The first one, object grouping and parallelization, consists in taking advantage of the

152 CHAPTER 5. APPLICATIONS

Figure 5.4: Game control
workflow. Each state dic-
tates which object is moved
by the user (hdIndex) and
specifies the position of the
other ones (either free or
fixed, {fixedPose}). In
order to jump to the next
state, a series of conditions
or tasks related to force or
pose values must be ful-
filled.

State i+ 1

State i
{Condition}
hdIndex
{fixedPose}
cdMatrix

State Attributes

{Force}
{Pose}
Keywoard
Signal

Condition Attributes

C2C1 CnOR AND…

…

…
State Array

Condition Array

Oi

Oj

multiple cores of modern CPUs. As previously introduced, computeCollForce() (see
Figure 5.3) is an interface that can run in a separate thread for each object pair. Higher
parallelization degrees are desirable for scenarios with few objects (less than five) and
multi-core CPUs, whereas the user should serialize collision computation calls in case the
number of geometries increases, due to the thread overload that might be incurred (that
degree is currently a parameter in the configuration file). Additionally, objects can be
packed in groups in the configuration file so that not all objects from the same group
are checked for collision between them. A practical use of that is the kinematic chain
formed by the hand and the arm: collisions between the different limbs can be neglected
by packing them into the same group.

Secondly, the spatio-temporal coherence property of multi-body assembly environ-
ments is used before calling computePenaltyForces(); the notion behind it is that the
distance between two objects is very similar in two consecutive time steps. Since the im-
plemented penalty-based approach yields the signed distance p between objects, assuming
these are allowed to move no faster than vmax = 1 m/s, two objects will not collide dur-
ing the period p/vmax. This saves in practice hundreds of collision detection calls in a
second even in scenarios where objects are relatively close to each other. It is worth to
mention that the value of vmax may have to be adjusted for elongated objects. In that
case, even small rotations might produce high velocities in the extremities. Nevertheless,
the selected value has sufficed in all tested scenarios.

And finally, the third method coping with expensive computations consists in graceful
degradation, which is possible due to the multi-resolution nature of the point-sphere trees.
The volume and surface of all objects is evaluated at the beginning and resource per-
centages for worst-case scenarios (e. g., when all objects are in contact) are assigned. Ad-
ditionally, load and efficiency factors are computed online in computePenaltyForces(),
according to Section 3.3.2. Under worst-case conditions or high loads, pointshells can

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 153

automatically limit the number of levels allowed in the hierarchy traverse. Since each
level samples the whole object, an approximate but valid result is computed by the al-
gorithm. Force values are scaled with the number of colliding points and point densities,
hence, it can be guaranteed that the relative order of magnitude is maintained.

5.2.1.2 Game Control

In order to enable assembly sequences, a finite machine that externally attaches to the
multibody collision computation module explained in Section 5.2.1.1 was developed. The
user can easily extend the configuration file of the multibody collision detection module
specifying which objects have to be mounted in which position and in which order. As
shown in Figure 5.4, this is implemented in an array of states and, for each state, an
array of conditions.

A state establishes which objects are moved by the user(s) (hdIndex). Addition-
ally, objects can have a fixedPose (e. g., mounted) or can have no assigned pose, and
therefore be waiting for a external pose data. Each state can also update the collision
detection state matrix explained in Section 5.2.1.1. This allows for dynamically man-
aging resources; e. g., when an object is mounted, it should not be checked for collision
against other mounted pieces, thus, the collision calls between them should be paused.

The condition array is a set of tasks that must be carried out. Usually, each condition
is related to target Pose[j] and force Force[j] values expected on the object j that has
to be assembled (including tolerances). However, the machine can also receive Keyboard
commands, such as "fulfilled", or external Signals (e. g., from other interfaces, ges-
tures, etc.). Conditions are concatenated with AND|OR operators and the user can decide
if they need to occur simultaneously or not. When all conditions are fulfilled, an exit
event occurs and the machine jumps to the next state.

Simple yet powerful, the game control machine handles the simulation and takes all
logic decisions necessary to accomplish assembly sequences.

5.2.1.3 Completing the Jigsaw Puzzle: Communication, Tracking, and Visualiza-
tion

As shown in Figure 5.2, the InstantPlayer∗ is used as visualization tool. The scene is
displayed to the user preferably with an nVisor SX60† head-mounted display (HMD),
which is optically tracked by a Vicon Bonita‡ system. Additionally, the Bullet§ physics

∗http://www.instantreality.org
†http://www.nvisinc.com
‡http://www.vicon.com/products/camera-systems/bonita
§http://bulletphysics.org/wordpress/

http://www.instantreality.org
http://www.nvisinc.com
http://www.vicon.com/products/camera-systems/bonita
http://bulletphysics.org/wordpress/

154 CHAPTER 5. APPLICATIONS

engine has been successfully tested. The framework operates in a distributed manner,
having for each module a dedicated desktop computer. The whole system is controlled
with an experimental process manager middleware [SBCC17] which is additionally able
to communicate in realtime with robotic interfaces.

5.2.2 Interaction Devices and Techniques

This section describes the interaction devices and techniques as key elements of the
training platform. The goal is to provide realistic haptic feedback to the hand and the
arm while maintaining the safety and increasing the usability (i. e., intuitive experience,
minimal restriction of movements with respect to dynamics and workspace).

5.2.2.1 The Bimanual Haptic Device HUG

In order to promote the training effect in assembly simulations and to create an immersive
experience for the human operator, a haptic device is required that provides both a large
workspace to enable unrestricted movements of the human hand and appropriate force
capabilities to generate realistic haptic feedback. For this reason, the bimanual haptic
device HUG conceived and built at DLR was chosen in the present application [HHK+11].

HUG is equipped with two DLR/KUKA light-weight robot arms∗ and an additional
force-torque sensor at each robot wrist (see Figure 5.2 top right). A full description of
the device is given in Appendix A.1, contextualizing it with other commercial devices;
the most important features relevant for the uniqueness of the platform are:

• The seven DoF of each robot arm make it possible to interactively optimize their
configuration to maximize the overlap between human and robot workspaces, while
still providing six-DoF forces – note that commercial devices rarely exceed six DoF.

• Peak forces of 150 N are possible, however, being 50 N the usual maximum collision
force for each arm – note this value is considerably higher compared to other devices.

Additionally, HUG supports a variety of hand interfaces that range from passive data
gloves to active gripping-force devices, that can be changed depending on the application.
In the version presented here, the users operate with the bare hand, but new hand
interfaces are contemplated as future work.

5.2.2.2 The Vibrotactile Arm Band VibroTac

With the haptic feedback applied by HUG on the human hand, the user is able to perceive
the collision of a manipulated object in a virtual scene. However, in certain situations, it

∗http://www.kuka-lbr-iiwa.com

http://www.kuka-lbr-iiwa.com

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 155

Figure 5.5: The VibroTac provides tactile feedback using six vibration motors equally distributed on
the perimeter of the forearm. The markers on the device are optically tracked (left). The movement
of the elbow is mapped to its virtual representation (middle, in green). If the virtual forearm collides
against the scenario (middle), the corresponding segments of the VibroTac provide vibration feedback
to the user (right, in red).

is decisive to know about collisions of the human operator with the virtual environment,
e. g., to validate if there is enough space for the human arm inside a motor compartment.
This problem can be treated by the usage of additional haptic devices. Arm-exoskeletons
may pose the most realistic kind of feedback to the human arm by mechanically coupling
the arm with the device.

Due to the lack of available mechanical solutions, however, an alternative solution
is used to generate this additional feedback to the operator’s forearm. Instead of force
feedback, tactile feedback provided by a vibrotactile arm band is employed. The used
tactile feedback device VibroTac [SEWP10] is a battery driven and wirelessly control-
lable bracelet with six vibration motors (so-called tactors). Due to the uniform tactor
distribution, the location and direction of an impact can be indicated to the user’s fore-
arm. The strength of collision can be displayed by varying the intensity of the stimuli
or by generating different vibration patterns, which can be controlled separately for each
tactor.

As shown in Figure 5.5, reflective markers were added to the VibroTac in order to
track it optically. The user sees a green transparent arm in the virtual scene; the wrist is
coupled to the end effector of the HUG, whereas the elbow corresponds to the movement
of the VibroTac. The HUG can provide six-DoF collision feedback at the palm and
the VibroTac extends the touch sensation to the forearm: when the virtual arm collides
with a certain force against the objects in the scenario, the corresponding segments are
activated with the intensity suited to this virtual force. As a result, it is possible to
evaluate and train assemblies where the whole forearm configuration with respect to the
mounted part has to be considered.

156 CHAPTER 5. APPLICATIONS

Figure 5.6: Scenarios
which are bigger than
the device workspace
require indexing. This
is achieved by moving
the virtual workspace
(red sphere with center
Cw and radius rw) to
the grasping point Ch

which is outside the
boundary.

rw
rh

Cw
Ch

5.2.2.3 Workspace Navigation

Interacting with virtual environments larger than the workspace of the interface requires
movement mapping and control strategies. Conti and Khatib give an overview of those
methods [CK05] and propose a workspace drifting control scheme with which the virtual
workspace is shifted with a velocity controlled by the distance from the device workspace
origin to the position of the endeffector. As these authors report, the most common
navigation approach consists in performing position control with a selected scaling factor,
or indexing the position of the end effector with respect to the moved avatar after the
interface has been decoupled from the simulation (also known as de-/clutching). It is
also possible to carry out ballistic control [SCB04], with which the scaling factor depends
on the velocity of the end effector, or rate control, where the velocity of the avatar or
moved object increases linearly with the distance from avatar to workspace origin.

[DABS06] tested some of these methods in a user study and concluded that their
bubble technique yielded best performance results in a three-DoF painting task that
required precise activities in large environments. The bubble technique is a hybrid posi-
tion/rate control approach where the optimal workspace around the endeffector (a bubble
or sphere) is displayed both visually and haptically to the user. Whenever the bound-
aries of the bubble are reached, it is moved with a velocity cubically proportional to the
trespassed distance and the user feels restoring forces in the direction opposite to the
movement.

As reported in [PV11], workspace visualization can become distracting in complex
six-DoF assemblies, and restoring forces can lead to the perception of artifacts or they
can make the discrimination of collision forces difficult. Therefore, in the implementation
presented in this work it was proceeded similarly as in the bubble technique, but without
displaying the workspace visually or haptically. The user experiences two modi with the

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 157

haptic interface: (i) fast controllable navigation in order to relocate the workspace (rate
control) and (ii) manipulation with 1:1 mapping (unscaled position control).

As shown in Figure 5.6, the workspace is abstracted with a sphere with center Cw
and a constant radius rw = 0.2m. Additionally, rh is the distance between the grasping
point Ch related to the object moved by the haptic interface and the current workspace
center. This workspace center Cw is considered the anchor frame with respect to the
device movements, i. e., the center of the real workspace of the user is mapped to this
point and the moved object is transformed with respect to it.

The workspace shifting works as follows: if the grasping point of the moved object
is inside the workspace (rh ≤ rw), the workspace will not move (Cw(t + ∆t) = Cw(t)).
Otherwise (rh > rw), and in absence of collision forces, the workspace is translated
towards the grasping point, as summarized in (5.1):

Cw(t+ ∆t) = Cw(t) +

λw∆t
Ä
1− rw

rh

äÄ
Ch(t)− Cw(t)︸ ︷︷ ︸
vector length rh(t)

ä
, (5.1)

where λw = 1.5 s−1 is the gain and ∆t the time step between two consecutive cycles. The
presented method moves the workspace in the scenario if the grasped object is outside
this workspace and the moved objects are not colliding; the velocity of the translation is
linear to the distance from the grasping point to the surface of the workspace.

5.2.2.4 Collaboration with Additional Haptic Interfaces

Shared and collaborative virtual environments with haptic feedback are challenging due
to the user-user interaction, the required synchronization, and their delay and frequency
demands (1 kHz). As mentioned in Section 5.1.1, a collaborative tele-mentoring func-
tionality is presented in [GRV+10]. In it, a trainer can teach a trainee how to perform
specific assembly tasks: position and force data are sent unidirectionally between them
(usually from the tutor to the apprentice) so that skills can be transferred faster and
interactively. On the other hand, a peer-to-peer collaborative framework for assembly
simulations was presented in [ICG+06]. The work focuses on the technical strategies
required to maintain synchronicity for each peer simulation. The consistency is achieved
basically by keeping track of the last valid (non-colliding) pose of object.

Since the presented framework is modularly built and the objects of the collision
computation database transfer pose and contact information independently, the system
allows for collaboration between users by simply connecting another haptic (or other)
interface to an object node, as it is shown in Figure 5.2. In the current implementation

158 CHAPTER 5. APPLICATIONS

Figure 5.7: Schematic sce-
nario description and assem-
bly sequence. The user has to
mount five parts into a car en-
gine bay in a row; instructions
are given in the upper left cor-
ner of the display. When no
object has been grabbed, the
user sees a red sphere at the
right hand (haptic pointer);
the left hand can carry tools,
such as the drill illustrated in
the picture. A teaching assis-
tant box can be controlled by
another interface.

1 2 3 4 5 . . .

Control Box Board Grid Bracket Wiper

Engine
Bay

Drill
(Tool)

Haptic
Pointer

Teaching
Assistant

Virtual
Arm

a Falcon∗ and a Sigma.7† were tested successfully. The interaction occurs through an
extra pointer in the scene which is moved by the second user, called teaching assistant
(blue cube in Figure 5.7). The teacher can show the trainee how to move to perform
the assemblies and correct wrong movements with small pushes. Both users see and
feel collisions. Synchronicity or consistency is achieved with the ForceBuffer described
in Section 5.2.1.1, as if the teaching assistant pointer were another object in the scene.

5.2.3 Exemplary Scenario: Car Assembly Sequence

This section introduces a practical use case in which all methods explained in the previous
sections are used. The following video shows the scenario, the interaction techniques and
the introduced tasks:

A Platform for Bimanual Virtual Assembly Training with Haptic Feedback
in Large Multi-Object Environments @ Vimeo
https://vimeo.com/190217267

As shown in Figure 5.7, the virtual scene consists of ten objects:

(i) a car engine bay where several objects can be mounted,

(ii) a haptic pointer (red ball) symbolizing the right hand coupled to the right forearm
of the HUG (Section 5.2.2.1) with which the user can grab an object to mount it,

∗http://www.novint.com/index.php/novintfalcon
†http://www.forcedimension.com/products/sigma-7/overview

https://vimeo.com/190217267
http://www.novint.com/index.php/novintfalcon
http://www.forcedimension.com/products/sigma-7/overview

5.2. VIRTUAL ASSEMBLY WITH HAPTIC FEEDBACK 159

(iii) a virtual forearm (transparent and green) moved with the tracked VibroTac (Sec-
tion 5.2.2.2),

(iv) five selected car parts that have to be assembled in a specified sequence: a control
box, a covering board, a grid, a bracket, and a wiper mechanism,

(v) an electric drill held by the left arm,

(vi) and a teaching assistant cube moved by another user with a different interface than
the HUG. Thanks to this object, the experienced user can haptically correct the
trials of novice operators online.

All objects are real CAD parts and the interaction occurs without scaling (e. g.,
1:1). It is worth to mention that the user receives only vibrotactile feedback (not force
feedback) when the green transparent virtual arm collides. Therefore, the virtual arm
might overlap with the other objects if the user does not actively re-configure his arm as
the vibrations indicate.

The scenario is easily extensible to different or more objects by modifying the config-
uration scripts of the multibody framework (see Section 5.2.1.1) and the state machine
(see Section 5.2.1.2). The assembly workflow of the control box is shown on the right
side of Figure 5.8, and it is similar to all other objects to be assembled. First, the part
to be mounted appears on the right and the user has to navigate to it. The navigation
takes place thanks to the indexing explained in Section 5.2.2.3. If the user remains in
contact 1 s with the object to be mounted, the red haptic pointer is replaced by it. Next,
the user can navigate towards the region where a grey transparent replica of the part is
shown. The following steps consist in assembling the part into its correct location. If
this is achieved within the translation and rotation deviation tolerance specified in the
configuration file, the part is fixed in its assembly pose and the red haptic pointer appears
again. Then, after testing the space for the tool held with the non-dominant hand, the
user has to keep on with the next part. Instructions are displayed in a text box on the
left upper corner of the simulation frame.

A previous version of the system has also been tested with a virtual satellite mainte-
nance scenario [SHH+15]. Compared to that setting, the use case discussed in the present
work focusses on multibody interactions with more complex and realistic objects; addi-
tionally, the implementation of techniques that make interacting in large virtual assembly
training environments possible (e. g., navigation, collaboration, and game control) is de-
scribed and validated.

160 CHAPTER 5. APPLICATIONS

A B

C D

E F
Figure 5.8: Left: Snapshot of the whole scenario; the user head is displayed by an avatar. Right:
Assembly steps of the control box as seen by the user through the head mounted display moved by
the head and optically tracked: (A) Approach to the control box to be assembled with the haptic
pointer; (B) Touch and grab the control box; (C) Move (indexing) close to the place where the object
has to be mounted (displayed with a grey transparent replica); (D) and (E) Insert the control box to
the engine cavity; (F) Reach target pose. The haptic pointer appears and the user has to move on
with the next object.

5.2.3.1 Performance Results

The evaluation of the assembly process of the control box presented in Figure 5.8 is
shown in this section. Force, penetration, load and computation time diagrams of the
results as well as the details of the used data structures are reported in Figure 5.9.

During the first 12 s, the user is in navigation mode (see Section 5.2.2.3) and shifts the
workspace center to the desired position. Around frame D, the first collision occurs and
the position is corrected again (13.2 s – 17.1 s), for finally proceeding with the insertion
into the assembly cavity (17.1 s – end, frames E and F). As expected, it is in those collision
situations when the load and the computation time increase considerably. The load value
η is computed every cycle as specified in (3.50) from Section 3.3.2.1 (Chapter 3).

As mentioned in Section 5.2, the number of levels swept in the pointshell can be de-
creased still checking all collision regions if the critical load ηc is reached. This pointshell
specific critical load can also be updated during runtime depending on the number of
collision threads that are active and their respective loads. In the shown assembly ex-
periment part, only three collision threads were active (the ones between the engine bay,
the drill and the control box), and the maximum achieved load ηmax = 18.89% (at time
stamp 25.86 s) was smaller than the critical ηc = 70%. Positively and strongly correlated
to the load is the required computation time, which achieves a peak of 0.75msec around

5.3. INTEGRATION INTO THE PHYSICS ENGINE BULLET 161

−1

0

1

2

3

4

Fo
rc

es
 [N

]

C D E F

−5

0

5

10

15

20

Pe
ne

tra
tio

n
[m

m
]Forces

Penetration

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5
0

20

40

Lo
ad

 [%
]

Simulation Time [s]

0 5 10 15 20 25
0

0.5

1

C
om

p.
 T

im
e

[m
s]

Load Computation Time

Figure 5.9: Force, penetration, load and computation time values obtained during the assembly of
the control box displayed in Figure 5.9. Assembly steps C – F are marked in the upper diagram. Neg-
ative penetration values correspond to the approximate distance values used during spatio-temporal
coherence computation, which are unsteadier since they correspond to sphere distances. However,
these data are scaled to show penetration and force values, because they are considered to be the
most relevant in assembly simulations. The car’s engine bay has a voxel edge of 3 mm, resulting in a
grid of 1022× 788× 541 elements compacted in 286 MB. It was computed from the original model
consisting of 1.83M of triangles in few minutes. The assembled control box consists of 10507 points
divided in 3506 clusters and 7 levels compacted in 875 KB (see Figure 5.1). It was computed from the
original model consisting of 101472 triangles in few seconds. The offline computation time required
for data generation depends on the resolution and selected number of layers. The used computer was
an Intel(R) Core(TM) 2 Quad with CPUs at 2.66GHz and running Suse SLED 11 (not realtime).

simulation time stamp 27.07 s, below the 1msec convention for stable and realistic haptic
interaction.

Force magnitude oscillates below 4N (maximum 3.88N at time stamp 22.97 s) de-
pending on the penetration of the colliding points and the reaction force applied by the
user. The values shown in Figure 5.9 are the raw values computed by the collision com-
putation module before sending them to the haptic device. Depending on the interface,
filtering or similar control algorithms can be applied. Note, additionally, that the pene-
tration values are smaller than 5mm or even 4mm most of the time. This penalty value
is the necessary error between the displayed god object and the virtual object attached
to the haptic device.

Overall, it can be considered that the results show a system able to render realtime
assembly simulations with haptic feedback even in large scenarios with numerous complex
geometries exported directly from CAD frameworks.

5.3 Integration into the Physics Engine Bullet

This section presents the integration of the collision computation methods from Chapter 3
into the physics engine Bullet [Cou03]. Selected interfaces provided in that publicly
available engine (detailed in Section 5.3.1) were inherited (Section 5.3.2), extending the

162 CHAPTER 5. APPLICATIONS

physics engine and making the advantages of the VPS re-implementation available to any
developer familiar with Bullet. Additionally, the VPS re-implementation was compared
with Bullet’s native GJK, GJK with convex decomposition, and GImpact, varying the
resolution and the scenarios. The experiments (Section 5.3.3) show that the methods
from this work perform with similar computation times as the standard collision detection
algorithms in Bullet if low resolutions are chosen. With high resolutions, the VPS re-
implementation from Chapter 3 outperforms Bullet’s native implementations and objects
behave realistically.

5.3.1 Data Structures and Workflow in Bullet

A detailed description of the data structures and the pipeline in Bullet is given in its
user manual [Cou03]. Fundamental structures necessary for the integration are described
here.

Being a physics engine, Bullet ultimately computes the motion of virtual objects.
For that, the library builds up on different layers, from basic (math operations) to more
specific (dynamics computation). The layer that handles collision detection is separated
from the one that deals with dynamics computations. Therefore, it is possible to perform
only collision computation with Bullet. Along these lines, the integration essentially
consisted in adding and extending interfaces from the collision detection layer, while
being still compatible with the layers beneath and above. Note that although Bullet
supports deformable objects, only rigid bodies are considered in this work.

The highest control interface that creates the virtual world is btDiscreteDynamics-
World. One can setGravity() to it, call addRigidBody(), and simulate the next in-
stant in the world with stepSimulation(). After each step, it is possible to ask the
btTransform of each rigid body. Each btRigidBody consists of a btMotionState and
a btCollisionShape; this last class contains the geometry that is used for the collision
detection.

Collision detection is divided in two phases in Bullet: (i) the broadphase, in which
pairs of objects are quickly rejected based on the overlap between their axis aligned
bounding boxes and (ii) the narrowphase, in which the selected collision detection al-
gorithm is called. The interfaces btBroadphaseInterface and btCollisionDispatcher
are used respectively for these two steps. The latter contains the selected btCollision-
Algorithm, which generates a btPersistentManifold, that is, the list of object points
that constitute the contact manifold and which is passed to the motion solver.

Therefore, the contact manifold is the ultimate result of the collision detection pro-
cess, and the rigid body dynamics simulation can work decoupled from the type of algo-
rithm used, provided the list of contact points. Hence, the goal of the integration is to

5.3. INTEGRATION INTO THE PHYSICS ENGINE BULLET 163

btCollisionShape btCollisionAlgorithm

Pointshell Voxelmap Mixed VOXPTSCollisionAlgorithm

(a) (b)

Figure 5.10: (a) Integration of the three new collision shapes into the pool of collision shapes provided
by Bullet: Pointshell, Voxelmap, and Mixed, which contains the previous two. (b) Integration of
the VOXPTSCollisionAlgorithm by inheriting from Bullet’s superclass btCollisionAlgorithm.

generate such a manifold as fast as possible, and with the best quality as possible.

5.3.2 Integration Interfaces

The following structures were modified by adding references to the VPS re-implementation
from this work: btBulletCollisionCommon.h, btBroadphaseProxy, and btDefault-
CollisionConfiguration. The appropriate algorithm is assigned to each shape type in
the last interface.

As shown in Figure 5.10, the abstract collision shape interface was additionally in-
herited and extended to represent the data structures introduced in Chapter 3. Since
the VPS requires two different data structures for each colliding pair, a mixed structure
containing both structures for each object was defined. The structure which is used is
selected automatically online: the object with less points will be the Pointshell. The
inertia matrix and some other features required by Bullet, such as bounding volumes,
are automatically created with the methods integrated in the data structures from this
work.

In the broadphase, bounding spheres of the highest pointshell hierarchy level are
checked against the distance fields. Colliding pairs are handled by the dispatcher, which
calls the proximity query from Algorithm 3.1 explained in Chapter 3. The result of the
query is a contact manifold M containing colliding points with their respective normal
vectors and penetration values (see Section 3.3.1.2).

If the segmented hierarchical traverse is performed (see Section 3.3.1.5), this list is
already segmented in m clusters and for each one a btPersistentManifold is created
with the point in the cluster that has the deepest penetration value. In case the regular
hierarchical traverse is carried out, a unique btPersistentManifold is filled with the
contact points, starting with the deepest point, and adding points so that the manifold
area maximizes. Note that the size of the manifold is limited to four points in Bullet,
although this constant value can be modified before compilation.

164 CHAPTER 5. APPLICATIONS

Figure 5.11: Height of the center
of mass of the bouncing ball (radius
0.5m) using different coefficients
of restitution c. The pointshell of
the sphere is composed of 275 (low
resolution) and 25880 (high resolu-
tion) points. The plane’s voxelmap
has a resolution (voxel edge size) of
5mm. The black dashed line rep-
resents the ideal maximum height
after the first collision.

0

0.5

1

y
 (

m
)

c=0.1

VPS Low−res

VPS High−res

Bullet

0

0.5

1

y
 (

m
)

c=0.5

50 100 150 200 250 300
0

0.5

1

y
 (

m
)

Simulation Steps

c=0.9

5.3.3 Experiments and Results

In this section, first, the results of simple experiments are shown to prove the validity
of the VPS re-implementation, which is compared to the default algorithms in Bullet.
Afterwards, the VPS is compared with the fastest collision detection algorithm in Bullet
in more challenging scenarios, using the Stanford Bunny as the benchmark object. All
tests were carried out using a PC running SUSE Linux Enterprise Edition 11 with an
Intel Xeon CPU at 4× 2.80 GHz.

The following video shows the benchmarking experiments with the Stanford Bunny:

Integration of a Haptic Rendering Algorithm Based on Voxelized and
Point-Sampled Structures into the Physics Engine Bullet @ Vimeo
https://vimeo.com/89910579

5.3.3.1 Tests with a Bouncing Ball

In this scenario, the height of a sphere dropped onto a plane as well as its maximum
penetration are analyzed. The sphere, with a radius of 0.5 m and a mass of 1 kg, was
dropped from a height of 1 m. The gravity was considered to be 10 m/s2 and the frequency
of the simulation was 200 Hz. Given the geometries, the re-implemented VPS delivered
at each time step one colliding point. For this type of scenarios, Bullet calls a simple
algorithm called btSphereBoxCollisionAlgorithm.

The results show that the height profile of the center of mass of the ball for the
VPS re-implementation roughly matches the one yielded by using Bullet’s algorithm.
The discrepancies between the VPS and Bullet’s values are due to Bullet having higher

https://vimeo.com/89910579

5.3. INTEGRATION INTO THE PHYSICS ENGINE BULLET 165

Table 5.1: Maximum penetration errors (mm) in the bouncing ball experiment using Bullet and
the VPS re-implementation in this work. Two resolutions are considered for the VPS algorithm: low
resolution with 275 points and high resolution with 25880 points.

Restitution
coefficient [-]

Penetration error [mm]

Bullet VPS low res. VPS high res.

0.1 42.5 6.8 3.5
0.5 42.5 9.5 4.0
0.9 42.5 20.1 19.2

penetration errors (see Table 5.1), which delay the rebound and increase the period of
the bouncing. Having pointshell objects with much higher resolutions seems to provide
lower penetration errors, but the benefits are not substantial.

Alongside the bouncing ball experiment, the stacking of similar objects was also
tested. Stacking spheres and disabling freezing of the objects will cause them to collapse,
eventually. As the resolution of the pointshell representation of the sphere is increased,
the stack gets more and more stable. Using a coarser sampling grid to generate the
pointshells intrinsically adds some quantization noise to the modeled object; that could
explain its apparently more realistic behavior.

5.3.3.2 Tests with the Stanford Bunny

In this section, the VPS re-implementation is compared against other available algo-
rithms in Bullet, varying the resolution of the Stanford Bunny or its segmentation level.
Figure 5.14 illustrates some of the used data structures.

General Comparison with Bullet Algorithms Varying Resolution

Figure 5.13 shows computation time and linear velocity diagrams produced by the VPS
re-implementation from this work, Bullet’s convex decomposition, and Bullet’s GImpact
implementation, which is used with arbitrary non-convex triangle meshes. In the experi-
ment, a Stanford Bunny (35606 vertices) was dropped onto a horizontal plane, as shown
in Figure 5.12.

During full operation (Figure 5.13, steps 250 to 600), the VPS algorithm is 137× faster
than GImpact and requires on average 0.71 ms for each check using the fine resolution
(34892 points). The bunny is simplified to a convex hull composed of only 42 vertices
in the Bullet’s GJK implementation and to 8 convex hulls with 100 vertices each in the
convex decomposition approach (equivalent to the pointshell in the VPS low resolution

166 CHAPTER 5. APPLICATIONS

Figure 5.12: Successive frames
of a Stanford Bunny dropped onto
a plane. This experiment corre-
sponds to Section 5.3.3.2 and Fig-
ure 5.13. In the case of Figure 5.13,
the frames match with the follow-
ing steps: (a) Step ∼ 50, (b) Step
∼ 175, (c) Step ∼ 200, and (d)
Step ∼ 300.

(a) (b) (c) (d)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
1

10
3

10
5

C
o

m
p

.
T

im
e

 (µ
s
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−6

10
−4

10
−2

10
0

Simulation steps

L
in

.
V

e
lo

c
it
y
 (

m
/s

)

VPS (fine grid)

VPS (coarse grid)

GImpact

Convex Decomposition

Figure 5.13: Computation time (µsec) and linear velocity (m/sec) curves in logarithmic scale for
the testing scenario in which a Stanford Bunny with 35606 vertices is dropped onto a plane (see Fig-
ure 5.12). The pointshell of the bunny is composed of 799 (coarse/low res.) and 35596 (fine/high
res.) points, and the voxelmap with 306 × 305 × 282 voxels. The decomposed bunny consists of 8
convex hulls with 100 vertices each. Note that Bullet de-activates collision detection under certain
kinetic conditions causing sudden steps in the computation time curves.

case). In these conditions, GJK is 339× faster than the VPS with a fine resolution (34892
points), but the convex decomposition is only 1.3× faster than the VPS with a coarse
resolution (799 points).

Therefore, the integrated VPS re-implementation leads to similar computation times
and higher accuracies compared to the Bullet’s tested ones with low resolutions, whereas
it outperforms them when the resolution is increased.

Segmented Collision Detection

In this section the segmented collision detection method introduced in Section 3.3.1.5
is validated. The experiments used a desktop-sized Stanford Bunny of low (799 points)
and high resolutions (35596 points) with a mass of 1 kg and a diagonal inertia tensor
JB = (4.79, 4.46, 6.38)10−3 kgm2, which was dropped from a height of 0.5m onto a plane,
as shown in Figure 5.12.

In the experiment, the collision computation time for different segmentation levels (L)

5.3. INTEGRATION INTO THE PHYSICS ENGINE BULLET 167

Table 5.2: Computation time (µs) of the VPS when supplying different number of contact points
according to the level of the point-sphere tree selected for the segmentation. Low resolution: 799
points; high resolution: 35596 points. Point-sphere hierarchies had a branching factor of NK = 4
children per cluster.

Resolution
Level, L

1 2 3 4 5

Low (799 points) 102.2 102.1 104.2 102.3 102.8
High (35596 points) 1387.9 1477.5 1407.4 1449.6 1494.3

Figure 5.14: Different rep-
resentations of the Stanford
Bunny used in the tests of Sec-
tion 5.3.3.2: (a) Convex hull
created with Bullet; (b) Con-
vex decomposition created us-
ing Bullet [MG09]; (c) The
segmented point representa-
tion from Section 3.3.1.5 en-
coded by colors. (a) (b) (c)

was measured. For that, the bunny was dropped with 10 random orientations, calculating
the average time during the interval between steps 200− 600, i. e, full operation or worst
case. Note that for L > 1, the number of segments m is close to LNK , being NK the
branching factor (see Section 3.3.1.5); additionally, the number of segments m equals to
the number of possible points in the contact manifold.

The results in Table 5.2 show that the computation times are very similar for all
levels. Therefore, collision computation time is barely affected when segmented collision
computation is employed.

The same experiment was performed at frequencies lower than 50Hz using the Stan-
ford Bunny, and the penetration errors were observed. When performing the test for
L = 1 (one colliding point) the algorithm was able to maintain the bunny above the
plane until ∼ 30 Hz were reached. Operating at a lower frequency would lead to the
bunny falling through the plane after the initial collision was detected. The same ex-
periment was done using L = 4 and L = 5 and the bunny was maintained above the
plane for frequencies of simulation down to ∼ 10 Hz, where the penetration errors were
minimized if a higher level L was chosen.

168 CHAPTER 5. APPLICATIONS

5.4 Other Application Environments

The algorithms and frameworks presented so far in the current chapter and previous
chapters were successfully integrated in further applications. Five of them are illustrated
in Figure 5.15 (including links to videos online) and briefly described in the following
sections. Technical details are left for further reading in references.

All the projects were implemented at the German Aerospace Center (DLR), mainly
at the Robotics and Mechatronics Center, and in teams; the main tasks performed by
the author are listed here:

• Section 5.4.1 and Section 5.4.2: Concept and design of specifications in team, inte-
gration of methods from this dissertation, implementation, management in team.

• Section 5.4.4: Concept and design of specifications, integration of methods from
this dissertation in team, supervision.

• Section 5.4.3 and Section 5.4.5: Integration of methods from this dissertation,
implementation of interfaces upon specifications.

5.4.1 A Virtual Reality Platform for On-Orbit Servicing Simulations

The growth of space debris is becoming a serious problem. There is an urgent need for
mitigation measures based on maintenance, repair and de-orbiting technologies. Along
these lines, a virtual reality application in which robotic maintenance tasks of satellites
can be simulated interactively was developed [SHH+13] using the frameworks introduced
in previous Section 5.2 and Section 5.3.

The application features a realistic on-orbit servicing scenario with multiple satellite
components in it. Additionally, several common procedures are defined for the user,
such as replacing a broken electronic module in the satellite, which requires a pre-defined
series of steps controlled by the central logic.

The simulation provides with haptic feedback, using for that all the modules of the
multibody haptic rendering framework (Section 5.2.1.1) described for the car assembly
scenario. Moreover, motion of objects is simulated with the physics engine Bullet: objects
can free-float in low gravity environments or move according to constraints (e. g., hinges).

In addition to the immersive devices described in Section 5.2.2 (e. g., HUG), other
interfaces have been integrated, such as the electrotactile feedback device for grasping
presented in [HDE+16].

Altogether, the platform can be used for verification purposes, for user training with
robotic systems such as SpaceJustin [KWA+09], or it could even be employed as a train-

5.4. OTHER APPLICATION ENVIRONMENTS 169

a b c

d e

f

g

h i

j k l

m

n o

p q

A Virtual Reality Platform for
On-Orbit Servicing Simulations
https://vimeo.com/64991632

Ultrapiano: Playing a Virtual
Piano with Ultrasound-Imaging
https://vimeo.com/97063714

Shared Grasping: Semi-
Autonomous Robotic Grasping

Using Virtual Models
https://vimeo.com/87159074

Collision Avoidance of Complex
Mechanisms with Themselves

and the Environment
https://vimeo.com/260950105

Robotic Autonomous Assemblies
Using Virtual Models

http://youtu.be/2jYhdmk-pMg

Figure 5.15: Overview of other applications and links to videos showcasing them. (a) Generic virtual
satellite model. (b) Space Justin interacting via telepresence with a real replica of the virtual satellite.
(c) User interacting with the virtual satellite in front of a power wall. (d) Pointshell model of the
virtual gripper (one sphere level and two point levels). (e) Partially voxelized handle and a section of
its embedded distance field. (f) Setup of the virtual piano: virtual scene, real hand with ultrasound
probe, and finger force prediction display. (g) Virtual scene of the piano with the data structures
used during the interactive simulation. (h) Voxelized model of the robotic finger’s workspace. (i)
Reachable independent contact regions obtained from the pointshell model of the grasped object. (j)
Collision avoidance of the HUG applying the generic collision detection module based on the VPS:
repulsion forces are applied to close parts (in red). (k) Voxelized model of a robot link and the section
of its embedded distance field. (l) Pointshell representation of a robot link. (m) Snapshots of a robot
assembly process performed autonomously in realtime. (n) Pointshell representation of the assembled
virtual model (one sphere level and two point levels). (o) Voxelmap representation of the assembly
environment. (p) Estimation of the instantaneous real model configuration represented with virtual
models. (q) Three particle samplings for configuration estimation with different convergence rates.

170 CHAPTER 5. APPLICATIONS

ing platform for autonomous robots. A full description and validation experiments are
provided in [SHH+15].

5.4.2 Ultrapiano: Playing a Virtual Piano with Ultrasound-Imaging

Ultrapiano is the first integrated application of medical ultrasound imaging to remotely
control a virtual hand able to play piano in real-time [SHGC14]. The virtual environment
was powered by the engines described in previous Section 5.3 and Section 5.2.

Detecting human finger motions and forces plays an important role in teleoperation
and virtual reality. Standard data gloves or optical finger tracking devices can provide
reliable finger movement data, but they need to tackle elasticity and occlusion issues,
respectively; additionally, both methods might require long and delicate calibration pro-
cedures. Within this project, medical ultrasound imaging was implemented as a robust
technology for detecting human finger motions by predicting finger forces. These finger
forces can be individually predicted using forearm cross section ultrasound images pro-
vided by a simple probe, after short and easy calibration procedures. Machine learning
methods are employed during the process, in particular, incrementally updated ridge
regression between images and finger forces. The system leaves the subject’s hand com-
pletely free to operate.

The virtual scenario consists of a symbolic hand (palm and five fingers) controlled
by the user via the novel human-machine interface (HMI) and an interactive virtual
piano with two octaves. The collisions in the multibody environment are handled by
the framework from Section 5.2.1.1 and the movement of the keys is simulated with the
physics engine Bullet. The virtual forces between fingers and keys are used to modulate
the key notes in a sound module.

This integrated system can be used as an entertainment device, for rehabilitation,
and for recovery from phantom-limb pain for amputees. Additionally, the HMI has
straightforward applications on the non-invasive control of prosthetic limbs. The efficacy
of the system was validated in a user study [CHS+14].

5.4.3 Robotic Autonomous Assemblies Using Virtual Models

Typical assembly processes consist of sequences of contacts that occur when transferring
objects from free configuration spaces to constrained goal configurations. Traditional
autonomous robotic assemblies require precisely defined rigid trajectories that minimize
those contacts.

However, another more powerful paradigm is also possible with new generation robots
that integrate force-torque sensors and have impedance control architectures (e. g., the

5.4. OTHER APPLICATION ENVIRONMENTS 171

DLR/KUKA Light-Weight Robot (LWR) [ASHO+07]∗). Applications that follow that
new robotic assembly paradigm iteratively (i) execute planed assembly steps, (ii) observe
through sensors the interactions in the environment (e. g., via force sensors or cameras),
(iii) understand the real world states by contrasting processed sensor data with guessed
states obtained using virtual models, and (iv) actualize assembly steps according to that
contrasting.

In [NSSB16], a framework which followed that new paradigm was presented. The
approach proposes a Sequential Monte Carlo (SMC) observation algorithm which uses
the VPS re-implementation introduced in Chapter 3 as a reference model for the contacts
between complex shaped parts. One of the main contributions of the work is the extension
of the classic random motion model in the propagation step with sampling methods
known from the domain of probabilistic roadmap planning; that increases the sample
density in narrow passages of the configuration space. As a result, the observation
performance can be improved and a risk of sample impoverishment reduced.

The framework was experimentally validated with a LWR for a peg-in-hole task
with a challenging narrow passage. The scenario was built with standard Item† parts,
which are highly non-convex; in contrast to most available collision engines, the VPS
re-implementation from Chapter 3 is able to handle those scenarios faster than 1 kHz,
necessary for robotic applications.

5.4.4 Realtime Collision Avoidance for Mechanisms with Complex Geome-
tries

Complex mechatronic systems need to avoid collisions with their environment and them-
selves if safe human-robot collaboration is to be guaranteed. In [STH18], a solution
based on the multibody collision computation framework explained in Section 5.2.1.1
was presented.

That framework was extended to support generic mechanisms that are easily de-
scribed in simple configuration files. In them, the roboticist has to specify the Denavit-
Hartenberg parameters of the manipulator and the filenames of the data structures rep-
resenting its links. Additionally, it is possible to add objects to the virtual environment,
such as tools, assembly parts, or even generic human models. While the virtual robot
configuration is displayed according to the readings from the real robot itself, all ad-
ditional models can be tracked with markers and infrared cameras (e. g., Vicon‡) or
depth-sensors (e. g., Kinect§). As a result, a virtual replica or the real world is simulated

∗http://www.kuka-lbr-iiwa.com
†http://www.item24.de
‡https://www.vicon.com
§https://developer.microsoft.com/en-us/windows/kinect

http://www.kuka-lbr-iiwa.com
http://www.item24.de
https://www.vicon.com
https://developer.microsoft.com/en-us/windows/kinect

172 CHAPTER 5. APPLICATIONS

in realtime, and the multibody framework computes the distances and collisions between
all of them. Increasing the safety margin (see Chapter 3) of the robot links, predictive
repulsion forces between the robots and the environment are computed and overlaid on
the links, avoiding real collisions.

This novel collision avoidance engine abstracts generic mechanisms and environments,
handling complex geometries without the need of simplification or tedious manual mod-
ifications. The framework was validated on the HUG, consisting of 14 links divided into
two mechanical chains and two tools optically tracked (see Section A.1).

5.4.5 Shared Grasping: Semi-Autonomous Robotic Grasping Using Virtual
Models

Fine tele-manipulations of complex robotic systems (e. g., a robotic hand) are difficult
for the operator and error-prone. Therefore, adding a level of autonomy to such telep-
resence systems and releasing workload from the operator is desirable. Along these lines,
a semi-autonomous grasp planer which integrates the collision computation methods
from Chapter 3 was presented by [RHBH11] and successfully applied to the SpaceJustin
humanoid [KWA+09].

The framework follows these steps: (i) the user commands movements with an input
interface (e. g., the HUG) to the hand-arm chain of the remote manipulator, approaching
the object to grasp; (ii) the object and its configuration are detected using computer
vision [BLBH12], provided a data base of virtual geometries; (iii) when the robotic hand
is close enough so as to grasp the object, feasible contact points and the grasp quality
computed by the grasp planer online are shown to the user; (iv) with that information,
the user can decide whether to execute the computed grasp by closing a one-DoF interface
at the end-effector of the haptic device.

The basic data structures used by the grasp planer are voxelmaps and pointshells. In
the offline phase, the workspaces (or swept volumes) of the hand fingers are voxelized,
whereas the objects to grasp from the data base are represented with point clouds.
Online, the intersections of both result in the contact points if fingers were closed. Then,
a physically feasible subset is computed, considering, among others, the contact forces
that the robotic end-effector is able to apply. The fast collision computation provided
by the re-implemented VPS is a key factor for the robust and interactive operation
characteristic of this planer.

Further user assistance methods were also developed within this project. [Her15]
describes the whole framework as well as the user studies which validated it.

5.5. SUMMARY, CONCLUSIONS, AND PERSPECTIVES 173

5.5 Summary, Conclusions, and Perspectives

This chapter presented the design, implementation, and experiments of application and
integration frameworks that contextualize in useful environments the collision compu-
tation and force rendering methods from previous chapters. In particular, Section 5.2
introduces a bi-manual and large-scale virtual assembly (VA) platform, whereas Sec-
tion 5.3 presents a plug-in for the physics engine Bullet [Cou03] which integrates the
VPS re-implementation from this work. Section 5.4 briefly depicts additional applica-
tions in which the same methods were successfully applied.

In the following, the conclusions of each application are summarized and the future
work directions outlined.

Virtual Assembly Platform

The presented virtual assembly training platform supports bimanual haptic interactions
with several arbitrarily complex CAD objects simultaneously. Additionally, in contrast
to usual desktop systems, unscaled large upper body movements can be performed and
force and tactile feedback is provided to the hand and forearm, respectively. Some
intuitive navigation methods from the literature based on hybrid position/rate control
were adapted for a more efficient interaction in large realistic car assembly scenarios.
Performance results that validate the system are also provided.

Future work contemplates the following main topics, based in part on the current
limitations of the system:

• More realistic and natural bimanual interaction. Currently, the dominant hand
grabs the parts to assemble and the non-dominant one holds the tool in order to
check whether there is enough space for it. In the future system, both hands will
grab and assemble parts; after that, users will have to fix them with the tool held
with the dominant hand and, for example, using the non-dominant one as support.

• Integration of data gloves compatible with the HUG. Current hand and forearm are
simplified to two objects. The future plan is to include both complete mechanical
chains of the arms and hands, and to provide them with haptic feedback.

Additionally, the following Chapter 6 evaluates with user studies the virtual assembly
platform consisting of the LWR. The device is compared against the Sigma.7 and the
differences between real and virtual manipulations are studied using more abstract but
transferable scenarios. Future work could address user evaluations of customary and
realistic scenarios targeting a more practical validation.

174 CHAPTER 5. APPLICATIONS

Physics Engine Integration

The integration of the VPS re-implementation from Chapter 3 into the physics engine
Bullet [Cou03] makes the algorithm available to the developer community through well-
known interfaces. Furthermore, the improvements made on the data structures and
methods of the VPS allow for faster and more accurate distance, penetration and penalty
force computation. Consequently, the integrated algorithms perform better than the
three approaches in Bullet that handle complex objects (i. e., GJK, GJK with convex
decomposition, and GImpact) when medium to high resolutions are used, as needed in
robotics and virtual reality applications. That improvement can be appreciated both in
computation time, with higher resolutions, up to 137× faster than GImpact, and quality,
as shown in the related video.

Future work could address, among other topics, modifying the Bullet force constraint
solver to handle contact manifolds of variable and larger sizes. Moreover, from a practical
point of view, the automatic generation of data structures within Bullet out of the initial
meshes would be useful, since currently these have to be created outside the physics
engine.

Other Applications

The additional applications briefly described in Section 5.4 are a clear proof of the ver-
satility of the collision computation and force rendering methods proposed in previous
chapters. It was shown that collision detection and force computation, being fundamental
technologies, are needed beyond interactive virtual reality simulations with (Section 5.4.1)
or without haptics (Section 5.4.2) that feature miscellaneous scenarios. Concretely, the
re-implemented VPS from Chapter 3 was integrated as an essential piece of robotic ap-
plications that achieve task perception (Section 5.4.3), collision awareness (Section 5.4.4)
and complex grasp planing (Section 5.4.5).

In light of the need in the community and the readiness demonstrated through the
applications, future work could try to make the libraries available for other developers,
in a similar direction as the Bullet plug-in. Keeping the interfaces as simple and general
as possible would certainly have impact in a broader spectrum of application fields.

Chapter 6

Evaluation of Force Feedback
Methods and Systems

This chapter evaluates with user studies the haptic rendering algorithms presented in Chap-
ter 3 and Chapter 4, as well as the fidelity of the basic components of the virtual assembly
system in which they are integrated (see Chapter 5).

It has been shown that force feedback is superior to visual [SWH+12], and tactile feed-
back [WSHP13] when displaying collisions. Following upon that point, two independent
user studies were performed in order to answer these two main research questions:

(i) Study 1 (Section 6.2): Which force rendering paradigm is the most appropriate
and how should it be parametrized in order to achieve best performance and contact
realism during virtual manipulations?

(ii) Study 2 (Section 6.3): Once the optimum force rendering paradigm is configured,
which is the remaining difference between real and virtual manipulations and which
components should be targeted in order to minimize that gap most efficiently?

N = 24 subjects participated in each of the two studies; both were implemented
following a repeated measures or within-design, and share a very similar experimental
scenario, consisting of well-defined tasks related to the classical peg-in-hole benchmark.
The effect of the varied factors on user performance (e. g., completion time, contacts, and
muscular effort measured as electro-myographical or EMG signals) and subjective contact
perception were statistically analyzed. For the first study, the tested factors were the used
haptic rendering algorithm, the haptic device, and the contact stiffness. For the second,

175

176 CHAPTER 6. EVALUATION OF METHODS

a gradual virtualization was applied adding synthetic feedback and systems of different
modalities to the environment, yielding a spectrum of exercises varying from purely real
to purely virtual. The results answer the two aforementioned research questions, while
leading to a guideline for better virtual simulations with haptic feedback.

This chapter uses parts from the following peer-reviewed publications written by the
author of this work: [SH17a], [SH17b].

6.1 Introduction

As explained in Chapter 2, virtual manipulations with haptic feedback are appealing
to medical [CMJ11] or manufacturing [Xia16] applications, amongst others, since they
enable realtime training and verification simulations in a great variety of environments
without the need of building the scenarios physically. Yet, virtual simulations with force
feedback lead to lower performance compared to the real world experiences (see, for
instance, [GSW97] and [GZC07]).

That difference in performance between real and virtual manipulations arises from
the lower fidelity provided by the used interfaces and the virtual simulations. The model
illustrated in Figure 6.1 helps to understand the major elements that play an important
role during the perception of contacts. The internal perceptual hypothesis of the world is
shaped with the interpretation of the sensations caused by the proximal stimulus [RA93].
When it comes to the perception of the world during assembly manipulations, the most
relevant stimuli can be related to the modalities of (i) visual, (ii) haptic, and (iii) acous-
tic feedback. The stimuli of these feedback modalities cause sensations that can affect
each other during the process of creating the percept [EB02], [HR09]; hence, a holistic
comprehension of contact perception requires analyzing the feedback modalities, their
subsystems, and their interaction.

In general, feedback modalities can be real or synthetic, depending on whether their
origin is in the physical or virtual world. The two major underlying subsystems in
feedback modalities of synthetic nature are (i) the rendering or signal generation and (ii)
the device or display medium. Virtual simulation setups try to replicate the real physical
world by means of these two constituent elements (for each feedback modality); in other
words, the loss in performance and perception between real and virtual manipulations
can be explained by observing the effect of these subsystems and their interplay.

In this work, special focus is set on the synthetic haptic modality. As explained
in Chapter 2, haptic feedback is often divided in (i) cutaneous or tactile (related to the
skin sensations) and (ii) kinesthetic or proprioceptive (related to the movements of the
the muscles, tendons, and bones) [LK09]. In the current chapter, haptic feedback refers

6.1. INTRODUCTION 177

Images

Contacts

SoundsP
hy

si
ca

l R
ea

lit
y

Vi
rtu

al
 R

ea
lit

y Graphics

Haptic

Audio

Rendering Device Physical Effect Sensation
P

erceived R
eality

Sight

Hearing

Touch

SenseFeedback Modality
Light

Forces, Vibrations

Air Waves

Visual Feedback

Haptic Feedback

Acoustic Feedback

Figure 6.1: Model for virtual contact perception, focusing on the senses of touch, sight, and hearing.
Virtual simulations try to replicate real world phenomena by (first) rendering and (then) displaying
via devices different feedback modalities, which are sensed by human operators. The sensation of
contact, related primarily to the sense of touch, can be influenced by other senses. In this chapter,
Study 1 investigates the synthetic haptic modality for optimum human performance and perception
during virtual manipulations, and Study 2 compares virtual and real interactions by analyzing the
effects of the used rendering and device upon the user performance and perception.

primarily to the second sub-modality, and both synthetic aspects of rendering and device
are analyzed.

Whereas Study 1 investigates the synthetic haptic modality for optimum human per-
formance and perception during virtual manipulations, Study 2 provides a holistic under-
standing of those performance and perception constructs when different real modalities
are replaced by synthetic ones. The next subsection puts in context both studies by
reviewing the literature on related evaluations.

6.1.1 Related Work

Many haptic rendering methods have been developed the last decades, but the author
is not aware of user evaluations in which six-DoF haptic rendering methods based on
different contact rendering principles have been compared (in relationship to Study 1).
A general analytical benchmark for haptic rendering algorithms was presented by Weller
et al. [WSM+10], and seven three-DoF haptic rendering methods were compared by Rizzi
et al. [RLB12], focusing on medical applications. Some analytical benchmarks for physics
engines have also been published, for instance, see the work by Boeing and Bräunl [BB07].

On the other hand, several user evaluations in the literature focus on comparing real
manipulation experiences with virtual ones (in relationship to Study 2). Along these
lines, a pioneering work was presented by Gupta et al. [GSW97]. The authors com-
pared real and virtual assemblies of a square peg in a multimodal environment. Force

178 CHAPTER 6. EVALUATION OF METHODS

feedback was provided with two Phantom∗ devices. The trends when varying difficulty
(through friction, handling distance, and hole clearance) were similar to those in the real
environment; however, users required roughly 2× the time in the virtual environment to
accomplish the task. Analog results were obtained by Yoshikawa et al. [YKY03] with
a similar scenario and by Garbaya et al. [GZC07]. The latter authors used a Cyber-
Grasp† and a cylindrical peg object. A real peg-in-hole task was compared with a virtual
one using a magnetic levitation haptic device by Unger et al. [UNT+02]. Although vir-
tual trials required roughly 3× longer completion times, the authors concluded that the
haptic display improved significantly the task performance compared to vision feedback
alone. Bashir et al. [BBT04] carried out a very interesting user study in which many
interaction modes were tested with an exercise that included tasks like pick, place, slide,
and insertion. The real mode was compared to virtual modes with varying visual and
haptic feedback conditions. They detected that the visual feedback had little effect on
the performance results, whereas force feedback increased 45% the required completion
time. In another study by Lim et al. [LRD+07], it was shown that design elements such
as chamfers can significantly contribute to improve completion time up to 33% in virtual
scenarios. Some of the authors in that work concluded together with another research
team [GBMCL+14] that the use of haptic geometric constraints in combination with
collision feedback helped reduce from 7× to 3× the completion times in virtual assem-
blies compared to real ones. As the reader might notice, most of the works have focused
on comparing completion times and different results have been found, probably because
many other factors play an influencing role on it: scenarios, haptic devices, type of visual
feedback, haptic aids, etc.

The performance of haptic interfaces has been object of study as well. A 3D assembly
of a puzzle was used to test three desktop-size devices by Harders et al. [HBA+06]. No
significant differences in terms of completion time were detected, but virtual forces were
significantly higher if no force feedback was provided to the user. Samur et al. [SWSB07]
presented and validated a testbed for haptic devices. The authors aimed to comple-
ment the task taxonomy from Bowman et al. [BH99] for haptic interactions with well
defined exercises; these included travel and selection, selection and manipulation, force
discrimination, texture discrimination, and shape identification.

Finally, the perception of virtual contacts has also been studied by several researchers.
Rosenberg and Adelstein [RA93] proposed (and validated) the decomposition of the con-
tact realism perception of a wall into three salient features: (i) crispiness of initial contact
with the surface (related to the damping), (ii) hardness of rigid surface quasi-static in-
teraction (connected to the stiffness), and (iii) cleanness of the final dynamic release

∗http://www.dentsable.com/haptic-phantom-desktop.htm
†http://www.cyberglovesystems.com/cybergrasp/

http://www.dentsable.com/haptic-phantom-desktop.htm
http://www.cyberglovesystems.com/cybergrasp/

6.1. INTRODUCTION 179

(associated to the stiffness and the directional damping). Not only the parameters of
the simulation need to be adjusted to optimize these features, but, as pointed out by the
authors, also the haptic devices need to be designed to work with really high dynamic
ranges: they have to be as transparent as possible in free movement and as hard and
realistic as possible in contact. On the other hand, Kuchenbecker et al. [KFN06] showed
that the superimposition of pre-computed high frequency decaying transients triggered
by contact events helps to increase contact realism, probably more than object stiffness.
In a related sense, the user study by O’Malley and Goldfarb [OG04] suggested that the
human perception capability of detail reaches its limit around 400N/m. Therefore, it
seems that the implications of the selected virtual stiffness in human haptic perception
are probably not straightforward.

6.1.2 Contributions

The contributions of this chapter are linked to the two research questions posed at the
beginning. The two performed user studies answer them by exploring four or more
objective variables (related to trajectories and completion time, contacts, and muscular
effort) and more than five subjective constructs (related to the perception of contacts,
realism, ergonomy, and workload). This is in contrast to most user studies found in
the literature, which in general analyze only the differences in completion time and
few perception aspects. Additionally, whereas most reviewed works typically collate the
data of less than a dozen of participants, in the studies reported in this chapter N = 24

subjects performed systematically permuted and well-founded exercises in a within-design
experimental setting.

The particular insights of each study are summarized as follows:

1. Study 1 from Section 6.2 presents the evaluation of the haptic rendering algo-
rithms from Chapter 3 and Chapter 4. In addition to those two haptic rendering
paradigms, two haptic devices were used, the HUG [HHK+11] and a Sigma.7 [THH+11]
(see Appendix A), and the force stiffness was also varied with maximum and half
values possible for each device. The results show that the constraint-based haptic
rendering algorithm (Chapter 4) with a lower stiffness than the maximum pos-
sible yields the most realistic contact perception, while keeping the visual inter-
penetration between the objects roughly at around 15% of that caused by penalty-
based algorithm (i. e., non perceptible in many cases). This result is even more
evident with the HUG, the haptic device with the highest force display capabili-
ties, although user ratings point to the Sigma.7 as the device with highest usability
and lowest workload indicators.

180 CHAPTER 6. EVALUATION OF METHODS

2. Study 2 from Section 6.3 analyzes the effects of the following factors on the user
performance and perception during virtual assemblies, compared to real assemblies:
(i) a visual feedback system consisting of an nVisor head-mounted display, (ii)
the haptic device HUG, and (iii) the constraint-based haptic rendering algorithm
from Chapter 4. Besides that, the influence of (iv) real collision sounds is also
examined to a shorter extent. The mentioned synthetic factors gradually replaced
in five degrees or steps the real feedback sources, ending up in completely virtual
assembly simulations. In order to explain subjective perception also with objective
measures, reaction times of a secondary audio task performed in parallel with the
assembly exercises were recorded, too. In general, the haptic feedback modality
turned out to have the largest impact on the dependent variables, particularly the
HUG interface, whereas audio cues seemed to be less significant. In relationship to
the insights from the first study, it seems that virtual manipulations could be closer
to real ones using interfaces that display lower stiffness values in favor of lightness.

Those and further qualitative statements are quantified within the domain defined
by the used systems and methods. Moreover, the relationship with the insights from
related literature are discussed, and their projections are outlined. Altogether, both
studies provide guidelines for mapping properties of haptic algorithms and devices to
user performance and perception.

6.2 Study 1: Evaluation of Haptic Rendering Methods with
Varied Haptic Devices and Stiffness Values

This section presents the first evaluation study previously introduced. In it, the effects
on the user performance and perception caused by the penalty-based and the constraint-
based haptic rendering algorithms from Chapter 3 and Chapter 4, respectively, are an-
alyzed. Even though both algorithms have been proven to provide perfectly valid ana-
lytical forces, early tests seemed to show different effects on user performance in specific
contact configurations that needed further research. Given the lack of directly related
studies in the literature, the presented user evaluation was accomplished, in whichN = 24

naïve participants carried out well defined manipulation and assembly tasks in a virtual
scenario after performing them as a reference in the real world. In a piloting phase, the
additional factors of haptic device, stiffness, scaling, and friction were considered. From
them, the haptic device and stiffness were selected for the present study, since they were
identified to have the highest effects in combination with the haptic rendering methods.
Besides that, it is considered that with these selected factors it is easier to extend and

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 181

apply the results and guidelines concluded in this section to other similar interfaces with
different force stiffness capabilities.

Objective data were recorded (i. e., trajectories and contact information) to evaluate
user and algorithm performance, as well as subjective ratings related to perceived contact
realism, ergonomy and workload. The results show which is the relationship between the
factors of the triplet rendering-device-stiffness and shed light on how to optimize the
performance and the contact realism perception in interactions with haptic feedback.

Although in some cases sufficient application effectiveness could be achieved with
lower fidelities [BM07], it is considered essential to shape the user response manifold
as a function of the selected factors. In this sense, this first study is a preceding but
essential step for the overall application of skill transfer in virtual assembly trainings. In
particular, it is considered especially interesting to improve contact realism perception,
as done by previous researchers (e. g., [RA93] and [KFN06]).

Section 6.2.1 presents the experimental design, elaborating on details related to the
properties of the haptic rendering algorithms, the apparatus, and the hypotheses. The
statistical analysis of the collected data and its discussion are dealt with in Section 6.2.2.
Finally, Section 6.2.3 summarizes the most important insights, relating them to the
literature presented in Section 6.1.1.

6.2.1 Experimental Design and Implementation

Figure 6.2 outlines the whole study design and the setup, which are more extensively
described throughout this section.

As mentioned, the penalty-based haptic rendering algorithm based on VPS presented
in Chapter 3 and the constraint-based god object heuristic from Chapter 4 were tested in
the first study. The hypotheses related to them are discussed in Section 6.2.1.2 and Fig-
ure 6.3 shows the used data structures.

The tasks carried out by the participants are presented in the following Section 6.2.1.1
(see Figure 6.4), and Section 6.2.1.3 gives details on the followed procedure.

6.2.1.1 Tested Scenario: Tasks and Exercises

Figure 6.4 shows the real and virtual models used in this study, their measurements, and
the tasks performed with them in the virtual scenario. An exercise is defined to be a
sequence of three different peg-in-hole tasks that try to abstract common manipulation
scenarios and maximize the generalization of the results. Each task had to be started
by hitting a yellow box on the right proximal corner of the assembly model; the box
blinked green on contact and immediately turned red, remaining so during the task. For
finishing each task, the participants had to hit the red box again, which turned back

182 CHAPTER 6. EVALUATION OF METHODS

HUG / LWR (H) · 1:1 Scaling Sigma.7 (S) · 1:5.5 Scaling

Penalty-Based
Haptic Rendering

Scenario & Tasks

Tested Methods Varied Method Parameters

k = 0.5 kmax

k = kmax

k = 0.5 kmax

k = kmax
Constraint (C)

Penalty (P)

1

2

3

4

Rendering (R) Force Stiffness (K)

Front Side

Railing

(4)

(2)

(3)
(3)

(1)

Optical Tracking (3)

Two EMG Sensors (4)

200 Hzxu

eij 50 Hz

Visualization (2)
v60 Hz

Data
Logging

50 Hzd

H S

Two Six-DoF Haptic Devices (1)

Simulation Environment

xh

fh

1 kHz

Low (l)

High (h)

Low (l)

High (h)

Constraint-Based
Haptic Rendering

Force, Torque

Trajectory, t

Penetration

Effort

H1, S1

H2, S2

H3, S3

H4, S4

Figure 6.2: General diagram of the setup and the varied factors (device, rendering, and stiffness)
in the first user evaluation. The N = 24 participants performed with two haptic devices (HUG and
Sigma.7) four exercises, each one consisting of the tasks of frontal insertion, side insertion and railing.
In each of the exercises, the rendering method (Penalty or Constraint) and the stiffness (Low or High)
were varied. The order of all factor levels was systematically permuted. The users controlled with an
optically tracked head mounted display the 3D camera view they had. In addition to the trajectory
and the generated forces, the muscular EMG signals of the participants were measured with two Myo
armbands.

Figure 6.3: Data structures of the virtual mod-
els used in the user studies: (a) Partially vox-
elized representation of the assembly model used
in this chapter and its sagittal section with color-
coded signed distance values (s = 1 mm voxel
edge, 253 × 383 × 283 voxels). (b) Point-sphere
hierarchy structure of the peg object used in this
chapter: it consists of 5513 points distributed into
1842 clusters classified in 8 levels (two consecutive
point levels and a sphere level are shown).

(a) (b)

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 183

Real Model Virtual Model Frontal Insertion Side Insertion Railing

0.05

0.08

0.2

0.3

0.08

0.25

0.0750.05

0.05

0.11

45°

0.04

x
y

z

0.2

0.045

0.045

0.08

insertion

sliding

insertion

sliding

insertion

sliding

Figure 6.4: Models and tasks in the scenario of the first user study (measurements in meters).
The participants had to perform the tasks with an identical real model before interacting with the
virtual. Each exercise consisted of a combination of three peg-in-hole tasks: frontal assembly, side
assembly, and railing. All holes had a clearance of 5mm and a depth of 8 cm, marked with a red ring
on the peg. The participants had to hit a yellow corner-box of the model for starting and finishing
the exercise, and between the tasks; the box turned red during the exercise.

yellow again. Short pauses were allowed between tasks and removed from the evaluation.
The participants were instructed to perform the tasks (first) with the lowest contact
forces possible and (second) as fast as possible. In the following, the tasks and their
properties are described (see Figure 6.4):

(i) Frontal Insertion: This task is the common peg-in-hole scenario [GSW97]; the
green square peg needs to be inserted into the upper hole, until the bottom of
the hole is touched (a red ring on the peg shows the depth of the hole). Similar
exercises have been long tried by many other authors, for instance, in testbeds
for virtual environment applications [LKG+94], in benchmarks for human-machine
interfaces [SWSB07], or even for measuring human sensory-motor skills [NB04].

(ii) Side Insertion: This task is similar to the previous one, but the hole is located
on the right side of the model. Hence, matching the required orientation is more
difficult and the visibility is not as good as in the frontal insertion. Analogous
exercises have been suggested [PWBI97].

(iii) Railing: In this task, the green peg must be translated between two walls from the
right to the left. Thus, it consists in a constrained translational task, as proposed
in [WAH+13].

The peg was coupled to the end-effector of the haptic device at all times; in other
words, no additional grabbing/releasing interaction was implemented, and the peg fell
when the user hand let the end-effector loose.

The three tasks require positioning, insertion, and sliding in different contact and ma-
nipulation configurations. Furthermore, they cover several important tele-manipulation
task categories identified by other authors [BDW+03], [Dem07]. In general, all tasks in-

184 CHAPTER 6. EVALUATION OF METHODS

volve manipulations with manual dexterity for controlling translations and orientations.
In particular, the initial positioning requires gross movements to bring the peg from the
corner to the target hole and the subsequent insertion is more related to fine motor con-
trol. On the other hand, both insertion and sliding subtasks require a higher perception
or awareness of the forces that are occurring. It is worth mentioning that all tasks consist
of rectangular peg-hole configurations of 8 cm depth and 5mm clearance (in VR units).
This level of difficulty was maintained constant.

6.2.1.2 Apparatus and Varied Factors

As mentioned at the beginning of this section, Figure 6.2 illustrates the main components
of the apparatus; their characteristics are described on the following lines.

(1) Two haptic devices were used in the first study: the HUG [HHK+11] and the
Sigma.7 [THH+11]∗, both able to provide the user with six-DoF force feedback.
The former consists of two DLR/KUKA Light-Weight Robot (LWR) arms†, but
only one was used during the study. This bimanual device was developed at the
DLR and it is characterized by its large workspace that covers the whole upper
body (maximum arm span of 0.9m) and the high forces that it can display (peak
values of 150N). The mass of its moved parts is mHUG = 14 kg . The second
is commercialized by Force Dimension and has a smaller workspace (a sphere of
about 0.12m diameter) and force capabilities (maximum forces of 20N); however,
since it was designed for medical applications, the fidelity and transparency of the
system are significant in the state-of-the-art of haptic devices. The weight of its
moved parts is mSigma ' 1.55 kg. Since the Sigma is mainly controlled by hand and
wrist movements, an arm-pad was disposed for resting the elbow and stabilizing the
movements. Both devices were impedance controlled. Although the gravitational
forces of the moved parts are compensated during the interaction, the mass is an
important indicator for the transparency levels they can achieve. A more detailed
description of the devices is provided in Appendix A.

(2) The visualization was powered by the InstantPlayer‡ engine from Fraunhofer IGD
and displayed with an nVisor SX60§ from NVIS. The standard eye separation of
63mm was adjusted for each participant for an optimum 3D vision.

(3) A Vicon Bonita¶ optical tracking system was used to track head movements. On

∗http://www.forcedimension.com/products/sigma-7/overview
†http://www.kuka-lbr-iiwa.com
‡http://www.instantreality.org
§http://www.nvisinc.com
¶https://www.vicon.com/products/camera-systems/bonita

http://www.forcedimension.com/products/sigma-7/overview
http://www.kuka-lbr-iiwa.com
http://www.instantreality.org
http://www.nvisinc.com
https://www.vicon.com/products/camera-systems/bonita

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 185

account of the tracking, the participants could move the camera view intuitively in
the scenario.

(4) Two Myo armbands∗ from Thalmic Labs were used for recording the electromyo-
graphical (EMG) signals of the upperarm and the forearm. Since each person has
a unique pattern, the signal values prior to the exercises with each device were
calibrated. To that end, the participants had to relax and leave their arm hang-
ing (minimum reference value) and then lift a 2 kg weight with their hands for
about 5 s, stretching out their arm straight with 90 ◦ between arm and chest on the
frontal or coronal plane (maximum reference value). The scalar effort signal was
synthesized as the two-norm of the 2 × 8 values streamed by the armbands. For
the evaluation, the recorded effort signal was divided by the maximum calibration
value after subtracting the minimum one.

Varied Factors: Device-Rendering-Stiffness

Three factors or independent variables, with two treatment levels each, were controlled:

(D) Haptic Device: HUG (H) and Sigma (S). The haptic device HUG was selected
because it is particularly well suited for unscaled interactions. The Sigma.7, on
the other hand, is a commercial desktop device that ranked as the optimum for
many performance criteria in a previous study where five interfaces were com-
pared [Sch15]. This contrast has the additional function of bridging the majority
of desktop devices with the HUG haptic device, developed at the DLR institute
where this thesis was carried out. It is worth to point out that the HUG had a
scaling of 1 : 1, whereas the Sigma, with its smaller workspace, required a scaling
of 1 : 5.5 for all tasks to be accomplished, with the displayed forces also being
scaled. One could assume that the time to complete decreases inversely to the
used scaling and that the matching tasks can be performed better with lower scal-
ings [TSEC94]. In a piloting phase, the HUG was also tried with a 1 : 5.5 scaling
with several participants, precisely to evaluate those aforementioned hypotheses
more throughly; but unfortunately, the disturbing effects of moving such a large
robot in such a small workspace were too high and it was decided to remove that
configuration. Nonetheless, the comparison is still considered to be fair, since the
device workspaces were optimally configured and the difference in scaling size is
taken into account in the discussion to avoid misleading conclusions.

(R) Haptic Rendering Method: Penalty-based (P) and Constraint-based (C). Both
algorithms render six-DoF forces with 1 kHz. Although the general force stiffness of

∗https://www.thalmic.com

https://www.thalmic.com

186 CHAPTER 6. EVALUATION OF METHODS

both methods was calibrated to be the same, each algorithm has its particularities.
The penalty-based approach tends to round sharp edges, whereas the constraint-
based method sharpens all edges, sometimes even reducing the slipperiness of smalls
corner contacts. Therefore, it was expected that the penalty-based approach facil-
itates delicate insertion tasks with edge and corner contacts, while increasing the
object overlap precisely in those contact configurations. In the piloting phase, it
was detected that these effects were sensitive to the used stiffness, therefore, the
following third factor was chosen.

(K) Force Stiffness: High (h) or the maximum stiffness supported by the device (k =

kmax), and Low (l) or half of the maximum stiffness supported by the device (k =

0.5kmax). These maximum (optimal) values were obtained empirically reaching the
stability boundary of each device and decreasing that limit stiffness roughly 20%

for an optimal performance. The chosen values were: kmax, HUG = 3700N/m and
kmax, Sigma = 2700N/m.

The combination of all levels yields four exercises or conditions for the HUG (H1 –
H4) and another four for the Sigma (S1 – S4).

6.2.1.3 Sample, Procedure, and Collected Data

A total of N = 24 participants with marginal or no virtual assembly experience were
recruited. The statistically standard participant was male (2 female), right-handed (3
left-handed), and on average Mage = 25.25 years old (median Mdage = 25 years). All
participants had a university degree or were undergraduate students. All subjects read
and signed a consent form and they were not paid for their participation.

The procedure followed with each participant can be summarized in the following
steps:

#1 Standardized instructions were given to the participants in form of slides. The
purpose of the study was explained, the procedure, and a video of the tasks. Ad-
ditionally, the participants learned how to use the devices (∼ 15min).

#2 The consent form and a demographic and experience questionnaire were filled
out by the participants (∼ 5min).

#3 The participants carried out a trial with the real models for priming real contact
perception as reference (∼ 1min).

#4 The EMG armband calibration was performed (∼ 1min).

#5 A first learning test with the haptic device and the virtual model was performed,
not recorded (∼ 2min).

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 187

#6 The participants performed 4× virtual exercises with varied conditions. After
each exercise, the items of the perception questionnaire were orally asked (∼
4× 1.5min).

#7 Finally, the participants were asked to fill out the haptic device questionnaire
(∼ 2min).

The sequence of steps #3 – #7 was carried out twice, once for each of the haptic
devices, which yielded the total eight exercises mentioned beforehand (H1 – H4 and S1 –
S4). All factors were systematically permuted between the subjects and each participant
had also an own task order or sequence which was maintained constant for all eight
exercises.

The perception questionnaire asked in step #6 consisted of two questions explained
to the subjects during the instructions (step #1), and a number in a seven-point Likert
scale was requested for each:

• Contact Realism: “How realistic were the contacts compared to the real model? ”

• Penetration: “How big was the object overlap between the objects in contact? ”

The haptic device questionnaire in step #7 was analogously explained and consisted
in rating three dimensions related to ergonomy and two to the workload:

• Ergonomy [seven-point Likert scale each]: Usability of the device (“comfort and
likelihood of frequent use”), Movement Restriction by the device (“physical con-
straint or impediment”), and Inertia of the device (“awareness and weight of the
device during free movement”).

• Workload [1−20 scale each]: Physical (related to “the corporal ease when exerting
movements”) and Mental (related to “understanding and planning strategies for
optimally fulfilling the exercises”).

Since the focus of the study does not lie on analyzing the system usability and task
overload with each device, it was decided to use these shorter questionnaires instead
of standardized but longer ones. This choice shortened the experimental session and
facilitated the analysis of the results without loss of generality, since in previous studies
at DLR it has been experienced that different dimensions of more elaborate questionnaires
are often strongly correlated.

In addition to the subjective ratings, the following objective values were recorded at
50Hz: trajectory along time, generated virtual forces and torques, contact data (i. e.,
penetration, number of colliding points, etc.), and muscular effort signals.

188 CHAPTER 6. EVALUATION OF METHODS

T
ab

le
6.

1:
D
es
cr
ip
tiv

e
da
ta

of
th
e
su
bj
ec
tiv

e
de
pe
nd

en
t
va
ria

bl
es

fo
r
ea
ch

of
th
e
de
vi
ce
s.

A
ve
ra
ge

an
d
st
an
da
rd

de
vi
at
io
n
va
lu
es

ar
e
pr
ov
id
ed
,

as
w
el
la

s
a
hi
st
og
ra
m
.
Er
go
no

m
y
va
ria

bl
es

w
er
e
co
de
d
in

a
se
ve
n-
po

in
t
Li
ke
rt

sc
al
e
(1
:
ve
ry

lo
w
,
4:

m
od

er
at
e,

7:
ve
ry

hi
gh

)
an
d
w
or
kl
oa
d

va
ria

bl
es

in
a
1–
20

sc
al
e
(1
:
ve
ry

lo
w
,2

0:
ve
ry

hi
gh

).
T
he

st
at
is
tic

al
an
al
ys
is
ca
n
be

fo
un

d
in

Ta
bl
e
6.
2.

P
er
ce
pt
io
n
of

E
rg
on

om
y
[1

–
7]

P
er
ce
pt
io
n
of

W
or
kl
oa

d
[1

–
20

]

U
sa

b
il
it
y

1
2

3
4

5
6

7
R

es
tr

ic
ti

on
1

2
3

4
5

6
7

In
er

ti
a

1
2

3
4

5
6

7
P

h
y
si

ca
l

Q
1

Q
2

Q
3

Q
4

Q
5

M
en

ta
l

Q
1

Q
2

Q
3

Q
4

Q
5

H
U
G

(H
)

4.
42

(1
.2
5)

2
4

5
8

5
4.
71

(1
.2
7)

6
4

6
7

1
4.
63

(1
.2
4)

1
4

6
5

8
11

.7
9
(2
.7
5)

3
12

8
1

7.
21

(3
.3
6)

4
12

5
3

Si
gm

a
(S
)

5.
38

(1
.0
1)

2
1

9
10

2
2.
33

(1
.0
9)

5
11

4
3

1
2.
42

(0
.9
3)

2
14

5
2

1
5.
75

(2
.5
7)

9
12

3
7.
50

(3
.4
0)

6
11

5
2

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 189

6.2.2 Results and Discussion

In this section, the descriptive results and their inference analysis are provided, in ad-
dition to a discussion of their implications. All relevant values are in tables (including
means, standard deviations, statistics, significances and effect sizes). For the sake of
clarity, it is avoided introducing all these values in the text; the reader is encouraged
to look them up in the referenced tables. Additionally, Section 6.2.3 synthesizes the
most important take-home messages and their impact is discussed. These conclusions
are referenced throughout the text (e. g., →L1.1).

The statistical analysis of the data was performed in R. Due to the lack of packages
that perform three-way repeated measures analyses independently of the distribution of
the data, parametric ANOVAs (Analysis of Variance) were performed using the Fisher
distribution. In that cases, normality and homoscedasticity conditions were assumed
after a visual inspection of the plotted data; It is trusted in the robustness of the para-
metric methods in punctual violations. However, the subjective device ratings were
analyzed with the non-parametric Wilcoxon signed-rank test, given that it was available
and matched with the nature of the sample. The significance level was set at α = 0.05,
but p-values 0.05 < p < 0.1 are considered to be tendencies.

The following video shows the scenario, the exercises, and the interaction with the
haptic devices with different configurations:

Evaluation of a Penalty and a Constraint-Based Haptic Rendering Algo-
rithm with Different Haptic Interfaces and Stiffness Values @ Vimeo
https://vimeo.com/199969376

The text continues first with the haptic device subjective ratings (Section 6.2.2.1),
since they reveal general information. Then, objective and subjective data related to the
exercises are presented and commented (Section 6.2.2.2).

6.2.2.1 Haptic Devices: Ergonomy and Workload

In this section, the subjective dependent variables of ergonomy (Usability, Restriction,
Inertia) and workload (Physical W., Mental W.) related to each of the blocks of four
exercises are presented: HUG (H1 – H4) and Sigma (S1 – S4).

Device Descriptives and Analysis (Table 6.1, Table 6.2) � The Sigma device seems to
have the highest ergonomy values and the lowest workload ratings. Significant differ-
ences (p < 0.01) between devices were detected for Usability, Restriction, Inertia, and
Physical Workload, whereas the Mental Workload experienced by the participants seems
to be similar for both devices (p > 0.05). Concretely, Restriction, Inertia and Physical

https://vimeo.com/199969376

190 CHAPTER 6. EVALUATION OF METHODS

Table 6.2: Statistical analysis of the subjective dependent variables to determine the effect of the
device on them. Sample size (N), Wilcoxon statistic (V), p-value, Cliff’s δ, and the relation (with
coded effect size) between treatment levels are provided. The source descriptive data can be found
in Table 6.1.

Ergonomy Workload

Usability Restriction Inertia Physical Mental

N 24 24 24 24 24
V (Wilcoxon) 19.5 300 224 300 136.5
p(> V) 0.00184 1.66e-05 1.54e-04 1.88e-05 0.755
sig. ** *** *** *** .
δ (Cliff) 0.44 0.83 0.82 0.88 0.07
Relation S > H H≫ S H≫ S H≫ S H ≈ S
Significance codes (p): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Effect size codes (δ): 0 ‘≈’ 0.15 ‘&’ 0.3 ‘>’ 0.5 ‘�’ 0.7 ‘≫’ 1

Workload have very high effect size values (δ > 0.8). This is reflected in the means of
the ratings, which are roughly 2× higher for the HUG in those variables (→L1.1). In
contrast, the Usability of both devices is closer to each other (Sigma +22%) (→L1.2).

Device Correlations (Table 6.3) � All device variables are significantly (p < 0.001)
and strongly correlated (|ρ| > 0.5) with each other except for Mental Workload. In
particular, Usability has a negative correlation with all others, as expected. The strong
correlation that Physical Workload has with Restriction (ρ = 0.73) and Inertia (ρ = 0.67)
suggests those properties are fundamental if the perceived workload of the user needs to
be decreased.

The difference between Restriction and Inertia to the participants was defined in
a standardized manner (see Section 6.2.1.3); the first is related to kinematic hard con-
straints (e. g., workspace limits) and the second to soft weight or damping perceptions
during free movement. However, the strong correlation (ρ = 0.76) between both might
point to the fact that probably both perceptions were mixed.

6.2.2.2 Exercises: Performance and Contact Perception

In this section, the results of the objective (performance) and subjective (perception)
dependent variables with varied factors of haptic device (Device, D), haptic rendering
method (Rendering, R), and force stiffness (Stiffness, K) are presented. The objective
variables are the time to complete (Time), the average force on contact (Force), the
average penetration on contact (Penetration), and the average effort (Effort). On the
other hand, the subjective variables consist in the Perceived Contact Realism and the
Perceived Penetration.

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 191

Table 6.3: Spearman correlations (ρ) and respective significance values (p) between subjective
variables related to the haptic devices (without differentiation between HUG and Sigma).

Restriction Inertia Physical W. Mental W.

Usability ρ -0.58 -0.53 -0.52 -0.27
p 1.89e-05 (***) 9.53e-05 (***) 1.64e-04 (***) 0.0594 (.)

Restriction ρ – 0.76 0.73 0.18
p 3.35e-10 (***) 4.02e-09 (***) 0.204 ()

Inertia ρ – 0.67 0.12
p 1.41e-07 (***) 0.435 ()

Physical W. ρ – 0.24
p 0.105 ()

Significance codes (p): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation codes (ρ): 0 ‘none’ 0.1 ‘small’ 0.3 ‘moderate’ 0.5 ‘strong’ 1.0

Exercise Performance Descriptives and Analysis Overview (Table 6.4, Table 6.5) � The
results of the objective performance variables were computed for the total exercise and the
task segments (Frontal Insertion, Side Insertion, and Railing). ANOVAs were conducted
for each dependent variable of all tasks and concluded that the total exercise suffices for
the most important insights. Therefore, the most relevant differences between tasks are
briefly commented here, but the rest of the subsections deal with the values related to
the total exercise.

Unlike the other performance variables, the total Time can be broken down to the
summation of the times related to each task. Side Insertion is the task which took longer
on average, followed by Railing, and finally, Frontal Insertion. Observing the other
variables, Penetration seems to present the highest differences between the tasks and
Force the smallest ones. In the case of that most differentiated variable of Penetration,
Railing has a smallest mean compared to the total average (ratio 0.78), whereas Side
Insertion has the biggest one (ratio 1.17).

In general, the factors of Device and Rendering produced significant effects in all
performance variables of Time, Force, Penetration, and Effort (all p < 0.05 or smaller,
see Table 6.5) (→L1.3). The factor of Stiffness, on the other hand, has a significant
effect on Penetration only, while tendencies for Force and Effort are still apparent.

Time to Complete (Table 6.5(a)) � Among theDevices, the HUG produced significantly
higher Time means (p < 0.01, +22%) compared to the Sigma. Similarly, the Constraint-
based Rendering yielded higher Time means (p < 0.001, +39%) compared to the
Penalty-based method. There were no significant interactions between factors.

It is interesting to observe that although the HUG has a 5.5× larger workspace
(1 : 1 scaling) than the Sigma, on average, it produces (only) a 1.22× larger completion

192 CHAPTER 6. EVALUATION OF METHODS

Table 6.4: Descriptive data of the objective dependent variables for the whole exercise and the
tasks. Average and standard deviation values are provided. The ratios between the grand mean of
each task and the total exercise are coded in red if the task values are smaller than the exercise values
and blue otherwise. The statistical analysis can be found in Table 6.5.

Tasks

ID R K Total Exercise Frontal Side Railing

(a) Time to Complete [s]

H1 P l 29.73 (6.80) 7.03 (2.49) 11.50 (2.19) 11.21 (3.19)
H2 P h 32.68 (10.29) 8.36 (3.54) 12.31 (3.07) 12.01 (5.12)
H3 C l 40.92 (15.86) 10.71 (8.29) 16.59 (7.11) 13.61 (5.34)
H4 C h 40.93 (15.30) 10.36 (6.73) 16.14 (8.33) 14.43 (7.44)

S1 P l 23.75 (6.40) 4.43 (1.41) 9.93 (2.98) 9.40 (3.44)
S2 P h 23.60 (5.28) 5.00 (1.74) 10.49 (2.60) 8.10 (2.14)
S3 C l 34.33 (12.66) 7.82 (7.96) 14.70 (5.53) 11.81 (6.98)
S4 C h 36.48 (15.74) 7.96 (5.09) 16.65 (9.37) 11.86 (6.40)

Grand M & SD 32.80 (13.22) 7.71 (5.63) 13.54 (6.26) 11.55 (5.57)
Ratio 0.24 0.41 0.35

(b) Average Force on Contact [N]

H1 P l 3.60 (0.95) 3.33 (1.38) 3.62 (1.29) 3.77 (1.27)
H2 P h 4.44 (1.34) 4.05 (1.40) 4.20 (1.51) 4.79 (1.74)
H3 C l 5.68 (2.26) 5.27 (2.77) 5.98 (3.16) 4.71 (2.00)
H4 C h 5.08 (1.61) 5.09 (2.35) 5.33 (2.02) 4.39 (1.55)

S1 P l 1.04 (0.28) 0.91 (0.39) 1.20 (0.43) 1.02 (0.30)
S2 P h 1.41 (0.49) 1.45 (0.84) 1.38 (0.51) 1.44 (0.44)
S3 C l 2.10 (1.11) 2.13 (1.59) 2.18 (1.09) 1.99 (1.27)
S4 C h 2.43 (0.86) 2.60 (1.52) 2.51 (1.14) 1.98 (0.81)

Grand M & SD 3.22 (2.04) 3.10 (2.24) 3.30 (2.30) 3.01 (1.94)
Ratio 0.96 1.02 0.94

(c) Average Penetration on Contact [mm]

H1 P l 4.60 (2.48) 4.98 (2.56) 5.09 (4.28) 3.37 (2.27)
H2 P h 3.04 (1.31) 3.29 (1.33) 3.57 (2.03) 2.13 (1.34)
H3 C l 0.94 (0.25) 0.58 (0.25) 0.81 (0.25) 1.26 (0.49)
H4 C h 0.69 (0.22) 0.52 (0.25) 0.65 (0.25) 0.89 (0.52)

S1 P l 7.57 (3.77) 8.13 (5.15) 10.12 (5.93) 5.65 (3.27)
S2 P h 5.66 (3.58) 7.67 (6.30) 6.00 (4.52) 4.10 (2.77)
S3 C l 0.82 (0.17) 0.68 (0.22) 1.00 (0.37) 0.77 (0.50)
S4 C h 0.73 (0.18) 0.71 (0.22) 0.85 (0.27) 0.66 (0.29)

Grand M & SD 3.01 (3.24) 3.32 (4.28) 3.51 (4.43) 2.35 (2.47)
Ratio 1.10 1.17 0.78

(d) Average Effort [0: relaxation, 100: steady max. during calibration]

H1 P l 109.45 (35.80) 108.58 (36.98) 118.56 (43.33) 103.85 (33.40)
H2 P h 114.55 (37.23) 114.46 (33.59) 117.65 (35.67) 111.20 (41.03)
H3 C l 115.13 (38.72) 112.37 (37.94) 114.48 (40.46) 111.69 (38.72)
H4 C h 114.83 (34.29) 117.08 (39.45) 117.52 (40.48) 110.02 (36.30)

S1 P l 63.84 (27.03) 48.65 (28.18) 86.49 (24.83) 51.87 (27.39)
S2 P h 66.58 (27.78) 51.14 (27.56) 87.19 (30.24) 53.20 (27.12)
S3 C l 67.73 (24.80) 54.17 (29.52) 82.47 (31.54) 53.02 (26.96)
S4 C h 69.55 (28.37) 57.38 (35.10) 84.75 (31.84) 53.54 (29.81)

Grand M & SD 90.21 (39.31) 82.98 (45.00) 101.14 (38.18) 81.05 (43.02)
Ratio 0.92 1.12 0.90

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 193

Table 6.5: Statistical analysis of the objective dependent variables (performance) to determine
the effect of the varied factors (device, rendering, stiffness) on them. Sample size (N), degrees
of freedom (df), Fisher statistic (F), p-value, Cohen’s d, and the relation (with coded effect size)
between treatment levels are provided. The source descriptive data can be found in Table 6.4.

N df F (Fisher) p(> F) sig. d (Cohen) Relation

(a) Time to Complete (Total Exercise)
Device (D: H, S) 24 1 9.81 0.00467 ** 0.51 H > S
Rendering (R: P, C) 24 1 41.27 1.48e-06 *** 0.88 C � P
Stiffness (K: l, h) 24 1 1.21 0.282 0.09 h ≈ l
D:R 24 1 0.54 0.472 – –
R:K 24 1 0.02 0.896 – –
D:K 24 1 0.05 0.826 – –
D:R:K 24 1 1.22 0.281 – –

(b) Average Force on Contact (Total Exercise)
Device (D: H, S) 24 1 257.7 5.48e-14 *** 2.09 H≫ S
Rendering (R: P, C) 24 1 54.47 1.66e-07 *** 0.61 C > P
Stiffness (K: l, h) 24 1 3.27 0.0837 . 0.11 h ≈ l
D:R 24 1 1.75 0.199 – –
R:K 24 1 9.33 0.00561 ** – –
D:K 24 1 0.95 0.339 – –
D:R:K 24 1 11.14 0.00286 ** – –

(c) Average Penetration on Contact (Total Exercise)
Device (D: H, S) 24 1 36 4.05e-06 *** 0.43 S & H
Rendering (R: P, C) 24 1 79.96 6.03e-09 *** 1.87 P≫ C
Stiffness (K: l, h) 24 1 37.98 2.75e-06 *** 0.30 l & h
D:R 24 1 39.99 1.88e-06 *** – –
R:K 24 1 24.51 5.26e-05 *** – –
D:K 24 1 0.087 0.771 – –
D:R:K 24 1 0.60 0.448 – –

(d) Average Effort (Total Exercise)
Device (D: H, S) 24 1 76.83 8.64e-09 *** 1.47 H � S
Rendering (R: P, C) 24 1 5.35 0.03 * 0.08 C ≈ P
Stiffness (K: l, h) 24 1 3.42 0.0774 . 0.05 h ≈ l
D:R 24 1 0.04 0.836 – –
R:K 24 1 3.06 0.0934 . – –
D:K 24 1 0.003 0.958 – –
D:R:K 24 1 1.36 0.255 – –

Significance codes (p): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Effect size codes (d): 0 ‘≈’ 0.2 ‘&’ 0.5 ‘>’ 0.8 ‘�’ 1.5 ‘≫’ ∞

194 CHAPTER 6. EVALUATION OF METHODS

Time. Regarding the differences between Rendering methods, these are interpreted as
mentioned in Section 6.2.1.2: the Penalty-based approach tends to round sharp corners,
which eases the exercises, decreasing the Time required to complete them.

Average Force (Table 6.5(b)) � Regarding the Devices, the HUG produced signifi-
cantly higher Force means (p < 0.001, 2.7×) compared to the Sigma. The Constraint-
based Rendering yielded also higher Force means (p < 0.001, +46%) compared to the
Penalty-based method. A tendency for higher Force values (p < 0.1, +7%) occurred for
the high Stiffness. In this case, interactions between Rendering:Stiffness (R:K) and
Device:Rendering:Stiffness (D:R:K) were significant (both p < 0.01). The interaction
plot of R:K revealed that when using the Constraint-based algorithm, the Force values
were (unexpectedly) slightly higher with the lower stiffness (MC,l = 3.89 N > MC,h =

3.75 N). This is not the case for the Penalty-based algorithm (MP,h = 2.92 N > MP,l =

2.32 N). In the case of the D:R:K interaction, something similar occurred: when using
the HUG (and not the Sigma), the Force mean decreased if a high Stiffness was applied
under the Constraint-based method. In both cases, the Stiffness factor seems to trigger
the interaction; since the differences are relatively small and the Stiffness factor is not
significant, the commented significant effects of Device and Rendering are considered
to be valid.

With the collected data, it is difficult to fully explain such interactions and, in par-
ticular, the factor of Stiffness surely needs further investigation.

Average Penetration (Table 6.5(c)) � The Penetration is significantly affected by the
Device, the Rendering, and the Stiffness (all p < 0.001). Using the Sigma has the
effect of increasing the overlap between the objects (+59%), compared to the HUG.
Employing the Penalty-based approach leads to considerably larger means (6.53×) in
contrast to the Constraint-based method. Additionally, lower stiffnesses also are related
to higher overlap values (+38%). It is worth to mention that there were interactions
between Device:Rendering (D:R) and Rendering:Stiffness (R:K). The interaction
plots showed that the latter is not relevant, whereas the first interaction deserves a closer
look. Using the Constraint-based approach decreases the Penetration compared to the
Penalty-based method. However, when the participants tried the Constraint-based ap-
proach, the overlap means were higher for the HUG (MC, HUG = 0.82 mm > MC, Sigma =

0.77 mm), in contrast to what happened when the Penalty-based algorithm was used:
MP, Sigma = 6.62 mm > MP, HUG = 3.82 mm. This last phenomenon is expected, since
the values are measured in VR units and the Sigma operates with a 1 : 5.5 scaling. On
the other hand, that reversed behavior between the devices when the Constraint-based
approach is used has a size of 0.05mm, i. e., it is so small that it could be contemplated as

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 195

negligible. Therefore, the significant effects related to the Device and the Rendering
are still considered to be valid.

The most remarkable result in this section is clearly the fact that the Constraint-
based algorithm causes on average only a 15% overlap error of the one produced by the
Penalty-based method. The average values are under 1mm, which is the resolution of
the voxelmap structure used during the tests (see Figure 6.3) (→L1.4).

Average Effort (Table 6.5(d)) � The factor of Device is significant (p < 0.001) when it
comes to the Effort. Interacting with the HUG leads to higher means (+70%) compared
to working with the Sigma. In addition, the Rendering has a significant (p < 0.05)
effect too on the Effort, being the values with the Constraint-based method slightly
higher (+4%) than with the Penalty-based approach. The factor of Stiffness shows a
tendency to increase the means if the high level is used, but the effect is rather small
(+3%). Finally, an interaction tendency occurred between Rendering:Stiffness, but
the interaction plot and the small effect size revealed it negligible.

Looking at the effect sizes, it is considered that the only relevant factor which affects
the Effort is the Device. As mentioned, the HUG leads to higher means; this was
expected, since its workspace is 5.5× bigger and has a considerably larger mass (∼ 9×)
than the Sigma (see Section 6.2.1.2). These results are in line with the ergonomy and
workload ratings presented in Section 6.2.2.1.

Exercise Perception Descriptives and Analysis Overview (Table 6.6, Table 6.7) � A visual
inspection of the color-coded histograms from Table 6.4 shows that, for both devices,
as one goes downwards in the table (R: P→C, K: low→high), the mass of the answers
related to the Perceived Contact Realism tends to move from left (1: very few realistic)
to right (7: very realistic). In the case of the Perceived Object Inter-Penetration, it is
the other way around: the mass of the answers tends to move to the right (i. e., 1: no
penetration) as one descends in the rows (i. e., R: C, K: high). For both variables of
Realism and Penetration, the effect of the Rendering is visually more tangible than the
one of the Stiffness. The statistical analysis revealed the same effects, as discussed in
the following subsections.

Perceived Realism (Table 6.7(a)) � When it comes to the factor of Device, using the
HUG leads to a significantly higher Perception of Realism (p < 0.001, +29%). The
Constraint-based Rendering method helps also to significantly increase the means (p <
0.001, +65%) compared to the Penalty-based method. Surprisingly, the lower Stiffness
treatment yields significantly higher (p < 0.01, +17%) Realism ratings than the stiffer

196 CHAPTER 6. EVALUATION OF METHODS

Table 6.6: Descriptive data of the subjective dependent variables for each of the eight exercises
performed by the participants. Average and standard deviation values are provided, as well as a
histogram. Both variables were coded in a seven-point Likert scale (1: very low/none, 4: moderate,
7: very high). The statistical analysis can be found in Table 6.7.

Perception of Contact [1 – 7]

ID R K Realism 1 2 3 4 5 6 7 Penetration 1 2 3 4 5 6 7

H1 P low 3.54 (1.69) 2 6 5 4 3 3 1 5.04 (1.60) 2 3 3 5 6 5

H2 P high 4.67 (1.34) 1 3 6 7 6 1 3.50 (1.67) 4 2 6 6 3 2 1

H3 C low 4.92 (1.18) 3 7 4 9 1 2.38 (1.35) 7 9 2 5 1

H4 C high 5.17 (1.24) 1 1 5 5 10 2 2.42 (1.69) 12 2 3 3 3 1

S1 P low 2.25 (1.29) 7 10 4 1 1 1 6.17 (1.52) 2 1 2 3 16

S2 P high 3.50 (1.56) 2 5 7 2 5 3 4.63 (1.91) 1 4 3 1 5 6 4

S3 C low 4.17 (1.20) 2 5 8 5 4 2.29 (1.30) 9 5 6 2 2

S4 C high 4.21 (1.10) 1 6 7 7 3 2.67 (1.24) 5 6 7 4 2

treatment. Finally, there is a significant interaction between Device:Rendering (p <
0.05), but interaction plots revealed it irrelevant.

Looking at these results, it can be concluded that using the HUG with the Constraint-
based method adjusted with a lower force stiffness than the maximum possible will bring
the most realistic contacts (→L1.5). This last point is a key insight of the first user
study: softer contacts in combination with the Constraint-based approach seem to be
most realistic. As commented by some participants, increasing the contact stiffness leads
probably to situations in which the peg can get more easily jammed in the hole due
to a misalignment of the axes, perceived as unrealistic. In addition, it seems that the
correct visual display (minimum penetration, achieved with C) plays an important role,
apparently dominant over the stiffness of the contact. Therefore, a more fluid (lower K)
but visually correct (C) option is the preferred.

Perceived Penetration (Table 6.7(b)) � The interactions present between almost all fac-
tors rendered their effect on the subjective Perception of Penetration rather inconclusive.
The analysis of the Average Penetration (Section 6.2.2.2) was not helpful to explain this
variable. This is in line with the significant but small correlation between both values
discussed in Section 6.2.2.2 (see Table 6.8).

Overall, the Rendering seems to be a determinant factor; the Penalty-based ap-
proach yields significantly higher means of Perception of Penetration (p < 0.01, +38%)
compared to the Constraint-based method. However, the Stiffness significantly interacts
with theRendering: higher stiffness values cause the Constraint-based algorithm to pro-
duce higher rating means, in contrast to low stiffness values: MC,h = 4.69 > MC,l = 2.38 ,
MP,h = 4.08 < MP,l = 5.60 .

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 197

Table 6.7: Statistical analysis of the subjective dependent variables to determine the effect of the
varied factors (device, rendering, stiffness) on them. Sample size (N), degrees of freedom (df), Fisher
statistic (F), p-value, Cliff’s δ, and the relation (with coded effect size) between treatment levels are
provided. The source descriptive data can be found in Table 6.6.

N df F (Fisher) p(> F) sig. δ (Cliff) Relation

(a) Perceived Contact Realism (Total Exercise)
Device (D: H, S) 24 1 18.34 2.78e-04 *** 0.31 H > S
Rendering (R: P, C) 24 1 51.76 2.52e-07 *** 0.63 C � P
Stiffness (K: l, h) 24 1 8.92 0.00661 ** 0.18 l & h
D:R 24 1 6.10 0.0214 * – –
R:K 24 1 0.12 0.734 – –
D:K 24 1 1.11 0.302 – –
D:R:K 24 1 0.23 0.639 – –

(b) Perceived Contact Penetration (Total Exercise)
Device (D: H, S) 24 1 3.86 0.0616 . 0.08 H ≈ S
Rendering (R: P, C) 24 1 82.93 4.33e-09 *** 0.41 P > C
Stiffness (K: l, h) 24 1 1.89 0.183 0.11 h ≈ l
D:R 24 1 3.45 0.0761 . – –
R:K 24 1 66.51 3.08e-08 *** – –
D:K 24 1 14.75 8.36e-04 *** – –
D:R:K 24 1 5.43 0.0289 * – –

Significance codes (p): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Effect size codes (δ): 0 ‘≈’ 0.15 ‘&’ 0.3 ‘>’ 0.5 ‘�’ 0.7 ‘≫’ 1

One possible interpretation to that phenomenon could be connected to the observa-
tion introduced in Section 6.2.2.2: despite the fact that the Constraint-based algorithm
causes more realistic contacts in general, using higher stiffness values makes the exercise
more difficult, since the peg can get jammed more easily; in those situations, it is to
expect the user to observe more intensely the details of the contacts in order to figure
out how to solve the assembly as fast as possible. Thus, more penetration errors are
noticed and probably weighted in a non-linear fashion. In any case, it can be concluded
that the subjective perception does not have to correspond to the equivalent objective
indicator, at least for small penetrations.

Exercise Correlations (Table 6.8) � Except for Effort and Perception of Penetration,
all other variables of Time, Penetration, and Perception of Realism are significantly
(p < 0.001) and at least moderately (|r|, |ρ| > 0.3) correlated among each other. The
strongest value is the one between Penetration and Perception of Realism, which have
a significantly strong and negative correlation (p < 0.001, ρ = −0.54). Among the
variables with a smaller number of proven relationships, the Effort has a significant
strong and positive correlation with the Force (p < 0.001, ρ = 0.57), and the Perception

198 CHAPTER 6. EVALUATION OF METHODS

T
ab

le
6.

8:
Pe

ar
so
n
(r
)
an
d
Sp

ea
rm

an
(ρ
)
co
rr
el
at
io
ns

an
d
th
ei
rr
es
pe
ct
iv
e
si
gn

ifi
ca
nc
e
va
lu
es

(p
)
re
la
te
d
to

th
e
in
de
pe
nd

en
t
va
ria

bl
es

co
lle
ct
ed

af
te
r
ea
ch

ex
er
ci
se

w
ith

va
rie

d
co
nd

iti
on

s.
B
ot
h
ob

je
ct
iv
e
an
d
su
bj
ec
tiv

e
va
ria

bl
es

ar
e
re
pr
es
en
te
d.

A
ve
ra
ge

F
or
ce

A
ve
ra
ge

P
en

et
ra
ti
on

A
ve
ra
ge

E
ff
or
t

P
er
ce
iv
ed

R
ea
li
sm

P
er
ce
iv
ed

P
en

et
ra
ti
on

r
p

r
p

r
p

ρ
p

ρ
p

A
ve
ra
ge

T
im

e
0.
32

5.
24
e-
06

(*
**
)

-0
.3
9

2.
46
e-
08

(*
**
)

0.
06

0.
40
7
(
)

0.
34

1.
96
e-
06

(*
**
)

-0
.1
9

0.
00
83
1
(*
*)

A
ve
ra
ge

F
or
ce

–
-0
.3
9

2.
46
e-
08

(*
**
)

0.
57

<
2.
2e
-1
6
(*
**
)

0.
31

1.
15
e-
05

(*
**
)

-0
.0
8

0.
29
1
(
)

A
ve
ra
ge

P
en

et
ra
ti
on

–
-0
.1
2

0.
08
48

(.
)

-0
.5
4

8.
91
e-
16

(*
**
)

0.
27

1.
55
e-
04

(*
**
)

A
ve
ra
ge

E
ff
or
t

–
0.
20

0.
00
60
3
(*
*)

0.
02

0.
74
5
(
)

P
er
ce
iv
ed

R
ea
li
sm

–
-0
.3
2

4.
66
e-
06

(*
**
)

Si
gn

ifi
ca
nc
e
co
de
s
(p
):

0
‘*
**
’
0.
00
1
‘*
*’

0.
01

‘*
’
0.
05

‘.’
0.
1
‘
’
1

C
or
re
la
ti
on

co
de
s
(ρ
):

0
‘n
on

e’
0.
1
‘s
m
al
l’
0.
3
‘m

od
er
at
e’

0.
5
‘s
tr
on

g’
1.
0

6.2. STUDY 1: EVALUATING HAPTIC RENDERING METHODS 199

of Penetration has a significant moderate and negative correlation with the Perception
of Realism (p < 0.001, ρ = 0.57).

In general, no unexpected relevant results related to the objective variables were
observed (Time, Force, Penetration, and Penetration). Regarding the muscular Effort,
one could presume that higher virtual Forces might be strongly linked to higher Effort
values that react to them.

As far as the subjective variables are concerned, the Penetration value seems to
be the objective variable that best explains the Perception of Realism, even more than
the Time, i. e., less overlap increases the perceived realism probably more strongly than
easier or faster exercises (→L1.6). However, although Perception of Penetration and
Realism have a significant moderate and negative correlation (p < 0.001, ρ = −0.32),
the correlation between the actual Penetration and the Perception of Penetration is
significant but, surprisingly, relatively smaller (p < 0.001, ρ = 0.27). This phenomenon
is also commented in Section 6.2.2.2.

6.2.3 Study 1: Summary of Lessons Learned and Discussion

In this section, the impact of the key take-home messages is discussed. The insights of
the results can be summarized as follows:

L1.1 Compared to the Sigma, the HUG presents considerably higher (2×) values of
Restriction, Inertia, and Physical Workload (Section 6.2.2.1).

L1.2 The Sigma has higher (+22%) Usability ratings than the HUG (Section 6.2.2.1).

L1.3 The choices of the Device (HUG or Sigma) and the Rendering (Penalty-based or
Constraint-based) significantly affect all objective performance values of Exercise
Completion Time, Contact Force, Object Inter-Penetration, and Muscular Effort
(Section 6.2.2.2).

• In comparison to the Sigma, the HUG leads to higher Time (+22%), Force
(2.7×), and Effort (+70%) means, whereas it is the Sigma which increases
the average Penetration values (+59%).

• In comparison to the Penalty method, the Constraint-based approach yielded
higher Time (+39%), Force (+46%), and Effort (+4%, probably negligible)
means; however, the Penalty-based algorithm considerably increased the av-
erage values of the Penetration (6.53×).

L1.4 The penetration error caused by the Constraint-based approach seems to be close
to the resolution of the underlying signed distance field and it is only 15% of the
error produced by the Penalty-based method (Section 6.2.2.2).

200 CHAPTER 6. EVALUATION OF METHODS

L1.5 The (significantly) most realistic contacts occurred interacting with the HUG (+29%)
using the Constraint-based algorithm (+65%) adjusted with a lower force stiffness
(+17%) (Section 6.2.2.2).

L1.6 The Penetration or actual overlap between the objects is a strong explanatory vari-
able of the Perceived Contact Realism: less penetration is related to more realism
(Section 6.2.2.2).

The author is not aware of works similar to the study of this section which report
both performance and perception results in such an extent. As exposed in Section 6.1.1,
most of the related literature deals with comparing real and virtual interactions with
haptic feedback, without varying the rendering algorithms. Among them, few works
have compared force values in addition to completion time values, and the author has not
found any objective assessment of the muscular effort. Therefore, it is difficult to point
out straightforward connections, but there are two relevant insights worth mentioning.

First, although both devices considerably differ in mass (9x) and workspace or scaling
(5.5x), the effect of that difference has a smaller magnitude in both subjective (L1.1,
L1.2) and objective (L1.3) results. That suggests that, even when the distance between
device paradigms (i. e., size, inertia, force capabilities, etc.) is large, the user performance
values will be closer to each other, being a rough performance prediction sounder. Along
these lines, some works already indicated that there are no significant differences in the
performances obtained using haptic devices of the same size or paradigm [HBA+06].
Therefore, the presented results could probably be extrapolated to other systems, yet
more investigation is required to support that statement. In that sense, this points to an
interesting future work direction.

Second, it seems that higher stiffness values do not always improve performance or
perception indicators, or at least there might be apparently a threshold [OG04]. Once
the minimum necessary stiffness is achieved, contact realism seems to be improved with
haptic rendering approaches that provide coherent visual cues (i. e., minimum overlap,
attained by god object or constraint-based methods) (L1.4, L1.6) and through the use of
light haptic interfaces with bigger workspaces than desktop-size (L1.5). The values that
quantify this qualitative statement have been provided, being also probably extensible to
other systems. The remaining question is now, however, which levels of performance and
perception in virtual environments are necessary for an optimum skill transfer of tasks
to be performed in real environments.

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 201

6.3 Study 2: Analysis of the Differences between Real and
Virtual Manipulations

This section presents the second evaluation study introduced at the beginning of this
chapter. The study tries to isolate the effect of the (i) synthetic visual feedback, (ii)
the haptic device and the (iii) haptic rendering on user performance and perception.
The influence of (iv) real acoustic signals is also analyzed. For that purpose, again,
N = 24 naïve participants performed in a within-design user study the same three well-
defined assembly tasks introduced in the previous Section 6.2. The subjects worked
with real models and, gradually, the real subsystems were replaced by their synthetic
equivalents, ending up with completely virtual environments. The haptic device tested
in the completely virtual environment was the HUG [HHK+11] and the god object haptic
rendering algorithm presented in Chapter 4.

The main results of this work characterize those subsystems. In addition to compar-
ing task completion times and subjective perception ratings, as commonly done in the
literature, also force values, muscular effort, and reaction times were collated. This gives
rise to a more complete model for virtual assembly performance and perception.

This section is organized as follows: Section 6.3.1 describes the experimental setup
and design, including the tasks performed by the participants, the varied factors, and
the followed procedure. The results and discussion of the experiments are presented
in Section 6.3.2 and, finally, Section 6.3.3 concludes with the most important insights.

6.3.1 Experimental Design and Implementation

Figure 6.5 shows the concept of the study and the used setup. The tasks carried out by
the participants are outlined, as well as the varied feedback factors when working with
the real and the virtual models. This section elaborates all those points and describes
the experimental procedure.

6.3.1.1 Synthetic Haptic Feedback

As explained, the haptic device used in the study is again the HUG [HHK+11] (see Fig-
ure A.1). It is worth to mention that only one arm was used during the user studies,
activated by the user with a foot-pedal. Furthermore, although several interfaces (such
as data gloves, joysticks, or grippers) can be magnetically coupled to the device, users
interacted with a simple handle in order to reduce additional influences and simplify the
analysis.

Special attention is given to the used constraint-based haptic rendering method
from Chapter 4; not only because it is a novel approach, but also because synthetically

202 CHAPTER 6. EVALUATION OF METHODS

Three Synthetic Factors: VF, HD, HR

Haptic
Feedback

Optical Tracking (3)

Two EMG Sensors (4)

200 Hzxu

eij 50 Hz

Visualization (2)
v60 Hz

Simulation Environment (1 kHz)
1 kHz

(3)
(3)

(4)

(2)

(1)

Haptic Device (1)
fhxh

Force-Torque Sensor (5)
fs 1 kHz

Data Logging
d50 Hz

Front Side

Railing

Scenario

2 Series of
3 Tasks: F, S, R

Virtual ModelReal Model

Visual
Feedback

Device
Device

& Rendering Rendering

HUG/LWR
nVisor SX60 HMD
 & InstantPlayer God Object

(5)

f
VF HD HR

Figure 6.5: General diagram of the setup in the second user evaluation. The N = 24 participants
performed with real and virtual models several exercises composed of two series of three tasks:
frontal insertion, side insertion, and railing. In each of the exercises, the factors of Visual Feedback
(VF), Haptic Device (HD), and Haptic Rendering (HR) were varied in two levels: synthetic and real
(i. e., no virtual feedback provided in the real treatment). That variation leaded to five Degrees of
Virtualization (D, see Figure 6.7), from purely real to purely virtual. The order of all factor levels
was systematically permuted. In the exercises where the real models were used, the trajectories were
optically tracked and the contact forces registered using a JR3 force-torque sensor. Additionally, the
muscular EMG signals of the participants were measured with two Myo armbands during all exercises.

rendered force signals have rarely been contrasted with real contacts while removing the
influence of the used mechanical interface. The contact stiffness was reduced to 3000N/m
(instead of 3700N/m), as suggested by the results from the first study; note that the
used stiffness value is also the result of further adjustments performed during the piloting
phase with 3 participants.

6.3.1.2 Tested Scenario: Tasks and Exercises

Figure 6.6 shows the real and virtual models used in this study, their dimensions, and
the tasks performed with them. The virtual models were the same as in the first study
(see Figure 6.3); in the same line, the elementary tasks did not change either, being: (i)

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 203

Real Models Virtual Models Frontal Insertion Side Insertion Railing
0.05

0.08

0.2

0.3

0.08

0.25
0.0750.05

0.05

0.11

45°

0.04

x
y

z

0.2

0.045

0.045

0.08

insertion

sliding

insertion

sliding

insertion

sliding

Figure 6.6: Real and virtual models and tasks in the scenario of the second user study (dimensions
in meters). Each exercise consisted of two series of a combination of three peg-in-hole tasks: frontal
assembly, side assembly, and railing, as in the first study. The grasping regions of the peg were
standardized by marking them with red stickers. All holes had a clearance of 5mm and a depth of
8 cm, marked with a red ring on the peg. In contrast to the first study, the participants had to hit
a white middle-box for starting and finishing the exercise; additionally, a yellow corner-box had to be
hit between the tasks. The boxes had a different color (blue and red) during each exercise in order
to indicate that the process was being recorded. Pauses were not allowed between the tasks.

frontal insertion, (i) side insertion, and (i) railing. Therefore, the reader is encouraged to
re-visit Section 6.2.1.1, if information on properties and motivation related to the tasks
is desired.

However, the exercise is defined differently in this second study; it consists of two
series of a sequence of the three different peg-in-hole tasks, and no pauses are allowed
during the exercise. Therefore, it is more complex and longer than in Study 1, necessary
for the secondary audio task explained in Section 6.3.1.4. The used assembly model had
also two reference boxes: a gray one set in the middle for starting and finishing the
whole exercise (it turned blue during the exercise); and a yellow one located on the right
corner for starting and finishing the tasks (it turned red during the exercise). Right after
starting the exercise (collision on the middle box), the users had to carry out the 2 × 3

tasks in a row (and without pauses). The order of the tasks was systematically permuted
for each user session (and maintained constraint during it) and the participants had to
count aloud the tasks to ensure they did not miss any of them. As in the first study, the
participants were instructed to perform the tasks (first) with the lowest contact forces
possible and (second) as fast as possible.

6.3.1.3 Apparatus and Varied Factors

As mentioned at the beginning of this section, Figure 6.5 illustrates the major components
of the apparatus and the varied factors. The main goal of the study was to compare
virtual assembly manipulations with real ones in order to identify the effect of each
system component. To that end, interfaces and synthetic scenarios were introduced in
different degrees, while the exercises to be performed by the subjects (Section 6.3.1.2)

204 CHAPTER 6. EVALUATION OF METHODS

remained constant. The main focus lays on the evaluation of haptic feedback, but visual
feedback was also altered in the process.

In the following, first, all the components of the setup are described, and then, the
implementation of the variation is discussed; note that these components are similar to
the ones in Study 1 (Section 6.2.1.2):

(1) The haptic device used in the study is the HUG [HHK+11], described in Section A.
The used stiffness was k = 3000 N/m, without added damping. As mentioned,
these values were obtained after the first study and during dedicated pilot tests,
trying to reproduce the real contacts with the highest fidelity possible.

(2) The visualization was powered again by the InstantPlayer∗ engine from Fraunhofer
IGD and displayed with an nVisor SX60† from NVIS. The standard eye separation
of 63mm was adjusted for each participant for an optimum 3D vision.

(3) A Vicon Bonita‡ optical tracking system was used to track the movements of the
real models and the head movements. On account of the tracking, the participants
could move the camera view intuitively in the scenario.

(4) Two Myo armbands§ from Thalmic Labs were used for recording the electro- myo-
graphical (EMG) signals of the upperarm and forearm, following the same proce-
dure as in the first study (see Section 6.2.1.2).

(5) The real assembly model was mounted on a JR3¶ force-torque sensor with which
physical collisions were measured.

Varied Factors: Degrees of Virtualization

Three factors were defined, each one with the two levels of treatment real (R) and
synthetic (S):

VF Visual Feedback : the real treatment of this factor means the user saw with the
bare eyes the scenario, whereas with the synthetic treatment virtual images were
displayed on the HMD.

HD Haptic Device: the user had no haptic device coupled to the hand with the real
treatment of this factor, i. e., manipulations were done with the bare hand holding

∗http://www.instantreality.org
†http://www.nvisinc.com
‡https://www.vicon.com/products/camera-systems/bonita
§https://www.thalmic.com
¶http://www.jr3.com

http://www.instantreality.org
http://www.nvisinc.com
https://www.vicon.com/products/camera-systems/bonita
https://www.thalmic.com
http://www.jr3.com

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 205

None (Real)

Real

None (Real)

D1 D2 D3 D4 D5

None (Real)

Synthetic: HMD

None (Real)

Synthetic: HUG / LWR

Real

None (Real)

Synthetic: HUG / LWR

Synthetic: HMD

Synthetic: God Object

Synthetic: HUG / LWR

Synthetic: HMD

None (Real)

HD

VF

HR

HMD
HMD | HUG / LWR God ObjectHUG / LWR

HMD + HUG / LWR + God Object = Virtual Reality with Haptic Feedback

Figure 6.7: Degrees of virtualization, starting from D1 (purely real) to D5 (purely virtual). The
whole setup with the tracking cameras and the HUG is also displayed in D1. For each degree, the
binary values (real or synthetic) of their three main factors are specified: Visual Feedback (VF),
Haptic Device (HD), and Haptic Rendering (HR). Additionally, the comparisons between degrees are
reported; e. g., the collation between D1–D2 isolates the effect of the head-mounted display (HMD).

the physical peg; for the synthetic treatment, the HUG was connected to the hand
of the user.

HR Haptic Rendering : when the real treatment of this factor was applied, the users
felt the collisions between the physical models; conversely, during the synthetic
treatment, the virtual forces computed by the haptic rendering (see Section 6.3.1.1)
algorithm were displayed to the user via the HUG. That implies that if the HR is
synthetic, the HD needed to be synthetic, too.

As the reader can deduce, VF comprises both the rendering and the device parts
of the synthetic visual feedback illustrated in Figure 6.1, whereas the synthetic haptic
feedback is divided into the other two factors HD (device) and HR (rendering). This
allows for a better analysis of the haptic modality, as sought in the study.

As illustrated in Figure 6.7, the combination of the different treatments of the three
factors leads to five degrees of virtualization:

D1 This degree can be considered as purely real. The participants performed the ex-
ercise in the physical reality without any synthetic feedback systems (i. e., VF=R,
HD=R, HF=R); however, as in all other degrees, trajectories, collision forces and
the muscular effort were measured (see Figure 6.5).

D2 The participants performed the exercise with the physical models but saw virtual
images through the HMD (i. e., VF=S, HD=R, HF=R).

206 CHAPTER 6. EVALUATION OF METHODS

D3 The participants performed the exercise with the physical models observing them
with their bare eyes, but had to carry the HUG arm (i. e., VF=R, HD=S, HF=R).
The robot arm was gravity compensated and did not display any virtual forces.
Nevertheless, the users could feel the inertia of the system.

D4 The participants performed the exercise with the physical models but carrying the
HUG and watching virtual images through the HMD. This degree is the superpo-
sition of the previous two (i. e., VF=S, HD=S, HF=R).

D5 In this degree all factors were synthetic, thus, the participants worked with the
virtual models instead of the real ones. In contrast to D1, this degree is purely
virtual.

By comparing the dependent values obtained under each degree, the effects of the
synthetic factors over the real level can be determined (see Figure 6.7 above).

6.3.1.4 Secondary Task and Auditory Privation

The effects of two more variations were tested and evaluated also: (i) the influence of
a secondary task that had to be performed in parallel and (ii) the impact of auditory
privation during the exercises.

The first consisted in a short (∼200ms) and loud horn or “beep" that was system-
atically played in cycles during the exercises, without perceivable periodicity. The users
had to press a pedal with their left foot as soon as they heard the sound and the reaction
times were measured with millisecond accuracy. Each secondary task cycle lasted 8 s
and the sound was played in a random instant during the period of 2–8 s. In addition
to the regular degree exercises explained in the previous section, the participants had
to carry out all degrees with this secondary task too, and, during them, they were told
that both assembly exercises and secondary tasks performed in parallel had the same
priority. Reaction times to audio signals conceived as secondary tasks have been used in
the literature as objective measures of workload [Her15] or presence [BPW14].

Second, participants had to carry out the exercises wearing ear plugs and headphones
with active noise-cancellation; additionally, white noise was played on the headphones
in order to maximally obstruct their auditory perception. Exercises with this auditory
privation were carried out only during the degrees with real visual feedback (i. e., D1 and
D3), because no full obstruction with headphones was possible in practice if the users
wore the HMD. Although it has been suggested that there is no specific dominance in
tri-sensory (vision-audio-haptic) tasks [HR09], haptic stiffness perception has been shown
to be biased by real [DBS97] and synthetic [AC06] sound cues. Hence, it is relevant to

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 207

analyze to what extent real audio cues (or their absence) might affect the user interaction
with the presented setup.

6.3.1.5 Sample, Procedure, and Collected Data

A total of N = 24 participants with marginal or no virtual assembly experience were
recruited. Eight of them participated in the first study approximately two months prior
to this second one. The statistically standard participant was male (3 female), right-
handed (3 left-handed), and Mage = 28.79 years old (Mdage = 27). All participants had
a university degree or (6 of them) were undergraduate students. All subjects read and
signed a consent form and they were not paid for their participation.

As in Study 1, all participants tried all conditions (within-design) in one session that
roughly lasted 1.5 h (including explanations and pauses). The procedure followed with
each participant can be summarized in the following steps:

#1 Standardized instructions were given to the participants in form of slides. The
purpose of the study was explained, the procedure, and a video of the exercise.
Additionally, the participants learned how to use the devices (∼ 15min).

#2 The consent form and a demographic and experience questionnaire were filled
out by the participants (∼ 5min).

#3 The participants carried out 2 test trials with the real models until they felt
comfortable with the order of the tasks of the exercise (∼ 2min).

#4 For each of the five degrees (∼ 12min ×5):

#4.1 The EMG calibration was performed.

#4.2 A first learning test trial was performed.

#4.3 The participants performed the regular exercise and the exercise with the
secondary task. For D1 and D3, the exercise with the auditory priva-
tion was also carried out. The order of all three exercises was systematically
permuted and after each one a perception questionnaire was filled out.

The participants performed altogether 5 (regular, D1–D5) + 5 (secondary task, D1–
D5) + 2 (auditory privation, D1 and D3) = 12 exercises. As for the perception question-
naire, it comprised items related to the perception of realism (seven-point Likert scale)
and workload (1–20 scale, reported in five quantiles in the results for the sake of clarity:
Q1 – Q5).

Regarding the perception of realism, the participants had to evaluate

208 CHAPTER 6. EVALUATION OF METHODS

• how realistic the overall experience was,

• how realistic the contacts felt,

• and how realistic the manipulation or movement of the objects in the scene was.

As for the workload, the physical and the mental effort had to be rated, defined
and explained to the participants as in the first study. Also in this second study, shorter
questionnaires were favored rather than longer standard ones (see Section 6.2.1.3).

In addition to the subjective ratings, the following objective values were recorded at
50Hz: trajectory along time, real and virtual contact forces and torques, and muscular
effort signals; for exercises with the secondary task, reaction times were also measured
with 1 kHz accuracy, in addition to the missed signals.

6.3.2 Results and Discussion

Results are presented and discussed in two main sections: Section 6.3.2.1 deals with the
regular exercises, whereas Section 6.3.2.2 covers the exercises with the secondary task
and the auditory privation. Special focus is put on the set of regular exercises. The most
important insights are enumerated and discussed in Section 6.3.3; as in the first study,
all items in it are linked throughout the text (e. g., →L2.1).

The following video shows the scenario, the exercises, and the interaction with the
different virtualization degrees:

Multimodal Evaluation of the Differences between Real and Virtual As-
semblies @ Vimeo
https://vimeo.com/230945754

The statistical analysis was performed in R using standard packages and the ez li-
brary [Law11]. For the objective continuous variables parametric tests were used. All
objective variables were normally distributed in most of the cases; it is trusted in the
robustness of the parametric methods for the exceptions. Additionally, sphericity correc-
tions were applied when necessary (values given in tables). On the other hand, non-
parametric tests (less powerful, but more appropriate for discrete values) were used
for the subjective data. In all cases, the main significance level was set to α = 0.05,
but this value was adjusted with the Bonferroni factor b for pairwise comparisons (i. e.,
α′ = α/b = 0.05/10 = 0.005). For the sake of brevity and clarity, it is avoided introduc-
ing too many statistical values in the text and the reader is encouraged to look up in the
provided tables, as done in the first study.

https://vimeo.com/230945754

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 209

6.3.2.1 Regular Exercises

Figure 6.8 shows exemplary plots of objective indicators related to the same subject
performing D1 and D5. Additionally, Table 6.9 gathers the most relevant descriptive
data of the objective dependent variables, whereas Table 6.10 summarizes the results of
their statistical analysis. In Table 6.9, the task segment values of the objective variables
are shown, but only the total exercise values are considered for the statistical analysis.
As far as the subjective variables are concerned, Table 6.11 outlines the descriptive data
and Table 6.12 their statistical analysis.

A repeated measures one-way ANOVA was performed on the Degree of Virtual-
ization (D) for total exercise values of both objective and subjective dependent variables
and it turned out to be significant in all cases (all ps < 0.001, ***). Therefore, the follow-
ing subsections will deal with the post hoc pairwise comparisons between the degrees to
discuss the effect of the HMD∗ (VF: D1-D2, D3-D4), the HUG (HD: D1-D3), the haptic
rendering method (HR: D4-D5), and the whole system (VR: D1-D5).

Objective Variables: Performance (Table 6.9 & Table 6.10) � After a general visual
inspection, the bar diagrams (Table 6.9) show that the Time to Complete progressively
increases with the Degree (increment ratios varying between ∼ 20−50%). In the case of
the Average Force, the synthetic values (D5) are considerably higher (up to ∼ 6×) than
the real ones (D1–D4). And, finally, the Average Effort substantially increases (∼ 60%)
when the haptic device comes into play (D3 onwards).

All pairwise comparisons related to the Time values are significant (all ps < 1e-04,
***). The HMD increased the means by +37% when used alone (D1-D2) and by +21%

when used in combination with the HUG (D3-D4). The HUG, in addition, produced 2×
lager values (D1-D3), and the haptic rendering method led to +43% longer exercises.
Overall, the participants needed 3.5× the Time of the purely real Degree (D1) to com-
plete the exercises in the purely virtual one (D5) (→L2.1). Interestingly, the effects of the
synthetic treatments do not seem to add up linearly. Additionally, the haptic feedback,
and in particular, the haptic device HUG seems to be the most important bottleneck
when it comes to the Time performance.

Post hoc pairwise comparisons of Force values revealed distinct difference levels be-
tween Degrees. The HMD did not significantly affect the Forces exerted by the partici-
pants when used alone (D1-D2, p > 0.005, ns), but it contributed to +22% larger means
when used in combination with the HUG (D3-D4, p < 0.005, *). The HUG alone signif-
icantly contributed to +38% bigger values (D1-D3, p < 0.001, **). Moreover, Synthetic

∗When the head-mounted display (HMD) is mentioned, the whole synthetic visual feedback is meant,
including the graphical rendering.

210 CHAPTER 6. EVALUATION OF METHODS

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Fo
rc

e
[N

]

D1

A B C D E F → second series

0

1

2

3

To
rq

ue
 [N

m
]Force D1 (JR3) Torque D1 (JR3)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

Fo
rc

e
[N

]

D5

A B C D E F

0

1

2

3

To
rq

ue
 [N

m
]Force D5 (HR) Torque D5 (HR)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Ef
fo

rt
[%

] D5A B C D E F

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Pe
na

lty
 [m

s]

D5

A B C D E F

0

5

10

15

C
on

st
ra

in
t [

us
]

Penalty Comp. Time Constraint Comp. Time

0 2 4 6 8 10 12 14 16 18 20
−3

0

3

6

9

Si
g.

 D
is

ta
nc

e
[m

m
]

Exercice Time [s]

D5

A B C D E F

0

300

600

900

1200
C

on
ta

ct
s

[#
]Signed Distance Number of Contacts

Figure 6.8: Exemplary values recorded during regular exercises of D1 and D5 of the same subject.
Only the first half of the exercise is shown in the following order: frontal insertion (A→B), side
insertion (C→D), and railing (E→F). The segments corresponding to the in-between collisions with
the box in the corner were ignored for the evaluation. The models from Figure 6.3 were used for
D5. An effort value of 100 % corresponds to the maximum steady signal recorded during the EMG
calibration (see Section 6.3.1.3). The signed distance is the penetration between the objects when
positive and the distance between the objects when negative (the positive part is zoomed, since it
represents the inter-penetration of the two virtual objects).

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 211

Table 6.9: Descriptive data of the objective dependent variables for the whole exercise and the tasks.
The five Degrees (D) are decomposed in the three varied factors Visual Feedback (VF), Haptic Device
(HD), and Haptic Rendering (HR). The used real (R) or synthetic (S) treatment of the factors is
also specified (see Figure 6.7). Average and standard deviation values are provided for each Degree
(D), as well as bar diagrams of the total values. The statistical analysis can be found in Table 6.10.

Tasks

D VF HD HR Total Exercise Frontal Side Railing

(a) Time to Complete [s]

D1 R R R 15.76 (3.50) 4.26 (1.12) 5.60 (1.30) 5.89 (1.39)
D2 S R R 21.60 (4.75) 5.81 (1.56) 7.81 (1.78) 7.98 (1.67)
D3 R S R 31.74 (6.43) 7.26 (1.53) 12.59 (2.53) 11.89 (2.85)
D4 S S R 38.54 (8.51) 9.11 (1.84) 15.02 (3.04) 14.41 (4.34)
D5 S S S 55.27 (16.02) 12.20 (4.46) 22.12 (9.69) 20.95 (8.55)

Grand M & SD 32.58 (16.46) 7.73 (3.65) 12.63 (7.49) 12.23 (6.95)

(b) Average Force [N]

D1 R R R 1.06 (0.53) 0.87 (0.34) 0.91 (0.27) 1.26 (0.94)
D2 S R R 1.08 (0.59) 0.95 (0.53) 0.98 (0.35) 1.25 (0.94)
D3 R S R 1.45 (0.74) 1.13 (0.56) 1.18 (0.52) 1.79 (1.26)
D4 S S R 1.76 (0.62) 1.72 (0.78) 1.65 (0.72) 1.83 (0.98)
D5 S S S 6.70 (2.95) 6.01 (3.72) 6.87 (2.82) 6.07 (3.18)

Grand M & SD 2.41 (2.59) 2.14 (2.61) 2.32 (2.65) 2.44 (2.48)

(c) Average Effort [0: relaxation, 100: steady max. during calibration]

D1 R R R 56.88 (14.13) 53.24 (14.91) 61.59 (16.26) 55.27 (14.68)
D2 S R R 54.03 (16.83) 51.00 (18.32) 55.46 (16.82) 54.90 (17.93)
D3 R S R 90.13 (37.23) 86.91 (40.46) 95.39 (42.03) 86.62 (31.38)
D4 S S R 91.48 (47.02) 86.63 (42.89) 95.47 (49.80) 90.77 (47.87)
D5 S S S 117.75 (39.63) 117.48 (41.51) 118.14 (35.48) 115.69 (47.80)

Grand M & SD 82.05 (40.82) 79.05 (41.57) 85.21 (41.50) 80.65 (41.44)

contact rendering led to 3.79× higher Force values (D4-D5, p < 1e-04, ***). When it
comes to the objective indicators, it is in the Forces where the purely virtual Degree
(D5) most differentiates from the purely real one (D1), with 6.35× bigger means for the
synthetic condition (D1-D5, p < 1e-04, ***) (→L2.2). Clearly, these virtual Forces are
too high compared to the real ones. Decreasing the value of the stiffness could appear
to be a way of solving that, however, as mentioned in Section 6.3.1.3, the used stiffness
(lower than the maximum possible) was selected to produce the contacts with the highest
fidelity possible. Due to the observational evidence and the insights from the previous
Study 1 (Section 6.2), the reason for such high Forces could be that the haptic rendering
algorithm causes interactions that are more jamming than real ones; as a result, the user
applies higher Forces and requires also longer to accomplish the exercises. This point
should be further investigated.

212 CHAPTER 6. EVALUATION OF METHODS

Table 6.10: Statistical analysis of the objective dependent variables (performance) to determine the
effect of the Degree (One-Way ANOVA with Fisher tests) and the factors of Visual Feedback (VF),
Haptic Device (HD), and Haptic Rendering (HR). Pairwise comparisons were done with T-Tests
after a Bonferroni adjustment of b = 10. Provided values: Sphericity correction (Mauchly’s W and
Greenhouse-Geisser ε), sample size (N), degrees of freedom (df), S statistic (S is Fisher F (df, N−1)
for Degree and T-Test T (df) for pairwise comparisons), p-value, Cohen’s d, and the relation (with
coded effect size) between the degrees. The source descriptive data can be found in Table 6.9.

W p(>W) ε b N df S p(>S) sig. d Relation

(a) Time to Complete (Total Exercise)
Degree 4.86e-02 1.88e-10 0.41 (1) 24 4 112.57 1.40e-15 *** – –

D1–D2 (VF) – – – 10 24 23 –8.11 3.38e-08 *** 1.40 D2 � D1
D1–D3 (HD) – – – 10 24 23 –15.71 8.68e-14 *** 3.08 D3≫ D1
D3–D4 (VF) – – – 10 24 23 –5.67 8.97e-06 *** 0.90 D4 � D3
D4–D5 (HR) – – – 10 24 23 –5.94 4.74e-06 *** 1.30 D5 � D4
D1–D5 (VR) – – – 10 24 23 –12.98 4.58e-12 *** 3.41 D5≫ D1

(b) Average Force on Contact (Total Exercise)
Degree 8.45e-04 8.34e-28 0.28 (1) 24 4 79.03 1.32e-09 *** – –

D1–D2 (VF) – – – 10 24 23 –0.30 0.77 0.05 D2 ≈ D1
D1–D3 (HD) – – – 10 24 23 –4.18 3.54e-04 ** 0.62 D3 > D1
D3–D4 (VF) – – – 10 24 23 –3.26 3.41e-03 * 0.46 D4 & D3
D4–D5 (HR) – – – 10 24 23 –8.43 1.72e-08 *** 2.31 D5≫ D4
D1–D5 (VR) – – – 10 24 23 –9.53 1.87e-09 *** 2.66 D5≫ D1

(c) Average Effort (Total Exercise)
Degree 0.145 4.52e-06 0.70 (1) 24 4 24.90 2.10e-10 *** – –

D1–D2 (VF) – – – 10 24 23 –1.33 0.20 0.18 D2 ≈ D1
D1–D3 (HD) – – – 10 24 23 –4.89 6.19e-05 *** 1.18 D3 � D1
D3–D4 (VF) – – – 10 24 23 –0.16 0.87 0.03 D4 ≈ D3
D4–D5 (HR) – – – 10 24 23 –2.71 1.25e-02 . 0.60 D5 > D4
D1–D5 (VR) – – – 10 24 23 –9.37 2.56e-09 *** 2.05 D5≫ D1

Significance codes (p): 0 ‘***’ 0.001/b ‘**’ 0.01/b ‘*’ 0.05/b ‘.’ 0.1/b ‘ ’ 1
Effect size codes (d): 0 ‘≈’ 0.2 ‘&’ 0.5 ‘>’ 0.8 ‘�’ 1.5 ‘≫’ ∞

No significant effect of the HMD or the haptic rendering was found on the Effort
values (all ps > 0.005, ns). However, the HUG led to significantly +58% bigger values
(D1-D3, p < 1e-04, ***). In the same line, muscular Effort signals were on average 2×
larger in the purely virtual Degree compared to the purely real (D1-D5, p < 1e-04, ***)
(→L2.3). To the best of the author’s knowledge, no other comparison studies of this sort
have used EMG measurements as an indicator. The found significant differences proof
the validity of it.

Subjective Variables: Perception (Table 6.11 & Table 6.12) � A first look at the his-
tograms (Table 6.11) conveys the fact that the Overall, Contact, and the Manipulation
Realism ratings progressively shift from maximum values (7) in D1 to values gravitating

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 213

T
ab

le
6.

11
:

D
es
cr
ip
tiv

e
da
ta

of
th
e
su
bj
ec
tiv

e
de
pe
nd

en
t
va
ria

bl
es

re
la
te
d
to

th
e
(t
ot
al
)
ex
er
ci
se
s.

T
he

fiv
e
D
eg
re
es

(D
)
ar
e
de
co
m
po

se
d
in

th
e
th
re
e
va
rie

d
fa
ct
or
s
V
is
ua
lF

ee
db

ac
k
(V

F)
,H

ap
tic

D
ev
ic
e
(H

D
),
an
d
H
ap
tic

R
en
de
rin

g
(H

R
).
T
he

us
ed

re
al

(R
)
or

sy
nt
he
tic

(S
)
tr
ea
tm

en
t

of
th
e
fa
ct
or
s
is
al
so

sp
ec
ifi
ed

(s
ee

Fi
gu

re
6.
7)
.
A
ve
ra
ge

an
d
st
an
da
rd

de
vi
at
io
n
va
lu
es

ar
e
pr
ov
id
ed

fo
r
ea
ch

D
eg
re
e
(D

),
as

w
el
la

s
a
hi
st
og
ra
m
.

T
he

st
at
is
tic

al
an
al
ys
is
ca
n
be

fo
un

d
in

Ta
bl
e
6.
12
.

P
er
ce
pt
io
n
of

R
ea
li
sm

[1
:
ve

ry
lo

w
–
4:

m
od

er
at

e
–
7:

ve
ry

hi
gh

]
P
er
ce
pt
io
n
of

W
or
kl
oa

d
[1
:
ve

ry
lo

w
–
20

:
ve

ry
hi

gh
]

D
O

ve
ra

ll
1

2
3

4
5

6
7

C
on

ta
ct

1
2

3
4

5
6

7
M

an
ip

u
la

ti
on

1
2

3
4

5
6

7
P

h
y
si

ca
l

Q
1

Q
2

Q
3

Q
4

Q
5

M
en

ta
l

Q
1

Q
2

Q
3

Q
4

Q
5

D
1

7
(0
)

24
7
(0
)

24
7
(0
)

24
3.
67

(2
.6
2)

18
4

2
4.
63

(3
.1
7)

15
5

4

D
2

6
(0
.6
6)

5
14

5
6.
58

(0
.5
0)

10
14

6.
29

(0
.8
1)

1
2

10
11

4.
63

(2
.7
6)

14
8

2
6.
17

(2
.9
0)

9
8

7

D
3

5.
5
(1
.0
2)

1
3

6
11

3
6.
13

(0
.8
5)

1
4

10
9

4.
75

(1
.3
6)

7
2

7
6

2
8.
13

(4
.1
6)

7
7

5
4

1
6.
33

(3
.1
6)

7
11

5
1

D
4

5
(1
.1
8)

1
5

10
7

1
6.
08

(0
.9
3)

2
3

10
9

4.
88

(1
.4
8)

1
1

2
3

8
7

2
8.
67

(4
.0
2)

5
9

5
5

7.
92

(3
.9
7)

4
12

3
5

D
5

4.
46

(0
.9
3)

1
3

5
14

1
4.
42

(1
.1
8)

1
6

3
10

4
4.
17

(1
.1
3)

2
5

6
9

2
10

.5
(3
.9
7)

2
6

7
8

1
10

.0
4
(3
.5
6)

11
5

8

214 CHAPTER 6. EVALUATION OF METHODS

around 4 − 5 in D5. In contrast, the Physical and Mental Workload seem to increase
with the Degree from quantiles Q1–Q2 (ratings 1− 8 of a maximum of 20) to quantiles
Q2–Q3 (ratings 5− 12).

The three ratings of Realism Perception decreased roughly 1 point when the HMD
was used (alone) in interaction with the real models (D1-D2, all ps < 0.005, or smaller
levels). However, no significant differences could be found due to the HMD when it was
used in combination with the HUG (D3-D4, all ps > 0.005). The use of the HUG yielded
ratings which were 1−2 points lower for the Overall and the Manipulation Realism (D1-
D3, both ps < 1e-04, ***); the Contact Realism decreased roughly 1 point (p < 0.001,
**). Regarding the haptic rendering method, a significant reduction of 1 point was found
only in the case of the Contact Realism (D4-D5, p < 0.001, **) (→L2.4). Comprehen-
sibly, it seems that the HMD affects primarily the Overall Perception of Realism, the
haptic rendering method the Contact Realism, and the HUG the Manipulation Realism;
moreover, the HUG and the haptic rendering method are the synthetic treatments with
the highest impact.

Both Physical and Mental Workload average ratings of the purely virtual condition
(D5) were respectively 2× (p < 1e-04, ***) and 3× (p < 0.001, **) higher than the purely
real ones (D1). Nevertheless, the synthetic treatments affected differently each dimension.
In the case of the HMD, a significant increase of +1 average point could be determined for
the Physical Workload when used alone, while the same significant increment occurred
when it was used in combination with the HUG for the Mental Workload (both ps <

0.005, *). The HUG led to 2.21× higher Physical Workload ratings (p < 1e-04, ***),
but no significant effect could be found on the Mental Workload. Regarding the haptic
rendering algorithm, slight significances were found for both the Physical (p < 0.005,
*) and the Mental Workload (p < 0.05, .); the synthetic treatment resulted in ratings
+2 points higher on average. Finally, and interestingly, the Average Effort and the
Physical Workload had a significant and rather strong (Spearman) correlation of ρ = 0.44

(p = 3.94e-07, ***), computed across all conditions. In summary, it seems that the
HMD and the haptic rendering increased the Perception of Workload in a similar slight
but perceptible fashion, whereas the HUG had a bigger impact, especially on Physical
Workload, which was doubled (→L2.5).

6.3.2.2 Secondary Task and Auditory Privation

In this section, the effects of the secondary task and the auditory privation are reported,
trying to bridge them with the Workload and the Realism Perception, respectively.

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 215

Table 6.12: Statistical analysis of the subjective dependent variables to determine the effect of
the Degree (One-Way Friedman ANOVA) and the factors of Visual Feedback (VF), Haptic Device
(HD), and Haptic Rendering (HR). Pairwise comparisons were done with T-Tests after a Bonferroni
adjustment of b = 10. Provided values: Sample size (N), degrees of freedom (df), S statistic (S
is Friedman χ2(df) for Degree and Wilcoxon V for pairwise comparisons), p-value, Cliff’s δ, and
the relation (with coded effect size) between the degrees. The source descriptive data can be found
in Table 6.11.

N df b S p(>S) sig. δ Relation

(a) Overall Realism (Total Exercise)
Degree 24 4 (1) 68.58 4.53e-14 *** – –

D1–D2 (VF) 24 23 10 190 6.33e-05 *** 0.79 D1≫ D2
D1–D3 (HD) 24 23 10 231 4.55e-05 *** 0.87 D1≫ D3
D3–D4 (VF) 24 23 10 98.5 0.107 0.26 D3 & D4
D4–D5 (HR) 24 23 10 86.5 2.81e-02 0.32 D4 > D5
D1–D5 (VR) 24 23 10 300 1.19e-05 *** 0.97 D1≫ D5

(b) Contact Realism (Total Exercise)
Degree 24 4 – 66.19 1.45e-13 *** – –

D1–D2 (VF) 24 23 10 55 1.90e-03 * 0.42 D1 > D2
D1–D3 (HD) 24 23 10 120 4.56e-04 ** 0.63 D1 � D3
D3–D4 (VF) 24 23 10 56 0.842 0.01 D3 ≈ D4
D4–D5 (HR) 24 23 10 226 1.07e-04 ** 0.73 D4≫ D5
D1–D5 (VR) 24 23 10 300 1.57e-05 *** 1 D1≫ D5

(c) Manipulation Realism (Total Exercise)
Degree 24 4 (1) 66.53 1.22e-13 *** – –

D1–D2 (VF) 24 23 10 91 9.09e-04 ** 0.54 D1 � D2
D1–D3 (HD) 24 23 10 253 3.61e-05 *** 0.92 D1≫ D3
D3–D4 (VF) 24 23 10 59 0.40 0.08 D3 ≈ D4
D4–D5 (HR) 24 23 10 125.5 1.89e-02 0.35 D4 > D5
D1–D5 (VR) 24 23 10 300 1.63e-05 *** 1 D1≫ D5

(d) Physical Workload (Total Exercise)
Degree 24 4 (1) 72.66 6.21e-15 *** – –

D1–D2 (VF) 24 23 10 4.5 1.42e-03 * 0.24 D2 & D1
D1–D3 (HD) 24 23 10 0 4.09e-05 *** 0.70 D3≫ D1
D3–D4 (VF) 24 23 10 45 0.137 0.07 D4 ≈ D3
D4–D5 (HR) 24 23 10 14 1.70e-03 * 0.26 D5 & D4
D1–D5 (VR) 24 23 10 0 1.89e-05 *** 0.85 D5≫ D1

(e) Mental Workload (Total Exercise)
Degree 24 4 (1) 46.63 1.82e-09 *** – –

D1–D2 (VF) 24 23 10 29 1.42e-02 0.32 D2 & D1
D1–D3 (HD) 24 23 10 65 2.67e-02 0.33 D3 > D1
D3–D4 (VF) 24 23 10 36 3.19e-03 * 0.24 D4 & D3
D4–D5 (HR) 24 23 10 27 6.18e-03 . 0.32 D5 > D4
D1–D5 (VR) 24 23 10 10.5 1.10e-04 ** 0.75 D5≫ D1

Significance codes (p):
0 ‘***’ 0.001/b ‘**’ 0.01/b ‘*’ 0.05/b ‘.’ 0.1/b ‘ ’ 1

Effect size codes (δ):
0 ‘≈’ 0.15 ‘&’ 0.3 ‘>’ 0.5 ‘�’ 0.7 ‘≫’ 1

216 CHAPTER 6. EVALUATION OF METHODS

Secondary Task � For analyzing the differences in Reaction Times during the secondary
task, a one-way ANOVA on the Degree was performed. Mauchly’s test indicated that
the assumption of sphericity had been violated (W = χ2(4) = 0.198, p = 7.18e-05, ***),
and therefore, a Greenhouse-Geisser correction was used with ε = 0.53. There was no
significant effect of the Degree on the Reaction Time, F (2.12, 12.19) = 1.60, p = 0.211

(ns). The grand mean (and standard deviation) of the Reaction Times across allDegrees
was M = 658.86 (185.08) ms. Similarly, no significant (Pearson) correlations were found
between the Reaction Times and any of the subjective variables.

The number of missed horn signals was also analyzed in the set of exercises with the
secondary task (i. e., how many times the pedal was not pressed after a “beep”). Although
a Friedman test revealed the Degree non significant (χ2(4) = 6.70, p = 0.153, ns), two
relevant subjective variables showed significant yet small Spearman correlations with the
number of missed “beeps" (→L2.6):

- Overall Realism, ρ = -0.25 (p = 5.40e-03, **);

- Mental Workload, ρ = 0.25 (p = 6.57e-03, **).

Auditory Privation � A two-way ANOVA was performed on all three objective variables
to analyze the effect of the factors of Degree (D1 & D3) and auditory privation (yes &
no). The Degree turned out to be always significant (statistics are omitted since they
are analogous to the ones in Table 6.10), but no effect could be found for the auditory
privation:

- Time, F (1, 23) = 0.087, p = 0.77 (ns);

- Force, F (1, 23) = 0.02, p = 0.89 (ns);

- Effort, F (1, 23) = 0.478, p = 0.50 (ns).

Similarly, Friedman tests were performed with the subjective variables. Significant
differences were found only for the Perception of Realism ratings associated with D1;
however, the mean of M = 7 (0) points related to the regular exercises barely shifted
half a point when participants wore headphones:

- Overall, 6.54 (0.59), χ2(1) = 10, p = 1.57e-03 (**);

- Contact, 6.71 (0.55), χ2(1) = 6, p = 1.43e-02 (*);

- Manipulation, 6.79 (0.51), χ2(1) = 4, p = 4.55e-02 (*).

6.3. STUDY 2: COMPARING REAL AND VIRTUAL MANIPULATIONS 217

In other words, although not hearing the contacts or the haptic device slightly de-
creased the Perception of Realism, it apparently had no effect of the performance of the
users (→L2.7).

6.3.3 Study 2: Summary of Lessons Learned and Discussion

In this section, the most significant results reported so far are highlighted and discussed.
First of all, a synopsis of the analyzed data formulated as brief take-home messages is
provided in the following:

L2.1 All synthetic treatments increased the Time means compared to the real treat-
ments: HMD (VF) up to +37%, HUG (HD) 2×, and haptic rendering (HR) +37%.
Overall, the purely virtual condition required on average 3.51× the Time of the
purely real one (Section 6.3.2.1).

L2.2 Synthetic Force values generated by the haptic rendering algorithm were on average
3.79× bigger than the real ones; additionally, participants were provided in the
purely virtual condition with 6.35× the Force magnitudes of the purely real one
(Section 6.3.2.1).

L2.3 In the purely virtual condition 2× larger muscular Effort signals than in the purely
real were measured; this increment was mainly due to the HUG, which led to an
increase of +58% when added to the interaction (Section 6.3.2.1).

L2.4 Using each of the synthetic treatments (HMD, HUG, haptic rendering) decreased
the ratings of Overall, Contact, and Manipulation Realism roughly 1 point in a 7-
point scale from "very low" (1) to "very high" (7); these three realism dimensions
were perceived as above "moderate" (4−5 points) during the purely virtual Degree
(D5) (Section 6.3.2.1).

L2.5 The Perception of Physical and Mental Workload shifted roughly from a 20% level
in the purely real condition (D1) to a 50% level in the purely virtual one (D5);
the HMD and the haptic rendering contributed approximately to increments of
5− 10% points each, whereas the HUG added 20% points, especially in the case of
the Physical Workload (Section 6.3.2.1).

L2.6 During the exercises with the secondary task, no significant effect of theDegree on
the Reaction Times could be found; however, the number missed horn signals sig-
nificantly correlated with the Overall Realism (ρ = -0.25) and the Mental Workload
(ρ = 0.25) (Section 6.3.2.2).

218 CHAPTER 6. EVALUATION OF METHODS

L2.7 No changes in the performance could be determined when contact sounds were
silenced; however, almost half of the participants rated the Overall Realism 1 point
lower (out of 7) in the purely real condition (D1) (Section 6.3.2.2).

As expected, subjects showed better performance during purely real exercises (D1)
than in purely virtual ones (D5); along these lines, objective indicators show that, com-
pared to Degree D1, Degree D5 led to 3.51× larger Time values (L2.1), 6.35× larger
Force values (L2.2), and 2× larger Effort values (L2.3). However, the contribution
of the work lies rather on the granular quantification of disparities produced by each
synthetic feedback (subsystem) on the analyzed objective and subjective indicators.

In general, haptic feedback seems to be the bottleneck. Additionally, as far as syn-
thetic haptic feedback is concerned, two noteworthy facts that account for most of the
variance between real and virtual manipulations can be observed: (i) the HUG had the
highest impact on the Time (L2.1), Effort (L2.3), and Physical Workload (L2.4) indi-
cators, and (ii) the synthetic forces were considerably higher than the real ones (L2.2).

It is worth to mention that, overall, Time ratios between real and virtual manip-
ulations (L2.1) were close to the ones reported in some works cited in Section 6.1.1:
[UNT+02], [LRD+07], and [GBMCL+14]. In contrast to this present study, those related
works employed desktop-size haptic interfaces. Study 1 in previous section Section 6.2
concluded that around 20% shorter Time values could be achieved using the Sigma.7
desktop device, although a scaling of 5.5× was necessary to cover the whole virtual
workspace. Along these lines, smaller Times should be expected if smaller and lighter
devices are used. Additionally, the notable increase of the Average Muscular Effort (L2.3)
and Physical Workload (L2.5) due to the HUG seems to be related to that increase of
Time values. As noted in Study 1 (Section 6.2), the HUG seems to increase contact
realism perception, but in detriment of ergonomy ratings. The device is a remarkable
research platform for testing large unscaled movements and a broad stiffness spectrum;
nonetheless, the results seem shape as the optimum device one with a similarly large
workspace, but which sacrifices stiffness capabilities for lower inertia values.

The unexpectedly large virtual forces (L2.2) reveal an improvement direction for the
haptic rendering algorithm. However, it is worth to mention that the commanded virtual
forces (D5) analyzed here differ from the actual exerted forces, since the influence of the
robot dynamics and the hand-device coupling are not contemplated; yet, for practical
reasons, it is assumed both are similar. In contrast to the results presented in the current
work, Unger et al. [UNT+02] found no significant differences between real and virtual
forces in peg-in-hole scenarios using a desktop-size magnetic levitation haptic interface
and the Coriolis engine [Bar93] for force rendering. After observing recorded exercises of
D5 and conducting short interviews with the participants, two major interpretations that

6.4. SUMMARY, CONCLUSIONS, AND PERSPECTIVES 219

help explain that discrepancy between force magnitudes were gathered: (i) as opposed
to other penalty-based haptic rendering algorithms, the used constraint-based approach
tends to sharpen all edges, sometimes even reducing the natural slipperiness of small
corner contacts, and (ii) the perceived ratio between torques and forces transmitted (i. e.,
not commanded) through the HUG might be smaller than in the real world. Therefore,
users could have been provided with realistic but sometimes misleading collision cues,
especially during insertion tasks in which accurate forces are necessary to comprehend
the configuration error and perform fast corrections. Due to that resulting lower fidelity,
participants might have literally worked hard and not smart, as opposed to how the
saying goes. Study 1 from previous Section 6.2 also supports these points; nevertheless,
further investigation is required to substantiate the interpretation. Along these lines,
and following the debate in the VR community discussing to what extent immersion
components should mimic reality [BM07], further research questions worth exploring
arise: Which is the minimum fidelity necessary to obtain the maximum skill transfer?
How do fidelity improvements affect performance?

Regarding the Realism ratings, each synthetic treatment seems to contribute to
steady, slow, and similar decreases (L2.4). In this sense, the Perception of Realism
is probably a more robust and less sensible variable than the objective indicators.

As far as the series of exercises beyond the regular one are concerned, more modest
effects were found; yet, this reflects the effectiveness and influence of the methods and
modalities tested in them, which is also a finding. The impact and explanatory power
of the secondary task (L2.6) are lower than the ones suggested in the literature [Her15],
[BPW14]. Thus, reactions to parallel tasks could not be as explanatory when studying
assembly manipulations similar to the ones tested in this work. Similarly, although the
privation of auditory cues slightly decreased the Overall Perception Realism, no effects
were found in the performance indicators (L2.7); however, this is in line with the findings
from Gupta et al. [GSW97]. Sounds related to harder materials have been shown to bias
the perception of stiffness towards higher ratings [DBS97], [AC06], yet real audio cues
seem not to be as dominant for the analyzed variables in the tested scenarios. Therefore,
synthetic sound could probably have a secondary priority compared to haptic feedback
in virtual assembly manipulations.

6.4 Summary, Conclusions, and Perspectives

This chapter presented the design, implementation, and results of two user studies which
evaluate the haptic rendering methods and setups presented in previous Chapter 3, Chap-
ter 4, and Chapter 5. The same scenario was used in both of them, consisting of well-
defined and motivated peg-in-hole assemblies. Study 1 is a first step for comparing haptic

220 CHAPTER 6. EVALUATION OF METHODS

rendering algorithms and deriving the optimum configuration. On the other hand, Study
2 researches into the interplay between that optimum haptic rendering configuration and
other synthetic feedback modalities, with the goal of detecting differences and bottle-
necks between real and virtual manipulations. In the following, the conclusions of each
study are summarized and the future work directions outlined.

Study 1: Comparison of Haptic Rendering Methods

Many haptic rendering algorithms that compute forces based on different physical prin-
ciples have been presented in the last two decades. Yet, the relationship between those
algorithms that take root in different fundamentals, the employed haptic interfaces, and
the adjusted stiffness is not a widely researched topic. Along these lines, a within-design
user study was conducted in which N = 24 participants performed assembly tasks with
varied rendering (penalty-based vs constraint-based), device (HUG vs Sigma.7), and stiff-
ness (low vs high) factors. To the best of the author’s knowledge, this work is the first
user study which compares the effects of two haptic rendering paradigms on the user
performance with varied device and stiffness factors.

As summarized in Section 6.2.3, the tested constraint-based god object heuristic
(Chapter 4) with a relaxed stiffness seems to be the best choice, since it decreases the
object-interpenetration considerably and optimizes the perception of contact realism.
When it comes to the haptic devices, the HUG led to a higher workload and a lower
ergonomy, but it significantly helped to improve the realism of the contacts. Similar
configurations probably lead to comparable results, as some works have suggested, but
this needs further investigation before that leap can be done confidently.

Study 2: Comparison of Real and Virtual Manipulations

Although virtual manipulation with haptic feedback has been proven to be a useful tool
in many fields, their fidelity is still noticeably moderate when compared to purely real
interactions; this might hinder the practical use of virtual setups in training and planning
applications. Literature suggests that satisfactory perceptions and performances are the
result of the interplay between different feedback modalities and their constituent blocks.
Along these lines, a user evaluation was performed in which N = 24 participants per-
formed well-motivated assembly exercises in five different conditions, ranging gradually
from purely real to purely virtual, and systematically introducing different feedback de-
vices (i. e., haptic device or head-mounted display) or virtual feedback signals (i. e., haptic
feedback). All participants tried all conditions in a different order. This study is the con-
tinuation of the previous one (Section 6.2) in which the effects of different haptic devices
and haptic rendering algorithms on user performance were analyzed.

6.4. SUMMARY, CONCLUSIONS, AND PERSPECTIVES 221

On the other hand, this current study sheds light on the understanding of the differ-
ence between the real and virtual manipulations by analyzing the effects of each system
component. Moreover, altogether visual, haptic, and audio feedback modalities were con-
sidered, leading to a multi-modal perspective to interpret the formation of the virtual
contact percept. While previous works have mainly analyzed task completion time per-
formances, here, more than three objective (Time, Force, and Effort) and five subjective
(related to Realism and Workload) dimensions for each tested condition are provided. To
the best of the author’s knowledge, this is the first multimodal and system-wise study
covering so many variables. Additionally, the results are easily replicable and transferable
thanks to the used scenario, consisting of a large workspace allowing unscaled movements
and well-motivated but abstract exercises.

Section 6.3.3 synthesizes and discusses the most important insights, and their re-
lationship to the literature. Independently of the systems involved, virtual manipula-
tions inevitably lead to worse performance and subjective results compared to real ones;
nonetheless quantifying them properly is an imperative step. In general, the haptic
modality seems to be the bottleneck for performance: HUG, the used haptic device, af-
fects the Completion Time and Muscular Effort indicators the most; in the same line,
synthetically rendered forces differ from real ones significantly, although the effect of that
needs to be studied more deeply. On the other hand, the decrease of Realism Perception
caused by any synthetic device or rendering is similar and sound seems not to be as
relevant.

The preceding Study 1 (Section 6.2) suggested that a haptic device with a large
upper-body workspace but moderate stiffness capacity in favor of a lighter structure
could significantly improve both performance and perception indicators. That conclusion
opposes to the mainstream desktop-size systems and requires an improvement from the
HUG itself. In addition to showing that the effects of the HUG on performance and
subjective variables are the largest, the current study thoroughly quantifies those effects
and contextualizes them in relation to other multimodal factors. That helps to gain a
more holistic understanding.

Short term future work will deal with investigating and enhancing the two main
bottlenecks detected in this work: (i) the effect of the HUG on the user and (ii) the
discrepancy between physical and computed contact forces. Additionally, future work
will try to formalize result mappings between setups of similar and different features
performing further comparison studies. The ultimate goal is to study and improve the
skill learning and transfer through virtual environments, focusing on practical real world
scenarios. In particular, special focus is set on interactive virtual assembly [SHH+16]
and maintenance [SHH+15] simulations, such as the ones presented in Chapter 5.

Chapter 7

Epilogue

This thesis analyzes interactive virtual reality simulations with kinesthetic haptic
feedback. All aspects of the system are considered, focusing on collision and force
computation. The two core technical contributions can be summarized as follows:

• A unified algorithm for collision, proximity and penalty force computation has been
presented. A key factor for the algorithm are its data structures: signed distance
fields and multiresolution point-sphere trees, for which fast and robust generation
approaches are provided. At runtime, arbitrarily complex rigid objects can be
handled at an update rate faster than 1 kHz, which makes the algorithm suitable
for haptic and robotic applications.

• A constraint-based force rendering method which works on top of penalty-based
algorithms is introduced. It is designed as a heuristic god object approach and
tackles the major issues characteristic for penalty-based algorithms (usually com-
putationally expensive); these successfully solved issues are: the tunneling-effect
and object overlaps, which are handled with the approximation of the constrained
motion, and soft contacts. Additionally, static, kinetic, and dynamic friction are
modeled. In contrast to similar approaches, the algorithm is easy to implement
and performs faster than 20 kHz.

Furthermore, these basic methods have been employed in the context of two further
major contributions:

• They have been successfully integrated into several applications: (i) a complete
virtual car assembly platform in which multibody simulations are handled, (ii) the

223

224 CHAPTER 7. EPILOGUE

widely known physics engine Bullet [Cou03], which otherwise could not handle com-
plex rigid geometries at haptic rates, and (iii) simulation and robotic applications
that require realtime collision and force computation for complex rigid bodies.

• They have been evaluated in two user studies that shed light on (i) how haptic
rendering methods should be optimally parametrized and (ii) which are the major
factors that lead to the current performance and perception challenges in virtual
manipulations, taking as reference the real ones.

Altogether, the work covers the presentation of new haptic rendering methods, their
application to realistic virtual and robotic simulations, and their evaluation with user
studies from which basic and practical insights are distiled. In the following, each of the
contributions is discussed, pointing out to future directions.

Collision and Proximity Computation (Chapter 3)

The presented solution for distance and potential or penalty force computation works
with complex rigid bodies in haptic/robotic realtime even with high model resolutions;
this brings the contribution to a small selected group of state-of-the-art techniques, which
are, in general, not available. The method is based on the principles of the Voxelmap-
Pointshell (VPS) algorithm [MPT99], but it re-defines its data structures and their run-
time handling. In contrast to previous approaches, signed distance fields with three levels
of accuracy can be used, smoothing signal values, and point-sphere trees are employed for
faster collision region detection; these hierarchical representations are built bottom-up
to exploit local information and maintain sampling uniformity, and minimally enclos-
ing spheres are computed to increase packing efficiency. The used breadth-first traverse
improves the distance or force output progressively, making possible the delivery of ap-
proximative computations when high loads or low geometrical variation in contact regions
is expected.

The data structures fulfill a key and significant requirement: they encode pre-computations
that are quickly accessible at runtime. Future work will mainly deal with extending their
capabilities, such as by storing of additional geometrical or physical information, and en-
abling their actualization at runtime, e.g., with streamed point clouds or deformations.
The automatized and fast GPGPU generation of the data structures would also improve
the workflow for the user considerably.

Constrained Motion and Force Rendering (Chapter 4)

The presented constrained motion computation algorithm and the force rendering model
derived from it provide a robust heuristic that solves object-overlap and stiffness limita-

225

tions that appear in haptic simulations. Furthermore, the method is unique due to its
computational speed and error-bounded output, and it can be applied on top of probably
any penalty-based algorithm. Thanks to these practical features, the approach is readily
able to improve many existing haptic interactions.

The formal or theoretical analysis provided in the thesis is the basis for a comparison
framework that benchmarks the algorithm with other traditional but computationally
more expensive methods. Additionally, as far as virtual interactions are considered, the
extension to multibody constrained motion computation is the next logical step.

Virtual Reality and Robotics Applications (Chapter 5)

The properties of the presented data structures and algorithms make them suitable not
only for haptics, but also for robotic task perception, collision awareness, or realtime
grasp planing, to mention some of the use cases featured in this work. In particular, the
introduced virtual car assembly platform is a good example of how the methods fit in
a complex system in which all components must run synchronized and calibrated. In
addition to the system integration work, topics related to virtual manipulations have
been researched for the framework, such as multibody scenarios, bi-manual interaction,
elbow interaction, navigation, or user collaboration. Such a platform can be used to
train and verify assemblies minimizing eventually the need of physical mockups, which
dramatically decreases the duration and cost associated to the design process.

The maturity and versatility of the collision and force computation methods motivates
putting available the developed engine and related engineering works. The integration
to the physics engine Bullet is a first step in that direction; a first and important step,
since, as shown in the experiments, the presented methods outperform state-of-the-art
approaches with up to 130× speedups when using complex models. Thus, haptic simu-
lations become available for developers through the widespread interfaces of Bullet.

Insights from User Studies (Chapter 6)

The presented two user studies (with N = 24 participants each) evaluate the contributed
methods and provide valuable insights; these are expected to be generalizable, upon
the replication of similar results. Both studies used well-motivated exercises and condi-
tions, which were systematically randomized in a within-design. The thorough statistical
analysis of the large number of variables is unprecedented for haptic simulations.

Altogether, the data seems to favor the constraint-based haptic rendering approach
which simulates the proxy object on the surface, minimizing visual overlap; additionally,
reducing the applied stiffness does not result in a decreased sensation of contact realism,
but it improves user performance. The effects of all multimodal devices and synthetic

226 CHAPTER 7. EPILOGUE

rendering methods on user performance and perception have been tabulated. The haptic
feedback system seems to be the largest factor for the gap between real and virtual
manipulations; in particular, haptic devices with small mass and bigger workspace in
sacrifice of stiffness would be lead to better interactions.

Along these lines, the next logical steps consist in translating these insights into tech-
nological implementations and, ultimately, evaluating the skill transfer in more concrete
and realistic scenarios.

Appendix A

Used Haptic Devices

Although the contributions of this thesis consist in research topics very different than the
design of haptic devices, understanding how this key piece of hardware is conceived and
controlled is essential. It is basically through these interfaces that the human operator
is able to haptically comprehend virtually rendered or remote environments; thus, any
artifacts due to inadequate design, use, or control parametrization might be perceived
as incorrect renderings, masking some of the contributions reported in this work, and in
detriment of fidelity.

Along these lines, Section 2.2.5 already introduces the general properties and re-
quirements of haptic devices, and notes on control issues and approaches. Additionally,
Figure 2.2 from that section illustrates and classifies the five haptic devices successfully in-
tegrated into the systems presented in the current work: Falcon (Novint), Sigma.7 (Force
Dimension), Virtuose6D (Haption), the Wearable Haptic Interface WHI (TU Berlin and
DLR), and the HUG (DLR). A performance comparison study of these five interfaces
using the same virtual scenario as in Chapter 6 was carried out and reported in [Sch15].

This appendix describes in detail the HUG and the Sigma.7 devices, since these are
the main interfaces integrated in the virtual assembly platform from Section 5.2, and
above all, they were tested in the user studies from Chapter 6.

A.1 The HUG

The main haptic device used in the work is the HUG [HHK+11], shown in Figure A.1.
It consists of two torque-controlled DLR / KUKA Light-Weight Robot (LWR) arms

227

228 APPENDIX A. USED HAPTIC DEVICES

Figure A.1: (a) The HUG bi-
manual haptic device, composed
of two DLR/KUKA Light-Weight
Robots (LWR) [HHK+11], reaching
2× seven active DoF. (b) Recorded
torque values in joints displayed as
red rotating arrows. (c) Reachabil-
ity map of the LWR; its overlap with
the human reachability map was
optimized for obtaining the config-
uration of the HUG.

(a) (b) (c)

[ASHO+07]∗ able of providing with six-DoF force feedback. Electronics and redundant
sensors integrated in the seven revolute joints of each LWR are controlled at different
frequencies, being 1 kHz the minimum update rate guaranteed. On the other hand, an
additional force-torque sensor at the end-effector enables a feed-forward compensation
that reduces up to a 33% the inertia introduced by the the dynamic mass of each robot,
which is mLWR = 14 kg.

This bimanual device is characterized by its large workspace that covers the whole
upper body (maximum arm span of 0.94m) and the high forces that it can display (peak
values of 150N). In particular, the device configuration was optimized by analyzing
reachability maps [ZHHH10] so that its workspace maximally covers the human upper-
body workspace. In the same line, thanks to the the redundant kinematic of seven-DoF,
the robot elbows can be optimally configured to react compliantly to external forces
and optimize their position with respect to the position of the user’s elbows, avoiding
singularities. All these properties make of the HUG a haptic interface suited for a great
variety of common and unscaled hand manipulations.

In addition to the interaction with virtual environments, the device has often been
used also in teleoperation applications with humanoids [KWA+09]. Despite of the suc-
cessful applications carried out with it, the author is not aware of any user evaluations
in which the impact of the HUG or the LWR as an input device on the user performance
is analyzed. Hence, the user studies reported in Chapter 6 contribute with some new
insights in this regard.

It is worth mentioning that only one arm was used during those user studies, activated
by the user with a foot-pedal. Furthermore, although several interfaces (such as, data
gloves, joysticks, or grippers) can be magnetically coupled to the device (as explained
in Section 5.2), during the user studies, participants interacted with a simple handle in
order to reduce additional influences and simplify the analysis.

∗http://www.kuka-lbr-iiwa.com

http://www.kuka-lbr-iiwa.com

A.2. THE SIGMA.7 229

Figure A.2: The Sigma.7 haptic device, joint development
of Force Dimension and the DLR (German Aerospace Cen-
ter) [THH+11]. The desktop-sized interface consists of par-
allel mechanism and a grasping unit attached to a wrist,
reaching seven active DoF. This highly precise device was
conceived for telerobotic applications. The picture is cour-
tesy of Force Dimension, Switzerland.

A.2 The Sigma.7

The Sigma.7 [THH+11]∗ is a joint development of Force Dimension and the DLR (German
Aerospace Center), shown in Figure A.2. The desktop-sized haptic interface consists of
three main components: (i) a parallel mechanism providing three DoF translations and
forces (up to 20N), (ii) a wrist attached to the translational base for other three DoF
rotations and torques (up to 0.4Nm), and (iii) a one DoF grasping unit (with maximum
pinch forces of 8N). All three components are inherently decoupled; that results, for
instance, in full rotational dexterity possible in every translational pose.

The interface is able to operate at a refresh rate of 8 kHz (a frequency of 4 kHz was
used in this work) and its workspace is contained in a sphere of 0.12m diameter. Its
dedicated motors were optimized with respect to friction and torque smoothness at low
rotational speeds. Additionally, although it has a rather small dynamic mass ofmSigma '
1.55 kg (measured in experiments), its force controller further targets decreasing inertia
and friction effects.

All these features make of the Sigma.7 a transparent and precise desktop interface
which utterly matches the requirements of the main application for which it was designed:
minimally invasive surgery through telepresence, specifically with the robotic surgery
slave system MiroSurge [HNJ+08]. Indeed, in that context of medical robotics, restricted
vision, motion, and haptic perception are inevitable constraints that nonetheless can be
alleviated with interfaces as the Sigma.7. Thanks to the device, suturing and palpation
are possible, as well as other common fatigue-proof operations. User studies have been
performed to test the device and related methods in the context of telesurgery [WHTL13].

The device was designed left/right-hand specific for a bi-manual console in which the
layout and additional ergonomic parameters are carefully set. For this for thesis, and in
particular during the user study from Section 6.2, only a right-handed Sigma.7 was used,
together with an adjustable armrest to ease the characteristic wrist rotation movements
required by the device.

∗http://www.forcedimension.com/products/sigma-7/overview

http://www.forcedimension.com/products/sigma-7/overview

Appendix B

Implementation and Performance
Issues of the Primitive Data
Structures

This appendix briefly reports relevant implementation and performance issues related
to the primitive data structures introduced in Section 3.2.1: the voxelmap and the
pointshell.

Since the collision and proximity queries must be carried out in realtime (every 1ms),
the implementation of the data structures and methods handled online must be as efficient
as possible. All the structures and algorithms explained in this work are programmed
in C++, having in general the C++ Standard Library [Ric14] as the only dependency,
except in cases in which the use of third party libraries is explicitly specified.

The description of the whole framework design can be simplified to state that the basic
primitive structures explained in Section 3.2.1 are implemented in the two main classes
Voxelmap and Pointshell, analogous, respectively, to the structures V and P presented
in that section. Each of them contains essentially a std::vector array of Voxel or Point
class instances, respectively. Table B.1 describes those classes and summarizes the most
important realtime methods associated to them with which the voxel value of a pointshell
point can be obtained.

It is worth to highlight that, although the voxelmap is a regular 3D grid, its voxels
are stored in an unidimendional array (see Table B.1(e) and (f)). This allows for keeping
all values next to each other in memory. Accessing a random voxel value of a point
has a O(1) complexity, independently of the resolution used for the voxelmap, if the

231

232 APPENDIX B. IMPLEMENTATION AND PERFORMANCE ISSUES

whole array is assumed to be allocated in a unique memory chunk [Ric14]. Therefore, a
pointshell (collision) query has O(n) complexity, being n the number of points checked
for collision.

As for the enhanced data structures and algorithms explained in and , the introduced
Voxelmap, Pointshell, Voxel, and Point classes or types are inherited and extended to
contain additional information. In the case of the voxelmaps, this information consists
in improved distance-to-surface data, whereas topological neighborhood information is
integrated for the pointshells.

233

Table B.1: Main realtime methods in the classes Voxelmap (V) and Pointshell (P) that lead to
a voxel value v associated to a pointshell point P . The methods are listed in order of call ((a) – (f)).

Value Call and Brief Implementation Description

(a) Pi ← Pointshell::getPoint(i)

Point coordinates are accessed in Pointshell::points[i];
Pointshell::points represents P and it is implemented as
std::vector<Point>, being Point a class which contains
the pair (P,n)i.

(b) ni ← Pointshell::getNormal(i)

Point normal vector is accessed in Pointshell::points[i].

(c) (X, Y, Z) ← Voxelmap::getDiscreteCoordinates(Pi ← VHPPi)

X =
ö
Pi,x

s

ù
, Y =

ö
Pi,y

s

ù
, Z =

ö
Pi,y

s

ù
, with Pi = (Pi,x, Pi,y, Pi,z)

T.
Assuming Pi is in pointshell coordinates, it must be
transformed into voxelmap coordinates with VHP.
If any of the discrete coordinates is outside of the boundaries,
the closest boundary voxel is selected constraining each coordinate.
For instance, if X < 0→ X = 0, or if X > Nx − 1→ X = Nx − 1.

(d) Ci ← Voxelmap::getVoxelCenter(X, Y, Z)

Ci = s(X, Y, Z)T.
Assuming the origin of the voxelmap is set to the minimum
point in the bounding box of the voxelmap (see Figure 3.2(a)).

(e) j ← Voxelmap::getVoxelIndex(X, Y, Z)

j = Z + YNz + XNyNz.
Nx, Ny, Nz are the total number of voxels in each axis
and their product yields the total number of voxels NV = NxNyNz.

(f) v(Pi) ← Voxelmap::getVoxelValue(j
(a),(c),(e)←−−−−−− Pi)

Voxel layer value is accessed in Voxelmap::voxels[j].
Voxelmap::voxels represents V and it is implemented as
std::vector<Voxel>, being Voxel a typedef of a type int.
Note that the voxel value is constant for any point inside the voxel,
hence, v(Pi) = v(Ci).

Appendix C

Virtual Reality and Haptics:
Evolution of Relevance

This appendix presents the evolution of the relevance related to the fields of virtual
reality, collision detection, and haptics in the academia during the past years. The
data was taken from https://scholar.google.de and is tabulated and illustrated in
Table C.1 and Figure C.1.

In general, haptic rendering became an active field of research in the second half of
the 90’s, probably after the Phantom [MS+94] was released, one of the first commercial
haptic devices. However, collision detection has been researched more extensively before-
hand. Additionally, haptics seems to be increasingly more significant in the virtual reality
community: if in the 90’s the term appeared in ∼ 4% of the publications containing also
the term virtual reality, nowadays the percentage increased to ∼ 15%.

The number of found items seems to have declined in the first half of the 2010’s;
analyzing the reasons for that phenomenon is not in the scope of this thesis. The reader
might consult the Gartner∗ technology hype and maturity cycles for a broader perspec-
tive.

∗http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

235

https://scholar.google.de
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

236 APPENDIX C. VIRTUAL REALITY AND HAPTICS: EVOLUTION OF RELEVANCE

Table 1

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10
“haptic
rendering” 2 5 6 7 25 44 83 75 128 171 210 266 266 419 437 608 607 794 589 610
“collision
detection” 591 621 764 860 1030 1340 1220 1480 1570 1790 2190 2400 2840 3560 3780 4270 4400 4590 4940 5250
“force
rendering” 5 8 6 5 10 16 15 19 12 25 21 34 53 55 73 93 101 117 112 129
“force
computation” 90 83 114 117 168 175 169 171 187 244 224 217 302 333 358 456 482 545 532 535
“virtual
assembly” 12 7 9 30 51 62 80 112 173 171 229 293 321 450 506 671 688 758 872 898
“virtual
prototyping” 65 70 151 236 395 442 589 719 786 812 1030 1110 1330 1610 1790 1940 2400 2110 2400 2200
“virtual reality” 958 1980 3490 4910 6430 8000 9270 10600 12000 13300 15400 16400 18100 20700 21900 26400 27300 29900 32000 33500
“virtual reality” +
haptic 38 76 131 171 284 338 555 681 821 1030 1340 1540 1630 2080 2220 2840 2810 2970 3070 3350
“haptic device” 15 22 33 18 51 70 144 180 210 292 436 509 585 801 913 1160 1280 1350 1400 1550
“haptic
interface” 34 49 78 79 132 182 234 315 371 427 596 696 699 921 1060 1370 1270 1220 1270 1390
“god object” 3 3 6 3 18 21 27 22 33 44 48 55 79 85 87 100 105 115 96 97
“virtual reality” -
haptic 920 1904 3359 4739 6146 7662 8715 9919 11179 12270 14060 14860 16470 18620 19680 23560 24490 26930 28930 30150

0

1500

3000

4500

6000

91 93 95 97 99 01 03 05 07 09 11 13 15

“haptic rendering”
“collision detection”
“force rendering”
“force computation”

0

10000

20000

30000

40000

91 93 95 97 99 01 03 05 07 09 11 13 15

“virtual assembly”
“virtual prototyping”
“virtual reality”
“virtual reality” + haptic

0

750

1500

2250

3000

91 93 95 97 99 01 03 05 07 09 11 13 15

“haptic device”
“haptic interface”

0

10000

20000

30000

40000

91 93 95 97 99 01 03 05 07 09 11 13 15

“virtual reality” + haptic
“virtual reality” - haptic

�1

a b

c d

Figure C.1: Results from Google Scholar related to relevant Virtual Reality (VR) terms. The
values were collected on February 7, 2017, under https://scholar.google.de, and are tabulated
in Table C.1. Number of results from 1991 – 2016 are yearly plotted, displaying: (a) the development
of terms related to haptic rendering, (b) haptic interfaces, (c) virtual reality and applications, and
(d) the weight of haptics within the domain defined by the term virtual reality.

https://scholar.google.de

237

T
ab

le
C
.1

:
R
es
ul
ts

fr
om

G
oo

gl
e
Sc
ho

la
r
re
la
te
d
to

re
le
va
nt

V
irt
ua
l
R
ea
lit
y
(V

R
)
te
rm

s;
nu

m
be
r
of

fo
un

d
ite

m
s
(#

)
an
d
pe
rc
en
ta
ge
s

(%
)
of

ne
st
ed

te
rm

s
(↪→

)
ar
e
sh
ow

n
fo
r
ea
ch

ye
ar

or
pe
rio

d
of

ye
ar
s.

T
he

va
lu
es

w
er
e
co
lle
ct
ed

on
Fe
br
ua
ry

7,
20
17
,
un

de
r
ht

tp
s:

//
sc

ho
la

r.
go

og
le

.d
e,

an
d
ar
e
pl
ot
te
d
in

Fi
gu

re
C
.1
.

T
er

m
≤

90
91

92
93

94
95

96
97

98
99

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
≤

16

"h
ap

ti
c

re
nd

er
in

g"
#

12
2

5
6

7
25

44
83

75
12

8
17

1
21

0
26

6
26

6
41

9
43

7
60

8
60

7
79

4
58

9
61

0
60

2
62

1
66

5
67

2
49

7
53

0
91

40
"c

ol
lis

io
n

de
te

ct
io

n"
#

40
95

59
1

62
1

76
4

86
0

10
30

13
40

12
20

14
80

15
70

17
90

21
90

24
00

28
40

35
60

37
80

42
70

44
00

45
90

49
40

52
50

53
50

56
60

57
50

55
10

52
70

45
30

84
80

0
"f

or
ce

re
nd

er
in

g"
#

11
7

5
8

6
5

10
16

15
19

12
25

21
34

53
55

73
93

10
1

11
7

11
2

12
9

12
0

13
4

12
1

12
9

12
5

92
17

80
"f

or
ce

co
m

pu
ta

ti
on

"
#

64
1

90
83

11
4

11
7

16
8

17
5

16
9

17
1

18
7

24
4

22
4

21
7

30
2

33
3

35
8

45
6

48
2

54
5

53
2

53
5

57
2

64
6

60
0

54
8

60
4

55
2

98
10

"v
ir
tu

al
as

se
m

bl
y"

#
53

12
7

9
30

51
62

80
11

2
17

3
17

1
22

9
29

3
32

1
45

0
50

6
67

1
68

8
75

8
87

2
89

8
99

7
11

00
87

1
66

0
50

9
38

1
11

20
0

"v
ir
tu

al
pr

ot
ot

yp
in

g"
#

28
3

65
70

15
1

23
6

39
5

44
2

58
9

71
9

78
6

81
2

10
30

11
10

13
30

16
10

17
90

19
40

24
00

21
10

24
00

22
00

22
80

23
90

22
60

19
20

16
50

13
60

37
00

0

"v
ir
tu

al
re

al
it
y"

#
37

50
95

8
19

80
34

90
49

10
64

30
80

00
92

70
10

60
0

12
00

0
13

30
0

15
40

0
16

40
0

18
10

0
20

70
0

21
90

0
26

40
0

27
30

0
29

90
0

32
00

0
33

50
0

34
10

0
34

40
0

34
50

0
32

40
0

32
00

0
27

90
0

98
10

00
↪→

+
"h

ap
ti
c"

#
16

6
38

76
13

1
17

1
28

4
33

8
55

5
68

1
82

1
10

30
13

40
15

40
16

30
20

80
22

20
28

40
28

10
29

70
30

70
33

50
34

10
37

20
40

00
42

70
44

40
42

90
59

20
0

%
4.

4
4.

0
3.

8
3.

8
3.

5
4.

4
4.

2
6.

0
6.

4
6.

9
7.

7
8.

7
9.

4
9.

0
10

.1
10

.1
10

.8
10

.3
9.

9
9.

6
10

.0
10

.0
10

.8
11

.6
13

.2
13

.9
15

.4
6.

0

"h
ap

ti
c

de
vi

ce
"

#
12

7
15

22
33

18
51

70
14

4
18

0
21

0
29

2
43

6
50

9
58

5
80

1
91

3
11

60
12

80
13

50
14

00
15

50
15

90
16

20
18

70
20

30
19

60
18

30
23

00
0

"h
ap

ti
c

in
te

rf
ac

e"
#

27
5

34
49

78
79

13
2

18
2

23
4

31
5

37
1

42
7

59
6

69
6

69
9

92
1

10
60

13
70

12
70

12
20

12
70

13
90

14
20

14
90

17
90

18
30

16
10

15
10

23
50

0

https://scholar.google.de
https://scholar.google.de

Appendix D

Publications by the Author

Table D.1: List of publications by the author, ordered chrono-alphabetically. The weight on the
contents presented thesis is labeled from none () to small (#), medium (G#), and strong ();
additionally, related chapter(s) are indicated.

Reference Publication Details Weight Chapter

[SHPH08] Mikel Sagardia, Thomas Hulin, Carsten Preusche,
and Gerd Hirzinger. Improvements of the voxmap-
pointshell algorithm – fast generation of haptic data-
structures. In Internationales Wissenschaftliches Kol-
loquium (IWK, TU Ilmenau), 2008.

Chapter 3

[HSA+08] Thomas Hulin, Mikel Sagardia, Jordi Artigas, Simon
Schaetzle, Philipp Kremer, and Carsten Preusche.
Human-scale bimanual haptic interface. In Proc. of
the Int. Conf. on Enactive Interface, 2008.

Chapter 6,
Chapter A

[SHPH09] Mikel Sagardia, Thomas Hulin, Carsten Preusche, and
Gerd Hirzinger. A benchmark of force quality in hap-
tic rendering. In Proc. of the Int. Conf. on Human-
Computer Interaction (HCI), 2009.

[WSM+10] Rene Weller, Mikel Sagardia, David Mainzer, Thomas
Hulin, Gabriel Zachmann, and Carsten Preusche. A
benchmarking suite for 6-dof real time collision re-
sponse algorithms. In Proc. ACM Symp. on Virtual
Reality and Software Technology (VRST), pages 63–
70. ACM, 2010.

239

240 APPENDIX D. PUBLICATIONS BY THE AUTHOR

[HHK+11] Thoma Hulin, Katharina Hertkorn, Philipp Kre-
mer, Simon Schätzle, Jordi Artigas, Mikel Sagardia,
Franziska Zacharias, and Carsten Preusche. The DLR
bimanual haptic device with optimized workspace
(video). In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 3441–3442. IEEE, 2011.

Chapter 6,
Chapter A

[SWH+12] Mikel Sagardia, Bernhard Weber, Thomas Hulin,
Carsten Preusche, and Gerd Hirzinger. Evaluation of
visual and force feedback in virtual assembly verifica-
tions. In Proc. IEEE Virtual Reality (VR), pages 23–
26. IEEE, 2012. Best Short Paper Nomination
Award.

[SH13] Mikel Sagardia and Thomas Hulin. Fast and accu-
rate distance, penetration, and collision queries using
point-sphere trees and distance fields. In ACM SIG-
GRAPH Posters, page 83. ACM, 2013.

G# Chapter 3

[SHH+13] Mikel Sagardia, Katharina Hertkorn, Thomas Hulin,
Robin Wolff, Johannes Hummel, Janki Dodiya, and
Andreas Gerndt. An interactive virtual reality system
for on-orbit servicing. In Proc. IEEE Virtual Reality
(VR), 2013. (Video).

Chapter 5

[WSHP13] Bernhard Weber, Mikel Sagardia, Thomas Hulin, and
Carsten Preusche. Visual, vibrotactile, and force feed-
back of collisions in virtual environments: effects on
performance, mental workload and spatial orientation.
In Virtual Augmented and Mixed Reality. Designing
and Developing Augmented and Virtual Environments,
volume 8021 of Lecture Notes in Computer Science,
pages 241–250. Springer Berlin Heidelberg, 2013. Best
Paper Award.

[DMB+13] Ralf Dörner, Geert Matthys, Manfred Bogen, Ste-
fan Rilling, Andreas Gerndt, Janki Dodiya, Katharina
Hertkorn, Thomas Hulin, Johannes Hummel, Mikel
Sagardia, Robin Wolff, Tom Kühnert, Guido Brun-
nett, Hagen Buchholz, Lisa Blum, Christoffer Menk,
Christian Bade, Werner Schreiber, Matthias Greiner,
Thomas Alexander, Michael Kleiber, Gerd Bruder,
and Frank Steinicke. Virtual und Augmented Reality
(VR / AR), chapter Fallbeispiele für VR/AR, pages
295–326. Springer Berlin Heidelberg, 2013.

241

[SSeS14a] Mikel Sagardia, Theodoros Stouraitis, and João Lopes
e Silva. A New Fast and Robust Collision Detec-
tion and Force Computation Algorithm Applied to the
Physics Engine Bullet: Method, Integration, and Eval-
uation. In Prof. of the Conf. and Exhibition of the
European Association of Virtual and Augmented Real-
ity (EuroVR), pages 65–76. Eurographics Association,
2014.

 Chapter 3,
Chapter 5

[SSeS14b] Mikel Sagardia, Theodoros Stouraitis, and João Lopes
e Silva. Poster: Integration of a haptic rendering al-
gorithm based on voxelized and point-samnpled struc-
tures into the physics engine bullet. In Proc. IEEE
Symposium on 3D User Interfaces (3DUI), pages 133–
134. IEEE, 2014.

G# Chapter 3,
Chapter 5

[CHS+14] Claudio Castellini, Katharina Hertkorn, Mikel Sagar-
dia, David Sierra González, and Markus Nowak. A
virtual piano-playing environment for rehabilitation
based upon ultrasound imaging. In Proc. IEEE
RAS & EMBS Int. Conf. on Biomedical Robotics and
Biomechatronics, pages 548–554. IEEE, 2014.

Chapter 5

[SHGC14] Mikel Sagardia, Katharina Hertkorn, David Sierra
González, and Claudio Castellini. Ultrapiano: A novel
human-machine interface applied to virtual reality
(video). In Proc. IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), pages 2089–2089. IEEE, 2014. Best
Video Nomination.

Chapter 5

[SHH+15] Mikel Sagardia, Katharina Hertkorn, Thomas Hulin,
Simon Schätzle, RobinWolff, Johannes Hummel, Janki
Dodiya, and Andreas Gerndt. VR-OOS: The DLR’s
virtual reality simulator for telerobotic on-orbit ser-
vicing with haptic feedback. In Proc. IEEE Aerospace
Conf., pages 1–17, 2015.

Chapter 5

[JLP+15] Steffen Jaekel, Roberto Lampariello, Giogio Panin,
Mikel Sagardia, Bernhard Brunner, Oliver Porges,
Erich Kraemer, Matthias Wieser, Richard Haarmann,
Markus Pietras, and Robin Biesbrock. Robotic capture
and de-orbiting of a heavy, uncooperative and tumbel-
ing target satellite in low earth orbit. In Proc. Symp.
on Advanced Space Technologies in Robotics and Au-
tomation (ASTRA), 2015.

Chapter 5

242 APPENDIX D. PUBLICATIONS BY THE AUTHOR

[NSSB16] Korbinian Nottensteiner, Mikel Sagardia, Andreas
Stemmer, and Christoph Borst. Narrow passage sam-
pling in the observation of robotic assembly tasks. In
Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 130–137. IEEE, 2016.

Chapter 5

[SH16] Mikel Sagardia and Thomas Hulin. A fast and ro-
bust six-dof god object heuristic for haptic rendering
of complex models with friction. In Proc. ACM Symp.
on Virtual Reality and Software Technology (VRST),
pages 163–172. ACM, 2016.

 Chapter 4

[SHH+16] Mikel Sagardia, Thomas Hulin, Katharina Hertkorn,
Philipp Kremer, and Simon Schätzle. A platform for
bimanual virtual assembly training with haptic feed-
back in large multi-object environments. In Proc.
ACM Symp. on Virtual Reality and Software Technol-
ogy (VRST), pages 153–162. ACM, 2016.

 Chapter 5

[SH17a] Mikel Sagardia and Thomas Hulin. Evaluation of a
penalty and a constraint-based haptic rendering algo-
rithm with different haptic interfaces and stiffness val-
ues. In Proc. IEEE Virtual Reality (VR), pages 64–73.
IEEE, 2017.

 Chapter 6

[SH17b] Mikel Sagardia and Thomas Hulin. Multimodal eval-
uation of the differences between real and virtual as-
semblies. IEEE Trans. on Haptics, 11:107–118, 2017.

 Chapter 6

[STH18] Mikel Sagardia, Alexander Martín Turrillas, and
Thomas Hulin. Realtime collision avoidance for mech-
anisms with complex geometries. In Proc. IEEE Vir-
tual Reality (VR), 2018. (Video).

Chapter 5

Bibliography

[AAAAD16] Abdulrahman M Al-Ahmari, Mustufa H Abidi, Ali Ahmad, and Saber Darmoul.
Development of a virtual manufacturing assembly simulation system. Advances
in Mechanical Engineering, 8(3), 2016. [cited on page(s) 145]

[AC06] Federico Avanzini and Paolo Crosato. Haptic-auditory rendering and perception
of contact stiffness. In Int. Workshop on Haptic and Audio Interaction Design,
pages 24–35. Springer, 2006. [cited on page(s) 12, 206, 219]

[AGG+03] Marco Agus, Andrea Giachetti, Enrico Gobbetti, Gianluigi Zanetti, and Antonio
Zorcolo. Real-time haptic and visual simulation of bone dissection. Presence:
Teleoperators and Virtual Environments, 12(1):110–122, 2003. [cited on page(s) 62]

[AGHWK16] Christoph Anthes, Rubén Jesús García-Hernández, Markus Wiedemann, and Di-
eter Kranzlmüller. State of the art of virtual reality technology. In Proc. IEEE
Aerospace Conf., pages 1–19, 2016. [cited on page(s) 16]

[AH99] Richard J Adams and Blake Hannaford. Stable haptic interaction with vir-
tual environments. IEEE Trans. Robotics and Automation, 15(3):465–474, 1999.
[cited on page(s) 23]

[AKO95] Yoshitaka Adachi, Takahiro Kumano, and Kouichi Ogino. Intermediate represen-
tation for stiff virtual objects. In Proc. IEEE Virtual Reality (VR), pages 203–210.
IEEE, 1995. [cited on page(s) 36]

[AM01] Thomas Akenine-Möller. Fast 3d triangle-box overlap testing. Technical report,
Department of Computer Engineering, Chalmers University of Technology, 2001.
[cited on page(s) 38, 70]

[AMF16] A Aguilera, FJ Melero, and FR Feito. Out-of-core real-time haptic interaction on
very large models. Computer-Aided Design, 77:98–106, 2016. [cited on page(s) 34]

243

244 BIBLIOGRAPHY

[ASB07] Sören Andersson, Anders Söderberg, and Stefan Björklund. Friction models for
sliding dry, boundary and mixed lubricated contacts. Tribology international,
40(4):580–587, 2007. [cited on page(s) 58, 117]

[ASHO+07] Alin Albu-Schäffer, Sami Haddadin, Chiristian Ott, Andreas Stemmer, Thomas
Wimböck, and Gerd Hirzinger. The dlr lightweight robot: Design and control
concepts for robots in human environments. Industrial Robot: An Int. Journal,
34(5):376—-385, 2007. [cited on page(s) 171, 227]

[Bar89] David Baraff. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. Proc. ACM SIGGRAPH, 23(3):223–232, 1989. [cited on page(s) 51, 54, 57]

[Bar92] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis,
Cornell University, 1992. [cited on page(s) 146]

[Bar93] David Baraff. Issues in computing contact forces for non-penetrating rigid bodies.
Algorithmica, 10(2-4):292–352, 1993. [cited on page(s) 218]

[Bar94] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In
Proc. ACM SIGGRAPH, pages 23–34. ACM, 1994. [cited on page(s) 54]

[Bar97a] David Baraff. An introduction to physically based modeling: Rigid body simu-
lation i - unconstrained rigid body dynamics. Technical report, Carnegie Mellon
University, 1997. SIGGRAPH Course Notes. [cited on page(s) 16]

[Bar97b] David Baraff. An introduction to physically based modeling: Rigid body simula-
tion ii - nonpenetration constraints. Technical report, Carnegie Mellon University,
1997. SIGGRAPH Course Notes. [cited on page(s) 16]

[Bar07] Jernej Barbič. Real-time Reduced Large-Deformation Models and Distributed Con-
tact for Computer Graphics and Haptics. PhD thesis, Carnegie Mellon University,
2007. [cited on page(s) 77]

[Bar10] Woodrow Barfield. The use of haptic display technology in education. Themes in
science and technology education, 2(1-2):11–30, 2010. [cited on page(s) 26]

[BB07] Adrian Boeing and Thomas Bräunl. Evaluation of real-time physics sim-
ulation systems. In Proc. ACM SIGGRAPH, pages 281–288. ACM, 2007.
[cited on page(s) 15, 146, 177]

[BBT04] Abdouslam M Bashir, Robert Bicker, and Paul M Taylor. An investigation into
different visual/tactual feedback modes for a virtual object manipulation task. In
Proc. ACM SIGGRAPH Int. Conf. on Virtual Reality Continuum and its Appli-
cations in Industry, pages 359–362. ACM, 2004. [cited on page(s) 178]

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS),
22(4):469–483, 1996. [cited on page(s) 33]

BIBLIOGRAPHY 245

[BDRyB14] Stuart A Bowyer, Brian L Davies, and Ferdinando Rodriguez y Baena. Active
constraints/virtual fixtures: A survey. IEEE Trans. on Robotics, 30(1):138–157,
2014. [cited on page(s) 24]

[BDSR06] Jurgen Broeren, Mark Dixon, Katharina Stibrant Sunnerhagen, and Martin Ry-
dmark. Rehabilitation after stroke using virtual reality, haptics (force feedback)
and telemedicine. Studies in health technology and informatics, 124:51, 2006.
[cited on page(s) 26]

[BDW+03] Aaron Bloomfield, Yu Deng, Jeff Wampler, Pascale Rondot, Dina Harth, Mary
McManus, and Norman Badler. A taxonomy and comparison of haptic actions
for disassembly tasks. In Proc. IEEE Virtual Reality (VR), pages 225–231. IEEE,
2003. [cited on page(s) 183]

[BETC14] Jan Bender, Kenny Erleben, Jeff Trinkle, and Erwin Coumans. Interactive simu-
lation of rigid body dynamics in computer graphics. Computer Graphics Forum,
33(1):246–270, 2014. [cited on page(s) 15, 146]

[BH99] Doug A Bowman and Larry F Hodges. Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments. J. of
Visual Languages & Computing, 10(1):37–53, 1999. [cited on page(s) 178]

[BJ08] Jernej Barbič and Doug L. James. Six-dof haptic rendering of contact between ge-
ometrically complex reduced deformable models. IEEE Trans. on Haptics, 1(1):39
–52, 2008. [cited on page(s) 42, 47, 60, 67, 68, 101, 151]

[BKLJP01] Doug A Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan Poupyrev. An
introduction to 3-d user interface design. Presence: Teleoperators and virtual
environments, 10(1):96–108, 2001. [cited on page(s) 16, 17]

[BLBH12] Manuel Brucker, Simon Léonard, Tim Bodenmüller, and Gregory D Hager. Se-
quential scene parsing using range and intensity information. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 5417–5424. IEEE, 2012.
[cited on page(s) 172]

[BM07] Doug A Bowman and Ryan P McMahan. Virtual reality: how much immersion
is enough? Computer, 40(7):36–43, 2007. [cited on page(s) 14, 181, 219]

[BPT15] Yuval S Boger, Ryan A Pavlik, and Russell M Taylor. Osvr: An open-source
virtual reality platform for both industry and academia. In Proc. IEEE Virtual
Reality (VR), pages 383–384. IEEE, 2015. [cited on page(s) 17]

[BPW14] Cheryl Campanella Bracken, Gary Pettey, and Mu Wu. Revisiting the use of
secondary task reaction time measures in telepresence research: exploring the role
of immersion and attention. AI & society, 29(4):533–538, 2014. [cited on page(s) 206,

219]

246 BIBLIOGRAPHY

[BS02] Cagatay Basdogan and Ayam A. Srinivasan. Haptic rendering in virtual environ-
ments. Stanney, K. (Ed.), Handbook of Virtual Environments, pages 117–134,
2002. [cited on page(s) 11, 15, 19, 21, 116]

[Cam97] Stephen Cameron. Enhancing gjk: Computing minimum and penetration dis-
tances between convex polyhedra. In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), volume 97, pages 20–25, 1997. [cited on page(s) 40]

[CB94] J. Edward Colgate and J. Michael Brown. Factors affecting the z-width of a haptic
display. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
3205–3210. IEEE, 1994. [cited on page(s) 21]

[CB17] Erwin Coumans and Yunfei Bai. pybullet, a python module for physics simulation
in robotics, games and machine learning. Technical report, Google Brain, 2017.
[cited on page(s) 26]

[CBS13] Shing-Chow Chan, Nikolas H Blevins, and Kenneth Salisbury. Deformable hap-
tic rendering for volumetric medical image data. In Proc. IEEE World Haptics
Conference, pages 73–78. IEEE, 2013. [cited on page(s) 55, 61, 117]

[CCBS11] Sonny Chan, François Conti, Nikolas H. Blevins, and Kenneth Salisbury.
Constraint-based six degree-of-freedom haptic rendering of volume-embedded iso-
surfaces. In Proc. IEEE World Haptics Conference, pages 89–94. IEEE, 2011.
[cited on page(s) 34, 43, 67, 117]

[CD68] Richard W Cottle and George B Dantzig. Complementary pivot theory of math-
ematical programming. Linear algebra and its applications, 1(1):103–125, 1968.
[cited on page(s) 54]

[Cha84] Bernard Chazelle. Convex partitions of polyhedra: a lower bound and worst-
case optimal algorithm. SIAM Journal on Computing, 13(3):488–507, 1984.
[cited on page(s) 37]

[CHS+14] Claudio Castellini, Katharina Hertkorn, Mikel Sagardia, David Sierra González,
and Markus Nowak. A virtual piano-playing environment for rehabilitation based
upon ultrasound imaging. In Proc. IEEE RAS & EMBS Int. Conf. on Biomedical
Robotics and Biomechatronics, pages 548–554. IEEE, 2014. [cited on page(s) 170,

241]

[CJA+10] Hadrien Courtecuisse, Hoeryong Jung, Jérémie Allard, Christian Duriez,
Doo Yong Lee, and Stéphane Cotin. Gpu-based real-time soft tissue deformation
with cutting and haptic feedback. Progress in biophysics and molecular biology,
103(2-3):159–168, 2010. [cited on page(s) 61]

[CK05] Francois Conti and Oussama Khatib. Spanning large workspaces using small
haptic devices. In Proc. IEEE World Haptics Conference, pages 183–188. IEEE,
2005. [cited on page(s) 20, 156]

BIBLIOGRAPHY 247

[CKB03] Francois Conti, Oussama Khatib, and Charles Baur. Interactive rendering of
deformable objects based on a filling sphere modelling approach. In IEEE In-
ternational Conference on Robotics and Automation, volume 3, pages 3716–3721.
IEEE, 2003. [cited on page(s) 36, 60]

[CLMP95] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav Ponamgi. I-
collide: An interactive and exact collision detection system for large-scale envi-
ronments. In Proc. of ACM Interactive 3D Graphics Conference, pages 189–ff.
ACM, 1995. [cited on page(s) 32, 44, 46, 151]

[CMJ11] T.R. Coles, D. Meglan, and N. John. The role of haptics in medical training
simulators: A survey of the state of the art. IEEE Trans. on Haptics, 4(1):51–66,
2011. [cited on page(s) 26, 176]

[CNSD93] Carolina Cruz-Neira, Daniel J Sandin, and Thomas A DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the cave. In
Proc. ACM SIGGRAPH, pages 135–142. ACM, 1993. [cited on page(s) 16]

[COPG15] Loïc Corenthy, Miguel A Otaduy, Luis Pastor, and Marcos García. Volume haptics
with topology-consistent isosurfaces. IEEE Trans. on Haptics, 8(4):480–491, 2015.
[cited on page(s) 26]

[Cou03] Erwin Coumans. Bullet physics library 2.82, 2003. Web page accessed on June
30, 2016. [cited on page(s) 5, 15, 100, 105, 113, 143, 146, 147, 161, 162, 173, 174, 224]

[CS97] J Edward Colgate and Gerd G Schenkel. Passivity of a class of sampled-data
systems: Application to haptic interfaces. J. of Robotic Systems, 14(1):37–47,
1997. [cited on page(s) 22]

[CSB95] J. E. Colgate, M. C. Stanley, and J. M. Brown. Issues in the haptic display of tool
use. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
volume 3, pages 140–145, 1995. [cited on page(s) 22, 54, 55, 56, 57, 66, 116]

[CSC05] Daniela Constantinescu, Septimiu E. Salcudean, and Elizabeth A. Croft. Haptic
rendering of rigid contacts using impulsive and penalty forces. IEEE Trans. on
Robotics, 21(3):309–323, 2005. [cited on page(s) 51, 52]

[DABS06] Lionel Dominjon, Lécuyer Anatole, Jean-Marie Burkhardt, and Richir Simon. A
Comparison of Three Techniques to Interact in Large Virtual Environments Using
Haptic Devices with Limited Workspace. J. of Material Forming, 4035:288–299,
2006. [cited on page(s) 156]

[Dan63] George Dantzig. Linear programming and extensions. Princeton university press,
1963. [cited on page(s) 40]

248 BIBLIOGRAPHY

[DBS97] David E DiFranco, G Lee Beauregard, and Mandavam A Srinivasan. The effect
of auditory cues on the haptic perception of stiffness in virtual environments. In
Proc. of the ASME Dynamic Systems and Control Division, volume 61, pages 17–
22. American Society of Mechanical Engineers (ASME), 1997. [cited on page(s) 12,

206, 219]

[DDKA06] Christian Duriez, Frédéric Dubois, Abderrahmane Kheddar, and Claude Andriot.
Realistic haptic rendering of interacting deformable objects in virtual environ-
ments. IEEE Trans. on Visualization and Computer Graphics, 12(1):36–47, 2006.
[cited on page(s) 60]

[Dem07] Barbara Deml. Human factors issues on the design of telepresence sys-
tems. Presence: Teleoperators and Virtual Environments, 16(5):471–487, 2007.
[cited on page(s) 183]

[DMB+13] Ralf Dörner, Geert Matthys, Manfred Bogen, Stefan Rilling, Andreas Gerndt,
Janki Dodiya, Katharina Hertkorn, Thomas Hulin, Johannes Hummel, Mikel
Sagardia, Robin Wolff, Tom Kühnert, Guido Brunnett, Hagen Buchholz, Lisa
Blum, Christoffer Menk, Christian Bade, Werner Schreiber, Matthias Greiner,
Thomas Alexander, Michael Kleiber, Gerd Bruder, and Frank Steinicke. Vir-
tual und Augmented Reality (VR / AR), chapter Fallbeispiele für VR/AR, pages
295–326. Springer Berlin Heidelberg, 2013. [cited on page(s) 240]

[DZ93] Paul Dworkin and David Zeltzer. A new model for efficient dynamic simula-
tion. In Proc. of the Eurographics Workshop on Animation and Simulation, 1993.
[cited on page(s) 43, 45, 54, 116]

[EB02] Marc O Ernst and Martin S Banks. Humans integrate visual and haptic in-
formation in a statistically optimal fashion. Nature, 415(6870):429–433, 2002.
[cited on page(s) 12, 176]

[EBB00] Marc O Ernst, Martin S Banks, and Heinrich H Bülthoff. Touch can change visual
slant perception. Nature neuroscience, 3(1):69–73, 2000. [cited on page(s) 12]

[Ebe99] David Eberly. Distance between point and triangle in 3d. In Magic Software,
1999. [cited on page(s) 38, 72]

[EL00] Stephen A. Ehmann and Ming C. Lin. Accelerated proximity queries between
convex polyhedra by multi-level voronoi marching. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), volume 3, pages 2101–2106. IEEE,
2000. [cited on page(s) 32, 41]

[EL01] Stephen A. Ehmann and Ming C. Lin. Accurate and fast proximity queries be-
tween polyhedra using convex surface decomposition. Computer Graphics Forum,
20(3):500–511, 2001. [cited on page(s) 48]

BIBLIOGRAPHY 249

[EMK07] Adrien Escande, Sylvain Miossec, and Abderrahmane Kheddar. Continuous
gradient proximity distance for humanoids free-collision optimized-postures. In
Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pages 188–195. IEEE, 2007.
[cited on page(s) 33, 37]

[Erl05] Kenny Erleben. Stable, Robust, and Versatile Multibody Dynamics Animation.
PhD thesis, University of Copenhagen, 2005. [cited on page(s) 146]

[FBAF08] François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou. Image-
based collision detection and response between arbitrary volume objects. In Proc.
of the Eurographics/ ACM SIGGRAPH Symposium on Computer Animation,
pages 155–162. Eurographics Association, 2008. [cited on page(s) 38]

[FDS90] Patrick Fischer, Ron Daniel, and KV Siva. Specification and design of input
devices for teleoperation. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 540–545. IEEE, 1990. [cited on page(s) 19]

[Fec60] G Th Fechner. Elemente der Psychophysik. Breitkopf & Härtel, 1860.
[cited on page(s) 10]

[FG04] Kaspar Fischer and Bernd Gärtner. The smallest enclosing balls of balls: Com-
binatorial structure and algorithms. International Journal of Computational Ge-
ometry & Applications, 14:341–378, 2004. [cited on page(s) 68, 92]

[FGH+16] Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven
Schönherr. Bounding volumes. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.9 edition, 2016. [cited on page(s) 92]

[FSG03] Arnulph Fuhrmann, Gerrit Sobotka, and Clemens Groß. Distance fields for rapid
collision detection in physically based modeling. In Proc. of GraphiCon, pages
58–65, 2003. [cited on page(s) 34]

[FUF06] Christoph Fünfzig, Torsten Ullrich, and Dieter W Fellner. Hierarchical spherical
distance fields for collision detection. IEEE Computer Graphics and Applications,
26(1):64–74, 2006. [cited on page(s) 33]

[Gau29] Carl Friedrich Gauss. Über ein neues allgemeines grundgesetz der mechanik. Reine
angewandte Mathematik, 4:232–235, 1829. [cited on page(s) 54, 116, 134]

[GBMCL+14] Germanico Gonzalez-Badillo, Hugo Medellin-Castillo, Theodore Lim, James
Ritchie, and Samir Garbaya. The development of a physics and constraint-
based haptic virtual assembly system. Assembly Automation, 34(1):41–55, 2014.
[cited on page(s) 145, 178, 218]

[GFL04] Philippe Garrec, Jean-Pierre Friconneau, and François Louveaux. Virtuose 6d:
a new force-control master arm using innovative ball-screw actuators. In Int.
Symp. on Robotics (ISR), 2004. Web page accessed on February 26, 2018.
[cited on page(s) 18, 19]

250 BIBLIOGRAPHY

[GJK88] Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya Keehrthi. A fast procedure
for computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, 4(2):193–203, 1988. [cited on page(s) 32,

36, 37, 40, 100, 146]

[GLGT05] Arthur Gregory, Ming C. Lin, Stefan Gottschalk, and Russell Taylor. A frame-
work for fast and accurate collision detection for haptic interaction. In ACM
SIGGRAPH Courses, page 34, 2005. [cited on page(s) 34, 44]

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for
rapid interference detection. In Proc. ACM SIGGRAPH, pages 171–180. ACM,
1996. [cited on page(s) 32, 33, 39, 46, 47]

[GME+00] Arthur Gregory, Ajith Mascarenhas, Stephen Ehmann, Ming Lin, and Di-
nesh Manocha. Six degree-of-freedom haptic display of polygonal models. In
Proc. IEEE Visualization, pages 139–146. IEEE Computer Society Press, 2000.
[cited on page(s) 32, 41, 46]

[GO09] Carlos Garre and Miguel A. Otaduy. Haptic rendering of complex deformations
through handle-space force linearization. In Proc. Eurohaptics Conf., pages 422–
427. IEEE, 2009. [cited on page(s) 36, 60]

[GRV+10] T Gutiérrez, J Rodríguez, Yaiza Velaz, Sara Casado, A Suescun, and Emilio J
Sánchez. Ima-vr: a multimodal virtual training system for skills transfer in in-
dustrial maintenance and assembly tasks. In Proc. IEEE Int. Symp. on Robots
and Human Interactive Communications (ROMAN), pages 428–433. IEEE, 2010.
[cited on page(s) 145, 157]

[GSW97] Rakesh Gupta, Thomas Sheridan, and Daniel Whitney. Experiments using multi-
modal virtual environments in design for assembly analysis. Presence: Teleoper-
ators and Virtual Environments, 6(3):318–338, 1997. [cited on page(s) 176, 177, 183,

219]

[GW08] Antony W. Goodwin and Heather E. Wheat. Human Haptic Perception, chapter
Physiological Mechanism of the Receptor System, pages 93–102. Birkhaeuser
Verlag, 2008. [cited on page(s) 9, 10]

[GZC07] Samir Garbaya and U. Zaldivar-Colado. The affect of contact force sensations on
user performance in virtual assembly tasks. Virtual Reality, 11(4):287–299, 2007.
[cited on page(s) 176, 178]

[HA00] Vincent Hayward and Brian Armstrong. A new computational model of friction
applied to haptic rendering. In Experimental Robotics VI, pages 403–412. Springer,
2000. [cited on page(s) 58, 117]

BIBLIOGRAPHY 251

[Hay08] Vincent Hayward. Human Haptic Perception, chapter Haptic Shape Cues, In-
variants, Priors and Interface Design, pages 381–392. Birkhaeuser Verlag, 2008.
[cited on page(s) 12]

[HB08] Zdenek Halata and Klaus I. Baumann. Human Haptic Perception, chapter
Anatomy of Receptors, pages 85–92. Birkhaeuser Verlag, 2008. [cited on page(s) 8,

9]

[HB12] Sandra Hirche and Martin Buss. Human-oriented control for haptic teleoperation.
Proceedings of the IEEE, 100(3):623–647, 2012. [cited on page(s) 24]

[HBA+06] Matthias Harders, Alexander Barlit, Katsuhito Akahane, Makoto Sato, and Gabor
Szekely. Comparing 6dof haptic interfaces for application in 3d assembly tasks.
In Proc. Eurohaptics Conf., volume 6, pages 523–526, 2006. [cited on page(s) 178,

200]

[HBDH93] Gerd Hirzinger, Bernhard Brunner, Johannes Dietrich, and Johann Heindl.
Sensor-based space robotics-rotex and its telerobotic features. IEEE Transac-
tions on Robotics and Automation, 9(5):649–663, 1993. [cited on page(s) 24]

[HBS99] Chih-Hao Ho, Cagatay Basdogan, and Mandayam A Srinivasan. Efficient point-
based rendering techniques for haptic display of virtual objects. Presence,
8(5):477–491, 1999. [cited on page(s) 44]

[HDB+14] Andreas Hermann, Florian Drews, Joerg Bauer, Sebastian Klemm, Arne Roen-
nau, and Ruediger Dillmann. Unified gpu voxel collision detection for mobile
manipulation planning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 4154–4160. IEEE, 2014. [cited on page(s) 34, 43, 45, 67]

[HDE+16] Johannes Hummel, Janki Dodiya, Laura Eckardt, Robin Wolff, Andreas Gerndt,
and Torsten W. Kuhlen. A lightweight electrotactile feedback device for grasp
improvement in immersive virtual environments. In Proc. IEEE Virtual Reality
(VR), pages 39 – 48. IEEE, 2016. [cited on page(s) 168]

[Her96] Heinrich Hertz. Über die berührung fester elastischer körper – on the contact of
elastic solids. Reine und angewandte Mathematik, 1896. [cited on page(s) 62]

[Her15] Katharina Hertkorn. Shared Grasping: A Combination of Telepresence and Grasp
Planning. PhD thesis, Karlsruher Institut für Technologie (KIT) and German
Aerospace Center (DLR), 2015. [cited on page(s) 24, 67, 100, 172, 206, 219]

[HHC+08] Peter Hinterseer, Sandra Hirche, Subhasis Chaudhuri, Eckehard Steinbach, and
Martin Buss. Perception-based data reduction and transmission of haptic data
in telepresence and teleaction systems. IEEE Transactions on Signal Processing,
56(2):588–597, 2008. [cited on page(s) 11]

252 BIBLIOGRAPHY

[HHK+11] Thoma Hulin, Katharina Hertkorn, Philipp Kremer, Simon Schätzle, Jordi Arti-
gas, Mikel Sagardia, Franziska Zacharias, and Carsten Preusche. The DLR biman-
ual haptic device with optimized workspace (video). In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 3441–3442. IEEE, 2011. [cited on page(s) 6,

18, 19, 150, 154, 179, 184, 201, 204, 227, 228, 240]

[HLC+97] Thomas C. Hudson, Ming C. Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. V-collide: Accelerated collision detection for vrml. In Proceedings
VRML, pages 117–ff. ACM, 1997. [cited on page(s) 44]

[HM02] William S. Harwin and Nicholas Melder. Improved haptic rendering for multi-
finger manipulation using friction cone based god-objects. In Proc. Eurohaptics
Conf., pages 82–85, 2002. [cited on page(s) 58, 117, 133]

[HNJ+08] U Hagn, M Nickl, S Jörg, G Passig, T Bahls, A Nothhelfer, F Hacker, L Le-
Tien, A Albu-Schäffer, R Konietschke, M Grebenstein, R Warpup, R Hasslinger,
M Frommberger, and G Hirzinger. The dlr miro: a versatile lightweight robot for
surgical applications. Industrial Robot: An International Journal, 35(4):324–336,
2008. [cited on page(s) 229]

[HO08] Blake Hannaford and Allison M Okamura. Springer Handbook of Robotics, chapter
Haptics, pages 1063–1084. Springer, 2008. [cited on page(s) 19, 21, 26]

[HR02] Blake Hannaford and Jee-Hwan Ryu. Time-domain passivity control of haptic
interfaces. IEEE Transactions on Robotics and Automation, 18(1):1–10, 2002.
[cited on page(s) 22]

[HR09] David Hecht and Miriam Reiner. Sensory dominance in combinations of audio,
visual and haptic stimuli. Experimental brain research, 193(2):307–314, 2009.
[cited on page(s) 12, 176, 206]

[HS04] Shoichi Hasegawa and Makoto Sato. Real-time rigid body simulation for haptic
interactions based on contact volume of polygonal objects. Computer Graphics
Forum, 23(3):529–538, 2004. [cited on page(s) 38]

[HS16] Xiyuan Hou and Olga Sourina. Real-time adaptive prediction method for smooth
haptic rendering. arXiv preprint arXiv:1603.06674, 2016. [cited on page(s) 25, 49]

[HSA+08] Thomas Hulin, Mikel Sagardia, Jordi Artigas, Simon Schaetzle, Philipp Kremer,
and Carsten Preusche. Human-scale bimanual haptic interface. In Proc. of the
Int. Conf. on Enactive Interface, 2008. [cited on page(s) 132, 239]

[Hub96] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical colli-
sion detection. ACM Trans. on Graphics, 15(3):179–210, 1996. [cited on page(s) 32,

46]

BIBLIOGRAPHY 253

[Hul17] Thomas Hulin. Control of Hybrid Systems Affected by Time Delay with Appli-
cation in Haptic Rendering. PhD thesis, Leibniz Universitaät Hannover, 2017.
[cited on page(s) 22, 23]

[HV07] Brad M Howard and Judy M Vance. Desktop haptic virtual assembly using phys-
ically based modelling. Virtual Reality, 11(4):207–215, 2007. [cited on page(s) 145]

[HWS+12] Johannes Hummel, Robin Wolff, Tobias Stein, Andreas Gerndt, and Torsten
Kuhlen. An evaluation of open source physics engines for use in virtual reality
assembly simulations. In Advances in Visual Computing, pages 346–357. Springer,
2012. [cited on page(s) 15, 146]

[HY08] Steven Hsiao and Jeffrey Yau. Human Haptic Perception, chapter Neural Basis of
Haptic Perception, pages 103–112. Birkhaeuser Verlag, 2008. [cited on page(s) 10]

[ICG+06] Rosa Iglesias, Sara Casado, Teresa Gutierrez, Alejandro García-Alonso,
Kian Meng Yap, Wai Yu, and Alan Marshall. A peer-to-peer architecture for
collaborative haptic assembly. In Proc. IEEE Int. Symp. on Distributed Simula-
tion and Real-Time Applications, pages 25–34. IEEE, 2006. [cited on page(s) 157]

[JBS06] Mark W Jones, J Andreas Baerentzen, and Milos Sramek. 3d distance fields: A
survey of techniques and applications. IEEE Transactions on visualization and
Computer Graphics, 12(4):581–599, 2006. [cited on page(s) 34]

[JC98] David E Johnson and Elaine Cohen. A framework for efficient minimum distance
computations. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
volume 4, pages 3678–3684. IEEE, 1998. [cited on page(s) 42]

[JCRR09] Li Jiang, Mark R Cutkosky, Juhani Ruutiainen, and Roope Raisamo. Using haptic
feedback to improve grasp force control in multiple sclerosis patients. IEEE Trans.
on Robotics, 25(3):593–601, 2009. [cited on page(s) 26]

[JLP+15] Steffen Jaekel, Roberto Lampariello, Giogio Panin, Mikel Sagardia, Bernhard
Brunner, Oliver Porges, Erich Kraemer, Matthias Wieser, Richard Haarmann,
Markus Pietras, and Robin Biesbrock. Robotic capture and de-orbiting of a heavy,
uncooperative and tumbeling target satellite in low earth orbit. In Proc. Symp.
on Advanced Space Technologies in Robotics and Automation (ASTRA), 2015.
[cited on page(s) 241]

[Jon00] Lynette A Jones. Kinesthetic sensing. In Human and Machine Haptics. MIT
Press, 2000. [cited on page(s) 11]

[JP01] Doug L. James and Dinesh K. Pai. A unified treatment of elastostatic contact
simulation for real time haptics. Haptics-e: The Electronic Journal of Haptics
Research, 2(1):1–13, 2001. [cited on page(s) 60]

254 BIBLIOGRAPHY

[JWC05] David E. Johnson, Peter Willemsen, and Elaine Cohen. Six degree-of-freedom
haptic rendering using spatialized normal cone search. IEEE Trans. on Visual-
ization and Computer Graphics, 11(6):661–670, 2005. [cited on page(s) 33]

[KDK10] Ingo Kossyk, Jonas Dörr, and Konstantin Kondak. Design and evaluation
of a wearable haptic interface for large workspaces. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 4674–4679. IEEE, 2010.
[cited on page(s) 18, 19]

[KEP05] Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. Fast frictional
dynamics for rigid bodies. ACM Trans. on Graphics, 24(3):946–956, 2005.
[cited on page(s) 117]

[KFN06] Katherine J. Kuchenbecker, Jonathan Fiene, and Günter Niemeyer. Improving
contact realism through event-based haptic feedback. IEEE Trans. on Visual-
ization and Computer Graphics, 12(2):219–230, 2006. [cited on page(s) 20, 59, 179,

181]

[KHM+98] James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and
Karel Zikan. Efficient collision detection using bounding volume hierarchies of
k-dops. IEEE Trans. on Visualization and Computer Graphics, 4(1):21–36, 1998.
[cited on page(s) 32, 46, 47]

[KKT+04] Jung Kim, Hyun Kim, Boon K Tay, Manivannan Muniyandi, Mandayam A Srini-
vasan, Joel Jordan, Jesper Mortensen, Manuel Oliveira, and Mel Slater. Transat-
lantic touch: A study of haptic collaboration over long distance. Presence: Tele-
operators & Virtual Environments, 13(3):328–337, 2004. [cited on page(s) 26]

[KLM02] Young J. Kim, Ming C. Lin, and Dinesh Manocha. Deep: Dual-space expan-
sion for estimating penetration depth between convex polytopes. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 921–926. IEEE, 2002.
[cited on page(s) 37]

[KLM04] Young J. Kim, Ming C. Lin, and Dinesh Manocha. Incremental penetration depth
estimation between convex polytopes using dual-space expansion. IEEE Trans.
on Visualization and Computer Graphics, 10(2):152–163, 2004. [cited on page(s) 37]

[KLR15] Jaeha Kim, Chang-Gyu Lee, and Jeha Ryu. Depth cube-based six degree-of-
freedom haptic rendering for rigid bodies. IEEE Trans. on Haptics, 8(4):345–355,
2015. [cited on page(s) 33, 34, 42]

[KOKM11] H. Kawasaki, Y. Ohtuka, S. Koide, and T. Mouri. Perception and haptic rendering
of friction moments. IEEE Trans. on Haptics, 4(1):28–38, 2011. [cited on page(s) 118,

133]

BIBLIOGRAPHY 255

[KP09] Kimin Kim and Jinah Park. Virtual bone drilling for dental implant surgery train-
ing. In Proc. ACM Symp. on Virtual Reality and Software Technology (VRST),
pages 91–94. ACM, 2009. [cited on page(s) 62]

[KS87] Ariel Kaufman and Eyal Shimony. 3d scan-conversion algorithms for voxel-based
graphics. In Proc. of the Workshop on Interactive 3D Graphics, pages 45–75.
ACM, 1987. [cited on page(s) 71]

[KWA+09] P. Kremer, T. Wimböck, J. Artigas, S. Schätzle, K. Jöhl, F. Schmidt, C. Preusche,
and G. Hirzinger. Multimodal telepresent control of DLR’s Rollin’ JUSTIN
(video). In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
1601–1602. IEEE, 2009. [cited on page(s) 168, 172, 228]

[KWZ17] Maximilian Kaluschke, Rene Weller, and Gabriel Zachmann. A volumetric pen-
etration measure for 6-dof haptic rendering of streaming point clouds. In Proc.
IEEE World Haptics Conference, pages 511–516. IEEE, 2017. [cited on page(s) 33,

48]

[KZ04] Jan Klein and Gabriel Zachmann. Point cloud collision detection. Computer
Graphics Forum, 23(3):567–576, 2004. [cited on page(s) 33, 42]

[Law93] Dale A Lawrence. Stability and transparency in bilateral teleoperation. IEEE
Trans. Robotics and Automation, 9(5):624–637, 1993. [cited on page(s) 23]

[Law11] Michael A Lawrence. ez: Easy analysis and visualization of factorial experiments,
2011. [cited on page(s) 208]

[LBF+02] Ming C Lin, William Baxter, Mark Foskey, Miguel A Otaduy, and Vincent Scheib.
Haptic interaction for creative processes with simulated media. In Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA), volume 1, pages 598–604. IEEE, 2002.
[cited on page(s) 26]

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In Proc. ACM SIGGRAPH, volume 21(4), pages
163–169. ACM, 1987. [cited on page(s) 62]

[LC91] Ming C. Lin and John F. Canny. A fast algorithm for incremental distance cal-
culation. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
1008–1014. IEEE, 1991. [cited on page(s) 32, 37, 41, 48, 52]

[LCS12] Adam Leeper, Sonny Chan, and Kenneth Salisbury. Point clouds can be repre-
sented as implicit surfaces for constraint-based haptic rendering. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 5000–5005. IEEE, 2012.
[cited on page(s) 33, 34, 42, 117]

[Leo07] Francisco Leon. Gimpact - geometric tools for vr, 2007. Web page accessed on
August 29th, 2014. [cited on page(s) 146]

256 BIBLIOGRAPHY

[LGLM99] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast proximity
queries with swept sphere volumes. Technical report, University of North Carolina,
Chapel Hill, 1999. [cited on page(s) 32, 46, 48]

[LJ00] Joseph J LaViola Jr. A discussion of cybersickness in virtual environments. ACM
SIGCHI Bulletin, 32(1):47–56, 2000. [cited on page(s) 7, 13]

[LK87] Susan J Lederman and Roberta L Klatzky. Hand movements: A window
into haptic object recognition. Cognitive psychology, 19(3):342–368, 1987.
[cited on page(s) 11]

[LK09] S.J. Lederman and R.L. Klatzky. Haptic perception: A tutorial. Attention,
Perception, & Psychophysics, 71(7):1439–1459, 2009. [cited on page(s) 7, 8, 9, 10, 11,

176]

[LKG+94] Donald R Lampton, Bruce W Knerr, Stephen L Goldberg, James P Bliss,
J Michael Moshell, and Brian S Blau. The virtual environment performance as-
sessment battery (vepab): Development and evaluation. Presence: Teleoperators
and Virtual Environments, 3(2):145–157, 1994. [cited on page(s) 183]

[LM04] Ming C. Lin and Dinesh Manocha. Handbook of discrete and computational geom-
etry, chapter Collision and Proximity Queries (Book chapter). CRC press, 2004.
[cited on page(s) 29, 39]

[LMM10] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gproximity: hierarchical gpu-
based operations for collision and distance queries. Computer Graphics Forum,
29(2):419–428, 2010. [cited on page(s) 49]

[LO08] Min C. Lin and Miguel A. Otaduy, editors. Haptic Rendering: Foundations,
Algorithms and Applications. A K Peters, Ltd., 2008. [cited on page(s) 26, 29]

[LRD+07] Theodore Lim, James M Ritchie, Richard G Dewar, Jonathan R Corney,
P Wilkinson, Mustafa Calis, M Desmulliez, and J-J Fang. Factors affect-
ing user performance in haptic assembly. Virtual Reality, 11(4):241–252, 2007.
[cited on page(s) 178, 218]

[LS08] Simon Lacey and K. Sathian. Human Haptic Perception, chapter Haptically
Evoked Activation of Visual Cortex, pages 251–257. Birkhaeuser Verlag, 2008.
[cited on page(s) 12]

[LYFH15] Keyan Liu, Xuyue Yin, Xiumin Fan, and Qichang He. Virtual assembly with
physical information: a review. Assembly Automation, 35(3):206–220, 2015.
[cited on page(s) 144]

[LYG02] Karljohan Lundin, Anders Ynnerman, and Björn Gudmundsson. Proxy-based
haptic feedback from volumetric density data. In Proc. Eurohaptics Conf., pages
104–109, 2002. [cited on page(s) 55]

BIBLIOGRAPHY 257

[Mas03] Takeshi Masuda. Surface curvature estimation from the signed distance field. In
Proc Int. Conf. on 3-D Digital Imaging and Modeling (3DIM), pages 361–368.
IEEE, 2003. [cited on page(s) 88]

[MG09] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh
approximate convex decomposition. In IEEE Int. Conf. on Image Processing
(ICIP), pages 3501–3504. IEEE, 2009. [cited on page(s) 33, 100, 146, 167]

[Mir96] Brian Vincent Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD thesis, University of California at Berkeley, 1996. [cited on page(s) 50, 52, 57]

[Mir98] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM Trans.
on Graphics, 17(3):177–208, 1998. [cited on page(s) 41]

[Mir00] Brian Mirtich. Timewarp rigid body simulation. In Proc. ACM SIGGRAPH,
pages 193–200. ACM, 2000. [cited on page(s) 43, 44, 45, 48]

[MN08] Probal Mitra and Günter Niemeyer. Model-mediated telemanipulation. Int. J.
Robotics Research, 27(2):253–262, 2008. [cited on page(s) 24]

[Moe97] Tomas Moeller. A fast triangle-triangle intersection test. Journal of Graphics
Tools, 2(2):25–30, 1997. [cited on page(s) 38]

[Mou15] Konstantinos Moustakas. 6dof haptic rendering using distance maps over im-
plicit representations. Multimedia Tools and Applications, pages 1–15, 2015.
[cited on page(s) 42, 59]

[MPT99] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Six degree-of-
freedom haptic rendering using voxel sampling. In Proc. ACM SIGGRAPH, pages
401–408. ACM, 1999. [cited on page(s) 4, 5, 33, 34, 42, 50, 53, 57, 60, 65, 66, 75, 94, 106,

112, 122, 224]

[MPT06] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Voxel-based 6-
dof haptic rendering improvements. Haptics-e: The Electronic Journal of Haptics
Research, 3(7):1–12, 2006. [cited on page(s) 42, 48, 66, 103, 151]

[MS+94] Thomas H Massie, J Kenneth Salisbury, et al. The phantom haptic interface:
A device for probing virtual objects. In Proc. of the ASME Symp. on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, volume 55:1, pages
295–300. ASME, 1994. [cited on page(s) 18, 20, 235]

[MS96] Hugh B. Morgenbesser and Mandayam A. Srinivasan. Force shading for haptic
shape perception. In Proc. of the ASME Dynamics Systems and Control Division,
volume 58, pages 407–412, 1996. [cited on page(s) 58]

[MW88] Matthew Moore and Jane Wilhelms. Collision detection and response for com-
puter animation. Computer Graphics, 22(4):289–298, 1988. [cited on page(s) 44,

53]

258 BIBLIOGRAPHY

[NB04] Wolfgang Neuwirth and Michael Benesch. Motorische leistungsserie. Technical
report, Dr. G. Schuhfried GmbH, 2004. [cited on page(s) 183]

[NJC99] Donald D. Nelson, David E. Johnson, and Elaine Cohen. Haptic Rendering Of
Surface-To-Surface Sculpted Model Interaction, volume 67, pages 101–108. ASME,
1999. [cited on page(s) 43]

[NMK+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark
Carlson. Physically based deformable models in computer graphics. Computer
graphics forum, 25(4):809–836, 2006. [cited on page(s) 59]

[NPH08] Guenter Niemeyer, Carsten Preusche, and Gerd Hirzinger. Springer Handbook on
Robotics, chapter Telerobotics, pages 741–757. Springer, 2008. [cited on page(s) 23,

25]

[NSSB16] Korbinian Nottensteiner, Mikel Sagardia, Andreas Stemmer, and Christoph Borst.
Narrow passage sampling in the observation of robotic assembly tasks. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 130–137. IEEE,
2016. [cited on page(s) 67, 171, 242]

[Nvi01] Nvidia. Physx library, 2001. Web page accessed on February 1, 2018.
[cited on page(s) 15]

[OG02] Marcia O’Malley and Michael Goldfarb. The effect of force saturation on the hap-
tic perception of detail. IEEE/ASME Transactions on Mechatronics, 7(3):280–
288, 2002. [cited on page(s) 11]

[OG04] Marcia K O’Malley and Michael Goldfarb. The effect of virtual surface stiffness
on the haptic perception of detail. IEEE/ASME Transactions on Mechatronics,
9(2):448–454, 2004. [cited on page(s) 11, 179, 200]

[OGL13] Miguel A Otaduy, Carlos Garre, and Ming C Lin. Representations and algo-
rithms for force-feedback display. Proc. of the IEEE, 101(9):2068–2080, 2013.
[cited on page(s) 29, 51]

[OL05] Miguel A. Otaduy and Ming C. Lin. Sensation preserving simplification for haptic
rendering. In ACM SIGGRAPH 2005 Courses. ACM, 2005. [cited on page(s) 47]

[OL06] Miguel A. Otaduy and Ming C. Lin. A modular haptic rendering algorithm for
stable and transparent 6-dof manipulation. IEEE Trans. on Robotics, 22(4):751–
762, 2006. [cited on page(s) 15, 50, 56]

[ORC07] Michael Ortega, Stephane Redon, and Sabine Coquillart. A six degree-of-freedom
god-object method for haptic display of rigid bodies with surface properties.
IEEE Trans. on Visualization and Computer Graphics, 13(3):458–469, 2007.
[cited on page(s) 44, 50, 54, 57, 59, 67, 116, 117, 134, 142]

BIBLIOGRAPHY 259

[Ott05] Martin Otterbach. Software-werkzeug zur diskretisierung virtueller 3d-objekte.
Master’s thesis, German Aerospace Center (DLR) - Fachhochschule Esslingen,
2005. [cited on page(s) 71]

[PG12] Uwe Proske and Simon C Gandevia. The proprioceptive senses: their roles in sig-
naling body shape, body position and movement, and muscle force. Physiological
Reviews, 92(4):1651–1697, 2012. [cited on page(s) 8]

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Communications
of the ACM, 18(6):311–317, 1975. [cited on page(s) 58]

[PM11] Jia Pan and Dinesh Manocha. Gpu-based parallel collision detection for
fast motion planning. The International Journal of Robotics Research, page
0278364911429335, 2011. [cited on page(s) 25, 44, 48]

[PND+11] I. Peterlík, M. Nouicer, C. Duriez, S. Cotin, and A. Kheddar. Constraint-based
haptic rendering of multirate compliant mechanisms. IEEE Trans. on Haptics,
4(3):175–187, 2011. [cited on page(s) 36, 60]

[PPM17] Jae Sung Park, Chonhyon Park, and Dinesh Manocha. Efficient probabilistic
collision detection for non-convex shapes. In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 1944–1951. IEEE, 2017. [cited on page(s) 49]

[PSCM13] Jia Pan, Ioan A Sucan, Subhashini Chitta, and Dinesh Manocha. Real-time
collision detection and distance computation on point cloud sensor data. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 3593–3599. IEEE,
2013. [cited on page(s) 34]

[PV11] Ryan A Pavlik and Judy M Vance. Expanding haptic workspace for coupled-
object manipulation. In Proc. World Conf. on Innovative Virtual Reality
(ASME), pages 293–299. American Society of Mechanical Engineers (ASME),
2011. [cited on page(s) 156]

[PV14] Jérôme Perret and Pierre Vercruysse. Advantages of mechanical backdrivabil-
ity for medical applications of force control. In Workshop on Computer/Robot
Assisted Surgery (CRAS), 2014. [cited on page(s) 19]

[PWBI97] Ivan Poupyrev, Suzanne Weghorst, Mark Billinghurst, and Tadao Ichikawa. A
framework and testbed for studying manipulation techniques for immersive vr.
In Proc. ACM Symp. on Virtual Reality and Software Technology (VRST), pages
21–28. ACM, 1997. [cited on page(s) 183]

[PZFea04] B. Petzold, M. F. Zaeh, B. Faerber, and B. Deml et al. A study on visual,
auditory and haptic feedback for assembly tasks. Presence: Teleoperators and
Virtual Environments, 13(1):16–21, 2004. [cited on page(s) 14]

260 BIBLIOGRAPHY

[PZM13] Jia Pan, Xinyu Zhang, and Dinesh Manocha. Efficient penetration depth ap-
proximation using active learning. ACM Trans. on Graphics, 32(6), 2013.
[cited on page(s) 36, 49]

[Qui94] Sean Quinlan. Efficient distance computation between non-convex objects. In
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages 3324–3329.
IEEE, 1994. [cited on page(s) 32, 33, 46]

[RA93] Louis B Rosenberg and Bernard D Adelstein. Perceptual decomposition of virtual
haptic surfaces. In Proc. IEEE Virtual Reality (VR), pages 46–53. IEEE, 1993.
[cited on page(s) 10, 176, 178, 181]

[RC11a] Hugh Reynolds and Steven Collins. Havok physics engine, 2011. Web page ac-
cessed on February 1, 2018. [cited on page(s) 15]

[RC11b] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
Robotics and automation (ICRA), 2011 IEEE International Conference on, pages
1–4. IEEE, 2011. [cited on page(s) 33]

[RC13a] Fredrik Ryden and Howard J Chizeck. A proxy method for real-time 3-dof haptic
rendering of streaming point cloud data. IEEE Trans. on Haptics, 6(3):257–267,
2013. [cited on page(s) 25, 33]

[RC13b] Fredrik Rydén and Howard Jay Chizeck. A method for constraint-based six
degree-of-freedom haptic interaction with streaming point clouds. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 2353–2359. IEEE, 2013.
[cited on page(s) 33, 42, 67, 117]

[RdlTH01] Gabriel Robles-de-la Torre and Vincent Hayward. Force can overcome object
geometry in the perception of shape through active touch. Nature, 412(6845):445–
448, 2001. [cited on page(s) 12]

[RHBH11] Maximo A. Roa, Katharina Hertkorn, Christoph Borst, and Gerd Hirzinger.
Reachable independent contact regions for precision grasps. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 5337–5343. IEEE, 2011.
[cited on page(s) 172]

[Ric14] Richard Smith and C++ ISO Board. Standard for programming language c++
[working draft], 2014. [cited on page(s) 111, 231, 232]

[RKC02a] Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. Fast continuous
collision detection between rigid bodies. Computer Graphics Forum, 21(3):279–
287, 2002. [cited on page(s) 43, 55, 116]

[RKC02b] Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. Gauss’ least
constraints principle and rigid body simulations. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 517–522, 2002. [cited on page(s) 55, 116]

BIBLIOGRAPHY 261

[RKK97] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. The haptic display
of complex graphical environments. In Proc. ACM SIGGRAPH, pages 345–352.
ACM, 1997. [cited on page(s) 54, 59, 116]

[RLB10] Silvio H Rizzi, Cristian J Luciano, and P Pat Banerjee. Haptic interaction with
volumetric datasets using surface-based haptic libraries. In Proc. IEEE Haptics
Symposium (HAPTICS), pages 243–250. IEEE, 2010. [cited on page(s) 44]

[RLB12] Silvio H. Rizzi, Cristian J. Luciano, and P. Pat Banerjee. Comparison of algo-
rithms for haptic interaction with isosurfaces extracted from volumetric datasets.
Journal of computing and information science in engineering, 12(2):021004 1–10,
2012. [cited on page(s) 177]

[RMB+08] Emanuele Ruffaldi, Dan Morris, Federico Barbagli, Ken Salisbury, and Mas-
simo Bergamasco. Voxel-based haptic rendering using implicit sphere trees.
In Proc. IEEE Haptics Symposium (HAPTICS), pages 319–325. IEEE, 2008.
[cited on page(s) 34, 52]

[Ros93] Louis B. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic ma-
nipulation. In Proc. IEEE Virtual Reality (VR), pages 76–82. IEEE, 1993.
[cited on page(s) 24]

[RPP+01] Matthias Renz, Carsten Preusche, Marco Pötke, Hans-Peter Kriegel, and Gerd
Hirzinger. Stable haptic interaction with virtual environments using an adapted
voxmap-pointshell algorithm. In Proc. Eurohaptics Conf., 2001. [cited on page(s) 42,

56, 66]

[S+03] James A Sethian et al. Level set methods and fast marching methods. Journal of
Computing and Information Technology, 11(1):1–2, 2003. [cited on page(s) 34]

[Sag08] Mikel Sagardia. Enhancements of the voxmap-pointshell algorithm. Master’s
thesis, Tecnun – University de Navarra and German Aerospace Center (DLR),
2008. [cited on page(s) 4, 70, 72]

[SBB96] Mandayam A Srinivasan, Gerald Lee Beauregard, and David L Brock. The impact
of visual information on the haptic perception of stiffness in virtual environments.
In Proc. ASME Dynamics Systems and Control Division, volume 58, pages 555–
559, 1996. [cited on page(s) 12]

[SBCC17] Florian Schmidt, Robert Burger, Jan Cremer, and Maxime Chalon. Links and
nodes, 2017. Find correct link. [cited on page(s) 154]

[SBG+07] Jean Sreng, Florian Bergez, Jérémie Le Garrec, Anatole Lécuyer, and Claude
Andriot. Using an event-based approach to improve the multimodal rendering
of 6dof virtual contact. In Proc. ACM Symp. on Virtual Reality and Software
Technology (VRST), pages 165–173. ACM, 2007. [cited on page(s) 14, 15]

262 BIBLIOGRAPHY

[SC12] KG Sreeni and Subhasis Chaudhuri. Haptic rendering of dense 3d point cloud
data. In Proc. IEEE Haptics Symposium (HAPTICS), pages 333–339. IEEE,
2012. [cited on page(s) 34]

[SCB04] Keneth Salisbury, Francois Conti, and Federico Barbagli. Haptic rendering: In-
troductory concepts. IEEE Computer Graphics and Applications, 24(2):24–32,
2004. [cited on page(s) 156]

[Sch15] Anja Katharina Schneider. Evaluation of haptic human-machine interfaces for
virtual reality applications. Master’s thesis, Technische Universität München and
German Aerospace Center (DLR), 2015. Supervised by Bernhard Weber and
Mikel Sagardia. [cited on page(s) 185, 227]

[SEWP10] S. Schätzle, T. Ende, T. Wuesthoff, and C. Preusche. VibroTac: an ergonomic
and versatile usable vibrotactile feedback device. In Proc. IEEE Int. Symp. on
Robots and Human Interactive Communications (ROMAN), pages 705–710, 2010.
[cited on page(s) 16, 155]

[SH13] Mikel Sagardia and Thomas Hulin. Fast and accurate distance, penetration, and
collision queries using point-sphere trees and distance fields. In ACM SIGGRAPH
Posters, page 83. ACM, 2013. [cited on page(s) 65, 240]

[SH16] Mikel Sagardia and Thomas Hulin. A fast and robust six-dof god object heuristic
for haptic rendering of complex models with friction. In Proc. ACM Symp. on
Virtual Reality and Software Technology (VRST), pages 163–172. ACM, 2016.
[cited on page(s) 115, 151, 242]

[SH17a] Mikel Sagardia and Thomas Hulin. Evaluation of a penalty and a constraint-based
haptic rendering algorithm with different haptic interfaces and stiffness values. In
Proc. IEEE Virtual Reality (VR), pages 64–73. IEEE, 2017. [cited on page(s) 176,

242]

[SH17b] Mikel Sagardia and Thomas Hulin. Multimodal evaluation of the differences be-
tween real and virtual assemblies. IEEE Trans. on Haptics, 11:107–118, 2017.
[cited on page(s) 176, 242]

[SHE+12] Eckehard Steinbach, Sandra Hirche, Marc Ernst, Fernanda Brandi, Rahul Chaud-
hari, Julius Kammerl, and Iason Vittorias. Haptic communications. Proceedings
of the IEEE, 100(4):937–956, 2012. [cited on page(s) 25]

[SHGC14] Mikel Sagardia, Katharina Hertkorn, David Sierra González, and Claudio
Castellini. Ultrapiano: A novel human-machine interface applied to virtual reality
(video). In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
2089–2089. IEEE, 2014. [cited on page(s) 170, 241]

BIBLIOGRAPHY 263

[SHH+13] Mikel Sagardia, Katharina Hertkorn, Thomas Hulin, Robin Wolff, Johannes Hum-
mel, Janki Dodiya, and Andreas Gerndt. An interactive virtual reality system
for on-orbit servicing. In Proc. IEEE Virtual Reality (VR), 2013. (Video).
[cited on page(s) 168, 240]

[SHH+15] Mikel Sagardia, Katharina Hertkorn, Thomas Hulin, Simon Schätzle, Robin Wolff,
Johannes Hummel, Janki Dodiya, and Andreas Gerndt. VR-OOS: The DLR’s
virtual reality simulator for telerobotic on-orbit servicing with haptic feedback.
In Proc. IEEE Aerospace Conf., pages 1–17, 2015. [cited on page(s) 65, 145, 159, 170,

221, 241]

[SHH+16] Mikel Sagardia, Thomas Hulin, Katharina Hertkorn, Philipp Kremer, and Simon
Schätzle. A platform for bimanual virtual assembly training with haptic feedback
in large multi-object environments. In Proc. ACM Symp. on Virtual Reality and
Software Technology (VRST), pages 153–162. ACM, 2016. [cited on page(s) 143, 221,

242]

[Shi93] Karun B Shimoga. A survey of perceptual feedback issues in dexterous telema-
nipulation: Part i. finger force feedback. In Virtual Reality Annual International
Symposium (VRAIS), pages 263–270. IEEE, 1993. [cited on page(s) 11]

[SHPH08] Mikel Sagardia, Thomas Hulin, Carsten Preusche, and Gerd Hirzinger. Im-
provements of the voxmap-pointshell algorithm – fast generation of haptic data-
structures. In Internationales Wissenschaftliches Kolloquium (IWK, TU Ilme-
nau), 2008. [cited on page(s) 65, 72, 75, 81, 93, 239]

[SHPH09] Mikel Sagardia, Thomas Hulin, Carsten Preusche, and Gerd Hirzinger. A bench-
mark of force quality in haptic rendering. In Proc. of the Int. Conf. on Human-
Computer Interaction (HCI), 2009. [cited on page(s) 4, 239]

[SIT89] PH Sutter, JC Iatridis, and NV Thakor. Response to reflected-force feedback to
fingers in teleoperations. In Proc. of the NASA Conf. on Space Telerobotics, 1989.
[cited on page(s) 20]

[Sla03] Mel Slater. A note on presence terminology. Presence connect, 3(3):1–5, 2003.
[cited on page(s) 14]

[SLY99] Chuan-Jun Su, Fuhua Lin, and Lan Ye. A new collision detection method for csg-
represented objects in virtual manufacturing. Computers in industry, 40(1):1–13,
1999. [cited on page(s) 35]

[Smi01] Russell Smith. Open dynamics engine library 0.13, 2001. Web page accessed on
February 1, 2018. [cited on page(s) 15]

[SMK98] Kay M Stanney, Ronald R Mourant, and Robert S Kennedy. Human factors issues
in virtual environments: A review of the literature. Presence: Teleoperators and
Virtual Environments, 7(4):327–351, 1998. [cited on page(s) 13, 15]

264 BIBLIOGRAPHY

[SNF14] Tanner Schmidt, Richard A Newcombe, and Dieter Fox. Dart: Dense articulated
real-time tracking. In Robotics: Science and Systems, 2014. [cited on page(s) 67]

[SR06] Axel Seugling and Martin Rölin. Evaluation of physics engines and implementa-
tion of a physics module in a 3d-authoring tool. Master’s thesis, Umea University,
2006. [cited on page(s) 146]

[SSB13] Fun Shing Sin, Daniel Schroeder, and J Barbič. Vega: Non-linear fem deformable
object simulator. Computer Graphics Forum, 32(1):36–48, 2013. [cited on page(s) 36,

60, 61]

[SSeS14a] Mikel Sagardia, Theodoros Stouraitis, and João Lopes e Silva. A New Fast and
Robust Collision Detection and Force Computation Algorithm Applied to the
Physics Engine Bullet: Method, Integration, and Evaluation. In Prof. of the Conf.
and Exhibition of the European Association of Virtual and Augmented Reality
(EuroVR), pages 65–76. Eurographics Association, 2014. [cited on page(s) 42, 65,

143, 241]

[SSeS14b] Mikel Sagardia, Theodoros Stouraitis, and João Lopes e Silva. Poster: Integration
of a haptic rendering algorithm based on voxelized and point-samnpled structures
into the physics engine bullet. In Proc. IEEE Symposium on 3D User Interfaces
(3DUI), pages 133–134. IEEE, 2014. [cited on page(s) 143, 241]

[SSV06] Abhishek Seth, Hai-Jun Su, and Judy M Vance. Sharp: a system for haptic as-
sembly and realistic prototyping. In Proc. ASME Int. Design Engineering Techni-
cal Conf. and Computers and Information in Engineering Conf., pages 905–912.
American Society of Mechanical Engineers (ASME), 2006. [cited on page(s) 145]

[ST97] Kenneth Salisbury and Christopher Tarr. Haptic rendering of surfaces defined by
implicit functions. In Proc. Annual ASME Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, volume 61, pages 61–67, 1997.
[cited on page(s) 42, 55, 58, 117, 118, 133]

[Sta97] Richard Eugene Stamper. A Three Degree of Freedom Parallel Manipulator with
Only Translational Degrees of Freedom. PhD thesis, University of Maryland, 1997.
[cited on page(s) 18, 19, 26]

[STH18] Mikel Sagardia, Alexander Martín Turrillas, and Thomas Hulin. Realtime collision
avoidance for mechanisms with complex geometries. In Proc. IEEE Virtual Reality
(VR), 2018. (Video). [cited on page(s) 171, 242]

[SVO11] Abhishek Seth, Judy M Vance, and James H Oliver. Virtual reality for as-
sembly methods prototyping: a review. Virtual Reality, 15(1):5–20, 2011.
[cited on page(s) 26, 144]

BIBLIOGRAPHY 265

[SWH+12] Mikel Sagardia, Bernhard Weber, Thomas Hulin, Carsten Preusche, and Gerd
Hirzinger. Evaluation of visual and force feedback in virtual assembly verifications.
In Proc. IEEE Virtual Reality (VR), pages 23–26. IEEE, 2012. [cited on page(s) 4,

14, 175, 240]

[SWSB07] Evren Samur, Fei Wang, Ulrich Spaelter, and Hannes Bleuler. Generic and sys-
tematic evaluation of haptic interfaces based on testbeds. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 2113–2119. IEEE, 2007.
[cited on page(s) 178, 183]

[TDP10] Loïc Tching, Georges Dumont, and Jérôme Perret. Interactive simulation of cad
models assemblies using virtual constraint guidance. Int. J. on Interactive Design
and Manufacturing (IJIDeM), 4(2):95–102, 2010. [cited on page(s) 24]

[THH+11] Andreas Tobergte, Patrick Helmer, Ulrich Hagn, Patrice Rouiller, Sophie Thiel-
mann, Sébastien Grange, Alin Albu-Schäffer, François Conti, and Gerd Hirzinger.
The sigma. 7 haptic interface for mirosurge: A new bi-manual surgical console.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
3023–3030. IEEE, 2011. [cited on page(s) 6, 18, 19, 179, 184, 229]

[TIHS+01] Russell M Taylor II, Thomas C Hudson, Adam Seeger, Hans Weber, Jeffrey Ju-
liano, and Aron T Helser. Vrpn: a device-independent, network-transparent vr
peripheral system. In Proc. ACM Symp. on Virtual Reality and Software Tech-
nology (VRST), pages 55–61. ACM, 2001. [cited on page(s) 16]

[TJC97] Thomas Thompson, David E Johnson, and Elaine Cohen. Direct haptic rendering
of sculptured models. In Proc. of the Symposium on Interactive 3D Graphics,
pages 167–176. ACM, 1997. [cited on page(s) 35, 42, 43]

[TKM09] Min Tang, Young J. Kim, and Dinesh Manocha. C2a: Controlled conservative
advancement for continuous collision detection of polygonal models. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 849–854. IEEE,
2009. [cited on page(s) 43]

[TKZ+05] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, Laks Raghupathi,
A. Fuhrmann, Marie-Paule Cani, François Faure, N. Magnetat-Thalmann, and
W. Strasser. Collision detection for deformable objects. Computer Graphics Fo-
rum, 24(1):61–81, 2005. [cited on page(s) 59]

[TML14] Anthony Talvas, Maud Marchal, and Anatole Lecuyer. A survey on bimanual
haptic interaction. IEEE Trans. on Haptics, 7(3):285–300, 2014. [cited on page(s) 19]

[TMOT12] Min Tang, Dinesh Manocha, Miguel A Otaduy, and Ruofeng Tong. Continuous
penalty forces. ACM Trans. on Graphics, 31(4):107–1, 2012. [cited on page(s) 38,

43, 53]

266 BIBLIOGRAPHY

[TRC+93] Russell M Taylor, Warren Robinett, Vernon L Chi, Frederick P Brooks Jr,
William V Wright, R Stanley Williams, and Erik J Snyder. The nanomanipu-
lator: a virtual-reality interface for a scanning tunneling microscope. In Proc.
ACM SIGGRAPH, pages 127–134. ACM, 1993. [cited on page(s) 26]

[TSEC94] Hong Z Tan, Mandayam A Srinivasan, Brian Eberman, and Belinda Cheng. Hu-
man factors for the design of force-reflecting haptic interfaces. Dynamic Systems
and Control, 55(1):353–359, 1994. [cited on page(s) 10, 11, 20, 185]

[UNT+02] B. J. Unger, A. Nicolaidis, A. Thompson, R. L. Klatzky, R. L. Hollis, P. J. Berkel-
man, and S. Lederman. Virtual peg-in-hole performance using a 6-dof magnetic
levitation haptic device: Comparison with real forces and with visual guidance
alone. In Proc. IEEE Haptics Symposium (HAPTICS), pages 263–270. IEEE,
2002. [cited on page(s) 178, 218]

[vdB97] Gino van den Bergen. Efficient collision detection of complex deformable models
using aabb trees. Journal of Graphics Tools, 2(4):1–13, 1997. [cited on page(s) 32,

39, 46, 49]

[vdB99] Gino van den Bergen. A fast and robust gjk implementation for collision detection
of convex objects. Journal of Graphics Tools, 4(2):7–25, 1999. [cited on page(s) 35,

40]

[vdB01] Gino van den Bergen. Proximity queries and penetration depth computa-
tion on 3d game objects. In Game Developers Conference, volume 170, 2001.
[cited on page(s) 40, 146]

[VO09] Lawton N Verner and Allison M Okamura. Force & torque feedback vs force only
feedback. In Proc. IEEE World Haptics Conference, pages 406–410. IEEE, 2009.
[cited on page(s) 57]

[WAH+13] J.G.W. Wildenbeest, D.A. Abbink, C.J.M. Heemskerk, F.C.T. van der Helm,
and H. Boessenkool. The impact of haptic feedback quality on the performance
of teleoperated assembly tasks. IEEE Trans. on Haptics, 6(2):242–252, 2013.
[cited on page(s) 183]

[WCW+12] Qiong Wang, Hui Chen, Wen Wu, Jing Qin, and Pheng Ann Heng. Impulse-
based rendering methods for haptic simulation of bone-burring. IEEE Trans. on
Haptics, 5(4):344–355, 2012. [cited on page(s) 52, 59, 61]

[WGP+04] Huagen Wan, Shuming Gao, Qunsheng Peng, Guozhong Dai, and Fengjun Zhang.
Mivas: a multi-modal immersive virtual assembly system. In Proc. Int. Design
Engineering Technical Conf. (ASME), pages 113–122. American Society of Me-
chanical Engineers (ASME), 2004. [cited on page(s) 144]

BIBLIOGRAPHY 267

[WHTL13] Bernhard Weber, Anja Hellings, Andreas Tobergte, and Martin Lohmann. Hu-
man performance and workload evaluation of input modalities for telesurgery. In
Proceedings of the German Society of Ergonomics (GfA) Spring Congress, 2013.
[cited on page(s) 229]

[Wil76] R. Wilhelmsen. A nearest point algorithm for convex polyhedral cones and
applications to positive linear approximation. Mathematics of computation,
30(133):48–57, 1976. [cited on page(s) 55, 135]

[WKH11] Bing Wu, R.L. Klatzky, and R.L. Hollis. Force, torque, and stiffness: Interactions
in perceptual discrimination. IEEE Trans. on Haptics, 4(3):221 – 228, 2011.
[cited on page(s) 57]

[WM03] Ming Wan and William A McNeely. Quasi-static approximation for 6 degrees-of-
freedom haptic rendering. In Proc. IEEE Visualization (VIS), pages 257 – 262.
IEEE, 2003. [cited on page(s) 56, 66]

[WS98] Bob G. Witmer and Michael J. Singer. Measuring presence in virtual environ-
ments: A presence questionnaire. Presence: Teleoperators and Virtual Environ-
ments, 7(3):225–240, 1998. [cited on page(s) 14]

[WSHP13] Bernhard Weber, Mikel Sagardia, Thomas Hulin, and Carsten Preusche. Visual,
vibrotactile, and force feedback of collisions in virtual environments: effects on
performance, mental workload and spatial orientation. In Virtual Augmented and
Mixed Reality. Designing and Developing Augmented and Virtual Environments,
volume 8021 of Lecture Notes in Computer Science, pages 241–250. Springer Berlin
Heidelberg, 2013. [cited on page(s) 4, 14, 175, 240]

[WSM+10] Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann,
and Carsten Preusche. A benchmarking suite for 6-dof real time collision response
algorithms. In Proc. ACM Symp. on Virtual Reality and Software Technology
(VRST), pages 63–70. ACM, 2010. [cited on page(s) 4, 78, 177, 239]

[WYW+09] Jun Wu, Ge Yu, Dangxiao Wang, Yuru Zhang, and Charlie CL Wang. Voxel-
based interactive haptic simulation of dental drilling. In Int. Design Engi-
neering Technical Conf. and Computers and Information in Engineering Conf.
(ASME), pages 39–48. American Society of Mechanical Engineers (ASME), 2009.
[cited on page(s) 62]

[WZ09a] Rene Weller and Gabriel Zachmann. Inner sphere trees for proximity and pen-
etration queries. In Proc. Robotics Science and Systems (RSS), volume 2, 2009.
[cited on page(s) 33, 38, 53]

[WZ09b] Rene Weller and Gabriel Zachmann. A unified approach for physically-based
simulations and haptic rendering. In Proc. ACM SIGGRAPH Symp. on Video
Games, pages 151–159. ACM, 2009. [cited on page(s) 46, 92]

268 BIBLIOGRAPHY

[WZ12] Rene Weller and Gabriel Zachmann. User performance in complex bi-manual
haptic manipulation with 3 dofs vs. 6 dofs. In Proc. IEEE Haptics Symposium
(HAPTICS), pages 315–322. IEEE, 2012. [cited on page(s) 57]

[WZZX11] Dangxiao Wang, Xin Zhang, Yuru Zhang, and Jing Xiao. Configuration-based op-
timization for six degree-of-freedom haptic rendering using sphere-trees. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 906–912. IEEE,
2011. [cited on page(s) 51]

[WZZX13] Dangxiao Wang, Xin Zhang, Yuru Zhang, and Jing Xiao. Configuration-based op-
timization for six degree-of-freedom haptic rendering for fine manipulation. IEEE
Trans. on Haptics, 6(2):167–180, 2013. [cited on page(s) 51, 117]

[XB14] Hongyi Xu and Jernej Barbič. Signed distance fields for polygon soup meshes. In
Proc. of the Graphics Interface Conf., pages 35–41. Canadian Information Pro-
cessing Society, 2014. [cited on page(s) 34, 67]

[XB16] Hongyi Xu and Jernej Barbic. Adaptive 6-dof haptic contact stiffness using the
gauss map. IEEE Trans. on Haptics, 9(3):323–332, 2016. [cited on page(s) 54, 99]

[XB17] Hongyi Xu and Jernej Barbic. 6-dof haptic rendering using continuous collision
detection between points and signed distance fields. IEEE Trans. on Haptics,
10(2):151–161, 2017. [cited on page(s) 44]

[XCANS14] Xiao Xu, Burak Cizmeci, Anas Al-Nuaimi, and Eckehard Steinbach. Point cloud-
based model-mediated teleoperation with dynamic and perception-based model
updating. IEEE Transactions on Instrumentation and Measurement, 63(11):2558–
2569, 2014. [cited on page(s) 24, 34]

[Xia16] P. Xia. Haptics for product design and manufacturing simulation. IEEE Trans.
on Haptics, 9(3):358–375, 2016. [cited on page(s) 26, 176]

[XLR11] Pinjun Xia, António Lopes, and Maria Restivo. Design and implementation of
a haptic-based virtual assembly system. Assembly Automation, 31(4):369–384,
2011. [cited on page(s) 145]

[YKY03] Tsuneo Yoshikawa, Masayuki Kawai, and Kouki Yoshimoto. Toward observation
of human assembly skill using virtual task space. In Experimental Robotics VIII,
pages 540–549. Springer, 2003. [cited on page(s) 178]

[YWZX15] Ge Yu, Dangxiao Wang, Yuru Zhang, and Jing Xiao. Simulating sharp geometric
features in six degrees-of-freedom haptic rendering. IEEE Trans. on Haptics,
8(1):67–78, 2015. [cited on page(s) 51]

[Zac98] Gabriel Zachmann. Rapid collision detection by dynamically aligned dop-trees.
In Proc. IEEE Virtual Reality Annual Int. Symp., pages 90–97. IEEE, 1998.
[cited on page(s) 32, 46]

BIBLIOGRAPHY 269

[Zac00] Gabriel Zachmann. Virtual Reality in Assembly Simulation – Collision Detection,
Simulation Algorithms and Interaction Techniques. PhD thesis, TU Darmstadt,
2000. [cited on page(s) 39]

[Zac01] Gabriel Zachmann. Optimizing the collision detection pipeline. In Proc. of the
Int. Game Technology Conf. (GTEC), 2001. [cited on page(s) 30]

[Zei93] M Zeiller. Collision detection for objects modelled by csg. WIT Trans. on Infor-
mation and Communication Technologies, 5, 1993. [cited on page(s) 35]

[ZHHH10] F. Zacharias, I. S. Howard, T. Hulin, and G. Hirzinger. Workspace comparisons
of setup configurations for human-robot interaction. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 3117–3122. IEEE, 2010.
[cited on page(s) 228]

[ZK12] Xinyu Zhang and Young J Kim. k-ios: Intersection of spheres for efficient proxim-
ity query. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
354–359. IEEE, 2012. [cited on page(s) 33, 37]

[ZKM07] Liangjun Zhang, Young J Kim, and Dinesh Manocha. A fast and practical algo-
rithm for generalized penetration depth computation. In Proc. Robotics Science
and Systems (RSS), 2007. [cited on page(s) 35, 38]

[ZKM14] Xinyu Zhang, Young J Kim, and Dinesh Manocha. Continuous penetration depth.
Computer-Aided Design, 46:3–13, 2014. [cited on page(s) 36, 37]

[ZLK06] Xinyu Zhang, Minkyoung Lee, and Young J. Kim. Interactive continuous collision
detection for non-convex polyhedra. The Visual Computer: International Journal
of Computer Graphics, 22(9-11):749–760, 2006. [cited on page(s) 43]

[ZLSWF13] Fei Zheng, Wen Feng Lu, Yoke San Wong, and Kelvin Weng Chiong Foong.
Graphic processing units (gpus)-based haptic simulator for dental implant surgery.
Journal of Computing and Information Science in Engineering, 13(4):041005,
2013. [cited on page(s) 48, 61]

[ZR01] Gabriel Zachmann and Alexander Rettig. Natural and robust interaction in virtual
assembly simulation. In Proc. Int. Conf. on Concurrent Engineering: Research
and Applications (ISPE), volume 1, pages 425–434, 2001. [cited on page(s) 17]

[ZS95] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for haptic
display. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 146–151, 1995. [cited on page(s) 30, 54, 58, 78, 116, 118]

[ZW06] Gabriel Zachmann and Rene Weller. Kinetic bounding volume hierarchies for
deformable objects. In Proc. of the ACM Int. Conf. on Virtual Reality Continuum
and its Applications, pages 189–196. ACM, 2006. [cited on page(s) 36]

Notation and List of Symbols

This chapter describes the notation followed in the thesis, classified in the following tables:

• Table 1 collects a list of all abbreviations.

• Table 2 gathers conventions for mathematical symbols.

• Table 3 contains all symbols used for mathematical operators and constants.

• Table 4 presents the list of all specific symbols, with their description and unit.

Table 1: List of abbreviations. The abbreviations are valid through the whole text, unless excep-
tions are clearly stated. The factors and treatments from the user studies (Section 6.2 and Section 6.3)
have dedicated sections at the end of the listing.

Abbreviation Description Definition

2D Two Dimensions (planar Space) page 35
3D Three Dimensions (regular Euclidean space) page 35
6D Six Dimensions (translation and rotation or point and nor-

mal)
page 16

7D Seven Dimensions (used for points in the enhanced
pointshell)

page 86

AABB Axis Aligned Bounding Boxe page 32
ANOVA Analysis of Variance page 189
BV Bounding Volume page 31
BVH Bounding Volume Hierarchy page 45
BVTT Bounding Volume Test Tree page 46
CAD Computer Aided Design page 35
CCD Continuous Collision Detection page 38
CH Convex Hulls page 32
CoM Center of Mass page 91
CPU Central Processing Unit page 48

271

272 LIST OF SYMBOLS

CSG Constructive Solid Geometry page 35
CSO Configuration Space Obstacle page 40
CT Computer Tomography page 61
DoF Degree-of-Freedom (context of kinematics) page 82
df Degree-of-Freedom (context of statistics) page 197
EMG Electro-Myography page 175
FA I Fast Adapting, Small Field Mechanoreceptor (Meissner

disk)
page 9

FA II Fast Adapting, Large Field Mechanoreceptor (Pacini cor-
puscle)

page 9

FEM Finite Element Method page 60
FIFO First In First Out page 87
k-DOP (k) Discrete Orientation Polytope page 32
k-IOS (k) Intersection of Spheres page 33
GJK Gilbert-Johnson-Keerthi (Algorithm) page 146
GPUGPU General Purpose GPU page 48
GPU Graphics Processing Unit page 48
HACD Hierarchical Approximate Convex Decomposition page 146
HIP Haptic Interface Point page 54
I/O Input and Output page 149
IST Inner Sphere Tree page 33
KKT Karush-Kuhn-Tucker conditions for quadratic program-

ming
page 73

LC Lin-Canny (Algorithm) page 41
LIFO Last In First Out page 71
LWR Light Weight Robot page 171
LoD Level of Detail page 67
MRI Magnetic Resonance Imaging page 61
NURBS Non-Uniform Rotational B-Splines page 35
OBB Object Oriented Box page 32
ODE Open Dynamics Engine page 15
OSVR Open Source Virtual Reality (Framework) page 17
PCA Principal Component Analysis page 46
QoE Quality of Experience page 25
SA I Slow Adapting, Small Field Mechanoreceptor (Merkel

disk)
page 9

SA II Slow Adapting, Large Field Mechanoreceptor (Ruffini cor-
puscle)

page 9

SAT Separating Axis Theorem page 39
SMC Sequential Monte Carlo page 171
SVM Support Vector Machine page 49
UDP User Datagram Protocol page 25

273

VA Virtual Assembly page 144
VE Virtual Environment page 13
VPS Voxmap/Voxelmap Pointshell (Algorithm) page 224
VR Virtual Reality page 3
VRPN Virtual Reality Peripheral Network (Library) page 16
WIMP Window, Icon, Menu, Pointer page 17

Section 6.2: Factor and treatment abbreviations in User Study 1

C Constraint-based treatment for rendering factor page 185
D Haptic device factor page 185
K Force stiffness factor page 186
l Low treatment for stiffness factor page 186
h High treatment for stiffness factor page 186
H HUG treatment for device factor page 185
P Penalty-based treatment for rendering factor page 185
R Haptic rendering factor page 185
S Sigma.7 treatment for device factor page 185

Section 6.3: Factor and treatment abbreviations in User Study 2

D1 . . . D5 Virtualization degree factor page 205
HD Haptic device factor page 204
HR Haptic rendering factor page 205
R Real treatment page 204
S Synthetic treatment page 204
VF Visual feedback factor page 204

Table 2: Conventions for mathematical symbols. If not specified otherwise, these listed con-
ventions have been followed; most of them are related to parameter dimensionality. Table 4 gathers
specific symbols for specific magnitudes, not covered in this table. Additionally, Table 3 shows the
conventions used for mathematical operators.

Symbol Description

a Scalar value or parameter
a Vector
A Coordinate frame in space
A 3D point or line (specified in text)
A Matrix – Exception: V is a voxelmap and P is a pointshell (see Table 4)
A Set – Exception: O(·), Big O notation
aD Parameter associated with the haptic device frame
aE Parameter associated with the eigen frame

274 LIST OF SYMBOLS

ai A concrete i instance of a
aS Parameter associated with the god object frame constrained to the sur-

face
aW Parameter associated with the world frame
H Homogeneous transformation
BHA Homogeneous 3× 4 transformation matrix from frame A to B

u Unitary vector

Table 3: List of mathematical operators and constants. Mathematical dimensionality or related
conventions are listed in Table 2.

Operator Description

(·, ·) Structure or vector
{·, ·} Set
· Scalar product; often omitted
× Vectorial product
∇ Gradient operator
∆ Delta or difference operator
T Transpose operator
d·e Ceil rounding operator
b·c Floor rounding operator
⊕ Sum operation for all elements of a set one-by-one
∩ Intersection operation
‖ · ‖2 Euclidean norm-2
∅ Empty set
cos(·) Cosine function
sin(·) Sine function
tan(·) Tangent function
max(·) Maximization operation
min(·) Minimization operation
O(·) Big O
&a Reference operator: address in memory for a
ȧ Time derivative of a
ã Approximation of a
â Unfiltered a
δa Infinitesimal element of a
∂a/∂b Partial derivative of a with respect to b
a|b=c Selection operator ·|·: elements of a such that b = c, being b a variable

property of a and c a concrete value for property b

275

a(b = c) Function operator (·): value of a, which depends on variable b, for the
case b = c

∂A Boundary of object A
e Euler’s irrational number, approximated with 2.71828 – Exception:

Restitution coefficient in Chapter 2
π Pi irrational number, approximated with 3.14159

Table 4: List of symbols for specific magnitudes used in the thesis. Symbol units are also given
in the last column, where dashes (–) stand for dimensionless parameters and stars (∗) are related
to case-specific units. Chapter or section-specific symbols have been classified into corresponding
sections; otherwise, the symbol meaning holds for the whole text. General (magnitude-agnostic)
notation conventions are described in Table 2 and mathematical constants in Table 3.

Symbol Description Unit

b, B Virtual damping N·s/m
bD Virtual damping related to the haptic device N·s/m
bVC Virtual damping related to virtual coupling N·s/m
f Force vector N
fC Force vector for constraint-based approaches N
fD Force vector displayed to the haptic device N
fP Force vector for penalty-based approaches N
fVC Force vector for virtual coupling N
k, K Virtual stiffness N/m
kC Virtual stiffness related to constraint-based approaches N/m
kD Virtual stiffness related to the haptic device N/m
kP Virtual stiffness related to penalty-based approaches N/m
kVC Virtual stiffness related to virtual coupling N/m
µ Coulomb friction coefficient –
n Unitary normal vector –
N Set of natural numbers (integer numbers) –
R Set of real numbers (floating point numbers) –
Rn×m Set of real numbers (floating point numbers) in a space of dimen-

sion n×m
–

R3 × SO(3) Set of configurations of an object in 3D Euclidean space: transla-
tion and rotation

–

SO(3) 3D rotation group which contains all rotations around the origin
of 3D Euclidean space R3

–

t, ∆t Time, time step s

276 LIST OF SYMBOLS

td Time delay s
t Torque vector N·m
T Sampling time s
x, ∆x Translation vector m

Chapter 2: Background and Related Works

Cv, Cp, Cu In a BVTT, time cost of BV checks (v), primitive checks (p), and
node updated (u)

s

d(·, ·) Distance (function) m
e Restitution coefficient –
f Scalar force (on virtual spring) N
f(x) = 0 Scalar function or mapping on a vectorial variable x m∗
fA Feature of object A, e.g., a vertex, an edge, or a face –
λi Lagrange multiplier –
λ Vector of Lagrange multipliers –
m Mass of the haptcic display and human arm kg
Nv, Np, Nu In a BVTT, number of BV checks (v), primitive checks (p), and

node updated (u)
–

p(·, ·) Penetration (function) m
TBVTT Time cost of a BVH traverse or a BVTT s
V (f) Exterior Voronoi region of feature f –
Vol(·) Volume (function) m3

x, ∆x Scalar translation or displacement (of virtual spring) m
xu, ∆xu Unconstrained movement of an object m
xc, ∆xc Constrained movement of an object m
xVC Virtual coupling or difference between the unconstrained and con-

strained motion
m

Z Impedance exerted by a haptic device kg/s,
N ·m · s/rad

Chapter 3: Collision Computation

A Area m2

bP Bounding box vector the pointshell data structure m
bT Bounding box vector the triangle m
bV Bounding box vector the voxelmap data structure m
c Cluster of an enhanced pointshell –
cc Children cluster associated to a cluster c –
cp Parent cluster associated to a cluster c –
C Voxel center m
C Matrix with ∆Cij values m
C List or set of clusters in an enhanced poinsthell –
∆Cij Vector from voxel center i to j: Cj − Ci m

277

d Safety margin m

d Vector from point P to its voxel center C:
−−→
PC m

η Computational load –
ηc Critical load –
I Set of solid voxels: surface (v = 0) and inner (v > 0) voxels from

V
–

K Number of cluster points in a cluster c –
κ1, κ2 Principal curvatures m−1

L Level in the pointshell hierarchy –
Lc Critical level in the pointshell hierarchy –
M Contact manifold –
∆nij Normal vector variation from voxel i to j: nj − ni –
NC Number of clusters in the pointshell data structure –
Nv
C Number of spheres (or clusters) visited or checked for collision –

N c
P Number of colliding points –

NI Number of (solid) voxels in I –
NK Branching factor in the point-sphere tree –
NL Number of levels in the pointshell hierarchy –
NP Number of points in the pointshell data structure –
NP Number of points in the pointshell data structure –
NP,L Number of points in a level L –
NP,Lc

Number of points in the critical level Lc –
Nv
P Number of points visited or checked for collision –

NQ Number of clusters in the query FIFO queue –
NS Number of surface voxel elements –
NT Number of triangles in the triangle mesh –
NV Number of voxels in the voxelmap data structure –
NW Number of voxels in the voxelmap with floating point distance

values (w)
–

Nx, Ny, Nz Number of voxels in each of the x, y, z axes –
N Matrix with ∆nij values –
NV,n(P) Voxel neighborhood of witdh 2n+ 1 around the voxel where point

P is
–

ξ∇ Step length form factor in gradient descent –
ξV Voxel form factor in layered signed distance computation (VL) –
p Signed distance (or penetration) value between a voxelmap and a

pointshell
m

pc Critical distance computation threshold m

pd Signed distance (or penetration) value between a voxelmap and a
pointshell dilated with the safety margin

m

P A point in space, often a pointshell point, which is the projection
of a C

m

278 LIST OF SYMBOLS

P Pointshell data structure –
P List of points in an enhanced poinsthell –
q Quality or approximated curvature of a point or a cluster –
qc Critical relative quality value of a cluster –
qmax Maximum quality value of all points that are recursively branched

from the cluster until the leaf level
–

Q Poinstshell point with the largest absolute V value in a query (i. e.,
deepest or closest point)

m

Q Shape matrix which relates matrices C and N –
Q FIFO queue of clusters to check created in realtime –
(R,X) Radius R and the center X of the minimally bounding sphere that

contains all children points recursively branched until the leaf level
m

s Voxel size or voxel edge length m
sx, sy, sz Three unitary axes of a voxel or the voxelmap –
S(P) Closest point S constrained to the surface for a point P in space m
S Surface voxel structure containing projected points and triangle

vertices
–

T1, T2, T3 Three vertices of a triangle m
T Triangle mesh –
v Voxel layer value –
v1, v2, v3 Three edge vectors of a triangle m
VL, VS , VI Signed distance functions of a point P related to the layer (L),

surface point (S), or interpolation (I) computation
m

V Volume m3

V Voxelmap data structure; the primitive structure contains voxels
with v values stored in V, and the enhanced, additionally the
structures S and W

–

V Primitive voxelmap or list of voxels containing v voxel layer values –
w Floating point distance value in the voxelmap m
W Floating point distance voxel structure containing in each voxel w

values and indices of the closest surface voxels in S
–

ωC Weighting factor for the load part related to colliding spheres or
clusters

–

ωP Weighting factor for the load part related to colliding points –
X, Y, Z Discrete voxelmap coordinates –

Chapter 4: Force Rendering

a = (ẍ, r̈) Generalized acceleration m/s2,
rad/s2

A Overlap region (pd > 0) –
α, β, γ Angles rad
B Object body frame –

279

B Contact safety region (0 < pd ≤ 0) –
c = (f , t) Generalized contact wrench N,

N·m
C No-overlap region (pd < 0) –
D Device or tool frame –
δ Force-torque lever m
ec Kinetic energy J
E(JB) Eigen-ellipsoid obtained after the PCA of the inertia tensor JB m
E Eigen frame of a body –
η Correction gain –
θ Correction rotation magnitude rad
fc Cut-off frequency for god object pose filtering Hz
F Generalized contact matrix N·kg2,

N·kg2·m4

WHD Device frame m, rad
WHS God object frame m, rad
DHS Virtual coupling frame from device to god object proxy m, rad
∆Hpen God object correction homogeneous transformation m, rad
∆Hsurf Constrained god object correction movement from previous to cur-

rent cycle
m, rad

J Normalized inertia tensor –
JB Inertia tensor kg·m2

L(fP, tP) Force application line –
λ Correction translation-rotation distribution factor –
m Mass scalar kg
M Generalized mass matrix kg,

kg·m2

MB Mass matrix kg
µ Unknown parameter in the force application line L(fP, tP) –
µx,s, µx,k, µx,v

µr,s, µr,k, µr,v

Static (s), kinetic (k), and viscous (v) friction coefficients for
translation (x) and rotation (r)

–

QL Approximation of Q, or the equivalent deepest colliding point on
force application line L

m

Q′L QL after its associated penetration p has been solved rotating
−−−→
GQL θ around the CoM G

m

ξp God object correction transformation form factor or gain –
r Rotation radius m
∆Rpen God object correction rotation matrix rad
ρ Correction factor –
S God object proxy or surface frame –
S′ Corrected god object proxy or surface frame –
σ Inertia scalar kg·m2

280 LIST OF SYMBOLS

τ Torque-rotation projection factor –
uf , ut Normalized force and torque correction directions –
ux, ur Normalized translation and rotation correction directions –
W World frame –
xc, rc Constrained translation and rotation vectors m, rad
xc,‖, rc,‖ Parallel component of the constrained translation and rotation

vectors with respect to the penalty force and torque values
m, rad

xc,⊥, rc,⊥ Perpendicular component of the constrained translation and ro-
tation vectors with respect to the penalty force and torque values

m, rad

xfr Friction restriction movement m
∆xp,∆rp Translation and rotation correction vectors m, rad
xu, ru Unconstrained translation and rotation vectors m, rad
xu,‖, ru,‖ Parallel component of the unconstrained translation and rotation

vectors with respect to the penalty force and torque values
m, rad

xu,⊥, ru,⊥ Perpendicular component of the unconstrained translation and ro-
tation vectors with respect to the penalty force and torque values

m, rad

xVC, rVC Virtual coupling vectors from the device or tool to the god object
proxy

m, rad

ω Angular velocity rad/s

Chapter 5: Applications

Ch Grasping point of the object being manipulated m
Cw Workspace center m
λw Workspace movement rate s−1

rh Distance between grasping point Ch and workspace center Cw m
rw Workspace radius m

Chapter 6: Evaluation of Methods

α Level of significance –
b Bonferroni factor –
d Cohen’s effect size statistic –
δ Cliff’s effect size statistic –
ε Greenhouser-Geisser or Huynh-Feldt correction factor for due to

sphericity violation
–

M Average –
Md Median –
N Sample size (number of subjects) in user studies –
F Fisher statistic –
p Probability value –
Qi Quantile i –
r Pearson correlation statistic –
ρ Spearman correlation statistic –

281

S General statistic, specified in text to be F or T –
SD Standard deviation –
T Student test statistic –
V Wilcoxon statistics –
W Mauchly’s statistic –
χ2 Chi square distribution –

List of Figures

1.1 Virtual simulations with haptic feedback . 3

2.1 Human haptic sensory system . 8
2.2 Integrated haptic interfaces . 19
2.3 Energy gain in discrete simulations . 21
2.4 Passivity, stability, and optimal control . 22
2.5 Object representations . 31
2.6 Common methods in collision and distance queries 39
2.7 Bounding Volume Hierarchies . 45
2.8 Schematics of penalty- and constraint-based haptic rendering approaches 53
2.9 Virtual Coupling . 56

3.1 Overview of the data structures and the algorithm 67
3.2 Generation of the basic primitives . 69
3.3 Volumetric Forces . 77
3.4 Pitfalls of computing collisions with voxelmaps and point clouds 79
3.5 Gradient or steepest descent in the voxelmap . 80
3.6 The Signed Distance Voxelmap Function . 82
3.7 Signed distance field sections of the Utah Teapot . 85
3.8 Point quality values . 88
3.9 Point clustering . 90
3.10 Pointshell hierarchy of the Stanford Bunny . 90
3.11 Diagram of the unified proximity and collision computation algorithm 94
3.12 Distance computation . 99
3.13 Time critical queries with varied load and quality thresholds 102
3.14 Sphere and cube benchmarking scenario . 106
3.15 Cube and sphere benchmarking results . 107
3.16 Bunny and Teapot benchmarking scenario . 109
3.17 Bunny and Teapot benchmarking results . 110

283

284 LIST OF FIGURES

4.1 Overview of the god object simulation in two consecutive time steps 119
4.2 Workflow of the god object simulation and force rendering method 121
4.3 Computation of the correction rotation θ . 124
4.4 Computation of the constrained movement out of the unconstrained movement . . . 128
4.5 Friction model . 133
4.6 God object algorithm benchmarking scenarios . 139
4.7 God object algorithm benchmarking results: Bunny and Teapot scenario 140
4.8 God object algorithm benchmarking results: Bunny and thin plane scenario 141

5.1 Point sampled and voxelized representations of a virtual electronic box and a screw
driver . 148

5.2 Overview of the multi-body simulation framework focusing on collision computation 149
5.3 Multibody library architecture . 150
5.4 Game control workflow . 152
5.5 Integration of the vibrotactile armband VibroTac for cutaneous collision feedback . 155
5.6 Workspace navigation in large scenarios . 156
5.7 Car assembly scenario description . 158
5.8 Snapshots of the car assembly sequence . 160
5.9 Performance results of the car assembly . 161
5.10 Integration of new collision shapes to Bullet . 163
5.11 Results of the bouncing ball experiment . 164
5.12 Snapshots of the Stanford Bunny dropped onto a horizontal plane 166
5.13 Performance results of the Stanford Bunny dropped onto a horizontal plane 166
5.14 Segmented data structures of the Stanford Bunny 167
5.15 Overview of other applications . 169

6.1 Model for virtual contact perception . 177
6.2 Study 1: General diagram of the setup and the varied factors 182
6.3 Data structures of the virtual models used in the user studies 182
6.4 Models and tasks in the scenario of the first user study 183
6.5 Study 2: General diagram of the setup in the user evaluation 202
6.6 Real and virtual models and tasks in the scenario of the second user study 203
6.7 Degrees of virtualization, from purely real topurely virtual 205
6.8 Diagrams of values recorded during regular exercises of the same subject 209

A.1 The HUG bi-manual haptic device . 228
A.2 The Sigma.7 haptic device . 229

C.1 Results from Google Scholar related to relevant virtual reality terms 236

List of Tables

2.1 Works on collision detection and force rendering 1/2 27
2.2 Works on collision detection and force rendering 2/2 28

3.1 Solution of the triangle-point projection problem . 74
3.2 Summary of structures, values, and queries that are defined in primitive and enhanced

voxelmaps (V) . 86
3.3 Summary of structures, values, and queries that are defined in primitive and enhanced

pointshells (P) . 93
3.4 Descriptive values during time critical queries . 103

5.1 Results of the bouncing ball experiment . 165
5.2 Results of the Stanford Bunny dropped onto a horizontal plane using different levels

in the segmented collision detection . 167

6.1 Descriptive data of the subjective dependent variables for each of the devices 188
6.2 Statistical analysis of the effect of the device on the subjective dependent variables . 190
6.3 Correlations between subjective variables related to the haptic devices 191
6.4 Descriptive data of the objective dependent variables 192
6.5 Statistical analysis of the effect of all factors on the objective dependent variables . 193
6.6 Descriptive data of the subjective dependent variables related to the exercises . . . 196
6.7 Statistical analysis of the effect of all varied factors on the subjective dependent

variables . 197
6.8 Correlations between the independent variables related to the exercises 198
6.9 Descriptive data of the objective dependent variables for the whole exercise and the

tasks . 211
6.10 Statistical analysis of the objective dependent variables to determine the effect of the

Degree . 212
6.11 Descriptive data of the subjective dependent variables related to the exercises . . . 213
6.12 Statistical analysis of the subjective dependent variables to determine the effect of

the Degree . 215

285

286 LIST OF TABLES

B.1 Main realtime methods in the classes Voxelmap (V) and Pointshell (P) 233

C.1 Results from Google Scholar related to relevant virtual reality terms 237

D.1 List of Publications by the Author . 239

1 Abbreviations . 271
2 Conventions for mathematical symbols . 273
3 Mathematical operators and constants . 274
4 Symbols . 275

List of Algorithms

3.1 Proximity and collision computation algorithm: collisionQuery() 95

4.1 Friction computation algorithm: computeFriction() 134

287

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	Introduction
	Problem Definition and Motivation
	Overview and Key Contributions

	Background
	Human Haptic Sensory System
	Physiological and Neurological Aspects
	Psychophysical and Psychological Aspects

	Immersive Virtual Environments with Haptic Feedback
	Human Factors
	Multimodal Rendering
	Physics Engines: Motion Computation
	Interaction Devices and Techniques
	Kinesthetic Haptic Devices and Control Issues
	Telerobotics
	Haptic Communications
	Applications

	Collision Computation and Force Rendering
	Object Representations
	Collision Computation
	Collision Output
	Basic Methods
	Discrete versus Continuous Collision Detection
	Multibody Scenarios (Techniques for the Broadphase)
	Acceleration Strategies

	Collision Response: Force Rendering
	Overview of Output in Collision Response
	Three Force Rendering Paradigms
	Direct versus Indirect Force Display: Virtual Coupling
	Degrees-of-Freedom (DoF): Three (Forces) versus Six (Forces and Torques)
	Enhancements for Fidelity and Realism: Friction, Shading, and Transients
	Deformation

	Summary, Conclusions, and Perspectives

	Collision Computation
	Introduction
	Related Work
	Contributions

	Data Structures
	Generation of Basic Primitives
	Voxelized Structures (Voxelmaps)
	Point Clouds (Pointshells)

	Properties and Limitations
	Properties
	Limitations

	Enhanced Voxelmaps: Signed Distance Fields
	Generation of the Structures in the Enhanced Voxelmap
	The Signed Distance Voxelmap Function V(P)
	Comparison of the Signed Distance Function V(P) Calls

	Enhanced Pointshells: Point-Sphere Trees
	Point Qualities
	Hierarchy Generation

	Proximity and Collision Queries with Complex Objects
	General Hierarchical Traverse
	Input Data
	Output Data
	Collision Computation (pc = 0, c = 1, qc = 0)
	Distance Computation (pc 0)
	Segmented Hierarchical Traverse (Clustered M)

	Time Critical Level-of-Detail Traverse (c < 1, qc > 0)
	Maximum Allowed Computational load (c)
	Minimum Required Quality (qc)
	Spatio-Temporal Coherence
	Discussion

	Experiments and Results
	Discussion of Scenario 1: Sphere and Cube
	Discussion of Scenario 2: Stanford Bunny and Utah Teapot

	Summary, Conclusions, and Perspectives

	Force Rendering
	Introduction
	Related Work
	Contributions

	God Object Heuristic
	Penalty-Based Contact Computation (#1)
	Correction of the Previous Proxy Frame (#2)
	Computation of the Correction Rotation ()
	Computation of the Correction Translation-Rotation Distribution Factor ()
	Assembly of the Final Correction Step

	Computation of the Unconstrained Motion (#3)
	Computation of the Constrained Motion (#4)
	Filtering of the Proxy Pose (#5)
	Coupling Forces Applied to the Haptic Device (#6, #7, #8)
	Six-DoF Friction (#4)

	Theoretical Discussion of Methods
	Experiments and Results
	Summary, Conclusions, and Perspectives

	Applications
	Introduction
	Related Work
	Virtual Assembly (VA) Systems
	Physics Simulators

	Contributions

	Virtual Assembly with Haptic Feedback
	Simulation Framework
	Multibody Collision Computation Module
	Game Control
	Completing the Jigsaw Puzzle: Communication, Tracking, and Visualization

	Interaction Devices and Techniques
	The Bimanual Haptic Device HUG
	The Vibrotactile Arm Band VibroTac
	Workspace Navigation
	Collaboration with Additional Haptic Interfaces

	Exemplary Scenario: Car Assembly Sequence
	Performance Results

	Integration into the Physics Engine Bullet
	Data Structures and Workflow in Bullet
	Integration Interfaces
	Experiments and Results
	Tests with a Bouncing Ball
	Tests with the Stanford Bunny

	Other Application Environments
	A Virtual Reality Platform for On-Orbit Servicing Simulations
	Ultrapiano: Playing a Virtual Piano with Ultrasound-Imaging
	Robotic Autonomous Assemblies Using Virtual Models
	Realtime Collision Avoidance for Mechanisms with Complex Geometries
	Shared Grasping: Semi-Autonomous Robotic Grasping Using Virtual Models

	Summary, Conclusions, and Perspectives

	Evaluation of Methods
	Introduction
	Related Work
	Contributions

	Study 1: Evaluating Haptic Rendering Methods
	Experimental Design and Implementation
	Tested Scenario: Tasks and Exercises
	Apparatus and Varied Factors
	Sample, Procedure, and Collected Data

	Results and Discussion
	Haptic Devices: Ergonomy and Workload
	Exercises: Performance and Contact Perception

	Study 1: Summary of Lessons Learned and Discussion

	Study 2: Comparing Real and Virtual Manipulations
	Experimental Design and Implementation
	Synthetic Haptic Feedback
	Tested Scenario: Tasks and Exercises
	Apparatus and Varied Factors
	Secondary Task and Auditory Privation
	Sample, Procedure, and Collected Data

	Results and Discussion
	Regular Exercises
	Secondary Task and Auditory Privation

	Study 2: Summary of Lessons Learned and Discussion

	Summary, Conclusions, and Perspectives

	Epilogue
	Used Haptic Devices
	The HUG
	The Sigma.7

	Implementation and Performance Issues
	Virtual Reality and Haptics: Evolution of Relevance
	Publications by the Author
	Bibliography
	List of Symbols
	List of Figures
	List of Tables
	List of Algorithms

