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Abstract 

Mass spectrometry (MS)-based bottom-up proteomics has evolved into an indispensable tool for 

the simultaneous analysis of large number of proteins. The core concept is matching mass 

spectra to peptide sequences to infer protein information. During this process, computational 

and statistical tools make assumptions to the presumed content of a sample and utilize 

probabilistic rankings to assign the most likely match. In analytical chemistry or metabolomics, 

the identity of analytes is validated using synthetic reference standards. Yet, comprehensive 

peptide reference libraries and high-quality reference spectra are lacking in order to implement 

such a stringent approach in proteomic workflows. This cumulative thesis comprises three 

original publications addressing this unmet need, describing the realization of comprehensive 

synthetic peptide libraries and systematically acquired high-quality mass spectra to advance 

human proteome research. 

The first publication describes the realization of a high-throughput peptide synthesis and liquid 

chromatography mass spectrometry (LC-MS) pipeline which resulted in the generation of an 

initial dataset comprising over 330,000 synthetic peptides, representing essentially all annotated 

canonical human gene products. The obtained spectra have been bundled into the 

ProteomeTools Spectrum Compendium (PROSPEC), containing over 11 million high-quality 

peptide spectra. Its value was demonstrated by validating peptide identifications using spectral 

comparisons. The transferability of the acquired spectral library to other instrument platforms 

was demonstrated and the high-quality spectra were utilized to derive general rulesets for 

peptide fragmentation and, consequentially, a prototype MS fragment spectra predictor for any 

peptide sequence. The second publication introduces a novel retention time standard termed 

“PROCAL”, which facilitates retention time alignment of LC-MS runs and data sharing between 

labs. PROCAL can further be used for quality control of LC performance and to harmonize the 

collision energy settings for peptide fragmentation between instruments, making it an integral 

part of the data acquisition and data sharing strategy of the ProteomeTools project. The third 

publication describes the systematic characterization of the LC-MS properties of 21 naturally 

occurring post-translational modifications (PTM) using synthetic peptides. The study relates the 

change in LC retention behavior to the elemental composition of the modification and reveals 

MS fragmentation characteristics across eleven fragmentation modes. The study further 

evidenced novel PTM specific diagnostic ions, with an immediate impact on the identification 

likelihood during data analysis. 

Taken together, the ProteomeTools resource presented is the largest synthetic peptide library 

for human proteome research and will be further expanded, physically and digitally, by the 

addition of other classes of synthetic peptides to a total of 1.35 million peptides and spectra from 

different instrument platforms. Several key applications of the reagents and the derived spectra 

sets were highlighted and widespread use of the freely available data by the scientific 

community can be expected. The data foundation generated and the tools derived will shape 

future proteomic research. This includes assay generation for all human proteins, more 

comprehensive data acquisition strategies, machine learning-based prediction models and more 

sensitive data analysis algorithms, ultimately advancing human proteome and biomedical 

research. 
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Zusammenfassung 

Die massenspektrometriebasierte (MS) Bottom-Up-Proteomik hat sich zu einem un-
verzichtbaren Werkzeug für die simultane Analyse einer Vielzahl von Proteinen entwickelt. Das 
Kernkonzept ist der Abgleich von Massenspektren mit Peptidsequenzen, um daraus 
Proteininformationen abzuleiten. Während dieses Prozesses machen die computergestützten 
und statistischen Programme Annahmen zur Zusammensetzung der Probe und benutzen 
Wahrscheinlichkeits-Ranglisten um die beste Übereinstimmung zuzuweisen. In der 
analytischen Chemie und Metabolomik wird die Identität von Analyten anhand synthetischer 
Referenzstandards validiert. Solche stringenten Ansätze sind, aufgrund der fehlenden 
umfassende Peptidreferenzbibliotheken und hochwertigen Referenzspektren in proteomischen 
Workflows bisher nicht implementiert. Diese publikationsbasierte Dissertation umfasst drei 
Originalpublikationen, welche sich mit diesen Mängeln befassen. Sie beschreiben die 
Generierung umfassender Bibliotheken für synthetische Peptide und systematisch generierte, 
hochqualitative Massenspektren, um die menschliche Proteomforschung voranzutreiben  

Die erste Veröffentlichung beschreibt die Realisierung einer Pipeline für Hoch-
durchsatzpeptidsynthese und Flüssigchromatographie-Massenspektrometrie (LC-MS). Diese 
führte zur Erstellung eines initialen Datensatzes von 330.000 synthetischen Peptiden, welche im 
Wesentlichen alle annotierten kanonischen menschlichen Genprodukte abdecken. Die 
generierten elf Millionen qualitativ hochwertigen Peptidspektren wurden in das ProteomeTools 
Spectrum Compendium (PROSPEC) gebündelt. Exemplarisch wurde die Validierung von 
Peptididentifizierungen mittels Spektrenvergleich gezeigt. Zudem wurde die Übertragbarkeit 
der erworbenen Spektralbibliothek auf andere Instrumentenplattformen veranschaulicht. 
Anhand der generierten Spektren wurden allgemeine Regelsätze für die Peptidfragmentierung 
abgeleitet und ein Prototyp für die Vorhersage von Massenspektren für beliebige 
Peptidsequenzen erstellt. In der zweiten Veröffentlichung wird unter dem Namen PROCAL ein 
neuer Retentionszeitstandard eingeführt. Dieser kann zur Qualitätskontrolle der 
Chromatographie benutzt werden und erleichtert den Abgleich von Retentionszeiten 
verschiedener LC-MS-Läufe und -Systeme. PROCAL kann außerdem zur Kalibrierung der für 
die Peptidfragmentierung verwendeten Kollisionsenergien zwischen Instrumenten verwendet 
werden und ist ein wesentlicher Bestandteil der Datenerfassungs- und Datenaustauschstrategie 
des ProteomeTools-Projekts. Die dritte Veröffentlichung beschreibt die systematische 
Charakterisierung der LC-MS-Charakteristiken von 21 natürlich vorkommenden 
posttranslationalen Proteinmodifikationen (PTM) anhand synthetischer Peptide. Die Studie 
erlaubte es die Änderung des LC-Retentionsverhaltens mit der Elementzusammensetzung der 
Modifikation in Beziehung zu setzen und die MS-Fragmentierungseigenschaften über elf 
Fragmentierungsmodi aufzuzeigen. Es wurden außerdem neue PTM-spezifische diagnostische 
Ionen nachgewiesen, die sich unmittelbar auf die Identifizierungswahrscheinlichkeit während 
der Datenanalyse auswirken. 

Zusammengenommen ist die ProteomeTools-Ressource die größte verfügbare synthetische 
Peptidressource für die menschliche Proteomforschung. Zukünftig wird sie, physisch und 
digital, durch das Hinzufügen anderer Peptidklassen auf 1,35 Millionen Peptide und Spektren 
verschiedener Instrumentenplattformen erweitert werden. Diese Arbeit beschreibt einige 
Kernanwendungen der Reagenzien und der abgeleiteten Spektren. Eine breite Verwendung der 
frei verfügbaren Daten durch die wissenschaftliche Gemeinschaft ist zu erwarten. Sowohl die 
Daten als auch die daraus neu entwickelten Informatikwerkzeuge werden die zukünftige 
Proteomikforschung nachhaltig prägen. Dies umfasst die Generierung von Tests für alle 
menschlichen Proteine, umfangreichere Datenerfassung, auf maschinellem Lernen basierende 
Vorhersagemodelle und empfindlichere Datenanalysealgorithmen, welche in Zukunft die 
menschliche Proteom- und biomedizinische Forschung vorantreiben werden. 
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ELISA    Enzyme-linked immunosorbent assay 

ESI    Electrospray ionization 

ETD    Electron transfer dissociation 

ETciD    Electron transfer collision induced dissociation 

EThcD,   Electron transfer higher energy collision induced dissociation 

FDR    False discovery rate 

FLR    False localization rate 

HCD    Higher energy collision induced dissociation 

HILIC    Hydrophilic interaction chromatography 

iRT    Indexed retention time 

IP    Immunoprecipitation 

IT    Ion trap 

LC    Liquid chromatography 

LC -MS   Liquid chromatography mass spectrometry 

m/z    Mass to charge ratio 

MALDI   Matrix assisted laser desorption/ionization 

MRM    Multiple reaction monitoring 

MS    Mass spectrometry 

MS1    MS1 scan, full MS scan 

MS2/MSn   MS2scan, MSn scan 

Ppm    Parts per million 

PRM    Parallel reaction monitoring 

RF    Radio frequency 

RP-LC    Reverse-phase liquid chromatography 

RT    Retention time 

SAX    Strong anion exchange chromatography 

SCX    Strong cation exchange chromatography 

SRM    Selected reaction monitoring 

TMT    Tandem mass tags 

  



General Introduction 
 

- 4 - 

  



General Introduction 
 

- 5 - 

1. Proteome research 
Life in all its different forms is critically dependent on a cascade of complete and accurate 

transfer of information and the controlled execution of cellular processes enabling growth and 

replication. In this regard, the most important class of effectors is the entirety of proteins present 

in an organism, its proteome. The concept of a proteome was first introduced in 1994 in the 

context of “the total protein complement of a genome”1. It is the result of converting the “blue-

print” of the cell, the DNA-encoded genomic information via RNA into a vast variety of 

different macromolecules consisting of amino acids (Figure Figure Figure Figure 1111). During this translation process, 

the molecular complexity increases by several mechanisms. Staring from estimated 20,000 

human genes2 - which have been identified by large-scale sequencing efforts mapping the 

human genome3 - alternative splicing of the transcriptome is estimated to generate between 

70,000 and 100,000 transcripts with varying abundance levels4, 5. In conjunction with occurring 

sequence mutations6 and alternative translation7 these transcripts are converted into an even 

larger number of different protein sequences. However, the number of distinct proteoforms8 

found in cells is even larger9. In addition, modifications of side chains of amino acids can occur 

either co-translationally or post-translationally. These reversible post-translational 

modifications are involved in a multitude of structural, regulatory and signaling processes as 

well as in protein homeostasis and generate very large numbers of distinct protein molecules10, 

11. Furthermore, proteins assemble themselves into complexes12-15, are localized in different 

subcellular organelles16 and are differentially modified and degraded17-19. This results in large 

proteome complexity with abundances of individual proteins ranging from few hundred copies 

of gene regulatory proteins to millions of molecules for structural proteins20-24. All these proteins 

interact in fine-tuned relationships with its environment to enable all major processes of life 

and ultimately define the cellular organism and its function. A great number of feedback 

mechanisms control the abundance of proteins and their activity status and constantly adjust it 

in response to internal and external stimuli. Disturbance of this highly regulated environment, 

by changing the abundance or the activity of proteins, modifying interaction with its 

surroundings or by altered signal transduction are very often associated with changes of the 

function of a cell and its phenotype25-27. Therefore, a disease can be defined as the result of 

imbalanced information flow in a biological system resulting in a changed proteome28, 29. This 

renders the deciphering of the proteome dimension of utmost importance to gain a deeper 

understanding how to identify, diagnose, predict the outcome of, intervene in or even reverse 

disease processes. 
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Figure Figure Figure Figure 1111    ----    Central dogma of biology leading Central dogma of biology leading Central dogma of biology leading Central dogma of biology leading to proteome complexityto proteome complexityto proteome complexityto proteome complexity....    Genes are transcribed into mRNA, which is then translated 

into proteins. Several processes like splicing or alternative translation start sites generate protein isoforms. The expressed 

proteins form complexes, may carry post-translational modifications, have different subcellular localizations and are 

differentially degraded leading to a vast molecular complexity. Image modified from Harper et al.29. 

 

All efforts to assign diverse phenotypes and disease states to changes in the proteome rely on 

the identification and quantification of proteins present in a sample. The field formed to study 

the entirety of proteins is termed proteomics. Unlike in genomics, no technique exists to amplify 

individual proteins before detection. Hence, protein analytics must be extraordinarily sensitive 

to overcome the very low abundancies of an individual analyte in complex protein mixtures and 

varying abundance levels (dynamic range) within the sample. One established technique able to 

deal with the sensitivity challenge, are antibody-based affinity approaches30. Given the key 

aspect of an antibody – its specificity to the target – is ensured, antibody-based methods may 

be used to trace the expression of certain proteins in tissues (IHC, immunohistochemistry)31 or 

can even identify and quantify the protein expression or modification status of a single amino 

acid by Western Blot32, 33 or Enzyme-linked immunosorbent assays (ELISA)34, 35. Key 

advantages of well-engineered and well-characterized antibodies are superior sensitivity by 

capturing even few molecules of a protein in question. Antibodies may also be bundled into 

panels and arrays36, 37 and thus are instrumental for routine clinical analysis of protein 

expression38, 39. However, cross-reactivity of antibodies with non-target proteins results in a 

limited set of proteins for which highly specific antibodies are available. Hence, antibody-based 

approaches are biased to the existence of a well characterized antibody40, may display a 

disturbing lack of reproducibility in-between studies41 and will always be restricted to a 

predefined set of proteins that are analyzable, imposing methodical hurdles to the analysis of 

complex interactions. 

Towards the ultimate goal of proteome research – the comprehensive identification of all 

present proteins and their abundance levels – mass spectrometry-based (MS) discovery 

proteomics has evolved into an indispensable tool42, 43. It does not require a priori information 

on which proteins are present in a sample and the multiplexing capacities allow the specific 

identification and quantification of thousands of analytes in parallel. MS-based approaches have 

contributed significantly to our understanding of life by comprehensively mapping entire 

proteomes44-48. Starting from the analysis and identification of single, affinity-enriched proteins, 

metholodical49-51, technical52-55 and algorithmical56, 57 improvements to mass spectrometry now 

allow the global mapping of protein expression, modification status10, 58-60, deconvolute 

signaling and interaction-networks to the depth of over 10,000 proteins44, 55, 57, 61, 62. Current 

MS-based approaches are able to handle the dynamic range of protein expression63, to identify 
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and to confidently quantify low abundant analytes from complex mixtures63, 64 and allow 

comparison of dozens of biological samples to identify differences in their proteome45, 65, 66. This 

powerful technology now serves as the cornerstone to many sub-disciplines of proteomics67. 

These include the global mapping of baseline protein expression of different organisms, cell line 

models21, 45, 66, (diseased) tissues68 or patient cohorts. Further, the quantification of the post-

translational modification status of entire biological systems, foremost the phosphorylated69-71, 

acetylated72 or ubiquitinated73 proteome is performed. Frequently, such efforts are extended to 

measuring the response of cellular systems to perturbation. Other approaches have focused on 

interactions between proteins15, mechanisms of proteome dynamics19, subcellular localization16 

or the identification of novel peptides and protein products74-76. Chemical proteomic approaches 

try to identify targetable protein classes77, 78, find or improve potential drugs79, 80 or determine 

their mode of action81, 82. Clinical proteomics approaches83 try to compete with established 

antibody-based techniques by multiplexed measurements of protein abundance in human 

specimen84, 85. Other kingdoms of life are also investigated by mass spectrometry. Examples 

may be the investigation of the colonialization of bacterial species of the intestine86-88 or the 

detection and characterization of (foodborne) pathogens89. Finally, the young field of 

computational proteomics90-92 has evolved with the goal of solving computational challenges 

encountered in proteomics. These include acquiring more comprehensive data93, collecting and 

storing protein information65 and generating efficient algorithms to more confidently identify 

proteins94. Making use of the vast amount of available data95, computational approaches try to 

build relationships between different types of “omics”96, connect observed phenotypes and 

disease states and aid the extraction of knowledge from the data generated. 
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2. Mass spectrometry-based proteomics 
Two major mass spectrometry-based proteomics workflows termed “top-down” and “bottom-

up” exist. The first approach - which will be only briefly mentioned here - investigates intact 

proteins in mixtures of limited complexity97 enabling the detection of existing proteoforms98 

and degradation products99. However, “top-down” proteomics requires isolation of target 

proteins or extensive separation of samples and is not yet capable of disentangling complex 

proteomes100. 

The “bottom-up” approach101, 102 (also termed “shotgun proteomics”; Figure Figure Figure Figure 2222) relies on the 

enzymatic digestion of proteins using sequence-specific proteases like trypsin103, 104 to generate 

proteolytic peptides. Peptide mixtures may be subject to pre-fractionation105, 106 or sub-proteome 

enrichment107 before being subjected to reverse phase chromatography (RP-LC) coupled on-line 

to a mass spectrometer (MS). The mass spectrometer records the mass-to-charge ratio of the 

peptide and fragments it (tandem MS) to determine its sequence. The peptide identity and by 

extension also the protein identity is determined by comparing the recorded tandem MS spectra 

to theoretical spectra of an in-silico digest of a protein database of the organism under 

investigation108, 109. 

 

Figure Figure Figure Figure 2222    ----    Generic bottomGeneric bottomGeneric bottomGeneric bottom----up proteomics workflow. up proteomics workflow. up proteomics workflow. up proteomics workflow. Proteins are extracted by lysing cells. Proteins are then digested into 

peptides using a sequence-specific protease. Peptides are separated on a liquid chromatography system coupled online to the 

mass spectrometer (MS). The exact peptide mass is recorded in an MS1 scan, then the ion population is isolated and fragmented 

and read out in an tandem MS scan to derive the sequence. Spectra are identified by comparing them to theoretical spectra from 

an in-silico digest of a protein sequence database. Protein information and quantification is inferred from peptide data to 

facilitate biological interpretation. Image modified from Altelaar et al.102  
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2.1 Sample processing and preparation 

The sample processing workflow is usually tailored to the research question with the overall 

goal to identify the peptide and therefore protein content of the sample as comprehensively as 

possible (see Figure Figure Figure Figure 2222 for generalized workflow). First, proteins have to be extracted from the 

biological material. This can be achieved by either physical disruption, i.e. mechanical force or 

utilizing reagents like chaotropic salts or detergents110. The method of choice is largely 

depended on the cellular localization of the proteins of interest and whether the native protein 

structure should be preserved for further analysis. Extracted proteins may be subjected to the 

enrichment of certain protein classes (e.g. kinases111, 112) or fractionation-based on size or 

electrochemical properties. To aid the following proteolytic cleavage process, proteins may be 

denatured. Subsequently, disulfide bonds are reduced to further unfold the protein and cysteine 

(Cys) residues are carbamindomethylated to render them chemically inert113. The proteins are 

then digested into short polypeptides using site-specific proteases114. Usually, the serine-

protease trypsin115 of bovine origin is used. It cleaves the amino acid backbone N-terminal of 

lysine (Lys) and arginine (Arg) by performing covalent catalysis of the amide bond, generating 

short polypeptides with an average length of 14 amino acids116 that carry a basic side chain at 

the C-terminus. These properties render tryptic peptides favorable for LC-MS analysis. If a 

different cleavage specificity is required, alternative proteases like LysC, AspN, GlucC, ArgC 

(names indicate sequence specificity and position of cleavage) and chymotrypsin are 

available104. As the digestion increases the complexity of the sample, fractionation may be 

required to achieve comprehensive proteome coverage considering that the mass spectrometer 

lacks the required scan speed to analyze all individual peptides in complex mixtures. 

Therefore, offline fractionation on the peptide level can be performed that separates the mixture 

based on the physiochemical properties of the peptides. As separation-based on hydrophobicity 

on a reverse-phase liquid chromatography (RP-LC)117, 118 is part of the subsequent LC-MS setup 

(see below), it is desirable to employ an orthogonal offline separation technique first. Such 

techniques include strong cation/anion exchange chromatography (SAX, SCX)105, 119, high-pH 

reverse phase chromatography120, hydrophilic interaction chromatography (HILIC)121, 

isoelectric focusing122 or mixed-phase chromatography106. Additionally, peptides carrying 

specific post-translational modifications (PTMs) can be enriched123.Techniques include 

immunoaffinity precipitation (IP)124-126 or ionic interaction-based purifications (e.g. 

Immobilized metal affinity chromatography; IMAC)107, 127 to overcome substoichiometry.  

 

2.2 Reverse-phase liquid chromatography 

Even after pre-fractionation of the tryptic digest, the number of distinct analytes poses a 

challenge for the mass spectrometric analysis. The standard setting for LC-MS is the on-line 

coupling of a high performance liquid chromatography (RP-LC) system128. It features high peak 

capacity for peptides and high resolution. The separation of the complex peptide sample over 

time according to their hydrophobicity – i.e. how soluble peptides are in water – enhances the 

accessibility of analytes to the mass spectrometer by providing time to sequence individual 

analytes and overcoming high dynamic range. The reverse phase separation is based on 

hydrophobic interactions between the analyte and porous spherical silica particles coated with 

an alkyl-hydrocarbon as stationary phase. The mobile phase consists of organic solvents in 
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aqueous solutions containing a low percentage of acid. Peptides introduced to the column 

interact with the unipolar stationary phase through hydrophobic interactions. Additionally, acid 

serves as ion-pairing reagent in the mobile phase to improve the retention of basic molecules. 

Retention of peptides is adjusted by altering the aqueous-to-organic solvent ratio of the mobile 

phase, usually using linear gradients (minutes to several hours) from low to high percentage of 

acetonitrile or methanol (Figure Figure Figure Figure 3333aaaa). The employed LC solvents neither contain salt nor does 

RP-LC require high flow rates, enabling the direct coupling of the chromatographic system to 

the mass spectrometer. Typical set-ups for online peptide nano-LC separations consist of 1.9 to 

5 µm C18 particles packed into capillaries with inner diameters ranging from 75 µm to 300 µm 

and flow rates of 100 to 400 nl/min.  

 

Figure Figure Figure Figure 3333    ––––    Reverse phase chromatReverse phase chromatReverse phase chromatReverse phase chromatography.ography.ography.ography. a) Schematic representation of a chromatogram of a cell line digest using a linear 

gradient of organic solvent (%B). b) Concept of indexed retention times using predefined peptides as fulcrums. iRT can be used 

retention times transfer between gradients (left and right panel), setups and laboratories. Figure modified from Escher et al.129  

 

The actual retention of a peptide, i.e. the concentration of organic solvent that can compete the 

hydrophobic interaction, can be estimated from the total hydrophobicity of its amino acid side 

chains. In general, peptides containing non-polar amino acids with aliphatic side chains (e.g. 

leucine, isoleucine) exhibit stronger retention than peptides containing many neutral-polar (e.g. 

serine, threonine) or basic/acidic amino acids (e.g. lysine, aspartic acid). Furthermore, 

conformational effects influence retention behavior of peptides. As hydrophobic properties can 

be derived from the amino acid sequence, retention times are expected to be constant given 

identical chromatographic and sample conditions. Hence, dozens of hydrophobicity scales have 

been developed130, usually based on the partitioning of amino acids between aqueous and 

organic lipid phases131, 132 or by taking into account the solvent-accessible surface131, 133. Using 

these hydrophobicity scales, several models to predict peptide retention times on reverse phase 

material have been presented. To compensate for inevitable small changes regarding solvents, 

column material or support the transfer of retention times (RT) between different LC-setups 

and gradients, indexed retention times (iRT) were introduced (Figure Figure Figure Figure 3333bbbb)129, 134. Here, the 

retention time of an analyte is reported in reference to a standard spiked into the sample that 

will undergo the same variance in chromatographic performance. The exact retention time of 

the analyte can therefore be determined by its relative retention time and the interpolation of 

the elution times of the standard peptides. iRTs allow an easy transfer of measured or predicted 

retention times between runs, LC systems and laboratories.  
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2.3 Mass spectrometry 

After separation of the peptides based on their physiochemical properties by the liquid 

chromatography system, the mass spectrometer separates the analytes based on mass-to-charge 

(m/z) ratio. In abstract terms, a mass spectrometer is a highly sensitive, very accurate molecular 

scale. A mass spectrometer consists of (at least) three components (Figure Figure Figure Figure 4444): The ion source 

transfers the analyte into the gas phase and ionizes the analyte by abstraction or addition of 

protons or electrons. Next, the gaseous analyte is transferred into the high vacuum of the mass 

spectrometer. Ion optics steer the flux of charged analytes to the subsequent mass analyzer 

which manipulates the trajectory of ions, e.g. filtering, deflecting or separating them based on 

the m/z ratio. Third, the detector records the current induced by the ions as a proxy for 

abundance. The recorded current is converted to the m/z domain and represented as mass 

spectrum plotting ion abundance against the m/z ratio. 

 

Figure Figure Figure Figure 4444    ––––    General General General General componentscomponentscomponentscomponents    of a mass spectrometerof a mass spectrometerof a mass spectrometerof a mass spectrometer....        

 

2.3.1 Ionization techniques 

The first challenge is the transfer of the analyte into the gas phase. While several mechanisms 

exist, mostly so-called “soft” ionization techniques like matrix assisted laser desorption 

ionization (MALDI)135 and electrospray ionization (ESI)136 are applied. 

For MALDI, the analyte is co-crystallized with a large excess of matrix consisting of 

chemophores, usually “aromatic acids”, that are able to absorb ultraviolet light137. Rapid heating 

after excitement of the co-crystal with short laser pulses leads to an explosion-like vaporization 

of the matrix molecules and the embedded analyte. During primary ion formation matrix 

molecules are ionized which then transfer protons (or electrons) to the analyte by secondary ion 

formation. MALDI is able to transfer large, intact biomolecules into the gas phase and generates 

predominantly singly charged ions. However, MALDI is not compatible with the previously 

discussed online-LC coupling, as the analyte needs to be co-crystallized with the matrix.  

ESI on the other hand allows the ionization from liquid phase as a continuous process, making 

it fully compatible with on-line LC coupling138. It is based on dispersion of liquid into highly 

charged droplets from a small capillary, the emitter. An electric potential of several thousand 

volt (V) between the emitter and the mass spectrometer leads to formation of a Taylor Cone and 

droplet dispersion when the electrostatic force exceeds the surface tension of the analyte 

solution139. Airborne droplets collapse and undergo droplet fission (Rayleigh limit; surface 

tension smaller than repulsion of charges in droplet) until desolvated analyte ions are formed. 

The mechanisms behind the ionization process are not yet fully understood, however two 

theories namely the ion evaporation theory140, 141 and the charged residue model139, 142 exist. As 

the ionization efficiency is a function of the generated droplet size, low flow rates139 and LC 

additives143, 144 that modulate the surface tension of the liquid are used to increase the signal 

intensity in the mass spectrometer. Nanoflow-ESI, as opposed to microflow-ESI, generates 

multiply charged ions with very high efficiency145. Therefore, it is today’s standard ionization 

technique. In positive mode, ESI is employed in bottom-up workflows in conjunction with acidic 
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LC solvents, causing tryptic peptides to become doubly protonated: at the C-terminus carrying 

a basic Lys or Arg residue and at the N-terminus146, 147. Peptides having additional basic residues 

due to incomplete digestion or basic residues like histidine (His) may carry additional charges. 

 

2.3.2 Mass analyzers and coupled detectors 

Mass analyzers separate analytes based on the mass to charge ratio in space or time. Using direct 

current (DC) and alternating current (AC), they modulate ion trajectory, ultimately 

differentiating analytes by their m/z ratio. Characteristics describing the performance of mass 

analyzers are resolution (R), i.e. the minimal difference between two m/z populations, and 

measurement accuracy of the analyzer in relation to external calibrants. In other words, a high-

resolution mass spectrometer allows separating ions with similar m/z ratios or overlapping 

isotope patterns. Analytes (i.e. peptides) exist not only in their monoisotopic form but can also 

contain heavier isotope species of an element. These isotope peaks differ by one neutron, the 

intensity of the isotope peak is derived from the elemental composition weighted by the natural 

occurrence of every atomic isotope. Consequently, isotope patterns are predictable. This spacing 

of the isotope peaks is extremely useful since it allows the determination of the protonation 

state of the analyte in an MS1 scan148. High mass accuracy of an analyzer is beneficial to 

assigning the correct molecular composition or peptide sequence to a measured m/z ratio149-151. 

In the following, important mass analyzers and their properties will be briefly introduced. 

 

Figure Figure Figure Figure 5555    ––––    Overview Overview Overview Overview ofofofof    important mass analyzers. important mass analyzers. important mass analyzers. important mass analyzers. a) Linear ion trap (LIT). Main RF voltage traps ions radially, DC voltage 

creates potential well to trap ions axially. Ions are ejected through the ejection slit by increasing the main RF. b) Quadrupole 

mass filter. Only ions with a certain m/z (as defined by DC and main RF) can pass the quadrupole in a secular motion. c) 

Orbitrap mass analyzer. Ions orbit the inner electrode while adopting an axial oscillation frequency-based on their m/z. Induced 

image current is converted to mass spectra using Fourier transformation. Figures modified from Savaryn et al.152 

 

Linear ion trap (IT)  

Linear ion trap (IT) mass analyzers (Figure Figure Figure Figure 5555aaaa)    are constructed from four rod-shaped electrodes 

able to confine ions in space153. Fast oscillating AC at radio frequency (RF, main RF) confines 

the ions in between the rods radially. The ions are trapped axially by applying a DC potential 

so that the axial center part of the ion trap has a lower potential than the front rod and rear rod 

of the ion trap. The trapped ions are in secular motion, controlled by the amplitude of the main 

RF, with smaller molecules moving faster than larger ones. The m/z range of ions that have 

stable trajectories and are contained in the trap is dependent on their response to the main RF 

amplitude. For the resonance ejection of ions from the trap ejection slits on two of the rods (exit 

rods) exist. An additional AC is applied to the exist rods and when the frequency of and ions 

secular motion, matches the AC frequency applied, the ion starts to resonate back and forth 
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until the ion packet is ejected through the ejection slit. A scan is performed by ramping the main 

RF such that all m/z ion populations are sequentially ejected. The ions exiting the trap hit a 

detector, usually an electron multiplier154. Upon impact, the electron multiplier generates a 

cascade of secondary electrons, thereby multiplying the signal until it can be picked up by an 

anode155. Knowing the main RF, the exit rod AC frequency and having calibrated the ion trap 

to external standards allows the calculation of the m/z ratio of the ion packet impacting on the 

detector. The m/z value determination is therefore based on the ion stability in an electric field. 

As the name indicates, ion traps possess the ability to collect and store ions from the continuous 

ion stream over an extended period. This feature in conjunction with the electron multiplier 

leads to high sensitivity of the ion trap. The overall scan speed of ion traps is high, with the 

tradeoff of low resolution and low mass accuracy156, 157. The resolution (and to some extend the 

mass accuracy) of the ion trap can be increased by slowing the main RF ramp of each scan, at 

the cost of lower scan speed. However, ion traps operated in the fast scanning mode do not 

possess enough resolution to resolve near isobaric masses; ergo they are not able to fully 

separate isotope peaks. 

Quadrupole  

Quadrupole mass analyzers (Figure Figure Figure Figure 5555bbbb) also consist of four rods. Two opposing rods have a 

quadropolar DC applied, while the other two have the main RF applied, which again confines 

ions radially. The quadropolar DC voltage has the same amplitude as the main RF but the 

opposite sign voltage. The ions enter the quadrupole and adapt a corkscrew like secular motion. 

At specific main RF and DC voltages, only ions of a particular m/z have stable trajectories 

through the quadrupole and are able to pass through it while ions with non-stable trajectories 

collide with the rods. Therefore, the quadrupole is an efficient mass filter that can select single 

ion populations from a continuous stream of ions158. In contrast to the ion trap, no ions can be 

stored. Like ion traps, quadrupole mass analyzers are often combined with electron multipliers 

as detectors that are located at the rear end of the quadrupole and record the ion current of a 

constant stream of ions passing through the quadrupole. Quadrupoles only exhibit fast scan 

speed when small scan ranges need to be selected, like when monitoring individual ions. The 

acquisition of large scan ranges or MS1 spectra is slow. Today, quadrupoles are frequently 

employed as mass filters in combination with a TOF or Orbitrap mass analyzer. In this 

combination, the quadrupole allows fast switching between m/z values and effective mass 

filtering, enabling the measurement of a large number of different ion populations. 

Time of flight (TOF)  

Time of flight (TOF) mass analyzers accelerate ions with a certain acceleration voltage in a high 

vacuum and record the flight time of the analyte for a given distance. As the kinetic energy 

transferred to is identical for all ions ((((Formula Formula Formula Formula 1)1)1)1), the time required to pass the flight tube of a 

given length is proportional to the square root of an individual ions m/z ratio ((((Formula Formula Formula Formula 2)2)2)2). As 

the separation power and resolution of the analyzer is dependent on the drift distance, reflectors 

may be used to elongate it. The TOF analyzer has to be coupled to a detector, usually an electron 

multiplier. In addition to the sensitivity of this kind of detector, TOF mass analyzers exhibit fast 

scan speeds while providing high resolution and mass accuracy. 
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����    = kinetic energy 
m = ion mass 
v = ion velocity 
z = ion charge 
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t = drift time 
k = machine constant 

    
m  = ion mass 
z  = number of charges    

(2)(2)(2)(2)    

 

Orbitrap 

Orbitrap mass analyzers (Figure Figure Figure Figure 5555cccc), which belong to the Fourier transform mass spectrometer 

family, are made up of a coaxial central and a barrel-shaped outer electrode53, 159. Ion packets 

are tangentially injected from a bent quadrupole at an offset from the center of the electrode. 

After entering the Orbitrap, the ions are squeezed towards the central electrode depending on 

their m/z. The ions then adopt an orbiting motion around the central electrode while settling 

into harmonic oscillations in the axial dimension. The oscillation frequency is inversely 

proportional to the square root of the m/z ratio of the ion package, with smaller ions oscillating 

at higher frequencies ((((Formula Formula Formula Formula 3333)))). The oscillating ion packets induce an image current at the 

left and right electrodes of the Orbitrap analyzer. The image current is converted from the time 

domain to the frequency domain using the Fourier transformation and calibration to external 

references allows the assignment of m/z ratios to the recorded frequencies. Orbitrap mass 

analyzers combine high mass accuracy and superior resolution; however they are not as 

sensitive as other mass analyzers since several ions are required to generate a signal. The 

resolution is linearly dependent on the duration of the transient time. Therefore, long oscillation 

times lead to resolutions that can even disentangle the mass defect of heavy isotopes and 

therefore the binding energy of different nucleons160. As Orbitraps cannot capture a constant 

stream of ions, they are used in conjunction with a trapping device that is able to store and 

collect ions. Today, Orbitrap-based mass spectrometers present the most common instrument 

platform in bottom-up proteomics. Both hardware and software are subject to frequent updates 

to improve speed (up to 40 Hz), resolution (up to 1 million) and mass accuracy (less than 2 

ppm)150. 

�� =	� ��	/ z	 
ωz  = frequency of axial oscillation 
k = machine constant 
m = ion mass 
z = ion charge 

((((3333))))    

 

 2.3.2 Tandem mass spectrometry 

So far, all mass analyzers were able to determine the m/z ratio of the intact analyte peptide (in 

an MS scan or sometimes also called MS1 scan). However, while accurate determination of the 

intact mass may clarify the amino acid composition of a peptide, it is not possible to determine 

the exact sequence of the peptide this way. Nevertheless, sequence information can be derived 

by fragmenting the peptide into shorter truncation products of the original sequence161. This 

process called “MS2” or “tandem MS” involves two stages of MS: After recording the intact mass 

of all peptides eluting at a given time point, the mass spectrometer isolates a single ion 

population (“precursor”) before fragmenting it using physical force or a chemical reaction in the 

gas phase (Figure Figure Figure Figure 6666). Three common fragmentation techniques are termed collision inducted 
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dissociation (CID)162-164, higher energy collision induced dissociation (HCD)165 and electron-

transfer dissociation (ETD)166. CID (also termed ion trap CID) and ETD are performed in an ion 

trap, while HCD requires an additional quadrupole mass analyzer, sometimes termed “collision 

cell”165. While it is possible to perform MS1 and CID MS2 using a single ion trap mass analyzer, 

modern tandem mass spectrometers incorporate combinations of mass analyzers allowing 

advanced scan types and parallelization of ion collection, filtering and scanning. For a tandem 

MS scan, one available mass analyzer acts as a mass filter isolating the precursor ion population 

while the second analyzer is used to record the information on the generated product ions after 

fragmentation.  

 

Figure Figure Figure Figure 6666    ––––    Tandem Mass Spectrometry. Tandem Mass Spectrometry. Tandem Mass Spectrometry. Tandem Mass Spectrometry. The mass to charge ratio of the intact peptides eluting at a given retention time is 

recorded (MS1). Populations of ions are subsequently collected and subsequently fragmented into truncated versions to elucidate 

the peptide sequence (MS2). Image modified from Altelaar et al.102 

 

Nomenclature 

Ions generated by the fragmentation of a peptide are termed as defined by the nomenclature of 

Roepstorff, Fohlman and Biemann167-169. This nomenclature differentiates the fragmentation 

site, cleaved atomic bond and N- and C-terminal orientation. The fragmentation typically occurs 

at the weakest bond, the peptide backbone, generating ions derived from the N-terminus (a, b 

and c-ions) and the C-terminus (x, y and z-ions; FiguFiguFiguFigure re re re 7777aaaa), depending on which molecule retains 

the charge. The fragment ions are formed with different probabilities, leading to a non-uniform 

however reproducible distribution of fragment ion intensities in a tandem MS spectrum170. 

Which exact ions are generated is a function of the amino acid sequence, the applied 

fragmentation technique, energy or reaction time used for fragmentation. To adjust the collision 

energy to the specific molecule, the size and charge of a fragment ion are used to calculate a 

normalized collision energy171. CID and HCD fragmentation predominantly generate b- and y-

ion series that originate from the cleavage of the amide bond between the carbonyl and the 

amide group, while ETD fragmentation generates mostly c- and z-ions. The position of the bond 

breakage is enumerated from the respective terminus (FiguFiguFiguFigure re re re 7777bbbb). If multiple peaks of a fragment 

ion series are detected, the delta mass of consecutive fragments of the same series can be 

matched to the dehydrated amino acid mass, allowing readout of the peptide sequence. Besides 

ion series, combinations of bond breakages yield additional sequence information by giving rise 

to internal fragment ions and immonium ions (FiguFiguFiguFigure re re re 7777cccc). Immonium ions do not carry 

positional information but confirm the presence of a (modified) amino acid in the sequence172, 

173. Furthermore, partial or complete fragmentation of the amino acid side chain can give rise 

to satellite ions or neutral losses of water and ammonia.  
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FiguFiguFiguFigure re re re 7777    ––––    Peptide fragment ion nomenclature.Peptide fragment ion nomenclature.Peptide fragment ion nomenclature.Peptide fragment ion nomenclature.    a) Depending on the exact site of bond breakage and the localization of the 

retained charge, fragment ions are either termed a-, b-, c-ions (N-terminal) or x-, y-, z- ions (C-terminus). b) Enumeration of 

the b- and y-ion series (as well as the a2 ion) is demonstrated for an octopeptide fragmented by CID/HCD. c) Combinations of 

different cleavages lead to internal fragment ions (here: immonium ion). Image modified from Steen et al.161. 

 

Collision induced dissociation 

Collision induced dissociation (CID) is a low-energy fragmentation technique that is performed 

in an ion trap and relies on the excitation and subsequent collision of the molecules with an 

inert gas162-164. After performing an MS1 scan, all ion populations are collected and stored in 

the ion trap. Simultaneous ejection of unwanted ions is performed by superimposing the exit 

rod AC waves for all ions except the precursor to isolate, such that only the ion population of 

interest has a stable secular motion and is retained in the trap. The isolated ion population is 

brought to resonance and undergoes multiple collisions with an inert gas like helium. This 

results in vibrational energy, which accumulates until the molecule breaks apart (usually at the 

amide bond at the peptide backbone), generating dominant b- and y-ion series. The actual 

processes leading to the dissociation of the protonated peptide population are a hierarchical 

system of competing gas phase rearrangement-type fragmentation pathways. The entire process 

is strongly dependent on the sequence of the peptide, the protonation state and energy applied 

(as extensively discussed by Paizs et al174). Disintegration of activated ions into fragments under 

low-energy CID conditions mainly occurs through charge-directed dissociation pathways 

explained by the “mobile proton” model175-178. In this model, protons that are transferred to the 

molecule during positive mode ESI are sequestered to the most basic residues, i.e. the side chains 

of lysine, arginine and histidine as well as the N-terminus.  

Upon excitation, the proton can populate energetically less favorable sites at the peptide 

backbone. In the prominent bx-yy fragmentation pathway174 the protonation of the amide 

nitrogen or carbonyl oxygen of the backbone leads to a weakening of the peptide bond and 

makes the carbon prone to a nucleophilic attack by the N-terminal neighbor amide oxygen. This 

results in the formation of a cyclic oxazolone derivate and a linear derivate. Depending on the 

affinity, the proton can be retained on either dissociation product, forming either a b-ion (cyclic) 

or a y-ion (linear) 179 (Figure Figure Figure Figure 8888). In addition, several alternative pathways for the cleavage of the 

most N-terminal amide bond180, the cleavage due to side chain nucleophilic attracts (e.g. 

Histidine effect176) and charge directed neutral losses181-183 from specific amino acid side chains 

exist. Further fragmentation of generated b- and y-ions can generate internal ions184, abundant 

immonium ions185 and a2-ions through the loss of carbon monoxide from b2-ions186. Large 

fragment ion populations can be completely depleted, if an excess of energy is applied187. 

Resulting ion trap CID spectra exhibit very good sequence coverage for tryptic peptides 

independent of their charge state. Neutral losses, (e.g. the loss of phosphoric acid from 

phosphorylated serine and threonine residues) are frequent, whereas almost no diagnostic 
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immonium ion can be detected due to failed stabilization of small fragments during the CID 

process188.  

 

Higher energy collisional dissociation 

In higher energy collisional dissociation (HCD also referred to as beam-type CID), the precursor 

ion is isolated using a quadrupole or ion trap and accelerated into a dedicated quadrupolar or 

octopolar collision cell filled with an inert gas165. A DC voltage offset of several dozen electron 

volts (eV) between the ion optics and the collision cell is used to accelerate the ions into the gas. 

The collisions with the nitrogen molecules provide the energy required to activate the 

dissociation pathways above described. Due to the higher energy applied for a shorter period of 

time compared to CID, HCD spectra exhibit slightly different characteristics189, such as the 

prominent generation of internal ions and the occurrence of satellite ions from side chains. 

Typically, comprehensive y-type ion series dominate HCD MS2 spectra, while especially large 

b-ions are underrepresented since they are depleted with increasing collision energies. HCD 

spectra do not suffer from lower mass cutoffs like CID spectra and allow the acquisition of 

fragment masses over a large mass range. Several amino acids like histidine, lysine and tyrosine 

produce prominent immonium ions due to secondary fragmentation of larger product ions165, 

172. Neutral losses of water and ammonia are common whereas neutral loss of phosphoric acid 

during the fast fragmentation of phosphorylated residues is less pronounced190. If the fragments 

are read out in an Orbitrap or TOF analyzer, HCD spectra provide very high mass accuracy and 

resolution. HCD fragmentation performs well for tryptic peptides, regardless of charge state, 

requires little activation time and presents the current standard fragmentation technique for 

bottom-up proteomics191. 
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Figure Figure Figure Figure 8888    ----    CID fragmentation mechanism. CID fragmentation mechanism. CID fragmentation mechanism. CID fragmentation mechanism. Fragmentation scheme according to Paizs et. al174 of a protonated peptide by collision 

induced dissociation leading to the generation of linear y-ions and cyclic b-ions. Figure modified after Paisz et.al174, 192. 

 

Electron-transfer dissociation 

Electron-transfer dissociation (ETD) is an alternative fragmentation technique that relies on the 

transfer of electrons to the peptide backbone to induce radical-driven fragmentation rather than 

using kinetic energy166. ETD is usually performed in an ion trap where a radical anion (e.g. 

fluoranthene)193, 194 reacts with the isolated precursor for a given time period, thereby cleaving 

the N-Cα bond of the peptide backbone generating c– and z-type ions (see FiguFiguFiguFigure re re re 7777aaaa, , , , Figure Figure Figure Figure 9999, , , , 

Figure Figure Figure Figure 10101010). Captured electrons form an odd-electron reactive species, which produces a 

hydrogen radical. The addition of the hydrogen radical to the carbonyl group induces the 

fragmentation of the peptide backbone166. The efficiency of this reaction is largely dependent 

on the reaction time and the charge density of the precursor: While doubly-charged precursors 

generate few fragment ions and non-dissociative electron transfer occurs (“ETnoD”), higher 

charged species are fragmented with high efficiency191, 195-197. Furthermore, ETD does not lead 

to the fragmentation of amino acid side chains, rendering it an interesting tool for the analysis 

of labile post-translational modifications198. Since c- and z-ions are highly complementary to 

the ion series produced by collision induces dissociates, ETD can complement the sequence 

coverage of a peptide fragmented by CID/HCD. As ETD scans can be read out in both the ion 

trap or alternatively by high resolution analyzers like the Orbitrap, discussed advantages apply. 

However, fragmentation based on a chemical reaction is much slower and less efficient than 

HCD/CID, reducing the scan speed of the instrument197. Therefore, ETD fragmentation is not 

routinely applied in bottom-up proteomics and mostly confined to the investigation of peptides 

with higher charges or when complementary ion information not generated by CID/HCD 

fragmentation is desirable199. 
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Figure Figure Figure Figure 9999    ––––    ETD fragmentation mechanism. ETD fragmentation mechanism. ETD fragmentation mechanism. ETD fragmentation mechanism. Fragmentation scheme of a multiply protonated peptide using fluoranthene radical 

anion leading to the formation of a c- and y-ion. Figure modified from Syka et. al200 and Udeshi et al.201. 

 

Combination of fragmentation events 

If the information derived from a single fragmentation step is not enough for the identification 

of a peptide sequence - or full coverage of the amino acid sequence is desired - modern mass 

analyzers allow the triggering of subsequent fragmentation events. To overcome the described 

weakness of low fragmentation efficiency for doubly-charged precursors in ETD, supplemental 

activation techniques have been developed. They combine ETD with supplemental CID/HCD 

fragmentation and are termed EThcD and ETciD202, 203 (Figure Figure Figure Figure 10101010). Here, highly abundant 

fragments originating from the ETD reaction are further fragmented using CID/HCD, 

generating comprehensive sequence coverage of the peptide with four ion series. This strongly 

improves the identification of precursors with low charge density and has been shown to be 

beneficial to the correct localization of post translation modifications204. However, the 

combination of scan types comes with the disadvantage of a decreased scan speed, rendering 

these approaches impractical for the comprehensive analysis of complex samples.  

The idea of isolating an ion species and fragmenting it (MS2) can be expanded to higher stage 

fragmentation (MSn)205, 206. Here, the products of the MS2 scan are read out, the MS2 

fragmentation is repeated without readout and highly abundant fragment ions are again isolated 

and further fragmented (MS3). This technique is useful for peptide cross-linking experiments207 

where a cleavable cross-linker is fragmented (MS2) and subsequently the two formerly cross-

linked peptides are fragmented in MS3 scans to determine their sequence. Another common 

approach is the MS3 fragmentation of peptides modified with amino-reactive reporter labels208. 

Here, the MS2 scan at lower collision energy is used to identify the peptide sequence and the 

subsequent MS3 scan of highly abundant fragment ions at high collision energy is used to 

separate the reporter from the peptide ions in order to quantify their relative abundance. 

Moreover, a combination of CID (MS2) and HCD (MS3) may be used to enhance sequence 

coverage of peptides, as the expected abundance of b- and y-ion series are somewhat 

complementary between the two scan types209. 
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Figure Figure Figure Figure 10101010    ––––    Exemplary fragmentation patternExemplary fragmentation patternExemplary fragmentation patternExemplary fragmentation patternssss. . . . Fragmentation patterns of doubly-charged peptide SGELGAVIEGLLR using 

different fragmentation techniques and mass analyzers. Only identified peaks are displayed, selected peaks are annotated. 

 

2.3.3 Instrumentation and implementation 

Instrumentation 

As an example of current instrumentation and the interaction of the different mass analyzers 

presented above, the latest Orbitrap Fusion ETD tribrid mass spectrometer is described (Figure Figure Figure Figure 

11111111). Introduced in 2015, it combines a segmented quadrupole with an Orbitrap mass analyzer 

and a dual pressure linear ion trap. Available fragmentation techniques are CID (in ion trap), 

HCD (in collision cell) and ETD (in ion trap). The architecture of the instrument allows for a 

large number of scan combinations and fragmentation types, which can be parallelized for time 

efficiency210, 211. MS1 scans are usually acquired by passing all ions of a certain scan range to 

the Orbitrap mass analyzer. MS2 scans scan be acquired either in parallel to the MS1 scan using 

HCD or CID for fragmentation and the ion trap for readout or sequentially using HCD or CID 

with Orbitrap readout. For ETD scans, fluoranthene anions are generated at the ETD source 

and stored in the ion trap where they react with the isolated precursor. Supplemental activation 

can be performed in both the ion trap (for CID) or the collision cell (for HCD) and ions can be 

read out in both the ion trap or the Orbitrap mass analyzer. MS3-based scans usually rely on 

MS2 in the ion trap with subsequent precursor isolation and fragmentation in the collision cell 

before reading out the fragments in the Orbitrap. Operation at up to ~ 40 Hz scan speed, high 

sensitivity and the flexible use of all available fragmentation techniques allows the fast 
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recording of relevant types of tandem MS spectra used in bottom-up proteomic research. The 

available architecture supports different data acquisition schemes used in current proteomics. 

 

Figure Figure Figure Figure 11111111    ––––    Ion routing scheme of an Orbitrap Fusion Lumos ETD mass spectrometer. Ion routing scheme of an Orbitrap Fusion Lumos ETD mass spectrometer. Ion routing scheme of an Orbitrap Fusion Lumos ETD mass spectrometer. Ion routing scheme of an Orbitrap Fusion Lumos ETD mass spectrometer. The tribrid mass spectrometer combines 

three mass analyzers (colored), as well as different tandem MS functionalities. Image used with permission from Thermo Fisher 

Scientific. 

 

Data dependent acquisition 

The classical way of data acquisition termed data dependent acquisition (DDA) relies on 

dynamic switching between MS1 and MS2 scans (Figure Figure Figure Figure 12121212aaaa)212. The top N most abundant intact 

peptide species in a MS1 spectrum are sequentially isolated using a narrow isolation window, 

fragmented and read out (MS2). Important parameters directly influencing scan speed and 

sensitivity are the time an ion species is collected (“ion injection time”) and the total number of 

ions collected. To prevent the instrument from repeatedly fragmenting specific peptides, 

precursors picked for MS2 are subsequently excluded from fragmentation for a set period. The 

DDA approach requires no prior knowledge of the content of the sample due to on-the-fly 

decision-making. Based on ion properties like mass and charge, the choice of fragmentation 

technique, selected mass analyzer, as well as scan settings can be dynamically adjusted for each 

precursor213. However, DDA lacks longitudinal reproducibility, as the stochastic picking of the 

most abundant peptide species leads to missing information across runs. Here, a low abundant 

peptide elution profile picked for fragmentation in one run, could be missed in a second run, 

rendering comparison and thus the gathered information on the peptide in the first run 

irrelevant. Further, depending on the scan speed and sample complexity, the mass spectrometer 

may only be able to sample a sub population of all recorded precursors for MS2, biasing the 

identification to peptides with high abundance. This problem is further exacerbated by an 

intensity threshold a given precursor needs to exceed to trigger an MS2 event, as well as frequent 

failure to assign charge states to low abundant precursors prior to MS2 fragmentation. In 

samples with large differences in analyte amounts, the dynamic range of the analysis is impaired 

because MS1 spectra are dominated by a single ion. Recent developments in acquisition software 
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tries to counteract this phenomenon by using segmented MS1 windows to better record low 

abundant ions57, 214. Today, classical DDA allows the sampling of tens of thousands of peptides 

per hour to a depth of ~5000 proteins without requiring any a priori information on the sample57.  

 

Targeted data acquisition 

To overcome the limitation of DDA in terms of sensitivity in complex mixtures and the 

prerequisite of having to detect the analyte species in the MS1 scan, targeted proteomic methods 

have been developed215. Here, the analyte of interest has to be pre-determined, as the mass 

spectrometer does not perform any real-time decision-making. Based on m/z values provided to 

the mass spectrometer, it isolates the precursor ion, fragments it and records the fragment ion 

intensities (Figure Figure Figure Figure 12121212bbbb). Using short cycle times between two sequencing events of the same 

precursor, the fragment ion traces are recorded over time. Depending on the instrumentation, 

not only precursor mass lists but also derived fragment masses (“transitions”) need to be 

provided and are recorded separately. This is termed “selected reaction monitoring (SRM), also 

commonly referred to as multiple reaction monitoring (MRM)216 on triple quadrupole mass 

spectrometers. Other instruments (e.g. Quadrupole-Orbitap, Quadrupole-TOF) can record a full 

tandem MS spectrum for every targeted precursor with all its fragment ions, which is termed 

“parallel reaction monitoring” (PRM)64. While being limited to a few pre-selected analytes, 

targeted measurements are the gold standard in terms of sensitivity and reproducibility. In 

particular, they allow the assessment of the limits of quantification and detection for an analyte 

if a synthetic standard peptide is employed63, 217, 218. However, the setup of such methods relies 

on a priori information and requires the implementation and laborious fine-tuning of optimal 

measurement parameters for every analyte (“assay”). 

 

Data independent acquisition 

Data independent acquisition (DIA - an umbrella term for all “sequential window acquisition” 

approaches like SWATH93) on the other hand aims at combining the benefits of the unbiased 

DDA approach and the reproducibility of targeted measurements. DIA approaches try to 

generate a comprehensive digital map of the sample without on-the-fly decision-making. After 

a MS1 scan, several predefined and usually wide isolation windows are used for precursor 

isolation and subsequent fragmentation (Figure Figure Figure Figure 12121212cccc). The instrument iteratively cycles through 

these MS2 windows until the full m/z range is analyzed. The process is systematically repeated 

until the end of the programmed method, independent of the previous detection of intact peptide 

species. Because DIA captures fragment traces of all eluting analytes, MS2 spectra are complex 

and chimeric, since they consist of co-isolated and co-fragmented peptides. Overall, DIA 

provides a more comprehensive sampling of bottom-up proteomic data at the cost of complex 

data analysis workflows. Recent publications report impressive peptide and protein numbers 

superior to the performance of DDA61.  
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Figure Figure Figure Figure 12121212    ––––    Data acquisition Data acquisition Data acquisition Data acquisition schemesschemesschemesschemes. . . . a)    In DDA, the N-most abundant precursors from the preceding MS1 scan are sequentially 

isolated and fragmented to obtain MS2 spectra originating from (mostly) single precursors. b) Targeted data acquisition does 

not rely on detection of a peptide mass in the MS1 scan but iteratively triggers MS2 scans from a predefined list of m/z values 

at given a retention time. c) DIA triggers MS2 scans over the whole scan range using predefined wide isolation windows that 

encompass several precursors.    
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3. Peptide identification and quantification 
Post data-acquisition, generated MS2 spectra have to be interpreted with the ultimate goal of 

obtaining a list of confident peptide and protein identifications. As modern proteomic 

approaches generate tens of thousands of spectra per hour, manual interpretation of all MS2 

spectra is not feasible. Several computational pipelines have been established to automatically 

derive peptide and protein identifications from MS2 spectra, the exact workflows of which are 

very much dependent on the data acquisition scheme at hand    (Figure Figure Figure Figure 13131313). Strategies can be 

classified into database searching109, 219, de-novo sequencing220, 221 and spectral-library-based 

approaches93, 222. Database searching follows the idea of matching generated DDA MS2 spectra 

to theoretical spectra based on an in-silico digest of a protein sequence database generated from 

genomic data. The output is a ranked list of candidate sequences which are scored based on how 

well experimental spectra and theoretical spectra align109, 219. Scoring may be further assisted 

by short readily interpretable parts of the spectra, so called sequence-tags223. Database searching 

requires knowledge on the protein content in both the sample and the sequence database. 

However, the broad availability of reference proteomes for an increasing number of organisms 

renders database searching the most common peptide identification strategy. If neither gene nor 

protein sequence information is available for the sample, DDA MS2 spectra may be interpreted 

by de-novo sequencing. However, the amino acid sequence extracted from delta masses of 

consecutive peaks of a fragment ion series is often incomplete or ambiguous220. The last 

approach is based on previously acquired peptide spectra, which resulted in high-confidence 

identifications (“spectral library”). Such a spectral library is used to directly score the similarity 

of DDA scans with previously recorded ones or to prioritize the extraction of fragment ion 

traces from DIA and targeted mass spectrometry data by making use of the relative intensities 

of fragment ions in the spectral library. 

 

Figure Figure Figure Figure 13131313    ––––    Peptide identification strategies. Peptide identification strategies. Peptide identification strategies. Peptide identification strategies. a,b)    Database searching scores acquired tandem MS spectra against theoretical 

spectra generated from in-silico digesting a protein sequence database. c) De-novo sequencing derives the peptide sequence by 

assigning the delta masses in consecutive fragment ion series to amino acids. d) Spectral-library-based approaches rely on a 

collection of previously identified peptide tandem mass spectra to score acquired spectra or extract ion traces of fragments also 

present in the spectral library. 

 

3.1 Preprocessing of tandem MS spectra 

Generated spectra are stored scan-by-scan as peak lists consisting of paired m/z and intensity 

information, as well as metadata including acquisition and machine parameters. Usually, spectra 

undergo several steps of preprocessing before being submitted to database search engines to 

remove impurities and reduce complexity224, 225. This includes baseline removal, normalization, 

peak picking, centroiding, removal of isotopic peaks and deconvolution of charge states. For the 
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latter, the m/z spacing of observed isotopes is used to determine the charge state of the fragment 

and fragment ion intensities of different charge states of the same peptide are accumulated at 

the lowest observed charge state. The resulting spectra exhibit a higher signal to noise level, are 

less complex and cleaner, which allows more precise database searching226. For spectral library 

searching, charge deconvolution is usually not performed as the overall appearance of the 

spectra and the relative fragment ion intensities are changed in the process, which impairs the 

calculation of similarity scores. 

 

3.2 Database searching 

DDA workflows combined with database searching is the standard workflow for the 

identification of “bottom-up” proteomics data (Figure Figure Figure Figure 13131313aaaa). Several search engines like 

Mascot219, Sequest109 or Andromeda108 (integrated in MaxQuant94) as well as many other tools 

like MS-GF+227, SpectrumMill or MSFragger228 do exist. 

To obtain a list of candidate peptides to match to the experimental spectra, an in-silco digest of 

a protein sequence database is performed. It emulates the cleavage specificity of the enzyme 

used in the sample workflow, additionally allowing for longer versions of the peptides with 

missed cleavage sites to account for incomplete digestion by the enzyme. Databases for model 

organisms can be obtained from repositories like Uniprot229 or can originate from RNA 

sequencing data generated from the very same sample. To generate a comprehensive peptide 

list, modifications of individual amino acids are allowed. As discussed above, cysteine residues 

are rendered chemically inert to avoid the unspecific generation of disulfide-bridges during the 

standard bottom-up proteomics workflow. Modifications introduced as part of this step are 

defined as so-called fixed modifications, meaning that they are assumed to occur on every 

cysteine. Post-translational modifications potentially present on amino acid side chains are used 

as variable modifications. These modifications vastly increase the search space as permuted 

versions of these peptides must be generated. A theoretical tetra-peptide (MSYT; methionine-

serine-tyrosine-threonine) carrying a single phosphorylation in conjunction with a potential 

oxidation of methionine results in more than a dozen possible sequences which must be 

accounted for. To calculate the fragment masses, the expected fragment ions series needs to be 

defined. These are the b-/y-ion series for CID/HCD and the c-/z-ion series for ETD, usually 

extended by allowing neutral losses, as well internal and immonium ions. For a given 

experimental spectrum – in best case only containing fragment ion peaks of a single precursor 

- the database search engine generates a shortlist of all theoretical peptides from the database 

that match the precursor ion mass with a narrow mass tolerance. The number of candidate 

sequences can be reduced if short parts of the sequence have already been manually assigned to 

an amino acid sequence, termed “sequence-tag (Figure Figure Figure Figure 13131313bbbb)223. Candidate sequences are then 

ranked by a similarity score – which in the simplest case is just counting the number of matching 

fragment ion peaks in a spectrum92. The peptide sequence best matching the experimental 

spectrum is termed rank 1 peptide spectrum match (PSM) and reported. The identified peptide 

sequences are assembled to infer protein information, however this is complicated by peptides 

shared by multiple proteins230. The content of the protein database used for identification and 

the decision-making process of how to distribute shared peptides will largely determine which 

proteins (or gene-based protein groups) are detected in a sample. 
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Database searches of DDA data mandate the existence of a good estimate of the presumed 

sample content, as well as the availability of genomic or reference proteome data. If the sample 

content cannot be clearly defined, like for a mixture of multiple organisms found in gut samples, 

very large databases have to be employed, which interferes with proper error control76. 

However, even if a reference protein database is available, the proteins contained in the sample 

may not be adequately represented due to unexpected modifications, sequence mutations, 

differentially expressed isoforms, protein variants like alternative translation start sites or more 

complex genome aberrations (e.g. fusions). To overcome this issue, so called “open searches” 

were introduced228, 231. This approach use high mass tolerances in MS1 to identify peptide are 

not present in the database or peptide species carrying modifications typically not defined in a 

classical database search. In practice, the spectra are allowed to match against their unmodified 

counterpart by using a large precursor mass window while requiring high mass accuracy of 

fragment ions to identify the amino acid sequence underlying the fragment ion series. Open 

searches have contributed to a better understanding of modifications on peptides specific to a 

given organism, introduced by the sample preparation workflow or caused by the mass-

spectrometer through in-source fragmentation. The “open search” approach has started to shed 

light onto the vast amount of unidentified spectra, however it is not used in routine applications. 

 

3.3 Probabilistic scoring and error control 

Database searches try to match a large quantity of spectra to many candidate peptides, resulting 

in PSMs of different quality and confidence. Reasons for erroneous matching can be incomplete 

fragmentation, varying spectral quality, unknown sample composition, restrictive search space 

or simply random chance. Two major types of relevant errors exist: False positive errors (type I 

error) occur when an incorrect sequence is matched to a spectrum to falsely infer its 

identification. False negative errors (type II errors) occur when a spectrum originating from a 

peptide is not matched, e.g. through absence of the correct peptide sequence from the search 

space. In bottom-up proteomic approaches, false positive PSMs present a challenge, as the false 

identification of spectra, peptides and ultimately proteins interferes with the interpretation of 

the dataset. Hence, mechanisms to estimate and control the number of false identifications are 

required. These measures discriminate correct PSMs from false identifications ultimately allow 

controlling the false discovery rate (FDR)232. Such scoring algorithms try to describe the match 

quality, e.g. the number of shared fragment ions between a spectrum and a candidate 

sequence219 or the overall similarity. In the case of Mascot/Andromeda the number of shared 

fragment ions is converted into a probabilistic match score using the negative logarithm of the 

determined probability that the computed PSM is an incorrect assignment108 (Figure Figure Figure Figure 14141414aaaa). This 

yields a measure of match quality with high scores depicting more likely hits and a high 

proportion of matching fragment ions. 

Target decoy approach 

To arrive at an estimate of the score cutoff necessary to minimize the number of incorrect 

identifications in a dataset, the global distribution of all PSM scores is investigated. If the search 

engine score is well calibrated233, correct identifications should achieve higher scores than 

incorrect identifications. By considering the distribution of correct and incorrect IDs, a score 

cutoff value can be determined where only a given fraction of incorrect identifications remains. 
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However, it is not possible to determine which PSMs are wrong in the first place. Hence, the 

target-decoy approach is used to artificially generate incorrect PSMs234. In brief, the target 

sequence database (target) is extended with a database of the same size consisting of shuffled or 

reversed protein sequences (decoy). This approach assumes that matches to the decoy-database 

and false matches follow a similar distribution. The score threshold is determined such that a 

given number of decoy-identifications is retained in the dataset. This number is set in relation 

to the total number of PSMs above the score cutoff to obtain a desired false discovery rate (FDR). 

This global FDR allows the quality control of reported data and is usually set to 1%. To assess 

the probability of a certain PSM being incorrect, the posterior error probability (PEP), sometimes 

referred to as the local FDR, can be calculated. The PEP is determined by dividing the number 

of incorrect identifications by the number of all identifications at the very score of the PSM235.  

 

Figure Figure Figure Figure 14141414    ––––    Probabilistic scoring and error control. Probabilistic scoring and error control. Probabilistic scoring and error control. Probabilistic scoring and error control. a) In database searching, spectra are scored against theoretical spectra, 

assigning a match score. Based on the distribution of search scores, an expectation value is calculated for all sequence candidates 

and the sequence that is least likely to be a random match is assigned to the spectrum. b) In the target-decoy approach, spectra 

are scored against a concatenated database containing target and reversed or shuffled decoy sequences. The score cutoff is 

chosen such that only a given percentage of wrong (decoy) matches above a certain score threshold is allowed, hence estimating 

the false discovery rate (FDR). Image modified after Nesvizhskii et al.236 

 

Localization of a modification 

 Modified peptides add another source of potential errors to the identification process of MS2 

spectra: the false localization (FL, false localization; FLR, false localization rate) of the post-

translational modification237. If only one amino acid in the sequence can be modified, the MS1 

mass and parts of the fragment ion series are enough to confidently identify the modified 

sequence. Peptides with multiple acceptor sites may result in an ambiguous identification. Prime 

examples are peptides encompassing serine, threonine and tyrosine sites capable of being 

phosphorylated. In theory, the fragment ions flanking the modified amino acid pinpoint the 

exact site of the modification, however these so-called site-determining ions238 might be low 

abundant, indistinguishable from noise or completely absent. To address the issue of assigning 

the correct positional isomer, search engines or post-processing tools employ additional scores 
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or probability measures for the localization of the modification. The approaches taken are either 

based on addressing the likelihood that a site determining peak is random noise (probability 

based localizers like A-Score238, PhosphoRS239 or PTM Score240 in Andromeda/MaxQuant) or 

by calculating the search engine delta score of the PSMs for different positional isomers (Mascot 

delta score241). Reported PSMs may be further classified or filtered based on the criteria of 

localization likelihood240 or previously evaluated score cuts242. However, assessing true FLR 

rates in large datasets is only possible if a known sample composition is measured, therefore all 

strategies only provide means to filter the given dataset237, 243.  

    

3.4 De-novo sequencing 

An alternative to database searching is trying to read the peptide sequence from the fragment 

ion series of the MS2 spectra relying exclusively on information present in the spectrum, which 

is termed de-novo sequencing (Figure Figure Figure Figure 13131313cccc). For automated de-novo sequencing, several tools 

like Novor244, PepNovo245 or PEAKS246 are available. These tools preprocess the spectra and 

then generate possible combinations of fragment ions for a given precursor mass. Alternatively, 

they try to assign short sequence tags, based on defined mass tolerances, data acquisition 

parameters and modifications. As rule-sets for CID/HCD fragmentation have been defined, 

certain fragment ion series are prioritized. Existing fragment ions are assigned to ion types and 

probabilistic models are used to define the best matching peptide candidate. The candidate 

sequences can then be used for homology searches to assign protein level information247. 

However, incomplete fragmentation as well as complex and noisy MS2 spectra often only allow 

the identification of partial sequences in spectra. Overall, this process is error-prone and 

therefore requires stringent error control. However, no widely accepted methods for estimating 

FDR in de-novo datasets are available248. Hence, thorough benchmarking of algorithms and 

manual inspection of peptide identifications is required. 

 

3.5 Spectral library-based peptide identification approaches 

As an alternative to classical database searches, previously identified high-confidence PSMs can 

be used to derive sequence information from acquired MS2 spectra by comparing their 

fragmentation patterns (Figure Figure Figure Figure 13131313dddd). These collections of high-confidence PSMs are termed 

“spectral libraries” and have been used for decades, mainly for the identification of small 

molecules by GC-MS. It is worth noting that they rely on the assumption that fragmentation of 

a peptide is a conserved process, giving similar instrumentation and settings used. Hence, 

peptide sequences can be derived by calculating a similarity score between spectra. Several 

measures of spectral similarity have been proposed and benchmarked, including correlation of 

two spectral vectors, calculation of the dot-product or the derived cosine and arccosine spectral 

angle170, 249-251.  

In proteomics, spectral libraries are usually constructed from previously acquired high-quality 

peptide identifications from experimental “bottom-up” data, but rarely from synthetic peptide 

standards or predicted spectra252. In many cases, spectral libraries are tailored to certain 

biological questions and are generated specifically for a given project in order to match 
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experimental workflows, instrumentation and data analysis pipelines. A variety of tools like 

Bibliospec222 and SpectraST253 are available for the construction and the automated comparison 

of such libraries to experimental data. Representative spectra placed in the spectral library can 

be consensus spectra constructed from multiple PSMs to remove inconsistent fragment peaks 

and might be further processed to remove noise or restrict the spectrum to a limited number of 

fragment ions. Spectra are strictly filtered for high-quality identifications to guard against 

incorrect or non-representative entries. Deconvolution of fragment ion charge states is usually 

not performed when building spectral libraries, as this impairs the ability to directly compare 

experimental spectra without preprocessing. Spectra for the library are finally annotated with 

fragment ion information and additional metadata like retention times. As an alternative to 

project specific libraries, large resource libraries and assay repositories are available, including 

efforts of the National Institute of Standards and Technology (NIST)254, SRMAtlas255, 256 and the 

proteomics data repository MassIVE.  

Using spectral libraries has several advantages over classical database searching: By additionally 

regarding relative fragment ion intensities for similarity calculation instead of only counting 

matched fragment ions, spectral libraries can more easily separate correct from incorrect hits, 

since only the correct sequence will generate the corresponding fragmentation pattern. Hence, 

spectral-similarity-based searches are more sensitive, allow identifications from noisy data and 

exhibit less bias towards short peptides or peptides only generating a few fragment ions or 

higher charge states. However, the available search space is strictly confined to the content of 

the spectral library, making spectral library-based approaches even more limited than database 

searching. Furthermore, the correct estimation of FDR in spectral matching is debated, as the 

generation of proper decoy spectra is not as trivial as just reversing a peptide sequence like in 

classical database searching.  

Data dependent acquisition analysis 

The implementation of spectral-library-based peptide identification is dependent on the type of 

data acquired. MS2 spectra from DDA experiments can be directly queried against a spectral 

library to derive peptide identifications and require only the definition of precursor and 

fragment ion tolerances to score spectra. Tools available for this type of analysis are 

SpectraST257, Bibliospec222 or NIST’s MSPepSearch258. This spectrum-centric analysis is 

computationally less intense than database searching and is used to identify peptides, which are 

frequently observed in a sample. An extension of this spectrum-centric analysis is spectral 

clustering259, 260, where acquired spectra are clustered to previous data to either retrieve 

identifications or build collections of spectra, which are frequently observed but not identified. 

Targeted proteomic data 

For targeted proteomic data, spectral libraries play an important role for both the development 

of the acquisition method, as well as for subsequent data analysis. As discussed, targeted 

measurements (PRM, SRM) require a priori information on which precursors to isolate and 

fragment at which time of the chromatographic gradient. If SRM data are acquired, the fragment 

ions used for identification and quantification need to be predefined as well. All this information 

is encoded in the spectral library, from which the n-most intense peaks for the respective 

precursor (“transitions”), charge state and (indexed) retention time can be extracted. Analysis 

of targeted data is usually performed using the program Skyline261. Skyline queries peptides in 



General Introduction 
 

- 31 - 

the spectral library against the raw file by extracting the respective ion traces of the transitions. 

For peptide identification, extracted traces must exhibit co-elution of the expected fragment ions 

in the expected ratio of intensities at the expected retention time. From this information, a 

similarity score is calculated. Unlike large-scale approaches, identifications in targeted 

experiments are often only manually inspected or employ conservative similarity cutoffs instead 

of making use of available statistical measures to control false identifications262. 

Data independent acquisition data analysis 

Spectral libraries are also the key to peptide-centric data extraction from DIA experiments. As 

discussed above, DIA abolishes the stochastic nature of DDA experiments by cycling through a 

series of MS2 scans with wide isolation windows. The resulting fragment spectra are chimeric 

and originate from multiple peptides in the selected m/z range, which is why classical database 

searching or identification by spectral similarity is not feasible. Peptide sequence information 

must be inferred from either reconstructing theoretical fragment spectra by disentangling the 

convoluted MS2 spectra or by comparing the extracted fragment ion traces to a previous 

identification result. This peptide-centric approach93 extracts selected fragment ion traces based 

on the spectral library. Much like the analysis of targeted proteomics data, peptides from the 

spectral library are queried against the DIA raw file using tools like Spectronaut263 or 

OpenSWATH264. Again, the intensities of the co-eluting peak groups within a defined retention 

time window are scored against the spectral library, generating a combined score including 

auxiliary information like chromatographic and spectral attributes for every peak group. As 

thousands of potential identifications of peak groups are present, manual inspection of all 

fragment ion traces as employed in targeted proteomics is not feasible anymore. Therefore, 

algorithms controlling FDR like mProphet262 (originally introduced for SRM data), have been 

implemented for DIA analysis. Applying a “decoy-transition” approach, such algorithms score 

both target and decoy elution groups using multiple quality criteria for each peak group to 

estimate the false positive rate. The number of obtained identifications and the correct 

assessment of the FDR heavily rely on high-quality spectral information and require proteins in 

the sample to also be present in the spectral library265. 

 

3.6 Quantification of peptides and proteins 

After assignment of confident peptide identifications, proteomics often focuses on the relative 

quantification of peptides/proteins across different conditions111, 266. Under the assumption that 

the amount of signal in the mass spectrometer is proportional to the abundance of an analyte, 

mass spectrometric data can be used to perform such relative comparisons for thousands of 

peptides and proteins in parallel. As quantitative proteomics is not the focus of this work, some 

common concepts of quantification are only briefly introduced. 

In the early years of bottom-up proteomics, the number of successfully identified MS2 scans for 

peptides of a certain protein was used as a quantitative measure (Figure Figure Figure Figure 15151515aaaa). This “spectrum 

counting approach” relied on the assumption that proteins of higher abundance will generate 

more abundant peptides that will be more often picked for fragmentation are more likely to be 

frequently identified by DDA approaches. However, modern strategies avoid re-sequencing the 

same peptide to achieve deeper sampling. This setting termed dynamic exclusion prevents 
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peptides from being picked for fragmentation multiple times within a defined period, 

consequentially biasing spectrum-counting approaches. Today, quantification of peptides is 

performed either at the MS1 level, at the MS2 level or by integrating both MS1 and MS2 levels.  

In DDA datasets of non-labeled peptides, the intensities of precursor m/z in consecutive MS1 

scans are integrated over the retention time . The calculated area under the curve (AUC) is used 

as the relevant quantitative measure (Figure Figure Figure Figure 15151515bbbb). In targeted proteomics, a very similar 

approach is employed by using the summed AUC of the extracted fragment ions as quantitative 

measure. DIA data analysis tools may employ either one or both of MS levels for quantification. 

To avoid sample selective losses during proteomic experiments and avoid comparing separate 

LC-MS runs, samples can be labeled and combined early in the workflow. Peptides of each 

sample or condition are labeled with isobaric reporter tags (e.g. TMT208). The samples are then 

combined, processed and analyzed together. The peptides from different conditions – all 

carrying the isotopomeric tag – are co-isolated and fragmented together. The isobaric tags 

release a unique reporter ion in the low m/z range that is then used for quantification within 

the MS2. The intensities of the reporters correspond to the proportion of peptide in each 

experimental condition. As all conditions are read out together in the same scan, missing 

quantification values usually present when comparing several DDA runs are reduced to a 

minimum. However, co-isolation of precursors can lead to ratio-distortion called ratio-

compression. Such co-isolation can be counteracted by employing an MS3 workflow205, 206, 

where the peptide is first fragmented at a collision energy insufficient to release the reporter 

ions (MS2) and the generated fragment ions (which are also used for identification) are further 

isolated and fragmented at a high collision energy to efficiently release the reporter ions 

(MS3)205. 

As all quantitative information extracted from bottom-up proteomics data is on the peptide 

level, their intensities need to be rolled up to the protein level. This may be performed by 

summing all intensities of peptides of a corresponding protein, or a sub-selection thereof. Here, 

non-unique peptides can complicate quantification.  

 

Figure Figure Figure Figure 15151515    ––––    Overview over quOverview over quOverview over quOverview over quantification methods. antification methods. antification methods. antification methods. a) Spectrum counting based quantification methods count the number of 

acquired spectra for a protein as proxy for abundance. b) Elution based quantification methods integrate the intensity of the 

precursor (MS1 based) or fragment ions (MS2 based) over the retention time and compare the area under the curve. c) Reporter 

based quantification methods rely on the co-isolation of precursors carrying isobaric tags, which generate distinct reporter ions 

after fragmentation used for quantification within one MS2 scan. 
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4. Reproducibility and standards in proteomics 
While the proteomics workflows described above offer the simultaneous identification of 

thousands of proteins, diverse and complex sample processing and the application of sensitive 

instrumentation have a substantial impact on the reproducibility of proteomic experiments. In 

addition, necessary assumptions and statistical models applied during data analysis present a 

sizable source of variation. In the following, sources of variation and potential countermeasures 

are highlighted. 

 

4.1 Sources of variation in proteomic experiments 

Workflow 

Already the very first step of a workflow - the choice of the cell lysis procedure - has a 

tremendous influence on the classes and intensities of proteins identified267. Membrane proteins 

or proteins localized in subcellular compartments are usually underrepresented in proteomic 

analyses as alternative lysis conditions using detergents are required to extract these proteins 

from their environment. 

Furthermore, the choice of the protease has an influence on the subset of proteins detectable by 

mass spectrometry: Small proteins generate only a few proteolytic or sometimes non-unique 

peptides, a situation that is further aggravated by frequent incomplete proteolytic digestion and 

the lack of sequence coverage achievable for many proteins given a specific protease. The 

former is assessed by improving protocols268 or introducing techniques aiding in the digestion 

of proteins269, the latter currently still remains a challenge. Even though multi-protease studies 

have been suggested to overcome the issue of low sequence coverage104, trypsin remains the 

enzyme of choice for protein digestion. To monitor digestion efficiency, purified, recombinant 

or short artificial proteins (QconCAT technology270, 271) may be introduced into the sample.  

After digestion, the number and identity of peptides detectable is strongly dependent on the 

type of sample pre-fractionation, with different separation techniques resulting in the detection 

of distinct peptide populations106. This effect is less pronounced when rolling up peptide 

information to the protein level. However, these biases are exacerbated if samples are 

individually processed and then compared to each other. To overcome this issue, samples might 

be multiplexed early in the workflow by employing stable isotope labeling or isobaric tags to 

avoid losses to individual samples during sample handling49, 50. 

 

LC-MS instrumentation 

Chromatographic systems must be tightly controlled to provide equal performance across large 

sample sets, as quantification is often performed by comparing the elution profile of an analyte 

across different runs. The performance of such systems is dependent on solvents, batch-to-batch 

variation of column material and contamination-free samples with equal sample loading. To 

monitor LC conditions over time, commercial or in-house prepared standards are frequently 

employed to assess separation power and gradient consistency and may be spiked into samples 

to enable calculation of indexed retention times129. 
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In fact, the use of technologically advanced mass spectrometers can also introduce many sources 

of error. Calibration of ion routing, mass accuracy, fragmentation efficiency and related 

algorithms are frequently necessary to provide a basis for the successful operation. As a constant 

stream of ions enters the mass spectrometer, the mass spectrometric performance declines over 

time, especially with respect to sensitivity and therefore the number of identifications. Cleaning 

cycles of mass spectrometers are usually determined by scheduled measurements of a standard 

sample. For this purpose and to benchmark inter-laboratory variation, various protein digests 

are commercially available or have been generated272, 273. For more individual applications like 

benchmarking of multiplexing workflows and data acquisition schemes, multi-proteome 

standards have been constructed206, 274. Mass spectrometers further exhibit instrument-to-

instrument variation in terms of sensitivity and the quality of data generated, despite using 

identical settings. The transfer of results between different vendor platforms is even more 

complicated, as every instrument possesses unique strengths and weaknesses, which have a 

direct impact on the results, especially for challenging analytes.  

Even if the instrument setup is well-controlled, the choice of the data acquisition method 

introduces variation: The common DDA results in run-to-run variation in terms of the identity 

of peptides detected of up to thirty percent275, resulting in missing data points across runs. Data 

independent acquisition methods overcome this issue to some extent by employing predefined 

isolation schemes but require complex data analysis workflows. To obtain a better 

understanding of the variability of workflows and especially the reproducibility of data across 

labs, consortia like the Association of Biomolecular Resource Facilities (ABRF) are setting up 

annual cross-laboratory studies. Here, labs contribute their results obtained on a predefined 

sample, focusing for example on the detection of low abundant proteins or the comparability of 

quantification using common data processing workflows. 

 

Data analysis 

Acquired LC-MS data have to be processed using computational pipelines to obtain peptide and 

protein information. In this regard, a great variety of tools for data preprocessing, identification 

and post-processing were developed. Tools range from fit-for-purpose coded solutions over open 

source applications to commercial products and pipelines. Discussing all critical steps in peptide 

identification and statistical verification is beyond the scope of this thesis.  

In short, only the key points of the varying data analysis concepts will be addressed here: Nearly 

all approaches employ complex statistical procedures to arrive at peptide identifications from 

data of different spectral quality. They have to make assumptions on the presumed content of a 

sample and therefore, results rely on the available search space. Furthermore, error control relies 

on probabilistic models trying to separate true from false identifications and approximating the 

actual error rates. Hence, submitting the same spectra collection with different settings will 

result in slightly different identifications, especially for low quality spectra. Results may also 

differ across different software versions, as scoring or error estimation algorithms are adapted 

and changed over time. The use of overlapping identifications from different search engines has 

been suggested276, 277, however these approaches are not state of the art and require careful 

evaluation of error rates278. If spectral libraries are employed for the identification of peptides 

as it is the case for targeted data acquisition/extraction, the analysis and correct error estimation 
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strongly relies on the content and quality of the spectral library265. The correct approach to 

estimate false positive rates is still strongly debated.  

4.2 Synthetic reference peptides for proteomic research 

To be able to control, benchmark and fine tune proteomics workflows and data analysis 

pipelines, ground truth samples or datasets are needed. In analytical chemistry or metabolomics, 

such ground truth data are often generated by synthesizing and measuring the analytes in 

question validate its identity. Fortunately, the chemistry of synthesizing poly-peptides from 

individual amino acids is readily applicable. In solid phase synthesis, poly-peptides are 

generated by sequentially attaching amino acid building blocks to a C-terminal amino acid 

coupled to a solid support, such as a membrane or a resin. As amino acids have several reactive 

groups, protection groups are introduced to the amino acid building blocks. In the Fmoc strategy, 

each building block carries a base-labile N-terminal protection group that must be removed 

before coupling of the subsequent amino acid. The deprotected primary amino group executes 

a nucleophilic attack directed at the carboxyl group of the amino acid to be coupled, aided by 

coupling reagents that activate the targeted C-terminal carboxylic acid. Unused reagents are 

washed away before every new synthesis cycle. Potentially reactive side chains are protected by 

different protection groups and are only removed before finally cleaving off peptides from the 

solid support using strong acid. It is worth noting that the synthesis of peptides carrying post-

translational modifications is far less established. 

In proteomic studies, peptide standards have a variety of use cases: Peptides are spiked into 

workflows to control sample processing workflows279, are used as retention time references129 

and verify the identification of generated mass spectra. They are introduced in samples in 

isotopically labeled form to provide relative or absolute quantification in targeted proteomic 

experiments and the resulting data provide benchmark datasets63, 217, 218. However, the peptide 

sets synthesized for common proteomic studies often only comprise low numbers of synthetic 

peptides for a few preselected candidates. Other approaches use combinatorial synthesis, which 

generates peptides by applying mixtures of amino acids to generate random sequences280. While 

this strategy generated peptide numbers far exceeding conventional synthesis approaches, the 

sequence complexity of the human proteome is not necessary reflected in such studies. Hence, 

there is an unmet need for a comprehensive resource providing standards for human proteome 

research. Advances of synthesis strategies and methodologies have rendered automated high-

throughput peptide synthesis affordable and feasible, enabling the generation of hundreds of 

standards used in various chemical and biomedical applications. 

Taken together, the results from proteomic data analyses are far from random but important 

facts have to be noted: While highly abundant, information-rich spectra will repeatedly and 

reproducibly identify so called “proteotypic” peptides281 with favorable LC-MS properties, lower 

abundant species and species not generating the expected fragmentation patterns remain a true 

challenge. Furthermore, even with modern DDA approaches, around 50% of spectra in a shotgun 

proteomics experiment remain un-identified. The exact content of these spectra is unclear and 

complicates statistical assumptions made during data processing. Some analytes in these spectra 

may not be included in the search space, carry unexpected posttranslational modifications, 

originate from contaminants in the sample like nucleic acids or just suffer from inadequate 

spectral quality. This is particularly problematic when trying to develop and fine-tune software 



General Introduction 
 

- 36 - 

used for data analysis of complex samples. Many of the problems can be attributed to missing 

benchmark sets with known content that mark a ground truth. Such benchmark sets consisting 

of synthetic peptide standards would further enable proper testing and standardization of data 

acquisition parameters and analysis pipelines. They would allow the calculation of true error 

rates to validate statistical models and eliminate various uncertainties in the measurement and 

data processing in bottom-up proteomic research. 
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5. Objective and outline 
To fulfill the unmet need for large reference datasets for proteome research, a large repository 

of synthetic peptides representing the entire human proteome was generated. The main 

objective of the thesis was to employ state-of-the-art mass spectrometric instrumentation to 

systematically generate high-quality reference spectral collections and the interpretation 

thereof to derive molecular and digital tools to facilitate life science research. The raw data 

acquired, the results obtained and to some extend the physical peptides generated are freely 

available to the scientific community. Hence, widespread use of this resource and all its derived 

tools will lead to a better understanding and a more reproducible analysis concept of how to 

perform bottom-up proteomic research and the subsequent data analysis. 

Accordingly, three publications presented in this thesis highlight important aspects in the 

realization of the project. First, the setup and generation of the initial form of the synthetic 

resource, the generation of millions of high-quality tandem MS spectra and use-cases of the 

spectral compendium were demonstrated (Publication 1282). Second, a novel retention time 

standard was introduced to facilitate data acquisition and to enable the transfer of obtained 

results between instruments and laboratories (Publication 2283). Third, the LC-MS characteristics 

of 21 common and rare post-translational modifications were systematically investigated using 

synthetic peptides, deriving important characteristics that aid the identification of such analytes 

in proteomic samples (Publication 3284). 
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The thesis consists of three technical studies that each contain an extensive material and 

methods section. These method sections are contained in the specific publications cited1-3. 

Hence, only a brief summary and excerpts of the methods applicable for all publications will be 

presented here. 

 

1. Peptide synthesis 
Peptides selected for synthesis were individually generated by JPT Peptide Technologies GmbH 

(Berlin, Germany) following the Fmoc-based solid-phase synthesis strategy. A 

carboxyamidomethylated cysteine building block was used to eliminate the need for cysteine 

modification before MS analysis. Peptides were usually generated using SPOT synthesis on 

cellulose membranes at a scale of approximately 2–5 nmol of peptide per spot. Depending on 

the length of peptides in a given pool, up to eight peptide pools (containing at most 8,000 

peptides) were synthesized in parallel using a purpose-built peptide synthesizer. Five quality-

control peptides were synthesized along with every peptide pool. Peptides were cleaved from 

the membrane into pools of up to 1,000 peptides. Following solvent evaporation, peptides were 

stored at −20 ℃ until use. Peptides from the SRMAtlas set mentioned in Publication 1 were 

synthesized by Thermo Fisher Scientific (Ulm, Germany) in 96-well using synthesizers at a scale 

of 0.1 mg per peptide (PEPotec Grade 1). Peptides for the PROCAL retention time standard 

(Publication 2) were synthesized by JPT Peptide Technologies GmbH using 96-well synthesizers 

and purified on C18 material.  

 

2. Liquid chromatography mass spectrometry 
Peptides from the high-throughput synthesis were initially solubilized in 100% DMSO to a 

concentration of 10 pmol/µl and further diluted to 1 pmol/µl using using 1% formic acid in 

HPLC-grade water. For measurement, a 100 fmol/µl dilution was spiked with two-retention time 

standards, an early version of the PROCAL retention time standard and the commercial PRTC 

standard by ThermoFisher Scientific. An estimated amount of 200 fmol of every peptide in a 

pool was subjected to LC-MS/MS analysis using an Ultimate 3000 nano-HPLC coupled to an 

Orbitrap Fusion Lumos ETD mass spectrometer (Thermo Fisher Scientific). Peptides were 

loaded onto a 75 µm × 2 cm trap column (packed in house with 5 µm particles of Reprosil Pur 

ODS-3, Dr. Maisch GmbH; Ammerbuch-Entringen, Germany) and separated on a 75 µm × 45 

cm analytical column (packed in house with 3 µm particles of C18 Reprosil Gold 120, Dr. Maisch 

GmbH) using 50 min gradient time (60 min total, 4% to 32% solvent B). The analytical column 

was operated at 50 °C and at a flow rate of 300 nl/min. LC solvent A was 5% DMSO, 0.1% formic 

acid in ultra-pure water, LC solvent B was 5% DMSO, 0.1% formic acid in acetonitrile. The 

generic setup for peptide pools (except Publication 2) consisted of four runs: a data dependent 

“survey” run, comprising higher energy collisional dissociation (HCD; Orbitrap readout, 28% 

normalized collision energy (NCE)) and collision induced dissociation (CID; ion trap readout, 

35% NCE) was performed to identify successfully synthesized peptides. Inclusion lists generated 
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from the survey run were used for three subsequent LC-MS analyses. In the “3xHCD” run, 

precursors were fragmented using three separate HCD events (Orbitrap readout, 25%, 30%, 35% 

NCE). In the “2xIT_2xHCD” run, precursors were fragmented using CID (ion trap readout, 35% 

NCE), HCD with ion trap readout (28% NCE) as well as HCD with Orbitrap readout (20%, 23% 

NCE). The “ETD” run expanded the fragmentation modes to electron transfer dissociation 

(ETD) as well as the combined fragmentation methods EThcD (28% NCE) and ETciD (35% NCE, 

all Orbitrap readout). 

 

3. Database search 
The acquired MS data were searched against a database containing the concatenated tryptic 

peptide sequences supplemented with the sequences of the PROCAL peptides using MaxQuant 

1.5.3.30 and default settings for ion trap mass spectrometry (ITMS) and Fourier transformation 

mass spectrometry (FTMS). The false discovery rate (FDR) for peptide spectrum matches (PSM), 

peptides and proteins were fixed at 0.01 each. Depending on the use-case, different Andromeda 

score cutoffs were applied. Retention times in the PROCAL publication (Publication 2) were 

extracted using Skyline. 

 

4. Data analysis 
For the generation of descriptive statistics of the MaxQuant results, Microsoft Excel, custom R 

and python scripts were used. For the comparison of spectra, an implementation of the Thermo 

Raw File Reader was used to access the proprietary raw files. Metrics for calculating the pairwise 

spectral similarity include Pearson correlation and the normalized spectral contrast angle, as 

presented in the respective method sections. For the identification of exclusive ions (Publication 

3) extracted raw scans were aggregated using an implementation of MasterPeak as well as 

custom R scrips, as stated in the respective methods section. 

 

5. Data availability 
Reference spectra are available at https://www.proteomicsdb.org, and updates to the resource 

are available at http://www.proteometools.org.  

The mass spectrometric data have been deposited with the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the 

project tag “ProteomeTools” or can be directly accessed by searching for the identifiers 

PXD004732, PXD006832 and PXD009449. 
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Summary 
The core concept of mass spectrometry (MS)-based bottom-up proteomics is matching mass 

spectra to peptide sequences to infer protein information. However, this process is driven by 

computational and statistical tools making assumptions and can be error prone. Unfortunately, 

few systematic libraries of synthetic reference standards that could validate identifications are 

available. To address this unmet need, the “ProteomeTools” project is introduced. It aims at 

synthesizing over 1 million synthetic peptide standards and deriving molecular and digital tools 

to facilitate the investigation of the human proteome in health and disease state. The paper 

reports the initial generation and multimodal liquid chromatography–tandem mass 

spectrometry analysis of >330,000 synthetic tryptic peptides, representing essentially all 

canonical human gene products. LC-MS data were acquired using eleven different 

fragmentation modes to support all relevant data instrument platforms. The initial mass spectra 

resource termed PROSPEC (ProteomeTools Spectrum Compendium) comprised over eleven 

million high-quality peptide spectra. This data resource can be exploited in manifold ways: 

protein identification, evaluation of platform performance and software development. To 

validate protein identifications, the synthetic reference peptide spectra are compared to the 

experimental spectra. This was exemplified for the protein aquaporin 12B that is supported by 

only two spectra in the ProteomicsDB database. The high spectral similarity verifies the correct 

identification of the protein from a single peptide sequence as exemplary use-case of the spectral 

resource. In order to address the transferability of the data acquired, Orbitrap spectra were 

compared to spectra originating from a TOF mass analyzer, suggesting a good level of 

agreement between platforms. Finally, the generated data are exploited for software 

development. Based on the relative intensity of fragment ions for all amino acid combinations 

in relation to their position within the peptide, a prototype fragmentation prediction model 

allows the intensity prediction of the y-ion series for any sequence. During the course of the 

project, the resource will be extended to >1 million peptides and all data will be shared with the 

community via ProteomicsDB and ProteomeXchange. The use of the resource generated and 

derived tools will expedite proteomics research as a whole. 
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In analytical chemistry, synthetic reference standards are often 
used to verify the identity of a molecule with certainty. However, in 
proteome research the generation or use of such standards is only 
beginning to be systematically implemented2–4. To facilitate this, 
we have embarked on a project termed ProteomeTools (Fig. 1)  
in which we aim to synthesize a library of ~1.4 million individ-
ual peptides to cover all human proteins (termed PROPEL, for 
ProteomeTools Peptide Library). Here, we report on our progress 
to date, presenting the synthesis and multimodal liquid chromato-
graphy–tandem MS (LC-MS/MS) analysis of >330,000 synthetic 
tryptic peptides covering essentially all canonical human proteins 
as annotated in Swissprot.

Peptides were chosen based on either their experimentally 
determined proteotypicity5,6 or by brute force (all peptides within 
the typical mass range of a mass spectrometer) for hitherto unob-
served proteins and those with little prior experimental evidence. 
We also included a subset of peptides of the independently devel-
oped Human SRMAtlas3 (Supplementary Table 1), which focused 
on tryptic peptides, for collision-induced dissociation and selected 
reaction monitoring (SRM) applications only. As more data on 
the use of alternative proteases become available7, such peptides 
(~300,000) will be systematically incorporated into the project 
to increase spectral and sequence coverage for any given protein. 
Another 200,000 peptides are earmarked for protein sequence 
variants, such as protein isoforms or important natural or patho-
logical variants. An additional 350,000 peptides will be synthe-
sized to include post-translational modifications (PTMs) such as 
phosphorylation, acetylation, methylation, ubiquitinylation and 
monoglycosylation8. While some of these peptides may be more 
challenging to synthesize, their impact will likely be high, as they 
reflect enzymatic activity that often modulates the function of 
proteins. Finally, we are reserving 200,000 peptides to represent 
other interesting biology, such as disease-associated mutations, 
HLA neo-antigens, protease cleavage products, small open reading 
frames or translated long noncoding RNAs (lncRNAs) (Fig. 1a).

Tryptic peptides were individually synthesized, combined into 
pools of ~1,000 peptides and spiked with 66 non-naturally occur-
ring and 15 stable-isotope-labeled peptides for retention time 
(RT) calibration. Whenever possible, we designed pools to avoid 
peptides of identical masses to prevent ambiguity in the MS data 
or to cover the entire LC gradient (Supplementary Fig. 1). Each 
pool was subjected to an initial LC-MS/MS analysis using HCD 
and CID fragmentation on an Orbitrap Fusion Lumos mass spec-
trometer in order to assess successful peptide synthesis, to deter-
mine peptide chromatographic RTs and to compute RT indices 
(iRT; Supplementary Fig. 2)9. For each peptide pool, an inclusion 

Building ProteomeTools 
based on a complete 
synthetic human proteome
Daniel P Zolg1,12, Mathias Wilhelm1,12,  
Karsten Schnatbaum2, Johannes Zerweck2,  
Tobias Knaute2, Bernard Delanghe3, Derek J Bailey4, 
Siegfried Gessulat1,5, Hans-Christian Ehrlich5, 
Maximilian Weininger1, Peng Yu1, Judith Schlegl6, 
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Eric W Deutsch7, Ruedi Aebersold8,9, Robert L Moritz7,  
Holger Wenschuh2, Thomas Moehring3, Stephan Aiche5,  
Andreas Huhmer4, Ulf Reimer2 & Bernhard Kuster1,10,11

We describe ProteomeTools, a project building molecular  
and digital tools from the human proteome to facilitate 
biomedical research. Here we report the generation and 
multimodal liquid chromatography–tandem mass spectrometry 
analysis of >330,000 synthetic tryptic peptides representing 
essentially all canonical human gene products, and we 
exemplify the utility of these data in several applications.  
The resource (available at http://www.proteometools.org) will 
be extended to >1 million peptides, and all data will be shared 
with the community via ProteomicsDB and ProteomeXchange.

Proteomic research relies greatly on the mass spectrometric and 
bioinformatic analysis of proteolytic digests of complex protein 
mixtures to infer protein identity and quantity1. Although pow-
erful, there are technical and conceptual limitations that make 
the measurement of complete proteomes very challenging. These 
limitations are caused in part by the vast molecular complexity of 
proteomes that arises from—for example—gene expression, splic-
ing of mRNAs or post-translational modification of proteins. As a 
result, the precise composition of a proteome is essentially always 
unknown. In addition, the measurement of protease-digested 
proteomes by mass spectrometry (MS) creates large quantities 
of spectra of varying quality. The computational tools used in 
the field all make assumptions as to the presumed content of a 
proteome by matching mass spectra to peptides to infer proteins. 
The statistical methods applied invariably represent compromises 
in terms of the sensitivity and specificity with which proteins are 
identified from complex mixtures.

1Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany. 2JPT Peptide Technologies GmbH, Berlin, Germany. 3Thermo Fisher 
Scientific, Bremen, Germany. 4Thermo Fisher Scientific, San Jose, California, USA. 5SAP SE, Potsdam, Germany. 6SAP SE, Walldorf, Germany. 7Institute for Systems 
Biology, Seattle, Washington, USA. 8Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland. 9Faculty of Science, University of Zürich, 
Zürich, Switzerland. 10Center for Integrated Protein Science Munich, Freising, Germany. 11Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany. 
12These authors contributed equally to this work. Correspondence should be addressed to B.K. (kuster@tum.de).
RECEIVED 5 AUGUST 2016; ACCEPTED 20 DECEMBER 2016; PUBLISHED ONLINE 30 JANUARY 2017; DOI:10.1038/NMETH.4153



260 | VOL.14 NO.3 | MARCH 2017 | NATURE METHODS

BRIEF COMMUNICATIONS

list was generated to target peptides for fragmentation in fur-
ther LC-MS/MS experiments using five different fragmentation 
methods (HCD, CID, ETD, ETHCD and ETCID) with ion trap 
or Orbitrap readout; HCD spectra were recorded at six different 
collision energies (Supplementary Figs. 3–7). Peptides ranged 
from 7 to 40 amino acids in length, and up to 96% of these pep-
tides could be detected by LC-MS/MS in individual pools (78% 
average recovery; Supplementary Figs. 8 and 9).

Using the open modification search option of MaxQuant/
Andromeda10, we assessed the side product profile to estimate 
the approximate yield of each peptide by measuring the percent-
age of the total MS signal that can be attributed to the target pep-
tide sequence (Fig. 1b and Supplementary Fig. 10). As expected,  
the purity of the synthesized peptides varied, and many of the 
chemical byproducts corresponded to incompletely removed  
protection groups or missing amino acids. The presence of 
byproducts turned out to be useful, as truncated peptides pro-
vided additional evidence for the presence of the correct full-
length peptide. In the future, these peptides may also serve to 
refine RT and fragmentation prediction or to identify some  
of the many good-quality spectra that remain unidentified in  
typical proteomic experiments11.

One important goal of ProteomeTools is to generate reference 
mass spectra (termed PROSPEC for ProteomeTools Spectrum 
Compendium) for the identification and quantification of human 
peptides and proteins. At an arbitrarily high Andromeda score 
cutoff of 100, indicating very high spectral quality, we obtained a 
total of 11.3 million peptide spectrum matches (PSMs) mapping 
to 211,895 peptides and covering each gene by a median of 9 pep-
tides (Fig. 1c). The median precursor intensity fraction (PIF; i.e., 
the fraction of the precursor signal versus the total signal selected 
for fragmentation) was 92%, indicating that the spectra of most 
peptides are largely free of other contaminating peptides. Very 
high-quality spectra were obtained for all 11 MS/MS methods 
used but with varying degrees of proteome coverage. Analysis of 
the Andromeda search engine score distribution (Fig. 1d) showed 
that the 211,895 peptides (peptide false discovery rate <0.002%) 
led to the identification of 19,735 of the 20,036 human genes 

deposited in Swissprot, thus providing very high-quality reference  
spectra for 98.5% of the human proteome (Supplementary Table 2  
and Supplementary Note 1). The remaining proteins often contain 
proline-rich repeats or homologous sequences that cannot be cov-
ered by unique tryptic peptides of reasonable length. Some of these 
may eventually be covered when synthesizing peptides using other 
digestion enzyme specificities. As an interesting side note, because 
of considerable protein sequence conservation between the human 
and mouse proteomes, the peptide library also contains 60,961 
(proteotypic) peptides covering 12,599 (77%) unique mouse genes, 
thus considerably expanding the scope and utility of these peptides 
(Supplementary Table 3 and Supplementary Note 2).

One obvious use of synthetic peptide reference spectra is to 
confirm identifications of rarely (or newly) observed proteins. At 
the time of writing, there were only two spectra in ProteomicsDB 
supporting the identification of the same peptide of aquaporin 
12B with identification Q-scores different from the target–decoy 
distributions using the ‘picked’ target–decoy approach12 (Fig. 2a). 
The mirror plot showing the ion trap spectrum of the endogenous 
peptide and the corresponding spectrum of the synthetic peptide 
indicate very good agreement, thus validating the identification 
of this protein from a single peptide.

We recorded HCD spectra at six different normalized collision 
energies with the aim of identifying conditions for the measurement 
of peptides by targeted assays such as SRM, PRM or SWATH13,14.  
To determine whether HCD spectra obtained in this study are suit-
able for this purpose, we compared our data to ~9,000 peptides from 
a SWATH spectral library built from proteome digests acquired on 
a QTOF instrument15. The analysis shows that there is very high 
correlation between the two types of data (R > 0.9) and that spectra 
with poor correlation may represent false positives in the SWATH 
spectral library (Fig. 2b and Supplementary Fig. 11).

To illustrate the usefulness of the data for developing software, 
we built a prototype classifier based on multiple HCD spectra for 
the same peptide at a particular collision energy. This classifier 
predicts the fragment ion intensity of MS/MS spectra of any pep-
tide with Pearson correlation coefficients of around 0.9 (Fig. 2c  
and Supplementary Figs. 12–14). Such tools may complement  
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or eventually replace experimental data for the development of SRM, 
PRM, or SWATH assays or facilitate the transfer of data recorded 
on a discovery proteomics instrument to an assay instrument.  
We consciously decided not to synthesize stable-isotope-encoded 
peptides for this project because their fragmentation spectra can 
be easily simulated based on spectra of the unlabeled version. It is 
also more economically efficient to create heavy peptides tailored 
to the project at hand. However, we are in the process of measur-
ing peptides following chemical derivatization by tandem mass 

tags (TMT) and dimethyl labeling to cover the most commonly 
used stable-isotope labeling methods.

An important aspect of the project is that it will enable and 
engage the proteomics community in a number of ways. We 
encourage the community to propose sets of peptides to include 
in the project. Our stocks contain 100 clones of the peptide library, 
which can be handed out to research groups willing to generate 
data on alternative mass spectrometric platforms such as QTOF 
instruments, ion mobility devices or different chromatographic 
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529 peptide sequences and 3,248 spectra) of pool 66 of the proteotypic peptide set (see Supplementary Note 3 for details).
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systems. All of the current data are available in ProteomeXchange 
and ProteomicsDB6,16, and we will provide all future data to enable 
reuse and reanalysis of what we believe is a valuable resource.

The tryptic peptides reported here represent the beginning 
stages of the 3-year ProteomeTools project (projected to finish 
at the end of 2018), and many further uses of the information 
generated can be envisaged. We plan to release new data every  
6 months (~250,000 peptides per release) so that the community 
can access these data while the project progresses. The data should 
be valuable in the long term for the development of software tools 
that may include intelligent data-acquisition routines within the 
instrument control software17 or the development of more pow-
erful database or spectral library search engines using, for exam-
ple, concepts of machine learning18. There is also still a need to 
develop improved statistical tools for the assessment of large-scale 
proteomic experiments, particularly for data-independent meas-
urements such as SRM, PRM, or SWATH. The spectral libraries 
we plan to generate should provide ample opportunity to facilitate 
these applications19. We also plan to build targeted assays in the 
next 2 years for sets of functionally important proteins, such as 
kinases and phosphopeptides representing the activation status 
of signaling pathways. We are confident that the molecular and 
digital tools arising from the ProteomeTools project will become 
valuable resources for the proteomics community.

METHODS
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Synthetic peptide sets. To achieve extensive coverage of human 
proteins, three different sets of peptides were created or used in 
this study. First, a ‘proteotypic’ peptide set covering confidently 
and frequently identified proteins was derived from prior mass-
spectrometric evidence available in ProteomicsDB5,6. We selected 
between two and ten unique (at gene level) tryptic peptides for 
each human gene to reach a cumulative proteotypicity of ~95% 
(i.e., we stopped selecting further peptides when the selected 
peptides covered at least 95% of all cases a particular protein was 
identified). Further constraints included a peptide length of 7 to 
40 amino acids and no more than two missed tryptic cleavage  
sites. The resulting list contained 124,875 peptides covering 15,855 
human Uniprot/SwissProt annotated genes. Second, a ‘missing 
gene’ set was constructed, which contained tryptic peptides map-
ping to genes which lacked confident experimental identification 
evidence in ProteomicsDB. Here, any gene-unique tryptic peptide 
between 7 and 30 amino acids in length and allowing for a maxi-
mum of one missed cleavage site was included in the selection 
without restricting the number of peptides per gene. The resulting 
list contained 140,458 peptides covering 4,818 genes. Third, we 
obtained a subset of the ‘SRMAtlas’ peptides comprising 90,967 
peptides mapping to 19,099 genes covering both proteins with 
empirical evidence as well as ‘missing’ proteins3. Altogether, the 
three sets of tryptic peptides contained 330,286 nonredundant 
peptides covering 19,840 human genes, as annotated in Uniprot/
SwissProt (Version 2016-07-20; 42,164 protein sequences) (see 
Supplementary Table 1).

Peptide pool design. Peptide pools for synthesis and LC-MS/MS  
measurement consisted of approximately 1,000 peptides each.  
The peptide pools representing the ‘proteotypic’ and ‘missing 
gene’ sets were designed to have a narrow peptide length distri-
bution to support optimal synthesis by using a custom R script  
with the peptide sequence as input. Near isobaric peptides 
( 10 p.p.m.) were distributed across different pools of similar 
length to avoid ambiguous masses in pools wherever possible 
(Supplementary Table 1). To this end, peptides were first ordered 
by length and mass. Second, the peptides were sorted by taking 
every nth peptide within the ordered list of peptides of one length, 
where n is the number of pools needed to distribute these pep-
tides. The resulting ordering provided a well-sampled subpopula-
tion of peptides with the same mass (MW) distribution. In a third 
step, peptides with near isobaric ( 10 p.p.m.) mass were identified 
and, as long as no additional near-isobaric conflict was created, 
distributed across pools with similar peptide length (a maximum 
of three amino acids difference in length).

The SRMAtlas peptide set was acquired in 96-well plates, with 
each well containing one individual proteotypic peptide of 7–30 
amino acids in length (i.e., one peptide per well, PEPotec Grade 1,  
suspended in 0.1% TFA in 50% (v/v) acetonitrile/water). These 
were also pooled into sets of approximately 1,000 peptides. To 
create plate pools, the peptides from every plate were first manu-
ally pooled together, resulting in mixtures of 95 peptides (one 
quality-control peptide present in each plate was discarded to 
avoid accumulation of this peptide in the subsequent pool-
ing process). To create measurement pools of ~1,000 peptides,  
either 10 (for fully tryptic peptides; i.e., C-terminal K/R) or 14 
(nontryptic and semitryptic peptides; i.e., non-K/R C-terminal) 

plate pools were combined. In order to avoid bias in pools of  
1,000 peptides regarding MW or hydrophobicity index (HI)20, the 
pooling scheme was computed to best mimic the overall MW and 
HI distribution of the entire set using a custom R script (all scripts 
available upon request). We used the Kolmogorov–Smirnov test 
(KS test) to quantify the distance of the MW and HI distribu-
tion between mixtures of plate pools to the total distribution of 
the total set. Starting with a plate pool or mixture of plate pools,  
all other (still available) plate pools were tested to generate a  
combined mixture that was closest to the overall set. The best 
match (lowest P value) was chosen, and the process was repeated 
until the desired number of plate pools for combination was 
reached (Supplementary Fig. 1). The resulting 96 measurement 
pools were desalted on C18 material (Waters, SepPak) before stor-
age at −20 °C. All peptide sequences and their pool membership 
are listed in Supplementary Table 1.

Peptide synthesis. All peptides were individually synthesized fol-
lowing the Fmoc-based solid-phase synthesis strategy. A carboxya-
midomethylated cysteine building block was used to eliminate the 
need for cysteine modification before MS analysis. Peptides of the 
‘proteotypic’ and ‘missing gene’ sets were synthesized by SPOT 
synthesis on cellulose membranes at a scale of approximately  
2–5 nmol of peptide per spot as described21. Depending on the 
length of peptides in a given pool, up to six peptide pools (con-
taining at most 6,000 peptides; see Supplementary Note 1) were 
synthesized in parallel using a purpose-built peptide synthesizer. 
Five quality-control peptides were synthesized along with every 
peptide pool. Peptides were cleaved from the membrane into pools 
of 1,000 peptides following the design criteria described above. 
Following solvent evaporation, peptides were stored at −20 °C  
until use. Peptides from the SRMAtlas set were synthesized in 
96-well synthesizers (Thermo Fisher Scientific, PEPotec Grade 1)  
at a scale of 0.1 mg per peptide. They were pooled and stored as 
described above.

Sample preparation for mass spectrometry. Dried peptide pools 
were initially solubilized in 100% DMSO to a concentration of  
10 pmol/ l by vortexing for 30 min at room temperature. The 
pools were then diluted to 10% DMSO using 1% formic acid in 
HPLC-grade water to a stock solution concentration of 1 pmol/ l 
and stored at −20 °C until use. 10 l of the stock solution was 
transferred to a 96-well plate and spiked with two retention 
time (RT) standards. The first set of RT peptides (JPT Peptide 
Technologies) consisted of 66 peptides with non-naturally occur-
ring peptide sequences (Supplementary Table 1). 200 fmol  
per peptide was used per injection. The second RT standard 
(Pierce, Thermo Scientific) comprised 15 13C-labeled pep-
tides, and 100 fmol per peptide was used per injection. Samples  
in the resulting 96-well plates were vacuum dried and stored  
at −20 °C until use.

Nanoscale liquid chromatography. For LC-MS/MS analysis, the 
peptide pools in the 96 well plates were dissolved in 0.1% formic 
acid in water to a concentration of 100 fmol/ l per peptide (residual 
DMSO concentration of ~1%). An estimated amount of 200 fmol 
of every peptide in a pool was subjected to liquid chromatography 
using a Dionex 3000 HPLC system (Thermo Fisher Scientific) 
using in-house packed C18 columns. The setup consisted of  
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a 75 m × 2 cm trap column packed with 5 m particles of 
Reprosil Pur ODS-3 (Dr. Maisch GmbH) and a 75 m × 40 cm 
analytical column packed with 3 m particles of C18 Reprosil 
Gold 120 (Dr. Maisch GmbH). Peptides were loaded onto the trap 
column using 0.1% FA in water. Separation of the peptides was 
performed by using a linear gradient from 4% to 35% ACN with 
5% DMSO, 0.1% formic acid in water over 50 min followed by  
a washing step (60 min total method length) at a flow rate of  
300 nL/min and a column temperature of 50 °C.

Mass spectrometry. The HPLC system was coupled online to 
an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 
Scientific). Each peptide pool was first measured using a ‘survey  
method’ consisting of an Orbitrap full MS scan (60,000 resolution, 
5 × 105 AGC target, 50 ms maximum injection time, 360–1,300 m/z,  
profile mode), followed by MS2 events with a duty cycle of 2 s for 
the most intense precursors and a dynamic exclusion set to 5 s 
as follows: (i) HCD scan with 28% normalized collision energy 
and Orbitrap readout (15,000 resolution, 1 × 105 AGC target, 22 
ms maximum injection time, inject ions for all available paral-
lelizable time enabled, 1.3 m/z isolation width, centroid mode); 
(ii) CID scan with 35% normalized collision energy and ion trap 
readout (rapid mode, 3 × 104 AGC target, 0.25 activation Q, 22 ms 
maximum injection time, inject ions for all available parallelizable 
time enabled, 1.3 m/z isolation width, centroid mode). From these 
data, inclusion lists with RT constraints were generated for each 
pool and used for three subsequent LC-MS/MS measurements 
focusing on different acquisition types. Precursors detected in 
the survey method were scheduled for fragmentation within a 

5 min RT window. Peptides lacking identification in the survey 
run were added to the inclusion as 2+ or 3+ precursor ions, but 
without RT scheduling.

1.  The “HCD” method consisted of an Orbitrap MS1 scan 
(120,000 resolution, 5 × 105 AGC target, 50 ms maximum 
injection time, 360–1,300 m/z, profile mode) followed by 3 s  
of MS2 scans with consecutive HCD scans at 20, 25 and 30 
normalized collision energy and Orbitrap readout (15,000 
resolution, 1 × 105 AGC target, 20 ms maximum injection 
time, inject ions for all available parallelizable time enabled, 
1.3 m/z isolation width, centroid mode).

2.  The “IT” method consisted of an Orbitrap MS1 scan 
(120,000 resolution, 5 × 105 AGC target, 50 ms maximum 
injection time, 360–1300 m/z, profile mode) followed by 3 s  
of MS2 scans with (i) CID scan with 35 normalized collision 
energy and ion trap readout (rapid mode, 3 × 104 AGC tar-
get, 0.25 activation Q, 20 ms maximum injection time, inject 
ions for all available parallelizable time enabled, 1.3 m/z  
isolation width, centroid mode); (ii) HCD scan with 28 nor-
malized collision energy and ion trap readout; (iii) HCD scan 
with 20 normalized collision energy and Orbitrap readout;  
(iv) HCD scan with 23 normalized collision energy and 
Orbitrap readout.

3.  The “ETD” method consisted of an Orbitrap MS1 scan 
(120,000 resolution, 5 × 105 AGC target, 50 ms maximum 
injection time, 360–1300 m/z, profile mode) followed by  
3 s of MS2 scans with (i) ETD scan using charge-dependent 
ETD parameters and Orbitrap readout22; (ii) EThcD scan 
using charge-dependent ETD parameters and supplemental 

HCD activation with 28% normalized collision energy and 
Orbitrap readout; (iii) ETciD scan using charge-depend-
ent ETD parameters and supplemental CID activation with  
35 normalized collision energy and Orbitrap readout with 
settings described above.

Data processing. The logistics of data processing and MS 
method generation were governed by an in-house database 
(Supplementary Fig. 8). RAW data were analyzed using 
MaxQuant version 1.5.3.30 searching individual LC-MS/MS runs 
against pool-specific databases (see Supplementary Table 2)23.  
If not mentioned otherwise, default parameters were used: car-
bamidomethylated cysteine was specified as fixed modification, 
methionine oxidation as variable modification. First search  
tolerance was set to 20 p.p.m., main search tolerance to 4.5 p.p.m. 
and filtered for peptide and protein false discovery rate of 1%. RT 
windows of 5 min were corrected for drifts using the internal RT 
standards. The pool-specific inclusion lists were generated from 
confidently identified precursors (from the survey method) which 
passed an ad hoc Andromeda score cutoff of 100. For analysis 
of synthesis side product, the survey MS run was searched with 
unspecific digestion and ‘dependent peptides’ enabled.

Conserved peptide sequences in human and mouse. A current 
mouse protein sequence database representing 16,336 mouse 
genes was obtained from Swissprot (version dated 07/09/2016; 
16,818 sequences). The database was in silico digested using tryp-
tic cleavage specificity (no proline rule) and a maximum of two 
missed cleavages. The resulting peptide list was filtered for unique 
entries and mapped against our sequence list of peptides (see 
Supplementary Note 2 and Supplementary Table 3).

Comparison QTOF versus Fusion Lumos spectra. We systemati-
cally compared spectra generated in this project on an Orbitrap 
Fusion Lumos (Thermo) to a spectral library generated on a 5600 
TripleTOF (QTOF) mass spectrometer (AB Sciex)15. For this, 
intensities of matching annotated fragment ions of the highest 
scoring (>100) beam-type CID spectrum per acquired normal-
ized collision energy (Lumos) were correlated using Pearson cor-
relation to the corresponding beam-type CID QTOF spectrum 
(acquired with rolling collision energy). Comparison was per-
formed using a custom R script that used the MaxQuant output 
files as well as the QTOF spectral library as input.

Fragmentation prediction. First, MaxQuant result files were 
parsed using a custom R script, and only spectra of unmodified 
doubly charged peptides with a PIF > 0.8 and a score of higher 
than 100 were selected for training. For each combination of 
amino acids N-terminal (left) and C-terminal (right) of the 
fragmentation position at a given normalized collision energy, 
a local polynomial regression (LOESS) model was fitted using 
the peptide length normalized fragmentation position, and the 
base peak intensity (BPI) normalized intensity of the y-ions (see 
Supplementary Figs. 11–13). The resulting models were tested 
on pool 66 of the proteotypic set using the same peptide selection 
criteria. Each possible y-ion for each peptide passing the filters 
was predicted using the corresponding LOESS fit. The predicted 
y-ion intensities were scored against the measured spectra using 
the Pearson correlation coefficient.
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Statistics. For peptide pool generation of the SRMAtlas set, the 
Kolmogorov–Smirnov test (KS test) was used.

Materials availability. Clones of the synthetic peptide libraries 
are available upon request to the corresponding author (kuster@
tum.de), conditional on a firm commitment to perform MS/MS 
measurements and to provide all data freely to ProteomeXchange 
and the ProteomeTools project.

Data availability statement. Reference spectra are available 
at https://www.proteomicsdb.org, and updates to the resource 

are available at http://www.proteometools.org. The mass spec-
trometric data have been deposited with the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) 
via the PRIDE partner repository with the data set identifier 
PXD004732. See Supplementary Note 4 for raw file naming 
convention.

20. Krokhin, O.V. Anal. Chem. 78, 7785–7795 (2006).
21. Wenschuh, H. et al. Biopolymers 55, 188–206 (2000).
22. Rose, C.M. et al. J. Am. Soc. Mass Spectrom. 26, 1848–1857 (2015).
23. Shanmugam, A.K. & Nesvizhskii, A.I. J. Proteome Res. 14, 5169–5178 

(2015).
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Supplementary Figures 

Supplementary Figure 1 

Schematic representation of the peptide pool design process for the SRMAtlas 

peptide set 

Starting with peptides in individual cavities in 96 well plates, peptides were manually pooled to 

form a mixture of 95 peptides (a plate pool). To create measurement pools of ~1,000 peptides, 

either 10 (for tryptic peptides) or 14 (non-tryptic peptides) plate pools were combined. To avoid 

bias in any peptide pool towards a particular MW (molecular weight) or HI (hydrophobicity 

index), a pooling scheme was computed to best mimic the overall MW and HI distribution of 

the entire set. Starting with a particular pool (top left panel; black line, here plate pool 1), all the 

remaining plate pools were tested in-silico to generate a combined mixture, where MW or HI 

would best resemble the overall set (blue line). After determining the best next plate pool to use 

(here plate pool 313), the resulting mixture was tested again (middle panel) and the process was 

repeated until the desired number of plate pools was reached (using an iterative greedy 

approach). The resulting MW and HI distribution (black line) in comparison to that of the total 

set (blue line) is shown in the bottom right panel. In the example shown, a near perfect overlay 

of HI and a good approximation of MW distributions was achieved. 
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Supplementary Figure 2 

Determination of retention times and retention time indices 

(a) Retention time stability of 71 selected retention time standard peptides (66 RT peptides + 5 

QC peptides) across ~1,200 LC-MS/MS runs (identification in n runs and median indicated). The 

median standard deviation of observed retention time differences for individual peptides was 

48.7 seconds without (middle panel) and 12.4 seconds with retention time adjustment (lower 

panel) using RT indices calculated based on the peptides ISLGEHEGGGK and YDTAIDFGLFK. 

Data were filtered for Andromeda scores of >100. (b) The scatter plot of two retention time 

indices calculated based on different reference peptides shows that a conversion between them 

is possible without losing accuracy (R2 = 0.9996). Retention time index 1 (iRT1) is calculated 

based on the early eluting peptide ISLGEHEGGGK and late eluting peptide YDTAIDFGLFK 

(same as in (a); indicated by purple dashed lines). Retention time index 2 (iRT2) is calculated 

based on SYASDFGSSAK and GFVIDDGLITK (red dashed line). Each dot represents one of the 

71 selected peptides identified in one of the ~1200 LC-MS/MS runs. (c) Similar to (b), here a 

third retention time index (iRT3) was calculated based on GSGGFTEFDLK and LTDELLSEYYK 

(orange dashed line) which span only a narrow part of the gradient. The linear fit shows that 

retention time indices can still be converted with very high accuracy (R2 = 0.9977) indicating 

that any high confident identifications (not necessarily peptides used for retention time 

calculation) can be used for retention time index calculation and thus conversion. 
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Supplementary Figure 3 

LC-MS Data acquisition scheme and qualitative peptide identification analysis 

(a) Data acquisition scheme used for all peptide pools. After an initial 1h survey run using HCD 

fragmentation with Orbitrap readout and CID fragmentation with ion trap readout, an inclusion 

list was generated. The three subsequent LC-MS runs from every pool utilized the inclusion list 

to target fully synthesized peptides by the indicated fragmentation techniques and collision 

energies. (b) Violin plots of the average Andromeda score (top panel), average number of 

matched fragment ions (middle panel) and the average intensity that could be explained by 

Andromeda in the tandem MS spectra (lower panel). Only identifications with an Andromeda 

score >100 were considered here. The numbers on top of each violin indicates the number of 

peptides. 
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Supplementary Figure 4 

Peptide identifications (score >100) across different acquisition methods 

(a) Venn diagram for the comparison of identifications with an Andromeda Score >100 across 

five major fragmentation types. The upper bar chart displays the number of peptide 

identifications for each fragmentation type, the lower bar chart shows peptide identifications 

only if the corresponding method reached a score of at least 90% of the highest score observed 

for that peptide (indicating the number of peptides for which the respective fragmentation 

technique gave the best identification result). We note that even though the various ETD 

versions were less successful than CID or HCD, there are still thousands of peptides for which 

ETD is the best fragmentation technique. (d) Venn diagram for the comparison of identifications 

using different HCD collision energies with an Andromeda Score >100. The upper bar chart 

displays peptide identifications for every collision energy, the lower bar chart shows peptide 

identifications only if the corresponding collision energy experiment reached a score of at least 

90% of the highest score observed for that peptide. 
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Supplementary Figure 5 

Andromeda score distributions for different peptide precursor charge states and the 

11 tandem MS methods used in this study 

Violin plots of the maximum Andromeda score distributions for peptides over the respective 

charge states. The number of peptide sequences is indicated above every violin, the median score 

is indicated as a white circle inside the violin. As expected, ETD based fragmentation techniques 

gives good results for peptides with higher charge states. Interestingly, resonance and beam type 

CID still yield higher absolute peptide identifications at any charge state but ETD often 

generates higher identification scores for peptides of higher charge.  
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Supplementary Figure 6 

HCD fragmentation spectra of YYLIQLLEDDAQR with Orbitrap readout at 

different collision energies. 

Fragmentation spectra of the peptide YYLIQLLEDDAQR for all six HCD methods used in this 

study (normalized collision energies of NCE 20, 23, 25, 28, 30, 35 respectively). All annotated 

spectra are the best identification from Andromeda (i.e. highest score) for the respective 

fragmentation mode. 
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Supplementary Figure 7 

Fragmentation spectra of YYLIQLLEDDAQR using resonance type CID, HCD and 

versions of ETD 

Fragmentation spectra of the peptide YYLIQLLEDDAQR for ETD, EThcD and ETciD (all 

Orbitrap readout) as well as HCD with 28 NCE with ion trap readout and CID with 35 NCE and 

ion trap readout. All annotated spectra are the best identification from Andromeda (i.e. highest 

score) for the respective fragmentation mode. 
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Supplementary Figure 8 

Logistics of data handling and effect of different database search strategies 

(a) Schematic representation of the data handling pipeline governed by the internal 

pipeline/database used for the ProteomeTools project. After pool design and peptide synthesis, 

an initial survey acquisition run followed by an automatic MaxQuant search was used to identify 

the desired full length peptides. The results were imported into the internal database which then 

automatically prepared the acquisition methods for the HCD, IT and ETD acquisition runs (see 

Supplementary Information for details). These subsequent acquisitions were again 

automatically searched and imported into the database for quality control and data organization. 

(b) Comparison of database searches for peptide identification. Upper panel: Analysis of 20 pools 

from the “proteotypic” set in separate searches or searched together (combined). It is evident 

that shorter peptide identifications are lost when combining peptide pools for database 

searching. Lower panel: Analysis of 96 pools from the “proteotypic” set, searched either with 

tryptic or unspecific digestion of the database. It is evident that searching without tryptic 

specificity results in lower peptide identifications. We note that both these are issues of current 

database search algorithms that need addressing. 
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Supplementary Figure 9 

Success of full length peptide identifications in the three peptides sets generated in 

this study 

We measured the success of each synthesis by determining the fraction of peptides in a pool 

that could be identified by LC-MS/MS (the different fragmentation modes are indicated in each 

plot, all HCD collision energies were combined). Apart from a 1% peptide FDR, no additional 

score cutoff was applied here. For the ‘proteotypic’ set (top panel), recoveries are generally very 

high (average ~95 %) and only decrease for very long peptides (high pool numbers) presumably 

because it becomes increasingly difficult to obtain a full length peptide. For the ‘missing gene’ 

set (middle panel), recoveries were lower (average ~80 %) likely because of lower success in the 

LC-MS/MS analysis (e. g. solubility, ionization efficiency, fragmentation efficiency). We note 

that this was expected given the fact that these peptides were predicted from the protein 

sequences regardless of any prior observation from biological sources. The recovery of the 

‘SRMAtlas’ set (bottom panel) was also lower (average ~65 %) possibly (among other potential 

factors) because these peptides had been synthesized ~6 years prior to our analysis and because 

this set contains peptides representing N-linked glycosylation sites after PNGase F digestion 

which we did not account for in the database search. 
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Supplementary Figure 10 

Assessment of peptide purity and side product profile 

(a) Using an unspecific MaxQuant search with the “depended peptides” option enabled, a 

synthesis tree view of the peptide ESQLKDLEAENRR was constructed that displays the 

estimated relative yield of the desired full length peptide product (85%) as well as other side 

products in the synthesis. (b) Same as panel (a) but for the peptide LVFVDAVAFLTGK that

displays an estimated relative yield of the desired full length peptide product of 52%. The tree 

lists all identified truncation and by-products and their relative contribution to the entire signal 

intensity attributable to these molecular species. By-products with less than 1% estimated yield 

are omitted from the visualization fro clarity. Annotation from bottom to top: Peptide sequence 

identified, potential modification, mass error to annotated modification in ppm, delta mass 

compared to the full length peptide (e. g. mass of missing amino acid or additional protection 

group) and percentage of the total intensity of the identified synthesis products. The correct full 

length product is marked in green. 
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Supplementary Figure 11 

Comparison of Orbitrap Lumos beam-type CID with QTOF beam-type CID spectra 

(a) Bar chart showing the total (red) number of Lumos spectra matched against the QTOF (5600 

TripleTOF) spectrum library (Guo et al.) and the number of best matching spectra (blue) for a 

particular normalized collision energy (NCE). Data were filtered for an Andromeda score of > 

100. (b) Histograms of Pearson spectrum correlations between QTOF spectra and the 

corresponding Orbitrap Fusion Lumos spectra acquired at different NCEs. The highest median 

correlation is observed at 28 and 30 NCE. (c) Boxplot of Pearson spectrum correlation 

coefficients between spectra acquired on a 5600 TripleTOF mass spectrometer and the best 

matching spectra acquired on an Orbitrap Fusion Lumos at different Andromeda scores. While 

the analysis in (a) and throughout the manuscript used a conservative score cutoff of 100, the 

distribution of correlation coefficients here suggests that spectra with an Andromeda score 

between 60-100 are also suitable as reference spectra. (d) Example for low correlating spectra: 

experimental beam-type CID QTOF mass spectrum of the peptide ILIEDSDQNLK/2+ (top) 

compared to the corresponding beam-type CID spectrum at 28 NCE of the synthesized reference 

peptide standard acquired on an Orbitrap Fusion Lumos (Andromeda score 171). Both, the low 

signal-to-noise and near zero Pearson correlation suggest that the upper spectrum is a false 

positive in the QTOF library. (e) Example for high correlating spectra: experimental beam-type 

CID QTOF mass spectrum of the peptide EVGTPHGIILDSVDAAFICPGSSR/3+ (top) compared 

to the corresponding beam-type CID spectrum at 35 NCE of the synthesized reference peptide 

standard (bottom) acquired on an Orbitrap Fusion Lumos (Andromeda score 169) showing very 

good overall agreement.  
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Supplementary Figure 12 

Properties of amino acids and fragmentation efficiency of amino acid pairs across 

different HCD collision energies 

(a-f) Heatmap of median y-ion fragment intensity ranks at 20 (a), 23 (b), 25 (c), 28 (d), 30 (e) and 

35 (f) normalized collision energy (NCE) of all possible amino acids combinations N-terminal 

and C-terminal of the fragmentation position. Note that rank 1 (dark blue) corresponds to the 

highest fragment ion intensity in a spectrum. The top three rows indicate charge, polarity and 

class of the amino acid. In case the fragmentation occurs N-terminal of P (row), high intense 

fragments are generated. In contrast, if the fragmentation occurs C-terminal of G (column), 

generally low intense fragments are generated.  
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Supplementary Figure 13 

Generation of collision energy-specific fragmentation prediction models based on 

multiple spectra of peptides  

(a-d) Plots showing the relative intensity of y-type fragment ions occurring between particular 

amino acid pairs (here Q-R in (a), Y-L in (b), D-D in (c) and D-P in (d)) as a function of the 

relative position of the y-ion within the peptide sequence (0 = C-terminus; 1 = N-terminus). For 

each amino acid pair N- and C-terminal of the fragmentation position, a normalized collision 

energy-dependent LOESS regression (red line) was used to model the relative fragment length 

(y-ion divided by total peptide length) and relative fragment intensity (normalized to base peak 

intensity of the MS2 spectrum) for later prediction. The number of observations of each 

fragment ion are shown in blue (the darker, the more observations). The shape of the LOESS 

fits varies greatly between different normalized collision energies, relative positions and amino 

acids pairs indicating vastly different fragmentation behaviors. For example, the pair Q-R 

(fragmentation C-terminal of Q, but N-terminal of R) shows only low intensity and low mass y-

ions at low collision energies but increasing to almost 20% relative intensity at higher collision 

energies. In fully cleaved tryptic peptides, Q-R occurs very rarely, hence there are only few 

occurrences in the plot. Other amino acid combinations are much more frequent and, therefore 

lead to much more data in each plot. This information was used to train models predicting the 

fragment ion intensity of peptides given their amino acid sequence. 
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Supplementary Figure 14 

Prediction of fragmentation spectra based on y-ion collision energy-specific 

fragmentation models 

Panels (a) and (b) show examples for the prediction of fragmentation patterns for two different 

peptides at different collision energies. The upper two panels in each plot show the observed 

median relative fragment ion intensities of y-fragments across six different collision energies. 

The box plots in the panel below display the reproducibility and number of observations 

(number on top) of the relative intensity of the different y-ions across all acquired tandem mass 

spectra for this peptide and a given normalized collision energy (here 20, 30 and 35). The panels 

below show the predicted y-ion fragment spectra for each normalized collision energy including 

the Pearson correlation between the predicted and observed spectrum. (c) Histogram of Pearson 

correlations between predicted and observed spectrum at (left to right) 20, 23, 25, 28, 30 and 35 

normalized collision energy (NCE). It is evident, that our classifier can correctly predict the 

intensity of fragment ions within a tandem mass spectrum in most cases. 
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Supplementary Notes 

Note 1 

High-throughput peptide synthesis and quality control 

SPOT synthesis protocols were optimized for high-throughput application using peptide 

libraries consisting of 1000 peptides each. These test libraries were designed to reflect the 

proteotypic peptide set in as many parameters as possible, i.e. the distribution of peptide length 

(within a defined length limit of 7-30 amino acids) and the predicted synthesizability (in-house 

tool based on1). One of the main objects for optimization was the number of peptides that could 

be prepared per synthesis batch. To address this, batches of different sizes (1000, 2000, 4000, 

6000 or 8000 peptides) were synthesized in parallel and analysed for the following parameters: 

the recovery of the full length sequence, the amount of by-products for every peptide, the total 

time required to fully synthesize all peptides on the membrane and the reproducibility of the 

synthesis. Taking into account all criteria, it was concluded that a synthesis format of 2000 to 

6000 peptides per synthesis (dependent on the average peptide length of the peptide pool) 

provided the optimal balance between synthesis speed and quality. In addition to the synthesis 

format, the following parameters concerning the protocols of SPOT synthesis and peptide 

handling were also addressed: attachment of the C-terminal amino acid, membrane 

homogeneity, coupling times, deprotection times, washing protocols, peptide handling after 

cleavage, desalting of crude peptide pools and solubilisation procedure of peptides. Under the 

optimal synthesis conditions, the recovery of full length peptide sequences in all optimization 

sets was >90%. In the following, these conditions were applied to the SPOT synthesis of peptides 

reported here. 

To assess the reproducibility of synthesis, a test library (1000 peptides, for design criteria see 

above) was prepared twice under identical conditions. Intensities and therefore the amount of 

successfully synthesized full length product showed a very high correlation (R2=0.95, data not 

shown) for the replicates. 

For quality control of every synthesis batch three approaches were followed in parallel: First, a 

set of 26 standard peptides whose sequences contained in every step all amino acids that were 

used in the course of the synthesis were synthesized in parallel to the target peptides. Analysis 

of the peptides by LC-MS confirmed general performance of the synthesis. Second, a set of 

randomly chosen peptide sequences of every membrane was synthesized in parallel to the target 

peptides, cleaved separately from the membrane and checked by LC-MS for successful synthesis. 

Third, five quality control peptides were included in every pool. Analysis of these peptides 

within the pool by LC-MS/MS allowed the quality control of the cleavage step, the subsequent 

processing steps, and to a certain extent also the LC-MS/MS conditions.  

Besides the full length peptide, crude peptide libraries often contain truncation products from 

incomplete coupling during stepwise amino acid addition. The extent to which such products 

arise is influenced by many different parameters, i.e. the applied protocols for the coupling and 

the Fmoc deprotection reaction, sequence specific issues like steric hindrances of subsequent 

amino acids or aggregation of the growing peptide chain leading to low accessibility of the N-

terminus for the activated amino acid. Incomplete removal of side chain protection groups is 

another reason for compromised yields of the desired full length product. In order to estimate 
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the synthesis success of theoretically every synthesized peptide, a tool was developed to analyse 

for theoretically possible by-products and their relative intensity compared to the full length 

product. For that, the initial HCD and CID analysis (DDA) of every peptide pool was searched 

against a pool specific database with unspecific digestion and MaxQuant’s “dependent peptide” 

option enabled. While the unspecific search identified truncated versions of the full length 

peptide, the “dependent peptides” option identified by-products like protection groups, 

deamidated and dehydrated peptides, amino acid repetitions at the C-terminus or internal amino 

acid deletions by employing a mass tolerant MS2 search based on a previously identified full 

length peptide. Using this information, a so called synthesis tree was generated by plotting by-

products and their respective relative intensity compared to the total intensity of all products 

related to the peptide. By-products identified with less than 1% of the intensity of the product 

were omitted from the tree view (for which reason the sum of intensities in Supplementary 

Figure 10 is not 100%), and peptides with less than 7 amino acids were not considered, as they 

principally cannot be identified due to the applied mass cut-off and the nature of the database 

search. In the graphical overview (Supplementary Figure 10) the identified sequence and the 

truncated or modified version of the peptide is stated as well as a basic annotation of the 

modification from Unimod2 including the precursor mass measurement error in ppm. Because 

the ionization efficiencies of different peptides, truncation or chemical by-products are not the 

same, the obtained percentage does not represent actual yields. However, the resulting tree view 

allowed a rough estimation on how well a peptide was synthesized and which by-products and 

therefore interfering precursor masses might be expected. The presence of these by-products 

can be utilized as further evidence for the presence of the correct full length peptide or correct 

site localization of PTMs (i.e. consistently found at the same site). Furthermore, such knowledge 

about the amount and number of by-products can be generally used to optimize peptides 

synthesis protocols. 

 

LC-MS Data Acquisition 

The    LC-MS parameter evaluation and final setup for high-throughput data generation aimed at 

obtaining high numbers of MS and MS/MS spectra per peptide, preferably over the whole elution 

profile while keeping the measurement time per peptide pool within a feasible range 

(Supplementary Figure 3). Since the crude peptide pools contained by-products in addition to 

the desired peptides, we decided to split the LC-MS analysis in two parts: An initial ‘survey run’ 

using HCD (NCE 28) and CID (NCE 35) fragmentation was used to identify full length peptide 

sequences, their precursor ions and retention times to create a scheduled inclusion list for all 

the subsequent LC-MS runs. To obtain data for a total of 11 modes of spectra acquisition within 

a reasonable time, multiplexing of acquisition modes was required. Therefore, the three 

subsequent data acquisition runs multiplexed up to 4 different MS/MS scan types or collision 

energies. The 3xHCD run consisted of a 120k resolution MS1 scan followed by three HCD 

events with Orbitrap readout, subsequently triggered on the same precursor m/z. The ETD run 

contained the three available fragmentation modes utilizing electron transfer dissociation: ETD, 

ETD with supplemental HCD activation and ETD with supplemental CID activation recorded 

in the Orbitrap. The IonTrap run consisted of a CID event with ion trap readout, an HCD event 

with ion trap readout and two HCD scans at low collision energies with Orbitrap readout to 
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complement the 3xHCD run. Resulting score distributions, number of matched fragments, the 

fraction of explained MSMS intensity and the identification overlap between the different 

acquisition modes are displayed in Supplementary Figure 4 and Supplementary Figure 5. 

Example tandem MS spectra for the peptide YYLIQLLEDDAQR in all different fragmentation 

modes and collision energies are displayed in Supplementary Figure 6 and 7. 

 

Data organization 

Data organization, processing and temporary storage of results was governed by an in-house 

pipeline connected to a database to keep track of all peptides (Supplementary Figure 8a). Peptide 

sequences and respective gene mapping to SwissProt (version dated 07/20/2016, 42,164 

sequences) were deposited in the database and retrieved for synthesis planning. The data were 

organized in pools of 1000 peptides, as described above. After initial LC-MS analysis, the 

internal pipeline retrieved the pool specific fasta-file, containing the concatenated full length, 

retention time and quality control peptide sequences. An instance of MaxQuant 1.5.3.30 was 

launched via command line and performed the database search. The resulting information - 

filtered at 1% peptide FDR - was extracted from the evidence.txt, msms.txt and msmsScans.txt 

files and stored in the internal database. The retention time information of identified full length 

precursor ions identified with an Andromeda score of at least 100 were automatically entered 

in an inclusion list with a ±5 min retention time window. Missing peptides were appended to 

the inclusion list with predicted m/z values for doubly and triply charged precursors without 

retention time scheduling. Drift of retention times due to LC and column performance was 

corrected for by updating the retention time windows according to the most recent LC-MS run 

using the spiked in retention time peptides. Using a command line based tool from the 

instrument manufacturer, three pool specific MS methods were generated automatically 

importing the respective inclusion list. In these MS runs, only precursors from the inclusion 

were targeted for fragmentation using different fragmentation techniques and collision 

energies. This ensured the generation of multiple spectra for every peptide without spending 

time on by-products of the full length peptide. After data acquisition, the MS/MS spectra were 

searched in MaxQuant and imported into the database as described above. The process and the 

LC-MS settings for the runs are summarized in Supplementary Figure 8a. During the evaluation 

of the pipeline, different settings for MaxQuant and the Andromeda search engine were tested 

(Supplementary Figure 8b): Separate searches of pools yielded higher recoveries in pools with 

short median peptide length. This behaviour was not observed when processing peptide pools 

with larger medium peptide length. Presumably, by-products from larger peptides influence the 

FDR calculation for the shorter peptides. Therefore, we decided to search the pools individually 

against a pool-specific database. The unspecific digestion option yielded lower median scores, 

presumably due to a larger search space or different score normalization performed by 

MaxQuant. 

Full length peptide identifications are plotted in Supplementary Figure 9. The upper panel 

displays the 126 peptide pools from the “proteotypic” set. As described, all sequences originate 

from ProteomicsDB and were chosen due to their proteotypicity. The average median peptide 

length of the pools is increasing with higher pool numbers, starting at 7 amino acids on average 

in pool 1 and reaching a maximum peptide length of up to 40 amino acids in the later pools. The 
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recovery of peptides (without score cut-off) was over 80% for the short peptide pools and 

approached nearly full recovery in the middle of the set. HCD and CID identified most of the 

peptides. The three ETD methods did not perform that well because these fragmentation 

methods require more time thus leading to lower scan numbers per LC-MS run. In addition, 

short tryptic peptides with charge state 2+ are known to not fragment very well in plain ETD 

mode. Since the peptide set is biased towards peptides detectable by CID and HCD (they were 

chosen based on data that used these fragmentation types in the first place), nearly no peptide 

identifications were exclusively contributed by one of the ETD based fragmentation methods. 

The second (“missing gene”) peptide set was generated and analysed in a similar fashion: Low 

pool numbers contain shorter peptides, higher pool numbers contain longer peptides. The 

peptides in these pools are derived from proteins where only weak or no prior experimental 

evidence existed. These peptides were therefore mostly predicted from the underlying protein 

sequence and contain an above average number of missed cleavages. As expected, the recovery 

showed a similar trend as for the first peptide set, but with a shift to generally lower recoveries. 

Since the second set is not biased towards prior identification by HCD or CID, a larger number 

of peptides was observed to be exclusive to non beam-type fragmentation methods as can be 

seen by the larger delta between the full recovery and the CID/HCD recoveries (see 

Supplementary Figure 9, middle panel). The “SRMAtlas” subset (Supplementary Figure 9, lower 

panel) consisted of both experimentally observed peptide sequences and predicted sequences. In 

addition, peptides with a length of 6 amino acids and peptides with an asparagine to aspartate 

conversion – mimicking a former glycosylated peptide after PNGaseF treatment – were 

included in the pools but not accounted for in the database search as for this analysis. Therefore, 

the recovery reported is in between the first two sets. In the “SRMAtlas” set, the pool number 

does not correlate with the median peptide length. 

 

Retention Time Peptides 

To ensure transferability of retention times between LC systems, reversed phase LC materials 

and laboratories, preselected standard peptides were spiked into every measurement pool. In 

addition to the C13 labelled Pierce Retention Time Calibration Kit, 66 non-labelled peptides 

were used. The peptides for retention time calibration were generated by selecting suitable 

candidates exhibiting good LC-MS characteristics through an iterative selection process. The 

process started from 10,000 in-silico generated non-naturally occurring peptide sequences with 

a length of eleven amino acids followed by iterative steps of synthesis and experimental 

examination. As a result of the process, a set of 66 peptides was defined that had proven to yield 

good detectability, high stability of retention times over multiple injections and on different 

instruments, and a broad and relatively even coverage of the LC gradient. This set of 66 peptides 

was spiked into every peptide pool of the ProteomeTools project. 

Based on the two peptides ISLGEHEGGGK (early) and YDTAIDFGLFK (late), retention time 

indices (iRT values) for 69 peptides (64 RT + 5 QC peptides) were calculated as shown in Escher 

et. al 3 to normalize for different analytical columns, dead volumes and general variations in the 

LC-gradient. This decreased the median retention time difference between the observed and 

expected retention time of peptides from 48.7 s to 12.4 s (Supplementary Figure 2a). This shows 
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that the calculated retention time indices are able to accurately predict the retention time of 

peptides. Furthermore, Supplementary Figure 2b and c highlight the cross comparability and 

conversion of retention time indices resulting from different peptides (akin to different RT kits). 

For this purpose, three different retention time indices were calculated based on the peptide 

pairs ISLGEHEGGGK and YDTAIDFGLFK (iRT1; purple fulcrums; same as above), 

SYASDFGSSAK and GFVIDDGLITK (iRT2; red fulcrums) or GSGGFTEFDLK and 

LTDELLSEYYK (iRT3; orange fulcrums). The conversion formula resulting from a linear fit is 

shown in each scatter plot and shows that retention time indices can be accurately predicted 

(converted) even if different peptides (or RT kits) are used for calculation (R2 > 0.99). While the 

chosen peptides should ideally span the entire gradient length, the comparison between iRT1 

and iRT3 values also shows that accurate prediction is still possible even when only a fraction 

of the gradient length is covered by the fulcrums (delta RT of iRT3 peptides is 103 sec in 

comparison to 1,950 sec for iRT1 and 1,167 sec for iRT2). Scientists who already use retention 

time standards in their samples will also be able to calibrate their iRT values to the ones reported 

here by running one of our libraries and adding their peptide standards. This would not require 

re-measuring all samples. Finally, it is also possible to generate iRT values retrospectively for 

(e. g. DIA-SWATH type data) samples that were measured without including retention time 

standards. It is very likely that many of the proteotypic peptides we have synthesized are also 

present in ‘real’ data. In this case, the iRT values already recorded in our measurements could 

simply be applied to the experimental data to derive the linear equation that assigns iRT values 

to all peptides in the experimental data (or the underlying spectral library). 
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Note 2 

Conserved peptide sequences between human and mouse 

Although the project aimed at representing human proteins by synthetic surrogate peptides, 

conserved sequence stretches resulted in the coverage of proteins from other species. We 

analysed this in more detail for the mouse: 75,402 peptides scheduled for synthesis are also 

unique in the mouse proteome and represent 13,119 mouse proteins (78% of all annotated mouse 

proteins) mapping to 12,962 mouse genes (representing 79% of all mouse genes). Using the same 

score cut-offs as applied in our main manuscript, we identified 60,961 peptides mapping to 

12,599 (77%) unique mouse genes (see Supplementary Table 3). We point out that while many 

studies in the mouse could be envisaged that utilize the peptides/spectra, these would be not 

universally applicable, e. g. in the context of analysing xenograft models (e. g. human cancer 

cells engrafted into a mouse host). 

 

Overlap with NIST Orbitrap HCD spectral library 

The current NIST Orbitrap HCD library maps to 12,660 human genes according to Swissprot. 

We compared our synthetic peptide library and found that 99.4% of the human genes 

represented in the NIST library (12,660) are also covered by our peptides (12,578). However, our 

data covers 7,157 genes not covered by NIST. At the peptide level, the overlap is much smaller 

(24% or 76,648 peptides at the applied arbitrarily high MaxQuant/Andromeda score cut-off of 

100). This is because we restricted the synthesis to proteotypic peptides (if available) while NIST 

covers any peptide observed for a protein. For example, NIST contains over 3,000 peptides for 

the protein Titin and close to 1,000 peptides for Filamin. In contrast, our data only contains 39 

and 15 peptides respectively.  
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Note 3 

Spectrum comparison QTOF vs Fusion Lumos 

Choosing the best (highest correlation) reference spectrum, resulted in a median Pearson 

correlation of 0.93 (Figure 2c) which indicates that the spectra acquired on a QTOF and Orbitrap 

Fusion Lumos are in very good agreement. Out of the six different collision energies, spectra 

acquired with a NCE of 28 generally showed the highest correlation to the experimental spectra 

(Supplementary Figure 11a). Comparing the global distribution of correlation coefficients cross 

different NCEs (Supplementary Figure 11b) illustrates that at a NCE of 28 and 30 the acquired 

spectra are in very good agreement (median correlation of 0.91). 

A comparison of the correlation distribution between different Andromeda score bins 

(Supplementary Figure 11c) suggest that the so far applied score cut-off of 100 is likely too 

conservative since no apparent difference is observable for spectra yielding an Andromeda score 

of >100 or spectra scored between 60 and 100. However, larger differences are observable for 

both low (<60) and high (>300) scoring peptide spectrum matches, suggesting sampling artifacts 

or potential false positive matches in the QTOF spectral library. Supplementary Figure 11d 

displays such an example. The reference spectrum generated has an Andromeda score of 170 

but shows no (R=-0.03) correlation to the spectra generated on the QTOF instrument. The low 

signal-to-noise and poor correlation suggests that the QTOF spectrum is a false positive and 

should be discarded from the library. Contrary, Supplementary Figure 11e shows a near perfect 

matching pair of spectra for a triply charged peptide. 

 

Fragmentation prediction 

The fragmentation prediction model shown in Figure 2d for the peptide YYLIQLLEDDAQR (see 

Online Methods for additional details about scan types) highlights one of many possible 

applications of the data presented here. Pools 55-65 from the “proteotypic” set were used to train 

a predictor of relative y-ion fragment intensities using a simplified fragmentation model. The 

basis of the predictor is the general observation that the intensity of fragments (partially) 

depends on the amino acid on either side of the fragmentation position (e.g. the well know 

’proline rule’ that states that fragment ions are often very intense if bond cleavage occurs N-

terminal to a proline residue within the peptide sequence; Supplementary Figure 12). 

Furthermore, the fragmentation position, especially in the context of different normalized 

collision energies, effects the intensity of the fragment.  

Interestingly, some amino acid combinations seem to be rather collision energy independent 

and their general behaviour over the relative position does not change much. In contrast, others 

seem more accessible when using different normalized collision energies (see examples in 

Supplementary Figure 13a-d). The resulting models were tested on pool 66 of the “proteotypic” 

set and resulted in a Pearson correlation between 0.85 and 0.9 (Supplementary Figure 14a-c). 

Further improvements to the model, such as the position of amino acids which can carry a 

charge (i.e. R, K, H), an independent intensity normalization, binning of collision energies (not 

using normalized collision energies) or extension to different charges should be possible. Once 

fully understood, these differences in fragmentation behavior could be used to further optimize 
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MRM/PRM assays for specific ions (e.g. for increasing selectivity of such assays) or to avoid 

interfering fragments of co-eluting peptides. 

Note 4 

Data availability 

Reference spectra are available at https://www.proteomicsdb.org and updates to the resource 

are available at www.proteometools.org.  

The mass spectrometric data have been deposited with the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the 

dataset identifier PXD004732. 

The raw file naming convention is the following:  

<PlateID>_<WellID>-<Set>_<Pool>_<SynthesisReplicate>_<Aliquot>-<Measurement>-

<Gradient>-<TechnicalReplicate>.raw 

Example: 01625b_GA1-TUM_first_pool_1_01_01-DDA-1h-R2.raw 

Internal PlateID is 01625b, internal WellID GA1, set is TUM_first, pool number 1, first synthesis 
replicate, first aliquot, measurement method was data dependent survey run, 1h LC gradient, 
second technical replicate. 

The peptide set is either “proteotypic set” (TUM_first), “missing gene set” (TUM_second, 

TUM_third) or “SRMAtlas set” (Thermo_SRM). 

Measurement method is either the survey run (DDA), HCD run (3xHCD), IonTrap run 

(2xIT_2xHCD) or ETD run (ETD). 
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Summary 
Beyond specific applications such as the relative or absolute quantification of peptides in 

targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as 

internal standards in bottom-up proteomics. A number of retention time standards have been 

reported that enable chromatographic aligning of multiple LC–MS/MS experiments and data 

sharing. However, only few peptides are typically included in such sets, limiting the analytical 

parameters that can be monitored. This publication introduces the ProteomeTools Calibration 

Standard termed “PROCAL”, a set of 40 synthetic spike-in peptide standards for retention time 

indexing, column performance monitoring and collision energy calibration. Starting from 

10,000 in-silico generated peptide sequences that do not occur in Eukaryotes, the peptide 

standards have been selected in an iterative process, aiming for favorable chromatographic 

behavior and MS characteristics as well as coverage of the full hydrophobicity range of tryptic 

digests. PROCAL demonstrates excellent retention time stability over time, as well as excellent 

correlation between different gradient lengths. The inclusion of several peptides with very 

similar retention times, allows the straightforward chromatography quality assessment of 

separation efficiency, peak capacity, and column degradation. The fragmentation characteristics 

of the peptides can also be used to calibrate and compare collision energies between different 

mass spectrometers. The generated standard will be useful for multiple purposes in individual 

laboratories, specifically aiding the transfer of data acquisition, methods and acquired data (e.g. 

spectral libraries) between laboratories. 
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PROCAL: A Set of 40 Peptide Standards for Retention Time
Indexing, Column Performance Monitoring, and Collision
Energy Calibration
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Beyond specific applications, such as the relative or absolute quantification of
peptides in targeted proteomic experiments, synthetic spike-in peptides are
not yet systematically used as internal standards in bottom-up proteomics. A
number of retention time standards have been reported that enable
chromatographic aligning of multiple LC–MS/MS experiments. However, only
few peptides are typically included in such sets limiting the analytical
parameters that can be monitored. Here, we describe PROCAL
(ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span
the entire hydrophobicity range of tryptic digests, enabling not only accurate
determination of retention time indices but also monitoring of
chromatographic separation performance over time. The fragmentation
characteristics of the peptides can also be used to calibrate and compare
collision energies between mass spectrometers. The sequences of all selected
peptides do not occur in any natural protein, thus eliminating the need for
stable isotope labeling. We anticipate that this set of peptides will be useful
for multiple purposes in individual laboratories but also aiding the transfer of
data acquisition and analysis methods between laboratories, notably the use
of spectral libraries.

Most current proteome-scale analyses of biological systems rely
on the “bottom-up” approach in which proteins are digested by a
protease and the resulting peptides are separated by a RPLC sys-
tem coupled online to a MS/MS. For maximum performance,
both the LC and MS instrumentation settings should be care-
fully optimized and systematically monitored during operation.
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Retention time (RT) stability or align-
ment between experiments is of
paramount importance for quantita-
tive proteomic measurements ranging
from the analysis of multiple data-
depended experiments (DDA)[1] to
targeted assays, such as SRM/PRM[2]

and data-independent acquisition
methods (DIA), including SWATH,[3]

AIF,[4] or MSE.[5] For example, the
precise RT of a peptide can be used
as an additional criterion for peptide
identification in classical DDA.[6,7]

The actual RT of peptides is governed
by many factors including, but not lim-
ited to the stationary phase material, mo-
bile phases, gradient characteristics, liq-
uid flow rate, and internal volume of
the LC system. To enable the transfer of
RT information of peptides between dif-
ferent LC–MS instruments and laborato-
ries, the dimensionless RT index (iRT)
has been introduced.[8] iRT values are
based on the relative RT of peptides com-
pared to a set of standard peptides and

several such sets have been published and commercialized
(Figure 1, Supporting Information).[8,9] However, these typically
contain few peptides which limits their use for applications that
go beyond RT calibration or alignment. In addition, most of the
peptide sequences occur in natural proteins thus requiring sta-
ble isotope labeling in order to rule out potential issues with pep-
tide identification by database searching. The presence of heavy
isotope labeled peptides in a sample can be problematic because
integrating these into data processing workflows that include
classical database searching for peptide identification can be cu-
mbersome. To address some of the above limitations, we de-
veloped a new standard peptide set termed PROCAL (Pro-
teomeTools Calibration Standard) as part of the ProteomeTools
project.[10] The data shown here demonstrates that PROCAL can
serve multiple analytical purposes and can thus become a useful
tool for proteome research.
For the creation of the standard peptides, a list of 10 000 non-

naturally occurring random peptide sequences was generated in
silico (Figure S2, Supporting Information). All peptides were 11-
mers with a C-terminal lysine residue and contained a reduced
amino acid alphabet (K, A, D, E, F, G, H, I, L, S, T, V, Y, and
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Figure 1. Panel (A) Extracted ion chromatogram of the 40 synthetic PROCAL peptides used in this study. Peptides are numbered according to Supporting
Information Table 1. Panel (B) Number of peptide identifications as a function of chromatographic time from a tryptic HeLa cell lysate digest (500 ng)
spiked with 40 synthetic peptides (200 fmol each). The RT of the first and last eluting spiked peptides are marked with dashed lines. Panel (C) Analysis
of linearity of the RTs of the synthetic peptide set using different LC gradient times and profiles.

no N-terminal D or E) to minimize potential chemical stability
issues. Two thousand sequences were sampled to cover the ex-
pected RT range evenly. The peptides were individually synthe-
sized by Fmoc-based solid phase SPOT synthesis strategy.[11] Sub-
sequently, the peptides were analyzed by RP nano-HPLC coupled
to LC–MS/MS. For selection of the most suitable peptides, all
peptides were examined for favorable chromatographic behavior
(wide range of RTs, good peak shape, and stable RT over mul-
tiple injections) and MS characteristics (strong precursor inten-
sity, one dominant charge state, and high-scoring tandem mass
spectra). This led to the final selection of 40 peptides (Table T1,
Supporting Information) that were individually synthesized by
solid-phase peptide synthesis on resin, purified by HPLC (pu-
rity >90%), quality controlled by LC–MS, and mixed in relative
quantities to result in close to uniform detection efficiency in LC–
MS/MS experiments.
The peptide mixture was dissolved at a concentration of

1 pmol/µL in one of the following solvents: (a) 1% formic acid in
water; (b) 5% ACN in water; (c) 100% DMSO and subsequently
diluted to 10%DMSOwith 1% formic acid in water. The peptides
(loading amount varied between 50 and 200 fmol per sample)
were subjected to LC–MS/MS analysis using an UltiMate 3000
nano-HPLC coupled to an Orbitrap Fusion Lumos ETD mass
spectrometer. Peptides were loaded onto a 75 µm × 2 cm trap
column (packed in house with 5 µm particles of Reprosil Pur
ODS-3, Dr. Maisch GmbH) and separated on a 75 µm × 45 cm
analytical column (packed in house with 3 µm particles of C18
Reprosil Gold 120, Dr. Maisch GmbH) using varying gradient
lengths. The analytical column was operated at 50°C and a flow

rate of 300 nl/min. LC solvent A was 5% DMSO, 0.1% formic
acid in ultrapure water and LC solvent B was 5% DMSO, 0.1%
formic acid in acetonitrile.[12] The main MS acquisition param-
eters were as follows: MS1 resolution of 60 000, MS2 reso-
lution of 15 000, and data-dependent acquisition mode frag-
menting the most abundant peaks for 2 s using HCD with a
normalized collision energy (NCE) of 28. For the NCE calibra-
tion measurements, the instrument was set up to trigger MS2
scans on the same precursor with NCE values of 10, 15, 20,
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 45, 50, respectively within
the same method. The QExactive Plus measurements were per-
formed at an MS1 resolution of 70 000 and an MS2 resolu-
tion of 17 500 and every NCE was acquired within a separate
run.
The acquired MS data were searched against UniprotKB (hu-

man, 88 380 entries, version 07/13) supplemented with the se-
quences of the PROCAL peptides using MaxQuant 1.5.3.30 and
default settings. Extraction of RTs and ion chromatograms was
performed using Skyline 3.6.0. Further data analysis and visu-
alization was performed using Microsoft Excel, custom R scripts
and GraphPad Prism 5. The fragmentation correlation plots were
generated by extracting the fragment ions, their annotations and
intensities from the MaxQuant msms.txt file. Peptide fragment
spectra of the same peptide sequence across collision energies
or LC–MS runs were then compared to each other using the
normalized spectral contrast angle.[13] The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset
identifier PXD006832.
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Figure 2. Panel (A) Analysis of RT stability across >1 800 LC–MS/MS analyses conducted over the period of several months. Boxplots with whiskers
display the 5–95%, the median is indicated. Data were median centered and normalized for systematic shifts due to column or solvent change
(Figure S4, Supporting Information). Panel (B) Enlarged view of the sample chromatogram shown in Figure 1A displaying good (top panel) or poor
(bottom panel) separation of two pairs of peptides with similar RTs. Panel (C) Mirror HCD spectra of the peptide FLFTGYDTSVK collected at nominally
the same NCE on an Orbitrap Lumos or Orbitrap QExactive instrument showing qualitatively similar but quantitatively different fragment ion intensity
patterns (top panel). Intensity differences are marked in red; SA denotes the normalized spectral contrast angle. The lower panel shows the HCD spectra
of the same peptide but collected at a collision energy that led to the greatest spectrum similarity. Panel (D) Heat map of the SA values of HCD spectra
collected for the peptide FLFTGYDTSVK at 15 different collision energies on an Orbitrap Lumos or an Orbitrap QExactive. Panel (E) Comparison of
fragmentation efficiencies of two different mass spectrometers. 2D collision energy plot using the best matching peptide HCD spectra collected on an
Orbitrap Lumos and QExactive. Each line represents one peptide standard. Note that several peptides may give identical lines and may therefore not be
distinguishable in this plot. The offset of the linear fit to the diagonal represents the NCE offset of the two instruments.

Here, we report a novel multipurpose set of 40 synthetic
peptide standards termed PROCAL developed as part of the
ProteomeTools project.[10] The selection process for the peptides
is summarized in Figure S2 of Supporting Information and
the methods section, and a sample chromatogram is shown in
Figure 1A. When measuring replicates of the mixture using a
standard peptide gradient (4 to 42% solvent B in 60 min), the
two most hydrophilic peptides eluted at 9.96 min (±0.17 min,
n = 10) and 13.02 min (±0.14 min, n = 10) respectively, while
the most hydrophobic peptides were detected at an average RT
of 59.53 min (±0.08 min, n = 10, Table T1, Supporting Infor-
mation). When spiked into a complex tryptic digest of HeLa cell
lysates, the PROCAL peptides covered the RTs of >99.9% of all
identified peptides (Figure 1B). We purposefully included several
very hydrophobic peptides in order to allow RT indexing of hy-
drophobic peptides, to accommodate steep gradients, the use of
less hydrophobic stationary materials, and/or higher concentra-
tions of organic solvent. It should be noted that, depending on
experimental conditions, the most hydrophilic and the most hy-
drophobic standard peptides may not always be observed. Some

stationary phases may not provide enough retention for the most
hydrophilic peptides and eluting the most hydrophobic peptides
may prove difficult for some solvent systems and C18-based col-
umn materials. For applications for which the detection of these
hydrophobic peptides is not required, the peptide set may be dis-
solved in purely aqueous solvents (Figure S3, top, Supporting In-
formation). For all other purposes, it is advantageous to use pure
DMSO for initial dissolution followed by dilution to 10% DMSO
followed by further dilution to the desired concentration in LC
solvent A in order to increase their recovery and observability
during LC–MS/MS analysis (Figure S3, bottom, Supporting In-
formation).
The elution profiles of the synthetic peptides were compared

for different gradient times and profiles were found to show ex-
cellent correlations throughout (Figure 1C). The peptides also
showed excellent RT stability over prolonged periods of time.
This is exemplified by data from the ProteomeTools project where
31 PROCAL peptides were detected in >1800 measurements ac-
quired over the course of several months and showed a median
SD of the RTs of 0.37 min (Figure 2A; Figure S4, Supporting
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Information). The reason why we did not detect all 40 peptides
presented in this study is due to the fact that the ProteomeTools
project used a preliminary set of 66 peptides. Some of these were
removed subsequently and others added so that only 31 of the
original 66 peptides were included in the final set of 40 pep-
tides presented here. Comparing the set to other RT calibration
standards, we found very good agreement between the different
reagents (Figure 1, Supporting Information) implying that using
40 peptides results in good RT calibration, such a high number
may not be required for this particular purpose. However, a fur-
ther application of PROCAL peptides is tomonitor the separation
performance of LC columns over time. To this end, we included
multiple peptides with very close RTs as these allow a straight-
forward assessment of separation efficiency, peak capacity, and
column degradation (Figure 2B).
As laid out above, the peptide standards were selected for their

ability to generate unambiguous tandemmass spectra leading to
high-scoring peptide identification. Based on this property, the
peptides also offer the opportunity to compare MS/MS charac-
teristics between different instruments. This is relevant for tar-
geted or DIA measurements for which data acquisition methods
or spectral libraries generated on one instrument frequently have
to be transferred to another platform. Although NCEs are sup-
posed to be transferable from one MS instrument to another, we
found that individual instruments can differ substantially in the
calibration of NCEs and thus the same nominal NCE values can
lead to differences in fragmentation efficiency. Figure 2C illus-
trates this fact for the doubly charged peptide FLFTGYDTSVK
fragmented by HCD either on an Orbitrap Fusion Lumos or an
Orbitrap QExactive instrument. It is apparent that while the spec-
tra collected at the same NCE (here NCE of 32, upper panel)
showed qualitatively similar fragmentation, the relative intensi-
ties of the fragment ions differed substantially. The extent of the
observed differenceswas also reflected in a rather lownormalized
spectral contrast angle (SA) value of 0.59.[14] In contrast, when
comparing spectra collected at NCEs of 32 and 26 respectively,
the spectral similarity was found to be much higher (SA of 0.97,
lower panel). When extending the analysis to 15 different NCEs,
a heat map of normalized spectral angles of the best matching
spectra between two collision energies as shown in Figure 2D
was obtained. The highest spectral angle for the chosen peptide
displayed an offset of NCEs with the Orbitrap Lumos consistently
requiring higher NCE values than the QExactive. This was also
true for all other peptides in the set (Figure 2E, note that many
lines superimpose, Table T1, Supporting Information), enabling
the calculation of an average NCE offset for the two specific in-
struments at the given time point for the current calibration. We
also observed smaller differences between two QExactive instru-
ments in the author’s laboratory as well as a small shift over time,
which is relevant when operating an instrument over a long pe-
riod. Having learned these instrument characteristics from the
standard peptides, it became possible to transfer data acquisition
methods more effectively between instruments and we antici-
pate that this will become particularly useful when using spec-
tral libraries for DIA or mixed DIA/DDA applications. We note
that the differences observed between the instruments in the
author’s laboratory may not be the same for other instruments
and would therefore have to be determined on a case-by-case
basis.

In summary, we presented a novel set of synthetic peptides
that can be used as a standard for multiple applications in-
cluding iRT calculation, LC gradients optimization, column per-
formance monitoring, and collision energy calibration. Further
applications of the peptides can be envisaged particularly for se-
lecting the optimal spectral library for DIAmeasurements, inter-
laboratory method transfer, as well as data normalization and
comparison. On a more general note, we believe that synthetic
peptide standards should be included in any proteomic sample
in order to improve postacquisition data analysis.

Abbreviations

DDA, data-depended experiments; DIA, data-independent acquisition
methods; iRT, retention time index; NCE, normalized collision energy;
RT, retention time
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Supplementary Figures 

Supplementary Figure 1 

Hydrophobicity indices (HI) for several commercial peptide retention time 

standards. 

HI values were predicted using SSRCalc (Version Q.0) with settings for a 100Å C18 column and 

0.1% Formic Acid (2015) as solvent. 
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Supplementary Figure 2 

Schematic view of the peptide process and criteria applied in selecting the final set 
of 40 PROCAL peptides. 
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Supplementary Figure 3 

Effect of different solvent compositions for initial dissolution of synthetic peptides 
on recovery and observability during LC-MS/MS analysis. 

LC-MS/MS data were acquired over 60 min using a linear gradient from 4 to 42% solvent B 

(ACN, 5% DMSO, 0.1% formic acid), 50 fmol of each peptide was injected. 
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Supplementary Figure 4 

Retention time stability 

31 of the peptides included in the PROST set were used as spike in standards for >1,800 LC-

MS/MS injections of complex peptide mixtures as acquired in the ProteomeTools project (60 

min linear gradient from 4to35% organic phase). Panel a. Boxplots with whiskers displaying the 

5 to 95 percentile and median of the peptide recorded retention times. Peptide spectrum matches 

(PSMs) with an Andromeda Score <100 were excluded. Panel b) Similar boxplots but displaying 

all retention times normalized to the offset to the median retention time of the two peptides 

TFAHTESHISK and ASDLLSGYYIK (arrows) over all injections. This corrects for the linear 

offset of retention times that are due to slightly longer trap columns and changes in the LC-

solvents over time. Panel c. Boxplots displaying the median centered distribution of the same 

data shown in Figure S4b. 
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Summary 
The analysis of the post-translational modification (PTM) state of proteins using mass 

spectrometry-based bottom-up proteomic workflows has evolved into a powerful tool for the 

study of cellular regulatory events that are not directly encoded at the genome level. To better 

understand the LC-MS characteristics of PTMs, about 5,000 synthetic peptides carrying 21 

different naturally occurring modifications of lysine, arginine, proline and tyrosine side chains 

and their unmodified counterparts were synthesized and analyzed. The study identified changes 

in retention times and revealed close correlation to the elemental composition of the 

modification. Modified peptides were characterized using eleven different fragmentation modes 

which revealed shifts of precursor charge states and differences in search engine scores due to 

the respective modification. Further, PTM-dependent changes in the fragmentation behavior 

were assessed, revealing a wide range of effects. While some PTMs did not affect the 

fragmentation behavior at all – and thus spectra might be in-silico generated from unmodified 

counterpart peptides - other PTM drastically changed the appearance of the mass spectra. In 

this regard, the formation of diagnostic immonium ions or neutral losses specific to PTMs were 

systematically investigated, confirming ten known and identifying five novel diagnostic ions 

for lysine modifications. To demonstrate the value of including diagnostic ions in database 

searching, a public data set of lysine crotonylation was reprocessed, corroborating that 

diagnostic ions increase the identification confidence for modified peptides. This work 

represents the first broad and systematic analysis of the LC-MS/MS properties of common and 

rare PTMs using synthetic peptides, leading to direct applicability for bottom-up proteomic 

experiments. 
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ProteomeTools: Systematic Characterization of
21 Post-translational Protein Modifications by
Liquid Chromatography Tandem Mass
Spectrometry (LC-MS/MS) Using Synthetic
Peptides*□S

Daniel Paul Zolg‡, Mathias Wilhelm‡, Tobias Schmidt‡, Guillaume Médard‡,
Johannes Zerweck§, Tobias Knaute§, Holger Wenschuh§, Ulf Reimer‡,
Karsten Schnatbaum§, and Bernhard Kuster‡¶�**

The analysis of the post-translational modification (PTM)
state of proteins using mass spectrometry-based bot-
tom-up proteomic workflows has evolved into a powerful
tool for the study of cellular regulatory events that are not
directly encoded at the genome level. Besides frequently
detected modifications such as phosphorylation, acetyla-
tion and ubiquitination, many low abundant or less fre-
quently detected PTMs are known or postulated to serve
important regulatory functions. To more broadly under-
stand the LC-MS/MS characteristics of PTMs, we synthe-
sized and analyzed �5,000 peptides representing 21
different naturally occurring modifications of lysine, ar-
ginine, proline and tyrosine side chains and their unmod-
ified counterparts. The analysis identified changes in
retention times, shifts of precursor charge states and
differences in search engine scores between modifica-
tions. PTM-dependent changes in the fragmentation be-
havior were evaluated using eleven different fragmenta-
tion modes or collision energies. We also systematically
investigated the formation of diagnostic ions or neutral
losses for all PTMs, confirming 10 known and identifying 5
novel diagnostic ions for lysine modifications. To demon-
strate the value of including diagnostic ions in database
searching, we reprocessed a public data set of lysine
crotonylation and showed that considering the diagnostic
ions increases confidence in the identification of the mod-
ified peptides. To our knowledge, this constitutes the first
broad and systematic analysis of the LC-MS/MS proper-
ties of common and rare PTMs using synthetic peptides,
leading to direct applicable utility for bottom-up pro-
teomic experiments. Molecular & Cellular Proteomics
17: 1850–1863, 2018. DOI: 10.1074/mcp.TIR118.000783.

The transcription-independent transduction of signals in
cells heavily relies on changing the post-translational modifi-
cation (PTM)1 state of amino acid sidechains of proteins. The
effects of enzymatic modification of certain amino acids by
so-called “writers,” “erasers,” and “readers” are being exten-
sively studied to better understand normal and pathological
cellular processes. Mass spectrometry-based bottom up pro-
teomics has developed into the method of choice for the
identification of PTMs in complex mixtures (1, 2) because
most PTMs come with a distinct change in the molecular
weight of the modified amino acid which can be recognized
by mass spectrometry. This makes the technique more ge-
neric than antibody-based detection as it does not rely on the
generation of specific reagents for every case. In general,
PTMs are studied at the level of peptides following protease
digestion of full proteomes and the modified peptides may be
subjected to specific chromatographic, chemical or antibody-
based enrichment steps prior to LC-MS/MS analysis to over-
come issues associated with the often low stoichiometry of
the PTM (3–5). One of the key steps in the analysis workflow
is searching the tandem mass spectra against an in-silico
digested database of protein sequences. Modified peptides
show a predictable shift in precursor mass and parts of the
fragment ion series, allowing both the identification of PTM
type and the localization of the modification site. It has been
observed that some modified peptides can give rise to spe-
cific diagnostic ions (e.g. immonium ions of the modified
residue) or neutral losses (NL, i.e. the loss of parts of the
modified side chain) during fragmentation, which can aid in
the identification of the PTM (6, 7). Although much has been
learned about the LC-MS/MS characteristics of major PTMs,
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notably phosphorylation of serine, threonine and tyrosine res-
idues, acetylation and ubiquitination of lysine residues and
methylation of lysine and arginine residues, many other PTMs
such as crotonylation, butyrylation, malonylation to name a
few have been much less deeply or systematically studied (1,
8–13). Recently, open modification searches have become an
interesting tool to systematically assess modifications in da-
tasets without preselection of the PTM in the database search
(14, 15). However, it can be difficult to obtain modified pep-
tides in sufficient quantities from endogenous sources. There-
fore, the analytical characterization of modified peptides is
initially often performed using synthetic peptides (10–13). This
approach also comes with the advantage that uncertainties
associated with the analysis of PTM peptides in complex
mixtures (e.g. exact identity and modification site) can be
avoided. As part of the ProteomeTools project (16), in which
we are synthesizing �1 million peptides representing the hu-
man proteome, we now report on the initial results of our
efforts to systematically characterize human PTMs. More spe-
cifically, we have synthesized �5000 peptides carrying 21
different modifications including several types of lysine acy-
lation (e.g. acetylation, crotonylation, butyrylation and glutary-
lation), lysine and arginine methylation, tyrosine phosphoryl-
ation and nitration as well as proline hydroxylation. Using
multimodal LC-MS/MS analysis including 11 different frag-
mentation modes on an Orbitrap Fusion Lumos ETD mass
spectrometer, the chromatographic and mass spectrometric
properties of the different PTMs were systematically as-
sessed. We believe that the results obtained and the reagents
generated will be of broad interest and benefit to the scientific
community as they enable the development of improved
workflows for the analysis of human PTMs.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—The study de-
scribes the synthesis and multimodal LC-MS analysis of �5000 syn-
thetic peptides carrying 21 different modifications. For the 4 modified
residues (lysine, arginine, proline, tyrosine) 115 to 200 base se-
quences were each modified with up to 14 different modifications.
Every pool was subjected to 4 LC-MS runs comprising a total of 11
different fragmentation modes. All comparisons were performed

comparing the modified peptide and the respective unmodified pep-
tide, yielding a sizable number of data points underlying all observa-
tions. The number of data points n is indicated in all descriptive plots.
When investigating changes in retention behavior of the modified
peptides, the 4 LC-MS runs were treated as technical replicates and
used for correlation analysis (Pearson) as the elution behavior of the
peptide is independent of the fragmentation method identifying the
peptide sequence. For fragmentation analysis, peak lists of the mod-
ified and unmodified peptide sets were each aggregated and com-
pared using the normalized spectral contrast angle (SA) as described
the experimental procedures section.

Peptide Selection and Peptide Synthesis—Tryptic peptide se-
quences were selected for synthesis based on previously synthesized
peptide pools containing lysine, arginine, tyrosine and proline se-
quences (supplemental Table S1). All peptide sequences are found in
human proteins but were not intended to reflect any specific biology.
Instead, criteria for selection included successful detection in previ-
ous synthesis, a length of 7 to 20 amino acids and modification site
not located at the C terminus. This way, we selected 200 sequences
for all lysine (Lys) side chain modifications and these respective
peptides were synthesized in unmodified, acetylated, biotinylated,
butyrylated, crotonylated, dimethylated, formylated, glutarylated, hy-
droxyisobutyrylated, malonylated, methylated, propionylated, succi-
nylated, trimethylated, and glyglycylated (digested ubiquitin) form. We
also selected 200 sequences for all arginine (Arg) modifications and
the respective peptides were synthesized in unmodified, citrullinated,
symmetrically dimethylated, asymmetrically dimethylated and mono-
methylated form. Furthermore, we selected 173 sequences for all
tyrosine (Tyr) modifications and the respective peptides were synthe-
sized in unmodified, nitrated and phosphorylated form. Similarly, we
selected 115 proline (Pro) containing sequences (sampled from Uni-
protKB) and synthesized the respective peptides in unmodified and
4-hydroxylated form (9). Modified peptides in the lysine and arginine
pools contained only one modification site. The peptides were indi-
vidually synthesized by Fmoc-based solid phase SPOT synthesis as
described (17). All PTM modified amino acid building blocks were
either commercially available or were synthesized from Fmoc-Lys-OH
(supplemental Table S1). After synthesis, the side chain protecting
groups of the PTM modified amino acids were removed during stand-
ard TFA deprotection of the peptide (TFA/H2O/TIPS 95:2:3), except
for Ethyl-glutaryl, which was deprotected during standard basic
cleavage of the peptide from the cellulose membrane. Crude peptides
were cleaved off the membrane in pools containing all the peptides
for a modification and freeze dried until use. Several quality control
peptides were synthesized in every batch and were analyzed using
LC-MS to monitor the synthesis process.

LC-MS/MS Analysis—The peptide mixtures were dissolved in
100% DMSO and adjusted to 10% DMSO, 1% formic acid at a
concentration of 1 pmol/�l per peptide. Two hundred fmol per pep-
tide of the mixture, spiked with 100 fmol of 40 synthetic peptides of
the retention time standard PROCAL (18), were subjected to LC-
MS/MS analysis using an Ultimate 3000 nano-HPLC coupled to an
Orbitrap Fusion Lumos ETD mass spectrometer (Thermo Fisher Sci-
entific). Peptides were loaded onto a 75 �m � 2 cm trap column
(packed in house with 5 �m particles of Reprosil Pur ODS-3, Dr.
Maisch GmbH) and separated on a 75 �m � 45 cm analytical column
(packed in house with 3 �m particles of C18 Reprosil Gold 120, Dr.
Maisch GmbH) using 50 min gradient time (60 min total, 4% to 32%
solvent B). The analytical column was operated at 50 °C and at a flow
rate of 300 nl/min. LC solvent A was 5% DMSO, 0.1% formic acid in
ultra-pure water, LC solvent B was 5% DMSO, 0.1% formic acid in
acetonitrile (19). Peptide pools were measured as previously de-
scribed (16). Briefly, every peptide pool was subjected to a total of 4
LC-MS runs: a data dependent “survey” run, comprising higher en-

1 The abbreviations used are: PTM, Post translational modification;
BPI, Base peak intensity; CID, Collision induced dissociation; DIA,
Data independent acquisition; DMSO, Dimethyl sulfoxide; ETD, Elec-
tron-transfer dissociation; FA, Formic acid; FDR, False discovery rate;
FTMS, Fourier transformation mass spectrometry; HCD, Higher-en-
ergy collisional dissociation; IMAC, Immobilized metal affinity chro-
matography; iRT, Indexed retention time; iTRAQ, Isobaric tags for
relative and absolute quantitation; ITMS, Ion trap mass spectrometry;
LC-MS/MS, Liquid chromatography tandem mass spectrometry; M,
Million; MRM, Multiple reaction monitoring; NCE, Normalized collision
energy; NL, Neutral loss; PSM, Peptide spectrum match; PRM, Par-
allel reaction monitoring; PROCAL, ProteomeTools calibration stand-
ard; RMSE, Root mean square error; SA, Normalized spectrum con-
trast angle; SRM, Selected reaction monitoring; TFA, Trifluoroacetic
acid; TIPS, Triisopropylsilane; TMT, Tandem mass tags.
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ergy collisional dissociation (HCD; Orbitrap readout, 28% normalized
collision energy (NCE)) and collision induced dissociation (CID; ion
trap readout, 35% NCE) was performed to identify successfully syn-
thesized peptides. Inclusion lists generated from the survey run were
used for three subsequent LC-MS analyses. In the “3xHCD” run,
precursors were fragmented using three separate HCD events (Or-
bitrap readout, 25%, 30%, 35% NCE). In the “2xIT_2xHCD” run,
precursors were fragmented using CID (ion trap readout, 35% NCE),
HCD with ion trap readout (28% NCE) as well as HCD with Orbitrap
readout (20%, 23% NCE). The “ETD” run expanded the fragmentation
modes to electron transfer dissociation (ETD) as well as the combined
fragmentation methods EThcD (28% NCE) and ETciD (35% NCE, all
Orbitrap readout).

Database Searching—The acquired MS data were grouped by
modification and searched against a database containing the concat-
enated tryptic peptide sequences supplemented with the sequences
of the PROCAL peptides using MaxQuant 1.5.3.30 and default set-
tings for ion trap mass spectrometry (ITMS) and Fourier transforma-
tion mass spectrometry (FTMS) (20). The false discovery rate (FDR) for
peptide spectrum matches (PSM), peptides and proteins were fixed
at 0.01 each. In addition, an Andromeda score of �40 was required
for modified peptides as a further safeguarding mechanism for cor-
rect identification. All modifications were used as preconfigured in
MaxQuant, which included diagnostic ions for lysine acetylation
(126.0913 m/z) and tyrosine phosphorylation (216.0426 m/z). Modifi-
cations not present in MaxQuant were configured according to the
mass increment listed in the Unimod database (21).

Retention Time Analysis—Calculation of iRT values was performed
using MaxQuant’s evidence.txt and a custom R script (21). The re-
tention times of the most intense evidence entry for the selected two
fulcrum peptides ISLGEHEGGGK (� 0 iRT) and GFVIDDGLITK (� 100
iRT) were extracted and all other retention times were converted to
iRT values by applying a linear fit (R function lm [stats]) (18). iRT values
of the most abundant evidence entry for a given modified peptide
sequence were correlated (using Pearson correlation) to the most
abundant evidence entry for the unmodified peptide by applying a
linear fit to the data. For the prediction of iRT shifts for lysine acyl-type
modifications from the elemental composition of the modification, a
linear model was used (see equation (1)). The atom counts for hydro-
gen, carbon, nitrogen and oxygen/sulfur were used as independent
variables while the experimentally determined iRT shift (� intercept)
was used as the dependent variable:

Pred_InterceptiRT � x1 * nhydrogen � x2 * ncarbon * � x3 * nnitrogen

� * x4 * noxygen&sulfur (Eq. 1)

The weights x1 to x4 were estimated from the above equation using
input data from 14 different acyl type lysine modifications.

Andromeda Score and Charge State Analysis—The Andromeda
scores of the highest scoring feature per modified peptide sequence
were extracted from MaxQuant’s evidence.txt and visualized using
custom R scripts. The charge states of the most intense (predomi-
nant) evidence feature per unique modified sequence were also ex-
tracted. For relative comparison of charge states, the predominant
charge state per unique modified peptide was compared with the
respective value for the unmodified peptide.

Fragmentation Characteristics—For spectral comparison, the high-
est scoring spectrum, processed and annotated by MaxQuant, for a
modified sequence and charge state combination was compared with
its unmodified counterpart peptide using a custom R script. To in-
vestigate the change in shared fragment ions, the intensity correla-
tions and normalized spectral contrast angles (SA) between modified
and unmodified peptide were calculated using matching annotated
peaks only. The SA of two spectra (s1, s2) is calculated as suggested

by Toprak et al. and scales from 0 to 1 with 0 denoting dissimilar
spectra and 1 denoting identical spectra (22).

SA�s1, s2� � 1 � 2cos�1
* ��s1�2 � �s2�2�/� (Eq. 2)

Identification of Potential Diagnostic Ions and Neutral Losses—All
spectra identifying a (modified) peptide were extracted from the un-
derlying .raw files using the Thermo RAW file reader library (Thermo
Fisher Scientific, version 3.0.34) and converted into Mascot generic
format (MGF) files, without any further processing. Files were subse-
quently processed using a custom python script such that mass to
charge values from extracted spectra of a PTM set were iteratively
aggregated, starting from a 20-ppm window, resulting in a master
peak with an intensity weighted m/z average of all peaks binned
together within one fragmentation mode. The apex of the intensity
weighted distribution was used as the determined m/z value. Peak
processing was performed without rounding of reported masses, m/z
values shown in the manuscript are rounded to 4 decimal places. For
every peptide set and for every fragmentation mode, the counts for all
master peaks and their relative summed intensities were generated.
Peaks were compared for the modified peptide set and its unmodified
counterparts. Peaks were considered exclusive, if the occurrence
was 2-fold enriched in the modified peptide or the intensity-fold
change between the modified and unmodified peptide was in the
upper 90th percentile. The output of spectral comparisons was visu-
alized as pseudo mirror spectra and was manually inspected. Gen-
erated master peak lists are available (see below). Exclusive ions in
the low mass region were analyzed for their potential chemical com-
position using XCalibur 4.0 (Thermo Scientific). Proposed chemical
structures, names and calculated theoretical masses were generated
using ChemDraw Professional 16 (PerkinElmer). For the identification
of potential neutral losses, all unprocessed peaks within a spectrum
for every PSM (split for PTM and fragmentation mode) were pairwise
subtracted and mass delta frequencies recorded. Mass deltas were
considered exclusive, if they were in the 95th percentile of enriched
ions when comparing the modified with the unmodified peptides. The
output was visualized as pseudo mirror spectra and manually in-
spected as stated above. Generated peak lists for neutral losses are
available (see below).

Reanalysis of Public Data—The lysine crotonylation dataset by Sun
et al. was obtained from the iProX database with the accession
number IPX0000889000 (www.iprox.org) (23). The data was repro-
cessed using MaxQuant as described above and searched against
the UniprotKB database for Nicotiana tabacum (76,063 entries, down-
loaded October 2017) with and without configuring the newly deter-
mined diagnostic ion (C9H13O1N1

�, 152.1070 [M�H]�) for lysine cro-
tonylation.

Data Availability—All acquired LC-MS data, full MaxQuant search
files and generated master peak list files have been deposited with
the ProteomeXchange consortium via the PRIDE partner repository
with the dataset identifier PXD009449 (24, 25).

RESULTS AND DISCUSSION

Synthetic Peptide Libraries for 21 Post-translational Modi-
fications—Peptide sets consisting of modified tryptic pep-
tides and the respective unmodified peptides were synthe-
sized on microscale. The base sequences of human origin
were sampled from previously generated in-house data sets
with the aim to yield easily synthesizable peptides with favor-
able LC-MS/MS properties, but without the goal to reflect
biology (see supplemental Fig. S1A, S1B). The base peptide
sets were generated for four different target residues which
were modified with different PTMs each (Fig. 1, supplemental
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Table S1). For each modified residue, an additional set of
unmodified peptides was generated. As peptides were cho-
sen not to contain any C-terminal modification sites, the se-
quences for both lysine and arginine modifications contained
a missed tryptic cleavage site within the peptide. Although
such unmodified peptides would likely be underrepresented
in a biological sample, we included them to study the influ-
ence of the PTM and to facilitate straightforward compari-
sons. After synthesis, aliquots of the peptide sets were sub-
jected to multimodal LC-MS/MS analysis using HCD (using
six different HCD collision energies), CID, ETD, ETciD and
EThcD fragmentation resulting in the dataset used for analysis
(Fig. 1, see Methods section). The average fraction of suc-
cessful synthesis (i.e. detection of the full-length product)
across all modifications was 0.90, with methylation type mod-
ifications (which tend to be difficult to synthesize) and hy-
droxyproline showing somewhat lower overall success rates
(supplemental Fig. S1C) (26). The high fraction of successful
synthesis for all acyl-type lysine modifications was in part
attributable to the fact that possible post-synthesis side re-
actions like dehydration of the side chain of hydroxyisobu-
tyrylated lysine or reduction of the �,�-unsaturated crotony-
lated lysine side chain by the silane containing TFA cleavage
mixture were only observed to a minor extent (�1% intensity
compared with product) under the synthesis conditions.

Chromatographic Properties of Post-translationally Modi-
fied Peptides—To investigate the chromatographic retention
behavior of the modified peptides, the spiked-in retention
time standard PROCAL was used to convert retention times
to dimensionless iRT values (18, 27). Next, the iRT values of
the most intense precursor ion per modified and unmodified
peptide sequence (Andromeda score �100) were correlated
and a linear fit was applied to the distribution to calculate the
shift in iRT (y axis intercept of the linear fit; referred to as �iRT)
compared with the unmodified peptide (Fig. 2A). Depending
on the type of chemical reaction and elemental composition of
the group attached to the side chain, a change in overall
polarity can occur which can have an impact on the relative
retention time of the modified peptides. Although trimetylation
of lysine (Fig. 2A, upper panel) did not shift the iRT values
(intercept � �0.7 iRT units or �0.2 min), an observation one
might expect given the low pH at which the chromatography
is performed, the addition of the large biotin group by acylat-
ing the Lys side chain strongly shifted the iRT intercept toward
later retention times (intercept � �55.1 iRT units or �14.3 min
gradient; Fig. 2A, middle panel). Conversely, oxidation of pro-
line to 4-hydroxyproline modestly shifted retention of the pep-
tides to earlier elution times (intercept � 8.3 iRT units or �2.1
min gradient) because of the accompanying increased polar-
ity (Fig. 2A, lower panel). In addition to the intercept of the
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FIG. 1. Study design for the systematic LC-MS/MS analysis of post-translationally modified peptides. A, Schematic representation of
the workflow. Peptides were synthesized such that up to 200 pairs of modified and unmodified peptides were obtained for analysis. All peptides
were analyzed using a multimodal LC-MS workflow. After database searching and extraction of raw spectra, modified and respective
unmodified peptides were compared, enabling characterization of their chromatographic and mass spectrometric behavior. B, Representation
of all 21 PTMs synthesized for this study. For each modified residue, the corresponding unmodified peptide set was also synthesized.
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linear fit that indicated the shift in retention time, the slope of
the fit and the root mean square error of the distribution were
calculated. The former indicates the skewness of the distri-
bution along the gradient, the latter is a measure for the
spread of the iRT values. Both values indicate, whether the
addition of the modification led to a global effect with similar
impact on all peptides (slope � 1, small RMSE) or if local
effects (e.g. sequence and length depended effects) played a
role (slope � 1, large RMSE). These characteristics were
mapped out for all 21 modifications in Fig. 2B: Methylation of
both lysine and arginine residues did only marginally shift
retention behavior. Lysine glyglycylation (representing ubiq-
uitination after tryptic digestion) consists of two glycine resi-
dues, which are considered neither polar nor unpolar and
therefore did also not result in an apparent shift in relative
retention time. In contrast, other lysine modifications showed
a size-depended behavior: the larger the acyl-group at the
side chain, the stronger the iRT value was shifted toward later

retention time. Side chain modifications containing carboxyl
groups like glutarylation or succinylation displayed smaller
shifts because of the polarity of the functional group which is
partially compensating the effect afforded by the extension of
the alkyl chain. As discussed above, lysine biotinylation—the
largest chemical group of the PTMs evaluated—displayed the
largest intercept. In addition, the biotinylation set also dis-
played a large slope and high RMSE. This resulted from
shorter peptides being stronger affected by the addition of
the large biotin modification than longer peptides, whereas
the relative position of the modification site within the pep-
tide did not seem to matter much (supplemental Fig. S2A,
S2B). To examine if the observed LC characteristics are
reproducible, we treated the four LC-MS/MS runs (compris-
ing the different fragmentation methods) that were acquired
for every peptide set as technical replicates. Although the
calculated slope showed fluctuation, the determination of
the intercept and therefore the calculated shift in retention

0.95 1.00 1.05 1.10 1.15

−1
0

0
10

20
30

40
50

60

iRT Slope

 iR
T 

in
te

rc
ep

t *
-1

; Δ
iR

T 
(m

od
ifi

ed
-u

nm
od

ifi
ed

)

Acetylation

Biotinylation

Butyrylation

Crotonylation

Dimethylation

Formylation

Glutarylation

Glyglycylation

Hydroxyisobutyrylation
Malonylation

Methylation

Propionylation

Succinylation

Trimethylation

Hydroxyproline

Citrullination

Dimethylation−as
Dimethylation−sym

Methylation

Nitrotyrosine

Phosphorylation

RMSE

50

25

10

5

Residue

K

Y

R

P 0.92

1.00
R2

0 50 100 150

0
50

10
0

15
0

iRT Hydroxyproline

iRT Lysine Biotinylation

iRT Lysine Trimethylation

0
50

10
0

15
0

0 50 100 150

0
50

10
0

15
0

iR
T 

Ly
si

ne
 u

nm
od

ifi
ed R2 =  0.99

Intercept =  −0.65
Slope =  1.00

iR
T 

Ly
si

ne
 u

nm
od

ifi
ed

iR
T 

P
ro

lin
e 

un
m

od
ifi

ed

R2 =  0.96
Intercept =  −55.12
Slope =  1.17

R2 =  0.99
Intercept =  8.27
Slope =  0.98

BA

0 50 100 150

�

�

�

�

�

�

�

�

�

�

�

0 10 20 30 40 50

0
10

20
30

40
50

Acetylation

Biotinylation

Butyryl-
ation

Crotonylation

Formylation

Glutarylation

Glyglycylation

Hydroxyisobutyrylation

Malonylation

Propionylation
Succinylation

Linear model for lysine modifications
based on elemental composition of side chain

Empirical iRT intercept
P

re
di

ct
ed

 iR
T 

in
te

rc
ep

t

R2 = 0.92

FIG. 2. Analysis of retention behavior of modified and unmodified peptides on reverse phase chromatography material. A, Examples
for correlation analysis of retention time indices of Lysine trimethylation (top panel), Lysine biotinylation (middle panel) and Hydroxyproline
(lower panel). Trimethylation of lysine residues had practically no effect whereas proline hydroxylation showed moderate and biotinylation
drastic changes in retention behavior. B, Bubble plot summarizing the chromatographic behavior of all 21 modifications versus their unmodified
versions displaying the slope of the fit calculated in Fig. 2A on the x axis and the intercept on the y axis. The size of the bubble indicates the
root mean square error of the distribution (RSME) and the color scale (light to dark blue) the respective R2 values. Shapes are used to indicate
the modified residue. The insert shows the correlation of the results of a linear model generated to predict the retention time shift (�iRT) of an
acyl-type modification solely based on the chemical composition of the side chain modification.
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behavior showed near perfect reproducibility (supplemental
Fig. S2C).

Considering all observations, we hypothesized that shifts in
retention behavior could be explained by the composition and
the structure of the individual side chain modifications. To test
this, a simple linear model was generated for all 11 acyl-type
lysine modifications, using the elemental composition of the
side chain of the modification and the experimentally deter-
mined iRT shift as input. The calculated weights for each atom
were in accordance with the expectations: Carbon atoms
shifted the retention time toward later elution (�13.7 iRT units
per atom, p � 0.003), oxygen/sulfur (�9.0 iRT units, p �

0.003) and nitrogen atoms (�12.3 iRT units, p � 0.001) toward
earlier elution. Hydrogen atoms slightly shifted retention time
toward earlier elution but the effect did not reach statistical
significance (�3.2 iRT units, p � 0.1). The insert in Fig. 2B
displays a high correlation (R2 � 0.92) between the estimated
iRT shift by the model and the experimentally determined iRT
shift for all acyl-type modifications. This proof-of-principle
analysis confirmed that the change in retention behavior be-
cause of peptide modifications is an additive system. It ap-
pears that the change in polarity, hence elution behavior can
be predicted from the elemental composition of the side chain

modification alone if no other proxy is available. However,
more (extreme) data points would be required to be able to
generalize the proposed model for each individual modifica-
tion residue. The above analysis of the chromatographic char-
acteristics of modified and unmodified peptides suggests
several utilities, notably as additional plausibility criteria for
the identification of modified peptides, as help to refine reten-
tion time prediction models as well as providing guidance for
the optimization of LC gradients and for the scheduling of
SRM/PRM assays.

Peptide Identification Scores and Modified Peptide Charge
State—The second major utility of the peptide libraries pre-
sented here was to study their MS/MS characteristics, notably
if and how these are influenced by the presence of a PTM. To
this end, each peptide set was analyzed in a total of 11
different fragmentation modes (including 6 HCD collision en-
ergies) in 4 LC-MS runs. As we cannot present all the results
in a comprehensive fashion in this report, we are focusing in
the following on the HCD data (NCE 28%) as this fragmenta-
tion mode is very widely used in proteomics today. We first
examined the change of predominant precursor charge state
after modification of the side chain of lysine and arginine
residues (Fig. 3A). As one would expect, all acyl-type modifi-
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FIG. 3. Analysis of peptide charge states and Andromeda scores for unmodified and modified peptides. A, Top: Charge state
distribution of (the most intense) peptide precursor ions. Bottom: Relative change in predominant charge state induced by the modification
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cations on Lys as well as citrullination on Arg led to a strong
reduction of peptide charge state because the basic side
chain is converted into a neutral one by the modification.
Conversely, any type of methylation on these residues would
be expected to increase the basicity of the side chain and
thus retain the charge. Proline hydroxylation and tyrosine
phosphorylation and nitration did only very marginally change
the peptide charge state distribution, also as expected. Inter-
estingly, diminished precursor ion charge state led to in-
creased Andromeda scores and increased basicity of meth-
ylated Lys side chains (and to a lesser extent of Arg side
chains) led to decreased Andromeda scores (Fig. 3B). There
are likely two different explanations for these observations.
The increase in search engine score for modifications that
favor lower peptide charge states may be because of the
scoring model of Andromeda (28): Doubly charged precursors
can achieve a higher coverage of conceivable fragment ions,
as less theoretical fragment m/z values exist for doubly versus
triply and higher charged peptides. Consequently, the score,
which is derived from the number of matched fragments, is
higher for doubly charged precursors compared with higher
charged precursors where multiple, differently charged frag-
ment ion m/z values must be considered. For the case of

lysine mono-, di-, tri-methylation—which exhibit decreasing
median scores—the increasing basicity of the side chain likely
sequesters a higher proportion of protons at the side chain
and which are not available to induce fragmentation else-
where in the molecule (29). As a result, fewer fragment ions
would be formed and, consequently, a lower search engine
score would be obtained. This observation was confirmed
when using Mascot as the search engine.

Two further interesting cases where the impact of the mod-
ification on the median search engine score could not be
explained simply by changes in peptide charge states were
identified. These are Lys malonylation (strongly reduced
scores) and Tyr phosphorylation (substantially improved
scores). Spectra of malonylated lysine residues display a
prominent loss of CO2 as a result of gas-phase decarboxyla-
tion of the side chain (a well-known phenomenon for beta
carbonyl compounds; see Fig. 4 for an example spectrum)
resulting in the failure of the search engine to annotate the
respective fragment ions and consequently leading to de-
creased scores (median score of 87.8 compared with 172.8 of
the unmodified peptide). The fragment ion spectra of tyrosine
phosphorylated peptides do not show the strong neutral
losses of the phosphate moiety well documented for phos-

15001000500

-1
.0

PGFGLSP(hy)IFPGGACLGK 2+

m/z

R
el

. i
nt

en
si

ty R=0.99
SA=0.94

b2 y2
b3

y3
b4 b5

y4
b6

y8

y9
y10

y11

y12

y13 y14

y15b2 y2 b3
y3

b4 b5
y4

b6

y8

y9
y10

y11

y12

y13 y14

y15

1.
0

0.
0 y16

y16

-1
.0

1.
0

0.
0

Hydroxyproline

Lysine Malonylation

Lysine Glyglycylation

Spectral Angle (SA)

Lysine Acetylation

Lysine Biotinylation

Lysine Butyrylation

Lysine Crotonylation

Lysine Dimethylation

Lysine Formylation

Lysine Glutarylation

Lys. Hydroxyisobutyrylation

Lysine Malonylation

Lysine Methylation

Lysine Propionylation

Lysine Succinylation

Lysine Trimethylation

Lysine Glyglycylation

Hydroxyproline

Arginine Citrullination

Arginine Dimethylation-sym

Arginine Dimethylation-asym

Arginine Methylation

Nitrotyrosine

Tyrosine Phosphorylation

0.0 0.2 0.4 0.6 0.8 1.0

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�

�

�
�

�

�

�

n

0.71157

0.69169

0.69201

0.70193

0.76315

0.75217

0.69190

0.70180

0.29145

0.82372

0.70190

0.69189

0.72267

0.66355

0.94172

0.28102

0.91205

0.90189

227

0.83187

0.70179

0.00

median

200 400 600 800 1000 1200

SLFFGGK(ma)GAPLQR 2+

m/z

R
el

. i
nt

en
si

ty R=0.24
SA=0.25

a2 b2 y2
b3

b4
y4

y5b6

y6

b7 y7 y8 b9

y9
y10

b11

y11

b12 y12

a2
b2

y2

b3

b4

y4

y5
b6

y6

b7 y9 y10

-1
.0

1.
0

0.
0

Modified

Unmodified

Modified

Unmodified

Modified

Unmodified

1000800600400200

VETTVTSLK(gl)TK 2+

m/z

R
el

. i
nt

en
si

ty R=0.88
SA=0.67

y1

a2 b2

b3 y3 y4 y5

y6
y7 y8

y9

a2 b2
b3 y3 b4-H2O y4

y5

y6

y7
y8

y9

y1 b4-H2O

y10

y10

A

B

C

D

FIG. 4. Systematic comparison of fragment ion intensities of modified and unmodified peptides. A–C, Mirror spectra (top � modified,
bottom � unmodified peptide) displaying the differences in the relative fragment ion intensities (in red). Normalized spectrum contrast angles
and Pearson correlation were calculated on the annotated fragment ions which were accounting for the mass increment introduced by the
modification. D, Violin plot displaying the distribution of SA values for all spectral comparisons for every modification. Median SA values and
the number of spectral comparisons performed for each PTM are indicated (n).

LC-MS/MS Characteristics of 21 PTMs

1856 Molecular & Cellular Proteomics 17.9

 by guest on Septem
ber 11, 2018

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 



Publication 3 | Systematic Characterization of 21 Post-translational Protein Modifications 

- 120 - 

phorylated Ser and Thr residues and thus are easier to score.
In addition, phosphotyrosine produces a highly specific diag-
nostic ion, which however only offers a partial explanation for
the observed increase in the median Andromeda score from
153 to 192 (6, 28). Interestingly, pY-containing peptides con-
tained on average 5 more MaxQuant annotated fragment ions
than the respective unmodified peptides which is likely driving
the effect. As Mascot did not reproduce this increase in score,
it appears that this is an Andromeda-specific effect.

When expanding the score analysis to different fragmenta-
tion methods and different mass analyzers we observed re-
sults that were overall expected (supplemental Fig. S3, sup-
plemental Table S1): Ramping the HCD NCE from 20% to
higher collision energies resulted in overall increasing scores
as more fragments were generated. At very high NCE values,
the scores started to decrease, as peptides underwent exten-
sive fragmentation depleting large b- and y- ions. It is note-
worthy that some PTMs seemed to be more sensitive to
adjusting the HCD NCE (e.g. lysine butyrylation, glutarylation
etc) compared with others showing no change in Andromeda
score when ramping the collision energy (e.g. arginine dim-
ethylation). HCD fragmentation at NCE 28% with ITMS read-
out yielded slightly higher scores compared with high resolu-
tion Orbitrap scans (FTMS) at NCE 28%, likely because of the
higher sensitivity of the IT analyzer which may have picked up
some extra low abundance fragment ions. Resonance type
CID with ITMS readout yielded similar scores as HCD with
ITMS readout. Electron transfer dissociation (ETD) experi-
ments only yielded meaningful scores for higher charged pep-
tides as charge state reduction without dissociation is a major
process in ETD (e.g. median score 70 for lysine acetylated
peptides compared with score 230 for the unmodified pep-
tide). This well-known issue of ETD led to the idea to combine
ETD with subsequent collisional dissociation (ETciD and
EThcD) and these spectra indeed showed improved fragment
coverage and scores for doubly charged precursors (median
score 138 for acetylated peptides with EThcD fragmentation)
but did not reach the performance of ordinary HCD (30). The
above results strongly indicate that current database search
engines could improve for the identification of modified pep-
tides if the characteristics described here were incorporated
into the scoring model.

Systematic Spectral Comparisons Highlight Changes in
Relative Fragment Ion Intensities—Database search engine
scores typically do not consider fragment ion intensity infor-
mation, if the fragment is observed above a certain signal to
noise threshold. As a result, the obtained scores do not nec-
essarily reflect how the general appearance of a fragment
spectrum or the intensity of individual ions is altered by the
presence of a modification. However, this information could
be highly relevant for analyses relying on spectral comparison
for PSM identification, such as data independent acquisition
(DIA, SWATH) or any kind of targeted proteomics (SRM,
MRM, PRM) as well as for approaches to in-silico generate

fragment spectra of modified peptides (31). Hence, we sys-
tematically compared HCD fragment spectra to quantitatively
determine the overall change in fragmentation because of any
of the 21 PTMs included in this study. To facilitate compari-
son, we used the normalized spectrum contrast angle (SA) as
a similarity measure, which has been shown to be a more
conservative measure because it is more sensitive to changes
in fragmentation detail compared with Pearson correlation or
normalized dot products (22). To meaningfully compare the
relative fragment ion intensities between the modified and
unmodified sequence of the same peptide and charge state,
the analysis was performed using MaxQuant annotated frag-
ment ions only. Selected mirror spectra shown in Fig. 4A–4C
demonstrate the range of differences that may be observed.
Although the oxidation of proline residues to 4-hydroxyproline
did not have any noticeable impact on the relative fragment
ion intensities (median SA 0.94; Fig. 4A), the glyglycylated
example shows substantial changes in relative fragment ion
intensities particularly for y-ions including the modification
(median SA 0.67; Fig. 4B). As mentioned above, malonylated
peptides undergo a strong loss of CO2, leaving only very weak
or no y-ions with intact side chain, therefore drastically chang-
ing the overall appearance of the spectra (median SA 0.25;
Fig. 4C). We then generated SA value distributions for all 21
modifications to obtain a more general view on the extent to
which fragment ion spectra change by the presence of a
modification (Fig. 4D, supplemental Table S1). This revealed
second case where introduction of the modification strongly
influenced the relative fragment ions intensities: Arginine cit-
rullination. The observed bimodal distribution originates from
the charge reduction of the modified internal arginine residue,
which then generates mostly singly charged fragment ions.
Furthermore, citrullinated arginine residues are prone to un-
dergo a neutral loss of isocyanic acid (discussed below).
Conversely, the analysis revealed generally very high median
spectral angles for methylation of lysine and arginine residues
as well as for hydroxyproline. Quite apparently, the introduc-
tion of the modification did not seem to change the relative
fragment ion intensities, hence the modified spectra only dif-
fered in m/z space for fragment ions containing the modifica-
tion. With these characteristics established, one could imag-
ine the in-silico generation of fragment spectra for modified
peptides of these modifications from PSMs of the unmodified
counterpart, as a workaround if no experimental spectra are
available. Such an approach has been demonstrated previ-
ously for amino reactive stable isotope labels, where iTRAQ
labeled peptide spectra were interconverted to tandem mass
tag (TMT) spectra (32). Moreover, tools for the intensity pre-
diction of fragment spectra of unmodified tryptic peptides
could be extended to also predict modified peptides with said
modification (33). In our view, the data generated within this
systematic characterization of fragmentation behavior could
serve as valuable training set for such approaches and also
provide the basis for improving current database search al-
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gorithms. Such functionality is already implemented in MS-
GF� (31).

Systematic Search for PTM Diagnostic Ions in Fragment
Spectra—Next, we systematically investigated the presence
of amino acid-specific internal ions in tandem mass spectra.
These ions indicate the presence of a respective amino acid in
the peptide while not carrying any positional information (34).
Modified amino acids can also generate such diagnostic ions,
e.g. immonium ions or other internal ions or neutral losses that
include the modified amino acid side chain. These ions may
be highly specific for a PTM and may thus be utilized to
increase the confidence in the identification of a PTM. Well
studied examples are the phosphorylated tyrosine immonium

ion (216.0426 m/z) and the acetylated lysine immonium ion
(acetyl tetrahydropyridinium; 126.0913 m/z) (35, 36). To iden-
tify such ions, Kelstrup et al. presented a tool for spectral
binning to identify masses exclusive for a given PTM com-
pared with unmodified peptides (37). Following up on and
extending this idea, we implemented an intensity weighted
m/z aggregation strategy for fragment ions originating from
thousands of spectra and for all the 21 modifications and
fragmentation modes used in our study. The occurrence of
fragment mass bins was compared between modified and
unmodified peptides and peaks exclusive to the PTM spectra
were marked as potential diagnostic ions (see Fig. 5). Using
high resolution Orbitrap scans and HCD fragmentation data at
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azin-1-ium (protonated glycine anhydride) as a diagnostic ion for glyglycyl-lysine (112.0502 m/z) E, Identification of neutral losses from citrulline
side chains upon fragmentation. Mass difference signals shown in red are unique to spectra of citrullinated peptides and do not occur in the
unmodified peptides.
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28% NCE, the computation successfully identified well de-
scribed diagnostic ions for e.g. lysine acetylation (measured
at 126.0914 m/z, error to theoretical mass 0.3 ppm; Fig. 5A)
lysine formylation (measured at 112.0758 m/z, mass error 0.7
ppm), lysine biotinylation (measured at 310.1584 m/z, mass
error 0.1 ppm) (35, 38, 39) and tyrosine phosphorylation
(measured at 216.0418 m/z, mass error 0.9 ppm) (36, 40). We
therefore sought to identify new features for other PTMs
within our library. Hence, all PTMs were subjected to the same
analysis and because of the intensity weighted binning of m/z
values and the high-resolution mass spectra that generated
them, the reported peaks exhibited sub ppm mass accuracy
enabling the determination of the chemical composition of the
detected ions (supplemental Table S1). We identified diagnos-
tic ions for all acylated lysine modifications investigated, e.g.
lysine crotonylation (measured at 152.1070 m/z, mass error
0.1 ppm; Fig. 5B), lysine hydroxyisobutyrylation (measured at
170.1176 m/z, mass error 0.1 ppm; Fig. 5C) as well as lysine
glutarylation (measured at 182.1176, mass error 0.1 ppm;
Table I, supplemental Table S1) and lysine malonylation
(126.0914 and 170.0812, mass errors 1.4 ppm and 0.3 ppm
respectively; Table I, supplemental Table S1). Their deduced
structures are similar and comprise the cyclized lysine side
chain (tetrahydropyridinium) but are distinguished by the dif-
ferent side chain modifications. We also identified a low abun-
dance diagnostic ion for lysine glyglycylation (measured at
115.0502 m/z, mass error 0.4 ppm; Fig. 5D) corresponding to
the cleavage of the amide bond at the �-amino lysine side

chain and generating a cyclic glycine-dipeptide (protonated
diketopiperazine) fragment. It must be noted that this ion is
structurally identical to a GG b2 ion and must therefore be
treated with caution as unmodified tryptic peptides may also
contain two N-terminal glycine residues. Hydroxyproline-con-
taining peptides displayed a diagnostic peak which was iden-
tified as a b-type ion of hydroxyproline-glycine (P(hy)G) di-
peptide (measured at 171.0674 m/z, mass error 0.4 ppm,
Table I). The base sequence used for generating synthetic
peptides containing hydroxyproline were extracted from Uni-
protKB and further analysis showed that there was in fact a
strong bias toward the P(hy)G motif. The detected peak might
therefore be of limited use only. All the 15 identified diagnostic
ions for HCD fragmentation are listed in Table I (see also
supplemental Table S1) and, to the best of our knowledge, 5
of these have not been reported before.

Further, we investigated the occurrence and intensity of the
detected diagnostic ions as a function of collision energy
(supplemental Fig. S4, supplemental Table S1). In the case of
lysine acetylation and lysine crotonylation, the diagnostic ions
were detected in 89 and 94% of the scans respectively with a
relative median base peak intensity (BPI) of 6 and 12% re-
spectively when using 28% NCE. Ramping the NCE to 35%
resulted in detection of the diagnostic peak in almost every
PSM (99.5% and 99.8% respectively) and with considerably
higher intensity (median of 31% BPI and 57% BPI respec-
tively; supplemental Fig. S4A, S4B). Lysine glutarylation
showed a similar behavior, but the diagnostic peak remained

TABLE I
Overview of the characterized modifications. An extended version of this table including frequencies, intensities and mass errors for detected
ions is available in the Supplemental Information (see supplemental Table S1). Only ions/losses that could be assigned to a chemical

composition are listed. Selected literature for identified ions/losses is indicated

Residue Modification
iRT
shift

Median SA
(HCD, 28% NCE)

Diagn. Ion (HCD)
m/z

Neutral loss
(HCD) m/z

Neutral loss
(ETD) m/z

Lysine Acetylation 23.9 0.71 126.0913 (35) 45.0204
Lysine Biotinylation 55.1 0.68 310.1584 (39)
Lysine Butyrylation 43.8 0.69 154.1226 (46) Multiple
Lysine Crotonylation 42.2 0.70 152.1070
Lysine Dimethylation 1.0 0.76 Multiple
Lysine Formylation 21.6 0.75 112.0757 (38)
Lysine Glutarylation 31.2 0.69 182.1176 115.0395
Lysine GlyGlycylation 3.7 0.66 115.0502
Lysine Hydroxyisobutyrylation 30.0 0.70 170.1176
Lysine Malonylation 25.1 0.29 126.0913 43.9898 87.0082

170.0812 (47, 48)
Lysine Methylation 0.8 0.82
Lysine Propionylation 32.7 0.70 140.1070 (46)
Lysine Succinylation 27.3 0.69 184.0968 (49) 101.0239
Lysine Trimetylation 0.6 0.72 45.0204
Arginine Citrullination 11.6 0.28 130.0975 (42) 43.0058 (41)
Arginine Dimethylation (asym.) 1.2 0.91 45.0579 (44)
Arginine Dimethylation (symm.) 3.6 0.90 31.0422 (9)
Arginine Methylation 0.2 0.93
Proline Hydroxyproline �8.2 0.94 171.0674
Tyrosine Nitrotyrosine 20.9 0.83 181.0608 (50)
Tyrosine Phosphorylation �6.5 0.70 216.0420 (36, 40) Multiple
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of low abundance with 35% of scans containing the ion with
a median BPI of 0.4% at 35% NCE supplemental Fig. S4C)
thus diminishing the practical utility of this diagnostic ion. The
only apparent exemption to the strong correlation of NCE and
diagnostic ion intensity in our data was lysine glyglycylation.
Here, the occurrence and intensity of the generated di-gly
sidechain fragment was not affected by different NCEs (34%
occurrence at a median BPI of 2% for 23% NCE and 55%
occurrence at a median BPI of 3% for 35% NCE; supplemen-
tal Fig. S4D). Further analysis of the positional dependence of
the intensity of a diagnostic ion signal within a peptide se-
quence followed the expected trend: The more N-terminal a
modification was located, the more intense was the detected
diagnostic ion (supplemental Fig. S4E) (34).

The same analysis as above performed for other fragmen-
tation modes. As one might expect, ion trap spectra largely
failed to record peaks in the important m/z region because of
the low mass cutoff of the ion trap. Electron transfer dissoci-
ation (ETD) fragment scans did not generate any of the diag-
nostic ions identified by HCD and the combined fragmenta-
tion methods ETciD and EThcD only reproduced some of the
HCD fragment ions but with much lower intensity. No prom-
inent specific diagnostic ions were detected when using ETD
fragmentation. There may be further diagnostic ions in the
data that we did not investigate. We therefore point the inter-
ested reader to the available peak lists (see Methods section).

Identification of Neutral Losses from Modified Peptides—
Besides the diagnostic internal fragment ions, we also sys-
tematically scrutinized the data for the occurrence of neutral
losses, which if specific, can provide additional evidence for
the detection of a modified residue. Prominent examples are
the loss of methane sulfenic acid from oxidized methionine
and the loss of phosphoric acid from phosphorylated serine
and threonine residues. These losses often also pinpoint the
modification site within the peptide sequence and, as men-
tioned above, must be taken into account during database
searching as they can strongly affect search engine scores.
To facilitate a systematic analysis, all peaks within a tandem
mass spectrum were pairwise subtracted from each other and
the frequency of occurring mass deltas (i.e. neutral losses)
was counted across all PSMs. We then compared delta
masses between modified and unmodified peptides and
mass deltas exclusive for modified peptides were marked as
potential diagnostic neutral losses. Fig. 5E shows an example
for citrullinated peptides for which our procedure successfully
detected the neutral loss of isocyanic acid (measured at
43.0058 m/z, error to theoretical mass 2.3 ppm) and the loss
of ammonia from singly and multiply charged fragments (41,
42). Apart from arginine citrullination, only lysine malonylation
exhibited a strong neutral loss during HCD fragmentation,
corresponding to the loss of carbon dioxide (measured at
43.9897 m/z, error to theoretical mass 3.0 ppm) (11). This loss
was primarily detectable when using low collision energies, as
higher collision energies fully fragmented the malonyl-lysine

side chain thus preventing the calculation of mass deltas to
the parent ion. As discussed above, configuration of this loss
in the search engine led to drastically increased scores for
malonylated peptides (supplemental Fig. S5A). Notably, the
data acquired did not confirm the suggested neutral loss of
HPO3 from phosphorylated tyrosine peptides (43).

Extension of the analysis to ETD fragmentation (see sup-
plemental Table S1) identified more potential neutral losses
than HCD. However, the generally low abundance of these
losses and the accompanying relatively high uncertainties in
calculated mass deltas rendered the unambiguous identifica-
tion of their elemental composition difficult. Many residues
were prone to either lose ammonia or water both of which are
not particularly diagnostic. The three lysine modifications con-
taining a carboxyl group (succinylation, malonylation, and
glutarylation) all displayed a loss of their respective intact acyl
modification generated by the cleavage of the amide bond at
the modified �-nitrogen (supplemental Fig. S5D). The analysis
also verified a previously proposed mechanism for differenti-
ating the symmetry of arginine dimethylation using ETD (44).
When comparing mass deltas computed for symmetrically
dimethylated arginine peptides, we detected several exclu-
sive - albeit low abundant - delta mass bins. One of these
supposedly accounts for the loss of methylamine (CH5N).
Accordingly, the examination of asymmetrically dimethylated
arginine residue revealed a mass delta matching the mass of
dimethylamine (C2H7N) (supplemental Fig. S5E). Again, we
were unable to analyze the neutral loss data exhaustively but
instead point the interested reader to the respective lists of
computed delta masses (see Methods section).

Processing of Public Data and Using Diagnostic Ions for
Scoring Database Search Results—The search engine An-
dromeda in the MaxQuant framework allows the use of diag-
nostic ions for identifying and scoring modified peptides (45).
High resolution data from a recent publication on lysine cro-
tonylation in N. tabacum were downloaded and lysine croto-
nylation (Unimod accession ID #1363) was configured as a
modification once with and once without the diagnostic ion
(chemical composition C9H13O1N1

�, 152.1070 [M�H]�) (23).
The performed database searches identified the diagnostic
peak in 99.4% of all crotonylated PSMs and with high inten-
sity (Fig. 6A, supplemental Fig. S4B). Although including the
diagnostic ion in the search only marginally increased (1.05%)
the number of PSMs, the intense diagnostic ion was factored
into the probabilistic scoring, therefore not only increasing the
median explained intensity of PSMs by 29% (Fig. 6B) but also
increasing the median scores of PSMs by 6.9 score points
which translated to a median confidence increase by half an
order of magnitude (Fig. 6C). The N. tabacum study used anti-
bodies to enrich for crotonylated peptides before LC-MS/MS
analysis. We also attempted identification of crotonylation in full
proteomes of human and mouse brain samples without enrich-
ment but were not able to unambiguously identify any such
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modified peptide underlining the need for enrichment of this
apparently very low stoichiometry modification.

Concluding Remarks—Taken together, the study presents a
systematic characterization and (re)evaluation of the chro-
matographic and mass spectrometric properties of modified
peptides. The data presented is based on the analysis of
about 5000 synthetic peptides carrying 21 different post-
translational modifications. Although this still represents a
limited set, the synthetic standards in conjunction with multi-
modal LC-MS/MS and the developed bioinformatic tools for
the analysis of fragment spectra yielded a reasonably com-
prehensive resource which would have been difficult to collect
using samples from biological sources or some form of in-
silico prediction. The analysis confirmed many prior findings
but also uncovered several novel properties using a statisti-
cally sound number of observations. Several lines of utility
emerging from this work can be envisaged. First and fore-
most, the LC and MS characteristics may be used for im-
proved scoring and site localization of classical database
search results. Similarly, the data should also be useful for
PTM identification and quantification in DIA type of measure-
ments, which very heavily rely on retention time information
and should make more use of the relative intensity distribution
of fragment ions to increase specificity. The data may also aid
in setting up and assessing results of targeted assays or
indeed serve to improve retention time prediction for PTM
peptides. The physical reagents may also be helpful when it
comes to the development of biochemical enrichment proce-
dures, still a requirement for the successful analysis of many
PTMs. Last, but not least, we are making all the acquired raw
data, search results as well as computed mass lists for the
identification of diagnostic ions and neutral losses available
via ProteomeXchange so that the data may be further used
and mined by the scientific community.
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Supplementary Figures 

 

Supplementary Figure 1 

Peptide set characteristics 

a) Distribution of the relative position of the modification within the peptide (N to C terminus). 

b) Distribution of predicted hydrophobicity index (HI) for all four base sequence sets. HI indices 

predicted using SSRCalc (vQ.0, 100A C18, 0.1% formic acid, 2015). Dashed line indicates the HI 

distribution of 4000 peptides randomly sampled from database search result of a typical HeLa 

digest standard LC-MS run. c) Percentage of successfully identified synthetic peptides for the 21 

different peptide sets over all fragmentation modes. The absolute number of successfully 

identified peptides (taking into account all scan modes) is indicated in the bars. 
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Supplementary Figure 2 

LC characteristics of peptide sets. 

a) Left: Correlation of relative retention times of the most intense biotinylated peptide charge 

state compared to their unmodified counterpart. The colour corresponds to the peptide length, 
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indicating that shorter peptides eluted earlier and were more affected by the large biotin 

modification. Right: Correlation of peptide length of biotinylated peptides and distance to the 

linear fit of the distribution confirmed that shorter peptides were more strongly influenced. b) 

Similar analysis as a) but with focus on the relative position of the modification within the 

peptide. The relative position of the biotin modification does not seem to influence the retention 

behaviour as much as the length of the modified peptide (see a). c) Correlation of all identified 

slopes and intercepts over four LC-MS runs indicated fluctuation in the slopes of the fitted linear 

models that were due to run to run variance (left), while the determined ∆iRT exhibits very 

strong reproducibility across 4 technical replicates. 

 

  



Publication 3 | Systematic Characterization of 21 Post-translational Protein Modifications 
 

- 130 - 

 

Supplementary Figure 3 

Andromeda score over peptide sets and MS/MS modes. 

a) Median Andromeda Score for MS/MS modes over all modifications. b) Median Andromeda 

scores for modifications over all MS/MS modes. 
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Supplementary Figure 4 

Boxplot of the intensity fraction of the base peak of the identified diagnostic ions 

over different LC-MS modes. 

Notched boxplot of the intensity fraction of the base peak of the identified diagnostic ions over 

different LC-MS modes. a) Lysine acetylation b) Lysine crononylation c) Lysine glutarylation d) 

Lysine glyglycylation (former ubiquitin). The absolute number of PSMs containing the ion, the 

percentage of PSMs containing the ion and the median base peak intensity are indicated. e) 

Positional dependency (N-term to C-term) of the base peak fraction of the diagnostic ion 

(150.1070 m/z) for lysine crotonylation. Boxplots without whiskers and outliers are plotted for 

six HCD collision energies from N-term (blue) to C-term (red). 
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Supplementary Figure 5 

Reprocessing of the lysine malonylation peptide set after configuring the neutral 

loss of CO2 in the Andromeda search engine 

Reprocessing of the lysine malonylation peptide set configuring the neutral loss of CO2 in the 

Andromeda search engine. a) Number of PSMs without and with the neutral loss configured. b) 

Scatter plot of the number of matched fragment ions within spectra searched without and with 

the neutral loss configured. c) Notched boxplot of Andromeda scores for the most abundant 

charge state per modified peptide sequence. The median is indicated. d) Identified neutral loss 
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from glutarylated lysine residues during ETD fragmentation. Delta masses displayed in red were 

unique to spectra of modified peptides and do not occur in the unmodified counterparts. e) 

Identified neutral loss from residues during ETD fragmentation could distinguish the symmetry 

of dimethylated arginine residues. Asymmetrically dimethylated residues (top panel) displayed 

a loss of dimethylamine whereas symmetrically dimethylated residues (lower panel) displayed 

a loss of methylamine. 
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1. Resource generation 
The prime motivation for the ProteomeTools project can be summarized as an unmet need for 

a comprehensive resource of mass spectrometric data derived from known analytes. As bottom-

up proteomics is in fact peptide analytics and protein information is only inferred during data 

analysis, synthetic peptide standards are an obvious choice to arrive at a population of known 

analytes. As workflows and the knowhow for high-throughput synthesis have progressively 

evolved and now allow the generation of large numbers of individually synthesized peptides, 

this project was based on such synthetic reference standards. Peptide synthesis enabled the 

generation of any peptide sequence within given length constraints, enabled the implementation 

of modified peptides into the project and allowed the generation of fit-for-purpose peptide sets 

e.g. to generate a new retention time standard from a large number of candidates.  

 

1.1 Selection of representative peptide sets for synthesis 

One of the main challenges for the generation of surrogate peptide sequences for the human 

proteome was the selection of representative peptide sets. Even with many synthetic peptides, 

a comprehensive coverage of the human proteome in terms of all conceivable tryptic sequences 

was not feasible, especially when regarding the increased complexity introduced by modified 

peptides. Therefore, a preselection process had to be implemented to arrive at a representative 

selection. The decision making was adjusted for each specific peptide set according to the data 

available. It has to be noted, that no filtering of peptide sequences based on expected synthesis 

success or synthesizability predictions was undertaken. The approaches for peptide selection 

can be classified as “evidence-based” and “in-silico generated”. 

 

Peptide selection based on prior evidence  

Whenever possible, prior evidence was preferred. In a best-case scenario, peptide sequences for 

proteins could be selected from a list of frequently observed, high confidence identifications 

from experimental datasets. For a large proportion of the tryptic peptides, ProteomicsDB1 was 

used as data source, covering gene products with up to 10 proteotypic peptides2. This selection 

principle was advantageous as the peptides selected evidently possess overall favorable LC-MS 

characteristics and are generally compatible with proteomic workflows. Consequently, the 

synthetic peptide sets selected based on prior evidence actually exhibited a higher percentage of 

successful identification as compared to peptide sets generated in-silico.  

During the process, it became apparent that the sample preparation workflows, especially the 

choice of peptide fractionation has a large influence on the identity of the peptide sequences 

detected in a proteomic experiment. Hence, peptides generated in a certain workflow will not 

be proteotypic or present at all in other samples, due to different sample and lysis conditions or 

fractionation schemes employed. This finding was corroborated when comparing the sequences 

included in the “proteotypic set” with the sequences of a large resource spectral library3. Here, 

the sequence overlap is merely a third, with almost 100,000 sequences unique to both libraries. 

This raises the question of how to arrive at a representative peptide for a protein, how many 
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peptides per protein are required in a library and fundamentally questions the general concept 

of proteotypicity2. These findings render calculated proteotypicity – i.e. how often does a 

specific peptide sequence contribute to the detection of a protein - only valid for a solitary 

sample processing workflow. Consequently, this mandates the creation of better classification 

criteria to predict whether a peptide is likely to be identified or the generation of workflow 

specific proteotypicity models. Having such tools at hand, several important points during data 

acquisition and data analysis could be improved. (1) One could design a more targeted analysis 

of proteins, (2) could trim the search space, (3) could built ever comprehensive spectral libraries, 

(4) re-score peptide identifications and (5) add another plausibility criterion to statistical 

analysis of results. However, a more comprehensive data foundation arising from different 

workflows including metadata, like the workflow and prefractionation employed, are required 

to train such classifiers.  

A more challenging case is the selection of modified peptides. While large publications and in-

house data contain sequence level information, repositories and databases like Uniprot or 

PhosphoSitePlus4 usually only contain modification site information but no rationale from 

which peptide this information is derived. Hence, site information had to be converted into 

peptide information by generating all permutations of miscleaved peptides containing the 

respective modification site. A further complication was that the reported number of previously 

identified phosphorylation sites is far larger than the contingent of peptides budgeted. 

Consequently, sub selection of peptides based on repeated independent detection of 

modification sites had to be implemented, potentially biasing the dataset to higher abundant 

peptides and ignoring potentially relevant signaling posts. 

 

Peptide selection based on in-silico approaches 

In case no sufficient prior evidence is available, the in-silico generation of peptides from a 

protein database had to be pursued. This is true for more than a quarter of human proteins, 

which do not possess sufficient mass spectrometric evidence in ProteomicsDB. Furthermore, the 

nextProt knowledge base counts over 2,500 proteins with no evidence on the protein level in its 

2017 release5. These proteins are usually challenging to access using conventional workflows 

(e.g. membrane bound G protein–coupled receptors), might be expressed in few tissues with 

tight temporal and spatial control (e.g. Kallikrein proteases or sperm related proteins), are very 

low abundant like secreted chemokines or may just not produce sufficient unique bottom-up 

proteomic compatible peptides. Therefore, a large number of ProteomeTools peptides was 

dedicated to the hunt for so called “missing proteins”6. As discussed, no further sub-selection 

could be performed, as criteria that characterize a proteotypic peptide with favorable LC-MS 

characteristics are hard to establish in-silico. To compound the problem, incomplete digestion 

performance had to be considered by including at least singly miscleaved versions of the same 

sequence stretch, thus tripling the number of sequences to be synthesized.  
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1.2 Generation of the largest synthetic peptide resource 

The generation of a large number of peptides required the development of a high-throughput 

synthesis pipeline to manage the generation of the standards in the given timeframe. The project 

partner JPT Peptide Technolgies GmbH (Berlin, Germany) employed a technique termed 

“SPOT” synthesis to synthesize large numbers of individual peptides in parallel7. Here, small 

droplets containing the amino acids are individually distributed to synthesis spots on cellulose 

membranes by custom build synthesizers. The synthesis efficiency was tested and optimized 

during the project to synthesize up to 8,000 peptides on a single membrane without drastically 

affecting the overall synthesis success rate. Furthermore, the generation of large libraries of 

modified peptides was tested, optimized, implemented and executed for a great number of major 

post-translational modifications. In conclusion, the optimization of the SPOT synthesis 

technique enabled the generation of more than a million peptides within three years. This 

number would not have been achievable using resin synthesizers, usually limited to the 

generation of 96 peptides at the same time. 

 

Synthesis success  

When generating synthetic peptides, a certain proportion of the polypeptides will not 

successfully complete all synthesis cycles, resulting in truncated peptides or remaining 

protection groups. In general, the synthesis success for the desired product depends on the 

peptide sequence, as different amino acids exhibit different coupling efficiencies. Filters relying 

on predicted synthesizability of the peptide were not employed, as this would interfere with the 

comprehensive representation of the proteome.  

In terms of overall synthesis success, a couple of general statements can be made: As expected, 

shorter sequences require fewer error-prone synthesis cycles, thus the synthesis success 

correlated inversely with the peptide length. Consequently, the synthesis of peptide larger 30 

amino acids was abandoned due to low recovery after the completion of the first proteotypic 

peptide set. Further, unmodified peptides and peptides with small modifications exhibited better 

synthesis success than larger or more labile modifications – like e.g. phosphorylation. Especially 

for those specific modifications, better protocols and building blocks are required for the 

realization of large comprehensive libraries. Besides errors in the general synthesis cycle, SPOT 

synthesis is also prone to dispersion of the transferred droplet containing the reagent, leading 

to the fact that peptides on the border of the spot might not be exposed to sufficient amounts of 

reactive molecules in each cycle. This may lead to peptides with internal deletions or amino acid 

duplications. All the above limitations will result in the generation of side-products in addition 

to the expected product, consequently all peptides synthesized using SPOT synthesis were only 

available in crude form.  

Given the variation in the efficiency of synthesis for each individual peptide, it is not possible 

to derive interesting characteristics like how well a peptide is solubilized in aqueous solutions 

or how well an analyte ionizes. If the analysis requires purified peptide products, preparative 

reverse phase chromatography – in conjunction with mass directed fractionation - can 

theoretically be performed, as product and byproducts can be separated based on their retention 
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behavior. However, the amounts of only few nanomoles of peptide per synthesis spot, the labor 

associated and the cost of purifying individual peptides did not permit such an approach as 

standard measure. Thus, developing protocols for the synthesis of longer peptides with higher 

product yield and the development of economic strategies to obtain clean peptides in high 

throughput applications will be necessary as part of future activities. Especially the application 

of synthetic standards for clinical screens and assays demand pure, sometimes quantified 

standards, generated with robust and above all reproducible synthesis routines. Strategies to 

obtain those might involve using tagged N-terminal amino acids that can be used to capture and 

purify the full-length product while truncated peptides are washed away. 

 

Utilization of synthesis by-products 

To assess the synthesis success and estimate both number, identity and quantity of side products 

for all individual peptides, a “synthesis tree” was generated and described (Publication 1). The 

synthesis tree puts in relation the intensity of the detected full length product to all its derived 

side-products identified by an unspecific database search in conjunction with an open-

modification search. This allowed the estimation of synthesis efficiencies of all amino acids and 

quality control of the de-protection of building blocks. As a result, the tool led to a better 

understanding of peptide synthesis and provided a way for troubleshooting, fine-tuning and 

optimization of the process. The generation of crude peptides with side-products seems to be 

detrimental to the idea of creating standard reagents. However, the side-products provide extra 

evidence for the presence of the desired product. Exemplary, one could require the detection of 

at last one truncation product when a full-length product is detected. The data also present an 

interesting resource to increase the knowledge on chromatographic retention behavior and 

fragmentation properties. As truncated versions exist that differ by exactly one amino acid in 

length, the influence of this amino acid can be profiled. Bluntly stated, the resource will not 

contain 1.35 million synthetic peptides at the end of the project, but more than 10 million 

individual peptides, arising from incomplete synthesis but turning out to be useful for a lot of 

applications including machine learning. 

 

Chemical derivatization of synthesized peptides extends their use case  

As multiplexed analysis of different samples within one LC-MS run is a standard technique in 

proteomics, there is also an unmet need for spectral repositories of labeled peptides. The 

molecular composition of a peptide is changed during the labeling process, consequentially 

changing the retention behavior and the fragmentation pattern. Therefore, two amino-reactive 

isobaric labeling techniques, dimethyl labeling and tandem mass tags (TMT) were used to 

derivatize all available peptide sets and data acquisition is ongoing. Because TMT and iTRAQ 

labels8 employ the same chemistry with comparable size change fragmentation pattern in a 

predictable fashion, also iTRAQ-labeled peptides will be available through interconversion of 

the TMT-labeled peptide spectra8. 

  



General Discussion and Outlook 
 

- 141 - 

1.3 Data acquisition employing all relevant fragmentation modes 

The data acquisition was performed on an Orbitrap Fusion Lumos ETD instrument. The reason 

this very instrument was obtained for the project was the superior flexibility in data acquisition 

allowing CID, HCD and ETD fragmentation as well as readout in both a low resolution ion trap 

and a high resolution Orbitrap mass analyzer. The data acquisition setup, resulting observations 

and proposed changes are discussed in this chapter. 

 

Iterative data acquisition allowed multiplexing of fragmentation methods 

To realize the LC-MS measurements, several of the fragmentation modes had to be multiplexed, 

resulting in a total of 4 runs per peptide pool with a total of 11 fragmentation modes. The survey 

DDA run enabled the generation of inclusion lists containing only identified full-length 

peptides, which were subsequently used for data acquisition for the three other LC-MS runs. 

This was necessary as multiplexing of fragmentation methods decreases the number of scans 

acquired for fragmentation mode. Hence, the instrument would not have been fast enough to 

pick all precursors in all fragmentation modes if no prioritization of expected peptide precursors 

had been performed. A scan mode that was not included in the acquisition scheme was the 

combination of CID with Orbitrap readout. While CID is usually used in conjunction with low 

resolution ion trap readout, the high resolution and mass accuracy of the Orbitrap mass analyzer 

would have allowed the more precise extraction of information from CID scans and complement 

the sensitive yet in-accurate ion-trap scans. Such scan type should be considered when 

rerunning the LC-MS analysis. Tandem MS scans with higher MS-level than MS2 were 

intentionally not included, as they are usually not employed for the identification of unlabeled 

peptides.  

The question which of the available fragmentation technique performs best, especially in the 

case of modified or non-tryptic peptides is the topic of several studies. Noteworthy, the 

definition of “best” is debatable and depends exclusively on the individual use-case. While DDA 

applications require comprehensive fragment ion series with a uniform intensity distribution 

which is desirable for confident identification of the peptide or modification site, applications 

like targeted proteomics might require the generation of few, high intense fragment ions for 

quantitation. Other definitions might include the time factor, as current proteomics often aims 

at identifying the highest number of peptides in a given period. Consequently, the chosen 

technique is likely not the “best” but the “best compromise” for the use-case at hand.  

As demonstrated, HCD is comprehensive, reliable, fast and works well on most charge states, 

hence HCD is the current standard implemented in most instruments used for proteomics. It is 

unlikely to be replaced in routine setups anytime soon, however special use-cases for alternative 

fragmentation techniques have been suggested9, 10. Such ETD based scan types work well for 

higher charged peptide species but not doubly charged precursors, consequently ETD is not fully 

suitable for bottom-up proteomic data. When comparing the overall scan speed, ETD is at a 

disadvantage due to long reaction times of the ETD reagent with the peptide ions. In the 

specified setup, the number of scans triggered in the ETD run, was less than a third of the 

HCD/CID run. As a result, the sampling of the ETD was biased to higher abundant precursors. 
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To obtain a more comprehensive list of ETD spectra, the resource would have to be remeasured, 

using setting tailored for this purpose including less multiplexing and more gradient time. Still, 

the demand for ETD reference spectra was lower as compared to HCD/CID based scan types, 

assigning low priority to such a project. 

 

How many spectra are necessary? 

When setting up the measurements, the concept aimed at triggering as many spectra of the 

individual precursor over the elution peak as possible for every fragmentation mode. This was 

realized by using no setting for the dynamic exclusion of previously fragmented precursors, in 

turn compromising the sampling depth. Consequently, comprehensive sampling over the elution 

peak resulted in information of how appearance of spectra changes in correlation to the 

precursor intensity. Such data sets could then facilitate the generation of so called “consensus 

spectra” which are aggregated from multiple spectra of the same analyte. Consequently, the 

stochastic noise in a spectrum as well as the variance on the fragment ion intensities can be 

recorded and be used as filter criteria to select favorable transitions. With the chosen acquisition 

modes, a median of 10 spectra for every precursor for every fragmentation were generated. 

Gowever, this information has not yet been made actual use of. On the contrary, the best (or 

top3) scoring PSM for every peptide sequence charge combination was employed as reference 

spectrum. When remeasuring the resource, the focus could be set to deeper sampling instead of 

generating a vast number of spectra across the elution peak. 

 

Collision energy  

Usual DDA method setups employ one normalized collision energy for fragmentation, 

determined by the question which energy is the best compromise for all peptides in a complex 

sample. However, peptides fragment differently dependent on their sequence and charge state. 

While some sequences only need little internal energy for fragmentation and readily generate 

a comprehensive ion series, some others require more energy. This different response behavior 

is not strictly linear, plateaus seem to exist. Once the collision energy used exceeds the required 

activation energy, different fragmentation pathways are activated and the apparent 

fragmentation pattern may change completely. This leads to the necessity of determining an 

optimal collision energy for every peptide, further depending on subsequent data analysis. 

Therefore, the data acquisition was set up to collect MS2 spectra at different collision energies, 

aiming at determining the optimal collision energy for every amino acid sequence. Such specific 

NCE values could then be extracted from the resource and fed into a targeted proteomics 

method, a feature supported by most instruments. From the large dataset at hand, one could also 

imagine to derive general rules as to how much energy is required to generate a fragment 

spectrum with a comprehensive, uniform distribution of fragment ion intensity. Such 

consideration aims at intelligent data acquisition. One could imagine a database storing the 

optimal NCE values for precursor at a given retention time, which the instrument directly 

accesses during the run. 
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During the course of the project, it was noted that normalized collision energies for HCD based 

scan types are not readily transferable between instruments and even differ between 

calibrations, thus consequently may drift over time. This is a major issue as it impairs the 

transferability of the acquired data to other instruments and other laboratories. To better 

understand how the fragmentation efficiencies of instruments compare, a systematic approach 

for collision energy calibration was presented (Publication 2). It allows the determination of the 

best matching collision energy for two instruments based on spectral similarity. It was 

documented, that the employed Fusion Lumos differed by about 5-7 NCE units to instruments 

of the QExactive series. In other terms, a 28 NCE HCD scan on a Lumos matches a 22 NCE 

HCD scan on a QExactive instrument. This difference is critical when selecting the best 

matching collision energy for spectral library based peptide identification. It further questions 

the choice of low HCD collision energies like the 20 NCE HCD employed for data generation. 

In retrospective, extending the NCE scale towards even higher energies covering a broader 

range might have been beneficial. Another implementation into data generation could be the 

acquisition of chimeric MS2 scans containing more than one HCD collision energy, termed 

“stepped collision energy”. Here, ion packages are fragmented with different NCEs but read out 

together in one scan, generating more comprehensive ion series closer matching to the way e.g. 

DIA data are usually acquired. 

 

Cross-platform data acquisition 

As stated, all acquired data were generated on an Orbitrap Fusion Lumos instrument. While the 

instrument was well functioning, instrument specific biases cannot be prevented. This is true 

for calibration sensitive matters like fragmentation but also the normalization of the collision 

energies used. As transferability of the acquired spectra to other instruments or other platforms 

is desirable, such characteristics need to be assessed. While the Orbitrap mass analyzer is highly 

accurate and precise, it is not very sensitive as compared to TOF analyzers. Several ions are 

required to induce a signal while ion statistics are not critical. In contrast, TOF analyzers can 

detect single ions and therefore ion statistics are relevant. Further, TOF instruments combine 

several micro scans to arrive at higher signal to noise levels, often ramping the applied collision 

energy in parallel. In conjunction with noise filtering during Fourier Transformation, this results 

in differences how spectra look like, especially for low signal-to-noise scans. While the overall 

transferability between HCD Orbitrap and HCD QTOF spectra is high, these technical 

characteristics of individual instruments warrant a closer examination in the future. Especially 

when using spectral similarity measures to identify peptides, these seemingly small differences 

in the spectra can quickly lead to false negative identifications. Consequently, it is inevitable to 

acquire data on different vendor platforms to arrive at a comprehensive repository and to 

perform such analysis. Peptide sets generated within the project have been distributed to several 

labs, with the firm commitment of these collaborators to forward acquired data on QTOF 

instruments from all relevant vendors back to the project.  
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Considerations for a potential remeasurement of the resource 

The data acquisition employed a generic DDA setup, with only little adjustments for individual 

peptide pools. This approach could be changed in the future, to identify synthetic peptides not 

yet detected. If remeasuring parts of the resource is desired – e.g. after a new instrument 

platform is released - one could make use of all acquired information to generate more 

sophisticated methods. This could include only targeting previously identified peptides in a 

predefined elution window to increase the likelihood of detection of peptides. Using higher 

resolution scans and longer injection times will further boost confidence in the individual PSMs, 

especially of low abundant synthetic peptides with low synthesis yield.  

Also, an alternative approach might be taken: All previously identified peptides could be ignored 

on purpose to identify peptides not found in the previous analysis due to dynamic range issues, 

e.g. in the ETD runs. Exemplary, one might fractionate the pools to increase the accessible 

dynamic range. This could be achieved by different acquisition schemes like BoxCar11, 

employing segmented MS1 windows or gas phase fractionation. Data independent acquisition 

has not yet been performed on the peptide sets at hand, as existing spectral libraries are required 

(unless using library free DIA search engines that perform deconvolution of the spectra) and 

the complex spectra are unlikely to yield new identifications. Still, such measurements are 

currently being carried out on parts of the peptide libraries in question by other research groups 

and will be integrated into the resource for reasons of comprehensiveness. 

 

1.4 Data analysis 

Correct identification of tandem MS spectra of the peptide standards and quality assurance 

present the most important step in the generation of “ground truth” datasets. The execution of 

the data analysis workflow and considerations in regard to this topic are discussed. 

 

The benefits of using Andromeda/MaxQuant for peptide identification 

The acquired data were analyzed using Andromeda as integrated in MaxQuant as database 

search engine. Several key points were underlying this decision: It is one of the most widely 

used search engines in the (academic) proteomic community and has a strong reputation. It is 

freely configurable and thus compatible with all synthesized modifications. It can accommodate 

diagnostic ions for PTMs as well as neutral losses for the identification of peptides. Further, it 

allows the execution of parallel searches, better dealing with the amount of raw files generated. 

As the output files of MaxQuant are in a textual format, the results are easy accessible and allow 

the establishment of an ordered folder structure. To streamline the analysis, an automated 

search pipeline was generated, making use of the command line options of MaxQuant. As the 

published data contain more than a thousand raw files and the amount of data continues to 

grow, an internal database was established to organize the individual search results. The 

database offers a full queryable SQL interface, thus enabling easy data exploration, and 

facilitated the generation of inclusion lists for data acquisition.  
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Ensuring data quality using score cutoffs  

The overall quality of the generated PSMs was very high, yielding median Andromeda scores 

of about 200. Noteworthy, endogenous datasets of full cell lysates usually result in much lower 

median Andromeda scores of around 80-90. Spectra from synthetic peptides usually exhibit 

strong signal intensity, leading to the identification of a large proportion of theoretical fragment 

ions and consecutive fragment ion series. This allowed the application of a very conservative 

yet arbitrary score cutoff (Andromeda Score >100) for reporting. A drawback of applying a fixed 

cutoff is the probabilistic scoring model employed. As fragmentation of longer peptides, result 

in more theoretical fragment ions, higher scores will be achieved for these peptides. In 

consequence, short peptides that generate fewer fragments, will yield lower scores and will 

easier fall below the pre-set cutoffs. This calls for the implementation of peptide length 

dependent score cutoffs. A practical consequence of the applied hard cutoff: The number of 

reportable PSMs for ETD scans of doubly charged precursors was rather low, as these usually 

generate few fragment ions. When trying to adjust the score cutoff, it became clear that PSMs 

with an Andromeda score starting at 50-60 exhibited good spectral similarity to external 

datasets, hence such identifications are likely correct (Publication 1). For ongoing efforts to 

determine spectral similarity, generate spectral libraries or for deriving information from 

machine learning approaches, the score cutoff value had been lowered to not arbitrarily limit 

and thus compromise the data foundation available. As low scoring peptides rarely pass the FDR 

filter criteria usually applied, the availability of synthetic reference peptide spectra is especially 

critical.  

 

Peptide identification numbers depend on search space and FDR estimation 

When searching the data, unexpected effects were observed, which are very likely due to 

MaxQuant’s FDR estimation. When searching peptide pools against large concatenated 

databases, e.g. the human reference proteome, losses in IDs were observed that were previously 

confidently identified using small databases. This suggests that the larger search space leads to 

erroneous matching of spectra of synthesis by-products to incorrect peptide sequences. 

Consequentially the necessary cutoff score to maintain 1% FDR had to be increased, lowering 

the number of identified peptides. Further, searching different peptide pools together in a single 

search negatively influenced the peptide IDs for shorter pools, presumably because truncated 

peptide sequences from longer peptide pools affect the FDR control for short peptides.  

Another striking observation was that peptide pools with average length 7-9 amino acids yielded 

less identified full-length products relative to pools with peptides of about 15 amino acids length. 

In theory, peptide synthesis should work better and more efficient for shorter peptides, therefore 

the observation must be due to the underlying scoring and FDR model. This issue was 

corroborated by the resynthesis of peptides not identified the prototypic peptide set. If a 

synthesis or data acquisition bias would be causing the reduced identification numbers, the 

expectation would be that the re-synthesis of the peptides should largely fail again. However, 

the identified full-length peptides of this set fit to the expected recovery for the given peptide 

length instead of exhibiting low peptide ID numbers. Whether such behavior is in fact specific 

to MaxQuant and its FDR control - or is a general issue of search engines that employ 
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probabilistic scoring - would need to be determined in a large scale comparison of available 

search engines and post-processing algorithms. 

 

Alternative search engines 

The datasets present an extraordinary basis for benchmarking different search engines. The 

identification of a search engine most orthogonal to MaxQuant – i.e. concerning the scoring 

algorithm – could be beneficial to the more complete recovery of peptide sequences. While 

studies report increased peptide ID numbers when combining different search engine results – 

especially when using different scoring functions or FDR determination mechanisms – it was 

decided to not incorporate such data. Mascot or Sequest would have in fact been available, but 

execution and data analysis was not easily streamlinable. Both search engines require the 

configuration of single sequence databases for pools, in addition Mascot has no command line 

interface. The main issues of combined data analysis, are the handling of PSMs that are 

exclusively identified by one search engine and the handling of different PSMs for the very same 

scan. If only the overlap of identifications of multiple search engines is taken into account, the 

PSM numbers will decrease further. Instead, to ensure the correct identification of the peptides, 

a score cutoff was applied to the data generated, despite the discussed drawbacks. 

Different laboratories apply a large variety of search engines and no single engine possesses all 

criteria for a complete data analysis. Specific analytic use-cases will require different pre-

processing, different database search settings, different data formats and tailored statistical 

procedures. Therefore, the generated search data will never fit all purposes and mandates 

individual reprocessing of the raw data using the software of choice. This is one of the drivers 

for the decision to make all raw data acquired fully accessible. In fact, the files have been 

frequently accessed and downloaded, making the initial dataset (Publication 1) the most 

downloaded dataset from the PRIDE repository in 2017, underlining the strong interest of the 

scientific community. 

 

Consideration regarding ground truth datasets 

After the analysis of a peptide in the mass spectrometer and subsequent data analysis, a large 

number of expected full-length products can be identified. One is inclined to consider this 

identification a gold standard or ground truth, as one fragments and identifies a specifically 

created analyte as further reference for all other measured spectra of this very analyte. However, 

one has to note that while claiming to know the exact content of the sample, the usual error-

prone bottom-up identification workflows and statistics are still applied in the first place. 

Therefore, several restrictions have to be considered: While a high scoring PSM for the peptide 

precursor with the correct mass is very likely correct, the spectra still might contain 

contaminations from side products. Further, however unlikely, the PSM might still be a wrong 

identification. Some of the fragment spectra may also be only characteristic to the specific 

circumstances and the very settings they were generated by.  

Despite these limitations, the calculated number of remaining decoy identifications after 

applying a rigid score cutoff resulted in an FDR two orders of magnitude lower than usually 
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applied criteria (Publication 1). This renders the remaining spectra and linked search results 

most likely close to a ground truth dataset.  

 

1.5 Data distribution and ease of access 

With all data acquired, the correct distribution to the public is key. Ideally, the data should be 

made available to the scientific community on different levels. They should be accessible for the 

mass spectrometrist who wants to setup a targeted assay and needs reliable information on 

which peptides to target and access to the associated spectral library. The data should also be 

available on a detailed level, so that MS users can validate and verify spectra they acquired. The 

complete datasets should further be available to bioinformaticians who want to mine the data 

for specific questions. As stated in the first publication, the data and full search results are 

available on PRIDE. Data not yet released will be published in packets in the context of further 

publications. More challenging is providing easy access for users who do not want to dig through 

thousands of result files. In this context, ProteomicsDB serves as the central platform for spectra 

in all acquisition modes of all released peptide sets. At the time of writing, a spectral library 

download was available containing all spectra of one particular fragmentation mode. The 

customization of spectral libraries as well as the download in different vendor formats is a 

parallel effort that is currently being undertaken. Ideally, such generated libraries would be not 

only available as spectral collection but in conjunction with transition lists for instrument 

control as well as prefilled templates for an analysis software like Skyline or Spectronaut. 

In general, the focus must lie in very simple access that enables and encourages users to generate 

tailored solutions for their experiments. For the ProteomeTools project to find wide acceptance 

in the community, providing the above outlined user-friendly access to data and spectral 

libraries is one of the major challenging tasks yet to be undertaken. The resource was initially 

strongly tailored to expert proteomics labs thus limiting access to the data for the more general 

proteomic community. To overcome this issue, ProteomicsDB is being developed to e.g. allow 

the download of customized spectral libraries. 
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  2. Status quo of the resource 

2.1 Preamble  

The three original publications included in this thesis are part of the large umbrella project 

branded “ProteomeTools” and are a subset of all activities that were carried out in that context. 

Since started, the consortium sought to synthesize 1.35 million synthetic peptides to generate 

large quantities of high-quality mass spectrometric data and derive molecular and digital tools 

that ought to facilitate human proteome and life science research.  

At the time of writing, the status of peptide and data generation presented in the above 

publications is not up-to-date anymore, as efforts to develop the ProteomeTools Peptide Library 

(PROPEL) and ProteomeTools Spectrum Compendium (PROSPEC) have steadily progressed. 

While these new peptide sets are explicitly not included in this thesis, the ongoing efforts will 

be briefly outlined to provide a foundation for the discussion of the resource itself and its present 

and future utilization and exploitation envisioned.  

 

2.2 Integration of additional peptide sets 

Over the course of the project, the number of synthesized peptides and data generated has 

followed the plan presented in Publication 1. The proportions of peptides in each peptide set, 

the exact nature of the sequences synthesized and the sampling procedures for the individual 

peptide sets have been adjusted along the ongoing developmental process. Taken together, more 

than 1.1 million synthetic peptides have been synthesized at the time of writing and data 

acquisition has been performed for close to 1 million peptides (Figure Figure Figure Figure 16161616aaaa). 

 

Integration of additional tryptic and introduction of non-tryptic peptide sets 

As demonstrated in the first publication, the peptides are organized in sets reflecting their 

purpose or modification status. First, the tryptic peptide sets have been extended to over half a 

million peptides, including peptides that distinguish about half of the Swissprot annotated gene 

isoforms. In addition, non-tryptic peptides originating from the enzymes AspN and LysN (with 

N-terminal cleavage specificity to Asp and Lys) were selected for synthesis. While these two 

proteases are rarely used in proteomics, their variable C-terminal amino acid and resulting 

chemical, physical and LC-MS properties will serve as peptide resource with orthogonal 

characteristics to tryptic peptides. As further representatives of non-tryptic peptides, a large set 

of sequences derived from the human leukocyte antigen system (HLA) were selected for 

synthesis. This decision was based on the increasing interest in immunoproteomics of clinical 

samples aiming to comprehensively map the MHC molecule presented antigen peptides by mass 

spectrometric approaches with the hope to find immunogenic (neo-) epitopes12-14. As such 

analysis still presents a challenge for proteomics research, the peptide sets are well anticipated 

and will help to overcome issues in data acquisition and data analysis. The fact that numerous 

efforts focus on the identification of neo-antigens presented on diseased tissue to develop 
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targeted therapies underline the relevance of these peptide sets and the data generated will 

ultimately aid the growing field of immunoproteomics. 

 

Integration of peptides carrying post-translational modifications 

A major group of peptides has been attributed to the post-translationally modified (PTM) 

peptides, as no comprehensive modified peptide sets - let alone for all major modifications - are 

currently available. This decision was supported by the overwhelming interest in such modified 

peptide sets expressed by the scientific community. Consequently, more than 350,000 modified 

peptides have been selected for synthesis. As phosphorylation of serine, threonine and tyrosine 

is the most commonly studied PTM in human samples and was identified as the important signal 

transduction mechanism, a large proportion of the modified peptides was attributed to this PTM. 

Other frequent modifications covered are lysine modifications strongly associated with gene 

regulation (acetylation, methylation), protein degradation (ubiquitination) as well as cytosolic 

sugar modifications (O-Glucolysation, PNGaseF peptides). In addition, as presented in the third 

publication, specialized sets of modified peptides, comprising more than a dozen additional 

PTMs were generated and systematically characterized. 

The remaining peptides are split into several other distinct peptides sets focusing on biologically 

interesting classes like high sequence coverage of protein kinases, identified proteogenomic 

peptides originating from alternative translation as well as from frequently observed mutations. 

Additional peptide sets fall into the category of technical evaluation sets, testing synthesis 

conditions or were specifically designed to facilitate the evaluation of algorithms, e.g. by 

generating isobaric permutations of the same peptide sequence.  

All together, the data collection now comprises several million of high-quality spectra for close 

to a million distinct modified peptide sequences (Figure Figure Figure Figure 16161616aaaa). This increase by a factor of three 

(compared to the data presented in the first publication) renders the resource the largest 

collection of synthetic peptides and derived mass spectra. Noteworthy, the underlying data sets 

are not yet fully publically available but will be released latest by the end of the ProteomeTools 

project, in conjunction with publications describing the exploitation of the specific peptide sets, 

use-cases and exemplary functionalization of the data generated. 

 

Figure Figure Figure Figure 16161616    ––––    Overview over the updated synthetic peptide resource. Overview over the updated synthetic peptide resource. Overview over the updated synthetic peptide resource. Overview over the updated synthetic peptide resource. a) Distribution of peptides defined for synthesis. The number 

of peptides released in Publication 1 is indicated by the dashed line b) Status of the spectral resource at the time of writing. 
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2.3 Overview over large scale peptide standard resources 

At the beginning of the project, no comprehensive efforts to cover the human proteome with 

synthetic reagents were published, nor were large libraries of synthetic peptides available for 

proteomic research. However, two systematic efforts have been made public and provide large 

libraries of peptide standards. Such competing efforts will be briefly reviewed. 

 

Human SRMAtlas project 

In 2016, Kusebauch et. al. published the Human SRMAtlas15. In this effort, 166,174 proteotypic 

peptides were synthesized by resin synthesis and analyzed using QTOF and triple quadrupole 

instruments with the aim to build targeted proteomics assays for all human proteins. The 

underlying data were recorded at different collision energies to optimize transitions, followed 

by meticulous generation and benchmarking of the SRM assays. The resulting compendium of 

targeted proteomic assays for almost all human proteins is accessible using an interactive web-

interface with a spectrum viewer functionality. The website allows to query single proteins 

against the SRMAtlas, however no comprehensive API-like access is granted. In conjunction 

with the missing opportunity to access and reprocess the mass spectrometric data, the primary 

use of the resource aims at setting up single targeted measurements and making use of the 

developed SRM coordinates rather than providing a comprehensive analysis tool for the entire 

human proteome. Unfortunately, no spectral libraries are available for download, thus limiting 

the use of the resource.  

It should be noted that subsets of the peptide library generated in the context of the Human 

SRMAtlas project have been integrated into the ProteomeTools efforts as clones of the synthetic 

libraries were obtained during the course of the project. These peptides have been analyzed 

using the ProteomeTools LC-MS and data pipelines and are part of the spectra collection that 

has been released in the initial publication. 

 

iMPAQT study 

A second large approach to generate high-quality peptide standards is the in vitro human 

proteome by Matsumoto et al. in 201716 termed “in vitro proteome-assisted multiple reaction 

monitoring (MRM) for protein quantification” (iMPAQT). Instead of synthetic peptides, the 

approach relies on the expression of a cDNA library encompassing over 18,000 human proteins 

in a wheat germ cell-free expression system17. Expressed proteins were mixed (96 

proteins/sample) then digested with trypsin, labeled with an isobaric mTRAQ label18 and 

submitted to LC-MS to facilitate MRM assay generation. With this label, the peptides can be 

spiked into an also labeled sample for relative quantification. This approach renders iMPAQT 

only applicable for the analysis of labeled peptide digests. The addition of the label changes the 

retention time and fragmentation pattern of the peptides, consequentially the acquired data are 

not suited for the analysis of label free proteomes.  

Similarly to the SRMAtlas peptides, a clone of the iMPAQT peptide mixtures was obtained and 

selected peptide pools measured and analyzed using the established ProteomeTools procedures. 
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The resulting scores of the labeled peptide sets were not satisfactory and the spectral quality 

was similar to cell lysates. The number of detected features per run was as high as seen with 

synthetic peptide mixtures, indicating a high complexity of the sample. The LC-MS runs were 

dominated by few high intense peaks, indicating shortfalls in the dynamic range of the approach. 

This may explain, why the authors only report 216,476 unique peptides from >18,000 full length 

proteins, a number that seems low when calculating the theoretically possible number of 

proteolytic products. This theoretical number would be least one order of magnitude higher 

when considering miscleavages. 

The iMPAQT study employed a protein expression system to ultimately arrive at surrogate 

peptides for the human proteome. Expression of full-length proteins as opposed to peptide 

synthesis enables deriving of characteristics not accessible by synthetic peptides. This includes 

unsolved issues like the description of protease cleavage efficiency and specificity, preferential 

generation of peptides due to protein folding and topics like ionizability and flyability of 

individual analytes. Unfortunately, the authors decided to mix proteins for digestion and label 

the generated peptides with isobaric tags, thereby changing their LC-MS properties and 

preventing such studies. While offering said advantages, the generation of polypeptides or full-

length proteins lacks the flexibility of peptide synthesis. As expression systems – in bacteria 

from vectors or from cDNA libraries in cell free systems – require a vector library or extensive 

cloning and are likely only available for canonical protein sequences. Further cloning has to be 

performed to generate mutated versions of proteins or non-endogenous peptide sequences 

required for testing and benchmarking analysis approaches. Next, the expression systems are 

not compatible with the generation of modified peptides, as post-translational modification are 

not encoded in the DNA sequence. Non-tryptic peptide sets like the HLA peptides cannot be 

comprehensibly generated, as no protease is available to cleave the polypeptide chain in the 

actual desired peptide sequences. The costs of generating full-length protein sets will exceed the 

costs of the synthetic surrogate peptide approach and to efficiently express and purify such 

protein collections is yet requiring specialized knowledge. Altogether, synthetic peptides 

provide a more versatile, economic and flexible may to generate standards for the human 

proteome and enable the incorporation of post-translational modifications. 

 

Concluding remarks 

When comparing the effort presented in this thesis to the two competing projects, it is apparent 

that the libraries generated within the ProteomeTools project are of more comprehensive nature. 

In addition, the ProteomeTools project is the only effort incorporating modified peptides. Here, 

numerous modified peptides of all major modifications were included into the synthesis, called 

for by the increasing popularity of the mapping and monitoring of the modification status of 

proteomes. It should be noted that only the ProteomeTools project is actively distributing the 

physical peptides to other laboratories. As a large number of library clones are available, the 

resource will be digitally expanded by actively integrating data from other vendor platforms, 

data acquisition types and results generated by various software tools.  
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In conclusion, the resource presented is the by far most comprehensive, most representative 

resource for human proteome research. Close interaction with the community facilitates easy 

access to the data and the resource will further increase in size and expand in application 

through the contribution of other laboratories 

 

3. Utilization of the resource 
The resource generated has several direct applications that serve a multitude of scenarios and 

different levels of users. In the following, several categories and examples of direct use cases of 

retention times, spectra and physical peptides will be discussed. Hand in hand with the outlined 

direct application of the generated peptides and spectral collections, deriving general peptide 

characteristics and rulesets is an ultimate goal of the project. Such knowledge will aid to better 

execute experiments, acquire relevant and reproducible data and stabilize the subsequent data 

analysis. 

 

3.1 Physical peptide sets 

Characterization of different instruments platforms 

Instead of characterizing the peptide sets themselves, the characterization and thorough testing 

of an instrument, technique or platform can be envisioned. The peptides are well suited to 

benchmark MS parameters, a task so far performed with complex undefined cell lysates. Such 

viable parameters include finding optimal LC conditions especially for modified peptides, 

resolution, fragmentation parameters and different data acquisition schemes. Accordingly, the 

benchmark of newly released hardware platforms like ion mobility devices - Field Asymmetric 

Ion Mobility Spectrometer (FAIMS) or Trapped Ion Mobility Spectrometry (TIMS) – or 

fragmentation techniques like UVPD, present a very interesting application.  

 

Benchmarking of workflows and protocols 

Besides characterizing novel instruments, the peptide sets can be applied to quality control, 

troubleshoot workflows and benchmark novel wet-lab workflows. Obvious is the introduction 

of peptide sets or subsets as spike-in standards in workflows to control for introduced biases 

through lengthy and error-prone sample handling. Examples may be the quality control of 

peptide cleanup and monitoring the efficiency of peptide enrichment steps by employing 

synthetic references. In further applications, peptide sets could also be employed for testing 

antibodies in regard to their specificity and cross reactivity. Especially antibodies against lysine 

side chain modifications like acetylation tend to display little affinity and low specificity, as the 

epitope is small. Here, the peptide sets generated for the 21 PTM study (Publication 3) might be 

used to assess the specificity of the reagents applied.  

Lastly, the peptide sets can serve as benchmark for the development of alternative peptide 

separation techniques. The “missing gene” peptide set covers proteins rarely seen in proteomic 
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workflows, hence column systems could be optimized to favor peptide characteristics 

represented in this set, hence increasing the chance of detection in endogenous samples. 

 

Functional proteomics  

The peptides can also be employed as substrates for functional proteomics assays using 

recombinant enzymes. In a proof-of-concept study, parts of a phosphorylated peptide library 

were dephosphorylated using an alkaline phosphatase, usually employed for genetic cloning. 

The goal was to generate non-phosphorylated counterparts of the modified peptides. This led to 

the interesting observation, that the phosphatase exhibited a clear substrate preference towards 

phosphorylated tyrosine residues. Expanding such a demodification process to the modified 

peptide sets from Publication 3, one can in fact characterize enzyme specificity, especially for 

deacylases which have been shown to be less specific towards acyl-type side chains as widely 

assumed19. Reversing such an approach, unmodified peptides could be incubated with kinases 

to identify kinase-substrate relationships and phosphorylation motifs. The same is true for 

proteins with predicted functional domains – like a kinase domain – to clarify if enzyme activity 

exists.  

 

Generation of peptide toolkits 

An important set of peptides presented in this thesis was the tailored retention time standard 

termed PROCAL (Publication 2). While the concept of calculating indexed retention times is 

not new and several commercially available peptide standards exist, drawbacks of existing 

standards and the need of large amounts of spike-in peptides led to the creation of a purpose-

build retention time kit. The benefit of using such standards to calculate indexed retention times 

has been extensively discussed20. Introduction of such peptides in all proteomic samples 

facilitates the extraction of data from external laboratories or resources with higher confidence 

and precision. Noteworthy, retention time peptides are not always necessary to align retention 

times. If sufficient peptides are shared between two datasets, the retention times can be 

interconverted, e.g. using non-parametric regression methods like LOESS. 

Therefore, other use cases of the peptide standard should be highlighted. Besides monitoring the 

LC-performance, the peptides can also be used to solve a problem usually not recognized: The 

differences in collision energies between calibrations, over time and between identical 

instruments. These differences are even more relevant for different instrument platforms. While 

the exact NCE setting is largely irrelevant for database searching, the transferability of spectra 

and spectral libraries suffers. Harmonizing the collision energy between instruments was of 

utmost importance to generate consistent data and crucial to machine learning algorithms, 

which are sensitive to inconsistencies in the training data set.  

However, the selection process of the retention time standard peptides could be improved. 

Although the peptides were selected in various iterations to ensure best possible stability (see 

Publication 2), some of the selected peptides exhibit multiple elution times when used in high 

concentration. While this issue does not impair the general function of the kit, data processing 
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may need to be adjusted accordingly. Because multiple elution patterns seem to be frequently 

observed when measuring synthetic peptides, it is important to use the most abundant elution 

peak for any downstream data analysis. When such adjustments are implemented, synthetic 

spike-in peptides present a valuable tool to control various parameters of the data acquisition 

and few arguments remain to not systematically employ such standards. 

 

3.2 Retention times 

The recorded retention time information in the project present the largest collection of 

catalogued retention times derived from known standards and in technical replicates if the four 

different LC-MS injections are included. While retention times are largely ignored during 

classical database searching to discriminate correct from incorrect identifications, including 

them adds a large amount of confidence to peptide centric data analysis strategies as employed 

by DIA. However, even the largest knowledge base will never be comprehensive. Fortunately, 

several heuristic models to predict retention time of peptides already exist; making it is even 

more surprising that such metadata are largely neglected by common database search engines 

and only few post-processing tools factor them into FDR calculations. Having these large 

datasets at hand, existing tools will further improve the modeling of peptide retention times, 

very likely to a precision allowing the prediction of any peptide sequence from any organism, 

in unmodified and modified form. This precision will help assigning a higher confidence level 

to PSMs even for DDA datasets, for example by factoring in auxiliary information like the 

expected retention time into the FDR calculation with tools like Percolator21. Further, 

localization of a modification within a peptide can be more precisely assigned and isobaric 

amino acid substitutions can be differentiated, as retention times are able to discriminate even 

small changes to the amino acid composition. 

 

3.3 Spectra 

The smallest entity the resource can be divided in are the synthetic reference spectra generated 

for a given peptide sequence. Comparing such individual spectra, either by visual inspection or 

by calculating a similarity score to a potential PSM is the most direct application of the resource. 

Using the conserved fragment ion pattern present is the only way to in fact prove or disprove a 

possible identification of a peptide. Reasons mandating such comparisons of the conserved 

fragment ion pattern are obvious and manifold. 

 

Validation of low scoring PSMs 

First, the search engine score may not be high enough for a confident assignment of an 

endogenous PSM. If parts of the ion series are missing or the spectrum contains more than one 

species, manual inspection will not help either. However, comparing conserved relative 

fragment ion intensities can in fact verify the identity of the analyte. This is achieved by 

calculating a similarity measure between the experimental PSM and the synthetic peptide 

spectrum. Such comparisons are relevant in several cases: Short peptides will generate few 
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fragment ions and hence achieve low search engine scores. These peptides will likely fall under 

the determined score cutoff and would thus be eliminated from the dataset without validation. 

Further, search engines may struggle with the assignment of the exact sequence if parts of the 

fragment ion series are missing and peptides with isobaric amino acid substitutions exist in the 

database. As the relative position of an amino acid within a peptide changes all other fragment 

ion intensities, spectral comparisons can resolve such issues and prioritize the correct match. 

As the resource is a representative compilation of peptides representing over 98.5 % of the 

human proteome, the systematic and comprehensive verification of peptide identity and 

subsequent protein identification is now feasible and could be readily implemented during data 

analysis. One could imagine filtering datasets for proteins that contain at least one PSM that 

exhibits high similarity to the provided reference spectra.  

 

Validation of single peptide identifications and extraordinary detection claims  

A second reason to perform the validation on the spectral level is the identification of a protein 

with a single peptide. To ensure identification, such PSMs should be very carefully evaluated 

for match quality. Using reference spectra for validation is an alternative to the conservative 

approach of disregarding proteins with less than two peptides. Such an approach is taken by the 

human proteome organization (HUPO) and their neXtProt project that classifies the existence 

of proteins into different evidence levels22. Using their guidelines, extraordinary detection 

claims – e.g. gene products not validated on protein levels or novel coding elements - require 

two or more peptides. Further, they require the use of synthetic peptide spectra to verify such a 

claim. As the data generated contain all conceivable peptides for proteins not discovered in 

ProteomicsDB and have a large overlap with the missing proteins in neXtProt, the resource will 

help to comply with posted HUPO guidelines. The released spectra have been in fact used for 

verification of different protein identifications stored in the MassIVE-knowledge database23. 

Here, 162 extraordinary protein detections of previously missing proteins according to neXtprot 

were validated. Specific peptide sets have further been used to verify the detection of proteins 

originating from alternative translation start sites24. On a side note, the verification of peptides 

originating from novel coding elements, mutations and amino acid variants or proteasome 

degradation using the resource will rarely be possible without custom peptide synthesis as the 

peptide sequences from the resource were initially selected based on a reference proteome. 

 

Validation of spectra originating from PTM peptides 

The third reason to employ reference spectra is to validate analysis carried out on the amino 

acid level. While protein based identification and quantitation usually relies on aggregated 

information from several PSMs and peptides, modification site-specific information often relies 

on a single peptide or a single spectrum. Here, the verification of the correct assignment of the 

exact modified sequence is critical and spectral similarity can corroborate probabilistic error 

measures like posterior error probability. The modified peptide sets included in the final 

resource will also provide the possibility to perform such comparisons for all major 

modifications and all frequently observed or functionally annotated modification sites. One 
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published study already performed such comparison to differentiate the isobaric lysine 

modifications citrullination and deamination of asparagine and glutamine using resource 

peptides25. 

 

Knowledge generation on peptide fragmentation characteristics 

Generating knowledge on how peptides fragment and how one would expect a spectrum to look 

like was a major goal of the project. With the data at hand, deriving a general set of rules for 

fragmentation is in fact possible. Most rules may be conspicuous, like the well-known proline-

effect leading to intense fragment ions or that charged residues within a sequence change the 

overall fragmentation pattern. Other patterns may be more hidden and not derivable without 

algorithms. Especially the fragmentation behavior of non-tryptic peptides is not well understood 

yet and mandates deeper investigation of such processes. Such non-tryptic peptides - not 

carrying a charged amino acid residue at the C-terminus but rather none or an internal charged 

amino acid - present spectra dominated by internal ions. These result in typically lower scores 

in classical search engine approaches, as such fragments are rarely included into the scoring. 

Consequently, derived rulesets could overcome the bias towards tryptic peptides and aid for 

example in the area of immunoproteomics.  

The implementation of such rulesets has recently been communicated for the heuristic search 

engine SpectrumMill, resulting in increased identification numbers for HLA peptides. Further, 

some amino acid such as modified lysine residues generate immonium ions or specific neutral 

losses, and as demonstrated in Publication 3, also modified amino acid generate such ions. 

Information on these ions and how PTMs change peptide spectra can be used to localize the 

modification site. The effects of including relevant ions into database searches have been shown 

to be highly beneficial to the identification quality of PSMs. Overall, the fragmentation patterns 

observed can be used to corroborate mechanisms that had been the topic of many studies and 

expand the knowledge on unusual fragmentation behavior induced by PTMs or non-tryptic 

peptides. 

 

3.4 Spectral libraries 

Spectral libraries for assay design 

The bundling of spectra and the retention times into high-quality spectral libraries (PROSPEC 

for ProteomeTools Spectrum Compendium; Publication 1) is the next larger use-case. Regular 

spectral libraries are usually generated from experimental data, making them prone to contain 

chimeric, low signal to noise or ambiguous identifications. In contrast, the synthetic reference 

spectra feature extraordinary signal-to-noise levels, contain complete ion series and are rarely 

chimeric. These spectra collections are a promising data foundation for the setup of targeted 

assays26 and have been used in this regard27. 

The addition of modified peptides to the assay repository will further enhance the number of 

potential applications. These libraries and assays will help to more reproducibly detect and 

quantify modification sites and facilitate experiments that functionalize sites in a biological 
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context. To enable users to build their own assays and query their samples, tools are needed that 

offer fast and easy access to the wealth of data generated in this project. Zauber et al already 

used the released synthetic reference spectra of the resource as a data foundation to provide the 

proteomics community with an online tool for the generation of targeted methods for over 19000 

proteins28. However, the tool is limited to released data and does not fully exploit all possible 

aspects. As the synthetic reference spectra were generated using different collision energies, the 

definition of a sequence and charge state specific optimal collision energy is feasible. As large b 

and y ions are usually favored for monitoring transitions in targeted proteomics, the NCE 

generating large intense fragment ions would be favored. In addition, the integration of such a 

tool into a database like ProteomicsDB will allow the determination of the interference-free 

transitions depending on the cellular background the assay is performed in. 

 

Making spectral libraries available 

Besides own efforts to provide spectral libraries on ProteomicsDB, the synthetic peptide 

resource has been reprocessed and is now available for download from both NIST 

(https://chemdata.nist.gov) and MassIVE (http://massive.ucsd.edu/ProteoSAFe/static/massive-

kb-libraries.jsp). This re-arrangement renders the existing synthetic peptide resource available 

to a much larger user-base. It would be beneficial to have the ProteomeTools libraries available 

in data analysis tools like Spectronaut or Skyline, promoting further use and distribution within 

the community and presenting a rational standard over sample-specific libraries. Such 

integration is planned for the ProteomeDiscoverer framework, where users can access and 

download the libraries for the easy integration into their data analysis workflow. Further, 

spectral libraries available on proteometools.org are readily usable with the MSPepSearch 

integration in Mascot, allowing the fast analysis of DDA data. With the increasing interest in 

data-independent acquisition methods and the progression of targeted analysis in the clinic, the 

user base of such spectral compendiums is expected to steadily increase.  

Noteworthy, there is an ongoing discussion in the proteomic community regarding the correct 

generation of spectral libraries29. There is no clear consensus on the generation of such libraries, 

the exact content of a library, the kind of metadata that need to be attached and even seemingly 

trivial things like a common file format. So far, spectral libraries are usually distributed in the 

form of lengthy text-based formats that result in huge file sizes. Binary formats exist, but are 

mostly specific to one software and sometimes proprietary or require conversion tools. Finding 

a common and performant file exchange format for spectral libraries will be an important task 

to achieve increased community wide distribution of generated data.  

 

Spectral library aided data analysis – the future standard? 

Besides the targeted assay design, the spectral libraries as presented can be used for actual data 

analysis of targeted assays, DDA and DIA data30, 31. In parallel efforts, the reference spectral 

libraries identified more proteins compared to classical database searching when used for DDA 

analysis (unpublished data). In addition, the libraries have been used in proof-of-concept studies 
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for DIA analysis, yielding more than 5,000 protein identifications (unpublished data) in HeLa 

cell lysate. 

Noteworthy are considerations as to the actual process of identifying peptides using spectral 

similarity. There are several ways to compare spectra from a reference library using various 

similarity scores. These scores differ in their resolving power, such as the correlation-based 

measures that are less sensitive to small differences in spectra compared to cosine or spectral 

angle-based similarity scores32. The calculated score will be greatly influenced and altered by 

the decision which peaks to factor into the calculation. Using only annotated fragment ions may 

produce better scores than comparing the full spectra, as experimental spectra may contain more 

than one peptide species. Spectra featuring very few abundant peaks (e.g. not fragmented 

precursors) will generate high spectral similarity despite little actual information content. Aside 

from the way to calculate the score, the determination of a viable cutoff to discriminate correct 

from incorrect matches remains difficult. While the target-decoy approach is also an option for 

as database searching33-35, the generation of decoy spectra is difficult and leads to persisting 

discussions on the correct generation of decoy spectra. Approaches usually scramble the 

sequence and the belonging annotated fragment ions, shifting peaks in m/z space or randomly 

assigning m/z values36. However, the generated decoy spectra are not similar enough when 

compared to real spectra; hence the number of matched decoy spectra is likely underestimating 

the actual error rate. This is especially relevant if the retention time is used as decisive matching 

criteria, as done in DIA analysis. Scrambling the peptide sequence will also change the retention 

time of a peptide, especially when charged amino acid sidechains are contained in the peptide 

analyzed. Consequently, changed retention time values would have to be assigned to decoy 

spectra, but tools able to predict such retention times are less accurate than experimentally 

determined values so far.  

Overall, error estimation in spectral library-based approaches will have to be a key topic in 

studies employing DIA approaches. Samples with known composition like those generated 

within the ProteomeTools project and other high-quality spectral libraries are expected to play 

an important role in developing and benchmarking library search tools used in the future37. 

 

3.5 Generated mass spectrometric data  

Synthetic peptide data allows benchmarking of algorithms 

As laid out, current bottom up proteomics lacks datasets to benchmark the tools, the statistical 

models and informatics approaches currently applied. This deficit was another important reason 

to initiate the project. If conservative score cutoffs like the ones in the initial release of the 

project are applied, one can assume that the error rate in the identification of the synthetic 

peptides is close to zero. Therefore, either the raw files or customized sets of spectra provide the 

developers and users of search algorithms with opportunities to characterize the software in 

various approaches. This includes the actual calculation of true positive and false positive rates, 

the correct localization rates and thus the benchmarking and fine-tuning of the statistical error 

control. Comparing the performance, sensitivity and overlap of search engine results or 

algorithms – e.g. for spectral clustering - can be undertaken using the gold standard datasets at 
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hand. The freely available data of the peptide retention time and peptide identification in various 

formats allow the custom compilation of spectral collections, tailored to test software at hand. 

In fact, ProteomeTools data have been suggested or used several times in this regard38-40. 

 

Intelligent data acquisition 

Intelligent data acquisition has been the focus of instrumentation software development in 

recent years with the aim of better measuring and fragmenting individual peptides. In a simple 

case, a decision tree directs precursors to different fragmentation methods and mass analyzers, 

based on charge and intensity41. Such functionality is implemented in standard instrument 

control software by now. In a next step, the interfacing of the large collection of spectra and 

corresponding metadata with a mass spectrometer data acquisition can be envisioned. As API 

interfaces for mass spectrometers exist, real-time access and decision making is possible. The 

resource contains information on the optimal fragmentation method and collision energy for a 

large number of human peptides. Such data could be stored in databases and accessed by the 

mass spectrometer during the run to select best matching fragmentation for a precursor in a 

given retention time window. The feasibility of controlling data acquisition in real time using a 

non-vendor software framework, has been recently demonstrated42.  

More complex is the on-the-fly identification of analytes. Such approaches would identify MS2 

spectra by spectral comparison and adjust the acquisition strategy accordingly. Exemplary, the 

identification of retention time peptides and the automatic adjustment of retention time 

windows has been shown. Extending such an approach to the large repository of human spectra, 

one can imagine identifying peptides and therefore proteins during data acquisition. 

Subsequently, data acquisition could be adjusted to exclude precursors from MS2 events, if 

several peptides for a protein had been already identified. Another feature would be re-

triggering MS2 scans of a precursor if the spectral similarity suggests that the initial MS2 scan 

was chimeric, of low quality or had poor a or signal-to-noise ratio. 

By starting to integrate prior knowledge of a sample – e.g. peptides frequently observed – such 

intelligent routines would facilitate more comprehensive data acquisition leading to more robust 

identification and quantification of the protein sample content. 

 

Machine learning of peptide characteristics 

The generated data is an extraordinary resource to learn peptide characteristics. Such 

characteristics encompass retention behavior, fragmentation behavior but also properties like 

ion mobility drift times, if available. Some peptide characteristics are apparent and can be 

explained using simple models – like the relationship of the amino acid hydrophobicity and 

peptide retention time - while others are the result of an interplay of several components in 

complex relationships. Machine learning approaches are capable to model complex relationships 

and generate fine-tuned rulesets that allow the extrapolation to unknown analytes and the 

prediction of their properties. 
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As discussed, peptides exhibit very conserved fragmentation patterns, when MS2 spectra are 

acquired with comparable settings. The relative intensity of fragment ions for a given peptide 

sequence is dependent on neighboring amino acids and the relative position within a peptide 

and thus a characteristic that can be learned and modeled. In a proof-of-concept analysis, the 

intensity information for all amino acid pairs was extracted from the synthetic peptide spectra 

resource. For each pair, the relationship of the intensity of a generated fragment ion in regard 

to their position of a peptide was modeled. The model was able to generate a simple MS2 

intensity predictor for y-ions (Publication 1). It was able to generate surprisingly accurate 

representations of the intensity of fragment ion series for tryptic peptide sequences. However, 

the approach had various constraints like the restriction to y-ions and doubly charged precursors 

and the fact that predictions were crude and lacked resolving power. To obtain more 

sophisticated prediction of fragment spectra, advanced machine learning approaches are 

necessary. An example would be the software MS2PIP43, a powerful fragmentation prediction 

tool, that allows the in-silico generation of MS2 spectra with reasonable precision.  

Machine learning approaches have evolved fast in recent years. So called deep learning using 

artificial neural networks allows the accurate recognition of images, speech or patterns and has 

found its way in various applications in science. Briefly, such models are trained with a large 

amount of annotated data to derive hidden rulesets for subsequent extrapolation to data not 

seen before. Recent developments in the performance, speed and accuracy of such machine 

learning approaches in combination with the wealth of data available have sparked the interest 

of several proteomic research groups to generate prediction tools for several applications. These 

have made in part use of the synthetic peptide data provided and use-cases range from retention 

time prediction (DeepRT)44 to fragmentation prediction (pDeep)45 and de-novo peptide 

sequencing46. 

In fact, an artificial neural network-based peptide retention time and fragmentation prediction 

tool termed Prosit47 is being developed in the context of other doctoral studies. The data 

foundation for this tool is the comprehensive and systematically acquired synthetic peptide 

derived data from the ProteomeTools project. This training data is far more homogenous than 

experimental datasets, and thus the perfect foundation for training such a deep learning 

algorithm. Prosit’s retention time prediction precision and accuracy exceed all current heuristic 

prediction tools based on hydrophobicity calculations. Recent developments also indicate very 

promising results for all major post-translational modifications. Besides retention times of 

peptides, the neural network Prosit is also able to predict close to reference quality HCD spectra 

for any peptide sequence of any organism. Due to the training on six different HCD collision 

energies, it possesses the ability to interpolate between energies and ensures the transferability 

and applicability of the predictions.  

These learnings the from synthetic peptide repository extent the derived applications way 

beyond the human taxonomy, as spectra for any given sequence can now be generated. The 

generation of in-silico spectral libraries for any protein is imaginable, rendering the generation 

of custom spectral libraries for the targeted analysis for any protein of interest feasible and 

spectral libraries were shown to perform almost identical to project specific libraries in DIA 

data analysis47. Further, the generation of spectral libraries of full proteomes including all 



General Discussion and Outlook 
 

- 162 - 

peptides and proteins for any organism with available genomic information is possible. To be 

readily applicable, the available DDA and DIA analysis software needs to be modified to handle 

the enormous number of spectra. Such optimizations are currently ongoing. Custom-generated 

libraries could also encompass the individual mutational status of proteins derived from genome 

sequencing of patient data, the basis for personalized proteomic analysis.  

The ability to generate a spectrum for any peptide sequence allows using the predictions and 

their similarity to experimental data as additional confidence criteria for peptide identification. 

For samples of unknown composition which require very large databases, the global FDR 

calculation can be aided by integrating information of how the fragment intensities are expected 

to look like for every single PSM. The same is true for immunoproteomic approaches looking 

for neo-antigens or de-novo sequencing applications. A precise and accurate prediction tool will 

also transform the way algorithms employed in proteomics are developed, tested and 

benchmarked. Using such predictions one could imagine to re-analyze the generated mass 

spectrometric data to extract more peptide identifications. Especially interesting would be if this 

approach would “rescue” short peptides missing due to FDR calculation, as already discussed 

earlier. 

As any custom collection of spectra can be generated, tailored benchmark libraries for search 

engines, spectral library-based approaches and machine learning algorithms can be envisioned. 

Such sets also render the in-silico investigation of peptide properties feasible, e.g. which 

sequences are unlikely to be identified, as they generate almost no fragment ions. By integrating 

accurate retention time and fragmentation prediction, the generation of complete decoy libraries 

is enabled. Such an approach could replace disputed mechanisms of decoy spectral library 

generation during DIA analysis discussed earlier and change the way the error rate is controlled 

in such experiments. 

While the current implementation of the predictor is restricted to non-modified peptide spectra, 

the realization of spectra for modified peptides is merely a question of time. Such a predictor 

will change the way the modification status of proteomes is assessed, as the localization of 

modifications is far more precise using fragment ion intensities than the algorithms applied by 

current search engines.  
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4. Outlook 
Despite the rapid development over the years, proteomic workflows and data analysis concepts 

contain various sources of variation and require complex statistics for data analysis. The large 

peptide libraries and spectral compendia generated within the ProteomeTools project were 

designed to tackle a large variety of open issues along the bottom-up proteomic workflow. 

Indeed, the peptides and data generated currently address many sources of variation and provide 

means to circumvent them: This includes, but is not limited to (1) providing peptide standards 

that can be introduced into the workflow to address reproducibility; (2) LC-MS quality control 

and (3) more intelligent data acquisition; (4) Improved transferability of LC-MS data and (5) 

data analysis: The generated spectral data enables the detailed interrogation of the human 

proteome to an extent previously not possible.  

The coming years, the spectral resource will be digitally expanded by integrating external data 

originated from different platforms. Assays for almost all proteins will enable the better 

quantification of endogenous peptides and thus proteins and the synthetic spectra provide a 

foundation to validate endogenous detection before placing orders for synthetic spike-in 

peptides. The generated libraries render the large-scale interrogation of samples using data 

independent acquisition feasible 

As can imagine adding updates to the resource in the form of spectra originating from newly 

released instrument platforms, the long-term value of the ProteomeTools project clearly lies 

within the spectral collections and their use as ground truth datasets for proteomics. These data 

can serve as the foundation for novel tools and machine learning to e.g. predict peptide 

properties, enabling the generation of in-silico spectral libraries for any protein or organism 

imaginable. Created by such tools, personalized spectral libraries will be readily available to 

profile mutation status, the HLA ligandome or disentangle complex samples with unknown 

content like gut microbiomes and will enable proteomics to move further towards the routine 

analysis of patient derived samples. Having these capabilities at hand will enable the generation 

of more robust and more sensitive data analysis pipelines that fulfil strict criteria for clinical 

analysis and move the proteomics field closer to routine applications. These substantial 

improvements will aid the use and acceptance of mass spectrometry-based proteomics in 

answering a multitude of relevant questions in the biological and medical field.  

With progressing implementation of machine learning approaches into proteomics, the 

generation and routine application of artificial intelligence-aided search engines for proteomic 

data, deep learning-based classifiers for FDR calculation and implementation of real time data 

analysis are logical and desirable steps. Given the fast development of algorithms over the last 

years and the homogenous training and benchmarking data provided by the project presented, 

these novel tools are going to substantially change how proteomic data are acquired and 

analyzed and will have profound impact on the field for years to come. 
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