
TUM Department of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Prof. Dr.-Ing. André Borrmann

Investigation of graph-databases for storing

and analysing building models

Sining Xu

Masterthesis

for the Master of Science Course Civil Engineering

Author: Sining Xu

Student ID:

Supervisor: Prof. Dr.-Ing. André Borrmann

M.Sc. Jimmy Abualdenien

Date of Issue: 18. Mai 2018

Date of Submission: 19. November 2018

Abstract

In the architectural, engineering and construction industry, building information modelling

(BIM) is playing an increasingly important role in digital representation, intelligent utiliza-

tion of building models and data exchange between different sectors. Along with the growing

size of data and more frequent exchanges, the challenge of BIM lies in determining the reli-

ability of models in different developing phases and their quality before the model is delivered.

Meanwhile in BIM collaboration, IFC data is commonly adopted as a standard format. It

contains rich and complex information of building models such as semantic and geometric

properties of entities as well as the relationships between them. Therefore, analysing IFC

data flaws and weakness of BIM models can provide solutions for realistic BIM challenges.

Concerning data management tool for IFC data, in comparison with the traditional relational

database, there have been a proving advantage of graph databases in exploring large inter-

connected data, which is a main feature of IFC architecture. Thus it will be beneficial to

study the potential of graphs to analyse information within BIM. Among graph databases

Neo4j is one of the leading systems.

This master thesis firstly illustrates the challenge and theoretical background of the solu-

tion. Secondly, detailed methodology of importing IFC data into the Neo4j graph database

will be described. This is followed by examples on querying properties of a modelled roof.

Furthermore, in combination with Level of Development requirements, property set checks of

models in different LODs are performed in order to provide realistic answers in evaluating the

reliability of BIM models. As for deliverable models, BIM-based models quality checks about

their integrity and physical security are conducted. Through analysing geometric representa-

tion in IFC data with spatial operation, consistency and intersection detections are executed.

These queries demonstrate that graphs can efficiently manage IFC data and provide chances

to build diverse applications.

Overall this study presents practical syntaxes in analysing IFC data within Neo4j database

and investigates advantages and limitations of this mechanism. Finally, the work is finished

by a conclusion and possible solutions to overcome these limitations.

III

Contents

1 Introduction 1

1.1 Introduction and Problem Description . 1

1.2 Aims and Objectives . 3

1.3 Layout of the Thesis . 3

2 Theoretical Background 5

2.1 BIM and Level of Development . 5

2.1.1 Building Information Modeling . 5

2.1.2 Level of Development . 5

2.2 Comparison of Databases . 6

2.2.1 Relational Database . 6

2.2.2 Graph Database and its Advantages 7

2.2.3 Neo4j Graph Database . 7

2.2.4 Cypher Query Language . 8

2.3 IFC Standard . 8

2.3.1 IFC Data Model . 9

2.3.2 Model Views . 10

2.3.3 Geometric Representation . 10

2.3.4 Semantic Representation . 12

2.4 Roof Level of Development Definition . 14

2.4.1 Types of Roof Build Ups . 14

2.4.2 Components of Warm Roof . 15

3 Analysing BIM-Model with Graph Databases 19

3.1 Research Question and Approach . 19

3.2 Used Software, Programs and Libraries . 20

3.2.1 Pycharm . 20

3.2.2 IfcOpenShell . 20

3.2.3 IFC to Neo4j Converter . 20

3.2.4 Revit 2017 . 23

3.2.5 Neo4j Desktop . 24

3.2.6 Solibri Model Checker . 24

3.3 Importing IFC Data into Graph Databases 24

4 Property Queries and its Application in Graph Database 28

4.1 Anaylsis of Properties . 28

4.1.1 Retrieve the Length and Width of the Roof 29

4.1.2 Retrieve Height of the Roof . 30

4.1.3 Retrieve Layers and Thickness of the Roof 30

4.1.4 Retrieve Geometry and Number of Opeinings 33

4.2 Reliability Check of the LOD-Model . 34

4.2.1 Instance of Roof Information Specification in Different LOD 34

4.2.2 Definition of Property Set in IFC . 36

4.2.3 Retrieve Property Set . 39

4.2.4 Match Property Sets . 41

4.2.5 Analyse Property Sets . 45

5 Model Checking with Graph Database 48

5.1 BIM-Based Model Checking . 48

5.2 Analysis of Structural Consistency . 49

5.2.1 Retrieve Column Consistency List . 49

5.2.2 Retrieve Column Consistency Graph 51

5.3 Check Intersection Between Elements . 53

5.3.1 Check Intersection Between the Same Line-Based Elements 54

5.3.2 Check Intersection Between Different Line-Based Elements 63

5.3.3 Check Intersection Between Face-Based Elements 65

6 Conclusion 75

A Appendix 78

V

List of Abbreviations

2D Two-dimensional

3D Three-dimensional

AEC Architecture, Engineering and Construction

AECO Architectural, Engineering, Construction and Owner/Operator

AIA American Institute of Architects

APOC Awesome Procedures On Cypher

BIM Building Information Modeling

BRep Boundary Representation

CSG Constructive Solid Geometry

IDE Intergrated Development Environment

IDM Information Delivery Manual

IFC Industry Foundation Class

ISO International Organization for Standardization

LOD Level of Developmemt

MEP Mechanical, Electrical and Plumbing

MVD Model View Definitions

NoSQL Not Only Structural Query Language

SMC Solibri Model Checker

SQL Structural Query Language

STEP Standard for the Exchange of Product model data

VI

Typographical Conventions

The following typographical conventions are used in this thesis:

Italic to indicate the IFC classes and Python commands within the text

UPPER CASE and Italic to indicate Cypher commands within the text.

Monospaced (“typewriter”) family is used for program listings to indicate Cypher commands.

VII

List of Figures

2.1 Illustration of Graph Database Structure(Miller, 2013) 7

2.2 IFC Inheritance Hierarchy (Borrmann, 2016) 9

2.3 IFC abstract objectified Relationship (Ismail et al., 2017) 10

2.4 Build up warm roof (Winter, 2016) . 14

3.1 Syntax Error . 22

3.2 Neo4j Browser Interface . 24

3.3 Default IFC Export Setup . 25

3.4 Command Prompt Commands . 25

3.5 Generated Cypher Command . 26

3.6 Entering Cypher Command in Neo4j Browser 26

3.7 Graph of three LODs . 27

4.1 Result Length and Width Query . 29

4.2 Result Height and Storey Query . 30

4.3 Relationships of Layer Thickness and Material 31

4.4 Result Layer Material and Thickness Query 31

4.5 Result Layer and total Thickness Query . 32

4.6 Result Openings Geometry Query . 33

4.7 Difference Shaft and Window . 33

4.8 Result Number of Openings Query . 34

4.9 Property Specification of Roof in different LOD by Bim Informed GmbH(Hört-

nagl, 2017) . 35

4.10 Example Attribute in Type Name and Description 37

4.11 Relationship between Properties and Object in IFC 38

4.12 Example of Relationship between Properties and Object in IFC 38

4.13 Relationship between Material Layers and Object in IFC 39

4.14 Result Thermal Transmittance Query . 39

4.15 Result Property Set, Property single Value and Material Layer Set Query . . 40

4.16 Workflow Analysing Property Set . 43

4.17 Final Result Property Set Query . 45

4.18 Pattern Type 1 . 45

4.19 Pattern Type 2 . 46

4.20 Pattern Type 3 . 46

4.21 Pattern Type 4 . 47

5.1 Building model for column consistency check 49

5.2 Result Column List Query . 50

5.3 Column Consistency List with Properties . 50

5.4 Setting ”Ebene 1” labels on columns on the first floor 51

5.5 Result Merging Column Continuity Relationship 52

5.6 Building model and continuity relationship of columns 53

5.7 End point calculation of wall axis . 55

5.8 Bounding boxes of two Lines(Thoma, 2013) 57

5.9 Left: condition 1, Right: condition 2 . 57

5.10 Left: condition 3, Right: condition 4 . 58

5.11 Situation when A, B ”cross” line CD . 58

5.12 Situation when line AB intersect line CD . 61

5.13 Algorithm of deciding whether two line segments intersect or overlap 61

5.14 Result Wall Intersection Query . 62

5.15 Wall Intersection Check Result in Solibri and Position of overlapped Walls . . 63

5.16 Result Intersection Query between Walls and Beams 64

5.17 Wall and Beam Intersection Check Result in Solibri and Position of the inter-

sected Beam and the Wall . 65

5.18 Position of Slabs in the Building Model . 66

5.19 Deriving Coordinates of the four Corners of rectangle Roof Slab 68

5.20 Deriving Coordinates of the four Corners of rectangle Floor Slab 70

5.21 Bounding Box formed by two diagonal Nodes of the Slab 71

5.22 Algorithm of deciding whether two slabs overlap 72

5.23 Result floor Slab and Roof Slab Overlap Check 73

5.24 Roof Intersection Check Result in Solibri and Position of overlapped Roofs . 74

IX

List of Tables

2.1 Components warm Roof . 17

4.1 Comparison between BIMForum LOD Specififation and Bim Informed Roof

Definition . 36

4.2 Property type based on reliability and sequence 42

X

Code Listings

2.1 IFC Expression of ”SweptSolid” Shape Representation 11

2.2 IFC Expression of ”Brep” Shape Representation 11

2.3 IFC Expression of Window and its shared Property Set through IfcRelDefines-

ByType . 12

2.4 IFC Expression of Slab and its private Property Set through IfcRelDefines-

ByProperties . 13

3.1 Inputs and main output parameters of ifc2cypher parser 21

3.2 Python Statement to create Nodes in Cypher 21

3.3 Example of printed Cypher Syntax to create a Node and its Properties in Neo4j 21

3.4 Python Statement to print Relationships in Cypher 21

3.5 Example of printed Cypher Syntax to create Relationships between two Nodes

in Neo4j . 22

3.6 Improvement of Python Syntax to efficiently create Nodes in Neo4j 23

3.7 Example of improved output Cypher Syntax to create Nodes in Neo4j 23

3.8 Arguments given in the Command Prompt 25

3.9 Cypher Syntax to verify transferred IFC relationship 26

4.1 Example IFC expression of Roof Profile . 29

4.2 Example IFC expression of Opening Profile 29

4.3 Match and return the rounded roof Dimensions while filtering out openings . 29

4.4 Match and return the roof Elevation and storey Name 30

4.5 Match and return the Material and its Thickness of Roofs in different LODs . 31

4.6 Match and return the Material, its Thickness and total Thickness of Roofs in

different LODs . 32

4.7 Match and return the rounded Opening Dimensions 33

4.8 Match and return the Number of different Opening Types 34

4.9 Match and return Properties which are relevant to thermal Transmittance . . 40

4.10 Match and return Property Sets and Material Layer Sets 40

4.11 Example of creating Property Node and setting the AbsentInLODXXX label

if it does not exist in the required LOD . 43

4.12 Example of creating a Property Node and setting the AbsentInLODXXX label

if it does not exist in the next LOD either . 44

4.13 Example of setting PredefinedforLODXXX Label on the Property Node that

exists before the required LOD . 44

4.14 Example of connecting same Properties in different LODs with DevelopsTo

Relationship . 44

5.1 Match and return column’ x-, y- and z-Coordinates and Storey Information . 50

5.2 Match and return Columns’ x-, y- and z-Coordinates, Storey Information and

Properties . 51

5.3 Match and set Storey Information on Columns as Labels 51

5.4 Connecting Columns that have the same x- and y-Coordinates but different

z-Coordinate with the Structure relationship 52

5.5 Match Wall origin Coordinates, Length and Axis Direction, calculate Coordi-

nates of the two end Points of Wall Axis . 55

5.6 Calculate Values of four cross Products with end Point Coordinates of Wall

Axis, which are stored in Rows in the end . 59

5.7 Decision Statement which consists of Boundary Box Check, common Points

Detection and Product of cross Product Check to distinguish if two Line Seg-

ments Intersect, Not Intersect or Overlap . 62

5.8 Change of Match Syntax from finding two Walls to finding one Wall and one

Beam . 64

5.9 Matching original reference Point and Rectangle Profile Definition of two ar-

bitrary Roof Slabs by filtering with Patterns 67

5.10 Calculation of Corner Node Coordinates of Roof Slabs and index Roof Slab

Names and Storeys . 68

5.11 Matching original reference Point and Rectangle Profile Definition of two ar-

bitrary Floor Slabs by filtering with Patterns 69

5.12 Calculation of Corner Node Coordinates of Floor Slabs and index Roof Slab

Names and Storeys . 70

5.13 Decision Statement which consists of Bounding Box Check to detect whether

two Slabs overlap, the Result of Floor Slabs and Roof Slabs are combined . . 72

1

Chapter 1

Introduction

1.1 Introduction and Problem Description

Traditionally construction plans are represented by 2D-drawings and models, which are still

widely used today. With the help of computer technology, digitalization of buildings have

become much more convenient. Meanwhile construction projects are also becoming more

complex and requiring more detailed and interdisciplinary planning. Therefore a more effi-

cient management system of construction data is of wide interest. In the new century the

concept of Building Information Modelling was developed. It is featured by fully integrated,

interoperable digital information which can be used by all members of design, construction

and operation team throughout the facility’s life cycle(Holness, 2006). Nowadays in architec-

ture, engineering and construction industry, building information modelling (BIM) is playing

a more and more important role in digital representation of constructions and data exchange

between different sectors.

Along with the development of BIM comes the challenge that different design disciplines

and project organizations, such as architects, engineers, owners and construction crew, re-

quire different information to be available at different project milestones(Treldal et al., 2016).

Moreover, clarification of data about to what extent could the model be relied on and from

whom can it be authored will also facilitate the information exchange between various teams.

To describe the content and reliability of building elements during the design and construc-

tion process, many organizations have developed standards about the definition of modelled

objects and information embedded within them. Among them is the Level of Development

Specification (LOD) released by BIMForum based on the AIA(American Institute of Ar-

chitectures) protocols, one of the most important points of reference of several BIM guide-

lines(Bolpagni, 2016). It intends to improve the quality of communication among users of

BIM about the characteristics of elements in models(BIMForum, 2017). Level of Development

Specification consists of a series of definitions about the content, which an element should

1.1. Introduction and Problem Description 2

include at various stages in the design and construction process. These definitions present

not only the geometrical representations of elements but also their association to semantic

characteristics.

A model can include elements at different levels of development owing to the different rate

of progression. In other words, a model could hardly be defined by one LOD. Additionally,

there is no unified standards for the design phase. One LOD can have different requirements

between different participants in the AEC industry. Therefore, in a complex model which

contains a huge amount of information and relationships, it is often demanding to check and

compare the level of development of all the elements and entities for different teams.

Apart from checking data content and existence during the developing phase, it is also im-

portant to analyses deliverable end models for downstream utilizations for integrity, quality,

and physical security, since BIM models consist of an amalgamation of models from different

disciplines which may work in tandem. These models can contain flaws and weakness despite

meeting the requirements of certain LOD. For instance the slabs may overlap and columns

may not be continuous. These problems will negatively affect reliability of models and thus

impede data exchange between different design teams.

Comparing with traditional design method, it is much more convenient to spot flaws using

BIM-based model checking. BIM-based model checking (BMC) can be regarded as one of the

best ways to illustrate the benefit of the relevant content of information in BIM-files(Hjelseth,

2015). One of the most important advantages is that numerous rules can be applied. Among

them, clash detections and deficiency detections are key issues in some commercial checking

software. Thus, conducting clash detections and deficiency detections in Neo4j is important

in facilitating BIM development.

Meanwhile, as a technical basis the Industry Foundation Classes (IFC) is commonly adopted

as a standard format for collaboration between BIM contractors and data exchange between

different modelling softwares. The IFC data defines a rich and complex object model, in-

cluding the properties of them, such as geometric properties and non-geometric properties,

as well as the relationships. It contains the necessary information to define level of devel-

opment and conduct model checking. But exploration of these information requires a deep

understanding of the IFC object model, efficient data management and query tools needs to

be introduced(Ismail et al., 2017).

How to efficiently manage data in IFC format has been a frequently researched topic. Tra-

ditionally relational database and associated structured query language (SQL) is one of the

most frequent combinations for intensive data storage and retrieval applications(Vicknair

et al., 2010). However, within IFC data there are not only geometric and semantic infor-

mations, but also numerous relationships between entities and elements. Moreover, when it

comes to comparison of models within different LODs, it is necessary to match and compare

1.2. Aims and Objectives 3

them through comparitive relationships. In contrast with the more recent graph databases

and its associated NoSQL languages, relational database is not as efficient in processing data

with a lot of connections(Vicknair et al., 2010). In many different domains the ability of

graph database in processing complicated interconnected datasets have been proved. Within

BIM sector, the relationships and properties between different building entities can be more

directly and efficiently represented using graph data. “Hence converting of BIM models

based on the IFC standard into an effective information retrievable model based on graph

databases could significantly facilitate the efforts of exploring and analysing BIM highly con-

nected data”(Ismail et al., 2017). Therefore IFC query systems based on graph data and its

application has become the focus of considerable research efforts in recent years. In conclusion

the focal point of this assignment is:

Investigation of graph-databases for storing and analysing building models.

1.2 Aims and Objectives

To allow management of BIM information in graph models, the first step is to transfer IFC

data model into a graph database. Secondly, several fundamental property queries on a

building element, which is the roof in this study, will be executed to explore the concept of

graphs in analysing IFC models. Then, more complex property sets based on certain LOD

requirements will be analysed in order to evaluate the reliability of models in different phases.

As for deliverable end models, the application of graph databases in assessing their quality

and integrity is also explored. Based on spatial queries on IFC geometry representations,

several problems are detected and analysed. These problems include deficiency checks and

intersection detection, which are realistic in the AEC industry.

1.3 Layout of the Thesis

Chapter 1 describes a potential data management problem in BIM industry and presents a

possible solution by analysing IFC data in graph databases.

Chapter 2 introduces the theoretical background of BIM and its important concept: level

of development. This is followed by IFC architecture and the graph database which will be

used to analyse it. Roof components are also discussed as a background of the roof model.

Chapter 3 presents the research approach and lists used tools. In this chapter the detailed

methodology of importing IFC data into graph database Neo4j is illustrated, which lays a

foundation for further researches.

Chapter 4 demonstrates the property query capability of graphs. Furthermore, after

1.3. Layout of the Thesis 4

analysing relevant IFC data structure, queries based on realistic LOD requirements on prop-

erties are conducted to evaluate reliability of models in different design phases.

Chapter 5 discusses applications of graphs in model checking. Through exploration of IFC

geometry representations, queries about realistic problems, like consistency check and inter-

section detection, are conducted.

Chapter 6 concludes the advantages and limitations of graph database. In addition, future

research directions and recommendations are addressed to provide a solution to the problems

and improve cooperation between graph databases and BIM models.

5

Chapter 2

Theoretical Background

This paragraph illustrates the theoretical basis for studying into the research goal. To lay the

foundation, concept of Building Information Modelling will be explained in the first section.

Together comes an important part of BIM, the maturity of information which is mostly re-

ferred to as level of development (LOD). Definitions and meanings of LOD will be discussed

to clarify the important aspects describing degrees of completion. Afterwards will the re-

search tool graoh dabatase and non-SQL database, in comparison with traditional relational

database and SQL language, be illustrated and the advantages of the graph database Neo4j

be explained. Moreover, the structure of IFC format, which is used for caring and analysing

model data is discussed. In order to interpret IFC data, IFC libraries and parsers are used,

which will be covered in this section.

2.1 BIM and Level of Development

2.1.1 Building Information Modeling

BIM stands for Building Information Modelling in the architecture, engineering, and construc-

tion (AEC) Industry. It is not only about digital representation of physical and functional

characteristics of buildings, but more about intelligently using the digital model through the

whole service life of a structure - from design, construction, operation to demolition.

2.1.2 Level of Development

In order to effectively deliver building projects and check the reliability of entities, it is essen-

tial to describe what information is needed, from whom, and at what level of detail(Bolpagni,

2016). Among these definitions are the semantic specification and geometry specification

2.2. Comparison of Databases 6

widely considered as important parts of classifications system about the maturity of model

content.

Many institutions and associates have established specifications about the information which

should be embedded in modelled elements to establish development milestone definitions.

Between them, the Level of Development Specification published by the BIMForum is one of

the most adopted guidelines and documents. The BIMForum’s interpretation of the LODs

are defined as LOD100, LOD200, LOD300, LOD350, LOD400. LOD500 is taken as part of

field verification. The increasing number indicates more detailed and precise element.

Level of development describes the maturity of the model content and lays a foundation for

BIM contracts. A precise definition of LOD will reduce the risk of miscommunication among

members of project teams(BIMForum, 2017).

2.2 Comparison of Databases

2.2.1 Relational Database

Traditionally in most data management and retrieval applications, relational databases have

been the primary storage structure. Relational database organizes data into tables which are

defined by sets of rows and columns. Each table represents one entity type while columns

stands for attributes of them and rows can be perceived as instances of that type(Sarwar et al.,

2001). Between tables can there be logical connections between them. The connections

are defined through indicating the unique primary keys of relevant tables. More exactly,

one-to-many relationship is realized by migrating own key into foreign tables and many-to-

many relationships are demonstrated through creating additional key tables that contain the

primary keys from both of the other entities. Retrievals in relational database are usually

accomplished using structural query languages (SQL).

One of the limitations of relational models is that if the data contains large amount of re-

lationships, it requires huge joins of large tables. These big data problems like modelling

social network, bioinformatics calculation and BIM model data management are becoming

increasingly common in science and industry today. Storing, retrieving, and manipulating

such complex data becomes onerous when using traditional relational database system ap-

proaches(Miller, 2013), because of the frequent misleading migration of keys and numerous

key tables. With the increasing demand in storing large amount of interconnected data,

new storage alternatives to relational database are being developed. These new systems are

categorized as NoSQL systems, in which graphs are one of the most for interconnected data

optimized database(Batra & Tyagi, 2012).

2.2. Comparison of Databases 7

2.2.2 Graph Database and its Advantages

Graph database uses graph structure, which is composed of vertices, edges and their relevant

properties, to represent and store data. Nodes stands for objects and edges manifest relation-

ships between nodes. Both nodes and edges can have properties. Among graph databases is

Neo4j one of the most leading storage systems.

Many studies have shown that graph databases are effective for processing dense, interrelated

datasets because of graphs’ emphasis on exploring relationships between entities. The design

of graph structure allows navigating and filtering through correlations and patterns. More-

over, the highly dynamic data model in which all nodes are connected by relations allows

for fast traversals along the edges between vertices(Miller, 2013). Since relationships and

properties also play an important part in IFC data structure, it is beneficial to make use of

the advantage of graphs to explore IFC data in BIM.

Figure 2.1: Illustration of Graph Database Structure(Miller, 2013)

2.2.3 Neo4j Graph Database

Neo4j is a NoSQL graph database management system released in 2010. It is implemented in

Java and uses Cypher query Language. It is one of the world’s leading graph database with

native graph storage and processing. Neo4j has the following advantages against relational

database1:

1. faster transactions and processing for data relationships.

2. flexible, data types and sources can be added or changed at any time.

3. processing performance is regardless of the number or depth of relationships.

In Neo4j, data is stored in the form of either an edge, a node, or an attribute. Nodes can

have any number of properties and labels. Beside,s they can be connected to any number of

other nodes through relationships. Relationships are directional and also have one or more

properties. It is possible to index or constrain their properties. Moreover, labels are used to

group nodes into sets which work as a filter and indicator to narrow research. Graph analysis

1https://neo4j.com/product/

2.3. IFC Standard 8

can be performed in Neo4j. The input data as well as the result can be visualised as graphs

to offer new perspective of the data or build intelligent applications.

2.2.4 Cypher Query Language

During the development of NoSQL graph database Neo4j, its supporting query language,

Cypher is invented. Cypher is a declarative graph query language that allows for expressive

and efficient querying as well as updating of the graph. It enables users to directly state

what to select, insert, update or delete from the graph data without having to know the

exact procedure. Some key words and expressions in Cypher are inspired from SQL and

other declarative query language for querying graph data(Wikipedia contributors, 2018a).

Nodes and relationships are the building blocks of Cypher graph model. Nodes have labels and

properties on them while relationships can contain type information. Pattern, which works

as an important navigator and filter in Cypher, consists of multiple nodes and relationships.

The most used clauses in Cypher are MATCH, WHERE and RETURN. MATCH is used

to get desired data from the graph by describing the pattern or properties. WHERE can

add constraints to the pattern or filter results passing through WITH. RETURN returns the

queried result. In addition, WITH can manipulate the output before it is passed on to the

next sector. These four clauses play an important part in the Syntaxes mentioned below.

2.3 IFC Standard

The Industry Foundation Classes(IFC) is an open standard for the exchange of building

data models used in AEC industry across different software to improve collaboration of the

building project. IFC is based on the ISO-Standard STEP (ISO 10303), which stands for

standard for the exchange of product model data. IFC has inherited data modelling language

EXPRESS and the exchange of a model via STEP physical file and geometric modelling

from STEP(Borrmann, 2016). EXPRESS language also specified a graphical representation

known as EXPRESS-G to provide graphical subset. It was developed and maintained by

buildingSMART International and is an official standard ISO 16739. Not only within a project

team, but also between software applications used in design, construction, procurement,

maintenance and operation, it can be used to exchange information(Autodesk, 2018). IFC

is already a mandatory format for all public building projects in most of the Scandinavia

countries and is being recognized by more and more countries.

2.3. IFC Standard 9

2.3.1 IFC Data Model

IFC architecture standardizes data structure for the exchange of building information models

including geometry and semantics, which the IFC model view definitions mainly supports.

IFC format stores models with object-oriented data and objectified relationships. It has a

large inheritance hierarchy(Borrmann, 2016).

Figure 2.2: IFC Inheritance Hierarchy (Borrmann, 2016)

As we can observe from the graph, the IFC data structure has three fundamental entity types:

IfcObjectDefinition, IfcPropertyDefinition and IfcRelationship(Ismail et al., 2017). IfcProper-

tyDefinition describes all the characteristics attached to objects. For instance, the information

about fire rating of an element is stored in class IfcPropertySingleValue, which is an important

type when doing queries on properties and its associate object. IfcObjectDefinition represents

modelled objects or process like IfcRoof, IfcSlab and IfcWindow. IfcRelationship stands for

the objectified relationship between different classes, including relationships between objects,

relationships between properties and relationships between properties and objects. Relation-

ships can have information attached to them too. By retrieving the item tags indicated in

the relationship node can relationships between the tagged entities be found. Because of this

object-orientation, it is useful when finding connections and paths between desired nodes in

the queries below. Figure 2.3 demonstrates different types of objectified relationships and

their abstract super-type IfcRelationship.

2.3. IFC Standard 10

Figure 2.3: IFC abstract objectified Relationship (Ismail et al., 2017)

Besides, IFC classes can have direct attributes attached to them which could indicate a

relationship to another object or they could just be attached as simple data type attribute,

e.g. integer, string, logical, or Boolean(Ismail et al., 2017). With the help of these indicators

can IFC classes inherit properties from or pass on them to other nodes without repeating

them in all the nodes.

2.3.2 Model Views

Data exchange using IFC can lead to problems. Because of the difference of geometry rep-

resentations between different software, vagueness of implementation or errors from software

vendors or users can occur. To solve this, a subset of full IFC schema that defines the desired

objects and attributes is introduced. These subsets are called model views. In other words,

Model views are used for the targeted exchange of specialized models.

In Revit there are some predefined views like IFC 2×2, IFC 2×3 and IFC 4. Among them is

IFC 2×3 Coordination View Version 2.0 currently the most widely used and supported model

view definition. It supports the rudimentary parametric derivation of building components

when importing into planning tools(Autodesk, 2018). Therefore, this model view will be

adopted when exporting IFC files.

2.3.3 Geometric Representation

A 3D model is the most complete representation of the nominal shape of a model. In the IFC

2× model, three different types of solid model representations are defined(Liebich, 2009):

2.3. IFC Standard 11

1. Swept area solid representation;

2. Boundary model representation;

3. Constructive solid geometry (CSG) representation;

Swept area solid representation is the most common and simple graphical method. It will be

adopted when the form can be represented by a defined profile that is led along a path, which

might rotate or distort, to generate the solid. Take roofs as an example, they will be indicated

by IfcShapeRepresentation with RepresentationIdentifier as ”Body” and RepresentationType

as ”SweptSolid”. The geometry is described by IfcExtrudedAreaSolid, which is usually applied

for standard slabs).

#151= IFCEXTRUDEDAREASOLID (#147 ,#150 ,#19,0.352);

......

#161= IFCSHAPEREPRESENTATION (#97,’Body ’,’SweptSolid ’,(#151));

Code Listing 2.1: IFC Expression of ”SweptSolid” Shape Representation

For example, node 161 shows that the geometry is represented by extrusion. It is linked to

node 151 IfcExtrudedAreaSolid. Node 151 shows the thickness (0.352) and is connected to its

position (#150, #19) and profile (#147). Therefore it is direct and convenient to retrieve the

details of a swept solid by querying through this pattern. If a slab has openings or recesses

and trenches, they are exchanged using IfcOpeningElement, assigned to the slab through the

IfcRelVoidsElement and accessibly from the IfcSlab entity through the HasOpenings(Liebich,

2009). The IfcSweptAreaSolid, when referencing parametrized profile definitions, is normally

used as the preferred geometric representation for building elements(Liebich, 2009), when the

shape is not complicated.

Brep stands for boundary representation and can also be described as boundary surface

model. The basic components are faces, edges and vertices. The surfaces of a component

are represented using coordinates and lines. They form the actual solid together, allowing

even complex forms which cannot be generated with swept solids and extrusions(Autodesk,

2018), such as pitched roofs with openings or windows. Normally it is used to describe the

explicit form of the object. The type is indicated by IfcShapeRepresentation with Represen-

tationIdentifier as ”Body” and RepresentationType as ”Brep”.

#3330= IFCFACETEDBREP (#3328);

......

#3340= IFCSHAPEREPRESENTATION (#97,’Body ’,’Brep ’,(#3330))

Code Listing 2.2: IFC Expression of ”Brep” Shape Representation

The representation type is given by node 3340 and it points to the actual surface B-rep node

3328, which further links to boundary surfaces and vertices.

2.3. IFC Standard 12

Because of its complex calculations to represent surface details, it uses more data memory.

Moreover it is harder to comprehend the shape when it is exported into another software, for

instance when parsed by the parser IfcOpenShell in python. Extra software like pythonOCC

and OpenCscade BRep needs to be installed. Therefore in order to avoid complex queries, it

is beneficial to use representation type swept solid. The roof is modelled as simple flat roof

so that it can be represented by swept solid.

Constructive solid geometry representation is an implicit geometry representation. It is based

on a collection of primitive objects that are combined by Boolean operations. The use of CSG

is currently restricted to the Boolean operations on other solid models, as no CSG primitives

are included in the IFC2x specification(Liebich, 2009).

2.3.4 Semantic Representation

Geometry information and semantics information are strictly separated in IFC. Semantics in-

formation include attributes and parameters defining an object. It is structurally organized

and well broken down into classes. Property definitions can be either(Liebich, 2009):

1. type defined and shared among multiple instances of a class;

2. type defined but specific for a single instance of a class;

3. extended definitions that are added by the end users;

For object occurrences which share a same set of properties, they are assigned an IfcType-

Object through relationship IfcRelDefiniesByType. For example, the property of a window

(IfcWindowStyle and IfcWindow) is assigned by node 815 IfcRelDefinesByType by indicating

their node ID 715 and 753.

#715=IFCWINDOWSTYLE(’1gQnfh5u1BRuzf3uNuBOQa ’,#41,’100 x 150 ’,

$,$,(# 714) ,(#712),’395915 ’,. NOTDEFINED .,. NOTDEFINED .,.F.,.F.);

......

#753=IFCWINDOW(’0WenMeXu5D7xxOqpsCw2De ’,#41,

’Dachfenster 1-flg:100 x 150:395932 ’,$,’100 x 150 ’,#752 ,#747 ,

’395932 ’,0.454279315745163 ,1.06000000000008);

......

#815=IFCRELDEFINESBYTYPE(’3_HzOq$Z56aeMNTlNSsfWi ’,#41,$,$,

(#753),#715); #41 ,$,$,(# 177),#307);

Code Listing 2.3: IFC Expression of Window and its shared Property Set through

IfcRelDefinesByType

To describe multiple instances of af a class will IfcPropertySet be used. These properties are

assigned through IfcRelDefinesByProperties relationship. Same instance of IfcPropertySet

2.3. IFC Standard 13

can be attached to all objects within a type. The difference from IfcTypeObject is that the

property sets can differ from each other in values within a private copy.

#177=IFCSLAB(’2D2_zwByDCRR4wSXeznz$x ’,#41,

’Basisdach:Roof LOD 300:391113:1’,$,

’Basisdach:Roof LOD 300:391764 ’,#176 ,#164 ,’391113 ’,.ROOF.);

......

#307=IFCPROPERTYSET(’2D2_zwByDCRR4wUUCznz$x ’,#41,

’Pset_SlabCommon ’,$,(#295 ,#296 ,#304 ,#305 ,#306));

......

#313=IFCRELDEFINESBYPROPERTIES(’1ho$$qbS5D$gWsyrRfWJnm ’,

#41,$,$,(#177) ,#307);

Code Listing 2.4: IFC Expression of Slab and its private Property Set through

IfcRelDefinesByProperties

For example, the slab property #177 is specified by node 313 IfcRelDefinesByProperties to

#307 IfcPropertySet. IfcPropertySet then points to the relevant IfcPropertySingleValue that

defines its attributes and parameters in detail.

2.4. Roof Level of Development Definition 14

2.4 Roof Level of Development Definition

To compare Roofs in different stages, firstly a LOD standard or threshold to describe the

difference should be developed. Comparisons between geometrical data like thickness, height

and semantic data like materials, functions are quite different. For geometrical dimensions,

numerical difference or standard deviation can function as a guideline. In contrast they do

not work for semantic information. Therefore a requirement specification is needed.

As a result of various designs and accessories of roofs, before modelling a roof for definition

and comparison between roofs with different levels of development, first we need to decide

which functional and physical characteristics are important for it.

2.4.1 Types of Roof Build Ups

According to different layer sequence and constructions above the supporting structure, there

are generally three types of flat roofs: warm roof, cold roof and inverted roof(Winter, 2016).

Figure 2.4: Build up warm roof (Winter, 2016)

Among them is warm roof one of the most widely constructed roof build ups which can be

applied on most supporting structures made of different material types like concrete, timber,

profiled metal, or in different forms like pitched and flat roof. The main principle is that

the thermal insulation layer is located above the structural decking and under the water-

proofing. In order to prevent the moisture vapour hidden in the roof build up being forced

into insulation through outside sun heating or inside thermal pressure, a vapour incorporate

layer under insulation is essential. Another necessary part is the separation of insulation and

waterproofing coating due to the different coefficient of linear expansion of them, so as to

prevent the decoupling of these layers. Above the waterproofing comes eventually a surface

protection like tiles or ballast to provide protection against weather or loads. It is easier to

2.4. Roof Level of Development Definition 15

eliminate roof void ventilation and cold bridging in comparison to cold roof since it has a

continuous layout from structure to the outside. Moreover it is more stable and easier to

build not only on flat roof but also on profiled decking or pitched roof.

Cold roofing normally comprise of a structural deck with a ceiling layer fixed to the bottom

of joist thereby creating void within. Insulation is normally placed above the structure, in

the lower part of this cavity, while the waterproofing on the outside of the deck. Therefore

the outside structural deck and coating is not heated by the building and stay in lower

temperature. Therefore when the warm air on the room side meets the cold air on the

deck side the water will possibly condensate. Vapor control layer above ceiling level or even

ventilation must be provided to reduce the risk of interstitial condensation. Another problem

is that it is harder to prevent cold bridging which is formed by the joist or purlins between

outside roof deck and inside structure.

Owing to the problem with roof void condensation and cold bridging between inside and

outside, cold roof is now seldom constructed. Therefore it will not be considered as an

example.

Another widely used roof build up is inverted roof, which was invented in USA in the 1950s.

The main feature is that the principal thermal insulation layer is located not only above

structure but more importantly above waterproofing. Strictly speaking it can be taken as

warm roof since the layers are heated by the building. The waterproofing is thereby protected

by upper layers from effects of weather and therefore more robust. On the other hand since

the insulation is loose laid on waterproofing and exposed directly to the outside, a protection

layer against particles and ballasting against uplift is needed. But one of the disadvantage

is that because of the imposed loading of the protect layer, it is generally only built on flat

roofs, which limits its potential and application.

In conclusion, because of its wide application and clear, continuous construction, warm roof

will be taken as the modelled sample.

2.4.2 Components of Warm Roof

2.4.2.1 Practical Roof Build Ups from different organizations

Theoretically warm roof is composed of waterproofing, insulation, membrane layer and vapour

control layer. But how they are practically represented in Revit can be different. From the

NBS(National Building Specification) national building information modelling library, which

is one of the fastest-growing BIM library in the UK with objects meeting the requirements of

internationally-recognised NBS BIM object standard(Nationalbimlibrary.com, 2018), warm

roof models from five different organizations are downloaded and compared so as to reveal

2.4. Roof Level of Development Definition 16

their digital representation. These models are Kemperol V210 warm roof system (STRATEX)

fully re-enforced liquid applied waterproofing system from Kemper System Ltd, Thermo-

planFPO warm roof system from Bauder.Ltd, compact roof systems with with membranes

and timber decking from FOAMGLAS building, pitched aluminium sheet roof on timber

trussed rafters from NBS generic roofs, ElastasealTM Warm Roof System 20 liquid-applied

reinforced polyurethane membrane system from Tor Coatings Ltd.

2.4.2.2 Summary Practical Roof Build Ups in Revit

According to their layouts given in product descriptions, since the build ups are organized

in various ways, it is necessary to summarize them with one standard. Firstly we need to

know how roofs are assembled in Revit. In Revit are roofs categorized as finish, structure,

thermal/air layer, membrane layer and substrate. These layers are possible to be modelled

more than once. Vice versa, sometimes will one group contain more than one layer.

Finish refers to outside skin of the roof like tiles, which generally servers to protect the layer

under it.

The definition of structure is relative vague. In Revit normally will joist and boards simply

regarded as structure. In this thesis, structure will be separate into two parts – structure

joist/battens and structure supporting decks, because different roof build ups may contain

either one or both of them.

For some companies bitumen sheets are also taken as structure, or even finish, but here it

will distinguish from structure and set as membrane layer, which indicates sheets, barriers

or coatings. These elements can be more detailly modelled as waterproofing, vapor control

layer and so on. But since sometimes it is hard to decide which function a layers fulfills and

in order not to make the table too complicated, these layers are grouped under membrane

layers.

As for roof structures underneath, in order to separate them from roof structure, they will

be named after substrate to emphasize that they lay the foundation and do not necessarily

belong to roof. As a result other layers which are already classified as substrate (like the

bonding coats in kemper system) will be redirected.

The thermal/ air layer stands for insulation. Since cold roof is not considered, there is no air

layer and it will be called simply thermal layer.

2.4. Roof Level of Development Definition 17

Kemper
System
Kemper-
olV210

Bauder
Thermo-
plan FPO

FOAMGLAS
Compact
Roof Sys-
tems

NBS Roofs
Timber
Trussed
Rafter

Elastaseal
Warm Roof
System 20

Finish,
Skin

Bonding
coats

Polymetric
membrane

Wooden
grating

Elastaseal
top coat

Structure
- Joist

Timber
trussed
rafter

Structure
- Deck

Softwood
base boards

Structural
veneer
plywood

Elastamat
glass fibre
reinforce-
ment mat

Membrane
Layer

Vapour
barrier,
Boud-
ing coats,
Polyurethane
waterproof
coating

Bitumen
sheets

Bitumen
sheets

Plastics
sheets

Self-
adhesive
bitumen,
Non bitu-
men based
bonding
compound

Thermal
Layer

PIR foam
board

Foam
boards

Cellular
glass in-
sulation
board

Expanded
polystyrene
board

Substrate Proprietary
concrete

Timber
trussed
rafter

Table 2.1: Components warm Roof

Membrane layers, thermal insulation and finish are in most cases modelled, in contrast the

load-bearing battens or trussed rafter are not. Partly this is because not all roof types need

it. Similarly are bearing layers or deck not always used since bonding coats could partly

replace it. Substrates are also not necessary since it belongs more likely to the building. But

if the roof is regarded as a whole it should include this part.

In short, the roof layers in BIM from different providers are represented accordingly to reality

with details in materials, thickness and sequence with some simplifications. For example the

distance and width of joists or rafters are not defined, since they are too detailed and are more

2.4. Roof Level of Development Definition 18

related to construction phases. In addition, the mounting materials like screw, bolts are not

modelled in the build either. Since the slope of the roof can be variable according to different

application, it is certainly not dimensioned in these generic models too. Therefore, for a

practical general warm roof structure, it concludes from inside to outside: finish, structure -

deck, membrane layer (either for waterproofing or for vapour control), insulation, membrane

layer (either for waterproofing or for vapour control) and substrate.

19

Chapter 3

Analysing BIM-Model with Graph

Databases

3.1 Research Question and Approach

For application in the construction industry, one of the most concerning topics is the con-

sistency check of models in BIM, especially the management of level of development and

BIM-based model checks. LOD describes the maturity of the model content and lays a foun-

dation for BIM contracts. A precise definition of LOD reduces the risk of miscommunication

among members of project teams(BIMForum, 2017). However, project models at any stage

of delivery may contain entities at various LODs, causing inconvenience in clarification of the

content. Furthermore, BIM models consists of many separately created parts from different

disciplines, which may lead to problems during data exchange.

Therefore, in order to obtain a clear picture of the project model, queries about different

IFC models on their maturity can be done with Cypher. The consistency of various elements

and assemblies at different building phases will be represented and examined with the help

of data retrieval queries and algorithms.

To achieve this, the Revit model is first exported into IFC data. To connect the IFC format

to the graph database Neo4j, an IFC library that parses internal information and codes to

transfer IFC data to Cypher is needed. This is done with the help of the IFC to Cypher code

and IfcOpenShell library, this code was first created by user ysangkok in Github and then

edited to improve the performance. Then the generated Cypher code is copied into Neo4j

and create a graph which represents the Revit model. The following section explains the

more detailed workflow will be explained in the following section.

3.2. Used Software, Programs and Libraries 20

3.2 Used Software, Programs and Libraries

3.2.1 Pycharm

Pycharm is a cross-platform integrated development environment (IDE) mainly used in

Python programming. It was developed by the Czech company JetBrains(Wikipedia con-

tributors, 2018b). It provides not only code analysis, code assistant and build tools but

also Python debugger. Moreover it supports usage of external libraries, which is important

because IFC schema is written in EXPRESS language and it is complicated to extract the

stored information in one program.

3.2.2 IfcOpenShell

IfcOpenShell is an open source software library that facilitates users and software develop-

ers to work with the IFC file format. This format is commonly used for BIM to describe

building and construction data. For geometry information it uses Open Cascade(the Open

CASCADE Community Edition) internally to convert the implicit geometry in IFC files into

explicit geometry so that other software or modelling packages can understand(IfcOpenShell,

2018). Since the model form is not complicated, geometry parser is not exerted in the above

mentioned Python code.

IfcOpenShell now supports IFC2x3 TC1 and IFC4 Add1. The export format used in this

thesis is IFC 2x3 coordination view 2.0. IfcOpenShell can be inserted into Autodesk 3ds Max,

Blender, BIM server and more importantly, python.

3.2.3 IFC to Neo4j Converter

IFC data can be imported into graph database by putting node properties into an IFC file and

entering them in thr Neo4j browser using Cypher language. However, for a large object with

numerous properties and accessories, it is time-consuming to do this manually. To automate

this process, some IFC to Neo4j converters are available on the internet. Among them is

the program, ifc2cypher.py1, which was concisely written by Github contributor ysangkok in

Python language.

The program requires two inputs: second argument (sys.argv[1]) as path of IFC file and third

argument (sys.argv[2]) as label of the nodes. The main idea of program ifc2cypher.py is to

use library IfcOpenShell to distribute essential properties and relationships in IFC data. This

is done using the open() method in IfcOpenShell.

1https://gist.github.com/ysangkok/8aa7ab1c3207536518f3c3bf5f664880

3.2. Used Software, Programs and Libraries 21

ourLabel = sys.argv[2]

f = ifcopenshell.open(sys.argv[1])

for el in f:

tid = el.id()

cls = el.is_a()

pairs = []

keys = []

Code Listing 3.1: Inputs and main output parameters of ifc2cypher parser

Each object decoded by ifcopenshell.open is stored in variant el. For those objects in IFC,

their associated id numbers and class names are identified separately in el.tid and el.cls. If

the elements have other properties, their keys and values are stored in a dictionary called

pairs, where values can be indexed by their keys. This step is done using get info() method,

which simply means obtaining information, from variant el.

After the essential information are organized, cypher commands can be printed with id num-

bers, class names and other attributes in them.

print(" CREATE ", end ="")

......

print ("(a" + str(idx) + ":" + ourLabel + " { nid: " +

str(nId) + ",cls: ’" + cls + "’" + pairsStr + " })", end ="")

Code Listing 3.2: Python Statement to create Nodes in Cypher

A node creating command in cypher, which is printed out by the converter, looks like:

CREATE (a1:LOD300{ nid: 1,cls: ’IfcOrganization ’,

Name: "Autodesk Revit 2017 (ENU)" })

Code Listing 3.3: Example of printed Cypher Syntax to create a Node and its Properties in Neo4j

On the other hand, relationships are captured in list edges. Nodes and their associate nodes

are stored in destinations, which uses the entity instance method of IfcOpenShell to detect

and analyse connections. The first variant tid stands for id of a node and the second con-

nectedTo stands for id of its connected node. The last variant typeDict[cls][i]) indicates

relationship type.

edges.append ((tid , connectedTo , typeDict[cls][i]))

......

for (nId1 , nId2 , relType) in edges:

print (""" MATCH (a:{:s}) ,(b:{:s}) WHERE a.nid = {:d}

3.2. Used Software, Programs and Libraries 22

AND b.nid = {:d}

CREATE (a)-[r:{:s}]->(b) RETURN r; """. format(ourLabel ,

ourLabel , nId1 , nId2 , relType))

Code Listing 3.4: Python Statement to print Relationships in Cypher

Finally, relationship-creating cypher syntaxes are printed with the information of edges. The

following is an example of the generated commands:

MATCH (a:LOD200),(b:LOD200)

WHERE a.nid = 5 AND b.nid = 1

CREATE (a)-[r:ApplicationDeveloper]->(b)

RETURN r;

......

Code Listing 3.5: Example of printed Cypher Syntax to create Relationships between two Nodes

in Neo4j

However, because Neo4j only allows one statement consisting of Match, Create and Return

command to be executed in one query, and it can be problematic to begin every syntax

with Match and end it with Return while creating relationships. With this statement, all

these relationship-creating syntaxes need to be entered and executed individually. This can

be a complex and time-consuming work when there are thousands of relationships. Another

problem in the original program is that in each relationship-creating process, all the connected

nodes are named a and b, which also leads to the same problem that all syntaxes need to

be run separately so as not to mix all relationships in the same nodes. Therefore the way

relationship syntaxes are written should be rearranged to improve performance.

Figure 3.1: Syntax Error

To solve this, Match and Create needs to be done separately in two lines. Firstly, all the

needed nodes are found and matched. the matched nodes should have a unique temporary

name. Secondly, relationships are created between them.

3.2. Used Software, Programs and Libraries 23

for (nId1 , nId2 , relType) in edges:

print(" MATCH (a", nId1 , ":", ourLabel , ") ,(b", nId2 , ":",

ourLabel , ")

WHERE a", nId1 , ".nid = ", nId1 , " AND b",nId2 , ".nid = ",

nId2 , sep=’’)

for (nId1 , nId2 , relType) in edges:

print(" CREATE (a", nId1 , ") -[:", relType , "]->(b", nId2 , ")",

sep=’’)

Code Listing 3.6: Improvement of Python Syntax to efficiently create Nodes in Neo4j

The matched nodes are named after the combination of characters and id numbers. This

ensures their uniqueness. Furthermore, Match syntaxes and Creat syntaxes are printed sep-

arately to avoid the syntax error that only one statement can exist in one query.

MATCH (a5:LOD100),(b1:LOD100) WHERE a5.nid = 5 AND b1.nid = 1

all matches

CREATE (a5) -[: ApplicationDeveloper]->(b1)

all creates

Code Listing 3.7: Example of improved output Cypher Syntax to create Nodes in Neo4j

3.2.4 Revit 2017

Revit is a software developed by the Autodesk company for BIM. It can be applied in archi-

tecture, landscape design, structural engineering, mechanical, electrical and plumbing(MEP)

engineering, construction and facility management. It is capable of planing and tracking a

building in the whole lifecycle from design to demolition. The main strength of Revit lies

in its interoperability with members of an extended project team. Revit can use the IFC,

DWG or DGN format to link data from different CAD software. Moreover, it contributes to

creating design visualization and document coordination(Khemlani, 2004).

The interoperability is realized by generating smart building data that incorporates not

only 3D geometry but also all the relevant data relating to the building and its compo-

nents(Autodesk, 2018). Autodesk has supported the development of one of the most com-

monly used smart building data formats - IFC, which lays a good foundation of data exchange

not only from Revit into a graph database, but also from many other BIM software programs.

3.3. Importing IFC Data into Graph Databases 24

3.2.5 Neo4j Desktop

Neo4j Desktop is a lauchpad for Neo4j applications and tools with automatic software up-

dates. It can connect to production servers and eventually install other components like graph

algorithms and graphQL. Local storage of graphs and commands are also possible to ensure

convenient data access and analysis. It integrates the Neo4j browser and query manager for

querying, visualizing and interacting with graph data using Cypher.

The Neo4j browser is a graphical user interface for writing Cypher and can be used for adding

data, running queries, creating relationships, etc. It provides a direct way to visualise the

data in the database

Figure 3.2: Neo4j Browser Interface

3.2.6 Solibri Model Checker

Solibri Model CheckerTM (SMC) is a software tool that analyses BIM for integrity, quality,

and physical security. It can x-ray the building model to reveal potential flaws and weak-

nesses in the design. Furthermore, it is also utilized in highlighting the clashing components

and checking that the model complies with the building codes and organizations’ own best

practices(Solibri, 2014).

SMC enables checking against sets of rules, which is one of its basic concept. Rules can contain

building codes, empirical recommendations or individual rule sets that can be customized,

such as checking single aspects like sensibility of dimension and checking specific point of

view, like usage of correct construction types.

3.3 Importing IFC Data into Graph Databases

First, the Revit model is exported into IFC format. The model view chosen is IFC 2 × 3

Coordination View Version 2.0. In different export settings different properties sets will be

exported. To show the capacity of the graph database generally, the default setting is adopted

here.

3.3. Importing IFC Data into Graph Databases 25

Figure 3.3: Default IFC Export Setup

Second, the user opens the command prompt, goes to the directory of Python command

ifc2neo4j.py and uses it to open the exported IFC data. These four arguments in figure 3.4

mean, activating the Python environment, opening the Python program, finding the IFC file

in the directory and indicating the labels of the nodes. The labels are entered as their LOD

level so that they can work as indicators to when processing nodes with the same class. This

example shows the transfer process of the LOD 100 model.

python

Test -ifc2cypher.py

"D:\ Bauingenieurwesen\Masterthesis\LOD Muster\LOD -Roof\

Test\ModelCheckIntersection.ifc" "ModelCheck"

Code Listing 3.8: Arguments given in the Command Prompt

Figure 3.4: Command Prompt Commands

After the command is executed, the Cypher code is generated in the command prompt

directly.

3.3. Importing IFC Data into Graph Databases 26

Figure 3.5: Generated Cypher Command

The next step is to copy the Cyher command and execute it in the neo4j browser. After the

program is successfully run, the complete graph including labels, properties and relationships

is generated.

Figure 3.6: Entering Cypher Command in Neo4j Browser

To match and compare three LOD models to each other, the graph of all three LODS need to

be created and strored in the same database. Using one graph database for multiple models

enables not only a comparison study but also history traces. Therefore this procedure is

repeated for the LOD 200 and LOD 300 models in the same browser. Finally a complete

graph with all the essential information from all three LODs is created. The generation of

model check object uses the same mechanism too. To examine the dataset the following

command can be used.

MATCH(n) RETURN n

Code Listing 3.9: Cypher Syntax to verify transferred IFC relationship

3.3. Importing IFC Data into Graph Databases 27

The LOD 100 node are displayed in blue and the LOD 200 nodes are in red and the LOD

300 nodes are in green. The names on the nodes stand for the class names, which make it

easier to distinguish their functions. Properties of the associated classes are stored in the

node and can be easily viewed by clicking on the nodes. The lines between nodes represent

the relationships between the nodes and their names indicate the specific type. The crossed

lines do not lead to crossed relationships since they are all one-to-one.

Figure 3.7: Graph of three LODs

28

Chapter 4

Property Queries and its

Application in Graph Database

In this chapter, the potential of using graph databases to visualize and analyse BIM models

and their level of developments will be demonstrated by several examples. The queries are

mainly organized in increasing terms of complexity into three sections. The first section intro-

duces simple queries on checking basic attributes and properties of the LOD-models. These

properties include geometry, openings and layers of the roof. This step is performed to prove

that graph databases has the capability in solving basic information retrieving tasks which

other traditional databases and BIM software can do. The next step is to add some prop-

erties that are lost due to basic export settings, like essential node coordinates and detailed

thermal mass data. These added properties are selected so that the capacity of the property

query method, which will be discussed in the third section, can be fully demonstrated. The

following section investigates the potential of graph databases in comparing and analysing

semantic information in various development stages, so as to present the advantage of graphs

in visualizing evolving process.

4.1 Anaylsis of Properties

To lay the foundation of advanced queries, it is essential to evaluate the capability of graph

databases in retrieving basic geometric and semantic information of a BIM model. Moreover,

because all the nodes are labelled with their LODs, the results can be listed according to

their degree of maturity, so as to completely demonstrate the evolving process of building

models.

4.1. Anaylsis of Properties 29

4.1.1 Retrieve the Length and Width of the Roof

The geometry of the roof is stored in class IfcRectangleProfileDef. By searching for the nodes

with IfcRectangleProfileDef class and extracting their information, the length and width can

be found. However, size of openings like windows are also defined by same class, which will

lead to misunderstandings. In order to exclude openings when querying roofs, differences

between these two types should be found.

#147= IFCRECTANGLEPROFILEDEF (.AREA.,’Roof LOD 300 ’,#146 ,

15.9999999999999 , 32.0000000000001);

Code Listing 4.1: Example IFC expression of Roof Profile

#183= IFCRECTANGLEPROFILEDEF (.AREA.,’Roof LOD 300 ’,#182 ,1.,1.5)

Code Listing 4.2: Example IFC expression of Opening Profile

Traditional relational databases rely on organizing primary keys of different tables in a key

table to manage many to many relationships, which is sometimes inefficient in Ifc files since

Ifc data is organized hierarchically and contain a numerous relationships. Additionally, re-

lational database need to search between columns, rows of tables to find the queried data.

In contrast, graph database can take advantage of directional relationships and pattern filter

to quickly narrow research. For instance, opening profile definition have a specific 4-degree

relationship with IfcOpeningElement (IfcRectangleProfileDef – IfcExtrudedAreaSolid – Ifc-

ShapeRepresentation – IfcProductDefinitionShape - IfcOpeningElement). In Neo4j, this fea-

ture can be used as a filter. If all the profile classes with such pattern are excluded, then the

remaining definitions are for roof elements.

Figure 4.1: Result Length and Width Query

MATCH(a{cls:" IfcRectangleProfileDef "})

WHERE NOT (a) -[*4]-({cls:" IfcOpeningElement "})

RETURN ROUND(100*a.XDim)/100 AS Width ,

ROUND(100*a.YDim)/100 AS Length ,

COLLECT(LABELS(a))

Code Listing 4.3: Match and return the rounded roof Dimensions while filtering out openings

4.1. Anaylsis of Properties 30

From the table the size of roof during evolving process are shown clearly (from 14m×28m

in LOD 100 to 16m×32m in LOD 300). The figures are rounded to avoid numerous digits

owing to high accuracy.

4.1.2 Retrieve Height of the Roof

Height and the Storeys of the roofs are in are defined in class IfcBuildingStorey, one under

property Elevation and the other under property LongName. Because all the roofs have the

same height and level, the results are displayed in one line.

Figure 4.2: Result Height and Storey Query

MATCH(a{cls:" IfcBuildingStorey "})

RETURN a.Elevation AS Height , a.LongName AS Storey ,

COLLECT(LABELS(a)) AS LOD

Code Listing 4.4: Match and return the roof Elevation and storey Name

4.1.3 Retrieve Layers and Thickness of the Roof

Class that contain roof layer thickness are called IfcMaterialLayer. On the other hand, Ifc-

Material defines its Material. Because each layer thickness and material information are

defined separately, a direct retrieval of these two classes may cause misunderstanding. How-

ever, in graph databases IfcMaterialLayer and its associate IfcMaterial are linked together.

By searching for pattern IfcMaterialLayer -IfcMaterial instead of nodes can clearly organize

the result and avoid chaos. This is more convenient than looking for primary keys of tables in

relational databases to sort out wrong information. Following is illustration of relationships

between thickness data and material data in three LODs, which is led by IfcMaterialLayerSet

of each LOD.

4.1. Anaylsis of Properties 31

Figure 4.3: Relationships of Layer Thickness and Material

It demonstrates the capability of graph databases that not only can it filter information by

keywords, but more importantly, by patterns. This is realized by utilizing object-oriented

data and objectified relationship in IFC data, as well as advantages of graph databases of

processing relationships.

Figure 4.4: Result Layer Material and Thickness Query

MATCH(a{cls:" IfcMaterialLayer "}) -[]-(b{cls:" IfcMaterial "})

RETURN a.LayerThickness AS LayerThickness ,

b.Name AS Materials ,

LABELS(a) AS LOD ORDER BY LABELS(a)

Code Listing 4.5: Match and return the Material and its Thickness of Roofs in different LODs

4.1. Anaylsis of Properties 32

The materials and their associate thickness are listed from low LOD to high LOD. This

demonstrates the evolution of roof materials directly. In the beginning, roof material is not

assigned and thus Vorgabe - Dach is shown. But the rough thickness (0.4m) is indicated. In

LOD 200, essential layers are defined as skin, insulation and structure, but the specific mate-

rials are still unknown. Finally in the LOD 300 stage, specific materials are named including

their detailed thickness. The increase of decimal digits also indicates higher accuracy and

maturity.

This can be combined by total thickness query. Unlike layer thickness, total thickness is

stored in IfcExtrudedAreaSolid. Therefore it needs to be matched separately too.

Figure 4.5: Result Layer and total Thickness Query

MATCH(c{cls:" IfcMaterialLayer "}) -[]-(d{cls:" IfcMaterial "}),

(a{cls:" IfcRectangleProfileDef "}),

(a) -[]-(b{cls:" IfcExtrudedAreaSolid "})

WHERE NOT (a) -[*4]-({cls:" IfcOpeningElement "})

RETURN c.LayerThickness AS LayerThickness ,

d.Name AS Materials ,

b.Depth AS TotalThickness ,

LABELS(a) ORDER BY LABELS(a)

Code Listing 4.6: Match and return the Material, its Thickness and total Thickness of Roofs in

different LODs

4.1. Anaylsis of Properties 33

4.1.4 Retrieve Geometry and Number of Opeinings

From the first section the method of separating roofs from openings is introduced to display

only the geometry of the roofs. Inversely geometry of openings exclusively can be listed by

changing the filter from where not to where.

Figure 4.6: Result Openings Geometry Query

MATCH(a{cls:" IfcRectangleProfileDef "})

WHERE (a) -[*4]-({cls:" IfcOpeningElement "})

RETURN ROUND(100*a.XDim)/100 AS Width ,

ROUND(100*a.YDim)/100 AS Length ,

COLLECT(LABELS(a)) AS LOD

Code Listing 4.7: Match and return the rounded Opening Dimensions

In this example, there are two types of openings in LOD 300 - shafts and windows. Unlike

windows, shafts are just a simple opening and have no framing, lining or glazing. In IFC, all

openings, including windows and shafts, are defined by IfcOpeningElement.

Figure 4.7: Difference Shaft and Window

A complex structure may include numerous windows and openings. It is also useful to count

the number of them. This can be done in a simpler way using the assumption that number of

4.2. Reliability Check of the LOD-Model 34

openings = number of shaft + number of windows. Firstly number of all IfcOpeningElements

and IfcWindows will be detected, then minus number of openings by number of windows to

get number of shafts. Eventually can other kinds of openings like doors also be considered

with the help of Ifc-elements.

Figure 4.8: Result Number of Openings Query

MATCH

(a:LOD300{cls:" IfcOpeningElement "}) ,(b:LOD300{cls:" IfcWindow "})

RETURN COUNT(distinct a)-COUNT(distinct b) AS Shaft ,

COUNT(distinct b) AS Windows , labels(a) AS LOD

Code Listing 4.8: Match and return the Number of different Opening Types

4.2 Reliability Check of the LOD-Model

LOD defines the essential information content and its degree of clarity. Information content

can contain two types of information: a) the element’s geometry and b) associated numeric

and/or textual attributes(BIMForum, 2017). Besides general geometry properties, an element

can contain many other specific information points. For example a door might contain infor-

mation about whether it is smoke-stop, whether it is self-closing, its opening direction and

its manufacturer. These properties are required particularly according to different demands

of projects or design individuals. Therefore it takes more time and effort to track and exam-

ine whether the right property set is defined in the right design stage. An absent attribute

may cause trouble when it is needed while an early defined attribute may be unreliable. To

identify these possible problems, the capability of graph database can be tested.

4.2.1 Instance of Roof Information Specification in Different LOD

First, to fully demonstrate the practicability of a property set query using graph databases in

more pragmatic conditions, a realistic property requirement standard needs to be set. Some

institutions have created matrices and tables to manage BIM data to specifically define what

objects and properties should be in a model that is modelled on a certain LOD. However,

few classification systems have specific definitions when it comes to detailed descriptions of

elements like roofs, doors and walls. One example is the ”BI-EG” standard (Build Informed-

4.2. Reliability Check of the LOD-Model 35

Entwicklungsgrade which is in accordance with the LOD specification by BIMForum) created

by Austrian BIM company BIM Informed GmbH.

Figure 4.9: Property Specification of Roof in different LOD by Bim Informed GmbH(Hörtnagl, 2017)

According to interpretation of BIMFroum, LOD 100 elements are not geometric representa-

tions and all information must be considered approximate. Therefore there are no require-

ments in LOD 100. Meanwhile because major characteristics of components in LOD 200

models allow quick takeoffs, like their thickness and width, theses quantities should be ob-

tained(Bloomberg et al., 2012). Therefore geometric and basic textual information can be

retrieved in LOD 200. A LOD 300 model can be used for analysis such as: energy perfor-

mance, clash and cost and specific takeoffs. This requires more well-defined characteristics

about dfferent components(Bloomberg et al., 2012). Thus, more attached specifications are

required in LOD 300, like thermal performance and fire rating.

According to BIMForum, an LOD 400 element is modeled in sufficient detail and sufficient

for fabrication, assembly and installation, which are generally not included in digital models

in common BIM projects. Finally, LOD 500 is a field verified representation and it is not

defined in the specification or in the BIM Informed requirements. Therefore the property set

check of BIM models is conducted within LOD 100, 200 and 300.

4.2. Reliability Check of the LOD-Model 36

LODs BIMForum fundamental LOD
Definitions

Bim Informed Roof Informa-
tion Specification

LOD100 The Model Element may be
graphically represented in the
Model with a symbol or other
generic representation, but
does not satisfy the require-
ments for LOD 200. Infor-
mation related to the Model
Element (i.e. cost per square
foot, tonnage of HVAC, etc.)
can be derived from other
Model Elements.

none

LOD200 The Model Element is graph-
ically represented within the
Model as a generic system,
object, or assembly with ap-
proximate quantities, size,
shape, location, and orienta-
tion. Non-graphic informa-
tion may also be attached to
the Model Element.

phase, external/internal,
number of storey, room
boundaries/not room bound-
aries, total thickness, load
bearing/not load bearing,
area/volume, projected area

LOD300 The Model Element is graph-
ically represented within the
Model as a specific system,
object or assembly in terms of
quantity, size, shape, location,
and orientation. Non-graphic
information may also be at-
tached to the Model Element.

material layer thickness, fire
rating, pitched angle, thermal
transmittance, thermal resis-
tance, thermal mass, acoustic
rating

Table 4.1: Comparison between BIMForum LOD Specififation and Bim Informed Roof Definition

4.2.2 Definition of Property Set in IFC

Different design individuals have different protocols to point out those specific numeric/tex-

tual attributes. In general, these attributes are entered in properties in the form of comments,

descriptions or parameters. However, some mark them in the element name instead. Here it

is assumed that attributes like thermal transmittance are stored in the element property.

4.2. Reliability Check of the LOD-Model 37

Figure 4.10: Example Attribute in Type Name and Description

The top part of Figure 4.10 is an example of storing sound insulation information in the

name of the object, the bottom is a demonstration of marking it in the description row. Both

methods are widely adopted in the BIM industry.

To query these attributes, it is firstly essential to know how they are defined. In IFC data,

specific properties like thermal performance and, fire rating are described mainly by IfcProp-

ertySingleValue, which is aggregated within a property tree in the container class IfcProp-

ertySets. With the help of the objectified relationship IfcRelDefinesByProperties property

sets are assigned to relevant objects such as slabs, roofs or windows. Elements can be repre-

sented by a set of predefined property definitions. According to buildingSMART definition,

property sets can be either directly assigned to occurrence objects using this relationship or

assigned to an object type and, via that type, to occurrence objects. It can also be assigned

to multiple objects using the 1-to-N IfcRelDefinesByProperties.

4.2. Reliability Check of the LOD-Model 38

Figure 4.11: Relationship between Properties and Object in IFC

The node number in IfcRelDefinesByProperties stands for the particular element and its
relevant property set. The definition of IfcPropertySet contains its associate single values.

Figure 4.12: Example of Relationship between Properties and Object in IFC

4.2. Reliability Check of the LOD-Model 39

One exception is the thickness and material. Both total thickness and layer thickness and

material are contained in IfcMaterialLayerSet. It shares the same data structure as property

set. IfcMaterialLayer defines the material and its thickness. Therefore if IfcMaterialLayerSet

is detected, relevant thickness information is indicated.

Figure 4.13: Relationship between Material Layers and Object in IFC

4.2.3 Retrieve Property Set

By matching single property values and filtering them by names desired property can be

retrieved. For example, if the thermal transmittance of the roof slab must be checked, every

node containing ”ThermalTransmittance” in its name is retrieved.

Figure 4.14: Result Thermal Transmittance Query

4.2. Reliability Check of the LOD-Model 40

MATCH (a{cls:’IfcPropertySingleValue ’})

WHERE a.Name =~ ’ThermalTransmittance .*’

RETURN a

Code Listing 4.9: Match and return Properties which are relevant to thermal Transmittance

The one green node indicates that thermal transmittance is defined only in LOD 300. There

is no definition of thermal mass and thermal resistance, therefore, only one node is called

ThermalTransmittance.

To determine all the numeric and textural properties and the thickness information, all the

property single values and material layer sets can be queried. Moreover, IfcPropertySets are

also needed to indicate what these values belong to.

Figure 4.15: Result Property Set, Property single Value and Material Layer Set Query

MATCH

(a{cls:’IfcPropertySingleValue ’}) ,(b{cls:’IfcPropertySet ’}),

(c{cls:" IfcMaterialLayerSet "})

RETURN a,b,c

Code Listing 4.10: Match and return Property Sets and Material Layer Sets

The nodes at the left and right of each LOD stand for property sets. In LOD 100 and 200,

there are property sets for slab, roof, building and building storey. The window set is first

created in LOD 300. Because there is only one material layer set in each LOD, it can be

easily queried without distinguishing which object it belongs to. In a building with many

4.2. Reliability Check of the LOD-Model 41

elements there might be many kinds of materials from different elements, this can also be

easily filtered after the layer set name.

The graph displays all the existing attributes. The evolution and development of property

nodes can be easily observed. The LOD 100 and 200 model contains the same amount of

properties since once the model is created, basic and essential items like geometry are auto-

matically generated. The number of nodes increase in LOD 300 because of newly introduced

attributes and window elements. However, these nodes do not correspond to required prop-

erties and need to be matched using roof information specification.

4.2.4 Match Property Sets

Compared to evaluating a model and assigning a level to it, it makes more sense to check

whether the minimum required information is achieved in a model in an LOD level. There

needs to be a minimum amount of information in a model to be able to use it for a task, more

exactly, the real message modellers that give to team members is about the level of reliability

of the data(Van Berlo & Bomhof, 2014). The goal of analysing property sets is to develop a

method or protocol that evaluates the information that should be and does not need to be in

a model to perform a specific task. On the other hand to fulfil the function of collaboration

facilitation between various project participants, it is essential to know the level of reliability

of the model before it is delivered to the next stage or to the next team. Furthermore, it is

also important to distinguish in which stage these properties are needed.

The next step is to distinguish the classified aim of the query, what properties are missing,

which LOD they missing since, and what properties are defined in advance. The following

types of properties concern presence sequence and reliability:

4.2. Reliability Check of the LOD-Model 42

Property Type Subtype Reliability

Set in the required LOD required in LOD
100/200/300

reliable

Set in advance before
the required LOD

required in LOD 200,
defined in LOD100/ re-
quired in LOD 300, de-
fined in LOD 200/ re-
quired in LOD 300, de-
fined in LOD 100

unreliable, can be taken
as approximate or pre-
defined specification

Absent from the re-
quired LOD but appear
later

Missing in LOD 200,
defined in LOD 300/
Missing in LOD 100,
defined in LOD 200/
Missing in LOD 100,
defined in LOD 300

undeliverable, required
information missing,
but is reliable once
made up

Absent since required
LOD until the end

Missing since LOD
100/200/300

undeliverable, required
information missing

Table 4.2: Property type based on reliability and sequence

Since there are various property types and levels of reliability, it is complex and difficult to

understand how to group and classify attributes with rows and columns in tables, as relational

dabases do. Graph databases offers an explicit and clear way to illustrate and distinguish

them by patterns and colours.

The whole workflow is as follows:

4.2. Reliability Check of the LOD-Model 43

Figure 4.16: Workflow Analysing Property Set

1. Correspondently merge the required property nodes in required LODs.

This step aims to identify missing properties in their required development stage. The nodes

that are absent will be labelled as AbsentInLOD100/200/300. Different labels are assigned

different colours, which can facilitate the finding of missing property nodes.

MERGE (a:LOD300{cls: "IfcPropertySingleValue",

Name:" LOD300 Property" })

ON CREATE SET a:AbsentInLOD300

Code Listing 4.11: Example of creating Property Node and setting the AbsentInLODXXX label if

it does not exist in the required LOD

2. Correspondently merge the required property nodes from higher LODs in lower LODs.

The goal of this step is to find out missing properties by checking for their existence. The LOD

is accumulative and should progress from LOD 100 at conceptual design through completion

of construction(Bloomberg et al., 2012). Therefore properties with lower LODs should be

merged in all the higher LODs, because these properties are certainly a requirement of higher

4.2. Reliability Check of the LOD-Model 44

LODs and can be absent. If they do not exist, then the property node should be created with

the same name but labeled them with AbsentInLOD 100/200/300.

MERGE (a:LOD300{cls: "IfcPropertySingleValue",

Name:" LOD200 Property" })

ON CREATE SET a:AbsentInLOD300

Code Listing 4.12: Example of creating a Property Node and setting the AbsentInLODXXX label

if it does not exist in the next LOD either

3. Correspondently match merge the required property nodes from higher LODs in lower

LODs.

The goal of this step is to identify early defined properties by matching LODs. Properties

from higher LODs should be checked in all lower LODs. If they are created earlier than

demanded, they are marked with the label PredefinedforLOD100/200/300.

MATCH (a:LOD200{cls: "IfcPropertySingleValue",

Name:" LOD300 Property ")

SET a:PredefinedforLOD300

Code Listing 4.13: Example of setting PredefinedforLODXXX Label on the Property Node that

exists before the required LOD

4. Link the properties with the same name but different LODs together using the DevelopedTo

relationship in order to show the inheritance relationship of all the properties, more exactly,

both the existing properties and the merged properties. In this way, patterns about the

evolution of property sets are generated for further queries.

MATCH (a:LOD200{cls: "IfcPropertySingleValue",

(b:LOD300{cls:" IfcPropertySingleValue "})

WHERE a <> b AND a.Name = b.Name

MERGE(a)-[r:DevelopsTo]-(b)

RETURN a,r,b

Code Listing 4.14: Example of connecting same Properties in different LODs with DevelopsTo

Relationship

5. Read the graph and by distinguishing different patterns and colors, identify which prop-

erties are temporarily or always absent, which properties are created on time and how they

change.

4.2. Reliability Check of the LOD-Model 45

Figure 4.17: Final Result Property Set Query

4.2.5 Analyse Property Sets

In this graph, different patterns indicate different types of properties.

1. Set in the required LODs.

Figure 4.18: Pattern Type 1

4.2. Reliability Check of the LOD-Model 46

The node colour of LOD300 and LOD200 indicate properties of type 1, which are set in the

required LOD. The DevelopedTo connection shows an inheritance relationship.

2. Set in advanced before the required LOD.

Figure 4.19: Pattern Type 2

The colours of the label PredefinedforLOD300 (purple) and PredefinedforLOD100 (yellow)

imply that these properties are defined earlier as demanded. The first LOD300/LOD200

colour on the right shows in which LOD are they demanded.

3. Absent from the required LOD but defined later.

Figure 4.20: Pattern Type 3

This indicates properties that should be created in the grey LOD (colour for label AbsentIn-

LOD200) but are absent until the green LOD (LOD300 colour).

4. Absent since the required LOD until the end.

4.2. Reliability Check of the LOD-Model 47

Figure 4.21: Pattern Type 4

This indicates properties that should be created in the grey LOD(colour for label AbsentIn-

LOD200) on the left but that are absent until the red node (colour for label AbsentInLOD300)

on the right. In the same way, the red node below implies a missing property in LOD 300.

48

Chapter 5

Model Checking with Graph

Database

Besides checking the existence of data and the content of data about LOD, to utilize BIM it

is also important that the starting point for downstream analysis is consistent. Furthermore,

since BIM models consist of an amalgamation of models from different disciplines which

may work in tandem, it is important to establish a well-coordinated approach. Hence, the

predecessor of most of the objectives is the validation of the models that will be used analysis.

Models should be consistent with regard to model structure, relationships and use of object

classes/types and they should be checked for duplicates and intersections(Statsbygg, 2017).

5.1 BIM-Based Model Checking

BIM-based model checking is one of the benefits in using BIM. Comparing with traditional

design method, it is much more convenient to spot flaws in BIM models. BIM based model

checking involves compliance checking to individual BIM requirements and design coordinat-

ing. More exactly, it is not only about clash detections, but also about exploring its potential

in solving new problems against various rule sets(Hjelseth, 2015). Rule-sets are collections

of rules within one topic, such as BIM-validation (clash detection), space validation, model

version comparison, comparing the structural versus architectural model and deficiency of

components(Statsbygg, 2017). In commercial software Solibri, clash detection and deficiency

detection are two main features of model checking. A clash occurs when elements of different

systems occupy the same space or area. Deficiency detection is aimed to search for compo-

nents and materials missing from the model. These two issues are mainly discussed in this

chapter.

5.2. Analysis of Structural Consistency 49

5.2 Analysis of Structural Consistency

Neo4j can also be applied to check the the deficiency of model structure. There are various

rules defining deficiency issue. For example, columns should touch slabs, roofs, columns,

or walls above or below themselves. In some cases, like in an ordinary frame structure, in

which structural elements are spread uniformly, the vertical bearing structure is designed to

be continuous from the roof to the ground. If the structure has numerous columns, it can

occur that some are forgotten which will lead to errors when doing structural calculations.

In Neo4j, the consistency of columns can be verified by querying the origin point of the

columns. In short, if columns share same x-, y-coordinates and different, but yet continuous

z-coordinates, it indicates that these columns are consecutive. Otherwise, the load-bearing

path of the columns might be not continuous.

5.2.1 Retrieve Column Consistency List

First, a two-storey building with discontinuous columns is modelled. One column in the front

corner is missing. The goal of the query is to generate a list regarding the column’ position

and storey number, which facilitates the finding of unusual information. Moreover, a graph

representing the sequence and hierarchy of columns is helpful in locating missing elements.

Figure 5.1: Building model for column consistency check

The coordinate of a column is given by IfcCartesianPoint which is associated with the object

IfcColumn. With the help of the IFC objectified relationship IfcRelContainedInSpatialStruc-

ture, the column is then contained in the relevant IfcBuildingStorey. Therefore by querying

this pattern, both coordinate and storey number of a certain column can be found.

5.2. Analysis of Structural Consistency 50

Second, since columns in the same position will have the same x-, y-coordinates but different z-

coordinates, it is essential to group them by their distinct x- and y-coordinates while collecting

z-coordinates and storeys to categorize columns in the same place together. Then by counting

column in the same location missing columns can be inferred.

Figure 5.2: Result Column List Query

MATCH (d{cls:" IfcBuildingStorey "}) -[]-

(c{cls:" IfcRelContainedInSpatialStructure "}) -[]-

(b{cls:" IfcColumn "}) -[*3]-(a{cls:" IfcCartesianPoint "})

WITH [[a.CoordinateX],[a.CoordinateY]] AS CoordinateXY ,

[a.CoordinateZ] AS CoordinateZ ,[d.LongName] AS Storey

RETURN distinct CoordinateXY , collect(CoordinateZ)

AS CoordinateZ , collect(Storey) AS Storey ,

COUNT (distinct(CoordinateZ)) AS Number

ORDER BY COUNT (distinct(CoordinateZ))

Code Listing 5.1: Match and return column’ x-, y- and z-Coordinates and Storey Information

From the list it is clear that around position (-13.26,7.05) only one column exist on the first

storey while in other positions columns on both first storey and ground floor exist. The

numbers, which are ordered in ascending order, indicate the conclusion. This list can be

expanded to query the size, material and other properties too.

Figure 5.3: Column Consistency List with Properties

This is achieved by adding additional queries on desired properties.

5.2. Analysis of Structural Consistency 51

MATCH (d{cls:" IfcBuildingStorey "}) -[]-

(c{cls:" IfcRelContainedInSpatialStructure "}) -[]-

(b{cls:" IfcColumn "}) -[*3]-(a{cls:" IfcCartesianPoint "})

WITH ...b.ObjectType AS Properties ...

RETURN ... collect(Properties) AS Properties , ...

Code Listing 5.2: Match and return Columns’ x-, y- and z-Coordinates, Storey Information and

Properties

5.2.2 Retrieve Column Consistency Graph

To demonstrate the advantage of graph database in displaying complicated information in a

clear and easily understandable way, Neo4j can generate graph about relationships of columns.

However, because in IFC data, there is no explicit spatial definition about the continuity or

intersection relationship between different shapes, which are not attached to spaces or other

entities, such a definition needs to be created first.

The position and elevation of column are not directly described in IfcColumn. Instead, they

are illustrated through relationship with other associate classes. Thus, the first step is to

create labels about columns’ storey number to directly distinguish them in different floors.

This is done by using the set:label function on relevant Cartesian origin Cartesian points and

IfcColumns themselves in Cypher.

Figure 5.4: Setting ”Ebene 1” labels on columns on the first floor

MATCH (d{cls:" IfcBuildingStorey "}) -[]-

(c{cls:" IfcRelContainedInSpatialStructure "}) -[]-

(b{cls:" IfcColumn "}) -[*3]-(a\{cls:" IfcCartesianPoint "})

WHERE d.LongName =" Ebene 1"

5.2. Analysis of Structural Consistency 52

SET a:Ebene1

RETURN a

Code Listing 5.3: Match and set Storey Information on Columns as Labels

After adding storey information labels on all the columns and location nodes, the continuity or

intersection relationship between them can be depicted by connecting columns with Cartesian

points of the same x- and y-coordinate but different elevations. In this process the label and

coordinate of these Cartesian points work as an index to classify and filter columns.

Figure 5.5: Result Merging Column Continuity Relationship

MATCH (a:Ebene0)

MATCH (b:Ebene1)

MATCH (ccls:" IfcBuildingStorey ") -[]-

(cls:" IfcRelContainedInSpatialStructure ") -[]-

(ecls:" IfcColumn ") -[*3]-(acls:" IfcCartesianPoint ")

MATCH (dcls:" IfcBuildingStorey ") -[]-

(cls:" IfcRelContainedInSpatialStructure ") -[]-

(fcls:" IfcColumn ") -[*3]-(bcls:" IfcCartesianPoint ")

MATCH (cls:" IfcBuildingStorey ") -[]-

(cls:" IfcRelContainedInSpatialStructure ") -[]-

(gcls:" IfcColumn ") -[*3]-(cls:" IfcCartesianPoint ")

WHERE a.CoordinateX = b.CoordinateX

AND a.CoordinateY = b.CoordinateY

AND a.CoordinateZ <> b.CoordinateZ

MERGE (e) -[: Structure]->(f)

RETURN e,f,g

Code Listing 5.4: Connecting Columns that have the same x- and y-Coordinates but different

z-Coordinate with the Structure relationship

5.3. Check Intersection Between Elements 53

Figure 5.6: Building model and continuity relationship of columns

The connection between different nodes indicates continuous vertical bearing structure. With

the ground floor label in purple and the first floor label in yellow, it is clear that the lonely

yellow point stands for an unattached column below, which can be problematic in a framework

structure. The utilization of the graph can broaden into checking the load-bearing path of

the model structure and its continuity. For example the slab or eventually the beams can be

included in the path.

5.3 Check Intersection Between Elements

Checking intersections, also known as clash detections, are aimed at resolving potential issues

before construction on site and thus lowering down costs and time. Therefore, researching the

capability of graph database in conducting clash detections can facilitate a good coordination

in BIM. According to not only the Statsbygg BIM manual mentioned above, but also the

Rijksgebouwendienst Building Information Model Standard from the Ministry of the Interior

and Kingdom Relations of the Netherlands(Rgd BIM Norm), doubling and intersection are

important part of general requirements of BIM extracts too. Doubling and intersection can

occur due to drafting errors when multiple copies of a BIM object are modelled at the same

location or from discipline specific detailing of building elements(Rijksgebouwendienst, 2012).

They are generally not permitted and need to be examined before the model is delivered to

other individuals.

5.3. Check Intersection Between Elements 54

5.3.1 Check Intersection Between the Same Line-Based Elements

There are various rules and standards regarding intersection definition. For walls in Revit, or

more generally for the same building elements, it is usually not problematic if they touch each

other, since in Revit they are automatically joined together in the contact area. However,

if walls are collinear and overlap each other, it indicates that they are modelled in the same

place twice and will be calculated twice. Therefore the decision processes are different for

intersection between different elements and between the same elements. Within the same

elements, overlapping needs to be specifically categorized besides point contact.

5.3.1.1 Retrieve Coordinate of the Wall

The location of the walls are stored in relevant IFC data. More specifically, walls are ex-

changed by an IFC2× file as instances of IfcWall or IfcWallStandardCase. Here since walls

have single material thickness they are defined by IfcWallStandardCase, which gives the body

and axis information. Because little explicit shape contact information, which is not attached

to spaces or other entities, is defined in IFC, retrieving spatial intersection is sophisticated

without an external geometry engine. Such engines can create geometry and interpret the

form with their own algorithm. The interpretations of the engine can possibly be reimported

into graph database for further queries. However to reduce the complexity of the task and

focus on displaying the capability of Neo4j, the task is concentrated into checking the wall

axis line segment intersections with only graph databases.

The origin of the wall axis lies in a Cartesian point, which has the following connection with

the wall: IfcWallStandardCase - IfcLocalPlacement - IfcAxis2Placement3D - IfcCartesian-

Point. The end point is not given. To find out the end point, the next step is to discover

the axis. The wall axis,which is given by an instance of IfcShapeRepresentation with the

following conventions as a straight wall(Liebich, 2009):

IfcShapeRepresentation.RepresentationIdentifier = ”Axis”

IfcShapeRepresentation.RepresentationType = ”Curve2D”

The geometric representation item is indicated by IfcShapeRepresentation. For straight walls

in this model, the item is an IfcPolyline with exactly two points. One is (0, 0) and the other

is (x, 0)(x is a placeholder for the x-coordinate), indicating the length of the wall.

Secondly, the directions of the IfcPolylines are given by class IfcDirection with relation-

ship IfcWallStandardcase - IfcLocalPlacement - IfcAxis2Placement3D - IfcDirection with

the wall. In this case the walls go along the y- axis and therefore the direction vector is

IfcDirection((0., 1., 0.)). For the nonorthogonal axes, the direction is represented by a vector

(x., y., 0.) with x and y, as coordinate placeholder, if the elevation of the wall axis remains

the same.

5.3. Check Intersection Between Elements 55

With the original point, length and direction of the wall, the coordinate of the end point can

be inferred. If that the origin coordinate is (a, b, c), the length is x and direction vector is

(d, e, 0), the coordinate of the end point is:

(a+ x× cos(α), b+ x× sin(α), c)

with cos(α) =
d√

d2 + e2
, sin(α) =

e√
d2 + e2

Figure 5.7: End point calculation of wall axis

MATCH (a{cls:" IfcCartesianPoint "}) -[]-

(e{cls:" IfcAxis2Placement3D "}) -[]-({cls:" IfcLocalPlacement "})

-[]-(i{cls:" IfcWallStandardCase "}) -[]-

({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation",RepresentationType :" Curve2D",

RepresentationIdentifier: "Axis "}) -[]-({cls:" IfcPolyline "})

-[]-(b{cls:" IfcCartesianPoint "}),

(e{cls:" IfcAxis2Placement3D "}) -[]-(f{cls:" IfcDirection "}),

(c{cls:" IfcCartesianPoint "}) -[]-(g{cls:" IfcAxis2Placement3D "})

-[]-({cls:" IfcLocalPlacement "}) -[]-

(l{cls:" IfcWallStandardCase "}) -[]-

({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation",RepresentationType :" Curve2D",

RepresentationIdentifier :"Axis "}) -[]-({cls:" IfcPolyline "}) -[]-

(d{cls:" IfcCartesianPoint "}),

(g{cls:" IfcAxis2Placement3D "}) -[]-(h{cls:" IfcDirection "})

WHERE (b.CoordinateX <>0 OR b.CoordinateY <>0)

5.3. Check Intersection Between Elements 56

AND (d.CoordinateX <>0 OR d.CoordinateY <>0)

AND f.nid <>19 AND h.nid <>19 AND i.Name <> l.Name

WITH a.CoordinateX + b.CoordinateX*f.CoordinateX/

sqrt(f.CoordinateX \^{}2+f.CoordinateY \^{}2) as AS ,

a.CoordinateX + b.CoordinateX*f.CoordinateX/

sqrt(f.CoordinateX \^{}2+f.CoordinateY \^{}2) as AS ,

a.CoordinateY + b.CoordinateX*f.CoordinateY/

sqrt(f.CoordinateX \^{}2+f.CoordinateY \^{}2) AS y2 ,

a.CoordinateX AS x1,a.CoordinateY AS y1,

c.CoordinateX + d.CoordinateX*h.CoordinateX/

sqrt(h.CoordinateX \^{}2+h.CoordinateY \^{}2) AS x4 ,

c.CoordinateY+d.CoordinateX*h.CoordinateY/

sqrt(h.CoordinateX \^{}2+h.CoordinateY \^{}2) AS y4 ,

c.CoordinateX AS x3,c.CoordinateY AS y3,

i.Name AS Wall1 , l.Name AS Wall2 ,

Code Listing 5.5: Match Wall origin Coordinates, Length and Axis Direction, calculate Coordinates

of the two end Points of Wall Axis

In the syntax, the start point of the first wall axis is set as (x1, y1) and end point as (x2, y2),

assuming that the z-coordinate is constant. In the same way the second wall axis is defined

as (x3, y3) and (x4, y4).

5.3.1.2 Line Segment Intersection Detection

With the coordinates of two wall axis (or other equivalent linebased building elements), the

task turns into a geometry problem detecting intersection of two line segments in the xy

plane.

Firstly, it is to make sure that bounding boxes of both lines need to overlap if the lines should

intersect. Bounding boxes are boxes around line segments such that endpoints of both line

segments are at the corner of the boxes and edges of the boxes are in parallel to the coordinate

axes. In logic, overlapping bounding box is necessary to intersection of line segments.

bounding box overlap→ line segments intersect

5.3. Check Intersection Between Elements 57

Figure 5.8: Bounding boxes of two Lines(Thoma, 2013)

This is done by comparing the x coordinate and y coordinate of both line segments. If any

of the following condition is met, it is not possible for the lines to meet:

1. The maximal x value of line A is smaller than minimal x value of line B

2. The maximal x value of line B is smaller than minimal x value of line A

3. The maximal y value of line A is smaller than minimal y value of line B

4. The maximal y value of line B is smaller than minimal y value of line A

Figure 5.9: Left: condition 1, Right: condition 2

3. The maximal y value of line A is smaller than minimal y value of line B

4. The maximal y value of line B is smaller than minimal y value of line A

5.3. Check Intersection Between Elements 58

Figure 5.10: Left: condition 3, Right: condition 4

Not meeting all these four criteria is the necessary condition of intersection, but it does not

definitely lead to intersection.

Secondly, two lines need to “cross” each other if they intersect. This is indicated by the cross

product of both lines. If
−→
CA ×

−−→
CD and

−−→
CB ×

−−→
CD have the opposite sign, then A and B

should be on the different sides of line CD. Therefore (
−→
CA ×

−−→
CD) · (

−−→
CB ×

−−→
CD) < 0. One

special condition is that A or B is on line CD. In this case line AB and CD also intersect and

(
−→
CA ×

−−→
CD) · (

−−→
CB ×

−−→
CD) = 0. In a word (

−→
CA ×

−−→
CD) · (

−−→
CB ×

−−→
CD) ≤ 0 if they intersect or

are collinear. Vice versa, (
−−→
AD ×

−−→
AB) · (

−→
AC ×

−−→
AB) ≤ 0 if C, D “cross” line segment AB or

on line AB. In combination with the condition that the bounding box of two lines segments

overlap, two line segments must intersect or overlap.

Figure 5.11: Situation when A, B ”cross” line CD

5.3. Check Intersection Between Elements 59

Vector
−→
CA is (x1 − x3, y1 − y3) while vector

−−→
CD is (x4 − x3, y4 − y3). For

−→
CA and

−−→
CD ∈ R2,

the value of their cross product:
−→
CA×

−−→
CD → R can be defined as :

(
−→
CA×

−−→
CD) = det(

−→
CA,
−−→
CD) = det

[
x1 − x3 x4 − x3
y1 − y3 y4 − y3

]

= (x1 − x3) · (y4 − y3)–(x4 − x3) · (y1 − y3).

Similarly value of
−−→
CB ×

−−→
CD equals

(x2 − x3) · (y4 − y3)− (y2 − y3) · (x4 − x3),

−−→
AD ×

−−→
AB equals

(x4 − x1) · (y2 − y1)− (y4 − y1) · (x2 − x1),
−→
AC ×

−−→
AB equals

(x3 − x1) · (y2 − y1)− (y3 − y1) · (x2 − x1).

If anyone in (
−→
CA×

−−→
CD) · (

−−→
CB ×

−−→
CD) or (

−−→
AD×

−−→
AB) · (

−→
AC ×

−−→
AB) is positive, it implies that

at least one line dose not ”cross” the other one. Thus two line segments don’t intersect. In

logic the decision can be represented as:

Lines not ”cross” each other → Line segments do not intersect

(c.CoordinateX + d.CoordinateX*h.CoordinateX/

sqrt(h.CoordinateX \^{}2+h.CoordinateY \^{}2)

- a.CoordinateX)*(a.CoordinateY +

b.CoordinateX*f.CoordinateY/sqrt(f.CoordinateX \^{}2

+ f.CoordinateY \^{}2)- a.CoordinateY) -

(c.CoordinateY+d.CoordinateX*h.CoordinateY/

sqrt(h.CoordinateX \^{}2 + h.CoordinateY \^{}2) -

a.CoordinateY)*(a.CoordinateX + b.CoordinateX*f.CoordinateX/

sqrt(f.CoordinateX \^{}2 + f.CoordinateY \^{}2) -

a.CoordinateX) AS num1 ,

(c.CoordinateX - a.CoordinateX)*(a.CoordinateY +

b.CoordinateX*f.CoordinateY/sqrt(f.CoordinateX \^{}2 +

f.CoordinateY \^{}2)

- a.CoordinateY) - (c.CoordinateY - a.CoordinateY)

*(a.CoordinateX + b.CoordinateX*f.CoordinateX/

sqrt(f.CoordinateX \^{}2 + f.CoordinateY \^{}2) -

a.CoordinateX) AS num2 ,

5.3. Check Intersection Between Elements 60

(a.CoordinateX - c.CoordinateX)*(c.CoordinateY +

d.CoordinateX*

h.CoordinateY/sqrt(h.CoordinateX \^{}2 + h.CoordinateY \^{}2) -

c.CoordinateY) - (a.CoordinateY - c.CoordinateY)*

(c.CoordinateX + d.CoordinateX*h.CoordinateX/

sqrt(h.CoordinateX \^{}2 + h.CoordinateY \^{}2) -

c.CoordinateX) AS num3 ,

(a.CoordinateX + b.CoordinateX*f.CoordinateX/

sqrt(f.CoordinateX \^{}2 + f.CoordinateY \^{}2) -

c.CoordinateX)*(c.CoordinateY + d.CoordinateX*h.CoordinateY/

sqrt(h.CoordinateX \^{}2 + h.CoordinateY \^{}2) -

c.CoordinateY) -

(a.CoordinateY + b.CoordinateX*f.CoordinateY/

sqrt(f.CoordinateX \^{}2 + f.CoordinateY \^{}2) -

c.CoordinateY)*

(c.CoordinateX + d.CoordinateX*h.CoordinateX/

sqrt(h.CoordinateX \^{}2 + h.CoordinateY \^{}2) -

c.CoordinateX) AS num4

UNWIND [x1 ,x2] as line1x UNWIND [x3 ,x4] as line2x

UNWIND [y1 ,y2] as line1y UNWIND [y3 ,y4] as line2y

Code Listing 5.6: Calculate Values of four cross Products with end Point Coordinates of Wall Axis,

which are stored in Rows in the end

Value of
−→
CA×

−−→
CD,

−−→
CB×

−−→
CD,

−−→
AD×

−−→
AB and

−→
AC×

−−→
AB are defined as num1, num2, num3 and

num4. X coordinates of line AB and CD are stored in row line1x and line2x. Y coordinates

of line AB and CD are stored in row line1y and line2y.

The general algorithm of the syntax is, firstly check if the bounding boxes of two line segments

overlap. When not, it is not possible for the lines to meet. If yes, calculate the product of

cross product pairs
−→
CA×

−−→
CD,

−−→
CB×

−−→
CD,

−−→
AD×

−−→
AB and

−→
AC ×

−−→
AB to find out whether both

lines ”cross” each other. Only if the end points of both lines are at both sides of other line,

the two lines can intersect.

However as mentioned in the beginning, overlapping is generally more problematic than

intersection between same element type. Therefore overlap needs to be specifically detected

and listed.

5.3. Check Intersection Between Elements 61

Figure 5.12: Situation when line AB intersect line CD

If lines overlap, then all
−→
CA ×

−−→
CD,

−−→
CB ×

−−→
CD,

−−→
AD ×

−−→
AB and

−→
AC ×

−−→
AB are 0, taken that

overlapping of their bounding boxes is also fulfilled. One exception is that if they are collinear

and have one end point in common. This will be excluded by making sure that they don’t

have points which shares the same x and y coordinates. With the new decision process, The

whole algorithm becomes:

Figure 5.13: Algorithm of deciding whether two line segments intersect or overlap

5.3. Check Intersection Between Elements 62

The decision syntax is integrated at the end by the RETURN part. With the collected infor-

mation the program will output the detection result of whether two lines segments intersect,

not intersect or overlap.

RETURN Wall1 , Wall2 , CASE WHEN

max(line1x)<min(line2x) OR max(line2x)<min(line1x) OR

max(line1y)<min(line2y) OR max(line2y)<min(line1y)

\\ Bounding box dectection

THEN "Not Intersect"

WHEN max(line1x)>=min(line2x) AND max(line2x)>=min(line1x) AND

max(line1y)>=min(line2y) AND max(line2y)>=min(line1y) AND

num1=0 AND num2=0 AND num3=0 AND num4=0 AND

(NOT (x1=x3 AND y1=y3) OR (x1=x4 AND y1=y4) OR (x2=x3

AND y2=y3) OR (x2=x4 AND y2=y4))

\\No common points

THEN "Overlap"

\\All cross product = 0

WHEN max(line1x)>=min(line2x) AND max(line2x)>=min(line1x) AND

max(line1y)>=min(line2y) AND max(line2y)>=min(line1y) AND

(num1*num2 >0 OR num3*num4 >0)

THEN "Not Intersect"

\\Any product of cross product pair > 0

ELSE "Intersect" END AS Result SKIP 1

\\ Bounding box overlap and lines cross each other

Code Listing 5.7: Decision Statement which consists of Boundary Box Check, common Points

Detection and Product of cross Product Check to distinguish if two Line Segments Intersect, Not

Intersect or Overlap

Figure 5.14: Result Wall Intersection Query

The result shows that the masonry wall with thickness of two layers as 24cm and 12cm

overlaps the concrete wall with thickness 20cm. Materials and room boundaries are considered

twice there. It may lead to overestimation of quantity take-offs or wrong area calculation.

This result is in accordance with the intersection check of walls in Solibri, which is illustrated

in Figure 5.15. In the future application, it can be used to detect and point out all the

overlapped walls in a more complicated building by displaying them in an user interface.

5.3. Check Intersection Between Elements 63

Figure 5.15: Wall Intersection Check Result in Solibri and Position of overlapped Walls

One possible obstacle to doing an intersection check in Neo4j is that it does not support

many spatial and mathematical functions, like Boolean operation or matrix calculations.

Much effort should be made in writing spatial queries through basic functions. Moreover,

IFC data does not directly indicate whether two shapes ”touch” each other if they are not

attached to spaces or other connected objects, which makes it complicate to detect it without

regenerating the geometry. The advantage of graph databases lies in its ability to filter and

retrieve data by patterns, labels and properties of the nodes. This enables a quick and

precise search of desired information, such as looking for brick thickness of masonry walls

whose orientation are in the y-axis of the global coordinate and located on the ground floor

which contains concrete walls, by looking for IfcMaterialLayer of IfcWalls with their axis

in the form of IfcDirection as (0,1,0) and their associate IfcBuildingStorey holding other

concrete IfcWalls.

5.3.2 Check Intersection Between Different Line-Based Elements

The next attempt is to check intersection between different line-based Elements. One of the

most practical and significant example is intersection between walls and beams. For walls

and beams, the difference of the syntax lies in changing matched instances from two IfcWall-

Standardcases to one IfcWallStandardcase and one IfcBeam. The description of the original

point, direction and length of the beam in the model has the same structure as the descrip-

tion of walls. In other cases the geometry description may vary and the pattern filter should

adapt to it accordingly.

5.3. Check Intersection Between Elements 64

From MATCH ...-[]-(i{cls:" IfcWallStandardCase "}) -[]-...

...-[]-(l{cls:" IfcWallStandardCase "}) -[]-...

To MATCH ...-[]-(i{cls:" IfcWallStandardCase "}) -[]-...

...-[]-(l{cls:" IfcBeam "}) -[]-...

Code Listing 5.8: Change of Match Syntax from finding two Walls to finding one Wall and one

Beam

It is assumed that the walls reach the floor slab, to which the beam is attached to ensure

intersection when their 2D-axes meet. One difficulty is that when the axis lies in the de-

fault direction (1, 0, 0), IfcDirection will be omitted and cannot be detected. Therefore, in

order to retrieve the direction information in the program, it needs to be created manually

or automatically given using external functions like the function apoc.do.when (distribute di-

rection vector (1, 0, 0) when not detected) in APOC plugin, which is a package of procedures

for Neo4j. Because Cypher itself does not support full-blown conditional statements, as the

CASE function is limited to returning a literal expression. In other words, statements like

“if a>0 then set b=1 else set c=1 ” cannot be directly expressed. Furthermore, the geometry

parser can be improved to automatically supplement the omitted information when the axis

lies in (1, 0, 0). To simply demonstrate Neo4j’ query ability, the omitted direction data is

added manually.

Figure 5.16: Result Intersection Query between Walls and Beams

5.3. Check Intersection Between Elements 65

Figure 5.17: Wall and Beam Intersection Check Result in Solibri and Position of the intersected
Beam and the Wall

The above figure shows the check result between all the beams and walls. The second line

indicates that a beam with size 25 × 50 intersects wall with one 24cm-layer and one 12cm-

layer, while the first line shows that it does not touch the wall made of 20cm thick reinforced

concrete. This is in accordance with the result of Solibri shown in Figure 5.17. Consideration

needs to be taken to fix the clash between the beam 398838 and wall 400407, such as combining

them in Revit.

5.3.3 Check Intersection Between Face-Based Elements

Clash between slabs is also an important part of the structural check in the Solibri model

checker. In the architectural, engineering, construction, owner/operator (AECO) field, over-

lapping can occur owing to negligence in modelling and numerous horizontal face-based ele-

ments like structural floor, hollow floor and suspended ceiling and roof, thus fulfilling various

requirements of different disciplines like fire protection, sound isolation, architecture and

construction.

There can be numerous situations and rules regarding slab intersection. In this demonstra-

tion, taking most frequent use cases into consideration, it is assumed that slabs have constant

thickness, that they are rectangles and that their length and width are parallel to the x and

y axes of global coordinates.

5.3. Check Intersection Between Elements 66

Figure 5.18: Position of Slabs in the Building Model

5.3.3.1 Retrieve Coordinate of the Slab

The global z-coordinate of the slabs are not indicated directly in the slab property. Instead,

their elevations are defined by the building storey class to which they are connected. Because

the coordinates of slabs do not contain elevation information, in a multi-storey building, it is

essential to ensure that slabs in the clash check are in the same storey. The reference of build-

ing storey is different between roof slabs and floor slabs. For roofs, the relationship is IfcSlab

<- IfcRelAggregates -> IfcRoof <- IfcRelContainedInSpatialStructure -> IfcBuildingStorey.

In contrast, connections for floor slabs are IfcSlab <- IfcRelContainedInSpatialStructure ->

IfcBuildingStorey.

After interpreting the storey of the slabs, the next step is to discover the coordinates of the

corners of the roof and its length and width. Given that the slabs are rectangles with constant

thickness, their location can be described by one center/corner point in global coordinate and

their side length in the x, y direction.

The geometric representation of IfcSlab is given by the IfcProductDefinitionShape, allowing

multiple geometric representations. Among them are local placement and geometric repre-

sentations. IfcLocalPlacement defines the local coordinate system that is referenced by all

geometric representations(Liebich, 2009). IfcShapeRepresentation holds the “SweptSolid” ge-

ometric representation, which is accompanied by IfcExtrudedAreaSolid and IfcRectanglePro-

fileDef to indicate its depth and profile. The IfcRectangleProfileDef defines a rectangle by

its X extent and its Y extent, and is placed within the 2D position coordinate system. In

the model it is placed centrically within the position coordinate system, since the internally

referenced x, y offsets are 0.

Floor slabs and roof slabs have different geometric and positional representations. For roof

slabs, absolute placement is defined by IfcLocalPlacement within the world coordinate system.

5.3. Check Intersection Between Elements 67

Unlike floor slabs, the absolute placement is located in the lower left corner of the rectangle.

Because the original coordinate needs to be placed centrically within the position coordinate

system for IfcRectangleProfileDef with x,y offset as 0, the original coordinate needs to be

placed centric within position coordinate system, the original point of the roof slab rectangle

is offset to the center by using a position location addition (length/2, width/2, 0).

MATCH

(storey{cls:" IfcBuildingStorey "}) <-[]-

({cls:" IfcRelContainedInSpatialStructure "}) -[]->

({cls:" IfcRoof "}) <-[]-({cls:" IfcRelAggregates "}) -[]->

(roofslab1{cls:" IfcSlab "}) -[]-({cls:" IfcLocalPlacement "}) -[]-

({cls:" IfcLocalPlacement "}) -[]-({cls:" IfcAxis2Placement3D "})

-[]-(origin1{cls:" IfcCartesianPoint "}),

(roofslab1{cls:" IfcSlab "}) -[]-

({cls:" IfcProductDefinitionShape "})

-[]-({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedAreaSolid "}) -[]-

(pro1{cls:" IfcRectangleProfileDef "}),

({cls:" IfcRoof "}) <-[]-({cls:" IfcRelAggregates "}) -[]->

(roofslab2{cls:" IfcSlab "}) -[]-({cls:" IfcLocalPlacement "}) -[]-

({cls:" IfcLocalPlacement "}) -[]-({cls:" IfcAxis2Placement3D "})

-[]-(origin2{cls:" IfcCartesianPoint "}),

(roofslab2{cls:" IfcSlab "}) -[]-

({cls:" IfcProductDefinitionShape "})

-[]-({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedAreaSolid "}) -[]-

(pro2{cls:" IfcRectangleProfileDef "})

Code Listing 5.9: Matching original reference Point and Rectangle Profile Definition of two arbitrary

Roof Slabs by filtering with Patterns

With these premise the coordinates of the four corners of rectangle roof slabs can be derived

from the lower left corner point, the width and the length. As shown in the graph, taken

that the original point is (x, y), length is XDim and width is YDim, the other three nodes

are (x+XDim, y), (x+XDim, y + Y Dim) and (x, y + Y Dim).

5.3. Check Intersection Between Elements 68

Figure 5.19: Deriving Coordinates of the four Corners of rectangle Roof Slab

The exact procedure to calculate the coordinates in Neo4j uses the same method mentioned

above. The coordinates of the first slab are defined as xi1, yi1, in which i varies from 1 to 4.

Accordingly the positions of second slab are (xi2, yi2). The roof slab names are also indexed

as slab to enable combination of results, since the UNION function required same parameter

to be returned.

WITH

origin1.CoordinateX AS x11 ,origin1.CoordinateY AS y11 ,

origin1.CoordinateX + pro1.XDim AS x21 ,

origin1.CoordinateY AS y21 ,

origin1.CoordinateX + pro1.XDim AS x31 ,

origin1.CoordinateY + pro1.YDim AS y31 ,

origin1.CoordinateX AS x41 ,

origin1.CoordinateY + pro1.YDim AS y41 ,

origin2.CoordinateX AS x12 , origin2.CoordinateY AS y12 ,

origin2.CoordinateX + pro2.XDim AS x22 ,

origin2.CoordinateY AS y22 ,

origin2.CoordinateX + pro2.XDim AS x32 ,

origin2.CoordinateY + pro2.YDim AS y32 ,

origin2.CoordinateX AS x42 ,

origin2.CoordinateY + pro2.YDim AS y42 ,

roofslab1.Name AS slab1 , roofslab2.Name AS slab2 ,

storey.Name AS storey

Code Listing 5.10: Calculation of Corner Node Coordinates of Roof Slabs and index Roof Slab

Names and Storeys

5.3. Check Intersection Between Elements 69

In contrast the position of floor slab is deduced by its geometric description in IfcExtrudedAr-

eaSolid and set in the centre of the rectangle, which meets the default requirement of IfcRect-

angleProfileDef and need no offset vector.

Finding original reference point and rectangle profile definition of two arbitrary floor slabs.

MATCH

(floorslab1{cls:" IfcSlab "}) ,(origin1{cls:" IfcCartesianPoint "}),

(pro1{cls:" IfcRectangleProfileDef "}),

(storey{cls:" IfcBuildingStorey "}) ,(floorslab2{cls:" IfcSlab "}),

(origin2{cls:" IfcCartesianPoint "}),

(pro2{cls:" IfcRectangleProfileDef "})

WHERE

(storey) <-[]-({cls:" IfcRelContainedInSpatialStructure "})

-[]->(floorslab1)

AND

(floorslab1) -[]-({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedArea -Solid "})

-[]-({cls:" IfcAxis2Placement3D "}) -[]-(origin1)

AND

(floorslab1) -[]-({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedAreaSolid "}) -[]-(pro1)

AND

(storey) <-[]-({cls:" IfcRelContainedInSpatialStructure "})

-[]->(floorslab2)

AND

(floorslab2) -[]-({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedAreaSolid "})

-[]-({cls:" IfcAxis2Placement3D "}) -[]-(origin2)

AND

(floorslab2) -[]-({cls:" IfcProductDefinitionShape "}) -[]-

({cls:" IfcShapeRepresentation "}) -[]-

({cls:" IfcExtrudedAreaSolid "}) -[]-(pro2)

Code Listing 5.11: Matching original reference Point and Rectangle Profile Definition of two

arbitrary Floor Slabs by filtering with Patterns

Firstly, the needed storey, slab, placement and profile classes are matched for further ref-

erence. Then they are filtered and organized by their mutual relationships, through the

5.3. Check Intersection Between Elements 70

specified patterns in which the desired nodes are. Two floor slabs need to link to same storey

class to ensure that they are at the same elevation. The rectangle profile and cartesian points

should belong to the sample slab, instead of to other irrelevant entities.

The coordinates of the four corners of rectangle floor slabs can be derived from the center

point, the width and the length. As shown in the graph, taken that the original point is (x, y),

length is XDim and width is Y Dim, the four corner nodes are (x−Xdim/2, y − Y dim/2),

(x+Xdim/2, y − Y dim/2), (x+Xdim/2, y + Y dim/2) and (x−Xdim/2, y + Y dim/2).

Figure 5.20: Deriving Coordinates of the four Corners of rectangle Floor Slab

The difference from the previous calculation lies in the calculation of coordinates. Here are the

positions derived as mentioned above: (x−Xdim/2, y−Y dim/2), (x+Xdim/2, y−Y dim/2),

(x+Xdim/2, y+Y dim/2) and (x−Xdim/2, y+Y dim/2). Similarly are floor slabs indexed

as slabs.

WITH

origin1.CoordinateX - pro1.XDim/2 AS x11 ,

origin1.CoordinateY - pro1.YDim/2 AS y11 ,

origin1.CoordinateX + pro1.XDim/2 AS x21 ,

origin1.CoordinateY - pro1.YDim/2 AS y21 ,

origin1.CoordinateX + pro1.XDim/2 AS x31 ,

origin1.CoordinateY + pro1.YDim/2 AS y31 ,

origin1.CoordinateX - pro1.XDim/2 AS x41 ,

origin1.CoordinateY + pro1.YDim/2 AS y41 ,

origin2.CoordinateX - pro2.XDim/2 AS x12 ,

origin2.CoordinateY - pro2.YDim/2 AS y12 ,

origin2.CoordinateX + pro2.XDim/2 AS x22 ,

origin2.CoordinateY - pro2.YDim/2 AS y22 ,

origin2.CoordinateY - pro2.YDim/2 AS y22 ,

5.3. Check Intersection Between Elements 71

origin2.CoordinateY + pro2.YDim/2 AS y32 ,

origin2.CoordinateX - pro2.XDim/2 AS x42 ,

origin2.CoordinateY + pro2.YDim/2 AS y42 ,

floorslab1.Name AS slab1 , floorslab2.Name AS slab2 ,

storey.Name AS storey

Code Listing 5.12: Calculation of Corner Node Coordinates of Floor Slabs and index Roof Slab

Names and Storeys

5.3.3.2 Slab Overlap Dection

After knowing the coordinates of the corner node, we need to check if these two rectangles,

composed of eight nodes in Neo4j, overlap. In the line intersection check mentioned above

in Section 6.2.1.2, it is indicated that the first step of line segment intersection detection is

bounding box overlap check. As mentioned, bounding boxes are boxes around line segments

such that endpoints of both line segments are at the corner of the boxes and edges of the

boxes are in parallel to the coordinate axes. One bounding box can be regarded as one slab

since they have a rectangular shape. Obviously by replacing the two ends of the line segment

with the diagonal corners of the rectangle, bounding box check can be equivalently applied.

Figure 5.21: Bounding Box formed by two diagonal Nodes of the Slab

Here, the lower left corner (x1, y1) and upper right corner (x3, y3) of the rectangle are set as

two ends of the line segment, because the bounding box that they form can fully represent

the shape of the roof.

The basic algorithm of the program is:

5.3. Check Intersection Between Elements 72

Figure 5.22: Algorithm of deciding whether two slabs overlap

The algorithm of the syntax is:

1. Match and find all the building storey, original points and rectangle profiles of floor

slabs and roof slabs separately.

2. Calculate the coordinates of the corner nodes based on original position, length and

width.

3. Apply bounding box check on slabs in the same storey. Return “Overlap” if they overlap

and “Not Overlap” if they don’t touch each other. Return ”Same Slab” if there is only

one floor slab in the corresponding storey. Also, return the corresponding slab name.

4. Combine the result of floor slab check and roof slab check using UNION function in

Cypher, return a list.

MATCH

......

UNWIND [x11 ,x31] AS line1x UNWIND [x12 ,x32] AS line2x

UNWIND [y11 ,y31] AS line1y UNWIND [y12 ,y32] AS line2y

5.3. Check Intersection Between Elements 73

RETURN slab1 AS slab1 , slab2 AS slab2 , storey AS storey ,

CASE WHEN max(line1x)<min(line2x) OR max(line2x)<min(line1x)

OR max(line1y)<min(line2y) OR max(line2y)<min(line1y)

THEN "Not Overlap" WHEN slab1 = slab2 THEN "Same Slab"

ELSE "Overlap" END AS Result

UNION

MATCH

......

UNWIND [x11 ,x31] AS line1x UNWIND [x12 ,x32] AS line2x

UNWIND [y11 ,y31] AS line1y UNWIND [y12 ,y32] AS line2y

RETURN slab1 AS slab1 , slab2 AS slab2 , storey AS storey ,

CASE WHEN max(line1x)<min(line2x) OR max(line2x)<min(line1x)

OR max(line1y)<min(line2y) OR max(line2y)<min(line1y)

THEN "Not Overlap" ELSE "Overlap" END AS Result

Code Listing 5.13: Decision Statement which consists of Bounding Box Check to detect whether

two Slabs overlap, the Result of Floor Slabs and Roof Slabs are combined

Similar to previous boundary box check in 6.2.1.2, it is not possible for the lines to meet

when:

1. The maximal x value of line A is smaller than minimal x value of line B

2. The maximal x value of line B is smaller than minimal x value of line A

3. The maximal y value of line A is smaller than minimal y value of line B

4. The maximal y value of line B is smaller than minimal y value of line A

If any of these conditions are met, then return ”Not Overlap”. When floor slab that are

in the same storey have the same names, then return ”Same Slab”. In other cases display

”Overlap” to warn the clash between them. In all of the cases will the slab names and storeys

be exported. At the end combine the query result of the respective detection between floors

and roofs.

Figure 5.23: Result floor Slab and Roof Slab Overlap Check

5.3. Check Intersection Between Elements 74

Figure 5.24: Roof Intersection Check Result in Solibri and Position of overlapped Roofs

The result shows that there is only one slab in the ground floor and first floor, which makes it

not possible to clash with another slab in the same storey. The third and fourth line indicate

same overlap between slab with material Titanzik and slab defined as Roof LOD 300. They

may partially or totally overlap and need to be fixed using other modelling software. The

result is the same as what the Solibri roof intersection check provides. Their positions are

marked in the Figure 5.24. The advantage of using graph data is demonstrated in this

example. Through precise definition of paths can diverse demanded data, like origins and

profiles of floor slabs and roof slabs which are represented against different rules, be retrieved

specifically. Moreover, additional information such as storeys and materials that are linked to

the queried entities can be exported together with the result. This feature is useful when the

overlap detection result is purposed to fire protection inspection or quantity take-off, since

additional helpful information can be retrieved at the same time.

Further applications, such as returning overlapped area, enabling the check of slabs in special

shape with variable thicknesses and displaying check result back in a 3D-model, can be

developed with the help of a better geometry interpreter and user interface.

75

Chapter 6

Conclusion

Filtering and querying properties in different LODs and performing model checks on building

elements have demonstrated the capability of graph databases to explore and analyse BIM

models. The objectified relationships in IFC are sufficiently represented by directional edges.

Classes describing different entities in IFC are modelled as nodes and their properties. Along

with the abundant semantic content in IFC, various queries and extractions can be performed

in graph databases. Based on the demonstrations presented in the previous chapters, the

following can be concluded:

1. IFC data can be interpreted with an external parser or library into Cypher language,

so as to import it into graph databases. The interpreters can be individually edited or

improved to export desired information and enhance connectivity.

2. The Neo4j database is able to retrieve and return information in a list like a common

relational database. Queries can be not only for basic properties like width and length,

but also for individual requirements like thermal performance or number of openings.

Based on the examples in Chapter 5, users can easily develop their own query and gen-

erate customized data lists. Furthermore, Neo4j can also display properties graphically

with nodes and patterns to explain the relationships or developments between them

more clearly.

3. Models at different LODs can be loaded into the same graph to trace the development

and variations by applying data retrieval on all the available LODs. The required prop-

erty sets in different LODs can be customized according to specific demands of different

design teams. Data nodes can be coloured, labelled and connected correspondingly. Ac-

cordingly, the different LOD models’ reliability can be explored.

4. IFC data includes geometry representations, which allows BIM-based model checks,

such as clash and deficiency detection based on key shape features, like axis and position

76

points, to be executed in the graph database. The results can be displayed not only with

lists but also graphically. The answers for realistic problems like intersection detection

are in accordance with commercial model checking software Solibri.

5. Graph databases have high accuracy in retrieving specific information by filtering or

navigating with their labels, properties, relationships and patterns. Therefore even if

this information is expressed differently in IFC, the correct item can be found. Other

relevant information besides initial objectives can also be searched for and returned

in one query. Furthermore, this advantage provides numerous application possibilities

when designing queries for specific needs such as searching for fire walls in special

orientations.

However, from the above demonstrations, several limitations have been identified in this study

and may affect the applicability of graph database in querying BIM models. The underlying

causes may relate to the representation methods of IFC data and the processing focus of

Neo4j.

1. The quality and content of imported data in graph databases is dependent on IFC in-

terpreters, which may utilize another BIM server or be written in other programming

languages like Python or Ruby. Editing the interpreter requires adequate program-

ming knowledge as well as an understanding of relevant BIM servers. This might be

complicated for general users.

2. Neo4j does not support many spatial and mathematical functions. This makes it com-

plicated for writing queries regarding geometry operations. Its conditional statements

are also limited to returning literal expressions. However, this limitation can be com-

pensated by applying external geometry parsers and function plug-ins.

3. Solid models in IFC can have different shape representations. When an objects is

represented by faceted boundary representations, which is common when the shape is

more complicated, retrieving its basic features could be unpractical compared to shapes

described by swept solid or Boolean result. This restricts the shapes of objects to simple

and regular ones. This can also be solved by introducing external geometry interpreters

and passing the result back to Neo4j.

Future work could involve designing a more user-friendly and automatic interface to allow

more convenient and feasible BIM model analysis. More importantly, utilizing external li-

braries about spatial operations and additional functions could significantly expand the ca-

pacity and scope of model checks in graph databases. These could include deficiency check

for the missing structural components along the load-bearing path or the fire compartment

design. Then, the returned results could not only be displayed in Neo4j, but also projected

in the 3D model to reposition them quickly.

77

In conclusion, the methodology proposed in this study is an initial step in the direction of

utilizing graph databases to analyse IFC-based BIM models. Although there are currently

limitations in this mechanism, graphs can be considered a potential and promising tool in

model checking and LOD evaluation.

78

Appendix A

Appendix

1. The ifc2neo4j.py converter used in the study to transfer IFC data into Cypher language. It

was created by user ysangkok (https://gist.github.com/ysangkok/8aa7ab1c3207536518f3c3bf5f-

664880) and edited by me.

import re

import sys

import os.path

import ifcopenshell

import itertools

import json

def chunks2(iterable ,size ,filler=None):

it = itertools.chain(iterable ,itertools.repeat(filler ,size-1))

chunk = tuple(itertools.islice(it ,size))

while len(chunk) == size:

yield chunk

chunk = tuple(itertools.islice(it ,size))

class IfcTypeDict(dict):

def __missing__(self , key):

value = self[key] =

ifcopenshell.create_entity(key).wrapped_data.get_attribute_names ()

return value

typeDict = IfcTypeDict ()

assert typeDict["IfcWall"] == (’GlobalId ’, ’OwnerHistory ’, ’Name’,

’Description ’, ’ObjectType ’, ’ObjectPlacement ’, ’Representation ’, ’Tag’)

nodes = []

edges = []

#wallid = None

79

ourLabel = sys.argv[2]

f = ifcopenshell.open(sys.argv[1])

for el in f:

tid = el.id()

cls = el.is_a()

pairs = []

keys = []

try:

keys = [x for x in el.get_info () if x not in ["type", "id"]]

except RuntimeError:

we actually can’t catch this , but try anyway

pass

for key in keys:

val = el[key]

if any(hasattr(val ,"is_a") and val.is_a(thisTyp) for thisTyp in [

"IfcBoolean", "IfcLabel", "IfcText", "IfcReal"]):

val = val.wrappedValue

if type(val) not in (str , bool , float):

continue

pairs.append ((key , val))

nodes.append ((tid , cls , pairs))

for i in range(len(el)):

try:

el[i]

except RuntimeError as e:

if str(e) != "Entity not found":

print("ID", tid , e, file=sys.stderr)

continue

if isinstance(el[i], ifcopenshell.entity_instance):

if el[i].id() != 0:

edges.append ((tid , el[i].id(), typeDict[cls][i]))

continue

else:

print("attribute " + typeDict[cls][i] + " of " + str(tid) + " is zero",

file=sys.stderr)

try:

iter(el[i])

except TypeError:

continue

destinations = [x.id() for x in el[i] if isinstance(x,

ifcopenshell.entity_instance)]

for connectedTo in destinations:

edges.append ((tid , connectedTo , typeDict[cls][i]))

if len(nodes) == 0:

print("no nodes in file", file=sys.stderr)

sys.exit(1)

80

indexes = set(["nid", "cls"])

for chunk in chunks2(nodes , 100):

idx = 0

print("CREATE ", end="")

for i in chunk:

if i is None: continue

nId , cls , pairs = i

if idx != 0: print(",",end="")

idx = idx + 1

pairsStr = ""

for k,v in pairs:

indexes.add(k)

pairsStr += ", " + k + ": " + json.dumps(v)

print("(a" + str(idx) + ":" + ourLabel + " { nid: " + str(nId) + ",cls: ’" +

cls + "’" + pairsStr + " })", end="")

print(";")

for idxName in indexes:

print("CREATE INDEX on :" + ourLabel + "(" + idxName + ");")

#print(" CREATE ")

#ind = 0

#for (nId1 , nId2 , relType) in edges:

#print ("(a" + repr(ind) + ":" + ourLabel + " { nid: " + nId1 + " })" + "-[r"

+ repr(ind) +":"+ relType + "]->(b" + repr(ind) + ":" + ourLabel + " {

nid: " + nId2 + " }) ,")

#print ("(a" + str(ind) + ":" + ourLabel + " { nid: " + nId1 + " })" + "-[r"

+ str(ind) + ":" + relType + "]->(b" + str(ind) + ":" + ourLabel + " {

nid: " + nId2 + " }) ,")

#print ("(a",ind ,":", ourLabel ,"{

nid:",nId1 ,"})","-[r",ind ,":",relType ,"]->(b",ind ,":", ourLabel ,"{nid:",

nId2 ,"}),", sep=’’)

#print ("(a{}:{}{nid:{}}) -[r{}:{}]->(b{}:{}{nid:{}}),

". format(ind ,ourLabel ,nId1 ,ind ,relType ,ind ,ourLabel ,nId2))

#print ("(a",nId1 ,":", ourLabel ,"{

nid:",nId1 ,"})","-[:",relType ,"]->(b",nId2 ,":", ourLabel ,"{nid:",nId2 ,"}) ,",

sep=’’)

#print(" MATCH (a",nId1 ,":", ourLabel ,") ,(b",nId2 ,":", ourLabel ,") WHERE

a",nId1 ,".nid = ",nId1 ," AND b",nId2 ,".nid = ",nId2 ," CREATE

(a",nId1 ,") -[:",relType ,"]->(b",nId2 ,")",sep=’’)

#ind = ind + 1

for (nId1 , nId2 , relType) in edges:

print("MATCH (a", nId1 , ":", ourLabel , "),(b", nId2 , ":", ourLabel , ") WHERE

a", nId1 , ".nid = ", nId1 , " AND b",nId2 , ".nid = ", nId2 , sep=’’)

for (nId1 , nId2 , relType) in edges:

81

print("CREATE (a", nId1 , ") -[:", relType , "]->(b", nId2 , ")", sep=’’)

#print(" MATCH a=(first:IfcNode {nid: " + str(wallid) +

"}) -[:RELTYPE*1..2]-(other {cls: \" IFCWINDOW \"}) RETURN distinct other ;")

BIBLIOGRAPHY 82

Bibliography

Autodesk, I. (2018). Autodesk Revit IFC manual.

Batra, S. & Tyagi, C. (2012). Comparative analysis of relational and graph databases.

International Journal of Soft Computing and Engineering (IJSCE) 2(2), S. 509–512.

BIMForum (2017). Level of Development Specification Guide.

Bloomberg, M. R., Burney, D. & Resnick, D. (2012). BIM guidelines. New York City

Department of Design and Construction, S. 1–57.

Bolpagni, M. (2016). The many faces of ‘LOD’, BIM Think Space.

Borrmann, A. (2016). Building Information Modeling Data exchange and interoperability.

TUM, Chair of Computational Modeling and Simulation.

Hjelseth, E. (2015). BIM-based model checking (BMC). Building Information Modeling–

Applications and Practices, S. 33–61.

Holness, G. (2006). Building information modeling. ASHRAE journal 48(8), S. 38–46.

Hörtnagl, E. (2017). LODs – Der Fertigstellungsgrad.

IfcOpenShell (2018). http://ifcopenshell.org/. [Online; accessed 22-September-2018].

Ismail, A., Nahar, A. & Scherer, R. (2017). Application of graph databases and graph theory

concepts for advanced analysing of BIM models based on IFC standard. Proceedings of

EGICE .

Khemlani, L. (2004). Autodesk Revit: implementation in practice. White paper, Autodesk .

Liebich, T. (2009). IFC 2x Edition 3. In: Model implementation guide. version 2.0. AEC3

Ltd.

Miller, J. J. (2013). Graph database applications and concepts with Neo4j. In: Proceedings of

the Southern Association for Information Systems Conference, Atlanta, GA, USA, Volume

2324, S. 36.

http://ifcopenshell.org/

BIBLIOGRAPHY 83

Nationalbimlibrary.com (2018). NBS National BIM Library. https://www.

nationalbimlibrary.com/en/. Accessed June, 2018.

Rijksgebouwendienst, R. B. (2012). Standard. Rijksgebouwendienst, Netherlands 803.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-based collaborative filtering

recommendation algorithms. In: Proceedings of the 10th international conference on World

Wide Web, S. 285–295. ACM.

Solibri (2014). Getting Started with Solibri Model CheckerTM.

Statsbygg (2017). Statsbygg Building Information Modelling Manual Version 1.2. 1 (SBM1.

2.1). Retrieved from.

Thoma, M. (2013). How to check if two line segments intersect. https://martin-thoma.com/

how-to-check-if-two-line-segments-intersect/. Accessed October, 2018.

Treldal, N., Vestergaard, F. & Karlshøj, J. (2016). Pragmatic Use of LOD–a Modular Ap-

proach.

Van Berlo, L. & Bomhof, F. (2014). Creating the Dutch national BIM levels of development.

In: Computing in Civil and Building Engineering (2014), S. 129–136.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y. & Wilkins, D. (2010). A comparison of

a graph database and a relational database: a data provenance perspective. In: Proceedings

of the 48th annual Southeast regional conference, S. 42. ACM.

Wikipedia contributors (2018a). Neo4j — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/w/index.php?title=Neo4j&oldid=866850985. [Online; accessed 14-

November-2018].

Wikipedia contributors (2018b). PyCharm — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/w/index.php?title=PyCharm&oldid=854078647. [Online; accessed 22-

September-2018].

Winter, S. (2016). Baukoskript 2400 Flachdach. TUM, Chair of Timber Structures and

Building Construction.

https://www.nationalbimlibrary.com/en/
https://www.nationalbimlibrary.com/en/
https://martin-thoma.com/how-to-check-if-two-line-segments-intersect/
https://martin-thoma.com/how-to-check-if-two-line-segments-intersect/
https://en.wikipedia.org/w/index.php?title=Neo4j&oldid=866850985
https://en.wikipedia.org/w/index.php?title=Neo4j&oldid=866850985
https://en.wikipedia.org/w/index.php?title=PyCharm&oldid=854078647
https://en.wikipedia.org/w/index.php?title=PyCharm&oldid=854078647

Declaration of Originality

With this statement I declare, that I have independently completed this Master’s thesis. The

thoughts taken directly or indirectly from external sources are properly marked as such. This

thesis was not previously submitted to another academic institution and has also not yet

been published.

München, 19. November 2018

Sining Xu

Sining Xu

Adelheidstr. 15

D-80798 München

e-Mail: sining.xu@tum.de

	Introduction
	Introduction and Problem Description
	Aims and Objectives
	Layout of the Thesis

	Theoretical Background
	BIM and Level of Development
	Building Information Modeling
	Level of Development

	Comparison of Databases
	Relational Database
	Graph Database and its Advantages
	Neo4j Graph Database
	Cypher Query Language

	IFC Standard
	IFC Data Model
	Model Views
	Geometric Representation
	Semantic Representation

	Roof Level of Development Definition
	Types of Roof Build Ups
	Components of Warm Roof

	Analysing BIM-Model with Graph Databases
	Research Question and Approach
	Used Software, Programs and Libraries
	Pycharm
	IfcOpenShell
	IFC to Neo4j Converter
	Revit 2017
	Neo4j Desktop
	Solibri Model Checker

	Importing IFC Data into Graph Databases

	Property Queries and its Application in Graph Database
	Anaylsis of Properties
	Retrieve the Length and Width of the Roof
	Retrieve Height of the Roof
	Retrieve Layers and Thickness of the Roof
	Retrieve Geometry and Number of Opeinings

	Reliability Check of the LOD-Model
	Instance of Roof Information Specification in Different LOD
	Definition of Property Set in IFC
	Retrieve Property Set
	Match Property Sets
	Analyse Property Sets

	Model Checking with Graph Database
	BIM-Based Model Checking
	Analysis of Structural Consistency
	Retrieve Column Consistency List
	Retrieve Column Consistency Graph

	Check Intersection Between Elements
	Check Intersection Between the Same Line-Based Elements
	Check Intersection Between Different Line-Based Elements
	Check Intersection Between Face-Based Elements

	Conclusion
	Appendix

