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ABSTRACT: The design of a lithium-ion battery with the aim to meet given system requirements and to consider aspects of cell aging is 

complex as the correlation between system configuration and the resulting load on cell level is non-trivial. This paper proposes load 

spectrum analysis as an effective method for characterization and concept validation. Within the framework of this paper, the suitability 

of the WLTP Class 3 reference cycle for aging characterization is disproven. The effect of different cooling concepts and cell-to-cell 

variation within a battery system are evaluated with regard to lithium-ion cell aging and maximum cell and system load. 
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1. INTRODUCTION 

1.1. Motivation 

As part of the powertrain in electric vehicles, battery systems are 

exposed to a highly dynamic electrical and thermal load profile. 

The electrical load is determined by the power demand for 

propulsion and auxiliary users. The thermal load is caused by 

environmental conditions like ambient temperature and solar 

irradiation and it is coupled to the electrical load by reversible and 

irreversible heat generation. 

Load profiles on a system level are often used as design criteria for 

the early concept phase. Either real load profiles from user data are 

available or standard cycles defined in specification sheets are 

used for this purpose. In both cases, battery system design variants 

are generated and an optimum system design is found through 

comparison. These variants may differ in the applied thermal 

management system, cell selection or in the chosen control 

strategy. 

The selected variant will further determine how the applied load 

on system level is transposed to a load profile on cell level. For 

lithium-ion cells, which are commonly used in electric vehicle 

traction batteries, the applied load is of essential importance, as it 

determines their degradation during usage and also non-usage. 

Aging-relevant loads include cell temperature, charging and 

discharging currents, the average state of charge (ØSOC) and the 

depth of discharge while cycling (ΔDOD) (1, 2). Consequently, 

the load on cell level is an objective criterion for system selection 

and concept validation, as it is essential for aging assessment and 

thus for warranty commitments.  

 

1.2. Aging-Relevant Load Regimes 

The aging of lithium-ion cells is commonly classified into calendar 

aging, when the cell is at rest, and cyclic aging, when the cell is 

charged or discharged (2, 3). It is widely assumed that calendar 

aging is ever present, while additional aging effects are superposed 

when the cell is cycled (2, 4, 5). For these two classes of aging, 

different physical-chemical mechanisms are predominant. The 

mechanisms are triggered by distinct so-called stress factors which 

are present within the cell load profile. The stress factors for 

calendar aging are state of charge (SOC) and storage temperature, 

with storage time as base function (2, 4, 6). The applied discharge 

and charge currents, ΔDOD, ØSOC and temperature affect the 

cyclic aging as stress factors together with charge throughput as 

base function (2, 7, 8). The stress factors are ever present within 

the load profile, as the aging of lithium-ion cells is. However, the 
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specific magnitude of the stress factors determines to what extent 

the aging is accelerated or slowed down. 

The stress factors influence the aging mechanisms 

interdependently. For calendar aging, the formation of the solid 

electrolyte interface (SEI) between the graphitic anode and the 

electrolyte is widely assumed as a predominant aging mechanism. 

For this exothermic mechanism, Vetter et al. (6) state that a high 

temperature in combination with a high storage SOC results in an 

accelerated aging. For example, this phenomenon is proven by 

Keil and Warnecke (5, 9). For cyclic aging, a greater variety of 

aging mechanisms are involved and their dominance is dependent 

on cell chemistry. For example, lithium plating is enhanced by a 

combination of a high SOC, a high charging current and a low 

temperature (10). Aging due to structural changes is caused by 

mechanical strain within the electrode material mainly at the anode 

but also at the cathode. It is forced by cycling with a high discharge 

current, a high ØSOC (1) and additionally at high temperatures (11, 

12). At high temperatures, the transition metal dissolution within 

the cathode material is also an important issue for aging (13).  

Fig. 1 summarizes graphically the discussed findings by literature 

review with a focus on NMC-based lithium-ion cells. A 

differentiation is made between aging mechanisms typically 

associated with calendar (cal) or cyclic aging (cyc) and whether 

the mechanism takes place at the anode (a), the cathode (c) or 

within the electrolyte (e). In Fig. 1, a two-dimensional area 

describes the aging mechanism as depending on two stress factors, 

and vice versa three stress factors for a three-dimensional area. 

 

Fig. 1. Aging-relevant load regimes (1, 2, 5, 6, 12–17),  

calendar (cal), cyclic (cyc), anode (a), cathode (c), electrolyte (e) 

 

1.3. Load Spectrum Analysis 

The interdependencies between the different aging mechanisms 

necessitate extensive testing to characterize cell and system 

behavior and to verify adequate performance throughout the 

battery’s specified service life. Due to the relevance of the 

battery’s dynamic behavior, high sample rates are necessary, 

resulting in large datasets of measuring files if the common 

standard of logging the measurement data as time series is used. 

Furthermore, the interaction between system parameters as well as 

the comparability between aging-relevant cell loads from different 

tests is limited and thus complicates the data interpretation. 

 A possible approach to overcome these limitations is the load 

spectrum analysis. Originally used in mechanical dimensioning, 

where load-cycles-to-failure are a relevant factor, this method 

allows the monitoring of frequency and amplitude of system 

parameters (18). Literature distinguishes between two 

fundamental approaches of load spectrum analysis: one-

parametric and two-parametric methods. The former methods only 

consider one characteristic of a signal (such as its peaks), 

allocating its value to predefined classes. The latter methods take 

two characteristics of a signal into account, which are being 

evaluated together (such as its peaks and average values) leading 

to a two dimensional matrix (18). In theory, even higher 

parametric approaches are possible. These, however, lead to 

multidimensional data structures, not visually interpretable 

anymore, but possibly valid for machine learning, pattern 

recognition algorithms or other strategies of data analysis. 

As basic concept of load spectrum analysis, different counting 

procedures exist to divide the signal values into specified classes. 

If the time spent in a class is irrelevant, this information can be 

eliminated. In the case of batteries, where aging mechanisms also 

depend on the time spent at certain operation conditions, 

algorithms determining the time spent inside the specified classes 

are more expedient (19) and are presented in the following. A 

common counting procedure is Instantaneous Value Counting, 

evaluating the class of a signal’s value at a specified frequency. 

Other procedures include Residence Time Counting, weighing 

how long a signal stayed inside a certain class and Rainflow 

Counting, evaluating the amplitude and time of hysteresis loops in 

a signal. Related to this method is also the Half Cycle Counting, 

assessing only half cycles instead of a full hysteresis (18). The 

suitability of the different methods depends on the nature of the 

evaluated load cycle and the required information the user aims to 

extract. Table 1 offers an overview of different algorithms used for 

battery design and characterization.  

In contrast to usual time-based approaches, load spectrum analysis 

is an event-based strategy. It improves assessment and 

comparability of occurring stress factors for different load cycles 

or scenarios. The incentive to apply load spectrum analysis for 

aging characterization is the assumption that the temporal order of 
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peak loads can be disregarded for aging assessment (18). For 

lithium-ion cells, however, a path dependency of aging has been 

identified (20) which is not representable by load spectrum 

analysis as information about the sequence of load is eliminated. 

Since this paper proposes a method for initial considerations 

within the process of battery system design, path dependency as a 

long-term effect was neglected. For a holistic investigation of 

aging, a connection between the enduring load scenarios and the 

resulting cell aging still has to be established through experiments 

or findings from battery systems in the field. 

 

Table 1. Utilization of load spectrum analysis in design and 

characterization of battery systems. 

 Approach and evaluated parameters 

(21) 

Instantaneous Value Counting (C-rate, SOC, T) 

Rainflow Counting (ΔDOD, ØSOC) 

Total charge throughput (C-rate) 

(22) 

Range Pair Mean Counting (SOC) 

Half Cycle Counting (C-rate, ΔDOD, ØSOC) 

Total charge throughput (C-rate) 

(23) 
Instantaneous Value Counting (SOC, T) 

Rainflow Counting (SOC) 

(24) Rainflow Counting (C-rate, DOD, SOC, T) 

 

2. METHOD 

The objective of the presented work was to develop an effective 

method for the characterization of loads that affect battery systems 

in automotive applications. This includes a reduction of 

complexity for data analysis and for the evaluation of the 

corresponding effects on lithium-ion cell aging. 

To meet this objective, a generic analytic framework was 

developed which is able to process given design criteria as input 

and allows aging characterization by load spectrum analysis upon 

given output measures (Fig. 2).   

 

 

Fig. 2. Simulation framework 

 
The analytic framework consists of a powertrain simulation 

presented in (25) to calculate the longitudinal dynamics of a 

conventional electric car. With this simulation model and based on 

a given velocity profile of a driving cycle, the resulting load 

demand on the battery system level is calculated. The load demand 

on the system level is the input for an electric-thermal battery 

model. The battery model is capable of displaying different system 

design variants: cooling concepts, wiring concepts and cell-to-cell 

variations within the battery system. Further, the battery model 

allows the conversion of load demand on the battery system level 

to the corresponding load demand on the cell level and the 

derivation of parameter variations (current and temperature) for 

individual cells within the battery system. The battery model 

comprises a 2RC cell model which was parametrized with a 

Panasonic NCR18650PF cell and allows the determination of the 

cell’s voltage response which is dependent on cell temperature, 

current magnitude and cell SOC (26). Eventually, current, 

temperature, charge throughput and SOC for individual cells are 

available as framework output for further investigation by load 

spectrum analysis. Within the framework, Instantaneous Value 

Counting was applied as counting procedure. 

 

3. RESULTS 

3.1 Aging Characterization on Cell Level 

As a first example for aging characterization with load spectrum 

analysis, the test cycle WLTP Class 3 and real driving profiles 

from fleet tests are compared. WLTP Class 3 was used as it is 

widely accepted for the comparison of consumption ratios and 

emission values for different vehicles. So, the question stands, 

whether the WLTP Class 3 is also appropriate for the comparison 

of electric vehicle performance in terms of battery aging. As 

reference for realistic battery loads, about 12,800 real driving 

cycles from fleet tests are used, as they represent the driving 

behavior of more than 100 test persons over a period of more than 

12 months, while using different types of electric and conventional 

vehicles (27). For simulation, cell-to-cell variation and battery 

cooling was neglected at first. Further, the SOC at cycle start is 

adjusted to each driving profile individually for simulation, 

according to a study that proves drivers of electric vehicles do not 

start all journeys with a fully charged battery but recharge the 

vehicle battery when the SOC reaches 32 % on average (28). 

Similarily, the cell temperature at cycle and simulation start is 

adjusted according to the known driving cycle date and to the 

appropriate monthly average temperature in Germany. 

Consequently, SOC and cell temperature at simulation start varies 

for the different real driving cycles. During the subsequent 

simulation run, the SOC evolves in accordance to the cycle power 

demand. The cell temperature develops as a result of reversible 
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and irreversible heat generation as well as heat exchange with the 

environment. The results of simulation and load spectrum analyis 

are shown in Fig. 3 in which the stress factors temperature, SOC 

and C-rate are analyzed for aging characterization. For the C-rate, 

a negative value describes a discharge load, while a positive value 

describes a charge load due to regenerative braking. The relative 

charge throughput (RCD) is entered on the z-axis as base function 

of cyclic aging (5).  

The results show that the WLTP Class 3 occupies load regimes 

with peak frequencies positioned differently and also a smaller 

frequency variation in comparison to real driving cycles. So, for 

the WLTP Class 3, moderate temperatures in combination with 

high SOC values and high discharging currents are present. In 

comparison, low temperature values are also combined with high 

charge and discharge currents, as well as low SOC values for real 

driving cycles. Additionally, the loads due to real driving cycles 

exhibit a distribution with a wider spread. These findings show 

that the WLTP Class 3 does not cover the full range of aging-

relevant regimes, which are occupied in the load spectrum of real 

driving cycles. With respect to the discussed findings in section 

1.2, the WLTP Class 3 will not cause the same aging for lithium-

ion cells as the cells will exhibit under real usage. These results 

show that the WLTP Class 3 is not an appropriate standard test 

cycle for giving a reference of battery aging due to real driving 

loads. 

3.2 Aging Characterization on System Level  

Further examples for the utilization of load spectrum analysis are 

shown on system level. To fulfill the power and range demand in 

electric vehicles a parallel connection of lithium-ion cells may be 

necessary. Lithium-ion cells, as chemical systems with a complex 

manufacturing process, are prone to variance in production. Hence, 

cell parameters, such as internal resistance and capacity, show 

fluctuations, mostly regarded and measured as a standard 

distribution (20, 29, 30). These parameter variations lead to 

compensating currents and furthermore complex non-linear 

relations between system load and cell load (31). Consequently, 

cells connected in parallel behave and age non-uniformly in a 

battery system within a magnitude that cannot be neglected (30). 

Further influences, directly derivable from the theoretical 

assessment in the previous sections, include the design and control 

strategy of a thermal management system as well as the electric 

control strategy of the pack itself, including peak power control, 

voltage limitation and power degradation at high temperatures, 

low SOC or other aging-relevant regimes. 

Considering these aspects, load spectrum analysis proves to be an 

appropriate instrument, when conducted on a system level and 

further when considering single cell behavior. To show the 

suitability of the approach, a simulative investigation of several 

generic automotive battery packs was conducted using the analytic 

framework presented in section 2.  

Fig. 3. Comparison between load spectra of WLTP Class 3 standardized cycle vs. real driving cycles 

WLTP Class 3 real driving cycles
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As in reality, the exact composition of cells with their respective 

parameters in parallel connection is random. This fact has to be 

taken into account in simulation. To gain statistically relevant 

results, a Monte-Carlo Simulation was performed. For the 

investigation of battery design safety issues, an analysis of worst-

case scenarios has to be conducted as well. This, however, is 

beyond the scope of this paper and therefore is omitted from the 

results. The goal of this paper is to show the plausibility of 

utilizing load spectrum analysis for battery system design. 

Therefore, two representative use cases are discussed in the 

following. Both examples use the analytic simulation framework 

presented in a prior part of this paper. 

The first example shows the behavior of 20 Panasonic 

NCR18650PF cells in a parallel connection (20p1s) during fast 

charging with constant current (80 % SOC in 30 minutes). The 

maximum allowed C-Rate was defined as 1.5 1/h to strike a 

balance between a short charging time and excessive aging of the 

cells. It is assumed that the cells’ internal resistances and 

capacities have an aforementioned standard deviation of 

resistance=1.1⋅10-2 Ω and capacity=3.5⋅10-3 Ω, respectively. In a 

second simulation, the standard deviation of the cells’ parameters 

was doubled relatively to the reference. The resulting loads, 

represented as the C-rate on the cell level, were evaluated with a 

discrete resolution of 0.1 1/h and are depicted in Fig. 4.  

 

Fig. 4. Fast charging (0.8 SOC in 30 min) of a 20p1s 

connection of Panasonic NCR18650PF cells.  

Reference: resistance=1.1⋅10-2, capacity=3.5⋅10-3. 

 

The results of the reference system show a maximum cell load of 

1.45 1/h for most of the cells, with another small peak at 1.35 1/h. 

The system with double standard deviation, however, develops 

another load level at 1.55 1/h and so exceeds the defined maximum 

C-rate and overloads the cells. While it is unknown from the load 

spectrum how the currents – or the time in overload – are 

distributed between the cells, load spectrum analysis allows for 

identifying misuse or overtaxing of cells as well as the impact of 

different cell parameters or their standard deviation, respectively. 

To safely operate the system with double standard deviation, the 

charging current has to be limited. It therefore becomes apparent 

that statistical fluctuations of the cell properties directly influence 

the maximum charging current of a parallel connection.  

Another use-case of load spectrum analysis is examined in a 

second example by analyzing the influence of different cooling 

configurations on battery system temperature. Therefore, a 72p28s 

battery system with standardly distributed internal resistances and 

capacities is simulated. The current is chosen to correspond to a 

constant travel of 120 km/h of a Smart Fortwo car retrofitted to 

electric drive (25). The cooling of the battery pack is modeled in a 

simplified way with no thermal interaction between the cells with 

a constant ambient temperature of T=30 °C for all cells. Different 

cooling capacities are taken into account by variation of the heat 

transfer coefficient  between the cells and their environment. The 

first configuration is defined by 1=50 W/m2K, the second 

configuration possesses better cooling characteristics – achievable, 

e.g., by increasing the volume flow rate in a fluid cooled battery 

pack – of 2=65 W/m2K which are opposed in Fig. 5. 

 

Fig. 5. Comparison of 72p28s battery packs with different 

cooling characteristics during constant travel and T=30 °C. 

 

During simulation, three load spectra are generated. The top 

spectra track the percental residence time at the specified 
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temperature levels. The dashed line in the graph shows a 

maximum desired temperature of 40 °C for the lithium-ion cells. 

The load spectra shown in the middle visualize the total time the 

individual cells spend above the specified temperature limit of 

40 °C. The lower spectra show the cell temperatures achieved in 

maximum. The evaluation of load spectra shows that the average 

temperatures in the pack with better cooling, represented by the 

case with 2=65 W/m2K, are lower and the cells spend less time 

above the defined temperature limit, respectively. The evaluation 

states that the given system requirements with regard to 

continuous power and thermal properties cannot be fulfilled by the 

second cooling option with 1=50 W/m2K. Furthermore, the 

graph’s columns follow a normal distribution, which is also 

expected, since the cells’ heat generation depends on the – 

normally distributed – internal resistances. 

 

4. CONCLUSION 

The discussed results show that load spectrum analysis is an 

effective method for load characterization and aging assessment of 

lithium-ion cells in the early design phase. It helps to compare 

different system concepts and therefore is suitable for initial 

system selection. When using load spectrum analysis, the applied 

counting procedure needs to be selected carefully as procedures 

that work with averaging processes may smooth the underlying 

loads. Especially in the context of cell aging, occurring peak loads 

are essential and need to be considered for system design. 

Therefore, Instantaneous Value Counting is a suitable procedure 

for the application of aging characterization and was used in the 

shown analyses. 

When using load spectrum analysis for aging characterization of 

lithium-ion cells, the loss of information about temporal sequence 

within the load profile need to be considered. Consequently, path 

dependency as aging influence cannot be investigated. For the 

final selection of system design, additional methods which include 

the temporal order of load need to be applied. 
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