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Abstract

Medical imaging has assumed a major role in modern medicine. The ability to precisely
ascertain the cause and origin of the patient’s condition before starting surgical treatment
has removed a large part of the guesswork and imprecision that were previously involved.
But also during the surgery, the adoption of imaging technologies has helped reducing the
invasivity of the procedures and improving the short- and long-term clinical outcome.
However, the introduction of more and more tools into the operating room has also contributed
to increase the complexity of modern surgery. Today, becoming a surgeon also involves learning
to use the available technologies effectively and cope with their idiosyncrasies, while keeping
focused on the actual objective: healing the patient. An optimal trade-off in this regard can be
challenging to achieve, and the clinical outcome can be negatively affected by the cognitive
burden and stress posed on the physician.

Such scenarios can occur when the surgeon needs combined anatomical and functional
information to perform a surgery with success. Most intraoperative imaging modalities take
the form of hand-held devices, each providing its own output image according to its position
in space. The physician must hold both devices at the same time in order to scan the same
region of space, and mentally orient and merge their output in order to identify structures
of interest. One or both devices must then be put aside before carrying out the actual task,
based on the acquired knowledge. We explore how collaborative robotic imaging can simplify
this picture, by holding one of the devices for the physician and working in concert with them
while producing one single, real-time multimodal image which is ready for visualization and
can be provided at all times.

An additional obstacle for medical personnel can be represented by fickle equipment that
poses many constraints on its handling. Freehand imaging techniques are subject to the
limitations of currently available tracking technologies, such as line-of-sight requirements
or the degradation of accuracy across the workspace or due to environmental factors. The
operator is then required to prevent these problematics by constraining their own actions while
pursuing the clinical objective. Failure to do so can compromise the system’s performance
or force to repeat the image acquisition altogether. We investigate the possibility to mitigate
these issues by employing mathematical tools to partially overcome the precision limitations
of electromagnetic tracking and make freehand 3D ultrasound more robust and reliable to
use.
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Zusammenfassung

Die medizinische Bildgebung hat in der modernen Medizin eine wichtige Rolle eingenommen.
Die Fähigkeit, die Ursache und den Ursprung des Zustands des Patienten vor Beginn der
chirurgischen Behandlung exakt zu bestimmen, hat einen großen Teil der zuvor bestehenden
Fehleinschätzungen und Ungenauigkeiten beseitigt. Aber auch während der Operation hat die
Einführung von Bildgebungstechnologien dazu beigetragen, die Invasivität der Eingriffe zu
reduzieren und das kurz- sowie langfristige klinische Ergebnis zu verbessern.
Gleichzeitig hat auch die Benutzung von vielen verschiedenen Werkzeugen in den Operati-
onssaal dazu beigetragen, die Komplexität der modernen Chirurgie zu erhöhen. Chirurg zu
sein bedeutet heute auch, die verfügbaren Technologien effektiv zu nutzen und mit ihren
Eigenheiten umzugehen, während man sich auf das eigentliche Hauptziel konzentriert: die
Behandlung des Patienten. Ein optimaler Kompromiss in dieser Hinsicht kann schwierig zu
erreichen sein, und das klinische Ergebnis kann durch die kognitive Belastung und den Stress
für den Arzt negativ beeinflusst werden.

Solche Szenarien können auftreten, wenn der Chirurg kombinierte anatomische und funk-
tionelle Bildinformationen benötigt, um eine Operation erfolgreich durchführen zu können.
Die meisten intraoperativen Bildgebungsverfahren werden in Form von Handheld-Geräten
durchgeführt, die jeweils ein individuelles Ausgabebild entsprechend ihrer Position im Raum
liefern. Der Arzt muss beide Geräte gleichzeitig in den Händen halten, um den gleichen
Raumbereich zu scannen, und die Ergebnisse mental orientieren und zusammenführen, um
interessante Strukturen zu identifizieren. Ein oder beide Geräte müssen dann gelegt werden,
um den eigentlichen chirurgischen Eingriff auf Grundlage der Bilddaten ausführen zu können.
Wir untersuchen, wie die kollaborative Roboterbildgebung dies vereinfachen kann, indem ein
robotischer Arm eines der Geräte für den Arzt hält und mit ihm zusammenarbeitet, während
ein einziges, multimodales Echtzeit-Bild erzeugt wird, das visualisierungsbereit und jederzeit
verfügbar ist.

Ein zusätzliches Hindernis für das medizinische Personal kann das unbeständige Equipment
darstellen, das viele Einschränkungen bei der Handhabung mit sich bringt. Freihand-Bild-
gebungstechniken unterliegen den Grenzen der derzeit verfügbaren Tracking-Technologien,
wie z.B. den Anforderungen an die Sichtlinie oder der Verschlechterung der Genauigkeit
im gesamten Arbeitsbereich oder aufgrund von Umweltfaktoren. Der Anwender muss dann
diese Probleme verhindern, indem er sein eigenes Handeln einschränkt und gleichzeitig das
klinische Ziel verfolgt. Andernfalls kann die Leistung des Systems beeinträchtigt werden oder
zur Notwendigkeit führen, die Bildaufnahme vollständig zu wiederholen. Wir untersuchen die
Möglichkeit, diese Probleme durch den Einsatz mathematischer Werkzeuge zu entschärfen,
um die Präzisionsgrenzen der elektromagnetischen Verfolgung teilweise zu überwinden und
den Freihand-3D-Ultraschall robuster und zuverlässiger zu machen.
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1Introduction

„Your scientists were so preoccupied with whether they
could that they didn’t stop to think if they should.

— Ian Malcolm
(Jurassic Park, M. Chrichton)

Among the profound and radical changes that took place in the 20th century, one of the most
pervasive innovations can arguably be found in the introduction of electronics and informatics.
The beginning of the new millennium brought constant performance improvements conjugated
to a progressive miniaturization, to the point that a contemporary wristwatch can fit many
times over the computational power that brought the man on the moon. While the first
computers were considered extravagant toys that would never find large diffusion, soon they
crept into every factory, office, house and pocket. One of the reasons is that they constitute the
only technology able to manipulate the most important asset: information. A movie, a book,
the blueprint of a house, a recipe, our schedule for tomorrow, the CAD model of a mechanical
component, the current stock exchange rates, a medical scan can all be virtualized out of their
physical support and transferred at the speed of light, automatically manipulated according to
an algorithm of choice or concurrently shared among people located around the globe. It is
hard to find a human activity which does not involve information, and hence cannot benefit of
the "computer revolution". This change has been so disruptive that it has been recognized as
one of the industrial revolutions.

The medical field has not been indifferent to this development, and a wave of research already
turned into a proliferation of new tools available to physicians and surgeons. Most 3D imaging
modalities could not be viable without the availability of abundant computational power, to
the point that some are named after it (e.g. "Computed Tomography"). The digitalization of
medical data unlocked the doors to sophisticated interventional planning and assistance, in
the form of software and dedicated devices.

The application of electronics and informatics to medicine spawned entirely new research
and industrial fields, with a high level of interdisciplinarity. It is an unfortunate case and the
worry of several authors [89, 144] that the collaboration between personnel coming from
an engineering and from a medical background is not yet optimal. While engineers tend
to "fall in love" with their technology and focus exclusively on what their research would
make possible, they often fail to recognize if such a thing would be needed or beneficial at
all from a medical point of view. On the other hand, physicians and surgeons rarely have the
time to properly evaluate new approaches that would present opportunities for a disruptive
improvement in patient care or the safety of the medical personnel; the consequence is that
they tend to prefer small and incremental changes that do not disrupt the workflows that
required years of training, partly because of their very suboptimality in the first place.
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MI

MR CAI

Chap. 5

Chap. 6

Fig. 1.1. Our contributions lie at the intersection of different established fields: Medical Imaging (MI), Computer
Assisted Interventions (CAI), and Medical Robotics (MR). In Chapter 5 we will present a multimodal
imaging device based on a collaborative robotic paradigm to provide intraoperative guidance. In
Chapter 6 we will propose a method to improve the usability and the outcome of an imaging modality in
intraoperative setups.

In response to the need of bridging the communities together, a growing number of institutions
are bringing the researchers closer to the hospitals. Technical labs are being opened within
medical facilities, as well as new centers for translational medicine, where early-adopting
surgeons can evaluate and help develop the newest concepts. The NARVIS and IFL labs of the
Chair for Computer Aided Medical Procedures (CAMP) of the Technical University of Munich
belong to the first category. NARVIS hosts mostly research about cone beam CT, augmented
reality and user interaction, while IFL focuses on ultrasound imaging, image registration and
collaborative robotics. All these technologies are object of intensive research, for different
and complementary reasons. Cone beam CT allows for high quality intraoperative imaging,
but at the cost of danger to the patient and the surgeon through ionizing radiation; on the
other hand, ultrasound imaging is fast and harmless but offers a lower quality due to the low
dimensionality, the high density of artifacts and the limited tissue penetration. Augmented
reality and User Interaction can be used to provide visualization and guidance with the
ever growing amount of information available in the operating room, while collaborative
robotics can help manage the increasing amount of devices and information by concurrently
performing multimodal imaging without explicit control, or keeping a safety distance between
the surgeon’s instrument and sensitive regions via virtual fixtures.

This dissertation describes two innovative approaches that we developed in the IFL: both
attempt at tackling the challenges of today’s medical practice while avoiding to disrupt
established workflows. Our aim is to reduce complexity with the introduction of our solutions
into the clinical procedures compared to the existing state of the art.
This requires an unusual approach to the problem, which is reflected in the structure of this
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text: rather than vertically deepening a specific topic, we will zoom out to consider the big
picture of the technological means available to support the surgeon’s work. We will discuss
current imaging modalities and robotic devices, with their advantages as well as their obstacles
to acceptance and usage. Finally we will present our proposed solutions and motivate them in
this context.

The rest of Part I will consist in a brief overview of the history of surgery and of the re-
sulting recurrent clinical setups that emerged. This will provide a context for motivating
the constraints and acceptance factors that medical technologies are subject to. Part II will
present the fields at the intersection of which this research lies: Medical Imaging (Chapter 2),
Computer Assisted Interventions (CAI, Chapter 3) and Medical Robotics (Chapter 4).
Part III will go into the detail of our contributions.

In Chapter 5 we will present an intraoperative imaging system for multimodal guidance during
Sentinel Lymph Node (SLN) biopsy in the axilla for breast cancer staging. The current clinical
routine involves open surgery to perform SLN dissection under visual guidance, supported by
1D gamma probes. By introducing a collaborative robotic assistant holding a gamma camera,
we allow the surgeon to perform a less invasive needle biopsy under guidance of concurrent
2D ultrasound and gamma imaging. In contrast to other approaches, our system provides
real-time imaging which is robust to tissue deformations in the area of the breast. Furthermore,
the surgeon’s workflow is not different than a standard ultrasound-guided needle biopsy:
the introduction of the robot into the operating theater actually alleviates the burden posed
on the physician, which must no longer actively handle the gamma camera to obtain the
augmentation of the anatomical image with functional information. Our experiments on
phantoms show the potential significant impact on the clinical outcome of the procedure.

Chapter 6 will be about the application of a Riemannian regularization framework to the
tracking information used in freehand 3D ultrasound compounding. Most commercial ultra-
sound systems include an electromagnetic (EM) tracking system to follow the position of the
probe in space and allow for the generation of a 3D volume from 2D slices acquired over
time. This is due to the lack of a line-of-sight requirement, which is an important drawback
of optical tracking systems. Unfortunately, EM systems are usually less accurate than optical
devices. This is due in part to the effect of metallic objects in the neighborhood, which can
distort the magnetic field generated by the system to locate the sensor in space; most of the
literature about EM tracking error correction focuses on compensating for this distortion, via
calibration approaches or by including redundant sensors. Instead, we will turn our attention
on jitter, which can result in artifacts that make the image harder to interpret for the user. We
will adopt a data processing method that, in contrast to common approaches, includes a term
explicitely penalizing the deviation of the result from the original input trajectory. We will
evaluate the effect of the application of this method on the volumes reconstructed by the same
ultrasound images, according to the data originating from different tracking systems. We will
also employ a strategy to directly measure the local quality of the compounded volumes, in
contrast to global measures used to quantify the impact of distortion compensation approaches
(such as Point Reconstruction Error).

Part IV will contain our final remarks and future outlook.
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Fig. 1.2. Depiction of a 19th century surgical theater. The people in white are the surgical team, performing a
mastectomy on a patient lying on the bed. The surrounding audience is composed of medical students,
assisting to the surgery in the context of the 1889 medical class of the University of Pennsylvania.
The Agnew Clinic, Thomas Eakins, 1889. Image under Public Domain.

1.1 History and Evolution of Surgery

The first examples of surgical interventions are prehistorical, as indicated by skull drilling
and suture marks which can be identified in some archaeological remains. However, these
signs testimony rather the prowess of a few pioneers than a systematic pursue of advancement
in knowledge and praxis, which could only take place with a rigorous scientific approach in
the modern Era [100]. The investigation of human anatomy, started during the Renaissance,
prepared ground for a scientific and empirical study of surgery, which evolved during the
Age of Enlightenment. The invention of anesthesia allowed to investigate more complex
procedures [127], and the discovery of microscopic pathogens lead to a better understanding
of how to minimize the risk of infection.

By the second half of the 18th century, several interventions had become possible. However,
the largest part took the form of open surgery: the region of interest was exposed via incisions
on the patient’s skin. This revealed the interior of the patient not only to the surgeon’s eyes
and hands, but also to infecting agents. As a consequence, the wound took a long time to heal,
not always without long term averse effects.

Arguably, the most important enabler of the ongoing surgical invasivity reduction can be found
in the invention and advancements of medical imaging. While the "forerunners" of modern
surgeons had to literally dig into the patient in order to find and address the source of the
problem (as shown in Fig. 1.2), new technologies allow contemporary physicians to inspect
the patient’s body from the outside and offered a medium to store and share knowledge. The
discovery of X-rays at the end of 19th century soon turned into a medical imaging application,
spawning the entirely new and still vital field of Radiology.

To be fair, the long way to the development of Minimal Invasive Surgery (MIS) had already
started by that time. While the record for the first organ to be inspected through reflected
light can be traced back to the 11th century, in the study of the Arab physician Albukasim,
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the first dedicated device was built only eight centuries later by the German physician Philipp
Bozzini, which used it to inspect the human urethra. As in many other cases, his work found
heavy resistance in the community, which readily defined his device "a toy" [178].

Luckily some of his colleagues did not follow the then popular motto "the larger the cut, the
better the surgeon", and refined the technique in order to apply it to non-natural orifices for
inspection (Endoscopy) and surgery: the first non-diagnostic Laparoscopy was performed in
the early 1930s [178]. The biggest challenge was delivering light to the region of interest, in
order to make it visible to the surgeon, without thermal issues related to the use of fire; the
invention of the light bulb helped overcome this problem, and the development of flexible
instruments led to a boom in the number of applications. The same principle applied to other
regions of the human body beyond the abdominal cavity, such as the thoracic cavity (Video
Assisted Thoracic Surgery, VATS [94]) and joint cavities (Arthroscopy [120]).

Given the adoption rate and the improvement to patient care that it enabled, laparoscopy can
be counted amongst the most disruptive innovations in medicine, together with anesthesia and
antibiotics [178]. Many procedures are now performed with a minimally invasive approach in
more than 90% of cases, with significant improvement of post-operatory decourse [187].

Another important factor shaping today’s medicine can be found in the proliferation of
imaging modalities, and their combination resulting in multimodal imaging methods. The
fusion of anatomical modalities (like X-ray based Computer Tomography - CT, or Magnetic
Resonance Imaging - MRI), and functional imaging modalities (for example Single Photon
Emission Computer Tomography - SPECT or Positronic Emission Tomography - PET) can
combine the characteristics of both and allow to differentiate tissues that would look alike in
a strictly anatomical image, facilitating the detection of tumoral masses and other anomalies.
Interestingly, these possibilities were also not recognized right away: as in the case of the
endoscope, the first SPECT/CT device was also judged to be "just a toy" [26].

The digitalization of medical imaging was a prerequisite for a much more systematic and
integrated use of the produced images. Mechanical stereotaxy was integrated with navigation
systems making use of optical, mechanical or electromagnetic tracking to localize the position
of the instrument handled by the surgeon inside a pre- or intraoperative image, reducing the
cognitive burden on the physician. Digital endoscopes, capable of capturing light outside
of the human visible range, can visualize information that would otherwise be hidden; an
example is the distribution of a contrast liquid injected into the patient, with the aim of
locating vessels and avoid their damage during tissue resection.

A solution that recently found commercial viability and promises to deliver benefits to both
patients and doctors is robotic surgery [56], which takes different forms. On one hand,
many ad-hoc devices are being developed to enhance particular procedures in orthopedics,
neurosurgery and many other fields; at the same time, teleoperated laparoscopy is finding its
way into general surgery. Making use of an electronic interface and advanced 3D visualization,
it offers a much better ergonomy over classic laparoscopy, possibly allowing the surgeon to
work under reduced stress and minimizing the collateral damage when operating in cluttered
parts of the body [28]. Several procedures have been found viable, and clinical studies
are underway to demonstrate the clinical advantages for the patients in order to justify the
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increased costs. The evolution of the technical solutions adopted, together with the integration
of image-based and cognitive features, promises to provide a strong platform capable of
further reducing the invasivity of the procedures by exploiting natural orifices and offering
the surgeon smart, context-aware assistance.

These are only some of the milestones that were laid on the path to patient-personalized,
minimally invasive, precision surgery. In the next three sections we will focus on each of
the three aforementioned and complementary fields: Medical Imaging, Computer Aided
Interventions and Medical Robotics. We do not aim at an exhaustive review, which would
be unfeasible in the scope of this work; but rather to build a conceptual map of the state of
the art and current research directions, in order to provide context and motivation to our
contributions.

1.2 Common Clinical Setups

For an easier comprehension of the following sections, it is beneficiary to review the most
common scenarios that can be encountered during surgical procedures. Along widely adopted
open, laparoscopic, robotic and microsurgery, we will briefly introduce ultrasound-guided nee-
dle biopsy since it is of particular interest for the discussion of the presented contributions.

1.2.1 Open Surgery

General surgery is typically performed in a dedicated area of the hospital, called Operating
Room (OR). The most distinctive trait of an OR is the particular care taken to ensure the
sterility of the whole environment, achieved through the particular design of the room itself
and furniture within, and through strict protocols applied to every person and object entering
it.
The usual equipment (see Fig. 1.3) includes at least an Operating Table, that is a bed on
which the patient can lie and be solidly fixated in order to prevent dangerous motions during
the procedure. Many tables are adjustable in position and orientation to adapt to each proce-
dure and phase of the surgery.
Surmounting the bed are placed surgical lights, usually implemented as a potent illumination
system which can be oriented to keep the operating site clearly visible at all times. This can be
challenging due to the large number of people, devices and tools involved.
At least a cart is in general necessary to hold the surgical instruments: scalpels, throngs, and
more specialized tools. These must be completely sterile and are usually responsibility of a
dedicated assistant, which passes the correct tool to the surgeon upon request and ensures
that at the end of the surgery no tool or bandage is missing.
Another cart usually carries monitoring and anesthesia devices, which control the flow of
drugs administered and keep the vital signs of the patient under surveillance. An anesthesiolo-
gist is commonly assigned to the task of intraoperative life support and pain management.
The walls of older ORs were often furnished with illuminators to hold photographic film
containing medical images, such as radiographies. With the advent of digitalization, they have
often been completely replaced by screens hanging on walls or mounted on the roof.
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Fig. 1.3. Open and laparoscopic surgery. On the left, a modern operating room; in contrast to Fig. 1.2, a lot of
attention is posed to the sterility of the environment. On the right, a laparoscopic setup; the additional
ergonomic challenges on the surgeon can increase the difficulty of the most complicated procedures.
Image on the left under Public Domain. Elective surgeries hone surgical skills, prepare medical team for
combat [Image 4 of 4], by Gloria Montgomery. The appearance of U.S. Department of Defense (DoD) visual
information does not imply or constitute DoD endorsement.
Image on the right under Public Domain. Physicians perform laparoscopic stomach surgery, by Samuel
Bendet over WikiMedia Commons.

Depending on the procedure, the most convenient location for the skin incision is chosen.
Factors impacting this decision include considerations about the collateral damage and easiness
of access to the target anatomy. The patient is commonly covered in a sterile cloth leaving a
window sufficient to enclose the incision, which is performed after disinfection of the area.
The seams of the incision and underlying muscles are pulled apart to provide access to the
operating site. The tissues underneath may have to be resected in order to reach the actual
objective of the surgery. This may consist of the resection of anomalous or cancerous tissue,
or reshaping of problematic anatomy; alternatively, it may also be the delivery of therapy in
the form of drugs, or placing implant. Finally, the original state of the surrounding tissues is
restored to the maximum possible extent, by cauterizing or suturing. The last phase of the
surgery usually includes the suture of the patient’s skin.

1.2.2 Laparoscopic Surgery

As we mentioned in the previous Section 1.2.1, conventional open surgery requires large skin
incisions to provide room and visibility for the surgeon to operate. The drawbacks in short-
and long-term morbidity raised interest in how to reduce the invasivity of surgical operations.
The invention and evolution of endoscopic techniques allowed to inspect the internals of the
patient’s body through just a small incision; concurrently, laparoscopic surgical instruments
were developed in order to enable minimally-invasive manipulation of tissues. As a result,
the physician can operate on the patient’s internal anatomy by creating a few small incisions
on the skin, and inserting through them the endoscope and elongated tools. In this setup,
the damage and trauma to the patient’s body is much more limited. While the definition
laparoscopic surgery is perhaps the most known to the general public, this only refers to
minimally-invasive surgery in the abdominal area; the same principles and, in large part, the
same techniques can be applied to other regions of the body and are given a respective name
(e.g. arthroscopy for surgery within joint cavities [120] or VATS for the thorax [94]).
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As can be noted in Fig. 1.3, the setup of the operating theater remains largely unchanged with
respect to open surgery, which also facilitates the reuse of the OR for multiple purposes. This
can also be the case of a laparoscopic intervention, in the case of extreme complications which
can no longer be handled with a minimally-invasive approach: the procedure is then converted
on-the-fly to an open surgery to take care of the emergency.
In contrast to open surgery, the laparoscopic approach requires multiple smaller skin incisions.
One gives passage to the endoscope, which is an elongated pipe serving as a hull to multiple
fiber optic cables; one cable is used to deliver light to the operating site, while the other (or
others in case of a stereo endoscope) serves to capture light in the visible range, which will be
recorded by an RGB camera and then displayed on a screen for the surgeon. Having the light
source and the cameras at the far end of the optic fibers helps with the miniaturization of the
equipment and avoids thermal damage to the patient’s tissues.
Further incisions are performed with the purpose of inserting the laparoscopic surgical
instruments. Such tools are extremely miniaturized and typically feature a long, thin pipe
between the handle and the actuator, so that they can be used to operate at a location deep
within the patient’s anatomy while holding them externally.
The surgeon can hold two surgical instruments with both hands, or one instrument and the
endoscope. Control can be switched across phases of the procedure with an assistant. The
assistant can hold the endoscope and move it according to the surgeon’s needs, or assist from
an additional port during particular moments of the surgery, for example when resected tissue
must be removed from within the body. It is therefore easy to imagine that team coordination
and communication are essential for the success, efficiency and error prevention during a
laparoscopic intervention.

1.2.3 Robotic Surgery

The introduction of a large spectrum of robotic devices developed ad-hoc for a great number of
procedures has undoubtedly contributed to improve patient care. However, the introduction
of robotic laparoscopic platforms had a particular impact, changing the paradigm of surgery
once again [107].

Such systems introduce one further level of indirection between the surgeon and the patient.
In open surgery, the physician is in direct contact with the target anatomy and relies mostly
on their own senses (vision and touch) to inspect it. Access to the surgical site and tissue
manipulation are direct and intuitive.
Laparoscopy maintains the barrier between the internals of the patient and the surrounding
environment intact; this means that the surgeon has to rely on a proxy of their own senses.
Vision is redirected through a camera-monitor system, with the latter hanging in the proximity
of the operating table, while interaction happens through elongated instruments with scissor-
like handles. As a consequence, the surgeon must often not look directly at their own hands
and the operating area, but rather at a screen positioned somewhere else. This fact, conjugated
with the counter-intuitiveness of the action required to achieve the desired movement at the
far end of the laparoscopic tools, poses a great cognitive burden on the surgeon and makes
laparoscopy hard to master. The narrow field of view provided by the endoscope aggravates
the situation even more.
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Fig. 1.4. Robotic surgery and microsurgery. Robotic surgery and microsurgery share a distinctive feature: the
surgeon’s field of view is highly constrained by the visor employed to provide a visualization of the
operating site. As a result, special care must be taken when integrating new devices into the workflow, in
particular with respect to the user interface. However, robotic surgery improves the surgeon’s hand-eye
coordination over Laparoscopic surgery at the cost of increasing the distance to the patient.
Image on the left under Creative Commons 4.0 License (CC-BY-SA-4.0), by Fatemeh Dorosti over WikiMedia
Commons.
Image on the right under CC0 License, from skeeze over Pixabay.

Robotic laparoscopy is an approach that promises to mitigate the drawbacks of laparoscopic
procedures, while maintaining its benefits [23, 28]. As shown in Fig. 1.4, the distance between
patient and surgeon increases further, even spatially: such platforms are shaped in a master-
slave architecture, where the physician sits at the master console in order to control the
movement of the slave robot. The master console is equipped with a visualization and an
input system. The slave side features multiple arms, one holding an endoscope while the other
arm is equipped with a laparoscopic tool.
The improvements with respect to conventional laparoscopic procedures lie mostly in the user
interface presented to the surgeon. Video data recorded by the stereo endoscope is presented
with a 3D visualization system, enhancing depth perception. The input system adopted by the
most widespread platforms is pinch based, and allows a very intuitive control of the surgical
instruments. The whole console is designed to give the native hand-eye coordination back to
the surgeon, providing with the illusion of a point of view within the patient’s body. Moreover,
the operator can switch from controlling the arms holding the surgical instruments to moving
the endoscope at any time, solving another of the major pain points of laparoscopic surgery.
Some platforms offer not two but three arms with tool mounts, so that one can be used for
auxiliary tasks like keeping one layer of tissues in a fixed position [43].

This approach was introduced recently, and continues to evolve at a fast pace. While the
benefits for the surgeon are evident, the consensus about the improvements of patient care is
not yet unanimous. However, it is easy to imagine the possibilities unlocked by the introduction
of such a platform into the OR. We will discuss the topic in Chapter 4.

1.2.4 Microsurgery

The use of a microscope for the magnification of the operating area allows to operate on minute
structures of the body, like small blood vessels and nerves. The technique was developed in
the context of otolaryngology, but it can be naturally extended to virtually all the regions
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of the body. Because of the fine manipulations it allows, it is particularly advantageous for
reconstructive surgery or tissue transplant.

The setup, shown in Fig. 1.4, is similar to open surgery as presented in Section 1.2.1, but
the surgeon’s vision is mediated by a magnification device, typically an optical microscope.
The magnification heavily restricts the physician’s field of view, so continuous adjustment of
the microscope position or zoom level is necessary. Typically, this is controlled directly by
the surgeon through foot pedals in order to keep the hands free to operate. Such a setup
is difficult to master, as it requires great coordination and independence of the limbs while
maintaining a steady hand to avoid unintentional damage. The high level of magnification and
the indirect view also make hand-eye coordination difficult. Adjusting to the former requires
learning how to perform hand movements on an unusual scale, while the latter requires a
mental mapping between the direction of the hand movement and the resulting effect visible
through the microscope.

1.2.5 Image-guided Needle Biopsy

A biopsy intervention consists in the removal of a sample of tissue from the patient’s body
for examination. This is usually performed after an anomaly is located through non-invasive
imaging with the purpose of further analysis.
A large spectrum of established procedures have been developed in order to cope with the
many possible scenarios. Depending on the type, location and visibility of the lesion, different
means can be used in order to locate, reach and sample it. A superficial skin anomaly may be
entirely removed with a direct punch biopsy. Typically such lesions are visible to the naked
eye, and the surgeon can simply remove a patch of skin with the aid of a dedicated sharp
round instrument. The specimen can then be sent to microscopic or histological examination
to determine malignancy.
If the region of interest is not located on the patient’s skin, a more invasive procedure is
necessary in order to reach it. In the most difficult cases, a surgical biopsy may be necessary
to reach a very deeply nested lesion in a sensible area, which takes one of the forms described
in the sections above. However, often a full-fledged surgery can be spared by using a surgical
needle instead to reach the anomaly and resect a tissue sample.

A needle biopsy can usually be performed under local anesthesia with minor complications.
However, many factors can have an impact on the final form taken by the procedure.
Depending on the type of lesion, different kinds of needles can be used: a fine needle (similar
to a syringe) can be employed to remove liquid from an object such as a liquid-filled cyst,
while a thicker core needle can be used to excise a specimen of solid tissue or bone marrow.
If the object to be biopsied can be felt through tactile inspection, as in the case of subcutaneous
lumps, the physician can drive the needle by just relying on their senses; such a procedure
is often described as a freehand needle biopsy. Otherwise, a mean of navigation is needed
in order to successfully drive the needle into the target. Usually an imaging device is used
to provide visual feedback, and the procedure can be hence categorized as an image-guided
needle biopsy. Ultrasound is a natural choice in most cases for its interactive usage (as
depicted in Fig. 1.5), but X-Ray Computed Tomography may be necessary in some challenging
scenarios, such as the thoracic cavity [85].
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Fig. 1.5. Ultrasound-guided Lymph Node Needle Biopsy in the Axilla. In this picture, the surgeon uses a
hollow needle to remove a tissue sample from a Lymph Node visible in the ultrasound image for later
histological examination. The physician must hold the US probe with one hand while introducing the
biopsy needle with the other, and correlate the spatial information provided by the US image with the
orientation forced by the particular setup while optimizing the probe position for visibility of both needle
and target. This hand-eye coordination is not trivial and steepens the learning curve for US-guided
procedures.
Image courtesy of SurgicEye GmbH and Dr. med. Dipl. med. Stefan Paepke.

While the reduced invasiveness of needle biopsy makes it an attractive alternative to more
aggressive procedures (typically open surgery), the approach can pose a higher level of
difficulty. The surgeon must handle one imaging device (or more, in case of multimodal
imaging guidance) to image the region of interest and obtain a suitable picture of the operating
site. In the case of ultrasound, the probe must be held with one hand. Concurrently, the
needle must be inserted with the free hand. Both the surgical target and the needle must
be kept visible in the image; this can be a challenging task, due to the low visibility of most
surgical needles in the US image and the field of view of the imaging device, limited to a
single plane. The need for coordination between the hands, the low understandability of the
typical US image and the need to build a mental map of the surrounding anatomy contribute
to raise the difficulty of the procedure.

Ultrasound-guided core needle biopsy of sentinel lymph node for breast cancer staging will
be an application of the method proposed in Chapter 5. However, it is useful to consider
such scenarios when evaluating the advantages and disadvantages of medical imaging and
Computer Assisted Interventions presented in the next two chapters (2 and 3).
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2Medical Imaging

The ability to obtain in-vivo structural as well as functional imaging of the human body is of
crucial importance for the quality of patient care - from diagnosis to interventions to post-
treatment monitoring. The availability of non-invasive imaging techniques, which can acquire
such images from the outside of the patient’s body, is a major enabler for new approaches
which can significantly increase the precision and reduce the trauma related to interventions
such as surgery and drug delivery.

This section presents an overview of the vast and advancing field of medical imaging. We will
omit details about the individual modalities, which are easy to find in literature, in an attempt
of providing a transversal picture of the topic which is less common to encounter. Instead, our
focus will lie on how high-level characteristics of each imaging modality are reflected in their
clinical adoption and usage.

2.1 Classification of Imaging Modalities

An imaging device can be categorized according to some orthogonal criteria, which we will go
through in this section. While some of these properties are intrinsic to each imaging modality,
others can be adapted in multiple variants to satisfy the clinical requirements of different
scenarios.

2.1.1 Dimensionality: 1D, 2D, 3D, 4D Imaging

The output of the great majority of imaging techniques is a scalar or vector field: a grid of
pixels or voxels, to which a value (scalar or vector) is assigned to represent the intensity of the
measured physical phenomenon. This field is sampled (directly, or indirectly computed) over
a corresponding region of space within the patient’s body. The process can consist of a single
acquisition, or it can be repeated over time for progressive refinement, interactive usage or for
the monitoring of a physiological or surgical process over time.

The simplest case is 1D imaging, in which the output is a single scalar value. An example can
be found in ultrasound A-mode, which measures the echo generated along a single line, or
in gamma probes, which can detect radioactive events originating from a region of space in
front of them. Or also, by extension, in an electrocardiogram (ECG). Such a simple output
can be rendered with an auditory feedback or the display of a number or plot, and is typically
adopted in interactive or monitoring scenarios.

17



In contrast, 2D images can be handled most intuitively, since they are closer to our own
perception of the world and we are used to make use of them thanks to consumer multimedia
technologies (photographs, etc.). They can be easily rendered on a screen, in particular in
the case of scalar quantities: each pixel can assume any value within the output color space
(e.g. [0,1] or [0,255] from black to white) via quantization and optional rescaling. However,
in order to simplify the understanding of the image, the function between the scalar field
and the final pixel values can be other than a simple linear mapping; this is hence often
called an intensity map. A color map is an extension of this concept, as it arbitrarily defines a
correspondence between the original scalar or vector field value range and the target color
space (e.g. RGB), resulting in a colored visualization of the dataset.

Along with 2D imaging modalities, 3D imaging is widely used for diagnostic purposes;
less so for intraoperative applications, usually due to long acquisition times and risk of
motion artifacts. These are due to the fact that 3D images are commonly acquired by
progressive scanning of the region of interest, rather than simultaneous acquisition of all the
data pertaining to a single image. Thus, motion of the patient or displacement of tissues during
the acquisition may lead to an image which is inconsistent across its own extent. Furthermore,
the domain in which the raw input is acquired is often different than the Cartesian space; the
final scalar or vector field is then obtained through a reconstruction process. In order to be
comprehensible for the physician, the most common visualization technique is the arbitrary
reslicing of the volume into 2D slices. This operation requires the surgeon’s interaction to
select the desired view. Since their hands may be occupied or have to stay sterile throughout
the procedure, the operator may have to ask an assistant to update the visualization for them.
Such a workflow is not feasible for highly dynamic situations. On the upside, 2D reslicing of
a 3D image can be however be done offline without further acquisitions, in contrast to 2D
imaging modalities.

The repeated acquisition over time of 3D images is commonly referred to as 4D imaging.
The most widely known application of this technique is 4D echography, which can render
spectacular videos of a fetus during pregnancy, but most other modalities have or are acquiring
a 4D variant as well. Unfortunately some factors may limit the application of these techniques;
for example, the high dose of dangerous ionizing radiation involved in a 4D X-ray Computed
Tomography scan. Furthermore, one of the biggest problematics in their use consists in motion
artifacts due to respiratory motion or heart beating during the acquisition of a volume; this
issue can be mitigated by synchronizing the acquisition with these processes. More details
about 4D imaging techniques can be found in an extensive review by Li et al. [101].

2.1.2 Energy source

In order to maintain non-invasivity, imaging modalities must be based on a physical phe-
nomenon which can be detected from outside the patient body: these constraints are satisfied
by waves (electromagnetic or mechanical) and subatomic particles.

Waves are typically transmitted to the patient by an external energy source. Among mechani-
cal waves, those of ultrasonic frequencies are preferred due to their penetration capabilities
and higher resolution. They can be excited mechanically by a piezoelectric array, or by light
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Fig. 2.1. Gantry-based SPECT/CT scanner and freehand SPECT. In this picture the contrast between pre- and
intraoperative imaging is particularly noticeable. The left panel shows a diagnostic SPECT/CT scanner,
which is designed with the aim of providing the best possible imaging quality. The shape and size
of the gantry fit the patient’s body so tightly that it would be very hard for a surgeon to interleave
their workflow and acquisition of intraoperative images. On the other hand, freehand modalities allow
such approaches; on the right, the output of an Augmented Reality system for intraoperative SPECT
acquisition and visualization shows the field of view of a tracked gamma probe and the reconstructed
distribution of the radiotracer within the patient’s body.
Left image under Creative Commons License (CC-BY-SA 3.0), from ytrottier over WikiMedia Commons. Right
image from [136], © 2012 IEEE

through the optoacoustic principle. Electromagnetic waves can be projected through the body,
e.g. from an X-ray source, or excited by creating a strong magnetic field resulting in nuclear
magnetic resonance.

On the other hand, particles must typically be delivered to the region of interest via injection
or oral administration of a radioactive substance. Once this collects in the regions of the body
which are the target of the examination, it constitutes an internal energy source which can be
detected from a sensor external to the body, without further intake of energy. This approach is
most popular among functional imaging techniques (and will be covered in Section 2.1.4).

2.1.3 Acquisition: Gantry vs Freehand

Most 2D techniques allow to sample the entire image simultaneously, being based on orthogo-
nal or pinhole projection on a 2D sensor. An exception is ultrasound imaging, which is based
on reflection. However, such a direct approach is not at all possible for 3D imaging, since
a 3D sensor would have to occupy the same space as the patient. Hence, tridimensional
imaging modalities employ tomographic reconstruction algorithms or progressive scanning of
the volume of interest.

Tomography consists of the indirect computation of a scalar field through accumulated
observations, such as measurements corresponding to its projection and integration along an
axis. This process can be described as a linear equation system, and its solution constitutes an
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inverse problem. In order for the problem to be solvable, it is necessary that the acquisitions
satisfy geometric requirements.

This can be ensured via a fixed or moving gantry, holding the sensor and possibly the energy
source. This approach allows for fast and accurate acquisitions, but often requires the use of
bulky hardware.

The freehand method involves the usage of sensors that are hand-held by a physician and
tracked in space by a dedicated hardware system. The operator has the responsibility to
obtain a full coverage of the region of interest, possibly under the guidance of the system’s
software. Because of the dependency on the user, this approach is less widely used, mostly in
an intraoperative setting.

2.1.4 Anatomical and Functional Imaging

An anatomical imaging modality can render an image in which the intensity of the pixels
or voxels are correlated to a physical property of the anatomy within the region of inter-
est. According to the physical principle on which the modalities are based, they can hence
differentiate the tissues in very diverse ways and offer various representations of the same
part of the body. X-ray based imaging modalities are particularly sensitive to variations in
the density of the tissues irradiated during the process. Therefore, they are particularly apt
to inspect bone shape and integrity. However, the resolution of modern equipment is such
to allow the resolution of subtle variations in soft tissues as well. This fact does not make
Magnetic Resonance Imaging, another diagnostic anatomical modality of preference for soft
tissue, obsolete. The content of an MRI image makes other changes in the structure of tissues
evident in contrast to CT, as it is more sensitive to the distribution of water than to density in
itself. So, the choice of the imaging modality has a crucial impact on what will be visible to
the physician.

Functional imaging does not attempt to provide an image of the patient’s anatomy: instead,
the resulting images provide spatial information regarding the localization of a physiological
process of particular interest within the patient’s body. Often this requires to inject a contrast
agent into the patient’s blood stream, consisting of a compound of a detectable substance
(e.g. a molecule containing a radioactive isotope) and a substance which is involved in the
physiological process of interest. As a result, the detectable marker will collect in the region of
space where the process takes place. A functional imaging device can then provide a 2D or
3D image of the distribution of the marked compound in space, and hence of the intensity
of the physiological process. A typical application is the diagnosis of several types of cancer,
achieved through markers attached to sugar molecules. In these cases, cancer cells have a
faster metabolic activity than healthy cells, so they collect and process more sugar which
highlights them against the healthy tissue in a functional image.

A drawback of pure functional imaging modalities is that they only provide a scalar field
rendering the distribution of the activity of interest in space, without anatomical landmarks
useful to position the image seen into the patient’s body. Achieving such alignment is then left
to the physician, who has to correlate the shape of the colored dots on a black background to a
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Fig. 2.2. Example of multimodal image fusion. This picture shows the importance of complementing functional
and anatomical imaging for the comprehension of the whole image. While CT (left) is not capable of
providing the functional information captured by PET (center), their fusion (PET/CT, right) allows to
precisely correlate the position of functional information to fine anatomical landmarks.
Copyright © 2010 John Wiley & Sons, Ltd. Reused with permission.

CT or MRI image. Multimodal Imaging offers a way to avoid this difficult, time-intensive and
error-prone process. It is based on the fusion of an anatomical and a functional image, resulting
in an image where the intensity map of the physiological process of interest is overlayed on
a complete rendering of the patient’s anatomy, greatly facilitating its understanding. While
it is possible to register a pure functional image to a previously acquired anatomical image,
this can be a very difficult process with a high probability of partial or total failure. The
convenience of acquiring the two images within the smallest possible time frame is so big
(as shown by Fig. 2.2), that almost all CT scanners commercially available today integrate a
SPECT detector. We discuss this topic more in Section 2.3.

2.1.5 Diagnostic and Intraoperative Imaging

Imaging modalities based on the same physical principle and acquisition, reconstruction and
visualization techniques can differ greatly in order to satisfy different constraints. This can be
recognized in the case of diagnostic and intraoperative modalities.

In a diagnostic setting, the highest priority is acquiring and visualizing the most accurate
image, in order for the physician to take a decision based on the best possible information.
For this purpose, the highest resolution and dynamic range are often pursued, while reducing
noise and artifacts to the minimum. The least possible amount of information is also discarded
(e.g. by restricting the device field of view), in order to provide as much context as possible.
Considerations about the dimensions of the hardware, the time required for the setup and
the acquisition, or other collateral factors have a lesser impact on the design of diagnostic
imaging methods.
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Priorities shift when entering the operating theater. Intraoperative imaging takes place at
a time when the most important decisions have been taken and the plans laid out; its only
purpose is to assist the surgeon in performing the intervention in the best possible way. To
this end, the detail of the information may not be as important as its relevance for the task
at hand, or the intrusiveness of the acquisition procedure within the surgical workflow. As
a consequence, a real-time, easy to understand, high-contrast image can turn out to be the
most helpful. An example is shown in Fig. 2.2; this topic will be further discussed later in
Section 3.4.

2.2 Modalities

This section glimpses over the panorama of the most common image modalities, focusing
on the implications that each technology has on their usage in a clinical setting. Our focus
lies mainly on ultrasound and gamma imaging, which was employed for the contributions
presented in Part III. A brief introduction to the other most common techniques is however
also provided with the aim of providing a broader context to the reader.

2.2.1 X-ray based modalities

The first image of internal human anatomy acquired in a completely non-invasive fashion
was a prompt application of the new radiation discovered by Roentgen in 1895, and by him
denominated "X-rays". While he noted immediately that this kind of rays could travel through
soft tissue but was strongly absorbed by bone, it was only one year later that this property
was exploited in a clinical setting to inspect a fractured hand [185].

The methodology adopted to obtain the first X-ray images involved a radiation source and
a fluorescent screen, between which the object to be inspected is placed. The X-rays (i.e.
photons with wavelength between 0.01 and 10 nanometers) travel on a straight line between
the source and the plate, unless they interact with matter on their path. In this case, the
particles may be absorbed or scattered. The density of matter on the trajectory of the photons
traveling from the source to each point on the surface of the screen determines the intensity
of the interaction with the fluorescent agent contained in it. As a result, the produced images
consist of the projection of the interposed tridimensional anatomy on a 2D plane, where
high-density structures such as bones are rendered in a bright color against a dark background.
This approach is hence called projectional radiography. While these characteristics make
radiography particularly apt for orthopedic purposes, current technology allows for a sensitivity
such that some sorts of variations and anomalies in soft tissues can be resolved as well, for
example in lungs.
Radiography is also widely used in intraoperative settings for navigation and guidance,
even if the dangers posed by intensive use of ionizing radiation such as X-rays requires
proper evaluation of the advantages and disadvantages of its usage. In order to make
intraoperative usage easier, the X-ray source and detector can be mounted on a C-arm,
i.e. a semicircular support attached to a portable wagon or a rail on the ceiling, such that
the patient can be scanned on the operating bed with a minor disruption to the surgical
workflow. Many variants of 2D X-ray radiography find common adoption in current medical
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procedures. A popular acquisition methodology, called fluoroscopy, consists of a continuous
generation of images, which can be perceived as a real-time video. Low energy X-rays are
employed in mammography, a widely employed screening and diagnostic method for breast
cancer [185].

While the information provided by projective radiography can be invaluable, the provided
images can be difficult to understand if the region of interest is cluttered: multiple layers of
structures can be projected on top of each other, resulting in an equally cluttered image. This
factor, together with the opportunity for better visualization, sparked interest into obtaining
a complete 3D volume of the region of interest, rather than a simple 2D projection. This is
achieved through a tomographic reconstruction, which was already described in Section 2.1.1.
This modality is hence known as X-ray Computed Tomography, or also just as computed
tomography or CT [76]. The advances in sensor technology and reconstruction algorithms
make CT an extremely valuable instrument, capable of rendering internal structures in detail;
however, the high dosage of radiation required limits its adoption.
The tomographic reconstruction process requires the acquisition of projective images from as
many directions as possible; diagnostic CT devices achieve that with an assembly of source and
detector which rotates at very high speed around the patient. For safety reasons, the hardware
is enclosed by a bulky cover taking the shape of a tube, into which the patient is introduced via
an electric bed (as shown in Fig. 2.1). This setup being unfeasible for intraoperative usage, a
variant was developed with the common definition of cone beam CT (or CBCT). Typical CBCT
systems involve a C-arm capable of autonomously rotating around their axis of symmetry for
the tomographic acquisition to take place.

Both projective radiography and computed tomography can be augmented employing contrast
agents [208], i.e. substances which significantly alter the interaction of an anatomical
structure of interest with the physical principle the imaging method is based on, in this case
X-rays. According to this principle, radiocontrast agents significantly absorb or scatter high
energy photons and hence provide high contrast in radiographic images.
This method is for example used in angiography [61] to visualize blood vessels, by subtracting
the images acquired after and before the injection of the contrast agent into the blood stream so
that the structures present in both images do not occlude the objects of interest. Alternatively
to injection, contrast agents can also be administered orally or in the form of enema, for the
imaging of the gastrointestinal tract.

The biggest impediment to a wider usage of X-ray based imaging is arguably the dangers
posed by ionizing radiation not only to the patient, but also to medical personnel. This
is particularly important during a surgery, where the surgeon and the whole team must be
forcedly close to the patient rather than behind a shielding wall as during the acquisition of
a diagnostic image [174]. Since the risk of harm accumulates over the time of exposure to
radiation, a surgical team commonly performing multiple procedures each day must adhere to
strict regulations in order to minimize collateral irradiation. This involves keeping a safety
distance from the device during image acquisition, and wearing very heavy shielding to protect
the most sensitive parts of the body. However, the statistics showing a higher incidence of
cancer in surgeons raise the doubt that these precautions may be insufficient [207].
Alongside safety considerations, a further drawback of X-ray imaging is the high sensitivity
to metal objects which can lead to artifacts in the images, in particular after tomographic
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reconstruction. Recent research in reconstruction and filtering algorithms helps minimizing
the annoyance.

Despite these disadvantages, radiography remains a fundamental component of many diag-
nostic and surgical procedures thanks to the high resolution and contrast provided, as well as
the speed of acquisition. The field continues advancing by refining existing techniques and
investigating the adoption of further physical properties of X-rays.

2.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging, or MRI, is an imaging technique capable of acquiring 3D
anatomical volumes with high detail. In contrast to X-ray Computed Tomography, it is based
on a physical principle which does not imply exposure to ionizing radiation. However, its
commercial availability and rapid clinical adoption has reduced only partially the usage of CT.
Reasons for this can be found not only in the high cost and (in the general case) slightly lower
spatial resolution, but also in the different information contained in the image. Instead of
displaying the density of matter in a given region of space, contrast in MRI images is provided
by variations in the spatial distribution of particular atoms; clinical applications usually target
hydrogen atoms, strongly present in water molecules and in other organic compounds. This
makes MRI a favorite choice for diagnostic imaging of soft tissues and for functional imaging
when an appropriate contrast agent is employed [3].

The physical principle exploited by MRI is Nuclear Magnetic Resonance, so the imaging
modality was originally called Nuclear Magnetic Resonance Imaging. The increasing awareness
of risks related to radioactive exposure caused the renaming of the clinical application in
order to avoid confusion in patients: though acting on an atomic level, NMR is (at least at the
current state of knowledge) considered harmless for humans.

The external energy is not delivered to the body as a localized, very high-intensity electromag-
netic (EM) field which excite the atoms of a specific element present in the region of interest
at a nuclear level. When the field is switched off, the atoms relax to their natural state and
emit a radio frequency signal. By spatially encoding the intensity and gradient of the EM field,
it is possible to correlate the frequency of the radio signal detected with the distribution of the
phenomenon in the spatial domain and to reconstruct an intelligible 3D image.
Nuclear Magnetic Resonance is a phenomenon with various nuances, which can be exploited
to extract alternative representations of the same anatomy where respectively different sorts
of tissues are more evident. The modulation of the EM field can be used to measure the
relaxation rate of the atomic nuclei along the parallel direction to the magnetic field, or in
the transverse direction; these variants are respectively denominated T1 and T2. Further
parameters of the process can be tuned to spawn an entire spectrum of MRI sequences of
different diagnostic relevance.

Both CT and MRI are used for anatomical imaging, but the latter is also capable of functional
imaging without a contrast agent. An example is provided by Functional MRI, or fMRI, which
has gained public attention as an instrument for understanding the inner workings of the
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brain by measuring the change in blood flow [3]. MRI contrast agents still exist for ad-hoc
procedures.

Even though it is based on a completely different physical foundation, an MRI scanner is
similar in appearance to a diagnostic CT device. Both have a bulky cylindrical gantry, which
makes it their integration in intraoperative procedures difficult. The long acquisition time
makes MRI particularly sensitive to artifacts caused by patient motion. Some patients might
have difficulties lying still for a long time in a narrow tube, surrounded by the loud noises
due to the constant switching of the EM coils. Breathing and heart beat can also generate
perturbations of the image.
MRI however poses even more challenges to intraoperative use: the high-intensity EM fields
interact strongly with any magnetic object present in the immediate surroundings, including
most metallic objects. This not only forbids patients with any metal implant to undergo a scan,
but also requires the whole Operating Room to be metal-free. This huge obstacle is overcome
only by a few research institutions which investigate intraoperative MRI.
On the other hand, information provided by Magnetic Resonance Imaging can be essential for
surgical procedures, for example to avoid critical structures during neurosurgery. This is often
achieved by registering preoperative data to intraoperative images, or through stereotaxis.

2.2.3 Ultrasound

Ultrasonographic imaging (US) is a very popular diagnostic and intraoperative technique,
being harmless, fast and cheap. It is mostly known to the public in the form of the echographic
exam to monitor pregnancy, but its qualities make it a valid and flexible support for many
clinical applications.

The acquisition of an US image consists in measuring the echo of an ultrasonic wave trans-
mitted into human tissues by direct contact. This is usually achieved through a piezoelectric
crystal, which can first convert an electric input into the source wave, and then perform the
inverse operation when the reflected wave reaches the probe again. The resulting electric
signal is digitalized and processed to obtain the final image. Since the wave reflection is
determined by the changes in density of the tissues, this approach allows to outline significant
structures in the region of space through which the mechanical waves travel.
The piezoelectric material is usually organized in a straight line, to form a 1D array. The
shape can change in order to fit a particular anatomy or procedure. The sound wave travels
orthogonally to the piezoelectric array, and when reflected reaches back to the sensor; by
measuring the time of flight it is hence possible to obtain a 2D image. Multiple 1D arrays
can be juxtaposed to build a 2D array, capable of synchronously acquiring a 3D volume;
this approach is however still not as popular as the former. A cheaper alternative is a probe
containing a 1D array mounted on a motorized support, able to rotate about an axis parallel
to the probe surface. This makes the probe able to acquire a 3D volume without displacing
it. A less common possibility is to translate the transducer array, rather than rotate it. An
example is the Automated Breast Volume Scanner (ACUSON S2000™ ABVS; Siemens Medical
Solutions, Inc, Mountain View, CA), which can acquire a 3D ultrasound volume of the whole
breast after manual positioning by an operator. Preliminary results [203] report a very high
sensitivity but low specificity compared to mammography. However, the elevated diagnostic
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agreement between readers shows how 3D echography can reduce the dependency on the
operator which is commonly associated to conventional hand-held ultrasound [58].
A further possibility for acquiring a 3D volume with a 2D ultrasound probe is offered by
freehand 3D ultrasound (or Ultrasound Compounding). This technique allows to combine
the samples acquired over time and space by a hand-held probe, constantly tracked by a
mechanical, optical or electromagnetic tracking system. The main advantage is the improved
repeatability of the measurement of the size of anatomical structures of interest with respect to
2D procedures, where the volume is estimated via approximated formulas based on measure-
ments on notable planes intersecting the structure [54]. However, the quality of the resulting
volume depends heavily on the skill of the operator and on the quality of tracking [188]. We
will go deeper into the topic in Chapter 6.

The most common form of echographic probe is hand-held. Many variants are commer-
cially available, with shape and properties adapted to single procedures or target anatomy.
However, ultrasound probes have also been integrated with success into catheters [206] or
endoscopes [45]. Lately a new probe has been presented for usage during robotic laparoscopic
surgery (X12C4 Robotic Drop-In Probe, BK Medical ApS, Mileparken, Denmark).
Besides the shape of the probe, the reconstruction methodology can also be altered for various
purposes. A contrast agent can be used to make objects of interest more evident in the
image [86]. Or rather than on the intensity of the reflected waves as in standard B-mode,
the focus can be set on measurement of the Doppler effect between the frequencies of the
emitted and detected wave. This allows for example to measure the relative speed of the
blood stream. Another successful application of ultrasound imaging is for elastography, that
is the measurement of relative stiffness of the visualized tissues in order to spot anomalous
regions.

Since US imaging makes use of a mechanical wave, the penetration capacity is more limited
than CT or MRI. Most systems cannot reach further than 15 or 20 cm into the tissues. Moreover,
since the wave must travel twice through the tissue before being detected, the chances for
further collateral interaction with matter is higher and can result in image artifacts. Another
consequence is that objects beyond a strong reflective surface (e.g. bones) will be reached only
by the fraction of the wave getting refracted, being in practice shadowed and barely visible
if at all. These two factors, along with a number of other physical effects make US images
particularly noisy and hard to interpret, and limit its use in regions such as the thorax or the
head (due to the obstruction of the rib cage and the skull respectively). Even worse, the aspect
of an object may vary substantially together with the orientation of the ultrasound probe and
the angle of incidence of the incoming mechanical waves.

All these factors make ultrasound imaging a very hard technique to master. Surgeons need
extensive training before successfully performing US-guided procedures such as needle
biopsies. Diagnostic exams are usually carried out by highly specialized physicians, sometimes
called sonographers. These professionals often perform exclusively this kind of procedures,
to the point of developing pathologies in their upper limbs due to the strain of maintaining
proper contact between the probe and the patient skin [118].
The unique advantages of US imaging do outweigh its drawbacks in many cases. In particular,
the dynamic and interactive acquisition protocol fits well to intraoperative scenarios, and
allows the physician to inspect the anatomy during motion (for example of a body articulation),
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while most other modalities require the patient to stay still to avoid motion artifacts. The lack
of ionizing radiation involved in the imaging process makes US ideal for routine scans and for
subjects at risk (e.g. women in pregnancy).

We will go into more detail about the 2D US B-mode image formation process in Chapter 5.

2.2.4 Nuclear imaging

All aforementioned imaging modalities involve an energy source which is external to the
patient’s body: a high-energy photon source in the case of X-rays, an electromagnetic field for
MRI and a piezoelectric crystal for the generation of ultrasonic waves. This chapter describes
two approaches that only rely on a hardware sensor, since the energy to be detected is directly
emitted by the target anatomy; or, to be more precise, by a substance injected prior to the
examination. Since most substances satisfying such constraint are radioactive, this kind of
imaging modalities mostly falls under the umbrella of Nuclear Imaging.

By definition, these imaging modalities can only detect a contrast agent; so they are mostly
used for functional imaging. The most straightforward approach, called scintigraphy, is to
acquire a 2D image of the distribution of the contrast agent with a static external detector, as
in the case of projective radiography. However, since in this case the source of the particles
is not a point but rather internal to the body, the image is not formed through a pinhole
projection as in radiography. The process is instead modeled as a parallel projection, due to
the fact that the sensor is a flat panel containing a scintillator and a collimator orthogonal to
the surface.

Nevertheless, the biggest difference between a scintigraphy and a radiographic image is the
visualized content. While the latter provides a rather complete black-and-white depiction of
anatomical structures, the former can be much harder to understand. The image may consist
just of a colored stain on a black background, corresponding to the region of space where
a physiological process of interest takes place. The lack of anatomical landmarks providing
spatial context may make the result difficult to read. As a result, Scintigraphy is mostly used
with contrast agents that bind to an entire organ, in order to inspect its shape and make
anomalies evident to the physician’s eye.

As in the case of radiography, tomographic reconstruction can be applied to multiple scinti-
graphic acquisitions in order to obtain a tridimensional image with evident advantages in
terms of image readability. Two methodologies find most widespread clinical applications:
Single-Photon Emission Computer Tomography (SPECT) and Positron Emission Tomography
(PET). Even if conceptually similar, the two modalities are based on two different physical
principles that reflect in how the acquisition and reconstruction processes vary between
them.

SPECT contrast agents emit gamma rays, which are the most energetic electromagnetic wave
observed until today. They are in fact much higher in energy than X-rays, and as a result
even more dangerous after exposure. These rays can be detected through a scintillator, that
is a device consisting of a chamber with a material prone to interact with the particle when
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traveling through it. Typically this interaction results in the emission of an electromagnetic
wave of lower energy, even in the visible range, which can be electronically detected. This
mechanism allows to count the events, i.e. the number of instances in which a gamma ray
interacts with the scintillator.
In order to filter out scattered rays or particles of other origin, a collimator is commonly placed
in front of the scintillator cells. Consisting of a metallic regular grid parallel to the scintillator,
it reduces the probability that an off-axis particle reaches the detector.
Given a number of scintigraphic images acquired from a set of orientations around the object,
tomographic reconstruction can be applied to obtain a 3D volume. This can be achieved by
using a gantry as in the case of X-ray CT and MRI, but also with a freehand approach, since
small and portable gamma probes and cameras are available [115]. While these devices are
usually employed for intraoperative navigation, when combined with a tracking system they
can be used for intraoperative SPECT acquisition [142]. An example of SPECT/CT scanner
and of freehand SPECT are shown in Fig. 2.1.

On the other hand, PET image acquisition requires a much more complicated hardware setup
due to the particular manifestation of the observed physical phenomenon. While a gamma
particle can be detected by a single scintillator chamber, hence limiting its possible origin to a
straight line orthogonal to the gamma camera screen, this is not possible for positrons. These
particles travel a very short distance since the time of their emission (typically less than 1 mm,
depending on the isotope) before annihilating with an electron and in turn emit a pair of
gamma rays traveling in opposite directions.
As a consequence, the standard approach to detect the emission of positrons is to identify
couple of gamma rays traveling in opposite directions and having originated "simultaneously"
(more sofisticated approaches take time of flight into account). This is achieved by organizing
scintillators in a ring, and connecting them with dedicated hardware activated by simultaneous
signals into pairs of scintillators. Once such correspondence has been found, it is possible
to localize the point of annihilation along the straight line connecting the scintillators that
reported the events. If the time resolution of the system is high enough, it is possible to restrict
the probable origin of the event on a segment of limited length within the line.
This series of correspondences constitutes the input to the tomographic reconstruction al-
gorithm, which has to account for the uncertainty around the exact position of the point of
annihilation, as well as the completely unknown displacement between this point and the
actual place where the original positron was emitted. All this factors limit considerably the
spatial resolution that can be achieved with PET.

This drawback in terms of image definition, along with the high cost of operation of a PET
scanner (and the associated particle generator, since the isotopes required have a very short
lifetime) and the risk associated with the exposure to such highly radioactive materials, are
still outweighed by the clinical value of the information it can provide. The same argument
applies to SPECT, and explains the wide adoption of both imaging modalities in modern
clinics.

More details about the usage of radiotracers for sentinel lymph node identification will be
provided in Chapter 5.
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2.2.5 Ongoing research

Even though the modalities introduced in the former sections are commonly available and
adopted, medical imaging is a very active field of research and the panorama might change in
the near future.

We already discussed in Section 2.2.3 the foundation of echography, which relies on the
emission and subsequent detection of the reflected ultrasonic waves transmitted mechanically.
Optoacoustic imaging (also known as Photoacoustic imaging) [179] makes use of ultrasound
detectors to perceive ultrasonic waves generated within the tissue itself by irrorating the
region of interest with light in the visible range. The application of intermittent light leads to
rhythmic dilatation of the tissues, resulting in mechanical compression and decompression
forming a detectable ultrasonic wave.
It has been shown that the absorption of light at certain frequencies is correlated to respective
physiological processes, making optoacoustic imaging feasible for functional imaging. However,
its reliance on light in the visible range poses challenges related to its penetration capability
and the high scattering in living tissue, which in turn limits the spatial resolution.

Another imaging technique which is drawing increasing interest for possible clinical appli-
cations is Optical Coherence Tomography (OCT) [46]. This methodology makes use of
coherent light to acquire images at very high resolution of structures directly below the tissue
surface. While irrorating the area of interest with directed laser, reflected light is detected and
filtered through interferometry in order to discard photons which have been scattered within
the tissue, and to organize the remaining events according to their time of flight.
This technique is particularly promising for the manipulation of nanostructures, as in the case
of microsurgery [38].

2.3 Multimodal Imaging

Functional imaging provides essential support for many applications, from cancer diagnosis to
intraoperative decision support or navigation. The ability to visualize information related not
just to anatomical structures but also to physiological processes invisible to the naked eye is a
phenomenal enabler for precision diagnosis and surgery.

Unfortunately, it can be very challenging to interpret pure functional imaging alone, as
suggested by Fig. 2.2. A radiologist, as well as a surgeon, needs to correlate functional
information to anatomical landmarks or structures in order to make an informed decision.
Therefore, there is large interest in multimodal imaging, i.e. techniques capable of coherently
visualizing image data acquired through different modalities.

2.3.1 Image Fusion Strategies

Most modalities previously discussed in Section 2.2 have reached wide availability in modern
hospitals. Therefore, there is extensive research attempting to jointly visualize images acquired
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through independent devices, for example a SPECT and a CT acquired at different points
in time. A precondition to such task consists in aligning the two images, such that the
information contained in respective voxels corresponds to the same region of space in the
patient’s body. This task is referred to as image registration, and is an extensive and active
field of research [64, 110].

In general, it is not possible to guarantee that the patient assumed the same position during
both examinations. The respiratory phase can also introduce extremely complex compression
and deformation of the patient’s soft tissues. As a consequence, the correspondence between
voxels of the two images can often not be formulated as a rigid Euclidean transformation;
or to be exact, as a function at all (since one voxel in one domain can correspond to more
than one in the target domain). However, for rigid structures this assumption can be made
to simplify the problem of deformable registration greatly. Otherwise, a priori knowledge
about the problem can be used to build a mathematical model of the imaged anatomy and
limit the solution space to a set of parametric deformations.

Once the solution space has been identified, for example SE(3) in the case of rigid transforma-
tions, the problem is usually formulated as the minimization of an error function. A popular
choice is to minimize an expression involving the numerical value of the voxels of the two
images; this approach is hence often called intensity-based registration.

Another possibility is to identify anatomical landmarks in both images, in order to derive
the global transformation from their relative displacement. In order to increase the precision
obtainable with this method, some approaches involve placing artificial landmarks (often
called fiducials) providing high contrast in both images; an example can be found in stereotaxy
for neurosurgical navigation.

2.3.2 Native Multimodal Imaging

The registration of two images acquired independently remains a very challenging problem,
as the possible deformations constitute a very large solution space and the difference in
appearance of the same object in the two modalities can make it hard to find correspondences
between the images.

Image registration can be made superfluous (or reduced to a known calibration transform) if
the two modalities are acquired in parallel by a combined device. Usually this is achieved
by placing the sensor hardware for the respecting modalities next to each other in a single
gantry; in this way, the common workflow involving the patient being translated through the
device via an electric bed is not disrupted. Since the relative position of the two sensor arrays
does not change, it is then possible to calibrate the device once to merge the two imaging
modalities into a single multimodal image. If the two sensors are close enough, even the
artifacts due to breathing or involuntary motion of the patient during the examination can be
minimized.

The most popular diagnostic multimodal imaging devices combine an anatomical and a
functional imaging process within the same hardware. This allows to provide anatomical
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context to the functional image, with the result of improving its readability and improve the
accuracy of the diagnostic process. The first native multimodal device combined X-ray CT
and SPECT; today this combination is so popular that it is very hard to find a commercially
available pure CT scanner, since most producers offer only combined SPECT/CT devices. The
same principle led to the development of PET/CT and PET/MRI scanners [26].

The possible insights unlocked in research and clinical applications by multimodal imaging
keeps the subject an active field of research. It is currently being attempted to develop
single sensors capable to act as detectors for both modalities, in order to further reduce
motion artefacts. The feasibility and clinical advantages of combining different anatomical
modalities, such as CT and MRI, is also being investigated. Furthermore, contrast agents
detectable by multiple modalities are also being researched, in order to more accurately
correlate information from both sources [26].

2.3.3 Applications of Multimodal Imaging

Native multimodal imaging offers better image quality and registration accuracy. Therefore, it
is widely employed for diagnostic applications, where quality and accuracy are paramount for
the physician to make accurate decision and, in case of subsequent intervention, planning.

However, as discussed in Section 2.1.5, priorities shift in an intraoperative scenario. As single
modalities had to be adapted for usage in the OR, multimodal imaging can as well only be
applied if the disturbance to the surgical team’s activity is outweighed by its benefits. With
this premise, much effort is being spent in order to find approaches capable of exploiting
information from high-quality preoperative imaging during surgery, for example by registering
the output of a flexible and fast modality such as ultrasound with a preoperative MRI image.
We will talk more about intraoperative multimodal imaging in Sections 3.3.1 and 3.4.

2.3.4 Conclusion

In this chapter we discussed the usefulness of multimodal imaging, in diagnostic scenarios as
well as for intraoperative support. The ability of differentiating tissues not only on the basis of
their anatomical structure but also depending on ongoing physiological processes can be of
terrific value, and this fact is driving both research and product development efforts.
We also discussed the constraints that imaging devices must satisfy in order to enter the OR in
contrast to diagnostic setups, and how these constraints shaped up the design of intraoperative
variants to significant deviations from the original concept.

These factors were crucial for the elaboration of the concept of our multimodal imaging
system, that we will present in Chapter 5, and motivate our effort to improve the usability of
freehand 3D ultrasound (which is the subject of Chapter 6).
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3Computer Assisted Interventions

The previous chapter discussed the most common medical imaging modalities. Such image
data can be used for diagnostic purposes, unchanged or after further manipulation with
Computer Assisted Diagnosis (CAD) methods. In this work we will focus instead on methods
for assistance during surgery, often referred to as Computer Assisted Interventions (CAI).
A consistent portion of said approaches make use of imaging data, and as such satisfy the
definition of Image Guided Therapy (IGT).

3.1 Definition and Objectives of CAI

The application of electronic and computing technology for support of surgical tasks is a large
and heterogeneous field, in its means as well as in its purposes. We will discuss the most
widespread in this section.

A recurring topic in this context is the reduction of invasivity. The minimization of the number
and size of incisions on the patient’s skin is directly correlated to the outcome in terms of
postoperative morbidity, recovery time and life quality. Damage can also be minimized in
terms of collateral alterations to the the functionality of the nervous system or other vital
organs, which can lead to lifelong consequences for the patient. These two aspects can
reflect into health as well as economical benefits for the individual patient and the whole
society [107]. The minimization of invasivity can be a consequence of the more general
reduction of guesswork and error that can be achieved by employing hardware and software
methods [81]. Advanced visualization, navigation and guidance, and collaborative robotics
can help completing the surgery with success and confidence.
Furthermore, the adoption of new technology can enable new procedures that would not
be possible at all otherwise. As the invention of endoscopy opened the door to today’s
laparoscopic surgery, a stream of innovation continues entering the whole field of surgery,
making new approaches feasible and improving quality of care.

While the patient is of course the first beneficiary of most advances of modern medicine, there
is another stakeholder which is often undeservedly forgotten: the surgeon. New technological
applications can reduce the danger posed by surgical procedures to the surgical team. An
example is the exposure to ionizing radiation during X-ray guided interventions. By tracking
the position of the X-ray source and the personnel within the OR, it is possible to ensure that
the entire team is outside of the area of direct irradiation [105]. Another possible area of
improvement is ergonomics, in particular of laparoscopic surgery. Multiple studies [90, 147,
187] stress the hard conditions posed by laparoscopic setups to surgeons. The development of
new visualization techniques and instruments, as well of robotic surgical systems, can help
greatly to mitigate the problem. Along the possible insurgence of health problems caused by
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ergonomics, current OR setups can induce high stress and cognitive load in the surgeon,
which are found to be correlated with a decline in decision making ability and surgical accuracy
[10, 24, 84].

3.2 Techniques of Computer Assistance

Here follows a brief overview of the extensive field of CAI. For the sake of brevity we will
limit our scope to a conceptual map of existing approaches and techniques, since exhaustive
reviews can take the shape of whole books [81].

3.2.1 Tools and Devices

Virtually every modern OR is equipped with multiple displays, showing various information
about the patient and the status of the surgery. Preoperative data can be visualized on
multiple screens surrounding the operative site, for reference to the surgeon. The output of
the endoscope can be visualized for both the surgeon and the whole team; this allows the
assistants as well as medical students present on site to follow the surgery. As technology
progresses, currently used LCD screens may be replaced at least in part by 3D capable displays
or head-mounted displays (HMDs) in order to provide spatial information and facilitate the
surgeon’s hand-eye coordination [136].
The imaging devices can also be counted among the technologies that are made available to
the medical team. All imaging modalities have by now taken a digital form, and offer a wide
range of customization possibilities in order to find the most optimal configuration for the
operating surgeon’s tastes and the nuances of the surgery at hand.
In order to exploit the available pre- and intraoperative imaging data for interactive assistance,
it is necessary to be able to correlate the position in space of the surgical instrument and of the
image volumes or planes with respect to the patient. This can be achieved by using tracking
systems, which usually take the form of a stationary device (e.g. a camera) following markers
attached to objects of interest (in our example, planar markers bearing grayscale patterns).
After calibrating the tracking system together with the employed imaging devices and surgical
instruments, it is possible to derive the position of an instrument within an acquired image for
navigation support and other applications.
With the recent developments in the area of computer vision enabled by deep learning tech-
niques, markerless tracking approaches have reached levels of accuracy and performance
that may allow them to be employed soon within the OR. In contrast to marker-based tracking,
such methods are able to recognize the object from its own appearance within a standard RGB
image. If a high-definition video stream is available, it becomes therefore possible to extract
the outline of the object and to estimate its pose in space with respect to the camera. This
constraint, together with the line-of-sight requirement, makes these methods a natural fit for
robotic laparoscopic surgeries, where the workflow already provides a close-up video feed of
the operating site and occlusion is avoided by the operator for their own convenience [92].
With these techniques, it becomes possible to employ simple color cameras to acquire knowl-
edge about the world. However, in recent times technologies capable of providing 3D informa-
tion have become available even in the consumer market. RGB-D cameras, which associate
to each pixel not just a color value in the RGB spectrum, but also a depth value expressing
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the distance from the camera to the closest visible object along the associated ray, have
found applications in a vast spectrum of research and industrial fields. Their miniaturization
allows them to be integrated into headsets capable of mapping the environment and detect
user gestures, such the HoloLens (Microsoft Corporation, Redmond, USA). In the medical
field, their usage has been explored for intraoperative Augmented Reality [62, 136] and for
integration within endoscopes [67, 164].
Rather than guiding the surgeon with visual or auditory feedback, once spatial relationships
are known it is possible to employ robots for surgical assistance. The degree of autonomy can
vary: the robot can perform a task completely autonomously or just steady the physician’s
hand, or guide it to a predefined point in space within the patient’s anatomy. Robotic devices
and applications will be discussed in Chapter 4.
As the number of devices within the OR increases, the task of managing them in the context of
the ongoing surgery risks to increase in complexity as well. As a consequence, the optimization
of their user interface acquires relevance with the aim of reducing the mental workload of
the surgical team, and with it the probability of error and the operating time. We will discuss
this topic in more detail in Section 3.5.

3.3 Applications

The tools presented in the previous section can be employed for surgical assistance in various
ways. Here we will explore four directions in which CAI technologies can support the surgeon:
"seeing", "guiding", "assisting" and "knowing".

3.3.1 Seeing: Imaging

CAI directly integrates many intraoperative variants of the imaging modalities presented in
Chapter 2, and makes large use of preoperative diagnostic data.

In Section 2.3.1 we introduced the technique of image registration, which is useful to bring
two different images into the same coordinate system and spatially align them. This can
not only assist in the creation of a multimodal image from a functional and anatomical pair
of images, but it can also be exploited to support interventional navigation and guidance.
While intraoperative imaging alone is not always sufficient to this purpose because of the low
quality and/or field of view, the data can be often used as a base to which the high-quality
preoperative diagnostic data is registered to. After registration, the spatial correspondence
between the position of the patient’s anatomy and the preoperative image is known and
can be used for intraoperative assistance, like navigation, guidance or interactive advanced
visualization.
More advanced approaches require a semantic understanding of the content of the image.
This can be at least in part achieved with image segmentation techniques. Segmentation
consists of assigning a class or label to each of the image pixels/voxels. Examples of useful
segmentations may find the boundary of a particular organ or tumor against the background
in an anatomical image like CT or MRI; or delineate the regions of the brain in a volume of
the head, or recognize vessels in an intraoperative ultrasound image. Once the spatial location
of an object of interest is known, this enables augmenting surgical workflows with interactive
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navigation (see the next section) or robotic guidance with active constraints (discussed in
Section 4) to reach or avoid it.
Diagnostic and intraoperative images can be used by the surgeon for planning the intervention.
Being able to build a mental map of the anatomy surrounding the operating site before taking
action can prevent errors, reduce stress on the surgeon and minimize collateral damage. To
this end, advanced visualization techniques are being investigated to present the most relevant
information [168]. Another possibility is 3D printing the imaged anatomy, which provides a
model that can be interactively explored by a surgeon before starting the surgery [102].

The usage of intraoperatively registered diagnostic data has been adopted with success for
orthopedics and neurosurgery, as we will discuss further in Section 3.3.2. However, its wider
application to general surgery is progressing more slowly. One of the reason for this lies in the
complex deformations that soft tissues can undergo under compression or resection during
surgical procedures or even simple patient movement [11, 173]. Since soft tissues are subject
to free deformation rather than simple rigid displacement, correctly registering a preoperative
image or volume to the current anatomical configuration has two preconditions which are still
difficult to achieve at the present state of technology: information about the said anatomical
configuration, and a reliable registration procedure. As stated in Section 2.3.1, the latter is
still a hard and interesting problem. But it is aggravated even more by the constraints posed
on imaging devices to fit into the operating theater. As we anticipated in Section 2.1.5 and
we will discuss in more detail in Section 3.4, the large diagnostic devices can not be used
to monitor the patient’s anatomy in real time because of their dimension, configuration and
acquisition time; their reported "intraoperative usage" typically consists in temporarily halting
the surgery to acquire an image. This leaves us with intraoperative variants such as CBCT or
ultrasound, which are only capable of 2D imaging or are severely limited in image quality. As a
result, their usage as reference for deformable registration still is an active research topic [143,
177].

A breakthrough in this field would enable advanced usage in the OR of preoperative images
and derived data (e.g. after segmentation of the image) which could not be obtained from
intraoperative data alone. One example of such opportunities can be found in the application
of Augmented Reality, which could be particularly useful during endoscopic procedures where
the surgeon’s field of view is limited and the cognitive burden posed for spatial orientation
is extremely high. This factor accounts in large part for the long training needed to master
laparoscopic and robotic surgery [6, 11].
In the meantime, the problem of disorientation in endoscopic procedures due to the narrow
visual field is being tackled in simpler ways, such as mosaicking [170]. By matching local
features between successive video frames captured by the endoscope, the displacement
between them can be computed and a global panoramic map can be built. Such map can be
useful as a support for the surgeon to orient him/herself in particularly challenging scenarios.
It is however possible to use the same information to perform a 3D reconstruction of the
environment, rather than just a bidimensional image. This task can be achieved through
the direct acquisition of 3D information with an RGB-D endoscope, or by exploiting local
features of the image to perform Simultaneous Localization and Mapping (SLAM) in order to
simultaneously derive the position of the camera within the environment, and the shape of
the latter [108]. This task can be made easier through the adoption of a stereo endoscope,
which is common for robotic laparoscopic platforms. Once a 3D map is built, it may be used
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for registration to preoperative data (with the purposes outlined earlier in this section) and/or
for implementing Augmented Reality. However, the high dynamicity of the environment due
to the deformation of the soft tissues in the abdominal area and the surgeon’s own activity
makes such tasks difficult, and requires a continuous update of the 3D map.

3.3.2 Guiding: Navigation

In general, the objective of surgery is reaching a target region inside the patient’s body to
remove or reshape tissue, to place an implant or to deliver treatment locally, often in the
form of a drug [81]. As a consequence, a substantial part of the time and effort of the
surgical procedure is actually spent while opening a path to this target region for the surgical
instruments, and then closing it back to minimize permanent damage. Optimizing this path
can lead to a significant improvement of the patient’s life quality in the postoperative phase,
as well as reduce the operating time and resources required. Surgical planning based on
image data, as described in the previous section, can help prepare the surgeon in advance. But
interactive navigation constitutes a direct form of assistance during the intervention itself.

Conceptually, navigation consists of providing a real-time feedback about the spatial location
of an instrument with respect to a target position or orientation. Usually this information is
provided visually, by drawing the position of the surgical instrument within a visualization of
a pre- or intraoperative image or also possibly through an abstract user interface involving
geometric primitives.
The navigational interface is commonly rendered on a screen positioned close to the patient
bed. It is also possible to employ augmented reality to reduce the distance between the
operating and visualization sites and align them spatially, with the aim of facilitating hand-eye
coordination and hence reducing the stress posed on the surgeon. Recent availability of
advanced HMD technology rose interest in this approach again, but the weight of even the
newest devices still makes them uncomfortable for prolonged use while looking down, which
is the most common position assumed by the surgeon during procedures [11].
However, other means of communication are being investigated, such as auditory feedback
as in Sonification [112]. The aim is to increase the quantity of information that can be con-
currently provided to the surgeon, without forcing him/her to, for example, switch the focus
of their vision between different regions of a display or between the operating site and a screen.

Meaningful navigation has numerous preconditions. A typical pipeline involves correct
knowledge of a chain of geometrical transformations: from the patient to the image on which
the position to reach or the region to avoid has been defined, to the tracking system being
employed in the setup, to the marker attached to the surgical instrument, finally to its tip (or,
depending on the instrument, its active region).
Patient-to-image registration can be achieved by using fiducials, which are objects that
can act as identifiable landmarks within the image. Usually, this is achieved by choosing a
material which is rendered in a particular region of the image’s dynamic range, such that their
segmentation within the image becomes trivial. After segmentation, their coordinates within
the image’s reference system can be easily computed. Generally, such fiducials also act as
markers for a tracking system, so that the transformation between the patient and the tracking
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system, and in turn between the image and the tracking system, can be derived. However,
placing fiducials can be an invasive procedure; this justifies the research for landmark-free
registration techniques, mostly implemented using intensity-based methods.
Since the transformation between the tracking system and the marker attached to the surgical
instrument constitutes its very output, the transformation between the marker and the active
region of the tool remains before closing the chain. Determining this quantity via a proper
calibration process is vital to achieve high accuracy [72, 131]. A faulty computation of the
translation between the marker and the instrument will introduce a systematic error between
the expected and the real output. A perturbation in the rotational component of the calibration
matrix can be even worse, as it will lead to larger and larger displacements between the output
of the system and the real world as the distance from the tracking marker increases.

3.3.3 Assisting: Robotics

Imaging devices and tracking systems provide means to obtain a digital representation of the
real world, which can then be virtually manipulated and presented to the user with computers.
Robotics closes the circle, allowing to affect the real world based on this information. Medicine
is a suitable target for the use of robots to automatize procedures or provide collaborative
support to the operating surgeon. Here we will briefly present how such approaches fit in the
CAI context, before discussing the topic in more detail in Chapter 4. Extensive reviews of the
topic can be found abundantly in literature [36, 182, 184].

A robot can be generally described as a system capable of moving in space, by changing its
position in the environment or modifying its own geometric configuration. Often the purpose
is to move a tool attached to the robot, or more precisely its end effector. The robot movement
can be directly controlled by a human using a suitable user interface, such as joysticks, or
otherwise the control can be assumed by software routines, usually targeted to a well defined
task.
The end effector of the robot can for example be a surgical instrument, such as a scalpel,
a cauterizing device, or a biopsy needle; the purpose of this kind of applications can be
exploiting the steadiness of the robot movement. Even the most skilled surgeon is not immune
to jerkiness in the movement of the hand, so systems apt to its mitigation can be highly
beneficial, in particular in case of operating sites cluttered with delicate and critical structures
(e.g. vessels or nerves).
Alternatively, by coupling the robot system with an appropriate sensor, it is also possible to
synchronize the movement of the robot with the patient’s breathing or cardiac cycle so that
the surgeon does not have to compensate for it. Commercially widespread robotic platforms
for laparoscopic surgery can absolve both these tasks, as well as other specialized systems.
In other applications, a sensor or imaging device is attached to the robot, such as in the case
of endoscope holders [166, 197]. In a standard laparoscopic setup as described in 1.2.2,
the surgeon must either use a hand to hold endoscope in order to keep the operating area in
the field of view of the camera, or let an assistant hold it. The latter option is of course very
challenging for the assistant, which has to carefully follow the physician’s commands and the
procedure as visible on the screen in order to foresee the next movement. Each surgeon has
an own "style" and preferences, and so developing good team coordination requires time and
effort. As an alternative, automated robotic system have been developed and are currently
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being further investigated to replace the assistant. The aim is to achieve better efficiency by
using implicit input as the position of the surgical instruments, the surgeon’s gaze direction or
semantic knowledge about the current phase of the surgery, recognized through e.g. the video
stream.

Robotic systems with a varying degree of autonomy have found both research and clinical
usage. However, costs, benefits and risks must be carefully evaluated in order to find the
optimum for each procedure. The development of a fully autonomous device involves the
design of dedicated hardware and software, which must undergo a very rigorous certification
process before it can be allowed to operate on a living patient under only passive supervision.
Mechanisms for acquiring continuous feedback about the ongoing procedure and for detecting
unforeseen problems must be integrated, to avoid irreparable damage. Furthermore, the legal
and ethical implications of a fully autonomous approach must be weighed with care.
Lesser degrees of autonomy can be more reassuring for most medical practitioners, hence
leading to higher and faster acceptance. Mechanisms under direct control of an operator
do not need to provide a replacement for the human cognitive capabilities, which is today
still a daunting task. The focus then shifts on complementing strengths and weaknesses of
humans and machines, by using the latter as "extension" of the former, or by implementing a
collaborative behavior between them.

We will resume the topic in Chapter 4.

3.3.4 Knowing: Surgical Data Science

In the last section we stressed the difficulty of creating a fully autonomous machine capable
of human judgement, and the relative convenience of rather exploiting the precision and
steadiness of mechanical movement to improve the surgeon’s skills or, in other words, to
give them "superpowers". A recent trend is arising which has a purpose similar in concept:
augmenting human intelligence with the superhuman memory and processing power that can
be provided by computers.

The difficulty in building a shared knowledge base and transmitting information is known
even on a local scale, such as within the same institution [132]. As a consequence, the
variability in skill and expertise among surgeons is substantial. This could be mitigated by
building a knowledge base for real-time retrieval and proactive visualization during surgery.
The information could be provided explicitly in surgeon reports, or derived in an automated
fashion by examining data collected by sensors distributed into the OR.

Such a task requires modeling and understanding of surgical procedures. Surgical Process
Modeling [93] has been a very active field of research in recent times in virtue of its possible
applications for intraoperative assistance, decision support, clinical training and performance
evaluation. Recent advancements in AI triggered by deep learning techniques represent a
milestone in the progress of machine perception, in particular for computer vision where
benchmarks report accuracy in detection and recognition surpassing human performance.
However, current approaches still largely rely on local features of the image and lack contextual
and semantic knowledge of its content, as can be shown through simple experiments [160].
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While this still makes such techniques an insufficient foundation for unsupervised autonomy in
critical applications, they still constitute an extremely powerful tool for information retrieval
and decision support which can aid a human operator. By examining the laparoscopic video
feed, the output of intraoperative imaging and life monitoring devices in real-time, and based
on preoperative data such as diagnostic imaging, it should be feasible to retrieve information
about similar cases or detected anomalies which can help the surgeon in making informed
decisions or adapt the surgery to the current situation.

Many current efforts in Computer Assisted Diagnosis (CAD) attempt at assisting the physician
during the diagnostic process by suggesting regions of interest based on computer vision
techniques, but also by searching the available knowledge base for previous similar cases to
compare with. The search criteria can be information derived by the image itself, as well as
personal information about the patient which can affect the diagnosis (such as gender, age
and medical history). Current laparoscopic setups already provide a live video stream of the
surgery, which already on its own constitutes a very valuable input for such approaches. Their
use could enable real-time, context-aware assistance during the intervention.

Recently, a formal definition of these approaches has been proposed by a consortium of leading
researchers under the name of Surgical Data Science [109].

3.4 Properties of Intraoperative Imaging Modalities

Laying at the foundation of CAI and IGT, and constituting the focus of this work, intraoperative
imaging deserves particular attention in this context. In Section 2.1.5, we already mentioned
the different constraints posed on intraoperative imaging devices and methodologies with
respect to preoperative diagnostic scenarios. This dichotomy is recognized by multiple
authors [81, 137], and can be summarized in some recurring observations:

Specificity Diagnostic devices are mostly general-purpose oriented, as the problem of diag-
nosis is by definition open-ended. CT and MRI are generally implemented as full-body
scanners, although providing protocols for imaging more restricted body regions. Intra-
operative devices must be able of targeting the anatomy of interest and render the most
relevant information for the procedure at hand.

Usability/Quality Tradeoff In the diagnostic phase, accuracy and completeness of information
is paramount. The physician reading the image must be put in the best possible position
to take an informed and accurate decision; considerations about the convenience of
the setup and the acquisition time assume a secondary role. However, during surgery,
priorities are typically inverted. In order to minimize morbidity and chances of error,
imaging should be integrated into the surgical workflow in the least disruptive fashion.
This involves reduced acquisition time and, when possible, real-time feedback. While
it is crucial that the reported information is correct and complete, the definition of
"completeness" changes: an intraoperative image is complete when it contains the
minimal information viable to achieve the surgical task without error. To this end, a
low-quality image can suffice if it provides a high contrast representation of the objects
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of interest. The same principle does not apply just for the acquisition speed, but also to
the size of the device and its shape: a large gantry where the patient fits barely inside
cannot be used during most procedure without coming to a complete halt and a total
disruption of the workflow. Collateral characteristics of the imaging device or process
factor into this tradeoff. Sensibility to magnetic objects, as for MRI or EM tracking,
requiring a metallic-free operating scenario complicates greatly the integration of such
approaches.

Safety A reason for the low pace at which innovation reaches mainstream adoption into
operating theaters can in large part be found in safety and reliability considerations.
Total failure, such as a system shutdown, is not admissible if it puts the patient’s health
in danger. Partial failure, such as not rendering complete or correct information, can
be even more dangerous as it may be subtle and difficult to recognize, and in this way
jeopardize the clinical outcome of the surgery. The exposure to hazardous substances
or emissions potentially harmful for the patient and the clinical team is another factor
which can limit the cases in which an imaging modality can be made use of. The clinical
benefit brought to the outcome of the intervention must outweigh the inconvenience
and danger.

In light of these considerations, it is easy to understand the preference of C-arm radiography
and CBCT (already introduced in Section 2.2) in intraoperative scenarios over full-fledged CT
scanners, in spite of their superior performance. The same applies to SPECT, which can be
found in some operating theaters in its freehand variant rather than as a dedicated gantry.
Some research facilities host an MRI scanner in a metal-free OR, but this approach has not
translated yet to mainstream adoption. Finally, the speed and flexibility of echography fits well
for guidance support within a large class of interventions, to the point that drop-in variants
have been developed for laparoscopic usage. Laparoscopic applications of other modalities,
such as SPECT [52] or optoacoustics [125], are still in the research stage.

3.5 Acceptance of CAI

The integration of new technologies in surgery is naturally slow, due to the criticality of the
mission. New devices and approaches can only be introduced with the utmost prudence
in order not to endanger the patient with long-lasting damage or life loss. As a natural
consequence, innovation takes mostly form of incremental updates, and profound changes
to the overall workflow are rare. Such disruptions can only take place when the benefits
overwhelm the possible risks and the learning fatigue. Furthermore, as more and more
devices find their way into clinical routine, the risk of cluttering the OR increases. With
the advancement of technology and of minimally-invasive surgery, the complexity of the
processes and of the involved technology raises as well. In order to contrast this trend, a
holistic approach is required to encompass the whole surgical process and avoid getting caught
up in the own silo of competence, may it be medicine, engineering or an even narrower niche.
These problematics have been brought to attention by some authors [144, 151].
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Multiple studies conducted in the last years [24, 80, 87, 117, 202] correlate the mental stress
of the surgeon, as well as the efficiency of communication within the team and disruptions of
the workflow, with clinical performance. All of them state that further investigation is needed
before making strong claims, in part because of the difficulty in proving causation rather
than correlation when studying complex scenarios. Still, they report trends in this direction.
Hence, it can be hypothesized that research aiming at strongly reducing the surgeon’s cognitive
burden may help them focus on the actual surgical objective. Therefore, streamlining the tools
adopted to handle imaging data or to support the decision process could in turn significantly
improve the clinical outcome.
Other authors [98, 147] warn about another danger that is often undervalued: the lack of
ergonomy of minimally-invasive surgical procedures, in particular laparoscopy. In a setup
such as the one described in Section 1.2.2 the surgeon is forced into an inconvenient position,
which must be held for long time (even hours) in order to avoid harm to the patient and to
avoid spending excessive time in the intervention. These studies report a big incidence of
chronic pain in surgeons operating laparoscopically, in particular in the back and upper limbs.
The little awareness among the physician themselves about the problem and the existing
strategies to minimize it show once again the inertia existing in the field and the opportunities
for improvement.

3.6 Research Directions

As the quantity and quality of information available during interventions continues to increase,
new possibilities open up for novel technologies and applications capable of effectively support-
ing the surgeon in exploiting and managing said information. Laparoscopic surgeries would
be particularly apt to such augmentation, since they intrinsically provide a live video stream
of the operating site and make use of instruments that may be tracked, from said video images
or with external tracking systems [92]. The integration of this information with pre- and
intraoperative imaging looks like a promising foundation for future developments in advanced
visualization, navigation and cognitive assistance. However, several breakthroughs will be
required before reaching the accuracy sufficient for meaningful support to the surgeon [11,
173].
Moreover, further incremental and evolutionary work is taking place. New imaging modali-
ties and contrast agents being developed, such as the mentioned optoacoustics and multimodal
contrast agents, can unlock new approaches to existing procedures, or make new kinds of
intervention feasible. The advancement of visualization technologies, such as headsets or
holographic displays, and hands-free input methods (e.g. gaze or speech) may lead to a more
widespread usage of 3D visualization, augmented reality and advanced user interfaces.

3.7 Conclusion

In the previous pages one of the dominating topics was the physical and cognitive burden
posed by modern surgical setups on the physician, and how it can affect clinical outcome.
Unfortunately, this effect is difficult to measure, with the result that it is underrepresented
in literature and scarcely addressed in clinical routine. In Chapter 5 we will describe how
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introducing one more device into the OR (i.e. a robot) actually simplified the surgeon’s task,
by taking another apparatus from their hands and performing image fusion for them. Later, in
Chapter 6 we will attempt to improve the quality of freehand 3D ultrasound images acquired
with the most usable tracking technology (i.e. electromagnetic), so that the operator is less
constrained in its usage and can read the resulting volumes more easily.
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4Medical Robotics

In Section 3.3.3 we already introduced robotics as a mean to interact with the real world
making use of abstract, digitalized information, and we anticipated a few major application
areas. Here we will provide an overview of the field; for the sake of brevity, we will not reach
the level of detail offered by notable reviews of the topic [36, 181, 182, 196].

4.1 Motivation

The objective of introducing a new technology into the medical field is always improving
the efficacy and/or efficiency of patient care. The adoption of machines in the OR allows to
exploit their strengths, which can compensate human weaknesses. Many authors [113, 135,
182] find consensus enumerating these aspects, and in this chapter we will discuss a possible
synthesis.

The following advantages can be attributed to medical robots:

Movement accuracy Machines offer extremely accurate movement, exceeding human capa-
bilities. Even though skilled surgeons can reach a high level of hand steadiness, it
cannot compete with the stability of a mechanical device. The greatest human limitation
in this regard is absolute positioning, i.e. the ability to move to a location specified
abstractly (such as a set of coordinates with respect to a reference frame) without a
visible reference in its proximity.

Scalability Robots can be designed to satisfy a wide range of constraints in strength, size and
shape. This makes them suitable to adaptation for tasks involving the manipulation of
objects of very different scale.

Endurance Human performance degrades in time as the operator gets tired. This is not the
case for a (well designed) robot.

Resistance to harmful conditions A mechanical device is immune to agents that would be
dangerous for a human being, such as high temperatures or exposure to ionizing
radiation. This can be advantageous for applications like X-ray or Nuclear Imaging
guided interventions or Radiotherapy.

Conversely, the following averse factors must be considered when designing and applying
robotic approaches:
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Dexterity The human arm is an engineering masterpiece which our technology has still
not be able to reproduce, let alone surpass. It is capable of a very high number of
degrees of freedom while being able to sustain itself, and even to exercise considerable
force. Contemporary robotic devices not only fail to achieve the same performance, but
solutions with the same workspace (such as lightweight manipulators) are also usually
bulkier and heavier. In order to overcome these limitations it is necessary to design
dedicated robotic devices for each application, while this variability would in most cases
not constitute per se an obstacle for human capabilities.

Flexibility Machines must be controlled by appropriate software. Contemporary systems must
be developed specifically for each procedure, foreseeing possible complication and all
corner cases in order to guarantee reliability and safety. Changing the behavior of
such platform is an expensive process, which must be followed by further approval and
certification for medical uses. By contrast, a human can continuously refine their skills
from experience, or learn a completely new approach with a comparatively low effort.

Judgement The control of mechanical devices is usually expressed as an ensemble of algo-
rithms and control laws, purposed for accomplishing a task based on the available input.
Such input is typically limited to the data provided by the few available sensors and
pre- as well as intraoperative images. Employing closed-loop control to make use of
available data to monitor the process of the intervention and eventually adjust or abort
the procedure would be recommendable, but this does not appear to be a universal
choice and open-loop applications have found their way into the OR. But even when
making use of all data available, human contextual awareness and judgement still
seem to be out of the reach of contemporary artificial intelligence, as we discussed in
Section 3.3.4.

In the light of this reasoning, approaches that use robots as an extension of the surgeon’s body
to exploit mechanical precision and human intelligence appear to be optimal, at least given
the current state of technology. The surgeon can specify the action to be taken via explicit
control, as in human-in-the-loop scenarios, or declaratively specify a plan which can then be
performed autonomously by the machine under strict human supervision. As we will see in
the next section, the borders between these fields are blurring over time.

In general, the biggest opportunities opened up by applying robotic techniques in medical
interventions are related to the superior mechanical precision, the use of imaging data as
reference for motion, remote action or motion filtering via teleoperation, and the possible
miniaturization.
Robotic precision can be of great advantage when operating on sites cluttered with sensible
structures, as during neurosurgery or in the field of urology. Minimizing collateral damage
can have great benefit on the long-term quality of life of the patient, especially if nerves can
be spared [36]. Limiting the risk or extent of vessel resection can also result in a smaller blood
loss during the intervention, giving the surgeon more time to accomplish the task and in turn
reducing the stress involved. Alternatively, the robot can act as a non-transparent proxy: the
input motion of the surgeon’s hands can be modified by scaling them down to manipulate
minute structures, or tremor can be removed.
But even more radical processing of the input motion can provide precious support in extreme
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cases, such as in single-port surgery. In traditional laparoscopic surgery, the tools are inserted
through multiple small incisions placed a distance sufficient to allow dexterous manipulation.
In the case of single-port surgery, the endoscope and the laparoscopic instruments must fit
into a single incision. Since conventional straight instruments could not maneuver under the
constraint of the trocar, curved instruments were developed for this purpose. The drawback
is that the surgeon must now work in a mirrored fashion, since he/she handles the left
instrument with the right hand and viceversa. Such procedure, often called Laparoendoscopic
Single-Site Surgery (LESS), turns out to be very challenging to learn and master [83]. Intuitive
Surgical developed a Single-Site version of the daVinci robot, capable to swap the movement
between the instruments, such that the surgeon can intuitively work as in a conventional
robotic surgical procedure [126].

Another possible application are virtual fixtures (also called active constraints). After patient-
to-image registration and robot-to-image calibration, a robot can be programmed to act as a
passive guide in order to keep a surgical instrument attached to it, within or outside a region
of interest specified on the image itself. This again allows to minimize damage and potentially
to perform surgery faster.
teleoperation is usually associated with action over a physical distance between surgeon
and patient, but it can be beneficial within the same room as well, as is showed by robotic
laparoscopic systems. As we showed in Section 1.2.3, in this case the surgeon sits at a
"master" console controlling the robot "slave", which holds the surgical instruments. This setup
represents a much more ergonomic configuration than standard laparoscopic surgery; not
only the surgeon’s health and performance benefit from this fact, but also the patient. While
offering a natural user interface to the operator, the robotic slave can perform movements in a
cluttered environment which would be very difficult or even impossible for a human, with the
result of enabling substantial invasivity and long-term morbidity reductions.
Miniaturization is another factor that allows to minimize collateral damage during surgery,
and enables totally new interventions not possible otherwise.

The implications of these propositions will become clearer as we go over a few notable
examples of robotic applications in surgery.

4.2 Applications

The major advantage of autonomous and image-guided medical robotic solutions is the
geometric accuracy. Making use of this feature is easier when dealing with rigid structures
in the human body, such as bones. This explains the wider success of robotic applications in
orthopedics [7, 96] and in neurosurgery [113], where brainshift can be contained or accounted
for in many cases. In the field of general surgery, where unpredictably deformable soft tissues
abound, human-in-the-loop approaches are the most popular.
In this section we will discuss medical robotic applications according to their degree of
autonomy. For complete review, we suggest more exhaustive review papers of the field as a
whole [7, 181, 182], as well as of neurosurgical applications [113] and the approaches in
general surgery [60].
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4.2.1 Autonomous

In Section 3.3.3 we already discussed the issues related to the adoption of completely auto-
mated surgical procedures in terms of the relationship between risk, cost, and benefits. Their
evaluation must include ethical, legal and economical aspects while ensuring the patient’s
health. Despite these considerations, autonomous approaches can be found in the literature
and have been applied in medical routine. In most cases, they require the surgeon to specify
the required action in a plan based on preoperative medical images (often 3D Computed
Tomography) which is then executed by the device under passive supervision (as shown in
Fig. 4.1).
One of the earliest autonomous surgical systems, called ROBODOC (Curexo Technology Cor-
poration, Fremont, California), is an example of particular interest. Introduced to clinical
practice for joint replacement in the early 1990s, it was used on a considerable amount of
patients worldwide before controversy arose. A quantitative study of the clinical outcome
performed in 2003 [73] highlighted the higher accuracy of the robotic approach with respect
to the manual procedure, but did not identify a clinical benefit for the patient in the long run.
On the contrary, the disadvantages of the autonomous platform included higher costs and
longer average time for the procedure (also due to cases where the system halted and the
procedure had to be completed manually). The study also reported a substantially greater
magnitude of long-term morbidity and implant dislocation rate, as well as more frequent
necessity of a second operation to correct them. As a consequence of the heated public debate
and of ongoing lawsuits, the popularity and usage of the system was reduced greatly, in
particular in Germany [96]. However, a 2006 ruling of the German high court stated that
the post-operative issues were mostly due to faulty surgical plans produced by the surgeon,
and not to intrinsic defects of the device. The producer had to shut operations down and
transfer the assets to another company, which was able to obtain FDA approval and continue
operations outside of Europe. Further studies [4] highlighted the advantages of the approach
with respect to the precision of the drilling and the alignment of the implant, as well as the
reduced chance of femur fractures during the procedures; both were resulting in a significant
reduction in post-operative morbidity.
This case did not stop the research and translation of autonomous surgical systems, but acted
as a healthy memorandum for the community. The attention bar for the topics of benefit/cost
evaluation, the education of the operators of autonomous medical devices, the presentation
of the advantages and drawbacks of such machines to the public, and ethics was raised
substantially as a result.
Yang et al. [205] recently stressed the subject and proposed a regulation scheme with six
levels of autonomy. In their work, they highlight the direct repercussions of a medical robotic
system performance on the patient’s health and draw parallels to the contemporary trend
of autonomous driving, which at regime will have to carry a comparable responsibility for
an even larger amount of people. They also raise another important topic, which is the lag
between the pace of innovation in technology and in legislation regulating their use and
responsibility. Another issue they stress is the determination at which a technology is deemed
good enough for systematic adoption: while achieving perfect performance would be desirable,
surpassing human standards could already be sufficient to have a positive impact on global
clinical outcome.
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Fig. 4.1. Control schemes for medical applications: supervised control (autonomous operation). In this
control scheme, the robot operates according to a predefined plan, usually specified on preoperative
diagnostic images that are intraoperatively registered to the patient. The surgeon must then pay attention
to the progress of the procedure and be ready to abort at the first signals of a deviation from the expected
operation.
Reprinted from [135] with permission by Oxford University Press.

In light of the risks associated to automated surgical systems, an easier path is offered by
non-invasive robotic applications, such as imaging. The integration of a robotic system for
holding an interventional CBCT C-arm has already become commercially available (Artis
Zeego, Siemens Healthcare Gmbh, Erlangen, Germany) in order to allow for greater flexibility
in the positioning and streamline the surgical workflow with respect to solutions anchored
to rails on the ceiling [15, 29]. In general, imaging methodologies do not require invasive
manipulation of tissues. While ultrasound imaging requires simple skin contact, other imaging
techniques do not require contact with the body at all, since electromagnetic fields and
radiation can be detected at a distance. Autonomous Medical Robotic Imaging was showed
to be suitable for ultrasound-based automated diagnostic screening [195] as well as for
intraoperative multimodal imaging [53]. Our first contribution, presented in Chapter 5 can be
classified into the latter category.

4.2.2 Extending

The class of devices which delegate control to the operator is probably the one finding most
widespread application. The acceptance seems to be higher, since this kind of architecture
allows to solve acute problems in certain fields while leaving the surgeon in complete control
of the procedure.
Physiological hand tremor can be harmful to the outcome of many surgical procedures, but
in particular in the context of microsurgery, see Section 1.2.4. Stress and fatigue accumu-
lating over the time of the operation have been shown to amplify the problem [66]. As a
workaround, approaches have been proposed [176, 183] in order to subtract such tremor
from hand movement while maintaining a natural experience for the operator.
A notable use case for robotic techniques is neurosurgery, where the utmost care must is
needed in order to avoid damage to sensible structures inside the brain, which could result
into irreversible impairment to the patient [113, 135]. Computer-assisted navigation and
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Fig. 4.2. Control schemes for medical applications: teleoperation. This approach is currently popular for
robotic laparoscopic surgery, since the human-in-the-loop scheme allows to employ human intelligence
to perform control of flexible instruments in a highly dynamic environment, while taking advantage of
motion scaling and tremor filtering enabled by the hardware.
Reprinted from [135] with permission by Oxford University Press.

guidance with visual or auditory feedback can assist the surgeon in avoiding predefined areas,
but they do not help with hand tremor or accidental movements. On the other hand, classical
stereotaxis can be employed to provide a guide for a needle based on preoperative images,
but it does not reach the flexibility offered by robotic applications. In fact, a robot can be
programmed to act as a stereotactic guide, i.e. to reach a specified position with respect to the
anatomy based on a registered pre- or intraoperative image, and then lock in place. Another
important application is limiting the movement of the surgical instrument to a preplanned
trajectory in space, or outside of a determined volume (sometimes alternatively defined as no
fly zone). Such solutions are capable of preventing accidental damage, thus reducing the stress
posed on the operator and allowing him/her to focus on the true surgical objective. Similar
schemes can be in principle applied to many other classes of procedures, but it is harder to
prove benefits capable to outweigh the costs when operating on less sensible regions than the
brain or the eye.
In general surgery, the da Vinci family of products (Intuitive Surgical, Sunnyvale, California,
USA) is currently the most commercially successful medical platform employing a human-in-
the-loop approach for robotic laparoscopic procedures [60], (shown in Fig. 4.2). Originally
developed for thoracic and cardiac applications, its feasibility for a wide spectrum of proce-
dures has been showed over time [56]. As discussed in Section 1.2.3, the paradigm benefits the
patient only indirectly, by providing the surgeon with a better ergonomy and hence improving
the accuracy of existing routine procedures [10, 57, 99], or enabling new minimally-invasive
treatments, as in thoracic surgery [90]. Unfortunately, such indirect benefits are more difficult
to demonstrate. However, even the most skeptical voices criticizing the current benefit/cost
proportion stress the enormous opportunities provided by a surgical robotic platform [47, 48].
A breakthrough that could be obtained via an incremental evolution of current robotic laparo-
scopic platforms would be a further minimization of invasivity, reducing the number of skin
incisions required to zero. This can be achieved through approaches that exclusively make
use of natural orifices of the body, such as NOTES (Natural Orifice Transluminal Endoscopic
Surgery) [157]. Such approaches could further reduce morbidity associated to interventions
and recovery times.
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Fig. 4.3. Control schemes for medical applications: collaboration. A disadvantage of teleoperation is the
distance between the operator and the surgical site. Collaborative schemes allow to overcome this
disadvantage while retaining some features such as tremor reduction or virtual fixtures.
Reprinted from [135] with permission by Oxford University Press.

One additional possibility, which we already mentioned in Section 3.3.4, is related to the pro-
gressive digitalization of surgery, of which a robotic platform would constitute a cornerstone.
The progressive integration of sensors and actuators involved in the surgical process can be
envisioned to bring unity to the current patchwork of technologies and methodologies that can
be encountered in contemporary ORs, preparing the ground to the introduction of cognitive
techniques capable of holistically optimizing the surgical process as a whole and adapting it to
the single patient and situations arising.

4.2.3 Collaborating

In the previous sections of this chapter we went over approaches that aim at relieving the
surgeon of the manual activities involved in surgery, in order to achieve superior performance.
Then we discussed solutions that leave the surgeon in complete control, but try to enhance
their capabilities by constraining motion or by acting as a (roughly) transparent proxy. Some
of these methodologies have been defined "cooperative", and as such could fit in this section
about collaborative robotic applications; an example of this concept is outlined in Fig. 4.3.
Here we will focus instead on robots working together with a human, collaborating to achieve
the same task by executing a "background" process rather than taking active part in the
surgeon’s activity.

Implementing a collaborative control scheme is not a trivial task. Achieving an effective
collaboration between two or more agents requires a mean of communication. Communication
can be explicit or implicit. Explicit communication requires an effort on one side to elaborate
a representation of the content which is the object of communication into a form which is
suitable for transmission; an example of this process is formulating an idea or assembly of
ideas into words and sentences. The transmission of said representation typically happens
by manipulating a medium in a fashion that can be detected on the receiving side. The most
common human mean to achieve that is talking and listening. The received representation
must then be decoded back into ideas and concepts, with the hope that they will be understood
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as intended by the sender. The success of the process depends on a large number of factors: the
ability of the sender to choose an appropriate representation for the content and transmit it as
intended to the communication medium, the degradation of the signal while traveling through
it, the detection and abstraction capability of the receiver, and the contextual knowledge shared
between the entities taking part in the communication process. Any of the aforementioned
activities can represent a single point of failure; this leads to the installment of communication
protocols in most critical environments (an evocative example being the military). The
studies we mentioned in Section 3.1 correlating stress and performance also highlighted the
importance of communication within an OR for the outcome of the procedures.
Implicit communication can be an effective instrument to replace or complement explicit
communication. As social beings, humans acquired notable capabilities to understand a
peer’s intention by forecasting the development of an ongoing activity or through external
factors, such as eye gaze [34]. It is hence in many instances possible to provide assistance in
the absence of explicit indications of the next required step. However, such process is even
more delicate than responding according to explicit (such as verbal) communication: the
interpretation of someone’s actions relies heavily on shared knowledge of the ongoing activity,
as well as collateral and contextual knowledge ("common sense") [165].

As a consequence, a machine striving at collaboration with a human must be capable of explicit
or implicit communication (at least at the minimum level necessary in order to have a positive
impact on the outcome of the process). This requires sensing capable of detecting signals of
communication (e.g. voice commands or eye gaze), as well as the knowledge apt to correctly
interpret and infer the most appropriate action to be taken next. Not to be underestimated
is the necessity for a feedback mechanism in order to keep communication alive and notify
potential problems. Studies show [37, 50] that collaboration between humans and robots can
be improved by optimizing robot movement not for efficiency in accomplishing its own task,
but rather for legibility of intent by the human counterpart.
The complexity of these tasks explains why collaborative approaches have been the least com-
mon in literature and on the market until recent times. However, as we already mentioned,
recent advancements in the field of machine perception promise to lead to substantial ad-
vancements in Human-Machine Interaction (HMI). As it is possible to detect and recognize the
operator’s actions and intentions more precisely, it will be possible to exploit this knowledge to
automate well-defined tasks in controlled environments and situations through explicitly pro-
grammed routines. Future advancements in AI reaching sophisticated contextual knowledge
and reasoning will one day allow to scale up and generalize collaborative approaches.

Currently, the most active research in this direction has revolved about automated endoscope
holders. In Section 1.2.2 we stressed the difficulty of operating the endoscope and the
surgical instruments at the same time. One possibility to simplify the surgeon’s workflow
in this regard is to offer a solution which does not require the use of a hand or error-prone
communication with an assistant. The first devices proposed were controlled via a joystick:
the surgeon could adjust the position of the camera in order to reach the desired view, and
the mechanism would keep it still. Such approaches did indeed avoid potentially ambiguous
communication and some guesswork, but introduced the necessity of constantly switching
between holding an instrument and the endoscope holder joystick. Later attempts involve
collaborative voice-control schemes [166, 167], which result in a hands-free control but are
vulnerable to auditory noise in a cluttered environment such as the OR, and pose challenges
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with regards to precision. A further alternative can be found in systems controlled through eye
gaze [39], which rely on a completely implicit control requiring no action in the typical case.
Such methods will surely be able to make use of already mentioned recent developments in
computer vision and surgical activity recognition, as well as machine learning approaches to
find the optimal assistance strategy.

Furthermore, the feasibility of shared control for Subtask Automation has been showed,
along with its potential to improve overall clinical performance [9]. While relying on current
artificial intelligence for the automation of the whole surgery still poses reliability, ethic and
legal problems, the implementation of targeted and well defined routines in an automatic
fashion under constant human supervision seems more likely to be viable. This can be of
particular utility for simple and repetitive tasks, which are time-consuming for a human
operator because of the lack of dexterity of the robotic slave and/or insufficiency in the
provided visualization or user interface. In such cases, an ad-hoc software can, after explicit
command from the user, temporarily take over control of the robot effectors and complete
the task autonomously. Research in this direction has been inspired by some of NASA’s NEMO
programs [63] aimed at compensating for lag while performing telerobotic maintenance in
space from a control center situated on Earth. However, even in the absence of lag, such
techniques can be useful in the robotic laparoscopic setup for the aforementioned reasons
and lead to 10x improvements in speed of execution while maintaining comparable, if not
superior, precision in activities like suturing [9].

Approaches making use of pure Collaborative Robotic Imaging represent a minority of the
field. However, a fitting example can be found in a system for Intraoperative Transrectal
Ultrasound (TR-US) Guidance for Laparoscopic Prostatectomy [124]. In this work, the TR-US
probe was co-calibrated with a robotic laparoscopic surgical platform in order to keep the TR-
US probe pointing in the direction of the active surgical instrument controlled by the operator.
Such approach allows an implicit control of the imaging device, making useful information
available to the surgeon in real time without explicit communication or coordination efforts
involved.
Other studies find practical uses for collaborative robotics outside of laparoscopic procedures.
A system developed in the IFL lab employed 3D ultrasound-based visual servoing to implement
a collaborative robotic assistant capable to position the US probe in a determined configuration
with respect to the anatomy. By attaching a calibrated needle guide to the probe, it was possible
to adapt the system to perform guidance for Needle Insertion. After prior specification of the
needle insertion site and path on a 3D CT or compounded US volume, the robot will move to a
position such that a needle pushed into the guide will follow the specified trajectory within the
patient’s anatomy. The concept was proven to be a suitable replacement for X-Ray guidance in
the context of Facet Joint Injection [44].

4.3 Trends and Outlook

The natural technological evolution will probably lead to further miniaturization, with a
parallel reduction of invasivity and disruption of the traditional surgical workflow. The
development of flexible robotics [19] could represent the breakthrough needed to lead
to a systematic application of surgery via natural orifices of the body [89]. Further down
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the road, the development of Microbots [138] would enable treatments on a micro- and
cellular level. In the meantime, efforts are currently being spent in order to develop special-
purpose robots [60], to be mounted on the patient’s spine (MARS) [171], beating heart
(heartlander) [150] or skull for retinal surgery [134]. Satisfying exceptional constraints is also
driving research into unusual territory, such as the development of MRI-compatible pneumatic
robots [182].
Along miniaturization and ad-hoc development, another notable trend is the refinement of
current technology. The addition of haptic feedback [141] to existing platforms is deemed
necessary, nice to have or superfluous by different authors [28, 56, 113]. Interestingly, a
study [201] reported lack of haptic feedback being a problem not only for robotic surgery, but
also for conventional laparoscopy; the authors propose to augment laparoscopic instruments
with mechanical actuators to provide artificial feedback based on integrated sensing.

A further identifiable trend is the progressive integration with other technologies, which has
the potential to make the surgical robot the central platform of the whole OR. We already
mentioned drop-in ultrasound and gamma probes that the surgeon can grasp and directly
use during the operation; it is possible to imagine more modalities taking a drop-in form or
being used to perform continuous background monitoring of the operation with collaborative
schemes. An advantage of the integration with devices already present in the OR is the
shorter time necessary to obtain certification, which is one of the highest barriers to the
commercialization of new medical products.
Furthermore, trends such as Surgical Data Science (which we introduced in Section 3.3.4)
that aim at integrating the whole OR into a cohesive smart environment are likely to employ
the robot’s hardware to enrich the surgeon’s toolbox.

4.4 Conclusion

In this chapter we outlined some of the trends that can be recognized within the field of
medical robotics: from autonomous systems, over to teleoperation, finally to collaborative
robots. As the interaction modality becomes more sophisticated, it also grows tighter and
more intuitive. We adopted the latter scheme for the design of our collaborative imaging
system (described in Chapter 5), with the aim of allowing a direct yet seamless control of the
robotic device.
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Proposed Methods





5Enabling Live Intraoperative
US-Gamma Imaging with a
Collaborative Robotic Assistant

This chapter discusses our first contribution: an intraoperative multimodal real-time imaging
system for guidance during needle punch biopsy of the breast for cancer staging.
We propose a collaborative robot which assists the surgeon in the intraoperative acquisition
of multimodal imaging. The robot is programmed to keep the gamma camera in front of the
ultrasound probe held by the physician, such that their outputs can be directly merged into a
single multimodal image. This is achieved through an optical tracking system, which provides
the relative position between the US probe and the gamma camera. The relative position is
used for both robot control and image fusion. The surgeon can hence perform a needle biopsy
with the free hand, under constant guidance of a real-time multimodal image
After discussing the clinical motivation and the alternative solutions that can be found in
literature, we will describe the implementation of the system and the experiments performed,
in order to show the feasibility and the unique advantages of our method. Our lab trials showed
consistent and substantial improvements in the efficiency and accuracy of the procedure when
making use of the collaborative imaging system with respect to the manual alternative.

The core contributions presented here are:

• the first collaborative robotic medical imaging scheme adopting a lightweight manipula-
tor,

• a radically innovative real-time intraoperative multimodal imaging device conjugating
2D ultrasound and 2D gamma imaging,

• the application of said system to sentinel lymph node core needle biopsy, with unique
advantages over the existing methods.

These results have been published at MICCAI 2015 [40] (oral and poster) and in the IJCARS
MICCAI 2015 Special Issue [41] (later awarded as IJCARS MICCAI 2015 Special Issue Best
Paper). The pictures thereby contained are reprinted with permission from Springer.

5.1 Clinical Motivation

Breast cancer consists in abnormal growth of breast tissue cells. Due to environmental factors
and/or genetic predisposition of the subject, the normal lifetime of a group of cells is perturbed.
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Fig. 5.1. Sentinel lymph node biopsy in the axilla. This illustration represents the phases involved in a biopsy
of an axillary Sentinel Lymph Node (SLN). In order to find the SLN among the multiple lymph nodes
present in the region, it is common to inject a colloid substance in the proximity of the tumor. After a
short period of time, the liquid will have migrated to the lymph node (or nodes) that drain the most
liquid from the neighborhood of the cancerous mass; as a result, the SLN(s) will be detectable through a
gamma probe as well as visible to the naked eye. Typically a conservative surgery follows in order to
dissect the tumor and the SLN, which will be later histologically tested for the presence of metastatic
cells. Their presence would be a strong indicator that the cancer has started spreading throughout the
patient’s body.
Reprinted with permission by Terese Winslow.

This can manifest, among other signs, as a change in volume and/or shape of the breast,
depending on the depth at which the tumor is located. After a phase of local growth, the
cancer can start spreading throughout the body, or metastasize. As with most tumors, timely
diagnosis and treatment is fundamental to optimize the clinical outcome and minimize the
invasivity of intervention.
Breast cancer is overwhelmingly more widespread among females, since they on average
have a larger number of breast tissue cells. According to the American Cancer Society [172],
252,710 out of 255,180 new cases of breast cancer estimated in the United States in 2017
affected women. In the same year, breast cancer was responsible for 41,070 deaths among
both genders. 5-Year survival rates varied from a 99% for localized cancer to 85% for regional
tumor growth, only to sink down to 26% after beginning of metastasis. This abrupt change in
outlook stresses the need for accurate staging of the disease.

Surgery is the primary instrument for breast cancer management. Depending on the size of
the mass, the objective of the intervention may be to remove it (lumpectomy), or to amputate
the whole breast in a mastectomy operation. The former option is preferred and progressively
adopted more frequently, but the latter may still be necessary today if multiple lumps are
detected or if their size is too large.
In the context of mastectomy or lump excision it was common to remove all the lymph nodes
in the area, which usually can be counted in the dozens, with the purpose of subsequent
histopathological examination in the search of metastasis. This procedure, often called
Axillary Lymph Node Dissection (ALND), is associated with elevated morbidity and permanent
discomfort to the patient. In particular, the removal of the lymph nodes leads to a compromised
capability of the lymphatic system in the area, with consequent fluid retention (lymphedema).
It has been shown [193] that the detection of tumoral cells in the closest lymph node to the
cancer mass is a key predictor of metastasis, and can replace systematic lymph node dissection.
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As a consequence, the process of sampling the tissue of this particular nodule is often referred
to as Sentinel Lymph Node Biopsy (SLNB, in Fig. 5.1), in order to highlight its predictive value.
This option greatly reduces the invasivity of therapy.
Currently, the clinical routine involves the dissection of said SLN during lumpectomy or
mastectomy for histopathological analysis [88]. One of the major challenges posed by this
task is to correctly identify the SLN among all lymph nodes (which, as we mentioned, can be
counted to dozens in the axillary region): sampling the wrong LN can lead to a false negative,
and consequently to a false diagnosis. The current practice employs radioguidance or dye for
SLN identification: a contrast medium is injected in the vicinity of the tumoral mass. Over time
said fluid will collect in the closest lymph node(s) and make them visible to the naked eye due
to its color (usually blue for improved contrast) or fluorescence to a specific electromagnetic
wave length. Alternatively, its radioactivity will make it detectable to a dedicated device such
as a hand-held gamma camera. The surgeon can then locate the LN visually or by scanning
the area with the mentioned imaging device.

While progress in medical routine has already reduced the intervention’s invasivity and related
morbidity, there is still room for improvement. It has been demonstrated [194] that lymph
node dissection during open surgery could be replaced with a less invasive approach such as
core needle biopsy (as described in Section 1.2.5), while retaining a false negative rate lower
than 5%. After a reliable staging, the lumpectomy could be then performed less invasively
without "hunting" for the SLN. Subsequent Radio- or Chemotherapy may be necessary accord-
ing to the tumor stage and classification.
The major barrier to the adoption of SLNB in place of ALND is a lack of appropriate imag-
ing [82]. While lymph node needle biopsy under ultrasound guidance is feasible, the presence
of multiple other LNs in the area makes the intervention prone to error in the identification
of the SLN. While employing a contrast medium as in the case of dissection would enable
functional imaging capable of unequivocally marking the SLN, functional information alone
is insufficient to provide guidance to the surgeon and must be merged with an anatomical
modality, such as the mentioned US.
One further source of difficulty is the visibility of LN in US images: many authors [17, 145,
180] report a threshold of 5 mm for the smallest LN visible through US imaging. While it
was common opinion that enlarged LN would be more likely to be affected by malignancy,
a dedicated study [140] found very weak correlation between LN size and likelihood of
metastasis. The same study stressed the fact that LN below the said cutoff size of 5 mm still
had a 10% chance of malignancy. Since this means that if the SLN were to be under this
threshold it could be invisible to US alone, this would make simple US navigation insufficient
for SLNB. However, a multimodal imaging system could help the surgeon spot the subtle
profile of a small LN in the US image.
Research in multi-modal imaging for ALND and SLNB is abundant [18]; we will provide an
overview of the field in the next section.

5.2 State of the art

The methodologies under development and clinical testing are summarized in some review
papers [18, 82].
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The current gold standard is dissection during open surgery. Most approaches use multiple
redundant factors to reduce the incidence of false negatives. It is common to use a blue
dye visible to the naked eye (e.g. Patent V Blue) in conjunction to a fluorescent agent or a
radioactive tracer.
Fluorescent materials are chosen to be particularly sensitive to light in ranges where the
absorption and scattering in human tissues are minimal, such as the 700-900 nm wavelength
range. This allows for an improved contrast against background and deeper penetration.
However, the maximum penetration depth remains limited to less than 2 cm.
On the other hand, commonly used Radiotracers such as Technetium (99mTc) emit high-energy
gamma particles, which are less sensible to scattering and absorption than electromagnetic
waves in the visible range. A dedicated device such as a gamma probe or camera can locate
the source of radioactivity with a good directional precision, but it cannot pinpoint the source
position along that line.
These factors make radioguidance and Near-Infrared (NIR) fluorescence a complementary
pair. It is common practice to inject fluorescent agents and radiotracers jointly, so that the
location of the SLN can roughly be determined by scanning with a gamma detector and then
refined visually by looking for fluorescence. The low tissue penetration of fluorescence makes
this operation still invasive, since the surgeon must follow the vague indications of the gamma
device on a trial-and-error basis until fluorescence is visible.

Many different imaging devices have undergone development or are still in a research stage.
Gamma cameras, capable of providing feedback about the spatial distribution of the radiotracer
as opposed to gamma probes, have been proven to improve accuracy for difficult situations,
such as when the SLN is close to the injection site. Some models have been equipped with a
laser guide in order to pinpoint the center of their field of view on the tissue surface.
A hybrid gamma camera, composed of a gamma camera and an optical RGB camera, has also
been developed in order to match fluorescence and gamma information in a single multimodal
image. This was achieved with a semi-transparent mirror placed in front of the gamma camera
collimator. The aim is to solve the logistical challenge of using two separate imaging systems
and reduce the burden of mentally matching the two outputs, which affect other approaches.
Other research groups are investigating the adoption of alternative physical principles. Gamma-
Beta imaging employs two different radiotracers, with the latter capable of a higher space
resolution to the cost of lesser tissue penetration. Beta-OCT tries to provide anatomical
information via optical coherence tomography, which is unfortunately very limited in tissue
penetration as well. Gamma-MR attempts the same, but the characteristics of magnetic
resonance imaging make it challenging to adopt in an intraoperative scenario.

The aforementioned methods are only suitable for dissection in the context of open surgery,
due to their limited tissue penetration depth. However, there are some efforts to develop
images capable to support SLNB.
Freehand SPECT (in Fig. 5.2) was developed as an aid for lymph node biopsy. As mentioned
in Section 2.2.4, it employs a tracking system to follow the position of a gamma camera as
it is used by an operator to manually scan a region of interest (ROI). The result is a volume
where the intensity of the radioactivity originating in each voxel is estimated, and can be used
for interactive visualization during the intervention. If an ultrasound probe is simultaneously
tracked by the same system, it becomes feasible to dynamically reslice the volume to obtain
a functional image co-located with the respective US image, and the two data sources can
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Fig. 5.2. Freehand SPECT for SLN biopsy in the axilla. On the left: an US image depicting two LNs (highlighted
in green). In the center: an overlay between an US image and the respective cross section of the freehand
SPECT volume. The additional functional information added to original image allows to infer that
the left LN is marked with the radiotracer, and hence is the SLN. While the US image updates in real
time, the same can not be said for the SPECT volume which is acquired intraoperatively just before the
beginning of the biopsy. On the right: the operating site of a freehand SPECT and US guided SLN needle
biopsy. The optical marker visible on the chest of the patient is used to maintain the alignment between
the anatomy and the acquired volume; but it cannot help against eventual deformations of the soft tissue
of the breast.
Image from [142], reprinted with permission from Springer.

be merged. With this approach, intraoperative multimodal imaging can be obtained for
depths sufficient to perform a SLNB. The major issue with this method is that the freehand
SPECT acquisition must be performed in a phase antecedent to the actual biopsy. Any patient
movement or tissue deformation would lead to misalignment between the functional and
anatomical images. This is a particularly big problem for the region of the female breast,
which is largely composed of soft tissue; hence the system may be more apt to less deformable
areas such as the neck. Moreover, the operator’s skill in covering the ROI has a big impact on
the quality of the final reconstruction.
The same considerations about tissue deformations hinder the usage of preoperative images,
such as SPECT/CT, PET/CT or PET/MR.
A further attempt at multimodal imaging is the ECORAD project [146], which has the aim of
developing a hybrid US-Gamma device. While such a device would allow real-time multimodal
imaging, it has not yet become commercially available. The last published results consist of
promising Monte Carlo simulations and phantom experiments.
A further possibility involves the usage of ultrasound contrast agents, such as micro-bubbles.
The last available tests report an insufficient sensitivity [31, 153].

In the next sections we will describe our proposed system, which allows to overcome the
limitations of traditional approaches in terms of tissue penetration as well as real-time
imaging.

5.3 Technologies

The system that we propose is large and complex. It is worth to take a brief look at the
fundamental building blocks before delving into the overall system architecture.
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5.3.1 Ultrasound B-mode

As we mentioned in Section 2.2.3, ultrasound imaging is based on the reflection and refraction
of high-frequency mechanical waves in tissues. The waves can be generated and then detected
by the same transducer array, composed of elements capable of converting electrical energy
into mechanical, and viceversa (this phenomenon is known as the piezoelectric effect). While a
large number of modalities have been developed that are able to image the distribution of
different tissue characteristics and physiological processes, we will focus on the most common
option employed to obtain understandable pictures of internal anatomy: B-mode (also known
as 2D-mode).
In B-mode, a linear transducer array is excited with a high-frequency pattern in order to create
an arc-shaped wave. This wave travels through the surface of the US probe (typically a plastic
or rubber material to facilitate transmission) and a water-based gel (applied to the skin of the
patient to improve acoustic coupling) into the tissue of interest. While traveling through tissue,
the wave will be absorbed, scattered, reflected and/or refracted, according to the variations
in density of the tissue layers. Depending on the time of flight and the intensity of the echo
reaching back to each transducer array element, it is possible to organize this input into a
regular pixel grid to form a grayscale image.

While being a harmless, fast, cheap and flexible modality, ultrasound imaging is not without
limitations. In its common 2D form, it is only possible to image single planar views of an
area; mastering the art of finding an object of interest and reaching the desired point of view
requires a high level of skill and places a heavy burden on the operator. Furthermore, the
image usually offers a low Signal-to-Noise Ratio (SNR) due to the abundant reflection and
scatter. Finally, the quality typically degrades along the depth dimension, since the wave
attenuation increases exponentially with the traveled distance [91]; shadowing is also a
possibility if a very dense object (such as bone) finds itself between the probe and the object
of interest.

More details about B-mode beamforming and image formation process are available in
textbooks regarding the subject [74].

5.3.2 Portable Gamma Cameras

Gamma cameras have already been mentioned in the previous sections (2.2.4 and 5.2) for
scintigraphy and freehand SPECT. For our project we used a portable handheld gamma
camera, which was constructed to employ the same physical principle of conventional gamma
detectors. Most of them do indeed exploit scintillation to detect when a particle originating
from radioactive material enters its field of view and interacts with the matter in its scintillation
chamber. This occurrence is defined as event.
In order to detect and count these events, a composite system is used. A flat crystal capable of
interacting with the traveling gamma photons is placed in front of an array of photomultiplier
tubes. When a gamma photon interacts with the crystal, it gets absorbed by an atom of the
crystal; as a result, an electron is raised to an excited state. When the electron returns to a
lower-energy state, the residual energy is emitted again as another photon of a characteristic
wave length, typically in the visible range. As a result, the photomultiplier tube is able to
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detect this flash and convert it in an electric signal which can be digitized.
A single chamber can detect the incoming photons; the number of events detected per second
can be represented with a visible or audible signal. However, by juxtaposing multiple chambers
into a 2D array it is possible to employ the information provided by each of them to compose
a 2D grayscale image.

In order to enhance the spatial resolution of the gamma camera, it is necessary to minimize
the angle at which an incident photon can enter the scintillation chamber. This can be done by
placing a metallic regular grid in front of the detector. The ratio between the size of each cell
and the length of the collimator determines the degree of filtering of incoming particles. This
ratio is subject to a trade-off: a longer collimator will decrease the spurious particles reaching
an element of the array and consequently image blur, but this will also turn in overall lower
counts and possibly SNR; to the limit, this could result in the inability to detect significant
information.

5.3.3 Optical Stereo Tracking

Calibrated video cameras have now long been used for tracking objects of interest in space, in
particular using markers of known geometry and capable of providing high contrast features;
QR codes or ArUcO [159] markers can be considered notable examples. Typically black-and-
white patterns are used, such that they can be detected with simple thresholding of grayscale
images under different lighting conditions. These patterns are usually composed of geometric
primitives, such as straight lines or circles, so that they can be detected via computationally
cheap edge- or blob-detection and shape-fitting algorithms. The result of these pipelines is the
location of the marker outline on the 2D image.
Deriving the 6 degrees of freedom (DoF) position and orientation in 3D space from the 2D
outline on the image plane requires a careful modeling of the image creation process. The
most common camera model is the so-called pinhole model, which can lead to accurate results
with standard digital cameras (after appropriate calibration). In this model, the camera has
an optical center, into which all incoming light rays are made to converge from the camera
lens. The rays intercept the camera sensor, posed behind the optical center, and are quantized
into a digital signal by its finite elements (pixels). Ignoring the final quantization, the image
formation process can be described as a geometric projection of 3D points on a 2D surface,
i.e. the image plane. The representation of a 3D projection can be conveniently expressed by
making use of 4D homogeneous coordinates, which can be derived for each 3D point by adding
a 1 to the original 3D vector:

Xh =

X

1

 =



X1

X2

X3

1


(5.1)

5.3 Technologies 63



Where X is the original 3D vector and Xh is the resulting homogeneous vector. This process
is known as homogenization. It is worth noting that in Projective Geometry homogeneous
vectors are equivalent with respect to multiplication; that is, Xh = mXh where Xh is an
homogeneous vector and m 6= 0 is an arbitrary factor. In order to avoid confusion, it is
a common convention to normalize vectors by dividing them by the last (homogeneous)
coordinate, such that it is 1. After normalization, it is possible to extract the non-homogeneous
vector by omitting the last coordinate.
The projective transformation can be represented by a matrix establishing the relationship
between the points in 3D space and the respective projected point on the 2D image plane.
Since we adopt homogeneous coordinate systems for both spaces, this results in a 3 × 4
transformation matrix P :

xh = PXh. (5.2)

Here xh is the homogeneous coordinate of the projected point on the image plane. Following
a popular convention [65], we can decompose P into two matrices:

xh = PXh = K[R|t]Xh (5.3)

where K is the intrinsic camera matrix, and [R|t] is composed of the rotation and translation
of the camera with respect to the world coordinates. The particular choice of the world
coordinates is arbitrary, but determining K is necessary in order to use the images provided
by the camera to determine its position in space and that of other objects. This consists
in computing the camera’s focal length f , the location of the camera’s principal point x0

(corresponding to the intersection of the principal axis and the image plane), the pixel size in
each direction mx and my, and the skew of the pixel grid and of the lens deformation s:

K =


fmx s x0

0 fmy y0

0 0 1

 (5.4)

However, such model is still incomplete for most commercial systems, since it assumes an
ideal projection process. This is usually not the case for cameras making use of a lens in
contrast to an abstract camera obscura. Imperfections in the lens manufacturing process and
its assembly within the camera add further disturbances which must be taken into account. In
virtue of this, additional distortion models have been developed that aim at approximating
the effects of the most common lens properties [215]. One is radial distortion, which can be
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approximated given the knowledge of the radial distortion coefficients k1 and k2. Given these
coefficients and the non-homogeneous projected point x, the distorted coordinates

xd =

xd
yd



can be computed to compensate both effects as in:

xd = x(1 + k1r
2 + k2r

4)

yd = t(1 + k1r
2 + k2r

4)
(5.5)

where r2 = x2 + y2.

The determination of the camera parameters is called intrinsic camera calibration. Camera
calibration is a vast research field, and many calibration methods have been proposed. Most of
them employ a calibration pattern of known geometry and size, such as a chequered pattern,
which must be moved all over the camera FoV. The images of the pattern acquired in such
procedure can then be used, together with the knowledge of the focal length of the camera, to
constrain the parameters of the pinhole and distortion model into an overdetermined equation
system, whose solution corresponds to the elements of the camera calibration matrices.

Once a single camera has been calibrated, it is possible to use it to track said markers of known
shape and size in 6 DoF. The accuracy will degrade as the distance from the camera increases,
as a shift in one pixel back-projects to a bigger displacement in space. Moreover, the detection
can be unstable when a symmetric marker is orthogonal to the camera axis, since the shape
fitting can be ambiguous for such configurations.

It is possible to improve the tracking accuracy and stability, to allow the use of simpler markers,
or even to enable markerless tracking by making use of multiple cameras concurrently. The
direct extension of a single-camera system makes use of two cameras, and is called a stereo
tracking system.
After intrinsic calibration of each camera, it is possible to triangulate the position of the
detected features in 3D space between the images provided by each device to refine the
detection. However, this requires first the knowledge of the relative position of the two
cameras; stereo calibration consists in the process of finding this geometric transformation,
which can be expressed through the fundamental matrix F which correlates the position of
corresponding points x and x′ in the image of the two cameras:

x′TFx = 0. (5.6)

With this knowledge, the objective is then to find the point in 3D space X which gets projected
into the two corresponding points x = PX and x′ = P ′X and satisfies Eq. 5.6. Unfortunately,
reality is not as straightforward and this equations will never be satisfied exactly because of
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measurement errors. A large number of methods have arisen to find the estimates which
minimize the deviation from these constraints [65].

Analogously to the single camera case, most approaches developed to find the fundamental
matrix use a calibration pattern or object; some methods can perform intrinsic and stereo
calibration from a single acquisition.
With a stereo tracking system it is possible to employ simpler markers, such as geometric
primitives, which can be triangulated between the two cameras as mentioned above.

More details about stereo tracking and the geometry of computer vision can be found in
literature, for example in [65].

5.3.4 Collaborative Robotics

In Section 3.3.3 we introduced the definition of a robot as a machine capable of exercising
mechanical force on the environment in order to modify it or for self motion. This statement is
very general and is meant to encompass the large variety of forms and shapes in which robots
can be designed in order to perform a specific task in a specific environment.
Here we will go into further detail for a particular class of robotic devices, which have been
designed for collaboration with humans in mind: lightweight manipulators.

A manipulator, also called a robotic arm, is usually a single chain of rigid links connected by
joints. The most common joints are revolute joints, i.e. acting like a hinge between the two
connected links; however, other types of joint exists.
Each joint is provided with a motor in order to be able to change the state of the joint; in
case of revolute joints, this is the opening angle between the two connected links. Usually an
encoder is also built into the joint, so that the current state of the robot joints is known and it
is possible to derive the position in space of the whole robot.
The computation of the position of each link in space is denominated Forward Kinematics
(FK). A prerequisite is to define the coordinate systems that describe the positions and
orientations in space. Following a popular convention [32], we will use curly braces to identify
reference frames; for example we will assign the reference frame {base} to the base of the
robot. We will describe points identified by coordinates in this reference frame as

baseP =


px

py

pz

 (5.7)

where P is the point identified in 3D space by the coordinates px, py and pz. We will
write a rigid Euclidean transformation, i.e. a 6 DoF translation and rotation, between the
two reference frames {base} and {effector}, as effector

base T . For a robot with a single joint
connecting the base with a link named {link} ending with the end effector, we can write
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the transformation between the base and end effector as the composition of the transforms
between base and first link, and from the first link to the end effector:

effector
base T =link

base T
effector
link T. (5.8)

The choice of the location of the reference frames with respect to the robot links is completely
arbitrary, but it has a great impact on the FK computation. One popular system to attach
the reference frames to the robot link in order to achieve simple and elegant dependencies
between links is the Denavit-Hartenberg convention [35]. However, beside not being the
only method available, it it also has a range of variants depending on choices left open by
the convention itself. Anyway, for this scope it is enough to say that it is usual to assign the
reference frame for each link such that it aligns with the joint axis connecting to the previous
link. If the reference frames are assigned in this fashion, it is then possible to derive for each
link {linkN} the transformation linkN

linkN−1T between the parent reference frame and its own.
By composing a chain of these transformations, it is then possible to derive the full kinematic
chain, depending on the state of each joint and the length of each link.
While a manipulator’s Forward Kinematics has a closed-form solution which is complicated
for a human but straightforward and manageable for a computer, the inverse process is not
so in general. Finding the joint states such that the end effector reaches a target 6 DoF
position target

base T with respect to its base constitutes the problem known as Inverse Kinematics
(IK). In contrast to FK, the IK of a revolute joints-based robot gives origin to a non-linear
set of equations. While there are systems capable of generating an analytical solution for
a given robot kinematic model, the most common solution is to adopt iterative numerical
solvers. However, there may be no solution to the problem if the target position is outside
the dexterous workspace of the robot. The dexterous workspace is so called in order to
discriminate it from the adjacent region of the reachable workspace, which is the set of points
that the robot can reach but only for a restricted set of possible orientations of the end effector.
On the other hand, the problem may even have infinite solutions if the robot is redundant, i.e.
it has more degrees of freedom than the space it operates in (e.g. 7 links for a robot operating
in the 6 DoF 3D space, or 3 links for a robot working on a 2D plane). In this case a solution
must be chosen among all possible ones, arbitrarily or according to a secondary cost function
added to the solver in order to satisfy some constraint (e.g. obstacle avoidance).
Once the joint configuration leading to the desired target robot position has been computed,
it is necessary to determine the full trajectory from the starting to the target position. This
means to find a set of positions, parametrized over time, within a small threshold from each
other, joining the former to the latter. While the problem could be solved by variating the
position of the joints from the starting to the desired configuration, the movement being
originated in Euclidean space would be very unpredictable: the danger is to hit an object
in the environment, or even the robot itself in a self-collision event. Since this is in most
cases unacceptable, various strategies can be employed to minimize these risks: some robots
cannot enter a state of self-collision within their joint ranges by design. Collision with the
environment can only be prevented if it is perceived in some way; a possible solution is to
employ an RGBD camera to build a 3D map of objects present in the surroundings of the robot.
Anyway, even when such a map is available, an analytic solution proves to be intractable; the
state of the art is represented by probabilistic algorithms which sample the configuration space
of the robot to find a set of collision-free positions to be joined into a smooth trajectory [27].
Another common pitfall for robotic applications are so-called Singularities, i.e. joint configura-
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tions where the movement of a joint does not contribute to the movement of the end-effector;
this phenomenon is related to the well-known gimbal lock problem. In such cases the robot
movement can reach dangerous speed in order to maintain a constant speed of the last joint,
or completely arrest if the robot software does not find a way to go beyond the singular point.
Singularity avoidance is a popular secondary objective of many robot control routines [1,
133].

In our overview of the vast field of robotics we have not considered interaction with humans
yet. Robot producers started designing robots explicitly for collaborative scenarios, introducing
ad-hoc control strategies and safety features. The robot that we employed in this work belongs
to this category. As most redundant manipulators, its "elbow" can be moved while keeping the
end effector still in its place. This feature can be useful for object avoidance, or to make space
for a human in a dynamic environment. The geometric configuration of the robot was designed
such that self-collision is impossible within the joint range, and no particular care must be
taken when commanding positions to the robot. The torque sensors built into the joints allow
to estimate the force acting on each joint, so that an emergency stop can be triggered upon
collision with an object or person. These features, along with the industrial-certified motion
controllers, were helpful in safely performing our experiments.
The embedded torque sensors alone can enable basic interaction with the environment, at
least in controlled ones. They allow to perform an emergency stop if the torque applied by a
joint surpasses a threshold; this can be a useful safety feature. However, it is often desirable to
rather constrain the force applied by the robot end effector, expressed in Cartesian space. This
could be achieved by installing a force/torque sensor between the robot flange and the end
effector which can directly measure this quantity, but such hardware is expensive. The same
functionality can be partially emulated using the data provided embedded torque sensors,
given the current position of the robot. This requires computing the robot’s Jacobian matrix,
which expresses the relationship between quantities in the joint space of the manipulator
(hence expressed as vectors of length l, where l is the number of links of the robot) and
quantities in the Cartesian space (expressed as vectors of length 6, equal to the number of
degrees of freedom of the Cartesian space). The Jacobian matrix is commonly denominated
J(Θ), where Θ is the vector of the current joint angles, to stress the fact that it is dependent
on the position of the robot. While numerical methods exist to derive the Jacobian of an
arbitrary robot in a given position, the matrix can be geometrically derived for manipulators,
thanks to their particular architecture. Once the Jacobian is known, it is possible to derive the
Cartesian velocity of the end effector (in the reference frame of the base of the robot) ν from
the current velocity of rotation of the individual joints Θ̇. This relationship can be formulated
as:

ν = J(Θ)Θ̇, (5.9)

where ν = [vx, vy, vz, ωx, ωy, ωz]T concatenates Cartesian linear and angular velocities v and
ω. The same can be done to find the Cartesian force produced by the torque applied by a
motor:

τT = FTJ(Θ), (5.10)

where τ is the column vector of length l holding the torques being produced by the robot
joints, and F is the column vector of the Cartesian force f and torque n along each axis:
F = [fx, fy, fz, nx, ny, nz]T .
Equations 5.9 and 5.10 suggest that it should be possible to compute the joint velocities
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required to achieve a target Cartesian velocity by using the inverse of the Jacobian, and that
the same could be done to find the Cartesian force/torque exerted by applying specific motor
torques. This is indeed possible, except for positions at which the Jacobian matrix does not
have full rank and cannot be inverted; these configurations constitute the singularities that
we mentioned in the previous paragraph. In this cases, naive computation of the required
quantities can lead to numerical instability and unbounded solutions. The situation is even
more complicated for redundant manipulators, for which the Jacobian matrix is not square.
For this class of robots, inverting the aforementioned equations will lead to an undetermined
problem, with the consequence that an auxiliary constraint must be added in order to obtain a
unique solution and at the same time a predictable behavior (a simplified example would be:
the robot "elbow" must be pointing in the same direction).

If not only the geometric configuration of the robot is known, but also the mass and mass
distribution of its constituent links, it becomes possible to compute dynamic effects. Equa-
tion 5.10 allows us to find the motor torque needed to exert a force on the environment. The
following equation provides us with the torque necessary to move the robot in space, without
exerting such force:

τ = M(Θ)Θ̈ + V (Θ, Θ̇) +G(Θ), (5.11)

where M(Θ) is called the l× l mass matrix of the manipulator, V (Θ, Θ̇) expresses the centrifu-
gal and Coriolis effects, and G(Θ) represents the effect of gravity on the robot. The first term
of the equation summarizes Newton’s second law of motion F = ma for the whole robot in
matrix form, so it is non-zero when the acceleration is also non null. The second term is a
complex function of the robot position and velocity.
Equation 5.11 is important because it allows us to implement a control mode which is often
called Gravity Compensation. Applying the motor torques resulting by solving for this equa-
tion, the robot does not exert any force on the environment. This means that it will remain
still, until something or someone pushes it; for example, a human operator can move the
robot freely in space. This modality enables a set of collaborative applications, and we used it
extensively in Chapter 6. It is also a useful instrument to implement "teaching" mode; that
is, the robot can be moved by the operator in space to reach a series of positions, which are
recorded. The robot can be then commanded to reach these positions in sequence indefinitely.
Such method is popular for industrial applications, e.g. in assembly lines.

In this chapter we discuss the implementation of a collaborative control scheme. We al-
ready discussed more high-level details of the interaction between humans and robots in
Section 4.2.3.

5.4 Proposed Method

In Section 5.1 we discussed the difficulty to reliably target the SLN during ultrasound-guided
needle biopsy. In light of these considerations, real-time intraoperative multimodal imaging
may be helpful to increase the sensitivity of the procedure and make it a reliable tool for
breast cancer staging. We propose a system, shown in Fig. 5.3, capable of fulfilling this task
by augmenting the standard ultrasound guided needle biopsy workflow with a collaborative
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Fig. 5.3. Overview of the Collaborative Robotic ultrasound-gamma imaging system. The situation shown
here is an image-guided needle biopsy of sentinel lymph node. The phantom is shaped after the female
anatomy of the axilla, and contains clusters of lymph nodes. For each cluster, some LNs are marked with
a radiotracer. The screen on the right shows the output of our collaborative multimodal imaging system.
A blue square indicates the portion of the US image which is currently within the field of view of the
gamma camera. In this region, red dots highlight the subregions which may be the origin of gamma
activity. However, the actual location of the radiotracer may be behind or in front of the US imaging
plane.

robot which holds a gamma camera. The US and gamma images are then merged in real-time
to provide a multimodal image. In this section we illustrate the design of the system.

5.4.1 System Architecture

The system is composed of a network of computers, sensors and effectors. The backbone is
formed by the "Ultrasound Workstation" embedded in the ultrasound machine, the "Visual-
ization Workstation" dedicated to robot control and visualization, and one more computer
running the optical tracking software ("Tracking Workstation"). A high-level overview is shown
in Fig. 5.4.
The ultrasound machine is an UltraSonix RP system (Ultrasonix, MA, USA) running the native
software with Research Mode activated and connected to a C5/60 curvilinear probe. Directly
running on the same system is also an instance of the Plus [97] toolkit and OpenIGTLink [186]
server, which are used to transmit the formed B-mode image and related metadata (such as
pixel spacing) retrieved through the Ultrasonix Ulterius SDK.
The tracking workstation is connected to a custom-made optical stereo tracking system over
Ethernet, and to the robot’s workstation through another Ethernet cable inserted into an-
other port on a PCI-Express Gigabit Ethernet Card. The FRAMOS optical tracking software
FIS (FRAMOS GmbH, Germany) runs on the computer, driving the tracking hardware and
providing the current position of the marker in real time over an OpenIGTLink communication
to the robot control workstation.
The latter is connected via a Gigabit switch to the ultrasound machine and to the tracking
workstation on one port, and to the robot cabinet through another Ethernet port. The software
running on it includes the visualization software CAMPVis [169] and a collection of processes
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Fig. 5.4. High-level software components. Their hardware deployment is also represented in the picture.

implementing the robot control, built on top of ROS [156]. Finally, the KUKA LWR iiwa
R800 (KUKA Roboter GmbH, Augsburg, Germany) is connected over a custom connector to its
cabinet, hosting an instance of the KUKA Sunrise control software. We developed a library
(iiwa_stack [71], see Appendix C) which is used to pilot the robot by updating the commanded
position sent over the Ethernet cable from the workstation on a ROS topic. The robot holds a
CrystalCam (Crystal Photonics, Germany) gamma camera through a custom designed and 3D
printed mount. The same mount supported the stereo camera assembly of the optical tracking
system.
The tf ROS subsystem is used to maintain a representation of the current geometric configu-
ration of the whole system. Being a distributed system making use of ROS topics, a custom
made bridge between ROS topics and OpenIGTLink connections is used. In particular, it
forwarded the spatial properties of the US image as provided by Plus and the output of the
optical tracking system to the robot control routines. The CAMPVis instance connected to both
the Plus OpenIGTLink server and to the tf ROS subsystem in order to fetch the information
necessary for the visualization, i.e. the current US image and relative position between the US
probe and the gamma camera.

5.4.2 Conventions and Geometric Reference Frames

The choice of the reference frame attached to notable objects in the system is in most cases
arbitrary. Here we will define them in an unambiguous way; Fig. 5.5 contains a simplified
scheme of the relationships between the most notable ones.

In this scope we are only interested in the displacement between the robot base and flange
flange
base T , and not in the position of the single links of the robot. For the {base} and {flange}
reference frames we use the same convention adopted by the KUKA Sunrise software and
iiwa_stack.
The robot end effector consists of a custom 3D printed mount holding the gamma camera
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Fig. 5.5. Notable reference systems. This scheme summarizes the relationships between the most important
reference frames used involved in robot control and visualization.

and the optical tracking system, fixed to the robot flange via screws. On this end effector
two reference frames of interest can be identified: one relative to the gamma camera screen
{gamma}, and one to the optical tracking system {tracking}. The {gamma} reference frame
is located in the center of the gamma camera screen, with the z axis pointing out and the x
axis pointing "up", away from the robot flange. Since we designed the mount holding the
gamma camera based on its CAD model, we were able to derive the gamma

flange T transformation by
construction. The {tracking} reference frame is arbitrarily determined by the FRAMOS OTS
system during the intrinsic calibration procedure. In order to find the tracking

flange T transformation
we relied on a hand-eye calibration procedure, as described in Section 5.4.5.
As we discuss in the following Section 5.4.3, the reference frame attached to the tracking
marker is by the optical tracking system software. Since the Plus toolkit is able to provide in
real time the geometric transform between the US probe "tip" and the top left corner of the
image imagetip T according to the current parameters set on the US machine, we adopted a custom
calibration procedure described in Section 5.4.5 to find the transform tip

markerT . According to
the Plus documentation 1, our {tip} reference frame corresponds to Plus’ transducer frame,
our {marker} frame is analogous to the Plus {probe} frame, and {image} refers to the top
left corner of the US image in both cases.

5.4.3 Optical Tracking

The stereo tracking system is composed of a pair of C1291M-BL boardlevel cameras (SMARTEK
Vision, Croatia) with 135°wide-angle lenses DSL315B-NIR (Sunex, USA), mounted on a custom
3D printed support. The lens of each camera is surrounded by a FLDR-i70A direct ringlight
(FALCON Illumination, Malaysia), illuminating the scene at a wavelength of 875 nm in the
near infrared spectrum. The ringlights are controlled by an IPSC2 (SMARTEK Vision, Croatia)
strobe controller. The relevant spectrum for the image processing is selected through IF 093
NIR (Schneider-Kreuznach, Germany) filters.
The tracking target consisted of a set of 10 self-adhesive, retro-reflective circular markers (3M,
USA), each with a diameter of 10 mm. The markers are placed on one of the two faces of the
ultrasound probe in a highly asymmetric configuration, in order to ensure that the pattern

1Plus Documentation: Coordinate Systems Definitions used by fCal (http://perk-software.cs.queensu.ca/plus/
doc/nightly/user/ApplicationfCalCoordinateSystemDefinitions.html)
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would be univocal even in case of partial occlusion.
The tracking algorithm has been previously presented in [21]. After thresholding of the
image and detection of the ellipses corresponding to the markers in the image, their centers
are computed. Then the PMF Algorithm is employed to find a triangulation of the detected
center points and determine their position in 3D space. Finally the pose of the whole probe
is determined by matching the points found to the configuration found during a reference
acquisition. This acquisition is performed beforehand in a steady state, averaging the pose
computed for each point over time to ensure robustness to outliers. After the acquisition, a
reference frame is attached to the constellation of the markers in order to represent the 6-DoF
position and orientation of the US probe. The choice of the reference frame is completely
arbitrary, but this is not an inconvenience since a calibration step between the position of the
marker and that of the US probe tip is required anyway in order to compute the position of
the US image at runtime.

5.4.4 Robot Control

We implemented the robot control software as a C++ module for the ROS framework,
indicated as "Follower" in Fig. 5.6.

The objective of the robot control routine is to update the robot position such that the ultra-
sound and gamma images have the maximum overlap. This is achieved when the gamma
camera is looking at the portion of space immediately below the US probe.
In virtue of this, it is possible to derive the desired robot position effector

base T ′ as the configura-
tion which aligns the surface of the gamma camera with the US imaging plane, the center of
its upper edge to the center of the sensing surface of the ultrasound probe (what we defined in
Section 5.4.2 as "tip"), and introduces an arbitrary chosen distance d between the two devices.
We chose d = 15cm after empirical evaluation of the usability of the system and sensibility
to a standard amount of radiotracer for a surgical procedure. This parameter is adjustable
and runtime to adapt to the current frequency of events detected by the gamma camera and
to the geometric configuration of the environment. Hence, the robot position should change
such that the gamma

tip T transform converges to the desired value gamma
tip T ′, corresponding to a

translation along the ztip axis of d and of lgamma/2 along the xgamma axis, where lgamma is
the length of the gamma camera detector.

The robot position can be specified in Cartesian space as the 6-DoF pose between the robot
base and flange frames. Since the LWR iiwa is a redundant robot with 7 DoF, this specification
is not univocal: multiple joint configurations can result in the same position of the last joint,
while the orientation of the robot "elbow" changes. The robot firmware allows to specify this
orientation along with the desired position of the end effector in Cartesian space; this can be
very useful for collision avoidance or in collaborative scenarios. However, we did not take
advantage of this feature in the scope of this work and only specified the target Cartesian
position effector

base T ′. In this way we are able to use the advanced native Cartesian Position
Controller of the robot.
In order to implement our implicit collaborative control model, we compute the target robot
position effector

base T ′ according to the position of the US probe held by the operator, which is
detected through the optical tracking marker marker. In the previous paragraph we derived
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our target gammatip T ′ position. Since we know the gamma
flange T transformation by construction (as

we mentioned in Section 5.4.2), we can derive the target position of the flange with respect to
the current position of the ultrasound probe as

flange
tip T ′ = gamma

tip T ′ flangegammaT = gamma
tip T ′ gammaflange T

−1 (5.12)

The current position of the probe can be expressed with respect to the robot base as

tip
baseT = flange

base T tracking
flange T marker

trackingT
tip
markerT (5.13)

where flange
base T is the current Cartesian pose of the robot as computed through its own Forward

Kinematics, trackingflange T is the hand-eye calibration between the robot and the optical tracking
system, markertrackingT is the output of the tracking system and tip

markerT is found via calibration, as
discussed in Section 5.4.5.
Combining both equations we can express the target Cartesian position to be sent to the robot
as

flange
base T ′ = tip

baseT
flange
tip T ′

= flange
base T tracking

flange T marker
trackingT

tip
markerT

gamma
tip T ′ gammaflange T

−1
(5.14)

The motion target is continuously updated according to the last pose provided by the optical
tracking system. The internal SmartServo control strategy provided by KUKA takes care of
smoothly interpolating between the last trajectory that was being executed and the new
one, resulting in a fluid motion even without adjusting the commanded positions in any way.
However, if the operator holds the ultrasound probe still, the natural hand tremor and the
noise on the tracking system output result in a vibration of the target position around an
average center point. If the command would be transmitted to the robot without filtering,
this would result in a rapid "start and stop" activation of the motors; such a situation is very
harmful for the mechanical components of the robot itself. The producer of the robot uses
the term "second hand effect" and warns about such danger. This problem can be solved
by introducing an averaging of the last n = 10 frames received from the optical tracking
system, and by introducing hysteresis: if the difference between the target position the current
one is below a threshold, then the last commanded position is simply repeated indefinitely.
The threshold is expressed as a limit on the difference in translation and in angle along the
shortest line for the rotation. This results in the robot smoothly stopping when the US probe is
held "still" by the operator, and resuming motion when its position changes significantly. This
policy does not have any impact on the correctness of the image fusion, since the visualization
software continues updating the image according to the last available data. Only the robot
motion is suspended until necessary.

Another phenomenon that should be avoided is instability, which can happen in case of
time delay between the sensor streams [30]. The position to be commanded to the robot
is computed through a long chain of geometric transformations, combining information
originating from different sensors, connected to different computers connected on a non-real-
time network. For example, in an unlucky but not so uncommon case, the output of the optical
tracking system would reach the control program with some lag with respect to the current
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Fig. 5.6. Architecture of the robot control system. In this picture, FIS indicates the Optical Tracking System
software.

robot position. The consequence would be an error in the commanded position that would
pull the robot away from the correct target position in one direction. At the next iteration of
the control routine, the new commanded position will be computed according to the updated
inputs, which will be again unsynchronized. So in this unlucky case the commanded position
will lead to an overcompensation in the opposite direction of the last movement. If this process
repeats at a high frequency, it manifests itself as the robot starting to shake as it converges to
the target configuration. Depending on the geometric configuration and the lag, the system
can diverge and the shaking can reach very dangerous levels for the robot as well as for any
bystander.
Since in our setup network packets must travel through a series of non-real-time hardware
and software stacks, random delays can accumulate to an unbounded amount. A common
countermeasure is to perform a temporal calibration to find the time that information takes
to travel from each sensor to the location of the control routine, and then compensate for
this relative lag by introducing a buffer. However, this approach can only address the average
latency and not the jitter acting randomly on each single network packet. Furthermore, even
the average lag may not be constant in time. This is particularly true for consumer computer
networking hardware, which follows a best effort policy. The same can be said for consumer
operating systems; soft real-time variants are available, but the effect is limited if the whole
software stack is not real-time as well. Moreover, even when using only real-time hardware
and software, such temporal calibration step would need to be repeated every time that the
setup is changed. Even more critically, buffering the sensor information consistently across
the system can be very hard as its size grows.
A simpler but effective approach is to rely on timestamps and clock synchronization. Software
solutions capable of synchronizing the clock of different computers at the level of the operating
system are freely available, the most common being NTP [122]. While most consumer
operating systems are already configured to synchronize the computer’s clock with standard
time servers around the world, it is possible to configure them to prioritize the convergence
of a few peer computers over the local network. This technique makes it possible to align
multiple clocks within 1 ms of error over a LAN making use of common hardware and OSs,
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and to maintain this convergence indefinitely. Once the computer clocks are synchronized,
each process running on any computer can timestamp the information coming from the sensor
and pass it over. The advantage of this approach is that any delay happening after assigning
the timestamp will not affect the coherency of the global information when collected together;
it will only introduce an overall lag corresponding to the maximum delay among all pathways.
Each process can maintain a buffer of the last incoming messages in order to look for the
most recent common timestamp among all channels (within a certain interval). As opposed
to a hardcoded delay, this approach is more robust and flexible; the ROS framework makes
wide usage of it, and in particular the tf subsystem provides utilities to adopt it to maintain a
distributed representation of the geometric configuration of the system.
After noticing this resonance effect in our application, we were able to mitigate it by using
NTP to synchronize the robot and tracking workstations, and the rosjava instance running on
the robot as a Sunrise Application as a component of iiwa_stack.

5.4.5 Calibration

In order to ensure the accuracy of such a complex system, various calibration procedures
are necessary. The tracking system must be properly calibrated in order to provide accurate
positioning of the marker with respect to itself. Furthermore, the geometric transformation
between the flange of the robot and the base reference frame of the tracking system must
be found accurately, so that the position of the marker can be brought in the robot’s base
coordinate system. Finally, the relative position of the marker attached to the US probe and
the image must be computed.

As a prerequisite for the two further calibrations, the tracking system was calibrated in terms
of lens distortion, camera intrinsic parameters, and extrinsic displacement between the two
cameras (also known as stereo calibration). The lens distortion coefficients were estimated
with a four-step approach proposed by Heikkila et al [69], while the stereo camera intrinsic
and extrinsic parameters were computed following the approach introduced by Zhang et
al [215]. The accuracy of the tracking system has been identified to be 0.21 mm ± 0.25 mm
in a previous work [21].

Next, the transformation between the robot hand and the tracking system was determined.
Since the tracking system was mounted on the robot itself, this could be considered a standard
eye-on-hand case of a hand-eye calibration as defined by Tsai-Lenz et al [190]. We used the
existing implementation of the algorithm in the ViSP library [111]. For convenience of use, in
particular for periodically recurring recalibration, we developed a ROS framework which is
now publicly available (easy_handeye; see Appendix C).

Finally, the US spatial calibration was performed. A large number of approaches and software
applications can be found in literature for determining the geometric transformation between
the tracking marker attached to the US probe and the location in space of the generated
image [77]. To the best of our knowledge, most of them make use of phantoms of known
geometric structure which, when immersed in water, are visible in the US image as a shape
which is easy to automatically segment or reliably annotate by hand. The position of the
features in the image for multiple locations of the probe in space can be organized in a
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Fig. 5.7. Ultrasound spatial calibration setup. The system, as well as the external optical tracking system
adopted to perform the calibration, are shown here. The picture is only explicative; during the actual
calibration procedure, the pointer tip was touching the US probe orthogonally in the exact center of the
transducer surface.

linear system of equations, which can then be solved to estimate the parameters of the
transformation. However, given the noise on both the probe and feature locations, the system
will not be solvable exactly. The solution is then identified as the set of parameters that leads
to the minimum error. The resulting complex and error-prone procedure typically results in
Point Reconstruction Accuracy no better than a millimeter [77].
In order to overcome these limitations, we adopted a simpler alternative approach. As shown
in Fig. 5.7, a second, external optical tracking system (Polaris Vicra, Northern Digital Inc.,
Waterloo, Ontario, Canada) was employed to find the center of the transducer array of the US
probe by manually imposing a pointing tool orthogonally on the probe’s surface. To complete
the geometric transformation we use the transformation between this point and the US image
coordinate frame, provided at runtime by Plus according to the current depth setting of the
machine. The whole setup is depicted in Fig. 5.7.
The spatial calibration consists in determining the transformation T imagemarker between the tracking
marker and the US image. As we mentioned, we can decompose this transformation into the
relative positions of the marker and US probe tip, and between the tip and the image (defined
as the top-left corner)

image
markerT = tip

markerT
image
tip T. (5.15)

As we mentioned, for correctly positioning the image in space image
tip T can be provided by the

Plus OpenIGTLink server to our visualization software at runtime, once the position of the US
tip is known. In order to find tip

markerT we use a pointing tool, consisting of a needle carrying
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an optical tracking marker calibrated such that the reported pose corresponds to the tip of
the needle. We can then derive that the position of the needle tip and of the US probe tip
coincide:

tip
markerT = needle

markerT. (5.16)

In order to compute the latter transformation we need the output of the external tracking
system Tneedleexternal and the hand-eye calibration between the robot and the external tracking
system T externalbase . The former is directly provided by the system; the latter can be found via an
eye-on-base calibration, which we performed using easy_handeye.
Finally, we can compute the final calibration by composing the whole transformation chain:

image
markerT = marker

needle T
′ = external

needle T base
externalT

flange
base T tracking

flange T marker
trackingT, (5.17)

where needle
externalT is the output of the external tracking system, external

base T is the hand-eye
calibration to the external tracking system, flangebase T is the pose of the robot, trackingflange T is the
hand-eye calibration with respect to the stereo tracking system as found before in this section,
and marker

trackingT is the output of the stereo tracking system.
In order to minimize the impact of measurement noise, this chain of transformations was
averaged over 10 samples.

It is worth noting that these calibrations remain valid until the tracking system is detached
from the robot, or the marker from the US probe. The hand-eye calibration process requires
10 minutes, while the spatial US calibration requires 30 minutes. The resulting accuracy of
the system was evaluated with a dedicated procedure, described in Section 5.6.

5.4.6 Image Fusion and Visualization

The visualization software is implemented as a plugin for the CAMPVis framework [169]. The
plugin takes as input the current US and gamma images, their relative positions, and spatial
metadata of the US image.
The grayscale US image is provided over an OpenIGTLink connection by the Plus toolkit
instance running on the ultrasound machine. Since the image size and resolution is variable
according to the depth setting, a matrix containing the pixel spacing of the image and the
image
tip T translation is also received over the same connection.
A further plugin is used to directly connect to the gamma camera over USB and receive the
events detected by each scintillator chamber. The events are integrated over time in order to
build a grayscale image of 16 by 16 pixels, representing the event frequency for each pixel in
the integration window.
A complete modeling of the gamma camera has been carried out by our group for freehand
SPECT tomographic reconstruction [114]. However, for simplicity, we adopt a parallel camera
model which assumes that any event detected by a "pixel" originated somewhere on the line
coinciding with the axis of symmetry of the scintillator chamber.
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Fig. 5.8. Visual representation of the image fusion process. The locations of the gamma camera scintillation
chambers are projected on the ultrasound image, and the number of events recorded by each of them is
integrated over time. For each frame, a dot is rendered on top of the US image if the integrated event
count is beyond a threshold adjustable at runtime (in order to account for the radiotracer decay).

In order to provide a familiar image to the surgeon, the US image is used as reference and
the gamma camera pixels are projected on the US imaging plane using a parallel projection,
as shown in Fig. 5.8. Then, the events are visualized as transparent dots, with opacity
proportional to the value of the pixel in the gamma camera image. With this method, the
intensity of the color is directly proportional to the frequency of the events originating from
the region of space lying on a line between the gamma pixel and the corresponding US pixel.
Finally, the dots are smoothened at the edges with a Gaussian profile, in order to represent the
distribution of the probability in the position of the event origin and for a more interpretable
and intuitive visualization.

The correct projection of the gamma events on the US image requires the knowledge of
the relative position of the two images. This is computed in a separate Python script that
periodically queries the tf system for the image

gammaT transform, and sends it to CAMPVis over an
OpenIGTLink connection. In order for this to work, the whole transformation chain between
the two reference frames must be known. The calibration procedure described in Section 5.4.5
provides the rigid transform between the optical marker and the tip of the ultrasound tip

markerT .
Adding the transformation image

tip T provided by Plus, the output of the optical tracking marker
trackingT

and the hand-eye calibration tracking
flange T we can derive the transformation between the robot

flange and the tip of the ultrasound probe

image
flangeT = tracking

flange T marker
trackingT

tip
markerT

image
tip T (5.18)
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Fig. 5.9. Overview of the prototype used to test the feasibility of the concept. The first version of our system
had strong hardware limitations, in particular with respect to the video tracking system. Both hardware
and software were replaced completely for the second phase of this study.

As we mentioned, the position of the gamma camera scintillator with respect to the robot
flange gamma

flange T is known by construction. Thus, we can combine this information and obtain
the transformation between the two images:

image
gammaT = flange

gammaT
tracking
flange T marker

trackingT
tip
markerT

image
tip T

= gamma
flange T

′ tracking
flange T marker

trackingT
tip
markerT

image
tip T

(5.19)

5.5 Feasibility Study

The first prototype of the system had a different implementation than the one described here.
A simpler tracking system was used, employing a standard consumer webcam and an AR
marker glued to the ultrasound probe. The robot used was also an earlier generation of the
KUKA LWR, namely the LWR4+. The rest of the system, visible in Fig. 5.9, was similar in
functionality.
The biggest limitation of this system was that while the robot was moving, the RGB camera
image would become blurred and the tracking was lost. As a consequence, it was necessary
to use a different control strategy: rather than constantly updating the commanded position,
it could be computed only when the robot had reached the last target configuration. Then
the robot would perform the next motion. Of course such behavior affected the performance
of the system: occasionally the US probe would exit the field of view of the camera, so the
robot could not see it and would stop moving until the operator would purposely bring the US
probe back in sight to "guide" the robot to destination. Moreover, this piecewise movement
was not an issue for small displacements of the probe, but it would hinder the usability of the
system after large rotations. In this case, robot needed to rapidly go in a large circle around
the probe, which led to the mentioned blurring of the RGB image and loss of tracking.

Despite these heavy limitations, the performance of the system was sufficient to test the
viability of the approach. The correctness of the image fusion was tested by using a phantom
consisting of a small plastic box, shown in Fig. 5.10, where spheres with the diameter of 1 cm
were immersed in water. One of the two spheres contained pure water, while the other was
filled with suspension of 0.5 MBq of 99mTc. The configuration of the phantom thus coarsely
represented two axillary lymph nodes, of which one was labeled with the radiotracer. The aim
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of the experiment was to find the minimum distance at which the SLN could be distinguished
from a neighboring lymph node under our proposed multimodal imaging.
The phantom was imaged with our system, by immersing the ultrasound probe in the water in
order to achieve acoustic coupling; the robot followed the probe and automatically positioned
the gamma camera in front of the box, such that originating radioactivity could be detected.
The two spheres were clearly visible in the US image, and one of them was clearly identifiable
as the one containing the radiotracer by the red dots appearing on top in our visualization.
The two dummy lymph nodes were gradually moved closer to each other in order to find
the cutoff distance at which it would not have been possible to distinguish them any more;
however, even when put in direct contact to each other, the source of the nuclear activity was
still univocally identifiable. This fact supported the claim of a sufficient accuracy of the system
for the particular application.

Furthermore, a small feasibility test with a single subject was performed on a gelatine-agar
phantom including "hot" and "cold" nodes, in a setup such as the one described in the following
Section 5.6. The results show the utility of the system in distinguishing the sentinel lymph
node (SLN) from the non-radioactive nodes, and the ergonomy of the system while performing
a needle punch biopsy (modulo the aforementioned issues). These results were reported in a
paper published in MICCAI 2015 [40].

5.6 Evaluation and Validation

After a complete reengineering of the system leading to the implementation described in the
rest of this chapter, a more rigorous evaluation of the accuracy of the system and its benefits
in a plausible clinical scenario was executed.

5.6.1 Accuracy Evaluation

The accuracy was verified by making use of the box phantom described in the previous
Section 5.5 and shown in Fig. 5.10. Again, one of the two spheres was filled with 3 MBq of
99mTc. This time however, the accuracy was statistically evaluated at different positions of the
US probe with respect to the phantom in order to verify the correctness of the image fusion.
Among the possible sources of error, it is worth mentioning the calibration of the tracking
system (intrinsic, stereo and hand-eye), the uncertainty about the position of the gamma
camera screen with respect to the robot, the spatial calibration between the ultrasound image
and the tracking marker.
With the purpose of reliably positioning the US probe and holding it still, it was attached
to a second robot, an UR5 (Univeral Robots, Denmark). The UR5 was operated manually
through its control panel to translate and rotate the probe as much as possible while keeping
the two spheres visible in the US image. After the system reached a steady state, we acquired
the output multimodal image. This procedure was performed for the initial position parallel
to the box wall, and then after rotating or translating in each direction for the maximum
amount allowed by the geometry of the setup (i.e. without collisions with the surrounding
environment). To improve the statistical significance of the experiment, we collected ten
images per position.
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Fig. 5.10. Plastic box phantom used for evaluating the system accuracy. In the top left it is possible to see the
two spheres that were immersed in water. The right one was filled with 99mTc. The rest of the figure
shows the multimodal image produced by our imaging system.

On each sample image, the position of the center of the outline of the plastic sphere, visible
in the US image, and of the visualized gamma activity region was manually annotated by an
expert. Finally we computed the average displacement between the two points in pixels, and
converted it to millimeters by measuring the apparent size in pixels of the two spheres of
known size (1 cm). In order for the gamma visualization to be stable, we raised the event
integration time (described in Section 5.4.6) to 2 s.
The results, reported in Table 5.1, showed that the performance of the system was reliable
for any of the reached positions and orientations of the probe. Even after rotations as large
as 20°, the average error on the annotated center positions was always below 1.50 mm. The
median error was 1.00 mm. Considering the reported threshold of 5 mm for a LN to be visible
at all in US images [140], said accuracy was deemed within the clinical requirements.

5.6.2 Expert Validation

In order to highlight the benefits of the system, a pool of five researchers and clinicians was
asked to perform a needle punch biopsy under US and gamma guidance, with and without
the assistance of the robot. For each procedure a protocol (reported in Tables 5.2 and 5.3)
was recorded with the aim of quantitatively measuring the impact of the robot assistant on
the efficiency and the outcome of the biopsy.

As for the biopsy experiment described in Section 5.5, a phantom resembling the anatomy
of a human female axilla was created out of a gelatine-agar mixture as described in [33].
Some nodules (eleven in one case, twelve in another) resembling lymph nodes were immersed
in the phantom before solidification. The nodules differed from the surrounding tissue for
their consistency and color, and half of them were marked with the inclusion of 3 MBq of
99mTc each. While the background tissue was opaque and white (in order not to make the
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Pose Number Movement Distance Avg. Error

1 Initial Position 0 0.70 mm

2 Translation along y -6 mm 1.36 mm

3 Translation along y 21 mm 0.74 mm

4 Rotation around y 19.6° 1.19 mm

5 Rotation around y 17.5° 1.39 mm

6 Rotation around x −22.4° 0.93 mm

7 Rotation around x 18.8° 1.04 mm

8 Rotation around z −10.8° 1.29 mm

9 Rotation around z 16.3° 1.03 mm

Tab. 5.1. Results of the Accuracy Evaluation for varying position of the probe with respect to the phantom.
The consistency of the error for large rotation angles indicates the absence of a significant parallax error,
and suggests a sufficient accuracy of the system calibration.

identification and biopsy unrealistically easy), the cold nodules were marked in blue with food
coloring and the hot ones in red. A different concentration of gelatine-agar was employed in
order to render a different haptic feedback between the artificial LNs and the surrounding
tissue during the biopsy. While the latter consisted of a misture of 4 weight percent (wt%) of
gelatine and 1.5 wt% of agar, the nodes were made out of 12 wt% and 8 wt% respectively.
The lymph nodes were placed in the phantom in clusters, resembling natural dispositions that
can be encountered in human anatomy, at an approximate depth of 2 cm.
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Average

Procedure Standard Proposed Method

Inspection Time (min:sec) 13:13 8:55

Nodes identified on US 9.6/11 (87.3%) 10.2/12 (85%)

Hot Nodes identified on multimodal 5 4.4

Correctly identified Hot Nodes 3/4 (75%) 4.4/5 (88%)

False positives 2.6 0

Average confidence 4.31 4.4

Biopsy Time (min:sec) 5:12 2:46

Success 0% 80%

Easiness of use 1.8 4.4

Tab. 5.4. Average results across participants to the study. A significant improvement is noticeable across all
criteria recorded in the protocol. It should be noted that during the second phase (involving the usage
of robotic imaging) two subjects spontaneously declared that in hindsight their amount of confidence
expressed in locating SLNs in the first phase should have been lower.

All subjects were given time to explore the anatomy and get familiar with the system in the
first place, until they felt confident to start the experiment. Then they were asked to count
and identify all visible lymph nodes, and point out the radioactive ones. Their last task was to
biopsy a radioactive lymph node of their own choice with a standard punch biopsy needle
(HistoCore 250 mm, BIP GmbH, Germany). The success was verified by visually inspecting
the color of the extracted sample.
The process was repeated twice to compare the non-assisted and assisted approaches; two
different phantoms were used for the two phases, in order to avoid the use of previously
acquired knowledge.
In the first round the subjects had to execute the experiment by holding the US probe and the
gamma camera in their hands, while looking at two screens showing respectively the B-mode
ultrasound and the gamma image. They had to mentally register the two images in order to
identify the lymph node activating the gamma camera scintillator, as in the current standard
medical routine. After identifying the target sLN, they had to drop the gamma camera for the
US-guided biopsy to take place.
After switching phantoms, they had to repeat the procedure with robotic assistance. They could
explore the anatomy by just holding the US probe while looking at the real-time multimodal
image, until the SLN was identified. Then they could seamlessly perform the biopsy with the
free hand, targeting the lymph node labeled in red on the grayscale anatomical image.

The experiment showed evident benefits of the multimodal imaging guidance. The full
protocols are reported in Tables 5.2 and 5.3, and are summarized in Table 5.4. The participants
were able to identify the hot nodes faster, with higher sensitivity and no false positives (as
opposed to a high number of false positives and mislabeling without multimodal guidance). All
users reported a much easier experience with the collaborative imaging system than without,
and were able to use it right away. Furthermore, the success rate jumped from an astonishing
zero to 80%; it is worth noting that the only failure while using the proposed system actually
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happened during a system failure. After locating the hot node to be biopsied correctly, the
subject got distracted while picking up the core needle and dropped the US probe. The robot
tried to reach a position outside of its workspace, and in doing so it reached a joint limit and
triggered an emergency stop. The subject decided to go on with the biopsy anyway, being
sure of remembering which node was chosen; the color of the sample proved otherwise. This
episode only strengthens the case for the importance of real-time multimodal imaging and the
reduction of the mental burden on the operator through the collaborative assistance. However,
it also shows that further development the prototype is necessary before the concept can be
validated through clinical testing.

5.7 Outlook and Future Work

In this chapter we presented a collaborative robotic assistant, which enables intraoperative
real-time multimodal imaging in the context of a workflow familiar to expert surgeons. Our
experiments show the feasibility of the approach in a simulated controlled environment, as
well as the strong added value provided by real-time multimodal imaging for intraoperative
guidance. The accuracy reached by users within few minutes of usage of the system is
impressive when compared to that of an experienced surgeon without the support of our
system. This evidence indicates great potential for future applications of collaborative robotic
imaging in other scenarios, as one of the few means currently known capable of providing
patient-specific, real-time multimodal imaging.

However, the translation of these approach to the medical routine may be a long journey.
While contemporary robots present impressive collaborative features, making them suitable to
work safely next to humans, still requires extensive work on Human-Machine Interfaces in
order to enable complex collaboration schemes and achieve a more complete awareness of
the environment. Recent advancements in computer vision and artificial intelligence promise
to overcome these challenges in the near future.
A more specific problem to the proposed approach is the need for ad-hoc hardware, such
as a robot tailored in its geometric configuration to the particular setup. While the use of a
standard industrial manipulator offered us a lot of flexibility for research, its workspace was
not a perfect fit for the task at hand. A custom-made robot, maybe fixed to the wall or to the
ceiling, would turn into a much better usability of the system, as it could reduce the number
of instances where the arm may reach a singularity, exhaust its joint range or collide with the
environment. The integration of the gamma camera and tracking system in a single encasing
would also lead to a much more compact design and allow sterilization.

With the aforementioned developments, it would be interesting to perform a in-depth clinical
study to verify the impact of multimodal guidance on the accuracy of core needle biopsy for
breast cancer staging, and hence if it can be an enabler of its adoption as standard practice.
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6Making Ultrasound Compounding
Easier and Operator-Independent
through Tracking Data Denoising

In this chapter we discuss our second major contribution: an approach for improving freehand
3D ultrasound image quality by regularizing the output of the employed tracking system via a
variational model, that takes into account the intrinsic geometry of the space of pose matrices.
Classical ultrasound (US) compounding makes use of an external tracking system in order to
co-locate US frames acquired over time with respect to a common reference frame. The values
of the US frame pixels can be considered as samples of a scalar field distributed over the
Cartesian space. The objective of compounding is then to regress this distribution, given the
available sparse samples. This is commonly achieved by establishing a frame of reference and
a a regular voxel grid covering the region of interest. For each of this voxels, the respective
scalar value is determined from the samples in the neighborhood. Many different strategies
to perform this reconstruction (or compounding) step have been investigated, but in general
for the regression to succeed, it is very important that each pixel of the original ultrasound
sweep is assigned to the correct voxel in Cartesian space. Failures to do so can yield global
deformations of the image, artifacts or blur and loss of detail.
As a result, the literature about approaches addressing the improvement of compounding
quality is vast. Some methods manipulate the tracking data in isolation, without exploiting
additional information from external sources. Other techniques rely on image features in
order to find correspondences between different US frames and improve their alignment on
this basis. Other authors propose to use an additional sensor, such as an Inertial Measurement
Unit (IMU), capable of augmenting the main tracking system output with complementary
information about linear and angular acceleration. Approaches capable of computing the
displacement between US slices from the image alone have also been presented [75, 155].
However, each of the aforementioned methodologies offers a different trade-off. Furthermore,
while the majority of the contributions in the area aim at increasing the global correctness of
the compounded image (typically by compensating for large-scale distortion in EM tracking),
the topic of improving the perceived quality by addressing small-scale artifacts has not been
as extensively addressed. We propose a solution that regularizes the tracking signal according
to intrinsic geometric information, without considering US image content; but in contrast to
most approaches, it includes an explicit data fidelity term. The impact of this property on
ultrasound compounding is shown qualitatively and quantitatively.
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Fig. 6.1. Measurement on 3D Ultrasound Image. A sonographer annotates a 3D ultrasound image of a fetus’
head to measure the length and width of the cranium. The 3D volume can be resliced interactively
to find the plane of maximum intersection, hence reducing the chances of error with respect to 2D
ultrasound, where the operator must find this volume during the acquisition itself.
Image under Creative Commons License (CC-BY-SA 3.0), by Terry J. DuBose over WikiMedia Commons.

The main contributions presented in this chapter are:

• a method for improving freehand 3D ultrasound via regularization of the pose stream
provided by the tracking system, and

• a quantitative evaluation of the impact of said method on real-world data.

This work was published in IEEE Transactions on Medical Imaging (TMI) [42].

6.1 Motivation

As highlighted in the introduction to ultrasound imaging in Section 2.2.3, echography is a
popular imaging modality for pre- and intraoperative usage. While surgeons employ this
imaging modality in the OR because of its flexibility, speed and interactiveness, its usefulness
has also been highlighted in a number of diagnostic scenarios [149]. The same characteristics
make it useful in emergency cases, for example when the patient reaches the Emergency Room
in a state of unconsciousness and it is vital to promptly check for potential internal bleedings
or embolism. Furthermore, US imaging is preferred where ionizing radiation would bring
more hazard than benefit, when a metallic implant or particular condition prevents the patient
from entering an MRI device, or when it is necessary to monitor a process over time and this
is not possible with another diagnostic modality.
The most frequent and widely known variant of US imaging is arguably 2D B-mode, which
is mostly known to the general public because of the routine screening during pregnancy
for monitoring the health and growth of the fetus. Anybody who assisted such procedure
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knows how hard the resulting images are to interpret, until the physician finds the sagittal
plane of the child’s skull and the familiar silhouette of a baby can be recognized. During this
screening, the physician usually inspects the cranium for possible conditions needing attention,
such as cleft palate. Furthermore, it is common routine to measure key features, such as
the axial and sagittal diameter and the circumference, for which the normal relationship
has been estimated [59] and whose deviation from the known range can suggest abnormal
development. Such screenings are also employed after birth in order to monitor further growth
and development.
The measurement of anatomical structures via 2D ultrasound imaging is a widespread proce-
dure, but it is also error prone [54]. The physician navigating the anatomy has to find the plane
that in their estimation intersects the object of interest in the predetermined direction and
along the maximum extent. The relative image must be stored and then annotated manually,
so that the dimension can be derived by counting the pixels between the manually selected
points and dividing them by the pixel spacing, provided by the machine according to current
settings and the calibration of the probe used during the scan. With these constraints, volume
can only be measured indirectly via approximated formulas for each organ (e.g. ellipsoid)
involving measurements along multiple directions. The final accuracy can be undermined
by a poor positioning of the US probe with respect to the organ, by an incorrect annotation
of the image, and by the inherent approximation in the computation of the volume. While
automated segmentation processes could alleviate the second problem, they are extremely
hard to implement for echographic images because of the high average amount of speckle
artifacts in the image. Nevertheless, moderate success is reported when using shape priors
and algorithms developed ad-hoc for each organ or structure [139].
Recent technological progress and increase in commercial availability of native 3D ultrasound
devices does not only result in better prenatal portraits, but also provides native volumetric
ultrasound images. While annotating an organ or structure in a 3D image, the operator can
select the location of each extremum of the segment in all dimensions concurrently (see
Fig. 6.1). On the other hand, in the 2D variant the physician must acquire the image and
pick the points in a later moment. Any error in the choice of the plane intersecting the
structure will constrain the segment on the wrong plane, compromising the accuracy of the
final measurement. Moreover, the richer spatial information provided by volumetric data may
lead to more accurate automatic segmentation. If successful, the volume of interest may be
directly measured rather than estimated.
Other than for measurement purposes, volumetric US acquisition offers further advantages
over planar images [54]. Once a 3D volume has been acquired, it can be resliced to derive
a 2D image at positions and orientations which could not be reached by a 2D probe, such
as parallel to the skin. Alternatively, advanced 3D visualizations can be presented, in which
structures and patterns become evident which could have been missed in 2D images.

A drawback of native 3D US imaging is the increased cost, due to the difficult manufacturing
process. A cheaper alternative is offered by mechanical 3D ultrasound imaging [154],
which is implemented by using US probes where a 1D transducer array (as the one used in
conventional 2D ultrasound) is mounted on a rotating guide and can be made to sweep about
its axis with a stepping motor. By collecting the 2D US frames corresponding to each position
of the transducer array, it is possible to organize them in a solid volume (often in the shape of
a trapezoid). Compared to the native variant, lower frame rates (typically around 1 Hz) can
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Fig. 6.2. Relationship between tracking jitter and perceived US compounding quality. The compounding
of a LEGO phantom allows to appreciate the fine details of the image. It is possible to see how the
regularization of the tracking data reflected on an increased smoothness of the phantom profiles.
However, it is worth noting that such improvement changes local properties of the image, and does
not relate to global deformations such as those caused by the interference of metallic objects with the
functioning of electromagnetic tracking systems. In the latter case, the whole image is deformed in a
smooth fashion. We can relate the artifacts highlighted in this image with the precision of the tracking
system, while the aforementioned distortion compromises its trueness.

be achieved since a single portion of the volume can be acquired at a time. This fact can lead
to motion artifacts in the image due to respiratory movements or the heartbeat.

Given the advantages offered and the usual speed of technological development in the last
decades, it is legitimate to hope that in the future 3D US probes will become common hard-
ware in clinics. However, native and mechanical 3D probes might not be sufficient to cover all
possible use cases [188], since they have a limited field of view and might not be capable of
capture the whole extent of a particular organ or structure. Even assuming an ever increasing
upper limit to the size of the probe (due to advancing manufacturing process), a design (or
number of designs) fitting to every workflow and body shape will never exist.
In this regard, freehand 3D ultrasound is at an advantage. Similarly to the mechanical 3D
approach, it allows to combine a set of 2D frames acquired over time into a single 3D image.
However, the movement is not constrained by a mechanical guide. Instead, a human operator
holding the probe is required to move it freely over the region of interest. In doing so, the user
can follow an arbitrary path and image an area of choice. This fact, combined with the lower
cost compared to a native 3D system, makes ultrasound compounding a popular research
topic, and many US machine producers have extended their devices with tracking features or
have developed dedicated systems.
However, US Compounding does not come without drawbacks. Until recently, its computa-
tional requirements were nearly prohibitive. In time, hardware caught up and algorithms
capable of fast compounding with real-time feedback have been developed [200]. Still, the
quality of the final image depends in most cases on the operator’s skill: while sweeping over
the region of interest, the user must keep a constant pressure on the patient’s skin, in order to
avoid changes in the compression of the tissue, as this would result in artifacts in the image.
Furthermore, the movement must be regular and consistent (some acquisition protocols even
require a constant motion of the probe in the same direction).
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Among all possible error factors in freehand 3D ultrasound, we can distinguish defects in
the US image acquisition and digitalization, temporal matching between probe tracking data
and the corresponding image, spatial calibration between the marker and the image, and
reconstruction errors [188]. While such issues can be addressed individually with better
algorithmic solutions or ad-hoc procedures, there is one matter which requires to evaluate a
trade-off between the compounding quality and the usability of the system: the choice of the
technology used for tracking the probe.
Early prototypes used mechanical tracking: a passive robotic arm was attached to the probe
to record its position in space [55]. While mechanical tracking can achieve high frequency
and precision, its usability is not optimal: the robotic arm can be bulky, heavy to move, and
the movement necessary to perform the scan could lead out of its dexterous workspace (as
a result, it would block and the physician would have to move the patient and start from
scratch). These drawbacks can result in a frustrating experience and a heavy disruption of the
clinical workflow.
A "wireless" alternative is offered by optical tracking, which employs video cameras to track
the position of visual markers attached the US probe [189]. The markers can be reflective
objects of known geometry, or can emit light of a predetermined color to facilitate image
segmentation (this can be achieved by using LEDs); the former case is often defined passive
tracking in contrast to the latter, called active tracking, which requires an extra cable connecting
the marker to the tracking system. While there is no mechanical mean impeding the movement
of the probe, the tracking system has a limited workspace (corresponding to the field of view
of the camera where the size of the markers allows their detection) and, most notably, a
line-of-sight requirement: the marker must be visible to the camera at all times, or the tracking
will be lost. Depending on the compounding algorithm, this could result in image artifacts or
in an irrecoverable failure. As a consequence the operator must pay constant attention not to
interpose their person between the camera and the marker; or, depending on its geometry, not
to rotate the probe in a way to hide the marker from the tracking system. This is, of course, a
major annoyance and distraction from the task at hand.
On the other hand, electromagnetic tracking is capable of good accuracy without line-of-sight
constraints [79]. It requires to position the field generator in the proximity of the operating
site and to attach a sensor to the probe (some producers offer US probes with an integrated
and pre-calibrated EM sensor), but the movement of the latter is otherwise not constrained
in any physical way. The workspace of the EM system is limited, but it is sufficient for most
use cases. The main disadvantage of EM tracking is the sensibility to magnetic or metallic
objects in its proximity, which can lead to a degradation of the tracking accuracy. Depending
on the scenario, systematic error can be introduced as well as non-systematic. Preventing such
interference requires a metallic-free environment; such requirement can be challenging to
fulfill, since most hospital beds include a metallic frame. However, the better usability makes
EM tracking the preferred alternative for inclusion in most commercial systems as of today.
Another notable trend is sensorless freehand 3D ultrasound, which derives the relative
displacement between US frames acquired consecutively from local image features or statistics.
Many existing approaches exploit speckle decorrelation [129], and while the first methods
required to perform the sweep in a constant direction because of the ambiguity in the computed
movement direction, this limitation has been overcome by recent developments [75]. Recently,
learning-based methods have shown promising results [155]. However, an intrinsic limitation
of said approaches is their incremental nature. Since the probe displacement is computed
between pair of consecutive images, the error accumulating over the image series can lead
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3 Trueness

7 Precision

7 Trueness

3 Precision

Fig. 6.3. Trueness and Precision as components of Accuracy. According to the ISO 5725 Standard of 1994,
the quality of a measurement can be globally defined as accuracy. However, the accuracy of a system can
only be quantified by comparing a set of measurements against a known ground truth, and two distinct
features of a set of measurements can be identified which will impact the overall accuracy. Trueness
reflects how close the set of measurements is on average with respect to the ground truth. Precision
summarizes how close the measurements are to each other. This figure helps explain this dicotomy: the
left panel shows four measurements which are not close to each other, but whose center of mass lies
close to the ground truth. On the other hand, the set of sample points in the right half is more compact,
but the average coordinates lie further away from the ground truth than the previous example. If these
were representing the output of two systems, the first would be characterized by high trueness, but low
precision; viceversa for the second one. It is, however, not possible to conclude that one is more accurate
than the other without a quantitative analysis.
Original image by DarkEvil (WikiMedia Commons) under Public Domain.

to a significant overall positional error at a distance. While this fact may impact negatively
the accuracy of the measurement of anatomical structures, these methods appear to be less
susceptible to jitter and are potentially capable of providing more pleasant images which
could be suitable for qualitative inspection by the physician [75]. In the scope of this work,
we will focus on tracking-based approaches which are more robust to drift but are influenced
by jitter.

As with any technology, tracking systems are not perfect and are subject to different kinds of
error. The error might be systematic, such as a distortion [51] of the reported coordinates
of the object across the workspace. A classic example is the interference of a big metallic
object in the workspace of an EM system, which may "bend" the output trajectory of an object
moved in a straight trajectory in space. Such error is more subtle than jitter, as it can not
be detected without the aid of an external device (such as another tracking system immune
to the interference, or a way to move an object in a straight line), but it can lead to grossly
inaccurate measurements on the anatomy depicted in the (distorted) compounded volume. In
virtue of this, its compensation requires careful calibration of each manufactured component,
shielding, or an empirical modeling of the distortion for the individual surgical setup.
Alternatively, the reported position of the marker may disagree with the truth in a way which
is neither predictable nor homogeneous across space, and hence cannot be modeled and
compensated with a simple calibration. The performance of the tracking system in this regard
may be considered as a result of the intrinsic quality of the technology adopted and of the
device manufacturing.
Finally, all of the aforementioned tracking technologies are subject to some degree of jitter:
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the output for the same position of the tracked object in space will not remain constant in
time, but will be subject to noise and vary around a center position.
The performance of a tracking system can be measured by using a physical guide or reference
object to move the marker in space and compare the position as measured by the system
with the ground truth. At each position, multiple samples of the tracking output should be
acquired in order to be able to decompose the total error into systematic error and random
error. The former reflects distortions in the environment and other error intrinsic to the
technology or device, while the latter mostly manifests itself as jitter. The measurement of the
systematic error evaluates the trueness of the system, while its precision reflects the noise level.
Aggregated, they both limit the overall accuracy of the tracking device.
While all the above sources of error contribute to the final result of ultrasound compounding,
jitter plays a particular role for the perceived image quality [95, 209]. As a result, we will
focus on improving tracking precision, in contrast to distortion compensation methods which
address mostly trueness.

Since most of the literature focuses on distortion correction in the context of EM tracking [51,
209], also the studies of its application to ultrasound compounding usually evaluate the global
positioning error of features identifiable in the compounded volume. For example, ad-hoc
phantoms including straight lines or sharp corners are imaged, so that notable points can be
automatically segmented or manually annotated. The measurement result is then compared
to the ground truth.
Such approaches reflect in particular the system calibration and the accuracy of the employed
tracking system. By contrast, the tracking precision does not affect the global positioning of
US images in the volume of interest (and hence of the fiducials used to evaluate the accuracy
as above), but rather their reciprocal co-location. If the tracking precision is low, the result
will hence be a low-quality image, hard to read although globally "correct" [95, 209]. This
effect is noticeable in Fig. 6.2.
It is also worth noting how the perceived quality of US Compounding is affected by both the
translational and rotational component of tracking noise, since the center of rotation is the
position of the tracking marker which is typically located at a considerable distance from the
center of the US image. Assuming such distance to be 10 cm, a rotational perturbation of 1°
(typical for many commercial systems [51]) would lead to a translational displacement of
1.7 mm (much worse than the usual accuracy for translation).
As of today, EM tracking is reported to offer inferior performance compared to optical tech-
nologies in terms of both trueness and precision [14, 95, 209]. While preventing systematic
error requires interventions on the tracking device itself and on the operating site, reduction
of jitter may be achieved through post-processing of the tracking data [51].

In this Chapter, we will focus on improving the local quality of ultrasound compounding
via regularization of the tracking pose stream. In the Section 6.2 we will briefly discuss the
existing regularization approaches, most of them relying on hybrid tracking and data fusion
(with additional hardware complexity), or on Extended Kalman Filtering (with associated
"smoothing" of the object trajectory). In Section 6.4 we will expose our proposed method
for processing the tracking system output, capable of reducing noise while preserving sharp
direction changes in the object’s path. Finally, we will describe our experiments aimed at
measuring its impact on the local quality of compounded ultrasound volumes, with comparison
between mechanical, optical and electromagnetic tracking.
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6.2 State of the Art

As mentioned in the previous section, most articles about error correction for EM tracking
systems focuses on distortion compensation. An approach is to perform a static calibration
with respect to another tracking system considered as gold standard; success has been reported
in the adoption of 2nd/3rd degree polynomial models [209]. However, such an approach is not
robust to dynamic environments where the position of metallic objects and their interference
can change over time; so there is strong interest in a continuous identification of distortion
in order to enable real-time correction. Approaches have been proposed which fuse EM data
with additional inertial or optical [192] tracking systems, or redundant EM sensors [161].
Distortion correction is not in the scope of this work, as we rather focus on minimization of
tracking noise; it can be theorized that adopting one such approach jointly with our proposed
method would have a complementary impact on the compounding accuracy at a global and
local level.

Most efforts aiming at reducing tracking jitter focus on the translational component, and
address the issue with smoothing filters [209]. Moving average, logistic regression and
Extended Kalman Filter have been reported to increase the average tracking accuracy and to
have a positive effect on the precision during to their smoothing effect; however, a trade-off
between the output regularity and the reactivity to abrupt direction changes exists [209].
On the other hand, Kalman Filter-based approaches offer an opportunity to exploit prior
knowledge about the noise model; cases where the motion is constrained, such as in EM-
tracked intrasvascular catheters, can benefit greatly from non-holonomic formulations of the
noise process [106]. However, Kalman Filter methods operate only in one direction, deriving
the result only from the input data; usual formulations do not constrain the output to establish
some property, such as regularity.
A particularly elegant solution to the problem can be found in the fusion of data provided
by EM tracking and image-based tracking (i.e. the "sensorless" methods we mentioned in
the previous section). Such methods combine perfectly the complementary strengths and
weaknesses of each technology: EM is more robust to drift but subject to jitter, while the
opposite is true for image-based tracking [95]. The only drawback of such approach can
be found in the sensitivity to error in both spatial and temporal calibration (which can
compromise the agreement between the two tracking streams).

In contrast to existing approaches, the proposed method allows to reduce tracking jitter while
relying on a single source of truth (hence removing the dependency on spatial and temporal
calibration between tracking and US image) and penalizing any excessive smoothing of the
output trajectory via an explicit data fidelity term. In the next Sections, we will expose the
mathematical foundation, the application to ultrasound compounding and the impact on final
image quality.
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6.3 Technologies

In the following sections we will compare the image quality obtainable with different tracking
systems. Here we will introduce the tracking technologies and compounding method that we
adopted.

6.3.1 Tracking systems

Given its characteristics, our method can leverage its advantages best when applied to the
output of electromagnetic tracking. For this kind of tracking system, a field generator
composed of multiple coils is employed to generate a magnetic field in the surroundings. The
sensors typically also include inductors, which can convert variations in the intensity of the
magnetic field into an electrical current. The current can then be measured and employed to
quantify the position of the sensor in one degree of freedom (DoF) in space. It follows that
the inclusion of multiple coils in the sensor and/or periodic variation of the magnetic field
orientation and intensity encoding spatial information are necessary in order to implement
translational and rotational 6-DoF tracking. Different technologies have been developed over
time, with different strengths and weaknesses [51].
A major design decision involves the number of coils included in the sensor [191]. Multiple
coils of different shape and size allow to employ different frequencies to encode spatial
information related different directions and sample them concurrently; this scheme is called
Frequency Division Multiplexing (FDM). On the other hand, it is possible to use a single pair of
coils, and to change the magnetic field periodically to encode spatial information in different
directions. Time Division Multiplexing (TDM) leads to a smaller size of the sensor, but comes
at a cost: the field generator and sensor coils take time to adjust from one phase to the others,
which significantly reduces the obtainable sampling rates. Moreover, since the measurements
relative to the different directions take place consecutively, if the sensor is moving quickly
these measurements may not refer to the same position and speed of the sensor; this fact can
greatly impact the tracking accuracy.
The design of the field generator can also vary greatly, in particular to adapt to specific surgical
workspaces. For example, a flat field generator can fit between the patient and the bed, and
its robustness to the distortion provoked by the latter can be optimized; or it can be integrated
directly into the bed itself.

We already introduced stereo optical tracking in Section 5.4.3. In this context we did not use
a custom system, but rather a commercial device making use of spherical markers. However,
the working principle is similar and the same considerations still hold.

We also used the same industrial manipulator presented in Chapter 5 to implement mechan-
ical tracking. The position was computed using Forward Kinematics, as we discussed in
Section 5.3.4.
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6.3.2 3D Ultrasound Compounding

The freehand 3D ultrasound compounding process consists in the reconstruction of a volumet-
ric image from a (usually sparse) set of 2D samples, whose positions and orientations in space
are known.
Most approaches start by determining the position and size of the voxel grid, which will be
filled with grayscale values that are computed from the samples associated to the respective
voxel. This step can already influence the final image quality, and it has been object of
extensive research. A common method is to consider the bounding box of the samples, and
to use PCA to find a coordinate system which aligns optimally with the US slices, in order to
minimize aliasing effects [162].
The next step is to compute the intensity value for each voxel. The plethora of available
algorithms can be classified according to the adopted strategy [129]. One common crite-
rion [5] distinguishes between methods scanning the 3D grid and looking up the nearest US
slices (Voxel-Based Methods), others going over the 2D slice pixels to fill the volume voxels
(Pixel-Based Methods), and a final category of algorithms which use the 2D pixel values to fit
3D functions, and then sample them in correspondence of the grid voxels (Function-Based
Methods).
The most straightforward VBM is a naive nearest-neighbor strategy (Voxel Nearest-Neighbor).
The resulting crisp artifacts can be attenuated by adopting an interpolation scheme to average
out among pixels in the neighborhood.
PBMs can vary between naive value assignment based on distance, to adopting sophisticated,
physically grounded propagation models. It is common to follow the value assignment with a
further scan of the volume to close gaps due to the sparsity of the samples.
The kernel functions that have been proposed for adoption in FBM approaches include Radial
Basis Functions and Bayesian frameworks.
Some authors propose schemes that do not only exploit geometric information and prior
knowledge about the underlying physical phenomenon, but also consider the content of the
2D US slices to improve image quality and reduce artifacts.
More detail about the individual methods can be found in comprehensive review papers [119,
129, 175].

6.4 Proposed Method

Here we propose a method for the regularization of the tracking data (such as the synthetic
example in Fig. 6.4), with the aim of reducing jitter in order to improve the reciprocal co-
location of the 2D slice in space and in turn improve the perceived quality of the volumetric
image.
The approach consists in a pre-processing step, that takes the original tracking data as input
and provides a regularized version as its output. While it could be advantageous to first apply
a distortion correction approach (as mentioned in Section 6.1), this is outside the scope of the
presented work.
The method is intended to be general, and to improve the quality of the compounding obtained
with any reconstruction method among those mentioned in the previous section. We will
perform our evaluation using a straightforward compounding approach (averaging of pixels
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Fig. 6.4. Ground Truth Signal used for synthetic experiments. All poses are shown as colored tripods, where each
colored leg indicates the position and orientation of the respective unit vector that has been transformed
by the corresponding pose matrix p ∈ SE(3): red - x axis, green - y axis, blue - z axis.

within a distance threshold), but of course the quality may be further improved by adopting a
more advanced compounding algorithm.

Before we introduce the model and discuss its derivation, we need to define our notation
and discuss some necessary theoretical concepts. In order to prevent the presentation from
becoming too technical, we defer the mathematical concepts, which are necessary for the
implementation, to Appendix D.

6.4.1 The Special Euclidean Group

The output of a tracking system is a series of poses or Euclidean transformations consisting of a
rotation matrix R and a translation vector t, c.f. also Fig. 6.4. The set of all tuples (R, t) forms
the special Euclidean group SE(3) which is a semi-direct product of the rotation group SO(3)
and the translation group. This means that group operations involve one of the rotational
components acting on the translational component of the other tuple when carrying out the
group operation. This becomes evident when representing SE(3) in the following form:

SE(3) =


R t

0 1

 : R ∈ SO(3), t ∈ R3

 . (6.1)

Thus, SE(3) is a subgroup of the group of invertible 4 × 4 matrices GL(4,R) with matrix
multiplication as canonical group operation. We emphasize this important point since it has
immediate consequences on the computations to be carried out.

We consider the manifold M = SE(3) of Euclidean transformations endowed with the
Riemannian metric discussed in Section 6.4.2. For a pose p ∈M we denote the tangent space
at p by TpM. Then we consider the exponential mapping

expp :

TpM →M,

v 7→ expp(v),
(6.2)

where v ∈ TpM, which maps at tangent vector at v in the tangent space of the pose p to a new
pose expp(v) by following the geodesic starting at p with direction v. For the implementation
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of this operation, we refer the reader to the appendix. The inverse exponential mapping at p

logp :

M → TpM,

q 7→ logp(q),
(6.3)

maps a pose q to the tangent vector logp(q) in TpM (infinitesimal rotation and translation)
located at p and pointing towards the pose q. Then, we have that

expp(logp(q)) = q. (6.4)

A shortest path onM between two poses p and q is called a geodesic and the distance between
p and q is given by length of this geodesic. Hence, if the inverse exponential mapping is
unique, we have for the distance d(p,q) between p and q,

d(p,q) =
√
g(logp(q), logp(q)), (6.5)

where

g :

TpM× TpM → [0,∞),

(v, w) 7→ g(v, w)
(6.6)

denotes the chosen Riemannian metric g.

6.4.2 Choice of the Riemannian Metric

In order to define a Riemannian metric, we have to take a closer look at the elements of TpM:
any v ∈ TpM takes the form

v =

ωv tv

0 0

 , (6.7)

where tv ∈ R3 and

ωv =


0 −ωzv ωyv

ωzv 0 −ωxv

−ωyv ωxv 0

 . (6.8)

Here ωxv , ω
v
y , ω

v
z denote the infinitesimal angular displacements with respect to the correspond-

ing axis. An appropriate Riemannian metric for v, w ∈ TpM is given by

gp(v, w) = trace(ωTv ωw) + tv · tw. (6.9)

As a consequence, we find that for a pose

q =

R t

0 1

 , (6.10)

we have
gqp(qv,qw) = trace(ωTv RTRωw) + tTv R

TRtw = gp(v, w). (6.11)
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Thus, Eq. 6.9 is a left-invariant metric, i.e., it is invariant with respect to the choice of a global
coordinate frame. However, g is not right-invariant, which means that it is not invariant
regarding the choice of a body-fixed reference frame. In the context of 3D freehand ultrasound
compounding, this means that by using this metric the computed results are independent of
the choice of a global reference frame, such as the one provided by the tracking system itself,
but not independent regarding the calibration of the ultrasound transducer. It is important to
understand that the proposed methodology can also be combined with right-invariant metrics
if desired. Achieving both left- and right-invariance is, however, not possible, but this is not a
shortcoming of the proposed method, rather than an intrinsic structural issue of SE(3) (which
is neither compact nor commutative). In this work, we focus on the metric defined in Eq. 6.9
and refer the interested reader to [8, 20, 148, 210, 211] for further reading.

6.4.3 Regularization Model for Pose Signals

In this section we describe a general framework for regularizing pose signals, which is
conceptually similar to the work of Weinmann et al. [199]. To this end, we consider a pose(-
valued) signal with k ∈ N entries as a vector p = (p1, . . . ,pk) ∈ Mk. We assume that p is
given, e.g., obtained by an optical or EM tracking system, and we wish to find another signal
x such that the functional

E(x) = D(x,p) + αR(x), α > 0, (6.12)

is minimal. While D(x,p) is a data fidelity term penalizing the deviation from the original
signal p, R(x) is a regularizer penalizing large variations or jumps in x. We also investigated
the impact of a second-order regularizer R2(x), which has been considered by Bacák et al.
[2]. The associated regularization parameter is denoted by β and its influence is investigated
briefly in the experiments, cf. Fig. 6.5. As its impact did not significantly change the results,
we deferred its discussion to the appendix D.1.

6.4.4 Data Term

As a data fidelity term, we consider

D(x, f) =
k∑
i=1

(h ◦ d)(xi,pi), (6.13)

where d is the metric defined in Eq. 6.5 and h is one of the following functions: h(s) = s

which leads to an `1-type penalization, h(s) = s2/2 which leads to an `2-type penalization,
and

h(s) =

s2, s < 1/
√

2,
√

2s− 1/2, otherwise,
(6.14)

which yields the manifold-valued equivalent of the well-known Huber-norm [78] – a differen-
tiable compromise between the `1-norm and the `2-norm.
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Algorithm 1: Cyclic proximal point algorithm for solving the functional Eq. 6.12.

input :Signal p, parameters α and β, number of steps l, and chosen weighting
function h

output :Signal x (solution of Eq. 6.12)

x← p
for j ← 1 to l do

//compute relaxation parameter

λj ← compLambda(j);

//proximal mapping of D

for i← 1 to k do
xi ← proxData(λj ,xi,pi);

end

//proximal mapping of R1

for i← 1 to k − 1 do
xi,xi+1 ← proxR1(λj ,α,xi,xi+1)

end

//if used: proximal mapping of R2

for i← 2 to k − 1 do
xi−1,xi,xi+1 ← proxR2(λj ,β,xi−1,xi,xi+1)

end

end

In order to distinguish these three cases in an intuitive manner, we denote the case h(s) = s

by `1, the case h(s) = s2/2 by `2 and the case of Eq. 6.14 by HUBER.

6.4.5 First Order Total Variation Regularizer

Similar to D we consider the regularizer

R(x) =
k−1∑
i=1

(h ◦ d)(xi,xi+1). (6.15)

As d(xi,xi+1) can be considered as (the weighted magnitude of) a manifold-valued, first-order
forward difference,R can be interpreted as a first order approximation of the classical Tikhonov
regularizer, in case of h(s) = s2/2, or the total variation, in case of h(s) = s, respectively.
In case of Eq. 6.14, R can be regarded as a pose-valued differentiable approximation of the
total variation regularizer, which can be used to avoid the staircasing problem associated with
total variation denoising, cf. Chambolle and Pock [152]. Similar to the data term, we use
abbreviations for the different regularization types, i.e. TV (`1 − case), TKHV (`2 − case), and
HUBER.
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κ = 1000, σ = 0.05 κ = 500, σ = 0.1 κ = 100, σ = 0.25 κ = 50, σ = 0.5 κ = 10, σ = 1.0

HUBER, TKHV, α = 5 `2 , TKHV, α = 5 `2 , HUBER, α = 5 `2 , HUBER, α = 5 `2 , HUBER, α = 10

`2 , TKHV, TV, α = 5, β = 0.1 `2 , TKHV, TV, α = 5, β = 0.1 `2 , TKHV, TV, α = 5, β = 0.1 `2 , TKHV, TV, α = 5, β = 0.1 `2 , TKHV, TV, α = 10, β = 0.1

Fig. 6.5. Visual Comparison of 1st and 2nd Order Regularization Results. Synthetic data with various noise
levels as described in Section 6.4.7 (first row), best results obtained with only 1st order regularization
(second row), best results with added 2nd order regularization (third row). Optimal parameters obtained
via grid search are given below the individual images, where the reading order is: data term regularizer,
first order regularizer, second order regularizer and respective regularization parameters. We observe
that second order regularization does not yield a significant improvement.

6.4.6 Numerical Solution

Minimizing the functional in Eq. 6.12 can be achieved by a cyclic proximal point algorithm.
This algorithm consists of a cyclic application of proximal mappings to the individual atomic
data and regularization terms. For a detailed derivation as well as an analysis of this algorithm
we refer the reader to [199] and [2]. A pseudo-code is given in Algorithm 1. The function
compLambda determines the optimal step size and the functions proxData add proxR1 realize
the proximal mappings on SE(3) for Eq. 6.13 and Eq. 6.15. To keep the presentation concise,
we defer all implementation details regarding these functions to the appendix.

6.4.7 Parameter Selection

The aforementioned Algorithm 1 requires the input of two parameters, α and β. We performed
a grid search to find the parameters leading to the best minimization of the noise artificially
introduced on a synthetic dataset. We added noise to the translational as well as the rotational
components of each pose of the trajectory depicted in Fig. 6.4, as shown in the first row of
Fig. 6.5. While adding noise to the translational component can be done by adding white
Gaussian noise, adding noise to the rotational component is slightly more involved. To this end,
we employed Gibbs sampling for a vector-valued von Mises-Fisher distribution as proposed by
[16]. The respective probability density function is proportional to

exp((κ, 0, 0, 0)T · p) for ‖p‖2 = 1, (6.16)

where p ∈ S3 denotes the directional component of a pose p. By choosing
κ = 1000, 500, 100, 50, 10 and σ = 0.05, 0.1, 0.25, 0.5, 1.0 (for the Gaussian noise on the transla-
tional part) we obtain the five test data sets depicted in the first row of Fig. 6.5. For evaluating
the regularization performance of the proposed algorithm, we use the mean error between two
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error: 18.0 error: 37.6 error: 102.9 error: 205.3 error: 524.6

error: 11.9 (-33.9%) error: 13.7 (-63.6%) error: 19.2 (-81.3%) error: 41.8 (-79.6%) error: 88.3 (-83.1%)

Fig. 6.6. Results Obtained with Determined Parameters. Synthetic data with various noise levels as also shown
in Fig. 6.5 (first row) and results obtained with 1st order regularization and determined parameter
settings of p = 2, q = 0 and α = 5 (second row). Errors to ground truth signal and corresponding
reduction rate are reported w.r.t. square root of the average geodesic error to the ground truth signal
computed over the whole signal.

pose signals p = (p1, . . . ,pk) and q = (q1, . . . ,qk) induced by the distance metric defined in
Eq. 6.5:

1
k

k∑
i=1

d(pi,qi). (6.17)

In order to determine meaningful parameter settings, we performed a grid search with the
various weightings for the data term, i.e. `1, `2 and HUBER, different regularization types,
i.e. TV, TKHV and HUBER, as well as various choices for α = 0.01, 0.1, 0.5, 1, 2, 5, 10, 20 and
β = 0, 0.1, 0.5, 1, 2, 5, where we set the number of steps to 1000. Based on these experiments,
we learned that the second order regularization requires smaller regularization parameter
values and does not lead to significant improvements in terms of regularization performance
(compare second and third row of Fig. 6.5). Thus, we concluded that an `2-type data term in
combination with a first order Huber-TV-regularization seems to be a reasonable choice which
performs well over a broad range of noise levels and performed another set of experiments with
these settings shown in Fig. 6.6. These recommended settings lead to a significant reduction
of the error between the ground truth signal and the regularized ones as demonstrated by the
reported errors and reduction rates in Fig. 6.6.

6.4.8 Application to freehand 3D Ultrasound

Through the experiments described in Section 6.4.7 we determined a set of parameters that
were suitable for a consistent reduction of noise that was artificially induced on a synthetic
trajectory. We used the same method and parameters to regularize the pose streams provided
by the tracking systems that we adopted in our custom freehand ultrasound platform, described
in Section 6.5.1.

In the next Section 6.5, we will verify if the parameters found through a grid search on a
synthetic dataset also translate into improvements for real world data. For this purpose we
will statistically analyze and compare the output of different tracking systems before and after
regularization. Furthermore, we will qualitatively and quantitatively verify the improvement
of the image quality provided by US compounding reconstructions based on regularized
tracking data over their non-regularized counterpart.
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Fig. 6.7. Experimental setup for the freehand 3D acquisition. All employed tracking systems are visible in the
left picture: the robot (top right), the optical tracking system (bottom right) and the EM field generator
(bottom left). The right side depicts a close-up of the custom 3D-printed probe holder, including a
support for the optical marker (front side) and an encasing for the external EM sensor.

6.5 Evaluation

In order to offer a comprehensive evaluation of the performance of the regularization algo-
rithm, we performed multiple experimental evaluations. After determining the parameters
using the procedure explained in Section 6.4.7, we proceeded to acquire real-world data for
further examination.
A setup for ultrasound compounding using optical, electromagnetic and mechanical tracking
simultaneously (described in Section 6.5.1 and shown in Fig. 6.7) was assembled, calibrated
and used to acquire two distinct datasets. One was a collection of sweeps of a LEGO phan-
tom. This particular material has gained in popularity within the community because of the
peculiar manufacturing precision [198]. This dataset was acquired by using the robot position
controller to perform rectilinear sweeps. A second dataset consists of a freehand sweep of a
human forearm, acquired by activating the gravity compensation controller of the robotic
manipulator.

6.5.1 Setup

The mechanical tracking is implemented with the robot used in Chapter 5, i.e. a KUKA iiwa
R800. A custom 3D printed mount is designed to hold the US probe, an EM sensor and a
marker for the optical tracking system. The probe is a L14-5 linear device, connected to an
UltraSonix RP machine (Ultrasonix, MA, USA) as in Chapter 5. The probe is equipped with
an integrated EM sensor, connected to an NDI Ascension electromagnetic tracking system
(driveBAY2, Northern Digital Inc., Waterloo, Ontario, Canada). The additional Model 800
sensor is connected to the same EM system, as well as a mid-range field generator. The optical
tracking system adopted is an NDI Polaris Vicra. The whole setup is depicted in Fig. 6.7.
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The 3D printed probe holder is designed to maximize the distance between the EM sensors
and the robot. An empirical comparison between the output of the different tracking systems
excluded significant interferences.

The ultrasound machine is connected to the robot control workstation via Ethernet, as
described in the previous Chapter. The EM tracking system is connected to the same computer
over USB. The tracking data is polled from the EM and optical devices by dedicated ROS
processes, and forwarded to the tf subsystem. The mechanical tracking data is directly
available by using iiwa_stack. The US images were received from the Plus OpenIGTLink server
and passed over to a ROS topic. This allowed to record the whole set of images and tracking
data using a single rosbag process with on-the-fly compression. As a result, the whole data is
available as a single file for simplified storage and later manipulation via Python scripts.

Said data processing is necessary to extract the data from the rosbag file, optionally process it
with our regularization method, and then either convert it to the format expected from the
compounding software, extract statistics or create visualizations. Ultrasound 3D reconstruction
is performed using a backward warping methodology used in the context of previous work
within the research laboratory [70]. While the program is capable of multiple and advanced
compounding methods, in this thesis mean-compounding is employed because of its wide-
spread utilization in other research contributions.

6.5.2 Calibration

Similar to the previous chapter, the setup employed for all evaluations also requires spatial
and temporal calibration methods. Each tracking system needs to be spatially calibrated with
respect to the US probe, and in this case we need an accurate temporal calibration because of
the great potential impact of minimal lag on the outcome of the compounding.

Based on the integrated EM sensor of the L14-5 probe, the spatial calibration procedure
can be simplified significantly. The probe is indeed pre-calibrated by the manufacturer, and
the relative position of the integrated EM sensor and the image image_i

integratedT can be obtained
from the Plus server at runtime, for the current depth settings (as already discussed in
Section 5.4.5).

Ideally, the tracking systems should agree on the position of the US image in space, that is:

image_i
base T = image_e

base T =image_r
base T =image_o

base T. (6.18)

However, this is not true in practice across the whole workspace and while the probe is moving.
In order to eliminate the effects of spatially variant tracking accuracies of the whole system,
we assume that Eq. 6.18 holds true if a number of transforms are acquired at steady state
and averaged subsequently. Thus, postulating that the displacement between each tracking
endpoint ({integrated} for the integrated EM sensor, {external} for the additional sensor
attached to the probe mount, {flange} for the robot and {marker} for the optical system)
and the US image does not change due to the rigidity of the probe mount, we can sample
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the transformation between the position of the image as reported by the EM tracking system
and the position of each other sensor to obtain their spatial calibration matrices (image_e

externalT ,
image_r
flange T , image_o

marker T respectively).

For simplicity, we express all positions with respect to the base of the robot. Performing a
hand-eye calibration (also as discussed in Section 5.4.5) between the EM system and the
robot allows us to find their relative position EM

baseT . With this knowledge, we map the output
of the EM system into the robot base’s frame:

image_i
base T = EM

baseT
integrated
EM T

image_i
integratedT, (6.19)

where EM
baseT is the hand-eye calibration transform, integratedEM T is the output of the EM system

for the integrated sensor, and image_i
integratedT is the pre-calibration matrix as reported by the Plus

toolkit.

Consequently, if the transformation between the robot flange and the image is sampled
appropriately, the spatial calibration for the robot is obtained by:

image_r
flange T = base

flangeT
EM
baseT

integrated
EM T

image_i
integratedT, (6.20)

where flangebase T is the Forward Kinematic of the robot, EMbaseT is the hand-eye calibration with the
EM system, integratedEM T is the position of the integrated sensor as reported by the EM system
and image_i

integratedT is the pre-calibration matrix. Once this quantity is known, we can use it to
derive the position of the US image according to the mechanical tracking for other poses of
the robot

image_r
base T = flange

base T
image_r
flange T, (6.21)

where flange
base T is the Forward Kinematic of the robot and the latter term is defined by the

Equation above.

The same operation can be applied to the additional EM sensor, to which the {external}
reference frame is attached. At a steady state, we sample the transformation

image_e
externalT = EM

externalT
integrated
EM T

image_i
integratedT. (6.22)

Again, we can use this calibration to obtain the pose of the US image with respect to the base
of the robot according to the external EM sensor

image_e
base T = EM

baseT
external
EM T

image_i
externalT. (6.23)
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Fig. 6.8. Verification of spatial ultrasound calibration. The LEGO phantom is scanned by moving the robot
linearly in one direction, twisting the probe, and traveling back. As a result, the images acquired in the
two phases of the acquisition overlapped partially. The slice on the left is from a region where only the
first, longer sweep is visible; the right slice contains overlap. It can be noted that there are no artifacts
are visible to the naked eye. In case of faulty calibration, a misalignment between the two sweeps are
clearly identifiable thanks to this simple test.

After hand-eye calibration between the optical tracking system and the robot, we can sample
the relative US spatial calibration matrix

image_o
marker T = optical

markerT
base
opticalT

EM
baseT

integrated
EM T

image_i
integratedT, (6.24)

so that we can obtain the position of the US image according to the optical tracking system:

image_o
base T = optical

base T marker
optical T

image_o
marker T. (6.25)

The hand-eye calibration is performed with the same software used in the previous chapter.
An additional script is employed to extract the spatial calibration as described here from a
simple recording of tracking data of the system in a steady state after hand-eye calibration.

In order to verify the correctness of the calibration, an empirical validation is performed by
acquiring a volume of the LEGO phantom with a tilted sweep. If the calibration were faulty,
there would be a noticeable disagreement between the two halves of the compounded volume;
as it can be seen by visual inspection of Fig. 6.8, this is not the case for the experiments
presented in the following sections. Also considering that we would compare volumes
reconstructed from the same tracking data (before and after regularization), and that our
method does not consider the content of the images, we concluded that the evaluation would
not be affected significantly by the quality of the spatial calibration.

After successful hand-eye calibration, the temporal mismatch between each tracking system
and the US image stream had to be estimated carefully. There are free softwares available for
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Fig. 6.9. Temporal calibration of US and tracking devices. In order to find the temporal offset between the
US image and tracking pose streams, the robot is programmed to move in the vertical direction in a
sinusoidal fashion while keeping the US probe immersed in a container filled with water. The bottom of
the container is segmented from the US image and its vertical coordinate is plotted; the same is done for
the vertical component of each tracking stream. The extrema of each plot are found with an automated
script, as well as the offset that minimized the average distance between the respective extrema. The
offsets are saved and used to synchronize the data throughout the experiments. In this picture, the
vertical z coordinate as reported during the temporal calibration procedure by the mechanical tracking
system (orange) and derived by the segmentation of the US image (blue) are plotted with respect to the
global clock. It is possible to see how the distance between the stationary points is greatly decreased
after applying the computed offset (right) with respect to before (left).

such task, but as for the case of spatial calibration they would have required to integrate them
with the robotic software used to derive mechanical tracking data. Instead, an analogous
approach is quickly developed in-house to provide reliable temporal calibration for the system
presented in this chapter.
The robot is programmed to move the probe in the vertical direction in a sinusoidal pattern,
while immersed in a water container. The bottom of the container could be directly segmented
in the US image via thesholding, since it appeared as a straight line in the image. However, in
order to prevent reflection artifacts it is necessary to manually set the US machine to employ a
single focal point during B-mode image formation.
As a result, it is possible to correlate the movement along the z axis of the robot base of each
tracking system with the vertical movement of the center of mass of the biggest connected
region in the US image (corresponding to the container bottom). After processing the streams
with Savitzky-Golay interpolation [163] to avoid spurious inflection points, the extrema of the
sinusoidal waves could be extracted and aligned. The time displacement between the point
series corresponded to the lag between the devices. This process is represented in Fig. 6.9.
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EM-I EM-I(R)

Fig. 6.10. Effect of tracking regularization on image quality: preservation of discontinuity. The benefits of
our approach over smoothing methods can be noted in particular in correspondence of sudden changes
in the direction of the probe trajectory. This can happen when the probe slides over a discontinuity
in the tissues, e.g. a vessel. The picture shows how our method manages to subtract the noise while
maintaining anatomical detail. It is visible how the tissues underwent greater compression on the right
side of the image.

EM-E EM-E(R) EM-I EM-I(R)

Fig. 6.11. Effect of tracking regularization on image quality: extreme degradation. Our regularization method
proved to be robust to extreme cases. The volume from which the cross-section depicted in this figure
was extracted was acquired in the proximity of a large metallic object. While the method was not
designed to compensate for the large scale distortion of the EM tracking introduced by the metalic object,
its regularizing effect is noticeable in terms of perceived quality.

6.5.3 Qualitative Evaluation: Compounding of Real Data

After calibrating the system as described in the previous section, the two datasets of the LEGO
phantom and a human forearm were acquired and reconstructed. Considering the qualitative
evaluation as indicated in Figures 6.12 and 6.13, a clear improvement can be observed by
visual inspection of the cross-sections of the volumes compounded using different tracking
systems with and without regularization. The value of the proposed approach becomes in
particular clear for the integrated EM tracking. It is worth noting how the method does not
introduce an artificial smoothing of the trajectories and hence maintained detail even under
sharp changes in the direction of the probe (Figures 6.12, 6.13, represent the general cases,
while pathologic situations are studied in Figures 6.10, 6.11).
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Fig. 6.14. Effect of regularization on real-world tracking data. This plot shows the average Euclidean distance

between each point of the trajectory recorded by the mechanical tracking system and the respective point
in the other tracking system data (i.e. the closest in time of acquisition). The optical tracking system (O)
does not benefit significantly from the regularization (O(R)), but it also not harmed by it. The external
EM sensor (EM-E) data is slightly improved after regularization (EM-E). However, the integrated EM
sensor (EM-I) benefits significantly from the application of our method (EM-I(R)), getting remarkably
close to the performance of the external sensor. It can be theorized that the discrepancy between the EM
and the mechanical tracking may be due to a distortion effect. However, it is also worth noting that the
disagreement between EM and mechanical tracking is higher but of the same order of magnitude of that
between mechanical and optical tracking.

6.5.4 Quantitative Evaluation: Measurement of Impact on Real
Tracking Data

A quantitative evaluation shows how our regularization method brought the integrated EM
tracking to a closer agreement to our reference systems, i.e. optical and mechanical tracking.
The trajectories relative to the compoundings shown in the previous section were used to
extract statistics reflecting the tracking quality. Since we are interested in the local characteris-
tics of the recorded trajectories, we registered each trajectory via the Iterative Closest Point
(ICP) algorithm [12] to the one acquired via mechanical tracking, and then computed the
respective average Euclidean distance.

As it is shown in Fig. 6.14, the application of our denoising method reduced the distance
between the EM trajectories and the ones acquired by the robot. Also, the visual comparison of
compounded results shows in overall more continuous structures. On the other hand, optical
tracking was not subject to a significant improvement. However, it is still worth noting that it
was not worsened either, which indicates the absence of over-regularization. Furthermore, the
disagreement between the optical and mechanical tracking reminds us that perfect agreement
between two tracking systems is never to be expected, since each of them have their own
idiosyncrasies and do not perfectly match with the physical "reality". Hence, the average
distance between the optical and mechanical tracking acts as a baseline for the maximum
performance achievable with contemporary technology.
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Fig. 6.15. Quantitative Evaluation of Compounding Quality. Left: A binary volume, containing zero values with
the exception of two spheres, is sampled according to the robot tracking data in order to create a set of
synthetic binary US images. The obtained compounding is then compared to the compounding obtained
by using other tracking systems, c.f. also Fig. 6.16. Right: Box plot of DICE values computed between the
compounding obtained with robotic tracking and the compoundings obtained with optical (O), internal
electromagnetic (EM-I) and regularized internal electromagnetic tracking (EM-I(R)), respectively. The
improvement of the quality achievable with EM tracking is evident when comparing the performance
before denoising (right-most column) to the one obtained after regularization (middle column). While
the performance of optical tracking is best (left-most column), the proposed method improves the
resulting average quality, but most notably its consistency, in comparison to the outcome obtained
without regularization.

6.5.5 Quantitative Evaluation: Measurement of Impact on
Ultrasound Compounding

As we discussed in Section 6.2, most of the available literature about error correction for
ultrasound compounding addresses distortion correction for electromagnetic tracking. Since
distortion leads to deformations of the image on a global scale, in most of the cases the
method performance is evaluated by scanning fiducial phantoms of known geometry and
successively compare the measurement of salient features in the compounded volume to the
actual dimensions (e.g. the distance between two points).

Such approaches do not reflect the performance of our method, since we address local artifacts
in the image which do not involve large-scale deformations. Quantitative approaches to
measure image quality are indeed difficult to find in literature, in large part due to the low
signal-to-noise ratio of ultrasound B-mode scans. These images present an elevated amount of
speckle artifacts, which are similar in appearance to salt-and-pepper noise and make standard
approaches for image comparison like Sum of Absolute Differences (SAD) inconclusive.

In virtue of this, we rely on an original method to quantify the impact of tracking noise on
ultrasound compounding.
The reasoning is that since our method only affects the positioning of the US slices in space,
their content is actually irrelevant and we can replace it with something that would lead to
meaningful image statistics after compounding. In order to generate such images, a synthetic
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Fig. 6.16. Results of ultrasound compounding reconstruction of synthetic data. The data is generated by
reslicing the synthetic volume according to mechanical tracking data. Unsurprisingly, the volume
reconstruction obtained according to the same tracking information lead to the best perceived quality (a).
Optical tracking agreed almost perfectly with mechanical tracking, and the result of the reconstruction
confirms this observation (b). The data from the integrated EM sensor turned into the worst results (c).
However, our regularization method is still able to lead to an intelligible result even in the worst case
among all our acquisitions, which is the one reported in this figure.

3D binary labelmap was generated. The bounding box of the tracking data was filled with
a black background, from which a couple of white spheres were subtracted. For each pose
of the US probe in the tracking stream, a 2D slice was computed by reslicing the volume
accordingly (the process is depicted in Fig. 6.15). The result was a "synthetic ultrasound scan"
of white spheres on a black background. Given a sufficient sampling density and coverage,
using the same tracking data would lead to the original volume. This could be verified by
computing the SAD between the compounding and the original data; the expected value
would be zero. However, if the position of the slices in space would change, their alignment
would not be exact anymore, artifacts could be seen in the image and the SAD (or comparable
measurement) with the original volume would be greater than zero. Thus, reconstructing the
slices generated with mechanical tracking data according to the poses provided by another
tracking system would give us an image on which meaningful image quality statistics can be
computed (the volumes relative to the most noisy acquisition are visible in Fig. 6.16).
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We translated this thought experiment into practice, and we were able to verify our hypothesis.
Application of our regularization method resulted in a significant drop of the Dice distance of
the obtained volumetric images to the reference volume.

6.6 Outlook and Future Work

In this chapter we discussed an approach to improve the perceived quality of freehand 3D
ultrasound images. With this aim, we presented a regularization method capable of reducing
the level of jitter affecting the pose stream produced by a tracking system, without external
information from additional sources. In contrast to comparable methods, the adoption an
explicit data fidelity term leads the optimization to maximize the smoothness of the result
while at the same time minimizing the distance from the input trajectory. This translates
to images that are more pleasant and easier to interpret for the operator. However, such
effect cannot be measured with methods that are commonly used to evaluate distortion
correction approaches. Instead, we use real-world mechanical tracking data to reslice a
synthetic binary volume to give origin to a set of synthetic US images which are free of speckle
artifacts. After compounding this artificial sweep according to EM tracking data before and
after regularization we obtain speckle-free volumes which can be meaningfully compared via
voxel-wise similarity measures.

The proposed method addresses the particular issue of perceived quality of ultrasound com-
pounding, which is underrepresented in literature and for which there are no established
evaluation strategies. The successful preliminary study run in this context would make a
comprehensive comparison to alternative methods such as Moving Average and Extended
Kalman Filter an interesting avenue to be explored in future.
Also, as previously mentioned, the integration with a Distortion Correction method would be
worth evaluating.
Finally, it would be interesting to investigate if the interpolation between tracking poses for
better agreement with ultrasound timestamps would be improved by prior regularization.
Such interpolation was not performed here (the closest tracking pose to the US frame was
chosen), but such an approach can potentially lead to further improvement in image quality.
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7Conclusion and Outlook

In this dissertation we have presented an overview of the advancing field of medical imaging
and robotics, and following the arguments of their respective advantages and shortcomings
we proposed novel approaches that augment intraoperative imaging. As we discussed in
Section 5.7, the introduction of a collaborative robotic assistant enables real-time multimodal
imaging within the familiar workflow of ultrasound-guided needle biopsy. The addition of
functional information to the anatomical image allows to unequivocally identify the sentinel
lymph node among all the visible axillary nodes. The robotic arm works together with the
surgeon, moving the gamma camera in space, thus reducing the cognitive burden that is
posed by the conventional workflow involving the two imaging devices separately and two
subsequent phases of SLN identification and US-guided biopsy. As we mentioned in Section 3.5,
this factor can be decisive for the success of the procedure. The real-time nature of the system
allows to overcome difficulties posed by the deformation of the soft tissue in the breast and
always guarantees a correct image. These factors result in a workflow which can be picked up
by beginners in a few seconds and leads to high sensitivity. The conversion of our research
system employing a standard industrial manipulator into a prototype making use of a custom
designed robot and additional safety features incrementing the awareness of the environment
is still a necessary prerequisite for a clinical study capable to prove the viability of SLN biopsy
under multimodal guidance for breast cancer staging.
In Section 6.6 we highlighted how the adoption of a Riemannian regularization framework
allows to remove jitter from the output of a tracking system, while optimizing for both fidelity
to the original input and smoothness of the output at the same time. We discussed how
freehand 3D ultrasound can in particular benefit from this effect, given the large adoption
of electromagnetic tracking in such systems due to ergonomic concerns and the relationship
between tracking jitter and final image quality on a local scale. We performed synthetic and
real-world experiments to show the qualitative impact of this technique, and we employed
an ad-hoc strategy to quantify this effect. Our results show a definite improvement for the
challenging scenarios in which the quality of EM tracking degrades sensibly in terms of
precision. Conjugated with a complementary distortion correction method, our solution may
significantly improve the quality of freehand 3D ultrasound both on a global and a local
scale.

Our work fits within the panorama of solutions that technology has made available to support
physicians in their work; or, to be more precise, medical teams. As we mentioned throughout
this text, further progress in the area of Computer Assisted Interventions may profit from a
holistic approach to research and product development alike, transcending the boundaries
between traditional areas of competence. Engineers will need to get in closer contact with
surgeons, in order to produce systems that will result in measurable improvement in patient
care rather than gadgets. On the other hand, if doctors will find the time and resources to
try innovative approaches they may open the door to radical new approaches, capable of
surpassing anachronistic limitations by now taken for granted. Traditional "siloed" research
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will be optimally integrated into clinical practice by combining resources into interdisciplinary
projects, and conventional hospital management may one day be revolutionized by a process-
oriented optimization. Hopefully, the result will be a transition from an OR resembling an
incoherent patchwork of idiosyncratic technologies to a cohesive, distraction-free assembly of
well-integrated devices where the surgeon can focus on healing the patient rather than coping
with the equipment.

A recurrent topic regarding the future of medicine is the discussion about the level of automa-
tion that should be reached. On the diagnostic side, it is debated if machines could completely
replace radiologists to achieve superior diagnostic outcome [130], and even surgeons are also
periodically proposed as candidates for eventual replacement [25, 219]; such enthusiastic
visions are regularly met by a choir of skepticism [218, 214]. While waiting for history to
unroll itself, it can be interesting to examine the factors that will exercise their weight in the
process and speculate about future developments.
In Section 4.1 we reported the current consensus about the strengths and weaknesses of
humans and robots, with the latter showing advantages in terms of motion precision and
repeatability while also revealing limited flexibility and capability to adapt to unknown situa-
tions. We also discussed the successes in automating subtasks in human-in-the-loop setups
in Section 4.2.3. On this basis, it could be speculated that an increasing number of routine
subtasks could be delegated to autonomous software, capable of optimizing the robot motion
according to the geometric configuration as well as to information provided by pre- and
intraoperative imaging. As a result, the role of the surgeon could gradually shift to providing
the surgical robot with information about what to do rather than how, and leave the concrete
implementation of the plan to the machine. Such approach could be defined as a declarative
control method, opposed to the current imperative schemes where the robot’s motion mirrors
more or less transparently the input data.
A similar symbiotic extension of human capabilities could be imagined for memory. Currently,
the surgeon must rely on their own knowledge and experience, acquired from textbooks and
attended or performed surgeries. However, there is a limit to the amount of information that
a human can memorize, and the speed at which one can learn. It is hence fathomable that the
fruits of Surgical Data Science, which we mentioned in Section 3.3.4 could function as a tool
to overcome this other human limitation by providing, on demand or proactively, the most
opportune information from a virtually endless knowledge base accumulated over time in
surgeries all over the world. In this way, the integration of technology into the OR could serve
as the foundation of a collective intelligence built by the insight and experience of a pool of
surgeons connected over space and time.
The projection of such ideas into the future could lead to a point where artificial intelligence
has accumulated so much experience by observing clinical cases and their treatment, that
the human contribution in the planning of the intervention could be no more necessary and
the future robot surgeons could operate completely autonomously. While it is impossible to
foresee if this eventuality may be at all reachable or not, it is easy to imagine how long the
path to it would be: medicine is typically conservative and resistant to change (may it be the
introduction of the endoscope and multimodal imaging as we mentioned in our introduction,
or even a simple thermometer [116]). And rightly so, since a physician carries the huge
responsibility of the patient’s health and, ultimately, life. However, it may be interesting to
entertain a parallel with another field where automation has been discussed for more than 40
years: automobile production.
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In the beginning of the 1980s Japanese competition in the US market was eroding the profit of
local car producers. As a response, General Motors spearheaded the automation efforts of the
whole sector, traditionally affine to robotics, with a massive investment plan [49]. The aim
was to achieve higher productivity and lower costs, but this was never the case; in fact, these
indicators worsened in parallel to the progressive automation of the assembly line. During
the same time, Toyota was refining the lean strategy popularized by Womack’s bestseller
"The Machine that changed the world" [204]. By addressing inefficiencies and wastes in the
production process using a holistic approach, by 1986 Toyota was able to produce four times
more cars per employee than GM (which had already spent five years in their automation
efforts) [49]. This surprising lesson seems to be periodically forgotten but it stays valid
as of today, as Tesla’s recent attempt at and hasty dismissal of fully automated assembly
showed [216, 217].

These events pertain a completely different field than medicine, but their implications are
even stronger because of that. A car manufacturing plant is a very controlled environment,
where the geometry of the objects of interest is completely known in advance and tasks
are repetitive and well defined. Clear success stories in such scenarios seem like a natural
prerequisite before approaching tasks so complex, uncertain and critical as surgeries. This
may be bound to happen; as in the case of Autonomous Driving, it can be argued that the
objective should not be to reach absolutely perfect outcomes (which may be unfeasible), but
to perform better than the human alternative. In the meantime, as also suggested by other
authors [128, 158], methods involving the integration of the complementary characteristics
of humans and machines may provide an incremental way of reaching such objective while
achieving increasing performance.
However, it is important to remember that increasingly complex technology is not the only
mean available to us for improving clinical quality and outcome. An amazing counterexample
is provided by the "Paperfuge" [13], a 0.20$ worth device consisting in an elastic and a
paper disk, capable of replacing the very expensive blood centrifuges needed to diagnose
blood diseases such as malaria. This innovation, as low-tech as disruptive, may revolutionize
healthcare in developing countries where such illnesses are most common. Another low-cost
solution is represented by the Surgical Safety Checklist [68], a protocol developed to minimize
human error during surgical procedures. Its adoption has been reported to have reduced both
mortality and complication rates by half, without introducing new devices but just adopting
the process standardization already common in other mission-critical industries.
All in all, we can still be confident that the human factor will continue being the principal
component of progress, and that the strength, accuracy and resilience of machines will be
precious tools supporting human creativity in breaking new barriers on the path to a better
future.
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scale, hence at a more global abstraction level. The result is fed to the decoder, which is composed of
LSTM blocks.

Recent neural-network-based architectures for image segmentation make extensive usage
of feature forwarding mechanisms to integrate information from multiple scales. Although
yielding good results, even deeper architectures and alternative methods for feature fusion at
different resolutions have been scarcely investigated for medical applications. In this work
we propose to implement segmentation via an encoder-decoder architecture which differs
from any other previously published method since (i) it employs a very deep architecture
based on residual learning and (ii) combines features via a convolutional Long Short Term
Memory (LSTM), instead of concatenation or summation. The intuition is that the memory
mechanism implemented by LSTMs can better integrate features from different scales through
a coarse-to-fine strategy; hence the name Coarse-to-Fine Context Memory (CFCM). We
demonstrate the remarkable advantages of this approach on two datasets: the Montgomery
county lung segmentation dataset, and the EndoVis 2015 challenge dataset for surgical
instrument segmentation.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018.
Reprinted with permission from Springer.

DOI: https://doi.org/10.1007/978-3-030-00937-3_76
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3D Ultrasound Registration-based Visual Servoing for
Neurosurgical Navigation

Oliver Zettinig, Benjamin Frisch, Salvatore Virga, Marco Esposito, Anna Rienmüller,
Bernhard Meyer, Christoph Hennersperger, Yu-Mi Ryang, Nassir Navab

a

C-arm detector

X-ray source

Spine phantom

US system

b c

(a) System setup: the robot holds a wobbler 3D Ultrasound probe via a custom 3D printed mount,
including a pre-calibrated needle guide. (b) Intervention planning: the physician selects the desired
trajectory for the needle within the pre-operative CT data, registered to an intra-operative
compounded volume. (c) Accuracy verification: the agreement between the plan and the effective
needle trajectory can be assessed in the Ultrasound image and with an additional X-Ray image
(acquired only for verification purposes).

Purpose We present a fully image-based visual servoing framework for neurosurgical navigation
and needle guidance. The proposed servo-control scheme allows for compensation of target
anatomy movements, maintaining high navigational accuracy over time, and automatic needle
guide alignment for accurate manual insertions.
Method Our system comprises a motorized 3D ultrasound (US) transducer mounted on a
robotic arm and equipped with a needle guide. It continuously registers US sweeps in real
time with a pre-interventional plan based on CT or MR images and annotations. While a visual
control law maintains anatomy visibility and alignment of the needle guide, a force controller
is employed for acoustic coupling and tissue pressure. We validate the servoing capabilities of
our method on a geometric gel phantom and real human anatomy, and the needle targeting
accuracy using CT images on a lumbar spine gel phantom under neurosurgery conditions.
Results Despite the varying resolution of the acquired 3D sweeps, we achieved direction-
independent positioning errors of 0.35 ± 0.19 mm and 0.61°± 0.45°, respectively. Our
method is capable of compensating movements of around 25 mm/s and works reliably on
human anatomy with errors of 1.45 ± 0.78 mm. In all four manual insertions by an expert
surgeon, a needle could be successfully inserted into the facet joint, with an estimated targeting
accuracy of 1.33 ± 0.33 mm, superior to the gold standard. Conclusion: The experiments
demonstrated the feasibility of robotic ultrasound-based navigation and needle guidance for
neurosurgical applications such as lumbar spine injections.

International Journal of Computer Assisted Radiology and Surgery. September 2017, Volume 12,
Issue 9, pp 1607–1619.

Reprinted with permission from Springer.
DOI: https://doi.org/10.1007/s11548-017-1536-2
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Quaternionic Upsampling: Hyperspherical Techniques for 6
DoF Pose Tracking

Benjamin Busam, Marco Esposito, Benjamin Frisch, Nassir Navab

Effect of the interpolation method on the resulting angular velocity. © 2016 IEEE

Fast real-time tracking is an integral component of modern 3D computer vision pipelines.
Despite their advantages in accuracy and reliability, optical trackers suffer from limited
acquisition rates depending either on intrinsic sensor capabilities or physical limitations such
as exposure time. Moreover, data transmission and image processing produce latency in
the pose stream. We introduce quaternionic upsampling to overcome these problems. The
technique models the pose parameters as points on multidimensional hyperspheres in (dual)
quaternion space. In order to upsample the pose stream, we present several methods to sample
points on geodesics and piecewise continuous curves on these manifolds and compare them
regarding accuracy and computation efficiency. With the unified approach of quaternionic
upsampling, both interpolation and extrapolation in pose space can be done by continuous
linear variation of only one sampling parameter. Since the method can be implemented rather
efficiently, pose rates of over 4 kHz and future pose predictions with an accuracy of 128 µm
and 0.5°are possible in real-time. The method does not depend on a special tracking algorithm
and can thus be used for any arbitrary 3 DoF or 6 DoF rotation or pose tracking system.

Proceedings of the Fourth International Conference on 3D Vision (3DV) 2016. Reprinted with
permission. © 2016 IEEE

DOI: https://doi.org/10.1109/3DV.2016.71
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Automatic force-compliant robotic ultrasound screening of
abdominal aortic aneurysms

Salvatore Virga, Oliver Zettinig, Marco Esposito, Karin Pfister, Benjamin Frisch, Thomas
Neff, Nassir Navab, Christoph Hennersperger
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(a) System Overview: the robot holding the ultrasound probe is co-registered with an RGB-D camera,
which allows to capture the outline of the patient’s skin. The resulting point cloud is deformably
registered with the profile of an MRI Atlas, so that a pre-operative plan can be specified on the Atlas
and carried out on the real patient. (b) Clinical Measurement: the robot performs a freehand
ultrasound sweep autonomously, and the resulting 3D image can be manually or automatically
annotated to measure the diameter of the aorta.

Ultrasound (US) imaging is commonly employed for the diagnosis and staging of abdominal
aortic aneurysms (AAA), mainly due to its non-invasiveness and high availability. High inter-
operator variability and a lack of repeatability of current US image acquisition impair the
implementation of extensive screening programs for affected patient populations. However,
this opens the way to a possible automation of the procedure, and recent works have exploited
the use of robotic platforms for US applications, both in diagnostic and interventional scenarios.
In this work, we propose a system for autonomous robotic US acquisitions aimed at the
quantitative assessment of patients’ vessel diameter for abdominal aortic aneurysm screening.
Using a probabilistic measure of the US quality, we introduce an automatic estimation of
the optimal pressure to be applied during the acquisition, and an online optimization of the
out-of-plane rotation of the US probe to maximize the visibility of the aorta. We evaluate our
method on healthy volunteers and compare the results to manual acquisitions performed by a
clinical expert, demonstrating the feasibility of the presented system for AAA screening.

Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Reprinted with permission. © 2016 IEEE
DOI: https://doi.org/10.1109/IROS.2016.7759101
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Toward real-time 3D ultrasound registration-based visual
servoing for interventional navigation

Oliver Zettinig, Bernhard Fuerst, Risto Kojcev, Marco Esposito, Mehrdad Salehi, Wolfgang
Wein, Julia Rackerseder, Edoardo Sinibaldi, Benjamin Frisch, Nassir Navab

(a) Picture of the robot holding the US probe. (b) Schematic overview of the reference frames
involved in the system calibration. © 2016 IEEE

While intraoperative imaging is commonly used to guide surgical interventions, automatic
robotic support for image-guided navigation has not yet been established in clinical routine. In
this paper, we propose a novel visual servoing framework that combines, for the first time, full
image-based 3D ultrasound registration with a real-time servo-control scheme. Paired with
multi-modal fusion to a pre-interventional plan such as an annotated needle insertion path, it
thus allows tracking a target anatomy, continuously updating the plan as the target moves,
and keeping a needle guide aligned for accurate manual insertion. The presented system
includes a motorized 3D ultrasound transducer mounted on a force- controlled robot and a
GPU-based image processing toolkit. The tracking accuracy of our framework is validated on
a geometric agar/gelatin phantom using a second robot, achieving positioning errors of on
average 0.42 ± 0.44 mm. With compounding and registration runtimes of up to total around
550 ms, real-time performance comes into reach. We also present initial results on a spine
phantom, demonstrating the feasibility of our system for lumbar spine injections.

Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA).
Reprinted with permission. © 2011 IEEE

DOI: https://doi.org/10.1109/ICRA.2016.7487226
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Intra-operative augmented reality in distal locking

Roberto Londei, Marco Esposito, Benoit Diotte, Simon Weidert, Ekkehard Euler,
Peter-Helmut Thaller, Nassir Navab, Pascal Fallavollita

On the left, the Augmented Reality guidance system for Down-the-Beam positioning. The 6 Degrees
of Freedom pose of the intramedullary nail is derived by a single X-ray image and used for
intra-operative guidance in repositioning the X-ray machine to a Down-the-Beam position. On the
right hand side, another AR guidance system for drilling the hole for the IM nail screw. The surgeon
can place the drill and perform the boring without further X-ray acquisitions. The whole workflow can
be carried out with a single X-ray shot, as opposed to the multiple acquisitions taking place with
conventional workflows.

Purpose To design an augmented reality solution that assists surgeons during the distal locking
of intramedullary nailing procedures.
Method Traditionally, the procedure is performed under X-ray guidance and requires a signif-
icant amount of time and radiation exposure. To absolve these complications, we propose
video guidance that allows surgeons to achieve both the down-the-beam position of the
intramedullary nail and its subsequent locking. For the down-the-beam position, the IM nail
pose in X-ray is calculated using a 2D/3D registration scheme and later related to the patient
leg pose which is calculated using video-tracked AR markers. For the distal locking, surgeons
use an augmented radiolucent drill in which its tip position is detected and tracked in real-time
under video guidance.
Validation To evaluate the feasibility of our solution, we performed a preclinical study on dry
bone phantom with the participation of four clinicians.
Results Participants achieved 100% success rate in the down-the beam positioning and 93%
success rate in distal locking using only two X-ray images in 100 s. Conclusions We confirmed
that intra-operative navigation using augmented reality provides an alternative way to perform
distal locking in a safe and timely manner.

International Journal of Computer Assisted Radiology and Surgery, 2015.
Reprinted with permission from Springer.

DOI: https://doi.org/10.1007/s11548-015-1169-2
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A Stereo Vision Approach for Cooperative Robotic Movement
Therapy

Benjamin Busam, Marco Esposito, Simon Che’Rose, Nassir Navab, Benjamin Frisch

Overview of the proposed system. The impaired arm is fixated to the robotic arm via a soft textile
support. The optical tracking system held by the robot follows the position of circular markers
attached to a soft sleeve worn on the healthy limb. The robot keeps the relative position of the two
arms constant, allowing the user to control the robot movement intuitively.

Movement therapy is an integrating part of stroke rehabilitation. The positive influence of
intensive, repetitive motion training and the importance of active patient participation trigger
the development of cooperative robotic assistants. We suggest a device for the re-education of
upper limb movements in hemiparetic patients where a light-weight robotic arm that supports
the deficient arm is equipped with a stereoscopic camera system. It follows the movements
of the healthy arm that wears a sleeve equipped with flat round reflective markers detected
by the cameras. We introduce an advanced robust and real-time algorithm to provide the
tracking information. It performs a sparse marker based point cloud registration based on
subpixel precision contour fits to enable high accuracy pose estimates while being capable of
online model adjustments. The update rate of the tracking is 9 ms and the precision of the
system is measured to be 0.5 mm. Tests with healthy subjects show that the system is able to
accurately reproduce the movement of the healthy arm on an impaired arm.

IEEE International Conference on Computer Vision Workshop (ICCVW), 2015
Reprinted with permission. © 2011 IEEE

DOI: https://doi.org/10.1109/ICCVW.2015.74
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The ‘Augmented’ Circles: A Video-Guided Solution for the
Down-the-Beam Positioning of IM Nail Holes

Roberto Londei, Marco Esposito, Benoit Diotte, Simon Weidert, Ekkehard Euler, Peter
Thaller, Nassir Navab, Pascal Fallavollita

The initial X-ray image can be seen in the top left corner. From this single X-ray image the full 6
Degrees of Freedom pose of the intramedullary nail is retrieved, and an Augmented Reality guidance
is provided to the user in the form of two circles (top right). After moving the X-ray machine such that
the two circles coincide (bottom right), the Down-the-Beam position has been reached (bottom left)
and the screw placing can begin.

Intramedullary nailing is the surgical procedure mostly used in fracture reduction of the tibial
and femoral shafts. Following successful insertion of the nail into the medullary canal, it
must be fixed by inserting screws through its proximal and distal locking holes. Prior to distal
locking of the nail, surgeons must position the C-arm device and patient leg in such a way
that the nail holes appear as circles in the X-ray image. This is considered a ‘trial and error’
process, is time consuming and requires many X-ray shots. We propose an augmented reality
application that visually depicts to the surgeon two ‘augmented’ circles, their centers lying on
the axis of the nail hole, making it visible in space. After an initial X-ray image acquisition,
real-time video guidance allows the surgeon to superimpose the ‘augmented’ circles by moving
the patient leg; the result being nail holes appearing as circles. Our nail pose recovery was
evaluated on 1000 random trials and we consistently recovered the nail angulation within
2.76 ± 1.66°. Lastly, in a preclinical experiment involving 7 clinicians, we demonstrated that
in over 95% of the trials, the nail hole appeared as a circle using an initial X-ray image.

Information Processing in Computer-Assisted Interventions. IPCAI 2014.
Reprinted with permission from Springer.

DOI: https://doi.org/10.1007/978-3-319-07521-1_11
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Towards personalized interventional SPECT-CT imaging

José Gardiazabal, Marco Esposito, Philipp Matthies, Aslı Okur, Jakob Vogel, Silvan Kraft,
Benjamin Frisch, Tobias Lasser, Nassir Navab

(a) System overview: a robot holding a portable gamma camera is introduced to the operating room
and co-calibrated with a standard Cone-Beam CT device. This allows to acquire co-registered CT and
SPECT volumes, which can be combined together into a single multi-modal image (b).

The development of modern robotics and compact imaging detectors allows the transfer of di-
agnostic imaging modalities to the operating room, supporting surgeons to perform faster and
safer procedures. An intervention that currently suffers from a lack of interventional imaging
is radioembolization, a treatment for hepatic carcinoma. Currently, this procedure requires
moving the patient from an angiography suite for preliminary catheterization and injection to
a whole-body SPECT/CT for leakage detection, necessitating a second catheterization back
in the angiography suite for the actual radioembolization. We propose an imaging setup
that simplifies this procedure using a robotic approach to directly acquire an interventional
SPECT/CT in the angiography suite. Using C-arm CT and a co-calibrated gamma camera
mounted on a robotic arm, a personalized trajectory of the gamma camera is generated from
the C-arm CT, enabling an interventional SPECT reconstruction that is inherently co-registered
to the C-arm CT. In this work we demonstrate the feasibility of this personalized interventional
SPECT/CT imaging approach in a liver phantom study.

International Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), 2014.

Reprinted with permission from Springer.
DOI: https://doi.org/10.1007/978-3-319-10404-1_63
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CSoftware created or contributed to
in the Scope of this Thesis

During the work reported in this Thesis, the IFL laboratory underwent a process of reorganiza-
tion of existing software and of development of new shared components. Some of them were
made publicly available on a common GitHub page 1. In this section we report the projects
with major contribution by the author of this thesis.

iiwa_stack

iiwa_stack is a software package for the native integration of the KUKA LBR iiwa robots with
the ROS ecosystem. Particular effort was spent in order to seamlessly fit the standard ROS
interfaces to the KUKA Sunrise software and to provide extensive and detailed documentation.
The development began jointly with Salvatore Virga, who was coauthor of many publications
listed in Appendices A and B and overtook the role of maintainer of the library.
The native Sunrise development environment of the iiwa requires to write a Robotic Applica-
tion in the Java programming language, which must then be deployed on the robot controller
with a proprietary tool. The application runs in a non-realtime environment, but periodically
communicates with the real-time Operating System. This architecture allows to maintain the
safety requirements imposed by the industrial certifications for human collaboration regardless
of the behavior of the Robotic Application.
Our library consists of a Robotic Application including rosjava nodes that expose a standard
ROS interface (topics and services) over the Ethernet port of the controller. This allows to
control the robot’s SmartServo and DirectServo controllers (which provide advanced interpo-
lation and safety features) over the network in real time. Alternatively, MoveIt integration is
offered to enable high-level planning and obstacle avoidance through an RGBD camera.
iiwa_stack enjoys growing popularity, also among worldwide renowned robotic challenges,
and a highly active community.

easy_handeye

Chapters 5 and 6 provide extensive sections about calibration. Various instances of hand-eye
calibration between a robot and a tracking sensor contributes are listed within. Traditionally,
hand-eye calibration is performed with programs or scripts designed ad-hoc for the particular
setup and hardware, and output the result in their own format; the content must often
be copy-pasted into a file, or hardcoded. Such approach is suboptimal to say the least, in
particular when the same calibration must be repeated frequently.
This encouraged the author to develop a software library for the acquisition of data sam-

1https://github.com/IFL-CAMP
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ples, computation of the calibration and easy usage of the result with the minimal number
of manual steps involved. Furthermore, this framework makes use of ROS interfaces and
infrastructure to be completely hardware agnostic and trivial to integrate.
The core component is a server which can be configured through a .yaml file to sample the
transformations between specified tf reference frames upon request. The collected data is
passed to a library implementing a hand-eye calibration method (currently only the imple-
mentation of the Tsai-Lenz algorithm from the ViSP library is supported, but extension would
be straightforward). The result is stored in a file with a given ID. A second program can be
started by the user’s roslaunch files with the same ID as a parameter, and its purpose is to
publish the calibration result on the tf subsystem. In this way all the running ROS processes
are informed of the current calibration, eliminating chances of error: repeating the calibration
will overwrite the file, thus leading to the updated value being automatically loaded at the
next system restart. Using different IDs, multiple calibrations can be used concurrently.
Finally, a script was developed to automatically move the robot about the starting position
about all axes, in a fashion apt to obtain a robust calibration. Intuitive GUIs were developed
for the sampling and robot movement scripts.
easy_handeye is adopted by a growing number of users, in particular to use RGBD cameras
for object avoidance, and was presented at ROSCON 2017.

tf_bag

The tf subsystem greatly simplifies the task of managing the knowledge of the current geomet-
ric configuration of the system. Traditional approaches rely on matrices being passed around
in code as arguments, or over network connections. It is also common to coalesce whole
chains of transformations within a single matrix for optimization purposes. Such methods ar
error prone, verbose and complex for large systems.
Instead, ROS processes can be trivially integrated with tf to obtain knowledge of the trans-
formation between two arbitrary reference frames at any point in time, or to share such
knowledge with other modules or processes. tf identifies each reference frame with a string
ID; the transformation between to such frames A and B at a certain point in time t can be
queried from the system, or broadcasted into it in the form of ROS messages on the tf topic.
Each process registered to the tf subsystem holds a buffer of all the messages published on
this topic, so that upon a query for the transformation between two frames A and D the whole
chain can be composed (e.g. A to B, B to C and so on). The library also supports queries for
the relative position of two frames in the past (within the length of the buffer).
Since tf is implemented on top of a standard ROS topic, its data can be recorded via rosbag as
with any other type of message. Anyway, extracting tf data from a rosbag file is not an easy
task. The rosbag interface allows to linearly scan the recorded stream of messages; the user
must then scan the whole file until the target time t, while keeping note of the last known
values of all the reference frames joining the two frames of interest.
tf_bag is a library that offers an interface similar to what tf makes available at runtime, making
it easy to analyze tf data contained in a rosbag (for example in scripts). More functionality for
simple data analysis was added, and the operations were highly optimized for common use
cases.

138 Chapter C Software created or contributed to in the Scope of this Thesis



DImplementing the Tracking
Regularization Algorithm

In order to implement the proposed scheme in Alg. 1, we have to implement the functions
compLambda, proxData, proxR1, and proxR2 for SE(3). In the following parts, we will explain
the necessary mathematical background for implementing these functions.

D.1 Second Order Total Variation Regularizer

As proposed by Bacák et al. [2], it is possible to generalize the idea of Eq. 6.15 to higher order
differences:

R2(x) =
k−1∑
i=2

(h ◦ d)(xi,mi−1,i+1), (D.1)

where
mi−1,i+1 = expxi−1(1

2 logxi−1(xi+1)) (D.2)

denotes the geodesic average of xi−1 and xi+1. As d(xi,mi−1,i+1) can be considered as a
manifold-valued, second-order central difference, R2 can be interpreted as a second-order
approximation of the classical Tikhonov regularizer, in case of h(s) = s2/2, or the second-order
total variation, in case of h(s) = s, respectively. Likewise, one can also consider the Huber-type
function in Eq. 6.14. Again, we will use the abbreviations TV (`1 − case), TKHV (`2 − case),
and HUBER to denote the different regularization types.

D.2 Implementing the Proposed Algorithm

In order to implement the proposed scheme in Alg. 1, we have to implement the functions
compLambda, proxData, proxR1, and proxR2 for SE(3). In the following parts, we will explain
the necessary mathematical background for implementing these functions.

D.2.1 Exponential and Inverse Exponential Map

In order to realize the aforementioned proximal mappings, we need to implement the expo-
nential and inverse exponential map for SE(3). For the exponential mapping, we consider a

139



vector v ∈ se(3) (sitting in the identity and representing a tangential vector by left translation)
given by

v =

ωv tv

0 0

 , (D.3)

as in Eq. 6.7, where tv ∈ R3 is the so3 part of v given by Eq. 6.8. The geodesics induced by
the Riemannian metric Eq. 6.9 on SE(3) are precisely the geodesics in the product manifold
SO(3)× R3, where SO(3) is equipped with its bi-invariant metric. Therefore, for the pose p,

p =

Rp tp

0 1

 , (D.4)

we have

expp(v) =

exp(ωv)Rp tp + tv

0 1

 . (D.5)

Here, exp(ωv) denotes the matrix exponential function of ωv ∈ so3. For the matrix operations
needed above there are closed form expression available: To compute the matrix exponential
of the skew-symmetric matrix ωv, we use Rodrigues formula as explained in [123]; see also
[199]. Then, for the inverse of the Riemannian exponential mapping in SE(3) denoted by log
with the left-invariant Riemann metric Eq. 6.9, we get for poses p, q that

logp(q) =

log(RqR
t
p) tq − tp

0 0

 , (D.6)

where log(RqR
t
p) denotes the principal logarithm of the matrix RqR

t
p (which may be viewed

as component-wise principal logarithm on the eigenvalues). Concerning the computation
of the principal matrix logarithm of the rotation matrix RqRpt , we again refer to the above
mentioned references. We note that logp(q) is an element of the Lie algebra so3 representing
a tangent vector at p (up to left translation). We further note that the distance between poses
p and q is explicitly given by

d(p,q) = ‖ log(RqRpt)‖F + ‖tp − tq‖, (D.7)

where ‖ log(RqRpt)‖F denotes the Frobenius norm of log(RqRpt), and ‖tp − tq‖ denotes the
euclidean norm of tp − tq.

D.2.2 Computation of the Proximal Mappings

As a reference for the following derivations of the proximal mappings of the data and the
first order difference terms, we refer to [199]. The proximal mapping for the data term atom
Di(xi) = h ◦ d(xi,pi), for a given data point pi is given by

proxλDi(xi) = expxi
(
t logxi pi

)
(D.8)
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where the parameter t is chosen, depending on the kind of data term used as, t = λ/(1 + λ)
for the `2-type data term, by

t =

λ/d(xi,pi), if λ < d(xi,pi),

d(xi,pi), else.
(D.9)

for the `1 type data term, and by

t =

 2λ
1+2λ , if d(xi,pi) < ω(1+2λ)√

2 ,

min
(
d(xi,pi),

√
2λ
)
/d(xi,pi), otherwise,

(D.10)

for the Huber type data term. The proximal mapping for the TV, the Huber and the analogue
of the classical Tichonov regularizer atoms R1,i(xi,xi+1) = h ◦ d(xi,xi+1), are given by

(proxλR1,ix)i = expxi
(
t logxi xi+1

)
,

(proxλR1,ix)i+1 = expxi+1

(
t logxi+1 xi

)
,

where t = λ/(1 + 2λ) for the `2-type weighting, where

t =

λ, if λ < d(xi,xi+1)/2,

d(xi,pi)/2, else,
(D.11)

for the TV situation, and by

t =

 2λ
1+4λ , if d(xi,xi+1) < 1+4λ√

2 ,

min
(
d(xi,xi+1)/2,

√
2λ
)
/d(xi,pi), otherwise.

(D.12)

in case of Huber regularization. In contrast to the proximal mappings of the data and the
first order difference terms, the proximal mappings for the second order TV type terms R2 do
not have known closed form expressions. Instead, we use a subgradient descent scheme to
compute the proximal mappings, which are the solutions of the minimization problems

proxλR2,i(xi−1,xi,xi+1)

= argmin
(x′
i−1,x

′
i
,x′
i+1)

i+1∑
j=i−1

1
2d(xj ,x′j)2 +R2,i(x′i−1,x′i,x′i+1)

approximately. The corresponding gradients can be computed rather explicitly using Jacobi
fields. Details can be found in [2].

D.2.3 Choice of Step Size

During the iteration of Alg. 1, the step size parameter λr of the proximal mappings is succes-
sively decreased. In this way, the penalty for deviation from the previous iterate is successively
increased. It is chosen in a way such that the sequence λr is square-summable but not
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summable. This is moderate enough not to enforce convergence by step size decay. Concretely,
we use the sequence

λr = 0.25r−0.95 (D.13)

to realize this decay in the algorithmic realization.
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