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Abstract
Single-object tracking is one of the fundamental problems in Computer Vision and has
been actively researched for many years. Nonetheless, the object tracking capabilities of
humans are still far superior to the current state-of-the-art tracking algorithms. Humans
are not only able to track almost any object, even previously unseen ones, in difficult
sequences more robustly than current algorithms, they are also able to do this effortlessly
within a few milliseconds. Since tracking is usually only a single component in a
Computer Vision application, the real-time capabilities of object trackers are an essential
property in order for the complete system to work in real-time.

The overall goal of this thesis is to bridge the gap between human and machine
tracking by developing tracking algorithms that are accurate, robust, and real-time-
capable. This leads to the following four main contributions:

First, we extend the standard single-object tracking evaluation protocol to support
pixel-precise ground truths and trackers. The new evaluation protocol is able to better
measure the accuracy of trackers and additionally estimates the tracker’s capability
of detecting scale change. Furthermore, we present upper bounds for the accuracy of
trackers that are restricted to bounding boxes given pixel-precise ground truth data.

Second, we present a new tracking dataset with pixel-precise ground truth. The
precise ground truth labels are created automatically from a photo-realistic synthetic
dataset. The dataset is focused on sequences in the domain of self driving cars. The
sequences are very challenging and include long sequences with full occlusions and
different lighting conditions. Together with the previously mentioned evaluation protocol,
the pixel-precise labels allow to evaluate trackers with a new level of precision.

Third, we develop a new single-object tracker that is able to track homogeneous
regions that undergo arbitrary deformations. It is based on component-trees and is
computationally efficient. The tracker is successfully used for 2D temporal tracking and
for 3D object segmentation.

Fourth, we develop an edge-based object tracker. The tracker has a failure mode
detection, is robust to nonlinear illumination changes, and can cope with occlusions.
It is very accurate and virtually drift-free even for long sequences. Furthermore, it is
inherently capable of object re-detection when tracking fails. The tracker is thoroughly
evaluated through a number of qualitative and quantitative experiments. It is able to
perform on par with the current state-of-the-art deep-learning trackers but is at least 45
times faster.
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Zusammenfassung
Die Verfolgung von Objekten in Bildsequenzen ist eines der grundlegenden Probleme

der Bildverarbeitung und wird seit vielen Jahren aktiv erforscht. Obwohl die Verfahren
immer robuster und schneller werden, ist der Mensch den aktuellen Algorithmen zur
Objektverfolgung noch weit überlegen. Er ist in der Lage, auch unbekannte Objekte
in schwieriger Umgebung robust zu verfolgen, und benötigt dafür nur wenige Millise-
kunden. Da die Objektverfolgung in der Regel nur eine einzelne Komponente in einer
größeren Anwendung darstellt, ist die Echtzeitfähigkeit von Objektverfolgungsverfahren
Voraussetzung dafür, dass das Gesamtsystem in Echtzeit arbeiten kann.

Ziel dieser Arbeit ist es, die Lücke zwischen Mensch und Maschine zu verkleinern
und Verfahren zur Objektverfolgung zu entwickeln, die sowohl genau und robust als
auch echtzeitfähig sind. Daraus ergeben sich die folgenden vier Hauptbeiträge:

Erstens erweitern wir das Standardevaluierungsprotokoll zur Objektverfolgung, so
dass Verfahren pixelgenau evaluiert werden können. Das neue Auswertungsprotokoll
ist in der Lage, die Genauigkeit von Objektverfolgungsverfahren besser zu messen und
liefert zusätzlich ein Maß dafür, wie gut die Methoden Skalierungsänderungen erkennen
können. Darüber hinaus berechnen wir für pixelgenaue Ground Truth Obergrenzen
für die Genauigkeit von Objektverfolgungsverfahren, die Objekte durch umschließende
Rechtecke repräsentieren.

Zweitens präsentieren wir einen neuen Datensatz zur Objektverfolgung mit pixelge-
nauer Ground Truth. Die Ground Truth wird vollautomatisch aus einem fotorealistischen
synthetischen Datensatz erstellt und konzentriert sich auf anspruchsvolle Sequenzen mit
selbstfahrenden Fahrzeugen. Sie beinhaltet lange Sequenzen mit Verdeckungen und vari-
ierenden Lichtverhältnissen. Zusammen mit dem zuvor erwähnten Auswertungsprotokoll
ermöglicht die pixelgenaue Ground Truth die Auswertung von Objektverfolgungsalgo-
rithmen mit einer erhöhten Genauigkeit.

Drittens entwickeln wir ein neues Objektverfolgungsverfahren, welches in der Lage
ist, homogene Regionen zu verfolgen, die sich beliebig verformen können. Es basiert
auf Komponentenbäumen und ist recheneffizient. Das Objektverfolgungsverfahren wird
erfolgreich für die 2D-Objektverfolgung und für die Segmentierung von 3D-Objekten
eingesetzt.

Viertens entwickeln wir ein kantenbasiertes Objektverfolgungsverfahren. Die Me-
thode verfügt über einen Fehlererkennungsmodus, ist robust gegenüber nichtlinearen
Beleuchtungsänderungen und kann mit Verdeckungen umgehen. Das Verfahren ist sehr
genau und weicht auch bei langen Sequenzen kaum von der Ground Truth ab. Au-
ßerdem können Objekte wiedererkannt werden, wenn die Verfolgung fehlschlägt. Das
Objektverfolgungsverfahren wird in einer Reihe von qualitativen und quantitativen Expe-
rimenten gründlich ausgewertet. Es erreicht eine vergleichbare Genauigkeit wie aktuelle
Deep-Learning Methoden, ist aber mindestens 45-mal schneller als diese.
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Part I: Introduction and Basics

motivates the work and gives an overview of the challenges, the proposed solutions, and
the basic notation and methods this work builds apon.

Chapter 1: Introduction

motivates this work and gives an overview of the challenges and solutions.

Chapter 2: Notations and Fundamentals

gives an overview of the used notation and introduces some of the basic mathemat-
ical concepts used in this work.

Part II: Evaluation Metrics and Datasets

extends the commonly used tracking evaluation techniques for bounding boxes to pixel-
precise segmentations of the ground truth. To get a perspective of how well bounding
box approaches can perform for a given segmentation, an approach to compute upper
bounds is presented.

Chapter 3: Related Work: Methodologies

presents the methods generally used for evaluating the acuracy and the robustness
of object trackers.

Chapter 4: A Novel Approach for Evaluating the Accuracy of Object

Trackers

introduces a novel method to generate upper bounds for all box-based trackers that
are evaluated on pixel-precise segmentations. The bounds enable us to compare
approaches that are restricted to bounding boxes and those that are not.

Chapter 5 Datasets and Evaluation Protocol

presents the datasets and the evaluation protocol used for the evaluation. The core
of the evaluation is based on synthetic ground truth data.

Part III: Fast and Robust Object Tracking

presents two methods for robust and real-time tracking of objects in video sequences.
Both approaches are not restricted to bounding boxes and are extremely efficient.
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Chapter 8: Shape Model Tracking

presents a method for robust and real-time tracking of roughly rigid objects in video
sequences. The tracker is robust to nonlinear illumination changes, occlusions, and
drift. It has a failure mode detection and is inherently capable of re-detecting the
object if the tracker fails.

Chapter 9: Results and Comparison to the State of the Art

evaluates the shape model tracking and its different extensions against the state of
the art on different datasets.

Chapter 10: Conclusions

discusses open problems and possible extensions of the presented evaluation
metrics and tracking approaches.

xiv



Part I

Introduction and Basics
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1
Introduction

1.1 Background and Motivation

The human visual system is an incredible phenomenon. It is the center of our perception
and allows us to navigate through complex environments. In fractions of a second we
are able to identify the objects that are present in front of us. Even if we have never
seen a specific object before, we can set the object into context very quickly and use our
background knowledge to infer the most likely purpose of the object and in most cases
also its category. For example, we recognize any flat surface near a table with some kind
of feet to be a chair. Even if we have never seen the specific chair type before. However,
as most of our perception, it is mostly a relative measuring systems. While it is easy for
humans to identify if two objects are the same size or color, it is almost impossible to
gain a notion of the metric size or color of any object without a reference.

For decades, it has been a fascinating research topic to understand and copy the
human ability to interpret visual scenes. Computer Vision is the science that aims to give
similar, or better, visual capabilities to a machine or computer. It covers the complete
pipeline, from image acquisition, processing, analyzing to understanding. Thanks to
technological breakthroughs and ever faster computers, the range of applications of
Computer Vision has risen tremendously in the past few years. Today, most people carry
a high-resolution camera with amazing computational capabilities in their pocket that is
able to improve pictures, recognize faces, measure, or support impressive augmented
reality applications. In contrast, Machine Vision refers to the use of Computer Vision in an
industrial application or process. It attempts to integrate and extend existing technologies
and apply them to solve real world industrial problems. It is typically concerned with
quality inspection and control in production lines and robot guidance, i.e., allowing a
robot to interact with its environment. The systems demand great robustness, reliability,
accuracy, and stability. Furthermore, there is typically a strong restriction on the hardware
cost and size. In general, Machine Vision systems are a driving factor in automation and
mass production. They essentially allow to improve the production quality and reduce
labor costs [208]. 1

1While the automation of an industry may lead to unemployment in the short-term, the long-term
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Chapter 1: Introduction

One of the fundamental problems in Computer Vision and Machine Vision is object
tracking. It is one of the problems that the human visual system can solve without much
effort. Humans are even capable of reasoning about objects that reappear in an image
sequence and link identities between objects that have been acquired at different times,
perspectives, and under different illumination. However, it is still a very active research
area in Computer Vision and the performance of the state of the art algorithms is far
from what humans are capable of [117]. There is significant room for improvement, both
in terms of accuracy and in terms of runtime.

The main focus of this thesis is to develop algorithms for tracking objects in Computer
Vision and Machine Vision applications that are fast, robust, and accurate. The focus is
on developing computationally light weight and memory efficient algorithms that can
run on small computation devices in real-time.

Object Tracking Object tracking is concerned with locating an object throughout an
image sequence. It can be divided into two categories: multi-object and single-object
tracking. The first category is concerned with tracking objects of a known object class.
For example, pedestrians in an urban street scene. As a consequence, most methods
make use of powerful object detection systems. Although the object’s class is known,
they interact with each other, occlude each other, or move in an unpredictable fashion.
The task of multi-object tracking is to link the detections between frames, remove false
detections, and correctly detect occlusions and missing detections (if possible, at frame
rate). The main focus of the multi-object tracking research is on surveillance tasks such as
pedestrian tracking or traffic surveillance. In contrast, single object detection is generally
concerned with tracking a single unknown object through an image sequence. Since
the object class is not known, it is usually prohibitive to use a general object detection
algorithm.

In single object tracking, it is usually assumed that the object position is known in
the first frame. In most cases, the image sequences originate from temporally connected
video data. As such, object tracking has very strong computational restrictions. The object
location generally needs to be known at a frame rate of 20-50 frames per second. Hence,
the processing time should be no more than 20–50 ms. Furthermore, object tracking
is usually only a subproblem of a Computer Vision or Machine Vision application.
Therefore, the computational complexity is strictly restricted in terms of the processing
time and the memory requirements. Last but not least, many applications that involve
tracking are performed on small computational devices such as drones or smart cameras.
As a consequence, the computational complexity and memory requirements are further
restricted by the capacities of these devices.

The challenges in object tracking include abrupt object motion, nonrigid objects,
changing appearance of both the object and the surrounding, object occlusion, motion
blur, object disappearing and reappearing, and camera motion. As a consequence, it

consequences are more complex and may include a higher living standard, longer life expectancy, and less
dangerous jobs. Although every researcher should be aware of the possible consequences of their work, the
social and economical impact and consequences of automation in general are beyond the scope of this thesis.
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1.2 Objectives and Contributions

is unreasonable to expect a single object tracking scheme to solve all of the mentioned
challenges on its own. The domains and applications that are tackled by single object
tracking schemes are very diverse and include amongst others:

1. Vehicle navigation and traffic control

2. Gesture recognition and Human machine interaction (e.g., eye gaze tracking for
virtual reality)

3. Livestock monitoring in agriculture

4. Consumer electronics (e.g., Follow Me drones)

5. Surveillance (e.g., detection of suspicious and abnormal activities or unlikely events)

Object Representation There are numerous ways to represent an object in an image; by
a single point (e.g., centroid), multiple points, geometric shapes (e.g., a box), contour lines,
skeleton shapes, or a pixel-precise segmentation. Depending on the application, each
representation has its justification. In object tracking, the objects are typically represented
by axis-aligned bounding boxes. This has two reasons: (1) the ground truth data is
easy and cheap to obtain and (2) restricting trackers to axis-aligned bounding boxes
greatly reduces the complexity of their implementation and runtime. In general, the
current datasets, benchmarks, and evaluation protocols are restricted to boxes. However,
especially in Machine Vision applications that require a high level of accuracy and
robustness, the bounding box of an object is not sufficient.

1.2 Objectives and Contributions

The objective of this thesis is to develop methods for tracking single objects in real-time,
with low computational complexity, and without restricting the object representation to
an axis-aligned bounding box. This enables the methods to solve real-world problems.
In a nutshell, the objectives of this thesis are threefold:

1. extend the evaluation methodologies to a pixel-precise representation of objects,

2. create new tracking dataset with a pixel-precise representation of the ground truth,

3. develop new methods that are able to solve different real-world applications in
real-time, with high accuracy, and with low computational complexity.

In more detail, this work tackles the three of the above mentioned objectives with the
following contributions:

Evaluation As mentioned above, the current state of the art tracking methods and the
common tracking benchmarks represent objects by axis-aligned bounding boxes. As also
the evaluation is based on axis-aligned bounding boxes, there is no incentive for methods
to extend beyond them. On the contrary, more precise methods do not necessarily obtain

5



Chapter 1: Introduction

higher accuracy scores. However, especially in industrial applications, the bounding box
of an object is of limited use. To overcome this, we extend the evaluation protocols to
support pixel-precise representations of the objects and develop a measure to link the
performance of trackers that are restricted to bounding boxes to methods that support a
pixel-precise representation of objects. Furthermore, we introduce a scale score that can
be computed automatically for every tracker. It measures how well the tracker is able to
capture scale changes of the ground truth.

Dataset The new evaluation protocol requires a pixel-precise ground truth. To encour-
age the development of trackers with a more precise representation of an object, a new
tracking dataset with pixel-precise ground truth is presented. In contrast to most of
the common benchmarks that are designed to be as diverse as possible, we focus on a
single application: car tracking in a self-driving car scenario. The dataset has extremely
accurate pixel-precise annotations. Since the label effort of pixel-precise segmentations is
immense, the data set builds on a photo-realistic synthetic dataset that was generated
from extracting frames and ground truth automatically from a computer game. The new
dataset includes many challenges such as long sequences, heavy occlusion, perspective
change, and objects that disappear and reappear. The evaluation of prior-art methods
shows that there is significant room for improvement over the current state of the art.

Tracking The goal is to extend the state of the art in object tracking beyond bounding
boxes. For this, two new real-time trackers are presented. The first component-tree-
based tracker can track an object undergoing arbitrary deformations. In each frame
regions are segmented and matched to object. By using a component-tree, the method
is extremely efficient and can track multiple regions in real-time. The second shape
model-based method focuses on tracking roughly rigid objects very accurately. The object
is represented by edge points and their direction. During tracking, those points are
matched to the next input frame. Additionally, the points and the directions are updated
consistently during tracking to allow shape changes of the object. The tracker is also
capable of detecting tracking failure and can re-detect the object in real-time if tracking
fails.

1.3 Publications

Parts of this thesis contain material previously published in the following publications.

• Tobias Böttger, Markus Ulrich, and Carsten Steger, Subpixel-Precise Tracking
of Rigid Objects in Real-Time, in 20th Scandinavian Conference on Image Analysis
(SCIA), 2017, pp. 54–65. doi: 10.1007/978-3-319-59126-1_5

• Tobias Böttger, Patrick Follmann, and Michael Fauser, Measuring the Accuracy
of Object Detectors and Trackers, in German Conference on Pattern Recognition
(GCPR), 2017, pp. 415–426. doi: 10.1007/978-3-319-66709-6_33
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1.3 Publications

• Tobias. Böttger and Christina Eisenhofer, Efficiently tracking extremal regions
in multichannel images, in 8th International Conference of Pattern Recognition
Systems (ICPRS), Institution of Engineering and Technology, 2017, pp. 6–14. doi:
10.1049/cp.2017.0143

• Tobias Böttger and Patrick Follmann, The Benefits of Evaluating Tracker Perfor-
mance Using Pixel-Wise Segmentations, in IEEE International Conference on Computer
Vision Workshops (ICCVW), 2017, pp. 1983–1991. doi: 10.1109/ICCVW.2017.232

• Tobias Böttger, Gutermuth Dominik, and Christina Eisenhofer, A Natural
Extension of Component-Trees to Multi-Channel Images, IEEE Transactions on Image
Processing, - (-), p. UNDER REVIEW

• Tobias Böttger and Carsten Steger, Accurate and Robust Tracking of Rigid Objects
in Real-time, IEEE Transactions on Image Processing, - (-), p. UNDER REVIEW

Parts of this thesis contains material that has been applied for patent (pending).
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2
Notations and Fundamentals

This chapter introduces the basic concepts, nomenclature, and notations used in this
thesis. A summary of the general notations used within this thesis is displayed in
Table 2.1.

2.1 Notations

Throughout the thesis, we distinguish between discrete image coordinates that lie on the
pixel grid and those that do not by a superscript bar . A point p that lies on the pixel
grid is denoted by p, whereas arbitrary image coordinates, not necessarily on the pixel
grid, by p. Points may lie outside of the image boundaries and have negative values.
Thus p ∈ R2 and p ∈ Z2. For all coordinates, we assume the origin is at the upper
left corner of the image. Furthermore, we denote direction vectors with a superscript
arrow, e.g.,

#»

d . For every point coordinate p = (x, y) or direction vector
#»

d = (u, v), the
first tuple entry refers to the vertical axis (row) and the second entry to the horizontal
axis (column). In the figures, points are colored blue, directions are colored orange, and
normals green (provided this is unambiguous). A point, its direction, and the respective
normal are depicted in Fig. 2.1.

Shape model points The shape model tracking used within this thesis represents the
tracked object by a discrete set of n elements mi = (pi,

#»

d i) ∈ R2 × S1, which are each
composed of a point pi and a associated direction vector

#»

d i.

# »nd

#»

d p

Figure 2.1: A point p, its direction
#»

d and a respective normal # »nd.
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Chapter 2: Notations and Fundamentals

The collection of all model points is termed shape model and denoted as

M = {mi ∈ R2 × S1; for i = 1, . . . , n}. (2.1)

Transformations The transformation of a shape model requires the transformation of
the points pi and the directions

#»

d i. For a rigid transformation, i.e., one that preserves the
distances between every pair of points, the transformation of a point pi is given by

p′i =

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸

Rθ

pi +

(
tx

ty

)
, (2.2)

where Rθ represents a rotation matrix and (tx, ty)T the translation. In the following, the
direction

#»

d i of a point is determined by the normalized local image gradient direction at
the point pi. As a consequence, the directions

#»

d i are normals to the tangent of pi. Then,
for a general 2× 2 matrix A, the transformation of the direction vectors can be obtained
by multiplying with the inverse transposed of the transformation matrix A (the directions
are normals to the tangent of p). Since a general transformation may change the length
of

#»

d , the transformed direction
#»

d ′ needs to be normalized after the transformation to
ensure

#»

d ′ ∈ S1:

#»

d′i =
(

A−1)T #»

d i∥∥∥(A−1)
T #»

d i

∥∥∥ . (2.3)

For a rotation matrix Rθ , the transformation of the directions simplifies to

#»

d ′i = Rθ
#»

d i, (2.4)

since RT = R−1 and det R = 1. The model can further be scaled isotropically (sx = sy) and
anisotropically (sx 6= sy) by

p′i =

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸

Rθ

(
sx 0
0 sy

)
︸ ︷︷ ︸

Ssx ,sy

pi +

(
tx

ty

)
, (2.5)

where Ssx ,sy represents the scale matrix. The rotation Rθ and scale matrix Ssx ,sy can be
combined in a single transformation matrix, which we denote as Tθ,sx ,sy . The direction
vectors are transformed, by

#»

d ′i =

(
T−1

θ,sx ,sy

)T #»

d i∥∥∥∥(S−1
sx ,sy

)T #»

d i

∥∥∥∥ . (2.6)
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2.1 Notations

We express the more general (parallelism preserving) affine transformation of model points
in homogeneous coordinates,

p′i =

a1 a2 a3

a4 a5 a6

0 0 1


x

y
1


︸ ︷︷ ︸

pi

. (2.7)

The affine transformation matrix can be decomposed into rotation, anisotropic scaling,
skew and translation matrices:

p′i =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


sx 0 0

0 sy 0
0 0 1


1 a 0

0 1 0
0 0 1


1 0 tx

0 1 ty

0 0 1


x

y
1


︸ ︷︷ ︸

p′i

. (2.8)

Similarly, projective transformations of model points can be expressed as

p′i =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 pi. (2.9)

Shape model Transformations In the matching process, a shape model M is trans-
formed and moved to various positions in a search image to compute its similarity for
each pixel in a predefined search domain, denoted as S ⊂ Z2. Note that S only contains
the locations where the center of the shape modelM is placed. In the search process, the
transformations are usually restricted to similarity transformations, hence translations rota-
tion and isotropic scaling. To further speed up the process, the possible transformations
are discretized and typically restricted to expected and physically plausible ranges. We
denote the set of possible rotations with R and the set of possible scales with Σ. In the
following, we always assume isotropic scaling of the model, hence Σ ⊂ R+ and sx = sy.
We denote the complete set of possible transformations as

PS ,R,Σ := (S ×R× Σ) ⊂
(
Z2 × [0◦, 360◦)×R+

)
, (2.10)

and merely as P when the explicit ranges are not essential. Analogously, a transformation
within P is expressed as TPS ,R,Σ and TP , respectively.
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Chapter 2: Notations and Fundamentals

Table 2.1: General notation used throughout the thesis

Spaces
R Set of real numbers

R+ Set of real numbers > 0
N Set of natural numbers
Z Set of all integers

Rn Vector space of real numbers with dimension n
S1 ⊂ R2 The unit circle, hence (x, y) that satisfy x2 + y2 = 1

Rn ×Rm Cartesian product of the two vector spaces with dimension
n and m, respectively

Points and Vectors
z ∈ Rn Column vector of length n

zT Transposed vector z
M ∈ Rn×m Matrix of size n×m

Mi,j ∈ R The matrix entry in the i-th row and j-th column
p ∈ Z2 An image coordinate (may be negative)
p ∈ R2 An image coordinate (not necessarily on the pixel grid)

#»

d ∈ R2 A direction, usually used in correspondence with an image point
#»n d ∈ R2 A normal of a direction

#»

d (hence #»n d ⊥
#»

d )

Operators
a · b The Euclidean scalar product

ẑ The Discrete Fourier Transform of z.
‖ · ‖ The Euclidean norm of a point or vector, hence ‖a‖ =

√
a · a.

| · | Either the area of a region or the cardinality of a set

Subsets
M A shape model; a subset of R2 × S1, defined in (2.1)
S A search region; essentially an image domain and hence a subset of Z2
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3
Related Work: Methodologies

The evaluation of tracking and detection algorithms essentially depends on two compo-
nents: (1) the dataset and (2) the performance evaluation measures, system, and protocol.
In the following, we present and discuss the most prominent evaluation benchmarks and
methodologies and point out open problems.

3.1 Object Tracking Datasets and Benchmarks

In many computer vision fields, it is common for the community to agree upon bench-
mark datasets and protocols to compare the performance of algorithms. Prominent
examples are PASCAL VOC [75] for object detection, COCO for instance-aware object
segmentation [134], or ImageNet [68] for image classification. For a long time, bench-
mark datasets of similar quality and diversity did not exist for object tracking. It used
to be very difficult to compare two different trackers based on the results in the re-
spective publications. The community suffered from the large variety of performance
measures and the lack of consensus about which measures should be used in experiments
[116, 119, 158, 198, 239, 40]. Since there are dozens of new tracking algorithms that are
proposed each year at large conferences and in journals, it was hard to compare different
trackers. The missing consensus on the evaluation metrics was complicated by the fact
that the tested sequences were often hand-picked and sometimes had little overlap with
other publications. In the mid 2010s, to unify the evaluation of trackers, different groups
simultaneously proposed to standardize the evaluation datasets and protocols.

In 2014, Smeulders et al. [198] presented the Amsterdam Library of Ordinary Videos
(ALOV300) for tracking. The dataset contains a diverse set of 315 videos that cover all
kinds of objects and different challenges, such as varying illumination, transparency,
specularity, similar objects within one scene, clutter, occlusion, low contrast, and severe
shape changes. A few examples are shown in Fig. 3.1. Although the dataset is mostly
mined from YouTube, it also includes the most common videos used for tracker evaluation
within the literature to that date. With a few minor exceptions, the dataset focuses on
short sequences. In total, the dataset has almost 90 000 frames. As is common, the objects
are annotated by axis-aligned bounding boxes. To help understand a tracker’s strengths
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Chapter 3: evalmethods

Figure 3.1: Example images from ALOV300 [198]. The objects are very diverse, including
cars, people, static objects, and cartoons. The ground truth is labeled with axis-aligned
bounding boxes.

and weaknesses, the videos are categorized into thirteen different categories, such as
low contrast, camera motion, clutter, smooth motion, or specularity. Even though the
benchmark paper brought clarity into the evaluation chaos that was present previously,
the large amount of data and the dataset’s overall complexity limited its use as a general
benchmark across all tracking publications.

Around the same time, the visual object tracking challenge (VOT) [116, 117, 119] was
started. The challenges are conducted on a publicly available dataset once a year. To
meet the current challenges of the state of the art, the evaluation protocol and the dataset
are updated each year. Nevertheless, a key goal is to keep the dataset as compact and
diverse as possible. Starting from 16 short sequences (2013), the dataset has grown to
25 (2014) and, finally, to 60 (2015, 2016, 2017, 2018) sequences. It includes sports videos,
dashcam videos of cars, webcam videos of humans and different objects, and animal
videos.

In 2016, a thermal infrared imagery (TIR) challenge was added to address the fact
that the current state of the art was performing very badly in this domain. In 2018, a new
long-term tracking sub-challenge was added. The sequences within the VOT dataset are
selected by an optimization process that makes sure the selected scenes cover different
attributes and complexity. This ensures that many applications are covered and the
dataset is still as compact as possible. The protocol of VOT uses two complementary
performance measures: the tracker’s accuracy (how well does it match the ground truth?)
and the tracker’s robustness (how often does the tracker fail?). The dataset is used very
frequently in recent tracking publications.

In 2013, Wu et al. [238] proposed the Object Tracking Benchmark 50 (OTB-50). The
benchmark includes 49 sequences and 50 labeled objects from the literature that had
been used to evaluate trackers up to that date. It was extended to 98 videos with
100 labeled objects in 2015 (OTB-100) [239]. As with ALOV300, the sequences are
labeled with attributes that represent challenging aspects such as illumination variation,
occlusion, deformation, motion blur, fast motion, or low resolution. Although no explicit
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3.1 Object Tracking Datasets and Benchmarks

Figure 3.2: Example images from the OTB-100 challenge [239]. No specific application
is addressed but rather many different challenges. The ground truth is labeled with
axis-aligned bounding boxes.

optimization was performed to ensure the dataset is diverse, the videos within the dataset
are very different and cover various applications. A few exemplary images are displayed
in Fig. 3.2. The evaluation protocol measures the tracker’s precision and success rate with
two separate measures. Further tests are conducted to test how sensitive the trackers are
to initialization by varying the time and the position of the initialization. Together with
the VOT benchmark, the OTB-100 benchmark is the de-facto standard tracking benchmark.

The mentioned benchmarks all focus on short-term tracking. Since the performance
has reached very impressive levels, the community is slowly pushing towards more
complete trackers that can successfully track an object for a long period of time and
recover on its own from losing the object. To address these challenges, in 2018 Valmadre
et al. [222] presented a long-term tracking dataset (LTTD) that includes 366 sequences
with a total of 14 hours of video. This made it the largest dataset for single-object tracking
at the time of publication. The authors use YouTube Bounding Boxes [174] (YTBB) as
data source from which they select and improve the annotations of the sequences. As
above, the objects are labeled by axis-aligned bounding boxes. As evaluation metrics, the
authors mainly use the True Positive Rate (TPR) (3.4) and True Negative Rate (TNR) (3.5).
However, since most of the current trackers never predict the absence of an object, many
currently have a TNR of 0.0.

Just a few weeks later, Müller et al. [155] proposed TrackingNet. With 30 000 videos
and more than 14 million bounding box annotations, the dataset eclipses all other datasets.
Among other criteria, it was constructed with the goal to further improve data hungry
deep tracking approaches. Furthermore, the huge evaluation set poses a number of
different challenges for the current state of the art. Again, both TrackingNet and LTTD
do not focus on a specific application, but offer a large diversity to evaluate trackers “in
the wild.”

Since the benchmarks mentioned above focus on being as complex and diverse as
possible, they do not tackle any industrial application specifically. As a consequence,
they favor trackers that generalize across different domains. This requires an intense
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Fig. 3. First frame of selected sequences from UAV123 dataset. The red bounding box
indicates the ground truth annotation.

Acquisition. The UAV123 dataset can be divided into 3 subsets. (i) Set1 con-
tains 103 sequences captured using an o↵-the-shelf professional-grade UAV (DJI
S1000) following di↵erent objects at altitudes varying between 5-25 meters.
Video sequences were recorded at frame rates between 30 and 96 FPS and resolu-
tions between 720p and 4K using a Panasonic GH4 with Olympus M.Zuiko 12mm
f2.0 lens mounted on a fully stabilized and controllable gimbal system (DJI Zen-
muse Z15). All sequences are provided at 720p and 30 FPS and annotated with
upright bounding boxes at 30 FPS. The annotation was done manually at 10
FPS and then linearly interpolated to 30 FPS. (ii) Set2 contains 12 sequences
captured from a boardcam (with no image stabilization) mounted to a small
low-cost UAV following other UAVs. These sequences are of lower quality and
resolution and contain a reasonable amount of noise due to limited video trans-
mission bandwidth. The sequences are annotated in the same manner as in Set1.
(iii) Set3 contains 8 synthetic sequences captured by our proposed UAV simula-
tor. Targets move along predetermined trajectories in di↵erent worlds rendered
with the Unreal4 Game Engine from the perspective of a flying UAV. Annotation
is automatic at 30fps and a full object mask/segmentation is also available.

Attributes. As illustrated in Fig. 3, UAV123 contains a wide variety of scenes (e.g.
urban landscape, roads, buildings, fields, beaches and a harbor/marina), targets
(e.g. cars, trucks, boats, persons, groups, and aerial vehicles), and activities (e.g.

Figure 3.3: Example images from UAV123 [153]. The objects are mostly cars and people
and are labeled with axis-aligned bounding boxes.

re-evaluation of the state-of-the-art trackers for specific tasks. For example, to address
real-time tracking in the domain of drones, two new benchmarks were proposed very
recently: the drone tracking benchmark (DTB70) [128] and UAV123 [153]. The dataset
used for DTB70 contains 70 sequences obtained by a DJI Phantom 2 Vision+ drone
and is labeled manually with axis-aligned bounding boxes. The UAV123 benchmark is
specifically concerned with long-term tracking. It was proposed in 2016 by Müller et
al. [153]. Independent of their performance in terms of accuracy and robustness, the
benchmark excludes all trackers from the evaluation that are far from real-time (< 1
FPS). The UAV123 dataset contains 123 sequences that are obtained from three different
sources. The first two sets consist of 115 sequences and contain real images acquired
from UAVs. They are labeled manually with axis-aligned bounding boxes. The third
set with 8 sequences, is obtained from a UAV simulator that renders different worlds
and UAV trajectories with the Unreal4 Game Engine. A few example frames from
different sequences are displayed in Fig. 3.3. UAV123 is the first tracking benchmark
that contains synthetic sequences that are generated specifically for tracking from a
graphics engine. The annotations are obtained automatically and include the full object
masks/segmentations. The real-time restriction, the long sequences, and the complexity
of the dataset are very challenging for the current state of the art. For UAV123, the
performance of the best trackers is lower than for OTB-100 and the best trackers are not
the same for both datasets.

A summary of the mentioned benchmarks is displayed in Table 3.1. As shown, all
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but one benchmark use axis-aligned boxes to represent the ground truth. To compare the
performance of trackers with the ground truth, all of the benchmarks use an accuracy
measure. Given the accuracy measure, different evaluation protocols are performed
to evaluate different aspects, e.g., the robustness or the sensitivity to the initialization.
Although most benchmarks use similar measures and protocols, some differences exist.
In the following, we comment on the used accuracy measures and their advantages.

Table 3.1: Summary of the common object tracking benchmarks.

# Sequences # Frames Axis-Aligned Box Rotated Box
ALOV300 [198] 315 89 364 X
OTB-100 [239] 100 59 061 X
VOT 2017 [117] 60 21 356 X
DTB70 [128] 70 15 781 X
UAV123 [153] 123 110 000 X
LTTD [222] 366 1.5 million X
TrackingNet [155] 30 000 14 million X

3.2 Common Accuracy Measures

Over the years, a number of different accuracy measures has been proposed in the
tracking literature. However, all tracking measures assume that manual ground truth
annotations of a sequence are given. In the following, we use a similar notation as
Čehovin et al. [38, 40]. The works provide a highly detailed theoretical and experimental
analysis of all common tracking performance measures. The authors show that many of
the performance measures used throughout the tracking literature are highly correlated.
We highlight the most prominent examples.

We assume the object state in frame t is described by an arbitrarily shaped region Rt

and center xt ∈ R2. As discussed above, in most benchmarks, Rt is an axis-aligned box
and xt its center point. Nevertheless, for more general representations of Rt, the object
position xt often cannot be derived directly from Rt.

For a sequence of length N, the objects states are collected in

ΛG = {(Rt, xt); for t = 1, . . . , N}. (3.1)

The superscript G denotes that the set/point/region describes the ground truth object
state and the superscript T denotes the tracker’s prediction of the object state, respectively.

Many older tracking publications [183] use the Euclidean center distance

δt = ‖xT
t − xG

t ‖l2 , (3.2)

as the accuracy measure. Also in the OTB-100 benchmark [239], the precision of a tracker
is calculated as the percentage of frames for which the estimated location is within
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RG RT

RG ∩ RT

ΦIoU
(

RG, RT) = |RG∩RT|
|RG∪RT |

=

∣∣∣ ∣∣∣∣∣∣ ∣∣∣ +
∣∣∣ ∣∣∣ +

∣∣∣ ∣∣∣

Figure 3.4: The Intersection over union (IoU) of two regions is computed as the quotient
of the area of their intersection and their union. It can be computed for arbitrarily shaped
regions. Since the area of the union of two regions is always greater or equal than the
area of their intersection, it lies in [0, 1].

20 pixels of the center position of the ground truth (δt ≤ 20). An appealing property
of the center distance is that the ground truth is easy to obtain and the core task of
tracking, namely the localization of the object, is measured. The distances are often
summarized over all N frames to obtain a single value per sequence, ∆(ΛG, ΛT) =
1
n ∑n

t=1 δt. Nevertheless, the measure does not account for the object scale, is highly
subjective for arbitrarily shaped regions, and not very robust (e.g., the center of gravity
may change significantly for articulated objects). Furthermore, it is hard to define a
scale-independent threshold to detect tracker failure from the l2 distance alone.

To remedy the mentioned problems, overlap-based measures are very often used
[116, 153, 155, 198]. The most prominent one is the Intersection over Union (IoU),

ΦIoU

(
RG, RT

)
=

∣∣RG ∩ RT
∣∣

|RG ∪ RT| , (3.3)

where RG represents a ground truth region and RT the corresponding tracker proposal.
The computation of ΦIoU is visualized in Fig. 3.4. It is often called Pascal overlap [75] or
bounding box overlap when RG and RT are boxes [134].

The IoU can be computed for arbitrarily shaped regions and it accounts for both the
localization accuracy as well as the shape prediction of the tracker. Furthermore, if the
tracker fails completely, then ΦIoU = 0, since the intersection of the ground truth region
and the tracker prediction is zero. This is an appealing property when averaging the
IoU for each frame in a sequence. Furthermore, the IoU is correlated to region similarity
measures that are based on the contour similarity [170]. However, these are generally
more complex to compute and not as intuitive as the IoU.

As is common in object detection, the IoU is also used in tracking to measure the
number of true positive (TP), false negative (FN), and false positive (FP) frames in a
sequence by thresholding ΦIoU. This is especially reasonable for long-term trackers, where
objects may be occluded and disappear and reappear in a sequence. A tracker returns a TP
whenever ΦIoU is larger than a specific threshold Φthres and, conversely, a FP whenever
ΦIoU is smaller than the threshold. Please see Fig. 3.5 for an example. Throughout
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Figure 3.5: The computation of the number of True Positives (TP), False Positives (FP)
and of precision is displayed. A tracker returns a TP for frame t if Φt

IoU ≥ Φthres and a
FP if not. Usually Φthres = 0.5. As for object detection, the precision is the ratio of the
number of true positives to the number of all detections (which is the number of frames
for all trackers that cannot detect the absence of an object).

the object tracking and object detection literature, the most common threshold for
ΦIoU is 0.5. Nevertheless, specifically in object detection, it is sometimes reasonable to
average precision over different thresholds to emphasize detectors with a more accurate
localization. A FN may only be returned by trackers capable of predicting the absence of
an object.

In [153], the precision of a tracker is used to compare the tracker’s performance with
each other. It is calculated from the TP and FP as TP

TP+FP . Further measures that can be
calculated on the basis of ΦIoU are the true positive rate (TPR) and the true negative rate
(TNR). In LTTD [222], TPR is computed as

TPR =
1
ñ

n

∑
i=t

TPt, (3.4)

and TNR as

TNR =
1

ñ− n

n

∑
i=t

TNt, (3.5)

where for frame t, TPt is 1 if ΦIoU ≥ 0.5, TNt is 1 if the tracker correctly predicts the
absence of the object (hence RT = ∅ when RG = ∅), n is the number of frames, and ñ is
the number of frames were the object is present. Hence, TPR computes the fraction of
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present objects that are detected as present and TNR the fraction of absent objects that
are detected as such.

In general, ΦIoU is the heart of the evaluation of nearly every tracking benchmark. It
is the predominant accuracy measure and is also often used as a measure of the trackers’
robustness [38, 40]. For example, in the VOT [116, 117] evaluation framework, a tracker
failure is identified whenever ΦIoU = 0.0 [119]. Nevertheless, since bounding boxes
are the dominant representation of the tracking ground truth, a tracker that predicts
a pixel-precise representation of an object has no advantage in the accuracy scores. In
contrast, a pixel precise representation has a lower ΦIoU score than its bounding box. As a
consequence, to compare methods that represent objects by a pixel-precise segmentation
it is common practice to calculate the bounding box of approaches and then compute
their ΦIoU [32]. This is unfortunate since it prevents the community from moving towards
more precise trackers.

3.3 Discussion

In general, bounding boxes are fast to label and describe the object location and roughly
its shape. This enables the creation of very large tracking benchmarks with very diverse
sequences. There is a large collection of benchmarks that are labeled with boxes and
focus on the generalizability of long- and short-term trackers. Nevertheless, bounding
boxes are often very crude approximations of objects [134] and cannot accurately capture
an object’s shape, location, or characteristics. As a consequence, the accuracy measured
in the current benchmarks has a strict upper bound. Very accurate trackers have no
advantage. Nevertheless, the used accuracy measures are not generally restricted to
bounding boxes but can cope with arbitrary representations of the ground truth. Hence,
the obvious next step is to improve the representation of the tracking ground truth to
improve the accuracy scores of very precise trackers. Furthermore, the focus on a strong
diversity in the test sequences requires an intense re-evaluation of the state-of-the-art
trackers for specific tasks [153]. In the following chapter, we extend the accuracy measure
to pixel-precise representations of the ground truth and present upper bounds for all
trackers that are restricted to bounding boxes.

22



4
A Novel Approach for Evaluating
the Accuracy of Object Trackers

In this chapter, we extend the common tracking evaluation protocols from bounding
boxes to arbitrarily shaped regions. Hence, the ground truth data is labeled with pixel-
precision. The extension of the measures is straightforward but introduces a bias for
all box-based methods. Since this is the majority of the current state of the art, we
introduce upper bounds for all box-based trackers and introduce the relative intersection
over union (rIoU). The measure makes box-based trackers comparable to pixel-precise
methods. Furthermore, we present a scale measure that is based on the upper bounds and
measures the capabilities of trackers to estimate scale change. To support the presented
measure, we introduce a dataset with pixel-precise data in the subsequent chapter. This
chapter covers some of the work from the following publications: Böttger et al. [24] and
Böttger and Follmann [23].

4.1 Pixel-precise Object Tracking Annotations

Axis-aligned bounding boxes are often a very coarse approximation of an object. As
displayed in Fig. 4.1, articulated, rotated, and non-compact objects cannot be represented
reasonably by an axis-aligned bounding box. To improve the representation of objects,
some datasets thus approximate the objects by rotated boxes. For example, for the
VOT 2015 challenge [118], the objects where manually labeled by experts with rotated
boxes. The choice of the rotated boxes was not straightforward and required predefined
heuristics. To reduce the uncertainty of the rotated boxes, the VOT 2016 challenge
introduced an automatic process to compute the rotated boxes from the manual axis-
aligned labels [116]. For this, the segmentation mask of each object is computed from
the bounding box annotations automatically. Then, a rotated bounding box is computed
that minimizes a cost function. The cost function punishes background pixels inside the
box and object pixels outside of the box. Interestingly, the optimization process thus
optimizes a different measure than the one that is used later to compute the accuracy
of the trackers (ΦIoU). However, rotated boxes add an unwanted bias to the evaluation.
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Figure 4.1: Example bounding boxes from selected frames from DAVIS [170]. In general,
axis-aligned bounding boxes are very crude approximations.

Especially for symmetrical objects, the choice of the box is not straightforward. In Fig. 4.2,
a circle is approximated by a collection of different boxes. All of the boxes have the same
ΦIoU with the segmentation. Nevertheless, the overlap of the bounding boxes with each
other may be as low as

√
2

2 ≈ 0.7071. Hence, choosing any of the boxes as ground truth
may introduce a disadvantage to a tracker that performs perfectly. The above example is
not artificial. As shown in Fig. 4.3 (a), there are sequences in the VOT challenges with
this exact problem.

In summary, using boxes as ground truth has two inevitable disadvantages:

1. The approximation of an object by a box is very crude. Especially articulated objects
such as humans or animals cannot be approximated well by boxes. Although the
approximation may be improved by using rotated boxes, the choice of the best
suitable box can be highly ambiguous. For example, the bag in Fig. 4.3 (a) has
multiple valid box approximations with the same overlap. Nevertheless, the IoU
between two of the valid choices is only 0.71.

2. It is difficult to evaluate approaches that are not restricted to rotated or axis-
aligned boxes on ground truth boxes without introducing an unwanted bias in
the evaluation results. For example, the ground truth segmentation in Fig. 4.3 (c)
only has an IoU of 0.35 with the red ground truth bounding box, but is a perfect
approximation of the object itself.

Especially the latter point is of increasing concern. The recent advances of Fully Convo-
lutional Networks (FCNs) for semantic segmentation [192, 212] have inspired approaches
that are capable of tracking dense segmentations through image sequences in real-time.
In One-Shot Video Object Segmentation (OSVOS), Caelles et al. [32] approximate the seg-
mentations by bounding boxes to enable a comparison with the state-of-the-art bounding
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Figure 4.2: Using rotated boxes as ground truth may add ambiguities. In the above
example, all of the red boxes have the same IoU with the circular region. Nevertheless, if
only a single bounding box is stored for each object, trackers proposing any of the other
boxes will obtain a suboptimal accuracy score, although they perfectly match the ground
truth.

box tracker MDNET [157]. Hence, the accuracy gain of their pixel-precise method cannot
be shown. This also accounts for approaches that approximate the object by general
affine transformations and not only through rotated boxes [22, 27].

The obvious step to prevent the above mentioned problems is to directly use pixel-
precise segmentations of objects as the ground truth. The segmentations capture every
pixel belonging to the object and are generally unambiguous. Nevertheless, a pixel-
precise representation of the ground truth significantly increases the required label
effort. For example, the manual labels of the fine pixel-precise annotations of Cityscapes
required more than 1.5h on average per image [56]. It should be noted that the Cityscapes
labels are extremely precise and each object in the images is labeled comprehensively.
Hence, for annotating a single object in a tracking sequence, this number is probably
significantly lower. Nevertheless, it is not comparable to box annotations, which only
require a few seconds per frame.

In spite of the large annotation efforts, in the last years, many different datasets
with pixel-precise data have emerged. On the one hand, these datasets made data-
hungry deep-learning-based techniques feasible in the first place. On the other hand,
the impressive results from the deep-learning-based techniques and the fast saturation
of small datasets have increased the pressure for large-scale high-quality datasets with
pixel-precise annotations to exist. Hence, while densely annotated images were a rarity
4–5 years ago, numerous large-scale datasets exist today. Common examples include
ADE20K [249], D2S [78], Cityscapes [56], COCO [134], Places [248], or The Plant Phenotyping
Datasets [152]. The COCO 2014 dataset [134] alone includes more than 886 000 densely
annotated instances of 80 categories of objects. The datasets have facilitated the state of the
art in semantic segmentation, instance segmentation, object tracking, and object detection.
The datasets related to object tracking are discussed in more details in Section 5.1.

Overall, the annotation effort needs to be set against the accuracy gain that may be
obtained by the methods as well as in the evaluation. Although the most recent and the
largest tracking datasets are still restricted to bounding boxes, datasets with dense labels
have slowly started to emerge. For example, the DAVIS dataset [170] was released in
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(a) bag from VOT2016 [116] (b) blackswan from DAVIS
[170]

(c) boat from DAVIS [170]

Figure 4.3: In image (a), both rotated boxes have an identical IoU with the ground truth
segmentation. Nevertheless, their common IoU is only 0.71. Restricting the ground
truth to boxes may introduce an undesired bias in the evaluation. In image (b), the best
possible IoU of an axis-aligned box is only 0.66. Hence, for segmented data, it is difficult
to use the absolute value of the IoU as an accuracy measure since it generally does not
range from 0 to 1. Furthermore, although the object detection (green) in image (c) has
an overlap of 0.62 with the ground truth segmentation, its IoU with the ground truth
axis-aligned bounding box is only 0.45 and would be considered a false detection in the
standard procedure.

2016. It has very precise manually labeled pixel-precise segmentations and consists of
50 short sequences. It was designed for video object segmentation, but can also be used
for the evaluation of short-term object trackers. Furthermore, the segmentations used to
generate the VOT2016 ground truths have very recently been released [226]. Hence, also
in tracking, pixel-precise labels are starting to be available. Nevertheless, no evaluation
protocol exists that enables a fair comparison of tracking approaches that are restricted
to boxes and those that are not. For example, the VOT2016 Benchmark [116] generates
plausible rotated boxes from densely segmented objects and the COCO 2014 Detection
challenge [134] uses axis-aligned bounding boxes of the segmentations to simplify the
evaluation protocol. As a consequence, approaches may have a relatively low IoU with
the ground truth although their IoU with the actual object segmentation is the same (or
even better) than that of the ground truth box (see Fig. 4.3(c)).

To eliminate the above problems, we propose to directly use the IoU of the object
segmentation and the tracker proposal as an accuracy measure. This removes the
ambiguities that are introduced by simplified representations such as boxes. It also
rewards methods that are more accurate than the current state of the art.

4.2 Relative Intersection over Union

To improve the precision of the accuracy measure, we use a pixel-precise segmentation
map of the object as ground truth. The accuracy is then computed as the IoU of the
pixel-precise ground truth and the tracker proposal. This ensures that approaches that
are not restricted to boxes or other simplified representations obtain higher accuracy
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scores.
Nevertheless, since the majority of the current trackers are restricted to boxes [117,

174, 222, 239], this introduces a problem when evaluating these trackers. As shown above
and in Fig. 4.3, box trackers are generally unable to obtain an IoU of 1.0 for segmentations.
Inevitability, the following question arises: What is the best IoU a box-based tracker
can obtain for a scene where the ground truth is labeled with pixel precision? If this is
known, the accuracy scores of the tracker can be normalized to range between 0 to 1 and
the performance can be evaluated.

We introduce the relative Intersection over Union (rIoU) to enable a more precise
measurement of the accuracy. The rIoU of a box B and a dense segmentation S is
computed as

ΦrIoU (S ,B) = ΦIoU(S ,B)
Φopt(S)

, (4.1)

where ΦIoU is the Intersection over Union (IoU) and Φopt is the best possible ΦIoU a box
can achieve for the segmentation S . In comparison to the usual IoU (ΦIoU), the rIoU
measure (ΦrIoU) truly ranges from 0 to 1 for all possible segmentations.

However, the optimal IoU Φopt does not only depend on the segmentation, but also
on the traits of the tested tracker. A tracker that estimates rotated boxes can theoretically
obtain a higher Φopt than one that does not. Similarly, a tracker that does not estimate
the scale will have an even lower value for Φopt. In the most general case, the box B can
be parameterized with 5 parameters

b = (rc, cc, w, h, φ) , (4.2)

where rc and cc denote the row and column of the center, w and h denote the width
and height, and φ the orientation of the box with respect to the horizontal-axis. An
axis-aligned box can equally be parameterized with the above parameters by fixing the
orientation to 0◦. A box with a fixed scale has a fixed value of w and h and only varies in
the box location rc and cc. In our setting, the values of w and h are initialized in the first
frame and denoted as w0 and h0.

The optimal box Φopt may be obtained in a fast and efficient optimization process. In
the following, we present an efficient procedure and validate the quality of the boxes.

4.2.1 Optimization: Computing Optimal Boxes

For an arbitrary segmentation S , the box with the best possible IoU can be computed as

Φopt(S) = max
b

ΦIoU (S ,B(b)) s.t. b ∈ R4
+ × [0◦, 90◦). (4.3)

In general, there is no closed-form solution for Φopt. S does not need to be connected,
nor fulfill any compactness constraints. Consequently, there are many examples where
the optimal b is not even unique. However, we are merely interested in the value of Φopt

and thus the uniqueness of b is of no concern.
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Figure 4.4: blackswan from DAVIS [170]. The initial values of the optimization process
of (4.3) are displayed. We use the axis-aligned bounding box (green), the rotated bounding
box (blue), the inner square of the largest inner circle (magenta), the largest inner axis-
aligned box (black) and the rotated box with the same second order moments as the
segmentation (orange).

For a convex segmentation, the above problem can be efficiently optimized with the
method of steepest descent. To handle arbitrary, possibly unconnected, segmentations,
we optimize (4.3) with a multi-start gradient descent with a backtracking line search. The
gradient is approximated numerically by the central difference. The central difference is
given by

δh[ΦIoU(b)] =
ΦIoU(b + h)−ΦIoU(b− h)

2h
, (4.4)

where h ∈ R5
+. Here ΦIoU(b) = ΦIoU (S ,B(b)), since the equation is valid for all

segmentations S . It is reasonable to adapt the values of hi to the scale of the parameter
that is being optimized. Hence, we use a larger value for the box width w and height h
than for the center position x and y and the angle φ.

Since the problem is non-convex, the gradient descent is prone to getting caught in
local maximum. Hence, to solve (4.3) with a multi-start gradient decent, good initial
values for b are required. The initial boxes are selected to be close to theoretical upper
and lower bounds for ΦIoU(S ,B(b)). We use a diverse set to improve the quality of the
obtained values of Φopt. The used initial boxes are displayed in Fig. 4.4. The largest
axis-aligned inner box (black) and the inner box of the largest inner circle (magenta)
are completely within the segmentation. Hence, in the optimization process, they will
gradually grow and include background if it improves ΦIoU(S ,B(b)). On the other
hand, the bounding boxes (green and blue) include the complete segmentation and will
gradually shrink in the optimization to include less of the segmentation. The rotated
box with the same second order moments as the segmentation (orange) serves as an
intermediate starting point [182].

If the optimization process converges to the same optimal for the different initial
values, we assume they converged to the optimal value of (4.3). However, if the initial
values converge to different optima, further steps are taken. In these cases, the different
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Figure 4.5: The absolute difference ∆ΦIoU of the exhaustively determined best axis-aligned
box and the optimized axis-aligned box for a selected frame in each of the 50 DAVIS [170]
sequences. Most boxes are identical, only a handful of boxes are marginally different
(< 0.0001).

obtained optima Φi
opt define a multi-dimensional interval where the optimal box is likely

to lie. The interval is constructed by considering the component-wise minimum and
maximum of the different optimal boxes Bi. To be more robust, the boundaries of the
interval are extended by a fixed factor. Then, initial values to start the optimization
process are sampled randomly. In our experiments we used 50 random samples. The
optimization process with the highest resulting ΦIoU is then selected as the optimum.
Although this leads to many optimizations, the approach is still very efficient. A single
evaluation of ΦIoU(S ,B) only requires around 0.04 ms on average for the segmentations
within the DAVIS [170] dataset in HALCON1 on an IntelCore i7-4810 CPU @2.8GHz with
16GB of RAM with Windows 7 (x64). As a consequence, the optimization of Φopt requires
an average of 1.2 s for the DAVIS [170] and 0.7 s for the VOT2016 [116] segmentations.

The optimization of the IoU for axis-aligned rectangles bears some similarity to the 2D
maximum subarray problem [3]. This might make an alternative algorithmic approach to
the optimization possible. However, a straightforward adaptation of methods is difficult,
since these methods rely on the additive nature of the maximum subarray problem. In
contrast, the IoU is inherently non-linear due to the quotient in its definition.

4.2.2 Validation of Optimal Boxes

To validate the optimization process, we compare the Φopt values obtained from the
numerical optimization of 4.3 to ones obtained exhaustively. For this, we selected the
most difficult frame from each of the sequences in the DAVIS dataset [170]. The difficulty
was determined by measuring the difference of Φopt for the different initial values.

The exhaustive computation of Φopt is a computationally elaborate task. The com-
putation requires around 1 hour per segmentation S , although the single evaluations
for ΦIoU(S ,B) are extremely fast. The results for the axis-aligned boxes are displayed
in Fig. 4.5. They indicate that the optimization is generally very close or identical to the
exhaustively determined boxes. Only for a few examples the ΦIoU values are marginally
different. Although no tracker achieved a better score than Φopt in our experiments, we

1MVTec Software GmbH, https://www.halcon.com/
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nonetheless compute the rIoU as

ΦrIoU (S ,B) = min
(

ΦIoU(S ,B)
Φopt(S)

, 1
)

. (4.5)

For the exhaustive determination of the optimal rotated boxes, one of the restrictions
we can make is that the area must at least be as large as the smallest inner box of the
segmentation and may not be larger than the bounding rotated box. Nevertheless, even
with further heuristics, the number of candidates to test is in the number of billions for
a single segmentation from the DAVIS dataset. Given a pixel-precise discretization for
rc, cc, w, h and a 0.5◦ discretization of φ, it was impossible to find boxes with a better IoU
than the optimized rotated boxes in the validation set. This is mostly due to the fact that
the subpixel precision of the parameterization (especially in the angle φ) is of paramount
importance for the IoU of rotated boxes.

4.3 Theoretical Trackers

The new accuracy measure can be used to generate three very expressive theoretical
trackers. The concept of theoretical trackers was first introduced by Čehovin et al. [40] as
an “excellent interpretation guide in the graphical representation of results.” The theoretical
trackers provide reference points for an evaluation sequence and put the results of the
evaluated trackers into context. For example, one of the theoretical trackers always
reports the region of the object to equal the image size of the sequence. Hence, the
tracker is perfectly robust, since it never has an overlap of 0 with the ground truth
(ΦIoU 6= 0). When weighing between accuracy and robustness, this tracker is thus the
lowest reasonable bound of the accuracy. A further theoretical tracker always predicts
the center position of the object correctly. However, the size of the object is fixed in the
first scale. This tracker represents a practical performance limit for trackers that do not
adapt the scale of the object.

In our case, we use the boxes with an optimal IoU to create upper bounds for the
accuracy of trackers that are restricted to boxes. We introduce three theoretical trackers
that are obtained by optimizing (4.3) for a complete sequence. Given the segmentation
S , the first tracker returns the best possible axis-aligned box (box-axis-aligned), the
second tracker returns the optimal rotated box (box-rot), and the third tracker is similar
to the tracker proposed by Čehovin et al. [40]: It returns the optimal axis-aligned box
with a fixed scale (box-no-scale). The scale is initialized in the first frame with the
scale of the box determined by box-axis-aligned.

The theoretical trackers normalize the IoU for a complete sequence. This enables a
fair interpretation of a tracker’s accuracy and removes the bias from the box-world as-
sumption. The ΦIoU scores for the motorbike sequence from DAVIS [170] are displayed
in Fig. 4.6. Since the motorbike is driving towards the camera, there is an increasing
gap between box-no-scale and the two scale-adaptive tracker box-axis-aligned
and box-rot. In general, the difference between box-axis-aligned and box-rot is

30



4.3 Theoretical Trackers

0 10 20 30 40
0

0.2
0.4
0.6
0.8

1

Frame Index

Φ
Io

U

box-no-scale box-axis-aligned box-rot

Figure 4.6: motorbike from DAVIS [170]. The increasing gap between the
box-no-scale and the other two theoretical trackers indicates a scale change of the
motorbike. The drop in all three theoretical trackers around frame 25 indicates that the
object is being occluded. The best possible IoU is never above 0.80 for the complete
sequence.

ΦIoU

VOT2015 0.577

VOT2016 0.651

box-no-scale 0.512

box-axis-aligned 0.722

box-rot 0.760

Table 4.1: ΦIoU of the VOT2016 and VOT2015 ground truths [116] and of the theoretical
tracker box-no-scale, box-axis-aligned, and box-rot, for the VOT2016 segmen-
tations [226]. The VOT 2015 ground truths where obtained manually, while the VOT
2016 ground truths where generated directly from the VOT2016 segmentations [226].

usually not too extreme.

To get a perspective on how well box trackers can compete on pixel-precise ground
truth data, we compare the ΦIoU scores of the theoretical trackers to the VOT 2016
segmentations, VOTSEG [226] in Table 4.1. As shown, the average ΦIoU scores are quite
low. Hence, no box-based tracker is able to obtain an average ΦIoU over 0.76 on the
VOT 2016 segmentations. A tracker that does not estimate the scale is even bound by an
average ΦIoU of 0.512, which is only marginally above the standard Φthres of 0.5.

The three different theoretical trackers make it possible to interpret a tracking se-
quence without the need of by-frame labels. As is displayed in Fig. 4.6, the difference
between the box-no-scale, box-axis-aligned, and box-rot trackers indicates
that the object is undergoing a scale change. Furthermore, the decreasing IoUs of all
theoretical trackers indicate that the object is either being occluded or deforming to a
shape that can be approximated less well by a box. For compact objects, the difference of
the box-rot tracker and the box-axis-aligned tracker indicates a rotation or change
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Figure 4.7: dog from DAVIS [170]. The gaps between the box-axis-aligned and
box-rot tracker indicate a rotation of the otherwise relatively compact segmentation of
the dog. The best possible IoU is never above 0.80 for the complete sequence. For clarity
the box-no-scale tracker is omitted.

of perspective, as displayed in Fig. 4.7. In [23], the theoretical trackers are used to train a
deep neural network and automatically label attributes of a sequence such as occlusion
and rotation.

4.4 Measuring Scale Changes

The presented theoretical trackers enable us to compute a new scale measure. The
measure captures how well a tracker can cope with scale changes. It builds on the fact that
scale changes within a sequence result in a significant drop in ΦIoU of box-no-scale,
while box-axis-aligned remains unaffected, as can be seen nicely in Fig. 4.8. The
derivative of the difference of racing curve (γ) is visualized in Fig. 4.9 and is a reliable
indicator of the scale-change. It is the foundation of the presented scale measure.
Whenever it exceeds a threshold, it is assumed that the scale is changing. A further
threshold (e.g., 0.005) may be used to suppress minor scale changes and to compensate
for noise in the segmentations. Moreover, a prior smoothing of the derivatives with a
Gaussian function with σ = 3 further increases the robustness to noise.

For the frames that are identified as changing scale, we calculate the scale score s.
For each of these frames, we compare the change of the size of the tracker predictions to
that of the box-axis-aligned tracker. If both have the same direction, we assume the
tracker is successfully registering a scale change. To make the approach as independent
from the accuracy measure as possible, we do not regard the magnitude of the size
changes, but merely their sign. Please note that the change of the size of the ground truth
boxes or segmentations could equally be used to estimate the “ground truth” scale change.
Nevertheless, we chose to use the box-axis-aligned tracker to obtain an estimate of
the scale score for two reasons. First of all, the segmentations themselves are very noisy
and secondly, by using the box-axis-aligned scale change, it is possible to bring the
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Figure 4.8: racing from VOT2016 [116]. The increasing gap between the
box-no-scale and the other two theoretical trackers indicates a scale change. The best
possible IoU is never above 0.80.

tracker scale scores into relation to the scale score of the VOT2016 ground truth boxes.

The scale score s for a sequence is computed as

s =
1
ñ

n

∑
i

δŝgn(size(Ti)′),ŝgn(size(Gi)′) (4.6)

where Ti is the tracker prediction and Gi is the box of the scale-adaptive theoretical
tracker (box-axis-aligned). δi,j is the Kronecker delta, which is 1 if the variables are
equal, and 0 otherwise:

δi,j =

0 if i 6= j,

1 if i = j.
(4.7)

The derivative of the size of the region R is denoted as size(R)′. The derivative is
approximated by central differences. ŝgn is an approximation of the signum function
sgn. It is not strictly 1 and −1 when the input is 6= 0, but only once a set threshold has
been exceeded (we use 0.005 in the experiments) and 0 otherwise. Furthermore, ñ is the
number of frames where ŝgn(size(Gi)

′) is 6= 0.

Trackers that do not estimate the scale have a scale score of 0 (size(Ti)
′ = 0 ∀ ∈ n)

and a perfect scale-adaptive tracker has a score of 1. Please note that no per-frame labels
are required and the scale score is, by construction, uncorrelated to the accuracy or
robustness overlap. In the evaluation, we calculate the scale score without reinitialization
on tracker failure and ignore the frames where the tracker has failed completely (hence
ΦIoU = 0).
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Figure 4.9: The derivative of the difference between the box-no-scale and
box-axis-aligned tracker from Fig. 4.8. The magnitude of the derivative is a re-
liable indicator for scale change. To suppress minor scale changes and to compensate for
noise in the segmentations, we require the magnitude to exceed the fixed threshold of
0.5× 10−3 (visualized as the red-dotted lines).

4.5 Experiments

We evaluate state-of-the-art trackers with the new accuracy measures on the DAVIS2016
[170] and the VOT 2016 segmentations, denoted by VOTSEG [226]. Both datasets have
pixel-precise labels. While the DAVIS [170] dataset has very precise labels in 60 short
sequences, the segmentations of VOTSEG are less accurate but the scenes are longer.
To make it easy to reproduce the results, the complete code of the evaluation system
and the evaluation scripts have been make available to the community2. The evaluation
framework is constructed such that it is easy to add new trackers from MATLAB3,
Python4, or HALCON5.

The evaluation was restricted to open-source state-of-the-art trackers. A reimple-
mentation of many tracker algorithms is difficult, since the implementation details are
not apparent from the publications themselves. The trackers are selected to be efficient,
high performing and different in their nature. Hence, we selected the basic Kernelized
Correlation Filter (KCF) [97] tracker since it was a top ranked tracker in the VOT2014
challenge. It does not estimate the scale of the object. The Discriminative Scale Space
Tracker (DSST) [62] is essentially an extension of KCF that can handle scale changes
and generally outperforms KCF [97]. As further axis-aligned trackers, we include ANT
[39], L1APG [11], STAPLE [16], and the best-performing tracker from the VOT2016
challenge and top performer of VOT 2017, the Continuous Convolution Filter (CCOT)
from Danelljan et al. [66]. CCOT was extended very recently to the Efficient Convolution
Operators for Tracking (ECO) [61]. Furthermore, we include the LGT [37] tracking since
it is one of the few open-source trackers that estimates the object position as a rotated
box.

In the experiments, we do not reinitialize the tracker’s when they move off target. We
are primarily interested in the accuracy and not in the trackers robustness. Please note
that the accuracy of the robustness measure is also improved when using segmentations.

2https://www.mvtec.com/company/research/
3The MathWorks, Inc., https://www.mathworks.com/
4Python Software Foundation, https://www.python.org/
5MVTec Software GmbH, https://www.halcon.com/
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Table 4.2: The average (ΦIoU) and relative IoU (ΦrIoU) values for DAVIS [170] and
VOTSEG [226]. To get a perspective of the ΦIoU values, the results for the top performing
segmentation technique OSVOS [32] are added for DAVIS

DAVIS VOTSEG
∅ΦIoU ∅ΦrIoU ∅ΦIoU ∅ΦrIoU

Axis-aligned boxes (fixed scale)
KCF [97] 0.40 0.78 0.23 0.45

Axis-aligned boxes
ANT [39] 0.41 0.64 0.26 0.38
CCOT [66] 0.47 0.73 0.42 0.58
DFST [180] 0.41 0.64 0.27 0.38
DPCF [1] 0.38 0.59 0.29 0.41
DSST [62] 0.43 0.67 0.24 0.33
ECO [61] 0.48 0.76 0.42 0.58
L1APG [11] 0.40 0.63 0.18 0.25
STAPLE [16] 0.45 0.71 0.33 0.46

Rotated boxes
LGT [37] 0.40 0.60 0.25 0.34

Segmentations
OSVOS [32] 0.80 - - -

The failure cases (ΦIoU = 0) are identified earlier since ΦIoU is zero when the tracker has
no overlap with the segmentation and not with a bounding box abstraction of the object
(which may contain a large amount of background; see, e.g., Fig. 4.3).

The average ΦIoU scores of all trackers and for both datasets are displayed in Table 4.2.
To gain a perspective on the error made by the box trackers, we also add the results
on DAVIS from One-Shot Video Object Segmentation (OSVOS) [32] to the evaluation.
Of course, the computation of ΦrIoU makes no sense for a tracker that is estimating the
segmentation directly.

Relative Intersection over Union ΦIoU In Table 4.2, the average ΦIoU and ΦrIoU values
for the DAVIS and the VOT2016 segmentations are displayed. Each tracker is normalized
with the Φopt value of the theoretical tracker that has the same abilities. Hence, the KCF
tracker is normalized with the box-no-scale tracker, the LGT tracker with box-rot,
and the others with box-axis-aligned. By these means, it is possible to observe how
well each tracker is doing with respect to its abilities. For the DAVIS dataset, the KCF,
ANT, L1APG, and LGT trackers all have the same absolute IoU, but when normalized by
Φopt, differences are visible. Hence, it is evident that the KCF is performing very well,
given the fact that it does not estimate the scale. On the other hand, the LGT tracker,
which has three more degrees of freedom, is relatively weak. A more detailed example
analysis of the bmx-trees sequence from DAVIS [170] is displayed in Fig. 4.10. Please
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(a) (b) (c)

box-no-scale box-axis-aligned box-rot
DSST CCOT ANT L1APG

Figure 4.10: bmx-trees from DAVIS [170]. On the left, differences between
box-no-scale and box-axis-aligned indicate that the object is changing scale
and is occluded at frame 18 and around frames 60-70. In the middle plot, we compare
the ΦIoU of the axis-aligned box trackers and box-axis-aligned. The corresponding
ΦrIoU plot is shown on the right. It becomes evident that the ANT tracker fails when the
object is occluded for the first time and the L1APG tracker at the second occlusion. The
ΦrIoU shows that DSST and CCOT perform well, while ΦIoU would imply they are weak.

note that the significantly higher difference between ΦIoU and ΦrIoU for KCF compared
to the other trackers is due to the different normalization factors used. The optimal
ΦIoU value for a box with fixed size is usually considerably lower than for a general
axis-aligned box.

For the VOT2016 dataset, the overall accuracies are significantly worse than for DAVIS.
On the one hand, this is due to the longer, more difficult sequences, and, on the other
hand, due to the less accurate and noisier segmentations (see Fig. 4.11). Nevertheless,
ΦrIoU allows a more reliable comparison of different trackers. For example, ANT, LGT,
and DSST have almost equal average ΦIoU values, while ANT clearly outperforms LGT
and DSST with respect to ΦIroU. Again, we can see that the KCF tracker is quite strong
when considering the fact that it cannot estimate the scale.

The scale score s We evaluated the new scale measure s for the DAVIS and VOT2016
segmentations. Because there are ground truth boxes available for the VOT sequences,
we also evaluate the manually annotated boxes from the 2015 ground truths and the
automatically obtained boxes from the 2016 ground truths. For DAVIS there are no box
labels available. We use the size change of the box-axis-aligned tracker to compute
sgn(size(Gi)

′) in the VOT2016 sequences. We refrained from using the segmentations
directly since they are very noisy. For DAVIS, we use the segmentations directly.

The results are displayed in Table 4.3. For all trackers, the scale score is significantly
higher for the DAVIS sequences than for the VOT sequences. This is not surprising since
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(a) car1 (b) hand (c) singer2 (d) fish3

Figure 4.11: Examples from VOTSEG [116] where the segmentations are degenerated,
sometimes due to motion blur (e.g., (a) and (b), a weak contrast of the object and its
background (c), or where the semi-automatic segmentation failed completely (d).

Table 4.3: The new scale measure (4.6) is displayed. On the left for the theoretical
tracker box-axis-aligned, box-no-scale, and the VOT 2015 and VOT 2016 ground
truths. On the right the scale score s for a collection of trackers is displayed. Even the
top performing trackers (CCOT and ECO) have a relatively low scale score s (e.g., in
comparison to the VOT2016 ground truths).

scale score s

VOTSEG DAVIS

ground truths tracker tracker

box-axis-aligned 1.00 ANT [39] 0.36 0.57

box-no-scale 0.00 CCOT [66] 0.54 0.69

VOT2015 0.69 DFST [180] 0.32 0.51

VOT2016 0.81 DPCF [1] 0.31 0.54

DSST [62] 0.29 0.62

ECO [61] 0.52 0.66

KCF [97] 0.00 0.00

L1APG [11] 0.30 0.55

STAPLE [16] 0.37 0.59
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Figure 4.12: bmx (top), book (middle) and singer3 (bottom) from VOT2016 [116]. None
of the tested trackers can cope with the scale change. This becomes apparent since none
of them can seriously outperform box-no-scale and all fail early on in the sequences.

the scenes are much shorter and there is significantly less scale change within them.
In general, the CCOT tracker has the best scale adaption capabilities. Although it is
outperformed in terms of ΦIoU by ECO, it is stronger in sequences where there is only a
modest amount of scale change. Nevertheless, there is significant room for improvement
in sequences with strong scale change. As shown in Fig. 4.12, there are many examples
where none of the tested trackers are able to correctly estimate the object size when there
is significant scale change. In the shown examples, even the box-no-scale is able to
outperform all of the tested trackers. The scale score s of the respective sequences is well
below 0.25 for all trackers.

In general, the scale adaptation appears to be a problem of current state-of-the-art
approaches. The scale scores are low and have significant room for improvement. The
observation is not very surprising. When an object undergoes a strong scale change, there
is often also a strong appearance change since new details become visible or disappear.
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4.6 Discussion

The advance of tracking to more elaborate and robust techniques has two coherent
development directions: (1) the technologies behind the tracking approaches and (2) the
methodologies used to evaluate the tracking systems. We extend the tracking evaluation
to support pixel-precise ground truths. This enables us to correctly measure the accuracy
of newer, pixel-precise methods without placing a disadvantage on them by using a
box-based evaluation. The prerequisite of the proposed evaluation is the availability
of pixel-precise ground truth data. Although the DAVIS dataset is highly precise, it is
restricted to very short sequences. On the other hand, the VOT 2016 sequences are more
complex and significantly longer on average. Nevertheless, the segmentations are very
coarse. Hence, although the community has presented many large-scale datasets lately,
the quality of the ground truth needs to be improved.

The applicability of the proposed optimal boxes for a segmentation is not restricted to
tracking. In general, it could also help to also improve the evaluation of object detection
approaches. The optimal representation of the objects with respect to the evaluation
metrics might also help to improve the object detectors themselves. Hence, instead of
training on axis-aligned bounding boxes of objects, the optimal boxes could be used.
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5
Datasets and Evaluation Protocol

The above accuracy measures require pixel-precise annotations. For tracking, the two
most relevant datasets are DAVIS [170] and the segmentations of the VOT 2016 bench-
mark, VOTSEG [226]. However, although the DAVIS sequences have very accurate
pixel-precise labels, they are very short and have limited complexity. The VOT 2016
sequences are significantly longer, more difficult, and complex. Nonetheless, they have
very coarse segmentations that were obtained semi-automatically. Hence, to evaluate
long-term trackers accurately, new data is necessary.

In general, pixel-precise ground truth annotations are very tedious to obtain. Nev-
ertheless, a collection of datasets exists. However, most of them are not designed to
evaluate trackers, but rather focus on semantic segmentation and instance-aware seg-
mentation [56, 78, 79, 134, 152, 248, 249]. To reduce the workload of obtaining highly
accurate pixel-precise annotations, a new research direction is to obtain the ground truth
data from simulators or graphics debuggers. Although this creates artificial data, the
annotations can be obtained for free. Some of the datasets have temporally connected
images and could be extended for evaluating trackers. In Section 5.1, we highlight the
relevant datasets. In Section 5.2, we present a new dataset with pixel-precise annotations
that have the same quality as those in DAVIS. In contrast, the sequences are considerably
longer and more complex. This chapter is concluded with a discussion in Section 5.3.

5.1 Related Work: Segmentation Datasets

Since the research progress depends greatly on the existence of large and diverse datasets,
a significant effort has gone into the development of new datasets with pixel-precise
semantic labels. The datasets can roughly be split into two groups: real-world and
synthetic datasets. While the real-world datasets require immense label effort, the
pixel-precise labels are usually generated automatically in synthetic datasets. However,
the images in the synthetic datasets are synthetic and merely an approximation of the
real-world.
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Figure 5.1: A part of the Cityscapes dataset [56] is annotated with very fine labels (left),
and the other part with coarse labels (right).

Real-world Dataset A particularly popular and challenging application for semantic
segmentation methods involves self driving cars. The first dataset in the domain of
self-driving cars with semantic segmentations was the Cambridge-driving Labeled Video
Database (CamVid) [30]. The camera was set up on the dashboard of a car, with a
similar field of view as that of the driver. The dataset consists of a 10 minute video
sequence captured with 30 Hz. 701 frames of the video have pixel-precise semantic
labels. They are spaced evenly across the sequence (≈ 1 Hz). Hence, although there is a
temporal connection between the frames, it is very coarse and difficult to use for tracking.
Moreover, the dataset does not contain any instance-level annotations.

In 2016, the Cityscapes dataset [56] was released. It includes 25 000 annotated images
with instance-wise semantic labels. The dataset is very diverse and obtained by driving
through 50 different cities, at different times of day, with different weather conditions,
and at different seasons. A fifth of the images (5 000) are annotated very precisely while
the rest (20 000) is labeled with coarse labels. An example from both classes is displayed
in Fig. 5.1. Although the images are labeled with instance-level segmentations, the time
between the individual high-quality frames is very large. Hence, as for CamVid, this
makes it difficult to use the dataset to evaluate trackers accurately.

The KITTI Vision Benchmark Suite [84, 85] also includes some instance-level semantic
segmentation annotations. In general, the KITTI dataset contains over 40 000 stereo image
pairs taken from a car driving through various European cities. The dataset is used to
benchmark various different computer vision tasks, such as stereo reconstruction, optical
flow, visual odometry, 3D object detection, and 3D object tracking. The instance-level
segmentations are only available for 430 images [2]. Nevertheless, various extensions
of the dataset have been proposed. For example, Siam et al. [196] present the KITTI
MoSeg dataset. It contains ground truth annotations for moving 3D object detection.
Their approach enables to generate pseudo ground truths for the segmentations as well.
However, these are very coarse and cannot be used to accurately measure the ΦIoU with
reasonable precision.

Apart from autonomous driving, little semantic segmentation data with a temporal
connection exists. A common approach is to build 3D scenes and label the 3D objects
within. The scenes can be further augmented by 3D models of different objects. Through
interaction with the scene, 2D snapshots of the scene and the respective segmentation
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Figure 5.2: Example reconstructions from the Matterport3D Research Dataset [42].

maps can be generated. For example, very recently, Matterport1 released the Matter-
port3D Research Dataset [42]. It is a large-scale RGB-D dataset containing over 10 000
panoramic views from almost 200 000 RGB-D images of 90 different building-scale scenes.
The annotations were generated by using a crowd-sourced painting interface. The an-
notations include surface reconstructions, camera poses, and 2D and 3D semantic and
instance-level segmentations. The 3D models in the dataset can be used to generate
reconstructions interactively. A few example reconstructions are shown in Fig. 5.2. There
are no moving objects in the scene, but tracking sequences could be generated from the
ego-motion of the observer. Nevertheless, the possible complexity that can be generated
within the tracking sequences is limited.

Similarly, ShapeNet [43] is an ongoing effort to establish a richly annotated, large-scale
dataset of 3D shapes. Realistic 3D models are critical for creating real-life and diverse
virtual worlds. Various works in this direction exist. A prominent example is the dataset
of Choi et al. [50], which includes more than 10 000 3D scans of real objects, which have
been generated from RGB-D data acquired with PrimeSense Carmine cameras.

In general, 3D models are appealing since they can significantly reduce the label
effort. The models in the Matterport3D Research Dataset are generated from real images
that were acquired with a Matterport Pro 3D Camera. Nevertheless, it is reasonable to
attempt to generate ground truth data from synthetic 3D models altogether. A very recent
trend in computer vision is thus to generate images and highly precise annotations from
a graphics engine. In the following section, we highlight the most prominent examples
and comment on the possibilities they create and their general limitations.

Synthetic Data In the last few years, the use of synthetic data has increased significantly.
This is especially due to the rise of data-hungry deep learning techniques for many
computer vision tasks such as object detection, semantic segmentation, pose estimation,

1https://matterport.com
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and scene understanding [4, 46, 92, 95, 112, 144, 167, 209]. We group synthetic data into
two overlapping groups and present a few examples that can be related to the synthetic
dataset we propose later. The first group includes fixed datasets that are generated by a
graphics engine. The second group is more general. It includes graphic simulators or
applications that allow to interact with a 3D environment and generate new synthetic
data. These systems are typically not used for benchmarking, but rather for generating
completely new data, e.g., for training learning approaches.

In 2016, Song et al. proposed the SunCG dataset [201]. It is a richly-annotated large-
scale dataset of 3D indoor scenes. The dataset contains over 45 000 scenes of manually
generated room and furniture layouts. The different scenes are semantically annotated
with instance labels. Furthermore, depth images can be generated. Like Matterport, the
dataset only contains static objects and is not really suited for generating tracking data.

A further domain where temporal data is of interest is human pose and action
estimation. The Synthetic hUmans foR REAL tasks (SURREAL) dataset [224] is a large
dataset with synthetically generated images of human motion data. The dataset includes
more than 6 million frames with RGB data, depth maps, segmentation masks, and
ground truth human poses. However, the dataset was not constructed for object tracking
specifically. Hence, the sequences are very short and the humans are placed in front of a
static background. Nevertheless, the visual quality of the rendered humans is convincing.

Similarly, the Procedural Human Action Videos (PHAV) dataset [67] is a synthetic
dataset of procedurally generated human action recognition videos. The labels include
RGB frames, depth maps, optical flow, and instance-level segmentations. The dataset
is constructed with the game engine UnityPro. The realism of the generated images is
significantly better than in the above works. It contains almost 40 000 videos. Although
most of the sequences are quite short, some longer sequences exist. The videos are mostly
human centered but have a large variation in the actions performed. The dataset could
probably be used to generate a single-human tracking benchmark system.

A further synthetic dataset that could be used to generate an object tracking dataset
is the SYNTHetic collection of Imagery and Annotations (SYNTHIA)[181] dataset. It was
generated with the Unity Development Platform2 and consists of rendered images from
a virtual city with different weather and times of day. The images are annotated for 13
classes with pixel-precise segmentations. The dataset is split into three different subsets;
SYNTHIA-Rand, SYNTHIA-Seqs and SYNTHIA-SF. The first subset contains 13 400
frames of the city taken at random positions and illumination. The later two subsets
consists of ten video sequences with thousands of frames each. The virtual vehicle moves
through the city and interacts with various dynamic objects such as pedestrians, vehicles,
and cyclists. The dataset has instance-level annotations that are consistent throughout
the sequences. Furthermore, there are images and annotations for various cameras on
the virtual vehicle. There are also depth images available. Nevertheless, the images in
the dataset appear visually synthetic and the single textures of the different surfaces have
little variation. As a result, the image statistics are very different from natural images. A
few example frames from SYNTHIA-SF are display in Fig. 5.3.

2Unity Technologies, https://unity3d.com
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Figure 5.3: Example images from the SYNTHIA-SF [181] .

A very similar dataset is Virtual KITTI [83]. It was also rendered with the Unity game
engine. It contains 50 high-resolution videos (21 260 frames) generated by driving through
five different virtual worlds with a virtual car. Each sequence is acquired multiple times
with different weather and lighting conditions. Again, there are multiple virtual cameras
mounted on the vehicle to increase the viewpoint variation for each scene and to enable
the testing stereo algorithms. The images have a similar quality to SYNTHIA and appear
visually artificial.

The above methods attempt to create photo-realistic virtual worlds with an open-
source graphics engine and manually generate sequences within them. This requires
considerable effort and the quality of the images is typically restricted by the features
of open-source graphics engines. A different approach is to exploit the advances in the
quality of the graphics in computer games. Immense efforts have been undertaken by
the gaming industry to produce computer games with realistic graphics and intelligent
agents. Recent works exploit the quality of the virtual world used in Grand Theft Auto
V3 to generate photo-realistic images and annotations [104, 178, 179]. In their work,
Richter et al. [179] use the graphics debugger RenderDoc [111] to gain access to the
DirectX calls and generate ground truth labels for each generated image. Similarly,
Johnson-Roberson et al. [104] use two open-source plug-ins to extract annotations at 1 Hz.
To reduce the overhead required by the debugger, Richter et al. extend their framework
to access the DirectX calls directly [178]. This allows to create ground truth annotations
in real time. The resulting VIsual PERception benchmark (VIPER) dataset is very diverse
and the pixel-precise annotations are available for 124 sequences of varying length and
complexity. In total there are 254 064 frames with a resolution of 1920× 1080 pixels. The
sequences are acquired at different lighting and weather conditions and are very diverse
with many moving cars, pedestrians, and cyclists in the scenes. Although there are

3Rockstar Games, https://www.rockstargames.com/V/
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Figure 5.4: Example images and annotations for the VIPER dataset [178]. In the middle,
the annotations of the classes are displayed with a color coding. At the bottom, the
instance-level annotations are converted to an RGB image to display the individual
instances.

instance-level segmentations available, the ID of the objects are not consistent throughout
a sequences. Hence, the dataset cannot be used for object tracking out of the box.
Nevertheless, the quality of the images and the diversity within the sequences makes
it a very appealing starting point for generating a long-term object tracking benchmark
with pixel-precise annotations. A few example images and annotations are shown in
Fig. 5.4. Since the annotations are generated automatically from the DirectX calls, they
are extremely accurate.

Simulators To generate new data from existing 3D models and environments, the
Multimodal Indoor Simulator (MINOS) [187] has been published. It enables to navigate
through complex indoor environments and create multi-sensory data. It currently
supports the 3D environments from Matterport3D [42] and SunCG [201]. However,
although the quality fo the rendered scenes is very high, there are no dynamic agents.
Hence, the simulator is of restricted use for generating data for object tracking directly.

Similarly, UnrealCV[173] is an ongoing project to help computer vision researchers
build virtual worlds and generate annotations and images in real-time. It uses the Unreal
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Engine 4 (UE4)4 game engine. The system requires little knowledge of the fundamentals
behind the UE4 and new worlds can be added in a straightforward manner. However,
again, there is no direct support of dynamic agents within the virtual scenes. Hence,
apart from tracking static objects with respect to ego-motion, the evaluation of tracking
is restricted.

In recent years, a number of open-source simulators to generate computer vision
images and annotations with dynamic objects were published simultaneously. Like
UnrealCV, they mostly build on the UE4 game engine. The UE4 game engine and the
integrated tools have been made open source. This has invited many researchers to
build their computer vision simulators with using the UE4. Two prominent examples
are CARLA [74] and AirSim [191]. CARLA is an open-source simulator for autonomous
driving research. It provides various urban layouts and models for buildings and vehicles.
The code and protocols are open-source and the simulation platform supports various
different sensors and environmental conditions. The annotation and sensor data can be
extracted in real-time. Among others, it has been used successfully for the end-to-end
training of an autonomous “virtual vehicle” [74]. Similarly, AirSim is a simulator for
drones and cars. It was released by Microsoft5 in 2017. Any Unreal environment is
supported, which makes it very easy to generate very diverse datasets.

From Synthetic to Real Data The above methods allow to create an infinite amount of
images and annotations. Nevertheless, the generated data is still synthetic. It has been
observed that learning from synthetic images may not achieve the desired performance
due to the gap between the distributions of synthetic and real images. As a consequence,
algorithms may not generalize from synthetic images and perform poorly for real images,
although they are top-performers on synthetic data. To close this gap, a number of
research directions exist [28, 59, 195, 197, 228]. Most of the top performing approaches
make use of Generative Adversarial Networks (GANs) [86]. The GAN framework consists
of two networks, a generator and a discriminator, with competing tasks. The goal of
the generator is to create realistic images and attempt to fool the discriminator, which
distinguishes between real and synthetic images. Hence, both tasks have a competing loss.
Initially, GANs where proposed to generate visually realistic images from random inputs
[86]. Since then, they have been extended to generate realistic images from synthetic input
images without manipulating the labels of the input too much. For example, Shrivastava
et al. [195] use GANs to create a top-performing gaze estimation system from synthetic
images and a large dataset of unlabeled real images. The real images are required to force
the generator to create images that are as realistic as possible. Hence, the gaze direction
of the real images does not need to be known. In general, the frameworks that refine
synthetic data need to ensure that the labels of the objects (e.g., the gaze direction) are not
manipulated by the generator to much. This is still a key problem of these approaches
and a very active research field [59, 197].

4Epic Games Inc. https://www.unrealengine.com/en-US/blog
5Microsoft https://github.com/Microsoft/AirSim

47

https://www.unrealengine.com/en-US/blog
https://github.com/Microsoft/AirSim


Chapter 5: dataset

5.2 A Novel Tracking Dataset: Playing for Tracking Data (PFTD)

The goal is to create a diverse dataset with pixel-precise annotations. The sequences
should include long term scenes with occlusion, perspective change, and a large variety
of different vehicles. Nevertheless, to keep the evaluation efficient, the dataset should
also be as compact as possible. In general, this is the crux of every benchmark dataset; it
needs to balance between a reasonable diversity and length and an efficient evaluation.
For example, the protocol of the OTB 2015 benchmark [239] reinitializes every tracker
multiple times for a single sequence (at different positions within the first frame and at
different time steps within the sequence itself). Hence, to evaluate a single tracker on the
100 sequences, more than 1 000 single tracker runs are generated. For multiple trackers,
this is very time-consuming process. Furthermore, a very large dataset makes a detailed
by-scene analysis difficult. As a consequence, the proposed dataset is compact, has very
precise labels, and diverse sequences.

In general, simulators are an excellent starting point for generating large-scale datasets
and benchmarks. They allow fitting the environment to many domains and applications.
However, to generate a diverse dataset, an intense interaction with the virtual worlds
is still required. A user needs to manually control a virtual car or drone through
the environment and create a diverse set of data. Furthermore, to generate a set of
sequences to benchmark visual trackers, the ground truths need to be connected on an
instance-level. Although the work load is significantly lower to create the pixel-level
annotations, it doesn’t come for free. To remove the necessity to generate completely
new sequences manually, we turn to an existing synthetic dataset instead: we use the
generated sequences from VIPER[178] to create a new object tracking benchmark with
pixel-precise labels.

In the VIPER dataset, the single classes and instances in each image are identified in
two further images. The cls image identifies the semantic class of each pixel. It is shown
in the second row of Fig. 5.4. The instcs image identifies the single instances within
the image. It is converted to RGB and displayed in the last row of Fig. 5.4. Together, both
images can be used to segment and identify the objects of each class. Unfortunately, the
instance IDs are not consistent between the single frames. Hence, a single car may change
ID multiple times within a sequence. This makes it difficult to use the annotations for
tracking directly. The authors recently released a further label image inst_tracked
that encodes tracking IDs that are meant to solve this problem. Unfortunately, the
IDs are also not unique throughout a scene and sometimes inconsistent with the other
label images. Hence, to use the dataset to generate a tracking benchmark, we present a
semi-supervised labeling approach that generates IDs that are consistent over time.

5.2.1 Semi-supervised Annotation

For each frame, it is possible to extract the “perfect” detections from the annotation
images. Nevertheless, to create tracking sequences, the detections need to be matched to
each other between the frames. The problem is visualized in Fig. 5.5, where the four blue
detections at time step t need to be matched to the three detections at time step t + 1.
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frame t frame t + 1

Dt Dt+1

Figure 5.5: Although the detections for frame t and frame t + 1 are perfect, to generate
connected tracking sequences, the detections need to be matched with each other. Since
the number of detections may change, this is not trivial.

Since detections may appear and disappear at any time, the mapping between the single
frames is not always trivial. We denote the detection in frame t with Dt and the mapping
of the detections from frame t to t + 1 as m(Dt,Dt+1). The i-th detection in Dt is denoted
as D(i)

t and we assume there are n detections Dt and m detections Dt+1.
The process of mapping the detections can be automated to a large extent. In an initial

step, a cost matrix M ∈ Rn×m to map every detection Dt to every detection in Dt+1 in
computed. Here, the cost to match D(i)

t to D(j)
t+1 is encoded in Mi,j. As the matching costs

consist of distances and similarity measures, the cost matrix is symmetrical (Mi,j = Mj,i).
The matrix is initialized with cmax for each entry.

The number of cost computations can be reduced significantly by only calculating
the cost for two detections that are reasonably close to each other. As a consequence,
only very few values of M need to be computed explicitly. In a first step, a maximum
Euclidean distance α is set (e.g., 100 pixels). Then, a regular grid is fit to the image. The
square cells of the grid are chosen to be slightly larger than twice the maximum distance,
hence g = 2α + ε. The grid for the detections in 5.5 is displayed in Fig. 5.6. This enables
to reduce the calculation of the distances between two detections. For any detection, the
distance only needs to be calculated between the detections that lie in the same, or in one
of the three closest adjacent cells. For all other detections the distance is sure to be over
α. The grid cell of each detection can be computed efficiently by dividing the row and
column image coordinate by g and rounded down to the nearest integer.

For each detection D(j)
t+1 that is close enough to D(i)

t , the Euclidean distance is calcu-
lated and encoded in cdist. All detections that are too far from each other are assigned
a large cost value cmax. To simplify the matching even further, additional costs can be
calculated based on the region similarity csim. For example, the first and second order
moments are fast to compute and a reliable prior for the similarity of regions. The
distance cost cdist and the similarity costs are then normalized to [0, 1] and aggregated to
a single cost value c = cdist + csim, which is encoded in Mi,j. The matrix M is then used
to determine the mapping between Dt and Dt+1 in a greedy manner. Starting from the
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frame t frame t + 1

Dt Dt+1

g

Figure 5.6: To efficiently calculate the mapping between the detections, the matching
cost is only computed for detections that are close to each other. For this, a grid with
cells that are twice the size of the maximal distance is fit to the images. The cost then
only needs to be computed for the detections in the same and adjacent (8-neighborhood)
grid cells. Here, g = 2α + ε and α is the maximal distance detections may have.

smallest cost, the detections are mapped and the respective rows and columns removed
from the matrix. As soon as the minimal cost is above a fixed threshold cmatch < cmax,
the cost is considered too high to match the detections automatically and the user needs
to intervene. The frame rate for the sequences is 30 Hz and, as a consequence, the objects
cannot jump through the image in two subsequent frames. Adding a similarity measure
to the cost matrix helps to correctly match objects that are very close too each other.

With the above described framework, it is possible to automatically label the majority
of the frames. The remaining frames only require a manual matching of the left over
detections and removing lost detections. We restricted the objects to cars, trucks, and
vans. In total, we computed over 2 000 candidate tracks from the dataset. We excluded
all objects that are only visible for a short period or that are never present without too
much occlusion.

5.2.2 Dataset Statistics

The goal is to create a compact and diverse dataset. As a consequence, we limit the
number of sequences and filter the candidate tracks that were initially obtained. We take
care to generate a diverse, yet compact and descriptive benchmark dataset. For this, the
candidate tracks were sorted into different categories such as occlusion, lighting change,
vehicle turns, scale change, fast motion, very long, difficult weather, or reappearance.
Then, difficult or unique sequences from each category where selected. In general, care
was taken to ensure the sequences are diverse, different types of vehicles are visible
and that many sequences include occlusion and re-detection scenarios. Furthermore,
all different weather and daytime conditions are covered. In total, this leads to 100
new tracking sequences with pixel-precise labels. A collection of tracks are displayed in
Fig. 5.7.

As shown in Fig. 5.8, the average scene length (308) is roughly the same as VOTSEG
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Figure 5.7: A collection of different sequences from Playing for Tracking Data (PFTD).
The sequences are very diverse, with different weather, cars, and lighting.
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Figure 5.8: There are 100 sequences in the Playing for Trackng Data (PFTD) dataset. The
average sequence length is similar to VOT. However, PFTD includes various long term
sequences with more than 600 frames and object disappearance and reappearance.

(357) and significantly longer than for DAVIS (69). The label quality is comparable to
DAVIS and more accurate than the VOTSEG segmentations, which are obtained from the
axis-aligned bounding box labels in a semi-supervised fashion. The dataset has slightly
more sequences than VOTSEG and DAVIS but is still reasonably compact. A distribution
of the number of frames within the dataset is displayed in Fig. 5.9. The short sequences
are added if they are sufficiently complex and add new viewpoints and attributes to the
dataset. The dataset includes a number of long-term sequences with many frames. The
sequences include full occlusion and reappearance of the objects.

The pixel-precise labels allow to calculate the accuracy measures presented in
Section 4. Because the dataset is significantly longer and more complex than DAVIS, this
allows to thoroughly evaluate the accuracy of the current trackers with new precision and
detail. Since the objects are restricted to vehicles, there are no deformable transformations
within the sequences. However, as very few of the current methods focus on deformable
transformations, this is no drawback. On the contrary, the restriction to rigid objects
allows to focus on the evaluation of the current accuracy of trackers without imposing
too many new challenges within the dataset.

The realism of the VIPER images is validated in the original publication [178, 179]
by a perceptual experiment that was adopted from prior work in photographic image
synthesis [47]. In the experiment, random images from different datasets are displayed
in pairs to Amazon Mechanical Turk workers. The worker needs to assess which of the
images is more realistic. Among others, the datasets included SYNTHIA [181], Virutal
KITTI [67] and Cityscapes [56]. From all of the synthetic datasets, VIPER was rated as the
most realistic dataset. Nevertheless, the image statistics are still different from real-world
images. The noise statistics do not agree with those of real cameras and homogeneous
regions tend to have large patches of equal RGB values. Hence, although the dataset
enables to measure tracker accuracy with high precision, the results may not equal those
of a real-world dataset.
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Figure 5.9: The distribution of the number of frames within PFTD. The dataset includes
long-term sequences. A short-term sequence is only added if it is sufficiently complex
and adds to the diversity within the dataset. Hence, all different weather and daytime
conditions are covered.

5.3 Discussion

The new synthetic dataset Playing for Tracking Data (PFTD) with very accurate pixel-
precise labels for evaluating tracker performance was presented. The dataset is compact,
yet diverse and includes very difficult sequences with vehicles being occluded, disap-
pearing completely, and changing perspective. In contrast to the tracking benchmarks
with a similar quality of the labels, the sequences in the dataset are much longer and
more complex. The high precision of the annotations enable measuring the accuracy of
trackers with increased precision. This should enable to insights on the strengths and
weaknesses of the current state of the art.

Although the images have a very realistic appearance, they are synthetic and have
different image statistics than real-world images. Hence, the evaluation results should be
considered with care and validated on real world images. A further direction could be to
adapt the image statistics with GANs to make them become more realistic. Nevertheless,
since the key value of the new dataset is the very precise ground truth annotations, any
enhancement should not manipulate the high precision of the annotations. This is still an
open and very active research direction.
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6
Related Work

Visual object tracking is one of the fundamental problems in Computer Vision and has
been actively researched for many years. There are literally hundreds of publications
related to tracking presented at conferences and journals every year. As a consequence,
the body of the related literature is enormous. It ranges from early studies on filter-
based tracking (e.g., based on Kalman filters [108]) to multi-object tracking in crowded
environments [216]. In general, it can be divided into two main categories: single-object
tracking and multi-object tracking. The first category is concerned with tracking a single-
object that is manually initialized in the first frame. The methods generally assume no
prior knowledge about the type of target object or the expected movement and are often
called model-free. The second category is concerned with trackers that track an unknown
number of objects from a specific known object class. Since the object class is known,
these methods typically make use of powerful object detectors and data association
techniques to detect and track the single-object instances.

In the following, we present the most prominent works on object tracking, with a
strong focus on single-object trackers that are capable of tracking objects in real-time.
Where possible, we highlight their relations to our work. Although this thesis is focused
on single-object tracking, we present a short overview of the recent trends in multi-object
tracking for completeness.

6.1 Multiple Object Tracking

In multiple object tracking, the object category is known, but the number of instances of
the objects is time-varying and unknown. In general, the approaches use some form of
object detector, either specific to the known class, or unspecific and based on motion in
the image (e.g., background subtraction or optical flow). The by-frame detections are then
associated to each other in an independent data association step. There may be missing or
duplicate detections and the detections are often noisy. In general, the results of multiple
object tracking systems are very sensitive to the used object detector algorithm [232].
Furthermore, most methods calculate the data association globally. Consequently, they
assume all of the detections for all frames are present at the time of the data association.
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Some of the oldest techniques for global data association are Joint Probabilistic Data
Association (JPDA) [81] and Multi Hypothesis Tracking (MHT) [175], which were first
presented around 1980. The approaches build a joint hypothesis for all possible target
assignments and then compute the marginal probabilities for the assignment of each
measurement to each target. While JDPA was originally applied to a sonar tracking
problem with multiple sensors and targets, MHT was originally applied to aircraft
tracking [175]. For both approaches, a growing number of observations and targets
lead to an exponential number of possible assignment hypotheses. As a consequence,
they are computationally extremely complex. Recently, an approximation to JPDA was
proposed [176]. The full joint probability is approximated by only considering the
strongest hypotheses. The authors show that as little as 100 hypothesis are sufficient to
obtain the same results as the full JPDA. The approximation is extremely fast to compute,
efficient, and was competitive with the state of the art in 2015.

Filter-based tracking approaches are used for single- as well as multiple-object track-
ing. The tracking is modeled as a sequential state estimation from noisy observations. The
state space is typically approximated by filter-based strategies such as Kalman filtering
[125, 143] and particle filtering [101]. The methods are able to handle short-term occlu-
sion and reason on the data association in complex scenes. In the first work on particle
filters for object tracking, Isard and MacCormick [101] jointly estimate the number of
objects and their state space. Extensions that efficiently sample the state space for many
objects and add a Markov Random Field motion prior exist [13, 113, 150]. However,
filtering-based approaches are currently not able to compete with the state of the art on
multiple object tracking benchmarks [151, 232].

Although benchmarks on various different applications exist [139, 169, 232], the core
of the recent multiple object tracking literature is concerned with pedestrian tracking
[151, 213]. It is difficult to group the approaches into disjoint groups, as many of the
multiple object tracking approaches overlap at some point. However, a large body of
the methods are formulated as network-flow-based optimization or hierarchical data
association problems. A recent further direction is graph partitioning, which jointly
clusters detection hypotheses in space and time, thereby eliminating the need for a
heuristic non-maximum suppression.

Note that the data association technique presented in Section 5.2.1, which links the
detections in the PFTD dataset, assumes that the detections themselves are perfect. This
assumption is valid since the detections are synthetically created and no false positives
or false negatives exist. However, for detections that are obtained from an object detector,
the assumption is not valid and linking the detections in a greedy manner does not work.

Network-flow-based optimization The basic idea is to model multiple object tracking
as a graph, where each node represents an object detection and each edge represents a
transition between two detections. To model the spawning and termination of trajectories,
source and sink nodes are added. In the early work of Jiang et al. [103], a linear
programming relaxation scheme is proposed to perform the data association for all
tracks simultaneously. The methods explicitly models track interaction such as object
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interactions and mutual occlusions. Alternatively, the data association can be formulated
as a min-flow problem [246]. Here, the global solution is obtained by finding the minimal
cost flow through the graph. By adding binary and linear constraints, the model can
cope with trajectory splits, multiple assignments, and false alarms [14, 194, 229]. The
network-flow-based formulation can be solved in polynomial time by K-Shortest Paths
Optimization [14].

Hierarchical data association The solution space of the network-flow-based schemes
can be very large. To reduce its size, hierarchical data association techniques make use of
the fact that short-term tracklets of the single-objects can be obtained quite easily and
with high confidence. In a first step, short tracklets are generated by either applying a
short-term tracker [237] or matching detections between frames that have high confidence
and are unambiguous [69]. For example, Wu et al. [237] generate short-term tracklets
with single-object mean-shift trackers. In a second step, hierarchical data association
techniques refine the short local tracklets and connect them to longer tracks of the single-
objects. Wen et al. [234] exploit the motion of the targets to connect the detections of a
powerful object detector to tracklets. The process can be extended to run in real-time by
using a RANSAC-style approach and matching the tracklets one at a time in a greedy
fashion [233]. In general, the hierarchical data association methods are outperformed by
graph partitioning methods in the current multiple object tracking benchmarks [151].

Graph partitioning The above methods solely link the detector response over time.
Hence, to ensure the optimization process can reasonably link the single detections, they
are refined to be more or less spatially unambiguous. For this, most methods use heuristic
non-maximum suppression [194] in each single frame. However, especially in crowded
scenes, the selection of the optimal detector response is not obvious. Acknowledging the
fact that target detectors may produce multiple equally plausible detection responses,
Tang et al. [214] propose to link and cluster plausible detections jointly across space and
time. Their formulation leads to a Minimum Cost Subgraph Multicut Problem. The
solutions of their formulation are such that possibly multiple hypotheses per track and
time frame are selected and clustered jointly across space and time. Extensions of their
approach are currently among the top-performing multi-object tracking approaches for
pedestrians [213, 215]. However, the matching of the detections requires around 1 second
per frame. Hence, the methods are currently not real-time capable.

Multiple object tracking has come a long way in recent years owing to the rise of
powerful object detectors based on deep learning. They are able to handle a varying
number of objects in crowded and complex scenes. However, most of the top-performing
methods are far from real-time [139] and require all of the detections simultaneously to
generate reasonable tracks. Furthermore, the current state of the art mostly regards the
detection and tracking steps as independent problems. Errors introduced in the detection
phase directly influence the performance of tracking and pose estimation. Hence, a
further direction is to create end-to-end solutions for multiple object tracking [213].
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6.2 Single-Object Tracking

The body of the literature on single-object tracking is extremely diverse. There are
literally hundreds of different approaches that tackle object tracking in vastly different
manners. Already the object representation differs greatly. Some methods use points
[9, 13, 193, 218], others use boxes [36], or more general regions [29, 54], contours [18, 101],
or articulated models [124, 227]. However, the great majority of approaches represents
the object by an axis-aligned bounding box. On the one hand, this is due to the fact
that a rectangular representation simplifies the implementation of many trackers. On
the other hand, this is due to the fact that the ground truth is generally represented
by an axis-aligned bounding box [117]. To gain an overview of the performance of the
multitude of different trackers, numerous surveys and benchmarks have been proposed
[116, 117, 118, 153, 238, 239, 242]. In the last few years, most of the top-performing
trackers either rely on correlation filters [98], features generated from deep neural
networks [157], or a combination of both [61, 66].

It is generally difficult to split tracking methods into more fine-grained categories,
as many algorithms overlap at various points. However, very often tracking approaches
are divided into two groups: generative and discriminative trackers. Generative trackers
only model the appearance of the object and search for the best matching location in
each frame. The model templates are either static [54] or adaptive [147]. Since generative
trackers focus on modeling the object itself, they may fail in cluttered background or
when similar objects appear. To cope with such complex scenes, discriminative trackers
also model the background and consider tracking as a binary classification problem
that determines the boundary between the object and the background [107]. However,
trackers exist that are more or less a combination of both [243]. In the following, we
comment on the most prominent examples from both classes.

6.2.1 Generative Trackers

A large and diverse set of generative tracking approaches has been proposed over the
years. They range from formulating tracking as a sequence of image alignment problems
[240] to using strong appearance descriptors based on distribution fields [190]. In the
following, we focus on computationally light-weight and real-time capable approaches
that have received much attention in the literature.

A very popular early tracking approach is the mean-shift tracker. The mean-shift
algorithm was originally presented as a non-parametric technique to obtain density
gradient estimates in 1975 by Fukunaga and Hostetler [82]. Cheng [48] generalized the
mean-shift algorithm for cluster analysis to non-flat kernels and enabled the weighting
of data points. In the following years, the mean-shift algorithm was proposed for object
tracking by Bradski [29] and Comaniciu et al. [53, 54]. The object is represented by the
distribution of its color and texture, which is encoded in a histogram. The similarity
between the template and target location is then measured by the Hellinger distance. The
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Hellinger distance H is related to the Bhattacharyya coefficient BC by

H(p, q) =
√

1− BC(p, q), (6.1)

where p and q are discrete probability distributions of equal length. The Bhattacharyya
coefficient BC is defined as

BC(p, q) = ∑
x

√
p(x)q(x). (6.2)

The optimal position of the template can be determined iteratively in very few steps. See
[76] for a good overview of the theory. The implementation of the mean-shift tracker is
simple and efficient. As a consequence, it has enjoyed extreme popularity even in more
recent publications [8, 91, 123, 127, 250]. It has also been used successfully for generating
initial tracklets for multi-object tracking [237]. Even though mean-shift is initially a
generative tracker, it has been extended to include information from the background to
become more robust. For this, Comaniciu et al. [54] proposed a background-weighted
histogram to enhance the performance of the mean-shift tracker. The reasons for this
are twofold: First, if features are present within the foreground and the neighboring
background, their relevance for the localization of the target is reduced. Second, it is
often difficult to find a hard border between background and foreground and hence the
model might, per se, contain background features. In general, mean-shift tracking is a
valid and very efficient approach for very short-term tracking without any complexities
such as occlusion, clutter, fast motion, or appearance change.

Many tracking approaches formulate the tracking problem within a Bayesian frame-
work. The state of the modeled object at time t is denoted xt and its history is collected in
the set Xt = {x1, . . . , xt}. The precise position of the object state is essentially determined
by a set of observations Zt = {z1, . . . , zt}, where zt is the observation at time step t. A
valid assumption in tracking is to restrict the object dynamics to a temporal Markov
Chain. Hence, the new object state only depends on the immediately preceding state:

p(xt|Xt−1) = p(xt|xt−1). (6.3)

By further assuming that the observations zt are independent, both mutually and with
respect to the dynamical process, (6.3) can be expressed as

p(Zt−1, xt|Xt−1) = p(xt|Xt−1)p(Zt−1|Xt−1) = p(xt|Xt−1)
t−1

∏
i=1

p(zi|xi). (6.4)

Integration over xt shows the mutual conditional independence of observations:

p(Zt−1|Xt−1) =
t−1

∏
i=1

p(zi|xi). (6.5)
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The rule for propagation of the state density can be manipulated to yield:

p(xt|Zt) = kt p(zt|xt)p(xt|Zt−1), (6.6)

where

p(xt|Zt−1) =
∫

p(xt|xt−1)p(xt−1|Zt−1) dxt−1 (6.7)

and kt is a normalization constant that does not depend on xt. The derivation of (6.6)
and (6.7) is described in Appendix A for clarity. The above formulation can be solved
efficiently with filter techniques such as Kalman filtering [125, 143] and particle filtering
[101]. These techniques are able to overcome short-term occlusions and predict the most
probable object location in each frame.

Kalman filtering assumes that the posterior density p(xt−1|Zt−1) is Gaussian and
can be parameterized by a mean and a covariance. Furthermore, it assumes both the
system and process noise are Gaussian and that the state transition is linear. While these
assumptions are justified for many applications, they are typically too strong for visual
object tracking [101]. As a consequence, particle filters are often used to infer the posterior.
Particle filtering is a sequential Monte Carlo method and is also known as bootstrap
filtering [87], the condensation algorithm [101], interacting particle approximation [60],
and survival of the fittest [109]. It essentially approximates (6.6) by a set of random
samples with associated weights and computes estimates based on these samples. It was
first used for visual tracking by Isard and Black [101]. The condensation tracker was able
to track the contours of objects in real-time in simple gray-scale images. The idea was
later extended to tracking a rectangular template using color features [162] and color
histograms [171]. However, color (or in this case the intensity) is not very descriptive
in gray-scale images and leads to difficulties when the object has a similar color to the
background. For this reason, Lu et al. [136] use histograms of gradients as features to
improve the tracking robustness. Variants that use colors and edges as features also exist
[114]. The filtering step has been combined with a classifier to create an advanced motion
model and to improve the sampling step [163]. Furthermore, extensions to more general
object segmentations that have a reasonable runtime have also been proposed [12]. To
cope with more complex scenarios, combinations of Kalman filtering, particle filtering,
and mean-shift tracking exist [51, 102, 142]. For example, the mean-shift tracker is used
to update the location of the individual samples and is able to significantly reduce the
number of particles and improve the overall robustness [142]. In general, the particle
filter can be implemented extremely efficiently and can cope with a reasonable amount
of complexity and occlusion. It is still in the focus of current research and used for many
applications. For example, the Locally Orderless Tracker (LOT) [165] uses a particle filter
to efficiently predict the object location on a super-pixel representation of the image. The
super-pixel representation enables a significant reduction of the number of particles and
the tracking of rigid as well as deformable objects. However, although mostly real-time
capable, even the modern particle filtering approaches are generally not able to compete
with the current state of the art in object tracking [77, 102, 165]. This is partly due to
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the fact that the model update generally introduces significant drift and that the model
update is dependent on various heuristics and application-specific parameters [114].

A further, very popular, generative tracker is the Kanade-Lucas-Tomasi (KLT) tracker.
It is mostly used as a feature point tracker and is based on the early work of Lucas et
al. [137]. The Lucas-Kanade algorithm was initially proposed for image registration and
has since been used for diverse applications such as optical flow calculation, mosaic
construction, or face coding. The algorithm was expanded to tracking by Tomasi and
Kanade in 1991 [218]. For this reason, the tracker carries the name of all three authors,
Kanade, Lucas, and Tomasi. The tracking method is explained elaborately in [193]. A fast
implementation of the tracker was published 20 years after the original publication in [9]
and used within a very precise tracking-by-detection scheme in [13]. For single-object
tracking, it has been used in various publications. For example, the Flock of Trackers
(FoT) [225] estimates the pose of an object by robustly combining displacement estimates
from a subset of KLT point trackers that cover the object. Furthermore, it is possible
to estimate the stability of the single KLT point trackers by tracking the points forward
and backward in time and comparing the displacement vectors. By this, it is possible
to identify tracker failure, as proposed in the median flow tracker by Kalal et al. [106].
Like the mean-shift tracker, the KLT trackers are extremely efficient but cannot cope
with complexities such as occlusion, clutter, fast motion, or appearance change. As a
consequence, they are merely useful for generating short-term tracklets of an object.

A further common generative tracking approach is the use of a general object recog-
nition technique for tracking. For example, template matching algorithms can easily be
adapted to perform object tracking. In the first frame, the object template is initialized
and then, in the successive frames, the object is localized by applying template matching
in a compact neighborhood of the prior object position. These approaches are easy to
implement and capable of reasonable performance in simple settings. For example, up
to 2013, many of the proposed trackers were outperformed by a simple normalized
cross correlation (NCC) tracker [118]. Various variants and extensions that enable effi-
cient tracking of objects with short-term occlusions or in more complex sequences exist
[188, 251].

One of the few real-time generative methods that does not represent the object by
an axis-aligned bounding box, but rather by a general segmentation map, is the MSER
tracking method by Donoser and Bishop [72]. The approach tracks so-called Maximally
Stable Extremal Regions (MSER) regions [145] through image sequences. The approach
can cope with complex model deformations and is extremely fast. However, it is restricted
to gray-value images and to tracking regions that are extremal. Hence, regions where all
boundary pixels either have a gray value strictly greater or strictly smaller than all inner
pixels. This restriction is very strong and prevents tracking many objects in the object
tracking benchmarks.

The key advantage of generative models is their simplicity. Most methods can be
implemented extremely efficiently. They work very well for objects that are not moving
too fast, are not significantly occluded, and do not change their appearance too strongly.
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However, because they model the object without taking the background of the object into
context, their performance is not on par with that of discriminative methods. Especially
in the last few years, most of the top-performing methods are discriminative in nature.

6.2.2 Discriminative Trackers

The discriminative tracking approaches can roughly be split into two groups. The first
group performs feature selection based on cues from the object and its surrounding
background [52, 54, 132, 160] and the second group formulates tracking as a binary clas-
sification problem that determines the boundary between the object and the background
[6, 94]. The second group is often referred to as tracking-by-detection. The classifier is
either tested on many candidate patches [6] or predicted directly [94]. Most of the early
work on discriminative tracking belongs to the first group. For example, Collins et al. [52]
use feature histograms from the object and the surrounding background to determine
the most discriminative color space for tracking. Similarly, Nguyen and Smeulders
[160] use Gabor filter responses from the object and the background to select the most
discriminative feature set. In general, the online selection of the most discriminative
features can greatly improve the tracking performance and comes at a reasonable cost
[54]. However, these approaches are still restricted to the strengths and weaknesses of
the underlying generative trackers.

The second group is much larger and diverse and uses a multitude of different
classifiers to determine the object position. For example, Avidan [6] use an ensemble of
classifiers to distinguish between the object and the background. A large set of weak
classifiers are combined into a strong classifier with AdaBoost. Each pixel of the object is
then classified as belonging to the object or the background. The optimal object location
can be determined by applying mode-seeking algorithms, such as mean-shift, to the
resulting confidence map. A collection of very similar approaches that essentially use a
different classifier in a similar pipeline exists, for example, those based on Support Vector
Machines (SVM) [5], Random Forest Classifiers [107], or other boosting variants [7]. The
tracking-by-detection approaches have been extended to yield a failure detection mode.
In [107], Kalal et al. combine an efficient generative tracker [106] to detect a tracking
failure and an object detector based on Random Forests to perform object re-detection.
The simultaneous use of a fast generative and a fast discriminative tracker allowed to
track objects in long sequences in real-time. To date, it remains one of the few trackers
that can predict the absence of the object [222].

To infer the object location directly, Hare et al. [94] propose to use SVMs and Gaussian
kernels. Instead of learning a classifier that distinguishes between object and background,
they propose to learn a prediction function that directly estimates the object transforma-
tion between frames. The method uses low-level Haar-like features and performed very
well in the early benchmarks [198]. However, the restriction to simple low-level features
restricts its capabilities on the modern tracking benchmark sequences [117].

In 2014, the top-performing object tracking algorithms were based on correlation
filter tracking. They were not only able to outperform many of the state-of-the art

64



6.2 Single-Object Tracking

approaches mentioned above, but also were significantly faster than many of them
[62, 98]. Surprisingly, the third-best tracker in the 2014 VOT tracking challenge was
based on correlation filter tracking and, in contrast to the competition, not even able
to estimate the object scale [98]. The concept was first proposed in 2010 by Bolme et
al. [19], who introduced the Minimum Output Sum of Squared Error (MOSSE) filter. It
makes use of the convolution theorem to reduce the filter correlation to an element-wise
multiplication in the Fourier domain. In 2012, Henriques et al. [98] presented the closely
related Kernelized Correlation Filter (KCF), where the filter correlation is derived from
a linear regression point of view. Their approach naturally introduces a regularization
parameter and links the results to those presented by Bolme et al. [19]. Furthermore, by
exploiting the fact that training data is circulant [89], an extension to nonlinear kernels
is presented that greatly improves the performance and is nonetheless extremely fast.
A further closely linked approach is the Dense Spatio-Temporal Context Tracker (DST),
which was presented by Zhang et al. [245]. It is essentially a special case of the MOSSE
tracker that assumes a single training image and neglects the regularization parameter.

The idea behind the mentioned trackers is to learn a correlation filter H from samples
of the target. The object location in new frames is then determined as the maximal value
of the filter convolution. The filter convolution G can be determined by convolving the
input frame F with the correlation filter H, hence

G = F⊗ H. (6.8)

The convolution theorem states that if two input signals x, y belong to L1(Rn) (Lebesgue-
integrable), the Fourier Transform of their convolution can be expressed as the point-wise
product of their Fourier transforms. Hence, in the above setting the convolution can be
efficiently determined by the point-wise product of the filter and the current frame in the
Fourier space

Ĝ = F̂� Ĥ, (6.9)

where Ĝ, F̂, Ĥ ∈ Cn×m. In general, to ensure the input image is periodic at the border, it
is filtered by a cosine window before the Discrete Fourier Transformation (DFT). MOSSE
learns the filter Ĥ that minimizes the sum of squared differences of the desired filter
output Ĝi to the actual filter output on a set of input images in the Fourier domain:

Ĥ = min
Ĥ

∑
i

∥∥F̂i � Ĥ − Ĝi
∥∥2

. (6.10)

The initial filter output G is a Gaussian that is centered around the initial object location.
Hence, the optimization explicitly attempts to generate a filter that can best discriminate
the object from its direct surroundings. The optimization makes use of the fact that each
element Ĥ can be solved for individually. Hence, the closed-form solution yields

Ĥ =
∑i Ĝi � F̂i

∗

∑i F̂i � F̂i
∗
+ λ

, (6.11)
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where λ is added to the denominator as a regularization factor. It helps to overcome
problems when the energy of a specific frequency is 0 or very small.

While the MOSSE approach estimates the filter H directly, Henriques et al. [98]
motivate their correlation approach from the perspective of Ridge Regression. In its
basic form, Ridge Regression attempts to find an optimal linear function f (z) = wTz that
minimizes the squared error over samples xi and their regression target yi,

w = min
w̃ ∑

i

(
w̃Txi − yi

)2
+ λ‖w̃‖2. (6.12)

Here λ is a regularization parameter used to control overfitting. The above equation can
be rewritten in matrix notation:

w = min
w̃

(
w̃TX− y

)T (
w̃TX− y

)
+ λw̃Tw̃, (6.13)

where the rows of X are the samples xi and each element of y is the regression target
yi. The key assumption that is made in the KCF tracker is that the rows of the matrix X
encode all possible shifts of the object within the template window. Then, the matrix X is
cyclic and the closed form solution of the above equations is

ŵ∗ =
x̂� ŷ

x̂∗ � x̂ + λ
. (6.14)

The derivation and more details about the structure of X is shown in Appendix B.
Equation (6.14) has astonishing resemblance to (6.11), with the exception that x̂ is the
1D DFT of the linearized input image and F̂ is the 2D DFT of the input image. It is
possible to generalize (6.14) to higher dimensions by using tensor notation and the theory
of tensor diagonalization with circulant structure [177]. Hence, the MOSSE tracking
approach can also be motivated by the theory of ridge regression. An advantage of
the second derivation is the possibility to adapt the framework to non-linear regression
with the help of the kernel trick. Furthermore, both representations can be extended
to multiple channels and can also be applied to feature images derived from HoG-like
features [97]. These trackers are extremely efficient, light weight, easy to implement,
and run well above frame-rate even in large images. In the following years, many
extensions and variants of correlation tracking where proposed and are still widely
used today [16, 61, 62, 64, 65, 66, 100, 131, 154, 202, 210, 252]. For example, they have
been extended to also estimate the object scale [62, 65, 100, 131], to a more robust filter
update [154, 210], and to long term tracking [141, 252]. They form the basis of many of
the current state-of-the-art trackers that we use as comparison in the experiments (see
Chapter 9).

In the object tracking benchmarks, the current state of the art of discriminative trackers
clearly outperforms the generative trackers described above. Through the expression of
the convolution of correlation filters in the Fourier space, real-time capable discriminative
methods exist that are not only powerful, but also extremely efficient. However, many of
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the current methods do not encode any failure detection or have an explicit re-detection
mechanism. Furthermore, almost all methods are restricted to axis-aligned bounding
boxes.

6.2.3 Deep Learning Meets Tracking

Inevitably, the rise of deep neural networks and features derived from them have found
their way into object tracking [49, 61, 64, 66, 99, 126, 157]. In the last few years, the
top-performing trackers in all benchmarks that do not restrict the time per frame are
based on Convolution Neural Networks (CNNs) [116, 118, 153, 222]. Basically, all of
the current methods are discriminative trackers and restricted to axis-aligned bounding
boxes. The approaches can roughly be divided into two groups. The first group merely
uses CNN features and a general tracking approach, such as a correlation filter, for
tracking the object [63]. Hence, these methods typically do not require any fine-tuning of
the CNN features themselves. However, it has been shown that it is beneficial to finetune
the network features on object tracking or object localization sequences in a prior step
[63, 90]. The second group includes methods that use CNNs in a tracking-by-detection
scheme and classify all pixels as object or background and generate a confidence map
[157]. The respective methods generally require a computationally demanding training
on the first frame. Some approaches use Siamese networks that obtain the prior object
location, the prior image, and the current image as input and directly infer the most
probably new object location [17, 96]. Hence, the networks implicitly encode a similarity
measure between two input images and the object depicted in them. They are typically
fast to train and obtain good performance in the benchmarks [117].

Already in the 2015 VOT challenge [118], the top-two performing approaches, MDNet
and Deep-SRDCF, were both based on CNNs [64, 157]. Here, the Multi-Domain Convolu-
tional Neural Network (MDNet) [157] is a typical tracking-by-detection approach that
treats tracking as a binary classification task. The network (VGG-M) is fed a set of patches
and classifies them as either object or background. The patches are randomly sampled
from a Gaussian distribution around the prior object location. For each new sequence,
the binary classifier at the end of the neural network is trained on the initial frame.
Even with a high performance GPU, the training cannot be conducted in real-time. In
contrast, Danelljan et al. [63, 64] propose Deep-SRDCF, which does not explicitly retrain
the network. Instead, it makes use of pretrained CNN features and correlation filters. In
general, combining correlation tracking and deep features is a very popular direction
of the current tracking research [49, 63, 140, 202, 223]. In Deep-SRDCF, the authors
use a VGG network that is pre-trained on ImageNet [68] as the feature extractor. They
compare the performance of correlation filter trackers that are applied to different feature
levels. Although the results for the first-level features are the best, the features of the
different levels appear to complement each other. As a consequence, later works attempt
to fuse the information of feature maps from different levels [61, 66, 211]. For example,
one of the top-performing trackers in the VOT 2017 challenge was the Learning Spatial
Regressions for Visual Tracking (LSART) [211] tracker. LSART combines correlation
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filters and a tracker based on CNN features from three different levels. The correlation
filter focuses on the holistic target and the latter focuses on small local regions. From all
of the trackers submitted to the VOT 2017 challenge, LSART is the most robust. However,
its performance is far beyond real-time. A much more efficient tracker was proposed
by Danelljan et al. [61]. They introduce a factorized convolution operator to drastically
reduce the number of parameters in the neural network. It is one of the fastest trackers
based on deep neural networks and one of the best-performing trackers in the VOT
2017 challenge [117]. It was merely outperformed marginally by the CFCF [90] and
CCOT [66] trackers. CCOT learns a discriminative continuous convolution operator for
tracking. Like the above methods, the approach efficiently combines the output of feature
maps from different levels of a CNN. The CFCF [90] tracker is closely related and builds
on the framework of the CCOT tracker [66]. To improve the performance, the authors
propose to train the CNN on the ImageNet Large Scale Visual Recognition (ILSVRC)
[185] video dataset. Then the first, fifth, and sixth feature layer are combined with HoG
and color features for tracking. Essentially, CFCF and CCOT are equally precise and
robust. However, both approaches require a high performance GPU to provide near
real-time performance.

In general, deep neural networks have pushed the performance of the current state of
the art in tracking. They are the basis of the most accurate and robust trackers. However,
they all require a high performance GPU to achieve real-time performance. Although
the performance of computation devices is growing steadily, tracking is essentially
always only a small part in a computer vision application. Hence, the necessity of a
high-performance GPU is usually prohibitive. New tracking benchmarks are starting to
address this issue by adding real-time restrictions.

6.2.4 Video Object Segmentation

A relatively new challenge in the computer vision community is video object segmenta-
tion. It is concerned with separating foreground objects from the background regions
in image sequences. Like in object tracking, the methods are generally initialized in the
first frame. However, in contrast to most object tracking benchmarks, the ground truth
is represented by pixel-accurate labels [170]. The sequences in the existing benchmarks
are typically much shorter and less complex. Therefore, few methods work well in both
domains. An exception is One-Shot Video Object Segmentation (OSVOS) [32]. The ap-
proach requires a short fine-tunning in the first frame and is then able to segment objects
in the successive frames without assuming any temporal connection. Surprisingly, the
approach is able to compete with the current state of the art on some tracking sequences.
However, the method generally fails when similar objects present in the background
have a similar texture to the object [32]. Nonetheless, with the increasing capabilities of
trackers and object segmentation techniques, both communities are overlapping more
and more.
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6.3 Most Related Works

In the subsequent sections, two real-time trackers are presented. Both methods are com-
plementary to each other, light-weight, and able to run in real-time, even on embedded
and low performance devices. In contrast to the current trend in object tracking, both
approaches are generative trackers. They focus on specific real-world applications and, as
such, need to be extremely efficient. As mentioned before, tracking is merely a building
block in many applications and generally has very strong computational bounds. In the
following, we comment on the more specific related works.

The first approach is presented in Chapter 7 and tracks Maximally Stable Homo-
geneous Regions (MSHR) in images with an arbitrary number of channels. MSHR
are conceptually very similar to Maximally Stable Extremal Regions (MSER) [145] and
Maximally Stable Color Regions (MSCR) [80], but can also be applied to hyperspectral
and color images while remaining extremely efficient. The tracking approach is closely
related to the generative MSER tracker of Donoser and Bishop [72]. Both approaches
represent the objects by a pixel precise segmentation and can cope with complex ob-
ject transformations and deformations. However, in contrast to MSER tracking, our
approach is applicable to images with an arbitrary number of channels. Furthermore, the
restriction to extremal regions is lifted. In contrast to extremal regions, homogeneous
regions are more general. This enables our approach to track a greater variety of objects.
Nonetheless, both extremal and homogeneous regions are very restrictive on the types of
objects that can be tracked. Hence, although both methods can efficiently solve numerous
applications, they do not focus on being able to track the diversity of objects in the
common object tracking benchmarks.

The second approach, the shape-based tracker, is presented in Chapter 8 and is much
less specific on the type of objects that may be tracked. The tracker is able to track
arbitrary rigid objects in image sequences. The object is represented by a sparse set
of model points that represent the significant object edges. Hence, the method does
not necessarily require textured objects. A sparse set of model points is mostly used
for object recognition as opposed to object tracking, e.g., approaches that are based on
Chamfer-Matching [20], on the Hausdorff Distance [184], or on geometric hashing [122].
Some methods use model points and directions for matching a model to an image. For
example, methods based on the generalized Hough transform [10, 221] or approaches
that are based modifications of the Hausdorff Distance [164]. However, the model
representations that are closely related to the shape model tracking are active shape
models of Cootes et al. [55] and, even more similar, the model within the shape-based
object recognition technique of Steger [205]. Here, the model points are represented
by their point coordinate and their normalized directions. In contrast to the proposed
shape-based tracker, both approaches are object recognition schemes that do not adapt
the model templates after the object localization.

For an efficient object localization, an image pyramid is created for each input image.
In image recognition techniques, image pyramids or feature pyramids are common
practice [70, 133, 217]. However, some tracking approaches also use image pyramids
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to be more robust to fast movement or to increase the efficiency [127]. The different
semantics of features from different pyramid levels is also implicitly encoded in modern
CNN architectures for segmentation and recognition [133, 247]. A novelty of the proposed
shape model tracking approach is that the depth of the image pyramid can be dynamically
adapted to the complexity of the object model and the size of the search region.

In terms of runtime, the shape-based tracker is comparable to correlation filter
approaches. However, in contrast to the above mentioned correlation filter methods,
our approach estimates the location, scale, and rotation of the object with very high
accuracy. In this sense, it is related to the key-point recognition system of Lepetit and
Fua [124]. The authors present a recognition system that also estimates the pose of rigid
objects. It is robust to occlusion and clutter, but requires an extensive offline training
phase to generate the tracking model. In contrast to our approach, their tracking is
restricted to textured objects to generate sufficiently stable keypoints for reliable tracking.
Furthermore, our approach does not assume any complex offline training to generate
the tracking template. Furthermore, as opposed to the majority of the above mentioned
tracking approaches, the shape-based tracking efficiently tracks the pixel precise region
of the object and is not restricted to bounding boxes. Hence, it is generally capable of
obtaining a much higher accuracy than the existing approaches.
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7
Efficiently Tracking Homogeneous

Regions

This chapter presents an efficient tracking scheme that can track pixel-precise representa-
tions of an object and their deformations through image sequences. The tracker builds on
the derivative-based component-tree, which is an extension of the ordinary component-
tree to multi-channel images. The tree can be constructed efficiently in real time and
scales linearly in the number of pixels and, in practice, sub-linearly in the number of
channels. The trees can be used to efficiently extract Maximally Stable Homogeneous
Regions (MSHRs), which are conceptually similar to Maximally Stable Extremal Regions
(MSERs). In contrast to prior work that uses component-trees for tracking (e.g., [72]), the
presented tracker works on multi-channel images and has a model update step to enable
a more robust tracking. Since MSHRs are more general than MSERs, the tracker has the
further advantage that a greater variety of objects can be tracked. We display how the
approach can be used efficiently for the real time tracking of arbitrarily shaped regions
in image sequences and for 3D reconstruction in CT slices.

The rest of this chapter is organized as follows: In Section 7.1, related work on
component-trees and extensions to multi-channel images is discussed. In Section 7.2, the
derivative-based component-tree and an introduction to MSHRs is presented. Next, in
Section 7.3, the efficient MSHR-based tracking scheme is described in detail. Possible
applications are presented in Section 7.4. The chapter concludes with a discussion of
the presented tracking scheme in Section 7.5. The results presented in this chapter are
covered in more detail in Böttger and Eisenhofer [22], Böttger and Gutermuth [25], and
Böttger et al. [21].

7.1 Related Work: Component-Trees

The component-tree (also known as dendrone [45], confinement tree [146] or max-tree
[34]) is a hierarchical data structure that models gray-scale images by considering the
connected components of their binary level sets obtained from successive thresholdings
[120]. It has a wide range of applications: image filtering [105, 186], motion extraction
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[186], feature and region extraction with Maximally Stable Extremal Regions (MSERs)
[145], pattern recognition in astronomical imaging [15], 3D visualization [235], and
object tracking [22, 72]. For gray-scale images, efficient algorithms exist that enable the
construction of the component-tree in linear time [34].

In general, component-trees have been used for a diverse set of applications and
substantial efforts have been undertaken to enable their efficient computation [34]. There
are essentially three different kinds of component-tree computation algorithms: im-
mersion algorithms, flooding algorithms, and merge-based algorithms. Carlinet and
Géraud [34] present an extensive comparison of the main approaches and show that
the flooding-based approaches of Wilkinson [236], Salembier et al. [186], and Nistér and
Stewénius [161] are superior in terms of speed for 8-bit and 16-bit images. Although
many applications for gray-scale component-trees have been presented, most are devoted
to image segmentation and filtering [105, 121, 186]. For example, MSERs can be extracted
efficiently using component-trees [161].

MSERs themselves have a wide range of applications, ranging from stereo feature
point extraction [145] over optical character recognition (OCR) [159] to image tracking
[72]. Motivated by their success on gray-scale image processing applications, there also
have been attempts to extend MSERs specifically to multi-channel images. Chavez and
Gustafson [44] transform the RGB image to the HSV color space and extract gray-scale
MSERs on three different combinations of the single HSV channels. Hence, the MSER
algorithm is applied three times and the different MSERs are collected. Forssén [80]
overcomes the problem that multi-channel images cannot be totally ordered by using
pixel differences of neighboring RGB values as opposed to the RGB values directly. This
allows the extraction of so-called Maximally Stable Color Regions (MSCRs). Although no
component-tree is constructed in the process, the idea of using differences is appealing
since it does not require a user-defined partial ordering and can be trivially extended to
images with an arbitrary number of channels. Unfortunately, the approach is computa-
tionally demanding and, although theoretically very closely related to MSERs, MSCRs
have completely different parameters. This makes it difficult to compare the performance
of both approaches. Similarly, Donoser et al. [73] construct the component-tree of an
RGB image from the gradient magnitudes of the input image. Stable regions are then
extracted by comparing the shape of regions at different levels using a shape matching
method. While computing MSERs from the gradient magnitude images allows to use
an ordinary MSER implementation, it has several disadvantages for applications. The
central differences at the image coordinates used to compute the gradient magnitude
image make the edges at least two pixels wide. As a consequence, the extracted regions
are smaller than the actual regions and very narrow regions cannot be extracted. As
shown in Fig. 7.1, especially for applications like OCR, where characters are generally
only a few pixels wide, this is a crucial disadvantage.

Inspired by the success of component-trees for gray-scale image filtering, general
extensions of gray-scale component-trees to multi-channel component-trees have been
proposed. Passat and Naegel [168] introduce the concept of component graphs. However,
the multi-channel component graph is algorithmically very complex and requires a
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(a) (b) (c) (d)

Figure 7.1: Extracting stable regions from the input image (a) or the image derivatives
directly (our proposed method) leads to the results shown in (b). When using the gradient
magnitude image (c), it is very difficult to extract stable regions (e.g., as in [73]) that are
very narrow (d).

user-defined piecewise ordering of the image values that is specific to the target domain.
A further extension of the component-tree to multi-channel images that is conceptually
similar to ours is the Multivariate Tree of Shapes (MToS) [35, 241]. The MToS is a five-step
process that first computes a tree of shapes (ToS) for each channel individually. Hence,
the runtime has a large linear factor in the number of image channels. In contrast to
the above approaches, the proposed derivative-based component-tree is constructed
using pixel differences and is applicable to images of different domains and numbers of
channels and does not require any pre-defined partial ordering. As a consequence, fewer
parameters are required and the tree construction is significantly faster. We compared
our approach to the binaries of MToS and are nine times faster for a three-channel image.
The performance advantage will be even more prominent for hyper-spectral images,
which contain significantly more channels.

The works most related to ours are those based on a Max-Tree computed on an edge-
weighted graph [58]. These approaches create morphological hierarchies of connected
pixels [199]. Here, two pixels are connected if there exists a path linking these pixels
such that the maximal edge weight does not exceed a given threshold value. For a
varying threshold, the resulting regions form a hierarchy. The concept originates from the
single linkage clustering method [88] used for data analysis. It was introduced to image
processing by Nagao et al. [156] in 1979. Prominent examples include α-components and
α-trees [166, 199], and (in mathematical morphology) quasi-flat zones and the quasi-flat
zone hierarchy [148, 149].

In contrast to the aforementioned approaches, the derivative-based component-tree
can be constructed by a flooding-based immersion. Although the resulting tree is
the same as a Max-Tree constructed on an edge-weighted graph [58], the presented
immersion is significantly faster than a union-find-based immersion. It allows an efficient
computation that is linear in the number of pixels and scales favorably in the number of
channels. Since the flooding-based immersion flows through image derivatives, we term
the resulting tree derivative-based component-tree.
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7.2 Derivative-based Component-Tree

For gray-scale images, the component-tree is constructed by considering the binary level
sets of the input image. The level sets are obtained from successive thresholds, e.g., for
byte images, the thresholds are selected to include all pixels within [0, α] or [α, 255]. The
threshold α is either increased incrementally from 0 to 255 or decreased incrementally
from 255 to 0. The evolution of the connected components of the respective level sets is
then encoded in the component-tree. Each component in the tree represents an extremal
region. These are identified by the fact that all pixels in the region have a gray value
strictly larger or strictly smaller than the pixels in the outer boundary of the region. In
the context of multi-channel images, the concept of larger or smaller is not well-defined
and the component-tree cannot be trivially constructed in the same fashion.

To overcome this limitation, we consider the derivatives between neighboring pixels
in x (row) and y (column) direction. The derivatives at the image coordinates between
two pixels are approximated by central differences. Hence, for each image pixel at the
coordinate (x, y), we compute four differences, two vertical ones and two horizontal ones.
They are calculated as

δupperI(x, y) = I(x− 1, y)− I(x, y) (7.1)

δlowerI(x, y) = I(x, y)− I(x + 1, y) (7.2)

δleftI(x, y) = I(x, y− 1)− I(x, y) (7.3)

δrightI(x, y) = I(x, y)− I(x, y + 1), (7.4)

where I(x, y) is the pixel value of the image I at coordinate (x, y). Independent of
the number of channels of I , the magnitude (absolute value for single-channel and the
Euclidean norm for multi-channel images) of the derivatives is totally ordered and can
be used for the tree construction. Conceptually, instead of computing the level sets from
successive thresholds of the pixel values, the level sets are obtained from thresholds of
the derivative magnitudes. As a consequence, the components of the derivative-based
component-tree are characterized by the fact that each pixel within them has a derivative
with a magnitude that is smaller than the derivatives at the boundary of the region. We
denote such regions as homogeneous regions.

The concept of the derivative-based component-tree is illustrated in the toy example
in Fig. 7.2. Homogeneous regions (e.g., regions with the same color) are identified by the
fact that the pixels are connected by derivatives with a very small magnitude. Hence, the
child nodes consist of disjoint and differently colored regions. With a growing derivative
magnitude threshold, similarly colored regions merge into single components (e.g., red
and pink, light-green and green) and, eventually, the whole image is connected.

7.2.1 Local Flooding Tree Construction

The tree can be efficiently constructed by a flooding-based immersion. The concept is
very similar to the flooding-based immersion of the ordinary component-tree [161], with
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Figure 7.2: Toy example of the derivative-based component-tree for a three-channel
image. Conceptually, the tree is constructed by iteratively thresholding the derivative
magnitudes and connecting the resulting connected components. Hence, in an early
stage, each of the uniquely colored regions is connected in a component (child node). In
a next step, the most similar colors (pink/red and light green/dark green) are connected
in parent components. Since the orange region has a similar distance to the red and
green regions, it is connected to these components in a later step. Finally, the gray region,
having the largest distance to all the colors, is connected to the other components in the
root node, which represents the complete image.

Vertical Edges Horizontal Edges

Figure 7.3: The derivatives are between two pixels (gray boxes) and each have six
neighbors. On the left, the six neighbors of a vertical derivative (red) are displayed and
on the right, those of a horizontal derivative (blue).
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(a) (b) The MSHRs of (a)

(c) The MSERs of (a)

Figure 7.4: The center region of (a) is no extremal region since it is lighter and darker than
its surroundings. Hence, regardless of the parameter settings, it will never be extracted
as an MSER (c). On the other hand, the inner edges of the center region are smaller than
its outer edges and hence it is a homogeneous region (b).

the exception, that the derivatives are flooded instead of the image pixels and need to be
mapped to the image pixels in the construction process. In an initial step, starting from
an arbitrary derivative, the flooding-based immersion searches for a derivative with a
local minimal magnitude. The local minimum does not need to be strict. It is sufficient
to find a lowland (a derivative where the neighboring derivatives have the same or larger
magnitude). In general, this step requires the notion of the neighborhood of a derivative.
This is determined by the two pixels the derivative connects. Each of these pixels
has four derivatives: two vertical ones and two horizontal ones. However, since they
share the derivative that connects them, both pixels only have three unique derivatives.
Furthermore, the neighbors of vertical and horizontal derivatives are different. They are
both displayed in Fig. 7.3 for clarification. The alternating 6-connected structure is the
edge graph of the Khalimsky grid [57]. To ensure that each true inner distance has six
neighbors and that no explicit border treatment is required, the derivatives at the border
of the image are artificially added with an infinite magnitude. Therefore, there are w + 1
horizontal derivatives within each row of the image and w vertical derivatives, where w
is the width of original image.

Starting from an arbitrary derivative, its magnitude is compared to the magnitude
of its six neighboring derivatives. As soon as a derivative with a lower magnitude is
encountered, the process stops checking the other neighbors and floods into the respective
derivative. This process is continued until a derivative that has a locally minimal
magnitude (not strictly minimal) is encountered. Then, the two pixels belonging to the
respective derivative are merged into a new component of the component-tree. During
this process, all visited derivatives are stored in a heap. As a consequence, each derivative
needs to be visited exactly once during the tree construction. Hence, the flooding-based
immersion is linear in the number of pixels.
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In a next step, the derivative with the lowest magnitude in the heap is removed and
compared to its neighbors. Either the process floods towards a new local minimum or, if
all neighbors have been visited, merges the respective pixels with existing components.
More precisely, every emerging derivative has four possibilities:

1. It connects two pixels that have not yet been visited ⇒ a new child node is
generated.

2. It connects a pixel that has not been visited yet to an existing component⇒ if the
derivative magnitude is larger than those generating the respective component, a
new parent node is generated. Otherwise, it is merely added to the component.

3. It connects two existing components⇒ a new parent node connecting both compo-
nents is generated.

4. It connects two pixels already within the same component⇒ nothing needs to be
done for this derivative. Continue with the next element in the heap

As soon as all derivatives have been visited (i.e., the heap is empty) the process
terminates. A toy example of the tree construction that displays the horizontal and
vertical derivatives and the respective local flooding-based approach is displayed in
Fig. 7.5. It is important to note that similar to the the flooding-based immersion of the
regular component-tree, the derivative-based component-tree does not depend on the
choice of the starting point nor on the order in which the neighboring derivatives are
visited for the local flooding-based immersion [236]. Furthermore, the resulting tree is
the same as for a union-find-based immersion [34].

Although the flooding immersion walks through all of the image derivatives, the
pixels belonging to the derivatives are added to the component-tree. The derivatives can
be efficiently mapped to the pixel values by their linearized image index δl . The mapping
is different for vertical and horizontal derivatives and can be computed as:

Phoriz(δ
l) = {δl − (w + 1)(bδl/(2w + 1)c+ 1),

δl − (w + 1)(bδl/(2w + 1)c+ 1) + 1}
Pvert(δ

l) = {δl − (w + 1)(bδl/(2w + 1)c)− w,

δl − (w + 1)(bδl/(2w + 1)c)},

(7.5)

where w is the image width, Phorz are the index of the two image pixels for a hori-
zontal derivative, and Pvert the index of the two image pixels for a vertical derivative,
respectively.

7.2.2 Characteristics of the Derivative-based Component-Tree

The tree can be constructed efficiently by discretizing the derivative magnitudes. This is
achieved by quantizing the derivative magnitudes into a certain number of bins. However,
since the distribution of the derivative magnitude is far from uniform in natural images,
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Figure 7.5: In the flooding-based immersion, starting from an arbitrary derivative, the
immersion floods along the smallest neighboring derivative. When it finds a local
minimum, the pixels belonging to the derivative are merged. In this example, the path
first follows the zero derivatives within the red region, creating a red component within
the component-tree. The next smallest derivative is at the border to the pink region,
hence the path floods into the pink area.

it is reasonable to not bin the derivatives equidistantly. This was also observed by
Forssén [80] when extracting so-called Maximally Stable Color Regions (MSCRs). The
discretization enables to simplify the heap structure and has the further advantage that
granularity of the component-tree can be configured: a very coarse binning leads to very
compact trees, while a finer binning leads to more complex and descriptive trees. As
shown in Fig. 7.6, although less descriptive, the coarse trees have the advantage that they
can be computed significantly faster and that they reduce the computational complexity
of the image processing techniques applied to them.

To ensure that the regions in the single components of the component-tree are pixel-
precise and include each pixel within a homogeneous region, it is essential to consider the
derivatives at their true position between two pixels. Other approaches flood the gradient
magnitude image directly for simplicity [73]. Although this enables the algorithm to
assume a 4-connected neighborhood of the derivatives and to use an ordinary component-
tree construction algorithm, the resulting components do not contain the true pixels of
each homogeneous region. The differences between two pixels influence the gradient of
both pixels. As a consequence, every edge is it least 2 pixels wide in the resulting images
and only regions that are large enough can be extracted. Furthermore, the resulting
homogeneous regions are smaller than the actual homogeneous regions in the input
image. For example, when flooding the gradient magnitude image of the toy example
in Fig. 7.2 directly (as in [73]), it is impossible to extract the small regions. The gradient
magnitude image has a high value at each pixel and has no valleys to flood. This is
highlighted in Fig. 7.7.

7.2.3 Implementation Details

The resulting derivative-based component-tree has the same structure as its gray-value
counterpart and, therefore, the same algorithms may be applied. Nevertheless, the
following modifications help to improve the algorithm’s robustness:
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Figure 7.6: The granularity of the component-tree can be configured by quantizing the
derivative magnitudes into bins. The number of bins influences the runtime and the
granularity of the possible segmentations. The measurements were obtained for 50
random images from PASCAL VOC 2007 [75]. Since the variation of the runtime was
very small (≈ 0.3ms), errorbars have not been added.

1. Since the derivative-based component-tree works on pixel differences, it is suscep-
tible to image noise. This was also observed by Forssén [80], who proposed to
perform Gaussian smoothing as a preprocessing step. Unfortunately, this may add
artificial components at strict vertical or horizontal image derivatives. We found
that edge-preserving smoothing, such as bilateral or guided image filtering [230],
helps to remove these artifacts. An example is shown in Fig. 7.8.

2. Furthermore, since very small image regions are rarely of interest, we found it
very useful to restrict the minimal area a component must have to create a node
within the tree. This leads to more compact trees and can significantly reduce the
runtime, while it has virtually no impact on later queries of the component-tree.
In contrast to [231], we do not delete the regions from the tree explicitly and then
apply a region growing algorithm to extend the remaining components. Instead,
the flooding-based immersion allows to merge these regions into their parent
component during the tree construction implicitly. For this, each component is
only added to the tree once it is big enough. Until then, the connecting pixels are
added to the component without creating parent components. This allows to filter
the regions without adding any computational overhead. Each derivative still only
needs to be visited once by the algorithm.

In our experiments, we also use both concepts for the gray-scale component-tree since
they are equally applicable there.

In general, our approach has a larger computational overhead than that of the gray-
scale component-tree. First of all, there are around twice as many image derivatives as
there are pixels. Furthermore, each derivative has to consider six derivative neighbors
compared to four pixel neighbors. Hence, the construction process is expected to be
approximately three times slower than that of the gray-scale component-tree for a single
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Figure 7.7: The gradient magnitude image (left) and the derivatives between the image
pixels (right) of the toy image in Fig. 7.2 are indicated. The gradient magnitude image
has the problem that it spreads derivatives into all adjacent pixel values. It is not suited
for extracting small homogeneous regions and generates eroded versions of the actual
homogeneous regions in an image.

Figure 7.8: Gaussian smoothing (left) and edge-preserving bilateral filtering (right) is
applied to a vertical image edge. Gaussian smoothing adds artefacts that create slim
artificial homogeneous regions.

polarity (plus the overhead of calculating the image derivatives). However, since the
derivative-based component-tree implicitly captures all regions that are lighter or darker
than their background (for gray-scale images), the runtime is essentially only 1.5 times
slower when extracting regions of both polarities. This factor is confirmed empirically in
Fig. 7.9. Note that the complexity of the tree traversal is the same for both component-
trees. All of the routines presented in this chapter are implemented in C and the code
is optimized and parallelized where possible. In general, the tree construction is very
efficient and requires less than 250ms for an 800× 1000 image on an Intel Core i7-4810
CPU @2.8GHz with 16GB of RAM with Windows 7 (x64).

7.3 Tracking Maximally Stable Homogeneous Regions

The constructed derivative-based component-tree can essentially be used for the same
image processing tasks as its gray-scale counterpart. For example, the tree can be used to
efficiently extract stable regions similar to MSERs. The only difference is that the tree
nodes do not consist of extremal regions but of homogeneous regions.
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Figure 7.9: The runtime and standard deviation of constructing the derivative-based
component-tree with the proposed flooding-based immersion and the standard union-
find-based algorithm (Kruskal). The average runtimes are computed using 30 randomly
selected pictures from the Pascal VOC 2007 dataset [75]. The computation time of the
ordinary gray-scale component-tree is added for reference.

7.3.1 Maximally Stable Homogeneous Regions

As mentioned above, homogeneous regions are characterized by the fact that each pixel
within the region has a vertical or horizontal derivative with a smaller magnitude than
all outer derivatives of the region. Otherwise, the concept of stable regions is the same.
Hence, both approaches share the same parameters and scale equally with growing
image sizes. Let R1, . . . , Ri−1, Ri, Ri+1 . . . be a set of nested homogeneous or extremal
regions, respectively (i.e., Ri ⊂ Ri+1). In the context of component-trees, the index i
encodes the gray-value threshold or the derivative magnitude threshold that generated
the region. A Maximally Stable Region Ri∗ in the context of an MSER and an MSHR is a
region that has a local minimum of

s(i) =
|Ri+∆ \ Ri−∆|
|Ri|

, (7.6)

at i∗. Here | · | denotes the cardinality and ∆ is a parameter of the method. The parameter
∆ encodes how stable a region is over ±∆ thresholds. The larger the value, the more
stable the regions must be.

In a component-tree, the sequence of ancestor and descendant nodes for a node is a
set of nested regions. To simplify the computation, each node of the derivative-based
component-tree stores its area and the smallest derivative magnitude that connects its
inner points (these can be adapted on the fly during the tree construction). Hence, s(i) can
be computed for each node by checking the area of the ancestor and descendant nodes
at a distance of ∆, respectively. The resulting Maximally Stable Homogeneous Regions
(MSHRs) are possibly overlapping regions that do not change their area significantly
over a given derivative magnitude range.

81



Chapter 7: Efficiently Tracking Homogeneous Regions

(a) (b) ∆ = 5 (c) ∆ = 1 (d) ∆ = 20

Figure 7.10: Derivative-based component-trees can be used to extract stable regions
from color images. The images (b)-(d) display the extracted MSHRs from image (a) for
different settings of ∆. Larger values of ∆ lead to a coarser segmentation.

Table 7.1: The True Positive Rate (TPR) of MSERs [146], MSCRs [80] and MSERs aug-
mented with MSHRs on the ICDAR 2015 “Focused Scene Text challenge“ [110] dataset
are displayed. MSHRs are able to outperform MSCRs and a combination of MSHRs and
MSERs returns the best segmentation results.

Method ∆ = 1 ∆ = 5 ∆ = 10
MSER [146] 89.69 85.44 79.88
MSCR [80] 80.75 71.41 57.28

MSHR 88.73 83.69 76.21
MSER + MSCR 90.84 87.68 80.76
MSER + MSHR 93.64 89.12 84.46

An example of MSHRs for an image from PASCAL VOC 2007 [75] is shown in
Fig. 7.10. The parameter ∆ in (7.6) determines the granularity of the segmentation.
An advantage of using the derivative-magnitude-based component-tree for the MSHR
extraction process is that various different parameter settings of ∆ can be used to extract
a large collection of different regions without significantly increasing the runtime. The
complexity of the tree traversal is negligible compared to the time required for the tree
construction.

7.3.2 MSHR Versus MSER

The building blocks of MSERs are extremal regions that either have gray-values strictly
larger or strictly smaller than their outer border. This means that some regions of interest
can never be segmented with the help of MSERs. On the other hand, the building
blocks of MSHRs are homogeneous regions, which require that each inner pixel has a
smaller derivative than all outer derivatives of the region. Hence, as shown in Fig. 7.4,
our approach is able to extract regions that simultaneously have a lighter and darker
background. In the applications section, we show how this attribute can be very helpful
in applications such as OCR, where MSER-based approaches fail.

Although initially proposed as stereo features [145], MSERs are used extensively as
a preprocessing step for Optical Character Recognition (OCR) systems [115, 159]. Note
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Figure 7.11: The MSER segmentation in the first row has difficulties with characters that
are simultaneously lighter and darker than their background. The MSHR segmentation is
able to extract all relevant character regions and displayed in the second row.

that although the performance of MSER-based OCR systems can be outperformed by
techniques building on convolutional and recurrent neural networks [31, 172], they are
still used in many running OCR systems. This is due to the fact that they have a much
lower computational complexity and can be computed in real time on embedded devices
and machines without a GPU.

Since MSERs assume the regions to be extremal, they cannot extract characters that
have a lighter and darker background (see Fig. 7.4). This can be a problem in OCR
systems, since most approaches fail if the characters cannot be segmented in an early
stage. We evaluate the text segmentation capabilities of MSER, MSCR, [80] and MSHR
on the ICDAR 2015 ”Focused Scene Text challenge“ [110] dataset. As in common in the
ICDAR challenges [110], we consider a character to be found if it overlaps the ground
truth bounding box according to the PASCAL overlap criterion [75] by more than 50%.
As shown in the TPR displayed in Table 7.1, MSHR clearly outperform MSCR. However,
when applied alone, both methods are weaker than MSERs. The different approaches
of either flooding the derivatives or the image pixels essentially creates regions with
complementary attributes. The complementary attributes of MSERs and MSHRs can be
used to combine both methods. Hence, by extracting both MSERs and MSHRs, the recall
rates can be improved considerably. As shown in Table 7.1, the combination of MSHRs
and MSERs is able to significantly improve the segmentation obtained by only MSERs.
Note that the initial recall of the segmentation is an important indicator of how well an
OCR system can perform. Later steps are usually concerned with grouping and filtering
out undesired regions. Hence, what is not found in an initial step will not be found.
A handful of example images where MSHRs are superior to MSERs are presented in
Fig. 7.11.
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Figure 7.12: Overview of the proposed MSHR tracking approach. At time step t, the
features are calculated for the currently tracked MSHR. In the next time step, merely the
derivative-based component-tree is constructed and the features are calculated for every
node. These features are then matched to those of the MSHR from time step t.

7.3.3 MSHR Tracking

In MSHR tracking, the object is represented by a pixel-precise segmentation. This
enables a precise localization of the object and allows the object to undergo nonlinear
deformations. However, the tracker assumes that the object can be represented by a
homogeneous region. Hence, complex objects such as cars or pedestrians cannot be
tracked as a whole by the proposed tracking scheme. Instead, the tracker is restricted to
elements of objects that are stable, such as the license plate, windscreen, or the eyes of a
human.

Object tracking is typically divided into three stages: the initialization, the tracking
stage, and the update. In the first step, the object location is usually given and the tracker
is initialized with the input image and the region of the object. In the second step, the
tracker identifies the most probable object location in a new frame. In the final step, the
tracker updates its object representation from the new object location and appearance.
The steps of the proposed MSHR tracker can be divided into the above three stages
without loss of generality.

Tracker Initialization

As is common, the tracker initialization assumes that the initial region of the object is
known. The region may be given by a bounding box or by a pixel-precise segmentation.
The tracker then constructs the derivative-based component-tree for the given input
region. For each of the components in the tree, the stability from (7.6) is calculated and
the MSHRs are extracted. In general, MSHRs divide the image into multiple, possibly
overlapping, connected components. Then, the locally most stable regions are extracted
from the target and selected for tracking. Hence, for a given input region, multiple
MSHRs may be tracked.
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Tracking Step

Given the object location in the prior frame, a suitable search domain is determined in
the current frame. In all of our experiments, a rectangular domain with twice the object’s
bounding box extents as search region is used. As above, the derivative-based component-
tree is computed for the search domain. However, in contrast to the initialization, the
stability is not calculated for each region. Instead, region and gray-value features are
computed for every component in the tree. Only features than can be efficiently calculated
by region and gray-value moments [208] are used. This enables the algorithm to calculate
these features on the fly during tree construction with little computational overhead.

The moment of order (p, q) of a region R is defined as

mp,q = ∑
(r,c)∈R

rpcq, (7.7)

where p ≥ 0 and q ≥ 0. Since the flooding-based immersion considers each image
pixel in the tree construction anyway, our choice of features can be calculated while
constructing the component-tree. We use the area of the region (m0,0), the center of
gravity (m1,0/m0,0, m0,1/m0,0) and the ellipse parameters r1, r2 and θ as tracking features.
The ellipse parameters can be calculated with the normalized moments: see [93] for
details. Analogously, we use gray-value moments to calculate the average gray-value
and the gray-value deviation of the single channels as further features. Note that our
selection of features makes the approach invariant to rotations of the MSHRs.

To further improve the robustness, the single features in the matching step can be
weighted for specific applications. For example, if the object undergoes heavy deforma-
tions, but has a relatively constant color, the weight of the region moments is reduced and
the gray-scale features’ weights are increased. The weights are estimated automatically
from the variation of the color and the variation of the region moments within the first
five frames.

In the tracking step, the features from the MSHRs from the initialization are matched
to the components in the derivative-based component-tree of the search region. Matching
the MSHRs to all of the nodes in the tree improves the robustness and ensures that the
search is not restricted to only the maximally stable homogeneous regions. The general
idea of MSHR tracking is visualized in Fig. 7.12. The matching cost is determined by
a weighted l1 distance of the single features. Here, depending on the applications, the
weights can be adapted before or during the tracking . In the examples, we weighted the
mean gray-value of the regions the highest.

Tracker Update

To enable robust tracking, in contrast to [72], we update the region features incrementally
in each frame. This enables the algorithm to handle short occlusions and detection
failures in single frames. Hence, after successfully locating the node that best fits the
MSHR to be tracked, we update the feature vector as
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Figure 7.13: book from VOT2016 [116]. Since the gray-scale region is not an MSER, it
cannot be tracked with MSER tracking (see Fig. 7.14 for details). The overlap scores of
the MSHR tracking are comparable and sometimes even better than the overlap the best
possible axis-aligned tracker could theoretically achieve.

featt+1 = (1− λ)featt + λfeatt+1. (7.8)

In all our experiments we used λ = 0.5. If no region with a large enough similarity is
found, the features are not updated and the object is searched for with the old feature
values in the next frame.

7.4 Applications

2D Object Tracking The proposed MSHR tracking approach is not restricted to bound-
ing boxes. Hence, to evaluate the quality of the tracking results, we manually annotated
dense pixel-precise segmentations of a handful of scenes from the OTB [239] and VOT2016
[116] datasets. Otherwise, the given bounding box ground truth would introduce an
undesired bias when measuring the overlap scores of by-pixel segmentations. As ac-
curacy measure, we use the Intersection over Union (IoU) criterion. Unfortunately, the
cars within the Playing for Tracking Data dataset proposed in Section 5.2 are not MSERs
or MSHRs themselves. This makes it difficult to track the cars on the whole and an
evaluation of the results is difficult. Hence, we restrict the evaluation to the few sequences
in the OTB [239] and VOT2016 [116] datasets that can be approximately quite well by
MSERs and MSHRs. The PFTD is used extensively in Section 9.2.

To bring the results into perspective, we compute the best possible overlap an axis-
aligned tracker could obtain for the segmentation of a given scene (see Section 4.2). By
these means, the performance gain of using segmentations can be highlighted without
introducing a bias by choosing a specific set of state-of-the-art axis-aligned trackers to
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Figure 7.14: A close-up of book from VOT2016 [116]. The book is not an MSER in the
gray-scale image since its background is lighter and darker than the book itself. Hence, it
cannot be tracked with the existing MSER tracking. The book is a homogeneous region
however, and can efficiently be tracked with the proposed MSHR tracking. See Fig. 7.13
for the overlap scores.

compete against. We refer to this tracker as the Best box.

To understand the difference between MSER and MSHR tracking, we further compare
our approach to a version of the MSER tracker [72]. To focus the evaluation on the
different regions both approaches use, and not on their features, we use the exact same
parameters and moment-based features for both approaches.

For color images, their is a significant difference of MSER and MSHR tracking. Fr
example, in the book sequence from VOT2016 [116], the MSER tracker fails completely,
as shown in Fig. 7.13. The book is, by definition, not an extremal region in the gray-scale
image, as can be seen in more detail in Fig. 7.14. Hence, the initialization is unsuccessful
and the MSER tracker fails. Nevertheless, the book is a homogeneous region in both
the gray-scale and the color image and, accordingly, the MSHR tracker is successful. In
most frames, the MSHR tracker is even able to outperform the Best box and obtains an
average IoU of 0.7.

For the book sequence, the MSHR tracking requires at maximum of 24ms per
frame and for the dress sequence a maximum of 18ms per frame. The algorithm is
implemented in HALCON and run on an Intel Core i7-4810 CPU @2.8GHz with 16GB of
RAM with Windows 7 (x64).

For the gray-scale sequence dress from OTB [239], the MSER tracker outperforms
the Best box and the MSHR tracker by a small margin, as is displayed in Fig. 7.15. In
the respective sequence, the MSER tracker is able to track the head and the dress of
the dancer, while the MSHR tracker only tracks the dress. Hence, the overlap scores
of MSERs are superior. Nevertheless, it is important to note that both approaches are
compared against the best possible axis-aligned tracker and, accordingly, the overlap scores
are impressive.

3D Object Segmentation For MSER tracking, Donoser and Bischof [72] presented three
different applications; license plate tracking, face tracking, and the segmentation of a
fiber network. In the third application, a fiber network is reconstructed in 3D by tracking
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Figure 7.15: dress from OTB [239]. For this gray scale scene, the MSER tracker is able
to outperform the MSHR tracker. The tracker also clearly outperforms the best possible
overlap an axis-aligned tracker (Best box) can achieve for the segmentations within the
scene.

a slice of the data along the axis orthogonal to the image data. Analogously, we track
organs in slices of a Computed Tomography (CT) scan to generate a 3D segmentation.
We use the CT data provided in the 3DIRCADb dataset1 [200].

To initialize the tracking process, the organ is segmented in an arbitrary slice of
the CT data by a bounding box. The most stable MSHR (i.e., with the lowest value of
s(i) from (7.6)) is then selected in the initialization process for tracking. The respective
MSHR is tracked through the slice data along the axis orthogonal to the image data.
An example of the tracked regions is visualized for two examples in Fig. 7.16. Given
the segmentations of the single slices, the organ (in this case the right kidney) can be
reconstructed in 3D. We compare the reconstruction for MSER and MSHR tracking in
Fig. 7.17. To enhance the visualization, the datapoints are triangulated and the surface
normals calculated. Since the contrast of the organs can be very low in CT images, the
MSER tracking has difficulties catching the organ boundaries. Furthermore, the organ
is sometimes partly lighter and darker than the background, which may lead to MSER
tracking failure. The proposed MSHR tracking copes well with these difficulties, and the
reconstructions are significantly better.

The tracking of the regions in the CT slices is extremely efficient and only requires
an average of 5ms per slice. Hence, for the 45 slices in Fig. 7.17 the complete 3D
reconstruction process, which includes the triangulation (≈ 1s), the calculation of the
surface normals (≈ 130ms), and the segmentation (≈ 220ms), requires only around 1.5s.

1The dataset is available on http://ircad.fr/research/3d-ircadb-01
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7.5 Discussion

(a)

(b)

Figure 7.16: Two examples sequences from the 3DIRCADb dataset [200]. Given an
initial selection of a single slice (the middle image in (a) and (b)) of the right kidney,
the proposed MSHR tracking tracks the region forward and backward in space. The
segmented slices can be used to reconstruct the organ, see Fig. 7.17 for an example
reconstruction.

7.5 Discussion

The proposed tracker is extremely efficient and able to track arbitrarily shaped regions
in image sequences. The tracker is able to cope with arbitrary deformations of the
input region. Furthermore, the model update step allows to track regions robustly. The
presented tracker can be used for 2D temporal tracking or for 3D object segmentation.
Since the homogeneous regions are more general than extremal regions, the presented
approach can help to solve problems where MSER tracking would typically fail. However,
the restrictions placed on the tracker are still very strong. The objects either need to
be homogeneous regions themselves or contain sufficient parts that are homogeneous
regions. As a consequence, the tracker is difficult to use for more general tracking
scenarios.
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Figure 7.17: In the first row, the reconstruction of the right kidney is displayed for MSER
tracking. The low contrast and the fact that the background is partly darker and lighter
than the objects makes the reconstruction noisy. The proposed MSHR tracking can cope
with these situations and the reconstruction is significantly better.
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8
Shape Model Tracking

In the previous chapter, we proposed an MSHR-based tracking approach that works
efficiently for selected applications. Unfortunately, although the approach can track
deformable objects, it is restricted to tracking objects that can be represented by homoge-
neous regions. There are many industrial applications where this restriction is too strong.
In this chapter, we present a more general tracking approach that is merely restricted to
roughly rigid objects. The approach uses subpixel-precise image points and directions to
track objects with high accuracy and does not require any significant object texture. It
can determine the object position, scale, and rotation with subpixel-precision. The tracker
returns a reliable score for each frame and is capable of self diagnosing a tracking failure,
propagating the object motion, and reinitializing the tracking by itself. Furthermore, the
choice of the similarity measure makes the approach inherently robust against occlusion,
clutter, and nonlinear illumination changes.

In Section 8.1, we present the shape model localization technique of Steger [205, 206]
that forms the basis of the proposed tracker. In Section 8.2, we present the baseline shape
model tracker that was originally proposed in Böttger et al. [27] and identify the strengths
and weaknesses of the baseline. Next, in Section 8.3, we present extensions of the baseline
to tackle its weak spots and improve its performance. We add queues to allow long-term
tracking without significant drift and present a dynamic model generation that allows to
adapt the number of model pyramid levels on the fly. Furthermore, we represent a robust
hierarchy of models that allows to track objects that severely change their scale within a
sequence. The chapter is concluded with a discussion in Section 8.4. Some of the results
presented in this chapter are covered in Böttger and Steger [26] and Böttger et al. [27].

8.1 Fundamentals: Shape Model Matching

The shape model tracker builds on the efficient shape-based object recognition technique
of Steger [205, 206]. The object recognition technique is essentially a template matching
scheme that searches for the object densely for each transformation and image position.
The template model is represented by a sparse set of model points. To reduce the
computational complexity, an image pyramid of different scales is created and the
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Figure 8.1: On the left, the typical input for the shape-based matching is displayed. The
model initialization assumes the region (displayed as the green border) of the object is
known. On the right, the points of the corresponding shape model are displayed.

initial dense matching process is merely conducted on the coarsest level. Promising
transformations are then tracked through the image pyramid and either discarded or
refined on each level. In the following, we describe the main steps of the shape-based
object recognition [205, 206].

Model Generation The shape model is generated from a template image and an
arbitrarily shaped region of interest (ROI). Model point candidates are extracted by
applying a threshold on the Sobel filter edge amplitude of the input ROI. To thin out the
number of points, non-maximum suppression is applied with automatically estimated
thresholds (see [220] for details). An example of the pixel-precise model points for an
input image displayed in Fig. 8.1. The pixel-precise model points can then be refined
to subpixel precision, which is described in more detail in Chapter 3.3 of [204]. The
coordinates of the model points are all expressed relative to an arbitrary reference point.
We use the center of gravity of the ROI for simplicity. An independent shape model
is generated for each pyramid level to account for scale-space effects. In the image
pyramid, neighboring edges may merge in coarser levels or disappear completely. Hence,
independent models ensure the optimal model is used on each pyramid level.

Model Localization The model localization essentially amounts to finding the best
matching candidate within the target image in a template matching framework. The
process is divided into two steps: (1) the initial detection of promising object locations in
the coarsest pyramid level and (2) the tracking of these possible locations through the
image pyramid and either refining or discarding them.

1. In a first step, the search space PS ,R,Σ is determined. The search space is the
Cartesian product of all possible values for s, θ, and every point in the search region
S . For each element in PS ,R,Σ the model is then compared to the target image.
Since this is a computationally demanding process, it is only conducted on the
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Target image Score(x,y)(θ,s)

The similarity of the modelM is
calculated for every element in PS ,R,Σ

Amplitude and direction

Figure 8.2: The steps performed during the matching of a model: First, the gradient
amplitudes and direction of the target image are calculated. The amplitudes are required
for the subpixel-precise refinement of the object position. Then, the maximum similarity
of the modelM from Fig. 8.1 is calculated for the position, scale, and angle within the
discretized 4d search space.

coarsest pyramid level, where specifically S is very small. Furthermore, due to
the low resolution on the coarsest pyramid level, the resolution of R and Σ can
also be decreased considerably. To compute the similarity, a direction vector is
computed for a dilated search region. The size of the dilation is determined by
the maximum extent of the transformed model (hence from PS ,R,Σ). The direction
vectors in the dilated search region are identified as #»e x,y = (vx,y, wx,y). The #»e x,y

can essentially be obtained by any method that returns a direction vector for each
image point, e.g., edge detectors such as Sobel or Canny [33] or line detectors
[204, 207]. However, it is essential that the method for obtaining the directions of
the model and the directions in the search image are compatible. After obtaining
#»e x,y, it is possible to evaluate the similarity of the tracking model M for every
image point and transformation in PS ,R,Σ. The similarity of a transformed model
point is given by the sum of dot products of the normalized direction vectors of the
transformed model and the target image:

score(PS ,R,Σ)M =
1
n

n

∑
i=1

#»

d ′i ·
#»e p′i

‖ #»

d ′i‖‖
#»e p′i
‖

, (8.1)

with score : PS ,R,Σ → [−1, 1], p′i computed from (2.5), and
#»

d ′i computed from (2.6).
The normalization of the direction vectors to length 1 makes the similarity measure
robust to non-linear illumination changes. Furthermore, the measure is robust to
occlusion, clutter, and a moderate amount of defocussing [205, 206]. It is possible
to adapt the similarity measure to be invariant to the contrast direction of the edges.
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This may be achieved by considering the modulus

score(PS ,R,Σ)M =
1
n

∣∣∣∣∣ n

∑
i=1

#»

d ′i ·
#»e p′i

‖ #»

d ′i‖‖
#»e p′i
‖

∣∣∣∣∣ , (8.2)

where score : PS ,R,Σ → [0, 1]. Furthermore, for the measure to ignore local contrast
changes, the similarity measure can be modified to

score(PS ,R,Σ)M =
1
n

n

∑
i=1

| #»d ′i ·
#»e p′i
|

‖ #»

d ′i‖‖
#»e p′i
|
, (8.3)

where score : PS ,R,Σ → [0, 1]. However, the element-wise modulus indirectly adds
a significant computational overhead and is rarely used in practice.

By setting a minimal required similarity scoremin, it is possible to discard possible
image positions and transformations without needing to compute the similarity
for every model point in (8.1). This helps to avoid a large number of computations.
See [208] for details.

2. In a second step, the image locations and transformations that are larger than
a specific threshold scoremin in the coarsest pyramid level are tracked through
the image pyramid. The model on the lower (finer), pyramid level is tested for
the respective locations and transformations and their similarity is computed.
Locations and transformations that continue to yield a score larger than scoremin are
propagated deeper into the image pyramid, while those that do not are disregarded.
The restriction to promising locations and transformations in the deeper pyramid
levels provides significant reduction of the computations and makes the process
very efficient.

The localization process is visualized in Fig. 8.2. At this point the optimal position,
angle, and scales are determined with pixel accuracy. The scoremin is also an indicator
of how much of the object is visible. For example, if scoremin = 0.8, at least 80% of the
model points need to be visible to enable a score of 0.8 to be reached. An example of
different settings of scoremin are displayed in Fig. 8.3.

In the following, we describe how the optima may be further refined to subpixel
accuracy.

Subpixel-precise Refinement The accuracy of the localization step depends on the
chosen discretization of R and Σ as well as the pixel resolution of S . To refine the match,
a second order polynomial is fit to the neighborhood of the best matches. The coefficients
of the polynomial may be obtained by convolution with facet model masks [205, 206].
For example, for similarity transformations, the polynomial is fit to the 3× 3× 3× 3
neighborhood of the 4d (x, y, θ, s) parameter space of the best matches. The maximum
of the respective polynomials are the subpixel-precise optima of the object locations
and transformations. An example of a second order polynomial fit to the surrounding
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scoremin = 0.4 scoremin = 0.6 scoremin = 0.8

Figure 8.3: The results for 3 different parameters of scoremin are displayed for the
FaceOcc1 sequence from OTB-2015. The value of scoremin is an indicator of how much
the object is allowed to be occluded. Lower values improve the robustness to occlusion but
also require more time, since more score values need to be computed. For scoremin = 0.8,
the object is not detected for the third to fifth image, while for scoremin = 0.6 it is lost for
the fourth and fifth image. However, all approaches recover when the occlusion ends.
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Figure 8.4: To compute object position and transformation parameters with subpixel
precision, a second order polynomial is fit to the pixel-precise optima computed by the
matching process. To simplify the visualization, in this image the polynomial is merely
fit to the scale parameter s and the rotation angle θ. The maximum of the polynomial
yields subpixel-precise optimum of s and θ, which are not restricted to the discretization
of the transformation space.

of the pixel-precise optimal values for R and Σ is displayed in 8.4. The maximum
of the polynomials are not restricted to the pixel grid nor to the discretization of the
transformation space.

In a last step, a least-squares refinement is applied to the transformation parameters.
This helps to further improve the localization accuracy and the robustness. The least-
squares refinement assumes a good initial approximation of the current transformation
and improves the global similarity transformation for all points. For each model point pi,
the best point match in the direction of ± #»

d ′i is determined. The concept is displayed in
Fig. 8.5 and explained in more detail in [206].

Robustness to occlusion and illumination The choice of the similarity measure makes
the shape model matching approach inherently robust to occlusions and illumination
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Figure 8.5: After the optimal model position, scale, and rotation have been determined,
each point searches for its best match along a 1d search line perpendicular to its image
tangent. The length of the search line is variable, but has a significant impact on the
runtime.

changes. The robustness to non-linear illumination changes comes from the fact that
all direction vectors are scaled to unit-length. The robustness to occlusion comes from
the fact that missing points in the target image will, on average, contribute nothing to
the sum of (8.1). Similarly, clutter lines or points in the target image not only need to
coincide with the sparse set of model points, but also need to have similar direction
vectors to contribute to the similarity.

The parameter scoremin gives a good estimation of the allowed object occlusion. If
half of the model points are occluded in the target image, the maximum score that can
be obtained is 0.5. Please note that a low value of scoremin increases the number of points
for which the score needs to be calculated and increases the number promising locations
that need to be tracked through the pyramid. Hence it may have a negative impact on
the runtime.

Further speed-ups can be obtained by only using a subset of points for detecting the
object. During the model generation step, a random subset of points may be selected
from the modelM and used for detection. Although some accuracy is lost, the execution
time can be reduced.

8.2 Fast and Accurate Shape Model Tracking

In the following, the baseline shape model tracker proposed in Böttger et al. [27] is
presented in detail. The approach can be divided into three stages: Model initialization,
model localization, and model update.

Model Initialization In the first frame, a shape-based model M is generated from a
given, arbitrarily shaped, region of interest (ROI). The generation of the shape model is
analogous to the generation in the object recognition approach and is described in detail
in Section 8.1. The shape modelM consists of a set of n points mi = (pi,

#»

d i) ∈ R2 × S1
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Figure 8.6: The default shape model pyramid generation is displayed. An image pyramid
is generated from the input image. For each pyramid level an independent shape model
is generated. In general, the number of model points descreases significantly for the
coarser pyramid levels.

that each consists of a point pi and the corresponding direction vector
#»

d i. The resulting
points of an exemplary shape model are displayed in Fig. 8.1.

In general, the number of model points grows with size of the input ROI. Since many
of the later computations depend on the number of model points, it is reasonable to
reduce the number of model points as much as possible. As in the object recognition
technique of Steger [205, 206], a shape model pyramid is generated from the input object.
In a first step, an image pyramid is constructed from the input image. The number of
pyramid levels is computed automatically. It ensures that enough model points are still
present on the coarsest pyramid level. A shape model is constructed for each pyramid
level independently of the other levels. As shown in Fig. 8.6, the number of model points
decreases significantly for the coarser pyramid levels. In the baseline approach, the
number of pyramid levels remains constant throughout the tracking process. This may
be problematic when the object becomes very small or very large. If the object becomes
very small, the detail in the finest model does not match the image anymore and if the
object turns very large, the lowest pyramid level still has too much detail to enable an
efficient tracking.

Tracking Step In a first step, a search region S is constructed. The search region is
placed around the last known object position and scaled with the confidence of the tracker.
In the baseline approach, the confidence is a function of the prior localization score and
the number of successful localizations in the last n time steps [27]. More specifically, the
search region is circular and the radius r is manipulated by the confidence α ∈ [0, 1] such
that

r = (1 + rmax(1− α)) · σc, (8.4)

97



Chapter 8: Shape Model Tracking

Figure 8.7: If the search region becomes too large, it is reduced to a search grid to ensure
the runtime does not surpass the frame rate.

where rmax is the maximal radius factor and σc is the current object scale. Although
σc = sx = sy in the initial frames, as shown later, the search scales and the current model
scale may change throughout the tracking process. The confidence is initialized at 1.0 and
is incrementally decreased when tracking fails by dividing it by 1.05. When the object
is re-detected, the confidence is reset to 1.0. If the confidence drops below a specified
threshold αmin, the search region is thinned out even further. For this, the score is only
computed for every n-th point in the search region. This creates a search grid rather
than a dense search region as is shown in Fig. 8.7. Although this greatly reduces the
localization accuracy, it ensures the runtime remains below frame rate. Once a rough
location of the object has been obtained, the confidence is increased and the localization
accuracy can be improved in subsequent frames.

Given the search region, the shape model is used to perform object recognition, as
described in [205, 206] and Section 8.1. To reduce the computational complexity, the
number of model points is further reduced. For this, a random subset of the model points
is selected from the shape modelM. The points that were successfully tracked in prior
frames are given a higher probability of being chosen. This ensures that strong model
points are always present within the model. It has the further advantage that background
points or model points resulting from noise are gradually removed from the model used
for tracking.

Furthermore, given the last object pose, it is not necessary to search for all possible
object poses exhaustively in each frame. To reduce the workload, we restrict the set of
possible transformation parameters PS ,R,Σ (see (2.10)) such that

PS ,R,Σ =

(
S ×

[
θc −

0.1
α

, θc +
0.1
α

]
×
[

σc −
0.2
α

, σc +
0.2
α

])
, (8.5)

where θc and σc refer to the current object rotation and scale, respectively. As for
the search region, the range of possible rotations and scales grows with an increasing
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Correlation-based tracker [62] STAPLE [16] Our approach

Figure 8.8: Car24 from the OTB-2015 [239] benchmark. The baseline shape model tracker
is compared to two equally fast trackers: STAPLE [16] and a scale adaptive correlation
tracker [62]. The shape model tracker is virtually drift-free in the sequence (which has
over 3000 frames). All three trackers run in real-time at 100 fps for this sequence.

uncertainty. For very low confidence values α, the ranges of θc, σc are clipped to realistic
values, i.e., θc is restricted to a full rotation and σc to be within [0.1, 10].

To achieve further speed-ups, no score is calculated for a model transformation as
soon as it cannot reach a predefined minimal score scoremin anymore. It is possible to be
even stricter; please refer to [219] for further details.

Model Update The localization of the shape model M is computed with subpixel
precision, as described in 8.1. The refinement involves finding a matching edge point in
the search image for each model point pi along its direction ± #»

d ′i. In the update stage
these correspondences may be used to refine the model points. For this, a final search for
the corresponding target image points is conducted after the least-squares refinement.
This time, the global similarity transformation of the model is not updated, but rather
the relative positions of the model points pi. This improves how well the model will fit
to the target image at future time steps.

In the example shown in Fig. 8.5, the points p4 is shifted towards the best match p̃4

that is found along the yellow line. The model update is regularized with a parameter λ

to be more robust to noisy object deformations. At frame t, each point is updated with
its best match p̃t

i such that:

pt+1
4 = pt

4 + λ p̃t
4. (8.6)

If no matching point is found, the point is not updated. The update step does not only
allow the approach to capture small model deformations, but also weakens the restriction
of the approach to similarity transformations of the model. Consequently, projective
transformations that increment over time may be captured by locally deforming the
model points.

The update step of a tracking approach always needs to find the balance between
keeping the localization accuracy high and generalizing well to new representations of the
model. The same is true for the proposed update approach; too large parameter values
of λ may add drift and can lead to a degeneration of the tracking model if no extra care
is taken. However, since the model transformation is determined with subpixel-precision,
the drift is minimal. Even long sequences with over 3000 frames, like the one in the

99



Chapter 8: Shape Model Tracking
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Figure 8.9: A simplified pipeline of the baseline shape model (baseline_sm) localization
and update steps is visualized. The complete shape model pyramid is used for the object
localization and only the finest level is updated after the localization.

example displayed in Fig. 8.8., do not drift significantly.
During the tracking process, it is monitored whether a matching edge point was

found for every model point or not. This step enables the algorithm to identify points
that are not contributing to the model localization. These points may be removed
from the shape model completely. Generally, these points have either emerged from
poorly initialized points in the first frame or by parts of the object becoming occluded
or changing appearance. To prevent deleting all points and degenerating the model,
the baseline method samples new points in sparse areas of the model. This allows to
capture newly emerging object edges. A very simple pipeline of the baseline shape model
localization and update steps is visualized in Fig. 8.9. Although each of the pyramid
levels is used for the object localization, the update of the model is only performed on
the finest pyramid level.

8.2.1 Strengths and Weaknesses

The baseline shape model tracking can be used to track roughly rigid objects in real-time.
In the original paper, extensive experiments on the rigid objects within the OTB-2015
[239] and VOT2016 [116] datasets are conducted. It is shown that the tracker is able to
compete with the state-of-the-art real-time trackers. In contrast to the compared trackers,
it has a failure mode detection and a very high localization accuracy. Especially the high
accuracy protects the tracker from drifting from the target. However, there are certain
settings where the tracker has difficulties:

1. The number of pyramid levels is determined in the initialization step and kept
constant throughout the object tracking. This has two drawbacks. On the one hand,
if the object becomes significantly smaller in a sequence, the details on the finest
pyramid level do not match the object anymore and the tracker may fail. On the
other hand, if the object becomes larger, it may be necessary to increase the number
of pyramid levels to remain efficient.

2. In long sequences, the tracked object may change considerably. The scale, rotation,
and perspective may change. However, the shape model is only updated on the
lowest pyramid level. Therefore, the model does not capture the changes of the
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Figure 8.10: A simplified pipeline of the improved shape model (all_level_sm) local-
ization and update steps is visualized. The shape model pyramid is updated for each
level after the subpixel-precise object localization. This requires finding the best fit for
each model point on each pyramid level.

object in the lower pyramid levels. As a consequence, the tracker may fail in longer
sequences or sequences where the object changes scale or appearance considerably.

3. Although the model update can capture arbitrary deformations, they need to
increment slowly over time. The tracker cannot cope with strong perspective
view-point changes that appear quickly.

In the following, we address the above three problems and improve the shape model
tracker.

8.3 Improved Shape Model Tracking

In this section, we address how the above described short comings of the baseline shape
model tracking can be circumvented. We introduce improvements that turn the shape
model tracking into an even more reliable long-term tracker that is fast, robust, and
very accurate. To distinguish the different improvements in the experiments, we denote
each improvement with a unique identifier,. For example, the above described baseline
method is denote as baseline_sm.

8.3.1 Model Update: Refinement of All Levels

The baseline method only updates the model points on the finest level. This has the
very practical reason that the least-squares refinement is only required on the finest
pyramid level for a subpixel-precise localization of the object. Hence, the model update
has a small computational overhead. Furthermore, for small model deformations, this is
a reasonable assumption: the reduced resolution in the coarser pyramid levels makes
them inherently robust to small deformations of the model. Unfortunately, for larger
deformations that accumulate over time, this restriction can prevent the model from
capturing more complex model deformations. In the following, we present an approach
that also updates the models in the coarser pyramid levels. The method is denoted as
all_level_sm.
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In the baseline shape model tracking, the transformation parameters are refined to
subpixel precision in the final step. The refined transformation is the starting point of
the model update on the finest pyramid level. In the proposed approach, the respective
refined transformation is applied to the model in every pyramid level. Therefore,
the translation parameters need to be converted to the size of the respective pyramid
level. The transformation parameters of the scale and rotation are the same for each
pyramid level. After the models have been transformed, the update stage of the subpixel
refinement is applied in each pyramid level individually. Hence, for each model point
pi, a matching edge is searched for along the point’s directions ± #»

d ′i. As for the finest
pyramid level, the points are moved towards the found edge matches according to (8.6).
The concept is visualized in Fig. 8.10.

The described approach allows to update the models on every pyramid levels. This is
essential for long time tracking. However, this straight forward adaptation of the update
has a few shortcomings:

• The least-squares refinement is computationally demanding. Therefore, the pro-
posed update of all pyramid levels independently adds a significant computational
complexity to the model update.

• The number of pyramid levels is fixed and determined by the model initialized in
the first frame. Although it is possible to use fewer levels for the localization, it is
not possible to increase the number of pyramid levels.

• The object localization is very dependent on the quality of the model on the coarsest
pyramid level. In the first step, the similarity of this model is computed for each
possible position and transformation in PS ,R,Σ. Hence, if this model does not match
the current appearance of the object, no possible locations and transformations are
found that can be tracked through the image pyramid. Since the computational
complexity of the full parameter search is considerable, it is prohibitive to extend
the full parameter search to lower levels in the image pyramid if nothing is found
on the coarsest level. Therefore, the quality of the model on the coarsest pyramid
level is extremely important. To ensure the tracking can succeed, every update of a
model point needs to be done with extreme care. Furthermore, there are usually
only a few model points in the coarsest pyramid level. This makes the model very
fragile to any update of the model points.

8.3.2 Dynamic Pyramid Generation

As above, the idea is to update the model in lower levels as well as in the finest level.
However, to reduce the computational overhead, no point matches are computed for the
coarser pyramid levels. Instead, the coarser pyramid models are generated directly from
the finest pyramid level. While this removes the necessity to compute point matches
for every point in each pyramid level, it introduces a number of new challenges in
the scale space. The conceptual idea of the model update displayed in Fig. 8.11. The
dynamic generation of the image pyramid is able to significantly reduce the runtime.
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Figure 8.11: A simplified pipeline of the improved shape model (gen_level_sm) lo-
calization and update steps is visualized. Only the finest level is used for the object
localization and only the finest level is updated after the localization. The coarser pyramid
levels are generated from the lowest pyramid level in each frame.

If the search region turns very large, it may be prohibitive to test the complete search
space of PS ,R,Σ in the coarsest pyramid level. However, if the number of levels can be
adapted dynamically, a further pyramid level can be generated and the cost of finding
promising object locations can be reduced. Furthermore, if the size of the model becomes
very small, the coarsest pyramid level may be too inaccurate. In these settings, fewer
pyramid levels can be generated. We compare and evaluate three different ideas to
dynamically generate the pyramid of shape models. Each of the three methods ensure
the automatically generated models fit to the subpixel-precise edges in the image pyramid
slightly differently. They are denoted as gen_level_sm, gen_level_sm_regression,
and gen_level_sm_precise, respectively.

The first stages of all three approaches are the same. In the initialization stage, the
shape model is only generated for the finest pyramid level. The shape models on the
coarser pyramid levels are then generated dynamically in the localization stage. For this,
the point coordinates from the first pyramid level p(1)i are scaled such that

p(n)i =
p(1)i
2n−1 , (8.7)

and the directions
#»

d (n)
i =

#»

d (1)
i are inherited from the first scale. This essentially allows

to generate an arbitrary number of scales from the finest image pyramid level.
As observed before, in the ordinary shape model, the number of model points

generally decreases rapidly in the coarser levels. This represents a further challenge
when automatically creating the pyramid levels. To account for this, in a second step, all
three approaches merge the transformed model points in a greedy manner;

1. For each model point pi , the distance to its surrounding points qi is computed.
Points that are too far away are given a fixed distance δmax. This generates a sparse
and symmetrical distance matrix Dp,q that encodes the pair-wise distances.

2. For each column di in Dp,q the minimal distance dmin
i is computed.

3. Starting from the column with smallest minimal distance (dmin = min
i

dmin
i ), all

points with a distance smaller than a given threshold δmin are merged. The respec-
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Figure 8.12: The images and the corresponding edge amplitudes of three levels in an
image pyramid are displayed. From left to right, fine-scale structures are suppressed and
edges may merge or disappear in the coarser pyramid levels.

Table 8.1: The coarser pyramid levels have a lower minimal score than the higher pyramid
levels. This is to account for the increased uncertainty in the automatically generated
pyramid levels

level = 2 level = 3 level = 4 level = 5
scoremin factor: 0.7 0.5 0.34 0.24

tive rows and columns are removed from the matrix.

4. The process is repeated for the all columns in Dp,q in the order of their minimal
distance dmin

i .

The above steps ensure that the closest points are merged first. Overall, the thinning
of the model points prevents having too many redundant points within the models of
each level. This may significantly speed up the object localization. However, the described
approach does not account for edges that would disappear completely in scale space.

The dynamically generated shape models do not coincide with the shape models that
would be generated from the image pyramid directly. To ensure that the localization
process is still able to find matches, the minimal score scoremin is decreased for each level
of the pyramid. More specifically, the further away a level of the image pyramid is from
the initial first level, the more scoremin is decreased. The respective factor for each level is
displayed in Table 8.1.

We denote the method that performs the above described three steps of scaling the
model points, thinning out the points, and a reducing the scoremin as gen_level_sm.
The general idea is visualized in Fig. 8.13. The other two methods that dynamically
generate the image pyramid build on top of gen_level_sm. Merely scaling the model
points to the coarser pyramid level does not ensure that the generated points lie on
subpixel edges of the respective pyramid level. Hence, the other two methods further
refine the position of the model points within the pyramid to make the model more
robust.
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Figure 8.13: The dynamic shape model pyramid generation is displayed. To be able to
dynamically adapt the number of levels, only the first model level is generated from the
image template. The further levels are generated by propagating the points to a smaller
scale. Closely neighboring points are merged and the points are refined based on the last
gradient image of the tracked object.

In the image pyramid, edges may merge, disappear, or change their position sig-
nificantly from the the finest to the coarsest level [135, 203, 244]. This is visualized in
Fig. 8.12, where the edges of the traffic light and the power pole represent the object
boundaries in the finest pyramid level and the center of the poles in the coarser levels.
Hence, the boundaries merge to form the center line. Furthermore, the details of the
tree blur and many edges disappear completely. When generating the model points
dynamically, this is a problem. In the baseline, this problem is circumvented by gener-
ating the shape models on each pyramid level independently. This has the advantage
that the scale-space effects are inherently accounted for. Nevertheless, as stated above,
the independence of the models makes it difficult to update the models in dependency
of each other. The automatic generation of the coarser pyramid levels enables us to
integrate the deformations from the finest pyramid level to the coarser levels implicitly.
The dynamic model generation of gen_level_sm does not ensure that the transformed
model points lie on subpixel-precise image edges in the image pyramid. Hence, in a next
step, we evaluate two methods that fit the model points to the edges of the respective
pyramid level: contour point snapping and a learned point regression.

Contour Point Snapping The general idea is to move each model point to the closest
subpixel-precise image edge. Hence, in a first step, the subpixel-precise image edges are
determined for each level of the image pyramid. This requires applying an edge filter
such as a Sobel filter, a hysteresis thresholding of the filter response, and a non-maximum
suppression or skeletonization of the obtained edge region. Furthermore, the obtained
pixel precise edges need to be refined to subpixel precision. In total, the process is
computationally significant. After the subpixel-precise edges have been determined, the
closest subpixel-precise edge is determined for each shape model point. If the distance is
below two pixels, the shape model point is moved towards the image edge. However,
if the maximal distance is too large, the model point is discarded. It is assumed that in
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Figure 8.14: Scaling the model points to the coarser levels in the dynamic shape model
pyramid generation may lead to model points (left image) that do not lie directly on the
subpixel-precise image edges (yellow contour). In the right image, the respective model
point that would be generated by the model initialization is displayed.

these circumstances the subpixel-precise edge is not present in the respective pyramid
level anymore. The described method is denoted by gen_level_sm_precise and
displayed in Fig. 8.14. Here, the scaled shape model point in the left image is moved to
the closest subpixel-precise image edge.

Model Point Regression The above described contour point snapping of the model
points is computationally demanding. However, it is reasonable to assume that the
explicit position of the subpixel-precise image edges may not be necessary to optimize
the positions of the shape model points. Instead, we evaluate whether the gradient
amplitude in the neighborhood of every scaled model point has sufficient information to
improve the position of the shape model points. Consider the scaled model point in the
left image of Fig. 8.14. The gradient amplitude in the neighborhood of the scaled model
point (red) indicates that the model point is slightly offset from the subpixel-precise edge.
To verify the above assumption, a classifier that obtains the scaled shape model point
coordinate pi, the point’s direction

#»

d i and the surrounding gradient amplitude values as
input is trained. The classifier returns an update of the shape model point coordinate
and direction. The general concept is displayed in Fig. 8.15.

To train the classifier, we need a suitable representation of the shape model points.
In the shape model, the model point coordinates pi are determined by their relative
coordinate to the reference point of the shape model. However, the update of the model
points should be independent of their position in the shape model. Hence, as input, the
classifier receives the row and column position of pi in the coordinate system that is
centered at the closest image pixel pi to the model point, i.e., for pi = (245.6, 106.24)T the
local coordinates is centered at pi = (246, 106)T and thus p̂i = (−0.4, 0.24)T. Furthermore,
the classifier receives the 5× 5 values of the gradient amplitudes surrounding the point p
and the respective direction

#»

d i. As output, the network outputs a row and column offset
oi that shifts the point pi towards the closest subpixel-precise edge and an update of the
direction #»o i.

We use a Multilayer Perceptron (MLP) with a single hidden layer. Since we are
considering a regression problem, a linear output function is used (in contrast to the
commonly used softmax for classification problems). We tested a different number
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Figure 8.15: The pipeline of the learning-based model point regression is displayed.
The classifier receives the gradients in the 5× 5 neighborhood of each point, the point
coordinates, and the point direction. The output is 4-dimensional and includes an update
to the point position and direction.

of neurons in the hidden layer and found that 15 showed a good balance between
performance and runtime. To train the MLP, it is possible to obtain a large amount
of training data from arbitrary input images. Given an image, a shape model with
two pyramid levels is generated. Then, the shape model points in the coarser pyramid
level are scaled and placed in the finer pyramid level. For each scaled shape model
point, the closest model point that was generated by the shape model initialization can
be determined. This coincides with finding the closest model point in terms of the l2
distance. The concept is visualized in the first row of Fig. 8.17. The respective offset
between both points is used as the expected output oi of the classifier. Furthermore, the
offset in the directions of both points can be calculated and set as the offset of the point’s
direction #»o i. A variety of different images is used to train the classifier. A collection of
the training and testing images is displayed in Fig. 8.16. They cover a number of different
domains and applications.

Although the shape model points that are created by the initialization process lie
on subpixel-precise image edges, they are merely a sparse approximation of the edge
itself. Therefore, their precise location on the image edge is somewhat random. We
cannot expect the classifier to learn the sampling of the subpixel-precise image edge
from a small window around a model point. The problem is visualized in the first row
of Fig. 8.17. Although the l2 distance of p′ and p is being minimized, the position of
p could be anywhere on the blue line. All that the classifier can be expected to learn
is the offset of each shape model point to the closest subpixel-precise edge. Hence,
in a next step, we would like the classifier to minimize the distance of each model
point to the closest contour point directly. The contour distance is denoted by lcont

and visualized in the middle row of Fig. 8.17. The approach is trying to achieve the
same as the contour point snapping in gen_level_sm_precise but without explicitly
computing the subpixel-precise edges and determining the closest image edge for each
point.

However, the problem can be simplified even further. Instead of calculating the closest

107



Chapter 8: Shape Model Tracking

Figure 8.16: The images used for training and testing the MLP classifier are displayed.
The images were selected to cover a range of different domains and applications.

Table 8.2: The results of the three point regression classifiers and of contour point
snapping are displayed. The displayed error is the remaining average lcont distance of
model points after and before the regression. Therefore, the contour point snapping has
lcont = 0 . The runtime of the classifiers is measured explicitly for each point, whereas
the runtime of the contour point snapping is averaged over many sequences and points.

train error lcont test error lcont runtime per point ms
optimize l2 0.443→ 0.409 0.426→ 0.391 0.003 ms
optimize lcont 0.443→ 0.359 0.426→ 0.341 0.003 ms
optimize l #»

d 0.443→ 0.441 0.426→ 0.458 0.002 ms
contour snapping 0.443→ 0.0 0.426→ 0.0 0.43 ms

subpixel-precise edge lcont, we can search for the closest subpixel-precise edge along the
direction of each scaled shape model point. This should allow to simplify the problem
even further. The distance is denoted as l #»

d and visualized in the third row of Fig. 8.17.
To verify which of the above measures performs the best, we trained three different

classifiers that differ in the input and output they obtain. The first two classifiers get the
image gradients in a 5× 5 neighborhood of the scaled model point, the relative point
coordinate p̂, and the direction. However, the first classifier is expected to output the
offsets based on the l2 distance and the second classifier the offsets based on the lcont

distance. The third classifier merely outputs a single value. Namely, the direction and
distance to walk along the point’s direction to find the closest subpixel-precise edge. The
direction is encoded in the sign of the output. The results are displayed in Table 8.2 and
discussed in the following paragraph.

Comparison of Contour Point Snapping and Point Regression We compare the re-
sults of the three proposed point regression classifiers and the contour point snapping.
As shown in Table 8.2, all but the l #»

d classifier are able to improve the position of the
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Figure 8.17: The distance measure l2, lcont and l #»

d are displayed. The l2 distance is the
distance between the scaled shape model point p′ and the closest shape model point p.
The lcont distance is the distance between the scaled shape model point p′ and the closest
subpixel-precise edge (blue). The l #»

d distance is also the closest subpixel-precise edge,
but measured along the direction of the scaled shape model point
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shape mode points of the test images. While the contour point snapping moves every
point directly on top of a subpixel-precise edge, the classifier-based approaches are only
able to improve the point positions. However, while the classifiers lcont and l2 come at a
negligible computational cost, the contour point snapping costs almost half a millisecond
per model point. Since the shape models typically have hundreds of model points, this
is computationally demanding. As expected, the classifier trained directly on lcont is
able to outperform the one trained on l2. The sampling of the subpixel-precise image
edge makes the learning problem unnecessarily difficult. Both approaches have the same
computational overhead. The classifier trained with the l #»

d distance is not able to improve
the shape model point positions in the test images. A small movement of a model points
direction

#»

d can lead to a significant change of the distance l #»

d . As a consequence, the
point updates are ill conditioned and not very stable.

Unfortunately, none of the proposed classifiers was able to improve the direction
vectors of the shape model points. Since the gradient amplitude was used as input, it
could be assumed that using the partial derivatives directly should improve the results.
However, although this almost doubles the input to the classifiers, the results did not
change considerably. As a consequence, in the later experiments, we merely input the
point and the neighboring gradient amplitude and expect the classifier to output an offset
to the shape model point only.

Qualitative results for the contour point snapping and the classifier trained with lcont

are displayed and discussed in Chapter 9.

8.3.3 Robust Tracking

The baseline shape model struggles in long sequences were the tracked object changes
scale and appearance considerably. This has two main reasons: (1) when the scale changes
too strongly, the model on the finest image pyramid does not fit the actual object anymore
and (2) in long sequences, the incremental update of the model may change the shape
model too much and prevent a detection of the original object. In the following, these two
problems are tackled by introducing a hierarchy of shape models. The hierarchy stores
shape models generated at different scales and from different perspectives. The shape
model localization can then use multiple models to identify the most probable object
locations. This enables the algorithm to make the tracking significantly more robust in
long sequences. In a first step, we introduce how models of different scales are acquired
and then proceed to introduce the collection of models from different perspectives.

Shape Model Hierarchy of Scales As shown in Figs. 8.6 and 8.13, the amount of detail
in the shape model decreases considerably from the finest to the coarsest model of the
pyramid. Hence, if the object that is being tracked increases its size, the amount of detail
in the finest pyramid level does not match the actual object anymore. This may lead to a
significant drop of the score returned by the tracker and eventually the tracker may lose
the object or identify a different object as the target. To prevent this from happening, we
introduce a more robust shape model that initializes a new shape model whenever the
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Figure 8.18: To further reduce drift, multiple models may be tracked simultaneously. On
the left, the generation of the shape model hierarchy is displayed. Whenever the current
model exceeds the distance of rmax from the existing shape models, a new tracking model
is generated. On the right, the shape models that are used for tracking are displayed.
Only the shape models in the hierarchy that have a distance larger than rmin and smaller
than rmax are used for locating the object.

object changes its scale considerably. Since the levels of the shape model pyramid can be
generated dynamically, the shape model is only generated for the finest pyramid level.
Furthermore, the image directions are calculated in the object localization step anyway.
As a consequence, the computational complexity of the shape model initialization can be
reduced considerably.

When a new shape model is generated, the old shape model is not discarded. Instead,
both shape models are kept in a hierarchy of shape models and the initialization scale of
the models is stored. This enables the algorithm to search for an object with multiple
shape models. In a long sequence, it is unnecessary to search for all models within the
hierarchy. Instead, only the models that where initialized at a scale that is similar to
the current scale of the model are used. In our experiments, a new model is generated
whenever the object scale is greater than 1.6 or smaller than 1.0/1.6 = 0.625. The initial
shape model is initialized at scale 1.0. Then, all models that are within the range of half
the current object scale and twice the current object scale are used for tracking. In theory,
searching for multiple models introduces a linear factor in the runtime of the object
localization. However, a significant part of the computational complexity comes from
preparing the data structures and calculating the image directions. Hence, in practice,
the runtime of the object localization is not affected too badly. Extensive experiments are
shown in Section 9.2.

Shape Model Hierarchy of Perspective In long sequences, the scale change of the
object is not the only concern. Also the perspective of the object may change throughout
the image sequence. The shape model update accounts for this by incrementally updating
the location of the model points, as described in (8.6). Although the update of the model
points allows to capture arbitrary deformations of the object, the update is not perfect.
Hence, if the object returns to its initial appearance, the shape model used for tracking
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may have diverged from its original shape. To tackle this, the original version of the
shape model is stored within the shape model hierarchy. Whenever the model diverges
too strongly from the original template, a new shape model is stored in the hierarchy. All
models that are close to the current model state are used for locating the most probably
object location. This requires a notion of how close two shape models are. In the current
context (perspective variation of the model), all models have the same number of points.
Hence, the summed l2 distance of all model points is used to measure the similarity of
two shape models. The distance between two modelsMj andMk is defined as

D(Mj,Mk) =
n

∑
i

∥∥∥∥∥
(

xj
i

yj
i

)
−
(

xk
i

yk
i

)∥∥∥∥∥
2

, (8.8)

where (xj
i , yj

i)
T refers to the coordinates of the model points mj ofMj, and (xk

i , yk
i )

T to
those ofMk, respectively. Whenever the current shape model has a distance D(·, ·) greater
than a predefined threshold rmax to all of the models within the shape model hierarchy,
the current shape model is stored to the hierarchy. The idea has some resemblance to
keyframe-based tracking methods [71]. The basic concept is visualized in the left image
of Fig. 8.18.

However, to allow the shape model to develop and diverge from the original model,
not all of the shape models in the hierarchy are used for tracking. Instead, only the shape
models that have a distance from all models that is smaller than rmax and larger than rmin

to the current shape model are used. This enables the algorithm to generate new shape
models and create a meaningful shape model hierarchy. The concept is displayed in the
right image of Fig. 8.18. Here, only the current model and the one within the green area
are used for tracking.

8.3.4 Motion Estimation

The objective of the motion model is to estimate the state trajectory of the tracking
target and to predict the object location in the subsequent frames. Although reliable
methods date back as far as the 1960s [108], few modern object trackers use a motion
model [117]. This is primarily related to the fact that the focus of current benchmarks
is on short-term tracking, where the performance gain of a motion model is restricted
[116, 117, 239]. Nevertheless, in long-term tracking, the use of a motion model to improve
the localization and the estimation of the object position is indispensable. We present a
universal approach to improve a short-term tracker performance with a motion model.

In the presented shape model tracking, the motion model is not only responsible
for improving the initial estimate of the object position. Furthermore, it is responsible
for estimating the most probable object location when localization fails. Moreover, the
difference of the location prediction of the motion model and the tracker response can
be used as an indicator for the system’s confidence and used to generate optimal search
regions.

Even though the tracker represents the object by an arbitrary region, the motion
model assumes the target location is a single point in space. To simplify computations,
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the location is chosen as the center of gravity of the tracker region. The evolution of the
respective location is described within the motion model and can be propagated based
on prior observations. The propagation of the target location is essential to reduce the
size of the search space and prevent mixing up the tracking target with other objects.

We assume that the target motion and its observations can be represented by the
following continuous state-space model [129],

ẋ(t) = f (x(t), u(t), t) + w(t), x(t0) = x0 (8.9)

z(t) = h (x(t), t) + v(t), (8.10)

where x(t), z(t) and u(t) are the target state, observation, and control input functions, and
w(t) and v(t) are the process and measurement noise, respectively. f and h are arbitrary
time varying functions that model the target location and measurement evolution. Al-
though the above equations may describe very complex state transitions, no matter what
form f and h take, the state-space model is essentially memoryless, i.e., the future states
do not depend on the past state history, but only on the current state. Such processes are
often referred to as Markov processes (for continuous time) or Markov chains (for discrete
time). In visual object tracking, the observations are only available for discrete time
instances. Hence, it is reasonable to discretize the above equations for the measurements.
For simplicity, we further assume xk = x(tk), vk = v(tk), hk(xk) = h(x(tk), tk) and that
the input is piecewise constant with uk = u(t), tk ≤ t < tk+1, and obtain the following
mixed-time model:

xk+1 = f (xk, uk, t) + wk (8.11)

zk = hk(xk) + vk. (8.12)

If we further assume that f (xk, uk, t) = fk(xk, uk), we can also discretize with respect
to f and obtain the respective discrete-time model:

xk+1 = fk (xk, uk) + wk (8.13)

zk = hk(xk) + vk. (8.14)

Strictly speaking, the target motion should not depend on when samples are taken
and is a value in continuous time [129]. Nevertheless, for slow motion speeds and the
real-time capabilities of the shape model tracker, the discrete-time model is reasonable.

In the following, the target state x encodes the target location p, the target velocity v
and acceleration a:

xk =

pk

vk

ak

 , (8.15)

113



Chapter 8: Shape Model Tracking

where pk, vk and ak ∈ R2. A key feature in visual object tracking is that the measurement
zk will not fully determine the state xk. Only the position pk can be inferred, while the
velocity and the acceleration cannot be measured directly. Hence, it is reasonable to
assume hk is linear in the above equations to obtain,

xk+1 = f (xk, uk, t) + wk (8.16)

zk = Hkxk + vk, (8.17)

where Hk is the measurement matrix. In visual object tracking, the measurement can
only obtain reliable values for the state position. These measurements of p are mutually
independent, but also independent of the other state variables. Moreover, they are also
independent of the time step and thus Hk = H ∀k and takes the form:

H =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
. (8.18)

In many tracking and maneuvering scenarios, the control input uk are unknown,
but essentially deterministic in nature. Hence, a straightforward way to model it is
as an unknown, deterministic process and estimate the respective process from the
measurements made during tracking. Due to the lack of any prior knowledge, this
unknown process is often assumed to be piecewise constant and estimated over a fixed
time window [41, 130]. The determination of the time window size is crucial and makes
it difficult to use deterministic models. However, without any further information, visual
object tracking has a hard time to infer which part of the observed motion comes from uk,
xk or the process noise wk. Since for the scenes we will be considering in the experiments
the majority of all movement comes from the state transition encoded in f and the state
vector of the tracked object, we assume the influence of uk is negligible and omit it:

xk+1 = fk(xk) + wk (8.19)

zk = Hkxk + vk. (8.20)

The major challenge comes from the target motion uncertainty. Specifically, even
though the general form of the above models is adequate, a tracker not only lacks
knowledge about the actual control input uk of the target but also of the actual form of
fk, its parameters, or statistical properties of the noise wk for the particular target being
tracked.

However, if we assume the system and the measurement errors to be uncorrelated
and roughly zero-mean Gaussian distributed, a light-weight and recursive way to solve
the respective equations is by the Extended Kalman Filter. In the following, we assume
wk ∼ N (0, Qk) and vk ∼ N (0, Rk).
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Kalman Filtering To efficiently solve the state-space model, the Extended Kalman Filter
linearizes (8.19) and (8.20) for each time step at the current estimates of the state mean
and covariance. The problem is thus reduced to a locally linear state transition and
the ordinary Kalman Filter can be applied. Hence, to highlight the general concept, it is
helpful to first consider a linear propagation of the target state;

xk+1 = Fkxk + wk (8.21)

zk = Hxk + vk, (8.22)

where Fk is the state transition model which is applied to the previous state. In visual
object tracking, it is reasonable to assume the state transition matrix is constant, hence
Fk = F ∀k, and can be estimated by basic kinematics

F =



1 0 T 0 T2

2 0
0 1 0 T 0 T2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


. (8.23)

The Kalman filtering algorithm then works in a two-step process. In a first step, called
the prediction step, the filter produces estimates of the current state vector variables, along
with their uncertainties. The prediction is used to obtain an estimate of the tracking
target location in the current frame. This can be used to create a compact but promising
region to search for the object.

Prediction step (linear state transition)

Predicted state estimate : x̂k|k−1 = Fx̂k−1|k−1 + wk (8.24)

Predicted covariance estimate : Pk|k−1 = FPk−1|k−1FT + Qk, (8.25)

where Qk is the covariance of the process noise and x̂k|k−1 represents the estimate of
the state at time k given the measurement at time k− 1. Similarly, Pk|k−1 represents the
state covariance at time k given the measurement at time k− 1. The diagonal entries
of Pk are the principal uncertainties of the single-target state variables, while the off-
diagonal values represent the correlation between elements of the target state. The current
state estimate x̂k−1|k−1 is propagated via the process matrix and the uncertainly, which
is encoded in the covariance, is increased by the expected process noise variance Qk.
Hence, each prediction step essentially increases the overall uncertainty in the process
matrix. This is a reasonable assumption, since without any measurement, the successive
prediction of target states will become increasingly unreliable. To reduce the uncertainty,
a measurement of the system needs to be obtained.

After the respective measurement (detection) of the state vector (object location) zk has
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been made, the update step corrects the estimates and the uncertainties using a weighted
average, with more weight being given to estimates with higher certainty. The Kalman
filter also assumes that the measurements are corrupted with some amount of error,
which is encoded in Rk.

Update step (after the measurement zk was made)

Measurement pre-fit residual : ỹk = zk − Hx̂k|k−1 (8.26)

Residual of pre-fit covariance : Sk = Rk + HPk|k−1HT (8.27)

Optimal Kalman Gain : Kk = Pk|k−1HTS−1
k (8.28)

Updated state estimate : x̂k|k = x̂k|k−1 + Kkỹk (8.29)

Updated estimate covariance : Pk|k = (I − Kk H)Pk|k−1 (8.30)

(8.31)

Here Kk denotes the Kalman gain, I the identity matrix, and Rk is the covariance of the
observation noise. As in the prediction step, the uncertainty of the measurement is added
directly to the covariance HPk|k−1HT in (8.27). If we assume the noise of the measurement
and the process to be uncorrelated and roughly zero-mean Gaussian distributed, the
update of the state estimate can be interpreted as the intersection of the two Gaussians
that come from of the state prediction and the state measurement, respectively. The
Kalman Gain Kk is the corresponding normalization term that ensures the intersection
remains Gaussian distributed.

The algorithm is recursive and computationally light-weight. It only uses the present
input measurements and the previously calculated state and its uncertainty matrix; no
additional past information is required. Although the Kalman Filter does not explicitly
assume that the measurements and the system errors are Gaussian, the filter estimates
the exact conditional probability estimate of the state vector in case they are.

Furthermore, the update step does not need to be computed for every prediction
step. If there is a measurement, the state and the covariance can be refined. If there is no
measurement, the prediction can be performed on its own. Although this increases the
system’s uncertainty, this asynchronicity is very valuable for target tracking. Especially if
the tracker has a failure mode detection (like the shape model tracker does), the prediction
is a reliable indicator of where the tracker should continue looking. Furthermore, the
uncertainly is a valuable indicator of how large the search region should be selected.

A key feature of the Kalman filter is that it does not assume that all parts of the target
state are actually observable. Through the process transition matrix F and the covariance
Pk, relationships between variables can be inferred and estimated without measuring
them. This is an essential attribute, since visual object trackers can only measure the state
position, but a state prediction without a velocity is not very valuable in target tracking.

The Influence of the State Transition Matrix The state transition matrix encodes the
propagation of the target state. Even though in visual object tracking the object should
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Figure 8.19: In the two left graphs, the ordinary Kalman filter predictions and the
measurements for circular motion for two state transition models are displayed; one that
has Cartesian acceleration components (right) and one that does not (left). In the right
graph, the Extended Kalman Filter predictions and the measurements for a transition
model with a constant turn rate and constant velocity are displayed. For all models, the
state is initialized at (0, 0) and at around 270◦ the measurements are stopped and only the
predictions of the Kalman filter are computed and displayed. The two left models only
require a handful of iterations to follow the circular motion but are not able to actually
learn the circular motion. The model o the right is able to learn the circular motion
and correctly predict the location when the measurements are stopped, but requires
significantly more measurements to deliver reasonable predictions and filter results.

be moving according to basic kinematics, too weak model assumptions on F may lead
to errors in the state prediction. For example, consider Fig. 8.19. On the left, we restrict
the target state to merely encode the state position and target velocity in Cartesian
coordinates:

xk =

(
pk

vk

)
. (8.32)

The state transisition matrix then simplifies to

Fvel =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 . (8.33)

Without encoding the state accelerations, it is impossible to predict any movement that
is more complex than a linear transition. In the middle plot of Fig. 8.19, we display the
model prediction that is derived from the state described in (8.15) and the transition
matrix F from (8.23). Although the predictions are much better, they are incapable of
inferring the circular motion correctly. Since both models assume Cartesian coordinates
and a linear transition, they will never be able to learn the circular motion from the
measurements. To overcome this, a more complex, non-linear, state transition needs to be
assumed
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Figure 8.20: An alternative way to represent the target state is by Cartesian position
and velocity and, furthermore, the turn rate as the derivate of the heading angle ḣ = ω,
where h = atan2(vy, vx).

Nonlinearity of the State Transition Function To efficiently learn the circular motion,
we assume a slightly adapted target state:

xk =

 p
v
ω

 , (8.34)

where ω = ḣ is the derivate of the heading angle. The heading angle is encoded in
the Cartesian velocities of v = (vx, vy)T by h = atan2(vy, vx). The parametrization is
visualized in 8.20. For the state transition we assume a constant turn rate and a constant
velocity

f =


x + vx

ω sin(ωT) + vy
ω (1− cos(ωT))

y + vx
ω (1− cos(ωT)) + vy

ω sin(ωT)
vx cos(ωT)− vy sin(ωT)
vx sin(ωT)− vy cos(ωT)

ω

 , (8.35)

For nonlinear state transition function’s only the prediction step of the Kalman Filter
needs to be adapted. The restriction to a linear measurement matrix and thus the update
equations remain unchanged. To predict the covariance estimate, the state transition
function is linearized around the current state estimate x̂k−1|k−1. Hence, the prediction
step becomes

Prediction step (nonlinear state transition)

Predicted state estimate : x̂k|k−1 = f
(
x̂k−1|k−1

)
+ wk (8.36)

Predicted covariance estimate : Pk|k−1 = FPk−1|k−1FT + Qk, (8.37)

where F =
∂ f
∂x

∣∣∣∣
x̂k−1|k−1

. (8.38)
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For each prediction step, the first order Taylor expansion of (8.35) around the current
state estimate x̂k−1|k−1 yields F. For the constant turn rate and constant velocity, the
derivate can be computed as;

F =



1 0 sin(ωT)
ω

1−cos(ωT)
ω vx

(
T cos(ωT)

ω − sin(ωT)
ω2

)
+ vy

(
−T sin(ωT)

ω + (1−cos(ωT)
ω2

)
0 1 cos(ωT)−1

ω
sin(ωT)

ω vx

(
T sin(ωT)

ω + cos(ωT)−1
ω2

)
+ vy

(
T cos(ωT)

w − sin(ωT)
ω2

)
0 0 cos(ωT) − sin(ωT) −vx sin(ωT)− vy cos(ωT))
0 0 sin(ωT) cos(ωT) vx cos(ωT)− vy sin(TωT))
0 0 0 0 1


.

(8.39)

As shown in Fig. 8.19, in contrast to the linear models, the model is able to learn the
circular motion and correctly predicts the motion when the measurements are stopped.
This not only comes at the cost of an increased computational complexity, but the system
also requires significantly longer to infer reasonable predictions of the state than the
linear models in Fig. 8.19. The first few predictions are extremely crude. More complex
models are able to also capture varying speeds and changing turn rates. Please see
[189] for further details.

Kalman Motion Prediction for Shape Model Tracking The adaptation of the proposed
motion model to shape model tracking is straightforward. In the first frame, the motion
motion is initialized at the known location of the object. Since the initial position of the
tracker is known and the measurements of the shape model are generally very precise,
the measurement matrix Rk from (8.27) is generally initialized with a small measurement
noise. However, if the object is not detected (and hence measured) in a number of
subsequent frames, the measurement noise is increased. This is done to account for false
detections that may appear when the search region is very large. Since the proposed
motion models do not account for ego motion of the observer, the motion model is
initialized with a rather large uncertainty in the state transition matrix.

If the tracking was successful, the motion model merely needs to be updated with
the tracker position (measurement) according to (8.26) – (8.30). Then, the most probable
location of the search region can be derived from the motion model by computing the
state prediction from (8.24). In our experiments, we found that the nonlinear state
transition from (8.39) did not improve the motion estimation considerably. Especially in
sequences in which the object is occluded very early, the long initialization phase of the
non-linear model is prohibitive. Hence, we restrict the motion model to the linear state
transition from (8.23). More detailed experiments on the benefits of the motion mode are
presented in Section 9.2. The generality of the motion model allows to add it to all of
the proposed improvements of the shape model. The improved shape model that uses a
dynamic generation of the pyramid levels, the robust improvements from Section 8.3.3
and does not use a motion model is denoted as gen_level_sm_no_motion_model
within the later experiments.
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Figure 8.21: If the tracking is successful, the displayed bold black function is applied
to the confidence α. The bold black line is the maximum described in (8.40). The gray
lines visualize the single terms within the maximum. If the tracker is very uncertain,
the confidence is incremented more than if it is just slightly uncertain. This allows the
tracker to recover from detection failure and does not influence it too strongly if there
have been positive detections in the last few frames.

8.3.5 Search Space Optimization

The factor that influences the speed of the shape model tracking the most is the size of
the search region. In the baseline shape model, the search region radius is determined
according to (8.4). Hence, it is a function of the current object scale σc and the confidence
α. As stated in Section 8.2, the confidence is incrementally decreased by dividing it by
1.05 if the tracking fails and reset to 1.0 as soon as the tracking succeeds again. This has
the disadvantage that a false detection is trusted instantaneously. Hence, tracking fails
very quickly when a single false positive is detected. Therefore, in the improved shape
model, a slightly more profound update of the search space is computed

First of all, the confidence is not initialized with 1.0, but with 0.5. This is to account
for the uncertainty of the shape model in the first few frames. Especially the motion
model has no initial idea in which direction the object might be moving. Then, the
confidence is incrementally increased by

αt+1 = max
(

1.0−
(

1
αt + 1

)n

, αt · 1.05, 1.0
)

, (8.40)

when tracking is successful. Here, n controls how much to trust a detection of the tracker.
We use n = 3 in all of our experiments. The confidence update function is visualized in
Fig. 8.21. As in the baseline shape model, the confidence is decreased by dividing it by
1.05 if tracking fails. The above initialization and update of the confidence allows the
tracker to warm up to the tracked object and does not trust a re-detection of the object
instantaneously.
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The motion model allows to reduce the size of the search region in comparison to
the baseline shape model that has no motion prediction. This generally speeds up the
tracking process and also reduces the chance of false detections. Although the motion
model predictions are generally accurate, unexpected motion does occur in tracking
sequences. As a consequence, the object might not be within the search region and be
lost by the tracker. In these cases, the confidence is reduced and the size of the search
region is increased in the subsequent frames. This generally allows the tracker to locate
the object within the next few frames. However, to account for very small objects, a
minimal size of the search region is set for all sequences. We use a minimal radius of 30
pixels throughout the experiments.

The dynamic generation of the pyramid levels allows to use the model confidence
to determine the optimal number of scales. If the tracker is very confident, the search
region is typically quite compact and there is no reason to use too many object scales.
However, when the tracker uncertainty grows, the increased search region may require
more object scales to remain efficient. Hence, the confidence also indirectly encodes the
number of pyramid levels that are used for tracking the object. Since the baseline shape
model has a fixed number of scales, this efficient adaption is impossible. Especially for
objects that are initialized very small and grow throughout the sequence, the baseline
shape model may require very long to locate the object when the confidence drops and
the search regions grows very large.

8.4 Discussion

This chapter provided a detailed discussion of the shape model tracking. The main
weak points of the baseline shape model tracker were presented and discussed. They
include a fixed number of pyramid levels during object localization and a weakness when
the object scale and appearance changes considerably within a sequence. A number of
extensions to the baseline shape model tracking approach are presented to tackle the
above mentioned weaknesses. The extensions allow to improve the robustness and speed
of the baseline, as shown in Chapter 9. The improvements include a dynamic pyramid
generation that enables to generate a variable number of pyramid levels during tracking.
This allows to reduce the runtime and improve the robustness of the shape model
considerably. Similarly, the presented motion model and the search space optimization
enable to reduce the search space as much as possible and are also expected to improve
the overall performance. To tackle long sequences, where the object may change scale
and appearance considerably, a robust extension of the shape model tracker that uses
multiple shape models to locate the object location is presented. In the following chapter,
quantitative and qualitative results and comparisons of the baseline and the different
extensions are presented and discussed.
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9
Results and Comparison to the State

of the Art

This chapter presents detailed qualitative and quantitative experiments to validate the
performance and efficiency of the shape model tracker proposed in the previous chapter.
In a first step, the selected evaluation methodology is presented in Section 9.1. Then,
different experiments to highlight the advantages of the improved shape model in
comparison to the baseline shape model on the Playing for Tracking Data (PFTD) dataset
(Section 5.2) are presented in Section 9.2. The section also includes extensive experiments
that compare the shape model tracker to the current state of the art in real-time object
tracking. In Section 9.3, the real-time capabilities of the shape model tracker are evaluated
on a Raspberry Pi. Then, in Section 9.4, the versatility of the shape model tracker is
displayed in a collection of different applications. Finally, the chapter is concluded with
a discussion in Section 9.5.

9.1 Evaluation Metrics and Protocol

In the following, we present the selected performance measures and the evaluation
methodology. As is common in single-object tracking, we include measures that estimate
the accuracy, robustness, and computational complexity. Furthermore, since we are also
interested in validating the failure mode detection of the shape model tracker, we include
a measure to identify the tracker’s capability of detecting the absence of the object. In
general, our basic evaluation routine is very similar to that of the recently proposed
long-term tracking dataset (LTTD) [222]. However, in contrast to the LTTD evaluation,
we further include the ΦrIoU and scale measure from Chapter 4. This enables us to gain
further insights into the accuracy of the trackers and their capability of detecting scale
changes. The individual measures are summarized in the following.

To measure the accuracy of the trackers, we use the standard ΦIoU as presented in
(3.3). The average IoU of all sequences is denoted as ∅ΦIoU. Since the ground truth is
not represented by bounding boxes but by a pixel-precise representation of the objects,
we also use the ΦrIoU from (4.1) for all trackers that are restricted to boxes. This helps
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(a) ground truth (b) search region (c) tracker (d) prediction

Figure 9.1: The coloring used for the regions throughout the evaluation is displayed. All
regions are generally displayed with slight transparency to identify overlapping regions
and to obtain a notion of the context underneath the regions.

to gain a perspective on how well the trackers are coping with the pixel-precise ground
truth.

To measure the robustness of the trackers, we use the TPR from (3.4). We use the
common ΦIoU threshold of 0.5 to validate whether a the object is localized correctly or
not. In contrast to the VOT evaluation protocol [116], we do not reinitialize the tracker
when ΦIoU = 0 . A complete long-term tracker must be able to cope with tracking failure
and re-detect the object by itself. Hence, the measure should also capture how well a
tracker copes with this. Similarly, if the tracker is able to predict the absence of an object,
we also calculate the TNR from (3.5). As described in (3.4) and (3.5), the theoretical
optimum for the TPR and TNR is 1.0.

The runtime of the trackers is measured in milliseconds per frame. Note that all tests
were conducted on the same machine. Although the implementations may be different,
we took care to re-implement the most prominent real-time trackers in C to enable a fair
comparison. Therefore, the baseline correlation-based trackers are all based on an own
implementation and not on the open-source Matlab code that is available online. The
shape model tracker is also implemented in C and optimized where possible. However,
the code is still experimental. When there was a choice between easy debugging and
access to datatypes versus runtime efficiency, the first option was selected. Hence, keep
in mind that the runtimes could be improved further. The experiments were conducted
on an Intel Core i7-4810 CPU @2.8GHz with 16GB of RAM with Windows 7 (x64) unless
specified otherwise. For a fair comparison, the deep-learning methods are configured to
not make any use of the internal graphics card and solely run on the CPU.

In the evaluation, a consistent coloring is used in the figures to display the ground
truth, the shape model search region, the tracking result, and the predicted region from
the motion model when tracking is not successful. The coloring is visualized in Fig. 9.1.
As described in Section 2 and Section 8.1, the search region S only contains the locations
where the reference point of the shape model is placed. As a consequence, the search
region may be smaller than the region that is being tracked.
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Table 9.1: Overview of the average ΦIoU, TPR, and average runtime of the baseline shape
model and the shape model improvements.

∅ΦIoU TPR time per frame
baseline_sm 0.095 0.098 634.0 ms
all_level_sm 0.105 0.111 775.0 ms
gen_level_sm 0.417 0.527 29.1 ms
gen_level_sm_no_motion_model 0.404 0.511 32.1 ms
gen_level_sm_regression 0.394 0.486 35.7 ms
gen_level_sm_precise 0.379 0.475 64.1 ms

9.2 Experiments: Playing For Tracking Data

In a first step, we evaluate the improvements of the shape model tracker and compare
their performance to the baseline shape model tracking approach. In a second step, the
best performing shape model tracker configuration is compared to the current state of
the art in object tracking. We restrict the methods are restricted to the top performing
deep-learning methods and to real-time capable approaches.

9.2.1 Shape Model Tracking Improvements

In a first experiment, we evaluated the ∅ΦIoU, the TPR, and the average runtime
per frame for the different improvements described in Chapter 8. This includes the
baseline_sm that is described in detail in Section 8.2 and Böttger et al. [27] and the
extension all_level_sm, which adapts the model update to all levels and is described
in Section 8.3.1. Both methods have a fixed number of pyramid levels that is deter-
mined in the initialization of the tracker. In contrast, the other four improvements
all dynamically adapt the number of pyramid levels during tracking and reinitial-
ize the tracker when the scale changes significantly. The different scale models are
stored in a hierarchy of shape models, as described in Section 8.3.3. Furthermore, all
but gen_level_sm_no_motion_model make use of a motion model to improve the
initial estimate of the object location and predict the most probable object location
when tracking fails (see Section 8.3.4). The methods gen_level_sm_regression and
gen_level_sm_precise further attempt to improve the quality of the dynamically
generated pyramid levels from gen_level_sm. The concept is described in detail in
Section 8.3.2.

The results of the six different methods are displayed in Table 9.1. In general, the
baseline shape model tracker appears to have extreme difficulties with the PFTD dataset.
The ∅ΦIoU and TPR are very low. The extension of the update to all pyramid levels
does not seem to help significantly. Both baseline_sm and all_level_sm have a
runtime that is far from real-time. However, the extension of the shape model tracker
to dynamically adapt the number of pyramid levels (gen_level_sm ) brings a very
large performance boost of the accuracy, robustness, as well as in terms of the average
runtime. The motion model appears to only have a minor positive impact. Interestingly,
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Figure 9.2: A histogram of the average scale change in the PFTD dataset. The scale
change is measured as the factor by which the size of the initial tracking region changes
throughout a sequence. If the object decreases its size, the inverse factor is used as the
scale change.

the refinement of the dynamically generated pyramid levels does not improve the
performance. In the following, the results of the individual extensions are evaluated and
put into perspective in more detail.

Dynamic Pyramid Generation The most significant improvement comes from the
dynamic generation of the pyramid levels. The gain in accuracy and robustness is
primarily caused by the hierarchy of shape models. In the PFTD dataset, many objects
are initialized at a very small or a very large scale and change their size and appearance
considerably throughout the sequence. To quantify this, the average scale change is
visualized in Fig. 9.2. Here, the scale change is measured by computing the size of the
ground truth throughout a sequence. The factor by which the size changes with respect to
the first frame is the scale change. If the size becomes smaller throughout a sequence, the
inverse factor is used as the scale change. As shown in Fig. 9.2, the majority of the objects
undergo a very significant scale change. For example, in almost half of the sequences,
the object size changes by a factor of more than 10. Without reinitializing the shape
model, the level of detail in the finest pyramid level does not match the object anymore.
As a consequence, the baseline shape model tracker loses the object or mistakes it for
a different object. In contrast, in the improved shape models, the object is reinitialized
when the scale of the object changes considerably. This helps to improve the performance
on these sequences by a large margin.

To further validate this assumption, the development of ∅ΦIoU is visualized for all
sequences in Fig. 9.3. Here, the length of each sequence is normalized to equal length
and the average ΦIoU value is displayed. As expected, the accuracy of the baseline shape
model generally drops relatively early in the sequences and is not able to recover. Since
the scale change generally accumulates over time, the fixed level of detail in the baseline
shape model is a significant disadvantage. In contrast, the hierarchy of shape models
used in gen_level_sm is substantially more robust.

While the increased accuracy and robustness is mostly due to the hierarchy of shape
models, the performance gain is primarily caused by to the dynamic pyramid level
generation. The PFTD dataset is acquired from inside a car that is driving through the
streets. Hence, in many sequences, cars are initialized when they are relatively small
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Figure 9.3: The development of ∅ΦIoU over time is averaged for each sequence and
displayed for baseline_sm and gen_level_sm. Evidently, the improvements of the
the baseline shape model enable the tracker to cope better with long sequences.

and distant from the car. Throughout the sequence they gradually come closer to the
car and their size grows. In these settings, the fixed number of pyramid levels of the
baseline shape model is a great disadvantage. On the one hand, the small model template
does not match the object anymore and, consequently, the object cannot be localized.
On the other hand, the larger search region increases the computational complexity
considerably. Since the entire search space PS ,R,Σ is checked on the coarsest pyramid
level, it is computationally expensive to have a large search region S on the coarsest
pyramid level. Since the baseline method has a fixed number of pyramid levels, no new
pyramid level can be generated to reduce the workload on the coarsest level. In contrast,
gen_level_sm generates a further pyramid level in these settings. As a consequence,
the computational complexity can be reduced. This enables efficient tracking and an
average runtime of only 29.1 ms per frame, as shown in Table 9.1. Note that the number
of pyramid levels does not only depend on the size of S , but also on the size of the shape
model template. A very small template sometimes cannot be sub-sampled any further.
However, since the improved shape model tracker reinitializes the shape model when the
scale changes to much, the template is often much larger than it was during initialization.
As a result, the robust update and the dynamic pyramid level generation go hand in
hand and depend on each other.

A further advantage of the dynamic pyramid level generation is the reduction of
the computational complexity of the tracker initialization. For baseline_sm and
all_level_sm, the shape model is generated on each pyramid level independently.
This requires computing image edges and subpixel-precise model points on each level.
In contrast, the methods based on gen_level_sm only generate the shape model on the
first pyramid level and do not require an image pyramid for the tracker initialization. As
a consequence, the average runtime of the tracker initialization is significantly smaller
for these methods. They require an average of 20.5 ms for all sequences. In contrast, the
initialization of baseline_sm and all_level_sm requires 31.9 ms on average. The
reduced initialization time is essential for the generation of the shape model hierarchy. It
allows to construct the shape model hierarchy in real-time during tracking.
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Table 9.2: Overview of average ΦIoU, the TPR, and the average runtime of the improved
shape model with and without using a motion model.

∅ΦIoU TPR time per frame
gen_level_sm 0.417 0.527 29.1 ms
gen_level_sm_no_motion_model 0.404 0.511 32.1 ms

A collection of examples from gen_level_sm are displayed in Fig. 9.4. The average
ΦIoU values , the TPR, and the number of frames are displayed for each sequence. The
tracker is able to cope with significant scale changes, long sequences, and a collection of
different settings.

Motion Model It is expected that the motion model described in Chapter 8.3.4 improves
the robustness of the shape model tracking. A reasonable prediction of the object position
should improve the re-detection if tracking fails or the object is occluded. The results for
gen_level_sm and gen_level_sm_no_motion_model are summarized in Table 9.2.
Without a motion model, the accuracy as well as the robustness is reduced on average.
Furthermore, the runtime is also decreased marginally. The reduction of the runtime is
caused by the fact that the motion model allows to reduce the size of the search region.
If the object is lost and no prediction of the object location is known, the search region is
centered at the last known position. Hence, if the object is moving, the size of the search
region must be increased until the object is within the search region again. However,
with knowledge of the object motion, the search region is generally much closer to the
moving object and the re-detection time can be reduced.

Two examples where the motion model is able to improve the tracking results are
displayed in Fig. 9.5. In the first row, the object is occluded completely early in the
sequence. The motion model creates reasonable predictions of the object location and
enables the re-detection of the object when it reappears near the end of the sequence.
Note that ∅ΦIoU is quite low for the respective sequence. The reason is that the shape
model tracker predicts the shape of object by applying transformations to the initial
object region. Hence, if half of the object is occluded and the shape model makes a
correct prediction, the ΦIoU cannot be larger than 0.5. In the second row, the motion
model enables the tracker to reduce the time required for re-detecting the object. The
tracker fails when the car gets very close to the camera and the perspective is strong.
However, the predictions of the motion model are reasonable and the object is re-detected
when the perspective is reduced.

Detection of Object Absence In the above setting, the prediction of the motion model
is assumed to be the tracker output if tracking fails. Therefore, none of the above methods
predict the absence of the object directly. To measure how well the shape model can esti-
mate the absence of the object, we conducted further experiments. Here, the predictions
of the motion model are still used to update the search region. However, the prediction
of the tracking region is not assumed to be the tracker output. Instead, the tracker is
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(a) ∅ΦIoU = 0.8, TPR = 1.0, #frames = 317

(b) ∅ΦIoU = 0.68, TPR = 0.89, #frames = 234

(c) ∅ΦIoU = 0.73 , TPR = 1.0, #frames = 1337

(d) ∅ΦIoU = 0.441 , TPR = 0.5, #frames = 1264

(e) ∅ΦIoU = 0.71 , TPR = 0.82, #frames = 119

Figure 9.4: A collection of results from gen_level_sm. The tracker is able to track cars
in various different settings and in long-term sequences with over 1000 frames (e.g., in
(c) and (d)).
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(a) ∅ΦIoU = 0.52 , TPR = 0.41, #frames = 54

(b) ∅ΦIoU = 0.68 , TPR = 0.88, #frames = 322

Figure 9.5: Two examples were the motion model allows an efficient re-detection of the
object. In the first row, the object is completely occluded early on in the sequences. The
prediction of the object motion creates reasonable predictions of the object position and
allows to re-detect the object after the occlusion ends. In the second row, the perspective
of the car is too strong and the car is lost. However, the predicted object position is
reasonable and the car is re-detected very quickly.

assumed to output an empty region if it was not successful. The respective method is
denoted as gen_level_sm_no_pred. To tackle small occlusions and short-term miss-
ing detections from the tracker, we also introduce the methods gen_level_sm_pred_5
and gen_level_sm_pred_10. If tracking fails, the prediction is assumed to be the
tracker output only for the first five and ten frames, respectively. If the object is not
re-detected by then, the tracker region is assumed to be empty. If the tracker returns
an empty region and the ground truth is also empty, a true negative is detected. The
TPR and TNR of the approaches are displayed in Table 9.3. The best TNR is gener-
ated by gen_level_sm_no_pred. This is not surprising since it is the strictest of
the four methods. As expected, the TPR drops continuously from gen_level_sm to
gen_level_sm_no_pred. In general, the number of frames to trust the prediction is
a parameter that allows a trade-off between the capability of detecting the absence of
the object and robustness to short-term occlusions and missed detections. Note that the
runtime is the same for all approaches since the tracker does exactly the same. Only the
interpretation of the tracker output and the motion model output changes.

In general, detecting the absence of the object also reduces the average accuracy. For
example, in Fig. 9.5 (a), although the object’s absence is predicted correctly, the ground
truth does not have an empty region while it is being occluded. In these frames, the
prediction of the object has a ΦIoU > 0 while gen_level_sm_no_pred has ΦIoU = 0.
Similarly, in Fig. 9.5 (b), the prediction improves the average accuracy since ΦIoU > 0 for
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Table 9.3: Overview of average ΦIoU, the TPR, and the average runtime of the shape
model tracker improvements with and without using the predicted region from the
motion model as the output of the tracker when tracking fails.

∅ΦIoU TPR TNR time per frame
gen_level_sm 0.417 0.527 0.0 29.1 ms
gen_level_sm_pred_10 0.409 0.524 0.06 29.1 ms
gen_level_sm_pred_5 0.390 0.501 0.14 29.1 ms
gen_level_sm_no_pred 0.369 0.478 0.18 29.1 ms

Table 9.4: Overview of average ΦIoU, the TPR, and the average runtime of the improved
shape model tracker and the point regression approaches.

∅ΦIoU TPR time per frame
gen_level_sm 0.417 0.527 29.1 ms
gen_level_sm_regression 0.394 0.486 35.7 ms
gen_level_sm_precise 0.379 0.475 64.1 ms

the prediction and the ground truth label (without the prediction, it would be 0).

Point Regression Unfortunately, the point regression methods were neither able to
improve the robustness nor the accuracy of the improved shape model tracker. A
summary of the average ΦIoU and TPR are displayed in Table 9.4. Especially the precise
contour point snapping approach decreases the performance. While the results may seem
counterintuitive, the snapping of the zoomed model points from (8.7) to the subpixel-
precise edges in the image pyramid introduces an unwanted model update step. In
the first frame, the model is initialized from the input image and the shape model is
perfectly aligned with the subpixel-precise image edges. During tracking, the shape
model predicts the best transformation of the shape model to the input image and the
shape model is adapted to the matches found for each model point. The model points are
not enforced to lie directly on subpixel-precise edges. Instead, the update is weakened
by a λ factor as described in (8.6) and displayed Fig. 8.5. A too strong update has a very
negative effect on the tracking performance: noise edges may be added to the model
and mismatches are trusted instantaneously. As a consequence, the performance is very
low. However, snapping the model points in the higher pyramid levels to the contour
points in the dynamic pyramid generation stage does exactly the same. It expects the
shape model to fit perfectly to the image and fixes the single model points in the higher
pyramid levels accordingly. Hence, the shape model may drift and the performance is
decreased.

Robustness to Illumination Changes In Section 8.1 and Böttger et al. [27], the shape
model tracker is claimed to be robust to non-linear illumination changes. To validate
this, there is a very interesting sequence within the PFDT dataset. In this sequence, the
lighting changes abruptly from one frame to the next. In frame 97, the lighting changes
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Figure 9.6: The ΦIoU for the sequence indicated by five images in the first row is
displayed. In the sequence, the lighting changes abruptly around frame 100. The score of
gen_level_sm is not affected by the sudden change of the lighting.

(a) (b)

Figure 9.7: In (a), a model generated at night is displayed. The low contrast between the
car and the road generates a model that is mainly focused on the lights of the car. These
are not very descriptive and may easily be mistaken for any other car. In (b), a typical
model that is generated in better lighting conditions is displayed..

from night time to dawn. As expected, the score of the tracker is not affected by this
chanege. A few example images from the sequences and the respective ΦIoU values are
displayed in Fig. 9.6. In general, all moderate lighting changes within the PFTD dataset
can be handled by the tracker without difficulties.

However, the tracker is not invariant to the general illumination within a sequence.
If there is very little light, the contrast might be too low to extract reasonable subpixel-
precise edges from the input template. As a consequence, the tracker has difficulties
to locate the object and may fail. There are many sequences in the PFTD dataset that
are initialized with a very small size. Especially in these sequences, the initialization
process might have difficulties to find adequate subpixel-precise edges to create robust
model points. An example is visualized in Fig. 9.7. The only significant edges in the left
template are the lights of the car. However, since many cars have similar lights at night,
these are not very descriptive in general. Therefore, the model is prone to mixing up the
target with a different car. The similarly sized template that is initialized at daytime has
significantly more pronounced edges. As a result, the template is much more descriptive.
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(a) (b)

Figure 9.8: In (a), the tracker is initialized with a very small template and a very low
image contrast. The resulting shape model (right image in (a)) is merely a straight line.
As a result, the tracking already fails in the fourth frame and returns false positive
tracking results (right image in (b)).

(a) rain (b) daytime (c) night (d) dawn

Figure 9.9: Example of the four lightings into which the PFTD sequences are split. In (a),
an example of rain is displayed. Although not explicitly enforced, there are no sequences
of rain at night. In (b), an example of daytime is displayed. The amount of sunshine may
vary, but generally the weather is quite good. In (c), a night sequence and in (d), a dawn
sequence are visualized.

In Fig. 9.8, an extreme example is visualized. Here, the object is very small and the only
reasonable edge the initialization process finds is the bottom of the car. However, the
resulting line-shaped model is not descriptive at all and the model is lost only a few
frames after the initialization (Fig. 9.8 (b)).

To evaluate whether this is a general problem, a further experiment was conducted.
In a first step, all of the sequences were divided into the four different kinds of lightings:
rain, daytime, night, and dawn. Although it was not explicitly enforced during the
dataset generation, there are no sequences at night where it rains. Hence, the lighting
categories are unique. Examples of four different kinds of lightings are visualized in
Fig. 9.9. The average ΦIoU and the TPR are displayed for the four lighting categories
in Fig. 9.10. As shown, the shape model has significantly lower scores in sequences
with bad lighting, such as night and dawn. This is mostly due to the low contrast in
these sequences. The shape models are not descriptive enough and the tracker may fail.
Although it is possible to adapt the subpixel-precise edge extraction to support images
with lower contrast, it also increases the vulnerability to image noise and false edges and
does not help in these sequences.
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Figure 9.10: The sequences are split into four disjoint lightings (rain, daytime, night, and
dawn) and the ∅ΦIoU (left) and TPR (right) values are displayed for the gen_level_sm
tracker. The shape model tracker has difficulties in sequences where the lighting is not
good.

Strengths and Weaknesses In general, the shape model is able to track the cars in the
PFTD very successfully. In the following, a short summary of the observed strengths and
weaknesses of the shape model tracker is presented.

The main strengths of the shape model tracker include:

• The shape model tracker is able to successfully track the cars in many of the
sequences with high robustness and accuracy. A few examples are shown in Figs.
9.4 and 9.11. The subpixel precision of the model points also allows long-term
tracking in sequences with more than 1000 frames without drift, as shown in
Fig. 9.4 (c), Fig. 9.4 (d), and Fig. 9.11 (b).

• The motion model and the failure mode detection of shape model tracker enable
it to recover from full occlusion and if tracking fails for a short period of time, as
shown in Fig. 9.5.

• The metric used to compute the shape model score is generally robust to nonlinear
illumination changes. Consequently, the shape model tracker can cope very well
with changing illumination, as displayed Fig. 9.6.

• The shape model tracker requires only an average of 29.1 ms to track the objects
in the PFDT dataset, as indicated in Table 9.1. Hence, for the 30 fps in the PFDT
dataset, the tracker is real-time capable. However, the runtime comparison between
the different shape model configurations is difficult. Although the runtime of the
shape model tracker is affected by different factors, the size of the search region
has the most influence. Hence, if tracking is unsuccessful and the confidence of the
tracer drops (and hence the size of the search region is increased), the runtime of
the tracker is higher. Therefore, in difficult sequences, the tracker generally requires
more than the average runtime and in easy sequences slightly less. Furthermore,
the shape model tracker configurations that have a weaker robustness generally
required longer on average. This is not only necessarily due to their inherent
computational complexity, but also by the fact that they have a weaker robustness
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(a) ∅ΦIoU = 0.57, TPR = 0.57, #frames = 186

(b) ∅ΦIoU = 0.77, TPR = 0.94, #frames = 1066

(c) ∅ΦIoU = 0.82 , TPR = 0.99, #frames = 231

(d) ∅ΦIoU = 0.58 , TPR = 0.67, #frames = 397

(e) ∅ΦIoU = 0.77 , TPR = 0.91, #frames = 219

Figure 9.11: A collection of results from gen_level_sm. The tracker is able to track
cars in various settings and in long-term sequences with more than 1000 frames (b).
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(a) ∅ΦIoU = 0.42 , TPR= 0.54, #frames = 69

(b) ∅ΦIoU = 0.19 , TPR= 0.20, #frames = 288

(c) ∅ΦIoU = 0.11 , TPR= 0.02, #frames = 412

Figure 9.12: Three example sequences in which the shape model tracker has difficulties
are shown. In general, the shape model tracker struggles in sequences with strong
viewpoint changes. This is illustrated in (a) and (b), where the cars turn by at least
90 degrees and are visible from a different viewpoint. Similarly, the shape model has
difficulties with the strong perspective viewpoint changes shown in (c).

on average. As a consequence, they generally have a lower tracker confidence and
thus a larger average search region.

The typical failure modes of the shape model tracking include:

• The shape model has difficulties handling fast perspective changes of the object.
Although the model update can adapt the model to small perspective changes
that accumulate over time, it has difficulties in sequences with fast or extreme
perspective or view-point change. Three example sequences are shown in Fig. 9.12.

• Although the shape model tracker is robust to non-linear illumination changes
in general, it struggles in sequences with a very low contrast and a very small
template size. Two example sequences are displayed in Fig. 9.8.
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Table 9.5: Overview of the average ΦIoU, the TPR, the TNR, and the average runtime of
the shape model and state-of-the-art trackers are displayed.

∅ΦIoU TPR TNR time per frame
gen_level_sm 0.417 0.527 0.0 29.1 ms
gen_level_sm_pred_5 0.390 0.501 0.14 29.1 ms
box-axis-aligned 0.779 0.966 1.0 -
ECO [61] 0.444 0.555 0.0 1389.7 ms
CSR [138] 0.268 0.272 0.0 254.0 ms
STAPLE [16] 0.226 0.267 0.0 67.4 ms
KCF [97] 0.142 0.138 0.0 21.3 ms
DSST [62] 0.211 0.254 0.0 31.8 ms
CCOT [66] 0.410 0.486 0.0 3482.5 ms
DFST [180] 0.122 0.019 0.0 141.7 ms
DPCF [1] 0.089 0.014 0.0 267.4 ms

9.2.2 Comparison to the State of the Art

The comparison against the state-of-the-art trackers was restricted to open-source trackers
that showed good performance in recent benchmarks and are nearly real-time capable.
We selected the basic Kernelized Correlation Filter (KCF) [97] tracker since it is extremely
fast and was a top ranked tracker in the VOT2014 challenge. However, it does not
estimate the scale of the object. The Discriminative Scale Space Tracker (DSST) [62] is
an extension of KCF that can handle scale changes and generally outperforms KCF [97].
A robust extension of DSST that utilizes complementary feature cues for tracking is
STAPLE [16]. The approach uses a HOG-based correlation tracker and a histogram-based
template matching method to track objects efficiently in real-time. Furthermore, we
include the Discriminative Correlation Filter with Channel and Spatial Reliability (CSR)
tracker [138]. The tracker is also based on a correlation tracker, but specific care is taken
in the update stage of the tracker. A spatial reliability map is computed to guide the
update of the correlation filters to the part of the object that is suitable for tracking. Two
further extensions of correlation trackers that only have a minor impact on the tracking
speed are DFST [180] and DPCF [1]. DFST extends a correlation filter tracker with color
information. In contrast, Akin et al. [1] improve the performance of a correlation tracker
to deformable objects by adding coupled global and local correlation filter.

For completeness, two of the top-performing deep-learning-based trackers were also
added. The first one is the Continuous Convolution Filter (CCOT) from Danelljan et al.
[66]. It was the best-performing tracker in the VOT2016 challenge and a top performer of
the challenge VOT 2017. We also added the extension of the CCOT tracker, the Efficient
Convolution Operators for Tracking (ECO) [61] tracker, which was proposed in 2017.
It was the top tracker in the VOT 2017 challenge. Both methods only require a single
forward pass of a CNN and are relatively efficient for a deep-learning-based approach. If
a high performance graphics card is available, they are near real-time capable and run at
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8 fps (ECO) and 3 fps (CCOT) on an NVIDIA GeForce GT 730M. However, to enable a
fair comparison of the computational overhead, all methods are restricted to using only
the CPU in the following experiments.

In a first experiment, we evaluated the ∅ΦIoU, the TPR, the TNR, and the aver-
age runtime per frame for the above trackers and for gen_level_sm, the best per-
forming shape model configuration from Section 9.2.1. Furthermore, the results of
gen_level_sm_pred_5 were added since it is one of the shape model configura-
tions that is able to detect the absence of the object and has a reasonable balance
between the TPR and the TNR. The theoretical upper bound for an axis-aligned tracker
box-axis-aligned, which is presented in more detail in Section 4.2, is also added for
reference. An overview of the results is shown in Table 9.5.

The shape model tracker gen_level_sm is only outperformed in terms of accuracy
and robustness by the deep-learning-based method ECO. The CCOT tracker is both
marginally less accurate and less robust than the shape model tracker gen_level_sm.
However, both of the deep-learning methods require much more computing resources
and are far from real-time when executed on the CPU. While ECO requires well over
one second per frame, CCOT is significantly slower with an average of over 3 seconds
per frame. As expected, the shallow methods are significantly faster. However, all of
the tested methods are also much weaker in terms of accuracy and robustness than
the shape model based trackers. The best performing non-deep-learning-based tracker
is the CSR tracker. With an ∅ΦIoU of 0.268 it is much weaker than the shape model
tracker (∅ΦIoU = 0.417). Furthermore, it is almost ten times slower than the shape model
trackers.

The methods that are comparably fast to the shape model tracker are the correlation
filter-based trackers STAPLE, DSST, and KCF. They perform worse than the CSR tracker
both in terms of accuracy and robustness. They all are also clearly outperformed by both
of the shape model trackers. In addition, gen_level_sm_pred_5 is able to detect the
absence of the object in 14% of the frames. Since many objects have a transition phase
in which they are slowly occluded or leave the field of view, the optimal TNR of 1.0 is
extremely difficult to obtain in practice.

In general, the shape model performs better than all other methods in frames in
which the object is either occluded for a short period of time or disappears from the
frame briefly. A few examples are shown in Fig. 9.13. In Fig. 9.13 (a), all other methods
fail when the car is occluded early in the sequence. The motion model and the prediction
of the shape model allows the shape model tracker to re-detect the car and obtain a much
higher average ΦIoU than the other methods. Similarly, in Fig. 9.13 (b), the car disappears
from the frame in the middle of the sequence. Since none of the other methods have a
failure mode detection, they are unable to recover when the car reappears. In Fig. 9.13 (c),
the other methods struggle with the very small initialization size of the truck. Since the
lighting and contrast is reasonable, the shape model correctly detects the scale change
and creates multiple new shape models as the object grows in the image. It is able to
handle the extreme scale change and has a high ∅ΦIoU. In the Fig. 9.13 (d), the camera
shakes quite strongly in the middle of the sequence and many of the other methods fail.
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(a) gen_level_sm ∅ΦIoU = 0.52 , DSST ∅ΦIoU = 0.104 , #frames = 69

(b) gen_level_sm ∅ΦIoU = 0.808 , CCOT ∅ΦIoU = 0.176 , #frames = 96

(c) gen_level_sm ∅ΦIoU = 0.802 , CCOT ∅ΦIoU = 0.247 , #frames = 316

(d) gen_level_sm ∅ΦIoU = 0.810 , ECO ∅ΦIoU = 0.393 , #frames = 294

(e) gen_level_sm ∅ΦIoU = 0.670 , KCF ∅ΦIoU = 0.374 , #frames = 729

ECO CSR STAPLE KCF
DSST CCOT gen_level_sm

Figure 9.13: ∅ΦIoU is displayed gen_level_sm and second best performing method.
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Although the shape model tracker also loses the model for a short period of time, it is
able to detect the object absence and re-detect the object. As a consequence, it clearly
outperforms the other methods in terms of accuracy. The sequence in Fig. 9.13 (e) is
relatively long and the other trackers start to drift off target. The shape model tracker is
much more stable and produces a much higher average ΦIoU.

However, there are also cases in which the shape model trackers are clearly out-
performed by the deep-learning methods. A few examples are shown in Fig. 9.14. In
Fig. 9.14 (a), the example from Fig. 9.8 is shown in more detail. The low contrast causes
the tracker initialization to create a degenerated shape model that only consists of a
single line. The object is quickly lost and the scale is estimated completely wrongly.
The deep-learning based ECO tracker is much stronger and successfully tracks the car.
Similarly, in Fig. 9.14 (b), the object is initialized at a very small size in the rain. The
resulting shape model tracker is not very descriptive and the shape model finds the object
in various different background edges. The deep-learning-based trackers cope with this
much more robustly. In Fig. 9.14 (c), an example is shown where the perspective of the
initialization is an issue. In the first few frames, the car moves from the right to the left
and the perspective on the rear end of the car changes. The shape model tracker does
not adapt to the new viewpoint fast enough and fails. Again, the deep-learning trackers
generalize better in this sequence and outperform the shape model tracker.

To validate the robustness of the deep-learning based approaches to the contrast in the
initialization step, the same experiment as in Fig. 9.10 is conducted for the ECO tracker.
The sequences were split into four lightings and the average ΦIoU and TPR are computed.
The results are shown in Fig. 9.15. As expected, the generalization capabilities of the
deep-learning approaches are better than those of the shape model tracker. Although the
average overlap scores are lower in good lighting conditions than for the shape model
tracker (see Fig. 9.10), the scores are more stable across the different lightings.

Bounding Box Tracking All of the presented ΦIoU scores are computed between the
tracker proposal and the pixel-precise representation of the ground truth. Therefore,
it is reasonable to ask: how well are the axis-aligned box-based trackers capable of
performing for pixel-precise ground truths? To validate this, the scores of the best
possible axis-aligned tracker box-axis-aligned are computed and shown in Table 9.5.
Interestingly, even the box-axis-aligned tracker is not able to obtain a TPR of 1.0.
There are pixel-precise ground truths that have a ΦIoU that is smaller than 0.5 when they
are approximated by a box. To create a TPR that is more descriptive for the trackers that
arerestricted to boxes, we compute the TPR using the threshold of 0.5 for ΦrIoU instead
of ΦIoU to identify a true positive. The measure is denoted as TPRΦrIoU and correlates
very strongly with the standard TPR. However, the absolute value is more descriptive for
trackers that are restricted to bounding boxes since it ranges from 0.0 to 1.0.

To enable a comparison to the shape model tracker, the axis-aligned bounding box
of the tracker output is computed and the tracker is denoted as box_gen_level_sm.
The respective ΦrIoU values of all the box trackers are shown in Table 9.6. The results for
the DFST and the DPCF tracker are omitted since they performed poorly in the above
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(a) gen_level_sm ∅ΦIoU = 0.143 , ECO ∅ΦIoU = 0.618 , #frames = 434

(b) gen_level_sm ∅ΦIoU = 0.08 , ECO ∅ΦIoU = 0.490 , #frames = 520

(c) gen_level_sm ∅ΦIoU = 0.315 , CCOT ∅ΦIoU = 0.408, #frames = 74

ECO CSR STAPLE KCF
DSST CCOT gen_level_sm

Figure 9.14: Sequences in which gen_level_sm is outperformed by one of the deep-
learning-based methods are displayed. The ∅ΦIoU is displayed for the gen_level_sm
and the best performing method.
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Figure 9.15: The sequences are split into four disjoint lightings (rain, daytime, night, and
dawn) and the ∅ΦIoU values are displayed for the eco tracker (right). Although the
deep-learning-based eco tracker performs weaker in rain and daytime, it is generally
more robust to the different lightings of the sequences (see Fig. 9.10).
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Table 9.6: An overview of the average ΦIoU, the average ΦrIoU, and the TPRΦrIoU .

∅ΦIoU ∅ΦrIoU TPRΦrIoU

box_gen_level_sm 0.351 0.459 1.0
ECO [61] 0.444 0.580 0.678
CSR [138] 0.268 0.363 0.380
STAPLE [16] 0.226 0.313 0.347
KCF [97] 0.142 0.209 0.212
DSST [62] 0.211 0.295 0.320
CCOT [66] 0.410 0.539 0.629

experiments. As expected, the difference between the deep-learning-based trackers and
the shape model tracker are more distinct. The deep-learning approaches are able to
clearly outperform the shape model tracker that is approximated by boxes. However, the
box_gen_level_sm tracker performs significantly better than all shallow trackers both
in terms of accuracy and precision.

In general, the ΦrIoU, indicates that all box based trackers still have a significant room
for improvement. They all have accuracy and robustness scores that are well below the
optimal 1.0. This agrees to the observations from Fig. 9.13 and Fig. 9.14 in which no
single tracker was able to solve all sequences.

Robustness to Scale Change The results from Fig. 9.13 and Fig. 9.14 indicate that all of
the tested methods seem to struggle with extreme scale changes. Especially the methods
that are not based on the shape model fail in sequences with significant scale change
(e.g. Fig. 9.13 (c)). In a further experiment, the scale score from (4.6) is computed for all
trackers. As mentioned in Section 4.4, the scale score is calculated without reinitialization
of the tracker when it fails. Furthermore, frames where the tracker has failed completely
(hence ΦIoU = 0) are ignored for the computation. This makes the scale score less
dependent on the accuracy of the tracker. The scale scores are shown in Table 9.7. As
above, the results for the DFST and the DPCF tracker are omitted since they performed
poorly in the first experiments.

As expected, the shape model methods have a higher scale score than other ap-
proaches. They clearly outperform the other methods by a large margin. Interestingly, the
baseline shape model baseline_sm has the strongest scale score. The baseline shape
model does not reinitialize the object for large scale changes. The reinitialization assumes
the shape model was detected very precisely in the prior frame. Hence, it may introduce
an ever so slight drift. As a consequence, the baseline shape model is very accurate when
the object does not change its scale too strongly. However, as shown above, without
the reinitialization, the shape model performs much poorer in terms of accuracy and
robustness (see Table 9.1).

In general, the theoretical optimum of the scale score is 1.0. However, for most of
the tested trackers, it is well below 0.5. The results correspond to the observations in
Section 4.5 and Böttger et al. [23]. Here, it was observed that the current state-of-the-art
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Table 9.7: Overview of the scale score s for the shape model and state-of-the-art methods.
The KCF has a scale score of 0.0 size it does not estimate the scale.

Scale score s
baseline_sm 0.48
gen_level_sm 0.36
ECO [61] 0.28
CSR [138] 0.26
STAPLE [16] 0.26
KCF [97] 0.0
DSST [62] 0.24
CCOT [66] 0.24

in tracking generally struggles in sequences with strong scale change in the VOT 2016
[226] and DAVIS [170] datasets. Although the shape model appears to be significantly
more robust than the other methods, the large gap indicates that also the shape model
has room for improvement.

Challenges In Fig. 9.16, examples are shown where all trackers fail early and have
very low accuracy scores. In Fig. 9.16 (a), the car is initialized at a very small scale and
makes a turn into the side street early in the sequence. None of the trackers is able to
track the car while it turns and the gen_level_sm cannot re-detect the car since the
scale and appearance changed considerably during the turn. In Fig. 9.16 (b), there is a
full occlusion by the truck in the first third of the sequence. When the car reappears
from behind the truck, the viewpoint has changed significantly. None of the trackers is
able to cope with this. Similarly, in Fig. 9.16 (c), the viewpoint on car changes by 180◦

and none of the trackers is robust. The average ΦIoU values of gen_level_sm are still
relatively high since it is very accurate in the first half of the sequence. In Fig. 9.16 (d),
the shape model tracker fails due to the low contrast and small initialization size. The
other methods are all unable to detect the significant scale change and fail early in the
sequence.

Summary The shape model tracker gen_level_sm is able to significantly outperform
all of the tested real-time shallow trackers on the PFTD dataset. It performs on par with
the top-performing deep-learning-based approaches ECO [61] and CCOT [66]. However,
it only requires an average of 29.1 ms per frame and is over 45 times faster than ECO
and over 110 times faster than the CCOT. Especially the failure mode detection and
the re-detection capabilities allow the tracker to tackle sequences where all of the other
methods fail. However, it has difficulties in sequences with very low contrast and in
which the object is initialized at a very small size. In general, the average accuracy and
robustness scores of all trackers indicate that the PFTD dataset is very challenging for
the current state of the art. The results show significant room for improvement and no
single tracker is able to tackle more than half of the sequences.
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(a) gen_level_sm ∅ΦIoU = 0.05 , ECO ∅ΦIoU = 0.045 , #frames = 420

(b) gen_level_sm ∅ΦIoU = 0.179 , ECO ∅ΦIoU = 0.254 , #frames = 170

(c) gen_level_sm ∅ΦIoU = 0.416 , STAPLE ∅ΦIoU = 0.220 , #frames = 68

(d) gen_level_sm ∅ΦIoU = 0.144 , CCOT ∅ΦIoU = 0.023 , #frames = 504

ECO CSR STAPLE KCF
DSST CCOT gen_level_sm

Figure 9.16: Challenging Sequences in which gen_level_sm and the other methods
perform poorly are displayed. The ∅ΦIoU is displayed for the gen_level_sm and the
best performing other method.
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Figure 9.17: The setup for the prototypical auto-follow application is displayed. A
Raspberry Pi 3 Model B is mounted on a rack with three wheels. The two rear wheels
can accelerate independently from each other and enable the rack to turn corners. The
control of the wheels is taken care of by an Arduino Uno SMD R3. The construction is
denoted as AutoFollow.

9.3 Experiments: Real-time Tracking on a Raspberry Pi

To validate the real-time capabilities of the shape model tracker, further experiments are
conduced on a smaller computing device. A Raspberry Pi 3 Model B is mounted onto
a simple rack that has three wheels. The two rear wheels can turn independently from
each other and enable the “vehicle” to turn corners. The front wheel can rotate freely.
The control of the wheels is taken care of by an Arduino Uno SMD R3. The tracking is
conducted by the Raspberry Pi with the help of a lightweight and energy.efficient camera
that outputs 820× 616 sized images. The power for the Raspberry Pi and the Arduino is
supplied by a 1 000 mAh powerbank. The construction is shown in Fig. 9.17 and denoted
as AutoFollow in the following.

The computational resources of the tracker are restricted to the capabilities of the
Raspberry Pi 3 Model B: 1GB of RAM and an ARM-Cortex-A53 @1,2GHz. As a conse-
quence, many of the trackers that were evaluated above are not real-time capable. The
results of the shape model tracker gen_level_sm are merely compared to those of a C
implementation of the DSST [62] tracker in the following section. Since the DSST tracker
was able to clearly outperform the KCF tracker in the above experiments, a comparison
to the KCF tracker is omitted. Both trackers have a runtime that is comparable to the
shape model tracker. The other shallow trackers CSR [138], STAPLE [16], DPFT [180],
and DPCF [1] are computationally too demanding for the Raspberry Pi 3. Similarly, the
deep-learning-based approaches ECO [61] and CCOT [66] are significantly too slow and
do not run at all on devices with so little memory.

To validate the general idea, the task is simplified as much as possible in a first
experiment. For this, a visual marker is attached on to the back of a car to ensure
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Figure 9.18: The car is setup to follow a remote-controlled car.

that tracking is as simple as possible. The AutoFollow is placed behind the remote-
controlled car and the tracker determines the position of the object in each frame. From
the movement of the object in the image, the motion of the AutoFollow vehicle can be
computed. If the object becomes smaller, the vehicle must go faster. If the object is left
or right of the image center, the car must turn left or right, respectively. The setup is
displayed in Fig. 9.18.

The tracking results for 250 frames of the DSST and gen_level_sm tracker are
displayed in Fig. 9.19. Although the camera is generally capable of around 15− 20 fps,
writing the images to disk reduced the frame rate to around 8 fps in this setup. As
shown, the shape model tracker is generally very robust and can cope with the moderate
scale and view-point changes without a problem. Note that even after 250 frames, the
shape model tracker has not drifted at all from the target. However, the DSST tracker
has difficulties in detecting the scale change correctly and starts to drift off target in
the middle of the sequence. The computation times of both approaches are shown in
Table 9.8. Both methods are significantly slower on the Raspberry Pi than on the desktop
PC. However, with around 100 ms, both methods are capable of locating the object in
real-time. 1

In general, one of the main advantages of using the shape model tracker in the above
setting is not only its robustness and accuracy, but the fact that it can inherently be
used to detect the object in the first frame. In the above setting, a model of the car was
generated offline and stored on the AutoFollow vehicle. In the first frame, the search
region is initialized as the whole image and the tracking can begin. The initialization
of DSST tracker was performed in a similar fashion. In the first frame, the shape model
was used to find the initial position of the AutoFollow vehicle and in the subsequent
frames the localization was performed by the DSST tracker.

9.4 Experiments: Miscellaneous Applications

To emphasize the universal applicability of the shape model tracker, this section presents
qualitative results of the tracker for a number of sequences in common tracking datasets.

1The ARM-Cortex-A53 has four cores. Hence, the image acquisition and the tracking can be computed in
parallel.
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DSST gen_level_sm

Figure 9.19: The AutoFollow vehicle is setup to follow the remote-controlled car from
Fig. 9.18. The results for both the the shape model tracker and the correlation-filter
tracker are displayed.

Table 9.8: Overview of the computation time on the Raspberry Pi and the desktop PC.
Both the correlation tracker and the shape model are significantly slower.

ARM-Cortex-A53 @1,2GHz Intel i7-4810 CPU @2.8GHz
gen_level_sm 112.7 ms 13.6 ms
DSST [62] 106.3 ms 19.7 ms

147



Chapter 9: Results and Comparison to the State of the Art

For each dataset, a number of example sequences and the respective accuracy and
robustness scores are presented. To get a fair impression of the strengths and weaknesses,
sequences in which the shape model tracker performs well and sequences where it
struggles are presented. The respective datasets are presented in more detail in Chapter 5.

UAV123 In the UAV123 [153] dataset, approximately half of the objects are rigid objects
such as cars, trucks, or boats. The other half of the objects are deformable and include
pedestrians, wakeboarders, and birds (see Fig. 3.3 for some examples). The sequences
are all acquired at 30 fps from a UAV that flies at different heights.

As discussed above, the shape model tracker is generally restricted to roughly rigid
objects. Furthermore, it assumes that the viewpoint does not change too much or too
fast. As a consequence, the shape model tracker cannot be used to solve all sequences
in the UAV123 dataset. However, for the sequences that contain rigid objects and have
a restricted amount of viewpoint change, the shape model tracker performs extremely
well. Especially in the sequences that track buildings or vehicles from a distance, the
shape model has very high accuracy and robustness scores. In Fig. 9.20, a subset of these
sequences is displayed. The shape model tracker also achieves perfect robustness scores
for the sequences were buildings are tracked (e.g., Figs. 9.20 (b) and (c)). Furthermore,
the robustness of the tracker against drift allows it to track cars in sequences with well
over 1000 frames (e.g., Figs 9.20 (d) and (e)).

However, the shape model tracker struggles in the sequences in which the objects are
not rigid or the view point of the object changes considerably. A collection of challenging
sequences are displayed in Fig. 9.21. In Fig. 9.21 (a), although the shape model tracker
is able to tackle the initial change of perspective point, the tracker eventually loses the
boat when the viewpoint changes too strongly. The search region is extended to the
whole image, but the boat is not re-detected since it does not appear in a perspective
that is known to the tracker. In Figs. 9.21 (b) and (c), pedestrians are tracked. Although
the tracker is able to cope with slight deformations, it eventually fails and loses the
pedestrians. In general, the shape model tracker is able to cope with a minor amount
of deformations. In Fig. 9.20 (d), the shape model loses the pedestrian a number of
times. However, since the UAV is relatively far away from the pedestrian, the deformable
movement of the legs is not really visible significantly. As a consequence, the shape
model tracker successfully re-detects the pedestrian numerous times and is relatively
successful on average.

The sequences in the UAV123 dataset are all acquired at 30 fps. Hence, the average
runtimes of the successful sequences displayed in Fig. 9.20 are very promising. However,
in the challenging sequences, the runtime of the shape model tracker is significantly
higher. Since the tracker is less successful, the search regions are larger on average in
difficult sequences. As a consequence, the runtime increases and the tracker cannot
process each incoming frame at runtime. The difference in the runtime is evident between
the sequence in Fig. 9.21 (c) and in the sequence n Fig. 9.21 (d). Although both templates
have a similar size and complexity, the tracker is much faster when it is more successful.
Since the re-detection of the shape model tracker is relatively robust, it is generally not a
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(a) ∅ΦIoU = 0.788, TPR = 1.0, ms per frame = 33.2 , #frames = 799

(b) ∅ΦIoU = 0.875, TPR = 1.0, ms per frame = 27.0 , #frames = 577

(c) ∅ΦIoU = 0.73, TPR = 1.0, ms per frame = 11.2 , #frames = 829

(d) ∅ΦIoU = 0.76, TPR = 0.985, ms per frame = 35.1 , #frames = 1345

(e) ∅ΦIoU = 0.85, TPR = 0.998, ms per frame = 20.6 , #frames = 1405

Figure 9.20: The ∅ΦIoU, TPR, and the average runtime are displayed for a collection of
sequences in the UAV123 [153] dataset for which the gen_level_sm tracker performs
very well.
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(a) ∅ΦIoU = 0.404, TPR = 0.517, ms per frame = 160.0 , #frames = 553

(b) ∅ΦIoU = 0.146, TPR = 0.155, ms per frame = 39.8 , #frames = 1579

(c) ∅ΦIoU = 0.235, TPR = 0.234, ms per frame = 222.2 , #frames = 1501

(d) ∅ΦIoU = 0.696, TPR = 0.91, ms per frame = 18.9 , #frames = 1339

Figure 9.21: The ∅ΦIoU, TPR, and the average runtime of gen_level_sm are shown for
a collection of sequences in the UAV123 [153] dataset that are very challenging for the
shape model tracker.
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major problem to not run the re-detection of the object at frame rate.

OTB 2015 and VOT 2017 The sequences in the OTB 2015 [239] and VOT 2017 [117]
benchmarks do not address any specific single application. Instead, they include se-
quences from sports videos, dashcam videos of cars, webcam videos of humans, and
animal videos. Many of the objects are deformable and change their appearance signifi-
cantly throughout the sequence. As a consequence, the shape model tracker cannot be
used to solve all of the challenging sequences. However, some of the sequences include
rigid objects and can be tackled by the shape model tracker. A collection of sequences
and the respective accuracy and robustness scores are shown in Fig. 9.22.

As shown in Figs. 9.22(a), (b), and (c), the shape model tracker performs very well on
the sequences in the OTB 2015 [239] and VOT 2017 [117] benchmarks that are acquired by
a dashcam. The TPR and the average ΦIoU are very high. The images in both benchmarks
are mostly 640× 480 pixels large. For these small images, the shape model tracker is
exceptionally fast and only requires an average of around 18 ms per frame. In Fig. 9.22
(d), the shape model tracker is able to track the box successfully in over 1000 frames.
Although the box is occluded a number of times, the tracker re-detects the box when
it reappears. In Fig. 9.22 (e), a face is tracked. In this sequence, there is little head
movement and the main challenge comes from the camera motion. The shape model
tracker is able to detect the head correctly in almost every frame.

In Fig. 9.23, a number sequences that are very difficult for the shape model tracker are
presented. In general, the tracker is not able to tackle many of the sequences in the OTB
2015 [239] and VOT 2017 [117] benchmarks that exhibit deformations (Fig. 9.23 (a)) or
large changes in the viewpoint (Fig. 9.23 (b)). In Fig. 9.23 (c), the tracker has to cope with
partial occlusions from the windscreen wiper and strong camera motion. Although the
tracker is able to cope in the first half of the sequence, it eventually loses the target and
fails. Furthermore, in the OTB 2015 [239] benchmark, there are sequences with strong
motion blur of the camera. In these sequences, the shape model tracker has difficulties
when the motion blur is too strong. However, the tracker is often able to re-detect the
object when the motion blur decreases. Two examples are shown in Figs. 9.23 (d) and (e).
Here, the average accuracy and robustness scores are not very good, but the tracker is
able to track the object most of the time.

9.5 Discussion

This chapter has presented an extensive evaluation of the shape model tracker. In a
first step, the improvements from Chapter 8 were compared to the baseline shape model
tracker. The modifications were able to improve the average runtime, robustness, and
accuracy by a large margin on the PFTD dataset. Especially the hierarchy of shape
models and the dynamic generation of the pyramid levels enhanced the performance. In
a second step, the best configuration of the shape model tracker was tested against the
current state of the art in real-time object tracking and the top-performing deep-learning
trackers. The shape model tracker was able to perform on par with the best deep-learning
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(a) ∅ΦIoU = 0.811, TPR = 0.974, ms per frame = 19.1 , #frames = 191

(b) ∅ΦIoU = 0.875, TPR = 0.994, ms per frame = 17.1 , #frames = 585

(c) ∅ΦIoU = 0.733, TPR = 0.83, ms per frame = 17.2 , #frames = 357

(d) ∅ΦIoU = 0.705, TPR = 0.886, ms per frame = 12.9 , #frames = 1161

(e) ∅ΦIoU = 0.820, TPR = 0.97, ms per frame = 19.4 , #frames = 493

Figure 9.22: The ∅ΦIoU, TPR, and the average runtime are displayed for a collection
of sequences from the OTB 2015 [239] and VOT 2017 [117] benchmarks where the
gen_level_sm tracker performs very well.
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(a) ∅ΦIoU = 0.03, TPR = 0.01, ms per frame = 65.3 , #frames = 293

(b) ∅ΦIoU = 0.12, TPR = 0.03, ms per frame = 15.6 , #frames = 999

(c) ∅ΦIoU = 0.377, TPR = 0.49, ms per frame = 10.7 , #frames = 341

(d) ∅ΦIoU = 0.533, TPR = 0.582, ms per frame = 7.3 , #frames = 380

(e) ∅ΦIoU = 0.367, TPR = 0.38, ms per frame = 29.8 , #frames = 631

Figure 9.23: The ∅ΦIoU, TPR, and the average runtime of gen_level_sm are shown for
a collection of sequences from the OTB 2015 [239] and VOT 2017 [117] benchmarks. The
sequences are challenging for the shape model tracker.
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approaches in terms of robustness and accuracy and significantly outperforms them in
terms of speed. Furthermore, the shape model tracker was more robust and accurate
than all of the tested shallow real-time trackers. In a third step, the efficiency of the
tracker was validated on a Raspberry Pi and it was able to track a remote-controlled car
successfully at 8 fps. In a final evaluation, the universal applicability of the tracker was
shown for a number of different sequences from common object tracking benchmarks. In
summary, the experiments show that the tracker is robust, fast, and accurate in a number
of different applications and settings.
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10
Conclusions

This chapter summarizes the contributions of this work and potential directions for future
research in this area.

10.1 Summary

This thesis tackled the challenge of developing robust and accurate tracking algorithms
for single-object tracking in real-time. The developed component-tree and shape-model-
based tracking algorithms are computationally lightweight, accurate, and robust. In
contrast to the majority of existing trackers, the developed methods are not restricted to
bounding boxes and are exceptionally fast. Furthermore, as shown in the experiments,
they are able to solve different challenges and applications.

The main contributions of this thesis are

• the extension of the standard single-object tracking evaluation protocol to support
pixel-precise ground truths and trackers. The new evaluation protocol is able
to measure the accuracy of trackers with improved precision and estimates the
tracker’s capability of detecting scale changes. Furthermore, it enables measuring
the quality of pixel-precise trackers and comparing them to trackers that are
restricted to bounding-boxes, something that was not possible before;

• a new tracking dataset with pixel-precise ground truth labels. The very precise
ground truth labels are created automatically from a photo-realistic synthetic
dataset. In general, the dataset is very challenging and includes long sequences
with full occlusion and different lighting conditions. The pixel-precise labels allow
to evaluate trackers with a new level of precision;

• a new tracker based on component-trees. The pixel-precise tracker utilizes ho-
mogeneous regions, which are derived and discussed in detail. In contrast to
many existing trackers, the approach is able to track objects that undergo arbitrary
deformations. Furthermore, the tracker is computationally lightweight and can be
used for 3D object segmentation;
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• the homogeneous regions developed for the component-tree tracker are generic
and can be used for various applications unrelated to tracking. For example, as
shown, they can be used for general image segmentation tasks and help to improve
the results of MSER-based OCR systems;

• a fast, robust, and very accurate edge-based tracker. The tracker is robust to
illumination changes and occlusion and can track roughly rigid objects in long
sequences with virtually no drift. It is extremely efficient and applicable to different
applications and sequences. It is able to outperform the current state of the art
in real-time tracking and performs on par with the current state-of-the-art deep
learning trackers, but is at least 40 times faster.

Together, the contributions cover the complete tracking pipeline, from the tracker eval-
uation protocol, creating a challenging tracking dataset and benchmark, and developing
methods to tackle the new challenges.

10.2 Future Work

While the tracking algorithms presented in this thesis are able to improve the state of
the art in real-time tracking, they are only a stepping stone to more elaborate tracking
algorithms. Various open problems and possible extensions exist that are discussed in
more detail in this section.

Shape Model Hierarchy The shape model hierarchy was able to increase the accuracy
and robustness of the baseline shape model tracker significantly. The core idea is to
collect all representations of the object during tracking that either have a significantly
different viewpoint or a significantly different scale. However, there is no structure within
the hierarchy of shape models itself. In each tracking step, the similarity between the
current shape model and all models in the hierarchy is computed to estimate the models
that should be used for tracking. However, since the shape models with a different scale
usually have a different number of points, no similarity is computed (since the l2 distance
is used). As a consequence, more models are used for tracking than would actually
be necessary. To remedy this, a more profound similarity measure than the l2 distance
could be used. For example, one that is either based on image similarity or on contour
similarity. This could lead to a significant performance improvement

Furthermore, the appearance and the transformation parameters in the hierarchy
could be used to generate estimates of the 3D movement of the object. In turn, this could
help to create a semantically meaningful 3D hierarchy of shape models and create a
rough 3D model of the object. This could be used to create descriptive shape models for
the tracking step and improve the robustness to viewpoint changes of the object.

Shape Model Update If the shape model has many model points, only a random subset
is used for tracking. This step allows to decrease the runtime and has little effect on the
robustness and accuracy of the tracker. However, the update of the shape model tracker
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is currently restricted to the model points that are used for tracking. As a consequence,
the model points that are not used in the tracking step are not updated. This incomplete
update of the model decreases the score and may lead to the tracker losing the target.
To counter this effect, it would be reasonable to approximate the shape model points by
contours or splines. The updated model point could then act as support points of the
contours and be used to update all models points. As a result, the shape model would
be more robust and the robustness in long sequences should be further improved.

Moreover, the update step is currently restricted to updating the model points only.
The region returned by the tracker itself is not updated. Instead, only the transformation
parameters that are determined by the tracking process are applied to the initial object
region. Especially in sequences with occlusion, the shape model inherently knows which
part of the model is occluded since the respective model points have a very low score. To
utilize this information, it would be possible to use the shape model points as support
points for manipulating the region returned by the tracker. The scores of the shape model
points could further be used to create an occlusion map.

Dynamic Pyramid Generation The regression of the shape model points in the dy-
namic shape model generation did not result in the expected performance gain. Instead
of restricting the classifier to a small window around each model point, it would be
reasonable to learn the scaled shape model directly. Hence, the classifier would obtain
all model points and the current model image template. As output, the classifier would
return the model points on the coarser levels of the pyramid. A near infinite amount of
training data can be created automatically by applying the baseline tracker initialization
to arbitrary input images. This should allow the classifier to learn scale space effects
automatically and create more descriptive shape model pyramids.

Optimal Bounding Boxes The optimal boxes for a pixel-precise segmentation required
for the computation of the ΦrIoU are not restricted to tracking. In general, they could
also be applied to improve the evaluation of object detection approaches. Furthermore,
the optimal representation of the objects with respect to the evaluation metrics might
also help to improve object detectors themselves. For example, instead of training on
axis-aligned bounding boxes of objects, the optimal boxes could be used.

Towards More Holistic Trackers The presented shape model tracker is very accurate
and fast. However, it is merely applicable to roughly rigid objects and a restricted amount
of viewpoint change. These are both restrictions that the current state-of-the-art deep
learning trackers do not have. However, although they are able to generalize well to
deformations and different types of objects, they are much slower and prone to drifting
from the object in long sequences. The strengths of both approaches could be fused to
develop more elaborate methods in different manners. One possibility for this kind of
fusion would be to apply some of the concepts developed for the shape model tracker
directly to the current state-of-the-art deep learning approaches. For example, the logic
behind the tracker confidence, the size of the search region, and the motion model are
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directly applicable to the deep learning approaches to generate reasonable predictions
for the object location. Another possibility would be to use the high-level structure of the
shape model as a reference for developing completely new learning-based algorithms.
For example, the focus of the shape model on image edges and a similarity measure
that is invariant to occlusion and illumination changes allows a very accurate and robust
tracking. Furthermore, the least-squares refinement reduces the danger of tracker drift.
All three concepts could be used to design a learning-based tracker that is much more
stable.
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A
Bayesian Tracking

To prove the validity of (6.6) and (6.7), three lemmas are required.

Lemma 1

p(A|B, C) =
p(A, B|C)

p(B|C) (A.1)

Proof.

p(A, B|C) = p((A ∩ B) ∩ C)
p(C)

=
p(A ∩ (B ∩ C)) · p(B ∩ C)

p(C) · p(B ∩ C)
(A.2)

=
p(A ∩ (B ∩ C))

p(B ∩ C)
· p(B ∩ C)

p(C)
= p(A|B, C)p(B|C). (A.3)

The division by p(B|C) completes the proof. The above proof assumes the intersection of
B and C to be non-empty. If it is empty, the initial equation p(A, B|C) is 0 anyway, as the
intersection of B and C is empty.

Lemma 2
Given the measurements Zt−1 and the the object state position history Xt, the probability of the
measurement zt can be calculated as p(zt|xt), hence

p(zt|Xt,Zt−1) = p(zt|xt). (A.4)

Proof.

t

∏
i=1

p(zi|xi)
(6.5)
= p(Zt|Xt) (A.5)

= p(zt,Zt−1|Xt) (A.6)
(A.1)
= p(zt|Zt−1,Xt)p(Zt−1|Xt) (A.7)

(6.5)
= p(zt|Zt−1,Xt)

t−1

∏
i=1

p(zi|xi). (A.8)
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Dividing both sides by
t−1
∏
i=1

yields the result.

Lemma 3
The probability of the current object state xt, given all the previous state dynamics and observations
solely depends on the last state position p(xt|xt−1):

p(xt|Xt−1,Zt−1) = p(xt|xt−1). (A.9)

Proof. The above term can be manipulated with the help of Lemma 1 to yield

p(xt|Xt−1,Zt−1) =
p(xt,Zt−1|Xt−1)

p(Zt−1|Xt−1)
. (A.10)

From (6.4), we further know that

p(Zt−1, xt|Xt−1) = p(xt|Xt−1)p(Zt−1|Xt−1). (A.11)

Hence

p(xt|Xt−1,Zt−1) = p(xt|Xt−1)
(6.3)
= p(xt|xt−1). (A.12)

The propagation can now be derived with the help of the Bayes’ theorem,

p(A|B) = p(B|A)p(B)
p(A)

. (A.13)

Furthermore, using Lemma 2, we can conclude that

p(Xt|Zt) = p(Xt|zt,Zt−1)
(A.13)
=

p(zt|Xt,Zt−1)p(Xt|Zt−1)

p(zt|Zt−1)
(A.14)

= kt p(zt|Xt,Zt−1)p(Xt|Zt−1) (A.15)

= kt p(zt|xt)p(Xt|Zt−1), (A.16)

where kt is a normalization constant that is independent of xt. Furthermore, integrating
with respect to Xt−1 gives

p(xt|Zt−1) = kt p(zt|xt)p(xt|Zt−1). (A.17)

The last term can be expanded to yield

p(xt|Zt−1) =
∫

p(xt|Xt−1Zt−1)p(Xt−1|Zt−1) dXt−1 (A.18)

Lemma 3
=

∫ ∫
p(xt|xt−1)p(Xt−1|Zt−1) dXt−2 dxt−1 (A.19)

=
∫

p(xt|xt−1)p(xt−1|Zt−1) dxt−1, (A.20)
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which is precisely what was proposed in (6.6). The posterior density in (6.7) describes all
the knowledge about xt that can be deduced from the observed data Zt.
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B
Correlation Filter Tracking

The closed-form solution of (6.13) can be obtained by setting the derivate with respect to
w̃ to zero,

w =
(

XTX + λI
)−1

XTy. (B.1)

The above formulation can be extended to complex settings in a straightforward manner

w∗ =
(

XHX + λI
)−1

XHy. (B.2)

A sample xi is assumed to be the linearised image. Filtering in the Fourier domain
assumes that the input image is cyclic. This can be enforced by filtering the input
image with a cosine window and thus ignoring the pixel values at the image borders.
Furthermore, if the samples used to optimize w are selected densely, the matrix X is of
cyclic nature. Hence the rows are merely shifts of the input image:

X = C(x) =


x1 x2 . . . xn

xn x1 . . . xn−1
...

...
. . .

...
x2 x3 . . . x1

 . (B.3)

Cyclic matrices are square matrices and have the attribute that their DFT merely consists
of the diagonal matrix generated by the vector xi,

X = FHdiag(x̂)F. (B.4)
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Hence, using dense shifts as the sample data and applying the DFT to (B.2), the optimal
w∗ can be determined as

Fw∗ = F
(

XHX + λI
)−1

XHy

ŵ∗ = F
(

FHdiag(x̂∗)diag(x̂)F + λFH F
)−1

FHdiag(x̂∗)Fy

ŵ∗ = FFH (diag(x̂∗)diag(x̂) + λ)−1 FFHdiag(x̂∗)ŷ

ŵ∗ = (diag(x̂∗)diag(x̂) + λ)−1 diag(x̂∗)ŷ

ŵ∗ = diag
(

x̂
x̂∗ � x̂ + λ

)
ŷ

ŵ∗ =
x̂� ŷ

x̂∗ � x̂ + λ

(B.5)

where the second step makes use of the fact that B.4 also yields

XHX = FHdiag(x̂∗)diag(x̂)F, (B.6)

and the fact that F is unitary, hence FFH = I.
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