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Abstract

In this thesis, two novel approaches aiming at increasing the effectiveness and efficiency

during the model-based testing of programmable controllers in automation systems

are presented: design-to-test (DTT) and plant features (PFs).

These two approaches deal with black-box conformance testing, where the specifica-

tions and implementations can be modeled as finite state machines (FSMs). Given

an automation system, the testing objective is to validate whether the implemented

controller conforms to expected input-output behavior with regard to their specifica-

tion models. However, existing testing methods suffer from various issues and are

therefore not well applicable for current industrial applications.

On the one hand, the DTT approach aims to improve the effectiveness of complete

testing, which is indispensable for critical systems. The specification models are

automatically checked and modified with limited design overhead in order to improve

the testability of their physical implementation, namely its controllability, observability,

and single-input-change testability. This approach also guarantees, by design, that the

behavior of the implementation remains unchanged during its normal execution, i.e.,

when disconnected from a test bench.

On the other hand, the PF approach attempts to enhance the efficiency of testing

for large scale systems where complete testing is hardly realistic. Plant features are

manually modeled using simple templates (which also limits the modeling overhead),

and then automatically fed into test generation. As a result, the input space of a

system under test and the number of meaningful test cases can be significantly reduced,

and consequently, the length of an executable test sequence can also be significantly

shortened. It is worth mentioning that the obtained shortened test sequence guarantees

full coverage of the whole nominal behavior of a system under test.
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Based on case studies, these two approaches outperform the current methods and

advance the model-based testing of programmable controllers.
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Zusammenfassung

In dieser Arbeit werden zwei innovative Ansätze vorgestellt, die die Effektivität

und Effizienz modellbasierten Testens für programmierbare Steuergeräte in Automa-

tisierungssystemen erhöhen sollen: Design-to-Test (DTT, dt. Entwurf-für-Testen) und

Plant Features (PFs, dt. Anlageneigenschaften).

Die beiden Ansätze befassen sich mit Black-Box-Konformitätstests für programmier-

bare Steuergeräte, wobei die Spezifikationen und Implementierungen als endliche

Automaten modelliert werden können. Bei einem Automatisierungssystem besteht

das Testziel darin, zu validieren, ob das implementierte Steuergerät dem erwarteten

Eingabe-Ausgabe-Verhalten hinsichtlich seiner Spezifikationsmodelle entspricht. Beste-

hende Testmethoden leiden jedoch unter verschiedenen Problemen und sind daher für

derzeitige industrielle Anwendungen nicht gut anwendbar.

Zum einen zielt der DTT-Ansatz darauf ab, die Effektivität vollständiger Tests zu

verbessern, die für kritische Systeme unverzichtbar sind. Die Spezifikationsmodelle

werden automatisch mit begrenztem zusätzlichen Entwurfsaufwand überprüft und

modifiziert, um die Testbarkeit der physikalischen Implementierung zu verbessern, d.h.

die Steuerbarkeit, die Beobachtbarkeit und die s.g. single-input-change testability (dt.

Testbarkeit mittels einzelner Eingangsgrößenwechsel). Dieser Ansatz garantiert, dass

das Verhalten der Implementierung während ihrer normalen Ausführung unverändert

bleibt, d.h. wenn sie nicht mit einem Prüfstand verbunden ist.

Zum anderen zielt der PF-Ansatz darauf ab, die Effizienz von Tests für große Systeme

zu verbessern, bei denen vollständige Tests kaum realistisch sind. Anlageneigen-

schaften werden manuell mit einfachen Vorlagen modelliert (was auch den Model-

lierungsaufwand begrenzt) und dann automatisch in die Testgenerierung einbezogen.

Dadurch können der Eingangsraum eines zu testenden Systems und damit die Anzahl
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der aussagekräftigen Testfälle deutlich reduziert und die Länge einer ausführbaren Test-

sequenz auch deutlich verkürzt werden. Es ist wichtig zu erwähnen, dass die erhaltene

verkürzte Testsequenz eine vollständige Abdeckung des gesamten Nennverhaltens eines

getesteten Systems garantiert.

Auf der Grundlage von Fallstudien übertreffen diese beiden Ansätze die derzeitigen

Methoden und fördern das modellbasierte Testen für programmierbare Steuergeräte.
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1 Introduction

1.1 Motivation

Nowadays, automation engineering is facing challenges in designing and testing. It

involves knowledge and technology from multiple fields such as mechanical and

electrical engineering as well as computer science. Besides, automation systems are

often composed of multiple subsystems that are distributed and interact with each

other.

Fig. 1 presents the classic V-model of system development. The left wing of the ‘V’

represents the design phase. The first step is to collect requirements from users, which

are usually informal, e.g., descriptions in the form of natural language. Then, engineers

consolidate all the requirements and create formal specification models. During the

design phase, the models are refined and detailed step by step, from the most abstract

system level (on the top) throughout subsystem, architecture, component levels until

the most detailed unit level (on the bottom).

Meanwhile, each time models are created or detailed, they are always checked against

the models/requirements one level higher. This procedure is called verification,

including formal and informal techniques. Formal verification is a type of popular

verification techniques aiming at proving the correctness and consistency of formal

models with respect to certain formal specifications or properties. Recent research and

development of formal verfication techniques can be found in [3] [4] [5].

The right wing of the ‘V’ represents the integration of implemented parts, i.e., from unit

level (on the bottom) back to system level (on the top). Each time after the integration

for one level is done, the obtained implementations will be validated whether they

1
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conform to the initial specifications/requirements.

User
Requirements

Models

System
Requirements

Models

Architectural
Models

Component
Design
Models

Unit
Design
Models

Operational
System

Integrated
System

Subsystems

Components
(SW, HW, and Data)

Units
(SW, HW, and Data)

Operational
System

Off-line safety On-line safety

Validation

Validation

Validation

Validation

Validation

Verification

Verification

Verification

Verification

Figure 1: V-model in the system development: design, verification, validation and
diagnosis

Verification and validation are both important off-line safety measures to ensure the

correctness of a product or process [6]. They are not the same thing, although they are

often confused. Succinctly, the difference can be understood as follows [7]:

• Verification: “Are we building the product right?”

• Validation: “Are we building the right product?”

After the steps of the both wings have been finished, the system will be put into use

and enters the so-called ‘on-line mode’ (the most right block in Fig. 1). In this phase,

some other measures such as diagnosis, reconfiguration, maintenance and repair are

used to ensure the on-line safety of a system [8].
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1.2 Problem statement of testing

1.2 Problem statement of testing

Testing, as “an activity in which a system or component is executed under specified

conditions, the results are observed or recorded, and an evaluation is made of some

aspect of the system or component”( [9], page 368), is considered as an important

validation means.

Automation systems are comprised of hardware and software components, which inter-

act with each other through various communication protocols, and often also interact

with the physical environment with peripherals such as sensors and actuators.

On one hand, in many applications especially critical fields such as railway, power

production and medical devices, the functionality of automation systems are becoming

more and more complicated [10]. Verification techniques can verify the models, but

they cannot guarantee the correctness of the final implemented system which is

also strongly influenced by the hardware and environmental factors. For example,

a single-input-change (SIC) issue that can lead to undetected behavioral difference

between initial design and final implementation is resulted from hardware execution

characteristics [11], which can not be discovered by verification techniques. To cope

with these issues, testing is strongly recommended and even compulsorily required by

many industrial standards such as IEC 61508 [12], IEC 61511 [13] and ISO 26262 [14]

as a validation technique on top of verification methods.

On the other hand, in many fields such as manufacturing, the life cycles of industrial

products/processes are also constantly shortening. As a consequence, the introduction

of new processes and modification of existing designs are carried out more frequently,

which causes frequent changes in system specifications [15]. This also requires efficient

system engineering approaches including not only useful designing tools but also

powerful testing techniques.

Referring to Fig. 1, usually, testing is not considered until the design and implementa-

tion steps are finished. Besides, research work has shown that in current practice, most

testing activities are still conducted manually while design tasks have been supported

by abundant tools to be done automatically [16] [17].
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Manual testing methods are mostly straightforward, expert-based, and have been

proven useful in practice decades-long [18], [19], etc. Nevertheless, their disadvantages

are obvious: individually customized, time-consuming, and error-prone. The short-

comings have become big obstacles which are hardly bearable for the testing demands

of modern automation systems, especially for safety-critical and large scale systems.

Among all applications, safety-critical automation systems have in particular following

characteristics: intensive interaction with sensors and actuators; strict requirements on

real-time performance; and high demands on dependability and safety [20]. Therefore,

safety-critical systems, or safety-critical parts of a system, need to be tested completely.

To be specific, the testings should cover all possible behavior of a system/part under

all situations it could have.

As for large scale systems (which are usually not completely critical), the largest testing

challenge is to overcome the so-called ‘state space explosion’ issue. Briefly, when the

number of inputs of a system grows linearly, the total state space in test generation

grows exponentially, and the obtained test sequence grows also exponentially. Conse-

quently, complete testing is neither convenient to generate nor realistic to execute for

large scale systems.

In this thesis, the tested targets are programmable controllers, which play a key role

in many automation systems such as manufacturing and power plant. Compared

to general computers, programmable controllers are dedicated to a limited set of

specific tasks. They receive a variety of input signals from sensors, internal buses

and external networks, make decisions according to the implemented specifications

from users, and send commands to actuators. Owing to user demands of complex

functions, high individualization, and frequent modifications, the development and

application of programmable controllers are also becoming highly complex. This

fact raises challenges not only to design tasks but also to verification and validation

methods [21].

The motivation of this thesis is to present two innovative model-based approaches

to cope with the above mentioned issues in testing programmable controllers of au-

tomation systems. The two approaches aim at following advantages in test generation:

automatic, effective and efficient. Here, ‘automatic’ means demanding as less ‘expert

knowledge’ and manual work as possible; ‘effective’ means that the test should always
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give the correct verdict result; ‘efficient’ means that the test generation and execution

are simple and fast, and should cost as less testing overhead as possible.

1.3 Contributions

This thesis is based on the research work during my PhD, most of which has been

published in international conferences and journals (the list of publications is to be

found in the appendix of this thesis).

Fig. 2 presents the frameworks of three test generation approaches1: complete con-

formance testing (CCT), design-to-test (DTT), and test generation with plant features

(PFs). CCT is a classic and well-developed approach [22], and is used as a basis and

reference of the two other approaches, DTT and PF, which are the main contributions

of this thesis.

Specification models

Original complete testing

Plant features

Testing with
plant features

Modified Design

Design-to-test

smaller
state space

better
testability

Figure 2: Simplified frameworks of complete testing, design-to-test, and test generation
with plant features

1Details of the three approaches are given later in the thesis.
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In brief, the DTT approach aims at improving the testability of a system under test,

while the PF approach aims at reaching a reduction of state space in test generation

and a shortened test sequence.

The essential contributions are briefly listed as follows:

• DTT approach

- Identification of three testing issues of programmable controllers in practice:

controllability, observability, single-input-change (SIC) testability

- Proposal of DTT solutions to each testing issue: C-guard method, O-action

method, T-guard method

- Design of algorithms of the DTT approach

- Implementation of a software toolbox

- Application on industrial case studies

• PF approach

- Informal and formal descriptions of plant features

- Design of algorithms of the PF approach

- Implementation of the PF approach and integration into existing test gener-

ation toolbox

- Application on industrial case studies

1.4 Outline

The thesis is structured as follows:
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Chapter 2 introduces the background knowledge in the field of programmable con-

trollers, as well as some basic concepts in quality assurance measures.

Chapter 3 displays the state of the art, e.g., current development of verification and

validation techniques for automations systems and programmable controllers .

The mathematical notations of Moore machines extended with Boolean signals, which

is the formal modeling language used in this thesis, as well as the overall framework

of testing objective, test execution unit, and test generation process used in this thesis,

are provided in chapter 4.

Chapter 5 presents the DTT approach for black-box conformance testing of pro-

grammable controllers. Given an automation system, the testing objective is to check

whether an implemented controller conforms to its expected behavior with regard to

the specification models. The proposed design-to-test approach analyzes the speci-

fication models and automatically modifies them by inserting additional inputs and

outputs with limited design and testing overhead, in order to improve the testability

of their physical implementations. Two case studies are presented to illustrate and

evaluate this approach.

Chapter 6 presents a model-based test generation approach for programmable con-

trollers that aims at reducing the length of a test sequence by applying PFs. The

proposed approach does not require detailed or full knowledge of the plant behavior

of a system under test, but can achieve remarkable reduction with simple plant fea-

tures. As a result, the obtained test sequence can be significantly shorter than ones

generated by complete testing methods, and meanwhile it still reaches full coverage of

the nominal behavior of the system under test. Similar to chapter 5, this approach has

been applied on two case studies.

Finally, chapter 7 gives the conclusions, discussions and perspectives of future work.
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2.1 Programmable controller

In this thesis, programmable controllers are the hardware where the executable pro-

grams are installed, executed and also tested. Programmable controllers are widely

used in different kinds of applications and industries such as manufacturing, robotics,

process control, power plant, and wastewater treatment.

A programmable controller, also known as programmable logical controller (PLC), is

“a special form of microprocessor-based controller that uses a programmable memory

to store instructions and to implement functions such as logic, sequencing, timing,

counting and arithmetic in order to control machines and processes” [23].

Basically, a programmable controller is a specific computer which is designated for

control tasks in industrial environment. It is required to run 24/7 and resist harsh

physical and electrical factors such as vibration, temperature, humidity, noise and

electromagnetic interference.

2.1.1 Programing languages

Usually, a programmable controller has been pre-programmed by manufacturers so

that the control code can be programmed with rather simple and intuitive languages.

IEC 61131 is an International Electrotechnical Commission (IEC) standard for pro-

grammable controller and covers aspects such as general information, equipment

requirements and tests, user guidelines, functional safety, etc. In particular, IEC
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61131-3 [24], the third part of this standard, defines the software architecture and

programming languages of control program. Five programming languages have been

officially approved: ladder diagram (LD), function block diagram (FBD), instruction

list (IL), structured text (ST), and sequential function chart (SFC). LD and FBD are

graphical languages, and IL and ST are textual language, while SFC can be either

graphical or textual.

In this thesis, we focus on the generation of ST code. It is a high level language

that syntactically resembles Pascal, and supports some complex statements such as

conditional execution, iteration loops and functions [24]. This makes it powerful to

handle large scale applications. A disadvantage might be that, many experienced

engineers and technicians are more used to the graphical languages. Compared to

LD and FBD, ST appears not very intuitive and straightforward for manual trouble-

shooting.

Considering both the advantages and disadvantages, the main tendency in research

and practice is to automatically generate the code with model-based methods, so that

engineers do not need to write the complicated code manually. But this also requires

reliable automatic testings to replace fully or partly manual validations.

2.1.2 Model-based development of applications

Model-based development methods are getting increasingly accepted for the design

tasks of automation systems. They permit to achieve a high degree of automation and

good re-usability.

Following the V-model introduced in chapter 1, firstly, formal specification models are

created for the programmable controllers according to users’ requirements which are

usually informal.

To model the specifications, different formalisms/languages have been studied and

applied. Following are some representative examples, [25] proposed PLC-automata,

a new class of automata, which are tailored to deal with real-time properties of

programmable logic controllers. The use of Petri nets was introduced in [26], while [27]
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extended it to be signal-interpreted Petri nets. [28] presented an agile approach using

unified modeling language (UML) to automatically generate IEC 61131-3 code. [29]

extended the use of UML to systems modeling language (SysML) in order to achieve

better compliance with the IEC 61131-3 items and rules. Recently, an object-oriented

PLC programming approach adapted from UML and SysML was proposed in [30],

and a PLC design approach based on Petri nets was proposed in [31].

In this thesis, we use Moore machines extended with Boolean signals, a kind of

automaton which is and easy to understand and powerful to model a system. The

formalism is presented in detail in chapter 4.

2.1.3 Cyclic execution

A significant feature of programmable controllers is the cyclic execution mode. When a

programmable controller is turned on, it runs continuously its control program and

updates its input and output signals. Each such loop is called a cycle, which includes

mainly three steps:

- read values of input signals

- execute all instructions of the implemented programs

- update values of output signals.

It is worth noting that most programmable controllers also have a self-test or diagnostic

step in a cycle, which is nevertheless not relevant to the topic of this thesis, and is

therefore not considered.

The cycle time of a programmable controller varies from 1ms to 100ms in practice, in

most of the cases around 10ms. The cyclic execution mode enables programmable

controllers to fulfill the ‘hard’ real-time requirement, meaning that in the worst case

it can respond to the input signals in the time of two cycles [23]. This is a crucial

advantage of programmable controllers for industrial needs.

However, the cyclic execution mode can also bring issues in testing. For example, a
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single-input-change (SIC) issue is presented in detail in chapter 5.

2.2 Error, fault, failure

In software engineering, an error is defined as a human mistake that results in an

erroneous program. A fault is a manifestation of an error, also known as defect or bug.

A failure is a deviation between the observed behavior and the required behavior of a

software system [32].

An error, which is introduced by a person, always leads to a fault. A failure is caused

by a fault or several faults in the software. A fault might lead to a failure, but not

necessarily. In other words, a software system can contain faults but still never fail.

Different countermeasures are used in practice to cope with these issues. In particular,

development engineers can make fewer errors through specific training and establish-

ment of rules. Faults are mainly diminished through inspection, review and static

analysis of the program, which are classified as static testing techniques in [33]. Failures

are mostly detected by tests, which is usually referred to as dynamic testing [33].

2.3 Verification & validation

Verification and validation (V&V) are important quality assurance measures that take

place after a programmable controller has been implemented with its executable code

and before it can finally be put into use. By applying verification and validation, a

system is determined whether and how good it meets the specifications and fulfills its

intended purpose.

Formally, verification is defined as “the process of evaluating a system or component

to determine whether the products of a given development phase satisfy the conditions

imposed at the start of that phase”( [9], page 400).

Validation is defined as “the process of providing evidence that the software and its
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associated products satisfy system requirements allocated to software at the end of

each life cycle activity, solve the right problem, and satisfy intended use and user

needs”( [9], page 397).

As briefly mentioned in chapter 1, verification deals with the question “Are we building

the product right”, while validation handles the question “Are we building the right

product”. Apart from that, Tab. 1 provides some more comparisons between the two

measures.

Table 1: Verification and validation

Verification Validation

checks the system against specifications checks the system against user require-
ments

mostly static mechanisms dynamic mechanisms

usually does not execute the code always executes the code

low level exercise high level exercise

considers specifications and system de-
signs as target regards end-user product as target

always done by development team usually carried out by extra testing team

usually done before validation usually done after verification

methods: informal and formal verifica-
tion

methods: white-box testing, gray-box
testing, black-box testing

Several representative verification and validation techniques are presented in the next

chapter.
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3.1 Introduction

This chapter presents recent research work in the field of this thesis, i.e., model-based

testing of programmable controllers, and adjacent fields such as informal/formal

verification techniques, and validation methods through testing.

In each of the following sections, a type of techniques or a family of related techniques

are reviewed and discussed with regard to their characteristics in general and ap-

plicability for programmable controllers. In particular, some techniques have strong

relations to the two approaches presented in this thesis. Therefore, their similarities

and differences are highlighted in the discussions.

3.2 Informal methods

Informal methods of verification and validation are frequently used in modeling and

simulation during the design of a system. These methods are more qualitative than

quantitative, and rely more on experiences and opinions of experts than numerical

results, that is why they are called informal.

Typical informal methods include inspection, review, code walk-through, etc. These

methods are all manual examinations done by qualified personnel to check software

products with regard to requirements, and to detect and identify software anomalies

errors and deviations from standards and specifications [9]. For example, with inspec-

tion techniques, the behavior of an abstract conceptual model and a concrete runnable
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model can be compared.

In the field of programmable controllers, informal methods such as checklist-based

review and inspection are also widely used, as a complement to formal methods. Tools

have been developed to support these techniques, i.e., to make them more automatic

and systematic [34].

The largest advantage is that users can verify a model more quickly because they do

not need a proper model, which may take some time to acquire and sometimes does

not exist at all.

The shortcomings are also obvious, expert knowledge and experience might be working

but can not be formally approved; and informal methods are hard to scale on different

individual projects. For safety-critical systems, it is compulsorily required or strongly

recommended to use systematic and formal methods such as formal verification and

validation through testing to evaluate and ensure the safety levels.

3.3 Formal verification

When formal languages and mathematical techniques are used, a verification process is

called formal verification. Some typical formal verification techniques are introduced

in following parts.

3.3.1 Theorem proving

Theorem proving is one of the key approaches of formal verification. Firstly, a theorem

prover is constructed based on a mathematical statement. A mathematical statement

can only be verified as true when a proof can be deduced from the logic of the prover.

In such a case, the statement is called a theorem.

Theorem proving has been studied for long. For example, a machine program for

theorem-proving was proposed in [35] in 1962; the complexity of theorem-proving
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procedures has been discussed in [36] in 1971; now, different theorem prover tools such

as Coq [37] and SPASS [38] have been developed and provided to construct proofs

interactively / automatically.

In the field of programmable controllers, theorem proving has also been applied. In [39],

a formalization of TON-timers of programmable logical controller (PLC) programs has

been proposed to apply the theorem prover Coq. [40] proposed a theorem-proving

method for ladder diagram (LD) program by defining a formal framework with

a specific algebra. Using the solver they developed, the verification can be done

automatically.

A very practical reason for applying theorem proving, as introduced in [41], is that

a substantial degree of control in the process of derivation of complex theorems can

be achieved by most theorem provers. In some applications where a very expressive

logic is desired to represent complex properties, theorem proving might be the only

technology that can be resorted to. In other words, a great advantage of theorem

proving is the avoidance of the state-space explosion issue [21].

As pointed out in [42] in 1999, the biggest issue that hindered the wide use of theorem

proving was insufficient degree of automation compared to other techniques such as

model checking and testing. Now, fortunately, various attempts of automatizing this

approach has been done such as SPASS [38].

3.3.2 Model checking

Model checking is an automated approach that exhaustively explores the whole state

space of a formal model of a system to prove it meets some certain properties, or

otherwise to find a counter example.

The system is usually modeled as automata containing the initial states, possible

other states, and the transitions between all the pairs of states. The model is an

abstraction of the system by omitting irrelevant details with regard to the properties to

be verified. Typical properties are temporal logic or other safety requirements such

as the absence of deadlocks. The most common formal descriptions of temporal logic
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are linear temporal logic (LTL) and computational tree logic (CTL). Complex temporal

constraints can be formulated with LTL and CTL conveniently.

In practice, model checking has been well accepted and widely used in software

applications where formal models are close to the final products such as verifying

the implementation of controllers and evaluating communication protocols. Many

tools have been developed in academia and industry, such as Spin [43], UPPAAL [44],

NuSMV [45] and its extended version nuXmv [46], etc.

In the field of programmable controllers, model checking has also been widely applied

by transforming the control programs into an adequate and behavioral equivalent

formal model. For example, a systematic process of verifying function block diagram

(FBD) control programs by NuSMV model checker has been proposed in [47]. It is

realized by transforming the graphical FBD programs into formal textual forms called

TextFBD and tFBD. In [5], a formal intermediate model (IM) has been built to transform

control programs written in the form of structured text (ST), sequential function chart

(SFC) to nuXmv model checker.

As pointed out in [48], nowadays model checking techniques and tools have become

competitive for finding bugs in software products, and even outperformed the bug-

findings capabilities of state-of-the-art testing tools when performing experiments on a

benchmark set. However, for industrial automation systems, bug-finding is not the

only task of quality assurance, other aspects such as the conformance relation between

specification and implementation are often also of interest. Therefore, a combination

of model checking with other techniques such as testing would be a good solution.

3.3.3 Static analysis

Static analysis encompasses a bunch of techniques that enable automatic analysis

of software products, and detection of errors and error-prone conditions without

executing the software programs [49].

Static analysis techniques work on the source code or intermediate representations of a

program. Therefore, they are used intensively in compiler optimization [50]. However,
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nowadays static analysis can also be employed independently from compilers. It has

evolved to an important measure of software quality assessment and improvement

technology, which can provide means to reveal bad code smells, violations of pro-

gramming conventions and guidelines, and potential defects [51]. Also, static analysis

tools can help reduce the effort of other verification processes such as code review

by catching common mistakes prior to it [52]. The tools employed for static analysis

are rich and manifold, such as SLAM [53] for C program verification in Microsoft,

FindBugs [54] for finding bugs in Google, and Pixy for detecting web application

vulnerabilities [55].

In the field of programmable controllers, the applications of static analysis are also

popular [51], for example, the tool from 3S which became part of the CoDeSys Pro-

fessional Developer Edition1, the tool PLC checker from Itris2, and the tool logi.LINT

from Logicals3. Recently, a live static code analysis architecture has been proposed

in [56], which aims at bridging the gap among different static analysis tools in different

development processes by enabling the use of static analysis directly in a common

development architecture. Instant feedback are given when a user is still editing the

PLC software.

As concluded in [49], the main advantages of static analysis is that it can reduce the

amount of testing workload in practice, and it can detect errors that cannot be found by

testing such as improper resource management, illegal operations, dead or incomplete

code, non-termination, uncaught exceptions, and race conditions.

However, static analysis only deals with static behavior of a system under test (SUT),

and therefore cannot guarantee the absence of runtime errors. In practice, other

techniques such as runtime verfication and testing are good supplement to static

analysis.

1https://www.codesys.com/ (last visited on September 10th, 2018)
2http://www.itris-automation.com/ (last visited on September 10th, 2018)
3http://www.logicals.com/ (last visited on September 10th, 2018)
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3.3.4 Runtime verification

Runtime verification refers to the techniques that allow checking whether a run of a

system under scrutiny satisfies or violates a given correctness property [57].

A run of a system is understood as a possibly infinite sequence of the system’s states,

which are formed by current variable assignments, or as the sequence of (input/output)

actions a system is emitting or performing. The checking is performed by using a

monitor, which is a device that reads a finite trace and yields a certain verdict, which

gives the value True or False [58].

Following are some tools supporting runtime verification and some applications in

practice. JPaX is a Java PathExplorer runtime verification tool, which can monitor

the execution of a Java program and check if it conforms with a set of temporal logic

properties provided by users [59]. It has been essentially developed and used in

the NASA Research Center, and it has been applied to many programs produced

for rovers, spacecrafts and similar devices. Mop, short for ‘Monitoring-Oriented

Programming’, is a formal framework for software development and analysis with

runtime verification [60]. It automatically generates monitors from specified properties

by users and then integrates them together with the user-defined code into the original

system.

In the field of programmable controllers, runtime verification has recently also been

applied. In [61], for advanced programmable controllers coupled with embedded

hypervisors, online cyber-physical verification solutions have been directly integrated

into the program scan cycle as well as online intrusion detection systems within the

embedded hypervisor. With this approach, advanced security and verification solutions

are allowed to be directly enforced within the programmable logic controller program

scan cycle.

Compared to static verification techniques such as the above discussed techniques, the

biggest difference, which can also be seen as an advantage, is that runtime verification

does analysis and checking dynamically. Another distinguishing feature is that runtime

verification technique does not require a model of the system, but only deals with

observed executions of a system.
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It is worth mentioning that runtime verification techniques deals only with detection of

violation/satisfaction of properties from observations, but do not influence or change

the program execution. For example, the reparation of the program with regard to a

detected violation is based on the verification results, but the repairing itself is not part

of the job of runtime verification.

Since runtime verification is also executed on running systems, it is therefore considered

as a form of passive testing. The difference between the two techniques lies on the

adjective ‘passive’, saying that runtime verification does not require creating test cases,

but only needs to observe the behavior of a running system, while testing in general

always actively needs test cases which is the run of a system. As a consequence,

coverage metrics of code can be reached by testing but not by runtime verifications.

3.3.5 Brief discussions of formal verification techniques

The biggest shortcomings of informal verification techniques turn out to be the advan-

tages of formal methods: they are highly convincing with formal proof, are capable

to handle complicated systems systematically, and many of their processes can be

automated.

Most verification techniques (one exceptional example is runtime verification) are exe-

cuted on models, before a system or a component is really implemented. In one aspect,

this brings an advantage that these techniques can be applied independently from

influences of implementation, e.g., software environments and hardware platforms.

In another aspect, these techniques can not verify the properties of an implemented

system, e.g., real-time performance of a controller, the interaction between software

and hardware. To overcome this, validation through testing is a good supplement,

which are mostly executed on the implementation.

As a conclusion, for safety-critical systems, testing is strongly recommended or manda-

torily required to be a supplement of verification techniques.
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3.4 Validation through testing

Testing is defined as “an activity in which a system or component is executed under

specified conditions, the results are observed or recorded, and an evaluation is made

of some aspect of the system or component.”( [9], page 377).

For software systems, there are mainly two types of testing: functional and performance.

The former includes black-box and white-box testing, while the latter concerns software

availability, reliability, survivability, flexibility, durability, security, re-usability, and

maintainability [20].

The approaches presented in this thesis, i.e., the design-to-test (DTT) approach and the

plant feature (PF) approach, are categorized into the field of validation through testing.

More specifically, the approaches focus on the aspect of functional testing.

3.4.1 Spontaneous, manual testing vs. systematic, automatic testing

Testing activities in a broad sense have taken place early in the development phase.

For example, developers always execute their programs after they have coded a new

piece or modified some parts. If a program does not run or the results are obviously

not correct, developers will then do a debugging and search the faults. When the

program executes and ‘seems to produce reasonable’, the debugging is usually finished.

In fact, what developers have done is already a test, which is spontaneous and manual.

This kind of testing starts always when a failure is detected, is usually executed with

random test cases, and ends if the developers think they have tested enough.

On the other hand, to ensure the safety and reliability of a complex system in critical

applications, testing activities are more and more required to be systematic, and also

recommended being automatic.

Compared to spontaneous tests, systematic tests are always well planned. Test cases

are generated according to specifications, and consist of selected inputs and expected

outputs. The test results are well documented. Tests will only be finished after

previously defined test goals are reached, for example the SUT is fully tested or a
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preset test coverage is reached.

The advantages are obvious:

• Test executions are traceable and reproducible, failed tests can easily be repeated.

• The efforts and benefits of a test is predictable

• It is economically efficient to have all the test cases, execution process and results

well documented.

• Risk and liability can be reduced, since critical failures of a system can be

systematically better avoided.

Spontaneous testings are more suitable for small and non-critical applications or early

stage of development phase, since they are mostly done manually and based on expert

knowledge and experience.

The main cost of systematic testing is the design overhead of the testing, while the

test generation and execution can be done more or less automatically now. These

characteristics make this type of testing highly scalable and therefore suitable for

large scale and complex systems. For safety critical systems, systematic and automatic

testing is strongly recommended and required, while spontaneous and manual testing

plays a complementary roll.

The two approaches presented in this thesis focus more on systematic and automatic

testing.

3.4.2 White-box, black-box, gray-box testing

White-box testing is defined as a type of testing that takes into account the internal

mechanism of a system or component ( [9], Page 349). It is good at revealing errors in

hidden code, providing traceability of tests, setting up coverage metrics for designing

of test cases, but require a high level of knowledge of the system, and might not detect

unimplemented specifications or missing requirements [62].
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Black-box testing is referred to as a type of testing that ignores the internal mechanism

of a system or component and focuses solely on the outputs generated in response

to selected inputs and execution condition ( [9], Page 154). It has no requirement of

programming knowledge and is efficient at handling large code segment. Besides,

tester perception is very simple. The main disadvantages include low/limited coverage,

and difficulty in designing the test cases [62].

The so-called ’gray-box testing’ is a combination of white-box and black-box testing, in

which the internal structure is partially known [63]. The advantages and disadvantages

are also combinations and compromises between black-box and white-box testing.

White-box testing is suitable for early testing in development when a tester has full

knowledge of source code. Black-box testing is widely applied in late phases of testing,

where the internal structures are not easily accessible. Gray-box testing is well suited

for intermediate phases or some special situations such as web applications, where the

systems are often of distributed structures, the interface of which are clearly defined

but the source code or binaries are absent [64].

In the testing of programmable controllers, black-box testing is in general more suitable

since the internal structure of controllers are not easily accessible. It checks whether

an implemented controller, seen as a black-box with inputs/outputs, behaves correctly

with respect to its specification models.

However, with some modifications into the specification models, the benefits of gray-

box testing have also been achieved with the DTT approach proposed in this thesis,

which is presented in detail in chapter 5.

3.4.3 Open-loop / closed-loop testing

When testing a controller in a real system, there are two different architectures: open-

loop and closed-loop testing ( [65], page 91-95).

In open-loop testing, test stimuli are input signals for a controller, which are generated

in advance and directly sent to the controller during test execution. For example,

in [66], the applicable test cases are created according to the functional requirements
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and data flow of FBD. The generated test cases are applied on the open-loop testing of

several PLC devices in a smart home system.

As for the latter, a controller is embedded with real or simulated system plant so that

the controller and the plant form a closed-loop; test stimuli are sent to the system

plant and indirectly influence the controller. For example, [67] presented an automated

procedure for constructing plant models for closed-loop simulation and testing of

programmable controllers.

In this thesis, plant features (models) are involved in the test generation with the PF

approach, but not in the test execution. Therefore, testing in this thesis should be

categorized into the group of open-loop testing. More details are given in chapter 6.

3.5 Model-based testing

The term model-based testing (MBT) refers to a family of testing techniques that build

test cases based on the behavior models extracted from an implementation under test

(IUT) and its environment. Test cases for the IUT are constituted by traces of inputs

and expected outputs generated from specification models [68].

Much research interest has been attracted to MBT. For example, [69] sorted many

publications on model-based testing and provided a taxonomy that covers the key

aspects of MBT approaches, so that different approaches can be classified and compared.

[70] recommended the use of state-based languages (e.g., Moore machine used in this

thesis) in modeling IUT behavior due to numerous theoretical results and suggestions

by many programms. The survey revealed a large gap between theoretical research

and practical applications. Large part of theoretical research has not been/cannot

easily be transformed into practical tools.

The two approaches presented in this thesis also belong to the family of model-based

approaches.
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3.5.1 X-in-the-loop testing

Nowadays, automation systems are getting increasingly complex, and therefore the

testing of embedded controllers is usually not a one-click action. Instead, tests are

executed in a series of different stages. Four popular X-in-the-loop testings, i.e.,

model-in-the-loop (SIL), software-in-the-loop (MIL), processor-in-the-loop (PIL), and

hardware-in-the-loop (HIL), are presented in the following part.

These X-in-the-loop testings belong to closed-loop testing where the software product

is verified and validated in different target platforms. They have raised great interest in

the testing practice of safety critical industrial software [71], applications on embedded

controllers [72], and especially in the automotive industry [73]. Some key features of

these X-in-the-loop testings are listed as follows.

Model-in-the-loop testing

In MIL testing, the controller and plant are both models without any physical hardware

components. Testing is executed on simulations of abstract functional models. The

computations are usually performed on a host computer, with floating-point arithmetic,

and independent from final target platform [72].

It is suitable at early stages of the development cycle, from which developers can

quickly get important feedback with regard to fulfillment of functional requirements.

Software-in-the-loop testing

In SIL testing, executable object code is tested instead of models. Nevertheless, the

plant is still simulated models without hardware, and the execution of SIL testing is

still done on a host computer [72].

The results of SIL testing is supposed to be comparable to the results obtained from

MIL testing. However, they can differ. The main reason is that the executable code

contains more information and restrictions such as mapping between different parts
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and functions. Besides, in SIL testing the code computations are done with fixed-point

arithmetic, which can also run on an embedded controller [71].

The SIL testing results reflect somewhat the actual code executions that would happen

later on the final target platform.

Processor-in-the-loop testing

In PIL testing, executable object code is tested on not anymore on a host computer,

but on an experimental hardware which contains the same processor as the final

target system. A typical example of such experimental hardware is an evaluation

board [71].

The aim is to verify the code behavior and measure code efficiency such as profiling

and memory usage on the target processor.

Hardware-in-the-loop testing

In HIL testing, the software code runs on the final controller. The plant is still a

simulation, but usually not running on a normal host computer but on a dedicated

hardware designed for HIL testing, so that real-time communication between the

controller and plant can be tested as in the real application. Additionally, in HIL testing,

not only the control code but also the input output interfaces can be tested [73].

In this thesis, testing is executed on real programmable controllers and is therefore

categorized into the field of HIL testing.

3.5.2 Conformance testing

Conformance testing is a kind of model-based testing that checks whether the behavior

of an implementation conforms to the behavior of its specification models [22]. Model-

based conformance testing methods have been investigated since long.
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The term complete conformance testing (CCT) refers to a classic model-based technique

that automatically generates test cases from specification models, which considers

all possible combinations of input signals from all states. Therefore, CCT covers the

whole behavior of a SUT and is highly advantageous for safety critical systems. The

main limitation is that the number of test cases and subsequently the length of a test

sequence grow exponentially with the number of inputs, which severely restricts its

application to large-scale systems.

Thus, there has been an urgent demand to have advanced testing techniques that are

capable to handle large scale systems.

Most recent research work aims at reaching high test coverage with a relatively small

set of test cases. For example, [66] generated test cases based on the element identifier

and function block-tree traversal; [74] used coverage metrics to implement a symbolic

execution engine; [75] proposed an assessment approach to support increasing system

test coverage through effectively identifying untested code and untested behavior of

an SUT.

However, research results have indicated that testing with coverage criteria satisfaction

alone are not always powerful; they can be poor at effectively finding faults in some

applications, sometimes even worse that random testing [76].

On the other hand, system behavior of an SUT is seldom considered in these coverage-

oriented methods. Thus, critical faults might be missing in a testing with high but not

full coverage.

The two approaches proposed in this thesis are intended to support model-based

conformance testing techniques, to be more exact, the DTT approach permits to

providing better specification models for testing purpose, and the PF approach aims at

shortening the length of test sequence by using plant features.
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3.6 Test-driven development

Test-driven development (TDD) is a technique that considers testing at early phase in

the development process.

In a typical TDD process [77], an automated functional test is implemented before any

program code is written; then, quick designs or changes are made to the program in

order to pass the test; once succeed, the new code will be re-factored and improved to

fulfill non-functional requirements such as coding guidelines.

However, despite the promising prospects, TDD is far less applied in industry than

expected [78]. Several research projects have been undertaken to investigate the

reasons and obstacles that restrict the wide usage of TDD. In [78], a summary of

published results from research projects and practical experiments concluded that

although the TDD approach provides a better code coverage, it cannot be proven to

be generally superior to other traditional approaches in terms of development time,

change and maintenance cost. In [79], seven essential factors that limit the industrial

adoption of TDD have been identified: increased development time, insufficient TDD

experience/knowledge, lack of upfront design, domain and tool specific issues, lack of developer

skill in writing test cases, insufficient adherence to TDD protocol, and legacy code.

Meanwhile, many attempts have been made to adapt TDD on specific industrial

applications. For instance, in [80], TDD was adapted to C programming by applying

a dual-targeting approach. In [81], a TDD process introduced adaption of unified

modeling language (UML) models to enable effective test case derivation of automation

systems.

Compared to TDD, the DTT approach presented in this thesis does not require expertise,

and encounters no issue dealing with the code, since the DTT approach modifies

specification on the model level. What’s more, when the DTT approach is combined

with automated testing tools such as Teloco [22], the final test code is generated fully

automatically, so that developer skills in writing test cases are not needed.
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3.7 Concept of design-to-test

Design-to-test (also called design-for-test (DFT) in some research work) was initially

conceived for the testing of integrated circuits (ICs) [82]. It aimed at achieving a high

fault coverage by inserting test points into circuits at the cost of increasing the circuit

area and the number of pins of the board.

In this domain, DFT has been researched and applied widely. Most research work

aimed at better performance in fault coverage and testing overhead. In [83], a low

power built-in-self-test (BIST) test pattern generator that provides test vectors which

can lower the energy consumption during test operation has been proposed. [84]

proposed a test generator that saves test overhead to fulfill fault coverage requirements

in very-large-scale integration (VLSI) testing. In [85], a BIST scheme that can lower

the test time and silicon area cost in the testing of three-dimensional ICs has been

presented. [86] proposed a test solution for monolithic three-dimensional ICs based

on dedicated test layers, which are inserted between functional layers. The authors

also showed that this technique is more cost-efficient than the Institute of Electrical

and Electronics Engineers (IEEE) standard solution, i.e., it provides test schedules with

minimum test time under power consumption and probe pad constraints.

Recent work has also extended the DFT techniques to other applications. [87] presented

the problem of conventional DFT techniques in security-critical applications that

these ICs can be hacked through the test mode. The authors also proposed their

countermeasures which can be incorporated into their DFT framework and provide

defense against those potential attacks. In [88], a new test strategy has been proposed

to enhance the application of DFT on on-chip networks which require high reliability.

With the proposed strategy, the impact of test procedures on the system performance

can be minimized, and therefore the test frequency can be increased.

On the one hand, the benefits of these DFT techniques such as higher fault cover-

age, lower testing overhead and higher reliability are also of interest to the DTT

approach presented in this thesis. On the other hand, the DTT approach supports

model-based conformance testing between specification and implementation of a pro-

grammable controller; while the DFT methods used for ICs mainly support designing

and manufacturing tests, which validate whether a hardware contains no designing or
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manufacturing defects that affect its correct functioning.

3.8 Plant models in verification and validation

The importance of using plant models in verification and validation of programmable

controllers has been generally acknowledged for a long time [89] [90] [91].

Most research work uses plant models for verification purpose such as model check-

ing [92] [93], and simulation [94] [95]. However, as pointed out in [96], simulation-based

verification methods may always encounter two issues: real-world errors are not dis-

covered in the simulated world, and errors are discovered that do not exist in the

real world. The concern of the first issue is also valid for model checking, since a

formal model is an abstraction of a real system with assumptions and constraints, as

introduced in chapter 3.

To cope with the first issue, one popular research direction is to build better simulation

interface and environment that are more close to the real world [95] [96], another

direction is to develop better plant modeling methods, i.e., automatic methods, to

maximally avoid human errors in the construction of models, improve modeling

efficiency, and enhance the overall applicability of plant models in verification and

validation [67] [4].

On the other hand, this shortage of verification can also be overcome by testing. The

idea of having plant models in testing has also been considered and investigated

recently. [97] created an automated test case generation approach for industrial au-

tomation applications where specification and plant models are specified by UML state

chart diagrams. However, the generation criteria is still about reaching high coverage

rather than analytically considering system behavior, which is the goal the proposed

approach aiming to reach.

The concern of the second issue has also been considered in this thesis, i.e. with the PF

approach presented in chapter 6. By applying plant features, test cases that are not/less

meaningful in the real system are filtered out from the generated test sequence. More

specifically, the PF approach guarantees full coverage of nominal (plus optional faulty)
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system behavior, and maximally removes test cases that are not relevant.
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4.1 Mathematical notation

4.1.1 Specification model

Communicating Moore Machine extended with Boolean signals

In this thesis, the specification of a system is modeled as a set of communicating

Moore finite state machines (FSMs), which can communicate with each other. Boolean

signals are used as inputs and outputs. It has been proven that many other modeling

languages can be automatically or easily transformed into Moore machines, e.g., Mealy

machine [98] and Petri net [99], IEC61131 [42], and GRAFCET [22].

Signals and events are two types of inputs that can be accepted by programmable

controllers. They can be converted into each other easily. For example, a rising edge, as

a typical event, is equivalent to a value change from ‘0’ to ‘1’ of a signal. Also, contrary

to many event-based models, Moore machine extended with Boolean signals does not

restrict only one change of signal values at once.

A communicating Moore machine extended with Boolean signals is defined by an

8-tuple

(L, linit, I,C,O, Gδ,δ,λ)1, where:

• L is a finite set of locations.

1The subscript ‘S’ will be used to stand for Specification, the subscript ‘P’ for Plant: e.g. LS and LP
mean the set of locations for specification and plant models
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• linit is the initial location, linit ∈ L.

• I is a finite set of Boolean input signals.

• C is a finite set of internal Boolean communicating variables that are related to

locations; a communicating variable is denoted as ‘X(location)’, e.g., ‘X(l1)’.

• O is a finite set of Boolean output signals.

• Gδ := expr(I,C) is a finite set of transition guards, which are Boolean expressions2

built up by inputs and internal variables.

• δ : L × Gδ → L is the transition function that maps the current location and

transition guard to the next location; a transition is fired when its source location

is active and its guard is evaluated as ‘1’ (i.e., True); ‘∆’ is used to denote a set of

‘δ’.

• λ : L→ 2O is the output function that maps the locations to their corresponding

output signals; ‘Λ’ is used to denote a set of ‘λ’.

Moore machines are also represented in their graphical form in this thesis. A simple

example is given in Fig. 3. A location l is drawn as a circle or a rounded rectangle. It

can either have an externally observable output3, e.g., o3 in l3, or no observable output,

e.g., ∅ in l1.

A transition δ is represented by an oriented arc with its guard g(δ), e.g., ¬a ∧ b for the

transition from l1 to l2. The use of an internal communicating variable in transition

guards is not complicated. For example, when the location l6 is activated, X(l6) is

assigned the value ‘1’. If l2 is active at the same time, then the transition from l2 to l3
can be fired.

2Boolean operators used in this paper: ∧: AND; ∨: OR; ¬: Negation.
3For readability reasons, only active outputs are presented, i.e., in l3, o3 implicitly means o3 ∧ ¬o4.
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∅

l1

o2

l2

o3

l3

o4

l4

o5

l5

∅

l6

¬a ∧ b X(l6)

c a ∨ ¬b

Figure 3: A simple Moore machine model example with Boolean signals

Stabilized Composed Automaton

The first step of the design-to-test (DTT) approach is to compose all individual Moore

machine models in parallel with regard to signal interpreted semantics, i.e., with

stability search. During the composition, a situation is stable if no transition in any

of the Moore machines can be fired without changing the values of input signals;

otherwise, it is transient. The stability search semantics implies that the firing of

transitions continues until a stable situation is reached. For this purpose, Teloco

proposed in [22] is used for composition in this thesis.

Similar to an individual Moore machine, an stabilized composed automaton (SCA) is

defined by a 7-tuple (S, sinit, I,O, Ge, e,λs), where:

• S is a finite set of states. A state represents a combination of locations from the

individual models.

• sinit is the initial state, sinit ∈ S.

• I is a finite set of Boolean input signals (same as used in the individual models).

• O is a finite set of Boolean output signals (same as used in the individual models).

• Ge := expr(I) is a finite set of evolution guards, which are Boolean expressions

built up by inputs.

• e : S× Ge→ S is the evolution function that maps the current state and evolution
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guard to the next state; a transition between states is named an evolution.

• λs : S→ 2O is the output function that maps the states to their corresponding

output signals.

4.1.2 Plant feature model

Moore machine with Boolean signals

In this thesis, plants can also be modeled as FSMs with Boolean signals to describe

dependency relations between signals.

Similarly, a plant model is defined by an 7-tuple (LP, lP,init, IP,OP, GP,δ,δP,λP), where:

• LP is a finite set of locations4.

• lP,init is the initial location, lP,init ∈ LP.

• IP is a finite set of Boolean input signals; IP := I ∪O, the inputs and outputs from

specification models can be used as input signals in a plant model.

• OP is a finite set of Boolean output signals.

• GP,δ := expr(IP) is a finite set of transition guards, which are Boolean expressions

built up by input signals.

• δP : LP × GP,δ→ LP is the transition function that maps the current location and

transition guard to the next location; a transition is fired when its source location

is active and its guard is evaluated as ‘1’ (i.e., True); ‘∆P’ is used to denote the set

of ‘δP’.

• λP : LP→ 2OP is the output function that maps the locations to their correspond-

ing output signals; ‘ΛP’ is used to denote the set of ‘λP’.

4The subscript ‘P’ stands for ‘Plant’.
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A simple example of a plant model is given in Fig. 4, which interacts with the second

specification model in Fig. 3.

¬c,¬a

p1

c,¬a

p2

¬c, a

p3

c o4

o5

Figure 4: A simple Moore machine plant model with Boolean signals

This model can be understood as follows: initially, the signals a and c are False, a

remains False when c is activated; as soon as o4 takes place, a is activated and c is

deactivated; after o5 occurs, the values of a and c turn False again as described in the

initial location.

4.2 Model-based black-box conformance testing of

programmable controllers

4.2.1 Conformance testing of programmable controller: objective

and process

The objective of conformance testing is to check whether the behavior of an im-

plemented programmable controller conforms to the behavior of its specification

models [22].

Test case & test sequence

According to [9] (page 368), a test case has been formally defined as ’a set of test

inputs, execution conditions, and expected results developed for a particular objective,

such as to exercise a particular program path or to verify compliance with a specific

requirement’.

In this thesis, for the conformance testing of a programmable controller, a test case
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consists of a set of input signals, the expected output signals, the observed/real output

signals, and the verdict of the result which is obtained from the comparison of expected

and observed output signals.

Since the specification models are communicating Moore machines extended with

Boolean signals in this thesis, the execution of several test cases can be automated by

linking them together and building a test sequence.

Test process

As presented in Fig. 5, a complete model-based testing process for a programmable

controller consists of four steps:

Specification Plant

Models

Input sequence

Output sequence
(expected)

Test sequences

Programmable
controller

Output sequence
(observed)

Test verdict

Step 1

Step 2

Step 3

Step 4

Figure 5: Workflow of testing a programmable controller

• Step 1: generate a test sequence (with input and output) from models (specifica-

tion models with/without plant models)

• Step 2: feed the input sequence to the implemented programmable controller

• Step 3: execute the implemented program on the controller
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• Step 4: compare the observed output sequence to expected one, and record if the

controller passes the test

Test verdict

As presented in Fig. 6, if an implementation passes all sequences / a complete test

sequence derived from its specifications, then the implementation is considered to

completely conform the specifications. Otherwise, the sequence or step that detects the

behavioral inconsistency between the implementation and specification, i.e., the differ-

ence between observed and expected sequence, is reported as a counter-example.

Figure 6: Test verdict of an implementation against its specifications

4.2.2 Black-box testing of a programmable controller: a testing unit

In this thesis, the implementation under test (IUT) are physical embedded pro-

grammable controllers that can store instructions and functions, and run in cyclic

execution mode which fulfills hard real time requirement, while the specifications are

Moore machine models extended with Boolean signals. In each cycle, a controller runs

successively: reading the inputs, executing the programs and updating the outputs.

A test execution unit consists of three phases, each one containing a few steps [100]:
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1. Before testing the transition of interest:

• bring the specification model and the IUT to a certain state by inputting a

signal sequence (synchronizing or homing sequences)

2. Testing the transition of interest:

• apply the testing input signals to both the specification and the IUT

3. After testing:

• if needed, apply a distinguishing sequence to both the specification and the

IUT

• observe the emitted output signals by the specification model and the IUT

• compare the results and continue to the next unit of the test sequence

A simple example presented in Fig. 7 is used to illustrate a test unit of black-box testing

for a Moore machine model specification implemented on a programmable controller.

Here, the transition of interest is supposed to be the transition from l4 to l5, which

corresponds to the second phase. From the initial location l1, there are two paths to

reach l5, i.e., by applying three guards g12, g23, g34 or one guard g14, which corresponds

to the first phase. It is worth noting that applying the guard g14 is a more economic

choice. After testing, the active location should be l5, which however does not have

an observable output. Considering the fact that there is no observable output in l3
either, the location after testing cannot be directly identified. Therefore, the guard g56

is then applied, and if the output o6 is observed, then it can be confirmed that the

active location in one step before was l5. These operations correspond to the third

phase.

In summary, the second phase is considered as the real effective test, while the first

and third phases constitute the testing overhead. Reducing the testing overhead and

enhancing the effectiveness of testing is the aim of the DTT approach presented in this

thesis, and it will be discussed in detail in chapter 5.
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o1

l1
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∅

l3

o4

l4

∅

l5

o6

l6

g12 g23

g34

g45g56

g61 g14
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Figure 7: A simple specification example

4.2.3 Test generation of complete conformance testing

The focus of this thesis lies in the first step of testing process: construction of a test

sequence. As introduced in chapter 3, complete conformance testing (CCT) is a type

of black-box testing which tests the behavior of an IUT for all combinations of input

signals from all the states with regard to its specification models. Fig. 8 presents the

test generation process of complete conformance testing, which has been presented

in [22].

Firstly, all individual specification models are composed to obtain an SCA; then, an

equivalent Mealy machine model is built from the SCA by explicitly representing all

Boolean conditions of evolutions by a set of minterms5 over the Boolean input set;

the last task is to construct a test sequence which passes through different states and

evolutions. A test case, as a single unit of the test sequence, is built up by a pair of

input and output.

The length of a test sequence, as its core matter, is determined by two factors: the

5A minterm is a basic element of an explicitly presented guard, e.g. if ge(I,l) = a ∧ ¬b and IS = {a,b, c},
the corresponding minterms are a ∧ ¬b ∧ c and a ∧ ¬b ∧ ¬c.
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Individual spec-
ification models

SCA

Explicit Mealy
machine model

Test sequence

Figure 8: Process of complete conformance testing

number of test cases, and the ordering and repetition of test cases.

The first factor can be an issue in testing large scale systems. When the number of

inputs of an system under test (SUT) grows linearly, the sizes of SCA and Mealy

machine model grows exponentially, and therefore the number of test cases also grow

exponentially, which results in the well-known state space explosion issue. This issue is

what the plant feature (PF) approach presented in this thesis deals with, and will be

discussed in detail in chapter 6.

The second factor comes into being because in practice, a state can have several

outgoing evolutions, and some states have more evolutions to be tested than others.

Therefore, in a test sequence, some transition arcs need to be traversed several times.

This is an instance of the Chinese Postman problem [101], and can be formulated as

‘Find a minimum length closed path that visits each edge in the graph at least once’. This

chapter uses the solution presented in [22].
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5.1 Introduction

This chapter presents a design-to-test (DTT) approach for black-box conformance testing

of programmable controllers, where the specifications and implementations can be

modeled as finite state machines (FSMs). The DTT approach analyzes the specification

models and automatically modifies them with limited design and testing overhead,

in order to improve the testability of their physical implementations. This approach

also guarantees, by design, that the behavior of an implementation remains unchanged

during its normal execution (i.e., when not connected to a test bench). Based on

the proposed methods, a design-to-test MATLAB tool box (DTT-MAT) has been

developed.

5.2 Core idea

Fig. 9 presents two V-models of system development. In a traditional engineering

process (Fig. 9, left V-model), testing is executed mainly based on expert knowledge

and usually not considered until the design phase is finished, or focuses on function

unit test [102].

In contrast, the DTT approach proposed in this thesis takes testing performance of

programmable controllers into consideration already during the design phase of speci-

fication models (Fig. 9, right V-model), and considers the whole system behavior rather

than unit level. Before testing, the DTT approach automatically checks and modifies

the initial specification models with limited overhead so that the final implementation
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will be better testable, while keeping the nominal behavior unchanged during normal

execution.

Figure 9: V-models of the system engineering process: classic and with the DTT
approach

The modification of specification is inspired from code instrumentation techniques

which are widely used in development and testing of software products [103], also

introduced into embedded systems [104] [105]. However, no matter whether they

use source code or byte code, whether in a static or dynamic way, these instrumen-

tation methods all directly manipulate the specifications on the code level, while the

proposed DTT approach modifies the specifications on the model level. Executable

code is generated automatically from specification models afterwards. Thus, the DTT

approach can be applied complementarily without issues to other methods required

for certification, such as code inspection and model checking.

In brief, the DTT approach improves the testability, reduces the testing overhead

with limited design overhead, while keeping the nominal behavior unchanged during

normal execution. It is worth noting that during normal execution, the testing overhead

code is deactivated, but it is not a dead code. Since this approach requires the

specification (models), it is more suitable for internal testing rather than external

testing.

The concept of the DTT approach was initially proposed in [106]. Then, a software

toolbox based on this approach was developed and published in [107]. Due to the

benefits of DTT, and especially the capability of achieving complete testing, this

approach has been applied to critical systems in particular [108].

44



5.3 Testing issues & DTT methods

5.3 Testing issues & DTT methods

5.3.1 Black-box conformance testing on programmable controllers

As presented in chapter 4, in complete conformance testing, a test unit for a transition

consists of three phases [100], which are briefly reminded as follows:

1. Before testing: activate a certain state in the implemented controller by inputting

a signal sequence (synchronizing/homing sequences)

2. During testing: apply the set of input signals to the controller

3. After testing: compare the observed output signals to the expected outputs; if

the output are not directly observable, apply a distinguishing sequence to the

controller

During the three testing phases, several issues may occur, namely observability, control-

lability and single-input-change (SIC)-testability issues.

The main objective of the DTT approach is to slightly modify the specification models in

order to automatically solve the three testing issues mentioned above. Fig. 10 presents

the test generation process modified with DTT approach. Detailed explanations are

given in following parts in this chapter.

Fig. 11 presents a schematic visualization of a specification model with testing issues,

and the modified model by DTT approach. The initial model is depicted in black. Blue,

purple and green drawings and texts correspond to the modifications, namely added

T-guards, O-actions and C-guards.1

1This coloration will also be used in the model examples in the rest of this chapter.
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Figure 10: Process of complete conformance testing modified with the DTT approach

5.3.2 SIC-Testability & T-guard method

The concept of SIC test originates from testing of electronic circuits, because such tests

are sensitive to address decoder faults, consume less power and can reach higher fault

coverage than multiple-input-change (MIC) tests [109].

When testing a programmable controller, in the second testing phase, i.e., during a test

step of a transition of interest, a set of input signals are read by the implementation

under test (IUT). Because of cyclic input scanning, when several input signals change

their values at the same time, the input values read by the IUT might deviate from the

values supposed to be [11].

Fig. 12 presents the physical causes for this issue:

1. two events, i.e., changes of different physical signals, cannot happen exactly at

the same time

2. according to the cyclic execution, a programmable controller reads the values of

input signals only in the first phase during a cycle. If an input changes its value
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Figure 11: Basic idea of the DTT approach: adding T-guards, O-actions and C-guards
to modify the initial specification model, so that the model will fulfill the
SIC-testability, observability and controllability requirements

after this phase, the new value will be read in the next cycle

The example given in Fig. 13 will be used to help illustrate SIC-testability issue and

the proposed T-guard method in DTT approach. Since the example contains only one

individual model, S and E are equal to L and ∆.

In the initial model, in order to test the transition from location l2 to l3, two input

signals, i.e., a and b, are supposed to change their values synchronously from ‘0’ to ‘1’.

This is therefore a MIC test step.

However, if a changes its value just before the input reading phase and b changes just

after it (or b before a), the transition from l2 to l5 (or the transition from l2 to l4) will be
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Figure 12: Physical causes of SIC-testability issue in programmable controllers

taken. Consequently, a transition that is executed in reality could be different from the

one that should be tested.

Experiments have proven that the occurrence of this error can not be neglected,

especially for large scale systems containing several I/O cards [110].

The proposed T-guard method solves this issue by transforming MICs into SICs with

added T-guards (denoted as ‘Tg’ and depicted in blue in Fig. 13). The status changes

of signals and locations after adding T-guards are presented in Fig. 14.

Before a MIC happens, the input signal Tg is set to the value ‘0’, so all outgoing

transitions from the current location, i.e., l2, are frozen from being fired. After the

MICs are stabilized, i.e., a and b have changed and stabilized their values, Tg is set to

the value ‘1’ again. In this way, only the correct outgoing transition will be fired. Now,

the system can be completely tested without errors caused by asynchronism among

input signals.

For a more complex system, Alg. 1 depicts the method used to achieve a full SIC-

testability by adding a minimum set of T-guards to some transitions in the models.
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l1 l2 l3

l4 l5

¬a ∧ ¬b a ∧ b∧Tg

¬a ∧ b∧Tg a ∧ ¬b∧Tg

Figure 13: A simple Moore machine model updated with T-guards

Figure 14: Status changes of signals and locations after adding T-guards

The example given in Fig. 13 will be used again to help illustrate the algorithm.

The inputs of the algorithm are L, ∆, Gδ and I, which are respectively the union of the

sets of locations, the full set of the transition functions, the full set of the transition

guards, and the full set of inputs of Moore machine models.

In Alg. 1, first GE−NSIC, a subset of evolution guards in the composed model that are

non-SIC-testable, is obtained by running the program Teloco [22]. Non-SIC-testable

guards represent the input combinations that are not accessible by sole single input

changes in existing evolutions. In the example in Fig. 13, GE−NSIC contains one guard,

i.e., a ∧ b in the evolution from l2 to l3.

Then, all the inputs that are involved in the non-SIC-testable evolution guards are
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Algorithm 1: Pseudo-code of the T-guard method
Input: L,∆, Gδ, I
Result: GSIC

1 Initialization: INSIC :=∅; Ttarget :=∅;
2 LT :=∅; GSIC := Gδ;
3 begin
4 GE−NSIC := Teloco(L,∆, I);
5 foreach gE−NSIC ∈ GE−NSIC and i ∈ I do
6 INSIC += {i | i ∧ gE−NSIC = gE−NSIC};
7 INSIC += {¬i | ¬i ∧ gE−NSIC = gE−NSIC};

/* check if i or ¬i is an element in gE−NSIC */

8 foreach i ∈ INSIC do
9 i := False;

/* set their initial values to False */

10 foreach j ∈ INSIC do
11 j := True;
12 if

∨
GE−NSIC

gE−NSIC , False then

13 Ttarget += {j};
14 j := False;

/* this means j is an essential element in Ttarget, a minimum set of

INSIC, so that all guards of GE−NSIC will be protected by

T-guards */

15 foreach gδ ∈ Gδ and l × gδ→ l′ do
16 foreach k ∈ Ttarget do
17 if k ∧ gδ = gδ then
18 LT += {l};

/* find all locations that have at least one outgoing

transition that involves at least one input in Ttarget */

19 foreach lT ∈ LT do
20 foreach gδ ∈ Gδ and l × gδ→ l′ do
21 if l = lT then
22 GSIC −= {gδ};
23 gδ := gδ ∧ Tg;

/* add a T-guard to all outgoing transitions from lT */

24 GSIC += {gδ};
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identified (lines 5 to 7). The purpose of lines 8 to 14 is to obtain Ttarget, a minimum set

of inputs, so that as long as these inputs are protected by T-guards, all the previous

non-SIC-testable guards are SIC-testable. In the example, Ttarget could be {a} or {b}.

If a location has any outgoing transition that contains a non-SIC-testable guard, all

outgoing transition guards from this location should be protected by T-guards (lines

15 to 24). In the example, all the transitions outgoing from l2 will be protected by

T-guards.

The result of this algorithm is GSIC, an updated set of the transition guards. All the

previous non-SIC-testable parts of the states are now protected by T-guards, so any

outgoing evolution that requires a multiple-input-change test step can be temporary

frozen by the T-guards, i.e., by setting the value of the input signal Tg to the value ‘0’.

Therefore, the system can be completely tested without errors caused by asynchronism

among input signals.

5.3.3 Observability & O-action method

In order to realize the third testing phase, i.e., the identification of the current state of

the IUT, two methods have been considered:

1. directly observing its output

2. applying a distinguishing sequence

The first method requires a strong hypothesis: Every state must have a unique observ-

able output action. However, this is not always the case in real systems. The second

method is more generally applicable. However, it is still not always possible to find

such sequences, and if they exist, they might be of exponential length to the number

of states [100]. This will obviously generate a huge testing overhead for large scale

systems. This is what is referred to as the observability issue.

Fig. 15 presents an example of the observability issue as well as a solution by O-action

method. Since the example contains only one individual model, S is equal to L.
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Initially, four locations have the same output oi, so that they suffer from observability

issue. After adding two O-actions and setting their values to True/False correspondingly,

the locations are now directly distinguishable from each other.

oi ∧oa1 ∧
oa2

l1

oi ∧¬oa1 ∧
oa2

l2

oi ∧¬oa1 ∧
¬oa2

l3

oi ∧oa1 ∧
¬oa2

l4
Figure 15: A simple Moore machine example updated with O-actions

For a more complicated system, Alg. 2 depicts the method to achieve full observability

by adding a minimum number of O-actions into some locations.

In Alg. 2, S, L,Λ,Λs are defined in the same way as in Sec. 4 and Alg. 1, while #model

means the number of individual models. For example, in Fig. 15, #model is equal to 1.

First of all, output actions of all the states are examined (lines 3 to 4). If at least one

pair of states share the same actions, the individual locations inside the states will be

further analyzed (lines 5 to 6). If two different locations in the same individual model

have the same action, then they are identified as the cause of non-observability of those

states. These locations will be collected in LNObs (line 7). In Fig. 15, LNObs contains all

four locations since they all have the same action oi.

Since each O-action can be set to the value ‘0’ and ‘1’, a list of n O-actions can be used

to represent 2n different outputs. Thus, a minimum set of O-actions can be obtained by

calculating the logarithm of the size of LNObs with the base of 2 (for Boolean signals)

(line 8)2. In Fig. 15, two O-actions are the minimum required to distinguish four

locations.

A unique O-action combination will be assigned to each location from LNObs (lines 9

2The final result is an integer after using celling function.
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Algorithm 2: Pseudo-code of the O-action method
Input: S, L,Λ,Λs,#model
Result: ΛObs

1 Initialization: LNObs :=∅; ΛObs := Λ;
2 begin
3 foreach (si, sj) ∈ S2, si , sj do
4 if λs(si) = λs(sj) then
5 for n = 1 : #model do
6 if λn(li) = λn(lj), li ∈ si, lj ∈ sj then
7 LNObs += {li, lj};

8 #OA := dlog2
(
|LNObs|

)
e /* the number of necessary O-actions */

9 OA :=
[
oa1,oa2, · · · ,oa#OA

]
∈O#OA ;

/* oa is a single O-action, OA is a list of oa */

10 foreach l ∈ LNObs do
11 ΛObs −= {λ(l)};
12 λ(l) := λ(l) ∧minterm(OA);

/* minterm(OA) returns a unique combination of OA elements */

13 ΛObs += {λ(l)};

to 13). As a result, the previous non-observable states will become fully observable in

one step.

5.3.4 Controllability & C-guard method

Similar to the third phase, during the first testing phase the specification and the IUT

should be brought to a specific state. The controllability issue concerns whether and

how fast the IUT can be brought from an arbitrary state to another desired state. This

issue can be solved by applying a homing or a synchronizing sequence. For complex

systems, this process can also require long sequences and thereby generate high testing

overheads. This is what is referred to as the controllability issue.

The goal of the proposed C-guard method is to limit/reduce the controllability issue,

i.e., to shorten the distance between locations during testing. It is realized by adding a

set of C-guard transitions to the models.

Also, in some models, some states may not be reachable from some other states. In the
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example in Fig. 16 (since the example contains only one individual model, S is equal to

L), once δ02 and δ24 have been taken, l0 and l1 cannot be reached anymore, so δ01 and

δ13 cannot be tested without restarting the system. Thanks to the added C-guard to the

initial location, all transitions can be completely tested with less manual intervention,

and therefore, more automatically and conveniently.

Figure 16: C-guard in testing transitions between unreachable locations

In the following part, Alg. 3 presents the algorithm of the proposed C-guard method,

while one function, EvoCalc, is presented in Alg. 4.

The example given in Fig. 17 will be used to help illustrate the controllability issue and

the C-guard method. Since the example contains only one individual model, S is equal

to L.

l1 l2 l3

l4 l5l6

g12 ctr1

g24∧¬ctr1 g25∧¬ctr1

g45

g56

g61

Figure 17: A simple Moore machine example updated with C-guards

In Alg. 3, PathS is defined as a path cost matrix for all pairs of states. During

initialization (lines 3 to 9), if there is a direct evolution from one state to another, the

path cost for the pair of states will be set to 1, if not, then to ∞. The Floyd-Warshall
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algorithm is then applied to calculate indirect path costs between all pairs of states

(line 10). For example, PathS for the system in Fig. 17 is displayed in Tab. 2. Values

in black and green correspond to the path costs for the initial model and the model

updated with C-guards, respectively.

Table 2: Path cost matrix for the system in Fig. 17

To

From
l1 l2 l3 l4 l5 l6

l1 0 ∞/4 3 3 2 1

l2 1 0 4 4 3 2

l3 ∞/2 ∞/1 0 ∞/5 ∞/4 ∞/3

l4 ∞/3 ∞/2 1 0 ∞/5 ∞/4

l5 ∞/3 ∞/2 1 1 0 ∞/4

l6 ∞/4 ∞/3 2 2 1 0

After that, the maximum of PathS will be compared to LimitCtr, i.e., the desired path

cost limit. If the maximum of path cost exceeds this limit, a set of new evolutions, ECtr,

will be built (lines 11 to 13). Based on the result of ECtr, a minimum set of transitions

with associated C-guards, ∆Ctr, for individual models will be calculated (lines 14 to

19). In the example in Fig. 17, if the path cost from s2 to s3 exceeds LimitCtr, as a result

of C-guard method, a new transition from s2 to s3 will be built with the guard ctr1.

It should be noted that for stability reason the negation of the C-guards will be added

to the guards of outgoing transitions from the destination state of the newly added

C-guard (lines 20 to 27). In the example in Fig. 17, the guards on all the outgoing

transitions from l3 will be added with ¬ctr1.

Alg. 4 presents the function EvoCalc (Alg. 3, line 12) in detail, which is called when

the maximum value of PathS exceeds LimitCtr (Alg. 3, line 11).

Elements of PathS, i.e., PathS(si, sj), are summed in rows and columns (lines 5 and 6).

The maximum sums of path costs in rows and columns, i.e., maxsum−r and maxsum−c,

are obtained through iterative comparison (lines 7 to 10).

If maxsum−r is larger than maxsum−c, it means that there is a most critical destination

state, i.e., smax−i, which takes the largest path cost to be reached from other states. A
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Algorithm 3: Pseudo-code of the C-guard method
Input: S, E,∆, Gδ, LimitCtr,#model
Result: ∆Ctr, GCtr

1 Initialization: ECtr :=∅; ∆Ctr := ∆; GCtr := Gδ;
2 begin
3 foreach (si, sj) ∈ S2 do
4 if si = sj then
5 PathS(si, sj) := 0;
6 else if ∃(si × ge→ sj) ∈ δL then
7 PathS(si, sj) := 1;
8 else
9 PathS(si, sj) := ∞;

10 PathS := Floyd-Warshall(PathS);
11 while max(PathS) > LimitCtr do
12

(
PathS, enew

)
:= EvoCalc(PathS);

/* EvoCalc is presented in Alg. 4 */

13 ECtr += {enew};
14 foreach (ssrc × ge→ sdes) ∈ ECtr do
15 for n = 1 : #model do
16 if @(lsrc × gδ→ ldes) ∈ ∆ and lsrc ∈ ssrc, ldes ∈ sdes then
17 ∆Ctr += {(lsrc × gδ,Ctr→ ldes)};

/* the expression of gδ,Ctr is assigned in line 21 */

18 #Ctr := |∆Ctr|;
/* the number of C-guards */

19 C :=
{

ctr1, ctr2, · · · , ctr#Ctr

}
;

/* a set of C-guards */

20 foreach δCtr ∈ ∆Ctr do
21 gδ,Ctr := C(i);

/* i is the index of δCtr in ∆Ctr */

22 ∃!lsrc × gδ,Ctr→ ldes;
23 foreach gδ ∈ G∆ do
24 if ∃l′des | ldes × gδ→ l′des then
25 GCtr −= {gδ};
26 gδ := gδ ∧ ¬C(i);
27 GCtr += {gδ};

56



5.3 Testing issues & DTT methods

Algorithm 4: Pseudo-code of EvoCalc
Data: PathS
Result: PathL−new, enew

1 Initialization: maxsum−r := 0; maxsum−c := 0;
2 minsum := ∞;
3 begin
4 foreach (si, sj) ∈ S2 do
5 Dsum−si := ∑sj

PathS(si, sj);
/* Sum of path costs between states in row */

6 Dsum−sj := ∑si
PathS(si, sj);

/* Sum of path costs between states in column */

7 if Dsum−si > maxsum−r then
8 maxsum−r := Dsum−si ; smax−i := si;

9 if Dsum−sj > maxsum−c then
10 maxsum−c := Dsum−sj ; smax−j := sj;

11 if maxsum−r > maxsum−c then
12 foreach (si, sj) ∈ L2, si , smax−i do
13 Pathsum := ∑sj

PathS(si, sj);
14 if Pathsum < minsum then
15 minsum := Pathsum; smin−i := si;

16 enew := e(smin−i, smax−i);
17 else
18 foreach (si, sj) ∈ L2, sj , smax−j do
19 Pathsum := ∑si

PathS(si, sj);
20 if Pathsum < minsum then
21 minsum := Pathsum; smin−j := sj;

22 enew := e(smax−j, smin−j);

23 PathL−new := Floyd-Warshall(PathS, enew);
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new evolution will then be built to this state from a state that takes the least cost to be

reached by other states, i.e., smin−i (lines 11 to 16).

If maxsum−c is larger than maxsum−r, it means that there is a most critical source state, i.e.,

smax−j, which takes the largest path cost to reach other states. A new evolution will

then be built from this state to a state that takes the least cost to reach other states, i.e.,

smin−j (lines 17 to 22).

After adding a new evolution, indirect path costs between all pairs of states might also

be shortened, which will again be calculated with the Floyd-Warshall algorithm (line

23).

5.4 Design, testing & normal execution

In brief, applying the DTT approach in the design phase, the specification models will

be checked if they encounter any of the SIC-testability, observability, and controllability

issues. If yes, the models will be modified by adding T-guards, O-actions and C-guards

to the proper transitions, outputs, and pairs of states.

5.4.1 Test cost through design

Adding additional guards and actions means requiring additional input and output

ports of programmable controllers for testing.

Considering the fact that the hardware of programmable controllers usually has limited

number of input and output ports, e.g., a common off-the-shelf input/output module

has 8 or 16 ports, the additional ‘port-cost’ of the DTT approach should also be

evaluated/estimated.

The T-guard method will always generate only one additional guard, and therefore

the port-cost is always only 1, independent from the size and complexity of a system

under test.

58



5.4 Design, testing & normal execution

The number of added O-actions is the logarithm with the base of 2 to the number of

stable states that can not be directly distinguished3. Using the synchronous composi-

tion, the total number of stable states is polynomial to the size of the system models,

i.e., the number of inputs and locations. In the worst case, i.e., when all stable states are

not directly distinguishable, the theoretical upper bound of the number of O-actions

would be polylogarithmic to the system size. Of course, in a meaningful practical

system, the result is much lower than the upper bound. Applications on case studies

are presented in section 5.6.

The number of C-guards is influenced by two factors: the structure of stabilized

composed automaton, and the required controlability by users. In the worst case, all

locations need to be directly connected, which can be understood as a mathematical

combination problem, i.e., choose two from all locations in each model. Similar to

the O-actions, in practice, the number of necessary C-guards is much lower than

the theoretical upper bound. Applications on case studies are also presented in

section 5.6.

5.4.2 Influence of added guards and actions on state-space

T-guards, O-actions, and C-guards are added to the specification models after the

composition. They are only used as support to a better realization of complete testing,

but they are never involved in the system functionality.

Therefore, in the test generation which reaches a full coverage of transition/evolution

conditions from all states, T-guards, O-actions, and C-guards are not considered. As

a result, the added guards and actions do not change the system state-space of test

generation.

5.4.3 Settings of added guards and actions in testing

During the testing phase, T-guards can be set to the value ‘0’ accordingly so that

original MIC test steps can be handled as SIC test steps.

3In practice, the chosen value is the celling of the calculated logarithm.
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O-actions can be assigned values in accordance with the O-action method results so

that all locations will be directly distinguishable.

C-guards can be accordingly set to the value ‘1’ to enable the control of evolutions.

5.4.4 Settings of added guards and actions in normal execution

Once testing is completed, i.e., before running the IUT in its normal mode, the input

signal Tg will be connected to the logic 1 level (3.3V, 5V or 24V depending on the

implementation architectures) so that it will not affect the original transition guards

(g ∧ 1 = g).

Similar to T-guards, the input signals ctri will be connected to the logic 0 level (0V or

below 1V for most of the architectures) so that they will never enable the firing of these

transitions (g ∧ 0 = 0).

O-actions are only observable output signals which are not used in the transition

conditions. They do not affect the internal system behavior throughout testing and

normal executions.

In summary, the DTT approach does not change the nominal behavior of IUT with

regard to their specifications during normal execution.

5.5 DTT-MAT: MATLAB Toolbox for the DTT approach

A toolbox DTT-MAT has been developed to realize the proposed DTT approach. It is

available from the homepage of my research group: www.ses.mw.tum.de.

5.5.1 Workflow of DTT-MAT

The workflow of DTT-MAT is briefly depicted in Fig. 18.
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To use DTT-MAT, the user should firstly model the system in MATLAB Stateflow.

Usually, a complex system is split into several individual models for reasons of

simplicity.

System models in Stateflow

Modified Stateflow models

T-guard method

O-action method

C-guard method

Using DTT-MAT

Composition
Using Teloco

Figure 18: Workflow of DTT-MAT

Stateflow models are first transformed into Moore machines, which will next be read

by Teloco [22]. Then, all the individual models will be composed with Teloco, and

SIC-testability results will also be generated.

The Stateflow models and the composed model from Teloco will then be analyzed by

the proposed DTT methods implemented in MATLAB. The three DTT methods can be

executed one after another, which is recommended when modifying a new system; but

is also possible to run them separately, e.g. to compare the impact of different values

of LimitCtr on the system structure.

Based on the results from the DTT methods, the Stateflow models will be automatically

updated with T-guards, O-actions and C-guards, in order to fulfill the observability,

controllability and SIC-testability requirements.
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Additionally, automatic code generation has been implemented for programmable

logical controller (PLC), using IEC 61131-3 Structured Text format.

5.5.2 Limitations for applicable Stateflow models

MATLAB Stateflow offers rich possibilities to build models. For example, signals

and events are both accepted as inputs, actions can be linked to states, transitions or

transition conditions [111].

However, only Moore machine models can be handled with the current version of

Teloco. Besides, only Boolean signals are accepted as valid inputs for the current

version of DTT-MAT. Detailed instructions as well as some examples are available

together with the toolbox.

5.6 Case Studies

In this chapter, two case studies are presented to illustrate the DTT approach and the

DTT-MAT toolbox: the first one is a critical application while the second one is a larger

scale system. For more information upon the application of the DTT approach, [108]

provides two other case studies on industrial applications.

5.6.1 A cooling water system

The first case study is a cooling-water system for a gas turbine slightly adapted

from [112].

System Description

As shown in Fig. 19, the cooling-water system is made up of three pumps (P1, P2 and

P3), two fuel gas control valves (V1 and V2), a compressor, a combustion chamber, and
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a turbine.

P1

compressor turbine

fuel

V2 V1

P2

Combustion
chamber

P3

Figure 19: Case study: a cooling-water system

Fuel is injected into the combustion chamber, mixed with air and burned at a high

temperature. The flow of fuel is controlled by V1 and V2. The combustion produces a

high temperature and high pressure gas steam that expands through the turbine and

spins the blades. The more fuel is injected, the more power will be generated by the

turbine blades, and the higher the temperature in the chamber will be.

The cooling-water is pumped through the three pumps to cool down the lubrication

oil that lubricates the blades and shaft in the combustion chamber. Similar to the

principle of fuel flow, the more cooling-water is pumped, the better cooling effect will

be achieved. Among the pumps, P1 is operated under normal conditions, while P2

is a standby pump and P3 is an emergency pump used when emergency action is

needed.

The system contains in total 7 inputs and 11 outputs, as listed in Tab. 3.
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Table 3: Inputs & outputs of the cooling-water system

Input Description

Sys_on activated when the System is turned on

V1_stuck activated when the valve-1 is stuck (not visible from outside)

Mnt_req activated when the request of a maintenance is sent

Mnt_done activated when a maintenance is done

T1_above activated when the temperature is above T1

T2_above activated when the temperature is above T2

T3_above activated when the temperature is above T3

Output Description

V1_close close the valve-1

V1_openC open the valve-1 with control

V1_openS open the valve-1 without control (stuck)

V2_close close the valve-2

V2_openF open the valve-2 fully

V2_openC open the valve-2 with control

Pi_o f f turn off the pump-i (i ∈ {1,2,3})
Pi_onC turn on the pump-i with control (i ∈ {1,2,3})
Pi_onF turn on the pump-i fully (i ∈ {1,2,3})
Sys_ f ail the system fails

Sys_mnt the system maintenance takes place

Modeling of system

The cooling-water system can be modeled with 9 individual Moore machines. The

models for V2 and System Status are selected as illustrative examples for this section

(Fig. 20). Again, the initial models are depicted in black. Blue, green and purple

drawings and text correspond to the elements added by DTT approach.

When the system is idle, the pumps are off and valves are closed, i.e., the models are

in close or o f f states.

When the system is turned on, V1 is opened with control while V2, as an emergency

valve, is kept fully open (state V2_openF). The cooling-water is circulated by P1 to take

the excess heat away from the combustion. Under normal conditions, P1 works alone
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T1_above ∧
¬T2_above∧
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System Status

Figure 20: Specification model of V2 and System Status
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to regulate the temperature in the combustion chamber.

In this application, the fuel control valve V1 may get stuck open, meaning that much

more fuel than required can be sent to the combustion chamber. This error causes the

generation of excessive heat in the combustion process. When the chamber temperature

exceeds a certain limit T1, P2 is turned on with control to bring the temperature to

normal while P1 is kept working at full speed.

If P2 reaches its capacity limit and the temperature continues to rise and surpasses a

higher limit T2, emergency pump P3 is turned on with control to further help cool

down the chamber. Meanwhile the emergency valve V2 will be used to control the fuel

flow (state V2_openC). P2, P3 and V2 will finish their operations i.e., return to initial

states only when the temperature is cooled down below T1.

During the time the temperature is rising, if both pumps are not turned on within a

certain time, the system may fail (state Sys_ f ail) when a certain temperature limit T3

is surpassed.

It is assumed that once a valve gets stuck, it cannot work at high performance until

being restored or replaced. Therefore in both cases, whether the system fails or recovers

from an error i.e., the temperature returns below T1, a maintenance request will be

raised. The system can be restarted after maintenance (state Sys_mnt).

Qualitative analysis

In this case study, several subsystems can be executed concurrently. Thus, multiple

signals may change simultaneously, which may lead to SIC-testability issues.

By observing the individual models, it can be readily found that some states have

the same output actions. For example, some states in the model System Status do not

have an observable action. This implies that after composition there might be some

locations that have same actions, leading to an observability issue.

This system is neither of large scale nor of complex structure, so controllability might

not be problematic. However, the controllability performance can always be improved
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according to user requirements.

Applying the DTT approach

The stabilized composed automaton (SCA) of this system contains 35 stable states and

323 evolutions.

Analyzed by the DTT approach, 34 out of the 35 states are not fully SIC-testable. To

solve this issue, 9 T-guards are added to the specification models. In Fig. 20, the added

T-guards are drawn in blue.

In the SCA, 9 states share the same output actions with other states. Analysis done

with the DTT approach shows that the observability issue was caused by 3 locations in

the individual models. After adding 2 O-actions (drawn in purple in Fig. 20), all states

are directly distinguishable.

Finally, according to the C-guard method results, the initial controllability of this

system is 5. Although this seems not a very bad value for controllability, the DTT

approach can help to reach a better performance. After adding 1, 8 and 19 C-guards,

the controllability is improved to 4, 3 or 2 steps, respectively. The one C-guard (for the

controllability of 4 steps) is drawn in green in Fig. 20.

Influences on executable code generation

The automatically generated PLC structured text (ST) code from the initial models of

the case study contains 177 lines. Adding the 9 T-guards only increases the code length

by 1 line: declaration of the Tg variable. In addition, 9 lines of code are modified by

adding ‘AND Tg’ to existing guards. An example of ST code for T-guard assignment

is given as follows:

• tS11 := X(s1_1) AND V1_stuck AND Tg ;

Adding the two O-actions increases the code length by 4 lines: 2 lines to declare

outputs variables and 2 lines to assign the conditions when the O-actions are activated.
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An example of ST code for O-action assignment is given as follows:

• oa1 := X(s1_2) OR X(s1_1);

Adding 1 C-guard increases the code length by 2 lines: 1 line to declare the added

input variable, and 1 line to add the new transition with ‘ctr1’. In addition, another line

is modified by adding ‘AND NOT ctr1’. An example of ST code for a new transition

with C-guard is given as follows:

• tV21 := X(v2_3) AND ctr1;

Thus, concerning the design overhead added by the DTT methods, it can be positively

concluded that the length of added/modified code is linear to the number of inserted

O-actions, C-guards, and T-guards.

5.6.2 A manufacturing cell

The second case study is a manufacturing cell adapted from [15].

Description of system

As presented in Fig. 21, this system contains nine machines: four robots, two fixtures,

two turntables and a conveyor.

This cell does welding tasks in three phases. At the beginning, Conveyor-1 delivers a

car body into the cell. Robot-1 begins to weld the parts, which are loaded by previous

systems. This is the first weld job (J1). Meanwhile, Robot-2 picks plates from Turntable-1

and places them in Fixture-1. Turntable-1 turns when two plates have been taken. In the

second job (J2), Robot-1 and Robot-2 work together to weld the plates held by fixture

to the car body. After they finish J2, Fixture-1 moves away from its workstation, to

enable Robot-1 and Robot-2 weld the parts which were blocked by Fixture-1. This is the

third Job. On the opposite side, the same work will be executed by Robot-3, Robot-4,

Turntable-2 and Fixture-2. As soon as the weld jobs are completed, the robots also move
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Robot-4

Robot-1

Robot-2

Robot-3

Conveyor-1

Fixture-1

Fixture-2

Gripper

Weld gun

Turntable-2

Turntable-1

Figure 21: Case study: a welding and material handling cell

away from their workstation. Conveyor-1 delivers then the car body out of the cell.

Afterwards, the robots and fixtures move back to their workstations, making the cell

ready for next round.

Modeling of system

To synchronize the different subsystems, a few coordinators have been set up to control

the correct operation of all individual machines and robots. The complete system can

thus be modeled with 12 individual Stateflow models with 34 Boolean inputs and 33

Boolean outputs. A selection of inputs and outputs for Robot-2 is given in Tab. 4.

The model for Robot-2 and Turntable-1 are selected as illustrative examples and pre-

sented in Fig. 22. Again, the initial models are depicted in black; blue, green and purple

drawings and text correspond to the guards/outputs added by the DTT approach.
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∅

r2_1

Pick_place_R2 r2_2

G2W_R2 r2_3∅ r2_12

∅ r2_4W2G_R2 r2_11

Weld_J2_R2 r2_5Move_back_R2 r2_10

∅ r2_6∅ r2_9

Weld_J3_R2 r2_7Move_away_R2

r2_8

X(C1_3) ∧¬ctr1

Plate_in_F1

G2W_R2_ f inished ∧Tg

X(C1_5)

J2_R2_ f inished ∧Tg

X(C1_6)

J3_R2_ f inished

Away_R2

X(C1_8)

Back_R2

W2G_R2_ f inished

X(C1_9)

ctr1

Robot-2

∅ ∧oa1

t1_1

∅ ∧¬oa1 t1_2

Turn_T1 t1_3

Plate_available_T1 ∧Tg∧¬ctr7

ctr7

X(c1_4)

Hal f turn_T1∧Tg

Turntable-1

Figure 22: A Moore machine model for Robot-2 and Turntable-1
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Table 4: Inputs & outputs for the models Robot-2 and Turntable-1

Input Description

Plate_in_F1 activated when a plate is placed in Fixture-1

G2W_R2_ f inished activated when Robot-2 finishes tool change G2W

W2G_R2_ f inished activated when Robot-2 finishes tool change W2G

J2_R2_ f inished activated when Robot-2 finishes Job2

J3_R2_ f inished activated when Robot-2 finishes Job3

Away_R2 activated when Robot-2 is away from workstation

Back_R2 activated when Robot-2 is back to workstation

Plate_available_T1 activated when a plate is available at Turntable-1

Hal f turn_T1 activated when Turntable-1 finishes the turn by half circle

Output Description

Pick_place_R2 pick the plate and place it in Fixture-1

G2W_R2 change tool from gripper to weld gun

W2G_R2 change tool from weld gun to gripper

Weld_J2_R2 do the Weld-Job2

Weld_J3_R2 do the Weld-Job3

Move_away_R2 move away from workstation

Move_back_R2 move back to workstation

Turn_T1 turn Turntable-1 by half cirlce

Qualitative analysis

When observing the individual models, it can easily be found that some locations have

the same output actions. For example, the locations t1_1 and t1_2 in model Turntable-1,

and r1_1, r1_4, r1_6, r1_9, and r1_9 in model Robot-2 don’t have any observable action.

This implies that, after composition, it is possible that some states have the same

outputs, which leads to the observability issue.

Since the system contains many subsystems which run in parallel, multiple signals are

likely to change at the same time. Thus, the SIC-testability might be an issue.

With so many subsystems, the SCA can contain a large number of states, and therefore

the distance from some states to other states could be very long, i.e., this system might

suffer from the controllability issue.
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Applying the DTT approach

The SCA of this case study contains 792 stable states and 93,587 evolutions. With the

help of DTT-MAT, quantitative results can be automatically obtained for the testing

issues.

Out of 792 states, 777 of them are not fully SIC-testable. Applying T-guard method, one

feasible solution is found, 12 Boolean inputs out of 34 are involved in non-SIC-testable

transitions guards. After updating the original specification models with 14 T-guards,

the composed machine reaches a full SIC-testability. Two of the T-guards have been

drawn in blue in Fig. 22.

Then, 537 states have the same output action with at least one of the other states. With

traditional methods, a distinguishing sequence may be 537 steps long (in the worst

case). Analysis with the O-action method shows that the observability issue of 537

states was caused by 4 locations in the individual models. After adding two O-actions

( oa1 is drawn in purple in Fig. 22), all states in the SCA are directly distinguishable in

one step.

Finally, according to the C-guard method results, some states are not reachable from

some other states, i.e., the path cost between a pair of those states is infinitely large.

After adding 14 C-guards on individual models (two of them have been drawn in

green in Fig. 22), any state can be reached within maximum 4 steps from any other

state in the composed model. It is worth noting that the number of added C-guards

is calculated with the proposed optimized algorithm according to user requirements.

For example, after adding 12 or 22 C-guards in this case study, users can obtain the

controllability of 5 or 3 steps, respectively.

Result of executable code generation

The automatically generated ST code for PLC from the initial models of the case study

contains 349 lines. After adding 14 T-guards, 2 O-actions, and 14 C-guards, 33 lines

have been added and 28 lines have been modified. The code is generated in the same

way as in the first case study, and thus not explicitly presented here.
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This is another practical evidence that with the DTT approach, the length of added/-

modified PLC ST code is linear to the number of inserted O-actions, C-guards, and

T-guards.

5.7 Summary of the DTT approach

This chapter has presented a design-to-test (DTT) approach for programmable con-

trollers in critical automation systems, which aims at improving the testability and

reducing the testing overheads with limited design overhead.

Firstly, system specifications are modeled as Moore machines extended with Boolean

signals. By running the T-guard, O-action and C-guard methods, the specification

models are modified so that they fulfill the requirements of full SIC-testability, full

observability and better controllability. Two case studies have been used to illustrate

the application.

It is worth underlining that with the proposed DTT approach, during normal execution,

all T-guards and C-guards can be inhibited (by connecting them to the logic 1 and 0

levels, respectively), and all O-actions are only additional output signals that can be

ignored. Thus, none of the added T-guards, C-guards and O-actions affect the nominal

behavior of the system in its normal mode.
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6.1 Introduction

In this chapter, we propose a model-based test generation approach for programmable

controllers that aims at reducing the length of a test sequence by applying plant

features (PFs). The PF approach does not require detailed or full knowledge of the

plant behavior of a system under test (SUT), but it can achieve remarkable reduction

with simple plant features. As a result, the obtained test sequence can be significantly

shorter than ones generated by complete testing methods, and meanwhile it still

reaches full coverage of the nominal behavior of the system under test. This makes

it feasible to test large scale systems, or to serve as an early test in the validation of

safety critical systems. The PF approach is illustrated with two large scale case studies

in this chapter.

6.2 Core idea

Test generation with plant features is a model-based test generation approach that

guarantees full coverage of nominal system behavior with a shortened test sequence.

Additionally, faulty system behavior can also be included upon need. The core idea is

to involve not only specification models but also plant features in the test generation.

In an automation system, physical elements such as sensors and actuators are usually

considered as plants while controllers are implemented according to specifications, i.e.,

formal descriptions of user requirements. Plant features are extracted from simplified

plant models and thus require a limited design effort. As a result, the number of
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generated test cases and the length of a test sequence could be significantly reduced,

and therefore, large-scale systems can be tested efficiently. Compared to coverage-

oriented testing, the obtained set of test cases is not reduced stochastically but is

selected in a way that guarantees full coverage of nominal behavior of a system.

The idea of modeling and using plant features to reduce test cases was proposed in [1],

while the algorithms of applying plant features in test generation, more specifically, in

its late phase, were presented in [2]. Compared to [1] and [2], the main contribution of

this chapter is: applying plant features in very early phase of test generation, so that

the state space throughout the whole computation is also significantly shrunk, and the

length of a final test sequence is further shortened.

6.3 Description of signal relations

Signal relations can be expressed through different formal and informal languages.

In the following parts three methods are used to describe two basic types of signal

relations that are presented in Fig. 23: i1 − i2 and i3 − i4.

cycle
i1
i2
i3
i4

Figure 23: Two basic types of signal relations

Natural language

With natural language, the two types of signal relations can be organized as follows:

• Signal i2 can only be True, when i1 is True, i.e., i1 is premise of i2.
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• Signal i3 and i4 are mutually exclusive, i.e., at the same time, only one of the

signals i3 and i4 can be True.

Temporal logic

Tw popular forms of temporal logic languages, linear temporal logic (LTL) and compu-

tational tree logic (CTL), are applied to depict the signal relations:

• LTL: G(¬i1→¬i2)

CTL: AG(¬i1→¬i2)

• LTL: G¬(i3 ∧ i4)

CTL: AG¬(i3 ∧ i4)

Finite state machine

The modeling language finite state machine (FSM) can also be used to formalize the

signal relations, as introduced in chapter 4 and also presented in Fig. 24.

i1
p1-1

¬i1,¬i2
p1-2¬i1

i1

i3
p2-1

¬i3,¬i4
p2-2

i4
p2-3

i3

¬i3 i4

¬i4

Figure 24: Representation of the premise relation and mutual exclusion of signals with
FSM
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It is worth noting that signals values can be freely assigned if they do not appear in

the initial state, i.e., the output of location p1-1 can either be (i1, i2) or (i1,¬i2).

In fact, the two basic types of signal relations, premise and mutual exclusion, can be

combined to construct complex signal relations when involving several signals.

For example, signals in a system can have such behavior: if a is True and remains True,

and b becomes True, then c can be True; once a becomes False, c turns to False as well.

With CTL the signal relations can be expressed as: AG
(
(¬a→¬c) ∧ (a ∧ b→ AFc)

)
.

The same signal relations can be modeled as FSM, as presented in Fig. 25.

¬a,¬c

p1

b, c

p2

a

p3

¬a

b

a

¬a

Figure 25: A simple example of multiple signal relations

In brief, natural language is well capable to handle small scale systems with a limited

number of signals. For large scale systems, it is recommended to use one of the formal

methods, i.e., temporal logic and/or FSMs.

6.4 Framework of test generation with plant features

As introduced in chapter 4, a model-based testing process for a programmable con-

troller consists of four steps: test generation, feed the input sequence, execute the

program on the controller, observe and compare the output sequence. The focus of this

chapter lies in the first step: construction of a test sequence, which is presented with

more details in Fig. 26.

The yellow blocks in Fig. 26 correspond to a classic process of test generation, i.e.,

complete conformance testing, which has been presented in [22], while the gray, blue,
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Individual
specification models

SCA

Explicit Mealy
machine model

Test sequence

SCA

Explicit Mealy
machine model

Test sequence

Plant features

SCA

Explicit Mealy
machine model

Test sequence

Figure 26: Framework of involving plant features in the test generation.
Yellow blocks: generation of complete testing; Gray block and arrows:
earlier version of test generation with plant features ( [1], [2]); Green blocks
and arrows: current version of test generation with plant features.

and green blocks correspond to the test generation with plant features.

As discussed in chapter 4, the length of a test sequence is determined by two factors:

the number of test cases, and the ordering and repetition of test cases.

Regard to the first factor, in a large scale system, when the number of inputs of an

SUT grows linearly, the sizes of stabilized composed automaton (SCA) and Mealy

machine model grows exponentially, and therefore the number of test cases also grow

exponentially. This fact leads to the well-known state space explosion issue, which was

the motivation of involving plant features in the test generation.

The first version of test generation method with plant features was proposed in [1]

and [2], in which plant features are used after the Mealy machine model has been

generated (see Fig. 26). As a result, the number of test cases is remarkably reduced, and

consequently the length of the generated test sequence is also remarkably shortened.

In the current version, plant features are applied early in the generation of SCA (see

Fig. 26, and the algorithms are presented in the next section). The new and additional

advantages with regard to [1] and [2] are:
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1. Lower memory load for the test generation computer: Not only the length of test

sequence is shortened, but also the sizes of SCA and Mealy machine model are

reduced.

2. Further shortening of the test sequence: In the generation of SCA, some states

appearing in the complete testing might not be reachable due to the interaction

among plant features and specification models. Therefore, the SCA and Mealy

machine model would contain fewer states to be tested.

It is worth mentioning that, this method does not require very detailed or full plant

models, but only fragments of knowledge from plant models. Of course, the more

plant features can be modeled, the greater reduction to the length of the test sequence

can be achieved.

Additionally, this method can also be combined with the idea of fault injection. Users

can insert a set of selected faults into the target behavior of an SUT by modifying plant

models. Examples can be found in [2].

6.5 Test case generation with utilization of plant models

In an automation system, the controller is implemented according to specification,

while the rest elements such as sensors and actuators are considered as plant. As

presented in 27, specification and plant constitute a closed-loop. More specifically,

plant is controlled by specification, directly as for actuators and indirectly as for other

parts; while the reachable space of specification is also influenced by plant on the other

hand.

In this chapter, plant features are sorted into two levels: level 1 - signal relations among

sensors, level 2 - signal relations among sensors and actuators. Following are two

intuitive examples. As for level 1, in a water tank with two level sensors (high and

low), in a nominal situation, when the high level sensor gives the value True, the low

level sensor should also give the value True. As for level 2, on a conveyor belt, only

when the belt is running, sensors at input and output can change their values. In other

words, in a nominal situation, a workpiece cannot move from the input to the output
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unless the belt runs.

Actuators...

...

Physical systems

Sensors

Controller

Plant features
- Level 1

Plant features
- Level 2

Inputs

Outputs

Figure 27: Specification and plant in an automation system

6.5.1 Level 1: Signal relations among sensors

Alg. 5 presents the algorithm to consolidate plant features from plant models of level

1. The plant model given in Fig. 28 is used as a simple example to help illustrate the

algorithm.

¬a,¬b
p1

a, c

p2

a, b,¬c
p3

a

¬a
a ∧ b

¬a

Figure 28: Example: plant model of level 1

LP and ΛP are the inputs of the algorithm, and represent the set of locations and

outputs in a plant model, respectively. It is worth noting that the outputs and transition

guards1 of plant models are constituted by inputs from specification models.

1For the current version, transition guards in plant models level 1 are not used.
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Algorithm 5: Consolidating plant features of level 1, i.e., signal relations among
sensors
Input: LP,ΛP
Output: PF

1 begin
2 λPF := False; /* initialization */

3 foreach lP ∈ LP do
4 λPF,lP := True; /* initialization */

5 foreach λP ∈ ΛP(lP) do
6 λPF,lP := λPF,lP ∧ λP;

/* all the signal constraints in one location of a plant model

need to be fulfilled at the same time, so merge them with ‘AND’

*/

7 λPF := λPF ∨ λPF,lP ;
/* it is accepted as nominal if the signal constraints in any

location of a plant model are fulfilled, so merge them with ‘OR’

*/

8 p f .cond := λPF;
9 p f .scope := GLOBAL;

/* the plant features of level 1 are valid for all the states in the SCA

*/

10 PF := PF ∪ {p f };

PF is the output of the algorithm, and represents the set of consolidated plant features,

which will be used in the generation of SCA. A consolidated plant feature is defined

with two attributes: scope and cond. The former indicates under which condition

will this plant feature be used during the generation of SCA. The latter stores the

formulated signal conditions that the evolution guards in the SCA should fulfill.

Firstly, the outputs of one location build up a basic element of a signal condition (line 3

to 6). For example, in Fig. 28, for location p1, a and b should be both False. This model

contains another input c, the value of which can be either True or False for location p1,

since it is not explicitly specified.

Every location in a plant model represents a part of the plant behavior. The final signal

condition consists of the signal conditions of all the locations (line 7 to 8). In Fig. 28,

it applies that in a nominal behavior, at least one of the following three conditions

should be fulfilled: a and b be both False; a and c be both True; a be True, b be True, and

c be False.
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Since sensor values are not modified by controllers, signal relations on this level are

valid for all states. Therefore, the scope of a plant feature of level 1 is assigned GLOBAL

(line 9).

6.5.2 Level 2: Signal relations among sensors and actuators

The algorithm for consolidating plant features from plant models of level 2 is presented

in Alg. 6. The plant model given in Fig. 29 is used as a simple example to help illustrate

the algorithm.

¬a,¬b
p1

a, b,¬c
p2

a,¬b, c
p3

o1 o1

o2

Figure 29: Example: plant model of level 2

LP, ΛP,∆P and GP,δP are the inputs of the algorithm, and represent the set of locations,

the set of outputs, the set of transitions, and the set of transition guards in a plant

model, respectively. The outputs of plant models are also constituted by inputs from

specification models, same as for level 1. The difference is that, transition guards in

plant models level 2 are built up with outputs from specification models.

PF is the output of the algorithm. It is defined with the attributes scope and cond in the

same way as for level 1.

Similar to level 1, firstly, the outputs of one location build up a basic element of a

signal condition (line 3 to 6). In the example of Fig. 29, for location p1, a and b should

be both False while c can be either True or False.

A pair of location and transition in a plant model build up a candidate of plant feature.

The condition is the consolidated outputs in the location (line 7). The scope is the

transition guard, which is indeed Boolean expressions of outputs from specification

models (line 8). In the generation of SCA later on, only the states whose outputs fulfill

the Boolean expression (valued as True) will apply this plant feature. In Fig. 29, the

first plant feature candidate, i.e., for location p1, has the condition ¬a ∧ ¬b and the
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Algorithm 6: Consolidating plant features of level 2, i.e., signal relations among
sensors and actuators
Input: LP,λP,∆P, GP,δP
Output: PF

1 begin
2 PF_temp := ∅; PF_rm := ∅; /* initialization */

3 foreach δP ∈ ∆P | lP,src × gP,δP → lP,des do
4 λPF,lP := True; /* initialization */

5 foreach λP ∈ ΛP(lP,des) do
6 λPF,lP := λPF,lP ∧ λP;

/* the signal constraints in one location need to be fulfilled at

the same time */

7 p f .cond := λPF,lP ;
8 p f .scope := gP,δP ;

/* the plant features of level 2 are valid only for the states of SCA

which hold the relevant actions */

9 PF_temp := PF_temp ∪ {p f };
10 foreach p f _re f ∈ PF_temp do
11 foreach p f _cpr ∈ PF_temp\PF_rm do
12 if p f _re f .scope = p f _cpr.scope and p f _re f .cond , p f _cpr.cond then
13 p f _re f .cond := p f _re f .cond ∨ p f _cpr.cond;

/* if an action can leed to different pf conditions, merge them

with ‘OR’ (ref: reference; cpr: compare) */

14 PF_rm := PF_rm ∪ {p f _cpr};
/* save the used and redundant plant features in the set PF_rm

(rm: remove) */

15 foreach p f ∈ PF_temp\PF_rm do
16 PF := PF ∪ {p f };
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scope as o2.

The second part of Alg. 6 deals with issue that a scope of a plant feature might lead to

different conditions. Every condition represents a part of plant behavior for a scope.

The final signal condition for a scope consists of all possible signals conditions (line 10

to 14). For example, in Fig. 29, two plant feature candidates have the same scope o1,

and different condition, a ∧ b ∧ ¬c and a ∧ ¬b ∧ c. The two candidates are merged into

a final plant feature that has the scope o1 and the condition a ∧ (b ∧ ¬c ∨ ¬b ∧ c).

6.5.3 Test case generation with fault injection

Fault injection is a class of testing techniques which involves faulty behavior supple-

mentary to nominal behavior testing. The faults to be tested are usually selected based

on expert knowledge and practical experience. For example, some components might

be more error-prone in some environment, and some sensors might have physical

interference with other sensors or actuators. More fault injection knowledge and

techniques in the field of testing can be found in [113].

In this chapter, fault injection can be realized conveniently by modifying plant models.

By definition, fault models are in conflict with the plant feature models described in

Sec. 6.5.1 and Sec. 6.5.2. Thus, to consider these fault models, plant feature models

have to be modified to be less restrictive. This implies that more test cases outside of

the nominal behavior will be considered for testing.

6.5.4 Applying plant features in the generation of SCA

The generation of SCA is done by synchronous composition of individual specification

models with stability search. The detailed process has been presented in [22] and is

not repeated in this thesis.

With the new method proposed in this chapter, plant features are applied in the

generation of SCA as introduced in Sec. 6.4. The difference compared to the process

in [22] is that, when an evolution guard from one state is created, it will be combined
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with consolidated plant features. This step is presented in Alg. 7.

Algorithm 7: Modification of evolution guards involving consolidated plant fea-
tures in the generation of SCA
Input: PF, sS, gS,e
Output: gS,e,wP

1 begin
2 gS,e,wP := gS,e; /* initialization */

3 foreach p f ∈ PF do
4 if p f .scope = GLOBAL then
5 gS,e,wP := gS,e,wP ∧ p f .cond;

/* combine an original evolution condition with a plant condition,

so that the final evolution condition in SCA conforms to this

plant feature */

6 else
7 dictO := getDict(state);

/* return the output list of a state as a dictionary data */

8 if applyValue(p f .scope,dictO) = True
/* output of this plant feature is valued as True with the output

data of this state */

9 then
10 gS,e,wP := gS,e,wP ∧ p f .cond;

Given an evolution guard, for plant features of level 1, i.e., the plant feature scope is

GLOBAL, the evolution guard is modified by simply adding the plant feature condition

to it (line 3 to 5).

For plant features of level 2, first the evolution will be checked, if outputs of its source

state of this fulfill the plant feature scope. If yes, then this plant feature condition

will also be added to the evolution guard (line 6 to 10). For example, a system has an

output set OS := {o1,o2,o3}, if the scope of a plant feature is o1 ∧ ¬o2, and the source

state of an evolution has the outputs {o1,o3}, the plant feature should be applied for

this evolution; but it will not be applied to another evolution whose source state has

the outputs {o1,o2}.
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6.6 Case studies

In this chapter, two large scale case studies are presented to illustrate the test generation

approach with PFs.

6.6.1 A logistics system

The first case study is a logistics system adapted from the didactic platform presented

in [114]. The modules of interest in our case study are displayed in Fig. 30.

Figure 30: Case study: a logistics system containing a portal and two subsequent lines
(top view)

System description

The portal transports workpieces from the input buffer to either the compact line or an

indexed line. In this case study, the specification and plant behavior of the portal and
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compact line are analyzed and presented. The compact line contains a vertical buffer

with a pusher, a conveyor belt and one machine station. Several location sensors are

used to sense the position of the workpiece (yellow triangles), the pusher (orange

longish triangles) and the portal (red circles).

Five FSM models have been used for the specification models of the system under

consideration. In Fig. 31, three specification models for the portal and compact line are

given as examples. It is displayed, that the portal can move horizontally between three

positions In, IL and CL. Only in those positions it can move up and down. Finally,

only in the down end position it can activate the electromagnetic gripper to lift a

workpiece or deactivate it (ungrip) in order to release a workpiece, respectively. On

the compact line, a workpiece is brought to a machine via the belt; after the machining

the workpiece is delivered to the output.

In total, 15 inputs and 9 outputs are considered, as listed in Tab. 5.

Complete test case generation

Applying Teloco [22], the SCA of the five specification models contains 221 states

and 8,524 evolutions. Since the system has 15 inputs, the Mealy machine of the SCA

contains 221 ∗ 215 = 7,241,728 evolutions.

Based on that, an executable test sequence is obtained with 9,647,120 steps.

Test generation with plant features

Plant models are built based on domain knowledge of the system under test, i.e.,

through identifying the relations among sensors and actuators. For this case study, 10

plant models have been built. As illustrative examples, four plant models related to

the motion of the portal, and signal relation between a workpiece and the machine, are

presented in Fig. 32.

The first model in Fig. 32 presents a mutual exclusion relation between two input signals,

i.e., plant features of level 1. In a nominal behavior, pos-U and pos-D should not be true
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Table 5: Table of inputs & outputs for the portal, belt and machine on the compact line

Input Description

wpInBu True when a workpiece is in the input buffer

loc-IL True when the portal is at the drop location of indexed line

loc-In True when the portal is at the input buffer location

loc-CL True when the portal is at the drop location of compact line

pos-U True when the portal is in its up end position

pos-D True when the portal is in its down end position

p-2-IL True when the current work piece should be brought to indexed line

p-2-CL True when the current work piece should be brought to compact line

wpMC True when the workpiece reaches the expected position in front of
the machine

MC-done True when the machine finishes its machining

wpCOut True when the workpiece reaches the output position of compact line

wp-Output True when the command of outputting the workpiece is received

wpCLBu True when a workpiece is in the buffer of compact line

pos-E-PC True when the pusher of compact line is in its extended position

pos-R-PC True when the pusher of compact line is in its retracted position

Output Description

P-G activate the gripper

P-U move the portal upwards

P-D move the portal downwards

P-R move the portal to the right (towards IL)

P-L move the portal to the left (towards CL)

BC-P run the belt of compact line in positive direction

MC run the machine of compact line

PC-F move the pusher of compact line forwards

PC-B move the pusher of compact line backwards
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∅
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∅
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loc-IL loc-CL

X(P1V-Stop)
∧ X(P1G-Ungrip)
∧ loc-IL ∧¬loc-CL
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Specification model - Portal Horizontal

P-D
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∅

P1V-Grip

∅

P1V-Ungrip

P-U

P1V-MoveUp

∅

P1V-Idle

∅

P1V-Stop

(X(P1M-Load) ∨ X(P1M-Unload))
∧ pos-U ∧ ¬pos-D

X(P1M-Load) ∧
pos-D ∧ ¬pos-U

X(P1M-Unload) ∧
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X(P1G-Grip) X(P1G-Ungrip)

pos-U ∧ ¬pos-D

(X(P1M-Idle)
∨ X(P1M-Move2IL)
∨ X(P1M-Move2CL))

Specification model - Portal Vertical

∅

CB-Idle

BC-P

CB-Run1

MC

CB-Machine
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CB-Run1

∅

CB-Buffer

∅

CB-Run3

X(CP-Pishing) wpMC

MC-done

wpCOutwp-Output
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Specification model - Belt

Figure 31: Specification models for the horizontal portal movement, the vertical portal
movement and the belt of the compact line
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Figure 32: Plant models for the nominal behavior of the vertical and horizontal portal
movement and the machine on the compact line
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at the same time, since a portal cannot be simultaneously in its up and down position.

The second model presents a similar mutual exclusion, but among three input signals

instead of two. At one moment, the portal can physically only be in one location, i.e.,

only one or none of the three signals loc-In, loc-IL and loc-CL can be True.

The third model presents a premise relation between two input signals. The input MC-

done can only become True when the input wpMC is True, which means the machine

does only operate when the workpiece is at the expected position in front of the

machine.

The fourth model presents a relation among input and output signals, i.e., plant

features of level 2. The input pos-U remains True unless the output P-D is activated

(and P-U is not active). At the same time it is stated that - reading the model from right

to left - pos-U will not instantaneously but eventually be True when P-U is activated.

Note that it is explicitly not stated that pos-U will be true directly after the portal

movement has been activated, i.e. from location P1-NotUp2, pos-U will first remain

False (as in location P1-NotUp1), and will eventually become True (as in location P1-Up).

Analogously, a feature for the down movement can be found, which is also used in the

test generation but not presented here.

It is worth mentioning that modeling of plant features is done with human effort.

Then, the rest process from composition of specification models to the generation of

test sequences are all executed by the tool automatically. In addition, even some simple

fragments of the nominal behavior of the system under test contribute to the reduction

of test cases; of course, the more plant features are modeled, the higher reduction is

obtained.

Combining the ten plant models with five specification models in the test generation,

the newly obtained SCA contains 204 states and 3,036 evolutions. The newly generated

Mealy machine contains 341,504 evolutions. The final executable test sequence is

generated with 448,752 steps.
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Comparison of results

The test generation results of the two methods are presented in Tab. 6.

It can be stated that integrating knowledge about signal relations into the generation

process drastically reduces the length of generated test sequences. The cycle time of a

programmable controller in practice is supposed to be approximately 10ms (can vary

from 1ms to 100ms in various applications). By applying plant features in the test

generation, the test execution time can be reduced from 26.8 hours to 1.2 hours.

Table 6: Results and comparison of test generation methods on the case study of
compact line

Size of SCA
Generation method

#state #evol

#evol in the
Mealy machine

Length of
test sequence

Complete testing 221 8,524 7,241,728 9,647,120

With plant features 204 3,036 341,504 448,752

- Comparison - -7.7% -64.4% -95.3% -95.3%

6.6.2 A flexible manufacturing system

The second case study is a flexible manufacturing system (Fig. 33) originally presented

in [115].

Description of the system

As presented in Fig. 33, a flexible manufacturing system (FMS) consists of eight devices:

three conveyors C1, C2 and C3, a mill, a lathe, a robot, a painting device (PD), and

an assembly machine (AM). The devices are connected through buffers Bj, j = 1, . . . ,8,

each with capacity of one piece.

The FMS system is modeled with 19 input and 14 output signals, as listed in Tab. 7.

New products enter the system with C1 and C2. C1 supplies blocks and C2 supplies
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Table 7: Inputs & outputs of the flexible manufacturing system

Input Description

i_C1 / i_C2 activated when a new product (block / peg) is detected at the input
of C1 / C2

o_C1 / o_C2 /
o_C3

activated when a product (block / peg / painted cylindrical peg) is
detected at the output of C1 / C2 / C3

l_B3 / l_B4 /
l_B5 / l_B6 /
l_B7 / l_B8

activated when a workpiece is loaded in B3 / B4 / B5 / B6 / B7 / B8

f_M activated when the mill finishes milling a block

s_LA / s_LB activated when the lathe starts to shape a peg to be conical (type A)
/ cylindrical (type B)

f_LA / f_LB activated when the lathe finishes shaping a peg to be conical (type
A) / cylindrical (type B)

f_P activated when the painting device finishes painting a cylindrical
peg

f_A / f_B
activated when the assembly machine finishes assembling a final
product (a block with a conical peg (type A) / a block with a cylin-
drical painted peg (type B))

Output Description

Run_FW_C1 /
Run_FW_C2 /
Run_FW_C3

the conveyor belt C1 / C2 / C3 runs in forward direction

Run_BW_C3 the conveyor belt C3 runs in backward direction

PP_B1_B3 /
PP_B2_B4 /
PP_B3_B5 /
PP_B4_B6 /
PP_B4_B7

the robot picks and places a product from one buffer to another

Mill the mill mills a block

Shape_A /
Shape_B the lathe shapes a peg to be conical (type A) / cylindrical (type B)

Paint the painting device paints a cylindrical peg

Assemble the assembly machine assembles a final product, i.e., a block with a
peg
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C1 B1

Robot

B3l B3

B4l B4

Mill
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B2C2
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PD
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i C2
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PP B1 B3 PP B3 B5

f M

PP B2 B4 PP B4 B7

s LA, s LB f LA, f LB

PP B4 B6

o C3

f P

f A

f B

Figure 33: Case study: a flexible manufacturing system

pegs. The blocks go through the mill and the pegs go through the lathe to be shaped

conical (type A) or cylindrical (type B). Cylindrical pegs are also painted through the

painting device. The end products are blocks with attached conical pegs (type A) and

blocks with cylindrical painted pegs (type B). The flow of products in the system is

mainly directed by the robot and the buffer specifications.

Seven Moore machines have been modeled for the specifications. For the sake of

brevity, two models for the lathe and B4, and the robot are selected as illustrative

examples and presented in Fig. 34.
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Figure 34: Specification models for two subsystems: Lathe-Buffer4 and Robot
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Complete test generation

Applying Teloco [22], the SCA of the seven specification models contains 1170 states

and 368,626 evolutions. Since the system has 19 inputs, the Mealy machine of the SCA

contains 1170 ∗ 219 = 613,416,960 evolutions.

Based on that, an executable test sequence is obtained with 845,525,235 steps.

Test generation with plant features

Plant features are modeled by inspecting the physical structures and functional re-

lations of the system. For the case study of FMS, 17 plant models have been built.

As illustrative examples, the plant models for the lathe and B4, and the robot are

presented in Fig. 35.

In pl1, i.e., the first plant model for the lathe and B4, l_B4 is a premise of f_LA, s_LA,

f_LB and s_LB, because the lathe can only operate when there is a workpiece available

from B4.

The models pl2 and pl3 describe a similar plant feature of premise relation bewteen

f_LA vs. s_LA and f_LB vs. s_LB, respectively.

In pl4, f_LA and f_LB are mutually exclusive, since the lathe can not do both types of

shaping operations simultaneously.

In pr1, i.e., the first plant model for the robot, when the robot does the action PP_B3_B5,

a workpiece is taken away from B3, and thus the sensor signal l_B3 turns immediately

to be False. l_B3 will eventually turn True when another action PP_B1_B3 is taken.

Similar plant features exist among some other output and input signals, as presented

in pr2, pr3, pr4, respectively.

Combining the 17 plant models with 7 specification models in the test generation, the

newly obtained SCA contains 970 states and 134,637 evolutions. The newly generated

Mealy machine contains 12,514,080 evolutions. The final executable test sequence is
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Figure 35: Plant models for two subsystems: Lathe-Buffer4 and Robot
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generated with 18,363,192 steps.

Comparison of results

The test generation results of the two methods are presented in Tab. 8. In summary,

with the proposed method a remarkably smaller set of test cases and also a significantly

shorter test sequence are obtained compared to the ones generated with complete

testing. The cycle time of a programmable controller in practice is supposed to be

approximately 10ms (can vary from 1ms to 100ms in various applications). By applying

plant features in the test generation, the test execution time can be reduced from 2348

hours to 51 hours.

Table 8: Results and comparison of test generation methods on the case study of flexible
manufacturing system

Size of SCA
Generation method

#state #evol

#evol in the
Mealy machine

Length of
test sequence

Complete testing 1170 368,626 613,416,960 845,525,235

With plant features 970 134,637 12,514,080 18,363,192

- Comparison - -17.1% -63.5% -98.0% -97.8%

6.7 Summary of the PF approach

This chapter has presented a plant feature (PF) approach which aims at reducing the

number of test cases / length of test sequence in test generation, by utilizing plant

features extracted from a system under test. Meanwhile, the obtained shortened test

sequence still achieves full coverage of the nominal behavior of the system under

test.

Plant features are signal relations among sensors, and signal relations among sensors

and actuators, which can be modeled as finite state machines or other formal languages.

It is worth mentioning that this approach does not require detailed or full plant models.

Any fragment of plant knowledge can contribute to the reduction. Additionally, users
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can insert a selected set of faults into the target behavior to be tested by modifying the

plant features.

The PF approach can be a good remedy for large scale systems where complete testing

is usually not realistic due to system complexity; or serve as a first validation step for

safety critical systems, which enables to detect faults earlier.
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7.1 Conclusion

In this thesis, two innovative model-based test generation approaches have been

presented: design-to-test (DTT) approach and plant feature (PF) approach. The two

approaches are graphically reminded in Fig. 36, together with the classic complete

conformance testing (CCT) approach as a reference.

Individual spec-
ification models

SCA

Explicit Mealy
machine model

Test sequence

Original complete testing

Plant features

SCA

Explicit Mealy
machine model

Test sequence

Testing with
plant features

Modified Design

SCA

Explicit Mealy
machine model

Test sequence

Design to test

smaller
state space

better
testability

Figure 36: Frameworks of complete testing, design-to-test, and test generation with
plant features

The CCT approach is structured and performed as follows. First, user requirements are

modeled as individual Moore machine models with Boolean signals, which are then
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composed into one stabilized composed automaton (SCA). Afterwards, an equivalent

Mealy machine is derived from the SCA, which explicitly represents all Boolean

conditions of evolutions by a set of minterms over the Boolean input set. In the last

step, a test sequence is generated by solving the Transition Tour problem of the set of

minterms from all states and all input values.

The DTT approach aims at improving the testability and reducing the testing over-

head with limited design overhead. Applying the DTT approach, the SCA obtained

from complete testing is analyzed in terms of single-input-change (SIC)-testability,

observability and controllability. Based on the analysis result, a minimum number of

C-guards, O-actions, and T-guards are automatically calculated, and added to the mod-

els. Then, the specification models as well as the finally obtained test sequence fulfill

the requirements of full SIC-testability, full observability and better controllability.

From a global view of testing, the DTT approach focuses on ‘how to test’ aspect rather

than ‘what to test’. Though a complete exhaustive testing for a large/super large scale

system is rarely scalable (e.g., billions of test steps), users can apply this approach on

the most critical/important parts. A design-to-test MATLAB tool box (DTT-MAT) has

also been presented in this thesis. To use it, specification models should be built in

MATLAB Stateflow. Two industrial case studies are presented to illustrate the approach

and the toolbox DTT-MAT.

It is worth mentioning that, during normal execution, all the added T-guards and

C-guards can be inhibited (by connecting them to the logic 1 and 0 levels, respectively),

and all the added O-actions are purely additional output signals that can be ignored

for the control logic. Thus, none of the T-guards, C-guards and O-actions will affect

the behavior of the system in its normal mode. Of course, when necessary, all these

T-guards, O-actions and C-guards can be easily used again for testing purpose by

properly setting their values. In maintenance and inspection, they can be very helpful

to identify the problems occurring in the system.

The second approach, PF approach, aims at reducing the number of test cases / length

of test sequence, by utilizing PFs extracted from a system under test (SUT). In the test

generation, specification and plant features are both involved in the generation of SCA.

In this way, the size of SCA, Mealy machine and test sequence can be much smaller,

and test cases which represent unrealistic/unmeaningful situations are filtered out.
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Meanwhile, the obtained shortened test sequence still achieves full coverage of the

nominal behavior of the system under test.

For most industrial applications, objective of testing is not only to validate the confor-

mance relation between implementation and specification, but also to determine the

capability of a software product to adhere to standards, conventions and regulations. In

this context, testing of nominal behavior can be a good remedy for large scale systems

where complete testing is hardly realistic due to system complexity; or serve as a first

validation step for safety critical systems, which enables to detect faults earlier.

It is worth mentioning that this method does not require detailed or full plant models.

Any fragment of plant knowledge can contribute to the reduction. Additionally, users

can insert a selected set of faults into the target behavior to be tested by modifying the

plant features.

7.2 Limitations and outlook

7.2.1 Extension of signals in models

In the current versions of the two approaches, only Boolean signals are taken into

account for the control logic. This restricts the applicability of the presented tool.

Consequently, further investigation on extending the capability of handling other types

of signals, e.g., digital signals with integer values or analog signals, is needed. It is

obvious that the state space of test would be even larger when the signals can have

multiple values.

To cope with the state-space explosion issue for these systems, equivalence class

partition techniques [33] can be used to help reduce large and possibly infinite input

data types and ranges into a limited set of equivalence partitions. The executed test

cases are representatives selected from each equivalence partition. For example, a

model-based black-box equivalence partition testing strategy as well as a formal proof

of its completeness properties have been presented in [116].
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In the future, equivalence class partition techniques might be of interest to be combined

the two approaches presented in this thesis.

7.2.2 Extension of plant features

In this thesis, plant features have been classified into two levels: signal relations among

sensors, and signal relations among sensors and actuators. The two levels only deal

with current values of sensors and actuators.

However, other factors such as timing features, and temporal features such as historical

traces of sensor and actuator values can also affect their current values. For example,

only after a machine has been running for a certain amount of time, it can send a signal

that an operation is finished. Another example, if a belt is turned off at the beginning

and the end, but it has been turned on for a while in-between, then the position of a

product on the belt should have been changed. Future work can include more such

types of plant features in order to gain a better description of nominal system behavior,

and therefore a more efficient test sequence.

These extensions will be considered in the continued research. Some above mentioned

ideas have been already realized by group colleagues of the author of this thesis and

presented in [117].

7.2.3 Reuse of plant features in diagnosis

In this thesis, plant features are modeled and used in the test generation. The benefit

is huge, as presented in this thesis, in reducing the number of meaningful test cases,

the length of test sequences, and the duration of test execution.

Nevertheless, plant features can also be useful after the testing has been finished.

Nominal plant features can serve as diagnosers in the normal execution of a system,

since these plant features represent the nominal behavior of system elements such as

sensors and actuators. Faulty plant features can serve as ‘error-catchers’ since many

typical faults and errors that can occur in a system have been modeled in these plant
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features.

Therefore, the plant features that were initially modeled for testing purpose can also

support fault detection in diagnosis. More details and recent results of fault diagnosis

techniques can be found in [118].

7.2.4 Modular approach

As presented in Fig. 36, the approaches in this thesis all need to compose the models of

subsystems of an SUT to be a single automaton, i.e., an stabilized composed automaton

(SCA). As for complete testing and the DTT approach, only specification models are

composed, while for the PF approach, plant features are also involved. In both cases,

test sequences can be generated only after the SCA is obtained.

Although we achieved to improve our implementation, the computation is still primary

memory intensive.

The monolithic composition hinders the application of the two approaches on very

large scale systems, since the size of SCA grows exponentially with the number of

inputs in the SUT, especially with the DTT approach. With the PF approach, even

though the resulting size is reduced due to the plant features, those extra models

have to be considered during calculation. This leads to the question whether and how

modular approaches can be applied and to what extent they reduce the computational

effort.

For future work, we would like to replace the monolithic composition with modular

approaches to enhance the whole process.

Recent research results such as a modular supervisor synthesis for extended finite-state

machines subject to controllability [119] and a modular plant model synthesis from

behavior traces and temporal properties [120] would be inspiring to the modular

implementation of the approaches presented in this thesis.
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7.2.5 Extended application on hybrid systems

The two approaches presented in this thesis all deal with discrete systems. The

methodology can be however generally applicable.

Research work has been done to combine controllers which are usually specified with

discrete models and plant which are continuous systems. One recent example that has

been presented in [121] is a transformation and emulation framework of continuous

physical processes for testing of discrete controllers without using the actual plant.

An extension to such hybrid systems with continuous dynamics would be also of

interest for the approaches presented in this thesis in the future.

106



8 List of publications

8.1 Peer-reviewed journal publications

1. C. Ma and J. Provost, “Design-to-Test Approach for Programmable Controllers in

Safety-Critical Automation Systems,” IEEE Transactions on Industrial Informatics,

pp. 1–10, submitted.

2. C. Ma and J. Provost, “Introducing Plant Features to Model-Based Testing of

Programmable Controllers in Automation Systems,” Control Engineering Practice,

pp. 1–15, submitted.

8.2 Peer-reviewed conference publications

1. C. Ma and J. Provost, “Design-to-test approach for black-box testing of pro-

grammable controllers,” in IEEE International Conference on Automation Science

and Engineering (CASE), 2015, pp. 1018–1024.

2. C. Ma and J. Provost, “DTT-MAT: A software toolbox of design-to-test approach

for testing programmable controllers,” in 2016 IEEE International Conference on

Automation Science and Engineering (CASE), Fort Worth, Texas, USA, 2016, pp.

878–884.

3. C. Ma and J. Provost, “Design-to-test: an approach to enhance testability of

programmable controllers for critical systems – two case studies,” in European

Conference on Safety and Reliability - ESREL 2016, Glasgow, Scotland, 2016, pp.

107



8 List of publications

2622–2629.

4. C. Ma and J. Provost, “Using plant model features in generation of test cases for

programmable controllers,” in 20th World Congress The International Federation

of Automatic Control, 2017, pp. 11655–11660.

5. C. Ma and J. Provost, “A model-based testing framework with reduced set of test

cases for programmable controllers,” in 13th IEEE Conference on Automation

Science and Engineering (CASE), 2017, pp. 944–949.

6. C. Ma, C. Jordan, and J. Provost, “SATE: Model-Based Testing with Design-to-Test

and Plant Features,” in 14th Workshop on Discrete Event Systems, Sorrento Coast,

Italy, 2018, pp. 310–315.

8.3 Other peer-reviewed publications (not directly

relevant to this thesis)

1. C. Jordan, C. Ma, and J. Provost, “An educational toolbox on supervisory control

theory using MATLAB Simulink Stateflow: From theory to practice in one week,”

in 2017 IEEE Global Engineering Education Conference (EDUCON), 2017, pp.

632–639.

108



Bibliography

[1] C. Ma and J. Provost, “Using plant model features in generation of test cases for

programmable controllers,” in 20th World Congress The International Federation of

Automatic Control, 2017, pp. 11 655–11 660.

[2] ——, “A model-based testing framework with reduced set of test cases for

programmable controllers,” in 13th IEEE Conference on Automation Science and

Engineering (CASE), 2017, pp. 944–949.

[3] D. Li, Z. Zhai, Z. Pang, V. Vyatkin, and C. Liu, “Synchronous-Reactive Semantic

Modeling and Verification for Function Block Networks,” IEEE Transactions on

Industrial Informatics, vol. 13, no. 6, pp. 3389–3398, 2017.

[4] I. Buzhinsky and V. Vyatkin, “Automatic inference of finite-state plant models

from traces and temporal properties,” IEEE Transactions on Industrial Informatics,

vol. 13, no. 4, pp. 1521–1530, 2017.

[5] B. F. Adiego, D. Darvas, E. B. Viñuela, J. C. Tournier, S. Bliudze, J. O. Blech, and

V. M. G. Suárez, “Applying model checking to industrial-sized PLC programs,”

IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[6] B. Boehm, “Software Risk Management,” in European Software Engineering Confer-

ence. Spinger, 1989, pp. 1–19.

[7] H. Pham, System software reliability. Springer Science & Business Media, 2007.

[8] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods—an

introduction,” Control Engineering Practice, vol. 5, no. 5, pp. 639–652, 1997.

109



Bibliography

[9] ISO/IEC/IEEE 24765, Systems and software engineering — Vocabulary. IEEE, 2010.

[10] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, “Model-driven engineering

of Manufacturing Automation Software Projects - A SysML-based approach,”

Mechatronics, vol. 24, no. 7, pp. 883–897, 2014.

[11] J. Provost, J.-M. M. Roussel, and J.-M. M. Faure, “Generation of single input

change test sequences for conformance test of programmable logic controllers,”

IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1696–1704, 2014.

[12] IEC61508, Functional safety of electrical / electronic / programmable electronic safety-

related systems, 2nd ed. International Electrotechnical Commission, 2010.

[13] IEC61511, Functional safety – Safety instrumented systems for the process industry

sector, 1st ed. International Electrotechnical Commission, 2003.

[14] ISO26262, Road vehicles — Functional safety, 1st ed. International Organization

for Standardization, 2011.

[15] J. Richardsson and M. Fabian, “Modeling the control of a flexible manufacturing

cell for automatic verification and control program generation,” International

Journal of Flexible Manufacturing Systems, vol. 18, no. 3, pp. 191–208, 2007.

[16] A. Dubey, “Evaluating software engineering methods in the context of automa-

tion applications,” in 2011 9th IEEE International Conference on Industrial Informat-

ics, jul 2011, pp. 585–590.

[17] S. Rösch, S. Ulewicz, J. Provost, and B. Vogel-heuser, “Review of model-based

testing approaches in production automation and adjacent domains — Current

challenges and research gaps,” Journal of Software Engineering and Applications,

vol. 8, no. 9, pp. 499–519, 2015.

[18] J. Mcgregor, “Testing a software product line,” Carnegie Mellon University, Tech.

Rep., 2001.

[19] E. Jee, D. Shin, S. Cha, J.-s. Lee, and D.-h. Bae, “Automated test case generation

110



Bibliography

for FBD programs implementing reactor protection system software,” Software

Testing, Verification and Reliability, vol. 24, no. 8, pp. 608–628, 2014.

[20] V. Vyatkin and S. Member, “Software Engineering in Industrial Automation:

State-of-the-Art Review,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,

pp. 1234–1249, aug 2013.

[21] G. Frey and L. Litz, “Formal methods in PLC programming,” in Systems, Man,

and Cybernetics, 2000 IEEE International Conference on, vol. 4, 2000, pp. 2431–2436.

[22] J. Provost, J. M. Roussel, and J. M. Faure, “Translating Grafcet specifications into

Mealy machines for conformance test purposes,” Control Engineering Practice,

vol. 19, no. 9, pp. 947–957, 2011.

[23] W. Bolton, Programmable logic controllers, 4th ed. Elsevier, 2006.

[24] IEC61131-3, Programmable Controllers—Part 3: Programming Languages. Interna-

tional Electrotechnical Commission, 2014.

[25] H. Dierks, “PLC-automata: A new class of implementable real-time automata,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 1231, no. April 1999, pp.

111–125, 1997.

[26] G. Cutts and S. Rattigan, “Using Petri nets to develop programs for PLC systems,”

in International Conference on Application and Theory of Petri Nets, 1992, pp. 368–372.

[27] G. Frey, “Automatic implementation of Petri net based control algorithms on

PLC,” in Proceedings of the IEEE American Control Conference (ACC), vol. 4, no.

June, 2000, pp. 2819–2823.

[28] B. Vogel-Heuser, D. Witsch, and U. Katzke, “Automatic code generation from

a UML model to IEC 61131-3 and system configuration tools,” in International

Conference on Control and Automation, vol. 2. IEEE, 2005, pp. 1034–1039.

[29] F. Chiron and K. Kouiss, “Design of IEC 61131-3 function blocks using SysML,”

111



Bibliography

in 2007 Mediterranean Conference on Control and Automation, MED, 2007, pp. 3–7.

[30] M. Obermeier, S. Braun, and B. Vogel-Heuser, “A model-driven approach on

object-oriented PLC programming for manufacturing systems with regard to

usability,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp. 790–800,

2015.

[31] J. L. Luo, H. J. Ni, and M. C. Zhou, “Control Program Design for Automated

Guided Vehicle Systems via Petri Nets,” IEEE Transactions on Systems Man

Cybernetics-Systems, vol. 45, no. 1, pp. 44–55, 2015.

[32] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime

software-fault monitoring tools,” IEEE Transactions on Software Engineering, vol. 30,

no. 12, pp. 859–872, 2004.

[33] ISTQB, Standard glossary of terms used in Software Testing, version 2. ed., E. Van

Veenendaal, Ed., 2014, vol. 3.

[34] S. Cheon, J. Lee, K. Kwon, D. Kim, and H. Kim, “The software verification and

validation process for a PLC-based engineered safety features-component control

system in nuclear power plants,” in 30th Annual Conference of IEEE Industrial

Electronics Society, 2004. IECON 2004, vol. 1, Busan, Korea, 2004, pp. 827–831.

[35] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-

proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–397, 1962.

[36] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of

the Third Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[37] Y. Bertot and P. Castéran, Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer Science & Business

Media, 2013.

[38] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski,

“SPASS version 3.5,” in International Conference on Automated Deduction. Berlin,

Heidelberg: Springer, 2009, pp. 140–145.

112



Bibliography

[39] H. Wan, G. Chen, X. Song, M. Gu, H. Wan, G. Chen, X. Song, M. G. Formalization,

and P. L. C. Timers, “Formalization and Verification of PLC Timers in Coq,” in

33rd Annual IEEE International Computer Software and Applications Conference, 2011,

pp. 315–323.

[40] J.-m. Roussel, B. Denis, J. Europ, and J.-m. R. B. Denis, “Safety properties verifi-

cation of ladder diagram programs,” Journal Européen des Systemes Automatisés

(JESA), vol. 36, no. 7, pp. 905–917, 2002.

[41] S. Ray, “Overview of Formal Verification,” in Scalable Techniques for Formal Verifi-

cation. Boston: Springer, 2010, pp. 9–23.

[42] S. Lampérière-Couffin, O. Rossi, J. Roussel, and J. Lesage, “Formal validation

of PLC programs: a survey,” in European Control Conference (ECC), 1999, pp.

2170–2175.

[43] G. J. Holzmann, “The model checker spin,” IEEE Transactions on software engineer-

ing, vol. 23, no. 5, pp. 279–295, 1997.

[44] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” International

journal on software tools for technology transfer, vol. 1, no. 1-2, pp. 134–152, 1997.

[45] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new symbolic

model checker,” International Journal on Software Tools for Technology Transfer, vol. 2,

no. 4, pp. 410–425, 2000.

[46] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,

M. Roveri, and S. Tonetta, “The nuXmv symbolic model checker,” in International

Conference on Computer Aided Verification. Cham: Springer, 2014, pp. 334–342.

[47] O. Pavlovic and H.-D. Ehrich, “Model Checking PLC Software Written in Func-

tion Block Diagram,” 2010 Third International Conference on Software Testing, Verifi-

cation and Validation, pp. 439–448, 2010.

[48] D. Beyer and T. Lemberger, “Software Verification: Testing vs. Model Checking -

A Comparative Evaluation of the State of the Art,” in Haifa Verification Conference.

113



Bibliography

Springer, 2017, pp. 99–114.

[49] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial Static

Analysis Tools,” Electronic Notes in Theoretical Computer Science, vol. 217, pp. 5–21,

2008.

[50] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated tech-

niques for formal software verification,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

[51] H. Prahofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger, “Oppor-

tunities and challenges of static code analysis of IEC 61131-3 programs,” in

17th IEEE International Conference on Emerging Technologies and Factory Automation,

ETFA, 2012, pp. 1–8.

[52] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson, “Evaluating how static analysis

tools can reduce code review effort,” in Proceedings of IEEE Symposium on Visual

Languages and Human-Centric Computing, VL/HCC, 2017, pp. 101–105.

[53] T. Ball and S. K. Rajamani, “The SLAM project: debugging system software via

static analysis,” ACM SIGPLAN Notices, vol. 37, no. 1, pp. 1–3, 2002.

[54] N. Ayewah and W. Pugh, “The Google FindBugs fixit,” in Proceedings of the

19th international symposium on Software testing and analysis - ISSTA ’10, 2010, pp.

241–252.

[55] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting

web application vulnerabilities,” in Security and Privacy, 2006 IEEE Symposium on,

2006, pp. 258–263.

[56] M. Obster and S. Kowalewski, “A live static code analysis architecture for PLC

software,” in 22nd IEEE International Conference on Emerging Technologies and

Factory Automation, ETFA, 2017, pp. 1–4.

[57] M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal

of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

114



Bibliography

[58] M. Leucker, “Teaching runtime verification,” in International Conference on Runtime

Verification. Berlin, Heidelberg: Springer, 2011, pp. 34–48.

[59] K. Havelund and G. Rosu, “An overview of the runtime verification tool Java

PathExplorer,” Formal methods in system design, vol. 24, no. 2, pp. 189–215, 2004.
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