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Abstract

Perfect tracking control for real-world Euler-Lagrange systems is challenging due to uncertainties in the system model and
external disturbances. The magnitude of the tracking error can be reduced either by increasing the feedback gains or improving
the model of the system. The latter is clearly preferable as it allows to maintain good tracking performance at low feedback
gains. However, accurate models are often difficult to obtain.

In this article, we address the problem of high-performance tracking control for unknown Euler-Lagrange systems. In
particular, we employ Gaussian Process Regression (GPR) to obtain a data-driven model that is used for the feed-forward
compensation of unknown dynamics of the system. Beneficially, GPR provides not only an estimate of the uncertainties, but
naturally provides a measure of model confidence depending on the distance to training points. Accordingly, the feedback gain
is adapted based on the model fidelity allowing low feedback gains in state space regions of high model confidence. Additionally,
we study the stability of GP-based tracking control for Euler-Lagrange systems. The proposed confidence-adaptive feedback
control law guarantees a globally bounded tracking error with a specific probability. Simulation studies illustrate the results
and demonstrate the superiority over state of the art tracking control approaches.

Key words: Stochastic control, Stability of nonlinear systems, Data-based control, Nonparametric methods, Adaptive system
and control, robotic manipulators

1 Introduction

Euler-Lagrange systems represent a crucial and large
class of dynamical systems, for which the equations of
motion can be derived via the Euler-Lagrange equation.
In the past decades, various control schemes for this class
of systems have been proposed, most of them can be
considered as a subset of computed torque control laws.
With computed torque control, it is possible to derive
very effective controllers that appear in robust, adaptive
and learning control schemes [22]. The controller is sepa-
rated into a feed-forward and a feedback part. A precise
model of the true system is necessary to compensate the
system dynamics to achieve a low gain feedback term.
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This is beneficial in many ways: it avoids large errors in
the presence of noise [12], avoids the saturation of actu-
ators [13], and enhances safety in applications such as
human-robot interaction [10]. Since the accuracy of the
compensation depends on the precision of the model,
all generalized external forces such as, e.g. in robotics,
friction, payload or contact forces with the environment
must be incorporated as precisely as possible.

However, an accurate model of these uncertainties is
hard to obtain by classical first principles based tech-
niques. Especially in modern applications of Lagrangian
systems such as service robotics, the interaction with
unstructured and a priori unknown environments fur-
ther increases the uncertainty. A common approach is
to derive a dynamic model from first order physics and
increase the feedback gains of the control law to com-
pensate the uncertainties until a desired tracking perfor-
mance is achieved [24]. However, the increased gains are
undesirable (as explained above) and building a more
accurate model of the system for the entire workspace is
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time-consuming and effort demanding. Additionally, the
stability of the closed loop system must be guaranteed
to ensure safety and to prevent system destruction.

In this article, we address the problem of stable tracking
control for Euler-Lagrange systems with unknown dy-
namics. For this purpose, we use Gaussian Process Re-
gression (GPR) which is a promising, data-driven learn-
ing approach [11]. In particular, GPR is a supervised
learning technique which combines several advantages.
It requires only a minimum of prior knowledge to rep-
resent an arbitrary complex function, generalizes well
even for small training data sets and has a precise trade-
off between fitting the data and smoothing [19]. Since
the prediction is based on Bayes’ theorem, the Gaus-
sian Process (GP) provides not only a mean function
but also a predicted variance, and therefore a measure
of the model fidelity based on the distance to the train-
ing data. We employ the provided model confidence to
adapt the feedback gains in areas where it is necessary:
i) to keep the system stable and ii) the tracking error
less than a given value.

1.1 Related work

Computed torque control (CTC) requires a parametric
model of the Euler-Lagrange system which can be iden-
tifed, e.g. for robot manipulators, by taking advantage
of the linearity in the parameters [21]. Errors in the iden-
tified parameters and unmodeled dynamics deteriorate
the tracking performance and can affect the stability of
the closed loop. Several methods are presented to over-
come this problem, i.e. with online adaptation of the
parametric model or varying feedback gains [23,20,15].
The drawback is that these approaches are based on an
underlying parametric model which leads to the prob-
lem of model selection. The idea to use GPR as data-
driven approach in control of robotic systems has been
presented in [17,1]. However, no stability guarantees are
given. Controller designs based on GPR with stability
guarantees are still very scarce. In [8], a stable feedback
linearization with online learning GPR is proposed. Nu-
merical methods for determining the stability of GP for-
ward models are given in [30]. Recently, also analytical
results about the stability of dynamical systems with
GPR are proposed [5]. Preliminary first results for stable
control of Euler-Lagrange systems with GPR are pre-
sented by the authors in [3,4] but only for a restricted
class of systems and without explicit determination of
the tracking error. Thus, high performance tracking con-
trol for Euler-Lagrange systems with unknown dynamics
and stability guarantees is still a largely open challenge.

1.2 Contributions

In this paper, we develop is a computed torque control
law with GPR based feed-forward compensation. For

this purpose, a GP learns the unknown system dynam-
ics from training data. If there is an estimated paramet-
ric model available, it is possible to include it as a priori
knowledge. The contribution of this article is a control
law that uses the mean of the GPR to compensate the
unknown dynamics and the model confidence to adapt
the gains. The derived method guarantees that the track-
ing error is uniformly ultimately bounded within a ball
with a specific radius and a given probability. The appli-
cability and efficacy of the proposed control approach is
illustrated in simulation with a robot manipulator and
a statistical study with randomly generated systems.

The remainder of the article starts with Section 2 where
we introduce the class of Euler-Lagrange systems and
GPR in general. Section 3 describes the training of the
GP models and the computation of the model error. Sec-
tion 4 contains the proposed control law and the proof
of boundedness. The method is validated in Section 5
with numerical examples.

1.3 Notation

Vectors a and vector-valued functions f(·) are denoted
with bold characters. A Matrix A is described with cap-
ital letters. The identity matrix is given by I. Estimated
values are indicated by a hat and errors by a tilde. The
expression A:,i denotes the i-th column of the matrix A.
The expression N (µ,Σ) denotes a normal distribution
with mean µ and covariance Σ. The field of non-negative
real numbers is denoted by R≥0, positive real numbers
by R>0. For natural numbers N≥0, N>0 is used accord-
ingly. The smallest eigenvalue of a matrix is denoted
by λ(·) and the largest by λ̄(·). The Euclidean norm is
given by ‖·‖ and the induced matrix norm of a matrix A
by ‖A‖ = λ̄(A

>
A)1/2. The expression Hk denotes the

reproducing kernel Hilbert space (RKHS) with the asso-
ciated norm ‖ · ‖k and C the set of continuous functions.

2 Preliminaries and Definitions

2.1 Euler-Lagrange Systems

The class of Euler-Lagrange systems is defined by dy-
namical systems whose motion is described by the Euler-
Lagrange equations. In this article, we restrict our focus
on the class of non-conservative and fully-actuated sys-
tems where the set of equations is given by

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= uc + ud (1)

with the generalized coordinates q ∈ Rn and the La-
grangian function L : Rn × Rn → R

L(q̇, q) := T (q̇, q)− V(q). (2)
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The Lagrangian function depends on the kinetic en-
ergy (or co-energy) T : Rn × Rn → R and the poten-
tial function V : Rn → R. Two types of generalized ex-
ternal forces are considered herein: The action of con-
trol uc ∈ Rn and the effect of the unknown dynam-
ics ud ∈ Rn. We assume the following properties for the
generalized forces.

Assumption 1 The generalized external forces can be
parametrized as follows

uc = u(t), u ∈ C,u : R≥0 → Rn (3)

ud = fu (p) , fu ∈ C,fu : R3n → Rn (4)

with p = [q̈
>
, q̇
>
, q
>
]
>

and the time t ∈ R≥0.

The assumption restricts the unknown dynamics fu to
be state dependent which is, in most cases, a non restric-
tive condition. The kinetic energy is of the form

T (q̇, q) =
1

2
q̇
>
H(q)q̇, (5)

where H(q) ∈ Rn×n is the generalized inertia matrix.
Based on these assumptions, the Euler-Lagrange equa-
tions (1) can be written in the equivalent form

H(q)q̈ + C(q, q̇)q̇ + g(q)− fu(p) = u(t), (6)

where the vector g(q) is defined by

g(q) :=
∂V(q)

∂q
. (7)

The matrices H(q), C(q, q̇) : Rn×Rn → Rn×n, and the
vector g(q) : Rn → Rn have the following property:

Property 1 (Structural Properties[18]) The ma-
trix H(q) is symmetric and positive definite and there
is a special factorization of the matrix C(q, q̇), so
that ∀q̇, q ∈ Rn

• Ḣ(q) = C(q, q̇) + C(q, q̇)
> ∈ Rn×n and thus,

• Ḣ(q)− 2C(q, q̇) ∈ Rn×n is skew-symmetric.

2.2 Gaussian Process Regression

Let (Ω,F , P ) be a probability space with the sample
space Ω = Rn, n ∈ N, the corresponding σ-algebra F
and the probability measure P . Assume a vector-valued,
nonlinear function y = f(x) with f : Rn → Rn and
y ∈ Rn. The measurement ỹ ∈ Rn of the function is
corrupted by Gaussian noise η ∈ Rn, i.e.

ỹ = f(x) + η (8)

η ∼ N (0,diag(σ2
1 , . . . , σ

2
n)) (9)

with the standard deviation σ1, . . . , σn ∈ R≥0. To gener-
ate the training data, the function is evaluated at m in-
put values {x{j}}mj=1. Together with the resulting mea-

surements {ỹ{j}}mj=1, the whole training data set is de-
scribed by D = {X,Y } with the input training ma-
trix X = [x{1},x{2}, . . . ,x{m}] ∈ Rn×m and the output

training matrix Y = [ỹ{1}, ỹ{2}, . . . , ỹ{m}]> ∈ Rm×n.
Now, the objective is to predict the output of the func-
tion y∗ at a test input x∗ ∈ Rn.
The underlying assumption of Gaussian Process Regres-
sion is that the data can be represented as a sample of a
multivariate Gaussian distribution. The joint distribu-
tion of the i-th component of y∗ is[
Y:,i

y∗i

]
∼ N

(
m(x),

[
KΦi(X,X) kΦi(x

∗, X)

kΦi
(x∗, X)

>
kΦi

(x∗,x∗)

])
(10)

with the covariance function kΦi
: Rn×Rn → R as a mea-

sure of the correlation of two points (x,x′). The func-
tion KΦi

: Rn×m × Rn×m → Rm×m is called the covari-
ance matrix Kj,l = kΦi

(X:,l, X:,j) with j, l ∈ {1, . . . ,m}
where each element of the matrix represents the covari-
ance between two elements of the training data X. The
vector-valued covariance function kΦi : Rn × Rn×m →
Rm calculates the covariance between the test input x∗

and the training data X

kΦi
(x∗, X) with kΦi,j = kΦi

(x∗, X:,j) (11)

for all j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. These
functions depend on a set of hyperparameters Φi =

{ϕ{1}i , . . . , ϕ
{nh}
i } whose number nh ∈ N and domain of

parameters depends on the function used. The choice
of the covariance function and the corresponding hy-
perparameters can be seen as degrees of freedom of the
regression. A comparison of the characteristics of the
different covariance functions can be found in [6]
The prediction of each component of y∗ is derived from
the joint distribution (10) and therefore it is a Gaus-
sian distributed variable. The conditional probability
distribution is defined by the mean

µ(y∗i |x∗,D) = kΦi
(x∗, X)

>
(KΦi

+ Iσ2
i )−1Y:,i (12)

and the variance

var(y∗i |x∗,D) = kΦi
(x∗,x∗)− kΦi

(x∗, X)
>

(KΦi + Iσ2
i )−1kΦi(x

∗, X). (13)

The n normally distributed components of y∗|x∗,D are
combined into a multi-variable Gaussian distribution

y∗|x∗,D ∼ N (µ(·),Σ(·))
µ(y∗|x∗,D) = [µ(y∗1 |x∗,D), . . . , µ(y∗n|x∗,D)]

>

Σ(y∗|x∗,D) = diag(var(y∗1 |x∗,D), . . . , var(y∗n|x∗,D)).
(14)
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where the hyperparameters ϕ
{1}
i , . . . , ϕ

{nh}
i ∈ Φi are op-

timized by means of the likelihood function, thus by

ϕ
{j}
i = arg max

ϕ{j}
logP (Y:,i|X,ϕ{j}) (15)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , nh}. For this pur-
pose, a gradient based algorithm is often used to find a
(local) maximum of the likelihood function [19].

2.2.1 Marginal Variance

The computation of the variance with respect to a sub-
set of elements of x∗ can be done by marginalization.
Assume x∗ = [x∗1

>
,x∗2

>
]
>

with x∗1 ∈ Rn1 ,x∗2 ∈ Rn2

and x∗ ∈ Rn=n1+n2 . Then, the marginal variance of the
prediction based on x∗1 is given by

var(y∗i |x∗1,D) = kΦ̃i
(x∗1,x

∗
1)− kΦ̃i

(x∗1, X1:n1,:)
>

(KΦ̃i
(X1:n1,:, X1:n1,:) + Iσ2

i )−1

kΦ̃i
(x∗1, X1:n1,:) (16)

with the necessary subset of hyperparameters Φ̃i ⊂ Φi
for the covariance function defined on the input
space Rn1 . The variable X1:n1,: denotes a subset of the
input data, i.e. the first n1 rows. Thus, the combined
marginal variance is rewritten as

Σ(y∗|x∗1,D) = diag(var1(·), . . . , varn1
(·)). (17)

3 Gaussian Process Model

In this section, we introduce the learning procedure and
the computation of the model error, i.e. the error be-
tween the true system and the modeled dynamics.

3.1 Learning

Consider the Euler-Lagrange system in (6) with the un-
known residual dynamics fu. If a priori knowledge of
the plant is available, a hybrid learning approach can
be used which is a combination of a parametric and a
data-driven model. We consider the parametric model is
given by the Euler-Lagrange dynamics

û(t) = Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) (18)

where Ĥ ∈ Rn×n, Ĉ ∈ Rn×n and ĝ ∈ Rn are estimates
of the true matrices which also satisfy Property 1. Fur-
thermore, the estimates must fulfill the following prop-
erty.

Property 2 (Structure of the estimates) There

exist constants h1, h2, kC ∈ R>0 such that h1‖x‖2 ≤
x
>
Ĥ(q)x ≤ h2‖x‖2, ‖Ĉ(q, q̇)‖ ≤ kC‖q̇‖, and Ĉ(q, q̇)q′ =

Ĉ(q, q′)q̇ for all q, q̇, q′,x ∈ Rn.

Thus, the matrix Ĥ is bounded and the matrix Ĉ(q, q̇)
is bounded in q and linear in q̇. The identification of
these estimates while guaranteeing Properties 1 and 2
can be achieved following the identification procedures
from [25,14]. Please note that Property 2 is required for
the estimates only and not for the true system matrices
of (6).

Remark 1 Without prior knowledge of the system, the
estimates are set to Ĥ = I, Ĉ = 0, ĝ = 0.

After the parametric model is selected, a Gaussian Pro-

cess is trained with m data pairs D = {p{i}, τ̃ {i}}mi=1
which consist of

p =
[
q̈>, q̇>, q>

]>
∈ R3n

τ̃ (p) = H̃(q)q̈ + C̃(q, q̇)q̇ + g̃(q)− fu(p), (19)

with H̃ = H − Ĥ, C̃ = C − Ĉ and g̃ = g − ĝ. For
the generation of training data, the system (6) can be
actuated by an arbitrary controller as shown in Fig. 1.
The only condition is that the closed loop system behave
well enough to generate a finite sequence of training data.
Stability is not necessarily required as long as the closed-
loop system states remain bounded for the finite training
time.

3.2 Model error

For the computation of the model error, we assume the
following for the covariance function of the Gaussian
Process.

Assumption 2 The covariance function k(·, ·) is cho-
sen such that the function τ̃ (p) = [τ̃1(p), . . . , τ̃n(p)]

>

has a bounded RKHS norm on any closed set D ⊂ R3n,
i.e. ‖τ̃i‖k <∞ must be satisfied for all i = 1, . . . , n.

Remark 2 The norm of a function f : Rn → Rn in
a RKHS is a smoothness measure relative to a covari-
ance function k(x, x′) that is uniquely connected with this

Controller System Ĥ(q)q̈+Ĉ(q,q̇)q̇+ĝ(q)
qd,q̇d,q̈d

u

q̈,q̇,q
û

{p{i}}mi=1

{τ̃{i}}mi=1-

Fig. 1. Diagram for the generation of the training data
set D = {p{i}, τ̃ {i}}mi=1.
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RKHS. In particular, it is a Lipschitz constant

|fi(x)− fi(x′)|
dk(x,x′)

≤ ‖fi‖k, ∀x,x′ ∈ Rn (20)

with respect to the metric of the used covariance func-
tion dk : Rn × Rn → [0,∞) given by

dk(x,x′) = k(x,x) + k(x′,x′)− 2k(x,x′). (21)

A more detailed discussion about RKHS norms is given
in [31].

Assumption 2 requires that the covariance function must
be selected in such a way that the residual τ̃ (p) is an
element of the associated RKHS. This sounds paradox-
ical since the residual is unknown. However, there ex-
ist some covariance functions, so called universal func-
tions, which can approximate any continuous function
arbitrarily precisely on a compact set [27, Lemma 4.55].
Therefore, many residual dynamics can be covered by
the universal covariance function so that this assump-
tion is not restrictive. Additionally, [7] presents a covari-
ance function which is very effective in learning the in-
verse dynamics of Euler-Lagrange system.
An upper bound for the distance between the mean pre-
diction µ(τ̃ ) of the Gaussian Process Regression and the
true function is given in [26] and is extended for multi-
dimensional functions in the following lemma.

Lemma 1 Consider a Lagrangian system (6) and a
trained Gaussian Process satisfying Assumption 2. The
model error is bounded by

P
{
‖µ(τ̃ |p,D)− τ̃ (p)‖ ≤ ‖β>Σ

1
2 (τ̃ |p,D)‖

}
≥ (1− δ)n

(22)

for p ∈ D with δ ∈ (0, 1),β ∈ Rn and

βj =

√
2‖τ̃j‖2k + 300γj ln3

(
m+ 1

δ

)
(23)

γj = max
p{1},...,p{m+1}∈D

1

2
log |I + σ−2

i KΦj
(x,x′)|.

(24)

x,x′ ∈
{
p{1}, . . . ,p{m+1}

}
(25)

PROOF. See appendix.

Remark 3 If Assumption 2 is not fulfilled due to the
wrong choice of covariance function or hyperparameters,
for many common covariance functions the model error
is still bounded on a closed set [2]. However, this may
result in looser upper bounds for the model error.

The information capacity γ has a sub-linear dependency
on the number of training points for many commonly
used covariance functions and can be approximated with
a constant, e.g. shown in [26]. Therefore, even though the
values of the elements of β are increasing with the num-
ber of training data, it is possible to learn the true func-
tion τ̃ (p) arbitrarily exactly [5]. The result of Lemma 1
is an upper bound for the model error. The stochastic
nature of the bound is due to the fact that just a fi-
nite number of noisy training points are available and
thus, the true function cannot be known exactly. If ex-
act knowledge of the model was available, the variance
of the GPR would be zero and thus, the upper bound
for the model error would also be zero. A simple exam-
ple is shown in Fig. 2 that illustrates the Lemma. Here
we assume, for the sake of simplification, that p is just
one dimensional and τ̃ is an element of a RKHS de-
fined by the linear covariance function k(x,x′) = x>x′.
Lemma 1 shows that the true function remains inside

Input p

O
ut

pu
tτ̃

Bound δ = 0.1

True function
Training points
Mean

Fig. 2. The model error ∆ is the difference between the true
function (dashed blue) and the mean function (solid red) of
the GPR. Regarding to Lemma 1, the true function remains
inside the shaded area with a probability of 90%

the shaded area around the mean function of the GPR
with δ = 0.1, i.e. a probability of 90%. With an increas-
ing number of training points or decreasing noise σ of
the training data, the bound becomes tighter. Since the
model is used for a feed-forward compensation of the un-
known dynamics of the system, the model error directly
effects the tracking error as shown in the next section.

4 Tracking control with GPR

The goal of tracking control is to follow a desired trajec-
tory with the closed loop system. A common approach
for tracking control of Euler-Lagrange systems is com-
puted torque control, which contains a feed-forward and
a feedback part. In this setting, low feedback gains are
desirable because of several advantages such as a good
noise attenuation. However, due to the influence of the
unknown dynamics, the feedback gains must be greater
than a specific value to keep the tracking error under a
predefined limit. We use the mean of the Gaussian Pro-
cess Regression to feed-forward compensate the residual
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dynamics τ̃ (p) and adapt the feedback gains based on
the model fidelity. For this purpose, the uncertainty of
the regression is used to scale the feedback gains.
We start with the following assumption for the desired
trajectory.

Assumption 3 The desired state trajectory is bounded
by ‖qd‖ ≤ q̄d, ‖q̇d‖ ≤ ¯̇qd with q̄d, ¯̇qd ∈ R≥0, qd ∈ Rn.

Assumption 3, i.e. bounded reference motion trajecto-
ries, is a very natural assumption and does not pose
any restriction in practice. Before the control law is pro-
posed, the following lemma is introduced.

Lemma 2 Let Σd : Rn × Rn → Rn×n and Σp : Rn →
Rn×n be the marginal variances which are defined anal-
ogously to (16) by

Σd(q̇, q) := Σ(τ̃ |q̇, q,D)

Σp(q) := Σ(τ̃ |q,D). (26)

i) Let Kd,Kp : Rn×n → Rn×n be positive definite, sym-
metric matrix functions such that (Kd ◦ Σd), (Kp ◦ Σp)
are continuous and bounded by

kd1‖x‖2 ≤ x
>
Kd(Σd(q̇, q))x ≤ kd2‖x‖2 (27)

kp1‖x‖2 ≤ x
>
Kp(Σp(q))x ≤ kp2‖x‖2, (28)

for all q̇, q,x ∈ Rn with kp1, kp2, kd1, kd2 ∈ R>0.
Then, there exists an ε > 0 such that the matrix M ∈
R2n×2n given by 1

M =


−Kd(Σd) + εĤ︸ ︷︷ ︸

M11∈Rn×n

ε

2
(−Kd

>
(Σd) + Ĉ)︸ ︷︷ ︸

M12∈Rn×n

ε

2
(−Kd(Σd) + Ĉ

>
)︸ ︷︷ ︸

M12∈Rn×n

− εKp(Σp)︸ ︷︷ ︸
M22∈Rn×n

 (29)

is negative definite for all q̇, q ∈ Rn.

PROOF. See appendix.

The next theorem introduces the control law with guar-
anteed boundedness of the tracking error.

Theorem 1 (CTC-GPR) Consider the Lagrangian
system (6) and a Gaussian Process trained with (19)
which satisfies Assumptions 1 and 2. Let e = q−qd, ė =
q̇ − q̇d be the tracking error. The control law

u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q) + µ(τ̃ |p,D)

−Kd(Σd)ė−Kp(Σp)e (30)

1 For notational convenience, the dependencies of H,C, g
and Σd,Σp are dropped here.

with Assumption 3 and Lemma 2 guarantees that there
exist a closed set D and a model error ∆̄ such that

P

{∥∥∥∥∥ė(t)

e(t)

∥∥∥∥∥ ≤ r, ∀t ≥ t0 + T (δ)

}
≥ (1− δ)n (31)

for any initial value ‖ė0
>
(t0), e

>
(t0)‖ < δ with t0, T (δ), δ, r ∈

R>0.

Before proving the theorem we provide a series of results
on a suitable Lyapunov candidate.

Lemma 3 There exist an ε > 0 such that

V =
1

2
ė
>
Ĥ(q)ė+

∫ e

0

z
>
Kp(Σp(z + qd))dz + εe

>
Ĥ(q)ė

(32)

is a radially unbounded Lyapunov function.

PROOF. To ensure that the Lyapunov candidate is
positive definite, the domain of the integral in (32) is an-
alyzed. For this purpose, we define an additional matrix
function Kp : Rn×n → Rn×n with

Kp(Σp) = I min
i={1,...,n}

λi(Kp(Σp)), (33)

which is continuous becauseKp is a continuous function.
Then, the integral is lower bounded by∫ e

0

z
>
Kp(Σp)dz ≥

∫ e

0

z
>
Kp(Σp)dz

=

n∑
i=1

∫ ei

0

zi min
i={1,...,n}

λi(Kp(Σp))dzi

≥ 1

2

n∑
i=1

min
q∈R,i={1,...,n}

λi(Kp(Σp(q)))e2
i

≥ 1

2
kp1‖e‖2. (34)

An upper quadratic bound can be found in an analogous
way using the maximum eigenvalue of Kp. Since the in-

tegral is lower bounded and Ĥ(q) is always positive def-
inite, the parameter ε can be chosen sufficiently small to
achieve a positive definite and radially unbounded Lya-
punov function. The valid interval for ε can be deter-
mined by the lower bound of the Lyapunov function (32)

V̇ (ė, e) ≥ 1

2
h1‖ė‖2 +

1

2
kp1‖e‖2 −

1

2
εh2

(
‖ė‖2 + ‖e‖2

)
(35)

6



which is positive for

0 < ε < min

{
kp1
h2

,
h1

h2

}
. 2 (36)

In the next step, we derive an upper bound for the time
derivative of the Lyapunov function.

Lemma 4 Assume the Lyapunov function (32) and the
system (6) with the control law (30). The drift of (32) is
upper bounded by

V̇ (ė, e) ≤ −3

4
v1‖ė‖2 −

3

4
εv2‖e‖+ εkC‖ė‖2‖e‖

+
∆̄2

v1
+ ε

∆̄2

v2
. (37)

with v1, v2, ∆̄ ∈ R>0 and p ∈ D.

PROOF. The time derivative of (32) is expressed by

V̇ (ė, e) =

[
ė
>
Ĥ + εe

>
Ĥ

e
>
Kp(Σp) + 1

2 ė
> ˙̂
H + ε(e

> ˙̂
H + ė

>
Ĥ)

]ᵀ [
ë

ė

]
.

(38)

With Property 1 and (30), it can be rewritten as

V̇ =

[
ė

e

]> [
−Kd(Σd) + εĤ ε

2 (−K>d (Σd) + Ĉ)

ε
2 (−Kd(Σd) + Ĉ>) −εKp(Σp)

]
︸ ︷︷ ︸

M∈R2n×2n

[
ė

e

]

+(ė+ εe)>(µ(τ̃ |p,D)− τ̃ (p)). (39)

For the analysis, we compute bounds for the elements
of M to find an upper bound for the drift of the Lya-
punov function. The following statements can be made
for the matrix M : The submatrix M11 ∈ Rn×n is nega-
tive definite since Lemma 2 guarantees the negative def-
initeness of−Kd(Σd) and the parameter ε can be chosen
sufficiently small. In addition, the submatrix is bounded
with

ė>M11ė = ė> (−Kd(Σd) + εH) ė ≤ (−kd1 + εh2)‖ė‖2.
(40)

Lemma 2 ensures the negative definiteness of the subma-
trix M22 ∈ Rn×n with e>M22e ≤ −εkp1‖e‖2. With As-
sumption 3 and Property 2, the submatrix M12 ∈ Rn×n
is bounded by

e>M12ė ≤ ε (kC‖q̇d − ė‖+ kd2) ‖ė‖‖e‖ (41)

≤ ε (kC‖ė‖+ kC ¯̇qd + kd2) ‖ė‖‖e‖ (42)

With Lemma 1, the overall upper bound for the time
derivative of the Lyapunov function is given by

V̇ (ė, e) ≤ (εh2 − kd1)‖ė‖2 − εkp1‖e‖2

+ ε (kC‖ė‖+ kC ¯̇qd + kd2) ‖ė‖‖e‖
+ (‖ė‖+ ε‖e‖)‖β>Σ(τ̃ |p,D)‖ (43)

Considering the inequality

‖ė‖‖e‖ ≤ 1

2

(
ρ‖ė‖2 +

e2

ρ

)
(44)

that holds for all ė, e ∈ Rn and ρ ∈ R≥0, (43) can be
rewritten as

V̇ (ė, e) ≤ (εh2 − kd1)‖ė‖2 − εkp1‖e‖2

+
ε

2
(kC ¯̇qd + kd2) (ρ‖ė‖2 +

‖e‖2

ρ
+ εkC‖ė‖2‖e‖

+ (‖ė‖+ ε‖e‖)‖β>Σ(τ̃ |p,D))‖ (45)

with ρ = (1 + ε2)
kC ¯̇qd + kd2

2kp1
, ε2 ∈ R>0.

The choice of ρ guarantees that the factors of the
quadratic parts are still negative:

V̇ (ė, e) ≤
(
εh2 − kd1 +

ερ

2
(kC ¯̇qd + kd2)

)
‖ė‖2

− εkp1
ε2

1 + ε2
‖e‖2 + εkC‖ė‖2‖e‖

+ (‖ė‖+ ε‖e‖)‖β> Σ(τ̃ |p,D)‖ (46)

With the inequality

v1‖x‖ ≤
v2

1

v2
+
v2

4
‖x‖2 (47)

that holds for all x ∈ Rn and v1, v2 ∈ R≥0 the linear
part of (45) can be bounded by a quadratic function

(‖ė‖+ ε‖e‖)‖β>Σ(τ̃ |p,D))‖

≤∆̄2

v1
+
v1

4
‖ė‖2 +

ε2∆̄
2

εv2
+
εv2

4
‖e‖2 (48)

with ∆̄ ∈ R>0 and

∆̄ ≥ ‖β>Σ(τ̃ |p,D)‖ (49)

v1 := −εh2 + kd1 −
ερ

2
(kC ¯̇qd + kd2) (50)

v2 := kp1
ε2

1 + ε2
. (51)

Since the covariance function is continous and thus,
bounded on a closed set D, the variance Σ(τ̃ |p,D) is
bounded, for more details see [2]. Thus, there exists
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an upper bound ∆̄ for the model error. It is necessary
to ensure that the variables v1, v2 ∈ R>0 are positive.
Therefore, condition (36) must be extended to

0 < ε < min

{
kp1
h2

,
h1

h2
,

2kd1

2h2 + ρ(kC ¯̇qd + kd2)

}
. (52)

Additionally, they are chosen in a way which keeps the
factors of the quadratic parts of the Lyapunov derivative
negative. Thus, with (48), equation (46) can be rewritten
as (37). 2

Lemmas 3 and 4 provide a valid Lyapunov function and
an upper bound for its drift. With these results, Theo-
rem 1 is proven in the following part.

PROOF ( Theorem 1). According to [20, Theorem
1] and Lemmas 3 and 4, there exists a ξ ∈ R≥0 and
a % ∈ R≥0 for (43) such that

P
{
V̇ (x, t) ≤ −ξV (x, t) + %

}
≥ (1− δ)n. (53)

Consequently, using [9, Theorem 2.1], the closed loop
is uniformly ultimately bounded and exponentially con-
vergent to a ball with a probability of at least (1− δ)n.
Since the state is bounded, it is always possible to find
a combination of a set D and a maximum model error
∆̄ such that p ∈ D. 2

Proposition 1 The radius r of the ball in (31) is given
by

r =

√
2%

ξmin {kp1 − εh2, h1 − εh2}
(54)

ξ =
2

3

min
{
εv2, v1 − 4

3εkc
√

2V0

kp1−εh2

}
max {εh2 + kp2, (1 + ε)h2}

(55)

% =
∆̄2

v1
+ ε

∆̄2

v2
(56)

with the extension of (52)

0 < ε < min

kp1h2
,
h1

h2
,

2kd1

2h2 +
2kp1ρ2

1+ε2
+ 8

3kc
√

2V0

kp1−εh2

 .

(57)

PROOF. See [20]

Remark 4 The first summand of (39) contains the in-
fluence of the controller on the system while the second
summand captures the model error. If a perfect model

was available, such that µ(τ̃ ) = τ̃ (p) and thus ∆̄ = 0,
equation (39) with Lemma 2 would show that the closed
loop system is asymptotically stable [20].

Corollary 1 (Static feedback gains) Consider the
Lagrangian system (6) and a Gaussian Process trained
with (19) which satisfies Assumptions 1 and 2. With As-
sumption 3 and Lemma 2, the control law (30) with
constant feedback matrices Kp and Kd guarantees that
there exist a closed set D and a model error ∆̄ such that

P

{∥∥∥∥∥ė(t)

e(t)

∥∥∥∥∥ ≤ r, ∀t ≥ t0 + T (δ)

}
≥ (1− δ)n (58)

for any initial value ‖ė>(t0), e
>
(t0)‖ < δ with t0, T (δ), δ, r ∈

R>0.

In the next step, the result will be discussed and exam-
ined regarding to its application.

4.1 Design guidelines for feedback gains

Theorem 1 provides an ultimate bound with a given
probability depending on the gains, the system param-
eters and the variance of the GP. The radius of the
bound depends quadratically on the upper bound of the
model error ∆̄. Thus, the radius r shrinks if the upper
bound of the variance of the Gaussian Process Regres-
sion decreases. The consequence is an improved tracking
performance in terms of tracking error. The posterior
variance of the GPR is related to the number and dis-
tribution of the training points and can be decreased,
for example, with the Bayesian optimization approach
where the next training point is set to the position
of maximum variance, as proposed in [28]. Especially
for the commonly used squared exponential covariance
function, each new training point reduces the posterior
variance [29].
The lower and upper bound of the adaptive gains also
affects the radius of the ball. Since ε can be arbitrar-
ily small, an increased lower bound of Kd significantly
shrinks the radius. The influence of Kp depends directly
on the Lagrangian system. Based on the presented re-
sults, several design problems can be addressed.
Design Kp, Kd such that a ball of predefined ra-
dius is achieved: For this purpose, the model error ∆
is computed for a desired probability with Lemma 1.
Based on the variance of the GPR and thus, on the
number and distribution of training points, an upper
bound for the model error is determined (49). After-
wards, with (54) the necessary gains can be figured out.
Maximum allowed model variance for a ball of
predefined radius: This allows to draw conclusions re-
garding the number of required training points. Starting
with a desired radius r and gains Kp(q),Kd(q̇, q), (54)
is used to determine the maximum model error.
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Then, Lemma 1 allows to compute the maximum al-
lowed variance for the GPR on a set D. The number
of training points must be increased until the required
maximum variance is achieved.
Compute the radius of the ball for low feedback
gains: If low feedback gains are predetermined, e.g. for
safety reasons, the radius of the ball around the desired
trajectory can be computed based on the model error.
For the computation of the radius r, the model error ∆
with (49) must be computed. Afterwards, (54) shows the
resulting radius for the predefined gainsKp(q),Kd(q̇, q).

5 Numerical Illustration

In this section, we present studies illustrating the prop-
erties of the proposed CTC-GPR control scheme and a
more detailed case study.

5.1 Noise attenuation and saturation

In the following example, we show the benefit of the
CTC-GPR in comparison to the classical computed
torque. For this purpose, we assume a one dimensional
Euler-Lagrange-system

τ = q̈ + q̇ + q + fu(p) (59)

with 30 randomly generated dynamics

fu(p) =
q̇2 sin(q − c)− sin(c)

cos(q − c)− 1.1 cos−1(q − c)
(60)

where each c is uniformly chosen from the set [0, 2π]. For

the parametric model, we use the estimates Ĥ = Ĉ =
ĝ = 1. The 441 training data pairs {τ̃} and {q̈, q̇, q}
for a GPR with squared exponential covariance function
are equally distributed on the set [0]× [−1, 1]× [−1, 1].
A conjugate gradient algorithm is used to minimize the
log likelihood function to find suitable hyperparame-
ters. The desired trajectory is given by qd = sin(t)
and the initial system value is q0 = 0, q̇0 = 1. The
measurements of q̈, q̇, q are corrupted by Gaussian noise
with N (0, 0.042) for training and control. The simula-
tion time is between zero and 2π seconds. In the simula-
tion, the CTC-GPR and the classical computed torque
are compared in terms of the maximum tracking error,
the noise attenuation and the maximum control action.
The feedback gains of the CTC are Kp = Kd = 100
whereas the CTC-GPR is parameterized with

Kp(q) = 10 + 100 Σp(q) (61)

Kd(q̇, q) = 10 + 100 Σd(q̇, q). (62)

The results are shown in Fig. 3. The variation of the gains
is minimal since the desired trajectory is inside the train-
ing area where the variance is quite low. The maximal

tracking error max ‖ė(t), e(t)‖ is decreased compared to
CTC approach for all systems with a median of 61.6%.
The CTC-GPR shows remarkably better noise attenu-
ation that is denoted by a higher signal to noise ratio
(SNR) of the system trajectory. Also the maximal con-
trol action is reduced based of the lower feedback gains of
the CTC-GPR which can prevent actuator saturation.

K p
(q

)

K d
(q̇
, q

)

Max
. tr

ac
kin

g

er
ro

r 1/S
NR
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tro
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Fig. 3. Comparison between the classical CTC and the
proposed CTC-GPR for 30 randomly selected systems.
CTC-GPR values are given as a percentage of CTC values.

5.2 Case study

In this case study, we apply Lagrange’s equations to the
model of a 2-link planar manipulator given by [16, Page
164]. We assume point masses for the links ofm1 = m2 =
1 kg, which are located in the center of each link. The
length of the links is set to l1 = l2 = 1 m. The joints are
without mass and not influenced by any friction. Gravity
is assumed to be 10 ms−2. As estimates, we use m̂1 =

0.9 kg, m̂2 = 1.1 kg, l̂1 = 0.9 m, and l̂2 = 1.1 m. Thus,
the estimated system matrices of (6) are given by

Ĥ =

[
1.41 + 1.09 cos(q2) 0.61 + 0.54 cos(q2)

0.61 + 0.54 cos(q2) 0.61

]

Ĉ =

[
−0.54 sin(q2)q̇2 −0.54 sin(q2)(q̇1 + q̇2)

0.54 sin(q2)q̇1 0

]

ĝ =

[
9 sin(q1) + 6.05 sin(q1 + q2)

6.05 sin(q1 + q2)

]
, (63)

where q1 and q2 are the joint angles. The initial values
are set to q0 = [0, 1]> and q̇0 = [1, 0]>. The unknown
dynamics fu(p) is simulated by an arbitrarily chosen
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nonlinear function

fu(p) =

[
sin(2q̇2) + cos(2q1) + q̈1

sin(2q̇2) + 2 sin(q̇1)

]
. (64)

A Gaussian Process with a squared exponential co-
variance function learns the difference between the
estimated model and the true system given by (63)
and (64). For this purpose, we generate 576 training
pairs on the domain q̈ ∈ [0, 1]2, q̇ ∈ [−1, 1]2 to generate
a set D of training points. The measurements of q̈, q̇, q
are corrupted by Gaussian noise with N (0, 0.12). The
hyperparameters are optimized by means of the like-
lihood function. The desired trajectory is a sinusoidal
function with q0 = [0, 1]>. In this example, the gains
are adapted according to Lemma 2 with

Kp(Σp(q)) = 7I + 400 Σp(q) (65)

Kd(Σd(q̇, q)) = 6I + 400 Σd(q̇, q). (66)

Figure 4 shows the resulting trajectory for the first
joint along with the desired trajectory (dashed red).
As comparison, we use a classic computed torque con-
troller (blue dotted) with the gains Kp,s = diag(10, 10)
and Kd,s = diag(10, 10). It becomes apparent that the
tracking error of the CTC-GPR approach is lower al-
though the feedback gains are also lower. The color of
the trajectory indicates the norm of the current feed-
back gains for the first joint. In the area close to the
training data, the feedback gains remain low (blue color)
while outside the training area the gains increase (red
color). The result is that the tracking error is kept low
and bounded even for areas where no training data is
available. A more detailed view of the time-dependent
variation of the gains can be seen in Fig. 5. Since the
CTC-GPR uses the mean function to compensate the
unknown dynamics, the feedback gains can be lower in
comparison to the CTC. The advantages of the variable
gains are presented in table 1. Here, we also compare
the results to a CTC-GPR with static feedback gains.
Both CTC-GPR approaches show a lower tracking er-
ror than the classic computed torque. Additionally, the
variable CTC-GPR outperforms the static CTC-GPR

CTC
Static

CTC-GPR
Variable

CTC-GPR

‖Kp‖ 10 7.02 7.02 - 9.76

‖Kd‖ 10 6.06 6.06 - 9.44

‖e>, ė>‖L2 4.7274 1.8771 1.4774

max(e1(t)) 0.2060 0.0877 0.0632

max(e2(t)) 0.1680 0.0614 0.0484

max(ė1(t)) 0.2345 0.1139 0.0865

max(ė2(t)) 0.1743 0.0638 0.0548

Table 1
Comparision between CTC, CTC-GPR with static gains,
and CTC-GPR with variable gains.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

q1 [rad]

q̇ 1
[r

a
d

/
s]

Training points CTC
Desired trajectory CTC-GPR

Fig. 4. Tracking performance for the first joint. The color of
the CTC-GPR trajectory indicates the norm of the current
feedback gains (red high, blue low).

6

8

10

time [s]

G
ai

n

‖Kp,s‖
‖Kd,s‖
‖Kp‖
‖Kd‖

Fig. 5. The norm of the feedback gains for the CTC and the
CTC-GPR with variable gains.

for the position and velocity error of both joints because
the gains are increased as soon as the trajectory leaves
the training area.

Conclusion

We propose a data-driven approach for high performance
tracking control. It is based on a computed-torque con-
trol law where the feedback gains are adapted by the
model fidelity of a data-driven model of the system. For
this purpose, we use Gaussian Process Regression to
compensate the residual dynamics of the system. The
variance of the GPR is used as a fidelity measure and
thus to adapt the feedback gains. The main contribution
is that we determine the size of the tracking error of the
closed loop system which is proven to be uniformly ulti-
mately bounded and exponentially convergent to a ball
with a given probability. The result shows the correlation
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between the bound of the tracking error, the uncertainty
of the model and the feedback gains. Thus, for specific
demands on the closed loop behavior, the result provides
the necessary tools for the design of the controller.

A Proof of Lemma 1

The result is a direct consequence of [26, Theo-
rem 6] which concerns the one dimensional case. In
this case, the training data is generated by a scalar
function f : D → R with f ∈ Hk(D) on compact
set D ⊂ Rn. A Gaussian Process is trained with m data
points D = {x{i}, ỹ{i}}mi=1 of

ỹ = f(x) + η, y, η ∈ R,x ∈ Rn (A.1)

η ∼ N (0, σ), σ ∈ R>0. (A.2)

Then, recalling [26], the model error ∆ ∈ R

∆ = |µ(y∗|x∗,D)− f(x∗)| (A.3)

is bounded with a probability of at least (1− δ) by

P
{
∀x∗ ∈ D, ∆ ≤ |β Σ

1
2 (y∗|x∗,D)|

}
≥ (1− δ) (A.4)

where β ∈ R is defined as

β =

√
2‖f‖2k + 300γ ln3

(
m+ 1

δ

)
. (A.5)

The variable γ ∈ R is the maximum information gain

γ = max
x{1},...,x{m+1}∈D

I(y
{1}
j , . . . , y

{m+1}
j ; fj) (A.6)

= max
x{1},...,x{m+1}∈D

1

2
log |I + σ−2

i KΦj
(x,x′)| (A.7)

with the covariance matrix KΦj
and the used ele-

ments x,x′ ∈ {x{1}, . . . ,x{m+1}}. In the multidimen-
sional case of Lemma 1, we use a GP for each dimension
of τ̃ (p) as shown in (14). For the calculation of (22),
assume the two sets

ΠA=
{
∀p ∈ D, |µ(τ̃i|p,D)− τ̃i(p)| ≤ βi var

1
2 (τ̃i|p,D)

}
ΠB=

{
∀p ∈ D, ‖µ(τ̃ |p,D)− τ̃ (p)‖≤‖β>Σ

1
2 (τ̃ |p,D)‖

}
(A.8)

with the multidimensional extension of γ and β

βj =

√
2‖τ̃j‖2k + 300γj ln3

(
m+ 1

δ

)
(A.9)

γj = max
p{1},...,p{m+1}∈D

1

2
log |I + σ−2

i KΦj
(x,x′)|

(A.10)

x,x′ ∈
{
p{1}, . . . ,p{m+1}

}
. (A.11)

Due to the fact that τ̃ is assumed to be uncorrelated (14),
the conditional probability for the set ΠA is given by

P {ΠA} ≥ (1− δ)n. (A.12)

With the monotony property of the probability mea-
sure P and since ΠA ⊆ ΠB holds, (22) provides an upper
bound for the norm of the model error with a probability
of at least (1− δ)n. 2

B Proof of Lemma 2

According to the Schur’s Lemma, M is negative definite
if

M11 = −Kd(Σd) + εĤ and (B.1)

S = −εKp(Σp) +
ε2

4
(Kd(Σd)− Ĉ

>
)

(Kd(Σd)− εĤ)−1(Kd
>
(Σd)− Ĉ) (B.2)

are negative definite where M11 ∈ Rn×n is the upper
left block of M and S ∈ Rn×n is the Schur complement.
SinceKd, Ĥ, andKp are positive definite and bounded, ε
can be chosen sufficiently small to obtain the negative
definiteness of M11. The second summand of the Schur
complement S is quadratic in ε and positive definite
while the first summand is linear in ε and negative. Thus,
for every q, q̇ ∈ Rn, an ε can be found which guaran-
tees the negative definiteness of the Schur complement.
Therefore, there exists an ε > 0, so that matrix M is
negative definite. 2
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