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Abstract

Ongoing brain activity manifests itself in fluctuations of the signal measured via
resting-state functional magnetic resonance imaging (rs-fMRI). The use of rs-fMRI
in humans has attracted enormous interest, as it allows the investigation of the
ongoing (or resting-state) brain activity at a macroscopic level while mapping the
brain in a non-invasive and in vivo way. Rs-fMRI measurements have shown that
the ongoing brain activity is organized into characteristic large-scale patterns of
coherent signal fluctuations (i.e., functional connectivity; FC) known as resting-
state networks (RSNs). The brain’s functional organization at rest is considered to
underlie higher cognition and plays a crucial role in its healthy functioning. Respec-
tively, altered resting-state activity has been observed in various neuropsychiatric
disorders, including major depressive disorder (MDD)—one of the world’s most
burdensome diseases. MDD has been associated with alterations in FC across a wide
range of RSNs. Crucially, rs-fMRI analysis holds the potential to complement and
improve current diagnostic, therapeutic, and prevention strategies. To this end, the
organizational principles of resting-state activity assessed via fMRI need to be under-
stood in more detail, and the underlying causes of altered rs-fMRI FC in MDD need
to be investigated from a more mechanistic perspective.

In this thesis, I perform spectral analyses on the rs-fMRI signal in healthy subjects and
patients suffering from MDD, with the aim of contributing to a deeper understanding
of the organizational principles of ongoing neural processes, and their breakdown in
MDD. Specifically, I investigate what information is carried within distinct frequencies
of the rs-fMRI signal—especially in its higher frequencies (i.e., > 0.1 Hz)—with
regards to: (i) specialized, local processing (i.e., the spectral content of ongoing RSN
signal fluctuations), and (ii) communication and information integration across brain
regions (i.e., FC). I introduce a measure novel to the field of rs-fMRI analysis—the
spectral centroid (SC)—which serves as an aggregate measure describing spectral
characteristics of rs-fMRI signal fluctuations within RSNs and which can be applied to
detect key changes associated with brain disorders. Using the SC, I examine whether
spectral underpinnings of network fluctuations are distinct across RSNs and whether
MDD is associated with spectral alterations within RSNs. Furthermore, I investigate
frequency-specific FC patterns in healthy subjects and the respective aberrations
related to MDD.
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The results of this work reveal frequency-specific organizational principles of resting-
state activity measured via fMRI regarding both specialized local processing as well
as information integration across brain regions. MDD is found to be associated with
altered spectral properties of a core RSN and with altered FC patterns of distinct
brain regions at distinct frequency regimes. Importantly, these results stress the
benefit of considering higher frequencies in rs-fMRI analysis, as they hold unique
information about the functional organization of the brain at rest. Combined, my
findings highlight the relevance of the frequency content to the organizational
properties of resting-state activity and reveal frequency-dependent alterations in
MDD. Shifting the focus of future rs-fMRI investigations towards frequency-resolved
analyses has the potential to largely improve our understanding of ongoing neural
processes and strengthen the validity of rs-fMRI in the clinical scenario.
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Zusammenfassung

Intrinsische Gehirnaktivität unter Ruhebedingungen bildet sich ab in der funk-
tionellen Magnetresonanztomographie, abgekürzt rs-fMRT. Das Verfahren der rs-
fMRT hat im letzten Jahrzehnt immer weiter steigendes Interesse ausgelöst, da
es ermöglicht, Hirnaktivität beim Menschen auf makroskopischer Ebene zu unter-
suchen und gleichzeitig das Gehirn auf nicht-invasive Weise, in vivo zu kartieren.
Die mit fMRT gemessene Signalaktivität unter Ruhe organisiert sich in charakteris-
tischen Mustern kohärenter Signalschwankungen, den sogenannten Resting-State-
Netzwerken (RSNs vom Englischen resting-state networks). Bei diesen Kohärenzen
zwischen unterschiedlichen Hirnarealen spricht man von der sogenannten funk-
tionellen Konnektivität (abgekürzt FK). Die funktionelle Architektur des Gehirns im
Ruhezustand gilt als Basis für höhere Kognition und spielt eine entscheidende Rolle
für gesunde Hirnfunktion. Die depressive Störung (abgekürzt MDD, für englisch
Major Depressive Disorder) stellt eine der weltweit prävalentesten schwerwiegenden
Krankheiten dar. Zahlreiche Studien belegen, dass die Ruheaktivität des Gehirns
bei MDD signifikante Veränderungen aufweist. Aufbauend auf diesen Befunden
besteht die Hoffnung durch rs-fMRT-Analyse, die derzeitigen Diagnose-, Therapie-
und Präventionsstrategien zu ergänzen und zu verbessern. Zu diesem Zweck müssen
jedoch die organisatorischen Prinzipien der rs-fMRT-Signale genauer verstanden und
die zugrundeliegenden Ursachen für Veränderungen in der FK bei MDD aus einer
eher mechanistischen Perspektive untersucht werden.

In der vorliegenden Arbeit führe ich Spektralanalysen von rs-fMRT-Signal bei gesun-
den Probanden und Patienten mit MDD durch. Ziel dabei ist es, zu einem besseren
Verständnis der Organisation laufender neuronaler Prozesse und deren Störun-
gen bei MDD beizutragen. Hierfür untersuche ich, welche Informationen des
rs-fMRT-Signals, insbesondere in den höheren Frequenzbereichen (d.h. > 0.1 Hz)
ausschlaggebend sind in Bezug auf: (i) spezialisierte, lokale Signalverarbeitung
(z.B. der Spektralgehalt laufender RSN-Signalschwankungen) und (ii) Kommu-
nikation und Informationsintegration zwischen den Hirnarealen (bezüglich FK).
Ich verwende ein—auf dem Gebiet der rs-fMRT-Analyse—neues Verfahren das auf
dem Spectral Centroid (SC) beruht. Der SC dient als aggregiertes Maß, das die
spektralen Eigenschaften von rs-fMRT-Signalschwankungen innerhalb von RSNs
zusammenfasst. Gleichzeitig kann man wichtige Veränderungen verbunden mit Hirn-
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erkrankungen mittels des SC erkennen. Ich untersuche die spektralen Eigenschaften
von Signalschwankungen in RSNs, sowie frequenzspezifische funktionelle Konnek-
tivitätsmuster bei gesunden Probanden und vergleiche sie mit den entsprechenden
Veränderungen im Zusammenhang mit MDD.

Die Ergebnisse der vorliegenden Arbeit offenbaren frequenzabhängige Organisa-
tionsprinzipien der mit rs-fMRT erfassten Hirnaktivität, sowohl in Bezug auf die
spezialisierte, lokale Signalverarbeitung innerhalb der RSNs, als auch auf die Infor-
mationsintegration zwischen unterschiedlichen Gehirnregionen. MDD ist sowohl
mit veränderten spektralen Eigenschaften in einem Kern-RSN, als auch mit dif-
ferenziell veränderten FK-Mustern über verschiedene Hirnregionen hinweg in den
unterschiedlichen Frequenzregimen assoziiert. Die Ergebnisse machen deutlich, dass
höhere Frequenzen des rs-fMRT-Signals zusätzliche Informationen über die funk-
tionelle Organisation des Gehirns im Ruhezustand beinhalten und in die Analyse
einbezogen werden sollten. Insgesamt betonen meine Ergebnisse die Relevanz
des gesamten Frequenzsprektrums des rs-fMRT-Signals, um Aussagen über die
organisatorischen Eigenschaften der Ruheaktivität zu treffen und zeigen frequenz-
abhängige Veränderungen bei MDD. Eine Verlagerung des Fokus von künftigen
Forschungsarbeiten bezüglich rs-fMRT von Standard- hin zu verstärkt frequen-
zaufgelösten Analysen könnte wesentlich dazu beitragen, unser Verständnis für
laufende neuronale Prozesse zu verbessern und insbesondere auch die Validität der
rs-fMRT im klinischen Szenario zu stärken.

viii



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my direct super-
visor Dr. Afra Wohlschläger, who guided my research and continuously challenged
me for the better. She has always been thoughtful and caring with her advice
and she drove my passion and curiosity towards understanding the human brain.
Her outstanding knowledge and her respectful attitude towards students shaped an
excellent working environment.

I would also like to thank my advisor Prof. Dr. Claus Zimmer for providing me the
unique opportunity to work at the Neuroradiology Department of the Klinikum rechts
der Isar and to capitalize on the expertise of the outstanding scientists affiliated with
this department, as well as on the advanced technical equipment. I wish to recognize
the support of Dr. Christian Sorg who has always provided insightful feedback on my
research. I would like to thank the members of my thesis committee Dr. Christine
Preibisch and Prof. Dr. Gil Westmeyer for their guidance throughout this PhD project.
I thank all my colleagues at the TUM-NIC for the good team spirit. Big thanks to
Martin for his IT & coffee support. I would like to extend my appreciation to the
Studienstiftung des deutschen Volkes for their financial support which enabled me
to fully focus on my research. The broad repertoire of cultural and educational
activities offered by the Studienstiftung was of equivalent importance.

My immense gratitude goes to my friends, scattered all around the world. The time
spent with you was always a great remedy for the daily routine and the challenges
associated with the PhD training. To my dear friends in Warsaw: Agatka, Dorka,
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1Introduction

„When we take a general view of the wonderful
stream of our consciousness, what strikes us first
is the different pace of its parts. Like a bird’s life,
it seems to be made of an alternation of flights
and perchings.

— William James

To meet the dynamic demands posed by our environment, the human brain performs
complex processes that span distinct neuronal ensembles and multiple timescales.
An intact execution of higher cognitive functions largely depends on the accurate
reconciliation of different timescales of neural processing within and across distinct
functional brain networks.

This dependence was already conceptualized at the turn of the 19th century by
William James—a leading philosopher and psychologist of his time. In his apt
metaphor, James compares the stream of consciousness to the pace of the individual
elements comprising a bird’s life: the flights and the perchings (James, 1890). This
metaphor has been further interpreted by Deco et al. (2017) in the context of modern
dynamical systems: the flights have been associated with fast, segregative processes
and the perchings with slower, integrative processes in the brain. Functional segre-
gation refers to the specialized processing undertaken by local neuronal populations,
while functional integration—facilitated by the brain’s connectivity—refers to the
synthesis of these distinct specialized processes and is crucial for the execution of
brain functions (Friston, 1994; Friston, 2011).

These dynamic processes, it seems, are being largely undertaken by the suppos-
edly "resting" brain—extrapolating from the vast metabolic demands of ongoing
(synonyms: intrinsic, spontaneous) brain activity. The human brain, although it
represents on average only 2% of total body mass, accounts for 20% of the body’s
energy consumption—most of which (ca. 80%) is used to support ongoing neuronal
signaling (Ames, 2000; Attwell and Laughlin, 2001; Lennie, 2003; Shulman et al.,
2004).
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Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool to
explore the architecture of ongoing brain processes and the timescales of activity
that shape it. This architecture can be assessed via slow (< 1 Hz) fluctuations of
the blood oxygen level dependent (BOLD) signal, which coherently evolve over time
across distinct brain regions, forming characteristic functional systems (Biswal et al.,
1995). An intact architecture of ongoing BOLD activity is crucial for healthy brain
functioning, and deviations from it have been implicated in various neuropsychiatric
disorders (Buckholtz and Meyer-Lindenberg, 2012), including major depressive
disorder (MDD)—one of the world’s most burdensome and societally costly brain
disorders (Kessler, 2012; Murray et al., 2012).

These realizations have made rs-fMRI an exciting and rapidly growing research
branch. Yet, most rs-fMRI analyses focus mainly on mapping the spatial distribution
and strength of temporal correlations within the BOLD signal, by viewing the signal in
a constrained, single bandwidth of, conventionally, 0.01–0.1 Hz. Recently, however,
it has been suggested that the coherent patterns of rs-fMRI BOLD fluctuations across
distinct brain regions are governed both in a broadband (i.e., spanning a relatively
wide range of frequencies) and multiband (i.e., exhibiting distinct coherence patterns
at distinct frequency sub-bands of the signal) fashion (Gohel and Biswal, 2015;
Thompson and Fransson, 2015). In consequence, the existing body of research,
although highly informative, may have ignored potentially important information
carried within higher BOLD frequencies, and overlooked contributions of different
frequency sub-bands to the functional brain architecture. This might have resulted in
blurred sources of understanding of the ongoing brain processes assessed via rs-fMRI,
and hindered the gain of a clearer picture of the functional alterations associated
with brain disorders.

In this work, I examine whether spectral analysis of rs-fMRI BOLD signal within the
full width of accessible frequencies offers more understanding of the architecture of
ongoing neural processes. Specifically, I investigate what information is contained
in selective frequencies of the rs-fMRI BOLD signal—and especially in its higher
frequencies (i.e., > 0.1 Hz)—with regards to:

(i) specialized, local processing (i.e., the spectral content of ongoing BOLD fluctu-
ations within characteristic large-scale functional systems),

(ii) communication and information integration across brain areas (i.e., functional
connectivity).

The scope of my investigations covers both the healthy mode of brain functioning
and—by the example of MDD—its perturbed mode. I hypothesize that in healthy
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subjects, distinct large-scale functional systems—formed by the coherent ongoing
BOLD activity—exhibit characteristic spectral underpinnings; and that different fre-
quency regimes facilitate different patterns of information integration. Furthermore,
I hypothesize that in MDD, deviations from the healthy functioning of the brain
are reflected in an imbalance between the contributions of relatively slow and fast
processes shaping the activity within functional systems, as well as in disrupted
communication patterns within specific frequency regimes. Just as alterations in
the pace of individual elements in a bird’s life would largely affect the animal’s
behavior.

In the following sections, I will briefly introduce the broad array of oscillatory
processes governed by the brain. I will outline how these processes can be captured
using selected neuroimaging techniques, and discuss the related advantages and
shortcomings. I will focus on the relevance of the very slow (i.e., < 1 Hz) processes
to brain function, assessed using rs-fMRI. To this end, I will explain the basis of
fMRI technique; how it can be applied to study large-scale, ongoing brain activity;
which frequencies contribute to the rs-fMRI signal; and how different frequency
regimes differentially shape the brain’s functional architecture at rest. I will delineate
alterations in rs-fMRI activity which are associated with MDD, with the main focus
on alterations within large-scale functional systems. I will stress the shortcomings of
the conventional analysis approaches applied in rs-fMRI in healthy subjects and MDD
patients, and highlight the remaining knowledge gap. Importantly, I will propose a
novel method for rs-fMRI signal analysis—based on the Spectral Centroid measure—
which allows the assessment of spectral characteristics reflecting the ongoing activity
within large-scale functional systems in a compacted manner and, consequently,
enables the detection of key changes associated with brain disorders. In particular,
the Spectral Centroid reflects the relative contributions of slow and fast processes to
the activity of the "resting" brain.
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1.1 Timescales of brain activity

The human brain is a large, complex, and highly efficient network that operates on
a multitude of oscillatory timescales in support of its functions. The term "neural
oscillations" or "brain rhythms" refers to the rhythmic electrical activity generated
spontaneously and in response to stimuli by neuronal assemblies in the cortex
(Buzsáki, 2006; Draguhn and Buzsáki, 2004). The mammalian brain generates
a plethora of neural oscillations which range from very slow ones, with periods of
tens of seconds, to very fast ones, with frequencies exceeding 600 Hz (Buzsáki,
2006). Communication within and between neuronal modules is facilitated through
oscillatory synchronicity, i.e., coordinated rhythmic neuronal activity and coherent
signal development over time (Fries, 2005; Fries, 2015; Womelsdorf et al., 2007;
Buzsáki, 2006).

To systematically classify the broad array of brain rhythms, Buzsáki and colleagues
recorded electrophysiological signals in rats and grouped the observed neural oscil-
lations into ten "oscillation classes"—each representing a distinct frequency band, as
depicted in Figure 1.1 (Penttonen and Buzsáki, 2003; Draguhn and Buzsáki, 2004).
They observed that neural oscillation classes are arrayed linearly when plotted on
a logarithmic scale. From this observation and from empirical evidence at higher
frequencies they concluded that independent frequency bands are generated by
distinct oscillators—each with specific properties and unique physiological functions.
Moreover, a spatial regularity associated with these oscillator classes has been noted:
fast oscillations tend to be confined to small neuronal assemblies, while slow oscilla-
tions recruit large-scale networks. Additionally, slower oscillations appear to group
and modulate faster ones (Steriade et al., 2001; Vanhatalo et al., 2004).

Neural oscillations at distinct frequency bands have been extensively studied in
humans and animals using various electrophysiological techniques—as these provide
precise temporal information in the range of milliseconds. Neural oscillations have
been shown to play an important role in all aspects of cognition and behavior (Başar
et al., 2001; Draguhn and Buzsáki, 2004; Knyazev, 2007; Wang, 2010) and to be
frequently altered in pathology (Fitzgerald and Watson, 2018; Voytek and Knight,
2015). However, the exact role of different oscillations in cognitive functions is
still a topic of debate and remains largely unknown. In the following section, some
major functions associated with different frequency domains will be summarized.
Frequently, neural oscillations are believed to relate to three main functional roles:
(i) coding specific information, (ii) setting and modulating attentional states, and (iii)
assuring the communication between neuronal assemblies such that specific dynamic
workspaces may be created (Lopes da Silva, 2013). Usually, the brain oscillations
studied using electrophysiological techniques are subdivided into the following main
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Fig. 1.1. | Rhythms of the brain. Oscillation classes in the cerebral cortex form a linear
progression of the frequency bands on the logarithmic scale. For each band the
frequency (Hz) ranges are shown together with their commonly used names. For
the slow frequency bands (< 1.5 Hz) the period ranges are shown in addition.
Modified figure and legend reprinted with permissions from Draguhn and Buzsáki
(2004).

frequency bands (which complement and refine Buzsáki’s nomenclature): delta
(0.5–3.5 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–80
Hz). The neural activity at individual frequency bands, as well as the complex
cross-frequency interactions (Jensen and Colgin, 2007), have been associated with
the following, selected functions. Delta oscillations are assumed to mediate signal
detection and decision making (Başar et al., 2001; Schürmann et al., 2001), and
are involved in motivational processes (Knyazev, 2007). Theta oscillations are
often associated with memory processes and navigation (reviewed in Buzsáki and
Moser, 2013; Colgin, 2013), as well as with emotional regulation (Knyazev, 2007).
Specifically, theta rhythms have been shown to reflect processes of the working
memory system (WMS) (Klimesch, 1996; Klimesch et al., 1997b; Klimesch et al.,
2001; reviewed in Sauseng et al., 2010). Upper alpha oscillations (10–12 Hz)
reflect information retrieval from the long-term memory system (LTMS), while
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lower alpha oscillations (8–10 Hz) are being associated with transient increases in
attentional demands (Başar et al., 1997; Klimesch, 1996; Klimesch et al., 1997a;
Klimesch et al., 1997b). The exchange of information between WMS and LTMS is
reflected by a specific interplay between theta and alpha rhythms (Sauseng et al.,
2002). Beta oscillations are associated with preparation and inhibitory control in the
motor system (Pfurtscheller et al., 1996). Gamma oscillations are believed to play
a fundamental role in high-level cognitive functions such as attention (Fries et al.,
2001; Gregoriou et al., 2009), memory (Carr et al., 2012; Colgin et al., 2009), and
perception (Rodriguez et al., 1999; Melloni et al., 2007); leading to the hypothesis
that gamma oscillations play a pivotal role for cortical processing (Fries, 2009;
Tallon-Baudry, 2009). Moreover, gamma-frequency synchronization between neural
ensembles is believed to play a crucial role for integration of sensory information
(e.g., binding different attributes of a stimulus) (Singer and Gray, 1995; Singer,
1999; Uhlhaas et al., 2009). The coupling between theta and gamma oscillations is
believed to integrate information into working memory representations (Sauseng
et al., 2010).

On that note, much has been learned about the relevance of neural activity at
different—although mostly high—frequency bands to brain function, using electro-
physiology (for review see Lopes da Silva, 2013). Yet, these high-frequency sampling
techniques suffer from either being—in terms of their spatial coverage—too narrow
(e.g., single cell recordings; mostly applied in animal studies due to high invasive-
ness) or too unspecific (e.g., electroencephalography (EEG) recordings that capture
the activity of millions of neurons only at the scalp surface, after which the inverse
estimation of original sources remains problematic). As a consequence, the more
precise spatial distribution of distinct oscillatory activity across functional systems
remains ill-defined.

Furthermore, for a long time, EEG has been considered not to be suitable for
the investigation of the very slow frequencies (< 0.5 Hz). The majority of EEG
studies apply a band-pass filter of 0.5–50 Hz already during signal acquisition and
thus discard the slow oscillations, as they are considered to represent noise. Only
recently, a shift in EEG signal acquisition and analysis has been proposed, which
expands the range of recorded frequencies both towards the lower end (i.e, slow
oscillations < 0.5 Hz) and the higher end (i.e., fast oscillations > 50 Hz). This
is known as direct-current-coupled full-band electroencephalography (DC fbEEG)
(Vanhatalo et al., 2005). However, since this approach is relatively new, it is not yet
being routinely applied, the literature is scarce, and standardized analysis pipelines
are lacking. Thus, only very little information regarding these slow oscillations in
humans is provided by EEG recordings.
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Functional magnetic resonance imaging (fMRI), on the other hand, is well optimized
for mapping brain functions across the whole brain at a good spatial resolution (1.5–
3 mm voxels) in a non-invasive, in vivo manner. Although the temporal resolution
of fMRI allows for the investigation of only a narrow range of frequencies, fMRI
is highly optimized to capture the slow (0.1–1.5 Hz) and infra-slow (0.01–0.1 Hz)
fluctuations of brain activity. These generally termed "slow" fluctuations represented
in the rs-fMRI signal have become the focus of a large number of studies that map
brain function, as they enable the investigation of the brain’s large-scale functional
architecture (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2005). Slow fluctu-
ations in the rs-fMRI signal are temporally coherent within large-scale functional
brain networks. These networks of coherent BOLD activity are believed to represent
functional integration across distinct brain regions and thus appear to reflect a fun-
damental aspect of brain organization (Biswal et al., 1995; Fox and Raichle, 2007).
In particular, the presence of low-frequency dynamics (i.e., 0.1–2 Hz) within specific
brain networks is believed to constitute a key mechanism underlying attention,
perception, and awareness (He and Raichle, 2009; Lakatos et al., 2008; Dehaene
and Changeux, 2011). Combined, both the good spatial resolution of fMRI and its
capacity to measure slow fluctuations in the brain, make this technique a powerful
tool for exploring the spatial distribution of distinct, slow processes which lie at
the core of large-scale information integration in the brain and, respectively, higher
order brain processes.

FMRI is based on the BOLD contrast (Ogawa et al., 1990; Ogawa et al., 1992)
which measures local changes in blood flow in response to elevated neuronal activity
(hemodynamic response; Buckner et al., 1996; Buxton et al., 2004). The BOLD
contrast capitalizes on the neurovascular coupling (i.e., the mechanism by which
neuronal activity increases blood flow) (Buxton et al., 2004; Buxton, 2012) and
the differences in magnetic properties of oxygenated and deoxygenated hemoglobin
(Pauling and Coryell, 1936). Elevated neural activity within a brain region results
in a brief, local "undershoot" in oxygenated hemoglobin—due to the energetic
demands—and is subsequently followed by the dilation of blood vessels together
with an increased inflow ("overshoot") of blood rich in oxygenated hemoglobin
to that region. Thus, brain regions of elevated neural activity exhibit significant
periods of increased blood flow and oxygenation. The oxygenated hemoglobin shows
a slower MR signal decay rate (T2*) compared to the deoxygenated hemoglobin,
thus the signal from well-oxygenated regions results in a stronger MR signal intensity
than areas lacking the increased blood flow. These are the electrophysiological
underpinnings of the BOLD signal (Harris et al., 2011). Importantly, the BOLD signal
is viewed as an indirect measure of neuronal activity.

Yet, the exact relation between hemodynamic responses, as measured with fMRI
BOLD signal, and the underlying neural activity is not fully understood (Logothetis,
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2008). The BOLD signal has been shown to strongly correlate with single-neuron
activity, as well as with the local field potential (LFP) which reflects integrated
electrical population-based activity in pre- and post-synaptic terminals (Goense
and Logothetis, 2008; Logothetis et al., 2001; Logothetis, 2008; Lee et al., 2010;
Mukamel et al., 2005). Importantly, infra-slow fluctuations (ISFs) observed both in
the electrophysiological and BOLD signal were shown to correlate with the amplitude
envelopes of simultaneously acquired, distinct EEG oscillations at higher frequencies,
e.g., the gamma-, beta- and alpha-bands (Leopold et al., 2003; Shmuel and Leopold,
2008; Schölvinck et al., 2010; Jann et al., 2010; Goldman et al., 2002; Mantini et al.,
2007; Sadaghiani et al., 2010). In addition to the correlation between the BOLD
signal and the down-sampled, smoothed amplitude envelopes of high-frequency
oscillations, the recent body of research revealed a direct relation between high-
frequency neural activity and the BOLD signal (Kyathanahally et al., 2017; Lewis
et al., 2016). On the other side, ISFs in the rs-fMRI BOLD signal also correlate with
ISFs in scalp potentials (also termed slow cortical potentials; SCPs, 0.01–1 Hz) (He
et al., 2008; He and Raichle, 2009; Hiltunen et al., 2014; Khader et al., 2008).
Taken together, resting-state BOLD fluctuations of cortical and sub-cortical regions
are believed to originate from intrinsic neural activity, and the temporal coherence
between BOLD fluctuations of anatomically remote brain regions is believed to
reflect the synchronization between the underlying neural activation patterns of
these regions. Moreover, the BOLD signal seems to reflect distinct timescales of
neuronal activity: the fast and slow processes—each playing a distinct role in the
functioning of the brain. Thus, it is of high interest to investigate whether distinct
frequency sub-bands of the BOLD signal also reflect differential contributions to the
brain’s functional architecture.

It is important to note, however, that fluctuations in the rs-fMRI BOLD signal are
also largely driven by non-neuronal sources. Physiological noise, i.e., cardiac and
respiratory rates, as well as head movement artifacts contribute to the rs-fMRI BOLD
signal (for a review covering various noise sources in the fMRI signal, and approaches
to mitigate noise effects, see Murphy et al., 2013 and Liu, 2016). Importantly, these
non-neural sources may induce spurious patterns of BOLD signal coherence (Van
Dijk et al., 2012; Murphy et al., 2013; Power et al., 2012). Despite the debate
on whether coherent activity patterns in the BOLD signal originate solely from
such non-neural noise contributions, evidence shows that large-scale functional
systems do originate from neural processes (De Luca et al., 2006). However, special
preprocessing procedures need to be applied to the BOLD signal to minimize the
effects of noise artifacts, in order to identify the effects that are truly related to the
underlying neuronal activity.
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1.2 Resting-State fMRI

1.2.1 Organizational principles of rs-fMRI activity

BOLD time-series at rest (i.e., measured in the absence of external stimulation
and response demands), assessed with fMRI at low frequencies (< 1 Hz), exhibit
correlated activity between anatomically remote brain regions. Such temporal
dependence is known as (resting-state) functional connectivity (FC) (Friston et
al., 1996; Biswal et al., 1995). Consistent patterns of FC have been observed
and categorized into different resting-state networks (RSNs) (Biswal et al., 1995;
Fox et al., 2005; Fox and Raichle, 2007; Greicius et al., 2003; Beckmann et al.,
2005; Damoiseaux et al., 2006; De Luca et al., 2006). RSNs closely relate to the
underlying anatomical connectivity (Hagmann et al., 2008; Sporns et al., 2000),
they strongly resemble task-related networks, and support brain functions such as
attention, memory, task control, introspection, and sensory processes (Cole et al.,
2013; Power et al., 2011; Yeo et al., 2011). RSNs show remarkable reproducibility
across individuals (Damoiseaux et al., 2006), ages (Fransson et al., 2007), subject
states (Liu et al., 2008; Greicius et al., 2008), or species (Vincent et al., 2007; Lu
et al., 2012; Jonckers et al., 2011). Core RSNs include the default-mode network
(DMN) (Buckner et al., 2008; Raichle et al., 2001; Greicius et al., 2003), the salience
network (SN) (Menon and Uddin, 2010; Seeley et al., 2007), and the central
executive network (CEN) (Seeley et al., 2007; Vincent et al., 2008). Additional
RSNs such as the attentional, visual, auditory and sensorimotor networks have been
identified (Fox et al., 2006; Biswal et al., 1995; Cordes et al., 2000; Eckert et al.,
2008; Bianciardi et al., 2009). Examples of RSNs are shown in figure 1.2.A.

Independent component analysis (ICA) is a powerful signal analysis method used
for the identification and exploration of consistent FC patterns of BOLD fluctuations
in the resting brain (Beckmann et al., 2005; Calhoun et al., 2001; Calhoun et al.,
2009; Kiviniemi et al., 2003). Spatial ICA—the ICA variant most commonly used in
rs-fMRI—is a model-free, data-driven approach used to decompose the whole-brain
fMRI data into systematically non-overlapping, temporally coherent components;
each associated with a spatial map and a BOLD time course. These independent
components (ICs) can be later categorized into components that represent RSNs and
components that represent physiological and movement artifacts. The categorization
of ICs into RSNs of interest can be facilitated by the use of established RSN templates
(e.g. Allen et al., 2011; Yeo et al., 2011). Example BOLD power spectra of RSNs and
physiological noise components are presented in Figure 1.2.B.

Brain function, particularly higher cognitive processes, require the integrated ac-
tion of many, sometimes highly distributed specialized brain regions. Information
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Fig. 1.2. | Example RSNs and their power spectra. (A) Example spatial maps of seven
major resting-state networks (RSNs), assessed via measures of functional connec-
tivity. Modified figure reprinted from Raichle, 2011, with permission of Mary Ann
Liebert, Inc. Publishers, Copyright 2011, Mary Ann Liebert, Inc. (B) Comparison
of the mean spectral distribution of diverse RSNs (shown in green) and various
physiological noise components (shown in red). Modified figure and legend taken
from Boubela et al. (2014), distributed under the terms of the Creative Commons
Attribution License (CC BY).

needs to be efficiently integrated both between specialized regions within the same
functional system (i.e., within a RSN) as well as between regions of functionally
distinct systems (i.e., between RSNs). Such operations are facilitated by functional
hubs—i.e., highly connected brain regions. Biological systems—including the brain—
can be represented as complex networks and examined by use of graph theoretical
measures. The brain can be viewed as a graph consisting of a number of nodes (i.e.,
brain regions) and edges linking the nodes (i.e., functional connectivity between
brain regions) (Salvador et al., 2005; Sporns et al., 2000; Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Bullmore and Sporns, 2012). Examining the topo-
logical properties of such a graph provides essential information about the brain’s
organization and function (Sporns et al., 2004), since the topology of a network is
directly linked to its level of robustness, its capability to integrate information, and
its communication efficiency (Draguhn and Buzsáki, 2004; Latora and Marchiori,
2001; Mathias and Gopal, 2001).

FMRI studies using graph-theoretical approaches revealed that the functional or-
ganization of large-scale brain activity at rest exhibits properties of a scale-free,
small-world network (Bullmore and Sporns, 2009; van den Heuvel et al., 2008; Sal-
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vador et al., 2005; Eguíluz et al., 2005; Achard et al., 2006). Small-world networks
(Watts and Strogatz, 1998) are characterized by a high level of clustering (i.e., high
probability that two nodes which are directly connected to a third node will also
be directly connected to each other) and a short average path length (i.e., the aver-
age distance from node to node). Scale-free networks (Barabási and Albert, 1999;
Barabási and Bonabeau, 2003; Barabási, 2009) are characterized by a low number
of connections per node, on average, along with the occurrence of a small number
of highly connected nodes (hubs) which ensure a high level of global connectivity.

The scale-free, small-world regime has been hypothesized to constitute an optimal
topographic constellation for brain functioning, as it reflects a balance between local
processing and global integration in the human brain (Sporns et al., 2004). Hubs
are prominent in such a constellation and play an important role for information
integration and flow—by mediating interactions among distinct brain regions and
networks (Buckner et al., 2009; Fransson and Marrelec, 2008; Nijhuis et al., 2013;
Power et al., 2013; Zuo et al., 2012). Hubs can be identified by means of their degree
centrality (DC)—a graph theoretical measure that reflects the overall connectedness
of a given region to the rest of the brain (Buckner et al., 2009; Takeuchi et al.,
2015; Tomasi and Volkow, 2010). High-centrality hubs entail high energetic and
metabolic demands (Bullmore and Sporns, 2012), possess the highest level of neural
activity (Haan et al., 2012), and constitute points of increased vulnerability to brain
damage and neurodegenerative disorders (Buckner et al., 2009; Crossley et al.,
2014; Sperling et al., 2009).

1.2.2 Significance of rs-fMRI activity

Exploration of FC and network topology of the human brain by means of rs-fMRI
has become a major topic in neuroscience (Deco et al., 2011; Fox and Raichle, 2007;
Lowe, 2012; Raichle, 2015). Rs-fMRI FC patterns have been shown to underlie
behavioral and cognitive variability (Fox et al., 2007; Hampson et al., 2006; Kasagi
et al., 2017); relate to personality traits (Dubois et al., 2018; Nostro et al., 2018)
and intelligence (Schultz and Cole, 2016). Rs-fMRI FC can even act as a "fingerprint"
to accurately identify subjects from a large group of individuals (Finn et al., 2015).
Alterations in the brain’s functional architecture have been observed following
pharmacological intervention (Tagliazucchi et al., 2016; Boveroux et al., 2010),
throughout learning processes (Lewis et al., 2009), and across developmental stages
(Hoff et al., 2013; Sala-Llonch et al., 2015). Importantly, RSN integrity has been
shown to be essential to healthy brain function (Zhang and Raichle, 2010; Cole
et al., 2014; Greicius et al., 2008; He et al., 2007; Alexander-Bloch et al., 2018).
Aberrant rs-fMRI FC patterns have been widely observed in a number of neurological
and psychiatric diseases, and summarized using meta-analytic approaches, including
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Alzheimer’s disease (Badhwar et al., 2017), schizophrenia (Dong et al., 2018),
obsessive-compulsive disorder (OCD) (Gürsel et al., 2018), and MDD (Kaiser et al.,
2015; Zhong et al., 2016). To conclude, rs-fMRI is highly suitable for investigating
the ongoing, large-scale functional brain architecture, and proves to be a highly
informative tool that could be used in a clinical context (Fischer et al., 2016; Fox and
Greicius, 2010). However, there are some limitations concerning the conventionally
applied analyses approaches, and overcoming them could provide a more detailed
understanding of the brain’s functional architecture and it’s alterations in brain
disorders.

1.2.3 Limitations of conventional rs-fMRI analyses

A major caveat in rs-fMRI analyses is that studies examining resting-state FC employ
an approach where the BOLD signal is investigated within a single, previously band-
pass filtered frequency range of, typically, 0.01–0.1 Hz. Although these studies have
contributed an exceptional understanding of the brain’s functional organization at
rest, their approach is limited in a twofold manner:

1. The frequency range of 0.01–0.1 Hz is a relatively narrow one, given the full
frequency span accessible from the rs-fMRI signal (depending on acquisition
parameters, frequencies can span up to 0.25 Hz and higher). As such, it
neglects the information content carried in higher frequencies within the
ongoing BOLD signal (i.e., > 0.1 Hz).

2. By analyzing FC patterns across one single frequency band (i.e., 0.01–0.1
Hz), the representation of different neural processes carried within distinct
frequency sub-bands is being fused together.

Moreover, the majority of rs-fMRI studies focus solely on the spatial distribution of
FC patterns and their respective alterations in disease, but usually do not examine
the underlying spectral characteristics of the BOLD signal, and thus, do not delineate
the mechanisms which underlie the FC formation and its breakdown. As a result,
there are many, often divergent, reports of altered FC in a number of neurological
and psychiatric disorders, but the mechanistic causes remain elusive.

In recent years, the need for a shift in rs-fMRI analysis has become prominent. A large
body of research suggests that RSNs operate on a much broader frequency range than
the one conventionally investigated. In particular, the spotlight has been placed on
the higher frequencies of the ongoing BOLD signal (i.e., < 0.1 Hz), highlighting their
relevance to healthy brain function. Additionally, the need for frequency-resolved
analyses of the BOLD signal has been stressed, as different frequency sub-bands

12 Chapter 1 Introduction



of the BOLD signal differentially contribute to the functional organization of the
brain. Importantly, it became clear that the spectral underpinnings of RSNs BOLD
fluctuations need to be explored in a more systematic fashion. Especially, future
work needs to explore which frequencies—and to what extent—contribute to the
RSN BOLD fluctuations, and how these are changed in disease. In the following
sections, I will introduce the range of frequencies in the rs-fMRI BOLD signal that
shape RSN activity, and explain how distinct regional and network dynamics, as
well as distinct FC patterns, are manifested through distinct sub-bands within this
frequency range.

1.3 Mapping timescales of brain activity via
rs-fMRI

1.3.1 Frequency range of neural contributions to the rs-fMRI
signal

Usually, rs-fMRI data is acquired during scans of approximately 5–15 minutes, with
a relatively long repetition time (TR) of commonly 2–3 seconds. Depending on
the acquisition parameters, detected frequencies of resting-state BOLD fluctuations
typically fall within the range of 0.001–0.25 Hz (as in the case of TR = 2 s).
Technical advances in fMRI data acquisition, such as the introduction of multiband
EPI sequences (Feinberg et al., 2010; Feinberg and Yacoub, 2012; Moeller et al.,
2010), enable the mapping of brain function at a much shorter TR (e.g., < 1 s) and,
respectively, widen the span of accessible frequencies of the BOLD signal towards
higher frequencies (e.g., > 0.25 Hz).

Despite this relatively broad range of frequencies in the BOLD signal at rest, most
rs-fMRI studies have focused on the single, narrowed-down frequency band of 0.01–
0.1 Hz (or even 0.01–0.08 Hz) (Biswal et al., 1995; Cordes et al., 2001; Cordes
et al., 2002; Fox and Raichle, 2007; Greicius et al., 2003; Lowe et al., 1998).
Classically, the rs-fMRI signal is band-pass filtered into this frequency range; as the
lowest frequencies (0.001–0.009 Hz) are largely influenced by scanner noise which
cannot be fully accounted for, and higher frequencies (> 0.1 Hz) are believed to
predominantly originate from non-neuronal sources (i.e., respiration and cardiac
signals; Birn et al., 2006; Wise et al., 2004). Consequently, the majority of rs-fMRI
studies which aim at investigating the functional organization of the brain at rest,
ignore the high-frequency BOLD dynamics which, as later shown, contain meaningful
features of neuronal activity.
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This conventional approach was motivated by the following observations: Firstly,
the power spectra of RSN BOLD fluctuations roughly follow a 1/f power-law scaling
(He, 2011), exhibiting highest contributions of power at frequencies < 0.1 Hz,
while the power continuously decreases with increasing frequencies (see figure
1.2.B). Secondly, early investigations on the relative contributions of different BOLD
frequencies to the resting-state FC yielded that signal correlations within the auditory,
sensorimotor and visual cortices were almost exclusively driven by frequencies < 0.1
Hz, while higher frequencies only contributed to the correlations between signals
from major arteries and veins, as well as the cerebrospinal fluid (CSF) (Cordes et al.,
2001). Lastly, the standard model of convolving neural activity with a hemodynamic
response function (which is delayed by 3–10 s compared to neural activity) suggests
that the signal of interest in fMRI should be carried by the low frequencies (Aguirre
et al., 1998). Altogether, these observations have led to the general characterization
of RSNs as networks of low-frequency fluctuations, conventionally between 0.01–0.1
Hz.

However, recent studies viewing spectral properties of rs-fMRI BOLD fluctuations
show that characteristic connectivity patterns corresponding to RSNs can be detected
at multiple frequency bands, including high frequencies up to 0.25 Hz (Wu et al.,
2008; Niazy et al., 2011; van Oort et al., 2012), up to 0.75 Hz (Gohel and Biswal,
2015; Chen and Glover, 2015), or even higher (Boubela et al., 2013; Lee et al., 2013).
An additional body of research further suggests that the conventionally discarded
frequency bands might provide important insights on brain activity (Boyacioglu
and Barth, 2013; Liao et al., 2013; Sasai et al., 2014; Thompson and Fransson,
2015; Lewis et al., 2016). Thus, convincing evidence is provided that the frequency
range of fluctuations attributable to RSNs is broader than conventionally assumed,
and higher frequencies also contain meaningful information of neuronal origin and
should be investigated in more detail.

As a consequence, the application of classical band-pass filters in the rs-fMRI signal
analysis should be reconsidered, as it eliminates potentially relevant information
about ongoing activity at higher frequencies. On another note, accounting for high-
frequency noise by using band-pass filters has been questioned. It has been shown
that in rs-fMRI, without applying a sufficiently high sampling rate, a significant
amount of high-frequency physiological noise is folded into the very low-frequency
range (< 0.1 Hz) (Robinson et al., 2009; Bhattacharyya and Lowe, 2004) (see 1.2.B).
Instead, more specific methods for the elimination of physiological noise have been
proposed, for example, the regression of physiological signal components (Beall and
Lowe, 2007; Glover et al., 2000).
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1.3.2 The relevance of high-frequency rs-fMRI signal to the
healthy brain function

Not only do higher frequencies of the BOLD signal represent meaningful processes of
neuronal origin, they also largely contribute to the healthy functioning of the brain.
Crucially, the intact balance between high and low frequencies of the BOLD signal
has been shown to be essential for healthy brain functioning and consciousness.

Huang et al. (2018) examined timescales of neural processing acquired with rs-fMRI
during wakefulness, under different states of unconsciousness, and in disorders of
consciousness (DOC). Outcomes of their study indicate that states of light sedation
resulted in the slowing of the BOLD signal, manifested by elevated power at the lower
end of the frequency spectrum and decreased power at relatively "higher" frequencies
(it is important to note, however, that the frequency range of analyzed frequencies
lay in the classical band of 0.01–0.1 Hz). Conversely, under deep anesthesia and
in DOC, a speeding up of intrinsic activity was observed, which was manifested by
decreased power at lower frequencies and increased power at higher frequencies
(see figure 1.3.A). Moreover, they observed that changes in the dynamics of BOLD
fluctuations were followed by changes in local and global FC and brain topology.

Similarly, in various neuropsychiatric disorders, an imbalance between the contri-
butions of low- and high-frequency power to the regional as well as network-wide
resting-state BOLD signal has been revealed by studies investigating the full range of
accessible frequencies (also > 0.1 Hz). A general tendency of increased power at
the higher end of the frequency spectrum, often accompanied by decreased power
at the lower end of the frequency spectrum has been observed. Such altered BOLD
dynamics were observed in the insula and anterior cingulate cortex (ACC) (Malinen
et al., 2010) (see figure 1.3.B), as well as in the DMN (Baliki et al., 2011) in chronic
pain patients; as well as across several RSNs in schizophrenia and bipolar disorder
(Calhoun et al., 2011; Garrity et al., 2007) (see figure 1.3.C). Further reports of
altered high-frequency BOLD dynamics in diseased states have been made (Otti
et al., 2013; Hong et al., 2013; Cauda et al., 2009). However, the contributions of
low and high frequencies to the resting-state BOLD signal in MDD have not yet been
investigated. Since many psychiatric disorders overlap with each other in terms of
symptomatology and share common neurobiological substrates (Goodkind et al.,
2015), it stands to reason to expect similar changes in MDD.
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Fig. 1.3. | BOLD power spectra under different pharmacologic and neuropathologic
conditions. Altered spectral distributions of the BOLD signal in: (A) different
states of unconsciousness (modified figure taken from Huang et al. (2018), dis-
tributed under the terms of the CC BY); (B) chronic pain (modified figure taken
from Malinen et al. (2010), Copyright (2010) National Academy of Sciences); and
(C) schizophrenia and bipolar disorder (modified figure taken from Calhoun et al.
(2011), distributed under the terms of the CC BY).

1.3.3 Multiple timescales of rs-fMRI signal dynamics shape
functional integration

Having discussed the range of frequencies in the rs-fMRI BOLD signal which carry
meaningful neural information, it is important to further reflect upon the different
processes executed at distinct frequency sub-bands within the broad spectrum of
rs-fMRI BOLD fluctuations. The second methodological restriction of the majority of
rs-fMRI studies is that FC patterns are mostly analyzed across one single frequency
band (typically 0.01–0.1 Hz), without distinction into specific frequency sub-bands.
Given the differential role of distinct neuronal oscillation classes to brain function
(Buzsáki, 2006; Penttonen and Buzsáki, 2003; Draguhn and Buzsáki, 2004; Knyazev,
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2007)—combined with the assumption that BOLD fluctuations reflect the underlying
neuronal dynamics—it stands to reason that different frequencies of the BOLD signal
would differentially shape the brain’s large-scale organization.

In the nomenclature of Buzsáki and colleagues, slow neuronal oscillations were
further subdivided into distinct frequency bands: slow-5: 0.01–0.027 Hz, slow-4:
0.027–0.073 Hz, slow-3: 0.073–0.198 Hz, slow-2: 0.198–0.5 Hz, slow-1: 0.5–1.5 Hz
(see Figure 1.1), each believed to be generated by distinct oscillators and serving
different functions. The span of neurally meaningful frequencies detected in the
rs-fMRI BOLD signal covers the slow-5 to slow-2 classes as well as part of slow-
1 (given a sufficiently high sampling rate). Thus, at least five distinct frequency
bands of rs-fMRI BOLD fluctuations could also reflect distinct neuronal processes,
and differentially shape the brain’s functional architecture. Indeed, recent studies
investigating spectral contributions to the BOLD signal in distinct brain regions, as
well as the frequency-specific FC, shed more light on the resting-state functional
architecture which evolves over multiple timescales.

A hierarchy of timescales of neural dynamics has been observed in the human brain.
Prior work revealed that during various task demands, information integration
across spatially distinct neural circuits evolves on different timescales (Baldassano
et al., 2017; Ding et al., 2016; Hasson et al., 2008; Hasson et al., 2015; Lerner
et al., 2011). Primary sensory areas were found to encode instantaneous, rapidly
changing information (in the order of milliseconds to seconds), whereas transmodal
association areas were shown to encode information accumulated over a longer time
(in the order of seconds, minutes, or longer). Such spatial distribution of oscillatory
timescales has been termed "sensorimotor-to-transmodal gradient" (for review see
Huntenburg et al., 2018). Importantly, such temporal hierarchy of information
integration during tasks relates to timescales of ongoing (i.e., resting-state) cortical
dynamics, as shown in human electrocorticography (ECoG) (Honey et al., 2012) and
fMRI (Stephens et al., 2013) studies, as well as in single-cell recordings in primates
(Murray et al., 2014). Respectively, early sensory areas that accumulate information
over shorter timescales were found to exhibit faster resting-state fluctuations, while
transmodal areas that accumulate information over longer timescales showed slower
resting-state fluctuations. Numerous other studies in humans and primates further
support the notion of a hierarchy of resting-state timescales across individual cortical
regions (Baria et al., 2011; Chaudhuri et al., 2015; Cocchi et al., 2016).

With respect to the spatial organization of ongoing dynamics of individual cortical
regions, the ongoing activity of large-scale networks, assessed with rs-fMRI, was
also shown to be largely shaped by the temporal domain. Both FC within- and
between-RSNs, as well as the resulting network topology and presence of functional
hubs were shown to be governed in a frequency-specific manner (De Domenico
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et al., 2016; Gohel and Biswal, 2015; Salvador et al., 2008; Sasai et al., 2014;
Thompson and Fransson, 2015; Wu et al., 2008; Zuo et al., 2010; Chen and Glover,
2015). In particular, BOLD signals from different brain regions and networks were
shown to exhibit different power contributions at distinct frequency sub-bands.
Graph properties were found to alternate across different frequencies, with small-
world network topology peaking at specific frequencies, and stronger information
integration or segregation being promoted at distinct frequency regimes.

More recently, Gollo et al. (2017) suggested that a hierarchy of timescales organizes
activity between RSNs (with higher order networks showing a slower regime of
activity and sensory networks faster neural dynamics) and within RSNs (with highly
connected regions of a network showing slower dynamics than less interconnected,
peripheral regions). Furthermore, a relation between the frequency regime and
directionality of information flow has been made (Cocchi et al., 2016; Neufang et al.,
2014). Altogether, the hierarchy of neural timescales is believed to enable the brain
to link multiple timescales of perception and to construct a temporal continuum
of conscious experience (Northoff and Huang, 2017). Correspondingly, frequency
specific alterations in rs-fMRI activity and FC have been reported in a number of
brain disorders (Meda et al., 2015; Qian et al., 2017; Wang et al., 2015; Wang et al.,
2017; Zhang et al., 2015; Zhang et al., 2017; Chen et al., 2015; Xu et al., 2016),
including MDD (Luo et al., 2015; Xue et al., 2016; Wang et al., 2016).

Thus, a large body of evidence hints at differential functional contributions of
processes reflected by segregated spectral ranges of rs-fMRI BOLD fluctuations.
Functional integration between distinct brain areas occurs over multiple frequency
bands in the rs-fMRI BOLD signal, and distinct connectivity patterns are promoted
at distinct frequency bands. Considering these findings, it is crucial to investigate
the brain’s functional organization in a frequency-resolved fashion.

However, the current literature does not provide a unified picture regarding the
frequency-specific functional architecture of the brain. Firstly, there are some discrep-
ancies in terms of which frequencies were investigated; whether the classical band of
0.01–0.1 Hz was used, or whether higher frequencies were also considered. Secondly,
the division of the frequency width of the BOLD signal into distinct sub-bands also
varies between studies. Most frequently, studies investigating frequency-resolved
rs-fMRI activity divide the BOLD signal into distinct frequency sub-bands according
to the low-frequency intervals defined by Buzsáki and colleagues. However, as these
frequency intervals were derived from electrophysiological studies in animals, and
not from the BOLD signal itself, they may not constitute the optimal division in the
context of the BOLD signal. Moreover, these frequency intervals are rather broad and
applying them might still merge distinct processes together. Thus, applying much
narrower frequency sub-bands could reveal different, more fine-grained functional
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organizational principles of the brain (Baria et al., 2011; Thompson and Fransson,
2015).

In MDD specifically, only three studies report frequency-dependent alterations in FC.
One of these three studies operates on the conventional, narrow frequency band of
0.01–0.08 Hz (Xue et al., 2016), and the other two—although they consider higher
frequencies (i.e., > 0.1 Hz)—use rather broad frequency intervals (Luo et al., 2015;
Wang et al., 2016) when dividing the BOLD signal into frequency sub-bands. Thus,
more research investigating the architecture of ongoing brain activity in MDD is
needed, especially under consideration of the full span of accessible frequencies of
the BOLD signal along with a frequency subdivision at a higher resolution.

1.4 Major Depressive Disorder

Major depressive disorder has been ranked as one of the most burdensome dis-
eases in the world in terms of total disability-adjusted life years (Murray et al.,
2012), affecting various aspects of life and work in more than 300 million people
worldwide (WHO, 2017). MDD is a complex, heterogeneous disorder comprised
of many symptoms, each of which likely involves distinct neural circuits. MDD is
characterized by single or recurrent major depressive episodes during which patients
experience depressed mood, impaired cognition, energy loss, vegetative symptoms,
and suicidal thoughts (American Psychiatric Association, 2013). From the societal
and economic perspective, MDD is considered the most costly psychiatric disorder
and is accompanied by an alarmingly high personal cost in terms of death by suicide
(Alonso et al., 2004; Nordentoft et al., 2011; Murray et al., 2012). Up to date, the
predominant method of diagnosis in MDD is based on psychiatric interviews and
patients’ self-reports, and there is still the need for more objective and quantifiable
procedures. The ever-increasing amount of brain imaging studies viewing depression
highlights the relevance of the functional organization of large-scale brain systems to
MDD pathophysiology. Neuroimaging approaches are used in the attempt to reveal
informative and putatively more accurate diagnostic, therapeutic, and prevention
strategies in MDD——by investigating the underlying neural circuitry and disease
mechanisms—which could supplement the currently available procedures (Drysdale
et al., 2017; Fischer et al., 2016).

Neuroimaging studies in MDD report alterations in brain structure (Bora et al., 2012;
Koolschijn et al., 2009), neurochemistry (Dunlop and Nemeroff, 2007; Savitz and
Drevets, 2013; Sanacora et al., 2002; Belujon and Grace, 2017) and function (Diener
et al., 2012; Hamilton et al., 2012; Pizzagalli, 2011); for an integrative summary of
neuroimaging studies in MDD see Treadway and Pizzagalli (2014).
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Structural changes brought by MDD are reflected in, for example, gray matter volume
(GMV) abnormalities, predominantly in the hippocampus, anterior cingulate cortex
(ACC), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), dorsolateral
prefrontal cortex (dlPFC), the striatum, and the amygdala (Hamilton et al., 2008;
Kempton et al., 2011). From the neurochemical perspective, the brain’s monoaminer-
gic systems (serotonergic, noradrenergic and dopaminergic) have been the center of
attention in neurobiological studies of depression, and most therapeutics target these
systems. In recent years, however, the pivotal role of both the glutamatergic (Jun
et al., 2014; Mathews et al., 2012; Sanacora et al., 2012) and GABAergic (Luscher
et al., 2011; Tunnicliff and Malatynska, 2003) systems to the neurobiology and
treatment of MDD has been highlighted. These are, respectively, the major excitatory
and inhibitory neurotransmitter systems in the brain. Furthermore, MDD affects
the proper execution of a number of brain functions such as emotion regulation,
reward processing, cognitive control and affective cognition (Hamilton et al., 2012;
Kerestes et al., 2014). Such a broad spectrum of brain functional abnormalities
further suggests that MDD is a complex brain disorder and that its pathophysiology
entails multiple brain circuits and networks (Pandya et al., 2012).

Importantly, widely distributed aberrations in rs-fMRI FC patterns and the resulting
network topology were shown to underlie MDD (Belleau et al., 2015; Greicius et al.,
2007; Manoliu et al., 2013; Northoff et al., 2011; Sheline et al., 2009; Hamilton et al.,
2011; Meng et al., 2014; Veer et al., 2010). Findings of altered rs-fMRI FC in MDD
have been thoroughly reviewed (Dichter et al., 2015; Dutta et al., 2014; Mulders
et al., 2015; Wang et al., 2012) and several meta-analyses have been performed
(Kaiser et al., 2015; Zhong et al., 2016). These studies highlight a large number
of RSNs which exhibit aberrant FC in MDD. Observations are often discrepant and
even contradictory—potentially owing to the heterogeneous profile of MDD which is
somewhat used as an umbrella term, encompassing distinct disease sub-types, each
with different symptom characteristics (Drysdale et al., 2017). Another potential
explanation for the inconsistent reports of aberrant FC patterns in MDD could be
that these are mostly assessed under the assumption of the stationarity of the FC.
However, RSN FC has been shown to be highly variable both in its spatial and
temporal domain (Allen et al., 2014; Calhoun et al., 2014; Deco et al., 2017;
Hutchison et al., 2013a; Hutchison et al., 2013b; Iraji et al., 2018; Yaesoubi et al.,
2017). Alterations in dynamic FC have been reported in MDD (Kaiser et al., 2016;
Demirtaş et al., 2016; Zhi et al., 2018). Thus, more focus should be placed on the
temporal and frequency aspects of resting-state activity in MDD.

Nonetheless, the major body of evidence points toward functional abnormalities in
mostly three RSNs: the DMN, the SN, and the CEN (Belleau et al., 2015; Kaiser
et al., 2015; Manoliu et al., 2013; Sambataro et al., 2013; Wei et al., 2013).
Alterations in functional integration across these three RSNs have been consistently
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observed in a number of other psychiatric disorders, leading to the conceptualization
of the "triple network model of psychopathology" (Menon, 2011). This model
suggests that both the aberrant functional organization within each functional
network and the interplay among them are characteristic of many psychiatric and
neurological disorders. These three networks are generally referred to as the "core
neuro-cognitive networks", as they are involved in a broad spectrum of cognitive
tasks (Greicius et al., 2003; Greicius et al., 2004; Menon and Uddin, 2010; Menon,
2011). Specifically, the CEN and the SN are believed to facilitate externally-driven
cognitive and affective processing, while the DMN is involved in self-referential,
internally-driven intellectual activity (Greicius et al., 2003; Greicius et al., 2004).
The DMN has been proposed to play a role in depressive rumination, due to its
importance for self-referential processes (Berman et al., 2011; Berman et al., 2014;
Cooney et al., 2010; Hamilton et al., 2011; Jacobs et al., 2014).

Interestingly, several studies in MDD report on the normalization of altered rs-fMRI
FC patterns after antidepressant treatment. Specifically, the normalization of abnor-
mal FC in the posterior DMN has been reported after antidepressant treatment, while
persistent abnormal FC in the anterior DMN has been associated with asymptomatic
depression and potential for relapse (Li et al., 2013; Wu et al., 2011b). Another
study further reported widespread effects of antidepressant treatment on the FC
within multiple networks and pointed to an integrative role for the precuneus and
posterior cingulate (parts of the posterior DMN) (Klaassens et al., 2015). Moreover,
the efficacy of depression treatment using transcranial magnetic stimulation (TMS)
targeting the dlPFC was found to depend on the resting-state FC of the stimulation
site with the subgenual cingulate (part of the anterior DMN) (Fox et al., 2012a).

Investigation of aberrant resting-state FC in MDD has become a promising endeavor
for the understanding of maladaptive processes underlying its psychopathology.
Traditional rs-fMRI analysis methods that focus on changes in FC have been suc-
cessful in identifying differences between healthy control subjects and individuals
with MDD. Nonetheless, such analyses do not explain the mechanisms behind the
observed FC aberrations. FC is calculated as a measure reflecting signal covariance,
i.e. synchronous signal development over time. This can only occur when dominant
frequencies of the time courses are identical, because otherwise the signal would nat-
urally diverge at significant periods of time. Thus, the intact temporal organization
of neural dynamics determines the healthy regime of brain functioning. Deviations
from this healthy regime could be reflected in malfunctioning neural processes, as is
the case in several other neurological disorders. Aberrant FC patterns could relate to
shifts in frequency distribution of regional and network BOLD signal fluctuations.
Nonetheless, spectral properties of rs-fMRI BOLD fluctuations in MDD have not been
investigated yet. In order to understand how FC is generated, and what mechanisms
lead to FC breakdown, the investigatory focus needs to be placed on broadband
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spectral properties of the BOLD signal. Especially, studies need to investigate which
frequencies—and to what extent—contribute to the ongoing activity within distinct
RSN; how the orchestration of these frequencies contributes to functional integration
in the brain; and whether MDD is associated with alterations in spectral properties
of RSNs. If the latter holds true, studies need to examine the implications of such
altered spectral properties on FC patterns. In the next section, I will introduce a
novel aggregate measure which can be used to assess the spectral characteristics
of broadband RSN BOLD fluctuations, in an attempt to answer the aforementioned
questions.

1.5 New and noteworthy: the Spectral Centroid

RSNs represent complex processes that evolve through coherence on various tempo-
ral scales within the broad term of slow rs-fMRI BOLD fluctuations. Investigation of
broadband processes is needed to preserve the richness of RSNs operating regime,
i.e., information content across the broad frequency spectrum. The more detailed
architecture of frequency spectra across networks is, however, poorly understood. In
particular, it is unknown to what extent brain disorders affect such architecture.

Identifying key features of broadband spectra of BOLD network fluctuations—which
might also be sensitive to pathological change—bears a challenge, given the rel-
atively wide frequency span of meaningful resting-state BOLD fluctuations (e.g.,
0.01–0.75 Hz) and the need for frequency-resolved analysis (e.g., dividing the full
frequency band into 2–10 sub-bands). Moreover, the vast amount of literature on
aberrant resting-state BOLD activity in various diseases—often involving divergent
results—points toward a large set of regions or networks that are implicated in
specific diseases. Thus, investigating group differences in spectral properties of
regions or networks-of-interest within several frequency sub-bands would involve
many statistical tests, possibly inflating false-positive results; and if strictly corrected
for multiple comparisons—reduce the statistical power of the analysis. I propose
that in order to circumvent this problem, complex measures can be summarized into
meaningful aggregate measures, which may improve the detection of systematic
patterns and emphasize major disease-related alterations. These can be subse-
quently followed-up by post-hoc tests and targeted investigations yielding detailed
information on the underlying changes in power spectra.

As part of this thesis, I propose a measure novel to the field of rs-fMRI—the spectral
centroid (SC)—which is an aggregate measure describing the properties of the power
spectrum of BOLD fluctuations. The SC of RSN BOLD fluctuations represents the
“center of gravity” of the full power spectrum within a network (Ries et al., 2018).
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Pictorially, it can be understood as a midpoint within the spectral density function at
which the distribution is divided into two equal parts so that, figuratively speaking, if
put on the tip of a pin at this midpoint—the spectral distribution would be perfectly
balanced (see Figure 1.4). In mathematical terms, it represents a weighted mean, as
explicitly given by the equation in figure 1.4 as well as in the methods section 3.1.1.
In practice, the SC is a compact measure for statistical analysis1.

Fig. 1.4. | SC: calculation workflow. The spectral centroid (SC) is an integral measure
obtained by evaluating the "center of gravity" of the full power spectrum of
BOLD network fluctuations. The SC is based on the frequency and magnitude
information obtained via a power estimation method of one’s choice (e.g., fast
Fourier transform (FFT), periodogram, or modified periodogram). The SC is
calculated as the weighted mean of the frequencies present in the signal with their
power as the weight, as expressed by the formula in the lower left corner. The
spectral centroid can be conceptualized as a midpoint within the power spectrum
that divides it into two equally weighted parts so that, figuratively speaking, if put
on the tip of a pin at this midpoint, the spectral distribution would be perfectly
balanced (see lower right corner).

1Portions of this section have been published as an original article; see Ries et al. (2018).
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2Objectives

This thesis comprises two consecutive projects. The objective of the first project is to
systematically evaluate the spectral content of RSN BOLD activity, and particularly,
to determine whether the BOLD spectral content is characteristic for individual
RSNs and whether MDD is associated with altered spectral properties of specific
RSNs. The objective of the second project is to investigate the brain’s frequency-
resolved FC structure in a higher spectral resolution and under consideration of
higher frequencies, as well as to determine frequency-dependent aberrations in FC
patterns associated with MDD.

2.1 Project 1: Grading of frequency spectral
centroid across resting-state networks in the
healthy brain, and alterations in major
depressive disorder

Ongoing, slowly fluctuating brain activity is organized into RSNs of spatially coherent
fluctuations. Beyond spatial coherence, RSN activity is governed in a frequency-
specific manner. The more detailed architecture of broadband frequency spectra
across RSNs is, however, poorly understood. In the first project, I propose a novel
measure—the spectral centroid—which represents the "center of gravity" of the full
power spectrum of broadband RSN signal fluctuations. I examine whether spectral
underpinnings of network fluctuations are distinct across RSNs. I hypothesize that
spectral content differs across networks in a consistent way, thus, the aggregate
representation—the SC—systematically differs across RSNs. To this end, I test for a
significant grading (i.e., ordering) of SC across RSNs in a high-quality dataset com-
prising 820 healthy subjects of the Human Connectome Project (HCP). Subsequently,
to validate the reliability and replicability of the results, I further examine the SC
based on an independent dataset comprising 25 healthy subjects. Moreover, I hypoth-
esize that such grading is biologically relevant, by demonstrating its RSN-specific
change through brain disease, namely MDD. I examine the SC values in 25 MDD
patients and test for significant deviations of network SC from healthy controls.
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This study provides a systematic characterization of RSNs in terms of their spectral
content. In particular, it highlights the distinct contributions of slow and fast BOLD
fluctuations to the overall RSN activity regime. Moreover, this study provides a
more detailed understanding about the mechanistic causes underlying alterations in
rs-fMRI activity in MDD, as it delineates the disrupted balance between slow and
fast fluctuations in specific RSNs and the respective alterations in FC. Altogether,
this study provides a new methodological framework by means of which character-
istic properties of RSNs can be assessed, and key changes related to brain disease
detected.

Parts of the results and argumentation presented in this project have been previously
published (Ries et al., 2018). However, the published results were based on a slightly
different spectral estimation method than the one presented in this thesis.

2.2 Project 2: Frequency-specific organization of
functional hubs in the healthy brain, and
alterations in major depressive disorder

Empirical evidence highlights the importance of frequency information when investi-
gating functional brain organization with rs-fMRI. Particularly, higher frequencies
within the BOLD signal have been shown to largely contribute to the healthy function
of the brain. The investigation of the frequency-specific functional architecture of
the brain at rest has gained substantial attention in recent years. The objective
of this project is to investigate frequency-specific FC structure in a higher spectral
resolution (i.e., dividing the BOLD signal into fine-grained, narrow-band frequency
intervals) and also under consideration of higher frequencies (i.e., > 0.1 Hz). In this
project, I calculate frequency-specific degree centrality—a measure of overall FC of
a brain region—within 10 distinct frequency bands accessible from the full range of
resting-state functional MRI BOLD fluctuations (i.e., 0.01–0.25 Hz) in 24 healthy
controls and 24 MDD patients. This project highlights a frequency-dependent spatial
organization of functional hubs in healthy controls and reveals frequency associated
changes in regional hubness in MDD. Importantly, the outcome of this project shows
that frequency-resolved analysis within the full frequency range accessible from the
BOLD signal, including higher frequencies, reveals unique information about brain
organization and its changes, which can otherwise be overlooked.

The results and argumentation of Project 2 have been summarized in form of a
manuscript and submitted for publication.
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3Project 1

3.1 Materials and methods

In Project 1, I operate on two datasets: (i) Dataset 1: rs-fMRI data of 820 healthy
subjects from the Human Connectome Project (HCP), and (ii) Dataset 2: rs-fMRI
data of 25 healthy controls and 25 MDD patients, acquired at my research facility,
the Department of Diagnostic and Interventional Neuroradiology of the Klinikum
rechts der Isar, Technische Universität München.

3.1.1 Dataset 1: Human Connectome Project

The Human Connectome Project1 is a consortium led by the Washington University,
University of Minnesota, and Oxford University and its overarching objective is to
map macroscopic human brain circuits—via multimodal imaging techniques—and
their relationship to behavior and genetics in a large population of healthy adults
(Van Essen et al., 2013). The HCP set itself a goal to acquire data from 1200 healthy
subjects within five years. Throughout the acquisition process batches of already
collected data have been released quarterly (for example the 500 subjects release or
the 900 subjects release). The HCP data is characterized by its exceptionally high
quality—to which the customized scanner, the large population size, and the tailored
preprocessing procedures significantly redound.

Another objective of the HCP is to make imaging data freely accessible, in an
optimized way. Accordingly, the HCP data can be easily downloaded from the
ConnectomeDB database2, which has specifically been established for handling the
large amounts of unprocessed and processed HCP data.

Information about the HCP study population, data acquisition protocols, as well as
preprocessing and analysis steps are described in great detail in previous publications
(Van Essen et al., 2013; Smith et al., 2013; Uğurbil et al., 2013), as well as in the

1http://www.humanconnectomeproject.org/
2https://db.humanconnectome.org
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HCP 900 Subjects Data Release Reference Manual3. Below, I will briefly describe
these procedures with the specific focus on aspects related to my further analyses.

Participants & Data Acquisition

In this project, the 900 subjects release (S900) HCP data was used. The S900 release
comprises rs-fMRI scans of 900 young and healthy adults (aged 22–35), together
with task-based MEG and fMRI, and structural MRI scans. Subjects of the HCP were
drawn from a population of adult twins and their non-twin siblings. All subjects were
scanned at Connectome Skyra—the HCP-customized Siemens Skyra 3 Tesla (3T)
scanner at the Washington University. Within two scanning sessions, four rs-fMRI
runs and two pairs of anatomical images were collected per subject. Out of 900
subjects, the complete acquisition of all four rs-fMRI runs with 100% of collected
time points was obtained only from 820 subjects. The following analysis is based
on rs-fMRI scans of those 820 subjects. The data of 820 HCP healthy subjects will
hereafter be referred to as Dataset 1.

Functional Images Rs-fMRI images were acquired in four runs of approximately 15
minutes each. Two runs were acquired in one session and two in another session, for
a total of 1h of resting-state functional data. Participants were instructed to keep their
eyes open with relaxed fixation on a projected bright cross-hair on a dark background,
presented in a dimmed room. Within each session, oblique axial acquisition alter-
nated between phase encoding in right-to-left (RL) direction in one run and phase
encoding in a left-to-right (LR) direction in the other run. Resting-state functional
images were collected with the following parameters: gradient-echo EPI sequence,
TR = 720 ms, TE = 33.1 ms, flip angle = 52°, field of view = 208 x 180 (RO x
PE), matrix 104 x 90 (RO x PE), slice thickness = 2 mm, 72 slices, 2.0 mm isotropic
voxels, multiband factor = 8, echo spacing 0.58 ms, bandwidth = 2290 Hz/Px.

Structural Images Structural scans were acquired as a pair of T1-weighted and
a pair of T2-weighted images, all acquired at 0.7 mm isotropic resolution.

Data Preprocessing

Anatomical images and functional resting-state images were preprocessed by the
HCP using the minimal preprocessing pipelines (MPP) (Glasser et al., 2013). The

3https://www.humanconnectome.org/storage/app/media/documentation/s900/HCP_S900_
Release_Reference_Manual.pdf
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MPP are procedures specifically designed to capitalize on the high-quality data of
HCP. These procedures include: the removal of spatial artifacts and distortions,
anatomical image segmentation, within-subject cross-modal image registration, and
normalization into standard space. Particularly, the MPP are designed to minimize
the amount of information removed from the functional data. Respectively, the
MPP do not include such steps as temporal filtering, nuisance regression, motion
censoring (scrubbing), or significant spatial smoothing. Instead, the minimally
preprocessed rs-fMRI images are denoised using ICA in combination with FMRIB’s
ICA-based Xnoiseifier (FIX), so that artifactual (i.e., non-neural) spatial components
are automatically removed from the signal (ICA-FIX) (Smith et al., 2013; Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014). The procedure goes as follows: ICA with
an automatic dimensionality estimation is run on the minimally preprocessed rs-fMRI
images (with high-pass filtered time courses) using the MELODIC software from
FSL4. The resulting ICs are subsequently fed into FIX5 for an automated classification
into “good” vs. “bad” components. Bad components are then removed from the
data in a non-aggressive way, which means that only variance unique to the bad
components is regressed out from the data while global variance shared across good
and bad components remains intact.

Data Analysis

Determination of resting-state networks Within the HCP analysis framework, an
ICA was performed on the preprocessed and denoised rs-fMRI images using the
MELODIC software. Different ICA parcellation scenarios were used with a varying
number of ICs (i.e., 15, 25, 50, 100, 300). For each scenario, the time courses per IC
and subject, as well as group-averaged spatial maps of the ICs are publicly available
for download.

Subsequent analyses were performed by me and are based on the spatial maps and
BOLD time courses of ICs obtained from the IC = 50 parcellation scenario. Previous
studies have demonstrated that a high model order ICA reveals refined components
that correspond to known anatomical and functional segmentations (Kiviniemi et al.,
2009; Smith et al., 2009; Abou-Elseoud et al., 2009; Ystad et al., 2010; Ray et al.,
2013). Specifically, the model order of around 70–75 ICs has been found to be
optimal and has been widely used in previous studies, next to the model order of 20
ICs. Thus, in Dataset 1, when following the 70–75 model order standard, I had to
choose between the option of 50 and 100 ICs, as the HCP does not provide results of
ICA with 75 ICs. I have decided to choose the 50 ICs model order, as it resembles to

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
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a higher extent the settings of previous studies, compared to the model order of 100
ICs.

From the set of 50 ICs provided by the HCP, a number of RSNs was identified
in an automated way, using the fslcc function. This function is implemented in
FSL and was used to calculate cross-correlations between spatial maps of the ICs
and the well-established templates defined by Allen et al. (2011) which represent
canonical RSNs. These templates are freely available for download6. A correlation
threshold of r > 0.2 was applied when using fslcc. Next, ICs of the highest correlation
with the canonical RSN templates were selected and represented the corresponding
RSNs. This selection procedure was accompanied by a careful visual inspection of
compliance between the spatial maps of the selected ICs and the canonical RSN
templates from Allen et al. (2011).

Spectral Centroid Each RSN is characterized by its spatial map, representing the
span of the FC within the network, and the corresponding BOLD signal. The BOLD
signal can be transformed from its time domain into the frequency domain using the
Fast Fourier Transform (FFT). As a result, the power spectral density (or simply the
power spectrum) is obtained. Based on the power spectrum, the contributions of
different frequencies to the RSN BOLD signal can be investigated, with respect to
their power.

An in-house, Matlab-based script was used to perform the FFT on the time courses
of each RSN, in each participant and run. With a TR of 720ms, the full spectrum of
accessible frequencies spans between 0–0.69 Hz. For the subsequent analysis, the
FFT results were restricted to the frequency range of 0.01–0.69 Hz, omitting the
very low frequencies below 0.01 Hz, as these are largely affected by the slow drifts
occurring due to scanner hardware, and cannot fully be separated from the neural
signal drifts.

The spectral properties of RSN BOLD fluctuations were examined at the subject
level, by means of the spectral centroid (SC). The SC is an aggregate measure
obtained by evaluating the "center of gravity" of the full power spectrum of RSN
BOLD fluctuations, based on the frequency and magnitude information obtained
from the FFT. The SC is calculated as the weighted mean of the frequencies present

6http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii
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in the signal with their power as the weight. The formula for the calculation of the
SC is described below:

SC =
∑N/2+1
i=1 i× f × P (i)∑N/2+1

i=1 P (i)
(3.1)

where f is the width of each spectral bin in Hz, P(i) is the power at the ith spectral
bin given in Hz, and N is the number of points in the network’s BOLD time series. In
Dataset 1 the respective parameters are: f = 0.0012 Hz, and N = 1200.

The SC of the power spectrum of network BOLD fluctuations was calculated within
the frequency range of 0.01–0.69 Hz for each of the 24 RSNs in each participant
and per run. Thus, the analysis resulted in four SC values per subject and per RSN.
Next, for each RSN and subject, the mean SC of all four runs was calculated and
represents the final SC value. As such, one mean SC value was obtained per subject
and per RSN.

Statistical analysis In Matlab, Lilliefors normality tests were carried out on the set
of SC values for each RSN, to determine whether the SC values follow a normal
distribution (p < 0.05, Bonferroni-corrected for 24 RSNs). SC values did not
significantly deviate from a normal distribution. To test for significant differences
in SC values between RSNs, a one-way repeated measures ANOVA was performed,
with the factor network. Subsequently, post-hoc tests were performed as Wilcoxon
signed rank test to investigate significant pairwise differences in SC between specific
RSNs (p < 0.05, Bonferroni-corrected for 24 networks).

Assessment of SC dependence on RSN size The relation between the size of a RSN
and its corresponding SC value was examined. This was motivated by the possibility
that, despite the high-quality data and the careful artifact removal, spatially smaller
networks would be differently affected by local, high-frequency motion artifacts
when compared to more distributed networks. The network size was estimated
from group-averaged IC spatial maps. The spatial maps were first binarized (at
a threshold of z > 10, which corresponds to p < 0.001 under familywise error (FWE)
correction). Next, all non-zero voxels were counted and their sum indicated the
network size. Lastly, Pearson’s correlation was computed between the RSN size and
SC values.
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3.1.2 Dataset 2: Healthy Controls & MDD patients

Participants

Twenty-five MDD patients and 25 age- and sex-matched healthy controls (HC) took
part in the study. The data were previously analyzed in a different context, the results
of which were published in Manoliu et al. (2013) and Meng et al. (2014). Patients
with MDD were recruited from the Department of Psychiatry of the Klinikum rechts
der Isar, Technische Universität München, by practicing psychiatrists. HC subjects
were recruited from the area of Munich via advertising. All participants provided
informed consent in accordance with the Human Research Committee guidelines
of the Klinikum rechts der Isar, Technische Universität München. All participants
were examined for their medical history, underwent psychiatric interviews and
psychometric assessments. Psychiatric diagnoses were based on the Diagnostic
and Statistical Manual of Mental Disorders–IV (DSM–IV) (American Psychiatric
Association, 2013). The Structured Clinical Interview (SCID) was used to determine
the presence of psychiatric diagnoses (First et al., 1996). The severity of depression
symptoms was assessed with the Hamilton Rating Scale for Depression (HAM–D)
(Hamilton, 1960), as well as the Beck Depression Inventory (BDI) (Beck et al., 1961).
The global level of occupational, psychological, and social functioning was assessed
with the GAF scale (Spitzer et al., 1992). The clinical-psychometric assessment
was performed by psychiatrists who have been professionally trained for the SCID
interviews. Inter-rater reliability for diagnoses and scores was higher than 95%.
For all patients, recurrent MDD was the primary diagnosis. Moreover, all patients
met the criteria for a current major depressive (MD) episode. The average MD
episode length was 16.4 weeks (SD = 6.70), the average HAM–D score was 21.38
(SD = 7.06), and the average BDI score was 23.58 (SD = 5.93). The mean duration
of MDD was 16.92 years (SD = 10.38), with a mean number of MD episodes of
5.46 (SD = 2.47). The average GAF-score was 50.17 (SD = 10.60). Fourteen
MDD patients had psychiatric co-morbidities, including avoidant or dependent
personality disorder (n = 5), generalized anxiety disorder (GAD) (n = 6), and
somatization disorder (n = 3). Exclusion criteria for the patients included substance
abuse, bipolar disorder, psychotic symptoms, schizophrenia, and schizoaffective
disorder. The following issues constituted additional exclusion criteria for both
groups: pregnancy, neurological or severe internal systemic diseases, and general
contraindications for MRI. One MDD patient was not undergoing psychotropic
medication treatment by the time of the MRI assessment. Seven patients were
treated by antidepressant mono-therapy [three cases: citalopram 30 mg/d (mean
dose); three cases: sertraline 200 mg/d; one case: mirtazapine 30 mg/d]; 11 patients
by dual-therapy (five cases: citalopram 37.5 mg/d + mirtazapine 30 mg/d; two
cases: citalopram 40 mg/d + venlafaxine 225 mg/d; one case: citalopram 30 mg/d

32 Chapter 3 Project 1



+ quetiapine 200 mg/d; one case: sertraline 200 mg/d + mirtazapine 30 mg/d; two
cases: venlafaxine 225 mg/d + mirtazapine 30 mg/d); and five patients by triple-
therapy (two cases: citalopram 30 mg/d + venlafaxine 187.5 mg/d + amisulpride
200 mg/d; two cases: citalopram 30 mg/d + mirtazapine 30 mg/d + quetiapine
200 mg/d; 1 case: venlafaxine 22 mg/d + mirtazapine 30 mg/d + quetiapine 200
mg/d). All HC subjects were free of any current or past neurological or psychiatric
disorders or psychotropic medication. Detailed information on demographic and
clinical characteristics of the study group is presented in Table 3.1.

Data Acquisition

MRI data were collected on a 3T Philips Achieva scanner with an 8-channel phased-
array head coil. An anatomical image, as well as 10 minutes of rs-fMRI data were
acquired from all participants. Participants were explicitly instructed to keep their
eyes closed, not to fall asleep, and not to think about anything during the resting-
state condition. Directly after the scanning session, a subjective verification that
participants stayed in a state of alertness during the rs-fMRI scan was obtained
by interrogating them via intercom. All participants successfully completed the
scanning sessions.

Functional images The resting-state functional images were acquired using a gra-
dient echo EPI sequence (TE = 35 ms, TR = 2000 ms, flip angle = 82°, field of view
= 220 mm × 220 mm, matrix = 80 × 80, 32 slices, slice thickness = 4 mm, and
0 mm interslice gap, voxel size = 2.75 mm x 2.75 mm × 4 mm; 300 volumes).

Structural images The T1-weighted structural images were acquired with a MPRAGE
sequence (TE = 4 ms, TR = 9 ms, inversion time = 100 ms, flip angle = 5°, field of
view = 240 mm × 240 mm, matrix = 240 × 240, 170 slices, slice thickness = 1 mm,
and 0 mm interslice gap, voxel size = 1 mm × 1 mm × 1 mm).

Data Preprocessing

The first three volumes of rs-fMRI data were discarded due to the magnetization
effects. The remaining images were preprocessed using the statistical parametric
mapping (SPM12)7 software. The preprocessing steps included head motion correc-
tion, spatial normalization into the Montreal Neurological Institute (MNI) standard
space, and spatial smoothing with a 6-mm full width at half maximum (FHWM)

7http://www.fil.ion.ucl.ac.uk/spm/
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Tab. 3.1. | Demographic and clinical characteristics. Information about ma-
jor depressive disorder patients and healthy controls.

Measure
MDD
(n = 25)

HC
(n = 25)

MDD
vs. HC a,b

Mean (SD) Mean (SD) p-value

Age
[years]

48.76 (14.38) 44.08 (14.78) >0.05a

Gender
(m/f)

12/13 11/14 >0.05b

Duration
of MDD [years]

16.72 (10.20) NA

Number
of episodes

5.56 (2.47) NA

Duration
of current episode [weeks]

16.56 (6.62) NA

GAF 49.80 (10.53) 99.50 (1.10) <0.001a,*

HAM-D 22.12 (7.06) 0 <0.001a,*

BDI 24.08 (6.31) 0 <0.001a,*

a two-sample t-test
b chi2-test
* significant for p < 0.05, Bonferroni-corrected for multiple comparisons.

Gaussian kernel. No slice-timing correction was performed, as this procedure has
been shown to have minimal effects on rs-fMRI data acquired at a TR of 2 s (Wu
et al., 2011a).

Numerous head motion parameters were investigated and were compared between
MDD patients and HC to control for potential differences in head motion between
groups, as they could affect the results of the main analyses. For each subject, the
temporal signal-to-noise ratio and the point-to-point head motion was estimated
(Murphy et al., 2007; Van Dijk et al., 2012). Excessive head motion (i.e., cumulative
motion translation or rotation > 3 mm or 3°, and mean point-to-point translation
or rotation > 0.15 mm or 0.1°) constituted an exclusion criterion. The point-
to-point motion was defined as the absolute displacement of each brain volume
compared with its preceding volume. None of the participants had to be excluded
with respect to this procedure. Furthermore, the two-sample t-tests showed no
significant differences between groups regarding the mean point-to-point translation
or rotation of any direction (p > 0.1), as well as the temporal signal-to-noise ratio
(p > 0.5).
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Nuisance covariates regression The main data analysis (which will be described
in the "Data Analysis" section) is based on two branched sets of data: (1) the ICA-
derived time courses of RSNs—which are used in the examination of RSN spectral
properties via the SC; and (2) the "native" preprocessed whole-brain fMRI EPI time
courses—which are used for the calculation of percent signal change (PSC) (an
analysis complementary to the SC analysis), as well as for the estimation of the seed-
based FC of a given RSN. In this section, I will describe the procedure of nuisance
signal regression (i.e., regressing out the signal of no interest originating from the
WM and CSF) from the preprocessed whole-brain fMRI EPI time courses (i.e., the
second branch of data).

The PSC is analyzed in the context of the SC—as it provides information comple-
mentary to that of SC and may help to elucidate observed differences in the SC. PSC
has been shown to differ between different RSNs (van den Heuvel et al., 2016), and
might be impacted by disease (Brambilla et al., 2003; Sanacora et al., 2002; Tunni-
cliff and Malatynska, 2003). Thus, when investigating between-group differences in
the SC values of RSN BOLD fluctuations, it is important to control for the overall
PSC.

Coming back to the two branched datasets: since these two datasets are used for
analyses which are complementary to each other, it is crucial to maintain the signal
quality and properties as consistent as possible across the datasets. The ICA-derived
data is largely cleaned from non-neural sources of variance such as head-movement
distortions, cardiac and respiratory signals, as well as contributions of the WM
and CSF signals. Fluctuations of the aforementioned origins are being captured as
individual ICs and are—to a great extent—separated from the remaining ICs which
represent selected RSNs. Regarding the preprocessed whole-brain rs-fMRI EPI data,
these are corrected for head movement distortions, yet their variance may still be
affected by other sources of artifacts. To reduce the influence of these sources on the
fMRI signal, nuisance covariates (i.e., WM and CSF signals) were regressed out—as
it is highly important to exclude non-neural variance from the signal on which the
PSC will be calculated later.

The regression of nuisance covariates was performed as follows: For each sub-
ject, binarized masks of the WM and CSF were created from the T1 segmentation
compartments (applying a binarization threshold of i > 0.9). In each participant,
averaged signals corresponding to the WM and CSF were separately extracted from
the preprocessed (realigned and normalized, but not smoothed) whole-brain fMRI
EPI signal, and served as covariable signals in the regression. Subsequently, the
nuisance covariates regression was performed, in each participant individually, on
the previously realigned and normalized, but not smoothed data, using Resting-State
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fMRI Data Analysis Toolkit (REST)8. In the final step, the cleaned data (i.e., with
reduced contributions of the WM and CSF) were spatially smoothed in SPM12, using
a 6-mm FHWM Gaussian kernel.

Estimation of cardiac and respiratory rates As part of an additional signal control
procedure, Physiologic Estimation by Temporal ICA (PESTICA)9 (Beall and Lowe,
2007) was applied on raw (i.e., not preprocessed) whole-brain fMRI data to detect
heartbeat and breathing cycles in individual subjects. PESTICA is a powerful tool
which enables the detection of physiological contributions to the fMRI signal, directly
from the signal (i.e., without the need for external physiological recordings). In
Matlab, FFT was used to calculate peak frequencies of cardiac and respiratory
rate time courses obtained from PESTICA (with a temporal resolution of TR/slice
number = 2 s/32). Precisely, a Gaussian fit in a search window was applied which
corresponded to expectation values for the physiological rhythms (cardiac 55–70
bpm, beats per minute; respiratory 10–24 bpm). A visual check of fit quality was
performed. Next, group differences in cardiac and respiratory rates were tested
with two-sample t-tests. No significant difference between the groups regarding the
cardiac rate (p > 0.5), as well as the respiratory rate (p > 0.5), was revealed by the
tests.

Data Analysis

Determination of resting-state networks For the determination of RSNs, an estab-
lished approach proposed by Allen et al. (2011) was followed. Group-ICA (Calhoun
et al., 2001) was used to decompose the whole-brain fMRI data into 75 ICs. This
procedure was based on the Infomax algorithm implemented in the Group ICA of
fMRI Toolbox (GIFT)10. The ICA procedure was the following: First, rs-fMRI data
from all subjects (both HC and MDD patients) were concatenated into one dataset.
Next, the concatenated data were reduced by two-step principal component analysis
(PCA) to lower the computational burden. Subsequently, ICA was run, based on
the Infomax algorithm and using a model order of 75 ICs. The ICA was run 20
times using the ICASSO algorithm, to reach an estimate of component reliability.
At the final step, the set of 75 group-averaged ICs were back-projected into the
single-subject space. In result, 75 ICs were obtained, each described by a spatial map
of z-scores (reflecting the component’s FC pattern across space) and an associated
time course (reflecting the component’s BOLD activity across time). With regards to
the spatial maps, high z-scores of voxels reflect their strong FC within the IC, while

8http://restfmri.net/forum/REST
9https://www.nitrc.org/projects/pestica/

10http://icatb.sourceforge.net
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z-scores of approximately 0 reflect the lack of or a very low FC of the voxel within
the IC. A threshold of z > 1 was set on the z-values, to omit the very weak as well as
the negative FC patterns within the ICs. The variance of the time course associated
with an IC after back projection is by default normalized to 1.

The identification of meaningful RSNs from obtained ICs was performed in an
automated way. Within the GIFT toolbox, multiple spatial regression analyses on the
75 ICs were run, using established templates from Allen et al. (2011) which reflect
canonical RSNs. ICs of the highest correlation coefficient with RSNs templates (at
a threshold of r > 0.2) were selected for further analysis. This resulted in a selection
of 24 RSNs of interest.

Percent Signal Change (PSC) When investigating differences in the SC values of
RSN BOLD fluctuations between groups, it is important to control for the overall
RSN BOLD activity level, as it might influence the spectral properties of the fMRI
signal. More precisely, the spectral characteristics of BOLD fluctuations would be
affected by the relative balance between the signal of neuronal origin and the noise
present in the acquired rs-fMRI time series. The spectrum of resting-state BOLD
fluctuations has an approximately 1/fβ distribution, with frequency f and power-law
exponent β (He, 2011), due in part to the low-pass character of the hemodynamic
response. Thus, assuming that the low-frequency noise sources (e.g., slow head
motion, scanner drifts, and aliased physiological noise) are adequately removed,
RSNs with smaller BOLD signal fluctuations may exhibit a distribution skewed
toward higher frequencies (i.e., a more shallow 1/fβ slope) and thus a reduced
overall variance (which would be reflected in a smaller PSC value in this RSN). Since
there might be systematic differences in PSC related to pathology, which in turn
would amplify changes in the SC, it is important to control for the influence of the
PSC on the SC. To this end, I investigated the impact of controlling for BOLD signal
variance (i.e., PSC) in the analysis of SC.

PSC was calculated individually for each participant and each network in the fol-
lowing way: First, network binary masks were created from spatial maps of each
RSN in each participant at a threshold of z > 2.32, which corresponds to a p-value
of 0.01. Next, these masks served as regions of interest (ROIs) to extract averaged
signals from: (i) preprocessed whole-brain rs-fMRI EPI data, and (ii) preprocessed
whole brain rs-fMRI EPI data with nuisance covariates regression (i.e., WM and
CSF). As a result, for each mask representing a RSN and in each participant, two
time courses were obtained. These time courses are hereafter called network_EPI
and network_EPI_nuisance, and represent the network time courses of preprocessed
rs-fMRI EPI data without and with nuisance regression, respectively. Next, the
PSC was calculated by dividing the standard deviation of the GM-based signal

3.1 Materials and methods 37



(i.e., network_EPI_nuisance) by the mean of the network_EPI signal (which reflects
the combined contributions of GM, WM, and CSF), adhering to the established
standard procedures for task-based fMRI (see e.g., Gläscher, 2009), as by equation
below:

PSC = SD[network_EPI_nuisance]
mean[network_EPI] × 100 (3.2)

Subsequently, statistical analyses were performed on the PSC values. Differences in
PSC between individual RSNs and between groups were examined via a repeated
measures ANOVA with the factors network and group. Post-hoc tests were performed
as Wilcoxon ranksum test (p < 0.05).

Spectral Density In Matlab, and adequately to the procedure executed in Dataset 1,
FFT was used to compute the power spectra of ICA-derived BOLD signals of each
RSN in every participant. Subsequent SC calculation was based on these power
spectra.

For direct comparisons of the spectral power between groups, the full power spectra
were then split into 10 frequency sub-bands (freq1: 0.01–0.025; freq2: 0.025–0.05;
freq3: 0.05–0.075; freq4: 0.075–0.1; freq5: 0.1–0.125; freq6: 0.125–0.15; freq7:
0.15–0.175; freq8: 0.175–0.2; freq9: 0.2–0.225; freq10: 0.225–0.25 Hz). These
frequency sub-bands (or bins) were chosen in an exploratory manner and constitute
a compromise between the averaging for better power and the sufficient spectral
resolution.

For each RSN, the mean power at each frequency band was computed across groups.
Subsequently, the mean power values for each RSN were re-scaled by multiplication
with the corresponding group-averaged PSC value. Wilcoxon ranksum tests were
performed on the power values at each frequency band to test for group-differences
within the original as well as the re-scaled power spectrum of a given RSN.

Spectral Centroid Spectral properties of BOLD network fluctuations were exam-
ined at the subject level by means of the SC. The SC values were calculated as
described in equation 3.1 (with the following parameters: width of each spectral
bin f = 0.0017 Hz; number of points in the network’s BOLD time series N = 300).
Next, the results of the FFT were restricted to the frequency range of 0.01–0.25 Hz,
omitting the very low frequencies below 0.01 Hz. For each RSNs and in each partici-
pant, a SC value of the full power spectrum (i.e., 0.01–0.25 Hz) of BOLD network
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fluctuations was calculated. In total, SC values for 24 RSNs and 50 participants (25
HC and 25 MDD patients) were obtained.

Subsequently, statistical analyses were performed on the SC values. In Matlab,
Lilliefors normality tests were carried out on the set of SC values, separately for each
RSN and in each group, to determine whether they follow a normal distribution
(p < 0.05, Bonferroni-corrected for 24 RSNs). No significant deviations from the
normal distribution were found. Next, a repeated measures ANOVA with the factors
network and group was performed on the SC values. Post-hoc tests were performed
as Wilcoxon ranksum tests (p < 0.05).

Correction of Spectral Centroid with PSC As previously explained, it is crucial to
rule out any group differences in RSN spectral properties which could be attributed
to the absolute BOLD activity level within a network (assessed via the PSC). Thus, a
regression analysis of the SC values and the PSC values was conducted. In each group
separately, a global regression was performed. Precisely, SC values corresponding to
all RSNs in all participants within a given group were pooled together and regressed
against the corresponding PSC values. The resulting regression residuals were taken
to represent the "new" (corrected for PSC) SC values and are later referred to as the
corrected spectral centroid (SCcorr).

Subsequently, statistical analyses were performed on the SCcorr values. A repeated
measures ANOVA with the factors network and group was performed on the SCcorr
values. Post-hoc analyses were performed as Wilcoxon ranksum tests (p < 0.05) to
examine group differences in SCcorr of specific RSNs, and as Wilcoxon signed rank
tests to investigate significant pairwise differences in SCcorr between RSNs in the
HC group (p < 0.05, Bonferroni-corrected for 24 RSNs).

To facilitate the comprehension of the SC and PSC calculation procedures performed
on the two branched sets of fMRI data in Dataset 2, a schematic analysis workflow is
displayed in Figure 3.1.

Assessment of SC dependence on RSN size Accordingly to the procedure per-
formed in Dataset 1, the link between the size of a RSN and its corresponding
SC and SCcorr values was examined. The network size was determined from the
group-averaged and binarized spatial maps of RSNs of HC subjects (obtained in an
earlier step of PSC calculation). Non-zero voxels within the spatial maps of each RSN
were counted, and their sum indicated the network’s size. No significant correlation
between the RSN size and the SC, or the SCcorr was found (Pearson’s correlation
RSN size x SC: r = -0.119, p = 0.58; RSN size x SCcorr: r = -0.197, p = 0.36).
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Fig. 3.1. | Schematic analysis workflow for Dataset 2. Analysis steps for the calculation
of the spectral centroid (SC), percent signal change (PSC), and SC corrected for
PSC (SCcorr). Methods adapted from Ries et al. (2018).
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Assessment of SC dependence on clinical scores To examine whether spectral
properties of BOLD network fluctuations relate to the symptomatic and pathophys-
iology of MDD, correlation analyses between the SCcorr values and the symptom
characteristics were conducted. Pearson’s correlation was calculated between the
SCcorr values of each RSN and measures of MDD symptom severity, such as the
HAM–D and BDI scores, as well as the number of MD episodes, the length of cur-
rent episode, and the GAF score (p < 0.05, Bonferroni-corrected for 24 multiple
comparisons for 24 RSNs were investigated).

Seed-based FC of the Salience Network In a subsequent analysis, the seed-based
FC of the SN was determined. ICA-derived BOLD time courses of the SN served
as regressors in a 1st level general linear model (GLM) analysis. The GLM analysis
enables the identification of the FC pattern of the SN towards the whole brain.
In the 1st level analysis, seed-based FC maps of the SN were determined in each
participant individually, based on the BOLD signal fluctuations within the full power
spectrum (i.e., 0.01–0.25 Hz). In the 2nd level analysis, the SN FC maps obtained
per participant were subjected to a one-sample t-test, separately for HC and MDD
patients (p < 0.05, FWE-corrected) and represented SN FC at the group level.
Subsequently, to test for group differences in the SN connectivity patterns, a two-
sample t-test was applied (p cluster-level corrected < 0.05, on underlying voxel-level
correction of p < 0.001, with voxels restricted to GM).

For the determination of seed-based FC patterns of the SN at the 10 distinct frequency
sub-bands (defined in previous sections), the same procedure as described above
was performed, but this time the BOLD signal was previously band-pass filtered into
the 10 distinct sub-bands. The REST toolbox was used to perform the band-pass
filtration. The REST toolbox utilizes an ideal filter which transforms the BOLD
time series into the frequency domain via the discrete Fourier Transform and adds
zeros to extend the frequency coverage; the information in the frequency domain
is then transformed back to the time domain, by using the inverse discrete Fourier
Transform (Song et al., 2011). For each frequency sub-band, the 1st and 2nd level
analyses described in the paragraph above were performed on the corresponding
band-pass filtered BOLD time series.

3.1.3 Correspondence of network dynamics across
datasets

In this project, spectral properties of RSN signal fluctuations were examined via the
SC in two independent datasets (i.e., Dataset 1 of the HCP and Dataset 2 of HC
and MDD patients). It is of high interest to compare the results in healthy subjects
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in both datasets and examine whether findings are generally replicable. In the
following analysis, the accord between the obtained SC values of the corresponding
RSNs across the two datasets was examined. A correlation analysis was performed
between the SC values of corresponding RSN obtained from Dataset 1 and from
healthy subjects in Dataset 2. For a clear overview of RSN correspondence across
study sites (i.e., the study of Allen et al. (2011), the HCP study, and the HC & MDD
study) see Table A.1 in the Appendix. In total, 22 RSNs from Dataset 1 and Dataset
2 could be matched as representing the same networks as in Allen et al. (2011).

The SC depends on the overall measurement length as well as on the sampling
frequency, as these two parameters determine which part of the signal spectrum
is accessible to analysis. E.g., with a higher sampling rate, higher frequencies can
be measured, which in turn shifts the SC to slightly higher values, depending on
the power within these additional frequencies. To enable an accurate comparison
of the SC values between corresponding RSNs obtained in the two independent
datasets (which were acquired using different scanning parameters), the FFT results
in Dataset 1 were restricted to the frequency range of 0.01–0.25 Hz (as this is
the frequency range accessible from Dataset 2). Next, and only for comparison
purposes, new SC values were computed on this range, so that they correspond to
the frequency range accessible from Dataset 2.

The basal ganglia network was excluded from the correlation analysis, as in Dataset 1
its SC exceeded two standard deviations. This resulted in a Pearson’s correlation
analysis between 21 RSNs from Dataset 1 and 21 RSNs from Dataset 2.

3.2 Results

3.2.1 Dataset 1: Human Connectome Project

Resting-State Networks

RSNs were identified by applying an ICA on the rs-fMRI data of 820 healthy subjects
from the HCP. The resulting spatial maps of ICs were correlated with established spa-
tial templates from Allen et al. (2011) which represent canonical RSNs. Components
of the highest correlation coefficient (at a threshold of r > 0.2) were selected to
represent RSNs of interest and were used in further analysis. In total, 24 RSNs were
identified and were categorized into the following functional systems: basal ganglia
(BG; n = 1), auditory (AUD; n = 1), sensorimotor (SM; n = 5), visual (VIS; n = 5),
default-mode (DMN; n = 4), attentional (ATT; n = 5), and frontal (FRONT; n = 3).
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Within the attentional system, the salience network (SN) and the central executive
network (CEN) were identified. Four subdivisions of the default-mode system were
identified: the anterior default-mode network (DMN_ant), the anterior-medial DMN
(DMN_antmed), the posterior DMN (DMN_post) and the posterior-lateral DMN
(DMN_postlat). Spatial maps of selected RSNs are displayed in Figure 3.2, and the
peak activation sites within RSNs are summarized in Table 3.2.

Spectral Centroid

The SC is an aggregate measure that represents the "center of gravity" of the broad
power spectrum of BOLD network fluctuations. SC values were calculated for each
participant and each RSN. Mean SC values (averaged across 820 subjects) for each
RSN are depicted in Figure 3.3.A and summarized in Table 3.2.

Statistical analysis on the SC values was performed as a one-way repeated measures
ANOVA and revealed a significant effect of the factor network (F (1,23) = 2182.3,
p < 0.001). Next, significant pairwise differences in SC between RSNs were exam-
ined, and are displayed in form of a matrix in Figure 3.3.B. Columns and rows of
the matrix, respectively, represent the individual RSNs and are ordered according
to increasing SC magnitude. From the matrix, it can be deduced that most RSNs
significantly differ from one another regarding their SC values.

Altogether, these results indicate a significant grading of SC values across RSNs,
where most networks can be distinguished from each other based on their charac-
teristic SC value. The term "grading" refers to the observation that each RSN takes
a distinct position in an ordering of all SC values.

Spectral Centroid and RSN size

The relationship between the size of a RSN and its corresponding SC value was
examined. Pearson’s correlation analysis between the RSN size and SC value revealed
a significant negative relation (r = -0.54, p = 0.007). Next, a regression analysis
was performed on the SC and network size values, to rule out possible differences
in spectral properties due to differences in network size. Regression residuals
represented the "new" SC values—corrected for network size. A one-way repeated
measures ANOVA with the factor network was performed on the SC values which
were corrected for the network size. The ANOVA outcome yielded a significant
effect of the factor network (F(1,23) = 1554.7, p < 0.001), and thus revealed an
intact grading of SC values also after controlling for network size. In conclusion,
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the grading of SC values across RSNs occurs independently of the relation between
spectral properties of BOLD fluctuations of a given network and its size.

Fig. 3.2. | Dataset 1: RSNs. Spatial maps of 24 resting-state networks (RSNs) obtained via
spatial ICA performed on the Human Connectome Project data of 820 healthy sub-
jects. The spatial maps are represented as z-scores and are displayed at the three
most informative slices (MNI-space). RSNs are categorized into distinct groups
according to their anatomical and functional properties. Figure and modified
legend taken from Ries et al. (2018).
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Tab. 3.2. | Dataset 1: RSN FC profiles and results of SC analysis. For each resting-state
network (RSN) the corresponding spectral centroid (SC) value and the set of
brain regions constituting the network’s positive functional connectivity (FC) are
presented in the table. RSNs are ordered according to their increasing SC values.
Abbreviations: ACC, Anterior Cingulate Cortex; IFG, Inferior Frontal Gyrus; IPL,
Inferior Parietal Lobule; MCC, Midcingulate Cortex.

Dataset 1: Human Connectome Project

RSN positive FC SC [Hz]

SM_1 IPL, Supramarginal gyrus, IFG 0.083

DMN_postlat
Lingual Gyrus, Cuneus, Calcarine Gyrus, Precuneus, IPL, Angular Gyrus

MCC, Superior Frontal Gyrus, Fusiform Gyrus
0.083

ATT_R
Superior Parietal Lobule, IPL, Middle Frontal Gyrus, IFG, Superior

Frontal Gyrus
0.084

ATT_L
Superior Frontal Gyrus, Middle Frontal Gyrus, Angular Gyrus, IPL, Middle

Orbital Gyrus, IFG, MCC
0.085

VIS_3 Cuneus, Superior Occipital Gyrus, Lingual Gyrus 0.086

DMN_post PCC, Cuneus, Precuneus, IPL 0.086

VIS_6
Fusiform Gyrus, Lingual Gyrus, Middle Occipital Cortex, Lateral

Occipital Cortex, Middle Temporal Gyrus, area V5/MT
0.086

SM_2 Postcentral Gyrus 0.087

VIS_4
V2, Calcarine Gyrus, Lingual Gyrus, Cuneus, Superior Occipital Gyrus,

Dorsal and Ventral Extrastriate Cortex (V3)
0.087

FRONT_3 IFG, Posterior-Medial-Frontal 0.088

SN ACC, Insula, MCC, Posterior-Medial-Frontal 0.088

FRONT_1
Insula, IFG, Middle Frontal Gyrus, Superior Medial Gyrus, Caudate

Nucleus
0.088

VIS_2 Calcarine Gyrus, V1 0.089

ATT
Superior Parietal Lobule, Posterior-Medial-Frontal, MCC, Supramarginal

Gyrus,
0.089

CEN
IFG, Middle Temporal Gyrus, Posterior-Medial-Frontal, Supramarginal

Gyrus
0.089

DMN_ant Middle Frontal Gyrus, Superior Frontal Gyrus, MCC 0.089

VIS_1 Middle Temporal Gyrus, area V5/MT 0.090

SM_L Precentral Gyrus 0.090

FRONT_2 Middle Frontal Gyrus, ACC 0.090

DMN_antmed Superior Medial Gyrus, Insula, IFG, MCC 0.091

SM_R Precentral Gyrus 0.091

SM_4 Paracentral Lobule 0.091

AUD Superior Temporal Gyrus 0.093

BG Putamen, Caudate Nucleus 0.106
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Fig. 3.3. | Dataset 1: Results of the SC analysis. (A) Mean spectral centroid (SC) values
of each RSN obtained from the Human Connectome Project (HCP) data of 820
healthy subjects. For each RSN the mean SC value is indicated by the black vertical
line, and the standard error of the mean (SEM) is depicted through the light
blue box. RSNs are ordered according to their increasing SC magnitude. SCs
were calculated based on the power spectra of BOLD network fluctuations within
the frequency range of 0.01–0.69 Hz. (B) A matrix that represents p-values of
pairwise differences in the SC between individual RSNs. The colors indicate the
significance, where red stands for lower p-values and higher significance, and
blue for higher p-values and thus lower significance. P-values were scaled with
a -log10(p) transform, the color bar value of 1.3 corresponds to p = 0.05 (as
indicated by a vertical line across the color bar and an asterisk, which represent
the significance threshold).
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3.2.2 Dataset 2: Healthy Controls & MDD patients

Resting-State Networks

In Dataset 2, RSNs were identified by applying a group-ICA on rs-fMRI data pooled
together from 25 HC and 25 MDD patients. The resulting spatial maps of ICs were
correlated with established RSN templates from Allen et al. (2011). Components of
the highest correlation coefficient (at a threshold of r > 0.2) were selected as RSNs
of interest and were used in further analysis. In total, 24 RSNs were identified and
were categorized into the following functional systems: basal ganglia (BG; n = 1),
auditory (AUD; n = 1), sensorimotor (SM; n = 6), visual (VIS; n = 5), default-mode
(DMN; n = 4), attentional (ATT; n = 5), and frontal (FRONT; n = 2). Within the
attentional system, the salience network (SN) and the central executive network
(CEN) were identified. Four subdivisions of the default-mode system were identified:
the DMN_ant, the DMN_antmed, the DMN_post, and the DMN_postlat. Spatial maps
of selected RSNs are displayed in Figure 3.4, and the peak activation sites within
RSNs are summarized in Table A.2 of the Appendix.

Spectral Centroid

Repeated measures ANOVA on the SC values revealed a significant effect of the factor
network (F(1,23) = 24.64, p < 0.001), and a significant interaction between the
factors network and group (F(1,23) = 1.76, p < 0.05). What drives the interaction
can be deduced from Figure 3.5.A, i.e., the bars representing the SC values in
separate groups are apart with respect to the SN and the VIS_2 network. Post-hoc
Wilcoxon ranksum tests yielded a significant group difference in the SC of the SN,
where MDD patients showed significantly increased SC values when compared to HC
(p < 0.05; MDD mean ± std: 0.112 ± 0.013 Hz; HC mean ± std: 0.103 ± 0.017
Hz). This test also revealed a trend towards statistical significance in one of the
visual networks (VIS_2; p = 0.07; HC mean ± std: 0.1 ± 0.016 Hz, MDD mean ±
std: 0.091 ± 0.018 Hz). Mean SC values for each RSN in both groups are depicted
in Figure 3.5.A and summarized in Table 3.3.

Percent Signal Change

Repeated measures ANOVA on the PSC values revealed a significant effect of the
factor network (F(1,23) = 11.5, p < 0.001) and a significant interaction between
the factors network and group (F(1,23) = 2.74, p < 0.001). Post-hoc Wilcoxon
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Fig. 3.4. | Dataset 2: RSNs. Spatial maps of 24 resting-state networks (RSNs) obtained
from spatial group-ICA performed on the group data of 25 healthy controls and
25 MDD patients. Spatial maps are plotted as z-scores, thresholded at z > 1, and
displayed at the three most informative slices (MNI-space). RSNs are categorized
into groups according to their anatomical and functional properties. Modified
figure and legend taken from Ries et al. (2018).

ranksum tests were carried out to identify the networks which show significant
changes in PSC between groups. Accordingly, one of the visual networks (VIS_2)
showed significantly increased PSC values in MDD patients when compared to HC
(p < 0.05; MDD mean ± std: 0.471 ± 0.162%; HC mean ± std: 0.374 ± 0.119%).
In another network, also associated with the visual system (VIS_4), a trend towards
significance was observed, with higher PSC values in MDD patients than in HC
(p = 0.065; MDD mean ± std: 0.447 ± 0.198%; HC mean ± std: 0.327 ± 0.078%).
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Mean PSC values for each RSN in both groups are depicted in Figure 3.5.B and
summarized in Table 3.3.

Spectral Centroid corrected for PSC

The original SC values were corrected for differences in PSC at the level of each RSN
and participant. The repeated measures ANOVA performed on the SCcorr values
revealed a significant effect of the factor network (F(1,23) = 21.19, p < 0.001). No
significant interaction between the factors network and group was observed (F(1,23)
= 1.12, p = 0.3). Mean SC values for each RSN, separately for HC and MDD patients
are displayed in Figure 3.5.C and summarized in Table 3.3.

A matrix that represents pairwise differences in SCcorr between all RSNs in HC is
displayed in Figure 3.5.D. Columns and rows of the matrix, respectively, represent
the individual RSNs and are ordered according to increasing SCcorr magnitude. The
results of Wilcoxon signed rank tests on the SCcorr values between each pair of
RSNs in healthy controls showed significant pairwise differences in all networks
with a minimum difference in SCcorr of 0.0001. At the given statistical power, only
differences between networks from both ends of the SCcorr scale become statistically
significant.

Post-hoc analysis was carried out to investigate group differences in SCcorr values
of, specifically, the SN. This was motivated by the previous finding of significantly
altered SC of the SN in MDD patients (before correction for PSC) and by the working
hypothesis of altered dynamics of the SN in MDD—as it is widely implicated in
depression. Additionally, since a trend towards significance in SC value of the visual
network VIS_2 was observed—the post-hoc analysis also involved the investigation
of significant group differences in the SCcorr of this visual network.

The Wilcoxon ranksum test revealed a significant difference in the SCcorr of SN be-
tween groups, where MDD patients showed higher SCcorr value than HC (p < 0.05;
MDD mean ± std: 0.013 ± 0.014; HC mean ± std: 0.005 ± 0.017). Concerning
the visual network VIS_2, after correction for PSC no significant difference in SC
between groups remained. Thus, the previously reported shift in SC of the visual
network VIS_2 could be fully attributed to differences in the absolute BOLD activity
level within this network, as captured via PSC.
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Fig. 3.5. | Dataset 2: Results of SC and PSC analyses. (A) Mean (± SEM) spectral cen-
troid (SC) values of each RSN in healthy controls (HC) and major depressive
disorder (MDD) patients. RSNs are ordered according to increasing SC magni-
tude in HC. SCs were calculated based on the power spectra of BOLD network
fluctuations within the frequency range of 0.01–0.25 Hz. (B) Mean (± SEM)
SC values corrected (SCcorr) for percent signal change (PSC) in HC and MDD,
ordered according to increasing SCcorr magnitude in HC. (C) Mean (± SEM)
PSC values of each RSN in HC and MDD patients. RSNs are ordered according to
increasing PSC magnitude in HC. Note: the ordering on the y-axis differs between
plots. (D) A matrix that represents p-values of pairwise differences in the SCcorr
between individual RSNs in HC. The colors indicate the significance, where red
stands for lower p-values and higher significance, and blue for higher p-values and
thus lower significance. P-values were scaled with a -log10(p) transform, the color
bar value of 1.3 corresponds to p = 0.05 (as indicated by a vertical line across the
color bar and an asterisk, which represent the significance threshold). Modified
figure and legend taken from Ries et al. (2018).
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Tab. 3.3. | Dataset 2: Results of SC and PSC analyses. For
each resting-state network (RSN), the table represents
group averaged values of the spectral centroid (SC), the
SC corrected for percent signal change (SCcorr; PSC),
and the PSC, separately for healthy controls (HC) and
major depressive disorder (MDD) patients. RSNs are
ordered according to the increasing SC magnitude in
HC, the color scale represents the magnitude range,
where green = low, yellow = middle, red = high.

Dataset 2: healthy controls and MDD patients

SC [Hz] SCcorr PSC [%]

RSN HC MDD HC MDD HC MDD

ATT_L 0.085 0.085 -0.013 -0.013 0.32 0.34
DMN_postlat 0.085 0.087 -0.008 -0.007 0.47 0.46
SM_1 0.090 0.088 -0.005 -0.008 0.40 0.38
ATT 0.091 0.092 -0.006 -0.005 0.36 0.36
SM_2 0.091 0.095 -0.006 -0.003 0.35 0.33
ATT_R 0.091 0.091 -0.006 -0.006 0.35 0.36
DMN_ antmed 0.092 0.096 -0.004 -0.001 0.38 0.38
DMN_post 0.095 0.093 -0.002 -0.003 0.35 0.35
SM_L 0.096 0.096 -0.003 -0.003 0.30 0.30
CEN 0.096 0.101 -0.001 0.002 0.34 0.31
FRONT_1 0.096 0.094 -0.001 -0.004 0.33 0.32
SM_4 0.097 0.097 -0.002 -0.002 0.29 0.28
VIS_3 0.098 0.095 0.001 0.000 0.35 0.44
SM_R 0.099 0.101 0.001 0.002 0.33 0.3
VIS_4 0.099 0.095 0.002 0.000 0.33 0.45
VIS_2 0.100 0.091 0.004 -0.003 0.37 0.47
FRONT_2 0.102 0.102 0.003 0.004 0.3 0.32
DMN_ant 0.102 0.102 0.003 0.003 0.29 0.3
VIS_1 0.103 0.100 0.005 0.002 0.31 0.34
SN 0.103 0.112 0.005 0.013 0.32 0.31
BG 0.104 0.107 0.007 0.008 0.35 0.28
VIS_5 0.104 0.102 0.005 0.004 0.27 0.33
AUD 0.105 0.106 0.009 0.008 0.38 0.35
SM_3 0.110 0.111 0.012 0.012 0.32 0.32
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Salience Network: spectral differences between groups

The above results highlight disease-related alterations in the dynamic regime of
BOLD fluctuations within the SN. Specifically, increased SCcorr values of the SN
were observed in MDD patients, when compared to HC. To further investigate the
causes of such increase, the spectral power of SN BOLD fluctuations was examined
in both groups at 10 distinct frequency sub-bands. Specifically, group differences
in the spectral power at each frequency sub-band were examined. The original
power spectrum of the SN, as well as the power spectrum re-scaled by multiplication
with PSC, are shown in Figure 3.6 (in the left and right panel, respectively). The
analysis of the original power spectrum of the SN yielded a decrease in power at
the lowest frequency band (freq1 0.01–0.025 Hz) in MDD patients, as supported by
the significant outcome of the Wilcoxon ranksum test (p < 0.01). There was also
a tendency of increased power at the higher frequency bands in MDD patients (freq7
0.15–0.175 Hz, p = 0.06; freq8 0.175–0.2 Hz, p = 0.08; freq10 0.225–0.25 Hz,
p = 0.08). Within the re-scaled power spectrum of the SN, a significant decrease
in the power at the lowest frequency band (freq1 0.01–0.025 Hz) was observed in
MDD patients (p < 0.05). In conclusion, attenuated power at lower frequencies
together with increased power at higher frequencies result in a shift of the SC in SN
towards higher frequencies.

Fig. 3.6. | Dataset 2: Power spectra of the salience network in HC and MDD. Mean
(± SEM) spectral power of the salience network (SN) at 10 distinct frequency bins
in healthy controls (HC; in blue) and major depressive disorder (MDD) patients (in
red). The left panel depicts the original power spectrum. The right panel depicts
the power spectrum rescaled by the PSC, where the spectral power values for each
frequency bin and each subject were multiplied by the corresponding PSC value
of the SN BOLD fluctuations. Modified figure and legend taken from Ries et al.
(2018).
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Spectral Centroid and symptom severity

A possible link between the dynamical regime of BOLD network fluctuations and
the symptomatology of MDD was examined. Pearson’s correlation was calculated
between the SCcorr values of each RSN and the symptom severity scores. A signifi-
cant correlation between SCcorr and BDI scores was observed in one of the visual
networks (VIS_4; r = 0.61, p = 0.002) and the anterior DMN (DMN_ant; r = 0.57,
p = 0.003). Counter-intuitively, no significant correlation between the SCcorr values
of the SN and scores of symptom severity was found. However, an indirect influence
of altered SN activity on the severity of symptoms experienced by MDD patients
could be deducted from the results of a subsequent whole-brain seed-based FC
analysis of the SN. This analysis was motivated by the finding of altered SC of the
SN in MDD patients. The logical conclusion is the following: FC is a measure of
signal covariance, i.e., coherent signal development over time. Signals can evolve
coherently only if their main frequencies are identical. If spectral properties of
the signal from one source are significantly altered—which would be reflected in a
change in the SC—then the coherence with the signal from the other source would
be disturbed. As a result, FC between both sources would decrease. To this end, a
subsequent seed-based FC analysis of the SN was performed, the results of which
are presented in the following section.

Seed-based FC of the Salience Network The analysis of seed-based FC of the SN
based on the rs-fMRI BOLD signal within the full spectrum of accessible frequencies
(i.e., 0.01–0.25 Hz) revealed the following results: In HC, the SN exhibited functional
connections to the insula, inferior frontal gyrus, superior temporal gyrus, thalamus,
and cuneus (see Figure 3.7.A). In MDD patients, the SN exhibited significantly
reduced FC towards the bilateral middle frontal gyrus and ACC, and the right cuneus
(see Figure 3.7.B). The most prominent decreases in FC of the SN were observed in
regions associated with the anterior DMN (DMN_ant) and one of the visual networks
(VIS_4)—the exact two networks with SC values that significantly correlated with
symptom severity scores (i.e., BDI). This observation is graphically summarized in
Figure 3.7.C, where group-averaged, binarized masks of the DMN_ant and VIS_4
were overlaid on the clusters of significantly altered SN FC, derived from the MDD >
HC contrast (as in panel B). At the bottom of Figure 3.7.C, correlation plots between
the SCcorr values and BDI scores in each patient are displayed for each of the two
RSNs. Subsequently, the analysis of frequency-resolved seed-based FC of the SN was
performed, where the BOLD signal was band-pass filtered into 10 distinct frequency
sub-bands beforehand. However, the statistical power within the band-limited
regimes was too low to provide significant results. Band-specific group differences
only appeared on a very liberal significance level (p < 0.05 uncorrected).
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Fig. 3.7. | Dataset 2: Seed-based FC of the SN in HC > MDD, and link to MDD
symptomatology. (A) Whole-brain seed-based functional connectivity (FC) of
the salience network (SN) in healthy controls (HC; p < 0.05, FWE-corrected).
(B) Group differences in the whole-brain seed-based FC of the SN, representing
regions of decreased FC with the SN in MDD patients, when compared to HC (p
cluster-level corrected < 0.05, on underlying voxel-level correction of p < 0.001).
(C) The overlap between (i) the regions of decreased FC with the SN in MDD
patients and (ii) RSNs of which the SC values significantly correlate with the
symptom severity scores. Modified figure and legend taken from Ries et al. (2018).
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3.2.3 Correspondence of network dynamics across
datasets

Both in Dataset 1 and Dataset 2, a significant grading (i.e., ordering) of SC values
across RSNs was observed in healthy subjects. The correspondence between SC
values of RSNs across the two datasets was subsequently examined. The SC values
of RSNs from Dataset 1 (calculated from the power spectra which were restricted
to 0.01–0.25 Hz) and the corresponding SC values of RSNs from healthy subjects
in Dataset 2 yielded a significant positive correlation (r = 0.58, p = 0.005). The
correlation is depicted in Figure 3.8. Due to the sample size, RSNs of Dataset 1
are characterized by smaller within-network variability in SC values, compared to
RSNs of healthy controls from Dataset 2, which is reflected in the magnitude of the
standard error of the mean (SEM).

Fig. 3.8. | Correspondence of RSN SC values across datasets. Correlation between the
spectral centroid (SC) values of 21 resting-state networks (RSNs) obtained from
Dataset 1 (under consideration of FFT results restricted to 0.01–0.25 Hz; x-axis)
and the corresponding RSNs obtained from healthy controls in Dataset 2 (y-axis).
For each RSN, the horizontal line represents the standard error of the mean (SEM)
in Dataset 1, and the vertical line represents the standard error of the mean (SEM)
in Dataset 2. A least-squares fit line was added to the scatter plot. In the lower
right corner, the correlation coefficient r and the p-value are depicted.
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4Project 2

4.1 Materials and methods

4.1.1 Participants & Data Acquisition

In Project 2, the same data was used as the one described under Dataset 2 in
Project 1. Specifically, structural MRI and rs-fMRI images of twenty-five MDD pa-
tients and 25 age- and sex-matched HC were used. For detailed information on MDD
patient characteristics as well as data acquisition protocols see section 3.1.2. In this
project, however, the data underwent slightly different preprocessing procedures,
which will be in detail described in the following section. Importantly, after the
preprocessing procedure, one MDD patient and one HC subject had to be excluded
due to spatial normalization problems which occurred during the correction for
physiologic noise and motion. This resulted in a total of twenty-four MDD patients
and 24 HC whose data were taken into further analysis. The updated demographic
information of the 48 participants is presented in Table 4.1.

4.1.2 Data Preprocessing

Physiologic noise and motion correction

To begin with, rs-fMRI data was cleaned from physiological and motion artifacts
using PESTICA (Beall and Lowe, 2007) and Slice-Oriented Motion Correction (SLO-
MOCO)1 software (Beall and Lowe, 2014), respectively. PESTICA was applied on the
raw fMRI data to detect cardiac and respiratory cycles in the BOLD signal of each par-
ticipant. Peak frequencies of cardiac and respiratory rate time courses obtained from
PESTICA (with a temporal resolution of TR/slice number = 2 s/32) were calculated
using FFT in Matlab. Precisely, a Gaussian fit in a search window was applied which
corresponded to the expectation values for the physiological rhythms (cardiac 55–70
bpm; respiratory 10–24 bpm). For quality assurance, visual check of fit quality was
performed. Differences in cardiac and respiratory rates between groups were tested
with two-sample t-tests. These tests yielded no significant difference between the

1https://www.nitrc.org/projects/pestica
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Tab. 4.1. | Demographic and clinical characteristics of 48 subjects. Infor-
mation about major depressive disorder patients and healthy controls.

Measure
MDD
(n = 24)

HC
(n = 24)

MDD
vs. HC a,b

Mean (SD) Mean (SD) p-value

Age
[years]

48.25 (14.92) 43.62 (14.91) >0.05a

Gender
(m/f)

11/13 10/14 >0.05b

Duration
of MDD [years]

16.92 (10.38) NA

Number
of episodes

5.46 (2.47) NA

Duration
of current episode [weeks]

16.38 (6.70) NA

GAF 50.17 (10.60) 99.50 (1.10) <0.001a,*

HAM-D 21.83 (7.06) 0 <0.001a,*

BDI 23.58 (5.92) 0 <0.001a,*

a two-sample t-test
b chi2-test
* significant for p < 0.05, Bonferroni-corrected for multiple comparisons.

groups regarding the cardiac rate (p > 0.5), as well as the respiratory rate (p > 0.5).
Subsequently, the PESTICA monitored cardiac and respiration cycles were used for
Retrospective Image Correction (RETROICOR) (Glover et al., 2000). RETROICOR is
an image-based correction method, in which low-order Fourier series are fit to the
image data, based on the time of each image acquisition relative to the phase of the
cardiac and respiratory cycles. Via RETROICOR, physiological noise is removed from
fMRI data in a voxel-wise fashion. Following the correction for physiologic noise,
motion-induced artifacts were accounted for, using SLOMOCO. This method uses an
algorithm to estimate the out-of-plane motion and to subsequently correct the data
for the acquired estimates. This was done alternatively to the classical procedures of
volume realignment in SPM12, as SLOMOCO has been shown to perform better than
volumetric methods, and precisely detect motion of independent slices, correcting
for almost all effects of motion corruption in BOLD data (Beall and Lowe, 2014).
Differences in SLOMOCO estimates of head movement between groups were tested
to further control for head motion effects across groups. The mean relative head
displacement was calculated as the root mean squared volume-to-volume displace-
ment (Power et al., 2014; Satterthwaite et al., 2013). The two-sample t-test revealed
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no significant differences in the mean relative head motion between groups (p >
0.05).

Normalization

The data controlled for physiological and motion artifacts were subsequently nor-
malized into the standard MNI space using SPM12.

Nuisance covariates regression

Further cleaning of the fMRI data from signals of non-neural sources included the
regression of nuisance covariates, such as the WM and CSF time courses. The
nuisance covariates regression was performed following the exact pipeline described
previously in the context of Dataset 2 of Project 1 (see section 3.1.2). Subsequently,
the fMRI data with regressed nuisance covariates was spatially smoothed in SPM12
using a 6-mm FHWM Gaussian kernel.

4.1.3 Data Analysis

Degree Centrality Maps

Degree centrality (DC) maps were computed for each participant using REST which
implements an approach similar to that proposed by Buckner et al. (2009) and Zuo
et al. (2012). The procedure for DC calculation is the following: for each voxel, a
correlation coefficient between its own time course and the time course of every
other voxel in the brain is calculated. This results in a connectivity map of the given
voxel which, in the next step, is binarized at a selected threshold (here, r = 0.2).
During binarization, all correlation coefficients below the given threshold are set
to zero, while all correlation coefficients above the threshold are set to 1. In the
last step, the sum of all non-zero connections for the given voxel is calculated. This
procedure is repeated for all voxels, yielding a whole-brain DC map. The single-
subject DC maps are then normalized by applying a z-transform (i.e., subtracting the
mean, and dividing by the standard deviation of the degree across all voxels within
the brain).

DC maps were calculated within the full frequency range of the rs-fMRI signal (i.e.,
0.01–0.25 Hz), as well as within 10 frequency sub-bands (freq1: 0.01–0.025; freq2:
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0.025–0.05; freq3: 0.05–0.075; freq4: 0.075–0.1; freq5: 0.1–0.125; freq6: 0.125–
0.15; freq7: 0.15–0.175; freq8: 0.175–0.2; freq9: 0.2–0.225; freq10: 0.225–0.25
Hz). The BOLD signal was band-pass filtered into 10 frequency bands using REST
toolbox which, by default, uses the ideal rectangle window. In REST, the ideal
filter transforms the time series into the frequency domain via the discrete Fourier
transform and adds zeros to extend the frequency coverage, then transforms back
to the time domain by using the inverse discrete Fourier Transform (Song et al.,
2011).

Construction of Gray Matter Volume Covariates

Gray matter atrophy can largely affect measures of FC. The variance of fMRI signal
in a brain region characterized by decreased gray matter volume (GMV) would
exhibit higher contribution of the cerebrospinal fluid (CSF) and thus, decreased
signal-to-noise ratio (i.e., increased contributions of noise to the signal). Measures
of FC, such as the correlation coefficient, are highly susceptible to noise (Birn et al.,
2006; Chang et al., 2009; Dagli et al., 1999; Van Dijk et al., 2012; Power et al.,
2012; Shmueli et al., 2007). Up to 25% of within-subject variance in DC was shown
to be explained by the underlying structural properties of the brain, where lower DC
was found in brain regions with higher contributions of non-GM tissues (Dukart and
Bertolino, 2014). In conclusion, it is highly relevant to control for the impact of the
differences in GMV on measures of FC, such as the DC.

Voxel-based morphometry (VBM) analysis was carried out using the SPM12-based
Computational Anatomy Toolbox (CAT12)2 to determine differences in brain volu-
metric measures between groups. The processing pipeline of CAT12 executes the
following procedures: Structural T1 images are normalized to a template space and
segmented into GM, WM, and CSF. Next, the total intracranial volume (TIV) and
absolute as well as relative global GM, WM, and CSF volumes are estimated per
participant. The resulting GM images are smoothed using an 8-mm FHWM Gaussian
kernel.

In SPM12, voxel-wise two-sample t-tests were performed to investigate group differ-
ences in GMV (p cluster-level corrected < 0.05, on underlying voxel-level correction
of p < 0.001) while controlling for individual TIV values.

2http://www.neuro.uni-jena.de/cat/
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Statistical Analysis

DC maps of individual subjects from the HC group were subjected to a one-sample
t-test in SPM12 (p cluster-level corrected < 0.05, on underlying voxel-level cor-
rection of p < 0.001, with voxels restricted to GM) to identify baseline, healthy
DC patterns at each of the 10 frequency sub-bands, as well as at the full frequency
range. Subsequently, potential differences in DC patterns between groups at each
frequency sub-band were examined using a flexible factorial design with main factors
group and frequency, and were tested with t-tests (p cluster-level corrected < 0.05,
on underlying voxel-level correction of p < 0.001, with voxels restricted to GM).
Potential differences in DC patterns at the full frequency range, without division into
specific sub-bands, were examined via a two-sample t-test (p cluster-level corrected
< 0.05, on underlying voxel-level correction of p < 0.001, with voxels restricted to
GM).

To control for the impact of possible depression-related brain volumetric changes on
the observed group differences in DC, a whole-brain voxel-wise regression between
subjects’ DC maps and their re-sliced GMV images was performed at each frequency
band, using an in-house, Matlab-based script. Regression residuals from this pro-
cedure represented the new DC maps which were controlled for GMV. Next, and
adequately to the statistical analysis carried out on the non-GMV-corrected DC maps,
group differences in GMV-corrected DC maps were examined at each frequency
band using a flexible factorial design with main factors group and frequency, and
were tested with t-tests (p cluster-level corrected < 0.05, on underlying voxel-level
correction of p < 0.001, with voxels restricted to GM).

Degree Centrality and symptom severity

Clusters representing significant group differences in DC at specific frequency bands
served as ROIs from which, at the subject level, averaged DC values were extracted.
Pearson’s correlation was calculated between the averaged DC values of each cluster
at distinct frequency bands and the symptom severity scores (with Bonferroni-
correction for multiple comparisons, n = 9 for only nine frequency bands significant
alterations in patient DC were observed).
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4.2 Results

4.2.1 Brain Volumetric Analysis

When compared to HC, MDD patients exhibited significant regional GM atrophy
(see Figure 4.1). Decreased GMV was observed in the bilateral middle frontal gyrus
(cluster 1 and 2); the right middle orbital gyrus (cluster 1); the left superior medial
frontal gyrus and the left ACC (cluster 3); as well as in the left hippocampus and left
superior temporal gyrus (cluster 4). Detailed information about cluster peaks, their
coordinates, z-values, and attributed brain regions are summarized in Table 4.2.

Fig. 4.1. | MDD: Gray Matter Atrophy. Regional differences in gray matter volume (GMV)
between groups (p cluster-level corrected < 0.05, on underlying voxel-level cor-
rection of p < 0.001, applying a cluster extent threshold of k = 800 voxels).
The analysis of voxel-based morphometry yielded four clusters of significantly
decreased GMV in MDD patients when compared to healthy controls (HC). Cluster
1: right middle frontal gyrus and right middle orbital gyrus; cluster 2: left mid-
dle frontal gyrus; cluster 3: left superior medial frontal gyrus and left anterior
cingulate cortex (ACC); cluster 4: left hippocampus and left superior temporal
gyrus.
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Tab. 4.2. | GMV: HC > MDD. Results of the group comparison of voxel-based
morphometry analysis. Significant decreases in gray matter volume
(GMV) were observed in major depressive disorder (MDD) patients
when compared to HC. Results presented in the table include the cluster
size, z-value, MNI coordinates, side, and anatomical locations of the
peak voxels. Reported are only the brain areas with p cluster-level
corrected < 0.05, on underlying voxel-level correction of p < 0.001.

GMV:
HC >MDD

MNI coordinates
[mm]

cluster size z-value x y z side location

1032 4.44 44 48 0 R Middle Frontal Gyrus
3.85 30 54 -3 R Middle Orbital Gyrus

872 4.11 -39 41 29 L Middle Frontal Gyrus
2000 4.37 -8 32 32 L Superior Medial Frontal Gyrus

4.29 -3 36 29 L ACC
1473 4.07 -29 -21 -17 L Hippocampus

4.05 -47 -5 -14 L Superior Temporal Gyrus

4.2.2 Healthy Controls: frequency-resolved Degree
Centrality

DC maps of HC at each of the 10 frequency bands, as well as at the full frequency
range (i.e., 0.01–0.25 Hz), are displayed in Figure 4.2. Figure 4.2.A depicts the
frequency-specific organization of hubs—i.e., brain areas characterized by high DC.
At low-frequency bands (freq1–3; 0.01–0.075 Hz) high DC voxels are observed in
the cuneus, post- and precentral gyri, paracentral lobule, superior temporal gyrus,
and midcingulate cortex (MCC). In addition, at freq1 (0.01–0.025 Hz) the insula
constitutes a functional hub. At middle-frequency bands (freq4–7; 0.075–0.175 Hz)
the middle occipital gyrus, cuneus, precuneus, MCC, angular gyrus, inferior parietal
lobule (IPL), supramarginal gyrus, and the insula are characterized by high DC
values. At high-frequency bands (freq8–10; 0.175–0.25 Hz), the cuneus, precuneus,
angular gyrus, MCC, IPL, and ACC exhibit high DC values.

Athwart a wide range of frequency bands, the cuneus and MCC, as well as the
precuneus, IPL, angular gyrus, and supramarginal gyrus appear as regions crucial
for information integration—as defined by their high DC profile. Specifically, regions
within the lateral parietal cortex (associated with the DMN) appear to be central to
information integration at a wide range of frequency bands, i.e., freq3–10 (0.075–
0.25 Hz), but most prominently at middle- to high-frequency bands 6–10 (0.125–0.25
Hz).
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DC analysis of the rs-fMRI signal at the full frequency range (i.e., 0.01–0.25 Hz),
without decomposition into frequency sub-bands, revealed the following hub regions:
the cuneus, precuneus, MCC, paracentral lobule, post- and precentral gyri, middle
temporal gyrus, superior temporal gyrus, middle occipital gyrus, angular gyrus, IPL,
insula (see Figure 4.2.B).

A detailed list of hubs which occur in HC within the full frequency regime, as well as
within the 10 individual frequency sub-bands, is presented in the Appendix Table
B.1 and B.2, respectively.

4.2.3 MDD patients: alterations in frequency-resolved
Degree Centrality

In MDD patients, significant frequency-specific decreases in regional DC were found
in a broad range of frequency bands (see Figure 4.3.A). Importantly, no significant
increases in DC in MDD patients were found when compared to HC. At low-frequency
bands (freq1–2; 0.01–0.05 Hz), the insula (at freq1, 2) and the transverse temporal
gyrus (at freq1) exhibited decreased DC. No significant difference in DC was observed
at low-frequency band 3 (0.05–0.075 Hz). At the middle-frequency bands (freq4–7;
0.075–0.175 Hz), decreased DC was observed in the middle occipital gyrus, calcarine
gyrus, superior temporal gyrus (at freq4), in the insula (at freq4, 5), the MCC and
supramarginal gyrus (at freq5, 6), in the precuneus (at freq6, 7), and in the angular
gyrus (at freq5, 7). At the high-frequency range (freq8–10; 0.175–0.25 Hz), DC
reductions were observed in the ACC and the superior temporal gyrus (at freq8–10),
in the insula, putamen, and hippocampus (at freq8), in the supramarginal gyrus
and the IPL (at freq9). Notably, in MDD patients, the insula exhibited significantly
decreased DC across several frequency bands (i.e., freq1, 2, 4, 5, 7 and 8). Upon
closer inspection, it becomes visible that peak coordinates that represent voxels of
decreased insular DC differ between frequency bands (see Figure 4.3.B). In summary,
in MDD patients, largely distinct parts of the insula exhibit reduced DC at distinct
frequency bands.

Next a two-sample t-test was carried out on the DC maps which were obtained
from the rs-fMRI signal at the full frequency range (i.e., 0.1-0.25 Hz), without
decomposition into specific sub-bands. This test, however, did not reveal any
significant group differences at the given statistical threshold.

Subsequently, group differences in the GMV-corrected DC maps at each frequency
sub-band were examined. The observed group differences are depicted in Figure 4.4
and resemble to a great extent the group differences observed from the non-GMV-
corrected DC maps.
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Fig. 4.2. | DC: HC. Group-level voxel-wise degree centrality (DC) maps for healthy controls
(HC). DC maps were obtained by subjecting individual z-maps to a one-sample
t-test (p cluster-level corrected < 0.05, on underlying voxel-level correction of
p < 0.001, with voxels restricted to gray matter). (A) DC maps at 10 different
frequency bands, represented by t-values. (B) DC map at the full frequency range
of 0.01–0.25 Hz, represented by t-values.
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Fig. 4.3. | DC: HC > MDD. (A) Group differences in voxel-wise degree centrality (DC)
across nine frequency bands (reported are only the frequency bands where sig-
nificant differences were found, p cluster-level corrected < 0.05, on underlying
voxel-level correction of p < 0.001, with voxels restricted to gray matter). At
freq2, the cluster is located exclusively in the insula. (B) Group differences in
voxel-wise DC of the insula at different frequency bands. This figure encloses
supplementary information to panel (A) for improved visibility. Abbreviations: HC,
healthy controls; MDD, major depressive disorder; freq, frequency.
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Fig. 4.4. | DC: HC > MDD, corrected for GMV. Group differences in voxel-wise degree
centrality (DC) across 10 frequency bands, controlled for gray matter volume
(GMV; p cluster-level corrected < 0.05, on underlying voxel-level correction of p
< 0.001, with voxels restricted to gray matter). At freq2 and freq3, the clusters are
located exclusively in the insula. Abbreviations: HC, healthy controls; MDD, major
depressive disorder; freq, frequency.
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A detailed list of brain regions which exhibited significantly decreased DC in MDD
patients compared to HC, derived from both the regular DC maps as well as the GMV-
corrected DC maps is presented in the Appendix Table B.3 and B.4, respectively.

4.2.4 Degree Centrality and symptom severity

A significant correlation between decreases in regional DC at specific frequency bands
and clinical characteristics of MDD was found. At frequency band 5 (0.1–0.125 Hz)
a significant negative correlation was revealed between the BDI score and the aver-
aged DC value within a cluster that spans the left angular and supramarginal gyri
(r = -0.576, p < 0.005). At frequency band 9 (0.2–0.225 Hz) a significant negative
correlation was found between the length of the current major depressive episode
and the averaged DC value of the insula (r = -0.586, p < 0.005). The described
two clusters of decreased DC in MDD as well as the correlation between the cluster-
averaged DC values and symptom characteristics are displayed in Figure 4.5. These
correlations were observed independently of the reductions in GMV, as they could
be replicated in a subsequent correlation analysis based on averaged GMV-corrected
DC values from those two clusters (freq5: DC x BDI, r = -0.597, p < 0.005; freq9:
DC x length of current MD episode, r = -0.539, p < 0.01).
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Fig. 4.5. | DC and MDD symptomatology. Correlation between the pathologically de-
creased degree centrality (DC) values of the angular gyrus at frequency 5
(0.1–0.125 Hz) and the BDI score (top panel); as well as between the decreased
DC values of the insula at frequency 9 (0.2–0.225 Hz) and the length of current
major depressive episode (in weeks; bottom panel). Abbreviations: HC, healthy
controls; MDD, major depressive disorder; freq, frequency; BDI, Beck Depression
Inventory.
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5Discussion

5.1 Project 1

In the first project, I performed a spectral analysis of BOLD network fluctuations
using a high-quality, large sample dataset of the HCP. Results revealed a significant
grading of spectral centroid values across RSNs. The grading of SC across RSNs
refers to the observation that each RSN takes a distinct position in an ordering of
all SC values. Thus, the grading of SC across RSNs implies that each RSN operates
on a characteristic frequency regime. I successfully replicated this finding through
an independent dataset of 25 healthy subjects. Network orderings in both datasets
under investigation proved to be highly correlated. Thus, the grading of SC across
RSNs proves to be highly reliable across two independent datasets.

Furthermore, the biological relevance of the SC as a meaningful representation of
networks’ spectral properties was validated via disorder effect. In the dataset of 25
MDD patients, I found that the grading of SC was significantly altered. Specifically,
the SC of the salience network was significantly shifted towards higher frequencies.
This shift was found to be due to decreased contributions of low frequencies and
increased contributions of high frequencies to the BOLD signal of the SN in MDD.

Additionally, in the dataset of 25 healthy controls, I observed a grading of the
percent signal change values across RSNs, which implicates significantly distinct
levels of absolute BOLD activity within specific neural ensembles. The grading of
PSC was also affected by MDD, where a significant increase in the PSC of a secondary
visual-occipital network was found1.

5.1.1 Grading of Spectral Centroid across RSNs

The first striking finding of my analysis is the occurrence of a highly organized
grading of SC values derived from the power spectra of slow (i.e., < 1 Hz), broad-
band RSN BOLD fluctuations in healthy subjects. The SC was introduced as a novel
measure describing the "center of gravity" of the full power spectrum of RSN BOLD

1The argumentation presented in the discussion of Project 1 has been adapted from my first-author
publication Ries et al. (2018)
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fluctuations. Investigations performed on the dataset from the HCP revealed that
different RSNs involve and operate on distinct broadband frequency patterns, via
which information can selectively be exchanged between targeted systems. This
ordering of RSNs according to their characteristic SC values is referred to as the
"grading" of SC.

To validate the generalizability and replicability of the finding of the SC grading, I
repeated the analysis on an independent dataset comprising 25 healthy controls,
acquired at my research facility. In line with the findings from HCP data, the spectral
analysis of the second dataset also revealed a significant grading of SC values of
RSN BOLD network fluctuations. Correlation analysis between the SC values of
individual RSNs from Dataset 1 and the corresponding RSNs from Dataset 2 endorse
the reproducibility of SC as a network property—given the different acquisition
sites and parameters, as well as different preprocessing pipelines. The findings
derived from HC in Dataset 2 further highlight and support the meaningfulness of
SC measure as a representative of underlying neural features of RSNs, by means of
which a general organization—i.e., grading—of neural systems according to their
spectral properties can be described.

Such grading is—in electrophysiology—believed to be characteristic for a highly
interactive system of network oscillators (Buzsáki, 2006) and enables a degree of
communication between oscillators, for only networks with overlapping oscillatory
profiles are preferentially able to synchronize with each other and form FC. Respec-
tively, any deviation from a network’s healthy oscillation profile would result in a
desynchronization between its own signal and the signal of networks it communi-
cates to, and thus, in a breakdown of the brain’s large-scale communication structure.
Likewise, in the BOLD signal—which rather relates to fluctuations in broadband
power of electrical oscillation—FC between any two brain areas can only arise with
overlapping frequency spectra. Alterations of the spectra are therefore indicative of
lack of communication.

Previous body of research suggests that resting-state BOLD fluctuations exhibit
frequency-dependent, anatomically restricted spatial structure in the human brain
(Baria et al., 2011; Kalcher et al., 2014; Salvador et al., 2008; Wu et al., 2008; Zuo et
al., 2010). Salvador et al. (2008) investigated frequency-dependent FC profiles and
found that limbic and temporal brain areas display the highest level of oscillation
coherence at high (0.17–0.25 Hz) and middle (0.08–0.17 Hz) frequency bands,
while at low frequencies (< 0.08 Hz) the strongest connectivity is present in frontal
brain regions. Convergently, Baria et al. (2011) provided evidence of whole-brain
organization of BOLD fluctuations within the full spectrum of frequencies available
from rs-fMRI. The power of BOLD fluctuations within the high-frequency band
(0.15–0.20 Hz) was shown to be most dominant in the temporal and sub-cortical
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regions as well as in the insula, whereas the power of BOLD fluctuations at the low-
frequency band (0.01–0.05 Hz) was most accentuated in the prefrontal, occipital, and
parietal lobes. Kalcher et al. (2014) showed that signals from cortical regions exhibit
the highest contributions of frequencies below 0.25 Hz, while signals in subcortical
regions, as well as the insula, are strongly influenced by high-frequency fluctuations
(i.e., 0.25–1.4 Hz). More recently, a hierarchical organization of timescales of
intrinsic dynamics has been suggested, highlighting the sensorimotor-to-transmodal
temporal gradient (Cocchi et al., 2016; Gollo et al., 2015; Gollo et al., 2017; Honey et
al., 2012; Stephens et al., 2013; for review see Huntenburg et al., 2018). According
to this gradient, early sensory cortical areas such as the primary visual, somatomotor
and auditory cortices, operate on faster intrinsic dynamics, while the frequency
content becomes dominated by lower frequencies as the gradient shifts toward
higher-order transmodal areas in the parietal, temporal and prefrontal cortex. Such
an organization was also observed in the context of large-scale brain networks (Gollo
et al., 2015; Gollo et al., 2017). Across networks, the early sensory RSNs showed
faster dynamics when compared to the high-order RSNs. Within networks, the highly
interconnected regions exhibited a slower dynamic regime when compared to the
less interconnected peripheral regions.

In partial agreement with the aforementioned observations, the analysis on the HCP
data yielded the following networks as showing the highest SC values (i.e., the
strongest influence of high-frequency power on the network’s fluctuations profile):
the basal ganglia network (main hubs in the putamen, caudate nucleus, pallidum),
the early sensorimotor networks (SM_R, SM_4, SM_L; main hubs in the precentral
gyrus and paracentral lobule), the auditory network (main hubs in the superior
temporal gyrus), and the anterior subsystem of the DMN (DMN_ant; main hubs in
the middle and superior frontal gyri, and in the anterior cingulate cortex). On the
other end of the power distribution, with relatively low SC values, the following
networks were situated: the posterior-lateral DMN (DMN_postlat; main hubs in the
posterior cingulate cortex, precuneus, cuneus, angular gyrus, IPL), the posterior
DMN (DMN_post; main hubs in the PCC, precuneus, cuneus, IPL), and the bilateral
attention networks (ATT_L, ATT_R; main hubs in the inferior and middle frontal
gyri, IPL, angular gyrus). Two of the visual networks (VIS_4, VIS_6) and two of
the sensorimotor networks (SM_1, SM_2) were also observed at the lower end of
the spectrum. At first, the occurrence of the visual and sensorimotor networks at
the lower end of the SC grading seems to be incongruent with the sensorimotor-
to-transmodal organization. However, it is important to note that these networks
represent—within their modality—higher order systems which fall toward the end
of a modality’s hierarchy of processing complexity.

When ordered accordingly to the decreasing SC magnitude, the spatial distribution
of brain areas constituting individual visual networks exhibits a rather characteristic
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pattern (see Figure 5.1). Networks encompassing predominantly early sensory
areas in the striate cortex (i.e., primary visual area V1, calcarine sulcus) exhibit
higher SC values (VIS_2, VIS_3), which indicates that their BOLD signal is strongly
influenced by high frequencies. Networks that encompass higher-order cortical areas
along the visual stream, i.e., the extrastriate cortex (i.e., visual areas V2, V3, V4,
V5/MT) show comparably lower SC values (VIS_6, VIS_4), which indicates that the
lower frequencies dominate their BOLD signal. However, with one exception: VIS_1
exhibits the highest SC among the visual networks, although it comprises the higher
order visual area V5/MT in the middle temporal gyrus. This observation could be
related to the findings of previous studies, which highlight extensive connections
between area V5/MT and area V1 (Pascual-Leone and Walsh, 2001; Silvanto et al.,
2005). The FC between these areas is likely to be facilitated through synchronous
neural oscillations, which would be reflected in similar SC values between RSNs
comprising these areas. Noteworthy, the observation that networks comprising the
same V5/MT area are situated both at the higher and lower end of the SC gradient
could relate to the multiple parallel processes being asynchronously undertaken by
area V5/MT (for review see Zeki, 2015). To conclude, areas of the visual cortex are
highly functionally specialized (Zeki et al., 1991). My findings further corroborate
with this notion, as they reveal that distinct functional units within the visual system
operate on distinct regimes of intrinsic BOLD dynamics—an organization which is
congruent with the sensorimotor-to-transmodal gradient of timescales observed in
the brain.

Fig. 5.1. | SC and the functional hierarchy within the visual system. Networks consti-
tuting the visual system ordered accordingly to their decreasing spectral centroid
(SC) magnitude; displayed at the three most informative slices (MNI space). Figure
taken from (Ries et al., 2018)

Interestingly, my observations show that the anterior and posterior subsystems of
the DMN are situated at different ends with regards to the grading of SC. The
anterior and anterior-medial DMNs show relatively higher SC values, while the
posterior and posterior-lateral DMNs show relatively lower SC values. This is
indicative of differential contributions of spectral power to different subsystems of the
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DMN, possibly reflecting distinct processes facilitated via distinct frequencies. These
observations are in line with previous reports which highlight the heterogeneous
profile of the DMN functional architecture. Particularly, the DMN was shown to
comprise of smaller anatomical-functional subsystems (Andrews-Hanna et al., 2010).
Information integration across the subsystems of the DMN has been shown to be
implicated in a number of neuropsychiatric disorders including Alzheimer’s disease
(Damoiseaux et al., 2012), schizophrenia (Du et al., 2016), OCD (Beucke et al.,
2014) and MDD (Sambataro et al., 2014; Zhu et al., 2012; Zhu et al., 2017).

In summary, the grading of SC across RSNs points towards frequency-dependent
functional specificity, which is indicative of differentiated information integration
processes being executed at different frequency scales, in different brain regions.
This is in accordance with the results of Neufang et al. (2014) and Cocchi et al.
(2016) which hint towards the frequency-driven directionality of information flow
in the brain.

5.1.2 Biological relevance of Spectral Centroid grading

Previous research viewing a number of neurological and psychiatric disorders re-
vealed that these diseased states are associated with power shifts of ongoing BOLD
network fluctuations across various frequency bands. Garrity et al. (2007) explored
BOLD network fluctuations in schizophrenia, and found that this disorder was
associated with a more rapidly fluctuating activity within the DMN. In this net-
work, significantly decreased power of the low-frequency fluctuations (0.03 Hz)
was detected, accompanied by significantly increased power at higher frequencies
(0.08–0.24 Hz). Calhoun et al. (2011) investigated the spectral profile of RSNs in
schizophrenia and bipolar disorder, and observed a consistent pattern of decreased
low-frequency power along with increased high-frequency power across multiple
RSNs, uniformly in both patient groups. In chronic pain, Malinen et al. (2010)
detected increases in spectral power of activity within the insula and ACC at mid-
dle to higher frequency bands (0.12–0.25 Hz). Also in chronic pain, Baliki et al.
(2011) found increases in power of high-frequency BOLD fluctuation (0.12–0.20 Hz)
mainly in the mPFC and parts of the DMN. These studies all reveal significant shifts
in spectral power of RSN time courses in several diseases, with the predominant
common tendency of decreased power in low frequencies and increased power in
high frequencies.

These observations are convergent with the results of my analysis. The grading
of SC of BOLD network fluctuations in MDD patients significantly deviated from
the grading observed in HC. Precisely, I found a shift of the SC of the SN towards
higher frequencies, which could be attributed to a relatively attenuated power in low
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frequencies (0.01–0.025 Hz) and amplified power in a broad range of higher frequen-
cies (0.175–0.2 Hz) in MDD patients—implying increased activity with characteristic
times corresponding to this frequency range within the salience system.

Since I postulate that the grading of the SC of BOLD network fluctuations is crucial
to successful communication, I further investigated how shifts in BOLD fluctuations
of the SN impact on the network’s communication pattern. Through a subsequent
whole-brain seed-based FC analysis of the SN, I gained insight into the consequences
of the network’s altered intrinsic dynamics and determined brain regions toward
which SN showed aberrant communication in major depression. In MDD patients,
I observed decreased FC of the SN toward the anterior DMN and one of the visual
networks (VIS_4). Although I did not find a direct significant correlation between
the SC of the SN and scores of depression severity, the SC values of the networks
to which SN exhibited altered FC significantly correlated with BDI scores. Thus, I
suspect an indirect influence that the shift in the power spectrum of the SN exerts
on the severity of experienced symptoms. One possible mechanism underlying such
a reaction chain could be that the decoupling of the SN from both the anterior
DMN and the visual network forces these networks to regain the lost oscillation
synchronicity, and that such compensatory attempts would be mirrored through
depression severity. This interpretation is, however, only speculative and further
investigations would be needed to support it.

Following up on this speculation, it would be highly interesting to examine the effects
of non-invasive brain stimulation on the severity of symptoms experienced by MDD
patients. Transcranial magnetic stimulation (TMS) is one of the techniques used
for non-invasive brain stimulation. TMS utilizes short, rapidly changing magnetic
field pulses to induce electrical currents in the underlying cortical tissue (for review
see Hallett, 2007; Kobayashi and Pascual-Leone, 2003; Wagner et al., 2007). The
application of repeated pulses TMS (rTMS) at low frequencies (e.g., 1 Hz) has
been shown to result in the suppression of underlying cortical activity, while high-
frequency stimulation (e.g., 20 Hz) results in excitatory changes. It has also been
shown that the effects of rTMS on neural activity are not confined to the stimulation
site, but can propagate beyond it—impacting a distributed network of brain regions
(Ferreri et al., 2011; Fox et al., 2012b; Siebner et al., 2009). Thus, it would be
interesting to examine whether rTMS applied to MDD patients—specifically targeting
the SN, and aiming at bringing the SN dynamics closer to a healthy regime—results
in reduced scores of symptom severity. If so, it would be interesting to further
investigate whether the reductions in symptom severity relate to stimulation-induced
changes in SC values of the anterior DMN and the VIS_4 network, since the SC values
of these RSNs were shown to significantly correlate with symptom severity scores.
Henceforth, the findings of this study pave the way for new, targeted investigations of
the effects of brain stimulation on the symptomatic and pathophysiology of MDD.
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5.1.3 Grading of BOLD activity levels across RSNs

The analysis of the absolute BOLD activity level—as quantified by PSC—revealed
that distinct RSNs exhibit distinct levels of BOLD activity. In other words, the concept
of a grading of RSNs according to their specific properties also holds true for the
measure of PSC. Thus, one can speak of a grading of PSC across RSNs.

Previous studies in the human and macaque cortex revealed that widely distributed
brain regions are characterized by distinct ratios of excitatory (glutamate) and in-
hibitory (GABA) receptor density (ExIn ratio) (van den Heuvel et al., 2016). Cortical
areas with a relatively high ExIn ratio were shown to form stronger resting-state FC
to other areas of the cortex. In humans, regions characterized by high ExIn ratios
were situated across the precentral, superior frontal, orbitofrontal, supramarginal,
superiotemporal and angular gyrus as well as the IPL, while regions with relatively
low ExIn ratios were distributed across the parstriangularis, the inferior frontal gyrus,
and the occipital lobe.

Such distribution is to a great extent consistent with the spatial variation in net-
work PSC observed in the present study. Specifically, the posterior-lateral DMN
(DMN_postlat; main hubs in superiotemporal, supramarginal and angular gyri) was
found to exhibit by far the highest PSC. It was directly followed by the sensorimotor
network (SM_1; main hubs in the precentral and superior temporal gyri, as well as in
the IPL), the auditory network (main hubs in the superior and middle temporal gyri,
as well as in the precentral gyrus), and the anterior-medial DMN (DMN_antmed;
main hubs in the superior and middle frontal gyri, as well as in the ACC). The lowest
PSC was observed in one of the visual networks (VIS_5; main hubs in the cuneus, as
well as in the lingual, fusiform, and middle occipital gyri). Thus, I speculate that
network PSC is a measure which largely relates to the excitation loading and mag-
nitude of neural activity within an ensemble of brain regions, and that the activity
profile of a network can be broadly influenced by the balanced impact of excitatory
and inhibitory neurotransmitters and receptors. In parallel to the coupling between
neural activity and changes in absolute BOLD signal, however, it is important to
note that differences in BOLD PSC may also be driven by differences in cerebral
vascular reactivity (CVR) (Bandettini and Wong, 1997; Handwerker et al., 2007;
Thomason et al., 2007), baseline venous oxygenation (Lu et al., 2008), as well as
baseline cerebral blood flow (CBF) (Liau and Liu, 2009).

5.1.4 Biological relevance of BOLD activity level grading

In addition to the observation of a grading of PSC across RSNs in healthy subjects,
results of the current study reveal that MDD is associated with alterations in PSC
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values of RSNs which span the occipital cortex. Precisely, MDD patients exhibited
significantly increased PSC in one of the visual networks (VIS_2; main hubs in the
lingual gyrus, cuneus, fusiform gyrus, and occipital gyrus) and a trend towards
significance in another visual network (VIS_4). The observation of increased PSC
of BOLD fluctuations within the visual network in MDD can be interpreted in the
context of the study of Sanacora et al. (2004). In their study, Sanacora and colleagues
found that, relative to healthy controls, MDD patients exhibited altered excitatory
and inhibitory neurotransmitter levels in the occipital cortex. Specifically, MDD
patients exhibited attenuated GABA and increased glutamate concentrations in the
occipital cortex, along with decreased GABA/glutamate ratio which was particularly
associated with- and discriminative of MDD subtypes characterized by melancholic
and psychotic features.

MDD has previously been associated with GABA dysfunction (Brambilla et al., 2003;
Sanacora et al., 2000; Tunnicliff and Malatynska, 2003) and converging findings
reveal normalization of occipital cortex GABA concentrations following electro-
convulsive therapy or selective serotonin reuptake inhibitors (SSRI) medication
(Sanacora et al., 2003; Sanacora et al., 2002). Altogether, these findings support the
notion that GABA function largely contributes to the pathophysiology and treatment
of major depression.

Along these lines, I interpret that the increased PSC of the visual network observed
in the current study could reflect the twofold mechanism underlying the overall
changes in cortical excitability: (1) deficits in inhibitory processes governed by
reduced GABA concentration, accompanied by (2) excessive excitatory stimulation
due to increased glutamate concentration.

Moreover, studies of FC have established a link between the activity of the ventral
tegmental area (VTA)—which is part of the SN—with occipital regions. Seed-based
analysis shows an anti-correlated relation between VTA and the visual areas (Tomasi
and Volkow, 2014; Zhang et al., 2016). Interpreted as an inhibitory influence of
SN on visual areas, SN malfunctioning could relate to less inhibition exerted over
these regions, which in turn could result in increased PSC of BOLD activity within
occipital areas.

In accordance to the considerations on the effects of brain stimulation on RSN SC
values, it would be highly interesting to additionally examine the effects of rTMS on
the PSC values. More precisely, it would be interesting to investigate whether low-
frequency rTMS (i.e., exerting an inhibitory effect) targeted to the occipital cortex
(specifically, the VIS_2 network) results in a normalization of the pathologically
increased activity within the VIS_2 network (which is reflected in increased PSC).
Moreover it would be interesting to acquire Magnetic Resonance Spectroscopy (MRS)
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data, concurrently to the rs-fMRI data acquired before, during, and after rTMS. MRS
is used to measure the concentrations of various metabolites in cortical tissue (Stagg
and Rothman, 2013), and thus could provide important information on the ratios
between excitatory (glutamate) and inhibitory (GABA) receptor densities during the
course of the brain stimulation procedures.

5.2 Project 2

In the second project, I examined frequency-resolved regional DC patterns deter-
mined from the full range of accessible frequencies (i.e., 0.01–0.25 Hz) of the
rs-fMRI BOLD signal in HC and MDD patients. Main results indicate frequency-
specific spatial configuration of functional hubs (i.e., highly connected regions) in
HC, where the occurrence of dominant hubs gradually shifts from central to posterior
regions and is lastly localized in the ACC and the posterior-occipital regions, with
increasing frequency content. Moreover, the results highlight that regions of the
DMN—a core resting-state system—retain the role of hubs over a wide range of
frequencies. Noteworthy, the observation that the ACC constitutes a hub exclusively
at high frequencies (i.e., 0.175–0.25 Hz) is striking and highlights how important it
is to consider higher BOLD signal frequencies in connectivity analyses.

In MDD, regardless of regional gray matter atrophy, frequency-specific decreases
in DC of distinct brain regions were observed. Regions of decreased DC included
the occipital-, middle cingulate-, and sensorimotor cortices, as well as the lateral
parietal cortex, precuneus, ACC, and the insula. The observed regions of decreased
DC could be attributed to well-established RSNs such as the DMN and SN, as well as
the visual, sensorimotor, and auditory networks.

5.2.1 Frequency-specific spatial distribution of hubs in
healthy subjects

The DC is a measure of how well a given brain region is connected to the rest of
the brain. Studies of structural (Hagmann et al., 2008; Sporns et al., 2007) and
functional (Achard et al., 2006; Power et al., 2013) brain organization revealed
a small number of cortical nodes that exhibit an outstandingly high number of
connections to other regions. These are referred to as hubs and play an important
role in global communication by (i) creating short and efficient paths of information
flow, and by (ii) dynamically (Kabbara et al., 2017; de Pasquale et al., 2012; de
Pasquale et al., 2016; de Pasquale et al., 2018) supporting information integration
across remote brain systems (Bullmore and Sporns, 2012; Colizza et al., 2006).
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Across studies, specific brain regions have consistently been reported as functional
hubs (Buckner et al., 2009; Cole et al., 2010; Guye et al., 2010; van den Heuvel
et al., 2008; Tomasi and Volkow, 2010; Tomasi and Volkow, 2011a; Tomasi and
Volkow, 2011b; Zuo et al., 2012; for review see Kabbara et al., 2017; de Pasquale
et al., 2018). These hub regions can be attributed to specific RSNs, and include: the
medial prefrontal cortex (mPFC), inferior parietal lobule (IPL), angular gyrus, and
ventral precuneus/posterior cingulate—associated with the DMN; the supplementary
motor area, central sulcus and postcentral gyrus—associated with the sensorimotor
network; the primary visual cortex and cuneus—associated with the visual network.
On the structural level, brain regions with dense anatomical connections form
structural hubs—which, in turn, facilitate FC. They include the precuneus/posterior
cingulate, superior frontal cortex, medial orbitofrontal cortex, insula, dorsal anterior
cingulate cortex (dACC), medial temporal cortex; and they overlap with all RSNs but
can mostly be attributed to the SN and DMN (van den Heuvel and Sporns, 2013).

In the present study, I show that the spatial configuration of functional hubs is
frequency-dependent, thus, information integration is governed in a frequency-
specific manner over multiple timescales of neural activity. This is in line with
previous work which revealed frequency-specific functional organization of the brain
at rest (Gollo et al., 2017; Salvador et al., 2008; Sasai et al., 2014; Thompson and
Fransson, 2015), as well as with reports of the dynamic processing regimes of hubs
(Kabbara et al., 2017; de Pasquale et al., 2018). Combined, these results highlight the
flexible and time-varying behavior of hubs, which facilitates information integration
across multiple systems at multiple timescales.

In the group of HC, results of the current analysis revealed a graded shift in the
occurrence of the most prominent functional hubs, with respect to the increasing
frequency content. Precisely, brain regions constituting the visual system (i.e.,
the cuneus) and sensorimotor system (i.e., the post- and precentral gyri and the
paracentral lobule) form functional hubs predominantly at lower frequencies (freq1–
3; 0.01–0.075 Hz). Middle frequencies (freq4–6; 0.075–0.15 Hz) represent a
somewhat intermediate state, where hubs occur widely spread across the brain
but mostly within the visual system (i.e., the middle occipital gyrus, cuneus) and
the DMN (i.e., the precuneus, angular gyrus, supramarginal gyrus, IPL). The ACC
forms a functional hub exclusively at higher frequencies (freq8–10; 0.175–0.25 Hz).
Alongside, the posterior subdivision of the DMN (i.e., the precuneus, angular gyrus,
supramarginal gyrus, IPL) exhibits widespread connections at higher frequencies
(freq7–10; 0.15–0.25 Hz). The insula (part of the SN) constitutes a functional hub
across several low- and middle-frequency bands.

In the present study, functional hubs which were revealed both by the frequency-
resolved DC analysis, as well as by the DC analysis at the full frequency range (i.e.,
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without decomposition into distinct sub-bands), greatly correspond to hubs described
in previous studies. Although most of the functional hubs which were revealed by
the frequency-resolved DC analysis were also revealed by the full frequency range
DC analysis, the unique hub profile of the ACC exclusively at higher frequencies was
only captured by the frequency-resolved analysis. The ACC has been identified as a
hub before (for review see Table 1 of Kabbara et al., 2017), however, to the best of
my knowledge, no reports of ACC hubness unique to higher BOLD frequencies exist
in the literature. With this finding, I stress the importance of frequency-resolved
signal analysis under consideration of also higher frequencies of resting-state BOLD
fluctuations (i.e., > 0.1 Hz)—as they hold unique information about functional
integration in the brain.

Notably, a consistent hub character of regions within the DMN across a broad range
of frequency bands (i.e., 0.05–0.25 Hz) was observed in this study. Previously,
the DMN has been identified as a core system for information integration across
remote networks. Most of the hubs determined within the whole brain can be
attributed to the DMN (for review see de Pasquale et al., 2018) and hubs of the
DMN are, in proportion to hubs of other networks, most widely integrated in the
rich club—a strongly interlinked ensemble of highly central hubs (van den Heuvel
and Sporns, 2011). Furthermore, the DMN co-forms the dynamic core network
(de Pasquale et al., 2013; de Pasquale et al., 2016) whose hubs exhibit a pulsatile
pattern of high-centrality states, facilitating a highly efficient topological regime for
information integration across multiple brain networks in a flexible, time-varying
manner (de Pasquale et al., 2018). Observations of the current study, regarding the
consistent hub profile of the DMN across a wide range of frequency bands, further
corroborate with the notion that the DMN is central to information integration across
various functional systems at multiple timescales of neural activity.

5.2.2 Frequency-specific decreases in regional hubness in
major depressive disorder

MDD has been associated with altered FC athwart multiple large-scale systems.
Previous studies highlighted aberrant connectivity of the DMN, SN, and CEN as
prominent features of MDD (Hamilton et al., 2013; Li et al., 2013; Manoliu et al.,
2013; Menon, 2011; Sambataro et al., 2013; Sheline et al., 2009). Furthermore,
disrupted FC of the visual, sensorimotor, and auditory networks has been reported
(Veer et al., 2010; Zeng et al., 2012b). More recently, MDD-related alterations in
resting-state activity have been examined in a frequency-resolved fashion. The results
of Luo et al. (2015) yielded frequency-specific changes in nodal centrality in the
DMN, CEN, and visual network at a frequency range of 0.03–0.06 Hz. Investigations
of Xue et al. (2016) revealed altered regional homogeneity (ReHo) in the middle

5.2 Project 2 81



occipital gyrus, ACC, inferior and superior frontal gyri, mPFC, and thalamus within
the frequency bands of 0.01–0.027 Hz and 0.027–0.073 Hz. Within the same
frequency bands, Wang et al. (2016) reported aberrant amplitude of low-frequency
fluctuations (ALFF) in the ventromedial prefrontal cortex, inferior frontal gyrus,
precentral gyrus, posterior cingulate, and precuneus.

In the current study, I examined frequency-resolved alterations in regional DC in
MDD patients compared to HC. This analysis was carried out under the consideration
of the full spectrum of accessible frequencies within the BOLD signal (i.e., 0.01–0.25
Hz). Moreover, the frequency-dependent spatial distribution of functional hubs
was examined by dividing the BOLD signal into distinct frequency sub-bands at a
fine-grained resolution (i.e., defining frequency intervals of 0.05 Hz). Subsequently,
VBM analysis was carried out to control for the impact of altered brain structure on
the measure of DC.

Results of the VBM analysis revealed regional decreases in GMV in MDD patients
when compared to HC. Reduced GMV was found in the left dACC, in the left
hippocampus, and in the bilateral middle frontal gyrus. These findings correspond
to previous reports of GM abnormalities in MDD (Drevets et al., 2008; Grieve et al.,
2013; Kempton et al., 2011; Koolschijn et al., 2009; Lai, 2013; Liu et al., 2010; Liu
et al., 2017).

Independently of the regional gray matter atrophy in MDD patients, widespread,
frequency-specific decreases in regional DC were observed in MDD patients. At
the lowest frequency band (freq1: 0.01–0.025 Hz) decreased DC of the transverse
temporal gyrus and the insula was observed. At the middle-frequency band 4
(0.075–0.1 Hz) the middle occipital gyrus and the calcarine gyrus exhibited de-
creased overall connectivity. At middle-frequency bands 5–7 (0.1–0.175 Hz) the
supramarginal gyrus, precuneus, angular gyrus, and MCC were largely affected. At
higher frequency bands 8–10 (0.175–0.0.25 Hz) the ventral and dorsal ACC was
affected, as well as the IPL and supramarginal gyrus. Interestingly, distinct parts
of the insula exhibited decreased DC at different frequency bands, including low-,
middle-, and high-frequencies. Reduced DC of the left angular gyrus at frequency
band 5 (0.1–0.125 Hz) was negatively correlated with depression severity, reflected
in the BDI score. Reduced DC of the left superior temporal gyrus and the left pos-
terior insula at frequency band 9 (0.2–0.225 Hz) was negatively correlated with
the length of current major depressive episode. Altogether, brain regions which
exhibited significantly reduced DC in MDD patients could be attributed to the DMN,
SN as well as the visual, sensorimotor, and auditory networks—which is in line with
previous findings reporting on functional changes in MDD.
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Noteworthy, when compared to the full spectrum analysis, the frequency-resolved
DC analysis proves to be a more sensitive method for the detection of significant
alterations in regional hubness associated with MDD. The DC at the full frequency
bandwidth did not reveal any significant changes at the given statistical threshold.
Thus, it is important to consider the frequency content when analyzing resting-state
FC patterns, and their alterations in MDD. Discrepant findings of altered FC in MDD
across studies could occur due to the different frequency content of fMRI signal
under investigation.

Notably, results of the current analysis only yielded pathological decreases in regional
DC in MDD, but no increases. By the example of the dynamic core network, central
hubness relates to dynamic integration from diverse sources and promotes flexible,
time-varying topological states for highly efficient information transfer. Decreased
hubness might result in loss of such flexibility and reduced variability in entering
distinct connectivity states which, in turn, might translate to the pathophysiology
of MDD. A recent model conceptualizes MDD as arising from an imbalanced state
shift, in which patients are stuck in a state of negative mood (Holtzheimer and
Mayberg, 2011). Respectively, recent rs-fMRI studies in MDD showed decreased
variability in the FC of large-scale networks (Demirtaş et al., 2016), along with
prolonged occurrence of certain dynamic FC states (Allen et al., 2014; Calhoun et al.,
2014) which could be linked to ruminative behavior (Kaiser et al., 2016; Zhi et al.,
2018).

In the following part, I will interpret the brain regions exhibiting decreased DC at
the network level, and discuss the putative implications of decreased hubness in
brain regions of the DMN, the SN, as well as the visual, sensorimotor and auditory
networks on the pathophysiology and symptomatology of MDD.

Default-mode network The DMN is involved in self-referential and internally-oriented
processes (Buckner et al., 2008). In the context of the pathophysiology and symp-
tomatic of MDD, increased connectivity within the DMN has been linked to patho-
logical ruminative behavior, where patients cannot disengage from internal mental
processing of emotionally salient negative events (Berman et al., 2011; Zhu et al.,
2012; Zhu et al., 2017). In this study, I observed decreased hubness of the DMN
regions at a broad range of frequencies spanning the middle- to high-frequency
bands. The ventral anterior cingulate cortex (vACC)—part of the anterior DMN—
exhibited reduced hubness exclusively at high-frequencies. Loss of hubness in the
vACC has been reported before by Wu et al. (2016). Furthermore, results of the
current study yielded a significant correlation between decreased hubness of the
angular and supramarginal gyri (regions of the DMN) at middle frequencies and
the depressive symptoms. Decreased hubness of the DMN in MDD could reflect
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increased intra-modular connectivity (i.e., FC within the DMN itself) at the expense
of inter-modular connectivity (i.e., FC to other networks).

Salience Network The SN is anchored in the bilateral anterior insula (AI) and the
dorsal anterior cingulate cortex (dACC), but also includes three key subcortical
structures: the amygdala, the ventral striatum, and the substantia nigra/VTA. The
SN plays a key role in saliency detection and—through its extensive subcortical
connections—in emotional control (Menon and Uddin, 2010; Uddin, 2014).

The insula is believed to be highly relevant to neuropsychiatric disorders, specifi-
cally the ones that entail deficits in higher order cognitive, emotional, and social
processing. Studies propose a tripartite model of insula functional subdivisions,
dividing it into dorsal-anterior, ventral-anterior, and posterior part (Chang et al.,
2013; Deen et al., 2011; Kelly et al., 2012). Altogether, the insula constitutes a key
hub for meta-awareness and affective processing (Craig, 2009b; Chang et al., 2013).
The right anterior insula is a key node of the SN and initiates network switching
between the DMN and CEN, thus, dynamically gates saliency allocation and behav-
ioral response towards either internally or externally driven content (Goulden et al.,
2014; Menon and Uddin, 2010; Sridharan et al., 2008). Due to its subjective and
self-referential nature, however, the representation and perception of saliency can
be vastly disrupted in psychopathology. And indeed, MDD patients exhibit:

(i) altered insular structure (Liu et al., 2010; Peng et al., 2011; Takahashi et al.,
2010),

(ii) altered insular resting-state FC (Ambrosi et al., 2017; Avery et al., 2014;
Iwabuchi et al., 2014; Liu et al., 2010; Manoliu et al., 2013; Peng et al., 2018),

(iii) elevated insular reactivity to negatively-valenced stimuli (Lee et al., 2008),

(iv) decreased insular reactivity to exteroceptive stimuli, leading to a predominance
of interoceptive stimulus processing (Wiebking et al., 2010)—alongside with
abnormal interoceptive representation (Avery et al., 2014).

These abnormalities can altogether lead to a bias toward negative thoughts and
self-image (Northoff, 2017), and to the failure in the exertion of cognitive control
over emotional processing. The insula also plays a key role in time perception (Craig,
2009a; Wittmann, 2009). Duration encoding is believed to represent the mental
state of a person, and cognitive functions such as attention and memory, as well as
drive states, mood, emotions, and personality traits have been shown to affect time
perception (for an excellent review on time perception see Wittmann, 2009). Thus,
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altered intrinsic activity of the insula could be putatively reflected in disturbed time
perception in MDD patients, who often report a slowing down of the subjective flow
of time (Bschor et al., 2004; Fuchs, 2013; Mahlberg et al., 2008; Stanghellini et al.,
2017; Thönes and Oberfeld, 2015; Northoff, 2016).

The observation of decreased DC of the insula in MDD patients in this study, relates
to the above reports. Moreover, the observation of frequency-specific alterations
in distinct parts of the insula, corresponds to previous findings that distinct insular
subdivisions are differentially affected in depression (Peng et al., 2018). It further
supports the notion that distinct neural processes are being carried out at different
frequencies of the neural signal (Draguhn and Buzsáki, 2004; Knyazev, 2007;
Penttonen and Buzsáki, 2003).

Decreased DC of the dACC—observed exclusively at higher frequencies—could
further contribute to impairments in saliency processing and deficits in attentional
control over emotional stimuli. Moreover, the disrupted FC pattern of the dACC
of SN at high-frequencies relates to the observations of Project 1—namely, to the
altered SN power spectrum in MDD patients, which was partially driven by the
elevated power at high-frequencies of BOLD fluctuations.

Visual Network In the current study, decreased overall connectivity of the occipital
cortex at frequency band 4 (0.075–0.1 Hz) was observed. The visual system has
been reported to be widely implicated in depression. Altered excitatory (glutamate)
and inhibitory (GABA) neurotransmitter levels in the occipital cortex were observed
in MDD (Sanacora et al., 2004)—implicating an overactive occipital system; efficient
treatment was shown to bring GABA to presymptomatic levels along with reduced
symptoms severity (Sanacora et al., 2003; Sanacora et al., 2002). Findings of
Project 1 of this thesis, which reveal increased levels of absolute BOLD activity in
one of the visual networks, further corroborate with the reports of a pathologically
overactive visual system in MDD.

On the connectivity level, FC alterations within the visual system in MDD were
reported before (Veer et al., 2010). A multivariate pattern analysis of rs-fMRI
data showed that altered FC within and across regions of the visual cortex (in-
cluding the lingual gyrus, fusiform gyrus, inferior occipital gyrus, and calcarine
gyrus) was—concomitantly with aberrant FC of the DMN and affective (limbic)
network—the most discriminative of major depression (Zeng et al., 2012b). Func-
tional alterations of the fusiform gyrus, which plays a pivotal role in facial emotions
perception (Kanwisher et al., 1997), may be linked to social avoidance in MDD
patients (Liu et al., 2010; Yao et al., 2009). Alongside, FC abnormalities of other
primary visual areas like the occipital cortex, calcarine gyrus, and lingual gyrus may
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impact on impaired selective attention and working memory in MDD. A recent study
of Le et al. (2017) supports this notion and shows that impairments in working
memory updating—which relate to cognitive inflexibility in depression (manifested
in rumination, perseveration of non-optimal problem-solving strategies, and inability
to switch attention to new relevant information)—are linked to altered activity of
the visual association areas and their FC to the prefrontal cortex.

Sensorimotor network In the current analysis, decreased DC of the left precentral
gyrus—associated with the sensorimotor network—was observed at one of the
middle-frequency bands (freq5; 0.1–0.125 Hz). Several reports of altered structure
(Grieve et al., 2013; Peng et al., 2015; Taki et al., 2005; Zeng et al., 2012a) and
function (Tsujii et al., 2017; Veer et al., 2010) of the precentral gyrus have been made
in MDD. In depressive patients with a tendency for suicidal thoughts and records of
committed suicide-attempts, altered structure and function of the precentral gyrus
have been associated with malfunctioning impulsivity control, i.e., inhibitory control
over exerted actions (Tsujii et al., 2017). Psychomotor functions are speculated
to be strongly altered in depression; “the decreased environment-focus may also
be manifest in lack of motivation and volition to act in the external environment
which ultimately may result in psychomotor retardation and social withdrawal on
the psychopathological side” (Northoff, 2016).

Auditory network At the lowest frequency band (freq1; 0.01–0.025 Hz), decreased
DC of the right transverse temporal gyrus (also called the Heschl’s gyrus) within the
primary auditory cortex was observed. Decreased resting-state FC of the Heschl’s
gyrus has been reported in depression before (Veer et al., 2010). Reduced volume
in the Heschl’s gyrus has been implicated in schizophrenia (Hirayasu et al., 2000),
and was found to correlate with the severity of experienced hallucinations (Gaser
et al., 2004). Altered connectivity of the primary auditory cortex might relate
to psychotic symptoms that sometimes accompany severe depression. However,
since the exclusion criteria for MDD patients in this study encompassed psychotic
symptoms, schizophrenia, and schizoaffective disorder the aforementioned relation
is rather of a general nature than one that directly relates to the observations in the
study population.
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5.3 Limitations

In this work, I applied the spectral centroid as an informative summary measure
reflecting spectral properties of RSN BOLD fluctuations. However, it is important to
note that the SC is an averaged representative of the center of gravity of a network’s
full power spectrum over time. Recent studies, however, show that the frequency
content of BOLD network fluctuations varies over time (Yaesoubi et al., 2015;
Yaesoubi et al., 2017). Throughout their time-courses, individual RSNs involve
different “frequency modes” which capture characteristic spectral power distributions
of network fluctuations. Occurrence rates of individual frequency modes as well
as conditional co-occurrence of different modes (which is believed to reflect cross-
frequency coupling in fMRI) were shown to differentiate between gender and age,
possibly yielding a powerful characteristic measure in disease. Such transient states
of coupling between and among remote brain systems at rest can underlie time- and
frequency-dependent communication processes.

Moreover, it could be argued that different methods applied in the estimation
of BOLD power spectra could yield different results. To this end, an additional
analysis was performed where, instead of the Fast Fourier Transform, the modified
periodogram method was applied (Welch’s periodogram). Results of this analysis
have been published (see Ries et al., 2018) and they highly resemble the results
obtained via FFT. Thus, the properties of the observed grading of SC across RSNs
occur independently of the power estimation method.

Another concern that could be expressed over my findings, is the undermined neural
information content of high-frequency fMRI signal. It has been suggested that the
higher band BOLD signal is primarily driven by confounding factors, such as physio-
logical noise, and that information specific to RSNs is limited to the lower frequency
range of 0.01–0.1 Hz (Cordes et al., 2001). However, as I have in detail explained in
the introduction of this dissertation, convincing evidence exists highlighting that this
assumption might be wrong, since meaningful neural content and stable resting-state
connectivity patterns are observed in the BOLD signal at frequencies up to 0.25 Hz
or even 0.75 Hz (Boubela et al., 2013; Lewis et al., 2016; Niazy et al., 2011). Higher
frequencies of rs-fMRI BOLD fluctuations should be investigated, as they provide
important information of the brain’s functional organization. However, careful ar-
tifact removal methods need to be applied beforehand. In project 1, I operate on
ICA-derived time courses which are likely to contain fewer artifacts than the raw
fMRI time courses. In project 2, the motion and physiological artifacts were carefully
removed using advanced signal estimation and regression methods.
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On the other side, one should also consider the caveat that relates to potential
non-neural effects in the low-frequency fMRI signal (< 0.15 Hz). Low frequencies
can reflect effects of scanner drift, aliased high-frequency cardiac pulsations (Bhat-
tacharyya and Lowe, 2004; Lowe et al., 1998) and slow physiological changes such
as end-tidal CO2 fluctuations (Wise et al., 2004). The effects of cardiac pulsations
on observed group differences (i) in SC values were minimal since analysis on the
pulsation rates did not reveal any significant differences in cardiac response between
groups, and (ii) in DC were largely accounted for by regressing out the cardiac signal.
However, CO2 effects can be quite strong and are unlikely to be separated by ICA, as
they constitute a global confound distributed across all independent components in
the brain.

Lastly, a general concern could be expressed over the syndrome-based conceptual-
ization and diagnosis of psychiatric disorders, including MDD. The medical model
conceptualizes MDD as a group of related symptoms (DSM-V, American Psychiatric
Association (2013)). Individuals are diagnosed with MDD based on the number of
reported symptoms (i.e., experiencing at least five out of nine symptoms, includ-
ing at least one of the two core symptoms), but are not further categorized into
more specific subgroups based on a certain constellation of experienced symptoms.
However, there are hundreds of possible combinations of symptoms leading to MDD
diagnosis. Considering such a broad array of combinations, two individuals can
be diagnosed with the same disorder while having very few symptoms in com-
mon. Thus, the syndrome-based approach may miss important information about
the diversity of the psychological and biological substrates of distinct MDD pheno-
types (Hasler et al., 2004). Instead, a more accurate diagnostic approach would
incorporate the disaggregation of the complex and heterogeneous MDD phenotype
into intermediate phenotypes or subtypes, based on differences in characteristic
symptoms (e.g., melancholic, atypical, psychotic), depression onset (e.g., early vs.
late, seasonal, post-partum), severity, and course of illness (e.g., single vs. recurrent,
chronic) (Rush, 2007). MDD subtypes could also be characterized based on distinct
neurobiological signatures obtained from neuroimaging data, in a data-driven way
(Drysdale et al., 2017; Savitz and Drevets, 2009; Tokuda et al., 2018). Thus, it would
be important to repeat the analyses, considering subgroups of MDD patients rep-
resenting distinct depression subtypes, and investigate whether the organizational
principles of resting-state BOLD activity differ between the distinct MDD subtypes.
For such analysis, data from a larger population sample should be used to ensure
sufficient statistical power in each of the subgroups. Still, the spectral centroid could
be included as an informative measure in the investigations of spectral characteristics
of RSN BOLD fluctuations across distinct MDD subtypes.
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6Conclusions and Outlook

The analysis of brain activity assessed via rs-fMRI has opened a window into viewing
large-scale organizational principles of ongoing brain function in a non-invasive,
in vivo manner. Insights from rs-fMRI studies have deepened our understanding
of the brain’s functional architecture at rest, as well as of the implications of such
architecture to the healthy behavior and cognition. Alterations in rs-fMRI activity
have been observed in a number of neurological and psychiatric disorders, including
major depressive disorder. Insights from rs-fMRI data could complement current
diagnostic procedures and guide a better, more precise treatment plan. Previous
rs-fMRI studies in healthy subjects and MDD patients have substantially contributed
to our understanding of the organizational principles of resting-state activity and,
respectively, their breakdown. However, most of the previous studies were restricted
in a twofold manner: (i) these studies mostly investigated the rs-fMRI BOLD signal
in a limited frequency range (i.e., 0.01-0.1 Hz) and thus have ignored the higher
frequencies of BOLD fluctuations; and (ii) these studies mostly viewed the rs-fMRI
BOLD signal in a single frequency band, and did not divide it into distinct sub-
bands. As such, the previous body of evidence in rs-fMRI studies may have ignored
potentially important information carried within higher BOLD frequencies, and
overlooked contributions of different frequency sub-bands to the functional brain
architecture. In this work, I have addressed these limitations by two means, in
two consecutive projects. I investigated what information is contained in selective
frequencies of the rs-fMRI BOLD signal—under consideration of its broad frequency
spectrum, also including the higher frequencies (i.e., > 0.1 Hz)—with regards to:

(i) specialized, local processing—i.e., the spectral content of ongoing RSN BOLD
fluctuations: Project 1,

(ii) communication and information integration across brain areas—i.e., functional
connectivity: Project 2.

Both projects focused on the organizational principles of resting-state BOLD activity
in healthy subjects as well as the alterations in the brain’s functional organization in
major depressive disorder patients.
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In the first project, I proposed an aggregate measure novel to the field of rs-fMRI
analysis—the spectral centroid—which represents the “center of gravity” of the
full power spectrum of individual RSN time courses. Based on a high-quality
and large sample dataset of the Human Connectome Project, I showed that there
is a highly organized grading of spectral centroid across RSNs. This indicates a
characteristic balance between specific frequencies involved in the power spectrum
of BOLD fluctuations in each of the RSN. I successfully replicated the finding of the
occurrence of spectral centroid grading across RSNs in an independent dataset of
25 healthy subjects—which further supports the validity of the proposed approach.
Moreover, I showed that the spectral centroid is a measure sensitive to power changes
in BOLD network fluctuations in disease. In major depressive disorder, I observed
a significantly increased spectral centroid of the salience network—a system well-
known to be implicated in depression. Following the preliminary indication of altered
spectral properties of salience network in depression, I selectively investigated the
spectral power of salience network BOLD fluctuations within distinct frequency
bands. Compared to healthy controls, increased contributions of high frequencies
and reduced contributions of low frequencies to the BOLD signal of the salience
network were revealed in depression. In summary, my work highlights the spectral
centroid as a compact and reliable measure that allows the determination of the
characteristics of the power distribution of BOLD network fluctuations and is highly
sensitive in detecting changes in RSN spectral properties in major brain disease.

In the second project, I investigated frequency-resolved functional connectivity
patterns—assessed via the measure of degree centrality—in healthy subjects and
patients suffering from major depressive disorder. Results revealed a frequency-
dependent spatial organization of functional hubs in the human brain. Major
depressive disorder was found to be associated with frequency-specific alterations
in regional hubness. More precisely, the overall connectivity of regions associated
with the default-mode network, salience network, as well as sensorimotor, visual,
and auditory networks was found to be decreased at specific frequency bands in
depression. From the methodological perspective, the frequency-resolved signal
analysis proved to be a more sensitive approach to detect disease-related alterations
in regional hubness as compared to the full-band analysis via which no significant
changes were detected. Importantly, results of the current analysis also stress
the need for considering higher frequencies of the BOLD signal (i.e., > 0.1 Hz)
in connectivity analyses, as they carry unique information about the functional
organization of the brain at rest.

Altogether, my findings highlight the importance of frequency content when exam-
ining brain organizational properties—assessed via rs-fMRI—in health and their
alterations in major depression. Specifically, I show that both the BOLD activity
within large-scale functional brain systems (i.e., RSNs) as well as the overall BOLD FC
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of highly central brain regions is governed in a frequency-specific manner. Crucially,
in this work, I show that MDD is associated with both changes in spectral properties
of the BOLD signal within selected RSNs as well as with frequency-specific alter-
ations in the connectivity profiles of widespread brain regions. The consideration of
frequency content of the BOLD signal in future rs-fMRI studies in MDD could possibly
contribute to a better understanding of the underlying MDD pathophysiology, and
drive more precise diagnostics and treatment procedures.

In a broader context, my results highlight the role of distinct frequency bands
observed within the low-frequency BOLD fluctuations, which—comparable to the
oscillation classes measured with EEG at higher frequencies—serve distinct functions,
as mirrored in their differential role in information segregation and integration
across the brain. As such, the observations of my study constitute an extension of the
findings of distinct oscillatory classes derived from electrophysiological recordings
at higher frequencies towards lower frequencies (i.e., < 1 Hz). The relationship
between the characteristic spectral content of RSN BOLD fluctuations as well as
the frequency-specific connectivity patterns and the underlying electrophysiological
processes remains elusive. It would be of great importance to investigate which
frequency classes of the EEG signal drive the BOLD activity at distinct frequencies.
Deciphering these relationships would allow for the understanding of the brain’s
functional architecture in a mechanistic sense, on a deeper level. It would also
contribute to a better understanding of the electrophysiological underpinnings of
alterations in the brain’s functional architecture at rest in major depression. Further
work should involve concurrent resting-state EEG-fMRI recordings, and investigatory
focus should be placed on the following aspects: (i) which frequency bands of the
EEG signal correlate with distinct sub-bands of the rs-fMRI signal, and (ii) how
does the power in distinct EEG bands relate to the FC metrics at distinct frequency
sub-bands of the rs-fMRI signal.

All in all, the brain operates on distinct, fast and slow timescales of neural activity,
which can be captured at different frequency levels via the use of different measure-
ment techniques. Both the individual processes executed at fast and slow timescales
and the interplay between them are of high relevance to healthy brain function.
Alterations in brain processes executed at distinct timescales of neural activity signif-
icantly affect the intact brain function, as reflected in major depressive disorder. Just
as alterations in the pace of the individual elements in a bird’s life—the flights and
the perchings (James, 1890)—would largely affect its healthy behavior.
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Tab. A.1. | Project 1: Correspondence between RSNs across study sites. Corre-
spondence between established resting-state network (RSN) templates pro-
vided by Allen et al. (2011) and RSNs identified from the Human Con-
nectome Project data (Dataset 1), as well as from the data of 25 HC & 25
MDD patients (Dataset 2). The table represents the independent component
(IC) number from Allen et al. (2011), the corresponding RSN name, the
abbreviated RSN name used for the purposes of this work, and an indication
whether ICs from Dataset 1 and Dataset 2 could be attributed to the given
RSN template. Abbreviations: DMN, default-mode network; CEN, central
executive network.

RSN template from Allen
et al. (2011)

IC attributed to RSN template?

IC RSN name
RSN name
abbreviated

Dataset 1 Dataset 2

21 Basal Ganglia BG yes yes
25 DMN anterior-medial DMN_antmed yes yes
68 DMN anterior DMN_ant yes yes

53
DMN
posterior-lateral

DMN_postlat yes yes

50 DMN posterior DMN_post yes yes
34 Attention left ATT_L yes yes
60 Attention right ATT_R yes yes
72 Attention ATT yes yes

71
Attention Dorsal
CEN

CEN yes yes

55 Salience Network SN yes yes
52 Attention left - no no
17 Auditory AUD yes yes
47 Frontal FRONT_1 yes yes
49 Frontal FRONT_2 yes yes
20 Frontal FRONT_3 yes no
42 Frontal - no no
38 Sensorimotor SM_1 yes yes
7 Sensorimotor SM_2 yes yes
56 Sensorimotor SM_3 no yes
23 Sensorimotor left SM_L yes yes
24 Sensorimotor right SM_R yes yes
29 Sensorimotor SM_4 yes yes
39 Visual VIS_1 yes yes
46 Visual VIS_2 yes yes
59 Visual VIS_3 yes yes
64 Visual VIS_4 yes yes
67 Visual VIS_5 no yes
48 Visual VIS_6 yes no
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Tab. A.2. | Project 1: Dataset 2: FC profile of RSNs. For each resting-state network
(RSN) the set of brain regions constituting the network’s positive functional
connectivity (FC) are presented in the table.

Dataset 2: Healthy Controls & MDD patients

RSN Positive FC

BG
Parahippocampal Gyrus, Lentiform Nucleus, Subcallosal Gyrus,
Lateral Ventricle, Inferior Frontal Gyrus, Claustrum, Caudate, Insula, Uncus,
Medial Frontal Gyrus, Superior Temporal Gyrus

AUD
Superior Temporal Gyrus, Insula, Transverse Temporal Gyrus,
Middle Temporal Gyrus, Precentral Gyrus, Postcentral Gyrus

SM_1
Transverse Temporal Gyrus, Postcentral Gyrus, Superior Temporal
Gyrus, Inferior Parietal Lobule, Insula, Precentral Gyrus

SM_2
Precentral Gyrus, Postcentral Gyrus, Superior Temporal Gyrus,
Inferior Frontal Gyrus, Transverse Temporal Gyrus, Insula, Middle Frontal
Gyrus

SM_3
Medial Frontal Gyrus, Superior Frontal Gyrus, Cingulate Gyrus,
Middle Frontal Gyrus, Paracentral Lobule, Precentral Gyrus

SM_L
Postcentral Gyrus, Inferior Parietal Lobule, Precentral Gyrus,
Middle Frontal Gyrus, Superior Parietal Lobule

SM_R
Postcentral Gyrus, Precentral Gyrus, Middle Frontal Gyrus,
Inferior Parietal Lobule, Insula, Paracentral Lobule, Medial Frontal Gyrus,
Cingulate Gyrus, Transverse Temporal Gyrus

SM_4
Paracentral Lobule, Medial Frontal Gyrus, Precentral Gyrus,
Postcentral Gyrus, Superior Frontal Gyrus, Precuneus, Superior Parietal
Lobule

VIS_1
Fusiform Gyrus, Middle Occipital Gyrus, Inferior Temporal Gyrus,
Inferior Occipital Gyrus, Middle Temporal Gyrus, Cuneus, Superior Occipital
Gyrus, Precuneus, Lingual Gyrus, Cerebellum

VIS_2
Lingual Gyrus, Cuneus, Inferior Occipital Gyrus, Middle
Occipital Gyrus, Fusiform Gyrus

VIS_3 Precuneus, Cuneus, Middle Occipital Gyrus, Posterior Cingulate

VIS_4
Lingual Gyrus, Cuneus, Posterior Cingulate, Precuneus,
Cerebellum, Middle Occipital Gyrus

VIS_5
Cerebellum, Lingual Gyrus, Fusiform Gyrus, Parahippocampal
Gyrus, Middle Occipital Gyrus, Cuneus, Posterior Cingulate

DMN_post
Cingulate Gyrus, Precuneus, Posterior Cingulate, Cuneus,
Inferior Parietal Lobule, Supramarginal Gyrus

DMN_postlat
Cingulate Gyrus, Posterior Cingulate, Precuneus, Cuneus, Middle
Temporal Gyrus, Superior Temporal Gyrus, Angular Gyrus, Supramarginal Gyrus

DMN_antmed
Medial Frontal Gyrus, Superior Frontal Gyrus, Anterior
Cingulate, Middle Frontal Gyrus, Cerebellum

DMN_ant
Cingulate Gyrus, Superior Frontal Gyrus, Medial Frontal Gyrus,
Anterior Cingulate, Middle Frontal Gyrus

ATT_L

Angular Gyrus, Inferior Parietal Lobule, Superior Temporal
Gyrus, Middle Frontal Gyrus, Supramarginal Gyrus, Precuneus, Middle Temporal
Gyrus, Precentral Gyrus, Superior Parietal Lobule, Inferior, Medial Frontal
Gyrus, Superior Frontal Gyrus, Inferior Frontal Gyrus, Cerebellum

ATT_R
Inferior Parietal Lobule, Precuneus, Superior Parietal Lobule,
Angular Gyrus, Supramarginal Gyrus, Middle Frontal Gyrus, Inferior Frontal
Gyrus, Postcentral Gyrus, Superior Frontal Gyrus, Cerebellum

ATT
Precuneus, Superior Parietal Lobule, Postcentral Gyrus, Angular
Gyrus, Superior Occipital Gyrus

CEN
Superior Temporal Gyrus, Middle Temporal Gyrus, Supramarginal
Gyrus, Inferior Parietal Lobule, Precuneus, Inferior Temporal Gyrus

SN
Inferior Frontal Gyrus, Superior Temporal Gyrus, Insula,
Cingulate Gyrus, Anterior Cingulate, Medial Frontal Gyrus

FRONT_1
Inferior Frontal Gyrus, Precentral Gyrus, Middle Frontal Gyrus,
Inferior Parietal Lobule, Supramarginal Gyrus

FRONT_2
Middle Frontal Gyrus, Superior Frontal Gyrus, Inferior Frontal
Gyrus
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Tab. B.1. | Project 2: DC HC: full frequency range. Results of the degree centrality (DC)
analysis in healthy controls (HC) at the full frequency range. The table includes
the cluster size, the z-value, the MNI coordinates, the side, and the anatomical
locations of the peak voxels. Reported are only brain areas with p cluster-level
corrected < 0.05, on underlying voxel-level correction of p < 0.001, with voxels
restricted to gray matter.

DC HC; full
frequency range

MNI coordinates [mm]

cluster size z-value x y z side location

53 5.53 -45 -76 20 L Middle Temporal Gyrus
4.25 -36 -88 8 L Middle Occipital Gyrus

41 5.49 -45 -4 50 L Precentral Gyrus
34 5.38 -42 -43 56 L Inferior Parietal Lobule
126 5.14 -3 -25 50 L Paracentral Lobule

4.73 9 -31 44 R MCC
322 5.01 3 -79 17 L Cuneus

4.77 30 -79 29 R Middle Occipital Gyrus
4.72 12 -76 35 R Cuneus

45 4.73 57 -19 17 R Rolandic Operculum
4.43 51 -16 8 R Transverse Temporal Gyrus
3.54 66 -16 8 R Superior Temporal gyrus

46 4.71 48 11 -1 R Insula lobe
4.64 60 5 -1 R Temporal Pole
3.66 60 5 11 R Rolandic Operculum

36 4.69 -60 -13 5 L Superior Temporal Gyrus
3.7 -48 -16 14 L Rolandic Operculum

35 4.43 51 -13 50 R Precentral Gyrus
3.71 54 -22 50 R Postcentral Gyrus
3.42 45 -4 56 R Middle Frontal Gyrus

33 4.3 -54 -34 20 L Superior Temporal Gyrus
3.8 -54 -46 26 L SupraMarginal Gyrus

34 4.17 54 -55 26 R Angular Gyrus
3.68 57 -49 20 R Superior Temporal Gyrus
3.3 57 -43 29 R SupraMarginal Gyrus

21 4.11 60 -37 32 R SupraMarginal Gyrus
21 3.96 51 -61 8 R Middle Temporal Gyrus
42 3.95 3 -55 41 R Precuneus

3.83 0 -67 47 L Precuneus
20 3.81 -54 -52 32 L Angular Gyrus
18 3.78 -27 -46 65 L Superior Parietal Lobule
19 3.72 -30 -82 26 L Middle Occipital Gyrus
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Tab. B.2. | Project 2: DC HC: 10 frequency bands. Results of the degree
centrality (DC) analysis in healthy controls (HC) at 10 frequency
bands. The table includes the cluster size, the z-value, the MNI
coordinates, the side, and the anatomical locations of the peak
voxels. Reported are only brain areas with p cluster-level corrected
< 0.05, on underlying voxel-level correction of p < 0.001, with
voxels restricted to gray matter.

DC: HC
MNI

coordinates [mm]
frequency
band

cluster size z-value x y z side location

240 5.14 -39 -40 56 L Postcentral Gyrus
400 5.91 15 -85 38 R Cuneus

5.46 21 -79 38 R Superior Occipital Gyrus
118 5.57 12 -28 65 R Paracentral Lobule

4.51 24 -49 65 R Superior Parietal Lobule
21 5.36 51 -46 20 R Superior Temporal Gyrus

190 5.11 -18 -16 71 L Precentral Gyrus
4.52 -3 -25 50 L Paracentral Lobule

121 5.11 -63 -13 5 L Superior Temporal Gyrus
4.63 -60 -25 26 L SupraMarginal Gyrus

87 4.96 -45 -70 2 L Middle Occipital Gyrus
4.13 -42 -64 20 L Middle Temporal Gyrus

69 4.94 48 -61 8 R Middle Temporal Gyrus
62 4.86 42 -13 53 R Precentral Gyrus

4.38 54 -22 50 R Postcentral Gyrus
45 4.8 -24 -79 26 L Superior Occipital Gyrus

4.29 -33 -88 23 L Middle Occipital Gyrus
3.4 -21 -88 26 L Superior Occipital Gyrus

60 4.69 54 -19 17 R Rolandic Operculum
4.68 54 -16 8 R Superior Temporal Gyrus

24 4.59 42 -31 14 R Superior Temporal Gyrus
40 4.32 48 8 -1 R Insula Lobe

4.3 60 2 5 R Superior Temporal Gyrus
38 4.11 21 -82 -10 R Lingual Gyrus

freq1

3.71 6 -94 -4 R Calcarine Gyrus
378 5.99 12 -73 26 R Cuneus

4.83 -3 -64 8 L Calcarine Gyrus
68 5.27 -45 -4 53 L Precentral Gyrus

3.66 -60 -19 32 L Postcentral Gyrus
85 4.95 -18 -19 71 L Precentral Gyrus

4.85 -24 -7 65 L Superior Frontal Gyrus
349 5.21 -12 -37 44 L MCC

4.91 3 8 44 R MCC
4.89 -3 -25 50 L Paracentral Lobule

45 5.12 42 -13 53 R Precentral Gyrus
4.18 45 -1 53 R Middle Frontal Gyrus

38 4.97 48 -58 8 R Middle Temporal Gyrus
102 4.95 24 -40 62 R Postcentral Gyrus

3.87 24 -28 71 R Precentral Gyrus
121 4.51 57 -22 17 R Superior Temporal Gyrus

4.5 57 8 2 R Rolandic Operculum
4.45 54 -7 5 R Transverse Temporal Gyrus

24 4.34 -57 -4 2 L Superior Temporal Gyrus
40 4.31 -51 -67 5 L Middle Temporal Gyrus

4.14 -45 -76 2 L Middle Occipital Gyrus
3.27 -60 -31 23 L Superior Temporal Gyrus

33 3.98 -24 -46 65 L Superior Parietal Lobule
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3.8 -24 -55 59 L Superior Parietal Lobule
3.46 -15 -52 65 L Precuneus

25 3.74 12 -4 68 R Posterior-Medial-Frontal
3.55 24 -1 65 R Superior Frontal Gyrus

freq2

3.45 15 8 68 R Posterior-Medial-Frontal
146 5.79 60 -16 11 R Superior Temporal Gyrus

5.23 51 -19 8 R Heschls Gyrus
4.47 63 -31 32 R SupraMarginal Gyrus

60 5.71 -48 -4 47 L Precentral Gyrus
4.96 -51 -13 47 L Postcentral Gyrus
3.85 -39 2 50 L Middle Frontal Gyrus

325 5.08 3 -82 17 L Cuneus
58 5.08 42 2 56 R Middle Frontal Gyrus

4.66 45 -7 44 R Precentral Gyrus
170 4.95 3 -40 47 R MCC

4.82 -3 -28 50 L Paracentral Lobule
31 4.91 -45 -46 53 L Inferior Parietal Lobule

3.8 -39 -46 59 L Superior Parietal Lobule
31 4.89 -57 -13 11 L Superior Temporal Gyrus

4.66 -54 -1 5 L Rolandic Operculum
59 4.86 30 -49 62 R Superior Temporal Lobule

4.12 24 -34 68 R Postcentral Gyrus
35 4.59 54 -46 14 R Superior Temporal Gyrus
26 4.51 -42 -19 -1 L Superior Temporal Gyrus
27 4.34 -57 -34 17 L Superior Temporal Gyrus

4.13 -48 -34 20 L Superior Temporal Gyrus
24 4.11 54 5 -1 R Temporal Pole

3.65 42 11 5 R IFG (p. Opercularis)
29 4.14 -15 8 65 L Superior Frontal Gyrus

3.57 -24 -1 68 L Superior Frontal Gyrus

freq3

27 4.04 51 -55 8 R Middle Temporal Gyrus
1214 6.78 0 -76 20 L Cuneus

5.76 6 -85 23 R Cuneus
101 6.21 27 -82 26 R Superior Occipital Gyrus

5.03 30 -73 29 R Middle Occipital Gyrus
411 5.95 -3 -43 50 L MCC

5.94 0 -49 35 L Precuneus
82 5.77 -15 11 65 L Superior Frontal Gyrus

3.86 -27 -4 56 L Precentral Gyrus
171 5.65 39 -16 -4 R Insula Lobe

5.48 51 -16 5 R Transverse Temporal Gyrus
4.86 57 5 2 R Rolandic Operculum

21 5.56 -57 2 2 L Rolandic Operculum
284 5.52 57 -49 23 R Superior Temporal Gyrus

5.24 51 -73 17 R Middle Temporal Gyrus
280 5.48 -51 -43 50 L Inferior Parietal Lobule

5.46 -45 -1 50 L Precentral Gyrus
5.3 -51 -16 47 L Postcentral Gyrus

62 5.36 -63 -13 5 L Superior Temporal Gyrus
3.78 -54 -16 14 L Postcentral Gyrus

23 4.83 6 41 14 R ACC
30 4.51 42 -25 17 R Rolandic Operculum
57 4.43 42 -10 41 R Precentral Gyrus

freq4

20 3.23 57 -1 41 R Precentral Gyrus
1953 5.96 -42 -76 26 L Middle Occipital Gyrus

5.65 0 -82 32 L Cuneus
5.62 12 -79 38 R Cuneus

103 4.68 -45 5 38 L Precentral Gyrus
4.3 -48 8 29 L IFG (p. Opercularis)
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91 4.53 -51 -10 5 L Superior Temporal Gyrus
34 4.5 48 -73 17 R Middle Temporal Gyrus

3.32 51 -61 14 R Middle Temporal Gyrus
55 4.42 48 11 -1 R Insula Lobe

4 57 5 2 R Rolandic Operculum
3.77 63 -4 2 R Superior Temporal Gyrus

78 4.34 63 -31 32 R SupraMarginal Gyrus
3.97 54 -49 26 R Angular Gyrus

59 4.18 36 -43 53 R Inferior Parietal Lobule

freq5

4.08 33 -46 44 R Postcentral Gyrus
1194 5.89 3 -43 44 R Precuneus

5.74 -6 -82 35 L Cuneus
5.63 6 -52 35 R MCC

531 5.28 -48 -43 53 L Inferior Parietal Lobule
5.25 -45 -58 20 L Middle Temporal Gyrus

29 4.75 -45 -7 50 L Precentral Gyrus
4.17 -45 2 53 L Precentral Gyrus

112 4.68 57 -46 32 R SupraMarginal Gyrus
4.25 54 -58 32 R Angular Gyrus

54 4.63 -27 -82 23 L Middle Occipital Gyrus
26 4.3 33 -88 11 R Middle Occipital Gyrus
38 4.08 51 -10 2 R Superior Temporal Gyrus

freq6

3.39 51 5 -7 R Temporal Pole
963 6.06 3 -40 47 R MCC

5.77 -6 -76 29 L Cuneus
5.49 0 -58 44 L Precuneus

415 5.88 -51 -61 32 L Angular Gyrus
5.76 -45 -67 23 L Middle Temporal Gyrus
5.71 -45 -64 44 L Angular Gyrus

228 4.9 36 -67 44 R Angular Gyrus
4.5 57 -49 26 R SupraMarginal Gyrus

4.24 45 -52 44 R Inferior Parietal Lobule
21 4.76 51 -16 8 R Transverse Temporal Gyrus
54 4.68 -57 -1 2 L Rolandic Operculum

4 -48 -16 11 L Transverse Temporal Gyrus
35 4.25 42 2 53 R Middle Frontal Gyrus

freq7

4.05 45 -7 56 R Precentral Gyrus
91 5.31 54 -19 8 R Superior Temporal Gyrus

4.69 57 2 -1 R Superior Temporal Gyrus
169 4.81 -3 -70 47 L Precuneus

4.27 0 -73 26 L Cuneus
170 4.77 -45 -67 38 L Angular Gyrus

4.57 -42 -73 26 L Middle Occipital Gyrus
81 4.54 -3 38 14 L ACC

3.94 6 47 14 R ACC
75 4.43 -51 -10 5 L Superior Temporal Gyrus

freq8

4.03 -54 8 11 L IFG (p. Opercularis)
591 6.35 -12 -70 26 L Cuneus

5.77 3 -40 47 R MCC
5.62 -3 -64 47 L Precuneus

517 5.32 -54 -52 32 L Angular Gyrus
5.24 -42 -40 50 L Inferior Parietal Lobule
5.22 -45 -64 23 L Middle Temporal Gyrus

110 5.1 57 2 -1 R Superior Temporal Gyrus
4.49 42 -13 -1 R Insula Lobe

76 4.85 -51 -10 8 L Transverse Temporal Gyrus
4.13 -42 -16 -4 L Superior Temporal Gyrus
3.59 -54 5 2 L Rolandic Operculum

49 4.35 9 47 5 R ACC
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freq9

3.98 0 41 14 L ACC
400 5.9 0 -40 44 L MCC

5.36 0 -67 47 L Precuneus
253 5.11 -45 -43 50 L Inferior Parietal Lobule

5 -42 -76 26 L Middle Occipital Gyrus
4.89 -45 -70 35 L Angular Gyrus

41 4.56 -54 -13 5 L Superior Temporal Gyrus
3.37 -54 -1 5 L Rolandic Operculum

20 4.11 60 -49 29 R SupraMarginal Gyrus
3.53 57 -52 38 R Inferior Parietal Lobule

freq10

53 3.89 -3 35 17 L ACC

Tab. B.3. | Project 2: DC HC > MDD: 10 frequency bands. Results of the
degree centrality (DC) group comparison analysis at 10 frequency
bands. The table includes the cluster size, the z-value, the MNI
coordinates, the side, and the anatomical locations of the peak
voxels. Reported are only brain areas with p cluster-level corrected
< 0.05, on underlying voxel-level correction of p < 0.001, with
voxels restricted to gray matter. Significant group differences in DC
were found only in the HC > MDD contrast.

DC:
HC >MDD

MNI
coordinates [mm]

frequency
band

cluster
size

z-value x y z side location

23 4.74 42 -19 5 R Transverse Temporal Gyrus
38 4.05 45 5 -4 R Insula Lobefreq1

3.6 45 8 8 R IFG (p. Opercularis)
freq2 50 5.14 42 5 8 R Insula Lobe

31 4.87 -36 -85 5 L Middle Occipital Gyrus
26 4.78 3 -76 17 L Calcarine Gyrus
27 4.31 -45 -16 -4 L Superior Temporal Gyrus
30 3.97 51 2 2 R Rolandic Operculum

freq4

3.88 42 5 -7 R Insula Lobe
57 4.96 3 -10 35 R MCC

3.81 -6 -16 38 L MCC
43 4.65 42 2 -7 R Insula Lobe

4.35 42 8 8 R IFG (p. Opercularis)
4.15 54 -4 2 R Superior Temporal Gyrus

44 4.52 -51 -52 32 L Angular Gyrus
3.42 -57 -43 26 L SupraMarginal Gyrus
3.29 -57 -52 17 L Middle Temporal Gyrus

32 4.31 -45 8 38 L Precentral Gyrus
24 4.21 63 -46 29 R SupraMarginal Gyrus

freq5

3.79 57 -52 26 R Angular Gyrus
30 5.12 60 -43 26 R SupraMarginal Gyrus
30 4.52 0 -13 38 L MCCfreq6
22 3.89 6 -46 59 R Precuneus
34 5.22 -9 -43 35 L MCC

4.21 -12 -43 44 L Precuneus
31 4.47 -42 -22 -1 L Insula Lobe

3.64 -48 -13 -4 L Superior Temporal Gyrus
89 4.58 -45 -61 44 L Angular Gyrus

freq7

4.53 -45 -52 53 L Inferior Parietal Lobule
57 5.56 36 -13 -7 R Putamen

4.52 42 -10 -1 R Insula Lobe
157 5.4 -3 35 11 L ACC

4.7 9 47 2 R ACC
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40 4.29 -48 -16 5 L Superior Temporal Gyrus
23 4.96 -24 -25 -13 L Hippocampus
26 4.3 -57 2 -4 L Superior Temporal Gyrus

3.86 -45 14 -16 L Temporal Pole
32 4.23 -36 11 -1 L Insula Lobe

freq8

3.64 -48 20 -4 L IFG (p. Opercularis)
43 5.82 6 44 5 R ACC

3.49 -3 41 -1 L ACC
31 5.1 -51 -13 5 L Superior Temporal Gyrus

3.49 -57 -1 2 L Rolandic Operculum
25 4.87 54 2 -1 R Superior Temporal Gyrus

3.81 57 -1 8 R Rolandic Operculum
54 4.81 -54 -49 29 L SupraMarginal Gyrus

3.79 -51 -61 23 L Middle Temporal Gyrus

freq9

3.39 -57 -52 38 L Inferior Parietal Lobule
57 5.25 -6 35 17 L ACC

4.32 9 35 20 R ACC
27 4.96 -54 -16 8 L Transverse Temporal Gyrus

freq10

3.87 -54 -28 11 L Superior Temporal Gyrus

Tab. B.4. | Project 2: DC HC > MDD: 10 frequency bands, controlled
for GMV. Results of the degree centrality (DC) group comparison
analysis at 10 frequency bands, corrected for gray matter volume
(GMV). The table includes the cluster size, the z-value, the MNI
coordinates, the side, and the anatomical locations of the peak
voxels. Reported are only brain areas with p cluster-level corrected
< 0.05, on underlying voxel-level correction of p < 0.001, with
voxels restricted to gray matter. Significant group differences in DC
were found only in the HC > MDD contrast.

DC:
HC >MDD,
GMV corrected

MNI
coordinates [mm]

frequency
band

cluster
size

Z value x y z side location

21 4.77 -45 -16 -1 L Superior Temporal Gyrus
37 4.13 45 5 -4 R Insula Lobefreq1

3.6 45 8 8 R IFG (p.Opercularis)
freq2 54 5.18 42 5 8 R Insula Lobe

25 5.16 -42 -19 -1 L Superior Temporal Gyrus
freq3

3.89 -45 -19 8 L Transverse Temporal Gyrus
27 4.78 3 -76 17 L Calcarine Gyrus
35 4.63 -36 -85 5 L Middle Occipital Gyrus
32 3.93 45 2 -1 R Insula Lobe

freq4

3.82 54 -4 2 R Superior Temporal Gyrus
59 5.06 3 -10 35 R MCC
38 4.71 42 2 -7 R Insula Lobe

4.36 42 8 8 R IFG (p.Opercularis)
39 4.57 -51 -52 32 L Angular Gyrus

3.35 -57 -52 17 L Middle Temporal Gyrus
24 4.32 63 -46 29 R SupraMarginal Gyrus

3.72 57 -52 26 R Angular Gyrus

freq5

31 4.14 -45 5 38 L Precentral Gyrus
33 5.22 60 -43 26 R SupraMarginal Gyrus
42 4.66 0 -13 38 L MCC
21 3.84 6 -46 59 R Precuneus

freq6

3.77 12 -40 56 R Paracentral Lobule
31 5.82 -18 17 62 L Superior Frontal gyrus
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3.76 -9 11 68 L Posterior-Medial Frontal
37 5.22 -9 -43 35 L MCC
83 4.64 -45 -61 44 L Angular Gyrus

4.45 -45 -55 53 L Inferior Parietal Lobule

freq7

35 3.78 -45 -16 5 L Transverse Temporal Gyrus
50 5.57 36 -13 -7 R Putamen

4.48 42 -10 -1 R Insula Lobe
137 5.4 -3 35 11 L ACC

4.51 9 50 2 R Superior Medial Gyrus
57 4.56 -48 -16 5 L Superior Temporal Gyrus
30 4.39 -36 11 -4 L Insula Lobe

3.82 -42 23 -1 L IFG (p.Triangularis)
23 4.32 -54 5 2 L Rolandic Operculum

freq8

3.87 -45 14 -16 L Temporal Pole
30 5.43 6 44 5 R ACC
24 5.18 -51 -13 5 L Superior Temporal Gyrus
46 4.9 -54 -49 29 L SupraMarginal Gyrus

3.93 -51 -61 23 L Middle Temporal Gyrus
3.48 -57 -55 38 L Inferior Parietal Lobule

freq9

21 4.39 -45 -13 -4 L Superior Temporal Gyrus
42 5.07 -6 35 17 L ACC

4.4 6 38 23 R ACC
31 4.93 -54 -16 8 L Transverse Temporal Gyrus

freq10

3.96 -54 -28 11 L Superior Temporal Gyrus
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