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van Karmàn vortex street analogy. . . . . . . . . . . . . . . . . . . . . 77

3.4 Top: Arrival-time difference ∆t according to (3.14) at H0 = 4 · 103 m

as a function of L ∈ [104 m, 106 m]. Bottom: Arrival-time difference ∆t

according to (3.14) at L = 105 m as a function of H0 ∈ [102 m, 5 · 104 m]. 78



x LIST OF FIGURES

3.5 Top: The expected sound pressure level in [dB] equivalent according

to (3.18) equivalent at fixed horizontal distance to the shoreline L =

105 m as a function of the fluid velocity in the turbulent vortex layer v ∈
[5 cms−1, 25 cms−1]. The other parameters are summarized in Tab. 3.2.

Bottom: The expected sound pressure level equivalent in [dB] according

to (3.18) equivalent at fixed fluid velocity in the vortex layer region v =

10 cms−1 as a function of L ∈ [104 m, 106 m]. The other parameters are

summarized in Tab. 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Derivation of the source term. (A) Discretization of the depth profile

H1 in a quasi-2-dimensional model, (B) Geometric regions and centers

of vorticities in a planar model. . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Plate tectonics of the earth according to [11] There are Np = 52 plates

on the earth’s surface. Figure taken from [11]. . . . . . . . . . . . . . . 96

4.1 (a): Helmholtz’ [156] creative imagination of how an organ pipe gener-

ates its fundamental frequency. The pipe length L between the mouth,

or labium, at the bottom and the top of the pipe equals, for the air at

resonance in the pipe, half the wavelength between two anti-nodes at

the openings (symbolized by the “opening” of the solid red lines), where

sound is radiated into free space, indicated by thick red arrows. Accord-

ingly, since the wavelength λ equals the velocity of sound c ≈ 343 ms−1

divided by the fundamental frequency f1 and λ/2 = L, we end up with

λ = 2L = c/f1. (b): The effective length Leff to compute f1 slightly ex-

ceeds the actual pipe length L, which in the past has been accounted for

by phenomenological correction factors δ0, the end-correction [88], and

δm, the mouth correction [74]. Both corrections are symbolic in grey.

The effective length finally is given through Leff = L+ δ0 + δm. Both the

complicated geometry of and the turbulence at the labium preclude any

simple physical explanation of δm. Only approximate, idealized results

[74] exist that do, however, agree with earlier experimental findings [27].

(c): As will be explained below, the hydrodynamic mechanism under-

lying the end-correction is given through the existence of the sphere of

separation (in light-blue) and a system of two counter-rotating vortex

rings (stable inner one in dark red, unstable outer one in light red) at

the open end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF FIGURES xi

4.2 Top: Experimental setup for (A) observing a vortex structure at the

open end of the organ pipe and (B) recording of the sound radiated from

the open end of the pipe. Bottom: Schematic view on an organ pipe with

conical deflection rosette, air supply tube, horizontally lit plane and the

expected system of two concentric, counter-rotating vortex rings of equal

strength at the open end of the pipe. . . . . . . . . . . . . . . . . . . . 105

4.3 Top: Top row: Open end of the organ pipe with predicted vortex struc-

ture from two perspective angles; Bottom row: The system of two con-

centric counter-rotating vortex rings of equal strength. Bottom: Induced

potential flow field in a cross-sectional plane containing the pipe sym-

metry axis with no-penetration boundary conditions at the pipe’s walls

(black lines). The local velocity is indicated by thin light-blue arrows.

The cross section of the sphere of separation is indicated as the thick

light-blue circle. Tangential to the sphere of separation are two red cir-

cles symbolizing the periodic trajectories a fluid parcel follows in close

proximity to one vortex core. The cross section of the inner vortex ring

which has been found to be stable in experiments is shown in solid red,

the outer vortex ring has only allowed indirect observation via detection

of the sphere of separation. The experimental instability of the outer

vortex ring precludes a direct experimental observation. . . . . . . . . . 115

4.4 Top: Snapshot of the vortex ring system on top of a metal mantled organ

pipe with a horizontally lit plane. Bottom: Sphere of separation created

by the vortex dipoles at the pipe’s open end: Left: Raw photo, Middle:

Indication of the location of vorticity in red, Right: Indication of the

circular cross section of the sphere of separation. . . . . . . . . . . . . . 116

4.5 Top: Left: Data obtained independently and published in [3]: The max-

ima through which a green line is drawn have been extracted from these

data and used within the frequency range contained in the red box to

fabricate a preliminary test on the model; Right: Interpolating curve

between the harmonic maxima. Bottom plot: Measured relative sound

pressure level obtained from the experiment shown in Fig. 4.2. 4096

bins have been used to resolve the measurement range [0, kHz, 50 kHz].

The data have been gathered for a circular plexiglass organ pipe with

the geometric dimensions of L = 58 cm and r = 25 mm. . . . . . . . . . 125



xii List of Figures

4.6 Top: The final plot of the theoretically predicted sound pressure level

as fitted to the experimental data shown in the bottom subplot of Fig.

4.5. The overall normalization has been chosen to match with the one

employed in [3] by a vertical shift of the data such that the average

sound pressure level of 74 dB agrees with the value obtained from cali-

bration measurements.,Bottom: Absolute error between the theoretically

predicted sound pressure level (black curve) and the experimentally mea-

sured sound pressure level together with error bands placed covering the

regions of ±5 dB (green), ±10 dB (orange) and ±15 dB maximum abso-

lute error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 Cross section model of the organ pipe containing the symmetry axis of

the resonance body: The points B and E are at zB = iR and zE = −iR
respectively. The points A and C are situated at zA = −∞ + iR− and

zB = −∞ + iR+. Finally, B and F correspond to zB = −∞− iR+ and

zF = −∞− iR−. The acoustic volume inside the pipe is called D. The

formerly radial and axial variables correspond, in this order, to =[z] and

<[z]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.8 Family of surfaces of constant stream function Ψ for Ψ/(RVjet) ∈ {0.2, 0.4, 0.6, 0.8}
for the axisymmetric potential flow out of the circular pipe orifice. The

parameters are the non-dimensional real velocity potential Φ/(RVjet) ∈
[−1.5, 0.5] and the azimuthal angle φ ∈ [0, 2π] for all surfaces of constant

Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.9 Family of curves of constant stream function Ψ for |Ψ/(RVjet)| ∈ {0, 0.2, 0.4, 0.6, 0.8}
for the planar potential flow out of the cross section model of the organ

pipe. The simulation parameter is the non-dimensional real velocity po-

tential and Φ/(RVjet) ∈ [−1.5, 0.5] for all curves of constant Ψ. . . . . . 133

4.10 Evolution of the imaginary part of the phase “potential” Ξ+ = Ξ+(ω),

=[Ξ+], as a function of the input reduced frequency ω ∈ [0 Hz, 9 GHz]

plotted decadically logarithmically on the abscissa axis. At ω = ωc =

2c2/℘ ≈ 8.5 GHz the imaginary part vanishes. In this case, a genuine

wave behavior as stored in undulant dynamics such as exp(iωt) is no

longer supported by the theory (4.61). . . . . . . . . . . . . . . . . . . 143



Acknowledgement

A first and special thanks goes to Leo for making the work on the projects possible as

well as for providing uncountable pieces of advice to me during the research process.

His enthusiasm for science and fundamental research is unprecedented. I wish to ac-

knowledge my a special thanks his momentum to initiate the organ pipe experiments, to

organize the interdisciplinary collaborations we needed as theorists and for his unique

momentum, when we conducted the experiments.

A second and third thanks goes to Folkmar Bornemann for agreeing to be the second

supervisor of the PhD thesis and to Michael Haack for agreeing to be my mentor during

the PhD process. I also thank Matthias Rief for chairing my dissertation committee.

As research is most often a collaborative effort, I thank my colleagues Julie Goulet

and Anupam Vedurmudi for frequent scientific discussions and different perspectives on

a problem that I was working on. The same can be said about Michael Kogan with

whom I spend many hours on mathematics exercises. For the organ pipe project, it

was an amazing experience to work jointly with Bernhardt Edskes as an expert for

organ pipe design and with Bernhard Seeber as an expert for acoustic signal process-

ing. Without their help, the mathematical theory would have stayed at the level of a

mathematical theory with little or no connection to the physical world.

A special thanks goes to my close friend Stefan Geins for reading preliminary ver-

sions of the work that was finally condensed into this thesis and to my parents for

continuous support, both personally as well as financially.



xiv Acknowledgement



Abstract

This doctoral thesis investigates physical causes and consequences of geometric pertur-

bations by three case studies embedded in the field of continuum mechanics.

The model of internally coupled ears consists of two membranes coupled through a

cylindrical acoustic duct. In the model, the membranes’ displacement is a response to

the pressure difference between the inner and outer membrane surface. The equations

of motion for the internal pressure and the membrane displacements are formulated

exactly in the language of analysis on manifolds. The widely used stationary domain

approximation for the pressure field is derived explicitly. Picard iteration allows the

decoupling of the reduced problem’s governing equations as well as an assessment of

the accuracy of Vedurmudi et al.’s piston approximation which gained popularity in

auditory research.

In the context of tsunamis, the tsunami-induced perturbation of the underwater

velocity field triggers the formation of a turbulent layer of vorticity directly above the

surface of the continental plate. The vortex-plate surface interaction generates a small

transverse dislocation of the plate surface from its equilibrium position. Calculations

of arrival time differences and sound pressure level equivalents indicate that seismic

tsunami detection in elephants is not only possible but also in reasonable agreement

with experimental results.

Last, the end-correction in open-ended organ pipes is derived from the combined

experimental and theoretical assessment of vortex phenomena at the pipe’s open end

and interpreted from a hydrodynamic perspective. A stochastic model for the onset of

turbulence in the geometric jet disturbance, that a jet exiting the windway is subject

to, yields a broadband frequency distribution. From the latter, the pipe’s resonance

body selects its resonance frequencies which generate the characteristic power spectrum

for a given organ pipe.
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Zusammenfassung

Ziel dieser Doktorarbeit ist die Untersuchung physikalischer Ursachen und Folgen geo-

metrischer Störung in drei dem Gebiet der Kontinuumsmechanik zuzurechnenden Fall-

studien.

Das Modell der Intern Gekoppelten Ohren besteht aus zwei, über einen zylindrischen

Hohlraum gekoppelten Membranen, die auf die Druckdifferenz zwischen Innen- und

Außenseite durch Auslenkung aus ihrer jeweiligen Gleichgewichtslage antworten. Mit-

tels einer Beschreibung in der Sprache der Analysis auf Mannigfaltigkeiten werden die

Modellgleichungen für den Innendruck und die Membranauslenkungen exakt formuliert

und die vielfach verwendete Approximation eines stationären, statt zeitabhängigen,

akustischen Hohlraums hergeleitet. Picard-Iteration erlaubt die Entkopplung der Mod-

ellgleichungen sowie eine Untersuchung der Güte der Kolbenapproximation von Vedur-

mudi et al..

Im Kontext der Tsunamis führt die Störung des Unterwassergeschwindigkeitsfeldes

zu einer turbulenten Wirbelregion direkt oberhalb der Kontinentalplatte. Die Wechsel-

wirkung zwischen Wirbel und Plattenoberfläche erzeugt eine kleine transversale Aus-

lenkung der Plattenoberfläche aus der Gleichgewichtslage. Berechnungen von Ankun-

ftszeitdifferenzen und seismischen Schallpegeläquivalenten zeigen, dass die Tsunamior-

tung durch Detektion geometrischer Störungen theoretisch möglich ist und mit ex-

perimentellen Befunden zum Verhalten von Elefanten vor Ankunft des Tsunamis in

Einklang steht.

Ausgehend von sowohl experimentellen als auch theoretischen Untersuchungen von

Wirbelphänomenen am offenen Ende der Labialorgelpfeife wird die Endkorrektur für die

Pfeifenlänge hergeleitet und hydrodynamischen interpretiert. Ein stochastisches Mod-

ell für die Turbulenzentwicklung des aus der Kernspalte austretenden Jets liefert eine

breitbandige Frequenzverteilung. Aus dieser filtert der Pfeifenkörper die Resonanzfre-

quenzen, die das für eine gegebene Orgelpfeife charakteristische Spektrum definieren.
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Chapter 1

Introduction

Continuum physics is no canonical part of the physics curriculum. Yet, its governing

equations provide the language templates upon which the models in the subsequent

chapters build.

After a short presentation of the individual three projects that form the body of

the thesis, a selection of topics in continuum physics is presented. The starting point

is Euler’s first axiom, dtp = Fbody [86], which states the change in total momentum of

continuous body equates to the sum of all forces, body or surface ones, it experiences.

Through the continuum assumption, Euler’s first axiom gives rise to the local momen-

tum balance law. The latter is supplemented by a, typically linear, material model for

the stress tensor storing information about surface forces in the mechanical continuum

[72, 71].

Upon appropriate modeling, the Navier-Stokes equations of hydrodynamics [71] and

the Cauchy-Navier equations of elastodynamics [86] follow. Together with the closely

related membrane theory [142, 139, 138] and the theories of acoustics [72, 131], they

and appropriate special cases to-be-discussed serve as the equations of motion for the

mechanical key notions that underlie the concrete modeling presented in later chapters.

1.1 Thesis overview

Organization of the thesis The thesis comprises three different projects connected

through the general theme that they all are cases studies regarding “Geometric pertur-

bation theory”. For each project, a short manuscript has been prepared that constitutes

a chapter of the thesis’ main body.



2 1. Introduction

Some additional comments and more elaborate derivations that would exceed typical

threshold page limitations for journal publications, ≈ 12 pages, have been condensed

into appendices accompanying the three main chapters. By outsourcing some of the

lengthier, but still insightful derivations to appendices, the author hopes to shepherd

the reader as quickly as possible to the main results and make the thesis self-contained.

The remainder of this section shall introduce the individual projects and questions

underlying their design.

Chapter two: Project “Geometric perturbation theory” Originally inspired

from the model of internally coupled ears [157, 158, 145, 147, 148, 146], the project

investigates the dynamics of partial differential equations coupled through acoustic

boundary conditions [8, 7]: Suppose one has a, for the sake of concreteness, cylindrical

cavity. The endcaps of the cylinder are supposed to be locally reacting surfaces. As

long as the system is at rest, it maintains its cylindrical shape.

As soon as the system is stimulated, say by an externally impinging acoustic pres-

sure, the locally reacting surfaces exhibit a motion coupled through the cavity. The

geometrically interesting question concerns the evolution of the cavity, and the pres-

sure wave it hosts, after external stimulus exposition. Based on the no-penetration

conditions [86, 71], the motion of the locally reacting surfaces is coupled to the pressure

inside the cavity and through a pressure difference receiver source term [5, 6, 141], the

motion of the locally reacting surface is coupled to the cavity’s internal pressure.

While decoupling techniques for linear partial differential equations are available (see

e.g. perturbation theory as described in [60]), they are confined to partial differential

equations defined on joint domains. However, this is not the case for the problem

under consideration. Even more so, by conservation of mass inside the cavity, the

formation of a pressure wave is due to a local change in volume, thus in local mass

density and ultimately in pressure. Although the equations of motion for the locally

reacting surfaces live on a stationary domain, the domain of the wave equation is,

strictly speaking, a cylinder undergoing small undulations or “perturbations”. These

impacts are un-arguably small but absent in the acoustics literature.

Therefore, we rephrase the question on how the acoustic pressure wave inside the

cavity behaves like mathematically in the language of analysis on manifolds [68, 96]

and use the notion of a fiber bundle to obtain an explicit expression for the impacts of

the cavity’s undulations on the acoustic wave equation. The smallness of undulation
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amplitudes finally leads to re-establishing the - correct - formulation of vibrational

acoustics problems through Beale’s acoustic boundary conditions where all mechanical

fields live on exclusively stationary domains.

Putting semi-group techniques from mathematics [144, 24, 25] into practice, a de-

coupling strategy for the model equations results. Through algebraic operator calculus,

an iteration in a very physical parameter, the mass-per-volume density ratio of fluid in

the cavity and the wall solid, results. See [83, 84] for a similar definition of a smallness

parameter.

To gratify academic playfulness, snapshots of the undulating three-dimensional cav-

ity are presented as well.

Chapter three: Project “Tsunami localization” Unlike humans, elephants are

seemingly capable of foreseeing, or better fore-sensing, tsunamis [66, 65]. One key

difference between the sensual system of humans and elephants lies in the employment

of seismic sensing, see [103, 97]: A human can hear sound generated by vibrations of

the ground but typically does not sense the vibrations themselves. In some sense, one

may regard an elephant as a tuning fork, placed on the continental plate, that detects

seismic vibrations of the continental plate [125, 92, 55].

Physically, tsunamis are perturbations of the velocity field of the ocean water due to

a seismic event such as a seaquake or a landslide on the continental margin [87]. Thus,

one may arrive at the hasty conclusion that the seismic event generates a cue that the

elephant detects, see [54] for a similar view.

Unfortunately, the explanation has some drawbacks: First, seismic waves propagate

at ∼ km s−1 whereas tsunamis need hours to arrive at the shoreline. But elephants do

not take flight until a couple of minutes before the tsunami strikes the shoreline [159].

Second, reports of both, scientific [159, 105, 64] and everyday-observation quality (note

[160] on this issue), describe that elephants’ arousal increased over time.

If the tsunami-generating event takes place at one isolated spot in time, does the

elephant have the capability of performing a calculation to estimate when the tsunami

ultimately arrives at the shoreline? Most likely, no.

Instead of focusing on the seismic event, the tsunami’s seismic impacts deserve more

attention. The perturbation of the ocean water’s velocity leads to the formation of a

small turbulent layer close to the seafloor. In the boundary layer, a region of vorticity

forms that functions as a an acoustic dipole source for underwater sound [119, 120, 90,
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91]. Since the region of vorticity is situated almost directly on the continental plate -

ocean water interface, it can also exert a force on the surface of the continental plate

similar to the vortex force [127] used in Howe’s vortex acoustics [69].

Metaphorically, the vorticity region impacts the surface of the continental plate as a

vast region of small hammers knocking on the plate’s surface. For a similar idea applied

to the coupling between air and the continental plate’s vibrations, see [121].

Via bounds from above by the tsunami’s frequency and from below by turbulence

estimates, the frequencies can be shown to be (a) in the infrasound range characteristic

for natural hazards and (b) be out of human hearing range [131] but in the hearing

range of elephants [103]. Using a linear depth profile, we calculate the arrival time

differences [54] between tsunami and seismic wave generated by the turbulent vorticity.

It agrees reasonably with the available experimental data. In the scenario, that

elephants’ feet have an impedance matching function [104] as conjectured by biologists,

the sound pressure level equivalent of the signal that arrives at the elephant allows

a comparison of how “loud” an equivalent acoustic signal would be for human, see

[104, 102, 109, 106, 59, 4, 107, 108, 110, 105, 64] just to name a few prominent references

using this method as well. At maximum, the elephant senses the tsunami as a human

hears the traffic sound at a big street.

Chapter four: Project “Organ pipes” Chapter four presents results on a larger

and cross-disciplinary research project on the open-ended organ pipe. The organ pipe

has originally been modeled by Helmholtz [156] and later also by Rayleigh at the end

of the 19th and beginning of the 20th century [133].

For the musical properties of organ pipes, the acoustic wave equation on an axi-

symmetric cylindrical cavity, of a given length and with Neumann boundary conditions,

is a sensible zeroth-order approximation [156, 47, 28]. At the bottom of the resonant

cavity, Neumann boundary conditions are plausible as the bottom endcap is a hard wall

which does not undergo significant vibrations caused by a pressure wave of reasonable

sound pressure level.

At the open-end, a justification of Neumann boundary conditions seemingly was

akin to “It works there reasonably well!”. Although it had already been known in

Rayleigh’s time that acoustically speaking, the pipe systematically sounds “longer”

than it physically is [133], it took until the middle of 20th century until J. Schwinger

and H. Levine [88] derived the end-correction δe · R = 0.61 · R which was corrected by
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Howe [70] and Ando [2] numerically. An attempt dating back to the 1860s is mentioned

in [1] and can be found in [27]. The cumbersome derivation is based on the Wiener-Hopf

technique to solve partial differential equations in semi-infinite geometries.

The first part of chapter four focuses on obtaining a value for the end-correction

based on a physical method that allows generalization to other setups. At the pipe’s

open end, Bernhardt Edskes observed during cleaning an organ pipe that a gold particle

was moving along the open end circle when the pipe was under play. The motion along

a circular line can be explained by the presence of (at least) one vortex ring centered

around the open end.

A preliminary experiment in Wageningen hinted at the existence of even two vortex

rings, one at the inner and the other one at the outer edge of the pipe’s open end. The

thesis contributes a physical derivation of the double vortex ring based on an actual

definition of the acoustic volume inside the pipe’s resonance body and an experimental

test confirming the existence of the vortex structure as predicted by theory.

Furthermore, a numerical simulation of the potential flow field shows that the sym-

metric double vortex ring structure gives rise to a so-called sphere of separation: It

encloses a spherical volume that lies inside the resonance body and outside in equal

parts. In the ideal case of no background flow in the pipe, the total volume enclosed in

the hemisphere on top of the pipe allows the definition of a cylindrical end-correction

2/3 ·R ≈ 0.67 ·R. Up to . 10 % relative error with respect to Levine and Schwinger’s

0.61 ·R [88, 70], this is the end-correction derived from a boundary phenomenon at the

open-end of the pipe.

The second part of the organ pipe project intends to better understand the sound

production [31, 32, 36, 35, 38, 150, 153, 151, 152, 44, 45, 46] in organ pipe’s. As also in

other flue-like instruments, the responsible process is that a stream of air, a so-called

jet [44, 153], hits a sharp obstacle, the upper labial lip. The latter destroys the jet

structure but has been shown to be responsible for the production of sound [119, 19].

From a theoretical perspective, the data to explain is the power spectrum of the

pipe measured either slightly above the open end of the pipe or in the vicinity of

the organ pipe’s mouth, see [3] for many examples. In either case, one observes the

presence of several peaks at the resonance frequencies of the cavity, subject to several

corrections such as damping effects and wall losses [28] as well the end- [47, 88] and

mouth-correction [47, 74], to name the most important causes of deviations from the

ideal theory.
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Even today, the height of the measured peaks in the power spectrum as well as the

fact, that the fundamental frequency and higher harmonics are excited, is bewildering.

Seemingly, the sound production mechanism is universal so as to the pipe filters out

only its preferred frequencies from a broadband acoustic signal. The second part of the

chapter on organ pipes contributes a phenomenological turbulence model inspired by

[98, 100, 82, 81] that predicts the existence of multiple peaks and allows the systematic

definition of a fit function to reproduce theoretically the measured power spectrum. In

contrast to other approaches, the data, gathered in collaboration with Bernhardt Edskes

and Bernhard Seeber and used for the analysis, had been taken at a sound-pressure level

such that nonlinear processes [12] in the pipe’s resonance body could be excluded.

In combination, the two theoretical models, one for the vortex phenomena at the

open end and the sound production mechanism in the pipe, give a linear explanation

based on physical insight rather than algebraic brute-force computation.

Greatest common divisor What does connect the three projects? All of them

feature a small effect at the geometric boundary of the model’s geometry, that is,

geometric perturbations.

For the first project, the small geometric effect is a perturbation of a cylindrical

cavity from equilibrium. The geometric perturbation of the second project is the elastic

displacement of the surface of the continental plate which finally generates the seismic

signal to be sensed by elephants as a tsunami precursor signal. In the third project, the

perturbation from the ideal organ pipe is given by the existence of a vortex structure

at the open end of the pipe that leads, via the sphere of separation, to a correction of

the effective acoustic volume of the pipe, that is, makes the pipe sound longer than it

is solely on geometric grounds.

1.2 General continuum mechanics

The starting point is Newton’s second law which states that the temporal change in

momentum equates to the total force Ftot, dtp = Ftot. The object Ftot is called force

and, in the continuum case, consists of two contributions.

First, the are surface forces [72] acting on the surface ∂V of a control volume V

moving at the same local speed as the continuum’s constituent mass particles. The

body forces are represented by a vector-valued quantity f storing the force per volume
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applied to the mechanical continuum under consideration.

Second, there are body forces that act on each point of the control volume. The

surfaces forces are modeled by a rank 2 tensor field, the so-called stress tensor [71]

defined throughout the continuum: It can be defined through dFi = σijdAj in a small

cubic parcel with Einstein summation over repeated indices implied. The stress tensor

σ = (σij)1≤i≤j captures the force exerted in i-direction upon changing a surface with

normal vector in j direction by dAj.

Newton’s second law takes a differential formulation:

d

dt

∫
V

dV ρv =

∫
∂V

〈dS,σ〉R3 +

∫
V

dV f (1.1)

in which ρ = ρ(t,x) denotes the mass-per-volume density of the medium and v = v(t,x)

is the velocity of the constituent particles at a physical point x at time t.

The right-hand side of (1.1) features the stress tensor σ in a Euclidean product

understood so as to produce the exerted force. The left-hand side can be massaged in

a better form using Reynold’s transport theorem [126] for volumes.

Since a particle is characterized by a momentum and a position in phase space, the

total derivative with respect to time for the velocity of the continuum’s constituents

features an additional contribution. Denoting the total derivative with respect to time

by D/Dt, the acceleration a = a(t,x) satisfies [71]

a ≡ Dv

Dt
= ∂tv + 〈dtx,∇〉R3 v = ∂tv + 〈v,∇〉R3 v. (1.2)

As short-hand notation, Dt ≡ D/Dt = ∂t + (v · ∇). The differential operator D/Dt is

called material derivative.

Next, the Reynold’s transport theorem states that the time derivative for the co-

moving control volume can be pulled inside the integral and becomes the material

derivative operator acting on the product of the function inside the integral and the

infinitesimal, but, since co-moving, also time-dependent, volume element dV .

d

dt

∫
V

dV ρv =

∫
V

(
dV · D(ρv)

Dt
+
D(dV )

Dt
· (ρv)

)
(1.3)

=

∫
V

dV

(
D(ρv)

Dt
+ (∇ · v)ρv

)
(1.4)

Inside the volume, we have conservation of mass at each point. A corresponding

local balance law is termed continuity equation of mass. Let us take a fixed, stationary
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volume V ′ with stationary boundary ∂V ′. Clearly, the change in mass in V ′ equates to

the net mass flux through ∂V ′,

d

dt

∫
V ′
dV ′ ρ = −

∫
∂V ′
〈dS′, jmass〉R3 . (1.5)

Since V ′ is fixed, the total time derivative outside the integral simply becomes the

partial derivative upon commutation with the volume integral.

Gauss’ theorem of integration can be applied, taking suitable regularity properties

of V ′ and the mass per surface area jmass = ρv for granted. The minus sign on the

right-hand side is a result of specifying the orientation for ∂V ′ through the outward

unit normal such that a mass flux from V ′ to V ′{ results in a mass loss inside V ′.

The above equation is readily re-arranged to yield:∫
V ′
dV ′

(
∂ρ

∂t
+∇(ρv)

)
= 0. (1.6)

By arbitrariness of V ′, ∂tρ +∇(ρv) = Dtρ + ρ∇v = 0 everywhere, particularly, in the

co-moving V . The product rule of differentiation and the definition of the material

derivative Dt have been utilized in the second step.

Using Dtρ = −ρ∇v in (1.4), the product rule of vector calculus yields

d

dt

∫
V

dV ρv =

∫
V

dV ρDtv. (1.7)

The right-hand side of Newton’s second law in differential formulation (1.1) is processed

by application of Gauss’ theorem to convert the surface integral into a volume integral.

In doing so, σ = σiêi is used with vector valued coefficients σi. Linearity of the surface

integral operator allows to apply Gauss’ theorem as usual to the components σi for

1 ≤ i ≤ 3 then.

Then ∫
∂V

〈dS,σ〉R3 +

∫
V

dV f =

∫
V

dV (∇σ + f) . (1.8)

Insertion of (1.7) and (1.8) into (1.1) yields:∫
V

dV (ρDtv −∇σ + f) = 0 (1.9)

or, by arbitrariness of V and definition of the material derivative,

ρ∂tv + ρ(v · ∇)v = ∇σ + f . (1.10)
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This is the sought-after balance equation for momentum from which the continuum

mechanical theories of fluid dynamics [71] and elasticity [86, 62] as well as simplifications

such as acoustics [72, 12] are recovered. The only ingredients we still have to add is a

model for the stress tensor σ and another model for the force density f .

Such models are the subject of the next two paragraphs: The case of elastic waves

in solids is treated as a special case of (1.10) first. Gaseous and liquid media, known

under the common notion “fluids” in physics, is covered afterwards.

1.3 Elastodynamics and membranes

Elastodynamics Microscopically, a solid is built up from atoms and molecules sitting

at fixed positions in a fixed volume [86]. Focusing on the classical physics side, this

defines an equilibrium coordinate system. We use the notation x = (x1, x2, x3) to refer

to a mass parcel, a continuum physical building block of the solid, that is at equilibrium

in x.

Let us perturb the constituents by a small but classical length u = u(t,x) from the

equilibrium x. In the solid, x is independent of time, such that v(t,x) = ∂tu(t,x).

The smallness requirement of the perturbation from spatial equilibrium permits the

neglection of the nonlinear contribution (v · ∇)v against the contributions linear in v

in (1.10). We find

ρ∂2
t u = ∇σ + f . (1.11)

Next, we assume homogeneity and isotropy of the medium. By homogeneity, ρ

becomes a constant mass per volume density. Under the additional restriction to elastic

deformations only, Hooke’s law can be used to relate σ to the linear strain tensor,

ε = (εij)i,j:

εij =
1

2

(
∂ui
∂xj

+
∂xj
∂xi

)
. (1.12)

The assumption of isotropy settles σ to be symmetric [86]. By smallness of the pertur-

bation u, we can confine the further treatment to linear contributions. Assuming an

(external) pressure p acting as a surface force density in the solid volume,

σij = −pδij + Λij;klεkl (1.13)

where δij is the Kronecker symbol and Λij;kl is the Hooke matrix.
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Isotropy and homogeneity settle the number of, at most 34 = 81 independent com-

ponents, to be just 2, the Lamé constants λ, µ, [62].

σij = −pδij + µ(∂iuj + ∂jui) + λ(∂kuk)δij (1.14)

The stress tensor σ defined that way is called Cauchy-Navier stress tensor, cf. [86].

Insertion of (1.14) into (1.11) yields

ρ∂2
t u(t,x) = (λ+ 2µ)∇(∇ · u)(t,x)− µ∇×∇× u(t,x) = −∇p+ f . (1.15)

In the absence of p and f , the equation becomes

∂2
t u = c2

p∇(∇u)− c2
s∇×∇× u. (1.16)

The objects c2
p = (λ + 2µ)/ρ and c2

s = µ/ρ define the squares of the phase velocity of

primary and secondary elastic waves.

Up to a harmonic function, we can decompose u = up+us such that up, the primary

wave, has zero rotation, ∇× up = 0, and the secondary wave, us, has zero divergence,

∇ · us = 0.

The decomposition gives rise to two separate wave equations: Denoting by ∆v =

∇2 = ∇(∇·)−∇×∇× the vector Laplace operator, the insertion yields

∂2
t up = c2

p∆vup and ∂2
t us = c2

s∆vus. (1.17)

The first one describes a longitudinal wave, a p-wave in seismological jargon, the second

one a transverse wave, an s-wave for seismologists [86]. The inhomogeneities from

(1.15) can be included by decomposing into contributions with zero rotation and zero

divergence.

A notable special case that will, however, not be studied further is that of a harmonic

external force ∆vf = 0. In the static case, u = u(x), in the absence of an external

pressure p, application of ∆v to (1.15) yields by constancy of ρ, µ and λ

∆2
vu ≡ ∆v(∆vu) = 0. (1.18)

The object on the left-hand side is the so-called biharmonic operator [86].

Membranes and curvature corrections For membranes, variants of (1.15) can be

derived from energy considerations. Suppose a surface of area A is dislocated by a
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function u(t, x1, x2) in transverse direction, i.e., parallel to êx3 at each point (x1, x2).

This displacement is assumed to be elastic and small - a flexible membrane.

In harmonic approximation, we will take a quadratic potential energy functional in

u. The corresponding density epot shall include area changes and corrections due to

impacts of curvature on the potential energy such that the lowest order contribution is

quadratic.

This settles dA′ epot = TdA′(1+λ1H
2 +λ2K) where dA′ denotes the area element of

the graph of u. H and K denote the graph’s mean curvature and Gaussian curvature

respectively, see [68, 143] for an introduction. λ1, λ2 are constants, T is the so-called

membrane tension, the proportionality constant to mitigate work and area deforma-

tion as δW = −TdA′. Denoting by A′ = graph(u) the t-dependent family of graph

hypersurfaces in R3, the Lagrangian L follows from the definition:

L = Ekin − Epot =

∫
A′
dA′

ρ(∂tu)

2
− T

∫
A′
dA′

(
1 + λ1H[graph(u)]2 + λ2K[graph(u)]

)
.

(1.19)

The potential energy still lacks a contribution. Namely, we have not accounted for

contributions from the boundary of A′ so far.

Now, we do so by adding an extra potential energy contribution, namely

∂Epot = Tλ2

∫
∂A′

ds′ kg. (1.20)

kg denotes the excess geodetic curvature generated by permitting the boundary to be

perturbed as well.

Gauss-Bonnet’s theorem [68] states that over regular, oriented two-dimensional sur-

faces in three-dimensional embedding space, the Euler characteristic of a surface is

proportional to the sum of integrated Gauss curvature and the integrated geodetic cur-

vature. If A′ was closed, the contribution from the boundary curve was absent. Gauss-

Bonnet’s theorem [143, Appendix] cancels the contribution from Gauss curvature from

the equations of motion. The addition of the boundary contribution ∂Epot to potential

energy reflects the fact that already the deformation of the boundary requires work.

The proportionality constants have been chosen so as to compensate contributions from

the Gaussian curvature K.

Explicitly for small u with bounded and sufficiently small first and second spatial
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partial derivatives in a local Cartesian coordinate system (x1, x2, x3),

K =
∂2
x1
u∂2

x2
u− (∂2

x1x2
u)2√

1 + (∂x1u)2 + (∂x2u)2
4 (1.21)

' ∂2
x1
u∂2

x2
u− (∂2

x1x2
u)2 +O((∂u)4) (1.22)

H =
(1 + (∂x2u)2)∂2

x1x1
u− 2∂x1u∂x2u∂

2
x1x2

u+ (1 + (∂x1u)2)∂2
x2x2

u

2
√

1 + (∂x1u)2 + (∂x2u)2
(1.23)

' 0.5∆u+O((∂u)3) (1.24)

dA′ = dA
√

1 + (∂x1u)2 + (∂x2u)2 (1.25)

' dA

(
1 +

1

2

(
(∂x1u)2 + (∂x2u)2

))
+O((∂u)4) (1.26)

We drop the additive contribution leading to the Euler characteristic from the La-

grangian L. Only the mean curvature contribution survives.

To apply Hamilton’s principle to the Lagrangian with boundary curvature correc-

tion, L is integrated over time and the functional derivative with respect to u of the

(quadratic) functional in u and derivatives thereof is considered. Integration by parts

leads, upon requiring ∂nu = 0 or u = 0 at the boundary ∂A′, to

ρ∂2
t u− T∆u+ Tλ1∆2u = 0, (1.27)

an equation we call curvature-corrected elastic membrane equation.

The “or” is seen by performing the relevant integration by parts and inserting a

partial eigenfunction expansion of u in terms of eigenfunctions of the Dirichlet or the

Neumann Laplacian on A. We require the corresponding eigenvalue problem to be

well-defined on an open domain B ⊃ A but impose boundary conditions at ∂A. This

regularity assumption avoids an equation in the bi-harmonic operator ∆2 and −∆ =√
∆2 rather than the Laplacian ∆. It is unclear whether the problem featuring the

bi-harmonic operator is solvable analytically although numeric schemes are available.

When curvature corrections are small in the sense that the ∼ ∆2 contribution is

small compared to the ∼ ∆ contribution, (1.27) admits an interpretation as a pertur-

bation of the elastic membrane equation ρ∂2
t u − T∆u by the perturbation operator

V[u] = Tλ1∆2u.

For the membrane objects under consideration, we interpret (1.27) as an equation

featuring a polynomial of the Laplacian ∆ with either Dirichlet or Neumann conditions

imposed.
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Clearly, a well-defined initial-boundary value problem still needs initial conditions

for u and ∂tu.

1.4 Fluid dynamics and acoustics

Newtonian fluid dynamics Newtonian fluid dynamics [62, 71] is based on a similar

decomposition as utilized for the derivation of the general Cauchy-Navier equation

(1.15) in the pre-to-last section 1.2.

The difference is that, here, we use the symmetric part of the velocity gradient ε̃ in

place of the linear strain tensor ε. In a fluid, no stress is generated by the rotation of the

fluid such that the symmetric part ε̃ = (ε̃ij)i,j of the velocity gradient ∇⊗ v = (∂ivj)i,j

suffices.

Explicitly, the components ε̃ij read

ε̃ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (1.28)

The material model used in Newtonian fluid dynamics builds on a linearly viscous fluid,

that is, it assumes a stress tensor σ = (σij)i,j

σij = −pδij + η(∂ivj + ∂jvi) + ζ(∂kvk)δij (1.29)

η is called the shear viscosity and ζ is called the bulk viscosity [71].

Insertion of (1.29) into (1.10) yields the famous Navier-Stokes equations

ρ∂tv + ρ(v∇)v = −∇p+ η∆vv + (ζ + η/3)∇(∇ · v) + f . (1.30)

There is a hypothesis due to Stokes that states ζ ≈ 0 for “reasonable” fluids [71]. We

will only deal with these “reasonable fluids” and adopt Stokes’ hypothesis.

Accordingly, the Navier-Stokes equations (1.30) take the form

ρ∂tv + ρ(v∇)v = −∇p+ η∆vv + η/3∇(∇ · v) + f . (1.31)

The nonlinear contribution from the material derivative, the so-called convective term,

enters: (v∇)v renders the solution of the Navier-Stokes equations somewhat difficult

in general.

Together with the continuity equation of mass, Dtρ = −ρ∇v, and a thermal equa-

tion of state relating the pressure p to the mass density ρ, the equations are a coupled
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set of nonlinear partial differential equations. In the main body of this thesis, only

analytic special cases are treated.

An important special case is the Euler equation which is obtained as µ = 0 in (1.31)

(inviscid fluid dynamics):

ρDtv = −∇p+ f . (1.32)

In conjunction with the continuity equation of mass Dtρ = −ρ∇ · v, they serve as the

starting point to derive several acoustics theories. A physical fluid can be both a gas

or a liquid.

The distinction between continuum mechanical descriptions of the two kinds of fluids

lies in compressibility. We focus on liquids, and more specifically water. In contrast to

gases, many liquids most notably water are under reasonable conditions incompressible.

The requirement is formalized through Dtρ = 0 mathematically and physically by the

requirement of the mass density to be constant along mass parcel trajectories. The

mass continuity equation then states Dtρ = 0 = −ρ∇v.

Recall that v is a vector field in three-dimensional space. As such it admits a

decomposition as v = ∇Φ + ∇ × Ψ in terms of a scalar velocity potential Φ and a

vector-valued stream function Ψ. The incompressibility condition turns into ∆Φ = 0,

the Laplace equation of potential theory.

Acting with the curl operator ∇× on the decomposition v = ∇Φ + ∇ × Ψ and

imposing the Coulomb gauge ∇ ·Ψ = 0 to eliminate a redundant degree of freedom,

one finds ∇×∇×Ψ = −∆vΨ = ∇×v. The quantity on the right-hand side is denoted

by ω and called vorticity

ω ≡ ∇× v. (1.33)

Through application of Stokes’ theorem, the flow Γ of ω through an oriented surface

A with boundary ∂A gives ∫
A

〈dA,ω〉R3 ≡ Γ =

∫
∂A

〈ds,v〉R3 (1.34)

such that the flow Γ serves as a measure for the “circulation” of fluid around the

boundary curve ∂A. Therefore, Γ is referred to as circulation.

If ∂A = ∅, Γ = 0 which is one of Kelvin’s circulation theorems. Φ and Ψ need not

be time-independent such that also Γ = Γ(t) is possible in general.
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Although for many liquids such as water, incompressibility is a sensible assump-

tion, inviscidity leads to problems. Despite the nonlinear convection contribution in

Euler’s equation (1.32) does not predict turbulence. Turbulence can be described as the

transport of energy from, predominantly, large length scales to small length scales and,

ultimately, dissipation (due to viscosity) into heat. The wave number range in which

the transport of energy takes place from one length scale to another is called inertial

range and the transport of energy is called energy cascade.

The impacts of viscosity leading to turbulence manifest themselves especially at

solid boundaries [128, 98]. At solid boundaries, Euler’s equation (1.32) can be given the

no-penetration boundary conditions, vfluid
n = vwall

n and no restriction on the component

parallel to the wall, whereas the Navier-Stokes equations (1.31) require no-slip boundary

conditions, v‖ = 0 at the solid-liquid interface [71] additionally.

Viscosity matters: The adhesive forces between the fluid and solid boundary parti-

cles exceed the cohesive forces between the liquid particles due to viscosity. Since this

phenomenon is confined to a small boundary layer, one can regard the impact of the

boundary layers and the formation of vorticity in there as a correction to incompressible,

inviscid (ideal), fluid dynamics.

We note that ideal fluid dynamics predicts a wrong flow around sharp edges such

as a plate of finite length, say D, placed as an obstacle in a flow of velocity V . If the

Reynolds number, [71, 86, 98],

Re ≡ ρDV

η
& Rec = 90, (1.35)

a vortex street can form out past the obstacle although the flow itself is far from fully

turbulent. At the termination of the plate, side eddies form out and the background

flow leads to dissolution of individual vortices which form the vortex street.

Another characteristic number can be associated with the flow. Denoting the fre-

quency of vortex shedding by f , one can define the Strouhal number, [71],

St =
fD

V
(1.36)

which has been measured to be approximately St ≈ 0.2 for a variety of flows, including

flows around cylinders.

In the case of an isotropic fluid and conservative body forces with constant mass

density ρ but in the presence of viscosity, one can derive a simple differential equation for
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the vorticity ω from (1.30) by taking the curl. The result is a vector-valued advection-

diffusion equation

ρDtω = (ω∇)v + η∆vω. (1.37)

In the inviscid case, η = 0, the above equation reduces to

Dtω = (ω∇)v. (1.38)

If, even more, v is small such that convective effects are negligible, then ∂tω = 0 and

the vorticity is a time-independent quantity and stays at fixed positions, e.g., when

there is a considerably slow flow from an orifice.

The next paragraph on introductory material revolves around acoustic theories.

These theories study the propagation of material waves in media.

Acoustic theories Let us consider an inviscid fluid described by Euler’s equation

ρDtv = −∇p + f and the mass continuity equation ∂tρ + ∇(ρv) = q with a source

pumping mass inside the volume V . The classical acoustic wave equation studies small,

irrotational ∇× v = 0 fluctuations around a simple hydrodynamic background.

For a sufficiently small δ � 1, the linearization procedure [72] is specified through

v→ δv , p→ P0 + δp , ρ→ ρ0 + δρ , f → 0 + δf , q → 0 + δq. (1.39)

By insertion of (1.39) in the mass continuity equation and the Euler equation and

keeping only contributions linear in δ one obtains

ρ0∂tv = −∇p+ f (1.40)

∂tρ+ ρ0∇v = q. (1.41)

In linear order in δ the thermal equation of state becomes, p(ρ) ' c2ρ where c2 denotes

the speed of sound [72, 127]. For air, c ≈ 343 ms−1 while for water c ≈ 1481 ms−1.

The equations can be combined upon acting with ∇· on (1.40) and ∂t on (1.41).

Then, Schwarz’ theorem allows to commute partial derivatives. The result is the acous-

tic wave equation:

−c−2∂2
t p+ ∆p = ∇f + c−2∂tq. (1.42)

In the absence of sources for acoustic dipoles (∇f = 0) and acoustic monopoles (∂tq =

0), the standard homogeneous wave equation is recovered [72]:

∂2
t p− c2∆p = 0. (1.43)
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The equation is to be solved for the pressure fluctuation p around the hydrostatic

equilibrium pressure P0.

Notice that the physical nature of the liquid under consideration is stored in the

thermal equation of state as is the thermodynamic nature of the fluctuation. They can

be packaged as an isentropic or an isothermal process, to name two important instances.

For the reference values of the speed of sound given above, isentropic processes have

been assumed as underlying processes.

A more general approach to acoustics is formalized in the Lighthill equation [90,

91, 40]. The latter typically serves as a starting point to systematically investigate

refinements of the standard acoustic wave equation (1.43).

The compressible Navier-Stokes equations and the continuity equation of mass func-

tion as the starting point for the derivation:

∂ρ +∇(ρv) = q, (1.44)

ρ∂tv + ρ(v∇)v = −∇p+∇σ + f . (1.45)

Multiplication of (1.44) with v and addition to (1.45) makes the product rule of vector

calculus differentiation applicable. The result of the addition is

∂t(ρv) +∇(ρ(v ⊗ v)) = −∇p+∇σ + f̃ (1.46)

where f̃ = qv + f denotes the sum of forces exerted on the fluid body by externally

caused mass influx (∼ qv) and other externally applied body forces (∼ f).

Subtraction of the partial derivative with respect to time of (1.44) from the diver-

gence of (1.46) results in

∂2
t ρ−∆p = (∇⊗∇)(ρv ⊗ v − σ) + (∂tq −∇ · f̃) (1.47)

Last, we subtract on both sides of the equation c2∆ρ−∆p where c denotes the speed

of sound in the quiescent state of the fluid under consideration.

Upon utilizing δ = (δij)i,j as representation for the identity matrix, (1.47) takes the

form

∂2
t ρ− c2∆ρ = (∇⊗∇)(ρv ⊗ v − σ + (p− c2ρ)δ) + (∂tq −∇ · f̃). (1.48)

Defining T = (Tij)i,j ≡ ρv ⊗ v − σ + (p − c2ρ)δ and gext ≡ (∂tq − ∇ · f̃), the above

equation can be condensed to an inhomogeneous wave equation for ρ. With Einstein

summation convention over repeated indices implied,

∂2
t ρ− c2∆ρ = ∂2

i,jTij + qext. (1.49)



18 1. Introduction

The object T is called the Lighthill (turbulence) stress tensor.

If qext = 0, the above result simplifies to the Lighthill equation governing modern

aero-acoustics

∂2
t ρ− c2∆ρ = ∂2

i,jTij. (1.50)

Observe that the equation is an exact rewriting of the compressible Navier-Stokes

equations without further assumptions imposed on the flow. The turbulent contribution

is stored in ρv ⊗ v in the Lighthill turbulence stress tensor.

The Lighthill equation serves as a starting point to determine the v8-law for the

acoustic intensity of the sound field generated by a turbulent flow of velocity v in a

region of length l in the far-field [72]. A discussion is postponed to section 3.3 when it

will be required.

Unfortunately, direct analytic solution techniques for Lighthill’s equation are not

available in general. The importance of the equation is rather conceptual. First, it

connects the fields of fluid dynamics and acoustics directly by re-arranging the governing

equations underlying both, the Navier-Stokes equations and the continuity equation of

mass, into one wave equation. Second, the investigation of special cases based on

simplifications and model-specific adaptation of the Lighthill turbulence stress tensor

leads to a variety of acoustic theories which permit to study the impacts of, say, viscosity,

background fluid motion, vortices and non-linear equations of state on the production

of sound.

If, for example, the equation of state is expanded up to quadratic contributions,

ρ = c2(p + c2p
2) and damping through thermal conduction is included, ρ = c2(p +

c2p
2 + c3∂tρ), the assumption of “plane-wave relations” from linear acoustics leads [12]

to the so-called Westervelt equation. It has the structure

∂2
t p+ ℘(−∆)∂tp− c2∆p = ℵ∂2

t (p
2) + (Source). (1.51)

This is a non-linear equation to be solved for the acoustic pressure p. ℘ is the viscous-

thermal damping coefficient accounting for damping according to the frequency-dependent

Stokes-Kirchhoff law [12]. We call ℵ the coefficient of nonlinearity.

The equation is a generalization of the acoustic wave equation at exceptionally high

sound amplitudes such that a linearization process as used for the derivation of the

acoustic wave equation turns somewhat questionable. As a nonlinear partial differential

equations, analytic solutions are only possible in special cases, predominantly in D =
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1 + 1, or via a perturbative treatment for sound waves with amplitudes such that the

non-linear contribution ∼ ℵ∂2
t p

2 can be interpreted in the sense of perturbation theory.

We won’t encounter a problem in this thesis that requires the solution of Westervelt’s

equation although there was a point in the actual research on organ pipes where the

usage of a nonlinear acoustics theory could not be discarded offhand.

The second simplification of (1.50) concerns the generation of sound by vortices.

This branch of acoustics is called vortex acoustics [70, 120]. The subsequent derivation

follows [127].

Define the specific enthalpy i = e + ρ−1p where e is the energy density. With the

aid of the total specific enthalpy B = i + 1
2
v2, Euler’s equation can be recast to take

Crocco’s form [33],

∂tv +∇B = −ω × v. (1.52)

Rearranging the continuity equation Dtρ + ρ∇v = 0 to separate mass density ρ and

fluid velocity v results in

−ρ−1Dtρ = ∇ · v. (1.53)

We take the divergence of (1.52) and the time derivative of (1.53). These operations

result in the following two equations

∂

∂t
(∇v) +∇2B = −∇ (ω × v) (1.54)

− ∂

∂t

(
1

ρ

Dρ

Dt

)
=

∂

∂t
(∇v) . (1.55)

As usual, Schwarz’ theorem permitted us to commute the gradient operator ∇ with the

partial time derivative operator ∂t.

Insertion of (1.55) in (1.54) gives

− ∂

∂t

(
1

ρ

Dρ

Dt

)
+∇2B = −∇ (ω × v) . (1.56)

A wave equation for B requires some additional information on the flow. We assume

a locally isentropic flow such that ds = 0 for the entropy density s. Linearization of

the thermal equation of state for p as a function of ρ and s produces dp = c2dρ +

∂sp|ρ=const. ds = c2dρ.

Next, the second fundamental theorem of thermodynamics says that, for adiabatic

changes, the local heat satisfies dq = Tds. The further assumption of isentropy pro-

duces dq = 0. The specific work satisfies dw = −pdρ−1 such that the first fundamental
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theorem of thermodynamics produces dq = Tds = 0 = de+pdρ−1. Legendre transform-

ing in order to exchange the thermodynamic variables p↔ ρ−1, we arrive at di = ρ−1dp

for the specific enthalpy i = e+ ρ−1p as defined in the beginning of the derivation.

The two thermodynamic considerations allow us to replace ρ−1Dtρ↔ ∂t(c
−2Dti) in

the main derivation of the vortex sound equation. The result of the replacement is

∂

∂t

(
1

c2

Di

Dt

)
−∇2B = ∇ (ω × v) . (1.57)

Let us consider a background flow v0 with constant stagnation enthalpy B0. Define

B′ ≡ B − B0. First, we re-express the equation in terms of B′ rather than B. Second,

we subtract the enthalpy contribution on both sides and add an extra contribution

c−2D2
tB
′ for the enthalpy difference B′ on both sides of the equation in order to ensure

validity of the equality sign. The operator Dt ≡ ∂t + v0∇ is a convective derivative

with convective term ∼ v0∇ along the background flow with velocity field v0.

The procedure outlined before gives a wave equation for the enthalpy difference B′

with reference enthalpy B0,

c−2D2
tB
′ −∇2B′ = ∇ (ω × v) + c−2D2

tB
′ − ∂t(c−2Dti) (1.58)

In the low Mach number - see [72] for the concept of Mach number - regime ‖v‖/c ≡
Ma� 1, the last two contributions on the right hand side of the equation cancel each

other. We are thus left with the wave equation

c−2D2
tB
′ −∇2B′ = ∇ (ω × v) . (1.59)

Let us assume that outside the source vorticity region, we have v0 = 0. Upon neglection

of small fluctuations in the mass density, B = i = p/ρ0 where p denotes the acoustic

pressure.

Ultimately, we have the vortex acoustics equation

c−2∂2
t p−∇2p = ρ0∇ (ω × v) , (1.60)

for the acoustic pressure p.

We notice that fv ≡ ρ0 (ω × v) has the structure of a Coriolis force density and the

physical dimensions of a force per volume [127]. As such it can be regarded as a force

density in a region filled with vortices that triggers the formation of a pressure wave or

acts on solid boundaries.
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Concluding remark The theories sketched in this section are used as basic physical

equations for the models to be studied in the sequel main chapters of the thesis. It

is precisely the vivid interplay of the governing equations from elasticity, membrane

theory, fluid dynamics or acoustics that makes continuum mechanics widely applicable

to properly describe natural phenomena in the world that surrounds us directly.
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Chapter 2

Acoustic boundary conditions and

geometric perturbation theory

Numerous practical and academic applications of acoustics require not only the study

of an acoustic wave equation in isolation but also the accounting for its interaction

with locally reacting surfaces described by elasticity equations. The model equations

are coupled via so-called acoustic boundary conditions, accounting for the pressure in,

say, an acoustic enclosure and the displacement of the locally reacting parts of the

enclosure’s walls from equilibrium.

In the geometric context of the bio-acoustic model of Internally Coupled Ears (ICE),

we aspire to complement Beale’s original mathematical definition of acoustic boundary

conditions with the physical definition of the notion “acoustic pressure” as a small local

change in mass density in the Eulerian respectively a small local change in available

volume per fixed mass in the Lagrangian picture of fluid dynamics. The notion of

a perturbation bundle is defined as an idealization of a cavity with locally reacting

walls undergoing small fluctuations. It is the natural geometric stage for a systematic

perturbation theory to study the cavity’s evolution. The full, exemplary model is

reduced to a set of three decoupled partial differential equations. A full treatment

of the relaxation dynamics of the ICE model as typical vibrational acoustics and the

presentation of the spinning mode series expansion, a generalization of the duct acoustic

cut-off criterion to the case of thick cylinders, conclude the analysis.

The chapter aspires to serve as a bridge between the different formalisms employed

by engineers, mathematicians and physicists. The geometric approach signifies geome-

try as the natural language of mechanics in general, acoustics in specific.
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Note: Fig. 2.2 and Fig.2.3 have already been utilized in [61].

2.1 Introductory material

Internally coupled ears Though omnipresent, geometric perturbation theory has

hardly been discerned as such, if at all. We start by describing a typical situation,

viz., that of Internally Coupled Ears (ICE), which is present in more than half of the

terrestrial vertebrates. Though ICE has been observed and described since long, it has

attracted considerable attention only recently [147, 147, 158, 141]. It is used here as

a typical example from the field of acoustics to illustrate the general idea of geometric

perturbation theory.

Terrestrial animals perform azimuthal sound localization through neuronally deter-

mining the time difference between left and right eardrums, the so-called interaural

time difference (ITD). Whereas mammals have independent ears, which do not influ-

ence each other, most of the terrestrial vertebrates have ICE at their disposal, which

means an internal, air-filled, cavity that connects the two eardrums. ICE allows in

particular small animals with small head and, hence, small ITD to greatly increase it;

typically, for low frequencies by 2–4 [141]. What the animal then actually perceives

is the so-called the internal time difference (iTD) as the superposition of the external

auditory stimulus pext operating at the two eardrums, say, at x = 0 and x = L, and the

internal pressure p; see Fig. 2.1.

The eardrums are driven by the superposition of pext and p, and are part of the

boundary conditions to the wave equation governing the internal pressure p. In the,

for the sake of clarity, concrete situation of ICE analyzed here as well as in any other

acoustic problem, the time-dependent deviations from equilibrium (defined to be x = 0

respectively x = L) are extremely small, in the nm range and thus orders of magnitude

smaller than any other physical quantity involved. Since an exact solution to the

coupled dynamics of outside stimulus, inside pressure, and both eardrums is nearly

always out of range and the tympanic deviations from equilibrium are small (nm), a

perturbation theory seems natural.

Acoustic boundary conditions As early as 1938, Herbert Frölich [49] published a

short paper with the title “A solution of the Schröinger equation by a perturbation of

the boundary conditions”, where he initiated a perturbation theory for the change in
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eigenfunctions and eigenvalues by changing the boundary conditions but still fixing the

domain, and also by changing the domain as well. Both types of change, however, did

not depend on time. Neither did they in the succinct analyses [22, 23, 39, 17, 18, 73].

In the acoustic context of the above examples, they do and we are also interested in

a general treatment of the ensuing time evolution but, despite the small amplitudes

involved, until now a systematic, time-dependent, perturbation theory did not exist.

That is what we do here.

Starting with the work of Beale and Rosencrans [8], which Beale [7] has extended and

worked out, the approach was different. In view of the nm deviations from equilibrium,

the boundary was fixed to be the original one and assumed to be “locally reacting” in

the sense that is was covered by independent oscillators satisfying a separate damped

harmonic-oscillator equation coupled linearly to p [8]. A typical example of a setup,

though different from ours, is treated in [112, 113]. Beale and Rosencrans [8] called the

final construct Acoustic Boundary Conditions or, for short, ABC. In so doing they have

started the mathematical analysis of ABC.

Though their construct can be handled mathematically and Beale and Rosencrans

[8] and particularly Beale [7] could prove the existence of a dynamical evolution, it does

not correspond to the underlying physics. Nor was it possible to obtain any explicit

solution, valuable as it is for practical work. In fact, many concrete situations in vibro-

acoustics have been analyzed in a similar spirit [73, 24, 25, 50, 89] - to name just a

few outstanding papers, though even these allow neither a dynamics nor a dynamical

coupling.

Objective and scope of this work Here we return to the essential physics of the

problem by taking the volume fluctuations due to the dynamics of the eardrums as our

starting point and incorporating them as time-dependent perturbations of the Lapla-

cian, a procedure that seems to be novel and, more importantly, allows for a systematic

perturbation theory. We develop a time-dependent perturbation theory in the style of

Dirac [34], whose key idea is nicely described by Dirac himself in his classic on quantum

mechanics [34, §44]. Not only do we present a mathematical perturbation theory for

handling time-varying domains and allowing for explicit solutions but also for obtaining

the full dynamical evolution for all times t ≥ 0, including the asymptotics as t → ∞.

In a sense, we extend Beale’s ABC [8, 7] to ABCD, i.e., Acoustic Boundary Condition

Dynamics, with the geometric perturbation theory as the physical foundation.
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Figure 2.1: Schematic representation of Internally Coupled Ears (ICE) in frogs (a),

lizards (b), and birds (c). The bird in (c) is seen from the top, the other two in (a)

and (b) show a cross section, and all three exhibit the interaural cavity as a gray tube.

(d) Cross section of a real Gecko cavity as it occurs in Nature. The extracolumella

in (d) is embedded in the eardrum and the beginning of the middle-ear bone in (b)

that picks up the eardrum vibrations and transports them through the air-filled cavity

to the cochlea. The latter is quite near to the neuronal information processing area

of sound in the brain. The mathematical idealization of (d) is depicted in (e) where

the cylindrical cavity Zstat of length L and radius acyl are as used in the ICE model

that is used here as example. The circular sectors Γ0 and ΓL with radius atymp ≤ acyl

and opening angle β are situated at x = 0 and x = L. The left and right membrane-

displacement in x-direction are indicated by u0 and uL, respectively. The arrow at the

bottom of Figure 1 (e) denotes orientation in positive x-direction. Figures 1 (a)–(c)

have been adapted from Christensen-Dalsgaard [29], (d) stems from Carr, Tang [30],

and Christensen-Dalsgaard and (e) has been taken from Vedurmudi et al. [147].
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2.2 Geometric considerations

Assumptions Due to the complexity in the formulation, some overall assumptions

are needed: Physical regularity behavior of mathematical objects is assumed through-

out. The internal acoustic pressure p and the displacements u0, uL are assumed to be

bounded and regular such as to permit continuation.

Stationary cavity model Let Zstat = {(x, y, z) ∈ R3|0 < x < L, y2 + z2 < acyl} de-

note the cylinder for which the x-axis of the Cartesian coordinate system is the axis of

symmetry. Up to a set of measure 0, Zstat can be expressed as a normal domain in R3,

i.e., there exist sufficiently regular (at least C2 here) R-valued functions q−2 , q
+
2 , q

−
3 , q

+
3

for reals q−1 , q
+
1 such that Zstat ≡ {(q1, q2, q3) ∈ R3|q−1 < q1 < q+

1 , q
−
2 < q2(q1) <

q+
2 (q1), q−3 (q1, q2) < q3 < q+

3 (q1, q2)}.
In the case of the cylinder, the normal domain property is readily seen in cylindrical

coordinates Zstat =
{

(r, φ, x) ∈ R+
0 × [0, 2π]× R|0 < r < acyl, 0 < φ < 2π, 0 < x < L

}
.

The equality of sets holds to a set of measure zero. In the cylindrical coordinates, the

cylinder attains the form of an open cuboid.

Inclusion of locally reacting surfaces Let us define the left and right endcap of the

cylinder by F0 ≡ {(x = 0, y, z) ∈ R3} ∩ ∂Zstat and FL ≡ {(x = 0, y, z) ∈ R3} ∩ ∂Zstat.

Both endcaps are open balls of radius atymp situated in an affine subspace of R3, namely

in (0, 0, 0) + linR{êy, êz} and (0, 0, L) + linR{êy, êz} of the same dimension.

We define Γ0 ⊆ F0 and ΓL ⊆ FL to be cuboids in the cylindrical coordinate system.

Furthermore, we let (u0)t : Γ0 → R and (uL)t : ΓL → R be a C2 R+-family of functions,

each of which is C2. We consent on abusing notation to denote by (u0)t, (uL)t also the

function families’ null-continuation from Γ0 to F0 and from ΓL to FL. Apart from a

set of measure 0, namely ∂Γ0 ∩ F0 and ∂ΓL ∩ FL, the above null-continuations are C2

as well. Since (u0)t and (uL)t are in particular continuous and defined on a compact

domain, the maximum principle from real analysis applied to abs◦ (u0)t and abs◦ (uL)t

ensures that ‖(u0)t‖∞ ≡ U0(t) and ‖(uL)t‖∞ ≡ UL(t) define C0-functions for all and, by

the imposed t-regularity, even C2-functions for almost all t > 0.

Finally, we suppose that there is an 0 < ε′ < 0.5, preferentially a small number,

such that U0(t) < ε′L and UL(t) < ε′L for all t. The equation states that (u0)t, (uL)t

are “physically” small compared to L.
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Next, let

Z(t) ≡
{

(r, φ, x) ∈ R+
0 × [0, 2π]× R|0 < r < acyl, 0 < φ < 2π, −u0(t, r, φ) < x < L+ uL(t, r, φ)

}
.

(2.1)

We use (u0)t(•) = u0(t, •) and (uL)t(•) = uL(t, •) to store the t-dependency in the

argument of the function. By the requirement ε′ < 0.5, the topological properties

of Zstat carry over to Z(t) for t > 0 and in particular Z(t) stays simply connected,

compact, oriented and suitably regular with a suitable piecewisely regular boundary

∂Z(t).

Geometric configuration space of the undulating cavity Dynamically, u0(t =

0, •) = 0 = uL(t = 0, •) is required together with ∂tu0(t = 0, •) = 0 = ∂tuL(t = 0, •)
where • denotes a point in the cuboids Γ0, ΓL respectively. On F0 \ Γ̄0 and FL \ Γ̄L

uL(t, •) = u0(t, •) ≡ 0.

We define the objects

M≡ R+ ×Zstat ⊂ R+ × R3, (2.2)

M(t) ≡
⋃
t∈R+

{t} × Z(t) ⊂ R+ × R3. (2.3)

M andM(t) are trivial fiber bundles [60] over R+ whereM is even a product manifold

and M(t) is not a product manifold.

The notion of a manifold is understood in a smooth sense upon assuming smoothing

out edges and corners of the fiber manifolds Zstat and Z(t) by mollification.

For our purposes, the existence of edges in cylinders is unproblematic. Accordingly,

we will treat the fibers as smooth manifolds as if they had been mollified.

Perturbation bundle M(t) is called a perturbation bundle with unperturbed bundle

M.

Topological observation Let ψt,r,φ : (−u0(t, r, φ), L+uL(t, r, φ))→ (0, L) be defined

through

x ≡ ψt,r,φ(xt) ≡
Lxt

L+ u0(t, r, φ) + uL(t, r, φ)
. (2.4)

Since 0 < |x| < L|xt|/(L−2ε) <∞ by ε < 0.5, this map is well-defined. It is a bijection

and smooth with smooth inverse, i.e., a diffeomorphism between domain and range.
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Ultimately, define Ψ :M(t)→M through the coordinate prescription

(t, r, φ, x) ≡ Ψ(tt, rt, φt, xt) ≡ (t, r, φ, ψt,r,φ(xt)). (2.5)

Ψ inherits the diffeomorphism property from ψt,r,φ: It declares a diffeomorphism be-

tween the fiber bundles’ total spaces M(t) and M. Both ψt,r,φ and Ψ preserve the

orientation that domain and range inherit from the embedding Euclidean respectively

Lorentzian space.

Metrics As a model for cavities with locally reacting wall elements M(t) and its

stationary counterpart are by construction embedded in R+ × R3. Let c denote the

speed of sound in air, c ≈ 343 ms−1.

Endowing R+ × R3 with a Lorentzian signature metric η ≡ diag(+1,−c2,−c2,−c2)

and exploiting the cylindrical symmetry of the fiber spaces Zstat and Z(t) for t > 0,

we find in the adequate coordinates within the framework of the Einstein summation

convention

G = GMNdx
MdxN = dt2 − c2

(
dr2 + r2dφ2 + dx2

)
(2.6)

with dx0 = dt and dx1 = dr, dx2 = dφ, dx3 = dx. After restriction to M respec-

tivelyM(t) as Lorentzian sub-manifolds of (R+×R3,G), we obtain induced Lorentzian

metrics G0,0 : TM× TM → C∞(M → R) respectively G0,t : TM(t) × TM(t) →
C∞(M(t)→ R).

The assignment of G0,0 turns the bundles’ total spacesM andM(t) into Lorentzian

manifolds (M,G0,0) and (M(t),G0,t). For two isometric Lorentzian manifolds (M1, g1)

and (M2, g2), we write (M1, g1) ∼= (M2, g2).

By the last paragraph in the previous section, M ' M(t) whereas (M,G0,0) 6∼=
(M(t),G0,t). This means although topologically, the fiber bundles are diffeomorphic via

Ψ, i.e., topologically equivalent, they are not isometric via Ψ, i.e., their local geometric

properties differ.

We note M = (Ψ−1)
∗

(M(t)) as a pull-back manifold. The associated pull-back

metric Gt,0 ≡ (Ψ−1)∗G0,t defines a Lorentzian metric on M such that (M,Gt,0) ∼=
(M(t),G0,t). We observe that the scalar d’Alembertian for G0,t = GMNdx

MdxN is just
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the usual d’Alembertian in cylindrical coordinates:

�0,t =
√
− detG

−1
∂M

(√
− detGGMN∂N

)
(2.7)

= ∂2
t − c2

(
∂2
r + r−1∂r + r−2∂2

φ + ∂2
x

)
(2.8)

≡ c2
(
∂2
χ − ∂2

r + r−1∂r + r−2∂2
φ + ∂2

x

)
(2.9)

where χ = ct has the physical dimension of a length.

For the subsequent argument, we will work with χ as a temporal variable in place of

t. Additionally, we will non-dimensionalize through normalization to the length scale

set by the cylinder’s length L.

The metric G0,t becomes

GMNdx
MdxN = c2L2(dχ2

0 − dr2
0 − r2

0dφ
2 − dx2

0) (2.10)

where χ0 = χ/L, r0 = r/L, x0 = x/L. The functional matrix ΛM
M ′ for the differential

dΨ−1 is found with u ≡ (u0 + uL)/L for which ‖u‖∞ < 2ε < 1(
ΛM
M ′

)
=
(
δMM ′
)

+
(
λMM ′

)
. (2.11)

(
λMM ′

)
=


0 0 0 0

0 0 0 0

0 0 0 0

x0∂χ0u x0∂r0u x0∂φu u

 (2.12)

in the non-dimensional units defined above. The pull-back metric Gt,0 = (Ψ−1)∗(G0,t)

evaluates to

gM ′N ′ = GMNΛM
M ′Λ

N
N ′ = GM ′N ′ + δGM ′N ′ , (2.13)

δGM ′N ′ = GM ′Nλ
N
N ′ +GMN ′λ

M
M ′ +GMNλ

M
M ′λ

N
N ′ . (2.14)

δGM ′N ′ is symmetric in its indices.

Let us assume ‖∂χ0u‖∞, ‖∂r0u‖∞, ‖∂φu‖∞ < 2ε. This means the boundary pertur-

bation undulates not too fast neither temporally nor spatially. Since 0 < x0 < 1, then

‖GK′N ′ · δGM ′N ′‖ ≤ ‖δGM ′N ′‖ · ‖GM ′N ′‖−1 < ε < 0.5 < 1 in the Frobenius matrix norm

[122] with the maximum norm imposed on the individual coefficients of the matrix.

Through expansion of the determinant, we have det(−g) = det(−G) det(1+G−1 ·δG) =

(det(−G))(1 + Tr[G−1 · δG]) up to contributions of order ε2.

Similarly, gM
′N ′ = GM ′N ′ − δGM ′N ′ , with indices raised and lowered via G0,t, holds

up to contributions of order ε2.
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d’Alembertian Dropping primes on indices, we find with − det g = −g

�t,0 ≡
√
−g−1

∂M
(√
−ggMN∂N

)
= �0,t + V. (2.15)

With the abbreviation −G = − detG, �0,t denotes the d’Alembertian on M in the

metric G0,t and V is interpreted as a perturbation operator.

Both partial differential operators are given explicitly:

�0,t =
√
−G−1

∂M

(√
−GGMN∂N

)
(2.16)

V = −Tr
[
G−1 · δG

]√
−G−1

∂M

(
GMN

√
−G∂N

)
+
√
−G−1

∂M

(
GMN

√
−GTr

[
G−1 · δG

]
∂N

)
−
√
−G−1

∂M

(
δGMN

√
−G∂N

)
.

(2.17)

At most second order derivatives of u appear in V.

The requirement of suitable boundedness of second order derivatives of u as ∼ ε

allows us to regard V as a �0,t-bounded small perturbation in a second-order Sobolev

space in which �0,t is bounded as a linear operator [124]. The regularity requirement

consented in the beginning enables us to impose this rather strong regularity behavior.

V will not be needed explicitly for the rest of the chapter. In the following, we

understand it as being written out in the physical variables t, r, φ, x for M.

Back in the physical variables, we have

∂2
t p− c2(∂2

rp+ r−1∂rp+ r−2∂2
φp+ ∂2

xp) + V[p] = 0 (2.18)

for p at least C2 on M = R+ × Zstat. The object in round brackets is the Laplace-

Beltrami operator on Zstat expressed in cylindrical coordinates.

Equation (2.18) is the acoustic wave equation [135] to-be-studied. It needs boundary

conditions.

Boundary conditions The boundary conditions need to be derived physically in the

coordinates of (2.18). Physical background material can be found in [135].

We focus on the x = 0 and x = L endcaps of Zstat, i.e., on F0 and FL. We have

p(t, r, φ, x+ ∆x)− p(t, r, φ, x) = ffluid(t, r, φ, x)∆x in mechanical equilibrium, i.e., after

Taylor expansion ∂xp(t, r, φ, x) = ffluid. The pressure gradient in x-direction equates

to the volume density of force in the fluid. From the continuum version of Newton’s

second law, ffluid = −ρ0∂tvx in acoustic linearization. This means that the acoustic
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pressure compensates the small velocity fluctuations induced by the local reaction of

the surfaces.

At x = 0 and x = L, vx = u̇0 respectively vx = u̇L. Indeed, the force per volume

density acting on a point on the x = 0 stored in the motion of the locally reacting

surface has only a non-trivial x-component ffluid = ρ0∂tu̇0 in acoustic linearization.

The mechanical equilibrium condition now states that the acoustic pressure forms

such as to compensate this force density. Saying that the acoustic pressure p forms

to ensure mechanical equilibrium means working in coordinates such that the cylinder

does not change its shape in time, i.e., Zstat pertains its form. ∂Zstat\(F0 ∪ FL) models

walls which are acoustically hard. I.e., the subset of the boundary of Zstat currently

under consideration does not undergo vibrations. The mechanical equilibrium condition

from above thus reduces to ∂rp = 0 on ∂Zstat \ (F0 ∪ FL).

Explicitly, the boundary conditions to the Laplace-Beltrami operator read

∂xp = −ρ0∂tu̇0 on F0 (2.19)

∂xp = −ρ0∂tu̇L on FL (2.20)

∂rp = 0 on ∂Zstat \ (F0 ∪ FL) . (2.21)

Furthermore, the cylindrical symmetry is incorporated in the periodicity condition

imposed on the azimuthal variable φ, p(t, r, φ, x) = p(t, r, φ + 2π, x) for all values of

coordinates (t, r, φ, z) for M = R+ ×Zstat.

Initial conditions The initial conditions are obtained from physical deliberations as

well. The cavity model’s wall react locally to an external pressure signal incident on

the walls. If this signal is absent, the locally reacting surfaces in the cavity’s wall do

not undulate. The mathematical translation gives homogeneous initial conditions for

the acoustic pressure, that is, p(t = 0, r, φ, x) = 0 and ∂tp(t = 0, r, φ, x) = 0.

Physical comments The main question underlying the treatment is how to apply

the notion of acoustic pressure rather strictly. Acoustic pressure is defined as a small

fluctuation around a hydrostatic equilibrium pressure. It can alternatively be described

as the dynamic pressure generated by small local fluctuations in mass density.

In the cavity model described above, parts of the boundary are allowed to undergo

small perturbations around their equilibrium position. This impacts the acoustic wave

equation in so far that the Laplacian is in fact time-dependent and small volumes have
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to be added to viz. subtracted from Zstat. On the other hand, the momentum balance

given by Euler’s equation in acoustic linearization just states that the acoustic pressure

ensures equilibrium: ∇p = −ρ0∂tv. However, the position where we evaluate the fluid

velocity and the acoustic pressure’s gradient still fluctuates since we are perturbing from

the fluid rest frame but Euler’s equation accounts for the whole fluid motion, including

perturbations.

This led us to infer that the impact of the locally reacting surface becomes visible

two times. First, by boundary conditions to ensure the mechanical equilibrium and

second, by a suitable perturbation operator which stores the impacts of the full three-

dimensional local changes in volume.

The result of the further treatment is anticipated here: The V can be safely neglected

as being out of range for the acoustic linearization procedure. Intuitively, this has been

used in [8, 7] who coined the notion of acoustic boundary conditions. In the next

section, we will support this view by combining Dirac perturbation theory [34] and

Picard iteration [60].

2.3 Perturbation theory

Locally reacting surfaces For simplicity, only one of the two endcaps’ locally re-

acting wall elements with equilibrium position F ∈ {Γ0,ΓL} is considered.

Physically, the local reaction of the membranes gives rise to a kinetic energy density

(per volume) of the constituent molecules. Working on classical scales above a0 '
10−10 m, the kinetic energy density is given by ρm(∂tu)2/2. In that expression, ρm

denotes the mass density of the membrane and is assumed constant due to the smallness

of vibrations under consideration. The quantity u symbolizes the transverse membrane

displacement and corresponds to u0 or uL in the model of the cylindrical cavity vibrating

endcaps. The kinetic energy stored in an infinitesimal volume dV of the membrane thus

is dEkin = dV ρm(∂tu)2/2.

In the absence of external energy injection, the kinetic energy stored in a membrane

volume dV is accompanied by a potential energy term. The p(H) = det(12 +κσ3H[u]) is

found to produce in quadratic expansion a spatial dependency of the potential energy

term that includes (mean) curvature H[u] contributions of the hyper-surface defined

by u to the potential energy dEpot as well. It has been chosen only on the basis of

giving the correct result, see e.g. [142], and although it has the same structure as the
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polynomial from which physicists derive the Chern characteristic classes, the coinciding

mathematical structure does not “hide” a deep secret.

Let κ be a small length scale and set

p(H) = det (12 + κσ3H[u]) = 1 +
κ2(∆∂u)2

4
+O(κ3). (2.22)

because in linear approximation, 2H[u] = ∆∂u where ∆∂ is the Laplace-Beltrami op-

erator defined. Keeping only quadratic terms, it remains to introduce the membrane

tension T0 as a dimensional constant to ensure that the resulting infinitesimal potential

energy dEpot in the volume dV has the correct physical dimension of an energy. dEpot

is expressed up to quadratic order in κ as

dEpot = dV T0p(H) ≈ dV T0

(
1 +

κ2(∆∂u)2

4

)
. (2.23)

We focus on dV . Let us idealize the membrane as having uniform thickness d in

perpendicular direction to an infinitesimal surface element dA. Then dV = dmdA and

if dA0 denotes the equilibrium surface F which is stretched during surface undula-

tion we have dA = dA0

√
1 + (∇∂u)2 in addition. Taylor expansion up to including

contributions at most quadratic in derivatives of u yields

dV ≈ dA0 dm

(
1 +

(∇∂u)2

2

)
. (2.24)

The objects of interest are the infinitesimal kinetic and potential energy. Keeping

only contributions of at most quadratic order in u and derivatives thereof and dropping

an overall constant term ∼ dA0 dm to the potential energy dEpot, we arrive at

dEpot = dA0
T0dm

2

(
(∇∂u)2 + κ2 (∆∂u)2

2

)
, (2.25)

dEkin = dA0
ρmdm(∂tu)2

2
. (2.26)

In order to circumvent the problem of having to impose “plate” boundary conditions,

we observe that∫
F
dA0 (∆∂u)2 =

∫
∂F
〈ds,∇∂u)〉(∆∂u)−

∫
F
dA0 〈∇∂u,∇∂∆∂u〉. (2.27)

We assume to be able to integrate the first integral on the right-hand side by parts one

more. Since ∂(∂F) = ∅, we find in this case∫
∂F
〈ds,∇∂u)〉(∆∂u) = −

∫
∂F
〈ds,∇∂∆∂u〉u. (2.28)
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We then require u = 0 on ∂F .

Consider the case that ∆∂ admits eigenfunctions which can be continued into a

small environment on F . The alternative, ∆∂u = 0 on ∂F and, furthermore, boundary

condition u = 0 on ∂F , gives rise to the same solution as does the requirement of simply

u = 0 on ∂F . We will address this later on again.

If we require u = 0 on ∂F and ∆∂u = 0 on ∂F , we have for the full potential energy

after integration by parts

Epot =
T0dm

2

∫
F
dA0 u

(
−∆∂u+ κ2 ∆2

∂u

2

)
. (2.29)

The total kinetic energy is obtained by trivial integration of dEkin over spatial degrees

of freedom. Its time integral can only be brought into a form that permits application

of Hamilton’s variational principle if u = 0 is demanded for t = 0 and for t → ∞.

The latter asymptotic behavior can be ensured by the phenomenological inclusion of

damping, the first requirement reproduces one of the two conditions that we have

already imposed on the displacement of locally reacting surfaces. Denoting by δu the

variation of u, Hamilton’s principle finally yields the condition

0 = δS = −
∫
R+×F

dtdA0 δu

[
ρmdm∂

2
t u− T0dm

(
∆∂u+ κ2 ∆2

∂u

2

)]
. (2.30)

By the fundamental lemma of variational calculus an, albeit preliminary, equation of

motion follows:

0 = ρmdm∂
2
t u− T0dm

(
−∆∂u+ κ2 ∆2

∂u

2

)
. (2.31)

Damping can be included by a slight modification of ∂2
t . Let Σ : R+ → I ⊂ R+ be

an orientation preserving diffeomorphism of R+ onto one of its open intervals, say I,

and replace

∂2
t → D2

t ≡ Σ(t)−1∂t(Σ(t)∂t). (2.32)

The choice Σ(t) = exp(2αt) (α > 0) reproduces linear damping. Note that D2
t is not

symmetric and thus does not permit a Friedrichs extension.

It remains to model the coupling with the acoustic pressure p and the outside signal

pex. This is accomplished by noting that δW = −p∆V represents the thermodynamic

differential volume work. Since from the outside of the cavity, an external pressure

stimulus pex impinges on the membrane, the internal acoustic pressure forms to ensure
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overall mechanical equilibrium by the discussion in the previous section. The net work

is δW = −δp∆V where δp = pex− p. The coordinates chosen above permit to evaluate

the pressure difference on the fixed F rather than the undulating surface defined by

u. The local volume change ∆V is to be understood in the sense of thermodynamics

rather than the geometrical volume dV used in the previous part of the derivation.

Locally, for both pex and p, the available air volume changes as ∆V = udA0 where u

denotes the amplitude of the undulation. Inclusion of δW in dEpot and variation of

the modified quadratic action S with respect to u, results in an inhomogeneity to the

formerly homogeneous equation for u.

Upon modification to account for damping, the dynamics of the locally reacting

surface u is governed by

pex − p = ρmdmD
2
tu− T0dm

(
∆∂u− κ2 ∆2

∂u

2

)
. (2.33)

Division through ρmd yields, in conjunction with κ = 0 and Σ(t) = exp(2αt) (α = 0),

the damped membrane equation used in [147, 148, 158]: Set c2
m = T0/(ρmdm) ≡ T0/σm

with the surface mass density σm and Φ = (pex − p)/(ρmdm) to find

∂2
t u+ 2α∂tu− c2

m∆∂u = Φ. (2.34)

Eigenfunctions and eigenvalues Let k = (k1, k2) ∈ N×N. The eigenfunctions and

eigenvalues for the Laplace-Beltrami operator ∆∂ on F ∈ {Γ0,ΓL} with homogeneous

Dirichlet boundary conditions on ∂F can be found by separation of variables [123, 124]:

ψ∂k(r, φ) =
J k1π

2π−2β

(
νk1k2

r

atymp

)
sin
(
k1π(φ−β)

2π−2β

)
√

2(π−β)atymp

2

∣∣∣∣J ′ k1π
2π−2β

(νk1k2)

∣∣∣∣ , (2.35)

(
ω∂k
)2

= c2
m

(
ν2
k1k2

a2
tymp

)
(2.36)

where only eigenfunctions which exhibit regular behavior as r → 0 as limr→0 |Φk1,k2(r, φ)| <
∞ are kept and the “trivial” eigenfunction 0 is omitted. Let n ≡ (n1, n2, n3) ∈
N0 × Z× N0.

The eigenfunctions and eigenvalues for the Laplace-Beltrami operator on Zstat with

homogeneous Neumann boundary conditions on ∂Zstat can be found by an analysis of

cases in a treatment by separation of variables. The distinction by cases is indicated
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as (Letter) and the case condition is given below the expression for the eigenfunctions

and eigenvalues in questions:

ψn(r, φ, z) =



1√
πa2

cylL
(A)

Jn1

(
µn10r

acyl

)
√

2πL
√
µ2
n10−n2

1|Jn1 (µn10)| (B)

Jn1

(
µn1|n2|

r

acyl

)
ein2φ

√
πL
√
µ2
n1|n2|

−n2
1|Jn1 (µn1|n2|)|

(C)
√

2 cos(n3πx
L )√

πa2
tympL

(D)

√
2Jn1

(
µn1|n2|

r

acyl

)
ein2φ cos(n3πx

L )
√
πL
√
µ2
n1|n2|

−n2
1|Jn1 (µn1|n2|)|

(E)

(2.37)

ω2
n = c2

(
µ2
n1n2

a2
cyl

+
n2

3π
2

L2

)
(2.38)

(A) requires 0 = n1 = n2 = n3, (B) necessitates n1 6= 0 and n2 = n3 = 0, (C) is

applicable if n1 6= 0, n2 6= 0 and n3 = 0, (D) means n1 = n2 = 0 and n3 6= 0 and (E)

captures the remaining possibility n1 6= 0, n2 6= 0, n3 6= 0.

Each set of both eigenfunctions {ψ∂k}k and {ψn}n is a complete system of normalized,

pairwisely orthogonal functions on the corresponding domain with respect to the L2-

inner product, the L2-norm, respectively. The two systems of functions do not satisfy

mutual orthogonality.

The discussion of the boundary conditions for the locally reacting surfaces’ equations

of motion needs to be completed: Let δ > 0 be sufficiently small and Γ0,δ ≡ {pt ∈ F0 :

dist2(pt,Γ0) < δ} and ΓL,δ ≡ {pt ∈ FL : dist2(pt,Γ0) < δ}. Obviously, {ψ∂k1k2
}k1,k2 can

be extended at least C2-regularly from Γ0 and ΓL to Γ0,δ and ΓL,δ for the sufficiently

small δ > 0 - a consequence of the physical regularity behavior of the involved objects.

Then we can evaluate the algebraic expression ∆∂ψk1k2(r, φ) = −c−2
m (ω∂k1k2

)2ψk1k2(r, φ)

on ∂F for the F ∈ {Γ0,ΓL} employed in the derivation in the previous paragraph. The

eigenvalue of the Dirichlet Laplacian is nonzero for non-trivial eigenfunctions such that

∆∂u = 0 is equivalent to u = 0 on ∂F in terms of an eigenfunction expansion of u in

eigenfunctions of the Dirichlet Laplace-Beltrami operator studied in the beginning of

the paragraph.

Physically, the condition ∆∂u = 0 on ∂F can be understood as a linearization

of the requirement that the undulating locally reacting surface has vanishing mean

curvature at the boundary - for small-amplitude vibrations in the ICE context, biology
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has already implemented the requirement by clamping a given tympanum to the much

heavier surrounding bony structure at its boundary.

Perturbation expansion The full problem consists of the perturbed acoustic wave

equation on Zstat for the acoustic pressure p forming out in the, by now, stationary

cavity

∂2
t p− c2

(
∂2
rp+ r−1∂rp+ r−2∂2

φp+ ∂2
xp
)

+ V[p] = 0. (2.39)

Setting P (♥) = ♥− κ2♥2/2, the locally reacting surfaces u0, uL are described

D2
tu0 − c2

mP (∆∂)u0 = σ−1
m (pex − p)|x=0 (2.40)

D2
tuL − c2

mP (∆∂)uL = σ−1
m (pex − p)|x=L (2.41)

where ∆∂ = ∂2
r + r−1∂r + r−2∂2

φ is the Laplace operator on Γ0, ΓL expressed in those

polar coordinates that agree with the polar part of the cylindrical coordinates utilized

for the economic description of Zstat.

Note that although algebraically ∆∂ + ∂2
x reproduces the Laplace-Beltrami opera-

tor on Zstat, the operators are different as can already be inferred from the different

boundary conditions (Neumann vs. Dirichlet) assigned to them. The non-homogeneity

in the boundary conditions occurs only for the perturbed acoustic wave equation at the

x = 0 face through ∂xp = −ρ0∂tu̇0 and at the x = L face through ∂xp = −ρ0∂tu̇L. The

rest of boundary and initial data for the three equations is homogeneous.

We set pex(t, x = 0) = p0 exp(iωt + iφ0) and pex(t, x = L) = p0 exp(iωt + iφL)

with two phases φ0, φL ∈ [0, 2π) which bear auditory information in the context of

the ICE model and have been surveyed exhaustively [147, 148, 158, 140]. Here, pex

corresponds to a time-harmonic pressure signal that impinges on the cavity from the

acoustic far-field.

The solution strategy consists of using the smallness of the perturbation V compared

to �0,t to handle the acoustic wave equation by time-dependent perturbation theory in

the style of Dirac [34][§44]. Indeed, since V ∼ δG ∼ ε in terms of scaling relative to

�0,t-like operators,

∂2
t p− c2(∂2

r + r−1∂r + r−2∂2
φ + ∂2

x)p = −εV0[p] (2.42)

where V0 ≡ ε−1V denotes a re-scaling of V such as to obtain the scaling V ∼ �0,t.

In most applications of vibrational acoustics, ε � 1. E.g., in the ICE context the
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membrane displacement can be measured to be ∼ 10−9 m whereas the length of the

cavity Zstat is ∼ 10−2 m.

Acoustically, the impact of the perturbation is negligible on the sound pressure

level of the internal pressure p. More formally, the smallness of the perturbation can

be used to invert the wave operator on the left-hand side of the equation and iterate

the equation.

Let G0 = �−1
0,t denote the inverse operator to the wave-operator �0,t on the left-

hand side of the above equation. Assuming high-enough regularity behavior of p and

the displacements u0, ul, we can write the inverse operator G = (�0,t + V)−1 as

G =
∞∑
n=0

(−ε)n(G0 · V0)n · G0. (2.43)

where · denotes the (non-commutative!) composition of operators. G0 acts on a suitable

function f as

G0[f ] =
∑
n

ψn(r, φ, x)

∫ t

0

dτ
sin ((t− τ)ωn)

ωn

∫
Zstat

d(ρ, ϕ, ζ) ρψ†n(ρ, ϕ, ζ)f(τ, ρ, ϕ, ζ).

(2.44)

The expression is obtained by Duhamel’s principle, treating the Laplace-Beltrami op-

erator ∆ on Zstat in the sense of Borel’s functional calculus [122, 123, 124]. Afterwards,

the spectral theorem is invoked to obtain the summation over the eigenvalues of ∆.

So far nothing has been solved because we do not know the perturbation operator

V. The latter operator depends explicitly on the unknown functions u0, uL. The above

perturbation expansion is based on the overall setup assumptions that there are suit-

ably regular solutions (p, u0, uL) and u0, uL and derivatives thereof are suitably small

compared to L.

Fixed-point iteration The general damping Σ = Σ(t) inscribed in D2
t = Σ−1∂t(Σ∂t)

permits an analytic treatment, too. The restrictions on the choice of Σ ensures that its

natural logarithm and its square root as well as the composition of natural logarithm

and square root on Σ are well-defined. Since Σ depends only on t it represents a

constant with respect to the Laplace-Beltrami operator ∆ on Zstat. The inverse operator

H0 ≡ (D2
t − c2

mP (∆∂))
−1 is then found by reduction of the equation of motion for u0

respectively uL to a Klein-Gordon type equation.

Conversion into a first-order operator differential equation shows that the t-dependent

matrices in the operator differential equation commute at different t’s. Upon definition
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of Q(t) ≡ −(∂t log
√

Σ(t))2 + ∂2
t log

√
Σ(t), we find that H0 acts on suitable functions,

say g, as

H0[g] =
∑
k

ψ∂k(r, φ)

∫ t

0

dτ

√
Σ(τ)

Σ(t)

sin
(
(t− τ)

√
Ik
)

√
Ik

×
∫
F∈{Γ0,ΓL}

d(ρ, ϕ) ρ
(
ψ∂k
)†

(ρ, ϕ)g(ρ, ϕ).

(2.45)

where Ik = Ik(t−τ) is given for a k ∈ N×N through the following integral representation

Ik =

∫ 1

0

dξ
[
c2
mP

(
−c−2

m

(
ω∂k
)2
)

+Q(ξ(t− τ))
]
. (2.46)

In the case of linear damping ∼ 2α∂t, i.e., Σ(t) = exp(2αt) (α > 0) and κ = 0, i.e.,

in the model of damped flexible membranes as locally reacting surfaces, the formula

reduces to the inverse operator for the damped wave-equation on a circular sector

F ∈ {Γ0,ΓL}:

H0[g] =
∑
k

∫ t

0

dτ e−α(t−τ) sin

(
(t− τ)

√(
ω∂k
)2 − α2

)
√(

ω∂k
)2 − α2

× ψ∂k(r, φ)

∫
F
d(ρ, ϕ) ρ

(
ψ∂k
)†

(ρ, ϕ)g(ρ, ϕ).

(2.47)

In order to obtain an explicit solution in the end, we need a method to decouple

the three equations. Consequently, the next step is an iteration procedure. Recall that

solutions need to satisfy in particular the homogeneous initial conditions p(t = 0) =

0, ṗ(t = 0) = 0 and u0(t = 0) = 0, u̇0(t = 0) = 0 as well as uL(t = 0) = 0, u̇L(t = 0).

If p(0) = 0, u
(0)
0 = 0 and u

(0)
L = 0 are chosen to be the starting points for a fixed point

iteration. The partial differential equations decouple in first iteration and we find

p(1) = 0, u
(1)
0 = H0

[
pex|x=0

σm

]
, u

(1)
L = H0

[
pex|x=L

σm

]
. (2.48)

To give the full iteration scheme, it is useful to include the locally reacting surfaces

u0, uL explicitly in the perturbation operator by setting V[•] = V[u0, uL, •]. The idea is

to use the smallness of the perturbation to perform a fixed point iteration in the spirit of

the Picard-iteration: Assuming physical regularity of the involved quantities, the fixed

point iteration converges - see e.g. [95, 26] for convergence estimates in the context of

the Magnus series [14, 13] which is equivalent to our Ansatz. Typical estimates as the

one for the Magnus series involve (towers of) Sobolev spaces.
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Accordingly, the assumption of physical, i.e., at best smooth, regularity ensures

convergence although the assumption is not optimized in the sense that it does not

specify the minimum regularity needed to ensure convergence of the iteration scheme

we are about to present:

p(k+1) = G0[V[u
(k)
0 , u

(k)
L , p(k)]] + ∂G(k)[u

(k)
0 , u

(k)
L ], (2.49)

u
(k+1)
0 = H0

[
σ−1
m

(
pex − p(k)

)∣∣
x=0

]
, (2.50)

u
(k+1)
L = H0

[
σ−1
m

(
pex − p(k)

)∣∣
x=L

]
. (2.51)

The symbol ∂G(k) denotes that also the boundary conditions to the Laplace-Beltrami

operator in the perturbed wave equation for p yields a non-trivial contribution at the

endcaps Γ0 ⊂ F0 and ΓL ⊂ FL. Notice that a priori a suitably modified version of the

full operator G acts on the boundary conditions.

In the next paragraph, the smallness of the perturbation, loosely denoted as “V ∼ ε”

in physicists’ terminology, will aid at reducing the full, nonlinear problem to a problem

of three linearly coupled partial differential equations.

Reduced problem Typical, low-amplitude acoustics takes place at sufficiently “low”

sound pressure levels . 130 dB and, accordingly, is governed by small amplitude vi-

brations of the air particles ∼ (100 − 101) nm and as such also the typical vibration

amplitudes of the locally reacting surfaces are in this range. This is a cue for an overall

linear treatment of the problem although the physics is - strictly speaking - requiring a

nonlinear description including the perturbation V.

Given our assumptions on the behavior of u0, uL, we need to ensure that the first

derivatives are suitably small. A typical vibration amplitude over the length of the

cylindrical cavity in the ICE model is ε ∼ U/L . 10−6 for a cavity of length L ' 100 cm

and vibration amplitudes U ' 10−9 m. The iteration scheme above produces in every

step additional contributions scaling a factor of ε higher. We can determine the leading

order contribution to the internal pressure p from the second iteration around the

starting values p(0) = 0, u
(0)
0 = 0 and u

(0)
L = 0. This yields (2.48).

Insertion of p(1), u
(1)
0 , u

(1)
L in the second iteration, i.e., determining p(2), yields

p(2) = ∂G(1)[u
(1)
0 , u

(1)
L ] (2.52)

where we repeat the expressions for u
(1)
0 and u

(1)
L for the reader’s convenience

u
(1)
0 = H0

[
pex|x=0

σm

]
, u

(1)
L = H0

[
pex|x=L

σm

]
. (2.53)
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Next, the symbol ∂G(k) awaits specification of its meaning. The differential equation

satisfied by p(2) is

∂2
t p

(2) − c2(∂2
r + r−1∂r + r−2∂2

φ + ∂2
x)p

(2) + V[u
(1)
0 , u

(1)
L , p(1)] (2.54)

= ∂2
t p

(2) − c2(∂2
r + r−1∂r + r−2∂2

φ + ∂2
x)p

(2) = 0 (2.55)

by noting linearity of V in its third argument, i.e., V[u(1), u
(1)
L , p(1) = 0] = 0. Consistency

of the iteration scheme requires that object ∂G(k) respect the iteration employed to solve

the coupled system of partial differential equations in a yet to be settled sense. For

k ∈ N, we define:

(∂G)(k) ≡ G0|R+×∂Zstat
(2.56)

and understand this as a truncation of the boundary integral in Green’s theorem applied

to Neumann boundary value problems.

For a suitable function f on M̄, the above prescriptions are shorthand for

∂G(k)[f ] =
∑
n

ψn(r, φ, x)

∫ t

0

dτ
sin ((t− τ)ωn)

ωn

∫
∂Zstat

dO ρψ†n(ρ, ϕ, ζ)f(τ, ρ, ϕ, ζ)

(2.57)

The definition ensures that the boundary conditions to the differential equation for

p contribute linearly and the perturbation term G0[V[u
(k)
0 , u

(k)
L , p(k)]] is responsible for

introducing corrections to the boundary conditions in higher orders of ε in further

iterations. Since these corrections can be neglected compared to the leading ∼ ε con-

tribution, the internal pressure p(2) is given through

p(2) = −ρ0

∑
n

ψn(r, φ, x)

∫ t

0

dτ
sin ((t− τ)ωn)

ωn

∫
Γ0

d(ρ, φ) ρψ†n(ρ, ϕ, 0)∂tu̇
(1)
0 (τ, ρ, ϕ)

− ρ0

∑
n

ψn(r, φ, x)

∫ t

0

dτ
sin ((t− τ)ωn)

ωn

∫
ΓL

d(ρ, φ) ρψ†n(ρ, ϕ, 0)∂tu̇
(1)
L (τ, ρ, ϕ)

(2.58)

where the fact that u̇
(1)
0 , u̇

(1)
L are non-zero only on Γ0 ⊂ F0 and ΓL ⊂ FL has already

been incorporated.

It is worth noting that the above equation is also the Green’s function representation

for the Neumann initial boundary value problem on M = R+ ×Zstat

∂2
t p

(2) + c2(∂2
r + r−1∂r + r−2∂2

φ + ∂2
x)p

(2) = 0 (2.59)

with homogeneous initial and homogeneous Neumann boundary conditions for p(2) ex-

cept on Γ0, ΓL where ∂xp
(2)(t, r, φ, x0) = −ρ0∂tu̇

(1)
x0 (t, r, φ) for x0 ∈ {0, L}.
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Quasi-stationary solution in the case of linear damping The specific case of

the damping function Σ(t) = exp(2αt) with α > 0 and κ a fixed but very small

(κ < ε) length scale is tractable and a frequent case in applications. It accounts for a

linear damping ∼ 2α∂t in the equations of motion of the displacements of the locally

reacting surfaces. Due to the damping, the system exhibits for stimuli frequencies

ω 6∈
{
ω| − ω2 + 2αiω − c2

mP
(
−c−2

m

(
ω∂k
)2
)

= 0
}

and t� α−1 a quasi-stationary state.

The first condition corresponds to excluding resonances, the second condition allows

us to neglect an overall contribution scaling as ∼ exp(−αt). The displacements of the

locally reacting surfaces follows with the so-called mass coupling constant ρ0/ρm ≡ g

from (2.53): Abbreviating u
(1)
0,q.s.(t, r, φ) = U

(1)
0,q.s.(r, φ) exp(iωt+ iφ0) and u

(1)
L,q.s.(t, r, φ) =

U
(1)
L,q.s.(r, φ) exp(iωt+ φL) with “q.s” indicating the quasi-stationary state, it holds that

U
(1)
0,q.s.(r, φ) =

−gp0

ρ0d

∑
k

ψ∂k(r, φ)
∫

Γ0
d(ρ, ϕ) ρ

(
ψ∂k
)†

(ρ, ϕ)

−ω2 + 2αiω − c2
mP

(
−c−2

m

(
ω∂k
)2
) , (2.60)

U
(1)
L,q.s.(r, φ) =

−gp0

ρ0d

∑
k

ψ∂k(r, φ)
∫

ΓL
d(ρ, ϕ) ρ

(
ψ∂k
)†

(ρ, ϕ)

−ω2 + 2αiω − c2
mP

(
−c−2

m

(
ω∂k
)2
) . (2.61)

for (r, φ) polar coordinates on Γ0, ΓL.

Using only the above quasi-stationary state solution, insertion of (2.60) and (2.61)

into (2.58) yields p(2) as

p(2)
q.s. = −ρ0c

2ω2
∑
n

[eiωt −Rn(t)]ψn(r, φ, x)
∑

x0∈{0,L} e
iφx0

∫
Γx0

d(ρ, ϕ) ρψ†n(ρ, ϕ, x0)U
(1)
x0 (ρ, ϕ)

−ω2 + ω2
n

.

(2.62)

where Rn(t) ≡ ω−1
n (iω sin (ωnt) + ωn cos (ωnt)) ensures that p(2) stay finite during res-

onance, limω→ωn |p(2)(t)| <∞.

For the next paragraph, we note that p(2) scales as g, which is readily seen by

insertion of U
(1)
0,q.s. and U

(1)
0,q.s. in the above formula.

Relaxation behavior An assessment of the full system during relaxation in the

quasi-stationary state yields a sharper criterion for the time which is needed to neglect

phase-like contributions from frequencies other than the stimulus’ frequency ω. For

x0 ∈ {0, L}, the difference δu
(1)
x0 ≡ u

(1)
x0 −u

(1)
x0,q.s between the full and the quasi-stationary

state solution is the quantity of interest.
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Let us define the reduced surface eigenfrequency ω∂r,k ≡
√
c2
mP

(
−c−2

m

(
ω∂k
)2 − α2

)
and the transient function tk(t) ≡ (ω∂r,k)−1

(
ω∂r,k cos

(
ω∂r,kt

)
+ (α + iω) sin

(
ω∂r,kt

))
. The

latter serves as a mathematical storage for phase-like contributions at the reduced

eigenfrequency ω∂r,k of the locally reacting surface rather than the stimulus’ frequency

ω.

We anticipate that the most relevant object is the transient coupling strength, de-

fined through h(t) ≡ g exp(−αt). The coupling strength g is used as an expansion

parameter in vibrational acoustics to quantify the coupling of an air parcel of mass

density ρ0 to a material parcel of mass density ρm. By the inscription of the locally

reacting surfaces’ inherent damping ∼ exp(−αt) into the transient coupling strength

h(t), a dynamically evolving smallness parameter in units of the usual coupling strength

g is devised.

For δu
(1)
x0 , we find

δu(1)
x0

=
p0h(t)

ρ0d

∑
k

tk(t)ψ∂k(r, φ)
∫

Γx0
d(ρ, ϕ) ρ

(
ψ∂k
)†

(ρ, ϕ)

−ω2 + 2αiω − c2
mP

(
−c−2

m

(
ω∂k
)2
) . (2.63)

It scales as ∼ h(t). Following the above logic, the difference between the full internal

pressure p(2) and its quasi-stationary counterpart p
(2)
q.s., that is, δp(2) ≡ p(2) − p

(2)
q.s., is

investigated.

A variation of physically insignificant smallness in the material parameters ensure

the validity of the following mathematical assumption: ω∂r,k 6∈ σ
(√
−c2∆

)
for all k ∈

N× N. This way, divergences in the subsequent formulas can be excluded a priori.

Let us define the auxiliary quantities Cn,o ≡ (ω∂r,k)
(
(α2 − (ω∂r,k)2)(α + iω) + 2α(ω∂r,k)

)
.

Cn,e ≡ α2 − (ω∂r,k)2 − 2α(α+ iω), kn,k ≡
(
(iω∂r,k − α)2 − ω2

n

)−1
. Upon modal expansion

and seeking for a specific solution to the resulting harmonic oscillator equations by the

Ansatz ∼ exp(iωr,kt), we find that δp(2) satisfies

δp(2) = −p0h(t)c2

d

∑
x0∈{0,L},k,n

{[
Ck,e<

(
kn,ke

iω∂r,kt
)

+ Ck,o=
(
kn,ke

iω∂r,kt
)]
ψn(r, φ, x)

×

∫
Γx0

d(ρ, ϕ) ρ′ψ†n(ρ, ϕ, x0)ψ∂k(ρ, ϕ)
∫

Γx0
d(ρ′, ϕ′) ρ′

(
ψ∂k
)†

(ρ′, ϕ′)

−ω2 + 2αiω − c2
mP

(
−c−2

m

(
ω∂k
)2
)

 .

(2.64)

Again, it scales as ∼ h(t).
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Since for x0 ∈ {0, L}, the quasi-stationary displacement u
(1)
x0,q.s. of the locally reacting

surfaces and p(2) scale as ∼ g in terms of the vibrational acoustics’ smallness parameter

g, neglection of contributions scaling as ∼ g2 is possible after the equilibration time

Teq ≡ −α−1 log g. After Teq, δu
(1)
x0 , δp

(2) ∼ g2 and thus are negligible in terms of their

g-scaling behavior against the quasi-stationary state solutions u
(1)
x0 , p

(2) scaling as g1.

Fig. 2.2 shows the dynamics of the fundamental mode ψ∂11 for Gecko gekko (A) and

Varanus salvator (B). In (A) as well as (B) the relaxation to the quasi-stationary, or

harmonic, asymptotics is fast: after 1 and 5 ms, respectively. For data see [147, 148,

158].

Piston approximation Since two elements of the complete system of normalizes and

orthogonal functions, one from {ψ∂k}k and the other one from {ψn}n, are in general not

orthogonal, the quasi-stationary state solution p
(2)
q.s. contains, via U

(1)
0 and U

(1)
L , a double

sum ranging over k and n.

Suppose that the cylinder’s geometric dimensions acyl, L are such that acyl < L

but acyl 6� L, for example a “short cylinder”. This assumption is satisfied in the

ICE context and implies the non-applicability of the modal cut-off criterion from duct

acoustics. The latter states in the cylindrical geometry Zstat that for suitably long but

thin cavities other modes ψn than those depending only on the axial variable, i.e., here

x, are evanescent modes. They decay exponentially in the quasi-stationary state such

that the long but thin three-dimensional cylindrical cavity can be modeled as effectively

one-dimensional, extending only along the cylindrical cavity’s symmetry axis.

On the level of the boundary conditions to the acoustic wave equation on Zstat,

effectively one-dimensional acoustic wave propagation may be achieved by replacing

u0 → 〈u0〉F0
and uL → 〈uL〉FL where

〈ux0〉Fx0
(t) ≡ 1

Vol2 (Fx0)

∫
Fx0

d(r, φ) rux0(t, r, φ) (2.65)

denotes the average over the full x = x0-face of Zstat for a choice x0 ∈ {0, L}.
On the level of the perturbation bundlesM(t), the procedure results in replacing the

endcaps by pistons. In the “bundle”-ish terminology, this leads to the associated pis-

ton bundle: 〈M〉 (t) =
{

(x, y, z) ∈ R3|y2 + z2 < a2
cyl, −〈u0〉F0(t) < x < L+ 〈uL〉FL(t)

}
.

Let ux0 denote the mollified null-continuation from Γx0 to Fx0 for x0 ∈ {0, L}. The

ux0 obtained this way satisfies the equation of motion for the locally reacting surfaces

but with Γx0 replaced by Fx0 ' D2
acyl

((y = 0, z = 0)). We note that D2
acyl

is a convex,
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Figure 2.2: (A) Dynamics of the fundamental mode ψ∂11 for Gecko gekko with

ω∂1 1/(2π) = 1050 Hz, α = 1,Hz and κ = 0 during the first 5 ms for ω/(2π) = 750 Hz after

exposition to an external sound stimulus. The left column shows the real part (<) of the

dynamics, the right one the imaginary part (=). The first row depicts the time-harmonic

dynamics exp(iωt) in blue, the second one the transient dynamics exp(−αt)t11(t) in

green and the third the total dynamics exp(iωt) − exp(−αt)t11(t) in red. (B) Results

of the analogous simulation for Varanus salvator with ω∂11/(2π) = 550 Hz, α = 347 Hz

and κ = 0 for ω/(2π) = 200 Hz during the first 25 ms after exposition to an external

sound stimulus.
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bounded Lipschitz domain, i.e., intuitively, a domain with suitably regular boundary.

The physical regularity imposed on the displacements of the locally reacting surfaces

and the mollification result in ux0(t) ∈ W 1,2
0 (Fx0) for all t > 0, that is, the Sobolev

space for function with Dirichlet boundary conditions at ∂Fx0 .

The relative error made by replacing the locally reacting surfaces by the piston’s

can now be obtained in the L2-norm by the Poincaré inequality [130], normalized to

the 2-dimensional volume of Fx0 , compared to the maximum amplitude Umax ' εL:

‖ux0 − 〈ux0〉Fx0
‖L2

Umax

≤
√

1

minλ∈σ(−∆̃∂){λ}
‖∇ux0‖L2

Umax

(2.66)

Due to the regularity of Fx0 as a domain, the optimal Poincaré constant in the inequality

is given by the maximum, nonzero eigenvalue −λ of the Dirichlet-Laplacian ∆̃∂ on Fx0 .

As an order of magnitude estimate, the gradient ∇ux0 can be written as Umax/atymp.

Mathematica allows the calculation of the first zero ν11 ≈ 2.405 of the first Bessel

function of the first kind, J1 and helps us to find

‖ux0 − 〈ux0〉Fx0
‖L2

Umax

≤ 1

ν11

acyl

atymp

. (2.67)

In the “best” case acyl = atymp, the piston approximation introduces a relative error

to the typical amplitude of the locally reacting surfaces of ≤ 42 %. Observe that the

figure only gives an upper bound on the error which needn’t be the best upper bound

despite the choice of the optimal Poincaré constant. Due to the non-applicability of the

modal cut-off criterion to the ICE context, we propose a series expansion of (2.62).

Let n ∈ N0 × Z × N0 and let the squared stimulus frequency ω2 6∈ σ(−c2∆). L2-

convergence of the series over n in (2.62) allows us to re-arrange the sum noting the

identity

N0 × Z× N0 =
⊎
n∈N0

N0 × Z× {n}. (2.68)

For n ∈ N0, a mode with label (0, 0, n) is called (n-th) axial mode, a mode with label

(n1, n2, n) with (n1, n2) ∈ N×Z for a n ∈ N0 is called ((n1, n2)-) spinning mode (to the

n-th axial mode).

Last, we define for all n ∈ N0 × Z× N0 the spinning parameter s(n)

1

−ω2 + ω2
n=(n1,n2,n)

=
s(n)

−ω2 + ω2
n=(0,0,n)

. (2.69)
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It is a measure for the propagativity of a spinning mode compared to its basic axial

mode.

In the ICE context, the stimulus’ frequency satisfies ω < cµ11/acyl on biological

grounds, so that the spinning parameter is positive. For fixed axial mode label n, the

spinning parameter attains its maximum for (n1, n2) = (0, 0) and from the definition,

s((0, 0, n)) = 1. Upon ordering of the Bessel functions’ extrema, the sums in (2.62)

can be arranged such that s(n) is, as a function of the re-ordered label (n1, n2), strictly

monotonously decreasing. In the limit acyl/L → 0, the conventional mode cut-off

criterion is reproduced.

Inclusion of the radial integration in (2.62) accounts for a decrease of the coupling

of higher spinning modes to a given membrane mode. Therefore, the non-dimensional

quantity a−2
cyls(n)〈Jn1(a−1

cylµn1|n2|r)Jq(k1)(a
−1
tympνk1k2r)〉L2[0,atymp] with q(k1) ≡ k1π/(2π −

2β) has been plotted for the first 5 k-labeled and for the first 5 n-labeled modes, see

Fig. 2.3. The more red the parcels, the more important is the respective contribution

to (2.62). The piston approximation corresponds to the dark red quadrilateral region

in the upper left corner of each of the plots.

Although the piston approximation is far from being accurate in the sense of the

Poincaré inequality method, the numerical assessment of its accuracy demonstrates that

it captures at least the most dominant contribution to the acoustic pressure as given in

(2.62).

2.4 Stationary domain approximation

Stationary domain approximation By the preceding discussion, the perturbation

operator V can be neglected altogether as yielding contributions out of range for the

acoustic linearization process. This simplification permits us to focus on the system

of integral equations on Zstat, the so-called stationary domain approximation. It is the

approximation underlying Beale’s acoustic boundary conditions, see the assumptions

in [8, 7]. The wave equation for p now lives on the reference bundle M = R+ × Zstat

and is coupled to the displacements u0 and uL through acoustic boundary conditions.

The equations of motion for u0, uL feature p, evaluated at the x = 0 and x = L

endcap, explicitly in the source term. Green’s theorem, applied to the acoustic wave

equation, shows that equivalently

p = −ρ0c
2∂G0[∂tu̇0]− ρ0c

2∂G0[∂tu̇L] (2.70)
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Figure 2.3: Simulation results of a−2
cyls(n)〈Jn1(a−1

cylµn1|n2|r)Jq(k1)(a
−1
tympνk1k2r)〉L2[0,atymp] for

the lizards (A) Gecko gekko (acyl = 6.6 mm, atymp = 2.6 mm, L = 22 mm and β = π/30)

at ω/(2π) = 750 Hz (left) and (B) Varanus salvator (acyl = 6 mm, atymp = 2.6 mm,

L = 15.5 mm and β = π/(30)) at ω/(2π) = 200 Hz. As signified by the dark red

color in the upper left corners of the individual plots, the piston mode is the dominant

contribution to the spinning mode series for the internal pressure in each case. The

plots only exemplify the generic situation. For data see [147, 148, 158].
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where ∂G is the boundary-to-cavity propagator, that is, the Green’s function which is

evaluated on x = 0 or x = L and integrated over the boundary to store the impact of

the inhomogeneous Neumann boundary conditions on the internal acoustic pressure.

Likewise, the locally reacting surfaces inserted in the boundary ∂Zstat can be ex-

pressed through the integral representation

u0 = σ−1
m H0[pex|x=0]− σ−1

m H0[p|x=0], (2.71)

uL = σ−1
m H0[pex|x=L]− σ−1

m H0[p|x=L]. (2.72)

Objective Although it is possible to numerically iterate the equations or solve them

together, an analytic solution, containing the physics underlying for instance the ICE

model, is desirable. The goal of this paragraph is to decouple the equations such that

one can iterate the resulting equations, one for p, u0, uL respectively, independent of

each other.

Decoupling of the internal pressure For p, an independent equation is obtained

by insertion of the integral representations for u0 and up:

p = −gc2

d

∑
x0∈{0,L}

∂G0[∂2
tH0[pex|x=x0 ]] +

gc2

d

∑
x0∈{0,L}

∂G0[∂2
tH0[p|x=x0 ]] (2.73)

where we have used linearity of the involved integral operators. Together with the start-

ing point for the fixed-point iteration, p(0) = 0, and contractivity because of damping

of the locally reacting surfaces, the iteration is

p(k+1) = −gc2

d

∑
x0∈{0,L}

∂G0[∂2
tH0[pex|x=x0 ]] +

gc2

d

∑
x0∈{0,L}

∂G0[∂2
tH0[p(k)|x=x0 ]]. (2.74)

Obviously, one obtains a series in terms of powers of the coupling strength g with

the highest power of g for, say p(N+1), being gN+1 as is seen easily by mathematical

induction. The coupling strength is small in air g = ρ0/ρm � 1 for solid or liquid

interfaces - “light-fluid assumption” - and has been employed as convenient expansion

parameter [83, 84].

Boundary-to-boundary propagator Some additional notation is needed in order

to handle the two locally reacting surfaces. For the Green’s function expressions (2.70)
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for the internal acoustic pressure evaluated at the x = 0 and x = L endcap, we use the

following “mnemonic” notation to express

p|x=0 = −ρ0d {(0 0)[u0] + (L 0)[uL]} , (2.75)

p|x=L = −ρ0d {(0 L)[u0] + (L L)[uL]} . (2.76)

Since ψn(r, φ, x = 0) = (−1)n3ψn(r, φ, x = L), the integral kernel for the integro-

differential operator is semi-independent of two axial variables in the following sense:

0  L = L  0 and 0  0 = L  L. However, 0  L 6= L  L. Note that it also

contains a double partial derivative with respect to time.

Physically, the wiggling arrow shall indicate that the internal pressure carries infor-

mation about the motion of one locally reacting surface to the other one. The coupling

ensures that the two locally reacting surfaces “interact” through stimulation of a con-

tribution to the internal pressure wave. We call it boundary-to-boundary propagator

and its definition is possible due to the regularity behavior of the eigenfunctions of

the Neumann Laplace-Beltrami operator. The dimensional re-scaling of the underlying

Green’s function has been chosen in order to obtain a dimensionless iteration parameter

in the end, namely the coupling strength g = ρ0/ρm . 10−2 that has also been noted

as a convenient expansion parameter in [83, 84].

We find

u0 = σ−1
m H0[pex|x=0]

+ g (H0 ◦ (0 0)) [u0] + g (H0 ◦ (L 0)) [uL],
(2.77)

uL = σ−1
m H0[pex|x=L]

+ g (H0 ◦ (0 L)) [u0] + g (H0 ◦ (L L)) [uL].
(2.78)

This can be re-arranged to make the form of a linear system of integral equations more

obvious and provide us with the missing ingredient for the final decoupling. Denoting

by 1 the identity operator for functions on Γ0, ΓL, we have

[1− g (H0 ◦ (0 0))] [u0] + [−g (H0 ◦ (L 0))] [uL] = σ−1
m H0[pex|x=0], (2.79)

[−g (H0 ◦ (0 L))] [u0] + [1− g (H0 ◦ (L L))] [uL] = σ−1
m H0[pex|x=L]. (2.80)

The fact that Γ0 and ΓL differ only by translation along the symmetry axis of Zstat

permits us to act on with any of the operator-valued coefficients on an equation from

the above set of two equations: The operator coefficients commute. For less symmetric

locally reacting surfaces, this is not trivially possible.
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Upon acting with [1− g (H0 ◦ (L L))] on the first of the two, and with [−g (H0 ◦ (L 0))]

on the second of the two equations, we can eliminate uL such as to obtain an equation

only for u0. Observe that there is still one identity operator present in the resulting

equation. Similarly, application of [−g (H0 ◦ (0 L))] to the first and application of

[1− g (H0 ◦ (0 0))] to the second of the two equations permits us to eliminate u0

and to obtain an equation for uL. Noting L  L = 0  0 by the symmetry of the

eigenfunctions, the results for u0 and uL are:

[1− g (H0 ◦ (0 0))] ◦ [1− g (H0 ◦ (0 0))] [u0]

+ [−g (H0 ◦ (L 0))] ◦
(
σ−1
m H0[pex|x=L]

)
− [−g (H0 ◦ (L 0))] ◦ [−g (H0 ◦ (0 L))] [u0]

= [1− g (H0 ◦ (0 0))] ◦
(
σ−1
m H0[pex|x=0]

)
,

(2.81)

[1− g (H0 ◦ (L L))] ◦ [1− g (H0 ◦ (L L))] [uL]

+ [−g (H0 ◦ (0 L))] ◦
(
σ−1
m H0[pex|x=0]

)
− [−g (H0 ◦ (0 L))] ◦ [−g (H0 ◦ (L 0))] [uL]

= [1− g (H0 ◦ (L L))] ◦
(
σ−1
m H0[pex|x=L]

)
.

(2.82)

Decoupled equations for the displacements Obviously, the two above equations

satisfy the requirement of depending only on either u0 or uL as unknown functions.

The next step is a slight re-arrangement such as to facilitate the fixed-point iteration

akin to the one performed for the internal pressure. We find

u0 = σ−1
m H0[pex|x=0] + 2gH0 ◦ (0 0) [u0]

+ g
{

(H0 ◦ (L 0)) ◦
(
σ−1
m H0[pex|x=L]

)
− (H0 ◦ (0 0)) ◦

(
σ−1
m H0[pex|x=0]

)}
+ g2 {(H0 ◦ (L 0)) ◦ (H0 ◦ (0 L))− (H0 ◦ (0 0)) ◦ (H0 ◦ (0 0))} [u0],

(2.83)

uL = +σ−1
m H0[pex|x=L] + 2gH0 ◦ (L L) [uL]

+ g2 {(H0 ◦ (0 L)) ◦ (H0 ◦ (L 0))− (H0 ◦ (L L)) ◦ (H0 ◦ (L L))} [uL]

+ g
{

(H0 ◦ (0 L)) ◦
(
σ−1
m H0[pex|x=0]

)
− (H0 ◦ (L L)) ◦

(
σ−1
m H0[pex|x=L]

)}
.

(2.84)

The equations simplify upon noting that the ∼ g2-term cancels because the eigenfunc-

tions of the Neumann-Laplacian on Zstat evaluate identically up to a sign. The latter

is canceled because the relevant values of the eigenfunctions appear in ever power.
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Thus

u0 = σ−1
m H0[pex|x=0] + 2gH0 ◦ (0 0) [u0]

+ g
{

(H0 ◦ (L 0)) ◦
(
σ−1
m H0[pex|x=L]

)
− (H0 ◦ (0 0)) ◦

(
σ−1
m H0[pex|x=0]

)}
,

(2.85)

uL = σ−1
m H0[pex|x=L] + 2gH0 ◦ (L L) [uL]

+ g
{

(H0 ◦ (0 L)) ◦
(
σ−1
m H0[pex|x=0]

)
− (H0 ◦ (L L)) ◦

(
σ−1
m H0[pex|x=L]

)}
.

(2.86)

Physical discussion Physically, the above two equations describe that one of the

locally reacting surfaces is driven in leading order ∼ g0 by the external pressure. The

next-to-leading order ∼ g1 encapsulates the feedback the surface gives to itself by either

inducing at its location an acoustic pressure (first term ∼ g on the respective right-hand

sides) or emitting a contribution to the internal acoustic pressure which is reflected back

to the equilibrium position of the locally reacting surface. The last contribution ∼ g1

includes a drive by the external pressure pex. The latter is evaluated at the respective

equilibrium positions of both locally reacting surfaces. These contributions do not

cancel. It is the presence of both of them which leads in the model of internally coupled

ears to a coupled vibration of the eardrums.

The corresponding iteration scheme, akin to the one for the internal pressure, reads:

u
(k+1)
0 = σ−1

m H0[pex|x=0] + 2gH0 ◦ (0 0) [u
(k)
0 ]

+ g
{

(H0 ◦ (L 0)) ◦
(
σ−1
m H0[pex|x=L]

)
− (H0 ◦ (0 0)) ◦

(
σ−1
m H0[pex|x=0]

)}
,

(2.87)

u
(k+1)
L = σ−1

m H0[pex|x=L] + 2gH0 ◦ (L L) [u
(k)
L ]

+ g
{

(H0 ◦ (0 L)) ◦
(
σ−1
m H0[pex|x=0]

)
− (H0 ◦ (L L)) ◦

(
σ−1
m H0[pex|x=L]

)}
.

(2.88)

u
(1)
x0 will include contributions which are to be trusted up to order g0 for either choice

of x0 ∈ {0, L}. More generally, u
(N)
x0 can be trusted up to order gN−1 for N ∈ N and

either choice x0 ∈ {0, L}.
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The first two iterations with starting point u
(0)
0 = 0 = u

(0)
L yield

u
(1)
0 = σ−1

m H0[pex|x=0] +O(g1) (2.89)

u
(1)
L = σ−1

m H0[pex|x=L] +O(g1) (2.90)

u
(2)
0 = σ−1

m H0[pex|x=0]

+ σ−1
m g {(H0 ◦ (L 0)) ◦ (H0[pex|x=L]) + (H0 ◦ (0 0)) ◦ (H0[pex|x=0])}

+O(g2)

(2.91)

u
(2)
L = σ−1

m H0[pex|x=L]

+ σ−1
m g {(H0 ◦ (0 L)) ◦ (H0[pex|x=L]) + (H0 ◦ (L L)) ◦ (H0[pex|x=0])}

+O(g2)

(2.92)

Note that in practice, the summations hidden in the operator-notation need to be

truncated sensibly to limit computational effort if a numerical treatment is desired.

The evolution of the real and imaginary part of the first iterate u0 under the signal

pex(t) = p0 exp(iωt) with ω = 2π · 200 Hz and p0 corresponding to a sound pressure

level of 50 dB is shown for the material parameters used for Varanus salvator [145] in

Fig. 2.4 and Fig. 2.5. Fig. 2.4 displays the real and Fig. 2.5 the imaginary part

for the first 18 ms after stimulus exposition with time steps of 3 ms. Already the first

iterate displays the correct scaling of the amplitude comparable to the order of a few

nano-meters that is observed experimentally: It is . O(101 nm).

Fig. 2.6 shows the perturbation bundleM(t) respectively the undulating cylindrical

cavity at different points in time with suitably re-scaled vibrational amplitudes up to

contributions of order O(g).

2.5 Summary

It is due time to discuss our findings. The notion of a perturbation bundle was defined

and shown to be the natural geometric configuration space for vibrational acoustics

problems in enclosures. The intuitive idea is to study a suitably regular, bounded

manifold, say Ω, the boundary of which ∂Ω contains locally reacting surfaces described

chartwisely as the graph of a transverse displacement function over the boundary ∂Ω.

For suitably small perturbations, the overall topological properties of Ω do not change

in time, but only the local geometry is modified during the evolution of the perturba-

tion bundle’s undulation. In a mechanistic picture, the physically correct notion for
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Figure 2.4: Simulation of a linearly damped (damping coefficient α = 350 Hz) flexible

membrane (phase velocity of flexural waves cm = 2 ms−1, κ = 0) on a sector with

opening angle β = π/30 and radius atymp = 2.6 mm responding to an incident pressure

signal pex(t) = p0 exp(iωt) with ω = 2π·200 Hz and p0 corresponding to a sound pressure

level of 50 dB: Real part at different times 3 ms ≤ t ≤ 18 ms in steps of 3 ms. Clamping

(Dirichlet) boundary conditions have been used to match with findings on the lizard

Varanus salvator.
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Figure 2.5: Simulation of a linearly damped (damping coefficient α = 350 Hz) flexible

membrane (phase velocity of flexural waves cm = 2 ms−1, κ = 0) on a sector with

opening angle β = π/30 and radius atymp = 2.6 mm responding to an incident pressure

signal pex(t) = p0 exp(iωt) with ω = 2π · 200 Hz and p0 corresponding to a sound

pressure level of 50 dB: Imaginary part at different times 3 ms ≤ t ≤ 18 ms in steps of

3 ms. Clamping (Dirichlet) boundary conditions have been used to match with findings

on the lizard Varanus salvator.
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Figure 2.6: Evolution of the time-dependent cylinder Z(t) from t = 0 ms to t = 11 ms as

indicated by the sub-plot labels. Locally reacting surface displacements u
(1)
0 and u

(1)
L in

the leading order of the coupling strength g. Amplitudes magnified by a factor of 105 for

visualization. Geometrical data for the cavity setup as for the lizard Varanus salvator ;

cf. caption of Fig 2.4 and Fig. 2.5. φ0 = −π/3 and φL = π/3 has been chosen as

dummy phase shifts, corresponding to an external drive situated symmetrically between

the membranes.
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the force needed to trigger boundary displacement is that of acoustic pressure. The

attribute “acoustic” signified a small perturbation to the mechanical equilibrium state

of the geometric shape, i.e., the reference bundle associated to the perturbation bundle.

The invariance of the topological properties of Ω(t) as functions of t played a crucial

role for the existence of a t-family of diffeomorphisms. The diffeomorphism family maps

the domain at rest, Ω, to its evolving counterpart at time t, symbolically for instance,

Ω(t) = Ψsp
t [Ω]. Non-conservation of topological properties of the evolving Ω(t) would

constitute an obstruction to the existence of such a diffeomorphism family. The fam-

ily of diffeomorphisms between the three-dimensional domains extends to a family of

diffeomorphisms between the total spaces of the reference and perturbation bundle.

In the context of the ICE model, the diffeomorphism family could be specified

easily. By consideration of the pull-back of the d’Alembertian from the perturbation to

the reference bundle and imposing regularity assumptions on the perturbation, a time-

dependent perturbation operator V = V(t) could be derived. The coupling of the locally

reacting surfaces and the acoustic pressure was incorporated at first in the boundary

conditions to the acoustic wave equation and secondly through a force (per surface

area) drive in the equations of motion for the surfaces’ displacement. Consistency with

the acoustic linearization required to drop the perturbation operator, which is noting

but a derivation of Beale’s acoustic boundary conditions, and the iteration technique

decoupled the equations that had been coupled through acoustic boundary conditions

before.

The equations were solved in the quasi-stationary state and, in the context of the

ICE model, the relaxation time was shown to be only some ms. The piston approxima-

tion was investigated by an a priori error estimate, based on the Poincaré inequality,

and by the spinning series expansion, a generalization of the duct acoustics’ cut-off

criterion. The two techniques demonstrates that although the piston approximation in-

troduces according to the Poincaré estimate even in the best-case scenario atymp = acyl

a large . 42 % error relative to the typical membrane vibration amplitudes, it captures

at least the dominant contribution to the quasi-stationary state acoustic pressure p
(2)
q.s.

in the simulated mode range.



Chapter 3

Biotremological model for elephants

detecting tsunamis

Just after Christmas 2004, on December 26, elephants have been observed to take flight

from tsunamis approaching coastal regions in South-Eastern Asia 15 min to 90 min

before the first wave front reached the coast. This behavior is explained by an en-

dogenous early-detection system for tsunamis based on infrasound detection. Such an

early-detection system is used by a wide group of animals one which is the elephant.

While acoustic pathways have been discussed, biological findings support the notion

that elephants use the tactile rather than the auditory pathway to detect seismic cues

from the tsunami. However, the nature of this genuine tsunami-generated signal that

induces the seismic cues, which the elephant can use for seismic localization, is so far

unknown.

Here we show that the signal is constituted by a thin region of vortex dipoles gen-

erated by the tsunami that act as small but numerous hammers on the top layer of the

continental plate. In contrast to the standard theory on seismic signal generation, the

vortex dipole region forms exclusively due to turbulent effects at the interface between

continental plate and oceanic fluid. Secondly, we demonstrate numerically that the seis-

mic signal produced this way is detectable by elephants in terms of audible frequency

as well as sound-pressure level. Last, we show that the arrival time difference between

tsunami wave-front and seismic signal matches the experimental findings for a realistic

oceanic height profile and that previous approximate results miss a factor of 2.

Our results show that although the infrasonic frequency range as well as seismic

localization are biophysically in-experiencable for humans, animals, exemplified by the
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largest land-living mammal, the elephant, can use these mechanisms to spot already

the onset of a natural hazard.

We anticipate that our results can serve as the starting point for a more detailed

investigation of the elasticity theoretic and hydrodynamic models for seismic cue for-

mation, applicable other animals as well. Knowledge of the physical origin of tsunami

cues can serve as a theoretical basis and thus is relevant for the emulation of natural

early-warning systems.

3.1 Introductory material

Motivation The word “tsunami” originates from Japanese and translates to English

as “huge wave”. Indeed, when in 2004 a tsunami struck Khao Lak, Thailand, the

tsunami wave was reported to have a peak amplitude of 30 m. Numerous reports in the

media claimed unusual animal behavior preceding the tsunami roll-up on the shoreline

of Kao Lak.

In this chapter, we focus on elephants’ behavior prior to the roll-up event from the

perspective of theoretical physicists. It has been reported [159, 54, 66] that elephants ex-

hibited abnormal behavior (anxiety, nervousness etc.) several hours before the tsunami

hit the coast and took flight rampantly about 8 − 30 min before the tsunami finally

struck the coastal region.

We are led to asking: What is the most plausible physical process in the external

world which enables elephants but not humans to spot precursor signals of the tsunamis

and take flight just in time? The model we are about to discuss is not confined to

tsunamis since the governing equations can also be used to explain the responses of

elephants to earthquake signals [76, 99].

Tsunamis Let us turn to a physical definition of a tsunami in order to build up a

prototypical mental image of the characteristics of a tsunami. We define a tsunami as a

perturbation of a volume of water from rest so that kinetic energy stored in the motion

of the perturbation is converted periodically into potential energy of the elevation of

the ocean’s surface. Thus, a tsunami can be classified as a mechanical (water) wave.

Other definitions used for experimental purposes can be found in [87].

With a description of what a tsunami does in mind, we ask how a tsunami is gen-

erated. The standard trigger is a seaquake: At the junction of oceanic and continental
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plates, the plates sometimes leap over each other abruptly. For instance, an oceanic

plate can be stuck for some time while moving under the continental plate creating a

plate tension in the oceanic plate. After a threshold value is exceeded, the oceanic plate

literally leaps forward and moves several centimeters or even meters further on its way

to dive beyond the continental plate. Due to the interplay of inertia of the water pillars

above the oceanic sea floor, the water elements are propelled by an excess momentum

transferred from the oceanic plate. The excess momentum propels water parcels away

from the location of the injection of momentum into the ocean fluid and thus decreases

the sea level beyond the standard reference value when the fluid is at rest (in the fluid

rest frame).

In leading order, in particular neglecting the rotation of the earth around its axis

of revolution, the gravitational force acts a homogeneous restoring force on the ocean’s

surface. It restores mechanical equilibrium, i.e., it makes the ocean’s surface gradually

relax into its equilibrium, which takes quite often the form of a minimal surface in

physical approximation. The momentum is transferred by collisions of water molecules

through the ocean fluid with the process at the surface of the ocean providing the

“balance” for the periodic conversion of kinetic into potential energy and vice versa. In a

theoretically idealized world, the so-created tsunami wave can travel without dissipation

at its speed of propagation vts and phase velocity cts with dispersion velocity coincident

with the phase velocity.

Checking dimensions of the physical quantity involved, the momentum transferal

happens in a three-dimensional volume ∆V = H0 ·∆A beneath a surface element ∆A

which experiences the gravitational as a restoring force. Physically, the ocean floor

is not at constant depth beyond sea level. Thus, we rather have H0 → h0(x) with a

non-constant depth function h0.

We will summarize oceanographic properties of the underwater region of the conti-

nental plate adjacent to the oceanic plate and recover a simple and well-known [87] fit

model from these findings. A theoretical study on elephant tsunami sensing, assuming

a somewhat less realistic constant depth profile, is available [54].

Oceanographic aspects of continental plates According to a recent study [11],

there are in total Np = 52 plates. The plates can be divided into two classes: Heav-

ier oceanic plates and lighter continental plates. We will focus on the latter because

elephants typically live in regions on continental plates.
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Figure 3.1: The oceanographic “standard model” for the continen-

tal margin and its subdivision into continental shelf (left), con-

tinental slope (middle) and continental rise (right). Figure from

https://web.archive.org/web/20050217014801/http://www.onr.navy.mil/Focus/ocean

/regions/oceanfloor2.htm.

Fig. 3.1 shows the division of the continental plate in three major regions clas-

sified by oceanographs and explained below. Fig. 3.2 shows a typical, yet fictitious,

depth profile of the continental plate’s region below sea level, called continental margin

henceforth.

The continental margin is terminated by the shoreline which marks the boundary

between land- and water-covered regions of the continental plate. The underwater

region, the continental margin, is further divided into three regions according to the

standard model of oceanography [58, 118, 21].

• Continental shelf: The continental shelf is the extended region from the shoreline

to until the continental slope begins. It is characterized by a mostly almost

uniform slope profile of βcsh = 0.5◦ and a maximum depth of H0csh = 200 m

averaged over all continental shelves. In the regions prone to tsunamis, i.e., at

equatorial geographic height, the continental shelf is particularly narrow, cf. the

topographic material in [58, 118, 21].

• Continental slope: The continental slope is characterized by a larger slope angle,

βcsl = 3◦ on average, than the continental shelf [58, 118, 21]. Notably, the angle

βcsl ∈ [1◦, 10◦] locally by a non-mildly varying fine-structure depth profile. The
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Figure 3.2: A re-scaled version of a realistic depth profile in the continental margin re-

gion and characteristic heights of the continental shelf, continental slope and continental

rise. Figure from https://commons.wikimedia.org/wiki/File:Oceanic basin.svg.
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Height Slope Length

H0,csh = 0.2 · 103 m βcsh = 0.50◦ Lcsh = 7.2 · 104 m

H0,css = 2.8 · 103 m βcsl = 3.00◦ Lcsl = 1.7 · 105 m

H0,cr = 1.0 · 103 m βcr = 0.75◦ Lcr = 2.4 · 105 m

H0 = 4.0 · 103 m β = 1.50◦ L = 4.8 · 105 m

Table 3.1: Geometric data of the continental margin used in the model: The index

“csh” (first row) abbreviates continental shelf, “csl” (second row) indexes continental

slope and “cr” stands for continental rise (third row). The fourth row contains the

weighted summed values according to the prescriptions explained in the main text.

continental slope connects the shallow continental shelf regions at about 200 m to

the continental rise starting at a depth of 3000 m.

• Continental rise: Little is known about detailed topographic properties of the

continental rise. However, the average slope angle βcr ∈ [0.5◦, 1.0◦] is agreed on

to be a fair estimate [58, 118, 21]. We select the average value βcr = 0.75◦ for

calculations. The continental rise extends until a depth of 4000 m and connects

the continental margin to the abyssal plains on the oceanic plate. It is covered

by sediments.

The continental margin terminates underwater at the abyssal plains which are approx-

imately flat plains, geologically situated on the oceanic plates.

In the small-angle approximation (tan β ≈ β ≈ sin β), the average slope angle β of

the continental margin is found from H0β
−1 = β−1

cshH0,csh + β−1
csl H0,csl + β−1

cr H0,cr with

the aid of the data in table 3.1 to be β = 1.5◦. Using H0/L = β, we find a horizontal

extension of the continental margin of L = 480 km as an order of magnitudes estimate

using the overall depth H0 = 4 km.

Selected topics in elephant tactile sensing This paragraph serves to collect some

facts and findings concerning the tactile sensing in elephants. To this end, we observe

that typically the phase velocity of seismic waves are of the order of 2000 ms−1 for

transversal seismic waves in standard solid material [64].

Defining a neural detectability criterion akin to the interaural time difference [157,

145, 42], the inter-feet time difference (IFTD) as IFTD = ∆x/cs where ∆x ' 2 m is the
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characteristic distance between elephant feet and cs ' 2000 ms−1 is the phase velocity

of a (transversal) seismic signal. The IFTD gives a time-scale which should be neurally

resolvable by the elephant and thus be of the order of ∼ (0.5−3) ms around the charac-

teristic threshold value of 1 ms. Signals with a higher IFTD are disadvantageous as cues

because they are considerably slow. Signals with a lower IFTD are also disadvantageous

because the neural anatomy forbids resolving all the information stored in them – The

signal is too fast. With the previously introduced values, we find IFTD ' 1 ms such

that seismic cues are a priori detectable by the elephant on anatomic basis.

Numerous experimental investigations, e.g., [104, 102, 109, 106, 59, 4, 107, 103, 55,

92, 16, 97, 66, 65, 63, 64], have been performed to address which pathway the elephant

can employ to detect seismic cues. It was found [104, 66] that the feet of elephants ex-

hibit a fatty cushion comparable to the material constitution of subcutaneous layers of

fat in dolphins. The latter has a so-called impedance matching property meaning that

transmission of waves from the surrounding material into the body of the animal is

maximized. Mathematically, this translates into using Euler’s equation after lineariza-

tion as boundary conditions at the feet of the elephant reacting to the vibration of the

ground.

Furthermore, the feet skin of the elephant is known to be populated by mechano-

receptor cells, the so-called Pacinian and Meissner cells. These act as pressure detectors

and have been modeled in [9, 154, 37, 129], the most prominent model being the two-

spring model to the author’s knowledge [37].

The definite pathway employed by the elephant is so far uncertain and needs to be

further assessed experimentally.

3.2 Presentation of the model

Introduction and model assumptions The overall model assumption is the appli-

cability of bio-tremology approach [66, 92, 97] rather than pure acoustics [54]. Sound

generated at the location of the tsunami generation cannot transverse the water-air

interface at a convingingly high enough intensity [56, 57]. The only acoustic model

available to our knowledge [55] furthermore requires certain atmospheric conditions to

be fulfilled, in order for a signal to reach the elephant via an acoustic pathway. No infor-

mation on expected sound pressure level is given, most likely due to the non-availability

of data and theoretical models. The acoustic pathway described in [54] definitely exists
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but, more likely, plays a subsidiary role rather than being the dominant underlying

physical process.

Inspired by [54], the present model builds upon the well-known [52, 51, 111, 87, 80]

property of tsunamis to generate infrasound. By the acoustic intransparency of the air-

water window, infrasound generated during the seaquake and, even more, underwater

information of the tsunami cannot be transmitted through a purely acoustic pathway.

Rather, we follow the findings of biologists [66, 104, 103] and assume that the feet of

the elephant act as an “ear to the ground” as formulated in the title of [104]. The

link between the tsunami and the elephant is constituted by the continental margin’s

surface vibrating in response to the tsunami.

Vortex force source term Newton’s second law states that in mechanical equilib-

rium, a force density corresponds to a temporal change in momentum density; cf. [127]

in the context of acoustics. As noted in the introduction, the seabed floor is not aligned

horizontally until the shoreline is reached but rather exhibits a non-zero slope β ≈ 3◦ on

average. We interpolate the depth profile of the continental margin using the quantities

of the last row in Tab. 3.1 through the affine-linear function

h : [0, L]→ [−H0, 0], x 7→ −H0 +
H0

L
x (3.1)

and note that 1 � H0/L = tan β ≈ β in the small angle approximation is consistent

with the previous considerations. This is in contrast to the assumptions underlying the

treatment [54] in which the so-called vertical wall approximation [87] has been utilized.

In case of the momentum disturbance that defines the tsunami traveling in, say,

x-direction and enclosing a non-right angle with the seabed floor’s outward unit normal

n a thin turbulent layer forms. It extends as far as slightly above the seabed floor.

The layer of vorticity results from forcing the motion of the viscous fluid “ocean water”

being to abruptly alter its direction. This change in direction is due to the presence of

a solid obstacle.

Note that while in the fluid rest frame, the full Navier-Stokes equations require the

usage of the no-slip boundary conditions, these boundary conditions need no longer be

satisfied in the presence of the tsunami excess momentum. Instead, the fluid parcels

adjacent to the seabed floor are dragged along by the upper layers of fluid parcels, expe-

riencing the full excess momentum handed to the ocean fluid by the tsunami generating

seismic event. We refer to [87] for tsunami theory.
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For the theory of vortex vibrations as used for the detection of tsunamis in elephants,

we need a digression into the theories of aerodynamics and aero-acoustics which served

as an inspiration. For the sake of better readability, a more detailed account is given

in Appendix 3.A. The thin but extended region of turbulence slightly above the seabed

floor can generate first of all underwater sound in the sense of Lighthill’s theory [90, 91,

40] of sound generated aerodynamically - the formalism generalizes to sound in liquid

media canonically. Neglecting viscous effects and using the lineaized thermal equation

of state in water, we arrive at Howe-Powell’s theory of vortex acoustics [127], a special

case of Crocco’s equation [33, 48].

Let us adopt the interpretation of the source of sound in this theory’s governing

equation as a force density of the same mathematical structure as a Coriolis force

suggested in [127]. These qualitative considerations can be summarized in the following

source term model for a force-per-volume density

fv = ρw (ω × v) (3.2)

In this equation, we have utilized that the tsunami generating event only generates a

small excess momentum density and thus constitutes merely a small perturbation to

the oceanic fluid moving at the characteristic velocity v = ‖v‖ ∼ (5− 25) cms−1.

The symbol ω = ∇ × v denotes the vorticity. Based on a physical interpretation

of a weakened notion of a smooth manifold, the so-called manifolds with corners [77,

78, 79], the vorticity could be found to be confined mathematically to the solid-fluid

interface, i.e., the seabed floor. See Appendix 3.B. for details. The building blocks of

the vorticity ω are small vortex dipoles as found with the aid of a decomposition of

the depth profile (3.1) into step functions. This is consistent with other parts of our

work, namely chapter 4 and the appendix to chapter 4, where we could derive vortex

dipoles at geometric singularities, consistent with Ffowcs-Williams’ approach [127] to

deduce vortex dipoles at solid boundaries from Lighthill’s equation [90, 91, 40] as an

application of integration theorems to the leading-order quadrupole term in Lighthill’s

equation in integral formulation. The prediction of the vortices can be experimentally

analyzed by placing underwater microphones close to the seabed floor during tsunamis.

Since the tsunami is a wave phenomenon, wherein kinetic and potential energy are

periodically converted to the respective other form of energy, the orientation of the

vortex dipoles cannot be treated as fixed in time. The restoring gravitational force

triggers fluid parcels to oscillate back and forth around its equilibrium position which



68 3. Biotremological model for elephants detecting tsunamis

is constant in the fluid rest frame. Thus, the fluid injected into the vortex whirls either

positively or negatively around the vortex core in a planar cross-sectional model.

Let us understand the orientation of the individual vortices forming the dipole as

small “spins” pointing either out of (+1) or into (−1) the drawing plane. We assign

an energy to them that is proportional to their orientation. Using the micro-canonical

ensemble, we find in complete analogy to the standard treatment of magnetic materials

that vortex dipoles aligned periodically maximize the entropy of the vortex system.

Details on the treatment of the one-dimensional Ising model in the micro-canonical

ensemble can be found in [155].

Short: The vortex force density in (3.2) naturally also exerts a load on the surface

of the continental plate, see Appendices 3.A and 3.B. Metaphorically, the total of

vortex dipoles behave physically as a superposition of small “hammers” knocking the

surface of the continental margin. Mathematically, they are treated as a superposition

of sinusoidal, due to periodically reversing their orientation, elementary loads on the

surface of the continental plate.

Navier’s equation in Hookian approximation We let λ, µ denote the first and

second Lamé constant respectively. Furthermore, we let ρs symbolize the mass-per-

volume density of the material constitution of the continental plate. The constants are

assumed homogeneous and we use a Hookian approximation for the stress-strain relation

in the Cauchy stress tensor in the derivation of Navier’s elastic equation. Following

the argument exposed in the previous paragraph, we obtain a nonhomogeneous linear

hyperbolic partial differential equation for the displacement vector u.

The elephant’s legs are aligned perpendicularly to the ground such that the detec-

tion of a transverse wave is most plausible. The solid-air interface is intransparent

to transmission of longitudinal seismic waves: From [56, 57], using ps = −K∇u, the

equation for the primary seismic waves degrees of freedom gives rise to an acoustic

pressure in the solid material of the continental plate. Since the amplitude of the

transmitted pressure wave t ∼ (ρa/ρs) at the solid-air interface grows with the ra-

tio between mass-per-volume density of the air and the one of the solid, we find that

T = |t|2 ∼ 10−6 typically; cf. [127] for a detailed treatment of the reflexion problem or

see the introduction in Appendix 3.A. Euler’s equation on the other hand allows us to

identify ∂np = −ρa∂tvn = −ρa∂2
t us for the secondary seismic wave with wave function

us. While the primary waves are longitudinal degrees of freedom, the secondary wave
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is a transverse degree of freedom and thus can generate an acoustic pressure field by

vibrational acoustics interaction at the solid-air interface. For an introduction, we refer

the reader to chapter 1.3 and for details to [86]. Application of the Helmholtz decompo-

sition theorem [64] results in the wave equation for a secondary seismic wave containing

the normal component of the vortex force density source term as inhomogeneity:

∂2us
∂t2
− c2∆us = gv(ℵ) 〈n,ω,V〉R3 . (3.3)

We specify the quantities involved in the preceding equation and comment after-

wards on the interpretation: The wave function for the secondary seismic wave is defined

as the projection of the elastic displacement vector onto the direction of the outward

unit normal of the interface of the continental plate with media in fluid or gaseous

phase, us ≡ 〈n,u〉R3n. The object ∆ is the Laplace-Beltrami operator on the (hyper-)

surface of the continental plate. us describes a seismic surface wave as appropriate

for a bio-tremological approach [66, 64]. The coupling constant gv(ℵ) depends via a

Lorentzian functional dependence on the material parameter ℵ defined below and the

ratio g0
v = ρa/ρs of the mass-per-volume densities of air and the solid constituents of the

continental plate. More precisely, gv(ℵ) ≡ g0
v/(1 + ℵ2) where ℵ is given as the positive

solution of the equation ℵ2 ≡ λ/(2µ). We recall that primary and secondary seismic

waves exhibit different phase velocities [64], the slower of the two being the secondary

wave with phase velocity cs obtained from the material relation c2
s ≡ µ/ρs.

The physical picture of the vortex region modeled as the source term on the right-

hand side of equation (3.3) is that of small hammers knocking the surface of the conti-

nental plate. The tsunami generating event itself causes a short and temporally localized

peak knock on the continental plate which travels too fast through the Earth’s surface

to be eligible for an explanation of the data [159]. On the contrary, the vortex region

is the result of the tsunami wave fronts traveling gradually towards the shoreline. The

tsunami builds up the vortex region in the course of propagation, and thus causes a

seismic signal of increasing intensity. Based on the biological evidence of tactile sensing

in the elephant, it may witness the cues so-generated while standing on the continental

plate.

Metaphorically, the elephants’ legs function as a tuning fork placed on a plate which

is hammered on at an increasing area as the time (of tsunami propagation) passes.

Functional shape of the vortex source term A detailed derivation of the function

form of the vorticty ω and the induced fluid velocity v is omitted here due to its length
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but can be found in Appendix 3.B. The physically relevant part is the far field behavior

as the leading order expansion the (dimensionless) slope parameter β = H0/L. Here,

we confine ourselves to sketch the derivation.

We define a cylindrical coordinate system such that in a cross sectional model of the

tsunami region through the Earth’s center, the direction from the tsunami generating

event to the shoreline at sea level is the x-direction. The direction pointing away from

the Earth’s center is the y-direction. The x- and y-axis form the axes of a local Cartesian

coordinate system which is termed drawing plane subsequently. The z-direction is

defined such that the unit vector êz points into the drawing plane and the negative z-

axis goes out of the drawing plane. Introducing polar coordinates in the drawing plane

and assuming that the depth profile h0 defined in (3.1) stays quantitatively unchanged

in a small neighborhood (z0−δz, z0+δz) of a fixed z0, a lengthy calculation, see appendix

3.B, permits the derivation of the dipoles’ announced in the pre-to-last paragraph from

the principle of angular momentum conservation in a far-field analysis in the potential

theoretic framework of hydrodynamics. Viscosity is accounted for by using no-slip

boundary conditions for the vortex core center positions at the surface of the underwater

region of the continental plate. For |x/y| � 1, H0/L, we recover the hydrodynamic far-

field generated by a vortex in the vicinity of the shoreline at x = L. The expression

can be Taylor expanded in a power series in the slope parameter β.

After a lot of algebra, we find

ω = −cω
Γ(t)β

2π · x5/2
êz +O(β3êz) (3.4)

v = cv
Γ(t)β

2π · x2
êφ +O(β3êφ) (3.5)

in the cylindrical coordinate system defined by the polar coordinates introduced in

drawing plane and the perpendicularly aligned z-axis. cω, cv are two fit constants that

cannot be derived. In terms of units, [cv] = 1 m and [cω] = 1 m1/2.

For the measurable amplitude U of the plate vibration, only the product cfit ≡ cvcω

occurs and is the only free parameter. We emphasize that the expression is to be

understood as a summation over all vortex dipoles allocated in the thin sheet of vorticity

generated by the tsunami on top of the seabed floor.

Lighthill’s V 8-law The results on the expected sound pressure level equivalent from

the vortex vibration theory can be estimated using Lighthill’s V 8-law. It is derived

as a far-field scaling of the Lighthill equation which is itself an exact rewriting of the
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Navier-Stokes equations. We only give a very condensed account of the derivation of

the V 8-law and refer to standard aero-acoustics textbooks such as [72] and the online

textbook introduction [127].

The starting point is the integral formulation of Lighthill’s equation: The mass

density ρ of a fluid with speed of sound cf can be expressed as a convolution of a

Coulomb-like kernel and the double contraction of a “tensor-valued source term”, the

so-called Lighthill stress tensor evaluated at the retarded time tret defined below:

4πc2
fρ(t,x) = ∂2

i,j

∫
R3

d3x′ T ij(tret,x
′)

‖x− x′‖
(3.6)

The retarded time is defined through tret ≡ t − ‖x − x′‖/c. We implied Einstein

summation convention on repeated indices in co- and contravariant index position.

With the acoustic linearization of the thermal equation of state, p = c2
fρ, and in the

inviscid limit, 1/Re ≡ 0, the Lighthill stress tensor [127, 90, 91, 40] simplifies to

T ij = ρ0v
ivj (3.7)

where we neglect contributions stemming from small mass density fluctuations in the

stress tensor (“no back-reaction”).

Acoustic multipole expansion [127] leads to the far-field scaling

p ' ρ0lv
4

4πc2
f‖x‖

. (3.8)

Using the specific acoustic impedance Z = ρ0cf [127], we find for the power radiated

through a spherical surface bounding the far-field region under consideration

P ' ρ0l
2v8

4πc5
f

. (3.9)

The next section contains analytic and numeric results obtained through application of

the model specified in this and the previous section.

3.3 Results

Further parameter estimates The equations (3.4) and (3.5) depend on the time

t via the circulation Γ(t). Using a Fourier transform, Γ(t) is decomposed into spectral

amplitudes Γ̂(ω) and time-harmonic drives ∼ exp(iωt) with ω ∈ 2πF in the angular

version of the frequency band F = [fmin, fmax].
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At t = 1/(2f), the vortex dipoles encapsulated in Γ(t) will have reversed the orien-

tation and performed a so-called spin-flip following the statistical interpretation of the

vorticity region introduced in the preceding section. The goal is to bound the spin-flip

frequency with known quantities from above and below and define the frequency band

F this way.

A lower bound is established with the aid of basic tsunami theory [87]: Linear [134]

water wave theory predicts a tsunami period Tts ∼ (1.2− 1.8) · 103 s and thus, through

its reciprocal, a minimal frequency fmin ' 2 ·10−4 Hz. Namely, the tsunami is a globally

periodic phenomenon by definition. Translation invariance in t by periodicity causes

the fluid mechanical properties of the vortex region to be at least of the same period

as the tsunami. Otherwise the overall periodic tsunami structure would be broken.

A bound from above requires a result from turbulence theory. It is based on an

analogy to the van Karmàn vortex street [98, 71, 128]: Assuming that the length of the

continental margin is much larger than the characteristic length of a vortex dipole, a

spin flip can be regarded as the shedding of a vortex monopole in the wake of a cylinder

streamed by a real fluid. We refer to the appendix 3.B for the manifestation of the

spin-flip as a time-dependent circulation. In the Karmàn vortex street picture, two

conditions hold

Re =
vlc
ν
≥ Rec = 90 & (3.10)

f = Stc ·
v

lc
= 0.2 · v

lc
(3.11)

The symbol Re refers to the Reynolds number of the fluid flow which must exceed

the threshold value of Rec = 90 to permit the formation of a van Karmàn vortex

street. The quantity Stc = 0.2 is the Strouhal number for the flow around the obstacle

and found to vary for a variety of geometries and flows only mildly around the value

Stc = 0.2 whence we take it as constant. v is the characteristic fluid velocity in the flow

in the earth-fixed system, i.e, v ∈ [5 cms−1, 25 cms−1]. The kinematic viscosity of ocean

water can be taken in first order as ν = 10−6 m2s−1. lc and f are unknown but can be

specified from the 2× 2-system of nonlinear equations in two unknowns.

Interested in an upper bound for f , we note that the l−1
c -dependency on the right-

hand side of (3.11) enables us to replace “≥” by “=” in (3.10). The formula for fmax

is

fmax =
Stc
Rec

v2

ν
∈ [3 Hz, 70 Hz] (3.12)
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with the lower value for v = 25 cms−1 and the higher value for v = 5 cms−1 respectively.

The values specified that way include the infrasonic regime . 20 Hz in terms of

the orders of magnitudes calculation displayed above. We take the value fmax = 40 Hz

as a maximal value for the spin-flip frequency and specify the frequency band F '
[5·10−4 Hz, 40 Hz]. The calculation yields a typical length scale lc ' (45−220) nm which

is by two to three orders of magnitude above the threshold for quantum mechanics:

10−10 m.

A calculation based on conservation of rotational energy shows that the core radius

δc of a vortex monopole constituent of the dipole is slightly smaller. δc is defined

through the prescription Γ ' 2πδcv. The aforementioned calculation demonstrates

that 23/2δc = lc. From the above result (3.12), δc ∼ 20 nm follows using v > 0 from

v2 = Rec/Stcνfmax at fmax = 40 Hz.

Arrival-time difference The phase velocity of a tsunami depends on the functional

form of the depth profile [87] through cts(x) =
√
−gh(x) with h given in (3.1) and

g ≈ 9.81 ms−2 being the near-field gravitational constant g = GMe/Re derived from

Newton’s gravitational law for a mass probe placed at a distance Re ' 6.3 · 106 m of

the point-mass of the mass of the earth Me.

The arrival-time difference ∆t is defined as the time difference between a tsunami

wave front traveling the distance L at cts on the ocean’s surface and the time the

secondary seismic surface wave traveling along the shortest path of length L
√

1 + β2

on the continental margin’s surface at phase velocity cs = 3.5 kms−1. Unlike [54, 55]

we have an affine-linear depth profile (3.1) not using the somewhat unrealistic vertical-

wall approximation [87] such that we expect the arrival time difference ∆t to be firstly

smaller than the one obtained in [54] and secondly to be given as an integral formula

that should reproduce in the vertical-wall approximation, β = 0, the results in [54].

The arrival-time difference is given through the analytically tractable integral

(∆t)(β) =

∫ L

0

dx
(
cts(x)−1 − c−1

s

)
=

∫ H0β−1

0

dx

(
1√

gH0(1− βx/H0)
− 1

cs

)
.

(3.13)

We find for the exact value of the integral as well as for the vertical-wall approxi-
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mation indexed as “vv” β = 0 inside the integral

(∆t)(β) =

(
2√
gH0

−

√
1 + β2

c2
s

)
H0

β
(3.14)

(∆t)vv =
L√
gH0

− L

cs
. (3.15)

The latter equation (3.15) is the formula used in [54]. It differs from the exact value

of the arrival time difference by almost a factor of 2 and thus leads to underestimating

the arrival-time difference.

The authors of the article [54] rule out the seismic pathway as being eligible for

tsunami early-detection in elephants. This conclusion is correct on the basis of their

approach but incorrect in general due to (3.14) and (3.13). In particular, [54] obtained

at L = 102 km an arrival-time difference of (∆t)vv = 8 min. In contrast to that and

for a considerably short distance to the shoreline equation, (3.14) produces for H0 =

4 km at L = 102 km the value ∆t ≈ 16 min which is closer to the expected value of

∼ (20− 60) min on the basis of the data [159].

Necessarily, replacing the phase velocity cs with the speed of sound in air [54] one

obtains (∆t)ac ∼ 12 min for a purely acoustic process by cs → ca ≈ 343 ms−1 in (3.14).

For L = 103 km we find (∆t)vv,ac ≈ 160 min as has to be compared to (∆t)vv = 35 min

in the vertical wall approximation for a seismic process.

As will be discussed in the next two paragraphs, a high ∆t is advantageous because

the seismic signal from the vortex layer forms gradually and thus has an advantageous

signal-to-noise ratio for localization already built in.

Expected sound pressure level equivalent In order to compare the strength of

the signal that arrives at the elephant to an acoustic signal we exploit the fact that the

feet of the elephant have an impedance matching function [104, 102]. The vibration

of the continental plate respects conservation of energy and the impedance matching

ensures that the elephants “puts an ear to the ground” [104] and detects the vibration

in itself.

Mathematically, the impedance matching allows to identify us = vdet where vdet

denotes the normal speed of displacement of the detection surface which we take to

be the feet of the elephants rdet ∼ 10 cm. Physically, the impedance matching via the

fatty cushions in the elephants feet provides a mechanism to circumvent reflective losses
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that would occur at interfaces with a high difference in mass densities such as solid-air

interfaces.

Since the mass-per-volume densities of water and solid are of the same order of

magnitude, we can apply Lighthill’s V 8-law (3.9) and multiply with the number of

vortex monopoles in the turbulent vortex layer. We denote this number by N and

use N = 104LcLv · L/(L3
v) where Lv := 100 · δc denotes the spacing between individual

vortices. Lc is the length of the shoreline and L its distance from the tsunami generating

event. The factor 104 accounts for the vertical extension of the vortex layer since

Lv ∼ 1µm is by viscosity of water not a sufficient vertical extension of the turbulent

vortex layer hammering the surface of the continental margin. Define Vv = L3
vN .

Setting l→ Lv in (3.9) and performing the multiplication with the number N , we find

P ' ρ0Vvv
8

4πc5
fLv

. (3.16)

which is seen to be independent of the precise value of Lv! The sound pressure level

(SPL) is defined through normalizing the power P to Pc = IcAdet, that is,

SPL(P|Pc) = 10 log10

(
P
Pc

)
(3.17)

where Adet = πr2
det is the area of detection and Ic = 10−12 Wm−2 is the hearing threshold

for humans. The reason for using a quantity related to humans is due to the field’s

conventions; See e.g. [55, 103, 64, 97].

Plugging the result (3.16) for P in (3.17), we find a formula that predicts which

sound pressure level equivalent is to be expected:

SPL(P|Pc) ' 10 log10

(
ρ0Vvv

8

4πc5
fLvIcAdet

)
. (3.18)

The terminology features the addendum “equivalent” to mirror the fact that in reality

we have a seismic cue which does not convert to sound without reflection losses at the

solid-air interface; cf. the recent articles [56, 57] on the topic of reflection at interfaces.

The impedance matching via the fatty cushions [104] ensured that the elephant ac-

tually receives a cue at sound pressure level equivalent well-above the sound pressure

level obtained for thermal (T = 300 K) noise of a frequency band exhibiting a band-

width of the order of ∼ 10 Hz. Choosing a detection area of Adet ' 1 m2 which corre-

sponds roughly to the area covered by the elephants feet, this yields IthermPtherm/Adet ∼
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10−20 Wm−2 ∼ 10−8 · Ic according to the Nyquist relation Ptherm = kBT∆f with the

Boltzmann constant kB ≈ 1.38 · 10−23 JK−1! The excitement is dampened by the fact

that the precise biological working mechanism of the fatty cushions in the elephants

feet is up-to-date still a subject of ongoing experimental research in zoology [104].

Numerically and using the parameters in Tab. 3.2, we find the following values for

the expected sound pressure level equivalent from (3.18) interpreted as a function of the

fluid velocity v in the turbulent vortex layer region alone: SPL(v = 5 cms−1) ' 30 dB,

SPL(v = 10 cms−1) ' 50 dB, SPL(v = 20 cms−1) ' 70 dB and SPL(v = 25 cms−1) '
80 dB.

The numbers are illustrated by the following analogous acoustic events in everyday

human life: The sound pressure level equivalents correspond in the given order to

the whisper of leaves in the wind, a somewhat medium-to-loud conversation, and traffic

noise on a road and a highway, respectively. Inspection of the derivation of the numbers

clarifies that they only substantiate the feasibility of the seismic pathway we modeled

by the theory of vortex vibrations. however, they do not represent accurate figures

because already Lighthill’s V 8-law only aspires to give an order-of-magnitude estimate.

Numerical results In Fig. 3.3 the vortex core radius δc = 2−3/2 ·lc and the maximum

frequency fmax = Stc/Recv
2/(2ν), i.e., cutting off at half the value according to (3.12),

have been plotted against the fluid velocity v in the turbulent vortex layer in cms−1 on

top of the solid-fluid interface of the continental margin. The core radius δc decreases

with increasing v while the maximum frequency fmax increases. There are natural

bounds from above by, first, the requirement that δc needs to be bigger than a quantum

mechanical scale ∼ 10−10 m for the classical turbulence theory as obtained from the

Navier-Stokes equations to be applicable. Second, the maximum excited frequency

fmax ∈ F of the frequency band F should not exceed the high-infrasonic viz. very

deep sonic frequency range. The latter is a consequence of elephants using [103, 104,

55] infrasonic frequencies in communication with peak sensitivity in the range (30 −
50) Hz. Despite being already sonic frequencies, they are practically undetectable for

humans and the majority of the frequency band below the frequency hearing threshold

is inaccessible to human sound localization but accessible for the lucky elephant.

Fig. 3.4 shows the arrival time difference (3.14) in minutes at a fixed depth H0 =

4 · 103 m in the top and at a fixed distance of the tsunami generating sea quake from

the shoreline, L = 105 m in the bottom plot. As exemplified by the part of the graph
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Figure 3.3: Top: Vortex core radius δc = ν · Rec/(2
√

2v) as a function of the fluid

velocity v ∈ [5 cms−1, 25 cms−1] of the whirling fluid parcels in the layer of vorticity

on top of the surface of the continental margin as obtained from (3.10) and (3.11)

at minimal Reynolds number Rec = 90 and characteristic Strouhal number Stc = 0.2

according to the van Karmàn vortex street analogy. Bottom: Maximum frequency

fmax = ·Stc/Rec · v2/ν as a function of the fluid velocity v ∈ [5 cms−1, 25 cms−1] of the

whirling fluid parcels in the layer of vorticity on top of the surface of the continental

margin as obtained from (3.10) and (3.11) at minimal Reynolds number Rec = 90 and

characteristic Strouhal number Stc = 0.2 according to the van Karmàn vortex street

analogy.
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Figure 3.4: Top: Arrival-time difference ∆t according to (3.14) at H0 = 4 · 103 m as a

function of L ∈ [104 m, 106 m]. Bottom: Arrival-time difference ∆t according to (3.14)

at L = 105 m as a function of H0 ∈ [102 m, 5 · 104 m].
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Figure 3.5: Top: The expected sound pressure level in [dB] equivalent according to

(3.18) equivalent at fixed horizontal distance to the shoreline L = 105 m as a function

of the fluid velocity in the turbulent vortex layer v ∈ [5 cms−1, 25 cms−1]. The other

parameters are summarized in Tab. 3.2. Bottom: The expected sound pressure level

equivalent in [dB] according to (3.18) equivalent at fixed fluid velocity in the vortex

layer region v = 10 cms−1 as a function of L ∈ [104 m, 106 m]. The other parameters are

summarized in Tab. 3.2.
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Name Symbol Value

Kinematic viscosity ν ∼ 10−2 cm2s−1

Density water ρ0 ≈ 103 kgm−3

Speed of sound cf 1481 ms−1

S-wave phase velocity cs ≈ 3.5 · 103 ms−1

Reynolds number Re ≥ 90 =: Rec

Strouhal number Stc ≈ 0.2

Threshold of hearing Ic ∼ 10−12 Wm−2

Shoreline length Lcoast ∼ 106 m

Vortex length scale Lv := 100 · δc
Vortex layer volume Vv := 104 · L · Lc · Lv

Slope parameter β := H0/L

Area of detection Adet := πr2
det

Thermal noise Itherm ∼ 10−20 Wm−2

Table 3.2: Parameters in numerical evaluation of the vortex vibration theory applied

to tsunami sensing of elephants.

of the function in the plotting range, the arrival time difference (∆t)(L,H0) is strictly

monotonously increasing with the distance to the shoreline L and strictly monotonously

decreasing with the maximum depth of the continental margin, i.e., the depth at which

the abyssal plains on the oceanic plate are located oceanographically. In particular,

having found the missing factor of 2 [55], we find that the first signal of the tsunami

arrived at about (40−50) min before the tsunami arrives at the coast. This agrees with

the only published scientific data set [159] available to us as well as reports on such

findings such as [104, 103, 66]. It is known that a repeated signal increasing in intensity

(see the paragraph on the sound pressure level equivalent) increases the signal-to-noise

ratio and thus allows better localization on the part of the elephants [104, 102, 103].

Since the turbulent layer of vorticity builds up as the tsunami propagates towards the

shoreline and thus only generates a gradually increasing signal, even the difference

in ∼ 10 min of the observed abnormal behavior of satellite collared elephants [159] is

explained.

The “strength” of the signal has been assessed by mimicking the definition of the

acoustic sound pressure level to define a sound pressure level equivalent for the seismic
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signal. The motivation for the utilization of a joint measure of auditory and tactile

loudness is that possibly the auditory pathway is used to process the seismic signal

[104, 102]. Therefore, it is plausible to quantify the loudness of the seismic signal

analogously to acoustic signals. See the previous paragraph for more details and selected

numerical values. With the parameter choices summarized in Tab. 3.2, the expected

sound pressure level equivalent according to (3.18) is depicted as a function of the fluid

velocity v in the turbulent vortex layer region in the top plot of Fig. 3.5. The bottom

plot in Fig. 3.5 shows the expected sound pressure level equivalent as a function of the

distance L to the shoreline.

Outlook on Geometric Perturbation Theory (GPT) Although not of primary

interest to the study of elephants’ endogenic tsunami localization system, we note that

the vortex vibration theory (3.3) will in general be a complicated differential equation

because the Laplace-Beltrami operator is defined on a somewhat “wildly” shaped em-

bedded surface in, here, R3. In many cases, approximations can be performed. Indeed,

geometric perturbation theory (GPT) in the style of chapter 2 can be applied to flat-

ten the continental plate to a disk-shaped surface which is solvable again by standard

techniques. This way one easily establishes through a lengthy but straightforward cal-

culation an order-of-magnitude formula of the amplitude of continental plate vibration

as a function of the circulation from (3.3) and (3.4). The interested reader is referred

to Appendix 3.C for more details.

3.4 Summary and outlook

Summary We have introduced the theory of vortex vibration as the implementation

of vortex layers in flow, adjacent to a solid surface, acting as small hammers on that

surface. They result in the excitation of seismic (surface) waves.

In the context of the propagating tsunami, the surface vibration transports a cue

about the current position of the tsunami, encapsulated in the strength of the signal, to

the shoreline. Assuming correctness of the current biological opinion on the impedance

matching property of the elephant’s feet, the elephant detects the cue and responds

to the approaching hazard. An order-of-magnitudes estimate based on similarity re-

sults in turbulence theory together with an analogy to the von Karmàn vortex street

showed that the high infrasonic and very deep sonic frequency range is covered by the
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signal generated through vortex(-induced) vibrations (∼ 15−45 Hz) and is in particular

detectable by the elephant but closed to humans.

The predictions of the model yield plausible results in terms of the arrival-time

difference also for secondary seismic surface waves, improving on a result established

earlier [54]. The arrival-time difference as predicted by theory is shown to be sufficiently

large to explain the (to the authors’ knowledge only) available data set meeting scientific

standards; See the closing remark.

The sound pressure level equivalent serves as a measure to compare the strength of

the seismic signal to usual acoustic signals. The sound pressure level equivalent yielded

values that are sufficiently high to be detected and most probably sufficiently high to

cause arousal in elephants to trigger flight behavior. The fact that humans did not

receive early-warning cues on the approaching tsunami is explained by the fact that

the impedance matching function of the fatty material in the elephants’ feet is absent

in humans. Although the repetition, by the gradual formation, of the seismic signal

ameliorates the signal-to-noise ratio to foster mammalian tsunami localization, the high

reflection coefficient at the air-solid interface obstructs a detection by mammals lacking

a well-adapted tactile sensing system featuring impedance matching or comparable

mechanisms.

Outlook Many questions remain unanswered due to a lack of experimental data. We

name two of them: First the impedance matching function of elephants’ feet awaits a

thorough experimental investigation. Second the precise pathways in elephants, among

other animals, to process seismic hearing cues are largely unexplored from both the

theoretical an experimental side. The present work along with the bonus material

from the appendix shall provide a theoretical foundation for research in the highly

interdisciplinary field of bio-tremology.

Closing remark The investigation of animals’ ability to predict earthquakes and

tsunamis is still a topical issue as also observed in [160]. The authors wish to reinforce

the closing remark of the previously referenced article: In many animals, the data

available are scarce. Quality standards for the data acquisition are rarely fulfilled in a

satisfactory manner due to the – obvious – experimental difficulties to record animal

responses to tsunamis and earthquakes under field study conditions. Nonetheless, the

author wishes to express hereby his hope that the availability of data meeting scientific
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standards increase in the future, e.g., by following the quality control checklist succinctly

summarized in [160].

3.5 Appendices for Chapter 3

Appendix 3.A - Derivation of Vortex Vibration Theory

Introduction This section focuses on the derivation of the vortex theory equation.

We start from the Howe-Powell’s [70, 119] theory of vortex acoustics in ocean water.

The speed of sound in ocean water is tabulated at cf ≈ 1560 ms−1, a lightly bigger

value than for non-ocean water cnon−ocean
f ≈ 1440 ms−1 [135, 127]. The vortex acoustics

equation [72] is given by

∂2
t pf − c2

f∆fpf = ρfc
2
f∇(ω × v) (3.19)

where pf denotes the acoustic pressure in the ocean water due to turbulent layer above

the plate-ocean interface.

ρf ≈ 1.0 · 103 kg m−3 denotes the equilibrium mass-per-volume density of ocean

water [71], ω and v denote the vorticity in the turbulent layer and v the fluid velocity

therein, relative to the unperturbed motion of the ocean water.

Finally, ∆f is the Laplace operator with matching boundary conditions [127] at

the plate-ocean interface and hard-wall boundary conditions [135] at the acoustically

almost intransparent [56, 57] water-air interface.

Preliminary considerations The origin of the matching boundary conditions is a

consequence of the similarity of specific acoustic impedance of water and the stony

composition of the underneath plate: Concrete for instance has a density of ρs ≈
2.4 · 103 kg m−3 [86]. Petro-physical tables show that sediment material in the ocean

has a mass density, the detailed value depending on the micro-composition, which is

comparable. The speed of sound in solids is larger than in water [86, 135] and, as an

order of magnitudes estimate, we may take cs ≈ 3600 ms−1.

The acoustic impedances Zs = ρscs and Zs = ρscs can be used to obtain the

reflection coefficient [127]

R =
Zs − Zr
Zs + Zr

≈ 0.69 (3.20)
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in the case of normal plain wave incidence on the interface. The assumptions underlying

the derivation are simplistic but sufficient for an order-of-magnitudes estimate.

The result for R yields that T 2 = 1 − R2 ≈ 53 % of the intensity of a plane wave

incident is transmitted through the ocean-plate interface. Performing the analogous

computation for air, setting Zs = ρaca with ρa ≈ 1.2 kgm−3 andcs = 343 ms−1, the

interface air-ocean is seen to be acoustically almost in transparent, R ≈ 1. Thus, the

interface of interest is the plate-ocean interface.

Mathematically, the interface is assumed to be a suitably regular, oriented hyper-

surface Γ in R3 and the orientation is chosen for physical reasons by choosing the normal

that has a parallel rather than an anti-parallel component to the normal vector of a

spherical Earth, i.e., pointing away from the Earth’s core. The three-dimensional ocean

region is denoted by Vf and supposed to be large enough to cover at least a patch of the

turbulent layer of vorticity. The three-dimensional plate region is indicated as Vs and

we consent on the consideration of sufficiently small volumes Vf , Vs. The right-hand

side of the vortex acoustics equation can be re-written as ρfc
2
f∇(ω×v) = c2

f∇fv where

fv ≡ ρf (ω×v) has the units of “force per volume” and the structure of a Coriolis force

term [127].

Sound in solids Unlike in liquids and gases, pressure waves, i.e., sound may travel

not only as a longitudinal but also as a transversal wave in solid media [135]. We base

the derivation on the longitudinal component. Let u denote an elastic displacement

of the solid structure in Vf from its equilibrium position. Since sound waves typically

give rise to small oscillations in the nanometer range in air at sonic frequencies and in

liquids at sub-sonic frequencies as well, the target range for a classical description is the

infrasound range at reasonable sound pressure level . 110 dB. The excess (longitudinal)

pressure ps in the solid, traveling as a direct solid analogue of a sound wave in fluids,

is obtained from the material relation relation ps = −K∇u [86] where K denotes

the compressional modulus of the solid. Due to the divergence operator, transversal

components are canceled immanently.

In Hookian approximation, for an isotropic, homogeneous medium, Cauchy-Navier’s

equation

ρs∂
2
t u = (λ+ µ)∇(∇u) + µ∆vv + f (3.21)

with a force density drive f provides a description of the displacement u of the solid,

provided the vibrations of the molecular constituents are suitably small. λ, µ are the
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first and second Lamé constant characterizing the solid. They are tabulated, see e.g.

[86] for examples. The compressional modulus K is expressed in terms of the Lamé

constants as K = λ+ 2/3µ.

The vector calculus identities ∇ · ∆v = ∇3 = ∆(∇·) and ∆v = ∇(∇) − ∇ × ∇×
together with the relation ps = −K∇u yield

ρs∂
2
t ps = (λ+ 2µ)∆ps −K∇f . (3.22)

Re-arranging and defining the speed of sound c2
p =

√
(λ+ 2µ)/ρs, the latter equation

becomes:

∂2
t ps − c2

pps = −ρ−1
s K∇f . (3.23)

Hammer analogy Since the vortices are located in ultimate proximity to the the

interface region, we would like to identify f with fv. This is an approximation because

not all of the sound intensity stored in the ocean is transmitted to the solid. Rather,

we adopt the picture that the vortex region effectively acts as a conglomerate of small

hammers in place of the vortices hammering on top of the plate such that also the solid

experiences at the interface the full force fv.

The problem is that we do not know f because the region of vorticity does not extend

into the solid. Rather, we only know its value at the boundary. Let us define the primary

and secondary components through u = up + us such that ∇us = 0 and ∇× up = 0.

The Helmholtz decomposition of the displacement is unique up to a harmonic function

and gives a decomposition in compression and shear waves, or, as used in seismology, in

primary and secondary waves. Indeed, direct insertion of the decomposition in primary

and secondary waves into the Cauchy-Navier equation provides us with two individual

wave equations for us and up; See section 1.3. for details.

Next, we notice that k ‖ up ⊥ us ⊥ k where k denotes the wave vector of a plane

wave solution to the respective vector-valued wave equations. We assume that up, us

can be extended to a slightly bigger domain including ∂Vs such that we can define the

restrictions to ∂Vs.

Last, we demand ∆ = ∆∂ + ∂2
z in the vicinity of ∂Vs where ∆∂ is the Laplace-

Beltrami operator of the hypersurface ∂Vs and ∂zup = 0, ∂2
zup = 0 and analogously for

us. These requirements serve such as to obtain a wave traveling only along the surface

Γ ⊂ ∂Vs which is the direction relevant for studying the propagation of a tsunami cue

from the ocean region to the shoreline.



86 3. Biotremological model for elephants detecting tsunamis

Integration of the acoustic wave equation for ps, eq. (3.23), yields upon noting once

again ps = −K∇u and Gauss’ integration theorem∫
∂Vf

dS
(
c−2
s ∂2

t us −∆∂us + (λ+ 2µ)−1 〈n, fv〉R3

)
= 0. (3.24)

where us = 〈n,u〉R3 = 〈n,us|Γ〉R3 , c2
s = µ/ρs is the phase velocity of a secondary wave

and we assumed that n is approximately constant. The primary component is absent

because on ∂Vs ∆∂ denotes the induced Laplacian on ∂Vs ⊃ Γ.

We require the function inside the integral to be zero pointwisely and find upon

definition gv(ℵ) ≡ c−2
s (λ+ 2µ)−1ρfρ

−1
s = 1/2 · ρf/ρs · (1 + ℵ2)−1 and ℵ ≡

√
λ/(2µ) the

vortex vibration theory

∂2
t us − c2

s∆∂us = gv(ℵ) 〈n,ω,v〉R3 (3.25)

where we have used the notation 〈♥,♣,♦〉R3 to denote the triple product.

With g0 = ρf/ρs ≈ 1/2 denoting the mass density ratio of ocean water and solid, we

have the formula gv(ℵ) = g0c
2
s/c

2
p ≈ 1/8 ≈ 12.5 % for the conversion of the acceleration

due to the vortex force density, ω × v, to simulate the displacement of the continental

plate’s surface in normal direction.

Comments on the derivation The derivation is unfortunately only approximate.

We do so to circumvent the treatment of a reflection-transmission problem for the

acoustic pressure in a relatively complicated geometry, noting the choice of the linear

depth profile.

Furthermore, it is of course not necessarily true that only surface waves are excited

but also waves with a mathematically finite penetration depth. Since these are concep-

tually inappropriate for a model of cue propagation from the seabed floor to the elephant

at the shoreline, assumptions have been chosen to rule this case out automatically.

Last, the idea to study seismic vibrations is due to the observation that in an

ideal fluid dynamics framework ∂npf = −ρf∂tvn,f 6= 0 at the solid boundary. In an

idealization, the normal component of the fluid velocity vanishes at the solid interface.

However, for the perturbation constituted by the tsunami, this is in general not the case

such that the region of vorticity, one of the features of the tsunami, induces an excess

momentum transfer to the continental plate and, for our purposes more importantly, its

surface. The momentum ρfvn,f is not lost but transformed into momentum of vibration
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of, at least, the surface of the continental plate by virtue of the requirement of local

conservation of momentum ρfvn,f = ρsvn,s. Let us = ‖us‖ and up = ‖up‖.

The value for gv(ℵ) could have also been heuristically, equating ρf∂
2
t uf = ρf∂tvn,f =

ρs∂tvs,p = ρs∂
2
t up at fixed ω. In addition, the force balance law ρs∂

2
t us = ρs∂

2
t up

is required at a fixed wave number k corresponding to different frequencies ω. This

is because formation of both, primary and secondary waves takes place in the same

medium with the same geometric dimensions such that the wave number k needs to

be fixed instead of the angular frequency ω. Likewise, the acceleration due to the

vortex force fv is precisely ω×v. Thus, multiplication with the conversion derived just

before hands us a theoretically plausible value for the accelaration of the surface of the

continental plate after proection on the normal component which is just us, namely

gv(ℵ) 〈n,ω,v〉R3 . The right-hand side of (3.25) has been recovered.

Finally, the assumption that n ≈ const. holds true when the surface of the conti-

nental plate doesn’t deviate too wildly from a plane in the volume Vs. This will be used

later on for geometric perturbation theory.

Appendix 3.B - Source term

Why a source term model In order to solve the vortex vibration theory for ana-

lytical insights, we need to specialize the source term 〈n,ω,v〉R3 . This will be done in

several steps: First, we derive qualitatively the existence of counter-rotating vortices.

Second, we derive the far- and near-field form of the velocity in the vortices and from

that the vorticity. Third, we derive the total vorticity and the total velocity over the

continental margin and expand them in leading order in the distance from the shoreline.

The results are used to evaluate the source term in (3.25) as an effective approxima-

tion akin to a mean field theory. Indeed, we neglect any reactions of the vortices with

their fellow vortices which is of course present in reality as a direct ingredient of the

turbulence behavior of the entire region that we model with a simple potential theoretic

approach. It is precisely the spoken-of turbulence that necessitates a simple model for

the source term, and possible simplifications, in order to make progress through analytic

techniques.

We mention that Fig. 3.6 (A) illustrates step number one. Fig. 3.6 (B) serves as a

visual backup for step two.
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Figure 3.6: Derivation of the source term. (A) Discretization of the depth profile H1

in a quasi-2-dimensional model, (B) Geometric regions and centers of vorticities in a

planar model.
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Step 1 - Existence of counter-rotating vortices The step profile H1 can be

approximated arbitrarily accurate by a step function profile: The interval [0, L] is par-

titioned into, say N , small intervals of length ∆x such that the area enclosed by the

graph of H1 and its discretized version, say H
(N)
1 , stays the same. The choice fixes the

way of partitioning the interval. Schematically, it is shown in Fig. 3.6 (A).

Next, we imagine the motion of the fluid pointing in x direction, say V = V êx where

typical velocities for the motion of oceanic fluid are about ∼ 10 cm s−1, a value that

we also take for the tsunami perturbation. In the discretized setup this means that the

fluid somehow has to wiggle its way over the points of discontinuity. In fact there are

two such (two-dimensional) points in the drawing (x, z)-plane of Fig. 3.6 (A), one of

them at either end of the intervals employed for the discretization.

Intuitively, at the lower of each of these candidates for vortex centers, say at xk, the

fluid has to move in positive z-direction after having moved in positive x-direction to

stream further towards the shoreline. In terms of vortex orientation, this corresponds

to a positive circulation. At the upper of the two points for a given discretized value xk,

the fluid has to move in positive x-direction after having moved in positive z-direction

to stream further towards the shoreline. This corresponds to a negative circulation.

Let us consider the scenario that initially no perturbation of the ocean water is

present. Thus, no tsunami-induced vorticity is present and the total vorticity stored

in the region under consideration equates zero shown as the sufficiently small tubular

neighborhood around the graph of the discretized depth profile H
(N)
1 .

Let us extend the drawing plane by a small ε into the direction pointing inwards

respectively outwards the drawing plane and call the resulting volume D. Clearly, for

suitable ε, the seabed can be approximated as translation invariant. Because of the

vector calculus identity div ◦ rot = 0, no region of vorticity is present in D in the sense

that ∇ω = 0 almost everywhere in the volume D. By application of Gauss’ integration

theorem ∫
D
dV ∇ω =

∫
∂D
〈dS,ω〉R3 . (3.26)

Next, we consider one face of ∂D aligned in parallel to the drawing plane. For

simplicity, we will denote this face by ∂fD. Translational invariance of the setup serves

as a physical basis for the assumption that ω defines a suitably regular function also

on ∂fD.

We require that total vorticity in ∂fD vanishes and apply Stokes’ theorem. In

the notation of Fig. 3.6 (B), ∂2D symbolizes the closed curve in the lower subplot
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consisting of circles around the interesting points and two straight lines joining two

adjacent circles. The quick calculation yields

0 =

∫
∂fD
〈dS,ω〉R3 =

∫
∂2D
〈ds,v〉R3 (3.27)

because ω = ∇× v.

We let the distance between the two lines shrink in such a way that each pair of

lines does not contribute. This leaves us with the contributions from the two circles,

say of radius R > 0. The smallness of slope, β � 1, supports the modeling that two

vortices above each other, say at (xk, y
−
k ) and (xk, y

+
k ) cancel each other: Namely, the

vertical distance between the centers of neighboring vortices are much smaller than the

horizontal distance - the ratio being precisely β. Since the circles form the oriented

closed curve ∂2D, they are all endowed with the same orientation.

Introducing polar coordinates, denoting the velocity of the upper vortex as v+ and

indicating the lower one by the superscript “−”, the previous deliberations combine to

the following equation

0 = R

∫ 2π

0

dφ
(
v+
φ (R, φ) + v−φ (R, φ)

)
. (3.28)

Next, we make the simplifying assumption that the presence of the solid surface

underneath the vortices does not affect the form of the angular components of the

velocities in the previous equation. This means that the physical center of the vortices is

a bit above the surface of the seabed, but at least by R. Realistically, this assumption is

readily verified through observing the behavior of water channel flow through a channel

with abruptly varying cross section - the vortices’ centers are situated not directly at

the solid-fluid interface but a bit in the channel.

The assumption we have just outlined ensures that vφ is independent of the argument

φ and as such we find

v+
φ (R) = −v−φ (R). (3.29)

Since for H
(N)
1 , we have a total of N such equations, we have finally 2N candidates for

vortices, giving rise to fluid motion around the edges as we had intuited in the beginning

of the paragraph.

The functional form of v± is the subject of the next paragraph which is to be

understood as a more quantitatively inclined continuation of the discussion commenced

in the present paragraph.
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Step 2 - Individual vorticities & induced velocities Let us assume we have a

small massive probe, say a small rod of mass m, placed sufficiently far from two of

the counter rotating vortices in the turbulent layer. In the potential theory framework

employed here, the superposition principle allows us to treat the effects of pairs of

vortices individually.

We denote the position of the probe by r and the locations of the two vortices

by r+ and r− following the convention for superscripts introduced in the paragraph

before. As located in the hydrodynamic far field, we do not expect that the presence of

vortices introduces an angular momentum to the mass m. That is, in the point-mass

idealization,

m
(
r− r+

)
× v+(‖r− r+‖2)+

m
(
r− r−

)
× v−(‖r− r−‖2) = 0

(3.30)

where we assume, as in the previous paragraph, that the velocity fields v± depends

only on the distance of the mass to the centers of the respective vortices.

Further, we assume translational invariance in the drawing plane of Fig. 3.6 such

that v± ≈ v±φ êφ. The polar coordinates are chosen to be centered around the geometric

mean of r+ and r− such that the proximity but not coincidence of the centers of the

vortices allows us to write only ≈ in the quantification of v±. Placing the mass m

sufficiently upstream of the vortex centered at r+, we may assume that there is a

dr > 0 such that r− r− ≈ (r+ dr)êr and r− r+ ≈ (r− dr)êr where r = ‖r‖2. Division

by m recasts the only non-trivial component of the previous equation to

v−φ (r + dr) · (r − dr) = −v+
φ (r − dr) · (r − dr). (3.31)

Expanding the equations up to linear order in dr, and comparing coefficients for

powers of dr, we find

O
(
(dr)0

)
: v−φ (r) = −v+

φ (r) (3.32)

O
(
(dr)1

)
: rdrv

−
φ (r) + v−φ (r) = 0. (3.33)

The two equations are decoupled and can be solved such as to yield the profile of a

vortex monopole in the hydrodynamic far field. Choosing the constant of integration

to be Γ(t)/(2π) and understanding Γ(t) as a possibly time-dependent circulation, the

solution reads

v+
φ (t, r) =

Γ(t)

2πr
= −v−φ (t, r). (3.34)
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It remains to assess the near field behavior. We do this by demanding that at r = 0,

i.e., at the geometric mean of the vortices centers, the fluid should not be affected by

the presence of vorticities in the sense that v+
φ (t, r = 0) = 0 = v−φ (t, r = 0). Letting

δc denoting a threshold distance to signify the transition from hydrodynamic near to

hydrodynamic far field, the continuity requirement at r = δc is satisfied most easily by

a linear v±φ -profile for r ∈ [0, δc].

Ultimately, the combined result for the polar velocity component is given by

v±φ (t, r) =

{
±Γ(t)
2πr

r ≥ δc
±Γ(t)r
2πδ2

c
0 ≤ r ≤ δc

. (3.35)

We notice that the above equation characterizes a monopole.

Physically, a series of dipoles is required at the solid-fluid interface in order to

establish a non-zero vorticity ω. We do this by choosing the point dipole limit and

moving the centers of vortices to coincide such that in the hydrodynamic far field a non-

zero velocity originates by requiring that Υ(t) ≡ 2Γ(t)∆z 6= 0, with ∆z ≡ ‖r+ − r−‖2,

for almost all t ≥ 0.

Since in the coordinate system under consideration r+ = −r−,

vdip
φ (t, r) = lim

r+→0

[
v+
φ (t, ‖r− r+‖2) + v−φ (t, ‖r− r−‖2)

]
=

{
Υ(t)
2πr2 r ≥ δc
Υ(t)
2πδ2

c
0 ≤ r ≤ δc

(3.36)

where r = ‖r‖2 as usual. Expanding the vector operators in the definition ω = ∇× v

in cylindrical coordinates such that the polar part matches with the polar coordinate

system employed in this paragraph, the vorticity associated to the vortex point dipole

follows from the previous equation by direct computation

ωdip
y (t, r) =

{
−Υ(t)
2πr3 r ≥ δc

0 0 ≤ r ≤ δc
(3.37)

where the y-direction is chosen such that the xz-plane and the y-axis span a positively

oriented Cartesian coordinate system.

Step 3 - Total vorticity & induced velocity So far, we have taken advantage of the

tight spacing of individual monopoles to obtain vortex dipoles. Since the depth profile

H
(N)
1 is only an artificial discretization, we need to invert the discretization completely.
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The dipole structure constituted only one half of the full procedure. We simplify the

calculation by assuming that in the source term (3.25), only the full vorticity and the

full induced fluid velocity contribute. By doing so, we rule out mutual feedback between

different vortex dipoles but open up the possibility to conduct the analytic investigation

further.

Noting that Υ(t) = 2Γ(t)∆z and ∆z = β∆x by virtue of the affine-linear depth

profile H1, the summation becomes in the limit N → ∞ an integral over the distance

between the tsunami generating event and the shoreline, i.e., an integral over the interval

x ∈ [0, L]: Abbreviating vtot
φ = vtot

φ (t, x, z) and ωtot
y = ωtot

y (t, x, z),

vtot
φ =

βΓ(t)

2π

∫ L

0

dx′
vdip
φ (t, ‖(x, z)− (x′, H1(x′))‖2)

Υ(t)

=
βΓ(t)

2π
I(x, z),

(3.38)

ωtot
y =

βΓ(t)

2π

∫ L

0

dx′
ωdip
y (t, ‖(x, z)− (x′, H1(x′))‖2)

Υ(t)

=
−βΓ(t)

2π
J (x, z)

(3.39)

where the parameter-dependent integrals I and J are given through

I(x, z) ≡
∫ L

0

dx′

(x− x′)2 + (z +H0 − βx′)2
, (3.40)

J (x, z) ≡
∫ L

0

dx′√
(x− x′)2 + (z +H0 − βx′)2

3 . (3.41)

and can be evaluated through direct analytic computation.

If the evaluation point (x, z) is far away from graph(H1) compared to the maximum

depth of the ocean H0, i.e., in the limit z/x→ 0 such that dist((x, z), graph(H1)) ≈ x,

we can expand the solution obtained by the procedure described before in powers of

z/x. We keep only the lowest order contribution. Upon the introduction of fitting

constants cv and cω, determined in principle through the series expansion but treated

here as genuine fitting constants to ensure the correct physical dimensions, the results

read

vtot
φ (t, x, z) = cv

Γ(t)β

2πx2
+O(β3) (3.42)

ωtot
y (t, x, z) = −cω

Γ(t)β

2πx5/2
+O(β3). (3.43)
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where [c2
v] = 1 m−2 and [cω] = 1 m−1 for the aforementioned dimensional reasons.

By performing the expansion, we focus more on signals sourced far away from the

elephant and not in the vicinity of the shoreline. This is a reflection of the overall goal to

propose a model of the natural tsunami early warning system in elephants. Absorption

of the effect of the projection onto the normal component at each point as an overall

number into the constants cv and cω, or rather their product cfit = cvcω, we obtain a

strongly simplified version of the triple product in the source term of equation (3.25),

〈n,ω,v〉R3 ' cfitΓ(t)2β2

4π2x9/2
+O(β4), (3.44)

which has the advantage of permitting further analytic investigations.

Comment Effectively, the model is a series of infinitesimally densely spaces counter-

rotating vortices of Rankine type extending in the direction normal to the plane of Fig.

3.6 (A) & (B). Due to the small, namely < 3◦ mostly, slope of the continental margin,

one can also regard it as a series of equivalent vortex dipoles the constituents monopoles

of which carry opposite circulation.

We would like to point out that the complexity of the phenomena requires us to

follow very heuristic procedures. When someday accurate experimental data exist, it

may be useful to model the plate vibration by a phenomenological input model and

try to derive theoretical vortex models at the same time that are able to reproduce the

phenomenology sufficiently well. At the present, this is out of reach.

The next subsection of the appendix focuses on an analytic treatment of the model

on the macroscopic scale, i.e., on the scale of continental plates. The purpose is twofold.

First, one obtains reference solutions to a first bio-tremological model. Second, one may

derive a formula for the remaining fit parameter C from the zeroth order problem of

the geometric perturbation theory. The equation can be used to match C with the

experimentally better detectable amplitude of plate vibration. Since surface waves as

generated during earthquakes can travel several times around the earth before ceasing

to be detectable, we will neglect attenuation effects in (3.25), however, they could and,

if the up to now non-existent data says so, should be included on phenomenological

basis.
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Appendix 3.C - Geometric Perturbation Theory

Introduction Dropping the subscript ∂ in ∆∂, the vortex vibration theory takes

the form of a scalar 2 + 1-dimensional inhomogeneous wave equation ∂2
t us − c2

s∆us =

gv(ℵ)〈n,ω,V〉R3 with an inhomogeneity on the right-hand side.

The top figure in Fig. 3.7 displays the plate tectonics of the earth according to the

counting of the recent paper [11]. There are Np = 52 plates.

In order to outline the ideas underlying a treatment of the vortex vibration equation

by geometric perturbation theory, that is, reducing the non-flat plate profile to a flat one,

we will make strong simplifications. On average, a plate spans an area of A ≈ 8·1012 m2,

calculated from the Earth’s surface which is approximately spherical at radius Re ≈
6 · 106 m. Interpreting each “average” plate as a spherical zone, this corresponds to an

opening angle θ0 in a spherical coordinate system (θ, φ) of θ0 = arccos
(
1− 2N−1

p

)
≈

0.28 rad ≈ 16◦, a value obtained through equating the area of the Earth’s surface to the

area of Np “average” plates of the same zonal geometry: 4πR2
e = 2π(1 − cos θ0)NpR

2
e.

Since θ0/π � 1, we may try approximating the “average” plate as flat by introducing a

cylindrical coordinate system in which the plate is represented as graph(Hplate) where

Hplate(r, φ) =
√
R2
e − r2 defines the height profile of the spherical zone with regards

to the spherical coordinate system hinted at by symmetry reasons. The polar part

of the spoken-of cylindrical coordinates defines a disk and, more precisely, we have

(r, φ) ∈ [0, Re sin θ0]× [0, 2π].

Since the deviation from the flat disk max |H(r, φ)−Re cos θ0|/Re = 2N−1
p � 1, we

seek to replace the zone by the disk by geometric perturbation theory (GPT): Calling

the metric on the disk D2
Re sin θ0

g0 and on the spherical zone g, we have ‖(g − g0) ·
g−1

0 ‖ � 1 in a suitable matrix norm. This suggests to us to write express the algebraic

Laplace-Beltrami operator ∆g on the spherical zone and in the variables (r, φ) through

the algebraic Laplace-Beltrami operator ∆g0 for this disk plus a “small” perturbation

operator V ≡ (∆g −∆g0) ∼ O(g − g0).

The advantage of this approach lies in the coordinate representation of the source

term because the x from the previous sections corresponds through equality to R − r
where R ≡ Re sin θ0. As we will see through investigation of the eigenvalue problem for

the Laplace-Beltrami operators for the Neumann problems for both ∆g0 and ∆g, the

“flat” problem admits a much more convenient solution to work with.

We end this introductory paragraph by noting that the separation of the algebraic

Laplace-Beltrami operator ∆g on the zone in an unperturbed part ∆g0 , i.e., just the
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Figure 3.7: Plate tectonics of the earth according to [11] There are Np = 52 plates on

the earth’s surface. Figure taken from [11].

Laplacian in polar coordinates, and a perturbation operator V reads as

∂2
t us − c2

s∆g0us = c2
sV[us] + gv(ℵ)〈n,ω,v〉R3 . (3.45)

We will mainly be occupied with solving the “unperturbed” problem

∂2
t us − c2

s∆g0us = gv(ℵ)〈n,ω,v〉R3 (3.46)

with the Laplacian on the disk D2
R given algebraically by ∆g0 = ∂2

r + r−1∂r + r−2∂2
φ.

Instead of a complete specification of solutions to the vortex vibration theory equation,

we confine the discussion to bits and pieces deemed relevant to, especially, the biological

community.

It still remains to prepare the vortex source term on the right-hand side of (3.45)

and (3.46) for further treatment.

Source term model Since the source term (3.44) contains a multiplicative fit con-

stant C, its strength may be adjusted such as to reproduce vibration amplitudes that

can actually be sensed by Meissner and or Pacinian cells in the elephants feet. The

interesting plate is a continental plate. Conceptually, of course not all of the flattened

“average” plate gives rise to a non-zero source term. Rather, it is only a annular sector
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defied through A ≡ {(r, φ) ∈ [0, R]× [0, 2π] : R− L ≤ r ≤ R, φ0 ≤ φ ≤ 2π − φ0} which

is struck by the tsunami.

φ0 can be bounded from below by 5π/6 and from above by π/2 if one regards the

tsunami generating event situated directly at a point with r = R and stimulating the

formation of the turbulent layer responsible for the signal build-up spherically symmet-

rically and truncating the region when the first spherical wave front hits the center of

the disk. The choice is somewhat arbitrary but also for realistic plates, the turbulent

layer is most likely to form in the vicinity of the tsunami, say in the ocean surrounding

Indonesia, but not, to stay with the hypothetical scenario, in the arctic sea on the

west coast of Greenland where the tsunami plays virtually no role. For the present

hypothetical model, we set φ0 = 0 for aesthetic rather than physical reasons.

One important phenomenon is stored in the expression Γ(t)2. Recall that 〈n,ω,v〉R3 ∼
Γ(t)2, focusing only on time-dependencies. From the discussion of the frequencies ex-

cited in the vortices, we know that instead of a single frequency f a full frequency band

F = [fmin, fmax] is excited. The time-dependent circulation’s, Γ(t)’s, Fourier represen-

tation in ω = 2πf -space is given by

Γ(t) =

∫
2πF](−2πF)

dω√
2π

Γ̂(ω) exp(iωt). (3.47)

It is well-known in functional analysis that the Fourier transform is a unitary op-

erator on the Schwartz space of functions and that, moreover, it converts multiplica-

tion into convolution and vice verse, the so-called morphism property : For the Fourier

transform denoted by the operator F, the equations F[f · g](ω) = (F[f ] ∗ F[g])(ω) and

F[f ∗ g](ω) = (F[f ] · F[g])(ω) hold true for suitable functions f, g ∈ S(R → C), i.e., in

the Schwartz space. Upon risking the unitarity of the Fourier transform, the properties

extend to L2-space in which we may assume the circulation Γ to live. Let us define the

set Ff ≡ F ] (−F). The morphism property yields that Γ(t)2 can be represented as

Γ(t)2 =

∫
2πFf+2πFf

dω√
2π

(Γ̂ ∗ Γ̂)(ω) exp(iωt), (3.48)

where A+B = {a+ b|a ∈ A, b ∈ B} for sets A, B.

In particular, we find sup(Ff +Ff ) = 2fmax which is biologically desirable: Suppose

that a maximum frequency f is excited and carried to the shoreline where an arbitrary

elephants peacefully awaits the tsunami. Further assume that the elephant can sensibly

detect and process only frequencies above the threshold frequency fc < 2f . Since the

signal carried by the plate vibrations carries a frequency of 2f , the elephant can detect
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the signal as being above the threshold fc. This explains why a low-frequency signal,

say at f ≈ 20 Hz which is just the hearing threshold for humans can suffice to produce

a signal at frequency 2f ≈ 40 Hz which the elephant is much more likely to process, for

it is not out of its typical communication channel.

Spherical cap vs. flat disk Let us demand Neumann boundary conditions to the

Laplace-Beltrami operators on the zone, ∆g, and on the disk, ∆g0 . In both cases, the

eigenfunctions to the Neumann eigenvalue problem can be determined, for the zone in

spherical and for the disk in polar coordinates.

For the zone, we find Ψζm(ξ, φ) ∝ Pm
ζ (ξ) exp(imφ) where ξ = cos θ and Pm

ζ denotes

an associated Legendre function of the first kind. The latter is given through the

hypergeometric function

P η
ζ (ξ) ≡

(
1+ξ
1−ξ

)η/2
Γ(1− η)

2F1

(
−ζ, ζ + 1; 1− η, 1− ξ

2

)
. (3.49)

The modal space is only given implicitly. LetM(m) ≡ {ζ ∈ C : ∂ξP
m
ζ (ξ = cos θ0) = 0}.

This set does only admit a numerical treatment. The corresponding modal space is then

given as

M =
⋃
m∈Z

M(m)× {m}. (3.50)

In contrast, the Neumann eigenvalue problem for the flattened plate gives rise to

eigenfunctions Ψ
(0)
nm(r, φ) ∝ J|m|(µn|m|r̂) exp(imφ) with r̂ = r/R and R = Re sin θ0. Jk

denotes the Bessel function of the first kind of order k and µnk denotes its n-th non-

negative extremum, labeled in ascending order. In the disk case, the modal space is

simply N×Z∪N0×{0} 3 (n,m). Conceptually, the disk model captures the biologically

prominent picture that the elephant is “a tuning force standing on a vibrating disk”

correctly.

For the next paragraph the disk approach has been used further to derive an esti-

mation formula relating the fitting constant cfit of the model to vibration amplitude U

of the plate’s surface.

Estimation formula for the fitting constant cfit In the notation introduced in

the preceding paragraph, let us assume that a mode Ψ
(0)
n0 with n ∈ N is excited. The

vortex vibration theory (3.46) can be solved by interpreting it as an operator differential
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equation and applying Duhamel’s principle for which we specify homogeneous initial

conditions us(t = 0, r, φ) = 0 = ∂tus(t = 0, r, φ) in order to study exclusively the impact

of the vortices on the continental plate’s surface’s vibrations.

Expanding the operator sine function produced by the operator differential equation

approach by means of the spectral theorem and focusing on the aforementioned mode,

it still remains to evaluate the projection of the source term gv(ℵ)〈n,ω,v〉R3 onto Ψ
(0)
n0 .

The integral stemming from the aforementioned projection diverges.

Mathematically, the problem is circumvented by neglecting this contributions and

replacing the integral by the length of the radial integration interval RεL times the value

of the function inside the former integral evaluated at the “well-behaved” boundary,

i.e., at r = R(1 − εL). The εL = L/R is supposed to be � 1 and means that only a

sufficiently small annular region of the disk-shaped continental plate functions as the

mathematical support of the source term.

Physically, the divergence is a result of the far-field expansion performed to arrive at

(3.44) - the trade-off to use the far-field expansion instead of the full solution had to be

made to make an analytic treatment feasible at all. The resulting algebraic expression

is expanded in εL and only the leading contribution in εL is kept. The detailed analysis

yielded the dominating contribution to be ε
−7/2
L .

Finally, taking the modulus to cancel the phase factor stemming from the integration

over the temporal variable, the following formula is the result of a bit of further but

completely straightforward algebra:

U ' ρfc
2
s

ρsc2
p

β2|(Γ̂ ∗ Γ̂)|(µn0csR
−1)

J0(µn0)π2csµn0

√
L

7 · cfit. (3.51)

Now, the fit constant cfit can be estimated once the convolution Γ̂ ∗ Γ̂, geometric infor-

mation on the continental plate, i.e., H0 and L and a typical vibration amplitude U , for

instance measured at the shoreline, are known. We mention that the inclusion of seis-

mic attenuation effects in the vortex vibration theory leads to even more complicated

parameter estimates for cfit.
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Chapter 4

Vortices, stopping spheres, and tone

generation in organ pipes

The, quite often, majestic organ pipes have been the subject of intense physical in-

vestigations for more than 150 years; cf. [133, 1] and references therein. The as yet

unresolved questions of physical interpretation lack a systematic treatment because of

the non-availability of the correct mathematical medium for the appropriate formulation

of both, questions and answers. Specifically, the mechanisms of harmonic and general

tone production have been alleged to involve nonlinear processes which do however not

provide the best possible results. Also, the open end of the organ pipes has not been

investigated thoroughly from the perspective of fluid dynamics phenomena up to now

to deepen the understanding of the interplay between fluid dynamics and acoustics.

Here, the existence of vortex structures in organ pipes during play is shown and

the measured power spectrum is derived theoretically from a stochastic perspective.

We show that a stable system of vortex rings exists at the open end of the organ pipe

as a topological irregularity from both a theoretical and experimental viewpoint. We

further show that upon utilizing non-equilibrium statistical turbulence modeling in the

language of stochastic processes, a linear theory is sufficient to explain the radiated

power spectrum as measured at the open end of the pipe.

The result and the universality of the underlying mechanism is in contrast to ongoing

efforts in musical acoustics to search for nonlinear models accomplishing the same.

The article exemplifies in the context of organ pipes and musical acoustics that the

application of yet un-applied mathematics accompanies novel physical insights in the

fields of science.
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4.1 Introduction

It all began with a simple experiment... Throughout the history of science,

innovation was often preceded by observations from practice rather than initially stan-

dardized laboratory experiments. Indeed, the best “first guess” for boundary conditions

at the circular endcaps of a cylindrical organ pipe by Helmholtz [156] had been paral-

leled by findings from “the practice” [27]. Today Helmholtz’ imagination is accepted

as the most adequate one, albeit still in need of several corrections. Fig. 4.1 visualizes

Helmholtz’ model (a), known corrections (b) and the explanation we present in section

5.2 (c) for the end-correction δ0.

It was reported by B. Edskes1 to L. van Hemmen2 that, in sound quality checks

in organ pipes after cleaning, a gold particle appeared to circulate slightly above the

open end of the pipe during the test play. In order to understand the origin of the

phenomenon in a satisfactory way, the organ pipe setup has been standardized as shown

in the top plot of Fig. 4.2.

The organ pipe is installed perpendicularly to the laboratory floor and connected

with the air bags supply system. The tube system for the air flow is indicated in

green. The room is darkened and a diascope is installed to light a plane parallel or

vertical to the open end of the pipe. A suction pump is connected to the air supply

system to inject tobacco smoke in the pipe through the foot hole. A camera creates a

film consisting of single pictures to record the vortex structures. The setup is combined

with a microphone placed at distance 20 cm above the open end of the pipe to record the

radiated sound. The electronics for spectrum recording and pre-processing is situated

on the right table.

In the bottom plot of Fig. 4.2, the organ pipe is shown together withe the expected

vortex structure and a horizontally lit plain. Minimization of external disturbances

by smoke exiting the pipe through the labium and thus interfering with the vortices

at the open end has been accomplished by a deflection rosette wrapped around the

pipe above the organ pipe mouth. The experiment has been performed in a closed

laboratory room with the requirement on the experimenters to stand still in order to

avoid air disturbances and create a situation as close to the fluid rest frame as reasonably

possible.

In the following paragraphs, we introduce the two phenomena which we will model

1Bernhardt Edskes, “Edskes Orgelbau”, 5610 Wohlen, Switzerland.
2L. van Hemmen, T35 TUM Physik-Department.
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in section two and three and test by the described experiment.

Open end of the organ pipe In the general context of fluid dynamics, the study of

nozzle flow belongs to the subject of great academic (e.g. [71]) and practical (e.g. [70])

interest alike: From an applied mathematician’s perspective, nozzle flow is interesting

because there is an abrupt change in qualitative geometry behavior - a formerly confined

flow turns into a flow in an unbounded domain. In the engineering practice, the orifices

interface the interior parts of the machine body with the outer world and thus are the

exchange “stations” for numerous substances and quantities.

Recently, the authors of [20] have investigated certain fluid and aerodynamic prop-

erties of nozzle flow through a flanged orifice. The results agreed with experimental

studies on vortex rings [85] and numerical assessments of the stability [101, 93, 94].

Also from the perspective of musical acoustics [28], the open end of the organ pipe has

been found to be the geometric origin of the “acoustic enlargement” of resonating organ

pipes [47, 28]: Since the air can emanate the organ pipe in the form of a jet, the notion

of the pipe interior during resonance is ill-defined.

Together with the later Nobel laureate Schwinger, Levine [88] calculated via Wiener-

Hopf methods the exact value of the end-correction for a semi-infinite unflanged circular

pipe. The calculations have been extended to more complex geometries with one rele-

vant result given by the numerical treatment in [2] accounting for a finite wall thickness.

Two questions are natural: First, one may ask about the relation between the abrupt

change in topology at the open end of the organ pipe and the existence of a vortex

structure akin to [85]. Second, since both phenomena appear at the open end of the or-

gan pipe, does there exist a link between the end-correction [88] and the hydrodynamic

flow field induced by the vortex structure?

Tone generation The search for mechanisms underlying the production of sound

in organ pipes has developed into a subject of keen academic interest [36, 35, 31, 32,

38, 150, 153, 151, 152] as well as [43, 44, 45, 46, 137], not only to European research

groups [161, 162]. The approaches presented in the above references share the basis

of deterministic methods. Yet, only recently [28] the importance of aerodynamic and

possibly turbulent processes has been recognized - less so in older treatments [47].

The geometric origin of tone production is the upper labial lip of the organ pipe; cf.

the bottom plot in Fig. 4.2. The conceptually most straightforward way to account for

the interplay between aerodynamic and aeroacoustic processes is given by the vortex
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Figure 4.1: (a): Helmholtz’ [156] creative imagination of how an organ pipe generates

its fundamental frequency. The pipe length L between the mouth, or labium, at the

bottom and the top of the pipe equals, for the air at resonance in the pipe, half the

wavelength between two anti-nodes at the openings (symbolized by the “opening” of the

solid red lines), where sound is radiated into free space, indicated by thick red arrows.

Accordingly, since the wavelength λ equals the velocity of sound c ≈ 343 ms−1 divided

by the fundamental frequency f1 and λ/2 = L, we end up with λ = 2L = c/f1. (b):

The effective length Leff to compute f1 slightly exceeds the actual pipe length L, which

in the past has been accounted for by phenomenological correction factors δ0, the end-

correction [88], and δm, the mouth correction [74]. Both corrections are symbolic in grey.

The effective length finally is given through Leff = L + δ0 + δm. Both the complicated

geometry of and the turbulence at the labium preclude any simple physical explanation

of δm. Only approximate, idealized results [74] exist that do, however, agree with

earlier experimental findings [27]. (c): As will be explained below, the hydrodynamic

mechanism underlying the end-correction is given through the existence of the sphere

of separation (in light-blue) and a system of two counter-rotating vortex rings (stable

inner one in dark red, unstable outer one in light red) at the open end.
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Figure 4.2: Top: Experimental setup for (A) observing a vortex structure at the open

end of the organ pipe and (B) recording of the sound radiated from the open end of

the pipe. Bottom: Schematic view on an organ pipe with conical deflection rosette, air

supply tube, horizontally lit plane and the expected system of two concentric, counter-

rotating vortex rings of equal strength at the open end of the pipe.
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sound theory due to Howe [69] and Powell [120]. The applicability of the still fully

deterministic theory is based on the production of edge tones by vortices [119]. Put

simply, the interaction between the physical fluid “air” and the solid structure “labial

lip” leads to the formation of sound-generating vortex dipoles [41, 119] which can be

described by the Howe-Powell theory of vortex sound, itself a special case of the Lighthill

equation as the governing equation of aerodynamics [90, 91]. The intricacy is rooted in

the fluid dynamic nonlinearities in the governing equations of fluid and aerodynamics

which makes an analytic treatment unfeasible at the present.

On the other hand, turbulence has been studies from a statistical point of view by

Kolmogorov [82, 81], one of the founding fathers of modern probability theory. Given

the statistical nature of turbulence, it is natural [100, 132] to ask about the nature of

the relation between fluid and aerodynamics on the one hand and probability on the

other hand. Based on the insufficiency of manifestly nonlinear modeling to explain tone

generation [43, 44, 45, 46, 137], it is natural to ask whether a nonlinear treatment is

actually necessary to explain quantitatively the measured power spectrum [15, 3] of the

organ pipe.

Scope of the present work The existence of a vortex structure at the open end of

the pipe akin to [85] and its relation to the end-correction [88] is assessed in section two.

Via a linear, stochastic theory based on Markov processes [53], the measured power

spectrum as shown e.g. in the left plot of Fig. 4.5 from [3] is derived theoretically

in section three. In the appendix, additional material is presented that would have

distracted from the results but can be helpful for a better understanding of those.

4.2 Topological edge vortex phenomena in the open-

ended organ pipe

Introduction Not only organ pipes but also other brass musical instruments feature

an open end functioning as junctions between an “interior” and an “exterior” of the

instrument. We start the topological part of this article by defining explicitly what

we mean when we speak of the interior of a musical instrument. This will be done in

generality. We let ∂G denote a piecewisely suitably regular, oriented, connected and

compactly embedded surface in the three-dimensional physical space R3. ∂G represents

the walls of the musical instrument mathematically. We call ∂G a musical instrument
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for brevity.

Next, we take a pair of points (x1,x2) ∈ (Conv(∂G))×(Conv(∂G){) with the property

that the straight line [x1,x2] ≡ {(1− t)x1 + tx2|t ∈ [0, 1]} connecting the two points has

precisely one point in common with ∂G. This ensures in conventional but yet ill-defined

terminology that one point of the pair lies “inside” the instrument and the other one

“outside”. Since ∂G ↪→ R3 is compact, its complement is open and there is an ε1, ε2 > 0

such that, upon suitably decreasing the ε1 and ε2, the closed balls B̄3
εi

(xi) and ∂G share

no points. Next, let p = p(θi, φi) ∈ ∂B̄3
εi

(xi) = S2
εi

(xi) be the two-parameter family of

the boundary points of the previously defined closed balls.

The strategy for the definition of the acoustic volume inside the musical instrument

∂G is to consider rays emanating from one of the two points xi and passing through

the points p(θi, φi). In ray acoustics, an acoustic wave is represented precisely by such

a ray and is subject to the reflection law at the solid boundary ignoring the negligible

transmission through the walls of ∂G. Suppose that a ray in the direction vi and through

two point pi−1, pi is reflected at qi. The reflection law then states that the reflected ray

is emitted along the vector s∂G(qi)[vi] where s∂G(qi) denotes the reflection map on the

so-called tangential space of ∂G. Since the musical instrument is oriented, it is globally

defined and by the choice of the pair (x1,x2) we ensure that neither of the points is

placed “on top of” one of the instrument’s openings. The procedure yields for each

i ∈ {1, 2} and each (θi, φi) a polygonal arc R′((θi, φi)) defined as the union of all rays

emanating xi and passing through p(θi, φi) ∈ S2
εi

(xi) as first point. The reflection law

construction from above allows a unique continuation of each of these rays by defining

R(θi, φi) = {x ∈ R′(θi, φi)|x ∈ [qj−1,qj]} where qj ∈ ∂G is a reflection point in ∂G.

Each of the xi’s is treated as the 0-the reflection point of a given ray R′(θi, φi). The

polygonal arc defined this way naturally has finite length and is a, possibly closed,

curve.

By the formalization of the intuitive picture of an “inside point” as x1 ∈ Conv(∂G),

the acoustic volume of ∂G is well-defined through

G ≡
⋃

(θ1,φ1)∈S2
ε1

(x1)

R((θ1, φ1)). (4.1)

It is immediate that G ⊆ Conv(∂G). Equality of sets holds if and only if ∂G is a subset

of the boundary of a convex set, more precisely, ∂Conv(∂G) ⊇ ∂G.

Last, the acoustic volume inside the musical instrument ∂G is defined as the com-
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plement of ∂G in the acoustic volume G of ∂G,

Ins(∂G) ≡ G \ ∂G. (4.2)

We notice that Ins(∂G) is relatively open in G but not open as a subset in R3. Intuitively,

one closes continuously the wall’s holes by planes in R3 and fills the unique compact

region bounded by this piecewisely Jordan-type surface. The solid body obtained this

way is the acoustic volume G. The inside volume Ins(∂G) is obtained by removing the

walls ∂G from the previously obtained G.

Despite the technical intricacies in the definition of the acoustic volume an implica-

tion is immediate: The manifest fundamental object from the topological perspective is

∂G from which the acoustic volume G can be derived as above. On the other hand, ∂G
itself may have a nonzero boundary ∂2G ≡ ∂(∂G) because ∂G is only compactly embed-

ded but not necessarily compact. We denote by D2
R;z((x0, y0, z0)) and S1

R;z((x0, y0, z0))

the closed disk, respectively the circle of radius R > 0 lying in a plane parallel to the

xy-plane that contains (x0, y0, z0). In the case of an open-ended organ pipe ∂G, we have

∂G ≡ D2
R;z((0, 0, 0)) ∪ {x = (x, y, z) ∈ R3|

x2 + y2 = R2, 0 ≤ z ≤ L} ⊂ R3
(4.3)

for R, L > 0.

For a closed organ pipe ∂G ′, we have

∂G ′ ≡ D2
R′;z((0, 0, 0)) ∪ {x = (x, y, z) ∈ R3|

x2 + y2 = R′2, 0 ≤ z ≤ L′} ∪D2
R′;z((0, 0, L

′))
(4.4)

with R′, L′ > 0. In this case, the boundary of the musical instrument is

∂2G = S1
R;z((0, 0, L)) , ∂2G ′ = ∅. (4.5)

Due to a loss in regularity at the opened edges ∂2G of a musical instrument ∂G, we

have an obstruction for the acoustic volume G to be a differentiable manifold if ∂2G 6= ∅.
The converse is not true as exemplified by the closed organ pipe from above. Yet, the

musical instrument is a manifold with corners [77] for which one has a generalized

version of Stokes’ theorem.

In a potential theoretic view on musical instruments in the physical sense, the overall

vorticity defined as ω = ∇ × v stays constant. Since in initio no vorticity is present

is musical instruments, an ε > 0 after the tone key is pressed, the total vorticity in G
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stays constant and equates to 0 and formalized in the solenoidality condition. Together

with the algebraic solenoidality condition ∇ω = 0 for the vorticity, the “manifold-with-

corners” property enables us to devise the topological vortex model at the organ pipe’s

open end in the next paragraph.

Topological model Real organ pipes have a finite wall-thickness 2rw which is small

compared to the interior diameter 2R, i.e. δ ≡ rw/R � 1 in general and δw ≈ 1/17

for the plexiglass model in specific. Furthermore, R/L ∼ δ � 1 for sufficiently slender

pipes. Yet, R/L, rw/R are mathematically independent parameters. The finite-wall

thickness requires us to use two analogues of the previous ∂G for the finitely long but

infinitely thin pipe. Namely, denoting ∂G = ∂G(R,L), we use

∂Gδ ≡ −(0, 0, L) + ∂G−(R(1− δ), L− δR)

∪ ∂G+(R(1 + δ), L+ δR) ∪ K(o)
(1−δ)R,(1+δ)R;z((0, 0, L))

(4.6)

with opposite orientation and join them by means of an annulusK(o)
(1−δ)R,(1+δ)R;z((0, 0, L))

in a plane parallel to the xy-plane containing (0, 0, L) ∈ R3 and oriented such that ∂Gδ
carries a globally orientation.

In the spirit of the experiment by Krutzsch [85], we choose R as the dominant

length scale and idealize R/L → 0, i.e., consider a semi-infinite pipe limit. This is

also the model considered in [88]. The translation in (4.6) ensures that the pipe’s

open end is centered around the origin of the coordinate system. To avoid double-

counting of edges, we identify ∂2G(R(1−δ),∞)∪∂2G(R(1+δ),∞) = S1
(1−δ)R;z((0, 0, 0))∪

S1
(1+δ)R;z((0, 0, 0)) = ∂K(1−δ)R,(1+δ)R;z((0, 0, 0)). The 1-edges [77] are thus the disjoint

union of two concentric and co-planar circles with the same orientation

∂2Gδ = S1,+
(1−δ)R;z((0, 0, 0)) ∪ S1,+

(1+δ)R;z((0, 0, 0)). (4.7)

The co-orientedness of the circles is a consequence of the existence of a global orientation

on G: It is homeomorphic to a 2-sphere and the edges can be deformed into meridian

circles at, say, +45◦and −45◦ in geographic notation. These need to be co-oriented to

ensure a global orientation via an almost everywhere smoothly defined pull-back of the

well-defined Gauss map N : S2 → S2 to Gδ.
By integration of the solenoidality condition over the complement of Gδ and the

classical Gauss’ integration theorem:

0 =

∫
G{δ

d3x∇ω =

∫
∂G{δ

d2Aω = −
∫
∂Gδ

d2Aω. (4.8)
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By the definition ω = ∇× v, the classical Stokes’ integration theorem finally converts

the surface to a contour integral over the edges (4.7):

0 =

∫
S1

(1−δ)R

ds v +

∫
S1

(1+δ)R

ds v (4.9)

where we have canceled the overall minus from the orientation reversal and used dis-

jointness of the the two edges to decompose the integral over the union of edges into a

sum of integrals over the individual edges. The notation has been abbreviated slightly

to ensure readability. The classical integration theorems are special cases of the general

Stokes’ theorem which remains valid upon generalization to manifolds with corners.

In the semi-infinite pipe limit, the setup is axisymmetric around the z-axis. Cylin-

drical coordinates are defined such that the xy-plane is covered by polar coordinates and

the z-axis stays unchanged by the coordinate transform. The aforementioned so-called

cylindrical symmetry of the setup translates into v± = v±φ (r, z = 0)êφ where r denotes

the polar distance to the z-axis and the super-script ± refers to whether the induced

velocity fields from the vortex structure at r± = R(1 ± δ). The symmetry facilitates

the evaluation of (4.9):

0 = 2πR(1− δ)v−φ (R(1− δ)) + 2πR(1 + δ)v+
φ (R(1 + δ)). (4.10)

In order to be able to match with the calculations in [88] and [47] for the value of the

end-correction and in order to be able to evaluate the last equation further, we apply

the so-called thin-wall approximation: By 0 < δ � 1, (4.10) admits a Taylor-expansion

in δ around r = R which may be truncated up to an error of order O(δ2) after the

linear term ∼ δ. Indeed, cancellation of the pre-factor 2πR respectively 2πRδ yields

the system of equation for v±φ (R):

O(δ0) : 0 = v+
φ (R) + vφ−(R) (4.11)

O(δ1) : 0 = ∂R
(
v+
φ − v

−
φ

)
(R) +R

(
v+
φ − v

−
φ

)
(R) (4.12)

Re-arranging (4.11) and insertion of v−φ (R) in (4.12) and cancellation of an overall

factor of 2 in the resulting equation leaves us with the ordinary differential equation

∂Rv
+
φ (R) + Rv+

φ (R) = 0. This is a separable differential equation in R+ × R and has

the general solution

v±φ (R) =
±Γ(t)

2πδR
=⇒ v±(R) =

±Γ(t)êφ
2πδR

. (4.13)
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It needs to be stressed that the expression exists in a plane in the z-plane. The integra-

tion constant has been specified to be a possibly time-dependent factor of Γ(t)/(2πδ) to

match with the formal structure of axisymmetric, infinitely thin potential vortex rings

[71] centered at R(1 ± δ). The impacts of time-dependent circulations will be used in

section three and discussion is outsourced to there.

By construction, the vorticity ω± ≡ ∇ × v± inducing the above velocities van-

ishes, ω± = 0. That is, the two potential vortex rings are irrotational: Heuristically

generalizing (4.13) yields

v±φ (x) =
±Γ(t)

2π

1∥∥x− x±0
∥∥ (4.14)

where x±0 ≡ R(1± δ)êr and for x = Rêr, we recover the special case derived above. For

later purpose, we abbreviate x0 = Rêr.

The vortex system containing two potential vortex rings with the above properties

is shown in the top subplot of Fig. 4.3. A total of N = 64 vortex monopoles of equal

strength have been distributed at equal distance on each of the two core circles of

the rings. The vortices on the two rings differ in strength by a multiplicative minus

sign each. Using the superposition principle in the context of the potential theoretic

approach, the induced fluid velocity fields have been plotted as three-dimensional vector

fields with the open end of the pipe (top row) and without (bottom row) from two

different perspectives in either case.

Theoretical results We discuss three implications of the vortex model resulting from

the above topological deliberations.

• Far-field quadrupole: It is interesting to consider the total induced velocity field

of the vortex rings starting from (4.14) in the thin-wall approximation: The def-

inition vtot ≡ v+
φ (R) + v−φ (R) yields after expanding up to a linear order in a

relative factor δ,

vtot(x) =
Γ(t)

π

〈
x− x0,x0 − x±0

〉
R3 êφ

‖x− x0‖3 . (4.15)

This is the far-field of a dipole of vortex rings and thus, since vortex rings them-

selves behave as dipoles [71] far-field, a quadrupole.

Indeed, the vorticity ωtot = ∇ × vtot exhibits a far-field scaling as ωtot ∼ r−3

where r is the spherical distance from the open end’s edge ∂2G for the idealized
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infinitely thin organ pipe. The quadrupole behavior has also been observed in

[10, 47] and thoroughly studied acoustically therein, a perspective dual to ours.

• Meta-stationarity: The vortex structure exhibits a stable behavior in the sense

that the offhand and laboratory controlled experiments (see below) revealed vor-

tex structures existing for > 5 s at a fixed position without vortex dissolution or

self-propulsion.

The well-known [71] formula for the self-propulsion velocity for an individual,

infinitely thin, axisymmetric vortex ring of radius R and circulation Γ reads:

Vp(R; Γ) =
Γ

4πR

(
log

(
8R

ε

)
− 1

4

)
. (4.16)

The quantity ε is an infinitesimally small quantity describing the “infinitely thin”

vortex core.

The total velocity Vtot = Vp(R(1−δ),−Γ)+Vp(R(1+δ),+Γ) of the vortex structure

of can be obtained after expansion in powers of 0 < δ � 1. Inspection of the

definition of Vtot reveals that it is an antisymmetric function in δ. Since the

derivation of the vortices required an expansion up to including linear order in δ,

we find

Vtot =
Γδ

4πR

(
log

(
8R

ε

)
− 9

4

)
+O

(
δ3
)
. (4.17)

From the stationary Bernoulli equation v2/2 = P/ρ0 at the foot for a blowing

pressure P0 ' 7 cmH1O ≈ 687 Pa and conservation of kinetic energy ρ0/2v
2Afoot =

ρ0/2V
2

pipeApipe, we find for the mean flow in the pipe

Vpipe =

√
2P0Afoot

ρ0Apipe

' 18 ms−1 (4.18)

which needs to compensate the Vtot by means of the kinematic equilibrium condi-

tion

0
!

= Vtot + Vpipe. (4.19)

Setting ε ∼ rw in the hypothetical limit case of two vortex rings with non over-

lapping cores, we find from (4.17) and the general formula in (4.18) through
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application of (4.19)

Γ . − 4πRV

δ log(8)− 2.25

√
2P0Afoot

ρ0Apipe

≈ −71 m2s−1 (4.20)

with the numerical value for Vpipe as in (4.18) and a generic but realistic choice

of R = 2.5 cm for medium-sized organ pipes. The numerical test values are of

acceptable order and hands a numerical feeling for the strength of circulation Γ

in (4.14) which can most often only be found experimentally.

• End-correction and sphere of separation (s.o.s.): The end-correction due to the

radiation of sound [88, 72, 71] can be obtained as

δ0 =
−1

π

∫ ∞
0

dx log (2K1(x)I1(x))

x2
≈ 0.6127. (4.21)

The bottom plot in Fig. 4.3 displays a cross section through the (infinitely thin)

pipe’s resonance body that contains the symmetry axis and the cross section

through the two concentric vortex rings of opposite circulation. The setup is Z2-

symmetric under reflection of both vortex dipoles centered at each ending of the

wall.

Furthermore, the centers of the vortex dipoles at either wall end at r = ±R in

the (r, z)-coordinate system and the two stagnation points of the flow field at

z = ±R define a sphere. Indeed, since up to the signs needed for the dipoles

at either end of the wall the vortices are equally strong, there is indeed a sphere

in the bottom plot of 4.3 with the following noteworthy property. Fluid trapped

inside the sphere will stay in this sphere as long as the vortices generate a flow

field. Indeed, if fluid is transported in the jet flow from the resonance body of the

pipe upstream towards the open end of the pipe it can enter the region bounded

by the sphere.

The sphere is called sphere of separation because its upper cap extending into

free-space functions as a correction surface to the acoustic volume of the organ

pipe in the sense of the definition of the pre-to-last paragraph. Indeed the acoustic

volume G of the organ pipe under play is enlarged precisely by the excess volume

of the upper half ball Vol(B̄3
R((0, 0, 0))) = 2π/3 · R3. The latter has to be added

to Vol(G) = πR2L for a cylindrical pipe.
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This gives rise to a corrected volume

Vol(G ′c) ≡ Vol(G) + Vol(B̄3
R(0)) = πR2

(
L+

2

3
R

)
(4.22)

and a topological prediction for the end-correction δtop
0 = 2/3 ≈ 0.6667 with the

error relative to the value of the Wiener-Hopf treatment being < 10 %. This error

is significantly better than the value of the Rayleigh piston model [47, 28] which

specified δRay.
0 ≥ 0.8.

Now, G ′c is defined as the acoustic volume of an equivalent but stopped organ pipe

∂G ′c, i.e., ∂2G ′c = ∅; See the pre-to-last paragraph for details on the 1-edges of the

stopped organ pipe.

The definition of an equivalent stopped organ pipe also explains why Neumann bound-

ary conditions are to be used in order to calculate the eigenfrequencies of standing

acoustic waves in the end-corrected acoustic volume. This result generalizes to other

musical instruments with holes after appropriate, instrument-dependent modifications.

Experimental result The major prediction of the topological deliberations leading

to 4.14 is that a vortex structure of ring-like shape forms. Furthermore, the sphere of

separation gives us a criterion to assess whether the prediction of the dipole structure is

adequate: Monopoles would not admit the formation of a sphere of separation and the

lowest possible hydrodynamic multiple in a cross-section model that allows a sphere of

separation, as shown in the bottom plot of 4.3, is a dipole.

The experimental setup has already been described in the introduction, section 4.1.

Tobacco smoke has been favored over conventional fog technology to avoid condensation

of the liquid in fog on the solid walls of the pipe. Furthermore, it turned out that

cigarillo smoke contains larger aerosol particles than cigarette smoke because despite

pre-filtering the smoke, the jet exit slit connecting the pipe foot with the resonance body

was prone to congestion by the solid constituents in cigarillo smoke requiring extensive

cleaning after several experimental runs. In cigarette smoke, this was not the case and

due to the lesser concentration in nicotine the walls of the plexiglass pipe did also not

turn yellow to that extent. For the metal pipe, cigarillo smoke led to congestion almost

every time so that cigarette smoke was injected into the pipe foot through the suction

pipe connected as shown in the top plot of Fig. 4.2. Since a stream of smoke leaves
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Figure 4.3: Top: Top row: Open end of the organ pipe with predicted vortex struc-

ture from two perspective angles; Bottom row: The system of two concentric counter-

rotating vortex rings of equal strength. Bottom: Induced potential flow field in a

cross-sectional plane containing the pipe symmetry axis with no-penetration bound-

ary conditions at the pipe’s walls (black lines). The local velocity is indicated by thin

light-blue arrows. The cross section of the sphere of separation is indicated as the thick

light-blue circle. Tangential to the sphere of separation are two red circles symbolizing

the periodic trajectories a fluid parcel follows in close proximity to one vortex core. The

cross section of the inner vortex ring which has been found to be stable in experiments

is shown in solid red, the outer vortex ring has only allowed indirect observation via

detection of the sphere of separation. The experimental instability of the outer vortex

ring precludes a direct experimental observation.
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Figure 4.4: Top: Snapshot of the vortex ring system on top of a metal mantled organ

pipe with a horizontally lit plane. Bottom: Sphere of separation created by the vortex

dipoles at the pipe’s open end: Left: Raw photo, Middle: Indication of the location

of vorticity in red, Right: Indication of the circular cross section of the sphere of

separation.
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the labial mouth of the organ pipe, a deflection rosette has been wrapped around the

resonance cavity to minimize disturbances from air velocity perturbations above the

labial mouth; cf. the bottom plot in Fig. 4.2.

The experiment has been performed in two variants depending on the orientation

of the plane lit by the diascope. The result of the experiment with a lit plane parallel

to the floor of the laboratory is shown in the top plot of Fig. 4.4. A vortex ring-shaped

structure is shown during pipe play. On the right-most part of the arc of the ring,

two smaller arcs of lighter color can be found. They hint at the existence of a double

vortex ring structure. The latter can be assessed more assertively by choosing the lit

plane to be orthogonal to the laboratory’s floor and containing the resonance body’s

symmetry axis. The result is shown in the bottom subplot of Fig. 4.4. One sees in the

cross section of the pipe the sphere of separation in which the fluid is trapped. The

photograph stems from a film of the sounding organ pipe and was ≈ (2− 3) s after the

tone has ceased.

The shape of the sphere of separation agrees with the theoretical predictions visu-

alized in the bottom subplot of Fig. 4.3.

The author has designed and conducted the experiment in collaboration with B.

Edskes, L. van Hemmen and B. Seeber 3, listed in alphabetical order.

Closing remark The central idea of this section that sharp edges admit the creation

of acoustically “active” vortices can be combined with the theory of stochastic processes

to obtain a quantitative model for the measured power spectrum of typical organ pipes.

Such a spectrum is shown in the top left subplot (adapted picture from [3]) and bottom

subplot of 4.5 (original measurements).

4.3 Stochastic mechanism of linear tone generation

in the open-ended organ pipe

Introduction Why are we in need of a universal mechanism of tone generation? With

only two openings, the open end and the labial mouth, organ pipe are a geometrically

easy-to-study flue-like instrument. This class of musical instruments is, in a simplistic

picture, a refinement of organ pipes which share analogous constructions for the tone

3Bernhard Seeber, AIP TUM, Fakultät für Elektro- und Informationstechnik.
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production [47, 28]. In that sense, the tone generation mechanism we will describe in

this section is “universal”.

The geometric location of tone generation [47, 28] is well-known to be the upper

labial lip; cf. the lower plot in Fig. 4.2. Qualitatively, air bags are connected by tubes

to the pipe foot. At a blowing pressure of P0 ≈ 7 cmH2O ' 687 Pa an air flow is

injected through the foot hole in the pipe foot. The prism-like languid in the foot hole

canalizes the air flow such that the air flow can leave the foot hole through so-called

(jet) exit slit or windway. The jet exit slit is a thin w0 ∼ 1 mm but long W0 ∼ q · 2πR
rectangular orifice, adjacent to the pipe wall. It connects the, otherwise separated, foot

hole with the resonance body of the pipe. The small effect of viscosity [28] canalizes the

air flow such that it leaves the jet exit slit almost in the direction of the unit normal,

i.e., propagates the distance H0 . 0.5 cm for medium sized pipes to the upper labial

lip. The region of propagation, commonly referred to as pipe mouth or labial region,

is opened towards the surrounding free space and thus provides the second of the two

interfaces of the open-ended organ pipe with the environment. The upper labial lip

itself is wedge-shaped and acts a sharp edge placed in the direction of the air flow. The

pipe’s tone is generated there [67, 119, 28].

Air jet and jet disturbance Due to the interaction of the solid sharp edge with the

hydrodynamic jet, a localized region of turbulence is created. It is known [133] that a

plane jet admits an undulant, wave-like perturbation which also has been verified ex-

perimentally [150, 153, 151] and has been used extensively to study the tone production

in organ pipes and related instruments, e.g., [38, 149, 152, 36, 35, 31, 32, 44, 45].

With the abbreviation Vjet =
√

2P0/ρ0, the relevant low-frequency limit reads [133]

ζk(t, z) = A exp

(√
kW0

2
Vjett

)
exp (i(ω(k)t− kz)) (4.23)

where the dispersion relation is quadratic, ω(k) = k2W0Vjet/2 ∼ k2, and A is an am-

plitude factor with the physical dimension of a length. The model is accurate for

f . 5.5 kHz for medium-sized typical organ pipes L ∼ 60 cm,R . 3 cm; cf. the practi-

cal book [1].

Theoretical refinements of the basic model by Rayleigh are available, see e.g. [47]

and references therein.
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Wave turbulence Since the jet velocity Vjet =
√

2P0ρ
−1
0 ' 33.8 ms−1 . c/10 is

considerably high for fluid flow and since the aforementioned experiments hint at a

stable wave-like jet perturbation, it is more appropriate to use the notion of wave

turbulence [98] rather than a complete turbulence [82, 81] which is indeed confined to

a small region around the upper labial lip.

Wave turbulence is the study of the evolution of (mostly plane) linear waves in non-

linear wave evolution such as the Navier-Stokes equations. The mathematical methods

are similar to those used in modern field theories in physics for calculating correction

terms to the wave solution and stochastic to study physical quantities such as dissipated

energy [100, 132, 53]. A well-known [98] result due to Kolmogorov asserts that in full

turbulence, energy is distributed according to the Kolmogorov scaling relation

E(k) ∼ k−5/3 (4.24)

where k = ‖k‖ is the (hydrodynamic) wave number of the wave in full turbulence.

Apart from a broad energy spectrum, (wave) turbulence features a so-called inertial

range in which a dominant forward respectively sub-dominant backward energy cascade

allows the transferal of energy from larger length scales to smaller length scales respec-

tively vice-versa until a critical length λD is reached. The so-called dissipation length

λD marks the threshold for dissipation of energy into heat. For instance, if an infinitely

long wave-length, meaning k → 0+, is excited energy may be transferred to a non-zero

wave number by virtue of the forward energy cascade. As an intermediate result of

the preliminary deliberations, we note that once we have a turbulent flow we can via

(4.24) ensure a broad energy scaling for the hydrodynamic wave number k and thus the

hydrodynamic frequency ω = ω(k) that the Rayleigh jet undulation carries.

Evolution of wave turbulence Naturally, the jet perturbation propagates along a

coordinate, say z, which we choose to denote the distance from the jet exit slit, i.e.,

0 ≤ z ≤ H0. At z = 0, the jet perturbation is purely potential and governed by the

purely deterministic treatment [133]. The other extreme case is the upper labial lip

where the full turbulence requires the replacement of the deterministic with a purely

stochastic picture: The notion of a well-defined frequency ω or wave number k breaks

down.

Both objects, ω and k, turn into so-called random variables Ω respectively K which

are distributed according to a certain equilibrium probability distribution Peq. The
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link between the fully deterministic and the fully stochastic quantities consists of us-

ing the notion of a stochastic process : Instead of taking a well-defined frequency and

a well-defined wave number, we replace ω, k by the stochastic process counterparts

Ω(z), K(z),

k → K = K(z) ∈ L1([0, H0]→ R+) (4.25)

ω(k)→ Ω(z) = ω(K(z)) ∈ L1([0, H0]→ R+) (4.26)

and imply physical regularity behavior.

The stochastic process K(z) is accompanied by a family of probability densities

Pz(k) ≡ P(k, z) so that the probability densities evolve in a quasi-stationary way ac-

cording to a Fokker-Planck equation

∂zP(k; z) = −∂k (a1(k)P(k; z)) + ∂2
k (a2(k)/2 · P(k; z)) (4.27)

in the coordinates z and k. The jump moments a1, a2 will be discussed after the next

paragraph.

Here, we confine ourselves to specifying the limit behavior of the family Pz(k) for

the two extreme cases z → 0 and z → H0:

lim
z→0

Pz(k) = δ(k) & lim
z→H0

Pz(k) = Peq(k) (4.28)

An introduction to stochastic methods as applied to physical sciences is available e.g.

in [53, 100].

Link to vortex acoustics Finally, contact with aero-acoustics is made by using a

Howe-Powell [70, 119] theory as suggested in [28], i.e.,

∂2
t p− c2∆p = ρ0c

2∇ (ω × v) (4.29)

We choose v = Vjetêz, inspired by the dominance of the jet propagation in z-direction

towards the upper labial lip. The vorticity ω contains the impact of turbulence and is

supported in a small location at the labial lip.

In view of H0/L . 1/100 in the plexiglass model and in view of the modal cut-off

criterion in duct acoustics [72] for the low-frequency regime f . 3.2 kHz, we may confine

ourselves to an effective one-dimensional model with a source condition at z = 0 and

a hard-wall condition at z = Leff . The one-dimensional wave equation for the acoustic

pressure reads [72]

∂2
t p(t, z)− c2∂2

zp(t, z) = 0. (4.30)
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In the language of mathematics, the boundary conditions [156] are implemented as

Neumann boundary conditions

∂zp(t, z = 0) = −ρ0∂
2
t vz,in(t) & ∂zp(t, z = Leff) = 0. (4.31)

The z = 0 condition stems from the linearized Euler’s equation [72] where we “idealize”

the labial lip to be at z = 0 and allowing an equivalent air mass flow jz(t) = ρ0vin,z(t)

streaming in the pipe and capturing the effect of the vortex source term in (4.29).

In view of the discussion of the end-correction as above, the open-ended organ pipe is

regarded as an effective pipe-shaped thin wave-guide of length Leff = L+ δ0R where we

ignore the mouth correction; See section 4.2. Setting ρ0∂
2
t vin = fv·êz with fv = ρ0(ω×v),

we have linked the broadband turbulent spectrum to the source condition at z = 0.

Indeed, the results that will be presented below show that a simple inhomogeneity to

the Helmholtz [156] model

∂zp(t, z = 0) = Q0 · 〈exp (iΩt)〉Ω∼Peq
(4.32)

suffices in the source term.

Effectively, this model equates ∂zp at z = 0 to a superposition of exp(iωt)’s, or,

in the stochastic interpretation equivalently, to the average of the phase exponential

exp(iΩt) with respect to the equilibrium probability distribution Peq at the labial lip.

The quantity Q0 is a parameter which quantifies the strength of the input and is treated

as a free parameter in the model. It won’t be needed in the further treatment explicitly

and we comment that it serves to give a constant offset to the sound-pressure level, i.e.,

can be used to adjust vertical translations.

Stochastic model For the acoustics of the organ pipe and to explain the shape of

the curve shown in the upper left subplot of (4.5), the jump moments a1 and a2 need to

be specified. Natural boundary conditions are imposed on the Fokker-Planck equation

(4.27).

The stationary solution, i.e., at z = H0 is obtained [53] as

Peq(k) ∝ 1

a2(k)
exp

(
2

∫ k

0

dκ a1(κ)

a2(κ)

)
. (4.33)

Using the Kolmogorov scaling (4.24), we derive the the scaling of the jump momenta

from the assumption that

ρ0∂t〈ζK(t, z)〉2K∼Peq

2
∼ k−5/3 ∼ E(k) (4.34)
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where we assume further that we may replace the average over wave-numbers by an

average over a small interval (−∆z+H0, H0); see Appendix 4.B for details of the rather

lengthy calculation.

One may think of the replacement of averages as if we tracked the wave number

over a suitably small interval close to the region of full turbulence and assign to K

respectively k the character of a “quasi-ergodic” quantity. We note that the assumption

is merely a calculational simplification yielding sensible results, though. Upon using

the jump moments in the stationary (∂zP = 0) state with natural boundary conditions

(−a1 + a2(k)/2∂kPeq(k) = 0) at z = H0, we recover (4.33).

Using the simplifying assumptions sketched above, the precise but technical calcula-

tion presented in Appendix 4.B leads to the equilibrium probability density for the wave

number, Peq(k), and upon invoking the transformation theorem for probability densities

[53], also the probability density for the (hydrodynamic) frequency ω = ω(k) ∝ k2 of

the jet perturbation ζ = ζk(t, z), denoted by Peq(ω):

dk Peq(k) =
dk 2Θ(k)

kfitβ(5/12, 1/2)

(
k2

fit

k2 + k2
fit

) 11
12

(4.35)

dω Peq(ω) =
dωΘ(ω)

√
ωωfitβ(5/12, 1/2)

(
ωfit

ω + ωfit

) 11
12

(4.36)

The objects kfit and ωfit are fit constant which needed to be introduced in order to

assure convergence.

The probability densities (4.35) and (4.36) are normalized. They belong to the class

of Pearson-VII probability densities [114, 115, 116, 117].

Experimental and numerical testing Data for a plexiglass organ pipe of length

L = 0.6 m and radius R ≈ 2.5 cm have been gathered by placing a microphone above

the open end of the organ pipe. Data have been gathered by the freeware Audacity

and resolved at 4096 bins in the full measurement range 0 Hz to 50 kHz. Finally, data

from 200 Hz to 3.7 kHz have been exported as *.txt-file and processed further with the

aid of the commercial software Mathematica.

We state the final result of the statistical fit procedure and comment on the param-

eters and quantities involved. We let lg ≡ log10. The relative sound pressure level is

defined as SPL(f |f0) ≡ 10 log10 (P(f)/P(f0)) dB where P(f) is the value of the power

spectrum at the frequency f . Equivalently, SPL(f |f0) = 20 log10 (|p(f)/p(f0)|) dB.

Choosing p(f0) = 20µPa, the (absolute) sound pressure level is recovered.
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By the previous paragraphs, (4.30) admits a solution in frequency domain space,

evaluated at the open end, given as p(ω, z = Leff) ∼ ω−1Peq(ω) where the additional

ω−1 stems from solving the D = 1-Helmholtz equation with the Neumann boundary

conditions (4.32). Likewise, the Peq as in (4.36) contains the broadband spectrum

generated by the turbulence model at the upper labial lip which translates to the

acoustic pressure by virtue of (4.29) respectively (4.30) and (4.32).

Data gathered by the author with L. van Hemmen and B. Seeber and independently

in [3] are displayed in Fig. 4.5. In that figure, the maximum peak of sound pressure level

is attained at the first harmonic f2 = 2 · f1 for the fundamental frequency f1 ≈ 262 Hz.

The fit quality can be improved by setting ω → ω′(ω) = ωp + |ω − ωp| where ωp is a

peak frequency which can be fitted from the measurement data.

The width of the peaks is due to a physical and a technical reason: Physically,

thermal-viscous effects lead to a small deviation from the perfect δ-peak structure pre-

dicted by the wave equations (4.30) and (4.29). Technically, the width of the peaks is

influenced by the number of bins used in resolving the measurement range. The higher

the number of bins, the smaller the peak width until the lower threshold due to the

thermal-viscous effects is reached.

These deliberations are incorporated through filters. Following [47] on the function

of the resonance body as a passive acoustic filter, these filters are regarded as the limit

of a Dirac-sequence. I.e., they originate from a function sequence which converges

weakly to the Dirac delta. The latter is the “perfect filter” in signal theory jargon:

µε(ω;ωn)
ε→0+

−→ δ(ω − ωn). The parameter ε serves so as to fine-tune the width of the

peaks to match with the data. A small linear frequency dependency of the ε, the

standard deviation in the case of Gaussian filters, improves the overall quality of the

fit if we ignore normalization of the filters.

Last, we use a harmonic, e.g., f13 and calculate the relative sound pressure level to

it. This is the frequency fc at which SPL(f = fc|fc) = 0. Contact with the average

sound pressure level of ' 74 dB as in several figures in [3] is made for our data by using

an offset along the ordinate axis. Up to multiplicative constants, this is the strength

parameter Q0 from (4.32) but we will treat it here just as an ordinate axis offset SPL0.

Altogether, the model for the absolute sound pressure level is

SPL(ω)− SPL0

20 dB
= lim

ωfit→0
lg

( ∑
n µε(ω;ωn)ω′(ω)−1Peq(ω′(ω))∑

n µε(ωc;ωn)ω′(ωc)−1Peq(ω′(ωc))

)
. (4.37)

For the Nc = 13 frequencies displayed in the lower subplot of (4.5), we find for Gaussian
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filters µ(f ; fn) '
√

2πε2g(fc/2)
−1

exp(−|f − fn|2/(2ε2g(f))) with fc = 3421.8 Hz, fp =

440 Hz and the linear phenomologically adapted standard deviation εg(f) = 41 Hz +

2 Hz · f/f1 from (4.37)

SPL(f)− 58 dB

20 dB
= lg

∑Nc=13
k=1 (fp + |fc − fp|)

29
12 e
− |f−fn|

2

2ε2g(f)∑Nc
k=1(fp + |f − fp|)

29
12 e
− |fc−fn|

2

2ε2g(fc)

 . (4.38)

In (4.38), the impacts of the frequency dependence of εg have been ignored in the

Gaussian filters according to the fit prescription from above.

The result of the simulation is shown in the top plot of Fig. 4.6. The raw data have

been shifted around the model curve according to (4.38) and the green band denotes

an absolute deviation band of ±5 dB between data and prediction, the orange one

quantifies an absolute deviation of 10 dB between data and prediction and the red band

shows a deviation up to ±15 dB. The data from the lower subplot of Fig. 4.5 have been

interpolated and the dashed red curve has been used to obtain the offset value of 58 dB

in (4.38) to establish an average sound pressure level of 74 dB in the frequency range

f ∈ [50 Hz, 3700 Hz] for the top plot Fig. 4.6.

From the lower plot of the same figure, it is seen that the absolute error is for the

vast majority of frequencies below 10 dB and for the majority even below 5 dB. The

turbulence model predicted the exponent of 29/12 in (4.38).

Concluding remark The results of the fitting procedure are better than expected

originally by the authors. The authors regard this as an evidence that a linear stochastic

instead of a nonlinear deterministic is fully sufficient to deduce the measured power

spectrum in organ pipes.

4.4 Summary

Summary It is due time to step back and reflect on what has been accomplished.

In the chapter’s second section, it was shown from topological considerations that

the thorough modeling of the open end of organ pipes requires the usage of the pipe’s

walls, ∂G, to define an (inside) acoustic volume. Inspired by the notion of a “manifold

with corners” rather than a smooth manifold, we derived the existence of a vortex

structure made up from two concentric, co-planar, counter-rotating vortex rings. By
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Figure 4.5: Top: Left: Data obtained independently and published in [3]: The maxima

through which a green line is drawn have been extracted from these data and used

within the frequency range contained in the red box to fabricate a preliminary test on

the model; Right: Interpolating curve between the harmonic maxima. Bottom plot:

Measured relative sound pressure level obtained from the experiment shown in Fig. 4.2.

4096 bins have been used to resolve the measurement range [0, kHz, 50 kHz]. The data

have been gathered for a circular plexiglass organ pipe with the geometric dimensions

of L = 58 cm and r = 25 mm.
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Figure 4.6: Top: The final plot of the theoretically predicted sound pressure level

as fitted to the experimental data shown in the bottom subplot of Fig. 4.5. The

overall normalization has been chosen to match with the one employed in [3] by a

vertical shift of the data such that the average sound pressure level of 74 dB agrees with

the value obtained from calibration measurements.,Bottom: Absolute error between

the theoretically predicted sound pressure level (black curve) and the experimentally

measured sound pressure level together with error bands placed covering the regions of

±5 dB (green), ±10 dB (orange) and ±15 dB maximum absolute error.
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studying the induced velocity field in the fluid rest frame, we saw that the vortex

structure gives rise to a phenomenological sphere of separation. It induced an excess

volume and thus elongates the pipe’s resonance body by an end-correction.

Up to a small . 10 % relative error, the excess volume was equivalent to the volume

associated with the end-correction obtained by an exact Wiener-Hopf treatment. The

advantage of the topological method is its flexibility to be generalized to other musical

instruments with a more sophisticated geometry that prohibits a direct, exact Wiener-

Hopf treatment. The existence of a vortex structure was tested by direct measurements

through smoke injection into a sounding pipe. The double vortex ring structure was

assessed indirectly by studying the sphere of separation which provides a necessary

and, excluding higher than dipole moments in the cross-sectional plane, also sufficient

criterion for the double structure.

The chapter’s third section combined the finding that edges trigger the formation of

turbulent vortex dipoles with a dynamic theory of turbulence evolution: Starting from

a potential, fully deterministic flow, the evolution of turbulence was modeled by letting

the probability density of a δ-distributed wave number, i.e., of a deterministic wave

number, evolve during jet propagation towards the labium as a Markov process. We

required the scaling of the turbulent energy spectrum to be reproduced at the upper

labial lip by virtue of the formalism employed in this treatment. In the low-frequency

limit with acoustic waves propagating only along the symmetry axis of the pipe, the

governing equation of vortex sound was simplified to match with a time-harmonic input

weighted by the equilibrium probability density Peq which describes the broad-band

frequency distribution due to wave turbulence. The vortices generated at the labium

were modeled to carry the turbulent frequencies of the jet undulation.

From measurements, we tested the approach through a model fit containing the

scaling exponent 1 + 17/12 = 29/12 that the turbulent model predicts to appear in the

sound pressure level. The model fit included phenomenological corrections to reproduce

the positive harmonic peak width in the typical organ pipe spectra instead of just giving

a zero peak width as predicted by a non-thermal-viscous theory. It was found that the

peak width of the model needed to be increased by a slight frequency-dependent peak

width to produce a fit of satisfactory quality. By the constancy of the resolution of the

measurement data for processing, this reflects the thermal-viscous spread of harmonic

peaks. The absolute error between the fit model predictions and the data have been

found to be in the majority of frequencies below ±5 dB.
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Outlook Given the simplicity of the end-correction re-derivation by the method pre-

sented in section 4.2, it would be interesting to study other musical instruments and

compared the predictions from a vortex flow field analysis to acoustic measurements.

This also includes other than circularly symmetric orifices. Furthermore, the author

suggests testing the fit model for the sound pressure level for other types of organ

pipes. This can reveal possible material dependencies affecting the proposed model

which could not have been included in this work.

Closing remark An unfortunate and persistent pattern accompanies the expansion

of scientific knowledge and de-facilitates learning novel, especially mathematical tools,

for scientists in the applied fields: The language barriers between the mathematical

and the applied community have become less penetrable over the last century. Being

both mathematician and physicist, the author hopes to have contributed to a revival

of scientists’ interest in modern mathematics in general and stochastic as well as topo-

logical tools in specific. The importance of availability of unprecedented introductions

on “modern mathematics for applied scientists” written in a straightforward-to-apply

manner is reinforced.

4.5 Appendices for Chapter 4

Appendix 4.A - Hydrodynamic aspects of the flow in the reso-

nance body of the pipe

Introduction This section shall collect some numerical results on the irrotational,

ideal fluid dynamics in the resonance body of the organ pipe. Apart from the vor-

tex structures at the openings of the pipe, the resonance body resembles a circularly

symmetric, long channel truncating sharply at the open end.

Already in the middle of the last century, Levine and Schwinger [88] presented an

“exact” treatment of the frequency-domain acoustics wave equation, i.e., the Helmholtz

equation, for an unflanged axisymmetric pipe relying on the rather advanced technique

of Wiener-Hopf analysis. The treatment is “exact” in the sense that it only required

the specification of a massless piston model at the open termination of the duct corre-

sponding to a plane wave mode propagating along its symmetry axis.

Staring from the Helmholtz operator, Hk ≡ ∆ + k2 with k ∈ R+
0 and the aforemen-
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tioned treatment, Howe [70] considered the limit of vanishing k by letting the speed of

sound c stored in ω2 = c2k2 diverge: In conjunction with some algebra, this yielded a

result for the Stokes’ stream function characterizing the irrotational flow from a semi-

infinite unflanged duct.

Curiously, the result has not been applied to study the flow from the axisymmetric

organ pipe - this is what we will do. We sketch the result obtained by Howe [70] and

discuss a potential theoretic cross-sectional model along the symmetry axis of the organ

pipe which can be treated by the tools of complex analysis. See [71] for an introduction

to the methods.

Stokes’ stream function for the organ pipe Letting k2 → 0 in the result of the

Wiener-Hopf analysis of the Helmholtz equation, the Stokes’ stream function ψac for

the irrotational background contribution to the ideal background flow is obtained in

the non-dimensional variables ẑ ≡ z/R, r̂ ≡ r/R. The interior of the semi-infinite pipe

idealization and the exterior requires usage of the Heaviside function which is defined

here as Θ(x) ≡ 1 for x > 0, Θ(x) ≡ 0 for x < 0 and taken to be not defined if x = 0.

The result for ψac reads [71, 70]

2πψac

AU
=

Θ(R− r)r2

2R2
+

Θ(r −R)

2

− Θ(R− r)r
πR

∫ ∞
0

dλ

λ

√
2K1(λ)

I1(λ)
I1(λr̂) sin (λ(ẑ −F(λ)))

− Θ(r −R)r

πR

∫ ∞
0

dλ

λ

√
2I1(λ)

K1(λ)
K1(λr̂) sin (λ(ẑ −F(λ)))

(4.39)

where AU has the physical dimensions of an area times a velocity and is shorthand for

AU ≡ 2πcR2 with the speed of sound c and the radius R of the pipe.

For λ > 0, the phase contribution F(λ) is defined through the integral representation

F(λ) ≡ 1

π

∫ ∞
0

dx log
(
K1(λ)I1(λ)
K1(x)I1(x)

)
x2 − λ2

. (4.40)

As δ0 ≡ limλ→0+ F(λ) ≈ 0.6127, Howe noted correctly that this provides another

derivation of the end-correction through a hydrodynamically inspired approach.

Cross section model The geometry of the cross section model for the flow in the

semi-infinite cross section of the organ pipe is shown in Fig. 4.7. The goal is to find the

complex velocity potential w = Φ+iΨ with a monopole source placed at zs = −∞+iR.
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In the two-dimensional potential theory, the toolkit of complex analysis becomes

applicable since ∆Ψ = 0 = ∆Φ are harmonic functions and thus define a holomorphic

complex velocity potential w. In particular, the complex velocity potential can be

transformed by bi-holomorphic maps between the physical coordinate system, say z,

and a mathematically more tractable one, say ζ. This serves the purpose to reduce the

intricate geometry D in the z-coordinate system to a more basic one in ζ-coordinates.

The bi-holomorphic transformation in question is established by the Schwarz-Christoffel

mapping theorem [71] and the requirement that zA 7→ −∞, zB 7→ −1, zC 7→ 0, zE 7→
1, zF 7→ ∞ and the identification zC = zD. The latter identification yields a polyg-

onal arc in the z-plane and ensures the applicability of the Schwarz-Christoffel map-

ping theorem, namely, the existence of a bi-holomorphic transformation that sends the

polygonal arc (AB(C = D)EF ) to the real line in the ζ-coordinate system. Follow-

ing [71], the inverse map is obtained from dζz = K(ζ + 1)(ζ − 1)ζ−1 = K(ζ − ζ−1)

to be z(ζ) = −Kζ2/2 − K log ζ + C. The constants K, C ∈ C are found from

(zB = iR, ζB = −1), (zE = −iR, ζE = 1) through insertion and solution of a 2 × 2

system of linear equations: K = −2R/π, C = −iR + R/π. The source is located at

ζ = 0 corresponding to a planar source input at z = −∞ in physical coordinates.

The complex velocity potential is given through w(ζ) = 2RVjet/π log ζ− iRVjet after

having imposed w(ζ(z) = i) = 0, that is, equating the complex velocity potential to

zero at z = (0, 0) which fixes the additive constant up to which the complex velocity

potential is determined. Using w(ζ) = Φ(ζ) + iΨ(ζ) the mathematical ζ-coordinate as

a function of ζ follows from inversion of w:

ζ = i exp

(
πΦ

2RVjet

)
exp

(
iπΨ

2RVjet

)
. (4.41)

Insertion into z = z(ζ) and taking the real part x ≡ <[z] and y ≡ =[z], the final

equations for the planar stream line plot are obtained

x

R
=

1

π
+

Φ

VjetR
+

1

π
exp

(
πΦ

RVjet

)
cos

(
πΨ

RVjet

)
, (4.42)

y

R
=

Ψ

VjetR
+

1

π
exp

(
πΦ

RVjet

)
sin

(
πΨ

RVjet

)
. (4.43)

The resulting planar streamline plot is shown in Fig. 4.9.

Using rotational invariance of the setup to rotate the planar plot around the x, axis

the plot 4.8 is produced. The blue lines respectively the blue surfaces in Fig. 4.9 and
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Figure 4.7: Cross section model of the organ pipe containing the symmetry axis of the

resonance body: The points B and E are at zB = iR and zE = −iR respectively. The

points A and C are situated at zA = −∞+ iR− and zB = −∞+ iR+. Finally, B and

F correspond to zB = −∞ − iR+ and zF = −∞ − iR−. The acoustic volume inside

the pipe is called D. The formerly radial and axial variables correspond, in this order,

to =[z] and <[z].

4.8 represent the loci of constant Ψ/(RVjet) ∈ {−0.8,−0.6,−0.4,−0.2, 0, 2, 0, 4, 0.6, 0.8}
and constant Ψ/(RVjet) ∈ {0.2, 0.4, 0.6, 0.8}.

The curvature modulus of the curves of constant Ψ in Fig. 4.9 around the pipe wall

terminations at x = 0, y = ±R increases for increasing |Ψ|. Analogously for Fig. 4.8

originating from Fig. 4.9 by revolution around the x-axis.

Appendix 4.B - Derivation of the input distribution through a

Fokker-Planck approach

Introduction The purpose of this appendix section is to offer a more detailed deriva-

tion of the probability density used in the turbulent source term model presented in

the main body of the article. The derivation is performed from an utilitaristic point

of view, namely, the assumption of quasi-ergodicity announced in the main text will

simply be used and deemed to be appropriate because of providing sensible numerical
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Figure 4.8: Family of surfaces of constant stream function Ψ for Ψ/(RVjet) ∈
{0.2, 0.4, 0.6, 0.8} for the axisymmetric potential flow out of the circular pipe orifice.

The parameters are the non-dimensional real velocity potential Φ/(RVjet) ∈ [−1.5, 0.5]

and the azimuthal angle φ ∈ [0, 2π] for all surfaces of constant Ψ.
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Figure 4.9: Family of curves of constant stream function Ψ for |Ψ/(RVjet)| ∈
{0, 0.2, 0.4, 0.6, 0.8} for the planar potential flow out of the cross section model of the

organ pipe. The simulation parameter is the non-dimensional real velocity potential

and Φ/(RVjet) ∈ [−1.5, 0.5] for all curves of constant Ψ.
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results.

Fokker-Planck equation and Kolmogorov scaling The dynamic object of the

approach presented in the main body of this chapter is the reduced frequency ω which

is modeled as the realization of a stochastic process Ω and evolves as a Markovian

stochastic process as a given point moves from the jet exit slit (“windway”) towards

the upper labial lip. We take z = 0 as the position of the windway and z = H0

as the position of the upper labial lip and require K to be distributed such that the

velocity of the undulating jet perturbation, ∂tξK(t, z = H0), with random wavenumber

K(z = H0) reproduces the Kolmogorov scaling for the kinetic energy Ekin ∼ k−5/3

for sufficiently large wave numbers but small enough to ensure the applicability of the

quadratic dispersion relation Ω ∝ K2.

Upon assuming the requirements of the Kramers-Moyal-expansion to be satisfied

and assuming a quasi-stationary process, we can model the probability density cor-

responding to the distribution of K(z) as P(z, k). The evolution coordinate χ ≡
z/H0/(1 − z/H0) facilitates the investigation of the probability density’s asymptotic

behavior.

In (χ, k)-coordinates, we take the (dynamic) Fokker-Planck equation [53]

∂χP = −∂k(a1(k)P) +
1

2
∂2
k (a2(k)P) . (4.44)

and investigate its quasi-stationary state at χ → ∞, i.e., ∂χP = 0. The equilibrium

probability density to which Peq converges in the limit χ → ∞ is denoted by Peq.

We impose natural boundary conditions for the quasi-stationary state, −a1(k)P) +
1
2
∂k (a2(k)P) = 0 at χ → ∞, meaning there is no “flux of probability” beyond the

quasi-stationary state.

It remains to solve the ordinary differential equation

−a1(k)Peq +
1

2
∂k (a2(k)Peq) = 0 (4.45)

and we find

Peq(k) ∝
exp

(∫ k
k0

dk′ a1(k)′

a2(k′)

)
a2(k)

. (4.46)

By 〈♥〉t we denote the average with respect to the wave number of the quantity in

brackets up to the threshold time t.
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Let us take the formula E(k) ∼ k2 〈v̄(k, t),v(k, t)〉t for the averaged, up to time

t, kinetic energy stored in a flow with isotropic wave vector distribution, whence the

k2, in three dimensions. As simplest model, we choose a plane wave Ansatz v(k) ∼
APeq(k) exp(iω(k)t) for the velocity field induced from the jet perturbation only at the

upper labial lip. A is a constant amplitude and the remaining ω-dependent factor has

been chosen such as to conform with the corresponding factor from the jet perturbation

profile ξk(t, z = H0)/ exp(−ikH0) excluding the exponential amplification.

Finally, we need to assume quasi-ergodicity such that we can relate the E(k) to the

Kolmogorov scaling EKol(k) ∼ k−5/3. Under quasi-ergodicity, we understand that the

kinetic energy averaged over a suitably short time interval of the duration τerg should

follow the Kolmogorov scaling if measured at the region of full turbulence, the upper

labial lip. Then

EKol(k) ∼ 〈v̄(k, t),v(k, t)〉t ∼ |Peq|2k2. (4.47)

Since Peq(k) is a probability density, insertion of the scaling result due to Kol-

mogorov, E(k) ∼ k−5/3, yields the scaling

Peq(k) ∼ k−11/6. (4.48)

Comparison of (4.48) to (4.46) and the Ansatz a1(k) ∼ kδ1 and a2(k) ∼ kδ2 with

δ2 − δ1 = 1 to cancel the exponential in (4.46) fixes δ1 = −7/6 and δ2 = −1/6.

Normalization issues - Pearson’s differential equation In order to obtain a

probability density, we need to ensure integrability of Peq over R+ 3 k. Additionally,

the scaling derived previously should be respected.

The above two requirements are satisfied by employing the Pearson differential

equation [114, 115, 116, 117] and seeking for a probability density which reproduces

the above scaling Peq(k) ∼ k−11/6. The result transfers to the non-dimensional κ ≡
(k − k0)/k0 where we regard k0 as a start wave number. It will be let small enough

later on to perform the expansion needed for the comparison.

Heuristically, we seek a probability density that looks similar to the Cauchy prob-

ability density ∝ (1 + ((k − k0)/k0)2)−1 ∼ k−2. To this end, we consider (4.45) in the

non-dimensional wave number κ and rename the moments, al → ãl (l ∈ {1, 2}). The

procedure leaves the mathematical structure of the equation (4.46) invariant,

0 =
dPeq(κ)

Peq(κ)
+
∂κã2(k)− 2ã1(κ)

ã2(κ)
. (4.49)
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Next, we make the general Ansatz ã1 = κ−7/6(a10 + a11κ
−1 + ...) and ã2(κ) =

κ−1/6/(a20 + a21κ
−1 + ...) such that (∂κã2(κ)− 2ã1(κ))/(ã2(κ)) equates to κ/(b2κ

2 + b0).

b2 and b0 are yet undetermined. The differential equation to solve becomes

0 =
dPeq(κ)

Peq(κ)
+

κ

b2κ2 + b0

. (4.50)

Up to a normalization pre-factor, the solution to the above differential equations

reads

Peq(κ) ∝
(

1 +
κ2

κ2
fit

)−δ
(4.51)

where δ = (2|b2|)−1 and κ2
fit = |b0|/|b2|. δ can be determined by letting κfit � κ and

investigating the resulting scaling behavior in k. This procedure gives δ = 11/12. κ2
fit

will be used as a small (non-dimensional) wave number which is, for our purposes, only

needed to ensure the existence of a normalization constant.

The normalization prescription that Peq(κ) should integrate to unity over R+ yields

finally

Peq(κ) =
2

κfitβ(5/12, 1/2)

(
1 +

κ2

κ2
fit

)− 11
12

(4.52)

where β(x, y) is Euler’s β-function. The pre-factor of 2 stems from the one-sidedness

of normalization. The probability densities in the physical variables k and ω ∝ k2

are specified in the main text and obtained through successively application of the

transformation theorem for probability densities [53].

Vortices We clarify the existence of vortices at the upper labial lip. Intuitively speak-

ing, the latter partitions the jet emanating from the windway into two halves; cf. [28]

for models inspired by this observation. It functions a sharp obstacle to the free jet

propagation. The incident oscillatory jet with displacement ξ given in the main text

has to wiggle its way around the edges of the tip. By convection and stickiness of air,

vortices emerge.

Suppose, the tip has length, say ε, and we choose the coordinate system defined

by the direction of jet propagation and the extension of the upper labial lip’s tip in

transverse direction. Suppose further ε/H0 � 1 and denote the respective positions of

the tip’s edges by r+ and r−. Placing an air probe of mass m at a sufficiently distant

position r, the angular momentum induced on the probe should equate to zero.
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Namely, the air wiggling around the edges needs to do so with opposite orientation

and due to symmetry considerations, we may assume that equal portions of fluid move

around each of the two edges of the tip.

Let us denote the induced velocity field by the presence of the vortices as v± and

assume it does only depend on the distance of the probe to the center of the respective

vortex. The angular momentum condition reads

m(r− r−)× v−(|r− r−|) +m(r− r+)× v+(|r− r+|) = 0. (4.53)

Introducing polar coordinates around the midpoint of r− and r+, upon a slight

dislocation of the probe closer to either of the tips, we may assume r − r± = (r ± dr)
where dr > 0 is a small length compared to R. Due to the cross product, we may

take v± ‖ êφ. (4.53) features only one non-trivial component, namely for the direction

perpendicular to the planar coordinate system defined in the beginning of the present

paragraph.

The equation under consideration turns into

(r − dr)v−φ (r − dr) = −(r + dr)v+
φ (r + dr). (4.54)

Taylor expansion up to linear order in dr and requiring the coefficients to vanish indi-

vidually yields the following two equations:

O((dr)0) : v−φ (r) = −v+
φ (r), (4.55)

O((dr)1) : r∂rv
−
φ (r) + v−φ (r) = −(r∂rv

+
φ (r) + v+

φ (r))). (4.56)

The latter can be solved to yield v+
φ (r; t) = Γ(t)/(2π · r) = −v−φ (r; t) where Γ(t)

originates mathematically as an integration constant and physically plays the role of

a time-dependent circulation. The vorticities ω± ≡ ∇ × v± in a three-dimensional

cylindrical coordinate system stay zero at the present.

However, this changes as soon as we consider the total velocity field vtot = v−+ v+

and let ε→ 0 but keep Υ(t) ≡ Γ(t)ε nonzero for almost all t. In physics, this is known

as the point dipole limit [75].

Keeping only the dipole contribution, we find

vφtot(y, z; t) '
−Υ(t)

2π

y√
y + (z −H0)2

3 (4.57)

where y is the coordinate transverse to the coordinate along the direction of jet propa-

gation, z. Note that the vorticity ωtot ≡ ∇× vtot does not vanish identically. Letting
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y '
√
y + (z −H0)2 and working in the cylindrical coordinate system introduced be-

fore, ω points into the axial direction of the cylindrical coordinate system.

Comments Since the axial direction is along the direction in which the upper labial

lip extends physically, ω points in azimuthal direction in the global organ pipe system.

In the vortex force density contribution to the vortex acoustics equation, fvort = ρ0(ω×
Vjet) holds in acoustic linearization. Since the jet itself propagates in parallel to the

symmetry axis of the organ pipe, we have fvort ∝ êr, i.e., pointing towards the symmetry

axis of the organ pipe or away from it.

The dynamics of the circulation is modeled as

Γ(t) = Γ

∫ ∞
0

dω√
2π

Peq(ω) exp(iωt)

= Γ 〈exp(iΩt)〉Ω∼Peq

(4.58)

where Peq is the probability density for the distribution of hydrodynamic, and thus

acoustic, frequencies due to turbulence and has been specified in the main text.

Appendix 4.C - Nonlinear acoustic effects and filter theorem

Introduction In this appendix section, we assess the approach to use a linear in

place of a nonlinear theory. Recent approaches to the acoustics and fluid dynamics of

the organ pipe focus on nonlinear effects to explain the generation of higher harmonics

[38, 44, 137, 43]. Numerical studies focus on the ab initio solution of the governing

Navier-Stokes equations for compressible flow in realistic organ pipe geometries; See

[20] for a fluid dynamic perspective on the flow from an orifice.

The authors hold the opinion that a linear acoustics theory [28, 71] in conjunction

with turbulence modeling [98, 53] is sufficient to explain also the generation of higher

harmonics from the broadband signal generated by turbulence. Geometrical filter prop-

erties of the pipe’s resonance body [28, 47] will be explained at the end of this section

as well.

Lighthill’s and Westervelt’s equations Let us consider the scenario that we only

know that the Navier-Stokes equations [71] are valid inside the organ pipe. Lighthill’s

equation [72, 28, 90, 91] is an exact rewriting of the compressible Navier-Stokes equa-
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tions and reads:

∂2
t p− c2∆p = c2(∇⊗∇) :: T + ∂2

t (p− c2ρ) (4.59)

where T ≡ ρ(v⊗v)−σ denotes the reduced Lighthill stress tensor and σ is the Cauchy-

Navier stress tensor storing viscous contributions to the Navier-Stokes equations.

The Lighthill’s equation is a somewhat impractical place to start looking for analytic

solutions. However, it forms the starting point for systematic derivations of acoustic

theories.

A non-standard acoustic theory is obtained by using a quadratic equation of state

that is keeping second-order effects in the last contribution on the right-hand side of

the previous equation. Furthermore, thermo-acoustic damping can be included phe-

nomenologically in the expanded form of the equation of state.

The textbook [12] result is

c2ρ = p− γad − 1

2ρ0c2
p2 − κT

ρ0c2

(
1

cV
− 1

cp

)
∂p

∂t
(4.60)

In the above equation, γad = 1.4 is the adiabtic index for a diatomic ideal gas, ρ0 ≈
1.2 kg m−3 denotes the reference mass density of air and c ≈ 343 m s−1 the reference

speed of sound. κT ≈ 26 mW · (K m)−1 is the thermal conductivity of air and cV =

γ−1
ad cp, cp ≈ 1005 J(kg K)−1 denote the specific heat capacities at constant volume (cV )

respectively pressure (cp).

Thermal and viscous damping effects are assumed to be so small that they give

rise to quadratic contributions. Furthermore, we keep only overall linear contribution

from the reduced Lighthill stress tensor such that the contribution to the theory due to

turbulence takes the form of the vortex acoustics source term ρ0c
2∇(ω ×Vjet) where

we treat Vjet as a background zeroth order effect.

Following the standard derivation of the governing equation of linear acoustics

through series expansion [72], the plane wave relations from linear acoustics are im-

posed to convert between acoustic pressure p and acoustic velocity field v as if the

quantities were taken from a linear acoustics theory. The final result is Westervelt’s

equation with a vortex acoustics source term, the latter not being present in the text-

book result [12]. The equation is given first, afterwards the parameters are specified:

∂2
t p+ ℘(−∆)∂tp− c2∆p = ℵ∂2

t p
2 + ρ0c

2∇(ω ×Vjet). (4.61)
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c ≈ 343 m s−1 denotes the speed of sound in air under reference conditions as in the

corresponding linear theory. ℵ is the coefficient of nonlinearity given through

ℵ =
γad − 1

2ρ0c2
. (4.62)

℘ is called thermal-viscous damping coefficient and given through

℘ =
λ+ 2µ

ρ0

+
κT
ρ

(
1

cV
+

1

cp

)
(4.63)

where λ = −2/3·µ (by Stokes’ hypothesis [71]) denotes the bulk and µ = 18.2·10−6 Pa s

denotes the shear viscosity. ℘ is proportional to the sound diffusivity introduced in [12].

A perturbation theory perspective on Westervelt’s equation The drawback

of the Westervelt-like equation lies in its manifest nonlinearity. However, if the nonlin-

earity is small, one may do a perturbation theory or neglect it altogether.

The key idea is to observe that ∼ ∂2
t p

2 and the usual wave equation contribution

∼ ∂2
t p both feature a double partial derivative with respect to time. We refer to the

contributions as nonlinear respective linear dynamic contribution. Choosing a plane

wave Ansatz for the order of magnitudes estimate, we need to assess ℵ‖∂2
t p

2‖/‖∂2
t p‖.

If the expression exceeds unity, the nonlinear dynamic contribution dominates over

the linear one and for values � 1, we may even neglect the usual linear dynamic

contribution against the nonlinear one.

The plane-wave Ansatz yields a characteristic amplitude p ∼ (4ℵ)−1 when the linear

and nonlinear dynamic contributions become equally important. Approximately, this

corresponds to a sound pressure level SPL(p = (4ℵ)−1|pref = 20µPa) & 200 dB.

Letting the organ pipe peak at a sound pressure level p = 120 dB for one frequency,

we still have ℵ‖∂2
t p

2‖/‖∂2
t p‖ ≈ 10−4 which is negligibly small compared to the pure

linear acoustics contribution. Thus, nonlinear acoustic effects can be neglected and a

linear acoustics theory is preferable.

Using Dirac perturbation theory, the nonlinear effects can be accounted for mathe-

matically although no interesting result shows up in the present context.

Geometrical filter theorem Upon neglection of the nonlinear contributions and

damping effects, we arrive at the vortex acoustics equation as a sensible model - cf. [28]

for the same view - for the acoustic wave propagation in the organ pipe: ∂2
t p− c2∆p =
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ρ0c
2∇(ω ×Vjet). The source term has been investigated in the previous section. We

focus on the filter property of the pipe interior G.

To this end, let us investigate the quasi stationary state behavior and the more

general problem

−ω2p̂n(ω) + ω2
np̂n(ω) = f̂n(ω) (4.64)

in frequency-domain space for all mode labels n for the Neumann Laplace operator ∆.

Neumann boundary conditions at the ends of the acoustic volume, to stay with the

jargon introduced in the main text, have already been seen to be the most sensible

choice for boundary conditions by Helmholtz. p̂n(ω) and f̂n(ω) denote the projections

onto the n-th eigenfunction of the Neumann Laplacian of the frequency-domain pressure

p̂(ω,x) and the frequency-domain “dummy” input f̂(ω,x).

Under suitable regularity assumptions on f̂n and p̂n, the functions of a real argument

can be continued uniquely to the complex plane according to the holomorphy principle.

Furthermore, we can expand the fraction such as to have only simple poles in the

complex plane for all eigenmodes of nonzero eigenfrequency.

Invoking Cauchy’s integral theorem, the Fourier back transform becomes simple

pn(t) =
1∑
s=0

(−1)s

2ωn

∫ ∞
−∞

dω

2π

f̂n(ω) exp(iωt)

ω − (−1)sωn
(4.65)

=
1∑
s=0

(−1)s
i

2ωn
f̂n((−1)sωn) exp((−1)siωnt). (4.66)

On the other hand, we can also write the “insertion of an eigenfrequency” by means of

the Dirac-δ-distribution:

pn(t) = i
1∑
s=0

∫
R

dω f̂n(ω) exp(iωt)

2(−1)sω
δ(ω − (−1)sωn) (4.67)

where we agree on ωn > 0 and discard the constant mode due to lack of dynamics.

In this, admittedly very ideal, model, the geometry acts as a perfect δ-filter. The

damping effects lead in general to a deviation from the above formula, but, even more

so, the frequency resolution capabilities of the software package that we use.

The appearance of the δ-distribution inside the integral suggests us to use a Dirac

sequence, say (δε)ε>0 of smooth functions, which converges to the Dirac distribution,

that is, in the weak sense. The prototypical example is that of a Gaussian δε(ω−ωn) ≡
(
√

2πε)−1 exp(−(ω − ωn)2/(2ε2)) which produces δ = limε→0 δε in the weak limit.
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This is what we call geometrical fit filter theorem because it allows us to tune the

observed width of the signals’ peaks in frequency space.

Comments Via the solution of the vortex acoustics like wave equation ∂2
t p− c2∆p =

c2∇fv with fv = ω ×Vjet in the quasi-one-dimensional approximation, the geometrical

fit filter theorem becomes applicable to the quasi-stationary state of the organ pipe.

We conclude the appendix by mentioning that the Westervelt like (4.61) features

a built-in cut-off similar to a second-order phase transition for weak nonlinearities

(in terms of amplitude) at high frequencies. Namely, the angular frequency stored

in the argument of the sinusoidal contribution to the damped wave solution reads

∼ exp(Ξ±(ω)t) where Ξ±(ω) = (℘ω2 ±
√

4c4ω2 − ℘2ω2)/(2c2). If ω > ωc ≡ 2c2/℘ ≈
8.5 GHz for air, the argument of the square root turns negative and the square root

takes a purely imaginary value. Due to the pre-factor i in front of the square root, this

leads to an additional damping contribution. Here, the complex phase of the square

root is chosen such as to exclude exponential growth of the amplitude of the pressure

signal.

The imaginary part of Ξ+(ω) is shown for air in Fig. 4.10 as an example. By analysis

of the functional form of Ξ± and analogizing with thermodynamic potentials, Ξ±(ω)

exhibits a second-order phase transition behavior – “Stokes-Kirchhoff phase transition”

– at ω = ωc = 2c2/℘.

The consequence of the finding is that unlike the linear acoustics theories, the West-

ervelt theory predicts its own fail shortly before the onset of quantum mechanical scales

where the classical theory should cease to be applicable altogether: An acoustic wave

guide at ωc as a reduced fundamental frequency has the length L ≈ cπ/ωc ≈ 127 nm

which is still three order of magnitudes above the typical quantum mechanical length

scale of 10−10 m. It is remarkable that a classical, mechanical theory exhibits this sort

of consistency behavior and predicts its non-applicability at reasonably small scales.

Appendix 4.D - Mouth correction

Observation In the top plot of Fig. 4.6, the fundamental frequency is at f1 ≈ 258 Hz,

rounded to an integer frequency in Hertz. The organ pipe that was used to gather the

data had a resonance body of length L = 58 cm and a radius of R = 2.5 cm. A theory

that builds exclusively on the end-correction δ0 ≈ 2/3 · R produces a fundamental

frequency f1 = c/(2Lcorr) ≈ 288 Hz that is still too high. How comes?
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Figure 4.10: Evolution of the imaginary part of the phase “potential” Ξ+ = Ξ+(ω),

=[Ξ+], as a function of the input reduced frequency ω ∈ [0 Hz, 9 GHz] plotted decadically

logarithmically on the abscissa axis. At ω = ωc = 2c2/℘ ≈ 8.5 GHz the imaginary part

vanishes. In this case, a genuine wave behavior as stored in undulant dynamics such as

exp(iωt) is no longer supported by the theory (4.61).

Mouth correction Phenomenologically [47, § 17.3], the end-correction δ0 is the

smaller of two corrections that lead to an acoustic “elongation” of the resonance body.

In 1947, Ingerslev and Frobenius [74] derived another correction formula. Let H0 denote

the height of the labium and W0 its width. Usually, H0/W0 = 1/4 is chosen by the

organ pipe builder [47, § 17.3]. According to B. Edskes, W0 = q · 2πR where q = 1/4.

The rectangular labium has area A =
√
W0H0

2
= π2/4(R/2)2. Ingerslev and Frobenius

[74] specify

δm ≈
2.3 ·R2

√
A

=
9.2

π
R ≈ 3R. (4.68)

such that δm � δ0 by a factor of about 5.

Plexiglass pipe For the plexiglass pipe model under consideration, an effective length

including both end- and mouth-correction, Leff = L + δ0 + δm ≈ L + 11/3R, yields

f1,corr = c/(2Leff) ≈ 255 Hz which is close to the measured value f1 ≈ 258 Hz given in

the first paragraph of this appendix section.
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Chapter 5

Concluding remarks

This final chapter is devoted to a quick combined summary (section 5.1). After the

collection of the results of the projects with regard to geometric perturbation theory,

a short conclusion (section 5.2) is appropriate: The conclusion is intended as a verbal-

ization of (research) intuition so that a reader may avoid some pitfalls on his quest for

other phenomena generated by or generating geometric perturbations. For the sake of

concreteness, future research directions, where the methods developed in the thesis can

be applied, are indicated at the very end of the thesis, namely in section 5.3. Naturally,

the choice of research questions is inspired by the author’s individual taste.

5.1 Thesis summary

Overall summary for chapter two In chapter two, we derived a perturbation the-

ory in the context of the ICE model to investigate Beale’s acoustic boundary conditions

[8, 7] from a physical mathematics viewpoint, i.e., a perspective which gives rise to con-

crete calculational methods. Under the assumption that the vibrations of the locally

reacting surfaces in Beale’s terminology, or the eardrum vibrations in Vedurmudi et

al.’s jargon [147, 148, 146, 145], are suitably small compared to the characteristic axial

length scale of the cavity, one can neglect the impact of the domain undulations for the

solution of the model as being out of the range of acoustic linearization.

The above finding was central for the thesis as it substantiated the “stationary

domain” approximation widely used in the modeling of acoustic systems. The technique

of Picard iterations allowed us to decouple the, formerly coupled, equations of motion

for the displacement of the locally reacting surfaces and the acoustic pressure inside
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the ICE cavity. Through formal equation re-arrangement, the ICE equations were

shown to admit a complete decoupling in the sense that the fixed-point iteration can

be performed for each of the three ICE equations individually in the stationary domain

approximation.

The piston approximation which effectively results in replacing the locally reacting

surfaces at the endcaps of the ICE cavity was investigated from two different per-

spectives. First of all, we have seen that a “global” estimate involving the Poincaré

inequality permits us to obtain an estimate for an upper bound of the relative error

caused by the approximation.

The spinning mode series expansion [61] as a generalization of the modal cut-off

criterion from duct acoustics allowed a numerical assessment of whether the piston ap-

proximation is the dominant contribution in the coupling between duct and membrane

modes.

Overall summary for chapter three In chapter three, we focused on the interac-

tion of the velocity perturbation due to the tsunami and the part of the surface of the

continental plate that is underwater. We derived a layer of vorticity in the framework

of potential fluid mechanics slightly above the underwater part of the continental plate.

A similarity number estimate the tsunami frequency empowered us to obtain an es-

timated frequency band for the spinning frequencies of vorticities. The frequency band

covered mostly the infrasound spectrum and did not extend significantly into frequency

range audible for humans. Vortex vibration theory served as the link between physical

vortices and the geometric perturbation of the continental plate: It modeled the vibra-

tions of the surface of the plate in response to the layer of vorticity. The corresponding

transverse seismic wave propagated to the shoreline and could be detected (possibly,

due to lack of consensus among biologists about the precise biological pathway used for

detection) by the elephant [66, 65, 63, 64].

The “seismic” explanation based on the perturbation of the surface geometry and

its advantage rooted in the circumvention of the impedance mismatch for sound prop-

agation from an underwater source to air. The water-air interface is acoustically an

almost perfect reflector in the high infrasound regime of interest to elephants.

From a mechanical point of view, the expected sound-pressure level and the ar-

rival time difference calculated and compared to (scarce) experimental data the seismic

pathway is possible: The maximum arrival time difference was seen to be between
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30 min− 75 min which agrees with the (scarce, [159]) experimental data.

In terms of sound pressure level, reasonable parameters led to a maximum sound

pressure level equivalent at the shoreline corresponding to ∼ 60 dB, i.e., traffic-level

noise [131]. Thus, arousal in elephants as observed by everyday observers and reported

in some scientific studies due to the seismic precursor signal is plausible.

Overall summary for chapter four In chapter four, two aspects of organ pipe

physics were investigated.

First, the focus was on an understanding of the geometry of the organ pipe. The

notion of “acoustic volume inside the pipe” was introduced as a measure to specify

when a parcel of air can be regarded as “inside” the open pipe. At the boundary of the

walls of the pipe, vortices were seen to form out.

A theoretic derivation resulted in two counter-rotating vortex rings slightly inside

respectively outside the pipe endcap circle. The derivation was similar to the case of

elephants, but differed in the sense that it yielded two vortex rings instead of a layer of

vortex dipoles. In the planar cross section model, the flow-field of the vortex dipole pair

was seen to admit a sphere of separation. By simulating the flow-field, the “outside”

of the pipe could be discerned from its “inside”.

Counting the excess volume stored inside the sphere of separation to the acoustic

volume inside the pipe, the end-correction was reproduced with the less than 10 % error

compared to the literature value [28, 88]: The physical perturbation of the air velocity

caused by the edges of the open end leads to an elongation of the pipe by δ0(R) = 2/3R,

i.e., causes a perturbation of the geometry of the open-ended organ pipe in the idealized

picture due to Helmholtz [156].

The second aspect concerned the sound production in the organ pipe. Consensus

exists on the role of the resonance body of the pipe as a passive filter element selecting

the eigenfrequencies. We proposed a model based on the gradual onset of turbulence (see

[132, 100] for attempts in a different physical context) of the geometric perturbation

of the jet exiting the windway and propagating towards the upper labial lip. The

wavenumber was interpreted as a position dependent random variable.

Via a phenomenological probability model, a broadband frequency distribution at

the upper labial lip was derived. Subject to two corrections for the maximum existed

frequency and to ensure realistic filter properties of the organ pipe, the recorded power

spectrum (see [3] for more measurement data) of a plexiglass organ pipe was reproduced
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with . 15 dB maximum discrepancy and . 10 dB for most of frequencies.

5.2 Conclusion: Interrelation of physical and geo-

metric perturbations

From the projects, we have seen that perturbations of a mechanical system can hap-

pen as a consequence of a perturbation of certain geometric features and, conversely,

mechanical processes can alter geometric properties of the mechanical system under

consideration. Even more, the cues generated by the mechanical system convey infor-

mation about the geometric perturbation.

• The latter statement is manifest in directional hearing, or more concretely, the

ICE model. Without eardrum vibrations, no directional hearing cues are produced

by virtue of the pressure wave inside the cavity.

Also in organ pipes, without the geometric perturbation by the excess volume

stored inside the sphere of separation, Helmholtz zeroth order guess of a stationary

cylindrical cavity with Neumann boundary conditions (and the possibility of a

mouth correction) would have been fully accurate. Furthermore, without the

geometric perturbation to the ideal jet profile, no starting frequency would have

been generated for stochastic evolution of frequencies that generate the broadband

spectrum from which the pipe filters its resonance frequencies.

Without the geometric perturbation of the surface of the continental plate, ele-

phants would not be able to gather geometric information about how much they

are in danger by the approaching tsunami.

• The conclusion named first becomes more approachable if its manifestations in

concrete situations is studied.

In organ pipes, the blowing of the organ pipe leads to the formation of a pressure

wave and the generation of a vortex structure at the open end. The latter creates

the sphere of generation which gives an excess volume to the organ pipe - the

end-correction. On the other hand, the perturbation of the frequency of the ideal,

Helmholtz open-ended organ pipe is directly implied by the change in organ pipe

geometry, more precisely, the acoustic volume its resonance body encloses.
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In the ICE model used to study acoustic boundary conditions as a formalization

of geometric perturbation, the external perturbation given by a sound stimulus

altered the geometric state of the eardrum membranes from “equilibrium position”

to “oscillation of a curved surface”. Precisely this information is forwarded to the

interaural cavity and generates the internal pressure inside the cavity. The latter

is connected to the geometric properties of the cavity in which it lives through

boundary conditions and, finally, connects the vibrations of the two membranes.

In the case of cues generated by tsunamis, the momentum disturbance by the

tsunami generating event manifested in the form of a layer of vorticity slightly

above the continental plate. The latter perturbs the geometry of the surface of

the continental plate. This information can be conveyed to and detected by the

elephant.

Precisely the interplay between small changes in geometrical properties of mechanical

systems and the perturbations to mechanical equilibrium processes served as the mo-

tivation for the thesis and, conversely, the thesis served as a case study of how these

small changes harmonize to yield, in the author’s opinion, interesting physical phenom-

ena that can be observed in the real world and, even better, described with the aid of,

both, physical techniques and geometric concepts.

5.3 Outlook

Here, different projects are proposed that could be used to push further the research

presented in this thesis. The description is in some parts technical. The intention is

to ease the translation process between open research question and work-flow for a

reader who wants to build on this thesis. Some additional suggestions have already

been sketched in the summaries of the individual chapters. We discuss some of these

questions in the form of preliminary project descriptions.

How do we extend geometric perturbation theory to multi-cavity systems?

The geometric perturbation theory developed in chapter two is well-adapted to one

cylindrical cavity for extraordinarily small perturbations (boundary vibration ampli-

tudes in the nanometer range versus a cavity of typical length of centimeters). Thus

two directions of investigation are immediately possible. The first question concerns a

comparison of exact solutions to ICE-like coupled systems with the perturbation theory.
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A former ICE-model comprised Dirichlet boundary conditions for the acoustic wave

equation in radial direction and two circularly symmetric membranes covering all of

the endcaps of the cavity, one at either side respectively. In this simple model case,

separability of the Laplacian in cylindrical coordinates allows to reduce the partial

differential equations in two and three spatial dimensions to a countably infinite number

of differential equations in zero respectively one spatial dimension. Since the problem

has been solved exactly already in the stationary domain approximation, the decoupling

argument can be tested against the exact solution.

Second, there may not even be only one cavity but several cavities connected via

membrane or plate like locally reacting surfaces. In the case of a large number of locally

reacting surfaces ≥ 3 and a large number of connecting cavities ≥ 2, an extension of

the systematic decoupling argument presented in chapter two would be of interest.

A possible application would be for instance directional hearing in crickets, see

[145] for details on directional hearing and references specific to crickets in the outlook.

Crickets feature two symmetrical cavities interfaced by a septum membrane partitioning

the tracheal system into the two symmetric halves. To be even more realistic, the

pressure input on the septum membrane is amplified by a horn.

Are there more tractable formulations of geometric perturbation theory in

simple examples? Another question concerns a “mathematical heresy” but is inter-

esting intuitively. Suppose, we have an elastic strip [0, L] which forms the configuration

space of our acoustic wave equation in response to external stimulation in time. In

scenario number one, the strip-cavity supports Neumann boundary conditions at fixed

end. The problem is solvable by standard techniques.

In scenario number two, the size of the cavity is can be shrunk by a small pertur-

bation in time, that is, we let [−x0(t), L+ xL(t)] with ‖x0(t)‖, ‖xL(t)‖ � L and x0, xL.

Suppose Neumann boundary conditions hold true. Obviously, the eigenvalue problem

for the Laplacian can be solved for all fixed t and one obtains a t-parameterized family

of eigenvalues and associated eigenfunctions. What coefficients cn(t) for all eigenfunc-

tions ψn,t(x) ∝ cos(nπx/L(t)) are we to choose in pn(t, x) = cn(t) cos(nπx/L(t)) with

L(t) = L + (x0(t) + xL(t)) such that the equation ∂2
t pn,t − c2n2π2/(L(t))pn,t = 0 is

fulfilled? Is there a consistent perturbation procedure to determine the cn’s?

A much more challenging question concerns to what extent the intuition of a “time-

evolving” eigenvalue by “minimal substitution λn = −n2π2/L2 → −n2π2/(L(t))2 =:
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λn(t) carries over to more realistic higher dimensional cavities where x0, xL depend also

on other variables than just time.

What is the best choice for an unperturbed domain to minimize the “strength”

of the perturbation operator? As described in the appendix to chapter four, diffi-

culties in solving partial differential equations occur already when the spatial arguments

live on a time-independent but non-standard co-dimension one sub-manifold Ω ⊂ Rn.

For the sake of concreteness, we stay with a membrane equation of the scalar form

∂2
t u − c2

m∆u = f . Suppose that an eigenfunction set of the Laplacian is known on a

different co-dimension one sub-manifold Ω0 ⊂ Rn [68, 96]. Furthermore, assume that

there is a sufficiently regular diffeomorphism Ψ : Ω0 → Ω between the manifolds.

The perturbation theory developed in chapter two thus reduces to the case of a

time-independent perturbation theory, see [122, 123, 124] for a formal discussion of

time-independent perturbation theory. The formal question concerns good, or possibly

even the best choice, of the reference, i.e., unperturbed manifold Ω: How are we to

choose the reference manifold such as to minimize the “strength” of the perturbation

operator V?

When is a geometric pertubation small in the language of operator theory?

In the case of time-independent perturbations as well as time-independent perturba-

tions, a more rigorous formulation of the geometric perturbation theory as designed in

chapter two should be achievable: Suppose a time-independent or a time-dependent per-

turbation of the (fixed) domain Ω0 to Ω(t) such that the involved geometric objects stay

well-behaved and topological properties are preserved under the perturbation. What

can be said about the perturbation operator V in the time-independent case and about

V(t) in the time-dependent case? In particular, which requirements are needed to en-

sure that V(t) really is a perturbation operator of suitably small strength compared to

the Laplacian ∆ in the time-independent or the d’Alembertian � in the time-dependent

case?

How does a layer of vorticity form at a surface when a fluid impinges from a

non-parallel direction and what happens to the background boundary layer

in this case? A formalization of the theoretical argument leading to the vortices is

desirable: Consider a two-dimensional regular and oriented surface Γ ↪→ R3 diffeomor-

phic to a domain in R2. Physically, the surface shall correspond to a solid boundary.
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Assume that fluid impinges on the surface with “perturbation” velocity V(t) ∈ R3 at a

given time t ≥ 0 such that V(t) 6‖ TyΓ for almost all y ∈ Γ. Paralleling the derivation

presented in the appendix to chapter three, one obtains that on all of Γ, small vortex

dipoles should exist.

Further investigations could concern a detailed relation of the vortex dipoles to

boundary layers [128], that is, considering an abrupt perturbation of a background ocean

flow (with boundary layer in the vicinity of Γ) which fails to satisfy the standard no-slip

boundary conditions. In other words, the perturbation should lead to a disruption of

a laminar boundary layer such that the boundary layer ultimately can produce sound

[72].

The author emphasizes that this project may or may not work: Little details are

known about how the boundary layer actually supports the formation of acoustic re-

spectively vortical disturbances in boundary layers.

What is the impact of geometric perturbations on the reference organ ge-

ometry on the fundamental frequencies of the pipe and the sphere of sep-

aration? An interesting application to organ pipes is the study of end-correction

phenomena by smoke experiment for “perturbed” organ pipe: It is well-known that the

organ pipe can change the fundamental frequency to lower respectively higher frequen-

cies by increasing the surface area of the organ pipe at the open end or decreasing it,

see [1, 136].

Given that axial wave propagation is supported in sufficiently long pipes only below

the cut-off frequency fc = cµ11/(2πR), a one-dimensional wave equation effectively

becomes a Webster equation, [131]: ∂2
t p − c2D2p = 0 where D2 = Σ(x)−1∂x(Σ(x)∂x)

is of Sturm-Liouville type and Σ(x) = πR(x)2 denotes the cross-section of the pipe

at distance x ∈ (0, L) from the bottom of the resonance body. For the organ pipe

practice [1, 136], Σ(x) is non-constant only on (L − δL, L) and R denotes the radius

of the “unperturbed” pipe. The smallness of the perturbation can be encapsulated as

∂xΣ(x)/(πR2/L)� 1 as well as (Σ(x)− πR2)� πR2.

The question is first to what extent the eigenfrequencies π2n2/L2 of the pipe without

any corrections are affected by the perturbation in cross section. The second question

concerns a theoretical and experimental study of the behavior of a sphere of separation

in this modified geometry, e.g., for a linear approximation of the perturbation, that is

Σ(x) = πR2 + δA(x− L+ δL) for x ∈ (L− δL, L) and Σ(x) = πR2.
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It is hypothesized that a sphere of separation forms out experimentally as it did in

the “unperturbed” case as long as the perturbation is sufficiently small. Given that the

end-correction δ0(R)/L� 1 for sufficiently thin pipes, corrections to the end-correction

are expected to be negligible. The mouth correction of the organ pipe is by construction

not affected by the change of cross section area in the vicinity of the open end of the

pipe. The impact of the perturbation operator V for the organ pipe setup then accounts

for deviations of the fundamental frequency of the organ pipe modified according to the

above prescription from the fundamental frequency of the conventional “unperturbed”

organ pipe that was studied in chapter four.
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