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Chapter 1

Introduction

Almost all phenomena in nature can be explained by the standard model of par-
ticle physics (SM). The only well established experimental sign of physics beyond
the standard model (BSM) are the neutrino flavour oscillations, which imply the exis-
tence of neutrino masses. The neutrino masses cannot be generated with the fields
available in the standard model alone.

Besides neutrino oscillations, there are several hints of new physics coming
from cosmology. One of the most compelling signs of physics beyond the standard
model is the observed baryon asymmetry of the Universe (BAU). We quantify the
size of the BAU through the ratio of baryon number to entropy [1–4]

Yobs
B = (8.6± 0.1)× 10−11 . (1.1)

Mechanisms of producing the excess of baryons over antibaryons are known
by the umbrella term baryogenesis. The conditions necessary for producing such
an asymmetry were first laid out by Sakharov in 1967 [5], known as the Sakharov
conditions:

• baryon number violation /B

• violation of C and CP symmetries

• deviation from thermal equilibrium.

It is interesting that all three of these Sakharov conditions are realized in the stan-
dard model. Baryon number is violated by the so-called sphaleron processes, which
violate the sum of baryon and lepton numbers B + L, but conserve their differ-
ence B− L. The C and CP symmetries are violated in the quark sector through the
phases in the Cabbibo-Kobayashi-Makasawa (CKM) matrix. However, even if the
electroweak phase transition was first-order, giving a sizeable deviation from equi-
librium, the standard model would fall short of the observed BAU by more than 16
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Figure 1.1: The standard model of particle physics. Note that all standard model
particles appear in left and right-handed chiralities except for neutrinos.

orders of magnitude [6–8]. Therefore, any scenario that could explain the observed
BAU has to rely on phenomena beyond the standard model.

In the SM all fermions appear as both right-handed (RH) and left-handed (LH)
chiral particles. The only exception are the neutrinos, which appear only as left-
handed (c.f. Fig. 1.1).

If we extend the standard model by right-handed neutrinos, we can solve both
problems, the neutrino masses can be generated through the so-called seesaw mech-
anism [9–14], and the baryon asymmetry of the universe can arise through a process
called leptogenesis [15].

The neutrino masses are significantly smaller than any of the other fermion
masses in the standard model. Current limits from the Planck collaboration [4],
imply that the sum of neutrino masses is smaller than ∑i mi < 0.12 eV. If neutrino
masses are generated only through the Higgs mechanism, their Yukawa couplings
would need to be more than 6 orders of magnitude smaller than those of the elec-
tron.

However, neutrinos have another trick up their sleeve. Right-handed neutrinos
are standard model gauge singlets. As such, in addition to the usual Dirac masses
generated through the Higgs mechanism, they can also have Majorana masses. The
Majorana masses are free parameters and are not constrained by the observed neu-
trino masses. In the usual seesaw mechanism, the Majorana masses M are assumed
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to be much larger than the electroweak scale ∼ v = 174 GeV, which suppresses the
observed neutrino masses by a factor v/M.

On the other hand, Majorana masses below the electroweak scale are phenomeno-
logically motivated, as the existence of right-handed neutrinos could be tested ex-
perimentally. For Majorana masses below 5 GeV, right-handed neutrinos could be
found in current experiments like the NA62 experiment [16, 17], T2K [18], or, in
the future, the SHiP experiment [19, 20]. Existing LHC experiments such as AT-
LAS [21–23], CMS [24–26] and LHCb [27, 28] are already performing searches for
right-handed neutrinos with Majorana masses between 5 GeV and the W gauge
boson mass. Sensitivity to right-handed neutrinos can be significantly enhanced
with the inclusion of more signatures and improved triggers [29–35], or with ad-
ditional detectors [36–38]. Higher sensitivity could be achieved at future lepton
colliders [20, 39–46].

Besides phenomenological considerations, Majorana masses below the electroweak
scale can also be motivated on theoretical grounds. Right-handed neutrinos with
superheavy Majorana masses could potentially destabilize the Higgs mass [47],
which is not a problem for Majorana masses below the EW scale [48]. Further-
more, it is also possible that the Majorana masses and the electroweak scale have
a common origin [49–52]. Light Majorana masses are also realised in models with
an approximate B− L symmetry. The smallness of the observed neutrino masses
is then not due to the seesaw mechanism, but is instead determined by the amount
of violation of the approximate “lepton-number”-like symmetry. Examples of such
models include the “inverse seesaw models” [53–56], “linear seesaw models” [57–
60] (see also [61–65]), and “minimal flavour violation” [66, 67]. For numerical im-
plementations of different models that include radiative corrections see [68, 69]. In
this work we remain agnostic to the origin of this approximate symmetry, and only
consider SM extended with two right-handed neutrinos. This scenario effectively
corresponds to the Neutrino Minimal Standard Model (ν-MSM) [70, 71], where two
of the right-handed neutrinos are responsible for the light neutrino masses and the
BAU, while a third right-handed neutrino almost decouples, and acts as a dark
matter candidate. 1

Leptogenesis [15] is a mechanism of producing a lepton asymmetry in the early
universe. This lepton asymmetry is converted to a baryon asymmetry through the
electroweak sphaleron processes [74], solving the puzzle of the observed BAU. In
the simplest realization, the lepton asymmetry is generated through the CP violat-
ing decays of a heavy Majorana neutrino in the early universe. The majority of the
lepton asymmetry is produced at temperatures T ∼ M, when the heavy Majorana
neutrino is freezing out of equilibrium. Such a scenario requires large right-handed
neutrino Majorana masses M ∼ 109 GeV [75–79], which are out of reach for any

1For a more detailed descriptions of the νMSM see e.g. refs. [72, 73].
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present or near future experiments.
This bound can be significantly relaxed if at least two of the Majorana masses

are close to being degenerate, as the decay asymmetry becomes resonantly en-
hanced [80–86], which is known as resonant leptogenesis. In this scenario the lower
bound comes from the requirement that the heavy neutrino decays before the sphaleron
freeze-out at T ∼ 130 GeV [87].

For even lighter (GeV-scale) right-handed neutrino Majorana masses, instead
of relying on freeze-out, leptogenesis can occur during the production and oscilla-
tions of the right-handed Majorana neutrinos [71, 88], known as leptogenesis through
neutrino oscillations.

In this work we develop numerical and analytic methods to study these two
leptogenesis mechanisms, and discuss the relevant phenomenological implications.
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The Low Scale Seesaw Mechanism
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In this chapter we briefly review the phenomenology of neutrino masses, and
the type-I seesaw model. Neutrino oscillations are the only well established exper-
imental signal of physics beyond the SM. The interactions of neutrinos νL with the
rest of the standard model is described by the Lagrangian

− g√
2

ν̄LγµeLW+
µ −

g√
2

ēLγµνLW−µ −
g

2 cos θW
ν̄LγµνLZµ , (2.1)

which defines the interaction eigenstates νe, νµ and ντ. Significant evidence for
neutrino oscillations, which imply neutrino masses, was found in experiments in-
volving solar, atmospheric and reactor neutrinos. The oscillations of neutrinos are
then explained by a mismatch between the neutrino interaction and mass bases,
i.e. each of the flavour eigenstates να can be written as a superposition of mass
eigenstates

να(x) = ∑
β

(Uν)αβνβ(x) , (2.2)

where Uν is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, for
which we use the standard parametrization [89]

Uν = V(23)UδV(13)U−δV(12)diag(eiα1/2, eiα2/2, 1) , (2.3)

where U±δ = diag(1, e∓iδ/2, e±iδ/2), and the non-vanishing entries of V(αβ) for
α = e, µ, τ are

V(αβ)
aa = V(αβ)

bb = cos θαβ , V(αβ)
αβ = −V(αβ)

βα = sin θαβ , V(αβ)
γγ |γ 6=α ,β = 1 . (2.4)

The elements of the PMNS matrix, as well as two of the neutrino mass differences
have been measured by the neutrino oscillation experiments. The smaller of the
two mass differences is the “solar mass difference” ∆m2

sol ≡ m2
2 − m2

1, where m2
is the heavier of the two neutrinos. The mass difference, between m1 and m3, is
for historical reasons known as the “atmospheric mass difference” ∆m2

atm ≡ |m2
3 −

m2
1|. The third mass eigenstate can either be heavier than m1 and m2, in what we

call “normal neutrino mass ordering” (NO), or lighter, which corresponds to the
“inverted ordering” (IO). We summarize these definitions in table 2.1.

The parameters of the PMNS matrix can be determined by combining results of
several different experiments. In the following, we take the best fit values provided
by the ν-fit collaboration [90, 91], cf. Table 2.2.
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Variables NO IO

Masses
m2

1 m2
lightest m2

lightest − ∆m2
32 − ∆m2

sol
m2

2 m2
lightest + ∆m2

sol m2
lightest − ∆m2

32
m2

3 m2
lightest + ∆m2

31 m2
lightest

Differences
larger ∆m2 ∆m2

31 = m2
3 −m2

1 ∆m2
32 = m2

3 −m2
2

(ns = 2) ∆m2
atm m2

3 m2
1 ≡ m2

2 +O(∆m2
sol/∆m2

atm)

Table 2.1: The naming convention for neutrino masses and their differences in the
cases of normal (NO) and inverted orderings (IO). The “solar mass difference” is
the smaller mass difference, defined as the difference ∆m2

sol = m2
2 −m2

1 regardless
of the neutrino mass ordering. The larger mass difference is known as the “atmo-
spheric mass difference”, and it is defined as ∆m2

atm = |m2
3 − m2

1|. The lightest
neutrino is massless (mlightest = 0) in the minimal scenario (ns = 2) and the at-
mospheric mass splitting ∆m2

atm can clearly be identified with one of the neutrino
masses.

2.1 The Type-I Seesaw Mechanism

The type-I seesaw model is the extension of the standard model by ns right-handed
neutrinos (RHN) νR i (i = 1 . . . ns) and is described by the Lagrangian

L = LSM + iνRi∂/νRi −
1
2
(νc

Ri MijνRj + νRi M∗jiν
c
Rj)−Y∗iα`αεφνRi −YiανRiφ

†ε†`α ,

(2.5)

where LSM is the Lagrangian of the SM. The only interaction between the right-
handed neutrinos and the SM is through the Yukawa couplings Y to the SM lepton

Variables NO IO

Differences smaller ∆m2
sol 7.40 × 10−5 eV2 7.40 × 10−5 eV2

larger ∆m2 2.494× 10−3 eV2 −2.465× 10−3 eV2

Angles
sin2θ12 0.307 0.307
sin2θ13 0.02206 0.02227
sin2θ23 0.538 0.554

Table 2.2: Best fit values of neutrino mixing angles and mass differences from the
NuFIT 3.2 release by the ν-fit collaboration [90, 91], for "normal ordering" (NO) and
"inverted ordering" (IO). The mass differences are defined in Table 2.1.
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doublets `α (α = e, µ, τ) and the Higgs field φ, where ε is the antisymmetric SU(2)-
invariant tensor with ε12 = 1. The superscript c appearing on the RHN spinors
denotes charge conjugation. The matrix Mij is the Majorana mass matrix of the
RHN.

After electroweak symmetry breaking (EWSB) the Higgs field obtains an ex-
pectation value v = 174 GeV. The Yukawa interaction term Y∗ia`aεφνRi gives us the
Dirac mass term νLα(mD)αiνRi, with the Dirac mass

(mD)αi = v
(

Y†
)

αi
. (2.6)

After EWSB we can write the mass term of the neutrinos in the block-matrix form

L ⊃ −1
2
(
ν̄L ν̄c

R
) ( 0 mD

mT
D M

)(
νc

L
νR

)
. (2.7)

Assuming a hierarchy between the Majorana and Dirac masses, M � mD we
can block-diagonalize the mass matrix (2.7). We find light and heavy mass eigen-
states described by the Majorana spinors

νi =
[
V†

ν νL −U†
ν θνc

R + VT
ν νc

L −UT
ν θνR

]
i

, Ni =
[
V†

NνR + ΘTνc
L + VT

Nνc
R + Θ†νL

]
i

,

(2.8)

respectively. The mixing matrix between the light and heavy states is approxi-
mately

θ ≈ mD M−1 . (2.9)

The light neutrino mixing matrix Vν =
(

1− 1
2 θθ†

)
Uν diagonalises the light neu-

trino mass matrix mν and the unitary part Uν is the PMNS matrix. The heavy
neutrino mass matrix is diagonalized by VN =

(
1− 1

2 θTθ∗
)

UN. The mixing angle
Θ is given by Θ = θU∗N. The light neutrino mass matrix after EWSB is to a very
good approximation given by

mν ≈ −mD M−1mT
D = −v2Y†M−1Y∗ = −θMθT , (2.10)

while the heavy neutrino mass matrix is

MN = M +
1
2

(
θ†θM + MTθTθ∗

)
. (2.11)

Note that although the correction to the heavy neutrino mass matrix appears neg-
ligible, it can play a crucial role in leptogenesis, as well as lepton number violating
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signatures at collider experiments if the masses in M are close to being degenerate.
The difference between the heavy neutrino mass eigenstates will then be given by:

∆Mphys =
√

∆M2 + ∆M2
θθ − 2∆M∆Mθθ cos(2Reω) , (2.12)

where ∆Mθθ = m2 − m3 for normal ordering and ∆Mθθ = m1 − m2 for inverted
ordering. As a result of the type-I seesaw mechanism, the previously massless
light neutrinos obtain a finite mass, and the heavy neutrinos obtain a θ-suppressed
weak interaction. The size of this suppression θ is an important quantity from the
point of view of experimental searches, as the heavy neutrino then takes part in all
interactions as the light neutrino, but with the cross-section suppressed by a factor
|θiα|2. Therefore it is useful to introduce the quantities

U2
iα ≡ |θiα|2 , U2

α ≡∑
i
|θiα|2 , (2.13)

U2
i ≡∑

α

|θiα|2 , U2 ≡∑
i ,α
|θiα|2 . (2.14)

Within the type-I seesaw model, there are two ways to explain the observed
smallness of the neutrino masses mν. One possibility is that the scale of the Majo-
rana masses M is much larger than the electroweak scale ∼ v = 174 GeV, and the
neutrino Yukawa couplings are of Y ∼ O(1). The smallness of the light neutrino
masses is then realized via the suppression factor v/M. This conventional scenario
is only viable for heavy neutrinos with masses above the electroweak scale M� v.
The other possibility, that the Yukawa couplings are small Y � 1, is also quite in-
teresting from an experimental point of view, as the heavy neutrino masses could
be below the electroweak scale and therefore accessible to current or near future
experiments. If we assume that all heavy neutrinos have roughly the same mass
Mij = M̄ and Yukawa couplings Yiα = Y0, and neglect the differences between the
flavour and mass eigenstates of the light neutrinos, we find the expected size of the
Yukawa couplings through the “naive seesaw” relation

|Yiα|2 ∼ Y2
0 ≡

M̄
v2

√
∆m2

atm + m2
lightest , (2.15)

where ∆m2
atm is the larger of the observed mass differences, and mlightest is the mass

of the lightest neutrino which has not been experimentally measured to this date.
The above relation also implies the size of the mixing angle between the heavy and
light neutrinos

U2
0 =

1
M̄

√
∆m2

atm + m2
lightest . (2.16)
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Figure 2.1: The range of Yukawa couplings (left panel) and mixing angles (right
panel) consistent with the naive seesaw relation (2.15) (blue), where we assumed
mlightest = 0. The Standard Model lepton Yukawa couplings are also presented
(red, dashed) for comparison. For heavy neutrinos at the GeV scale the naive
Yukawa couplings are a few orders of magnitude smaller than the electron Yukawa
couplings. On the other hand, GeV-scale heavy neutrino masses also imply large
mixing angles, which increases the chances of testing the model at near future ex-
periments (right panel).

These naive estimates can easily be avoided if there are cancellations between en-
tries of the Dirac mass matrix mD, which can allow for Yukawa couplings and
mixing angles much larger than the naive estimates |Yiα| � Y0 and U2

iα � U2
0 . We

will discuss such a scenario in more detail in Section 2.2.

2.1.1 The Casas-Ibarra Parametrization

The Lagrangian (2.5) has 7ns − 3 unknown parameters, with ns of them corre-
sponding to the heavy neutrino masses. The remaining parameters are already
constrained by the light neutrino oscillation data.

At tree-level, the connection between the Yukawa couplings and the light neu-
trino masses is conveniently given by the Casas-Ibarra parametrization [92]. The
parametrization was generalized in [93] to include radiative corrections to the neu-
trino masses, which we neglect in the present discussion. The neutrino Yukawa
couplings can then be parametrized as

Y† =
i
v

Uν

√
mdiag

ν R
√

Mdiag . (2.17)

The matrix Mdiag is the Majorana mass matrix from (2.5), and mdiag
ν are the eigen-

values of the light neutrino mass matrix mν. The number of massive light neutri-
nos cannot be larger than ns. With the two observed neutrino mass differences,
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this model requires at least two heavy neutrinos if mlightest = 0 and ns = 3 heavy
neutrinos if mlightest 6= 0. R is a complex orthogonal matrix that satisfiesRRT = 1.
In the case of ns = 3, it can be expressed through the Euler parametrization:

R = R(23)R(13)R(12) , (2.18)

where the non-zero elements ofR(ij) are

R(ij)
ii = R(ij)

jj = cos ωij , R(ij)
kk |k 6=i ,j = 1 , (2.19)

R(ij)
ij = sin ωij , R(ij)

ji = − sin ωij , (2.20)

where ωij are complex angles. In the minimal case with only two heavy neutrinos
ns = 2, the matrices are instead given by

RNO =

 0 0
cos ω sin ω
−ξ sin ω ξ cos ω

 , RIO =

 cos ω sin ω
−ξ sin ω ξ cos ω

0 0

 , (2.21)

where superscripts (NO) and (IO) indicate normal or inverted neutrino mass order-
ing, ω = Re ω + i Im ω is a complex angle and ξ = ±1. For large values | Im ω| � 1
we can expand the trigonometric functions to obtain the useful expansion

RNH
| Im ω|�1 =

1
2

eIm ωe−i Re ω

 0 0
1 i
−ξi ξ

 , RIH
| Im ω|�1 =

1
2

eIm ωe−i Re ω

 1 i
−ξi ξ

0 0

 .

(2.22)

2.2 Symmetry protected scenario

Low-scale seesaw models are often motivated by an approximate “lepton number”-
like symmetry, that allows for small heavy neutrino masses M simultaneously with
sizeable neutrino Yukawa couplings that are technically natural. Such scenarios are
often referred to as symmetry protected scenarios.

This limit can be motivated by extensions of the type-I seesaw model, such
as the “inverse seesaw”, the “linear seesaw”, scale invariant models [51], some
technicolour-type models [94, 95], models with “minimal flavour violation”[66, 67]
or the νMSM [96].

Perhaps the most attractive feature of this class of models is that the mixings
U2

iα can be sufficiently larger than the naive estimate (2.16), making it accessible to
experimental searches. In the following, we consider the minimal scenario with
two heavy neutrinos ns = 2.
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Let us examine mass and Yukawa matrices with the form

M = M̄
(
µ 1
1 µ

)
, Y =

(
Fe Fµ Fτ

εe εµ ετ

)
, (2.23)

where µ and ε are small parameters. The mass matrix of the light neutrinos

mν = v2Y†M−1Y∗ = O(ε) +O(µ) (2.24)

vanishes at zeroth order in µ and ε. This means that the Yukawa couplings Fα

can be as large as the electron Yukawa coupling without requiring large Majorana
masses, as long as εα and µ are sufficiently small. The small parameters in (2.23)
are consistent with the Casas-Ibarra parametrization, which becomes evident if we
multiply the Yukawa matrix from (2.17) by the matrix

UB−L =
1√
2

(
1 i
1 −i

)
, (2.25)

where we can identify

Fα =
1√
2
(Y1α + iY2α) , εα =

1√
2
(Y1α + iY2α) , (2.26)

as well as

µ =
M1 −M2

M1 + M2
. (2.27)

Furthermore, we find that parameter

ε = e−2 Im ω , (2.28)

determines the size of the Yukawa couplings

|Fα| ∼ Y0/
√
ε , |εα| ∼

√
εY0 . (2.29)

Therefore, we can associate small values of ε with large imaginary parts of the
complex angle ω. Note we cannot take the exact limit ε → 0, as |Fα| would grow
to be infinitely large.

Approximate L̄ conservation This parametrization is, of course, more than just
a mathematical trick. The transformation UB−L is not only applied to the Yukawa
matrices, but to the spinors νR. Through this transformation, we find the states

νRs =
1√
2
(νR1 + iνR2) , νRw =

1√
2
(νR1 − iνR2) , (2.30)
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where νRi are the flavour eigenstates of M. In the limit µ , ε → 0, the weak state
νRw decouples, and we can assign a lepton number +1 to νRs and −1 to νRw. In
this limit, we can construct a Dirac spinor ψN = (νRs + νc

Rw), and rewrite the La-
grangian as

L = LSM + ψN(i/∂ − M̄)ψN − FαψNφ†ε†PL`α − F∗α `αεφPRψN

−εαψc
Nφ†ε†PL`α − ε∗α`αεφPRψc

N −
1
2µM̄

(
ψc

NψN + ψNψc
N
)

. (2.31)

This limit is often called the pseudo-Dirac scenario, and in the limit µ, ε→ 0 lepton
number becomes conserved, and the light neutrino masses vanish. The L̄NV terms
are summarized in the second line of Eq. (2.31).

Approximate L̃ conservation Another approximate symmetry arises at temper-
atures T � M, where the Majorana masses are negligible. In such a regime, we
may assign an approximate lepton number L̃ to the helicity states of the heavy
neutrinos, L̃ = +1 to the positive helicity, and L̃ = −1 for negative helicity.

This lepton number remains approximately conserved in leptogenesis through
neutrino oscillations.1 It is important to differentiate this lepton number from the
one associated with pseudo-Dirac neutrinos described above. It is interesting that
both of these symmetries can appear in the leptogenesis through neutrino oscilla-
tions, as the heavy neutrinos can be both pseudo-Dirac and relativistic simultane-
ously.

2.3 Constraints on the Properties of Heavy Neutrinos

As mentioned earlier, the mixings U2
iα of the heavy neutrinos are one of the most

important properties when we consider experimental searches, as they approxi-
mately quantify the suppression of the cross section for a process X → Ni com-
pared to X → να.

In the minimal scenario with two heavy neutrinos, the total interaction strength
U2 of the heavy neutrinos can conveniently be expressed in terms of the small
parameters ε from (2.28), and µ defined in (2.27) as

U2 =
1

1− µ2

[
2µ cos(2 Re ω)

∆m
M

+

(
ε+

1
ε

)
m
M

]
, (2.32a)

where

∆m =
1
2

{
m2 −m3 for NO
m1 −m2 for IO

, m =
1
2

{
m2 + m3 for NO
m1 + m2 for IO

. (2.32b)

1 In the recent years the importance of terms that violate this approximate lepton number in the
case of leptogenesis through neutrino oscillations has been studied by several authors [46, 97–100].
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The ratios of the flavoured mixing angles U2
iα/U2 to the total interaction strength

is mostly determined by the parameters in the PMNS matrix Uν [67, 93, 101–105].
In the symmetric limit defined by µ → 0, and ε � 1, we find that the two heavy
neutrinos have mixings of the same size

U2
1α = U2

2α =
1
2

U2
α . (2.33)

We can express the mixings U2
α to leading order in

√
∆msol/∆matm and θ13 [67, 104–

107] as

U2
e /U2 ≈

∣∣∣s12

√
m2
m3

eiα2/2 − i s13e−iδξ
∣∣∣2

U2
µ/U2 ≈

∣∣∣c12c23

√
m2
m3

eiα2/2 − i s23ξ
∣∣∣2

U2
τ/U2 ≈

∣∣∣c12s23

√
m2
m3

eiα2/2 + i c23ξ
∣∣∣2


for NO,

(2.34)

U2
e /U2 ≈ 1

2

∣∣∣c12 − is12ei(α2−α1)/2
∣∣∣2

U2
µ/U2 ≈ 1

2

∣∣∣s12c23 + c12s13s23eiδ + i(c12c23 − eiδs12s13s23)ei(α2−α1)/2ξ
∣∣∣2

U2
τ/U2 ≈ 1

2

∣∣∣s12s23 − c12s13c23eiδ + i(c12s23 + eiδs12s13c23)ei(α2−α1)/2ξ
∣∣∣2


for IO.

(2.35)

We present the full expressions for the mixing angles in appendix A. The allowed
range of parameters U2

iα/U2 is a useful quantity when one estimates the poten-
tial of different experiments to find heavy neutrinos. To estimate this range we
fix the measured low-energy neutrino parameters to the best fit values from from
Table 2.2, and vary the remaining Casas-Ibarra parameters ω, δ, α, M̄ and µ. The
allowed regions are presented in Fig. 2.2.

We find that in the case of large mixing angles U2
i > 10−11 GeV

Mi
, the range of

allowed U2
iα/U2

i corresponds to the range predicted by the symmetric limit c.f.
Fig. 2.3.

If we constrain ourselves to the symmetric limit, where the mixing ratios are
completely determined by the parameters α and δ, we can impose even stronger
constraints on the mixing ratios. Current neutrino oscillation data already excludes
certain values of the phase δ. The various neutrino oscillation experiments can be
combined into a global fit, which gives us ∆χ2 as a function of the low-energy
parameters. We use the results of the global fit NuFIT 3.2 provided by the ν-fit
collaboration [90, 91], which allows us to determine the ∆χ2 for ∆m2

31, ∆m2
32 and
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(a) Normal ordering. (b) Inverted ordering.

Figure 2.2: Allowed range of the mixing ratios U2
α/U2 in the ns = 2 model for ar-

bitrary parameter choices (hashed region) compared to the symmetric limit (filled
region) for normal ordering in Panel (a) and inverted ordering in Panel (b) of light
neutrino masses. The extended hashed regions are only consistent with light neu-
trino oscillation data if the total mixing satisfies U2

i × Mi/GeV < 10−11, cf. Fig-
ure 2.3. Figure taken from [17].
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(a) Normal ordering.
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(b) Inverted ordering.

Figure 2.3: We can illustrate the applicability of the symmetric limit by plotting the
allowed range of U2

ei/U2
i for different values of U2

i Mi, which is in good approxima-
tion independent of Mi. For both, normal ordering shown in Panel (a) and inverted
ordering shown in Panel (b), we find that the allowed range of U2

ei/U2
i becomes in-

dependent of U2
i Mi for values of U2

i > 10−11 GeV
Mi

. Figure taken from [17].
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all parameters in Uν with the exception of the Majorana phase α. We use a one-
dimensional projection for all low-energy parameters except for θ23 and δ, where
have a large deviation from the Gaussian limit, and use a two-dimensional ∆χ2

projection instead. For a set of parameters we sum over the individual ∆χ2 to
obtain the total ∆χ2.

To identify the preferred mixing ratios, we use a simple implementation of the
Metropolis-Hastings algorithm [108, 109], which we describe in appendix B. Our
analysis depends on parameters, which we arrange in the vector x = (∆m2

31, ∆m2
32, s12, s13, s23, δ, α).

To generate the sample we assume the log-likelihood function

log L = −1
2

∆χ2 . (2.36)

We assume flat priors for the mass differences, the sines of the angles sij = sin θij,
and the CP phase δ. For the parameter α, which is experimentally unconstrained,
we choose two different priors, the first one is a flat prior, distributed between 0
and 4π. The second choice of prior is chosen as “flat” in U2

e /U2. We achieve this
by choosing α from a flat distribution in sin(α/2 + δ) for normal hierarchy and
sin(α/2) for inverted hierarchy according to relations (A.2) and (A.4).

The resulting likelihoods for the ratios U2
α/U2 are shown in figures 2.4 and 2.5

for the two different choices of prior. The DUNE experiment is expected to deter-
mine the CP violating phase δ to an even higher accuracy. We show the expected
improvement to the limits from Fig. 2.4 in Fig. 2.6. With an even more precise deter-
mination of the phase δ we can expect these areas to shrink further. If heavy neutral
leptons are found at a future experiment, we can compare their mixing ratios with
these predictions as a first test of the minimal type-I seesaw mechanism.
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(a) Flat prior on α.
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(b) Flat prior on sin(α/2 + δ).

Figure 2.4: Probability contours for the ratios U2
α/U2 for ns = 2 and NO that can

be obtained from present neutrino oscillation data. The shades indicate the 1σ
(darkest), 2σ and 3σ (lightest) probability contours for the ratios U2

a /U2 for n = 2
and NO that can be obtained from present neutrino oscillation data. In Panel (a)
we assume a flat prior in α and in Panel (b) we assume a flat prior in sin(α/2 + δ).
Figure taken from [17].
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(a) Flat prior on α.
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(b) Flat prior on sin(α/2).

Figure 2.5: Probability contours for the ratios U2
α/U2 for ns = 2 and IO that can

be obtained from present neutrino oscillation data. The shades indicate the 1σ
(darkest), 2σ and 3σ (lightest) probability contours for the ratios U2

a /U2 for n = 2
and IO that can be obtained from present neutrino oscillation data. In Panel (a) we
assume a flat prior in α and in Panel (b) we assume a flat prior in sin(α/2). Figure
taken from [17].
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Figure 2.6: In this figure we show the expected improvement to the limits from
Fig. 2.4 with DUNE [110]. For the parameter δ we assume Gaussian errors around
the value δ = −π/2± π/9 used as benchmarks in [111]. For the remaining pa-
rameters we take the one dimensional χ2 projections from NuFIT 3.2. We assume
flat priors on the parameter α. Note that this is a conservative estimate, as in re-
ality we can expect even stronger constraints as all low-energy parameters will be
measured with a higher precision (here we assumed an improvement in δ alone).
Figure taken from [17].
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Schwinger-Dyson Equations on CTP

Quantum Boltzmann Equations

Rate equations

Figure 3.1: The approximation scheme used to derive the quantum Boltzmann
equations used for leptogenesis.

In this chapter we derive evolution equations for out-of-equilibrium fields in
the early Universe. We start by deriving the equations for particles in a Minkowski
spacetime, and later generalize to a Friedmann-Lemaître-Robertson-Walker (FLRW)
metric. As this chapter focuses on the formal aspects of the leptogenesis calcula-
tions, we direct the phenomenologically oriented reader to Chapter 4.

Standard leptogenesis calculations typically combine S-matrix elements calcu-
lated in the in-out formalism with classical Boltzmann equations. The downside of
this approach is that in a medium the asymptotic in- and out- states are not well de-
fined, as the particles under consideration keep interacting with the background.
Furthermore, the properties of quasiparticles can significantly differ from the par-
ticle properties in vacuum.

In the Closed-Time-Path (CTP) formalism 1 developed by Schwinger, Keldysh
and others [114–116] we instead consider the time-evolution of expectation values,
such as 2-point functions. This way, we do not need to make reference to the par-
ticle states, as observables, such as number densities are encoded within 2-point
functions. We will use these methods to derive the quantum kinetic equations for
heavy neutrino number densities, and their correlations. Our derivation follows
the ones described in [117] and [118].

1For a pedagogical review see e.g. Refs[112, 113].
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t0 C+
tC−

Figure 3.2: The complex time contour for the Schwinger-Keldysh formalism.

3.1 Derivation of the Evolution Equations

3.1.1 Correlation functions

The key quantities in the CTP description are the Green functions on the closed
time path, which are defined as:

iST
αβ(x1, x2) ≡ iS++

αβ (x1, x2) = 〈T[ψα(x)ψ̄β(x2)]〉 , (3.1)

iST̄
αβ(x1, x2) ≡ iS−−αβ (x1, x2) = 〈T̄[ψα(x)ψ̄β(x2)]〉 , (3.2)

iS<
αβ(x1, x2) ≡ iS+−

αβ (x1, x2) = −〈ψ̄β(x2)ψα(x)〉 , (3.3)

iS>
αβ(x1, x2) ≡ iS−+αβ (x1, x2) = 〈ψα(x)ψ̄β(x2)〉 , (3.4)

where the indices + and − indicate the branch of the closed time path contour
illustrated in Fig. 3.2. On the upper branch C+ we have normal time ordering T,
while the lower branch C−, which runs backwards in time has anti-time ordering T̄.
All times on the upper branch C+ precede the lower branch C−. The 〈· · · 〉 describes
the usual quantum statistical average of a system, i.e. for a system described by a
density matrix $, the average is obtained by taking the trace 〈· · · 〉 = Tr($ · · · ). The
choice of $ corresponds to the initial condition, i.e. we may consider

$ = $
eq
SM ⊗ $N , (3.5)

where $N is the density matrix of the heavy neutrinos, that can correspond to equi-
librium (for standard leptogenesis) or vacuum initial conditions (for leptogenesis
through neutrino oscillations).

The functions S> and S< are known as the Wightmann functions, and can be
combined to obtain the spectral and statistical functions:

SA(x1, x2) =
i
2
(
S>(x1, x2)− S<(x1, x2)

)
, (3.6)

SF(x1, x2) =
1
2
(
S>(x1, x2) + S<(x1, x2)

)
, (3.7)

which have intuitive physical interpretations. The statistical function SF contains
the information about the occupation numbers, while the spectral function SA de-
termines the spectrum of the quasi-particles in the plasma.
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The retarded, advanced and Hermitian are defined as:

iSR(x1, x2) = 2θ(t1 − t2)SA(x1, x2) , (3.8)

iSA(x1, x2) = −2θ(t2 − t1)SA(x1, x2) , (3.9)

SH(x1, x2) =
1
2

[
SR(x1, x2)− SA(x1, x2)

]
= −i sgn(t1 − t2)SA(x1, x2) . (3.10)

The Greens functions on the CTP satisfy the Schwinger-Dyson equations:

(i/∂x1 −M)SA(x1, x2) = 2i
∫ t2

t1

dt′
∫

d3x′ ΣA(x1, x′)SA(x′, x2) , (3.11)

(i/∂x1 −M)SF(x1, x2) = 2i
∫ t2

t0

dt′
∫

d3x′ ΣF(x1, x′)SA(x′, x2)

− 2i
∫ t1

t0

dt′
∫

d3x′ ΣA(x1, x′)SF(x′, x2) , (3.12)

which can be derived using the 2PI effective action [119] on a closed time path [116].

3.1.2 Wigner space and the gradient expansion

By setting t0 → ∞, and using the spectral relations for ΣH and SH, we can remove
the integration boundaries from the Schwinger-Dyson equations:

(i/∂x1 −M)SA(x1, x2) =
∫

d4x′
(

ΣH(x1, x′)SA(x′, x2) + ΣA(x1, x′)SH(x′, x2)
)

,

(3.13a)

(i/∂x1 −M)SF(x1, x2) =
∫

d4x′
(

ΣH(x1, x′)SF(x′, x2) + ΣF(x1, x′)SH(x′, x2)
)

+ i
∫

d4x′
(

ΣF(x1, x′)SA(x′, x2)− ΣA(x1, x′)SF(x′, x2)
)

,

(3.13b)

which are now in a convenient form for the gradient expansion, as the integration
limits are at ±∞. For each two-point function G(x1, x2), we introduce the average
x = (x1 + x2)/2 and relative r = (x1 − x2) coordinates. We now perform a Fourier
transform with respect to the relative variable r.

G(x; k) =
∫

d4r eikrG(x + r/2, x− r/2) . (3.14)

The products of the two point functions appearing in equations (3.13a),(3.13b) can
be transformed by using the relation:∫

d4(x1 − x2)eik·(x1−x2)
∫

d4yA(x1, y)B(y, x1) = e−i�{A(x; k)}{B(x; k)} , (3.15)
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where x = (x1 + x2)/2 is the average coordinate. The diamond operator is defined
as:

�{A}{B} = 1
2
(∂x A · ∂kB− ∂k A · ∂xB) . (3.16)

This allows us to rewrite the Kadanoff-Baym equations as:(
/k +

i
2

/∂x −M
)

SA(x; k)− e−i�{ΣH}{SA} − e−i�{ΣA}{SH} = 0 , (3.17a)(
/k +

i
2

/∂x −M
)

SF(x; k)− e−i�{ΣH}{SF} − e−i�{ΣF}{SH} = C

= i
(

e−i�{ΣF}{SA} − e−i�{ΣA}{SF}
)

, (3.17b)

where C is the collision term. Assuming that the universe is both homogenous
and isotropic, we may neglect all spatial derivatives, leaving us only with time
derivative ∂xµ → ∂t.

At this point, we assume a hierarchy between the variation with respect to the
macroscopic scale ∂t, and the microscopic scale k [120, 121]. We may formally write
this as:

∂t � k0 . (3.18)

This is justified both in resonant leptogenesis and leptogenesis through neutrino
oscillations, as the microscopic energy scale of the heavy neutrino k0 is typically
much larger than the macroscopic scale, typically associated with either the equi-
libration process ∼ Y2k0, the Hubble expansion H ≈

√
8π3g?/90T2/mPl, or the

oscillations between the heavy neutrinos ∼ ∆M2/k0. By neglecting all higher or-
ders of the diamond operator, i.e. setting ei�{A}{B} ≈ AB, the Kadanoff-Baym
equations are simplified to:(

/k +
i
2

/∂ t −M
)

SA − ΣHSA − ΣASH = 0 , (3.19a)(
/k +

i
2

/∂ t −M
)

SF − ΣHSF − ΣFSH = i
(

ΣFSA − ΣASF
)

. (3.19b)

We now add and subtract the equations (3.19a) and (3.19b) with their Hermitian
conjugates to obtain the constraint and kinetic equations:

{H,SA} − {GA,SH} = 0 , (3.20)

i∂tSA + [H,SA]− [GA,SH] = 0 ,
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and

{H,SF} − {GF,SH} = i([GF,SA]− [GA,SF]) (3.21a)

i∂tSF + [H,SF]− [GF,SH] = i({GF,SA} − {GA,SF}) , (3.21b)

with the shorthand notation G = Σγ0, H = (/k − ΣH − M)γ0 and S = γ0S. We
may separate the self energies:

H = H̄+ δH ,G = Ḡ + δG , (3.22)

into the contributions evaluated at local chemical equilibrium H̄, Ḡ, and non-equilibrium
contributions δH, δG. The equilibrium solutions to (3.21b) are static in time by con-
struction, and can be found by solving the algebraic equation:

[H̄, S̄F]− [ḠF, S̄H] = i({ḠF, S̄A} − {ḠA, S̄F}) , (3.23)

which we obtained from (3.21b) by setting ∂tS̄F = 0. Assuming that the self-
energies Σ are dominated by interactions that are in equilibrium, we can safely
approximate [122, 123]:

SA = S̄A ,SH = S̄H , (3.24)

and we can split the statistical propagator into the equilibrium and non-equilibrium
parts:

SF = S̄F + δS . (3.25)

The constraint and kinetic equations for the non-equilibrium part of the propagator
are:

{H, δSF} ≈ −i[GA, δSF] , (3.26a)

∂tδS + ∂tS̄F − i[H, δS ] = −{GA + δGA, δS}+ {δGF, S̄A} − {δGA, S̄F} . (3.26b)

The ∂tS̄F describes the deviation from equilibrium that arises due to the expansion
of the Universe. The commutator term on the left hand side of equation (3.26b) cor-
responds to the effective Hamiltonian that describes oscillations between different
particle flavours, and the right hand side is the collision term, which describes the
relaxation of the system to equilibrium.
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3.1.3 Evolution equations for heavy neutrinos

We now proceed to solve equations (3.26a) and (3.26b) for the specific case of heavy
neutrinos.

Solutions to the constraint equation for the heavy neutrinos

The constraint equation, as the name suggests, constrains the Dirac structure and
the pole structure of the heavy neutrino propagator. We proceed by neglecting the
commutator on the RHS of equation (3.26a), as it describes the finite width of the
neutrino propagators:

{H, δSF} ≈ 0 . (3.27)

To solve the constraint equation, we may formally introduce the effective Hamilto-
nian H:

H = k0 − H , H ≡ (kiγi + M + ΣH)γ0 , (3.28)

which allows us to write:

{k0 − H, δSF} = 0 . (3.29)

Formally, by diagonalizing the (4Ns)× (4Ns) matrix H(k), we can find the values
of k0 that satisfy (3.29). The factor 4 appearing in the dimensions of H arises from
the dimension of the Dirac matrices. The four degrees of freedom described by the
Dirac matrices correspond to the two helicity, and the positive and negative energy
states.

Since the early Universe is homogeneous and isotropic, the Dirac matrices ap-
pearing in the Kadanoff-Baym equations commute with the helicity operator ĥ =
k̂iγ0γiγ5. Therefore, we can use the helicity projection operator

Ph =
1 + hĥ

2
, (3.30)

to reduce the dimensionality of equation (3.29). The two remaining Dirac degrees
of freedom correspond to the positive and negative energy states.

To separate the positive and negative energy degrees of freedom, we introduce
the projection operator:

Ps =
1 + sHΩ−1

2
, (3.31)
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with

Ω ≡
√

H2 . (3.32)

where all the square roots are chosen such that the eigenvalues of Ω are positive.
The projection operator selects the positive or negative energy solutions, depend-
ing on the sign of s, as:

PsH = sΩPs . (3.33)

It is useful to split the effective Hamiltonian into the bare Hamiltonian H0 = (piγi +
M)γ0, and interaction Hamiltonian HI = ΣHγ0. We can then approximate the pos-
itive (negative) state projection operator as:

P(0)
s ≈

1 + sH0Ω−1
0

2
, (3.34)

where Ω0 = (p2 + M2)1/2, and H0 = (piγi + M)γ0. Using these projection opera-
tors, we write the Hamiltonian in block matrix form:

PsHPs′ =

(
Ω0 0
0 −Ω0

)
ss′

+

(
HI ++ HI +−
HI−+ HI−−

)
ss′

, (3.35)

where s, s′ = ±, and HI ss′ are the block matrices of the interaction Hamiltonian.
Since all energies in Ω0 ∼

√
M2 + T2 are larger than the interaction Hamiltonian

HI ∼ Y2T, and there is no degeneracy between the positive and negative energy
state blocks, we may safely neglect the block off-diagonal contributions HI +− and
HI−+. We proceed by neglecting all of the positive(negative) state off-diagonal
entries, both in the self-energiesH, G, and the propagators S .

Taking the equation 3.21a and applying the helicity and postive/negative state
projectors allows us to fully evaluate the Dirac trace:

TrD(PhPs

{
k0 − H, δSF

}
) = 0 , (3.36){

k0 − Hhs, δSF
hs

}
= 0 ,

where Hhs is given by:

Hhs ≡ TrD [PhPsHPs] . (3.37)

By diagonalizing the Ns× Ns matrix Hhs, and writing the flavour indices explicitly,
we find the mass poles:(

k0 −
HD

hs i + HD
hs j

2

)
δSF

hs ij = 0→ δSF
hs ij(k) ∼ δ

(
k0 −

HD
hs i + HD

hs j

2

)
. (3.38)
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Which allows us to write:

δShs ij(k) = −2πPhPsδ

(
k0 −

HD
hs i + HD

hs j

2

)
δ fhs ij . (3.39)

When applying to resonant leptogenesis and leptogenesis through neutrino oscil-
lations mechanisms, it is typically sufficient to neglect the effects of the thermal
masses on the position of the mass pole, and to neglect the mass differences be-
tween the heavy neutrinos:

δShs ij(k) ≈ −2πPhPsδ (k0 − sω̄) δ fhs ij , (3.40)

where ω =
√
~k2 + M̄2 is the energy evaluated at the average mass of the heavy

neutrinos M̄.
For Majorana fermions, the positive and negative energy states describe the

same degrees of freedom. Since our formalism is designed to describe all types of
fermions, both particle and antiparticle degrees of freedom will be present. How-
ever, through the Majorana constraint N = NC, we find that the positive and neg-
ative state distribution functions are not independent:

δ fh+ ij(|~k|) = δ fh− ji(|~k|) . (3.41)

The two-point functions satisfy the relations:

−
∫ dk0

2π
TrD(PhPsiδSF) = δ fhs (3.42)

−
∫ dk0

2π
TrD(PhPsiS̄F) = [ f eq(sω̄)− 1/2] (3.43)

−
∫ dk0

2π
TrD(PhPsiSA) = −

i
2

(3.44)

Similarly, we can also relate the trace of the active lepton propagator with its num-
ber density:

−
∫ d4k

(2π)4 iSF
α = qα ≈

T2µα

6
. (3.45)
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3.2 Quantum Boltzmann equations for heavy neutri-
nos

In order to arrive at quantum Boltzmann equations for the heavy neutrinos, we
have to transform the equations for the propagators (3.21b) to describe the distri-
bution functions, as suggested by equations (3.42). We proceed by applying the
helicity and positive(negative) state projectors to equation (3.26b), and we neglect
all terms mixing the positive and negative energy states. We then integrate over the
zeroth component of the momentum, to obtain the equations for the distribution
functions:

∂tδ fhs + ∂t f eq = −i [Hhs, δ fhs]−
1
2
{Γhs, δ fhs} (3.46)

− 1
2

{
∑
α

µα

T
δΓα

hs +
µφ

T
δΓφ

hs, δ fhs

}
+ ∑

α

µα + µφ

T
f eq(1− f eq)Γ̃α

hs .

The effective Hamiltonian can again be decomposed into a vacuum and interaction
term with

Hhs = H0 hs + HI hs , (3.47a)

H0 hs = s
√
|~k|2 + M2 ,

HI hs =
s
2

[
T hth

+Υ+hs + T hth
−Υ−hs + T hEV Υ+ + Υ−

2

]
, (3.47b)

where M is the vacuum mass of the heavy neutrinos, hth
± are contributions from

the hermitian self-energy of the heavy neutrino, and hEV is the contribution arising
due to a non-vanishing Higgs expectation value during the electroweak crossover.
To determine the flavour structure of the self-energies we use the decomposition
described in appendix E. The terms that describe the relaxation of the heavy neu-
trinos towards equilibrium are similarly given by

Γhs = T [γ+Υ+hs + γ−Υ−hs] , (3.48a)

δΓα
hs = T

[
δγ+Υα

+hs + δγ−Υα
−hs
]

, (3.48b)

δΓφ
hs = T

[
δγ

φ
+Υ+hs + δγ

φ
−Υ−hs

]
, (3.48c)

δΓφα
hs = T

[
δγ

φ
+Υα

+hs + δγ
φ
−Υα
−hs

]
, (3.48d)

while the back-reaction term, which describes the feedback from a finite chemical
potential in the lepton doublet sector is given by

Γ̃α
hs =

1
2

hT
[
γ+Υα

+hs − γ−Υα
−hs
]

. (3.49)
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The equations above all assume heavy neutrinos with degenerate energies. The
exact expressions for the self-energies in the various h and γ in general depend on
the temperature and the heavy neutrino masses. They can be calculated through
the reduced self energy:

γ+(k) =
1
T

gw

k0

(
k + k̃

)
· Σ̂AN , (3.50)

γ−(k) =
1
T

gw

k0

(
k− k̃

)
· Σ̂AN . (3.51)

For the Hermitian part we find

hth
+(k) =

1
T

gw

k0

(
k + k̃

)
· Σ̂H

N , (3.52)

hth
−(k) =

1
T

gw

k0

(
k− k̃

)
· Σ̂H

N , (3.53)

whereas the term accounting for the expectation value of the Higgs field is given
by

hEV(k) =
2v2(t)

Tk0 . (3.54)

At present we will leave them in the general form and discuss them in more
detail in the chapters discussing the specific leptogenesis scenarios.

3.3 Boltzmann equations for active leptons

Following a similar procedure, we may write the equation for the doublet neutri-
nos, this time integrating over the full 4-momentum, as they are assumed to be in
kinetic equilibrium due to the fast interactions with the rest of the standard model
plasma:

∂tq`α = −
∫ d4p

(2π)4 TrD

[{
GF
` α(p),SA` α(p)

}
−
{
GA` α(p),SF

` α(p)
}]

, (3.55)

= i
∫ d4p

(2π)4 TrD
[
G<` α(p)S>` α(p)− G>` α(p)S<` α(p)

]
,
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in appendix E we show how the active lepton collision term is related to the colli-
sion term of the heavy neutrinos, which allows us to write

∂tq`α =
i

2gw

∫ d4k
(2π)4 Tr

[
{G>N α(k),S<N (k)} − {G>N α(k),S<N (k)}

]
, (3.56)

=
1

gw

∫ d4k
(2π)4 Tr

[
{GF

N α(k),SAN (k)} − {GAN α(k),SF
N(k)}

]
,

=
1

gw
∑
h,s

∫ dk3

(2π)3

[
Tr (Γα

hsδ fhs)−
µα + µφ

T
f eq′Γ̃α

hs+

+
µα

T
Tr (δΓα

hsδ fhs) +
µφ

T
Tr
(

δΓφα
hs δ fhs

)]
,

≈ −Wαα

(
q`α +

qφ

2

)
+ Sαα ,

where Wαα is the washout term that describes the washout of lepton asymmetries
due to heavy neutrinos which are in equilibrium, while the source term Sαα is the
source of the lepton asymmetry created by the decay of the out-of-equilibrium
heavy neutrinos. Note that in the last line we have neglected the terms that are
second order in deviations from equilibrium.
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3.3.1 Spectator Processes

Spectator processes are Standard Model processes that redistribute charges during
leptogenesis and they affect the final baryon asymmetry [124, 125]. The quantity

∆α = B/3− Lα (3.57)

is conserved by all interactions except for those mediated by the Yukawa couplings
Y between the heavy neutrinos and lepton doublets.

Temperatures below T ≤ 105GeV The electron, the particle with the smallest SM
Yukawa couplings, reaches equilibrium below temperatures T ≤ 105GeV.2 The
fast processes mediated by the SM Yukawa interactions lead to the constraints:

µQi − µui + µφ = 0 , (3.58a)
µQi − µdi − µφ = 0 , (3.58b)
µ`i − µei − µφ = 0 . (3.58c)

The equilibrium condition for the strong sphaleron processes give us the relation

gs(µQ1 + µQ2 + µQ3) + µ`1 + µ`2 + µ`3 = 0 , (3.59a)

where gs = 3 is the factor counting the colour states, ui and di are the right-handed
electroweak singlets of flavour i, and Qi denote the corresponding left-handed
quark doublets. The weak sphalerons relate the asymmetries in the lepton and
baryon sectors with the constraint

gw(µQ1 + µQ2 + µQ3)− (µu1 + µu2 + µu3)− (µd1 + µd2 + µd3) = 0 . (3.60)

During the electroweak crossover, the electroweak sphalerons are no longer in
equilibrium, which requires modifications of the above equation as described in [127].
We leave a detailed study of these effects for future work. The charge densities
associated with the diagonal generators for weak and strong interactions vanish,
as implied by the fact that the weak doublets and colour triplets have a common
chemical potential. On the other hand, weak hypercharge neutrality leads to the
condition

gwYφqφ + ∑
a=e,µ,τ

(
gwgsYQaqQa + gwY`aq`a + gsYuaqua + gsYdaqda + Yeaqea

)
= 0 .

(3.61)

2For an overview of the equilibration rates of the spectator processes see e.g. [126]
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To find the relations between the asymmetries ∆α and the charges q`α, as well as
qφ we solve Eqs. (3.58, 3.59, 3.60, 3.61). If we write the asymmetries as vectors in
flavour space, q` = (q`1, q`2, q`3)

t as well as ∆ = (∆1, ∆2, ∆3)
t, the solutions to the

above equations can be written in the compact form q` = A∆ and qφ = C∆, with
the matrix A and vector C given by:

A =
1

711

 −221 16 16
16 −221 16
16 16 −221

 , C = − 8
79
(

1 1 1
)

.

The lepton and Higgs charges often appear together in the combination

q`α + qφ/2 = χαβ∆β , χ = − 1
711

257 20 20
20 257 20
20 20 257

 . (3.62)

The baryon asymmetry can also be expressed in terms of ∆ as

B = D∆ , D =
28
79
(

1 1 1
)

, (3.63)

which allows us to reproduce the well known relation [128] B = 28
79(B − L). The

baryon asymmetry is also related to the asymmetry in the doublet leptons:

B = Eq` , E = −4
3
(

1 1 1
)

. (3.64)

Temperatures above T > 108 GeV At temperatures above 108 GeV, the interac-
tions mediated by the first-generation Yukawa couplings are out of equilibrium,
while all second- and third- generation Yukawa couplings reach equilibrium. In
this temperature regime, the matrices A and C are instead given by

A =
1

1074

−906 120 120
75 −688 28
75 28 −688

 , C = − 1
179

(
37 52 52

)
. (3.65)

3.4 Expansion of the Universe

To describe particle dilution in the Universe, we follow the results of [129]. If
we neglect Planck-scale suppressed corrections, the only effect of replacing the
Minkowski metric by the Friedman-Lemaitre-Robertson-Walker one is that the par-
ticle modes become red-shifted. This effect is easily implemented by switching to
the conformal coordinates where the metric

gµν = a2ηµν (3.66)
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is proportional to the Minkowski metric ηµν up to a scale factor a. The conformal
time η is then related to the physical time via dη = dtphys/a, the comoving mo-
mentum p is given by p = apphys. In the comoving frame, the masses also have to
be rescaled to M → aM. Number densities are also rescaled, with a3n = nphys. In
a radiation dominated universe, the scale factor is given by:

a(η) = aRη . (3.67)

We use the parametrization where:

aR = mPl

√
45/(4g?π3)) ≡ T2

H
, (3.68)

the comoving time is then:

η = 1/Tphys . (3.69)

As a consequence of the expansion of the universe, the number densities scale as:

ncom = a3nphys , (3.70)

i.e., the physical number density gets diluted as time passes, dncom/dη = a4(dnphys/dtphys +
3Hnphys), where the 3H is exactly the dilution term. If we consider particle yields
instead, there is no additional dilution term required, as the dilution term cancels
when we consider a ratio of a number density and entropy density:

YX ≡ nX/s→
dYphys

X
dtphys = a

dYcom
X

dtcom , (3.71)

where the entropy density remains approximately constant per comoving volume.
For the quantum Boltzmann equations (3.46) it is therefore sufficient to appropri-
ately replace all physical quantities by their comoving counterparts.

comoving physical
dt dtphys/a
p apphys

Mcom aM
Tcom aTphys = aR
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4.1 Vanilla Leptogenesis

Early studies of the origin of the BAU often relied on grand unified theories (GUT)
for violation of the baryon number B. However, the BAU is not necessarily gen-
erated directly through some B violating process. In the standard model, the elec-
troweak sphalerons can convert a lepton asymmetry L into a baryon asymmetry
B. Therefore, instead of looking for the origin of the baryon asymmetry, we can
look for mechanisms that produce a lepton asymmetry, known as leptogenesis. On
its own, leptogenesis does not seem much more attractive than baryogenesis, how-
ever, there is a deep connection between leptogenesis and the origin of neutrino
masses, as both can be explained by extending the standard model with heavy
Majorana neutrinos.

In this section we will briefly review the “vanilla” realization of the leptogenesis
mechanism discovered by Fukugita and Yanagida [15] and its limitations. In this
mechanism, the lepton asymmetry is created through the decay of a heavy Majo-
rana neutrino. The heavy neutrino N does not decay into leptons ` and antileptons
¯̀ with the same rate:

ΓN→`φ̄ 6= ΓN→ ¯̀φ . (4.1)

For simplicity let us assume that the heavy neutrinos have hierarchical masses
M3 � M2 � M1. The difference between these two processes arises due to the
loop correction from the Higgs particle:

ΓN→`φ̄ ∼

∣∣∣∣∣∣∣∣∣
N

`

φ̄
+

N

φ̄

`

vertex

+
N

`

φ̄

w.f.

∣∣∣∣∣∣∣∣∣
2

, (4.2)

where the thick lines represent the heavy neutrinos, the thin lines represent the
active leptons and the dashed line corresponds to the Higgs particle. We can now
calculate the decay asymmetry:

εi ≡
ΓNi→`φ̄ − ΓNi→ ¯̀φ

ΓNi→`φ̄ + ΓNi→ ¯̀φ

, (4.3)

≈∑
k

1
8π

Im
[
(YY†)2

ij

]
(YY†)ii

(
f (M2

k/M2
i )
∣∣∣
vertex

+
Mi Mk

M2
i −M2

k

∣∣∣∣∣
wave function

)
, (4.4)

which quantifies the excess of leptons produced during the decay of one heavy
neutrino. We separate the result into the vertex and wave function contributions,
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B violation electroweak sphaleron
C and CP violation Majorana neutrino decays

deviation from equilibrium expansion of the universe

Table 4.1: The Sakharov conditions in vanilla leptogenesis.

with f (x) ≡
√

x[1− (1 + x) ln[(1 + x)/x]]. On their own, these processes are not
sufficient to generate the BAU. At temperatures T � Mi, the decays N → `φ̄ , N →
¯̀φ and inverse decays are in equilibrium, erasing any lepton asymmetry.

As the Universe cools down to T < M1, the inverse decays become kinemati-
cally suppressed, as a lepton and a Higgs particle no longer have enough energy
to produce a heavy neutrino. When the rate of inverse decays drops below the
Hubble rate, the asymmetry produced by the decays is no longer washed out, and
survives until the present epoch. This process can be described by the Boltzmann
equations:

dYB−L

dz
= ε1D(YN1 −Yeq

N1
)−WYB−L , (4.5)

dYN1

dz
= −(D + S)(YN1 −Yeq

N1
) ,

where YL is the lepton yield, i.e. the lepton number excess divided by the entropy
density, and YN1 is the number density of the lightest heavy neutrino, W is the
lepton number washout rate, D describes the heavy neutrino decays, S describes
the scatterings, and z = M/T is the time variable.

By solving the Boltzmann equations 4.5, we can compute the final asymmetry.
Through the approximations found in [78], the asymmetry can expressed as the
sum of two terms:

YB−L(z) = Yinit
B−LExp

[
−
∫ z f

zi

W(z)dz
]
− 3

4
κε1 (4.6)

where the first term represents any initial asymmetry, and the second term de-
scribes the asymmetry generated through the decays of the lightest heavy neutrino,
with κ as the efficiency factor. Combining the expression for the decay asymme-
try 4.4 with the Casas-Ibarra parametrization (2.17), a lower bound on the decay
asymmetry was obtained in [75]:

|ε1| .
3

8π

M1

v2 (m3 −m1) . (4.7)

By combining this result with the numerical washout factors from [125], a lower
limit on the mass of the lightest heavy neutrino [75] is obtained:

M1 & 109GeV . (4.8)
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Note that there are several loopholes that can lead to lower heavy neutrino masses.
In the following, we will discuss two of them: resonant leptogenesis and leptogen-
esis through neutrino oscillations.

4.2 Evolution Equations for Leptogenesis

Both the resonant leptogenesis and leptogenesis through neutrino oscillations rely
on an enhancement of the wave function diagram:

ε1(wave function) = ∑
k

1
8π

Im
[
(YY†)2

ij

]
(YY†)ii

Mi Mk

M2
i −M2

k
, (4.9)

when the masses (or energies) of the heavy neutrinos are not hierarchical. In such
a scenario, the heavy neutrinos can oscillate as they propagate through the early
universe, much like the light neutrinos oscillate today. As it was shown in [117],
the wave function diagram can be thought of as the leading term describing oscil-
lations of heavy neutrinos.

If the mass difference between two heavy neutrinos is small, the frequency of
these oscillations can be comparable, or even smaller than rate of heavy neutrino
production. This corresponds to a breakdown of the usual perturbation theory, and
needs to be remedied by solving the quantum Boltzmann equations directly.

Boltzman equations for oscillating neutrinos To accurately describe the oscilla-
tions between the heavy neutrino flavours, it is no longer sufficient to only keep
track of the number density per neutrino flavour YNi . Instead, we have to take into
account the states that can be in a superposition of the different mass eigenstates.

The quantity that can accurately describe this physical picture is the density
matrix introduced in Chapter 3:

δ fh ij = −i
∫ ∞

0

dk0

2π
TrD(γ0δSF

h ij(k)) (4.10)

where i, j are the flavour indices, and h = ±1 is the helicity of the heavy neutrinos.
The number density of the heavy neutrinos is governed by the quantum Boltz-

mann equation:

∂tδ fh + ∂t f eq = −i [Hh, δ fh]−
1
2
{Γhs, δ fh} (4.11)

− 1
2

{
∑
α

µα

T
δΓα

h +
µφ

T
δΓφ

h , δ fh

}
+ ∑

α

µα + µφ

T
f eq(1− f eq)Γ̃α

hs ,
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as introduced in Chapter 3, Hh is the effective Hamiltonian, Γh and δΓh are the
equilibration matrices, and Γ̃a

h is the backreaction term. At the same time, the lepton
doublets are governed by:

d∆α

dz
= −Wααχαβ∆β + Sα . (4.12)

where χ is the susceptibility matrix relating the charges in the lepton and Higgs
doublets to the asymmetries q`α + qφ/2 = χαβ∆β introduced in Subsection 3.3.1.
We now proceed to consider the specific leptogenesis scenarios, resonant leptogen-
esis, where the heavy neutrinos can be described as non-relativistic and leptogene-
sis through neutrino oscillations, where we assume that the heavy neutrinos have
relativistic energies.

4.3 Resonant leptogenesis

As we have seen in Section 4.1, vanilla leptogenesis within the type-I seesaw frame-
work requires heavy neutrinos with masses above ∼ 109 GeV. This lower bound
can be avoided if at least two heavy neutrinos have nearly degenerate masses,
which enhances the decay asymmetry [80–86]. In order for the decay asymme-
try to remain physical, the expression (4.9) has to remain finite, which is can be
acheived by introducing a regulator Aeff:

ε1(wave function) = ∑
k

1
8π

Im
[
(YY†)2

ij

]
(YY†)ii

Mi Mk

M2
i −M2

k + A2
eff

. (4.13)

The exact form of this regulator has been discussed in the literature from several
formulations of non-equilibrium QFT, the two-time formulation [130, 131], the two-
momentum formulation [132] and the Wigner space formulation [133], which we
discuss in the following text.

4.3.1 Non-Relativistic Approximations

In the non-relativistic limit, the temperature T of the plasma is below the average
masses of the heavy neutrino, T � M̄. The four-momenta of the heavy neutrino in
the plasma rest frame can be approximated as:

kµ = (k0,~k) ≈ (±aM̄,~0) , (4.14)
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where a is the scale factor introduced in Section 3.4. The equilibration rate of a
heavy neutrino is dominated by its decay process N → `φ̄, as it is in vanilla lepto-
genesis. The reduced spectral self-energy of the heavy neutrino required to deter-
mine Γ is then given by (

Σ̂AN(k)
)µ
≈ sgn(k0)

kµ

32π
, (4.15)

which gives us the equilibration rates

γ+ = γ− =
1
T

gw

k0
a2M̄2

32π
, (4.16)

that we evaluate at the average mass M̄.
Considering that the rates γ+ and γ− are momentum independent, we may

safely integrate over the 3-momentum to find the equations for heavy neutrino
number densities

M̄
d
dz

δnh +
iaRz
2M̄2

[
M2, δnh

]
+ aRz

gw

32π

{
Re YY†, δnh

}
+ M̄

d
dz

neq = 0 , (4.17)

where the heavy neutrino number density is given by

δnh =
∫ d3k

(2π)3 δ fh(k) . (4.18)

It is interesting to notice that the comoving density and equations of motion are
helicity independent in the non-relativistic limit, i.e. δn+(z) = δn−(z). The heavy
neutrino equilibrium number density is given by

neq =
z2K2(z)

2π2 diag(1, 1) ≈ z3/2e−z

(2π)3/2 diag(1, 1) (4.19)

where Kν(z) are the modified Bessel functions of the second kind. In the non-
relativistic limit, the evolution of the comoving SM charge densities is governed by
the equation:

− M̄
d
dz

∆α = gwSαα − Wαα

(
q`α +

1
2

qφ

)
, (4.20)

≡ 4εαα(z)M̄
dneq

dz
− Wαα

(
q`α +

1
2

qφ

)
.

The washout matrix W is given by (c.f. Refs. [132, 134, 135])

Wαβ = ∑
i

Y∗iαYiβ
3aR

(2π)3 z3K1(z) (4.21)

≈ ∑
i

Y∗iαYiβ
3aR

2
7
2 π

5
2

z
5
2 e−z , (4.22)
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while the source term is

Sαβ =
aM̄
8π ∑

ij
δnij i Im

(
Y∗iαYjβ

)
, (4.23)

where the helicities have been summed over, to give an overall factor two.

4.3.2 Strong Washout Regime

In this section we calculate the effective decay asymmetry for resonant leptogenesis
in the strong washout regime. We will show that the decay asymmetry can be
approximated by its late time limit in wide regions of parameter space.

Using Eq. (4.20) we can define the time-dependent flavoured effective decay
asymmetry as

εαβ(z) ≡ gwSαβ(z)
(

4
dneq

dz

)−1

M̄−1 (4.24)

=
1

16π

aRz
M̄ ∑

i,j
i Im[Y∗iαYjβ]δnhij

(
dneq

dz

)−1

, (4.25)

which describes the asymmetry yield per sterile neutrino dropping out of equilib-
rium due to the expansion of the universe. Note that the factor 4 arises due to the
two heavy neutrinos that each have two spins (helicities).

Large values of the Yukawa couplings Y correspond to a strong washout of the
lepton asymmetry. Simultaneously this corresponds to a fast relaxation rate for
the heavy neutrinos. In Ref. [136] it was suggested that if the relaxation time of the
heavy neutrinos is shorter than the freeze-out time, we can neglect the first terms of
Eq. (4.17), and approximate the heavy neutrino density matrix δn by its quasi-static
limit.

We can then solve the resulting system of algebraic equations to obtain the
quasi-static limits of the off-diagonal correlations entering the source term, which
for i 6= j gives us [133]

δnhij =
Re[YY†]ij

[
(YY†)ii + (YY†)jj

]
[YY†]ii[YY†]jj

(4.26)

×
M̄2

8π

[
(YY†)ii + (YY†)jj

]
− i(M2

i −M2
j )

(M2
i −M2

j )
2 + A2

eff

M̄3

aRz
d
dz

neq . (4.27)
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We can insert the result (4.27) into the definition of the decay asymmetry to obtain
the late-time effective decay asymmetry:

εeff
αβ = −i(Y∗1αY2β −Y∗2αY1β)

Re[YY†]12[(YY†)11 + (YY†)22]

16π(YY†)11(YY†)22

M̄2(M2
2 −M2

1)

(M2
1 −M2

2)
2 + A2

eff
,

(4.28)

with the regulator

Aeff =
M̄2

8π
[(YY†)11 + (YY†)22]

(
1− [Re(YY†)12]

2

(YY†)11(YY†)22

)1/2

. (4.29)

4.3.3 Applicability of approximations

The key ingredient for the validity of the strong washout approximation introduce
above is that all elements of the density matrix δnh relax to their quasi-static limit.
To quantify this criterion, we calculate the eigenvalues of the system of differential
equations (4.17) and compare to the Hubble rate. To simplify the discussion, we
will first consider a toy model with a single lepton flavour.

In the single flavour approximation, we can write the effective decay asymme-
try as

εeff =
1
2

X sin(2ϕ)

X2 + sin2(ϕ)
, (4.30)

where ϕ = arg(Y2/Y1) is the phase between the Yukawa couplings, and X is the
dimensionless parameter quantifying the ratio of the mass difference to the decay
widths

X = 8π
M2

1 −M2
2

M̄2 (|Y1|2 + |Y2|2)
. (4.31)

The smallest eigenvalue of the system of equations (4.17) is given by

κ = z
[

K̄− Re
√

K2
1 + K2

2 − 2i(K2
1 − K2

2)X− (K1 + K2)2X2 + 2K1K2 cos 2ϕ

]
,

(4.32)

where we introduced the usual washout parameters [78] Ki = |Yi|2M̄/(8πH)|T=M̄
and K̄ = (K1 + K2)/2. In the democratic scenario, where |Y1| = |Y2|, the smallest
eigenvalue is given by

κ = κ̄

[
1− θ(cos2 ϕ− X2)

√
cos2 ϕ− X2

]
, (4.33)
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with κ̄ = zK̄, where θ is the Heaviside step function. The condition for the validity
of the strong washout approximation, is that the slowest eigenmode is faster than
the Hubble expansion, i.e. κ � 1 at the time of freeze-out z = z f ∼ 10. We
can translate this condition to find the minimal washout strength required for the
strong washout approximation to hold

K̄ � (1/z f )(κ̄/κ) . (4.34)

To further test the limits of applicability of the strong washout approximation,
we fix the phase ϕ to the value that maximizes the asymmetry

ϕM = arctan
X√

1 + X2
. (4.35)

Inserting into the decay asymmetry, we find

|ε| = 1
2
√

1 + X2
, (4.36)

which is bounded by |ε| ≤ 1/2. The limit |ε| → 1/2 is corresponds X → 0,
and ϕM → 0. This limit is, however, not realizable in practice. The ratio of the
eigenvalues κ/κ̄ → 0, which means that the off-diagonal modes responsible for
the CP asymmetry would require an infinite time to build up.

Large values of the effective decay asymmetry are therefore associated with
small values of the eigenvalue κ.

For a fixed value of the decay asymmetry, the maximal value of κ/κ̄ is obtained
when ϕ = ϕM, which gives us the relation

κ

κ̄
≤ 1 − θ

[
ε2 − 1

4

(
2−
√

2
)]√ [ε2 − 1

4(2−
√

2)][ε2 − 1
4(2 +

√
2)]

ε2(ε2 − 1/2)
, (4.37)

presented in Fig. 4.1.
The comparison between the analytical results obtained by using the late-time

effective decay asymmetry and the numerical solutions to the differential equations
Eq. (4.17) and (4.20) are shown in Fig. 4.2. To simplify the comparison, we take
q` = −∆ and neglect the charges in the Higgs field qφ = 0. We present results
for two values of the washout strength K̄, where the larger washout marginally
complies with the criterion (4.34) and the smaller washout violates it.

From the plot it is visible that the time-dependent effective decay asymmetry
approaches its late time limit around z f = O(10).

Using the effective decay asymmetry at early times leads to a large discrepancy
for the resulting lepton yield for both choices of washout strengths. The discrep-
ancy however decreases around the time of freeze-out z f = O(10), to a factor four
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Figure 4.1: The relation between the decay asymmetry ε and the minimal ratio κ̄/κ
of the smallest relaxation rate. The washout strength has to satisfy relation (4.34)
for the applicability of the strong washout approximation. For |ε| → 1/2, the min-
imal values of κ̄/κ are larger, which means that the off-diagonal correlations take
more time to build up. Therefore, larger values of the effective decay asymmetry
also require a stronger washout for the approximations to be valid. Figure taken
from [137].

for the smaller washout and leads to only 20% error in the case of the stronger
washout which satisfies the relation (4.34).

Let us now consider a flavoured model with two heavy neutrinos and three
doublet lepton flavours. We parametrize the Yukawa couplings using the Casas-
Ibarra parametrization from [92] introduced in Section 2.1.1.

Since the dependence on the PMNS parameters cancels in the matrix Re[YY†]
that appears in Eq. (4.17), we can use the Casas-Ibarra parametrization to find a
lower bound on the ratio of eigenvalues to zeroth order in the mass splitting M2 −
M1

(κ/κ̄)CI ,NO =
m2 + m3 ± (m3 −m2)sech(2Imω)

m2 + m3
, (4.38)

(κ/κ̄)CI ,IO =
m1 + m2 ± (m2 −m1)sech(2Imω)

m1 + m2
, (4.39)

where the superscripts (NO) and (IO) indicate normal or inverted hierarchy, and
m1, m2 and m3 are the masses of the active neutrinos. Taking the best fit values
for the active neutrino masses, we find the limits on the ratio of eigenvalues to



51 4.3. Resonant leptogenesis

10
-6

10
-5

10
-4

10
-3

|Y
l
|

10
-1

10
0

10
1

z=M/T

0.00

0.75

1.50

ϵ

Figure 4.2: Upper panel: The evolution of the time-dependent decay asymmetry
ε(z) as defined in (4.25) towards its the late-time limit ε = 0.49 (red, dotted) for
different values of the washout strength K̄ = 5 (blue) and K̄ = 20 (green). Lower
panel: Comparison between the time dependence of the lepton yield |YL| = |nL|/s
obtained using the time-dependent decay asymmetry for different values of the
washout strength K̄ = 5 (blue, solid), and K̄ = 20 (green, solid), with the result
obtained when using the late time limit (blue, dashed) and (green, dashed). Figure
taken from [137].

be (κ/κ̄) & 0.29 for normal ordering (NO) and (κ/κ̄) & 0.99 for inverted ordering
(IO). Combining these results with the criterion (4.34), we find that using the quasi-
static limit for δnh is a valid approximation throughout the strong washout regime.
Furthermore, using the Casas-Ibarra parametrization we find that the washout
strength

K̄ =
M̄trYY†

16πH

∣∣∣∣
T = M̄

≈
{
O(30) cosh(2Imω) , for NO ,
O(50) cosh(2Imω) , for IO ,

(4.40)

always satisfies K̄ � 1, which means that the washout is always strong in the
scenario with two heavy neutrinos.
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In Fig. 4.3 we present a comparison between time-dependent and time-independent
decay asymmetries for a scenario with realistic Yukawa couplings. In spite of the
discrepancy in the asymmetries at early times, close to the freeze-out we find a
O(1%) agreement between the asymmetries calculated with time-dependent and
time-independent effective decay asymmetries.
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Figure 4.3: Comparison between the time-dependent decay asymmetries εαα(z)
(solid) from Eq. (4.25) and their late-time limits εαα (dashed) from Eq. (4.28) for all
three active lepton flavours e, µ and τ. The parameters used are δ = 0, α = 0, ω =
π/4 + 0.2i, ∆M/M̄2 = − 4× 10−17 GeV. We also compare the individual baryon-
minus-lepton asymmetry yields Yαα = ∆αα/s obtained using the time-dependent
decay asymmetry and the late-time limits. Figure taken from [137].
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4.4 Leptogenesis Through Neutrino Oscillations

In this section we will discuss leptogenesis through neutrino oscillations, originally
proposed by Akhmedov, Rubakov and Smirnov, which is why it is also known as
ARS leptogenesis [88]. In contrast to the usual leptogenesis mechanism, where the
BAU is produced during the freeze-out of the heavy neutrinos, in this mechanism
the asymmetry is generated during the equilibration of the heavy neutrinos. The
heavy neutrinos are produced through Yukawa interactions with the SM leptons
and the Higgs boson. Since this interaction basis does not necessarily coincide
with their mass basis, the heavy neutrinos begin to oscillate. These oscillations
act as a source of lepton number and lepton flavour asymmetries. In the original
treatment by Akhmedov, Rubakov and Smirnov, the washout of the lepton flavour
asymmetries was neglected, and it appeared that three heavy neutrinos ns = 3
were necessary to generate a total lepton asymmetry. In the work by Asaka and
Shaposhnikov [71] it was pointed out that the washout of lepton flavour asymme-
tries can give rise to a net lepton asymmetry, making the mechanism viable even
for ns = 2. In the following, we focus our attention on this minimal scenario, with
ns = 2.

4.4.1 Ultra-Relativistic Approximations

In Chapter 3 we derived the evolution equations for heavy and active neutrinos
with general coefficients. In leptogenesis through neutrino oscillations, the heavy
neutrinos have masses at the GeV scale, however, as leptogenesis has to occur at
temperatures T > TEW, where the sphaleron processes are active, this implies that
the heavy neutrino will have energies much larger than its mass T � M. In con-
trast to the resonant regime, where we assumed the heavy neutrinos to be non-
relativistic, in this scenario we consider the exactly opposite case, where the heavy
neutrinos should be considered as ultra-relativistic.

For this reason, we depend crucially on thermal corrections to the neutrino self-
energy. Instead of the decays that dominate the collision term in the non-relativistic
case, here, the collision term is dominated by 2→ 2 scatterings.

The rates for these processes have been studied by various authors [117, 138–
147, 147–152]1.

The thermal contributions to the self-energy are momentum dependent, which
in principle means that we should keep track of each of the momentum modes in
the equation (4.11). Such an approach would prove to be a considerable complica-
tion for both numerical and analytic calculations. We therefore take the standard

1See [153] for a recent review.
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approach [71, 73, 88] of replacing the momentum-dependent equations for distri-
bution functions by rate equations for number densities

d
dz

δnh = −i[〈Hth
N 〉+ z2〈Hvac

N 〉, δnh]−
1
2
{〈ΓN〉, δnh}+ ∑

a,b=e,µ,τ
〈Γ̃α

N〉χαβ∆β , (4.41)

d
dz

∆α =
(
〈γ+〉(1) + 〈γ−〉(1)

) aR

Tref
Tr Υα

+ χαβ∆β − gw
Sα(δnhij)

Tref
, (4.42)

where the source term is given by

Sα = Sαα = ∑
h

h
aR

gw

[
〈γ+〉Tr

(
Υα
+hδnh

)
− 〈γ−〉Tr

(
Υα
−hδnh

)]
. (4.43)

After momentum averaging, we find the rates

〈Hvac
N 〉 =

1
2

〈
1
k

〉
a2

R

T3
ref

(
Re[M†M] + ih Im[M†M]

)
, (4.44)

〈Hth
N 〉 =

1
2

aR

Tref

(
〈hth

+〉Υ+h + 〈hth
−〉Υ−h

)
+

1
2
〈hEV〉 aR

Tref

Υ+ + Υ−
2

, (4.45)

〈ΓN〉 =
aR

Tref
(〈γ+〉Υ+h + 〈γ−〉Υ−h) , (4.46)

〈Γ̃α
N〉 = h

1
2

aR

Tref

(
〈γ+〉(1)Υα

+h − 〈γ−〉
(1)Υα

−h

)
. (4.47)

We summarize the coefficients in table 4.2. The averaging integrals for 〈X〉 and
〈X〉(1) are given by

〈X〉δn ≡
∫ d3k

(2π)2 X(k)δ f (k) (4.48a)

≈ δn
neq

∫ d3k
(2π)2 X(k) f eq(k) .

〈X〉(1) ≡
∫ d3k

(2π)2 X(k) f eq(k)[1− f eq(k)] , (4.48b)

To simplify the integral in (4.48a), we assumed that the deviation from equilib-
rium remains proportional to the Fermi distribution throughout the evolution of
the system. This approximation fails if γ(k) is highly momentum dependent, as
this causes different momentum modes to equilibrate at different times. This is the
case with γ−(k), which is IR enhanced. Therefore, to have a reasonable estimate of
the equilibration time for a mode that is populated through γ−(k), we consider the
average momentum mode instead and use

〈γ−(k)〉 → γ−(〈k〉) . (4.49)
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LNC rate X+ LNV rate X−

Spectral 〈γ+〉 ≈ 0.012 〈γ−〉 ≈ 9.7× 10−4 z2 M̄2

T2

〈γ+〉(1) ≈ 0.012 〈γ−〉(1) ≈ 0.019 z2 M̄2

T2

Hermitian 〈h+〉 ≈ 0.23 〈h−〉 ≈ c(z)× z2 M̄2

T2
ref

hEV ≈ 2π2

18ζ(3)
z2v2(z)

T2

〈k〉 = 1
aR

π2

18ζ(3)

Table 4.2: The various averages appearing in the evolution equations (4.41)
and (4.42). The momentum averages are calculated as described in (4.48), with
two exceptions. In the calculation of 〈γ+〉(1) we neglect the term f eq2, so that it
is equal to 〈γ+〉. On the other hand, the LNV rate 〈γ−〉 is evaluated at the av-
erage momentum 〈k〉. The reason for using such an approximation is that the
rate is highly IR enhanced. If we use the momentum averaging strategy described
in (4.48a), we end up over representing the soft momentum modes that equilibrate
early. We can see this discrepancy, as the rate 〈γ−〉(1) is more than an order of mag-
nitude bigger. The function c(z) contains logarithmic contributions, and is given

by c(z) =
[

3.50− 0.47 log
(

z2 M̄2

T2
ref

)
+ 3.47 log2

(
z M̄

Tref

)]
× 10−2.

Note that all the terms containing X− appear with a suppression factor z2M̄2/T2.
We will identify the terms X+ as lepton number conserving, and X− as lepton num-
ber violating, where we assign a lepton number to the heavy neutrinos based on
their helicity as previously mentioned in Section 2.2.

Approximate Lepton Number Conservation

Relativistic heavy neutrinos in the early universe can be assigned a lepton number
that corresponds to their helicity. We will call this lepton number L̃, with the charge
assignment:

Spinor Lepton number
P+N +1
P−N −1

To see the lepton number conservation in effect, we calculate the time derivative
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of L̃:

d
dz

∆L̃ =
d
dz

(
−∑

α

∆α + qN

)
, (4.50)

where qN ≡ Tr[δn+]− Tr[δn−], and insert the equations (4.41) and (4.42) to find

d∆L̃
dz

= −2
aR

Tref

(
〈γ−〉(1) Tr Υα

+χαβ∆β + 〈γ−〉Tr[Υ−δn+ − Υ+δn−]
)

, (4.51)

which vanishes in the limit γ− → 0. This implies, that the lepton number ∆L̃ is con-
served in the absence of γ−. Therefore, we may call γ+ lepton number conserving
(LNC) terms, and γ− lepton number violating (LNV).

Separation of the Equations Into Helicity Even and Odd Parts For ns = 2 heavy
neutrinos, the equations (4.41) can become significantly simpler, if we separate the
equations into helicity odd and even parts. As the lepton charge L̃ in the heavy
neutrinos is defined through the trace, we can define the even and odd distribu-
tions

δne ≡
δn+ + Vδn−V†

2
, δno ≡

δn+ −Vδn−V†

2
, (4.52)

which satisfies 2 Tr δno = qN for any unitary matrix V. The equations for the helic-
ity odd and even density matrices are given by

d
dz

δne,o = −i[〈Hth
e 〉+ z2〈Hvac

e 〉, δne,o]−
1
2
{〈Γe〉, δne,o}+ ∑

a,b=e,µ,τ
〈Γ̃α

e,o〉χαβ∆β

− i[〈Hth
o 〉+ z2〈Hvac

o 〉, δno,e]−
1
2
{〈Γo〉, δno,e} , (4.53)

where we have supressed the index N. The helicity odd and even matrices Xe,o are
defined as

Xe,o =
X+ ±VX−V†

2
. (4.54)

It appears that we have achieved exactly the opposite of our goal, we have gen-
erated two extra terms, coupling the helicity even and odd parts of the density
matrix. However, as we will see, with a convenient choice of V, these extra terms
can be made small, or even vanish. In order for both Γo, and Ho to vanish, there
has to be a matrix V that satisfies:

Γ+ = (VG)Γt
+(VG)† and Hth

+ + z2Hvac
+ = (VG)(Htht

+ + z2Hvact
+ )(VG)† ,

(4.55)
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where G is the matrix that tracks the Majorana condition introduced in E. We can
verify the existence of such a matrix by calculating traces of the commutator [154]

Tr
[
Γ+ , Hth

+ + z2Hvac
+

]r
, (4.56)

for odd values of r. If all the traces vanish, there exists a matrix V that satisfies
the required relation. This relation is trivially satisfied for ns = 2, and we can
always find a choice of V where both terms Ho and Γo will vanish. Note that while
this holds at any given z, the matrices Γ+ and Hth

+ + z2Hvac
+ change in time, which

leads to Γo , Ho ∼ O(dV/dz). Furthermore, the term Γ̃o remains non-zero. In the
L̃ number conserving limit we have γ− = h− = 0, which means that the matrices
Hth
± ∼ Γ± commute, and it is sufficient to consider the commutator [Γ+ , Hvac

+ ].
A particularly convenient basis choice for illustrating these effects is given in

the L̄ - conserving basis introduced in Section 2.2. We find that the matrices, Υ±,
and M2 take the form

Υα
+ =

(
|Fα|2 Fαε

∗
α

F∗αεα |εα|2
)

, Υα
− =

(
|εα|2 Fαε

∗
α

F∗αεα |Fα|2
)

, (4.57)

M2 = M̄2
(

1 + µ2 2µ
2µ 1 + µ2

)
,

with the matrix V in the limit h− = γ− = 0 given by

V ≈
(

0 1
1 0

)
. (4.58)

In this basis, all matrices, Γo, Hth
o , Hvac

o , as well as Γ̃α
o , vanish at zeroth order in

ε, γ− and h−. This means that the helicity even distributions δne approximately
decouple from the rest of the system, only entering through the source term which
is ε suppressed. In the following we adopt such a basis unless stated otherwise,
which allows us to always neglect the ε-suppressed backreaction terms Γe of the
helicity even distributions.

4.4.2 Analytic Expansions for Leptogenesis Through Neutrino Os-
cillations

In this section we will discuss regimes in which we can find useful approxima-
tions to the leptogenesis approximations. For simplicity, we will neglect the effects
coming from LNV terms, which we discuss in more detail in Subsection 4.4.3.

Leptogenesis via neutrino oscillations relies on two physical processes, oscilla-
tions between the heavy neutrino flavours, that arises from the effective Hamilto-
nian H, and equilibration (production) of the heavy neutrinos which is governed
by the matrix Γ.
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Oscillations happen due to a misalignment between the basis in which the
heavy neutrinos are produced∼ Γ, and their mass basis∼ H. The mass basis it-
self contains two terms, the thermal Hth, and vacuum parts Hvac. The thermal
contribution typically commutes with the equilibration matrix, and therefore does
not initiate oscillations. An exception to this is possible when one includes L̃NV
terms, which we will discuss in more detail in Subsection 4.4.3.

As the oscillations happen between two mass eigenstates, for ns heavy neutri-
nos we find ns(ns − 1)/2 different oscillation frequencies. At the same time, the ns
eigenvalues of the equilibration matrix ΓN correspond to ns different equilibration
time scales.

In the minimal model with ns = 2 heavy neutrinos, this corresponds to a single
oscillation time scale. If we neglect thermal corrections Hth, this time scale would
be determined by the differences between the heavy neutrino masses

zvac = (aR|M2
i −M2

j |)−1/3Tref , (4.59)

which corresponds to z3
vac∆Hvac = O(1), where ∆H signifies the difference be-

tween the eigenvalues. At early times, the thermal part of the effective Hamilto-
nian dominates, and can prevents neutrino oscillations. To identify the time scale
when the vacuum part of the Hamiltonian begins to dominate over the thermal
part, we introduce the time scale of vacuum mass dominance

zvmd =

√
∆Hth

∆Hvac ≈

√
T2

refh
th
+ Tr[YY†]

M2
2 −M2

1
= zvac

√
zvac

zth
, (4.60)

where we identified the difference between the eigenvalues of YY† with the trace,
as the smaller of the two eigenvalues is negligible compared to the large one. Fi-
nally, we have the time scale of the potential thermal oscillations which is close to
the equilibration time scale

zth =
1

∆Hth =
Tref

aRh
th
+ Tr[YY†]

, zeq =
1

Tr[Γ]
=

Tref

aRγ+ Tr[YY†]
. (4.61)

The relations between these time scales determines how leptogenesis is realized in
a specific scenario.

To identify where these regimes lie in parameter space, in Fig. 4.4, we identify
the line that corresponds to zeq = zvac. This is the boundary between the oscillatory
regime, where vacuum oscillations dominate, and the overdamped regime, where
equilibration (of at least one heavy neutrino flavour) is fast.
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Figure 4.4: The regions in parameter space corresponding to oscillatory or over-
damped regimes. We identify the line where the two time-scales, zvac and zeq are
equal. The red circle and the blue diamond correspond to the benchmark scenarios
described in Table 4.3. Note that the larger values of the Yukawa coupling corre-
spond to larger mixing angles.

overdamped oscillatory
M = 1 GeV Re ω = 3π/4 ∆M2 = 10−6M2 ∆M2 = 2× 10−5M2

δ = 3π/2 α1 = 0 Im ω = 4.71 Im ω = 2.16
α2 = −2π U2 = 3.6× 10−7 U2 = 2.2× 10−9

Table 4.3: The parameters corresponding to the benchmark points for each of the
regimes. Normal ordering is assumed in both cases.
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Oscillatory Regime

We now focus on the oscillatory regime. We characterize the oscillatory regime by
the vacuum oscillations between the heavy neutrinos being much faster than their
relaxation time

zvac � zeq . (4.62)

The difference between the scales zvac and zeq allows us to separate the oscillation
and equilibration processes.

To describe the fast oscillations, we switch to the interaction picture through the
transformation

δne I = exp
(

i
z3

3
Hvac

e

)
δne exp

(
−i

z3

3
Hvac

e

)
, (4.63)

which should also be applied to the matrices Γ and Hth. The evolution equations
can then be written as

d
dz

δne,o ,I = −i
[
〈Hth

e ,I〉, δne,o I

]
− 1

2
{〈Γe I〉, δne,o I} −

1
2
{〈Γo I〉, δno,e I}+O(µα) .

(4.64)

Since we are considering times z� zeq, we may use a perturbative expansion in Γ
and Hth. At zeroth order we find:

δn(0)
e ij = −neqδij , δn(0)

o = 0 . (4.65)

By inserting this term into the right hand side of equation (4.63), we find the first
order terms

δn(1)
e ,o ij = − exp[i(Hvac

e i − Hvac
e j )z3/3]

∫ z

0
dz′ exp[−i(Hvac

e i − Hvac
e j )z′3/3]neqΓe,o ij

(4.66)

= −neqΓe,o ijFij(z) ,

Fij =

[
Cij −

z
3

E2/3

(
− i

3
Ωijz3

)]
exp

(
− i

3
Ωijz3

)
, (4.67)

where Ωij is

Ωij =
aR

T3
ref

π2

36ζ(3)
(M2

ii −M2
jj) , (4.68)
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Figure 4.5: In the upper panel we present the oscillations of the heavy neutrinos
in the oscillatory regime. The CP-violating correlations, that act as a source for
the doublet asymmetries are characterised by the helicity odd off-diagonal flavour
correlations in their mass basis. As the oscillations become increasingly fast, their
contribution to the asymmetry decreases, and it becomes safe to cut them off, as
indicated in the plot. In the middle panel we present the asymmetries generated
in the individual SM flavours. The total lepton asymmetry is only generated when
the washout begins, as can be seen in the plot. In the lowest panel we show the
baryon asymmetry generated through this process. The error bars of the observed
value are indicated by the green band. Parameters used for this figure correspond
to the oscillatory benchmark point from table 4.3. Figure taken from [118].
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Cij is an integration constant which we determine to be

Cij = lim
z→0

[
z
3

E2/3

(
− i

3
Ωijz3

)]
=

Γ
(

1
3

)
3

2
3 (−iΩij)

1
3

, (4.69)

and

En(x) =
∞∫

1

dt
e−xt

tn . (4.70)

is the exponential integral function. In the mass basis, with the choice of V = 1, we
find the following expression for the equilibration matrices

Γe = 〈γ+〉
aR

Tref
Re[YY†]ij , Γo = 〈γ+〉

aR

Tref
i Im[YY†]ij . (4.71)

Initial Asymmetries in the Doublet Leptons Due to the separation of the equili-
bration time scales, we may separate the initial production of the asymmetries and
the washout of lepton doublet asymmetries. Therefore, at early times z � zeq, we
find that the flavoured asymmetries are given by

∆α(z) = −gw

∫ z

0

dz′

Tref
Sα(z′) . (4.72)

We substitute the solutions (4.66) for the helicity even and odd densities δne,o to
obtain the source term, which is proportional to the integral

z∫
0

dz′ Im
[
Fij(z′)

]
=

z2

2
Im 2F2

({
2
3

, 1
}

;
{

4
3

,
5
3

}
;− i

3
|Ωij|z3

)
sgn(M2

ii −M2
jj) ,

(4.73)

where the hypergeometric function F is defined as

pFq({a1, . . . , ap}; {b1, . . . , bq}; w) =
∞

∑
k=0

p

∏
i=1

Γ(k + ai)

Γ(ai)

q

∏
j=1

Γ(bj)

Γ(k + bj)

wk

k!
, (4.74)

for p, q ∈ N0 and w ∈ C, where Γ(x) is the Gamma function. After the first few
oscillations, the asymmetries quickly saturate close to their asymptotic values. For
times zvacO(1) < z� zeq we can approximate the doublet asymmetries as

∆α(z) = −gw

∫ z

0

dz′

Tref
Sα ≈ −gw

∫ ∞

0

dz′

Tref
Sa ≡ ∆sat

a . (4.75)
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This integral is obtained by taking the limit of the hypergeometric function

∞∫
0

dz Im
[
Fij(z)

]
= −

π
1
2 Γ(1

6)

2
2
3 3

4
3 |Ωij|

2
3

sgn(M2
ii −M2

jj) . (4.76)

Inserting this integral into ∆sat
α , and dividing by s = 2π2g?a3

R/45 to obtain the
asymmetry yield per flavour, we find

∆sat
α

s
=

i

g
5
3
?

3
13
3 5

5
3 Γ(1

6)ζ(3)
5
3

2
8
3 π

41
6

∑
i,j,γ
i 6=j

Y†
αiYiγY†

γjYjα

sgn(M2
ii −M2

jj)

(
m2

Pl
|M2

ii −M2
jj|

) 2
3

〈γ+〉2

≈ −∑
i,j,γ
i 6=j

Im[Y†
αiYiγY†

γjYjα]

sgn(M2
ii −M2

jj)

(
m2

Pl
|M2

ii −M2
jj|

) 2
3

× 3.4× 10−4〈γ+〉2 . (4.77)

The comparison between the analytic solutions for δno and ∆α with the numer-
ical results is presented in Fig. 4.6. The approximations are quite accurate at early
times, but a discrepancy is generated at later times due to the higher order washout
and backreaction effects we neglected.

Washout of the Doublet Asymmetry At time scales corresponding to the equi-
libration scale z = zeq, the oscillations between the heavy neutrino flavours have
become fast enough that we can average them out, and neglect the off-diagonal
correlations δnij|i 6=j ≈ 0. If we neglect the off-diagonal correlations, we can re-
duce the density matrix equations to a system of rate equations that governs the
evolutions of the doublet and heavy neutrino charges

d∆α

dz
= 〈γ+〉

aR

Tref
∑

i
|Yiα|2

(
∑
β

χαβ∆β − qNi

)
, (4.78a)

dqNi

dz
= −〈γ+〉

aR

Tref
∑
α

|Yiα|2
(

qNi −∑
β

χαβ∆β

)
, (4.78b)

where the qNi are the charges per heavy neutrino with mass Mi. Assuming that
the oscillations have saturated z � zvac, for the initial conditions we can take the
values ∆sat

α for the doublet charges, and qNi = 0 for the heavy neutrino charges.
The (3 + ns) coupled differential equations all appear with constant coefficients,
which we can represent as a differential equation for a vector of the charges V∆N =
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Figure 4.6: The comparison between the analytic results (red, dashed) to the nu-
merical solutions (blue, solid) for the time evolution of the CP-violating correlation
of the heavy neutrinos Re[δno 12] (upper panel), as well as for the individual asym-
metries in the doublet neutrino ∆α (lower panel). For comparison, we also show
the saturated values ∆sat

α from Eq. (4.77) in (dotted, green). Note that the approx-
imate asymmetries approach a constant value, as the washout effects have been
neglected. In the minimal scenario with two heavy neutrinos, the initial lepton
asymmetry vanishes ∑α ∆α = 0. Figure taken from [118].
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(∆t, qt
N)

t

d
dz

V∆N =
aR

Tref
γavKV∆N , K =

(
K∆∆ K∆N

KN∆ KNN

)
, (4.79)

where the block matrix elements K∆∆, K∆N, KN∆ and KNN read

K∆∆
αβ =

ns

∑
k=1
|Ykα|2χαβ , K∆N

αj = −|Yjα|2 ,

KN∆
ib =

3

∑
δ=1
|Yiδ|2χδβ , KNN

ij = −
3

∑
δ=1
|Yiδ|δij , (4.80)

the latin indices i, j = 1, 2, . . . , ns correspond to the heavy neutrino and α, β = 1, 2, 3
to the doublet neutrino flavours. If we diagonalize the matrix K

Kdiag = T−1KT , (4.81)

with T as a transformation matrix and with the eigenvectors of K as column vectors,
we can write the formal solution(

∆(z)
qN(z)

)
= T exp

(
aR

Tref
γavKdiag z

)
T−1

(
∆in

qin
N

)
. (4.82)

The baryon charge YB freezes in at the sphaeron freeze out temperature Tsph, which
in our case corresponds to Tref with z = 1. Following the relation (3.63), the BAU
can be expressed as

YB =
28
79

1
s
[∆1(z) + ∆2(z) + ∆3(z)]z=1 . (4.83)

We present a comparison of the analytic results for the evolution of the baryon
asymmetry with the numerical solution in Fig. 4.7.

Overdamped Regime

We now consider the overdamped regime, where the equilibration rate of at least
one heavy neutrino is faster than the vacuum oscillations zeq � zvac, i.e. at least
one of the heavy neutrino flavours equilibrates before a single oscillation is com-
plete. An example of such an evolution is presented in Fig. 4.8. This region of
parameter space is interesting for two reasons, first, it corresponds to large mixing
angles, which means it will be accessible to future experiments sooner, and second,
it corresponds to small mass differences between the heavy neutrinos which are
typically found in the approximately L̄-conserving scenarios. In this scenario we
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Figure 4.7: The comparison between the numerical solution, and the analytic re-
sults for the baryon asymmetry. In the upper panel we present the evolution of the
individual flavour asymmetries (thick, blue), compared with the results obtained
with the analytic results obtained by using the saturated values ∆sat

α as their initial
values (red, dashed). In the lower panel we see the results for the evolution of the
baryon asymmetry. In the analytical approximation (green, dashed) we assume
that all of the asymmetry is produced instantaneously, therefore it yields a signif-
icantly larger BAU for early times compared to the numerical results (thick, red).
At later times z > zvac this discrepancy decreases down to an O(10%) difference.
Figure taken from [118].
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find that one of the eigenvalues of Υ± can be several orders of magnitude smaller
compared to the other one, as can be seen from (4.57). This means that the two
interaction eigenstates behave very differently in the plasma. The eigenstate that
corresponds to the larger eigenvalue of Γe interacts rapidly, and it quickly reaches
equilibrium. On the other hand, the eigenstate corresponding to the smaller eigen-
value interacts feebly with the plasma, and it remains out of equilibrium until the
neutrinos start to oscillate. In this scenario, the thermal masses of the heavy neu-
trinos dominate the effective Hamiltonian at early times, which means that the
interaction eigenstates also correspond to the mass eigenstates. The oscillations of
the weakly coupled eigenstate therefore only happen only when the temperature
drops low enough that the vacuum mass differences become comparable to those
induced by the thermal masses. This corresponds to the times scale of vacuum mass
dominance zvmd. As we are now considering time scales z > zeq, we can no longer
use the same perturbative expansion in Yukawa couplings that we have used in
the oscillatory regime.

Instead we use an approach similar to the one from 4.3.2, which is suitable for
scenarios where the equilibration is fast.

Evolution of the Heavy Neutrino Number Densities To find analytic approxi-
mations for the evolution of the heavy neutrino number densities, we use the basis
where Υ+ is diagonal, where we can clearly associate the weakly and strongly in-
teracting eigenstates with the couplings Fα and εα respectively. In this basis, the
heavy neutrino thermal mass and equilibration matrices take the form

〈ΓN,e〉 ≈ 〈γ+〉
aR

Tref

(
∑α |Fα|2 0

0 0

)
, (4.84a)

〈Hth
N,e〉 ≈ 〈h+〉

aR

Tref

(
∑α |Fα|2 0

0 0

)
, (4.84b)

for V =

(
0 1
1 0

)
. (4.84c)

where we neglected all terms of O(ε)2. It can be shown that the terms Γo, as well
as Hth

o also vanish to leading order in ε. The helicity-even part of the vacuum
Hamiltonian is given by

Hvac
N =

π2

36ζ(3)
aR

T3
ref

M̄2
(

1 + µ2 2µ
2µ 1 + µ2

)
+O(µε) . (4.85)

To keep the results more general, in the following we only assume that 〈ΓN e〉11 and
〈Hth

N e〉11 are the only non-vanishing entries of the equilibration and thermal mass
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Figure 4.8: The production of the BAU in the overdamped regime. In the top panel
we present the evolution of the off-diagonal element of the heavy neutrino density
matrix that acts as a source of the individual lepton asymmetries. In contrast to the
oscillatory regime, the off-diagonal correlation does not oscillate, but instead grows
and relaxes to equilibrium. In the middle panel we present the evolution of the
individual lepton asymmetries. Since the asymmetry is being produced after the
equilibration time scale, the flavoured washout is already efficient at redistributing
the flavour asymmetries into a total lepton (baryon) asymmetry. In the bottom
panel we show the evolution of the baryon asymmetry. The observed value of the
BAU is indicated by the green bands. Figure taken from [118].



Chapter 4. Baryogenesis Through Leptogenesis 70

matrices. Inserting these expressions into the evolution equations (4.53), we find
the equations for the degrees of freedom that experience the equilibration directly

dδne 11

dz
= −〈ΓN e〉11δne 11 − i z2 [〈Hvac

N e 〉12δne 21 − 〈Hvac
N e 〉∗12δne 12] , (4.86a)

dδne 12

dz
= −〈ΓN e〉11

2
δne 12 − i〈Hth

N e〉11δne 12 − i z2 ∑
k
[〈Hvac

N e 〉1kδne k2 − δne 1k〈Hvac
N e 〉k2] ,

(4.86b)

and the ones that equilibrate indirectly, through the mixing with the directly equi-
librated elements

dδne 22

dz
= −iz2 [〈Hvac

N e 〉∗12δne 12 − 〈Hvac
N e 〉12δne 21] . (4.87)

For times z� zeq, we may safely assume that the degrees of freedom in (4.86) have
reached the quasi-static limit, where

dδne 11/dz = dδne 12/dz = dδne 21/dz ≈ 0 . (4.88)

Which means that each of the terms on the right hand side of equation (4.86) is
much larger than the derivatives on the left hand side. This approximation allows
us to express the densities δne 11, δne 12 and δne 21 in terms of the weakly coupled
density δne 22

δne 11 =
z4|〈Hvac

N e 〉12|2

〈ΓN e〉211/4 + 〈Hth
N e〉211 + z22〈Hth

N e〉11
[
〈Hvac

N e 〉11 − 〈Hvac
N e 〉22

]
+ z4H̃2

N
δne 22 ,

(4.89a)

δne 12 = −
z2〈Hvac

N e 〉12
{

i〈ΓN e〉11/2 + 〈Hth
N e〉11 + z2 [〈Hvac

N e 〉11 − 〈Hvac
N e 〉22

]}
〈ΓN e〉211/4 + 〈Hth

N e〉211 + z22〈Hth
N e〉11

[
〈Hvac

N e 〉11 − 〈Hvac
N e 〉22

]
+ z4H̃2

N
δne 22 ,

(4.89b)

with the shorthand notation

H̃2
N ≡ |〈Hvac

N e 〉12|2 + [〈Hvac
N e 〉11 − 〈Hvac

N e 〉22]
2 .

To determine the evolution of the weakly coupled state, we insert the above solu-
tions into (4.87)

dδn22

dz
= −

z4|〈Hvac
N e 〉12|2〈ΓN e〉11

〈ΓN e〉211/4 + 〈Hth
N e〉211 + z22〈Hth

N e〉11
[
〈Hvac

N e 〉11 − 〈Hvac
N e 〉22

]
+ z4H̃2

δn22

= −〈ΓN e〉11
|〈Hvac

N e 〉12|2

H̃2
N

z4

(z2 + z2
c)(z2 + z∗2c )

δn22 , (4.90)
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where we introduce the complex parameter

zc =

√√√√ 〈Hth
N 〉11

H̃N

[
〈Hvac

N 〉11 − 〈Hvac
N 〉22

H̃N
+ i

√
|〈Hvac

N 〉12|2
H̃2

+
〈γ+〉2
〈hth

+〉2

]
. (4.91)

If we take the vacuum part of the Hamiltonian from (4.85), and neglect the ratio
(〈γ+〉/〈hth

+〉)2, we find that the absolute value of the parameter |zc| corresponds to
the time at which the vacuum masses become comparable to the thermal masses,
i.e.

|zc| ≈ zvmd = zvac

√
zvac

zth
� zvac . (4.92)

We can now analytically solve Eq. (4.90) to find

δn22 = δn22(0) exp

−〈ΓN〉11
|〈Hvac

N 〉12|2

H̃2
N

z−
Im
(

z3
c arctan z

zc

)
Im z2

c

 . (4.93)

At times before the vacuum mass dominance, z . |zc|, we can safely approximate

δn22 ≈ δn22(0) exp

(
−〈ΓN e〉11

|〈Hvac
N e 〉12|2

H̃2
N

z5

5|zc|4

)
. (4.94)

From equation (4.94), we can calculate the equilibration time for the weakly cou-
pled state

zeq
w = |zc| 5

√
5zeq

|zc|
H̃2

N
|〈Hvac

N 〉12|2
. (4.95)

Considering that the equilibration time scale is by construction much shorter than
|zc| ∼ zvmd, we find that it is justified to use Eq. (4.94) to describe the equilibration
of δn22, as long as |〈Hvac

N 〉12|2 � |〈Hvac
N 〉22 − 〈Hvac

N 〉11|2, which is the case in the
L̄-conserving limit. In the L̄-conserving limit we can express the equilibration time
scale for the weakly coupled state as

zeq
w =

5

√
405ζ2(3)〈h+〉2

π2〈γ+〉
T5

ref ∑α |Fα|2
aRM̄2µ2 . (4.96)

We can now insert the solution (4.94) into the equations for the off-diagonal terms
that act as a source for the asymmetry

i Im[δne 12] = −
z2i〈Hvac

N e 〉12〈ΓN e〉11

2H̃2
N|z2 + z2

c |2
δn22(z) . (4.97)
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Figure 4.9: Comparison between the numerical (solid) and the analytic (dashed)
results for the source of the lepton asymmetries for the three SM flavours. Figure
taken from [118].

Inserting into the source term we find

Sa = aR
〈γ+〉

gw
Tr[Im(Υα

+)δne]

= 4
〈γ+〉2a2

R
gwTref

∑β |Fβ|2

H̃2
N

z2

|z2 + z2
c |2

Im [F∗αεα] 〈Hvac
N e 〉12δn22(z) (4.98)

We find that the leading order of the source term is non-vanishing in the smaller
Yukawa couplings εα. In Fig. 4.9 we present the time evolution of the source term.

The unflavoured source term S = ∑α Sα vanishes as a Γo = ∑ Γα
o = 0 imposes

∑α Fαε
∗
α = 0. In the B− L̄-conserving limit, where µ� M̄, we can further simplify
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the source term to:

Sα

s Tref
≈ − 45

√
5

g3/2
? gw4π7/2

〈γ+〉2

〈hth
+〉2

mPlM̄µ

T3
ref

Im[F∗αεα]

∑β |Fβ|2
z2 exp

(
− z5

zeq
w

5

)

= −5.65× 10−7 × mPlM̄µ

T3
ref

Im[F∗αεα]

∑β |Fβ|2
z2 exp

(
− z5

zeq
w

5

)
. (4.99)

Applicability of the approximations For the approximations we made to be valid,
the derivatives of the overdamped degrees of freedom δn11 and δn12 have to be
small compared to the individual entries on the right-hand side of equations (4.86).
In particular, we are interested if the approximations are valid after the strongly
coupled state reaches equilibrium, and before the weakly coupled state fully equi-
librates, i.e. for times zeq � zeq

w . If we use the approximate form of the overdamped
densities

δne 11 =
|(Hvac

N )12|2

(H̃vac
N )2

z4

|zc|4
δne 22 , (4.100a)

δne 12 = −
(Hvac

N )12

(H̃vac
N )2

z2

|zc|4
[
(Hth

N )11 + i(ΓN)11

]
δne 22 , (4.100b)

we find that their derivatives are approximately given by

δne 11 =
|〈Hvac

N e 〉12|2

H̃2
N

z4

|zc|4
δne 22 , (4.101a)

δne 12 = −
〈Hvac

N e 〉12

H̃2
N

z2

|zc|4
[
〈Hth

N e〉11 + i〈ΓN e〉11

]
δne 22 . (4.101b)

which means that we may safely use the quasi-static limit for the overdamped of
freedom, as long as the derivative of δn22 remains small, which is true for z < |zc|.

Evolution of the Asymmetries in the Overdamped Regime In contrast to the
oscillatory regime, the time scale of the washout of the active charges are faster,
or comparable to the time scales at which the individual lepton asymmetries are
being produced.

As a consequence of this, it is not possible to treat the production and washout
of the lepton asymmetries as separate processes. However, if we separate the equa-
tions into the helicity-even and odd parts, we can first solve the helicity-even part,
as we have done above, and use it as an input (source) for the coupled system of
helicity-odd equations, i.e. the coupled equations of δno and the asymmetries ∆α.
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This procedure can be seen as keeping all the large Yukawa couplings Fα in the
equations, but treating the smaller set of Yukawa couplings εα as a small expan-
sion parameter. Separating the sets of equations is therefore equivalent to solving
the equations to zeroth order in ε, and using them as an input for the equations
that are first order in ε.

Suppression due to Backreaction To describe the effects of backreaction on the
heavy neutrinos we consider the equations for the helicity-odd heavy neutrino
densities (4.53), which are coupled to the asymmetries in the doublet leptons (4.42).
The backreaction term, that describes the feedback of the asymmetries in the dou-
blet leptons onto the heavy neutrinos is given by

〈Γ̃α
N e〉 =

1
2
〈γ+〉(1)

aR

Tref

(
|Fα|2 0

0 0

)
+O(ε) , (4.102)

i.e. it dominantly couples to the overdamped degree of freedom δno 11. As in the
previous section, we apply the quasi-static approximation for the overdamped de-
grees of freedom δno 11, δno 12 and δno 21, which gives us the density

δno 11 ≈∑
β,γ

|Fβ|2

2 ∑δ |Fδ|2
χβγ∆γ

(
1−
〈Hvac

N e 〉12|2

H̃2
N

z4

|z2 + z2
c |2

)

+
|〈Hvac

N e 〉12|2

H̃2
N

z4

|z2 + z2
c |2

δno 22 . (4.103)

To find the evolution equations for the slowly evolving degrees of freedom, we
insert the above equations into the equations for the weakly coupled state δno 22 as
well as the equations for the lepton doublets to find

d∆a

dz
= W̃αβ∆β − gw

Sa(z)
Tref

(4.104a)

+
aR

Tref
〈γ+〉|Fα|2

|〈Hvac
N e 〉12|2

H̃2
N

z4

|z2 + z2
c |2

(
2δno 22 −∑

β,γ

|Fβ|2

∑δ |Fδ|2
χβγ∆γ

)
dδno 22

dz
= −〈ΓN e〉11

|〈Hvac
N e 〉12|2

H̃2
N

z4

|z2 + z2
c |2

1
2

(
2δno 22 −∑

β,γ

|Fβ|2

∑δ |Fδ|2
χβγ∆γ

)
,

(4.104b)

where we introduced the effective washout matrix

W̃αβ =
aR

Tref
〈γ+〉|Fα|2 ∑

γ

(
δαγ −

|Fγ|2

∑δ |Fδ|2

)
Aγβ . (4.105)
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We can combine Eqs. (4.104a) and (4.104b) to simplify the expression for the active
lepton densities

d∆α

dz
= ∑

β

W̃αβ∆β − gw
Sα(z)
Tref

− 2
|Fα|2

∑δ |Fδ|2
dδno 22

dz
. (4.106)

If we neglect the term proportional to the derivative of δno 22, which remains small
for z . |zc|, we can formally calculate the flavoured asymmetries by calculating
the integrals

∆α(z) ≈ ∑
β ,γ=1,2

vT
αβewβz

∫ z

0
dz′ e−wβz′vβγgw

Sγ(z′)
Tref

. (4.107)

where w1,2 are the two non-vanishing eigenvalues of the matrix W̃αβ, with the cor-
responding flavour eigenvectors vβγ.

Since we have neglected the derivatives dδno ii/dz, the total lepton number re-
mains conserved. The approximate lepton number conservation is then reflected
in vanishing eigenvalue of the effective washout matrix W̃.

To obtain a total non-vanishing lepton number, we have to include the correc-
tions of O(dδno ii/dz). This suppression is a result that is only present due to the
backreaction of the active asymmetries onto the heavy neutrinos.

We now proceed to include these corrections by calculating the density in δno 22,
which can be obtained by integrating Eq. (4.104b) with the approximate form for
the doublet asymmetries from Eq. (4.107). In practice, it is sufficient to neglect it
for times before the equilibration time of the weakly coupled state z < zeq

w , and at
later times replace it by the quasi static limit.

To include the violation of the lepton number L = ∑ Lα through washout, we
include the corrections of O(d∆α/dz) to the overdamped degree of freedom δne 11.
The BAU can then be calculated by if we integrate the sum ∑α d∆α/dz by parts,
which gives us

B(z) ≈ 28
79

[
∑
αβ

∆α(z)χαβ

|Fβ|2

∑δ |Fδ|2
+ 2δno 22(z)

]
. (4.108)

The resulting expression is correct up to O(50%) corrections for z > |zc|. It is
interesting that the above expression reflects the approximate B− L̃-conservation,
as it is essentially given by

B(z) ≈ 28
79
× 2 Tr(δno) =

28
79

(B− L) . (4.109)

The comparison between these analytic expressions and the numerical results is
presented in Fig. 4.10, while a complete comparison between the analytical and
numerical results is presented in Fig. 4.11.
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Figure 4.10: Comparison between the BAU obtained numerically (blue, full) and
using the semi-analytic approximations (red, dashed). The parameters correspond
to overdamped benchmark point from 4.3. Figure taken from [118].
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Figure 4.11: The comparison between numerical and analytic solutions for the
source term, individual lepton charges and the baryon asymmetry for parameter
choices that lead to maximal mixing angles for right-handed neutrino masses of
M̄ = 1GeV in the case of normal hierarchy. Numerical solutions are shown with
the solid lines. The analytical approximations are always presented with a dashed
line, for the source term they are indistinguishable from the numerical result. The
parameters used for this plot are ∆M2 = 4.002× 10−8M̄2, ω = 5π

4 + 5.26i, α1 = 0,
α2 = 0,δ = π/2, and the discrete parameter ξ = 1. The small CP-violating param-
eters are µ = 1.001× 10−8M̄ and ∑a |εa|2 = 3.65× 10−10 ∑a |Ya|2.
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BAU in the case of a highly flavour asymmetric washout The largest mixing
angles U2 typically correspond to a large asymmetry in the washout strengths for
different active neutrino flavours, i.e. |Fα|2 � ∑β |Fβ|2 for some flavour α. If the
washout timescale of that flavour is longer than the timescale of the equilibration
of weakly coupled heavy neutrino, and that the remaining two flavours have a
strong washout, we can further simplify the equations (4.107).

The evolution of the flavour with the smallest washout ∆α can be approximated
by the integral

∆α(z)
s

= − exp
(
−〈γ+〉aR

2Tref
|Fα|2z

) ∫ z

0
dz′gw

Sα(z′)
sTref

exp
(
〈γ+〉aR

2Tref
|Fα|2z′

)
, (4.110)

while the other two flavours rapidly reach their quasi-static equilibrium, with ∆β =
−∆α/2.

If we completely neglect the washout of the flavour ∆α for z � zeq
w , the expo-

nential within the integral can be approximated by unity. The approximate lepton
flavour asymmetry is then given by:

∆a(z)
s

= −405ζ6/5(3)
601/5 2π5

〈γ+〉7/5

〈hth
+〉4/5g6/5

?

[
m2

Pl
M̄µ(∑β |Fβ|2)2

]1/5

× (4.111a)

× Im[F∗α εα]γ

(
3
5

,
z5

zeq
w

5

)
exp

(
−〈γ+〉aR

2Tref
|Fα|2z

)

≈ −4.44× 10−6

[
m2

Pl
M̄µ(∑β |Fβ|2)2

]1/5

Im[F∗α εα]γ

(
3
5

,
z5

zeq
w

5

)
exp

(
−〈γ+〉aR

2Tref
|Fα|2z

)
,

(4.111b)

where γ(s, x) is the lower incomplete gamma function

γ(s, x) ≡
∫ x

0
ts−1e−tdt . (4.111c)

To obtain the total BAU, we insert the above expression into Eq. (4.108), and neglect
the corrections of O(|Fα|2/(∑β |Fβ|2). The BAU is then given by

B(z)
s
≈ 1

s
28
79

(
∆α(z)

6
+ 2δno 22(z)

)
(4.112a)

≈ −2.62× 10−7

[
m2

Pl
M̄µ(∑β |Fβ|2)2

]1/5

Im[F∗α εα]

× γ

(
3
5

,
z5

zeq
w

5

)
exp

(
−〈γ+〉aR

2Tref
|Fα|2z

)
[1 + θ(z− zeq

w )] , (4.112b)
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Scaling of the parameters Scaling of the observables
At the original scale M̄ µ Im ω U2

ai B(z = 1)
Rescaled ζM η/ζµ Im ω + log(η/ζ3)/6 η1/3ζ−2U2

ai B(η1/3)ζη−1/3

Table 4.4: The approximate relation between the mixing angles and number den-
sities (right column) under a change of the Casas-Ibarra parameters (left column).
The complex angle Im ω can be chosen in such a way that the ratio of the equili-
bration and vacuum oscillation time scales remains constant. A particular solution
to the evolution equations B(z) can this way be related to a class of parameters
through the appropriate scaling.

where we used ∆β = −∆α/2. The number density of the weakly coupled heavy
state δno 22 is completely neglected for times z < zeq

w , and replaced by the quasi-
static limit at times z > zeq

w , which is reflected by the Heaviside theta function.
Physically, before zeq

w , the lepton asymmetry in L can only be compensated by the
strongly coupled state, in δno 11, while after zeq

w , the weakly coupled state can also
carry a portion of the asymmetry. This increases the total L̃ asymmetry that is
stored in the heavy neutrino sector, and therefore, the total L asymmetry in the
lepton doublets.

Approximate scaling of the asymmetry

In the case of large mixing angles, where we can neglect the smaller Yukawa cou-
plings |εα|2 ∼ ε|Fα|2 ≈ 0, there are only three independent physically relevant
time scales in the problem, the vacuum oscillation rate, and the equilibration rate,
and the temperature of the sphaleron freezeout, which we approximate to the tem-
perature of the electroweak crossover TEW. If we keep the ratios of the vacuum
Hamiltonian, and the equilibration rates fixed, we can relate different solutions to
the evolution equations of the heavy neutrino, and doublet lepton densities. The
size of the equilibration rate, as well as the vacuum Hamiltonian are connected to
the mass splitting µ and to the complex angle Im ω. The scaling of the variables is
presented table 4.4 from [118]. Note that this scaling cannot be use in the presence
of L̃NV processes, they introduce a new timescale to the problem.

4.4.3 The Role of Lepton Number Violating Processes

So far we have completely neglected the effects from to the L̃NV processes. The
L̃ charge is defined by the helicity of the heavy neutrinos, and will therefore be
violated by their Majorana mass M. As the heavy neutrinos below the W-boson
mass are predominantly produced as relativistic, the effect from L̃NV will be sup-
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Figure 4.12: The different equilibration scales in leptogenesis through neutrino os-
cillations. The naive seesaw relation is presented in (blue, solid), and roughly corre-
sponds to the minimal size of the mixing U2 consistent with the measured neutrino
masses. The coupling that is required to bring the heavy neutrinos into equilibrium
through the L̃NC interactions by the electroweak temperature TEW is represented
in (red, dashed). On the other hand, the LNV interactions are suppressed by an-
other factor M2/T2, and only reach equilibrium for couplings above the (green,
dotted) line.

pressed by M2/T2. These effects have been neglected in most previous studies of
the leptogenesis through neutrino oscillations parameter space.

In the following we discuss several important effects arising due to the L̃ num-
ber violating processes.

• direct production of the lepton asymmetry, ∑α Sα 6= 0

• equilibration of the weakly coupled state νRw

• washout of the lepton asymmetry L̃

• generation of the asymmetry in the degenerate limit µ→ 0
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Direct Production of the Lepton Asymmetry In the usual ARS leptogenesis sce-
nario [71, 88], the lepton flavour asymmetry is generated through the CP-violating
oscillations among the heavy neutrinos. The total lepton asymmetry initially van-
ishes, and is only produced through the washout of the flavoured asymmetries
∆α. For parameters close to the seesaw scale, we can estimate the produced lep-
ton asymmetry to be suppressed by Yukawa couplings of O(Y6), cf. ref. [155]
for a pedagogical discussion. This can intuitively be understood if we combine
Eq. (4.77) with (4.78) to first order in the Yukawa couplings. As the total L̃ num-
ber is conserved, a lepton asymmetry can only be produced once the asymmetry is
redistributed from Lα to the heavy neutrinos through washout (or backreaction).

In contrast to this scenario, in the presence of L̃-number violating processes, the
BAU can be produced already atO(Y4M2/T2). The corrections from L̃-number vi-
olating processes, are dominated by the Higgs decays in the symmetric phase [97],
or by the mixing between heavy and light states in the broken phase [98, 152],
and give rise to the additional suppression factor O(M2/T2).2 To see which one
of these effects dominates, we have to compare the two suppression factors, |Yiα|2
and M2/T2, where T corresponds to the temperature at which the asymmetry is
being produced. For |Yiα| ∼ Y0, this implies that the temperature T at which the
asymmetry is produced has to be T . O(v

√
M̄/mα. Note that any asymmetry pro-

duced this way is protected form the L̃-conserving washout, and could therefore
be the dominant contribution to the BAU even for |Yiα| � Y0.

Equilibration of the Weakly Coupled States In the symmetry protected limit,
where ∑α |εα|2 � ∑α |Fα|2, the two interaction eigenstates have vastly different
equilibration time scales. In Section 4.4.2 we have seen that the weakly coupled
state only reaches equilibrium through the mixing with the strongly coupled one.
However, in the presence of L̃-number violating processes, the weakly coupled
states can also be produced directly. To illustrate this, let us consider the equilibra-
tion matrix for the heavy neutrinos in the interaction basis

ΓN + = ∑
α

aR

Tref

(
〈γ+〉|Fα|2 0

0 〈γ−〉|Fα|2
)
+O(ε) . (4.113)

The weakly coupled state, which corresponds to δn22 which is not produced in the
absence of the L̃NV processes, now also gets a contribution, however, suppressed
by the factor 〈γ−〉 ∼ M2/T2.

Without these processes, it would in principle be possible to postpone the equi-
libration of the weakly coupled state arbitrarily, by adjusting µ and therefore zeq

w .
However, as we see in the equation above, the L̃NV processes cause equilibration

2For an earlier discussion see ref. [79].
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on their own, with the time scale

zeq
LNV =

3

√
3 T3

ref
9.7× 10−4aRM̄2 ∑α |Fα|2

(4.114)

= 181.8

(
∑α |Fα|2

Y2
0

)−1/3(
M̄

1 GeV

)−1/3

,

where we have used the values from table 4.2, and Y0 is the size of the Yukawa
couplings in the naive seesaw limit 2.15. In Fig. 4.12 we present the size of mixing
angle U2 necessary for the L̃NV interactions to equilibrate before the electroweak
temperature TEW. As the weakly coupled state determines the deviation from equi-
librium of the whole system in the overdamped regime, an enhanced equilibration
rate can have dramatic consequences for the generation of the BAU. An example
point where exactly this equilibration effect prevents successful leptogenesis is pre-
sented in the left panel of Fig. 4.13.

Washout of the Lepton Asymmetry L̃ In Section 4.4.1, we have shown that the
total asymmetry L̃ remains conserved if we can neglect terms ∼ γ−. The conser-
vation of such a lepton number can be a double-edged sword, as it also limits the
lepton asymmetry to be equal to the asymmetry in the heavy neutrino sector. If
the washout of the heavy neutrinos is strong, the asymmetry in the heavy neutrino
sector is suppressed as was discussed in 4.4.2. The L̃NV processes can bypass this
suppression, as they can delete lepton asymmetries directly, and convert lepton
flavour asymmetries into a total lepton number asymmetry more efficiently. An
example of a point where these processes are necessary to produce the BAU are
presented in the right panel of Fig. 4.13.

Generation of the Asymmetry in the Degenerate limit µ → 0. It is commonly
assumed that no baryon asymmetry can be produced if the two heavy neutrinos
are exactly degenrate µ → 0. In this limit it appears that the equilibration ma-
trix commutes exactly with the effective Hamiltonian of the heavy neutrinos. This
would prevent any oscillations between the heavy neutrino states, and no lepton,
or baryon asymmetries would be generated.

In the presence of L̃NV processes it is possible that the effective Hamiltonian
no longer commutes with the equilibration matrix, as they can have different de-
pendences on flavour and helicity.

To study this scenario analytically, we constrain ourselves to the weak washout
regime, where we can use the Yukawa couplings as a small expansion parameter.
We proceed to iteratively solve equations Eq. 4.41, which gives us the approximate
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Figure 4.13: Comparison between the evolution of the heavy neutrino number
densities with (blue, solid), and without (yellow, dashed) the L̃NV processes. In
the left panel we show the evolution of the neutrino number densities and lepton
asymmetries for a point where the L̃-number violation supresses the final BAU.
Without the L̃NV processes, we can postpone the equilibration of the weakly cou-
pled state by adjusting the mass splitting µ between the heavy neutrinos. When
L̃NV processes are included, the weakly coupled state can equilibrate on its own,
before a significant mixing with the strong state. This can reduce the size of the
source term, and completely prevent the generation of the BAU. In the right panel
we show an example of a point where the L̃NV processes enhance the BAU. At
early times the L̃NV processes can be neglected, which yields an identical evolu-
tion of the flavoured lepton asymmetries. Approximate L̃ conservation can sup-
press the total lepton asymmetry. If L̃-number is violated at late times, this sup-
pression is no longer efficient, which allows for a larger final BAU. Figure taken
from [46].
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solutions

δnh(z) = −neq + neq aR

Tref

∫ z

0
dz′
(
〈γ+(z′)〉Υ+h + 〈γ−(z′)〉Υ−h

)
(4.115)

− neq
(

aR

Tref

)2 i
2
[Υ+h, Υ−h]

∫ z

0
dz′

∫ z′

0
dz′′

(
〈h+(z′)〉〈γ−(z′′)〉 − 〈h−(z′)〉〈γ+(z′′)〉

)
.

We can insert the above solutions into the source term:

Sα =
aR

gw

[
∑
h

h〈γ+〉Tr
(
Υα
+hδnh

)
− h〈γ−〉Tr

(
Υα
−hδnh

)]
(4.116)

∼ iTr (Υα
+ [Υ+, Υ−])

∫ z

0
dz′

∫ z′

0
dz′′

(
〈h+(z′)〉〈γ−(z′′〉)− 〈h−(z′)〉〈γ+(z′′)〉

)
6= 0 ,

to find a non-vanishing result.
It is interesting that the unflavoured source vanishes as S = ∑α Sα ∼ i Tr(Υ+ [Υ+, Υ−]) =

0. In spite of the L̃NV processes, one still has to rely on washout to generate a total
lepton asymmetry.

In the usual ARS scenario, this source vanishes as only one helicity interacts
with the medium, which gives us vanishing coefficients 〈γ−〉 = 〈h−〉 = 0. In the
standard leptogenesis scenario we find the same result, as the helicity effects are
neglected, and 〈γ−〉 ≈ 〈γ+〉, as well as 〈h−〉 = 〈h+〉, which leads to a vanishing
integral in Eq. (4.116).
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In this chapter we discuss the possibility of testing the low-scale seesaw and
leptogenesis mechanisms at existing and near-future experiments.

We first discuss the allowed parameter space for low-scale leptogenesis, and
present two studies, with and without the L̃NV processes. For heavy neutrinos
with masses around∼ O(1)GeV, we neglect the L̃NV processes by setting h− , γ− →
0. This allows us to use the analytic approximations from Section 4.4.2.

In the following study we include the L̃NV processes in the symmetric phase
h− , γ− 6= 0, as well as the effect on h− during the crossover. This approach is
appropriate for larger masses ∼ O(10)GeV. For an average heavy neutrino mass
of M̄ = 30GeV, we also present a comparison between the allowed regions in
parameter space, to emphasize the importance of including the L̃NV processes for
larger masses.

The quantities that determine whether heavy neutrinos can be produced and
detected at future experiments are the masses of the heavy neutrinos, Mi, and their
mixing angles to the active leptons U2

αi. From an experimental perspective, it is
therefore interesting to determine the allowed range of masses and mixing angles
that are consistent with both the seesaw mechanism and leptogenesis.

We compare the range of heavy neutrino mixing angles and masses consistent
with the BAU with the expected sensitivities of current and future experiments
such as NA62, SHiP, FCC-ee, ILC and the CEPC. The potential of future experi-
ments to test leptogenesis is commonly estimated by comparing the projections of
the leptogenesis parameter space onto the Mi −U2

αi plane, with the projection of
the experimental sensitivity. As both the leptogenesis parameter space and the ex-
perimental sensitivities depend not only on the size of the particular mixing angle
U2

αi, but also on the other mixing angles, this comparison is not fully consistent.
For the displaced-vertex searches at FCC-ee, ILC and CEPC we perform a more

detailed analysis, where we confront the leptogenesis parameter space with the
expected numbers of events at each of these experiments. We estimate the precision
of measuring the flavoured mixing angles U2

α at each of these experiments.
Finally, we also discuss the potential of measuring the mass differences between

the heavy neutrinos, either directly, by measuring the masses individually, or indi-
rectly, through heavy neutrino oscillations in the laboratory [156].

5.1 Parameter Space in Absence of the L̃NV Processes

To determine the limits on the mixing angles of the heavy neutrinos consistent with
leptogenesis in the low-mass region, ∼ 1GeV, we rely on the analytic approxima-
tions from Section 4.4.2.

For the analytic approximations to be applicable at this point, we have to ne-
glect the L̃NV processes, which are suppressed by a factor M2/T2 . (M/TEW)2 ∼
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(M/1GeV)2 × 10−4. These effects can nonetheless be important, in particular dur-
ing the electroweak crossover. In the present discussion we will neglect them, and
include them when we study larger heavy neutrino masses, where they can have a
much bigger effect (c.f. Fig. 4.12).

The sensitivity of the future experiments grows with the mixing angle U2, as for
a bigger mixing angle, more heavy neutrinos can be produced in a collision, and a
bigger fraction of them will decay within the detector. Large mixing angles require
large Yukawa couplings, which in turn implies that the washout and damping rates
are strong (c.f. Fig 4.4).

For the large mixing angles we therefore rely on the approximations that corre-
spond to the overdamped regime, where the equilibration of one of the heavy neu-
trino states happens before the oscillations between them have started.

Since the final equations in Subsection 4.4.2 are only semianalytic, for a gen-
eral choice of Yukawa couplings, we still have to solve the integrals in Eq. (4.107)
numerically. Instead of numerically solving the equations for each choice of param-
eters, we may instead use the approximate scaling relations from 4.4.2 to obtain a
family of solutions to the evolution equations.

To find the upper limits on the flavoured mixing angles we rescale the mass
splitting such that the BAU is maximal at the time of freezeout,

dB(η1/3)

dη
= 0 , (5.1)

and then change the absolute mass scale to get agreement with the observed BAU,

ζ =
η1/3Bobserved

B(η1/3)
. (5.2)

Having fixed the imaginary part of the complex angle Im ω, the average mass
M̄ and the mass splitting µ, we may now scan over the remaining parameters, the
Majorana phases α1,2, the Dirac CP phase, Re ω and the discrete parameter ξ. We
choose each of those parameters randomly between 0 and 2π (4π for the Majorana
phases), and between 1 and −1 for ξ.

The points in parameter space corresponding to the minimal values of the mix-
ing angles U2

α correspond to small values of the Yukawa couplings, and hence to
late equilibration of the heavy neutrinos. At the same time, the small size of the
Yukawa couplings leads to a smaller lepton asymmetries, which are suppressed by
Y4. We can compensate for this suppression if we choose a sufficiently small mass
splitting parameter µ. However, the oscillations between the heavy neutrinos have
to occur before the sphaleron freezeout zvac < Tref/Tsph ≈ 1, which gives us a
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(a) Normal ordering.
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(b) Inverted ordering.

Figure 5.1: The range of masses M̄ = (M1 + M2)/2 and mixing angles U2 con-
sistent with the seesaw mechanism and leptogenesis for normal (top panel) and
inverted (lower panel) ordering. The grey area indicates the region of parameter
space disfavoured by the combined constraints. The region where the mixing angle
U2 is consistent with both neutrino oscillation data and leptogenesis is indicated by
the dark blue lines. The upper bounds presented here are used beyond the masses
for which it is safe to neglect the L̃NV processes, which we indicate by the dashed
dark blue line. For comparison we also present the estimated sensitivities of future
experiments. The purple line corresponds to the SHiP experiment with 90% c.l.
upper limits assuming 0.1 background events in 2× 1020 proton target collisions
for a ratio of U2

e : U2
µ : U2

τ ∼ 52 : 1 : 1 [157, 158]. The orange line corresponds
to the LBNE/DUNE sensitivity with an assumed exposure of 5× 1021 protons on
target for a detector length of 30 m [159]. The sensitivities of FCC-ee (light blue),
the CEPC (yellow) and ILC (green) lines each correspond to the Z pole run for a
centre of mass energy mcms = mZ [46]. Note that the sensitivity estimates of these
experiments are no longer reliable below M̄ < 5GeV, which we indicate by the
dashed lines. We will discuss these sensitivities in more detail in Section 5.2.1.

lower limit on the mass splitting

M̄2µ &
27 T3

sphζ(3)

2π2aR
≈ 5.3× 10−12 GeV2 . (5.3)

Note that this limit can be bypassed if one includes the corrections from hEV 6= 0.
As the oscillation, equilibration and sphaleron freezeout time scales can all coin-
cide, these points in parameter space do not clearly correspond to either of the
approximate regimes. We therefore rely on fully numerical solutions to the evolu-
tion equations, to find the lower bounds in figures 5.1-5.4.
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(a) Normal ordering.
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(b) Inverted ordering.

Figure 5.2: The range of masses M̄ = (M1 + M2)/2 and mixing angles U2
e con-

sistent with the seesaw mechanism and leptogenesis for normal (top panel) and
inverted (lower panel) ordering. The grey area indicates the region of parame-
ter space disfavoured by the combined constraints. The region where the mixing
angle U2

e is consistent with both neutrino oscillation data and leptogenesis is indi-
cated by the dark blue lines. The upper bounds presented here are used beyond
the masses for which it is safe to neglect the L̃NV processes, which we indicate by
the dashed dark blue line. For comparison we also present the estimated sensitiv-
ities of future experiments. The purple line corresponds to the SHiP experiment
with 90% c.l. upper limits assuming 0.1 background events in 2 × 1020 proton
target collisions for a ratio of U2

e : U2
µ : U2

τ ∼ 52 : 1 : 1 [157, 158]. The light
blue line corresponds to the LBNE/DUNE sensitivity with an assumed exposure
of 5 × 1021 protons on target for a detector length of 30 m [159]. The T2K sensi-
tivity has been estimated in ref. [160] for 1021 protons on target at 90% c.l. with
full volume for both the K+ → e+N → e+e−π+ two-body decays (red, solid) and
the K+ → e+N → e+e−e+νe three-body decays (red, dashed) [160]. The expected
sensitivity of NA62 to U2

e is given by the turquoise line with 2× 1018 400 GeV pro-
tons on target [17]. The sensitivity estimates for FCC-ee, CEPC, and ILC will be
discussed in more detail in Section 5.2.1.
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(a) Normal ordering.
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(b) Inverted ordering.

Figure 5.3: The range of masses M̄ = (M1 + M2)/2 and mixing angles U2
µ con-

sistent with the seesaw mechanism and leptogenesis for normal (top panel) and
inverted (lower panel) ordering. The grey area indicates the region of parameter
space disfavoured by the combined constraints. The region where the mixing angle
U2

µ is consistent with both neutrino oscillation data and leptogenesis is indicated by
the dark blue lines. The upper bounds presented here are used beyond the masses
for which it is safe to neglect the L̃NV processes, which we indicate by the dashed
dark blue line. For comparison we also present the estimated sensitivities of future
experiments. The purple line corresponds to the SHiP experiment with 90% c.l. up-
per limits assuming 0.1 background events in 2× 1020 proton target collisions for a
ratio of U2

e : U2
µ : U2

τ ∼ 1 : 16 : 3.8 [157, 158]. The expected sensitivity of NA62 to
U2

µ is given by the turquoise line with 2× 1018 400 GeV protons on target. The T2K
sensitivity (red) has been estimated in ref. [160] for 1021 protons on target at 90%
c.l. with full volume for both the K+ → µ+N → µ+µ−π+ two-body decays (red,
solid) and the K+ → µ+N → µ+µ−e+νe three-body decays (red, dashed) [160].
The blue line indicates the limits on U2

µ that can be obtained from LNV decays of
5× 1010 B+ mesons at Belle II. The ATLAS/CMS limits on U2

µ with
√

s = 13TeV
and 300 fb−1 are indicated by the violet lines, for displaced lepton jet (solid) and
prompt trilepton (dashed) searches [30], while the yellow line corresponds to the
LHCb sensitivity to U2

µ [161]. The sensitivity of the proposed MATHUSLA exper-
iment is represented by the orange line [37]. The sensitivity estimates for FCC-ee,
CEPC, and ILC will be discussed in more detail in Section 5.2.1.
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(a) Normal ordering.
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(b) Inverted ordering.

Figure 5.4: The range of masses M̄ = (M1 + M2)/2 and mixing angles U2
e con-

sistent with the seesaw mechanism and leptogenesis for normal (top panel) and
inverted (lower panel) ordering. The grey area indicates the region of parameter
space disfavoured by the combined constraints. The region where the mixing angle
U2 is consistent with both neutrino oscillation data and leptogenesis is indicated by
the dark blue lines. The upper bounds presented here are used beyond the masses
for which it is safe to neglect the L̃NV processes, which we indicate by the dashed
dark blue line. For comparison we also present the estimated sensitivities of future
experiments. The expected sensitivity of NA62 to U2

τ is given by the turquoise line
with 2× 1018 400 GeV protons on target. The 95% c.l. limits on U2

τ are shown for
a kinematic analysis of 106 τ− → νπ−π+π− decays at B-factories, indicated by
(red, solid) for the conservative and most optimistic (red, dashed) estimates [162].
The mixing U2

τ can also be probed by SHiP [157, 158] and LBNE/DUNE [157, 158],
however, no experimental sensitivities have been published for benchmark scenar-
ios that would allow a simple estimate of the sensitivity to U2

τ. The sensitivity esti-
mates for FCC-ee, CEPC, and ILC will be discussed in more detail in Section 5.2.1.
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5.2 Parameter Space With the L̃NV Processes

In this section we discuss the parameter space for leptogenesis when the L̃NV pro-
cesses from 4.4.3 are included. We constrain our analysis to heavy neutrino masses
between 5 and 50GeV. For masses above 5GeV we assume that the dominant con-
tribution to the L̃NV rate is from the processes that are also present in the symmet-
ric phase of the electroweak theory, and we neglect the “indirect” contribution to
the L̃NV rate [98, 152] that arises from the mixing between the doublet and singlet
neutrinos in the broken phase.

The analytic approximations from 4.4.2 cannot be used without modifications
in this regime. Therefore we resort to solve the evolution equations for the heavy
neutrinos numerically.

To find the points in parameter space consistent with the observed BAU, we use
the Metropolis-Hastings algorithm B, with the log-likelihood function

log L = −1
2
(YB −Yobs

B )2

σ2
obs

, (5.4)

where YB is the BAU obtained by numerically solving equations (4.53) and (4.42),
and the observed value Yobs

B of the BAU, and its variance σobs are given in Eq. (1.1).
Note that we do use the Metropolis-Hastings algorithm here only as a parameter
scan algorithm, without assigning a probabilistic interpretation to the densities of
produced points. The reason for this approach is that the Casas-Ibarra parametriza-
tion used here is a bottom-up parametrization, and there is no objective way to
assign a prior for the parameters that enter it. Further following this logic, instead
of using one Markov-chain to scan over the whole parameter space, we fix the av-
erage mass M̄ and the imaginary part of the angle Im ω ∼ log U2, and apply the
Metropolis-Hastings algorithm to the remaining parameters. We summarize the
proposal distributions in table 5.1. After the points are generated, we only keep
points with YB within 5σobs of the observed value. Finally, to explore the “extreme”
leptogenesis scenarios, we perform a targeted scan where we choose α and δ in a
way that extremizes the ratios U2

α/U2. These points can give us the largest mixing
angles U2, as they have a highly flavour asymmetric washout, which can preserve
the BAU even in the presence of a strong washout.

5.2.1 Measurement of Leptogenesis Parameters at Future Lepton
Colliders

In this section we discuss the potential of the future lepton colliders to measure
the heavy neutrino parameters. One of the most important properties of the heavy
neutrinos are the flavour mixing ratios U2

α/U2. By measuring these ratios we can
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variable proposal distribution
M̄ constant

Im ω constant
µ log-normal

Re ω normal
α normal
δ normal

Table 5.1: Proposal distributions used in the Metropolis-Hastings algorithm. Note
that the average mass M̄ and Im ω remain fixed after the initial choice. For the
remaining parameters we generate proposal points using a normal distribution,
with the exception of the mass splitting µ, which we vary on a logarithmic scale
in order to capture the resonant enhancement for small values of µ. We fix the
remaining parameters entering UPMNS to their best fit values.

determine whether the heavy neutrinos are consistent with the low-scale seesaw
mechanism and leptogenesis.

Heavy neutrinos with masses between a few GeV and the W boson mass can
have long lifetimes, ranging from picoseconds to nanoseconds [163]. The distance
between the point where the heavy neutrinos are produced, and where they decay
in the detector can therefore be macroscopic, which appears as a displaced vertex
c.f. Fig. 5.5. This type of exotic signature is especially promising for heavy-neutrino
masses below the W-boson mass, in particular at future lepton colliders with high
integrated luminosities, see e.g. ref. [39, 43].

The large mixing angles that can be accessed by collider experiments corre-
sponds to the symmetry protected scenario from Section 2.2, in particular when
combined with the small mass splittings required for leptogenesis [40, 105, 118].

For the phenomenology of the heavy neutrinos we may neglect the small LNV
parameters, and set µ = ε = 0, as they have negligible impact on the production
and decay of the heavy neutrinos.1 Therefore it is sufficient to discuss the displaced
vertex searches in the symmetric limit and use the results from ref. [43].

We will discuss the following future lepton colliders with these specific physics
programs:

• FCC-ee: The Future Circular Collider in the electron positron mode with its
envisaged high integrated luminosity of L = 10 ab−1 for the Z pole run2.

1 Note that this is not entirely correct, as a finite mass splitting µ can give rise to oscillations
between heavy neutrino “particle” and antiparticle states as discussed in [156, 165]. This effect does
not impact our analysis since we do not distinguish between neutrinos and antineutrinos.

2It also features a physics run at 240 GeV centre-of-mass energy with an integrated luminosity
of L = 5 ab−1 same as the CEPC however the Z pole run is more competitive at the FCC-ee.
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Figure 5.5: Long lived heavy neutrinos can give rise to a displaced vertex, which
is a macroscopic displacement between the interaction point and the vertex. This
signature becomes even more pronounced for tiny mixing angles, which yield a
longer heavy neutrino lifetime. For a discussion of such signatures in other theo-
retical frameworks see e.g. [164]. Figure taken from [46].

• CEPC: The Circular Electron Positron Collider running at the Z pole and
240 GeV centre-of-mass energy with an integrated luminosity L = 0.1 ab−1

and 5 ab−1, respectively.

• ILC: The International Linear Collider running at the Z pole and 500 GeV
centre-of-mass energy with an integrated luminosity of L = 0.1 ab−1 and
L = 5 ab−1, respectively.

At lepton colliders, heavy neutrinos are primarily produced through the pro-
cess e+e− → νN. For centre-of-mass energies of 90 GeV, this production process
is dominated by the s-channel exchange of a Z boson, whereas for 240 and 500
GeV, the dominant process is a t-channel exchange of a W-boson. At the Z-pole
the production cross section depends on the total mixing angle σνN(U2), while for
higher centre-of-mass energies it dominantly depends on the mixing to the electron
σνN(U2

e ).
We can classify the decays of the heavy neutrinos into four different channels:

semileptonic (N → `jj), leptonic (N → ``ν), hadronic (N → jjν), and invisible
(N → ννν). The branching ratios are presented in Fig. 5.6, with the caveat that
the parton picture used here is no longer valid for heavy neutrino masses below 5
GeV. For a discussion of heavy neutrino decays into scalar and vector mesons see
e.g. refs. [166, 167].

The relative mixing angle to a lepton flavour U2
α/U2 can be probed through the

semileptonic decays of the heavy neutrino. The branching ratio of the semileptonic
decays with a charged lepton `α in the final state is approximately given by Br(N →
`a jj) ' 0.5×U2

a /U2.
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Figure 5.6: Branching ratios of heavy neutrino decays. We denote the different
possible final states by colour, the semileptonic lepton-dijet (“`jj”, blue line), the
dilepton (“``ν”, red line), the dijet (“jjν”, yellow line), and the invisible decays
(“ννν”, green line). The semileptonic and leptonic branching ratios are summed
over all lepton flavours. Figure taken from [46].

We can approximate the expected number of displaced decay events with a
charged lepton of flavour α in the final state as

Na = σνN(
√

s, M̄, Ue, Uµ, Uτ) × Br(N → `a jj) ×L × P(x1, x2, τ) . (5.5)

where P(x1, x2, τ) is the fraction of the displaced decays of the heavy neutrino with
proper lifetime τ that happen between the detector-defined boundaries x1 and x2,
and L is the integrated luminosity of the experiment. The lifetime of the heavy
neutrino is given by the inverse of the total decay width and is proportional to
U2M̄5 if we neglect the masses of the particles in the final state.

Since P is the probability of a particle decay between x1 and x2, it follows an
exponential distribution, which gives us

P(x1, x2, τ) = exp
(
− x1

βγcτ

)
− exp

(
− x2

βγcτ

)
(5.6)

with the relativistic β = v/c and Lorentz factor γ. Given the boundaries of an SiD-
like detector [168] with the inner region (x1 = 10 µm) and the outer radius of the
tracker (x2 = 1.22 m), we assume that the displaced vertex signature is free from
SM background (see ref. [43]).

The cross section for the different discussed performance parameters of the
above mentioned colliders is calculated numerically using WHIZARD [169, 170] by
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including initial state radiation and only for the ILC by including also a (L,R) ini-
tial state polarisation of (80%,20%) and beamstrahlung effects.

We demand at least four displaced vertex events over the zero background hy-
pothesis to establish a signal above the 2σ level. In the case of a Z pole run, the total
number of events is uniquely determined by U2, which allows us to determine the
total mixing angle U2 from the total number of events. The situation is somewhat
different for centre-of-mass energies above 90 GeV, as the number of events also
depends on the relative electron mixing U2

e /U2. This dependence on the flavour
mixing pattern means that for a fixed mixing angle U2 we cannot uniquely deter-
mine the expected number of events. In the plots we therefore distinguish between
the “guaranteed discovery” region, where we can expect more than four events for
all points consistent with the seesaw and leptogenesis, and the “potential discov-
ery” region, where more than four events are realized only for certain points in the
parameter space.

The heavy neutrino mass Mi could be measured from the invariant mass of the
semileptonic final states M`jj. We can assume that the precision is of the same order
as the jet-mass reconstruction, which is ∼ 4 % for jet energies of 45 GeV with the
Pandora Particle Flow Algorithm [171]. With a sizeable number of events, the
mass can be measured even more precisely from the νµ−µ+ final states. For a dis-
placed vertex, the momentum of the neutrino can be inferred from the requirement
of pointing back to the primary vertex, which yields the invariant mass Mνµµ.

To determine the flavour mixing ratios U2
α/U2, we consider the ratios of the

number of semileptonic events Nsl = ∑α Nα and the number of semileptonic events
with Nα with a charged lepton `α in the final state.

The observable random variables are the number of semileptonic events N̂sl
which is Poisson distributed with mean Nsl, and the N̂α which follows a multino-
mial distribution with probability pa = U2

a /U2. The expected number of semilep-
tonic decays with `α in the final state is given by Nα = NslU2

α/U2. The error of

measuring U2
α/U2, expressed as δ(U2

a /U2)
U2

a /U2 with δ being the standard deviation for

U2
α/U2, comes from the statistical uncertainty of the ratio Nα/Nsl. Since Nα is not

independent of Nsl the precision of the flavour mixing ratio U2
α/U2 is given by

δ(U2
α/U2)

U2
a /U2 ≈

√
1

Nα
− 1

Nsl
, (5.7)

in contrast to the usual propagation of error where the uncertainties add. A more
detailed discussion of this point is given in appendix F. In Section 5.2.2 we discuss
the statistical precision of the flavour-dependent mixing U2

α/U2 at the different
lepton colliders for points consistent with leptogenesis.
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5.2.2 Results of the Parameter Scan

Sensitivity in the M̄−U2 plane

In Fig. 5.7 we present the range of masses M̄ and mixing angles U2 consistent with
baryogenesis through leptogenesis together with the expected sensitivity of future
lepton colliders. The left column corresponds to normal light neutrino mass order-
ing (NO), while the right column corresponds to the inverted ordering (IO). The
upper grey region denotes the mixing angles excluded by the constraints on U2

from DELPHI [172, 173]. The requirement to reproduce the light neutrino masses
through the seesaw mechanism with two right-handed neutrinos imposes a lower
bound on the mixing angle U2 indicated by the lower grey region. The blue line
corresponds to the largest mixing angles consistent with leptogenesis. We perform
the parameter scan up to masses of M̄ = 50GeV, as the estimate of the L̃NV damp-
ing rate becomes unreliable for larger masses. The experimental sensitivity lines
correspond to four expected events. We differentiate between the “guaranteed dis-
covery” (dashed) and “potential discovery” (solid) lines. Above the “guaranteed
discovery” lines, all generated points produce at least four expected events, while
above the “potential discovery” line only a subset with a favourable flavour pattern
can produce more than four events.

In the top row we present the expected sensitivity at the FCC-ee with
√

s =
90GeV (green), in the middle row we have ILC with

√
s = 90GeV (red) and

√
s =

500GeV (yellow), while in the lowest row we present the expected sensitivity at
CEPC with

√
s = 90GeV (purple) and

√
s = 240GeV (orange).

Of the experiments considered, FCC-ee has the best prospects of finding heavy
neutrinos, and covers a large region of the leptogenesis parameter space.

At ILC and CEPC we see a significant difference in sensitivity for the NO and
IO cases, in particular for

√
s > 90GeV. The reason is twofold, for IO successful

leptogenesis is possible with larger mixing angles U2, but more importantly, the
mixing to the electron, U2

e , is suppressed compared to the other mixing angles in
the case of NO. The dominant heavy neutrino production channel for

√
s > 90GeV

is through coupling to the electron, which leads to fewer expected events for NO.
As a result, for NO, there are no expected events at ILC with

√
s = 500 GeV or

CEPC with
√

s = 240 GeV. Furthermore, for IO we present two lines, correspond-
ing to the “potential discovery” and “guaranteed discovery” regions, indicated by
the solid and dashed lines respectively.

Note that although CEPC and FCC-ee are quite similar, the main reason for
the smaller reach of CEPC at

√
s = 90 GeV is the much shorter planned run time.

In Fig. 5.8 we present the potential improvement for a longer run time at
√

s =
90 GeV.

In figures 5.9 and 5.10, we show the number of displaced vertex events that can
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be achieved at FCC-ee. Large numbers of events can allow for a precise measure-
ment of the flavour mixing ratios U2

α/U2, as we will discuss in Section 5.2.2.

Constraints on the Heavy Neutrino Mixing Ratios

The mixing ratios U2
α/U2 to the different lepton flavours are already constrained

by the seesaw mechanism as can be seen in figures 2.4, 2.5. For large mixing angles
U2 leptogenesis imposes even stronger constraints on these mixing ratios. Large
mixing angles U2 are associated with large Yukawa couplings, and therefore strong
washout of both L and L̃ asymmetries. The large washout of the lepton asymmetry
can be avoided if the flavoured washout strengths are suppressed, i.e. if (Y†Y)αα �
Tr(Y†Y), which implies that U2

α � U2. Therefore, for the largest mixing angles
U2 consistent with leptogenesis we can expect a large asymmetry in the mixing
ratios U2

e : U2
µ : U2

τ. In Fig. 5.11 we present the largest mixing angles consistent
with leptogenesis for a fixed choice of mixing ratios U2

e : U2
µ : U2

τ with a fixed
benchmark mass M̄ = 30GeV. The dark black line corresponds to the boundary of
the region consistent with the light neutrino oscillation data. The dark blue regions
correspond to large mixing angles U2, while the smaller mixing angles are shown
in yellow. We can see that the range of allowed mixing ratios becomes smaller for
larger values of the mixing angle U2, and that the largest mixing angles correspond
to the edges of the triangles, where a flavour asymmetric washout is realized. For
normal neutrino mass ordering this is realized when the mixing to the electron
is minimal U2

e /U2 ≈ 0.006, which corresponds to α2 = −2δ + π. For inverted
ordering we find the largest mixing angles when U2

µ and U2
τ are small compared to

U2
e , with U2

e /U2 ≈ 0.94 and U2
µ/U2 + U2

τ ≤ 0.06.
The importance of flavour asymmetric washout can also be seen in the U2

α/U2−
U2 plane in figures 5.12, where we find that the large mixing angles U2 are found
in “spikes” where one of the flavour ratios is extremal.
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Figure 5.7: The largest possible U2 for which the BAU can be generated for given
M̄ (blue, solid). The regions of the viable leptogenesis parameter space where fu-
ture lepton colliders can observe at least four expected displaced vertex events are
indicated by the remaining coloured lines. The upper gray region is excluded by
DELPHI, while the lower gray region is disfavoured by the requirement of repro-
ducing the light neutrino masses through the seesaw mechanism. The “guaran-
teed discovery area” and “potential discovery area” are indicated by the solid and
dashed lines respectively. A more detailed discussion is given in the main text, c.f.
Subsection 5.2.2 Figure taken from [46].
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Figure 5.8: The largest possible U2 for which the BAU can be generated for given
M̄ (blue, solid). The region in the leptogenesis parameter space where the CEPC
experiment can observe at least four expected displaced vertex events is indicated
by the purple lines. The currently planned run corresponds to the solid line,
whereas the dashed line corresponds to the equal Z-pole running time as is cur-
rently planned by FCC-ee, and the dot-dashed line corresponds to what is possible
with the crab waist technology. The upper gray region is excluded by DELPHI,
while the lower gray region is disfavoured by the requirement of reproducing the
light neutrino masses through the seesaw mechanism. A more detailed discussion
is given in the main text, c.f. Subsection 5.2.2 Figure taken from [46].



101 5.2. Parameter Space With the L̃NV Processes

NO, FCC-ee at
√

s = 90 GeV IO, FCC-ee at
√

s = 90 GeV

105 20 30 40 50
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

M [GeV]

U
2

disfavoured by DELPHI

constrained by neutrino oscillation data

BAU (upper bound)

5

20

100

500

2000

10000

50000

105 20 30 40 50
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

M [GeV]

U
2

disfavoured by DELPHI

constrained by neutrino oscillation data

BAU (upper bound)

5

20

100

500

2000

10000

50000

200000

Figure 5.9: Number of expected displaced vertex events at the FCC-ee with√
s = 90 GeV for parameter points consistent with leptogenesis. Left and right

panel correspond to normal and inverted mass ordering, respectively. Figures
taken from [46].
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Sensitivity to Measuring the Mixing Ratios at Future Experiments The large
numbers of events that can be achieved by the FCC-ee can lead to a precise de-
termination of the mixing angles U2

α. When combined with the constraints from
the seesaw and leptogenesis, this can be a powerful test to see whether heavy neu-
trinos are the origin of the light neutrino masses and the BAU. With an infinite
experimental precision, we could easily determine whether the measured neutrino
parameters lie within the allowed regions from Fig. 5.11. In reality, we can only
expect a finite number of events, and therefore a finite precision at a future collider.
In figures 5.12 we estimate the precision of measuring each of the mixing ratios
from Eq. 5.7 in the U2

α/U2 −U2 plane. The solid coloured regions correspond to
points in parameter space consistent with leptogenesis. The lines corresponding
to the different levels of precision are indicated by the colour, from low precision
(yellow), to high (dark blue).
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Figure 5.11: The black line indicates the region allowed by light neutrino oscilla-
tion data. The colour coding indicates the largest mixing angle U2 consistent with
the seesaw and leptogenesis constraints for a given choice of U2

e : U2
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τ, where
the average heavy neutrino mass is M̄ = 30 GeV. The panels correspond to nor-
mal (left) and inverted (right) neutrino mass orderings. The largest viable mixing
angles correspond to highly flavour asymmetric flavour patterns, where U2
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for at least one of the flavours. Figure taken from [46].
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Constraints on the Heavy Neutrino Mass Splitting ∆M = |M2 −M1|

The difference between the two heavy neutrino masses is another parameter cru-
cial for low-scale leptogenesis, which can determine both the size of the lepton
asymmetry through resonant enhancement, and the time when the majority of the
asymmetry is produced.

In Fig. 5.13 we show the regions of the mass splitting ∆M consistent with the
BAU and the light neutrino oscillation data. for an average mass of M̄ = 30 GeV.

The most direct way of measuring the mass difference is by directly measuring
the masses of the two heavy neutrino mass eigenstates and their physical mass
difference ∆Mphys as given in equation (2.12), which is different from ∆M after the
EWSB.

Realistically, we can expect the precision of mass measurements to be of ∼ 4%
(c.f. Section 5.2.1), which puts the mass splitting resolution in the GeV range, where
it is safe to approximate ∆Mphys ≈ ∆M.

For very small mass differences O(10−11) GeV, the mass splitting could be
measured through a non-trivial ratio between LNV and LNC processes. Unam-
biguous LNV signatures could be seen at a future proton-proton or electron-proton
collider, or even at the LHC [33, 156, 165, 174–176].

To find a non-trivial LNV to LNC process ratio, the mass splitting has to be
comparable to the decay width of the heavy neutrino, Γ ∼ ∆M. For our benchmark
mass of M̄ = 30 GeV, the decay rate is approximately given as Γ ∼ 6.0× 10−6U2.
Even for an optimistic scenario with U2 ∼ 10−9, a mass splitting of ∆Mphys ∼
10−14 GeV is required for a non-trivial ratio between the number of LNV and LNC
processes. To obtain such a small mass splitting, a cancellation is needed between
mass splitting ∆M and ∆Mθθ, which is only possible for cos 2 Re ω ∼ 1, and ∆M ∼
∆Mθθ, where ∆Mθθ ∼. For larger mass differences, the ratio of LNV and LNC
processes approaches 1, as is expected for pure Majorana fermions, and no more
information can be extracted about the mass difference ∆Mphys.

However, it could still be possible to extract information about the heavy neu-
trino mass splitting by observing oscillations between mass eigenstates. Even if
the total ratios of LNV and LNC processes are close to 1, it could be possible to see
an oscillation pattern between LNV and LNC processes as a function of the ver-
tex displacement if the oscillation length is macroscopic [156, 177]. The oscillation
time is directly proportional to the physical mass splitting ∆Mphys, which would
allow us to extract information on the relation between the Re ω and ∆M. In the
linear seesaw limit ∆M/∆Mθθ → 0, this yields a macroscopic oscillation pattern.
It is interesting that even for larger mass differences, where ∆M ≈ ∆Mphys, the
oscillations could be resolved given a sufficient relativistic boost factor.
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Figure 5.13: The region of parameter space (blue) in the U2− ∆M (upper row) and
U2 − ∆Mphys (lower row) projections, where the average heavy neutrino mass is
fixed to M̄ = 30 GeV. Normal and inverted orderings are shown in the left and
right columns respectively. The lower limit on the mixing angle U2 allowed by
the light neutrino oscillation data is shown by the red line. The mass difference
induced by the Higgs field VEV, ∆Mθθ from (2.12) is shown by the vertical, dashed
green line. The physical mass splitting ∆Mphys is related to the Lagrangian mass
difference ∆M through relation (2.12). It is interesting that leptogenesis is allowed
even for ∆M = 0 as ∆Mθθ 6= 0 during the electroweak crossover. In addition to the
mixing angle U2 and mass splittings, we also show the oscillation time (lower row,
upper frame labels), and decay widths (lower row, right frame label), as well as the
small parameters µ (upper row, upper frame label), and ε (upper row, right frame
label). The yellow line corresponds Γ = ∆Mphys, where we can expect a non-trivial
ratio between LNV and LNC processes. Figure taken from [46].
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Importance of L̃NV Processes for ∆M It is interesting that although the L̃NV
processes have a quite dramatic effect for individual parameter points (c.f. 4.13,
the allowed region in the M̄−U2 projection remains quite similar in the studies of
parameter space with and without the L̃NV effects (c.f. figures 5.1 and 5.7).

To explore the role of the L̃NV processes in more detail, in Fig. 5.14 we look at
the projection of the allowed parameter space onto the ∆M −U2 plane with and
without the L̃NV processes included for the benchmark mass of M̄ = 30 GeV.

The results of the scan with, and without L̃NV processes are shown in the
shaded blue and yellow regions. We find that slightly bigger mixing angles U2

are allowed if L̃NC effects are neglected, however, the range of allowed mass split-
tings is much smaller.

The L̃NV processes extend the parameter space in two major ways, the lower
limit on the mass splitting no longer applies, since the asymmetry can also be pro-
duced in the degenerate limit µ → 0 as was shown in 4.4.3. Furthermore, we find
that large mass differences also become viable. One of the main reasons behind this
is that the suppression from backreaction from 4.4.2 becomes inefficient, which al-
lows for a larger final lepton asymmetry.
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Figure 5.14: The allowed range of mass differences ∆M and mixing angles U2 with
(blue) and without (yellow) the inclusion of lepton number violating processes for
normal and inverted ordering. We set the average mass to M̄ = 30 GeV for the
heavy neutrinos. The largest mass splittings increase by two orders of magnitude
in the presence of L̃NV processes, reaching the range that could be resolved by
future experiments. The two benchmark point for which we presented a compar-
ison between evolution with and without the L̃NV processes in figures 4.13 are
shown by the blue and yellow stars. The blue star corresponds to a point in param-
eter space that can only reproduce the observed BAU with the inclusion of L̃NV
processes, while the yellow star corresponds to a point where leptogenesis is only
possible if we neglect the L̃NV processes. Figure taken from [46].
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In this work we studied whether right-handed neutrinos with masses close to
the electroweak scale could be the common origin of the neutrino masses and the
BAU, with a focus on the minimal scenario with two right-handed neutrinos.

Current neutrino oscillation data already imposes strong constraints on the
properties of the right-handed neutrinos. In particular, for right-handed neutri-
nos with masses below the electroweak scale, and large mixing angles, we find
that the range of the allowed flavour mixing patterns is already constrained by
existing data as shown in figures 2.4 and 2.5, and can improve significantly if the
CP-violating phase δ is determined in the near future (c.f. Fig. 2.6). Comparing
these predictions with the mixing angle ratios measured at a future experiment
could be a first test of the low scale-seesaw mechanism.

We studied two leptogeneis mechanisms, resonant leptogenesis, that applies to
right-handed neutrinos with masses above the electroweak scale, and leptogen-
esis through neutrino oscillations, which can be realized with right-handed neu-
trinos much lighter than the electroeweak scale. Following previous work, we
use heavy neutrino oscillations as an adequate description of these processes. We
re-derive the neutrino oscillation equations using Closed-Time-Path formalism of
non-equilibrium quantum field theory. In the case of resonant leptogenesis we find
that the heavy neutrino oscillation equations can be approximately solved in large
parts of the parameter space. These analytic approximations can be used to cal-
culate the decay asymmetry ε of heavy neutrinos. These results coincide with the
S-matrix calculation when the mass differences are large. However, they remain
finite when the mass splitting is small, regulating the apparent divergences that
show up in the S-matrix calculation.

For neutrinos below the electroweak scale, the BAU is produced through neu-
trino oscillations. We identify two regimes of leptogenesis in this scenario, which
we call oscillatory and overdamped. In the oscillatory regime the oscillations be-
tween the heavy neutrinos happen much earlier than the heavy neutrinos approach
equilibrium, zeq � zvac. In the opposite case, in the overdamped regime, the
equilibration of at least one heavy neutrino happens before they start to oscillate
zeq � zvac. For each of these regimes we find semi-analytic approximations, which
we can use to estimate the size of the BAU. Furthermore, we discuss the importance
of L̃-number violation, and include it in a fully numerical study of the low-scale
leptogenesis parameter space.

To determine the limits on the heavy neutrino mixing angles we perform two
parameter scans, with and without the L̃NV effects included. For right-handed
neutrino masses between 0.1 and 10 GeV, where the L̃-number violating effects are
expected to be small, we neglect them and use the analytic approximations that
describe the overdamped and oscillatory regimes. For larger masses, between 5
and 50 GeV, we include these effects, and perform the parameter scan numerically.
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Finally, we confront the low-scale leptogenesis parameter space with the esti-
mated sensitivity of existing and near-future experiments. In particular, for the
currently planned future lepton colliders (CEPC, ILC, FCC-ee), we calculate the
expected numbers of events for each point consistent with both the seesaw and
leptogenesis mechanisms. We find that these experiments can probe large parts
of the low-scale leptogenesis parameter space, and can even potentially lead to a
measurement of the flavour mixing ratios U2

α/U2. When combined with the con-
straints on the flavour mixing ratios 5.11, these measurements can be a first step
towards testing the low-scale leptogenesis mechanism.



Appendix A

Heavy neutrino mixing angles

In the following we present the relation between the mixings U2
iα, and the param-

eters in the PMNS matrix Uν for two heavy neutrinos ns = 2, as found in [105].
For the trigonometric functions we use the shorthand notations sab = sin θab and
cab = cos θab.1 To find expressions in the symmetric limit Im ω � 1, the relations

lim
ε→0

tanh(2 Im ω) = 1 , lim
ε→0

cosh(2 Im ω) = sinh(2 Im ω) =
1
2

exp(2 Im ω) =
1

2ε
,

(A.1)

is particularly useful.

Normal hierarchy

2M1,2U2
e1,2 = a+1 cosh(2 Im ω)− a2 sin

(α2

2
+ δ
)

sinh(2 Im ω)

±
[

a−1 cos(2 Re ω)− a2 sin
(α2

2
+ δ
)

sin(2 Re ω)
]

, (A.2a)

2M1,2U2
µ1,2 =

[
a+3 − a4 cos(δ)

]
cosh(2 Im ω)−

[
a5 sin

(α2

2

)
− a6 sin

(α2

2
+ δ
)]

sinh(2 Im ω)

∓
[
a−3 + a4 cos(δ)

]
cos(2 Re ω)∓

[
a5 cos

(α2

2

)
− a6 cos

(α2

2
+ δ
)]

sin(2 Re ω) ,

(A.2b)

2M1,2U2
τ1,2 =

[
a+7 + a4 cos(δ)

]
cosh(2 Im ω) +

[
a5 sin

(α2

2

)
+ a8 sin

(α2

2
+ δ
)]

sinh(2 Im ω)

∓
[
a−7 − a4 cos(δ)

]
cos(2 Re ω)±

[
a5 cos

(α2

2

)
+ a8 cos

(α2

2
+ δ
)]

sin(2 Re ω) ,

(A.2c)

1Note that we take sab and cab to be the positive real roots of s2
ab and c2

ab from Table 2.2.
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where a1 to a8 are positive real coefficients given by active neutrino masses and
their mixing angles

a±1 = m2c2
13s2

12 ±m3s2
13 , (A.3a)

a2 = 2
√

m2m3c13s12s13ξ , (A.3b)

a±3 = ±m2(c2
12c2

23 + s2
12s2

13s2
23) + m3c2

13s2
23 , (A.3c)

a4 = 2m2c12c23s12s13s23 , (A.3d)
a5 = 2

√
m2m3c12c13c23s23ξ , (A.3e)

a6 = 2
√

m2m3c13s12s13s2
23ξ , (A.3f)

a±7 = ±m2(c2
23s2

12s2
13 + c2

12s2
23) + m3c2

13c2
23 , (A.3g)

a8 = 2
√

m2m3c13c2
23s12s13ξ . (A.3h)

Without loss of generality we have set α1 = 0. We may now use the simplified
notation α2 = α that we adopt in the main text.

Inverted hierarchy

2M1,2U2
e1,2 = b+1 cosh(2 Im ω) + b2 sin
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where b1 to b9 are positive real coefficients given by active neutrino masses and
their mixing angles

b±1 = m1c2
12c2

13 ±m2s2
12c2

13 , (A.5a)
b2 = 2

√
m1m2c12s12ξ , (A.5b)

b±3 = ±m1(c2
23s2

12 + c2
12s2

13s2
23) + m2(c2

12c2
23 + s2

12s2
13s2

23) , (A.5c)

b±4 = 2(±m2 −m1)c12c23s12s13s23 , (A.5d)

b5 = 2
√

m1m2(c12c2
23s12 − c12s12s2

13s2
23)ξ , (A.5e)

b6 = 2
√

m1m2c2
12c23s13s23ξ , (A.5f)

b7 = 2
√

m1m2s2
12c23s13s23ξ , (A.5g)

b±8 = ±m1(c2
12c2

23s2
13 + s2

12s2
23) + m2(c2

23s2
12s2

13 + c2
12s2

23) , (A.5h)

b9 = 2
√

m1m2c12s12(s2
23 − c2

23s2
13)ξ , (A.5i)

and α̃ = α2 − α1. Therefore, the Yukawa matrices Y only depend on the difference
α2− α1 for inverted hierarchy, which allows us to set α1 = 0 and use the simplified
notation α2 = α̃ = α.
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The Metropolis-Hastings sampling
algorithm

The Metropolis-Hastings algorithm [108, 109] is method of obtaining samples of
some probability distribution π(x) (which in general does not need to be normal-
ized).

The algorithm proposes a way of constructing a Markov chain of points xi that
are approximately distributed from the distribution π(x).

We define a conditional density q(x|y) that is used to generate candidate points.

Algorithm 1 Metropolis-Hastings algorithm

1: Given x(i)

2: Generate y ∼ q(xi|y)
3: Take

x(i+1) =

{
y with probability ρ(x(i), y)
x(i) with probability 1− ρ(x(i), y) ,

(B.1)

where

ρ(x(i), y) = min
[

π(y)
π(x)

q(x|y)
q(y|x) , 1

]
. (B.2)

In the limit of large i, the density of points x(i) approaches the probability dis-
tribution π(x).
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Appendix C

Definitions and relations between the
two-point functions

The useful combinations of the two-point functions on the CTP are defined as:

GA = GT − G> = G< − GT̄ (advanced) , (C.1a)

GR = GT − G< = G> − GT̄ (retarded) , (C.1b)

GH =
1
2
(GR + GA) =

1
2
(GT − GT̄) (Hermitian) , (C.1c)

GA =
1
2i
(GA − GR) =

i
2
(G> − G<) (anti-Hermitian, spectral) , (C.1d)

GF =
1
2
(G> + G<) (statistical)1 . (C.1e)

1Corresponds to G+ = GF from [118].
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Appendix D

Equilibrium Green functions

Heavy neutrinos To zeroth order in the Yukawa couplings, the heavy neutrino
two-point functions are given by:

iS<
Nii(p) = −2πδ(p2 −M2

ii)(p/ + Mii) [ϑ(p0) fNii(p)− ϑ(−p0)(1− fNii(−p))] ,

(D.1a)

iS>
Nii(p) = −2πδ(p2 −M2

ii)(p/ + Mii) [−ϑ(p0)(1− fNii(p)) + ϑ(−p0) fNii(−p)] ,
(D.1b)

iST
Nii(p) =

i(p/ + Mii)

p2 −M2
ii + iε

− 2πδ(p2 −M2
ii)(p/ + Mii) [ϑ(p0) fNii(p) + ϑ(−p0) fNii(−p)] ,

(D.1c)

iST̄
Nii(p) = − i(p/ + Mii)

p2 −M2
ii − iε

− 2πδ(p2 −M2
ii)(p/ + Mii) [ϑ(p0) fNii(p) + ϑ(−p0) fNii(−p)] .

(D.1d)

iSANii(p) =
i
2

2πδ(p2 −M2
ii)(p/ + Mii) sgn(p0) , (D.2a)

iSF
Nii(p) = −2πδ(p2 −M2

ii)(p/ + Mii)

[
ϑ(p0)

(
fNii(p)−

1
2

)
+ ϑ(−p0)

(
fNii(−p)− 1

2

)]
.

(D.2b)

Doublet leptons Since the SU(2)L symmetry is unbroken at high temperatures,
we should in principle take account of both elements of the lepton doublet:

SSU(2)L
` AB = δABS` , (D.3)
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where A, B = 1, 2. The lepton propagators are:

iS<
` (p) = −2πδ(p2)PLp/PR

[
ϑ(p0) f`(p)− ϑ(−p0)(1− f̄`(−p))

]
, (D.4a)

iS>
` (p) = −2πδ(p2)PLp/PR

[
−ϑ(p0)(1− f`(p)) + ϑ(−p0) f̄`(−p)

]
, (D.4b)

iST
` (p) = PL

ip/
p2 + iε

PR − 2πδ(p2)PLp/PR
[
ϑ(p0) f`(p) + ϑ(−p0) f̄`(−p)

]
, (D.4c)

iST̄
` (p) = −PL

ip/
p2 − iε

PR − 2πδ(p2)PLp/PR
[
ϑ(p0) f`(p) + ϑ(−p0) f̄`(−p)

]
. (D.4d)

The Higgs Field The propagators for the Higgs field are given by:

i∆<
φ (p) = 2πδ(p2)

[
ϑ(p0) fφ(p) + ϑ(−p0)(1 + f̄φ(−p))

]
, (D.5a)

i∆>
φ (p) = 2πδ(p2)

[
ϑ(p0)(1 + fφ(p)) + ϑ(−p0) f̄φ(−p)

]
, (D.5b)

i∆T
φ(p) =

i
p2 + iε

+ 2πδ(p2)
[
ϑ(p0) fφ(p) + ϑ(−p0) f̄φ(−p)

]
, (D.5c)

i∆T̄
φ(p) = − i

p2 − iε
+ 2πδ(p2)

[
ϑ(p0) fφ(p) + ϑ(−p0) f̄φ(−p)

]
. (D.5d)



Appendix E

Majorana Neutrino Self-Energy

In this appendix we briefly overview the properties of the Majorana neutrino self-
energy. The self-energy of a Majorana neutrino is given by the derivative of the 2PI
effective action:

iΣab
N ij(x, y) ≡ ab

δΓ2

δSt ba
N ji(y, x)

. (E.1)

The heavy neutrino fields have to satisfy the general Majorana constraint:

N = GNC → Sab
N ij(x, y) = GCSt ba

N ji(y, x)G∗C† , (E.2)

where G = GT = U†U∗ is introduced to take account of the possible change to
the Majorana condition under a unitary transformation N → UN. We can there-
fore express the self-energy of a Majorana neutrino as a sum of two “Dirac” self
energies:

iΣab
N ij(x, y) ≡ ab

δΓ2

δSt ba
N ji(y, x)

, (E.3)

= ab

 ∂Γ2

∂St ba
N ji(y, x)

+ CtG

(
∂Γ2

∂Sab
N ij(x, y)

)t

C∗G∗

 ,

where ∂ symbolizes the partial functional derivative. In order to isolate the flavour
and Dirac structure, we introduce the reduced self-energy:

∑
α=e ,µ ,τ

gwY∗iαYt
αj

i/̂Σ
ab
N R α(x, y)PR ≡ ab

∂Γ2

∂St ba
N ji(y, x)

, (E.4)
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where the subscript α tells us which of the active leptons is contributing to the self-
energy, and the subscript R stands for the right chirality of the contribution. By
inserting both reduced self-energies, we obtain:

iΣab
N ij(x, y) = ∑

α

gwΥα
+ iji/̂Σ

ab
N R α(x, y)PR − gwΥα

− iji/̂Σ
ba
N R α(y, x)PL , (E.5)

where we introduced

Υα
+ ij ≡ YiαY†

αj , Υα
− ij ≡ (GY∗)iα(YtG∗)αj , (E.6)

Υ+ ij ≡ (YY†)ij , Υ− ij ≡ (GY∗YtG∗)ij . (E.7)

If we assume the self-energy to be translation invariant in space and time, we can
apply the Wigner transform to obtain:

iΣab
N ij(k) = ∑

α

gw

(
Υα
+ iji/̂Σ

ab
N R α(k)PR − Υα

− iji/̂Σ
ba
N R α(−k)PL

)
. (E.8)

If we define the left-chiral part of the self energy as:

/̂Σ
ab
N L α(k) ≡ −/̂Σ

ba
N R α(−k) , (E.9)

we can further simplify the above equation to:

iΣab
N ij(k) = ∑

α

gw

(
Υα
+ iji/̂Σ

ab
N R α(k)PR + Υα

− iji/̂Σ
ab
N L α(k)PL

)
. (E.10)

In equilibrium, the left and right-chiral party of the self-energies satisfy further
constraints:

ˆ̄/ΣN R α(k) = ˆ̄/ΣN L α(k) ≡ ˆ̄/ΣN(k) (E.11)

for the combinations A, F, H, as well as R and A. Using these relations, we can
obtain the equilibrium self-energies:

iΣ̄N ij(k) = gwΥ+ iji ˆ̄/ΣN(k)PR + gwΥ− iji ˆ̄/ΣN(k)PL . (E.12)

E.1 Relation between the collision terms of the heavy
and doublet neutrinos

The self-energies of the RHN and the active leptons both arise from the same 2PI
effective action:

iΣab
Nij(k) = ab

δΓ2

δSba
N ij(k)

(E.13)
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iΣab
`α(k) = ab

δΓ2

δSba
`α(k)

(E.14)

To show how they are connected, we introduce the four-point function Γ̃:

Γ̃ab
ijα µνρσ(k, p) ≡ δ2Γ

δSba
N ji νµ(k)δSab

` α σρ(p)
, (E.15)

where a , b are the CTP indices, i , j sterilve flavour, α the active flavour, and finally,
µ , ν , ρ , and σ the Dirac indices. Using this four-point function one can find the
self-energies of the heavy neutrinos and the doublet leptons as:

iΣab
N ij µν(k) = gw ∑

αρσ

∫
Γ̃ab

ij α µνρσ(k, p)Sab
` α σρ(p)

d4p
(2π)4 (E.16)

iΣab
` α ρσ(p) = ∑

ij µν

∫
Γ̃ba

ij α µνρσ(k, p)Sab
N ji νµ(k)

d4k
(2π)4

If we insert this expression into the doublet lepton collision term (here expressed in
Wightmann functions), we find that it can be expressed using the heavy neutrino
propagators and self-energies:

C ⊃
∫ dp4

(2π)4 i Tr
[
Σab
` α(p)Sba

` α(p)
]

(E.17)

=
∫ dp4

(2π)4 iΣab
` α ρσ(p)Sba

` α σρ(p)

=
∫ dp4

(2π)4
dk4

(2π)4 Γ̃ba
ij α µνρσ(k, p)Sab

N ji νµ(k)S
ba
` α σρ(p)

=
1

gw

∫ dk4

(2π)4 iΣba
N ij α µν(k)S

ab
N ji νµ(k) .



Appendix F

Precision of measuring flavour mixing
ratios

In this appendix we briefly discuss the statistics behind measurements the flavour
ratios at future colliders.

F.1 Probability distribution for Nsl semileptonic events
with Nα of them in flavour α.

For decays of heavy neutrinos into flavour α we have two main observables, the
total number of semileptonic events Nsl, and the number of events with a lepton of
flavour α in the final state Nα. The probability distribution function (PDF) for this
scenario is a product of a Poisson distribution that describes the “rare event” of
producing a heavy neutrino and it decaying in the semileptonic channel, together
with a binomial distribution that corresponds to the semileptonic event being of
the particular flavour α,

P(Nsl, Nα) =
e−λslλ

Nsl
sl

Nsl!

(
Nsl

Nα

)
Br(α)Nα(1− Br(α))Nsl−Nα , (F.1)

where Br(α) = U2
α/U2 is the branching ratio of semileptonic states with α in the

final state. The expected numbers of events are 〈Nsl〉 = λsl and 〈Nα〉 = λslBr(α) ≡
λα. It is interesting that if we do not keep track of the total number of semilep-
tonic events, but calculate the distribution for Nα alone, we recover the Poisson
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123 F.2. Precision of measuring U2
α/U2.

distribution: the PDF reduces to a pure Poisson distribution:

P(Nα) =
∞

∑
Nsl=Nα

P(Nsl, Nα)

=
∞

∑
k=0

e−λslλNα+k
sl

Nα!k!
Br(α)Nα(1− Br(a))k

=
(λslBr(a))Nα

Nα!
e−λsl

∞

∑
k=0

[λsl(1− Br(α))]k

k!
=

e−λα λNα
α

Nα!
. (F.2)

The variance of Nα is then equal to its expectation value: Var(Nα) = 〈Nα〉 = λα.

F.2 Precision of measuring U2
α/U2.

We are interested in determining the ratio U2
α/U2, as well as its error, which can be

determined through Var(U2
α/U2). To determine the variance, we can use the usual

propagation of error, noting that Nsl is not independent of Nα, which results in:

δ(U2
α/U2)

U2
α/U2 =

√
1

Nα
− 1

Nsl
. (F.3)

Since the propagation of error assumes a large number of events, when Nsl is small,
we have to calculate the expected value and variance of Var(Nα/Nsl) from the full
PDF,

〈Nα/Nsl〉 =
∞

∑
Nsl=0

Nsl

∑
Nα=0

P(Nsl, Nα)
Nα

Nsl
= Br(α) =

〈Nα〉
〈Nsl〉

, (F.4)

and similarly,

〈N2
α/N2

sl〉 =
∞

∑
Nsl=0

Nsl

∑
Nα=0

P(Nsl, Nα)

(
Nα

Nsl

)2

= Br(α)2 + e−λsl(1− Br(α))[1− Br(α)(−1 + γE + Γ(0,−λsl) + log(−λsl))] ,
(F.5)

where γE ≈ 0.58 is the Euler constant. Finally, we may calculate the expected
sensitivity:

δ(U2
α/U2)

U2
α/U2 =

√
e−〈Nsl〉(〈Nsl〉 − 〈Nα〉)[〈Nsl〉+ 〈Nα〉(1− γE − Γ(0,−〈Nsl〉)− log(−〈Nsl〉)]

〈Nα〉2

≈
√

1
〈Nα〉

− 1
〈Nsl〉

, (F.6)
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which agrees with the result obtained through error propagation in the large 〈Nsl〉
limit.

The fact that the uncertainty vanishes when 〈Na〉 → 〈Nsl〉 might seem con-
cerning, however, note that this is the expected uncertainty. If the branching ratio
is exactly Br(α) = 1, the equation 〈Na〉 = 〈Nsl〉 will be satisfied, and we do not
expect any events in the other channels, i.e. the uncertainty of 〈Na/Nsl〉 vanishes.
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