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Abstract

Motivated by the urgent need for secure software we construct new testing methods
to improve current development lifecycles. We connect probability theory with current
testing technologies by formulating feedback-driven fuzzing in the language of stochastic
processes. This mathematical model allows us to translate deep results from probability
theory into algorithms for software testing.
Our mathematical model captures fuzzing as a Makrov decision process. Translating

processes with suitable characteristics yield testing algorithms with predefined behavior.
We further enhance this stochastic approach with exact computation based on symbolic
execution to reach deep layers of the targeted programs. Exploring the full capabilities
of our model leads us to the application of reinforcement learning methods, which turns
out to be a fruitful new direction in software testing.

Zusammenfassung

Motiviert durch den hohen Bedarf an sicherer Software werden neue Testmethoden be-
reitgestellt, um moderne Entwicklungsprozesse zu verbessern. Durch die Formulierung
Feedback-basierten Fuzzings in der Sprache stochastischer Prozesse wird das Gebiet der
Wahrscheinlichkeitstheorie mit gängigen Testtechnologien verbunden. Dieses mathema-
tische Modell ermöglicht es, tiefgreifende Resultate aus der Wahrscheinlichkeitstheorie in
Algorithmen zum Testen von Software zu übersetzen.
Das mathematische Modell erfasst Fuzzing als Markov Entscheidungsprozess. Das

Übersetzen von Prozessen mit geeigneten Eigenschaften ergibt Testalgorithmen mit vor-
definiertem Verhalten. Dieser stochastische Ansatz wird mit der Möglichkeit zur ex-
akten Berechnung basierend auf symbolischer Programmausführung erweitert, um tiefe
Ausführungsschichten des getesteten Programmes zu erreichen. Die Analyse aller Eigen-
schaften des aufgestellten mathematischen Modells führt schließlich zur Anwendung von
Methoden des bestärkenden Lernens. Die vorgestellte Herangehensweise erweist sich als
vielversprechende neue Richtung im Bereich des Softwaretestens.
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1. Introduction

We dive into this work with some introductory thoughts about our main research ques-
tions. By outlining our contributions from a bird’s eye view we equip the reader with
high-level directions that will help to keep track during the challenges that lie ahead. At
the beginning of each of the following chapters we return to this bird’s eye perspective to
regain orientation. This guide through a detailed landscape of algorithms will eventually
ready the reader for advanced fuzzing. At the very end of this work we connect our
discoveries to one single map of the world. Embedding this map into a global atlas will
illuminate our journey in an excitingly unknown context. We wish the reader to find
inspiration and fruitful thoughts while exploring the world of fuzzing.

1.1. Research Challenge

The ever increasing complexity of software systems in the core infrastructures of society
demands advanced methods for testing their robustness. In recent years we observe an
increasing proliferation of serious software vulnerabilities in the technologies that sur-
round us. The perfectly secure piece of software is far out of reach and common practice
in hardening software often boils down to finding vulnerabilities before the adversary
does. Undisclosed security-critical bugs known as zero-days will continue to emerge on
the surface of black markets to attract players of a variety of backgrounds. A common
strategy to decrease the risk of being successfully attacked is to increase the effort it takes
to compromise our assets. From the perspective of practical risk assessment, the work
at hand presents advanced methods to lower this probability in efficient ways. Efforts
in reducing the attack surface and increasing attack efforts directly point us to research
secure software development lifecycles.
Besides secure design and implementation, state-of-the-art in secure software engineer-

ing always includes several verification steps prior to release. In practice there is always a
certain mismatch between functionality intended by the architect and actually provided
by the implementation at hand. This mismatch gives rise to unintended and unexpected
behavior in terms of security critical vulnerabilities. To discover such flaws a magnitude
of different verification methods have emerged over time. From a practical point of view
we especially need automated methods that allow us to systematically perform vulnera-
bility analysis of software. The modern world of software engineering strongly requires
fully automated testing tools that scale to the ever growing application landscape.
The nowadays most effective way to proceed in this direction is random testing of

software, also called fuzzing. There exists a substantial diversity of test case generation
strategies for random testing of software. All these approaches have in common to a
greater or lesser extent the random generation of test cases with the aim of driving the
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1. Introduction

targeted program to an unexpected and possibly exploitable state. The prime advantage
of fuzzing is its relative ease of use. Most software that processes any input data is a
suitable target for random test generation and simple fuzzers are implemented in a short
time. This ease of use comes with a lack of completeness: Fuzzing does not guarantee the
absence of vulnerabilities but only reduces the probability of their existence. However,
from point of view of practical risk assessment, decreasing the number of security critical
vulnerabilities exactly corresponds to the required risk reduction.
Looking at state-of-the art in random testing, we see the discipline of randomness

very much underrepresented. Rooted in ancient times, the theory of probability gained
momentum in the correspondence of Gerolamo Cardano, Pierre de Fermat, and Blaise
Pascal beginning in 1654 [1]. From Christiaan Huygens’ 1657 discourse De ratiociniis in
ludo aleae ("On Reasoning in Games of Chance") over Andrey Kolmogorov’s foundations
of the field in 1933 [2] up to the powerful methods of modern stochastics [3], the theory
of randomness has developed into an influential and rich mathematical discipline. When
comparing the deep results of this theory to simple random bit flips in state-of-the-art
random testing, two major research questions arise:

• How can we connect probability theory to state-of-the-art software testing?

• How can we transfer the deep results from probability theory into the world of
software testing in order to discover new algorithms?

This thesis answers both questions in a mathematically rigorous way.

1.2. Research Contribution

To answer the first question, we construct a mathematical model of fuzzing. This provides
a common language that functions as gateway between both fields of research. To answer
the second question, we identify stochastic structures and processes underlying this model
and translate their essence into algorithms for software testing.
In Part I of this work we connect fuzzing with the field of stochastic processes. On

the one hand, fuzzing in its essence deals with controlling a feedback loop in the sense
of classic cybernetics [4]: The Fuzzer generates an input, injects it to the program under
test, observes what the program does, and adapts its behavior for generating the next
input accordingly. On the other hand, the rich field of probability theory offers deep
results for feedback-driven stochastic processes. Formulating fuzzing in the language of
mathematics enables us to directly transfer results from probability theory to fuzzing.
Well established methods and search strategies proven to be stable and effective suddenly
give rise to novel fuzzing algorithms. This way we open the door to a variety of new
perspectives on software testing.
To guide our choice of perspectives we find inspiration in the field of biology. In Part

II of this work we investigate fuzzing strategies inspired by animal foraging and swarm
theory. We construct self-adaptive feedback loops for fuzzing and evaluate their efficiency
on realistic targets. Further, we enhance the random nature of input generation with

10



1.3. Impact

deterministic and precise methods: The combination of fuzzing with symbolic reasoning
turns out to be effective in reaching deep layers of the program under test. Part II deals
with predefined behavior in the sense that input mutation and synchronization follows a
fixed sequence of actions.
We research fuzzers with learning behavior in Part III. At a certain level of abstraction

controlling the fuzzing loop can be interpreted as a game against the program. Motivated
by the success in Backgammon [5, 6], Atari games [7], and the game of Go [8] we apply
machine learning to fuzzing. Again, the mathematical model of Part I provides a direct
interface to reinforcement learning. And in fact, the deep Q learning algorithm that
achieved super-human behavior in [7] and [8] turns out to be an exciting new direction
in software testing.
We draw the bird’s eye perspectives in simple figures at the beginning of each part.

Each such figure captures the essence of the respective contribution.

1.3. Impact

In the course of writing this thesis sixteen scientific publications [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24] emerged. These are just snapshots of an odyssey
through IT security that eventually led to the core theme of the work at hand.
This thesis embeds ideas from papers presented at the IEEE Symposium on Security

and Privacy [16, 20, 23], at the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment [17], in two journal papers [18, 21], and a book chapter [22].
Beyond pure research the presented ideas found resonance in the software industry.

During a three-monthly stay at Microsoft Research Redmond in the summer of 2017 the
approach of reinforcement fuzzing turned out to be a promising new approach in software
testing. We expect that further efforts in the spirit of this thesis will soon impact security
development lifecycles to yield value and good for society.
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Part I.

The Stochastic Process of
Fuzzing
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reward state action

Figure 1.1.: The stochastic process of fuzzing.

In this part we connect fuzzing with stochastics. We formulate fuzzing in terms of
stochastic processes, which allows us to construct a mathematical model of generic fuzzing
architectures. The essence of this part is captured in Figure 1.1: The mutator M, input
I, and program P, which are concepts of fuzzing, are connected via rewards, states,
and actions, which in turn are concepts of certain stochastic processes. The mutaror M
generates an input I that is injected into the program under test P. This input generation
is interpreted as an action that causes a state transition and a reward. At the end of this
part the reader will understand each aspect of this view.
First, we present the essential background necessary to understand state-of-the-art

fuzzing in Chapter 2. This includes historical notes, an introduction of common termi-
nology, and a short note on testing taxonomies as well as an abstraction of a generic
architecture.
Second, we introduce the language required for mathematically modeling fuzzing in

Chapter 3. We keep the discussion of Markov decision processes at an assessable level to
keep the overall presentation as clear as possible.
Third, in Chapter 4 we capture the generic architecture abstracted in Chapter 2 in

the language introduced in Chapter 3. This mathematical model of fuzzing provides the
basis for Parts II and III of this work.

15





2. Fuzzing Essentials

In this chapter we introduce everything necessary to understand state-of-the-art fuzzing.
We trace the development of random test generation beginning at its origins in the 1950s
to the advanced feedback-driven frameworks for modern software testing. This leads us
to characteristic properties of modern fuzzers, based on which we construct a generic
architecture to obtain an abstract view on the fuzzing process. Extracting the essentials
of fuzzing this way will ready us for the challenges of a formal analysis that lie ahead.

2.1. Fuzzing Origins

Reasoning about the correctness of the computer is as old as computing itself. Even if we
go back to the stepped reckoner, a digital mechanical calculator invented by Leibniz [25],
we find the abyss that ever since opened up between intent and reality of computation:
Beyond calculation errors in the precision gearwork that drove fine mechanics technology
in those days over its limits, a design error in the carrying mechanism was detected in 1893
- 199 years after construction of the machine. The first attempt to systematically reason
about the correctness of a program can be dated back to 1949 when Turing indicated a
general proof method for program correctness on three foolscap pages of text [26, 27].
Research of the following decades established the field of program verification [28, 29, 30],
which aims for proving correctness of a program with respect to formal specifications and
properties. However, proving correct system behavior for large programs suffers from
explosion of possible states inherent in complex software. Further, verification techniques
require a system model to prove properties of the program. Constructing such models
counters the aim of fully automated testing and may even miss system properties [31].
Parallel to the discipline of formal verification another kind of software testing was

established. As Gerald M. Weinberg [32] recalls: “We didn’t call it fuzzing back in the
1950s, but it was our standard practice to test programs by inputting decks of punch
cards taken from the trash. We also used decks of random number punch cards. We
weren’t networked in those days, so we weren’t much worried about security, but our
random trash decks often turned up undesirable behavior.” Networking evolved and the
rise of the internet exacerbated the situation of complex systems facing a lack of scalable
testing methods. Software ever increased in size and complexity - so did the proliferation
of software bugs - and finding flaws in systems becomes even harder when they are
distributed. A computer connected to the ARPANET [33, 34] was much more likely to
process data from untrusted sources. From security perspective, a system without air-gap
means an increased attack surface, which was famously demonstrated by the Morris worm
in 1988 [35]. Although testing with random program inputs was considered far inferior
compared to the theory of formal verification (and sometimes even viewed as the “worst
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2. Fuzzing Essentials

case of program testing” [36]), it was applied as a cost-effective alternative in practical
software engineering. Duran and Ntafos [37, 36] justified the use of random testing
in the early 1980s by evaluating its effectiveness in relation to more formal methods.
Random testing, meanwhile referred to as monkey testing due to the eponymous tool
The Monkey released 1983 by Steve Capps to test user interfaces for the Macinthosh, was
established among the programming practitioners of the late 1980s. But it was lacking
the theoretical background needed to increase trust in this method. Just in the same
fall of the year 1988 when the Morris worm spread, the perils of interconnected systems
themselves gave rise to a systematic approach in the spirit of the 1950s random decks:
When Barton Miller remotely connected to his Unix system during a fall thunderstorm,
the rain caused noise on the line and thereby in the commands he entered to the shell
leading programs to crash [38]. This motivated him to systematically execute programs
with random and unstructured input data, which he referred to as fuzzing [39]. Since then
the fuzzing discipline has evolved to an active area of research providing a rich diversity
of fuzzing tools available, each focusing on specialized approaches. Fuzzing is nowadays
the prevalent method used for detecting vulnerabilities in binaries. In a nutshell, inputs
are randomly generated and injected into the target program with the aim to drive the
program to an unexpected and exploitable state.

2.2. Modern Fuzzing

The overall goal of fuzzing a target executable is to drive it to an unexpected and unin-
tended state. Informally, we want to cause error signals, program crashes, and timeouts
and refer to such program behavior as a bug. In this section we first show how to ac-
tually sense bugs in a program during testing and discuss aspects of bug classification
and criticality. Subsequently, we motivate currently applied search strategies that aim
for maximization of code coverage. Such coverage information can be interpreted as a
feedback mechanism that gives rise to feedback driven fuzzing.

2.2.1. Bug Observation and Identification

Finding bugs in the program under test requires a mechanism to sense them. Current
state-of-the-art fuzzers detect bugs that cause the target to timeout or crash. In the
following we also refer to such behavior as a vulnerability of the program.

Timeouts The former refers to delay or complete absence of an expected program re-
sponse. In most situations such timeouts simply require a specified amount of time the
fuzzer waits for a responds. Therefore, sensing timeouts is straight forward in most cases
and current state-of-the-art fuzzers come with default time values around one second.
Only very rare settings require more caution: The Windows Operating systems (from
Windows Vista upwards) for example come with the Timeout Detection and Recovery
functionality, which detects problems in the response from graphic cards and upon de-
tection of a frozen GPU resets the relevant drivers. In such cases, where timeouts of
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sub-systems of the fuzzing target are handled by the target itself or its execution en-
vironment, timeout handling of the target must be disabled or more advanced sensing
mechanisms are required.

Crashes A program crash refers to termination of the program due to a failure condi-
tion. Such conditions can happen inside the processor or in processor-external hardware
modules. The latter indicate failure conditions by sending an interrupt to the processor.
Since such external interrupt signals are usually asynchronous to the processor clock, they
are referred to as asynchronous events. Processor-internal failure conditions in turn are
generated synchronous to the processor clock and we refer to them as exception events.
Our definition of interrupts and exceptions is compliant with standard texts on proces-

sor design [40] and the Intel x86 and x86-64 software developer manuals [41]. However,
this distinction is not always consistently followed in the literature and even standard
references on the Linux kernel [42] occasionally refer to interrupts as both, synchronous
and asynchronous events. Considering the broad spectrum of different processor archi-
tectures, such vagueness of notation in the related literature seems natural: The ARM
processor manuals, for example, include software interrupts (not to be confused with the
hardware interrupts in our definition) as exceptions. Further, it depends on the processor
architecture if the failure condition is labelled an interrupt or an exception. For exam-
ple, a processor-external memory management unit detecting an unauthorized memory
access indicates an interrupt, whereas an memory management unit integrated in the
processor (as implemented most often in modern CPU designs) per our definition rises
an exception. In any case, our definition of crashes is sufficient for the presentation of
this thesis as it covers both, synchronously and asynchronously generated events: We are
interested in software bugs and mainly abstract away the specific processor architecture.
The causes of crashes are manifold and typically fall into one of the following classes:

Division error, invalid opcode, overflow, page fault, unauthorized memory access, and
unauthorized call of a routine with higher privileges. The exact types of failure conditions
depend on the specific processor. For example, the Intel x86 and x86-64 architecture
defines exceptions and interrupts related to coprocessor segment overrun, floating-point
errors, virtualization exceptions and many more (see [41] Chapter 6). Each time a crash
occurs, the operating system takes care of its handling. For example, the Linux routine
for processors implementing the x86 and x86-64 instruction set architecture proceeds as
follows. Upon receiving such interrupt or exception, the processor stops execution of the
current process, saves all process registers, and switches to the operating system event
handler indicated by the interrupt descriptor table. The operating system handler in
turn sends a signal to the target process that evoked the interrupt. To eventually sense
the crash at software side, we catch the signals that are sent from the operating system
to the target process and filter the fatal ones.
Each operating system comes with its own types of signals. For Unix-like operating sys-

tems, famous fatal signals include SIGABRT (abnormal termination signal), SIGSEGV
(invalid memory access signal), SIGSYS (bad argument to system call), SIGFPE (erro-
neous arithmetic operation), and SIGILL (illegal instruction). We refer to the POSIX
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programmers guide [43] for a complete list of fatal signals in the UNIX environment.
Software vulnerabilities come in a large spectrum of different characteristics, which

motivated a diversity of research efforts to categorize them. For example, we could just
take the criticality of bugs depending on their effect on the defined assets into account. If
the asset to safeguard is availability of a server, a bug B1 that crashes the server should
be considered critical. If a second bug B2 only crashes a server submodule that gets
restarted automatically it does not affect the overall stability of the program and is less
critical with regard to server availability. In contrast, if the asset is data confidentiality
and B2 allows an attacker to read out confidential data, it should be considered critical.
The famous Heartbleed bug from 2014 that allowed remote read of protected memory in
estimated up to 55% of popular HTTPS internet sites [44] belongs to the latter kind.
Besides criticality there is a magnitude of other characteristics that give rise to a variety
of different vulnerability taxonomies. However, discussing this active area of research is
out of scope of this work and we refer to [45, 46, 47, 48] for a first overview. Practically,
the Common Vulnerabilities and Exposures (CVE) data provides a standardized corpus
of specific software bugs that facilitates identification and communication of concrete
vulnerabilities. Similarly, the Common Weakness Enumeration (CWE) provides a more
general accumulation of common software vulnerabilities separate from specific products.
Intuitively, the likelihood of finding a bug rises with the percentage of code that we

execute. In fact, the idea that code coverage leads to bug coverage was proven fruitful
in the early days of fuzzing [49]. As a natural evolution, coverage levels were not only
reported as minimal adequacy criteria in development lifecycles, but also used as reward
feedback during the actual fuzzing process to generate inputs that potentially explore
new code regions. We systematically define such rewards in Section 4.3.

2.2.2. Fuzzer Taxonomy

In this section we briefly discuss a common basic taxonomy to classify modern fuzzing
frameworks. First, we distinct fuzzers depending on the level of target information they
have access to: While white-box fuzzers [50] have full sight on the target source code
and therefore can theoretically gain detailed information about the program, black-box
fuzzers [38, 51] are basically blind in the sense that they only sense program crashes or
timeouts during testing. Grey-box methods are settled in between and often make use of
instrumentation frameworks (such as Pin [52], Valgrind [53], DynamoRIO [54], Dyninst
[55], DTrace [56], QEMU [57], and the like) to gain detailed information regarding pro-
gram execution. Evolutionary and white-box fuzzers such as AFL, Driller (enhancing
AFL with symbolic execution), EFS, Sage, Choronzon, Honggfuzz, libFuzzer, Kasan,
Kcov, and BFF belong to this category. While binary instrumentation provides ad-
vanced test case generation based on runtime feedback, it comes with relatively high
overhead (see [52] for a benchmark) and resulting moderate test case throughput. In
contrast, black-box fuzzers (such as zzuf, Peach, and Radamsa) pitch test cases into the
targeted binary without gathering feedback from dynamic instrumentation, which makes
them significantly faster compared to feedback-driven fuzzers.
Second, we can distinct fuzzers with respect to the information they have regarding the
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input format. Generation fuzzers create and mutate inputs with respect to such input
structure information, which may come as a predefined or dynamically learned grammar
but also a less formal format specification. In contrast, mutation fuzzers are unaware of
the input format. Both classes have advanced representatives within modern state-of-the
art fuzzers: Peach and SPIKE for example are generation fuzzers that deploy a grammar,
while AFL, zzuf, VUzzer [58] and Radamsa are powerful examples of mutation fuzzers.
Third, we distinct fuzzers between host and network based fuzzers. In contrast to host

based fuzzers, network frameworks have to keep a state machine to handle communication
sequences over time.
It is easy to extend this basic taxonomy to much more distinction features, as discussed

in [38] and [51]. However, even the three presented basic differentiators sometimes fail:
In Part III of this work we present a fuzzer that learns a generalized grammar for input
formats and therefore evolves from a pure mutation fuzzer towards a generation fuzzer
over time.
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2.3. Generic Architecture and Processes
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inject
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Figure 2.1.: Generic architecture for feedback driven fuzzing.

Now we are ready to abstract a generic architecture common for modern fuzzing frame-
works and identify basic processes within the components. This abstract view will allow
us model fuzzing in the language of mathematics and therefore acts as a bridge between
stochastic analysis and software testing.
In principle, a fuzzer generates an input using a set of predefined actions for bit string

manipulation and generation. It injects this input into the target under test and observes
the result. While black-box fuzzers are limited to sensing crashes and timeouts, feedback
driven frameworks gather detailed runtime information of the program executing the
generated input, as discussed in Section 2.2.2. Subsequently, the fuzzer evaluates the
extracted information from target execution and generates a new input based on this
evaluation. This abstract loop is depicted in Figure 2.1.
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C

S

r(x, a) x a

Figure 3.1.: Markov decision process.

In this section we introduce the formal background that gives us the expressiveness
to formulate fuzzing in a mathematically rigorous shape. We abstract the concepts
as introduced in Chapter 2 to obtain a generic model of fuzzing. This model directly
connects fuzzing with the rich and deep theory of stochastic processes and allows us to
infer fuzzing strategies based on mathematical reasoning. At the end of this chapter, the
reader will fully understand the mathematical background of Markov decision processes
as depicted in Figure 3.1.

3.1. Policies and Behavior

We begin the construction of our mathematical model of fuzzing with only two entities,
namely a controller and a system. As depicted in Figure 3.1 we assume the controller C
to interact with the system S via state observations x, actions a, and rewards r(x, a).
In this generic model the controller observes a state of the system and decides to take
a corresponding action, which in turn results in a state transition of the system and an
associated reward. Repeating this sequence gives rise to a feedback loop in which the
controller aggregates rewards over time. The overall goal for the controller is to maximize
the total reward. This scenario is commonly referred to as the reinforcement learning
problem. Reinforcement learning as a subfield of machine learning is an active area
of research and is best captured in the framework of Markov Decision Processes. The
following introduction follows the notation of Szepesvári [59]. As usual in the probability
theory literature, capital letters indicate stochastic variables while lower-cases denote
their realizations.
Let X and A denote the set of all possible system states and controller actions, respec-

tively. Let us first get an intuitive picture of a probability kernel P0. Assume the system
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to be in state x ∈ X . Upon observing x, the controller takes action a ∈ A, which causes
the system to perform a state transition associated with a corresponding reward to the
controller. We assume the system to behave stochastically so that there is uncertainty
regarding the new state y ∈ X of the system as well as the associated reward ρ ∈ R. We
can only provide the probability P0(y, ρ|x, a) that the system transits from x to y with
reward r upon action a. Formally, for each state x ∈ X and action a ∈ A let P0( · |x, a)
denote a probability measure on the measurable space (X×R, σ(X×R)), where σ(X×R)
is the σ-algebra generated by X ×R. In other words, for each (x, a) ∈ X ×A the proba-
bility kernel P0 gives rise to the probability space

(
X ×R, σ(X ×R),P0( · |x, a)

)
. Then

we define a Markov Decision Process

M := (X ,A,P0) (3.1)

to be a set of states, actions, and an assigned probability kernel. As we will shortly see,
M directly induces a stochastic process, which givesM its name. P0 directly determines
the state transition probability

P (x, a, y) := P0

(
{y} × R | x, a

)
(3.2)

for (x, a, y) ∈ X×A×X , which denotes the probability that the system transits from state
x to state y upon action a associated with any reward as indicated by the argument {y}×
R. Further, P0 determines the expected reward upon action a and thus the immediate
reward function

r : A → R (3.3)
r(x, a) := E

[
R(x,a)

]
(3.4)

where the random variables Y(x,a) and R(x,a) are distributed according to(
Y(x,a), R(x,a)

)
∼ P0( · |x, a). (3.5)

We assume all rewards to be bound such that

∃R̂ > 0 ∀(x, a) ∈ X ×A : |R(x,a) ≤ R̂| (3.6)

almost surely. This also bounds the expected reward

‖r‖∞ = sup
(x,a)∈X×A

|r(x, a)| ≤ R̂. (3.7)

The repeated loop of state observation and action by the controller, state transition by
the system, and resulting reward generation gives rise to the discrete time stochastic
process (Xt, At, Rt+1)t∈N, where transition states and associated rewards are distributed
according to the probability kernel (Xt+1, Rt+1) ∼ P0( · |Xt, At). The probability that
the system transits from state x ∈ X to state ∈ X upon controller action a ∈ A is then
given by the state transition probability

p(Xt+1 = y|Xt = x,At = a) = P (x, a, y). (3.8)
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The reward of this transition is expected to be

E[Rt+1|Xt, At] = r(Xt, At). (3.9)

Next we formalize the process of action selection by the controller in more detail. We
assume the controller makes decisions based an the whole history of actions, state tran-
sitions, and associated rewards. Formally, this is captured by an infinite sequence of
probability kernels (πt)t∈N each mapping the process history to probability distributions
over A. The decision making by the controller is then determined by the current system
state and experience of the past:

∀a ∈ A : πt(a) = πt(a|x0, a0, r0, ..., xt−1, at−1, rt−1, xt). (3.10)

We refer to the sequence (πt)t∈N as a behavior and denote the set of all possible be-
haviors as Π. An initial system state X0 ∈ X and a behavior fully govern the process
(Xt, At, Rt+1)t∈N. A controller that behaves according to (πt)t∈N accumulates the total
discounted sum of rewards, also called return,

R =
∞∑
t=0

γtRt+1, (3.11)

where γ ∈ [0, 1] is a discount factor. A lower value of γ prioritizes rewards in the near
future while discounting rewards in the far future and vice versa. We already stated that
the overall goal of the controller is to maximize its expected return. Such maximization
requires the controller to behave optimally.
We can identify two special classes of behavior, namely stochastic stationary policies

and deterministic stationary policies. Stochastic stationary policies

π : X → D(A, σ(A)), (3.12)

map system states to probability distributions (indicated by D) over the action space.
For π(X) = π′ ∈ D(A, σ(A)) we directly write

At ∼ π( · |Xt) (3.13)

instead of At ∼ π′( · |Xt) in the following. For our purposes this short notation does not
introduce ambiguity. Deterministic stationary policies

π : X → A, At = π(Xt) (3.14)

assign a fixed predefined action At to each observed state Xt. Such deterministic policies
are special cases of stochastic stationary policies: Determinism corresponds to distribu-
tions with π(At|Xt) = 1 such that the probability mass of π for other actions than At is
distributed only on a null set in A \ {At}.
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3.2. Value Functions

We define the value function for states x ∈ X to be the expected total reward

V π(x) := E

[ ∞∑
t=0

γtRt+1|X0 = x

]
(3.15)

the controller accumulates when behaving according to π ∈ Π. This gives rise to the
optimal value function V ∗ : X → R which indicates the highest possible return for the
controller interacting with a system starting in state x. With this in mind we define the
optimal behavior to achieve optimal return values for all initial states x ∈ X . In other
words, an optimal behavior yields the optimal return value

V ∗(x) = sup
π∈Π

V π(x). (3.16)

Similarly, we define the action-value function

Qπ : X ×A → R, Qπ(x, a) := E

[ ∞∑
t=0

γtRt+1|X0 = x,A0 = a

]
(3.17)

to be the expected return when initially reacting with action a ∈ A to system state x ∈ X
and then following behavior π ∈ Π. Analog to the above, let Q∗(x, a) : X×A → R denote
the optimal action-value function. We refer to an action that maximizes Q(x, · ) as a
greedy action and to a policy that always prioritizes greedy actions as a greedy policy.
With this notation in mind we can already state the Bellman equation

V π(x) = r(x, π(x)) + γ
∑
y∈X

P (x, π(x), y)V π(y). (3.18)

With the Bellman operator

T π : RX → RX , (T πV ) (x) := r(x, π(x)) + γ
∑
y∈X

P (x, π(x), y)V π(y) (3.19)

Equation (3.18) becomes

T πV π = V π. (3.20)

Analog, the Bellman optimality operator

T ∗ : RX → RX , (T ∗V ) (x) := sup
x∈A
{r(x, a) + γ

∑
y∈X

P (x, a, y)V (y)} (3.21)

gives rise to the Bellman optimality equation

T ∗V ∗ = V ∗. (3.22)
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With the operators

T π : RZ×A → RX×A, (T πQ) (x, a) := r(x, a) + γ
∑
y∈X

P (x, a, y)Q(y, π(y)) (3.23)

and

T ∗ : RX×A → RZ×A, (T ∗Q) (x, a) := r(x, a) + γ
∑
y∈X

P (x, a, y) sup
a′∈A

Q(y, a′) (3.24)

this yiels similar equations

T πQπ = Qπ and (3.25)
T ∗Q∗ = Q∗ (3.26)

for the action-value functions. With γ ∈ [0, 1) the operators are contractions and the
fixed-point theorem of Banach guarantees the existence and uniqueness of solutions, as
disucussed in the functional analysis literature [60]. The Bellman equations shall for now
close our presentation of Markov decision processes and we refer to Szepesvári [59] for a
more comprehensive introduction to this theory. The Bellman equations will guide us in
constructing reward maximization strategies in later chapters. In essence, they allow us
to break down our overall goal of maximizing code coverage during fuzzing into smaller
and local subproblems. This motivates the algorithms of Part II, where we predefine
policies that lead to determined fuzzing behavior. Further, the Bellman equations give
rise to the algorithms for reinforcement learning fuzzers as disussed in Part III. Such
algorithms mimic learning behavior and self-adapt their policies as given in Equation
(3.10).
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Figure 4.1.: Modeling fuzzing as a Markov decision process.

Now that we know the nature of fuzzing and the language of decision processes as
formulated in Chapter 3 we enter the final phase of constructing our mathematical model.
In the following we formulate each part of the generic architecture for feedback fuzzers (as
presented in Section 2.3 and depicted in Figure 2.1) in the language of probability theory.
This reformulation directly connects fuzzing with the theory of stochastic processes.
Translating all essential aspects of fuzzing into abstract system states, controller actions,
and process rewards opens the door for applying powerful methods from the field of
search optimization and reinforcement learning. In the following sections we map the
states x, actions a, and rewards r(x, a) of a Markov decision process M (see Equation
3.1 on page 24) to their fuzzing counterparts as depicted in Figure 4.1.

4.1. States

In this section we introduce the states of feedback driven fuzzing as input strings of
symbols. The input x ∈ Σ∗ as a string of symbols within an alphabet Σ further gives rise
to a multitude of string features we could take into account for adapting the policy (as
defined in Equations 3.12 and 3.14 on page 25). The spectrum reaches from processed
characteristics such as entropy of fractions of the input to augmented input fractions
obtained from dynamic taint analysis. While we operate on the bit level in Parts II and
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III of this work, we do not limit our approach to this choice and formulate our model to
be compatible with generic alphabets Σ.

States as Raw Input Strings

We can consider the system that the reinforcement learning agent learns to interact with
to be a raw input string of alphabet symbols Σ. To realize this, we define the states
that the agent observes to be substrings of consecutive symbols within such an input.
Formally, let Σ denote a finite set of symbols. The set of possible target program inputs
I written in this alphabet is then defined by the Kleene closure I := Σ∗. For an input
string x = (x1, ..., xn) ∈ I let

S(x) := {(x1+i, ..., xm+i) | i ≥ 0, m+ i ≤ n)} (4.1)

denote the set of all substrings of x. Clearly, ∪x∈IS(x) = I holds. We define the states
of our Markov decision process to be

X := I = Σ∗. (4.2)

In the following, x ∈ I denotes an input for the target program and x′ ∈ S(x) ⊂ I a
substring of this input.

State Features

Based on the raw input strings we can extract further refined state features as indicated
in the following examples.

Offset and Width Again, let I = Σ∗ denote the input space. For the given seed x ∈ I
we can extract a strict substring x′ ∈ S(x) at offset o ∈ {0, ..., |x| − |x′|} of width |x′|
as state features. In words, the reinforcement agent observes a fragment of the whole
system via the substring x′. In this setting we can specifically define actions to move the
offset and vary the width of the observed substring.

String Entropy Let |x′| = n denote the length of a string x′ = (x′1, ..., x
′
n) ∈ I. The

entropy of x′ is then defined as

H(x′) =
∑

s∈σ(x′)

ps log(p−1
s ), (4.3)

where σ(x′) denotes the set of symbols represented in x′ and ps the probability of appear-
ance of symbol s in string x′. As possible state we could take this entropy of substrings
of an input x into account. The fuzzer then observes the changes in entropy during the
fuzzing process.
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Tainted Bytes We can further augment the input with taint information extracted from
target program execution. Here, each symbol in x′ is tracked with regard to subroutines
that access it during execution. Symbols that are processed by the same subroutines
are then grouped together and assigned with a label. These labels can then be taken
into account as features for reinforcement learning. For example, Cui et al. [61] can
automatically detect record sequences and types in the input by identification of chunks
based on taint tracking input data in respective subroutine calls. Similarly, the authors of
[62] apply dynamic tainting to identify failure-relevant inputs. Another recent approach
was proposed by Höschele et al. [63], who mine input grammars from valid inputs based
on feedback from dynamic instrumentation of the target by tracking input characters.

Since state-of-the-art taint tracking is computationally too expensive, we leave this set
of features for future work.

4.2. Actions

In this section we introduce reinforcement fuzzing actions as rewriting rules for symbols
in x.

Similar to the one-step rewriting relations in a semi-Thue system we define the set
of possible actions A of our Markov decision process to be random variables mapping
substrings of an input to probabilistic rewriting rules

A := {a : I → (I × I, F , P ) | a ∼ π(x)} , (4.4)

where F = σ(I × I) denotes the σ-algebra of the sample space (I × I) and P gives the
probability for a given rewrite rule.

In the upcoming sections of this work we define both probabilistic and deterministic
actions. This is still in line with our definition in Equation 4.4, where deterministic
actions a(x) = (x, x′) correspond to P ((x, x′)) = 1 almost surely. Examples for proba-
bilistic actions are random bit flips and shuffling bytes and sequences of bytes within x,
while deterministic actions include string manipulation based on symbolic execution and
insertion of dictionary tokens.

The choice of actions is a crucial design decision for feedback driven fuzzing. We
experiment with a whole set of different actions in the following presentation and describe
them in further detail in the corresponding sections. In fact, one major difference between
Part II and III is how the fuzzer chooses between a set of given actions: While Part II
discusses predefined behavior, where actions are given by a deterministic policy a = π(x),
Part III deals with actions a ∼ π(x) distributed according to a stochastic policy. In
the latter case, we will show that reinforcement fuzzing is able to learn a high rewarding
policy, i.e. picking high rewarding actions given observed states x.
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4.3. Rewards

We define rewards for both characteristics of the performed action and program execution
of the generated input independently, i.e.

R(x, a) = E(x) +G(a). (4.5)

As described in Chapter 3, the stochastic variables (y(x, a), R(x, a)) are distributed ac-
cording to P0(·|x, a). G is provided by performing action a on x to generate a new
mutation and E measured during execution of the target program with input x.
We experiment with E providing number of newly discovered basic blocks, execution

path length, and the execution time of the target that processes the input x. Formally,
let cx denote the execution path the target program takes when processing input x and
B(cx) the set of unique basic blocks of this path. Here, we define a basic block to be
a sequence of instructions without branch instructions between block entry and exit.
Given a history of previously processed inputs I ′ ⊂ I we can write the number of newly
discovered blocks as

E1(x, I ′) :=

∣∣∣∣∣∣B(cx) \

⋃
χ∈I′

B(cχ)

∣∣∣∣∣∣ . (4.6)

Another choice of E is taking the execution time E2 = T (x) of the target into account.
Similarly, we could define G to be the time it takes to generate a mutation based on the
seed x. This would reinforce the fuzzer to find a balance between coverage advancements
and action processing costs.
The idea to generate program inputs that maximize execution path coverage in order

to trigger vulnerabilities has been discussed in the field of test case prioritization some
time ago, see e.g. [64] and [65] for a comparison of coverage-based techniques. Rebert
et al. [66] discuss and compare methods to gain optimal seed selection with respect to
fuzzing and their findings support our decision to select code coverage for evaluating the
quality of test cases.
We could further introduce rewards based on the execution graph. For example, it is

conceivable to distribute negative rewards for execution paths that correspond to error
handling code or in turn reward paths that enter a desired code area. We leave such
types of reward for future work and concentrate on coverage and time in the following.
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Fuzzing with Predefined Behavior
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"Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

John von Neumann

In this second part of our presentation we discuss fuzzing with predefined behavior.
Now that we have a mathematical model for fuzzing we can identify stochastic structures
and processes underlying this model. The language of Markov decision processes allows
us to directly translate the nature stochastic processes with well known behavior into
effective algorithms for software testing.
As introduced in Equation 3.10 we refer to the sequence (πt)t∈N as a behavior and

denote the set of all possible behaviors as Π. We can generally distinct the behaviors
in two classes: Policies based on stochastic processes whose behavior is well researched,
and policies based on learning processes whose behavior depends on the applied machine
learning methods. In this second part we focus on the former class.
In Chapter 5 we investigate certain processes called Lévy flights that provably minimize

search time in specific situations that suffice our conditions. The application of Lévy
flights yields self-adaptive fuzzing behavior by adjusting the process parameters according
to the feedback reward.
While the approach of Chapter 5 yields generally good results, it is purely stochastic

in nature. However, reaching deep layers of a targeted program sometimes requires exact
calculations, e.g. of checksums within the input. To pass the first parsing layers of the
program we enhance our mathematical model based on stochastics with powerful formal
methods based on symbolic execution. This upgrade provides the best characteristics of
both worlds: The properties of search optimization from stochastic processes and partial
input correctness required for deep fuzzing. We discuss this approach in detail in Chapter
6.
With a slight reinterpretation, the above given statement from John von Neumann

holds: Upgrading purely stochastic fuzzing with symbolic execution comes with a high
price. Such formal methods are computationally expensive and slow our algorithms down.
Therefore, instead of packing our efficient stochastic fuzzers with formal sandbags, in
Chapter 7 we give them hints and guide them towards high rewarding input regions. This
introduces an elegant way to combine stochastic with formal methods while keeping the
overall fuzzing process efficient. With our approach we actually can consider arithmetical
methods of producing random digits without sacrificing efficiency.
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Foraging
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Figure 5.1.: Fuzzing with Lévy flights.

In this chapter we present a method for random testing of binary executables inspired
by biology. In our approach we introduce the first fuzzer based on a mathematical model
for optimal foraging. To minimize search time for possible vulnerabilities we generate
test cases with Lévy flights in the input space. In order to dynamically adapt test gener-
ation behavior to actual path exploration performance we define a suitable measure for
quality evaluation of test cases. This measure takes into account previously discovered
code regions and allows us to construct a feedback mechanism. By controlling diffusiv-
ity of the test case generating Lévy processes with evaluation feedback from dynamic
instrumentation we are able to define a fully self-adaptive fuzzing algorithm.
The overall approach of this chapter is depicted in Figure 5.1. The mutator engine

M, input I, and target program P are connected via rewards, states, and actions as
introduced in Chapter 4 of Part I of this work. Within the space of actions A as defined
in Equation 4.4 on page 31 we focus on a special subset Lα ⊂ A based on Lévy flights.
While the global behavior is determined by Lévy flights, the actual shapes of the flights
are automatically adapted via parameters α, which in turn are adjusted according to
the reward r(Lα). Here, the reward R(x, a) as introduced in Equation 4.5 on page 32 is
inferred from effects of Lévy flight actions denoted by r(Lα).
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5.1. Motivation

In the course of researching new effective search strategies we find similar problems in
biology, particularly in the field of optimal foraging. A variety of biological systems let us
observe optimal strategies for finding energy sources by simultaneously avoiding preda-
tors. When we identify sources of food with possible vulnerabilities in binary executables
and predators with the overhead of execution runtime, we are inspired to adapt mathe-
matical models of optimal foraging to test case generation. This approach enables us to
take stochastic models of optimal foraging as a basis for input mutation. In particular
we rely on Lévy flights to search for bug triggering test cases in input space.
Before summarizing our contributions we first give some short background on optimal

foraging and the Lévy flight hypothesis.

Optimal Foraging Observing biological systems has led to speculation that there might
be simple laws of motion for animals searching for sources of energy in the face of preda-
tors. Regardless of whether we look at bumblebees[67], fish and hunting marine predators
in the sea [68, 69], grey seals [70], spider monkeys [71], the flight search patterns of al-
batrosses [72], the wandering of reindeer [73], the reaction pathways of DNA-binding
proteins [74], or the neutralisation of pathogens by white blood cells [75], we can dis-
cover emerging movement patterns all those examples have in common. Mathematical
modelling such common patterns is an active field of research in biology and is more
generally referred to as movement ecology. While the physics of foraging [76] provides us
several possible models our choice is not guided by accuracy with respect to the biological
process but by minimization of software bug search time. This leads us to the special
class of stochastic processes called Lévy flights which we discuss in more detail in Section
5.3.

Lévy Flight Hypothesis Within the variety of models for optimal foraging Lévy flights
have several characteristic properties that show promise for software testing. In partic-
ular, the Lévy flight hypothesis accentuates the most significant property of these kinds
of stochastic processes for our purposes. It states that Lévy flights minimize search time
when foraging sources of food that are sparsely and randomly distributed, resting, and
refillable. These assumptions match to the properties of bugs in software (with the in-
terpretation that refillable translates to the fact that software bugs stay until fix). In
addition to the mathematical Lévy flight hypothesis, the Lévy flight foraging hypothesis
in theoretical biology states that these processes actually model real foraging behavior
in certain biological systems due to natural selection. The Lévy flight hypothesis consti-
tutes the major connection link between optimal foraging theory and random software
testing.

Swarm Behavior While moving patterns of foraging animals inspire us to define the
behavior of a single fuzzer, we are further guided by biology when accumulating multipe
fuzzer instances to a parallelized testing framework. Again we take a look at nature to
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discover a whole branch of science that researches swarm behavior [77]. For example, the
ants of a colony collectively find the shortest path to a food source. Based on simple rules
for modeling natural swarm behavior we construct a fuzzing swarm that mimics colony
clustering observed in biology. Our algorithm navigates the fuzzing swarm without a
central control and provides self-organization of the fuzzers as they flexibly adapt to the
binary structure under test.
In this Chapter we propose a novel method for random software testing based on the

theory of optimal foraging. In summary, we make the following contributions:

• We introduce a novel fuzzing method based on Lévy flights in the input space in
order to maximize coverage of execution paths.

• We define a suitable measure for quality evaluation of test cases in input space with
respect to previously explored code regions.

• In order to control diffusivity of the test generation processes we define a feedback
mechanism connecting current path exploration performance to the test generation
module.

• We enable self-adaptive fuzzing behavior by adjusting the Lévy flight parameters
according to feedback from dynamic instrumentation of the target executable.

• We aggregate multiple instances of such Lévy flights to fuzzing swarms which reveal
flexible, robust, decentralized, and self-organized behavior.

• We implement the presented algorithm to show the feasibility of our approach.

The remainder of this Chapter is organized as follows. In Section 5.2 we discuss related
work. In Section 5.3 we present necessary background on Lévy flights and show how to
construct them in input space. We define a quality measure for generated test cases in
Section 5.4, introduce our self-adapting algorithm for individual fuzzers in Section 5.5,
and construct a swarm of multiple fuzzing instances in Section 5.6. Next, we give details
regarding our implementation in Section 5.7 and discuss properties, possible modifica-
tions, and expansions of the proposed algorithm in Section 5.8. The chapter concludes
with a short outlook in Section 5.9.

5.2. Related work

For definition of our quality measure for test cases we build upon code coverage heuristics
as discussed in Section 4.3. The work of Cha et al. [78] is distantly related to a substep
of our approach in the sense that they apply dynamic instrumentation to initially set
the mutation ratio. However, they use completely different methods based on symbolic
execution. Since symbolic preprocessing is very cost-intensive they further compute the
mutation ratio only once per test, while our fuzzer presented in this chapter consistently
self-adapts its mutation behavior during the whole fuzzing campaign.

39



5. Hunting Bugs with Lévy Flight Foraging

Lévy flights have been studied extensively in mathematics and we refer to Zaburdaev
et al. [79] and the references therein for a comprehensive introduction to this field. Very
recently Chupeau et al. [80] connected Lévy flights to optimal search strategies and
minimization of cover times.

5.3. Lévy Flights in Input Space

In this section we give the necessary background on Lévy flights and motivate their
application. With this background we then define Lévy flights in input space.

5.3.1. Lévy Flights

Lévy flights are basically random walks in which step lengths exhibit power law tails.
We aim for a short and illustrative presentation of the topic and refer to Zaburdaev et
al. [79] for a comprehensive introduction. Pictorially if a particle moves stepwise in
space while randomly choosing an arbitrary new direction after each step, it describes a
Brownian motion. If in addition the step lengths of this particle vary after each step and
are distributed according to a certain power law, it describes a Lévy flight.
Formally, Lévy processes comprise a special class of Markovian stochastic processes,

i.e. collections of random variables

(Lt), t ∈ T (5.1)

defined on a sample space Ω of a probability space (Ω,F , P ), mapping into a measurable
space (Ω′,F ′), and indexed by a totally ordered set T . In our case Ω′ refers to the
discrete input space of the program and the index time T models the discrete iterations
of test case generation, so we can assume T = N. The process (Lt)t∈T is said to have
independent increments if the differences

Lt2 − Lt1 , Lt3 − Lt2 , ..., Ltn − Ltn−1 (5.2)

are independent for all choices of t1 < t2 < ... < tn ∈ T . The process (Lt), t ∈ T is said
to be stationary, if

∀t1, t2 ∈ T, h > 0 : Lt1+h − Lt1 ∼ Lt2+h − Lt2 , (5.3)

i.e. increments for equal time intervals are equally distributed. A Lévy process is then
formally defined to be a stochastic process having independent and stationary increments.
The additional property

L0 = 0 a.s. (5.4)

(i.e. almost surely) is sometimes included in the definition, but our proposed algorithm
includes starting points other than the origin.
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To construct a Lévy process (Ln)n∈N we simply sum up independent and identically
distributed random variables (Zn)n∈N, i.e.

Ln :=
n∑
i=1

Zi. (5.5)

The process (Ln)n∈N is Markovian in the sense that

P (Ln = xn|Ln−1 = xn−1, ..., L0 = xo) (5.6)
= P (Ln = xn|Ln−1 = xn−1), (5.7)

which simplifies a practical implementation. If the distribution of step lengths in a Lévy
process is heavy-tailed, i.e. if the probability is not exponentially bounded, we call the
process a Lévy flight. Such processes generalize Brownian motion in that their flight
lengths l are distributed according to the power law

p(l) ∼ |l|−1−α, (5.8)

where 0 < α < 2. They exhibit infinite variance

< l2 >=∞ (5.9)

which practically results in sometimes large jumps during search process. In fact, the
ability to drive a particle very long distances within a single step gives Lévy flights their
name. While Brownian motion is a suitable search strategy for densely distributed tar-
gets, Lévy flights are more efficient than Brownian motion in detecting widely scattered
(software) bugs. Although there is much to say about the theoretical aspects of this
class of stochastic processes we basically refer to the power law in equation (5.8) in
the following. Smaller values of α yield a heavier tail (resulting in frequent long flights
and super-diffusion) whereas higher values of α reveal a distribution with probability
mass around zero (resulting in frequent small steps and sub-diffusion). In Section 5.5 we
adapt α according to feedback information from dynamic instrumentation of the targeted
binary.
As indicated in Section 5.1 Lévy flights are directly connected to the minimal time

it takes to cover a given search domain. We refer to [80] for recent results regarding
minimization of the mean search time for single targets.

5.3.2. Input Space Flights

Next we construct Lévy flights in the input space of binary executables under test.
Therefore, assume the input to be a bit string of length N . If we simply wanted an
optimal search through the input space without any boundary conditions, we would
construct a one-dimensional Lévy flight in the linear space {0, ..., 2N}. However, our aim
is not input space coverage but execution code coverage of the binary under test. In this
section we construct a stochastic process in input space with the properties we need for
the main fuzzing algorithm presented in Section 5.5.
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First, we divide the input into n segments of size m = N
n (assuming without loss of

generality that N is a multiple of n). We then define two Lévy processes, one in the space
of offsets O = {1, ..., n} and one in the space of segment values S = {1, ..., 2m}. With
underlying probability spaces (Ω1,F1, P1) and (Ω2,F2, P2) we define the one-dimensional
Lévy flights

L1
t : Ω1 → O (5.10)

L2
t : Ω2 → S (5.11)

with index space t ∈ N and corresponding power law distribution of flight lengths l

pj(l) ∼ |l|−1−αi , j = 1, 2 (5.12)

where 0 < αi < 2. While (L1
t )t∈N performs a Lévy flight in the offset parameter space,

(L2
t )t∈N performs Lévy flights within the segment space indicated by the offset. Regarding

the initial starting point (L1
0, L

2
0) we assume a given seed input. We choose an arbitrary

initial offset L1
0 ∈ O and set the initial value of L2

0 according to the segment value (with
offset L1

0) of the seed input.
By setting different values of α we can control the diffusivity of the stochastic processes

(L1
t )t∈N and (L2

t )t∈N. If we find a combination of offset and segment values of high
quality the fuzzer should automatically explore nearby test cases, which is realized by
higher values of 0 < αi < 2. Similarly if the currently explored region within input space
reveals low quality test cases, the fuzzer should automatically adapt to widen its search
pattern by decreasing α. Therefore, we first have to define a quality measure for test
cases.

5.4. Quality Evaluation of Test Cases

In this section we define a quality measure for generated test cases. We aim for maximal
possible code coverage in a finite amount of time, so we evaluate a single input by its
ability to reach previously undiscovered execution paths. In other words, if we generate
an input that drives the program under test to a new execution path, this input gets
a high quality rating. Therefore we have to define a similarity measure for execution
traces. We will then use this measure in Section 5.5 as feedback to dynamically adapt
diffusivity of the test case generation process.
The field of test case prioritization provides effective methods for coverage-based rating

(see [64] and [65] for a comparison). We adapt the method of prioritizing test cases by
additional basic block coverage. As introduced in Section 5.3 we assume inputs for the
program under test to be bit strings of size N and denote the space of all possible inputs
as I = {0, ..., 2N}. Our challenge can then be formulated as follows. Given a subset of
already generated input values I ′ ⊂ I, how do we measure the quality of a new input
x0 ∈ I with respect to maximal code coverage? For a given x0 ∈ I let cx0 denote
the execution path the program takes for processing x0. Intuitively we would assign a
high quality rating to the new input x0 if it drives the targeted program to a previously
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undiscovered execution path, i.e. if cx0 differs significantly from all previously explored
execution paths {cx|x ∈ I ′}. To measure this path difference we take the amount of
newly discovered basic blocks into account. Here we refer to a basic block as a sequence
of machine instructions without branch instructions between block entry and block exit.
Let B(cx) denote the set of basic blocks of execution path cx. The set of newly discovered
basic blocks while processing a new test case x0 given already executed test cases I ′ ⊂ I
is then

B(cx0) \
(⋃
x∈I′

B(cx)

)
. (5.13)

We define the number E(x0, I ′) of these newly discovered blocks as

E(x0, I ′) :=

∣∣∣∣∣B(cx0) \
(⋃
x∈I′

B(cx)

)∣∣∣∣∣ , (5.14)

where |A| denotes the number of elements within a set A. The number E(x0, I ′) indicates
the number of newly discovered basic blocks when processing x0 with respect to the
already known basic blocks executed by the test cases within I ′. Intuitively E(x0, I ′)
gives us a quality measure for input x0 in terms of maximization of basic block coverage.
In order to construct a feedback mechanism we will use a slightly generalized version of
this measure to control diffusivity of the input generating Lévy processes in our fuzzing
algorithm in Section 5.5.

5.5. Fuzzing Algorithm

In this section we present the overall fuzzing algorithm. Our approach uses stochastic
processes (i.e. Lévy flights as introduced in Section 5.3) in the input space to generate
test cases. To steer the diffusivity of test case generation we provide feedback regarding
the quality of test cases (as defined in Section 5.4) to the test generation process in order
to yield self-adaptive fuzzing.
We first prepend an example regarding the interplay between input space coverage and

execution path coverage to motivate our fuzzing algorithm. Consider a program which
processes inputs from an input space I. Our aim is to generate a subset I ′ ⊂ I of test
cases (in finite amount of time) that yields maximal possible execution path coverage
when processed by the target program. Further assume the program to reveal deep
execution paths (covering long sequences of basic blocks) only for 3% of the inputs I,
i.e. 97% of inputs are inappropriate test cases for fuzzing. Since we initially cannot
predict which of the test cases reveals high quality (determined by e.g. the execution
path length or the number of different executed basic blocks), one strategy to reach good
code coverage would be black-box fuzzing, i.e. randomly generating test cases within
I hoping that we eventually hit some of the 3% high quality inputs. We could realize
such an optimal search through input space with highly diffusive stochastic processes,
i.e. Lévy flights as presented in Section 5.3.
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As mentioned above the Lévy flight hypotheses predicts an effective optimal search
through input space due to their diffusivity properties. On the one hand this diffusivity
guarantees us reaching the 3% with very high probability. On the other hand, once we
have reached input regions within the 3% of high quality test cases, the same diffusivity
also guarantees us that we will leave them very efficiently. This is why we need to adapt
the diffusivity of the stochastic process according to the quality of the currently generated
test cases. If the currently generated test cases reveal high path coverage, the Lévy flight
should be localized in the sense that it reduces its diffusivity to explore nearby inputs.
In turn, if the currently generated test cases reveal only little coverage, diffusivity should
increase in order to widen the search for more suitable input regions. By instrumenting
the binary under test and applying the quality evaluation of test cases introduced in
Section 5.4 we are able to feedback coverage information of currently explored input
regions to the test case generation algorithm. In the following we construct a self-adaptive
fuzzing strategy that automatically expands its search when reaching low quality input
regions and focuses exploration when having the feedback of good code coverage.

Initial Seed We start with an initial non-empty set of input seeds X0 ⊂ I. As described
in Section 5.3 we assume the elements x ∈ X0 to be bit strings of length N and divide
each of them into n segments of size m = N

n (assuming without loss of generality that
N is a multiple of n). Practically the input seeds X0 can be arbitrary files provided
manually by the tester, they may not even be valid with regard to the input format of
the program under test. We further set two initial diffusive parameters 0 < α1, α2 < 2
and an initial offset q0 ∈ {1, ..., n}.

Test Case Generation The test case generation step takes as input a test case x0,
diffusion parameters α1 and α2, an offset number q0 ∈ {1, ..., n}, and a natural number
kgen ∈ N of maximal test cases to be generated. It outputs a set Xgen of kgen new test
cases Xgen ∈ I.
As introduced in Section 5.3 we refer to the offset space as O = {1, ..., n} and to the

segment space as S = {1, ..., 2m}. We denote with x0(q0) the segment value of input x0

at offset q0. For the Lévy flights

L1
t : Ω1 → O (5.15)

in the offsets O and

L2
t : Ω2 → S (5.16)

in S with flight lengths l distributed according to the power law

pj(l) ∼ |l|−1−αj , j = 1, 2 (5.17)

we set the initial conditions

L1
0 = q0 and (5.18)

L2
0 = x0(q0), (5.19)
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respectively. Let R(x0, q0, s0) denote the bit string generated by replacing the value
x0(q0) of bit string x0 at offset q0 by a new value s0. Both stochastic processes (L1

t )t∈N
and (L2

t )t∈N are then simulated for kgen steps to generate the kgen new test cases

x1 := R
(
x0, L

1
0, L

2
1

)
(5.20)

x2 := R
(
x1, L

1
1, L

2
2

)
(5.21)

...

xt+1 := R
(
xt, L

1
t , L

2
t+1

)
(5.22)

...

xkgen := R
(
xkgen−1, L

1
kgen−1, L

2
kgen

)
. (5.23)

For simplicity of notation in this definition we identify the values Ljt with their respective
binary representations (as bit string). In words, we start with the initial test case x0

and replace its segment content at offset L1
0 = q0 with the new value L2

1, which is the
value in segment space S = {1, ..., 2m} that we get when taking a first random step with
the Lévy flight (L2

t )t∈N. This yields x1. We get the next test case x2 by considering the
just generated x1, setting the offset according to (L2

t )t∈N, and then replacing the content
of the segment indicated by this offset by a new segment value chosen by (L2

t )t∈N. We
proceed with this algorithm until the set

Xgen := {x1, ..., xkgen} (5.24)

of kgen new test cases is generated.

Quality Evaluation The quality evaluation step takes as input two sets of test cases
Xgen, I ′ ⊂ I and outputs a quality rating Ẽ(Xgen, I ′) of Xgen with respect to I ′. We
already defined the number E(x0, I ′) of newly discovered basic blocks for a single test
case x0 with respect to a given subset I ′ ⊂ I in Equation (5.14). To generalize this
definition to a quality rating Ẽ(Xgen, I ′) of a set of test cases Xgen (with respect to I ′)
we define the mean

Ẽ(Xgen, I ′) := |Xgen|−1
∑

x∈Xgen

E(x, I ′). (5.25)

Adaptation of Diffusivity The diffusivity adaptation step takes as input a quality rating
Ẽ(Xgen, I ′) ∈ N, two parameters b1, b2 ∈ R+ (controlling the switching behavior from
sub-diffusion to super-diffusion) and outputs two adapted parameters 0 < α1, α2 < 2,
which according to the power law (5.17) regulate the diffusivity of the Lévy flights (L1

t )t∈N
and (L2

t )t∈N.
Our aim (as motivated at the beginning of this section) is to adapt the diffusion pa-

rameters in such a way that the algorithm automatically focuses its search (by decreasing
diffusivity of the generating Lévy flights) when generating high quality (i.e. high cover-
age) test cases and in turn automatically widens its search (by increasing diffusivity) in
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the case of low quality (i.e. low coverage) test cases. As discussed in Section 5.3 we can
control diffusivity by setting suitable values of α1 and α2. Smaller diffusivity parameters
result in frequent long flights and super-diffusion whereas higher parameters reveal fre-
quent small steps and sub-diffusion. To achieve this we select a monotonically increasing
function f : R→ (0, 2) with f(0) ≤ ε (for ε > 0 sufficiently small) and limt→∞ f(t) = 2.
Any such function will provide self adaptation of diffusivity of the Lévy flights and we
simply choose two functions

fi(t) :=
2

1 + ebi−t
, i = 1, 2 (5.26)

where bi ∈ R+ are fixed parameters that determine at which point within the quality
rating spectrum (i.e. at which mean number of newly discovered basic blocks) the search
behavior of (L1

t )t∈N and (L2
t )t∈N switches from sub-diffusion to super-diffusion. With this

function we adapt diffusivity to

αi = f
(
Ẽ(Xgen, I ′)

)
, i = 1, 2. (5.27)

The next iteration of test case generation is then executed with adapted Lévy flights.

Test Case Update This step takes as input two sets of test cases Xold, Xgen ⊂ I and
outputs an updated set of test cases Xnew. During the fuzzing process we generate a
steady stream of new test cases which we directly evaluate with respect to the set of
previously generated inputs (as discussed in the quality evaluation step). However, if we
archive every single test case and for each generation step evaluate the kgen currently gen-
erated new test cases against the whole history of previously generated test cases, fuzzing
speed decays constantly with increasing duration of the fuzzing campaign. Therefore we
define an upper bound kmax ∈ N of total test cases that we keep for quality evaluation
of new test cases. Small values of kmax may cause the Lévy flights (L1

t )t∈N and (L2
t )t∈N

to revisit already explored input regions without being adapted (by decreasing the pa-
rameters αi) to perform super-diffusion and widen their search behavior. However, this
causes no problem due to the Lévy flight hypothesis (discussed in Section 5.1).
The update of Xold with Xgen simply follows a first in first out strategy. Initially

if |Xold| + |Xnew| < kmax we append all newly generated test cases so that Xnew =
Xold ∪Xgen. Otherwise we first delete the oldest kold entries in Xold, where

kold = |Xold|+ |Xnew| − kmax, (5.28)

and then take the union.

Joining the Pieces Now that we have presented all individual parts we can combine
them. The overall fuzzing algorithm is depicted in Figure 5.2.
The initial seed generation step outputs a non-empty set of test cases X0 ⊂ I, two

diffusivity parameters α1 and α2, and an initial offset q0. The inputs X0 are added to
the list of test cases Xall. Then the fuzzer enters the loop of test case generation, quality
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Input: Parameters b1, b2, kgen, kmax

Xall = ;
X0, ↵1, ↵2, q0  Seed()
append X0 to Xall

do:
q0, x0  Last(Xall)
Xgen  Gen(x0, ↵1, ↵2, q0, kgen)

Ẽ  Eval(Xgen, Xall)

↵1, ↵2  Adapt(Ẽ, b1, b2)
Xall  Update(Xgen, Xall, kmax)

while (true)

Figure 5.2.: Individual fuzzing algorithm. After initial seed generation the fuzzer enters
the loop of test case generation, quality evaluation, adaptation of diffusivity,
and test case update.

evaluation, adaptation of diffusivity, and test case update. The first step within the loop
(referred to as Last(Xall)) sets q0 to the last reached offset position of (L1

t )t∈N. In the first
invocation of Last(Xall)) this is simply the already given seed offset, in all subsequent
invocations q0 is updated to the last state of (L1

t )t∈N. The Last() function also selects
the most recently added test case x0 in Xall, which gives the initial condition for (L2

t )t∈N
in the generation step. In our implementation we realize the Last() function by retaining
the reached states of both processes (L1

t )t∈N and (L2
t )t∈N between simulations.

Starting at L1
0 = q0 and L2

0 = x0(q0) the Lévy flights (L1
t )t∈N and (L2

t )t∈N generate
the set of new inputs Xgen by diffusing through input space with diffusivity α1 and α2,
respectively. The quality of Xgen is then evaluated against the previous test cases in
Xall. Depending on the quality rating outcome, the diffusivity of (L1

t )t∈N and (L2
t )t∈N is

then adapted correspondingly by updating α1 and α2 according to the sigmoid functions
fi in Equations (5.26). Then the current list of test cases Xall is updated with the just
generated set Xgen and the fuzzer continues to loop.
Regarding complexity of the fuzzing algorithm we note that all of the individual parts

are processed efficiently in the sense that their time complexity is bound by a constant.
Especially the evaluation step Eval() is designed to scale: In the first iterations of the
loop the cost of evaluating Xgen against Xall is bound by O(|Xall|2). To counter this
growth we defined an upper bound kmax ∈ N for |Xall| in the test case update step above.

5.6. Lévy Flight Swarms

Now that we have constructed an individual fuzzing process, we can aggregate multiple
instances of such processes to fuzzing swarms. Each individual basically performs the
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search algorithm described in Section 5.5, but receives additional information from its
neighbors and adapts accordingly. Adaptation rules are inspired by social insect colonies
[77] and provide a flexible, robust, decentralized, and self-organized swarm behavior as
described in Section 5.1.
With the probability spaces (Ωi,Fi, Pi) (i = 1, 2) as defined in Section 5.3, let

F1 ⊗F2 = σ(F1 ×F2) (5.29)

denote the σ-algebra generated by the cartesian product F1 × F2, i.e. the smallest σ-
algebra which contains the sets in F1 ×F2. The flight of an individual fuzzer

(Ft)t∈N := (L1
t , L

2
t )t∈N (5.30)

is formally defined on the product space

(Ω1 × Ω2,F1 ⊗F2, P1 × P2), (5.31)

where P1×P2 denotes the corresponding product measure. We can then define a swarm
S of d individual flights

S := {F i, | i = 1, ..., d} (5.32)

each of which performs the loop of test case generation, quality evaluation, adaptation
of diffusivity, and test case update as described in Section 5.5. For each loop iteration,
the individuals F i of the swarm S generate test cases

Xi
gen := {xi1, ..., xikgen} (5.33)

and each individual maintains its own version of aggregated test cases Xi
all.

To perform collective fuzzing there are several possibilities for the individuals F i of
the swarm S to exchange information. One strategy would be to define a shared set of
already generated test cases

⋃
iX

i
all which could be seen as a global shared memory of

already generated test cases. To keep the cost of each evaluation step Eval() low, we
defined an upper bound kmax ∈ N for |Xi

all| in Section 5.5. If all swarm individuals add
their generated test cases to the global shared memory, this would result in a high cost
for each individual to evaluate their newly generated test cases Xi

gen against
⋃
iX

i
all,

since the complexity of Eval() is bound by O(|⋃iX
i
all|2).

Therefore, we explore another strategy to share information between swarm individ-
uals. Intuitively, after a fixed amount of search time each F i of the swarm S receives
the actual quality evaluation Ẽ of its neighbors and jumps to the one neighbor which is
currently searching the most promising input area. If an individual Fλ ∈ S is searching
an input area of highest quality Ẽλ test cases among its nearby swarm individuals, all
neighbors with lower values of Ẽλ jump to the current position of Fλ in input space. We
will formalize this idea in the following, where the index λ refers to local maxima of test
case quality Ẽ.
We first need a metric in input space in order to consider neighborhoods of swarm

individuals. As a natural metric in the space of all possible inputs I = {0, ..., 2N} we
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choose the Hamming distance δ: two bit strings x = (x1, ..., xN ) and x′ = (x′1, ..., x
′
N ) of

size N then have distance

δ(x, x′) :=
∣∣{j ∈ 1, ..., N | xj 6= x′j}

∣∣. (5.34)

We can then simply measure the distance δS(F it , F
j
t ) of two individuals

F i = (L1,i, L2,i) ∈ S (5.35)

F j = (L1,j , L2,j) ∈ S (5.36)

at time t ∈ N with

δS(F it , F
j
t ) := δ(xit, x

j
t ) (5.37)

where

xit = R
(
xit−1, L

1,i
t−1, L

2,i
t

)
(5.38)

xjt = R
(
xjt−1, L

1,i
t−1, L

2,i
t

)
(5.39)

are defined as in Equation (5.22). In words, the distance δS(F it , F
j
t ) of two swarm indi-

viduals F i, F j ∈ S at a certain time t ∈ N is the Hamming distance of the respectively
two test cases generated at time t.
With this metric we could proceed with considering the R-neighborhood

UR(F0) := {F ∈ S | δS(F0, F ) < R} (5.40)

of a swarm individual F0 ∈ S for an arbitrary R ∈ N. However, this definition of
neighborhood would result in high processing costs for large swarms: each individual
must calculate the distances to all other individuals of the swarm before jumping to
the position of the neighbor individual which generated test cases of highest quality Ẽλ.
Therefore, we introduce a more lightweight method of calculating neighborhoods that
scales to large swarms. We periodically divide the whole swarm S into k clusters using a
k-means clustering algorithm to yield the disjoint partition S =

⋃̇
kCk. Each individual

F i ∈ Cj then only takes into account the test case quality Ẽ of individuals within the
same cluster Cj before relocation.
The overall swarm fuzzing algorithm is depicted in Figure 5.3. The first part initializes

the d swarm individuals F i (i = 1, ..., d). Each of the d initializations in the first for
loop basically corresponds to the single fuzzer setup described in Section 5.5, with the
minor formal difference that the Init() function randomly selects d inputs xi0 ∈ Xi

0 ⊂ I
(i = 1, ..., d) among the seed input sets to fix the starting points of the F i.
The algorithm then enters the main do-while loop, which consists of three parts:

fuzzing, clustering, and relocation. First, all F i (i = 1, ..., d) start fuzzing the binary
performing test case generation, quality evaluation, adaptation of diffusivity, and test
case update as described in Section 5.5.
Second, the Cluster() function divides the swarm S into k clusters Cj (j = 1, ..., k) as

described above. We refer to a single cluster as the neighborhood of the swarm individuals
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Input: Parameters d, k, b1, b2, kgen, kmax

for i = 1, ..., d :
Xi

all = ;
Xi

0, ↵i
1, ↵i

2, qi
0  Seed()

append Xi
0 to Xi

all

xi
0  Init(Xi

0)

do:
for i = 1, ..., d :

Xi
gen  Gen(xi

0, ↵
i
1, ↵

i
2, q

i
0, kgen)

Ẽi  Eval(Xi
gen, Xi

all)

↵i
1, ↵

i
2  Adapt(Ẽi, b1, b2)

Xi
all  Update(Xi

gen, Xi
all, kmax)

C1, ..., Ck  Cluster(x1
kgen
2 X1

gen, ..., xd
kgen
2 Xd

gen)

x1
0, q

1
0 , ..., xd

0, q
d
0  Relocate(C1, ..., Ck)

while (true)

Figure 5.3.: Swarm fuzzing algorithm. The swarm of fuzzers enters the loop of individual
fuzzing, clustering with k-means, and relocation of individuals to positions
of highest test case quality within respective clusters.

belonging to this cluster. Swarm individuals F i mutating on nearby inputs (measured
with the Hamming metric) are assigned to the same cluster, whereas distant populations
share different neighborhoods.
Third, all swarm individuals F i within the same neighborhood Cj are relocated to the

most promising nearby search position. For each cluster Cj (j = 1, ..., k) the Relocate()
function compares the current test case quality Ẽi of all F i within the same neighborhood.
Without loss of generality there is one swarm individual F jλ ∈ Cj in each neighborhood
Cj with maximal quality evaluation Ẽjλ (in the case of multiple neighbors having the
same Ẽ we simply could choose one of them randomly). Then the Relocate() function
resets the initial positions of all F i ∈ Cj to

L1,i
0 ← qλ and (5.41)

L2,i
0 ← xλ(qλ), (5.42)

where

L1,λ
0 = qλ and (5.43)

L2,λ
0 = xλ(qλ), (5.44)

are the Lévy flight positions of the neighbor individual

F jλ = (L1,λ, L2,λ) ∈ Cj (5.45)

with currently best test case quality evaluation Ẽjλ among neighbors in Cj , (j = 1, ..., k).
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5.7. Implementation

To show the feasibility of our approach we implemented a prototype for the proposed
self-adaptive fuzzing algorithm (as depicted in Figure 5.2). Our implementation is based
on Intel’s dynamic instrumentation tool Pin [52] to trace the reached basic blocks of a
generated test case. In order to calculate the number E(x0, I ′) of newly discovered basic
blocks executed by a test case x0 as defined in Equation (5.14) we switch off Address
Space Layout Randomization (ASLR) during testing. For developing exploits based on a
malicious input x0 ASLR should naturally be enabled again.
Initially, we simulated the Lévy flights in the statistical computing language R [81]

but then changed to a custom sampling method purely written in Python. We construct
Lévy flights by summing up independent and identically distributed random variables
as indicated in Equation (5.5). Each addend is distributed according to a power law as
defined in Equation (5.12). We realize this by applying the inverse transform sampling
method, also referred to as Smirnov transform. The Python script further performs
evaluation of the current path exploration performance by direct comparison of executed
basic block addresses received from dynamic instrumentation.
We implemented fuzzing swarms by parallel execution of multiple individual fuzzers

which are clustered and relocated according to the algorithm described in Section 5.6.
For clustering, we apply the Lloyd k-means algorithm.
In our implementation we omit the first step Last(Xall) within the loop and instead

always keep the last reached positions of the processes (Lit)t∈N (i = 1, 2) between simu-
lations. This is due to the construction of new test cases in Equations (5.20)-(5.23) so
that the last test case within Xall is simply the most recently generated xkgen which will
be used as starting position within the subsequent loop iteration. Therefore it suffices
to stop the Lévy flights after kgen steps, save their current position, and proceed with
adapted diffusivity parameters in the subsequent invocation of the Gen() function.

5.8. Discussion

In this section we discuss properties, possible modifications, and expansions of our pro-
posed fuzzing algorithm.
As demonstrated in Section 5.5 our algorithm is self-adaptive in the sense that it

automatically focuses its search when reaching high quality regions in input space and
widens exploration in case of low quality input regions. One possible pitfall of such a
self-adaptive property is the occurence of attracting regions: If the Lévy flights (Lit)t∈N
(i = 1, 2) enter regions of high quality and get the response from the quality evaluation
step to focus their search (by decreasing their diffusivity), an improper quality rating
mechanism might cause the Lévy flights to stay there forever. However, our evaluation
method (as defined in Section 5.4) avoids this by favoring test cases that lead the target
binary to execute undiscovered basic blocks and in turn devaluates inputs that lead
to already known execution paths. Therefore, if the test case generation module gets
feedback that it is currently exploring a region of high quality it focuses its search as
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long as new execution paths are detected. As soon as exploration of new execution paths
stagnates, the feedback from the evaluation module switches to a low rating. Such a
negative feedback again increases diffusivity according to Equations (5.26) and (5.27),
which again causes the processes (Lit)t∈N (i = 1, 2) to diffuse into other regions of the
input space.
Our swarm algorithm for multiple individual fuzzers in Section 5.6 is designed to be

flexible, robust, decentralized, and self-organized. The fuzzing swarm is flexible in the
sense that it adapts to perturbations caused by the nature of Lévy flights and the targeted
binary: if an individual fuzzer enters super-diffusion and performs frequent large steps,
it simply gets assigned to a new neighborhood in the next clustering step. The swarm
is robust in the sense that it can deal with loss easily: if an individual fuzzer gets stuck
because the target crashed, the swarm algorithm simply omits this individual in the
next clustering step. While clustering and relocation is realized by a central component,
all individual fuzzers are independent stochastic processes F i (i = 1, ..., d) which evolve
decentralized. Finally, paths to bugs in the target emerge self-organized during the fuzzing
process and are not predefined in any way. While all fuzzers in this chapter are of the
same type, we introduce an approach for heterogenous colonies of fuzzers in Section 7.
One main modification of our algorithm (for individual fuzzers) would be interchanging

the aim of maximizing code coverage with an adequate objective. In Section 5.4 we
defined a quality measure for generated test cases based on the number of new basic
blocks we reach with those inputs. Although this is the most common strategy when
searching for bugs in a target program of unknown structure, we could apply other
objectives. For example, we could aim for triggering certain data flow relationships,
executing preferred regions of code, or reach a predefined class of statements within the
code. Our fuzzing algorithm is modular and flexible in that it allows to interchange the
quality measure according to different testing objectives. More examples of such testing
objectives are discussed in the field of test case prioritization (e.g. in [64] and [65]).

5.9. Conclusion

Inspired by moving patterns of foraging animals we introduce the first self-adaptive fuzzer
based on Lévy flights. Just like search patterns in biology have evolved to optimal
foraging strategies due to natural selection, so have evolved mathematical models to
describe those patterns. Lévy flights are emerging as successful models for describing
optimal search behavior, which leads us to their application of hunting bugs in binary
executables. By defining corresponding stochastic processes within the input space of
the program under test we achieve an effective new method for test case generation.
Further, we define an algorithm that dynamically controls diffusivity of the defined Lévy
flights depending on actual quality of generated test cases. To achieve this we construct
a measure of quality for new test cases that takes already explored execution paths
into account. During fuzzing the quality of actually generated test cases is constantly
forwarded to the test case generating Lévy flights. High quality test case generation with
respect to path coverage causes the Lévy flight to enter sub-diffusion and focus its search
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on nearby inputs, whereas a low quality rating results in super-diffusion and expanding
search behavior. This feedback loop yields a fully self-adaptive fuzzer. Inspired by the
collective behavior of certain animal colonies we aggregate multiple individual fuzzers to
a fuzzing swarm which is guided by simple rules to reveal flexible, robust, decentralized,
and self-organized behavior. Our proposed algorithm is modular in the sense that it
allows integration of other fuzzing goals beyond code coverage, which is subject to future
work.
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6. Triggering Vulnerabilities Deeply
Hidden in Binaries
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Figure 6.1.: Fuzzing with symbolic reasoning.

In this chapter we upgrade the purely stochastic processes of our model with formal
methods in order to get the best characteristics of both worlds: Stochastic search strate-
gies with well known behavior and the precision of symbolic execution that is needed to
create partially correct inputs and pass the parsing layers of the target.
We introduce a method for triggering vulnerabilities in deep layers of binary executa-

bles and facilitate their exploitation. In our approach we combine dynamic symbolic
execution with fuzzing techniques. To maximize both the execution path depth and the
degree of freedom in input parameters for exploitation, we define a novel method to as-
sign probabilities to program paths. Based on this probability distribution we apply new
path exploration strategies. This facilitates payload generation and therefore vulnera-
bility exploitation. We evaluate our implementation on an OpenSSL X.509 certificate
parser and show the practical efficiency of our approach.
The overall approach of this chapter is depicted in Figure 6.1. The mutator engine

M, input I, and target program P are connected via rewards, states, and actions as
introduced in Chapter 4 of Part I of this work. The mutator engine M performs actions
aΦ ∈ A that combine stochastic fuzzing with computation of certain constraints Φ. The
reward R(x, a) as introduced in Equation 4.5 on page 32 is directly inferred from these
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actions according to

R(x, a) = E(x) +G(a) = E(x) = r(aΦ). (6.1)

The constraints Φ are derived from symbolic execution of the target, as explained in
detail in the following.

6.1. Motivation

Based on our mathematical model developed in Part I of this work, in Chapter 5 we were
able to translate important search characteristics of specific stochastic processes into
efficient algorithms. However, pure stochastic fuzzing has limitations in many situations
common in input parsing. To illustrate such a case, consider the following code snippet:

#include <stdint.h>
...
int check( uint64_t num ){

if( num == UINT64_C(0) )
assert( false );

}

If we want to reach the assertion in the check function with a random choice of the
integer num, we have a probability of 2−64 for each try to pass the if statement. The
situation gets even worse if there are multiple such checks, e.g. in the calculation of a
checksum or character match during input parsing. Such code areas are very hard to
be passed by pure random input generation and code regions beyond such examples are
most likely not covered by fuzzing. In the following we will refer to such cases as fuzzing
walls. However, the false assertion in the above code listing can easily be reached with
concolic execution, as the comparison to zero directly translates to a simple expression
for the SMT solver. We target realistic examples of fuzzing walls in the context of an
OpenSSL X.509 certificate parser with our implementation in Section 6.4.
In this chapter we introduce a new method combining symbolic execution and random

testing. Our goals are (1) code coverage in deep layers of targeted binaries which are
unreachable by current technologies and (2) maximal degree of freedom in the input
variables when discovering a program error.
Before we present the main idea of our approach and the summary of our contributions,

we give some background on concolic execution. We especially highlight limitations of
concolic execution when applied isolated and motivate a combination of this method with
fuzzing as a promising new strategy.

Concolic Execution The main idea of symbolic execution (introduced in [82] and [83]) is
to assign symbolic representations to input variables of a program and generate formulas
over the symbols according to the transformations in the program execution. Reasoning
about a program on the bases of such symbolic representations of execution paths can
provide new insight into the behavior of the program. Besides program verification,
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symbolic execution nowadays has its biggest impact in program testing. The original idea
was extended over the years and developed into concrete symbolic (concolic) execution
(see [84] for a detailed introduction). In concolic execution all program variables in
scope are represented symbolically. The program is initially executed with arbitrary
concrete input values and symbolic constraints over the symbols are generated along the
program execution path. Next, one of the collected branch conditions is negated and
together with the remaining constraints given to an SMT solver. In [84] the last branch
is negated, resulting in a (bounded) depth-first exploration of the execution graph. The
authors of [84] also mention that alternative strategies for exploring new paths and
thereby covering the execution graph could be applied, e.g. randomly choosing among
the collected branch conditions to be negated next or a width-first strategy. Either way
the choice of exploration strategy is made, the solution (also called model) generated by
the SMT solver is injected as new input into the program, which now takes the branch
alternative when executed. This is because the SMT solver just calculated the solution
of the negation of the former branch constraint so that the newly generated input follows
the alternative path. This procedure is iteratively repeated until a halt condition is
reached. In the best case the reached halt condition resembles full path coverage of all
alternative paths of the program, in the worst case the halt condition is caused by an
overloaded SMT solver. The latter is a natural consequence of the exponential growth
of the number of paths we have to deal with, which we refer to as the path explosion
problem.
Concolic execution is more powerful than traditional symbolic execution especially

in code regions where pure symbolic reasoning is ineffective or even infeasible. This is
often the case for complex arithmetic operations, pointer manipulations, calls to external
library functions, or system calls. Consider for example a statement involving a hash
function h, e.g. y = h(x). It is impossible to symbolically reason about the involved
variables x and y. A SMT solver will not be able to find a satisfying solution for this
constraint (see [85] for more details regarding this example). In such cases concolic
execution guarantees that execution paths are taken by concrete values and symbolic
constraint generation is continued subsequently.
Pure concolic execution, however, has strong limitations. Current SMT solvers are

very limited in the number of variables and constraints they can handle efficiently so
that concolic execution gets stuck in very early stages of the program. Despite huge
advances in the field of SMT solvers (see [86] for a comprehensive overview), concolic
execution of large programs is infeasible and in practice will only cover limited parts of
the execution graph, e.g. input parsing. The major part of graph coverage must therefore
be done with fuzzing.

The Hybrid Approach As we just showed, critical limitations of fuzzing can be overcome
with concolic execution, and in turn fuzzing scales much better to path explosion than
SMT solvers do. The natural next step is to combine both methods. The idea is to apply
concolic execution whenever fuzzing saturates (i.e. stops exploration at a fuzzing wall),
and in turn switch back to fuzzing whenever the fuzzing walls are passed by concolic
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execution.
However, we still have to deal with the problem of path explosion and therefore still

may end up covering only the first execution layers of a program. In the following, we
refer to path depth as the number of branches along that path, which directly corresponds
to the number of basic blocks. Even in the combined approach we are confronted with
two challenges. First, if we want to fuzz deep areas of a program, we have to find a way
to construct execution paths into such areas and somehow delay path explosion until
we have found such a tunnel. Second, to generate a payload and exploit a detected
vulnerability in the program under test, we not only have to reach the bug with with a
single suitable input, but we have to reach it with maximal degree of freedom in the input
values. To be more precise, if we reach a vulnerability with exactly one constellation of
the input variables, we most probably would not be able to exploit it in a meaningful
way because any attempt to generate a payload (and thereby change the input variables)
would lead the input to take a different path in the execution graph. Therefore, we
propose a way to maximize the degree of freedom regarding input variables. This yields
both, alleviation of vulnerability exploitation and execution paths that reach into deep
layers of the program.

Our Contributions In summary, we make the following contributions:

• We propose a new search heuristic that delays path explosion effectively into deeper
layers of the tested binary.

• We define a novel technique to assign probabilities to execution paths.

• We introduce DeepFuzz, an algorithm combining initial seed generation, concolic
execution, distribution of path probabilities, path selection, and constrained fuzzing.

• We evaluate an implementation of DeepFuzz on an OpenSSL X.509 certificate
parser.

The remainder of this chapter is organized as follows. In Section 6.2 we discuss related
work. We introduce the DeepFuzz algorithm in Section 6.3. To demonstrate the feasibil-
ity of our approach, we implement and evaluate our prototype in Section 6.4, where we
apply DeepFuzz to a service that initially parses OpenSSL X.509 certificates. We discuss
possible expansions and limitations in Section 6.5. The chapter concludes with a short
outlook on further applications in the field of automated exploit generation in Section
6.6.

6.2. Related Work

Symbolic execution has experienced significant development since its beginnings [82, 83]
in the seventies to the advanced modern variants invented for program testing in recent
years. Especially the last decade has seen a renewed research interest due to powerful
Satisfiability Modulo Theory (SMT) solvers [86] and computation capabilities that have
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led to advanced tools for dynamic software testing [50, 87, 84, 88, 89]. Cadar et al. [90]
and Păsăreanu [91] give an overview of the current status of dynamic symbolic execution.
One of the most important variants of dynamic symbolic execution was introduced in
[88] and [84], where symbolic constraints are generated along program execution paths
of concrete input values. We apply this so-called concolic execution method in parts of
our proposed approach.

As discussed at the beginning of this chapter, both concolic execution and fuzzing have
severe limitations when aiming for code coverage. Since those limitations are partly com-
plementary to each other, a fusion of concolic execution and fuzzing emerges as natural
approach. Majumdar et al. [92] made a first step into this direction by proposing hybrid
concolic testing: by interleaving random testing with concolic execution the authors of
[92] increase code coverage significantly. However, major questions in this hybrid ap-
proach are left open. First, the methods in [92] are based on the CUTE [88] tool, which
requires the source code of tested programs and is restricted to programs written in C
and the sequential subset of Java. In contrast, we need nothing else than the binary
executable under test (compiled from sources of arbitrary high level languages). Second,
it is still an open question how to efficiently generate restricted inputs for random test-
ing. We propose a powerful solution for high frequency test case generation that scales
to large sets of constraints. Third and most important, the authors of [92] formulate
test goals on a rather general level (e.g. maximal branch coverage being one goal). In
contrast to this we focus on exploitable vulnerabilities and introduce algorithms that
maximize the degree of freedom regarding input variables to achieve both, alleviation of
vulnerability exploitation and execution paths that reach into deep layers of the program.
In our input maximization algorithm we assign probabilities to program paths in a novel
way, which has no counterpart in related work. Although the authors of [93, 94] and [95]
also propose assertion of probability weights to paths in the execution graph, they differ
significantly in their proposed methods which are based on path condition slicing and
computing volumes of convex polytopes.

Closely related to our approach is Driller by Stephens et al. [96] who also combine
fuzzing with selective concolic execution in order to reach deep execution paths. Driller
switches from pure fuzzing to concolic execution whenever random testing saturates, i.e.
gets stuck at a fuzzing wall. To keep the load for symbolic execution low while simul-
taneously maximizing the chance to pass fuzzing walls with concolic execution, Driller
also selects inputs. This selection privileges paths that first trigger state transitions or
first reach loops which are similarly iterated by other paths. In contrast, we systemat-
ically assign probabilities to paths based on SMT solving performance and select paths
according to this probability distribution.

We demonstrate the feasibility of DeepFuzz with an evaluation on an OpenSSL X.509
certificate parser. The authors of [97] and [98] pursue a similar goal by mutating large
sets of certificates to test certificate parsing, however their methods are more related to
pure fuzzing.
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Figure 6.2.: Execution paths c′i (i = 1, ..., 4) for the initial seed X0.

6.3. The DeepFuzz Algorithm

In this section we present the DeepFuzz algorithm in detail. The main idea is interleav-
ing concolic execution with constrained fuzzing in a way that allows us to explore paths
providing maximal input generation frequency. We achieve this by assigning weights
(corresponding to fuzzing performance) to the explored paths after each concolic execu-
tion step in order to select the ones with highest probability. In the following, we first
describe the individual building blocks, namely initial seed generation, concolic execu-
tion, distribution of path probabilities, path selection, and constrained fuzzing. Next, we
combine these parts in the overall DeepFuzz algorithm.

6.3.1. Initial Seed Generation

Initially we start with a short period of concrete input generation for the subsequent
concolic execution. If the inputs belong to a predefined data format, we generate inputs
according to the format definition (as in generational fuzzing). If there is no format
specified or available we just generate random input seeds. We denote the set of all
possible concrete input values as X and the initial seeds generated in this initial step as
X0 ⊂ X.
To illustrate this, Figure 6.2 shows the execution paths c′i (i = 1, ..., 4) that an exem-

plary program takes if the respective inputs X0 = {x1, ...., x4} are be passed to it. Each
square indicates a possible branch along the path.
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6.3.2. Concolic Execution

The concolic execution step receives a set of concrete program inputs Xseed ⊂ X and
outputs a set of symbolic constraints collected along the paths belonging to these inputs.
At the beginning, directly after the initial seed generation step, we set Xseed = X0.
The symbolic expressions are basically generated as described at the beginnning of this
chapter. However, we adapt the path search heuristics to our approach in a similar way
as introduced in [87]. We conduct concolic execution of the program with each input
xi ∈ Xseed until one of the following two halt conditions occur: either the program
reaches the predefined goal, which in our case is basically an unexpected error condition,
or the number of newly discovered branches taken exceeds a fixed maximum bmax ∈ N.
To keep the notation as clear as possible, in the following we assume without loss of

generality that the halting conditions are reached after exactly bmax branches. Let c′i
denote the execution path belonging to input xi and n′ = |Xseed| denote the number of
inputs in Xseed. For each branch j ∈ {1, ..., bmax} there is a sub-path c′ij which equals c′i
until branch number j is reached. Clearly, the c′ij are sub-paths of c

′
i. For each i = 1, ..., n′

and j = 1, ..., bmax we store the logical conjunction of the negated branch condition λij
(corresponding to branch number j of execution path c′i) and the path condition ρij of
the sub-path c′ij leading to this branch, which yields the n′ ∗ bmax expression sets

φij := ¬λij ∧ ρij . (6.2)

With this notation, concolic execution of the input set Xseed yields the total set of
constraints

Φ := {φij | i = 1, ..., n′, j = 1, ..., bmax}. (6.3)

For each element in Φ the SMT solver checks if the the symbolic constraints are satisfiable
and in that case computes a new input xij for each element φij ∈ Φ. These newly
generated inputs xij drive the program execution along the original paths c′i until branch
number j is reached and then takes the alternative. We denote these new explored paths
as cij . In the next step we assign probabilities to these paths. To maintain a clear
notation and avoid too many indices we work with the union set

C := {c1, ..., cn} :=
⋃
i,j

c′ij . (6.4)

This situation is illustrated in Figure 6.3 where we set bmax = 4, n′ = 4 and inputs
xij lead to execution of the paths cij (i = 1, ..., n′, j = 1, ..., bmax).

6.3.3. Distribution of Path Probabilities

Next, we describe our approach to assign probabilities to program paths. This step takes
as input a set of paths C and outputs a probability distribution on this set.
One possible strategy is to calculate the cardinality |Ii| of the set of solutions (i.e.

models) Ii for the path constraint φi ∈ Φ corresponding to ci and then define weights on
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the paths according to number of inputs that travel through it. This strategy is chosen
and comprehensively described in [94], where the purpose of assigning probabilities to
paths is to provide estimates of likelihood of executing portions of a program in the
setting of general software evaluation. In contrast to this we are interested in deep
fuzzing and therefore must guarantee maximal possible sample generation in a fixed
amount of time. To illustrate this more clearly, consider two sets of constraints ΦA and
ΦB with (non-empty) solution sets A and B. If we are given only the constraints ΦA and
ΦB and are interested in some solutions in A or B, we simply feed an SMT solver with
the constraints and receive solutions. However, computing the cardinality |A| and |B|
of all solutions corresponding to ΦA and ΦB (also called the model counting problem)
can be significantly more expensive than the decision problem (asking if there is a single
solution of the constraints at all). The authors of [94] rely on expensive algorithms
for computing volumes of convex polytopes [99, 100] and integrating functions defined
upon them [101]. This would yield a theoretical sound distribution of path probabilities,
with the disadvantage of extremely low fuzzing performance in our setting. Further,
even if cardinality |A| is significantly greater than |B|, meaning that ΦA has much more
solutions than ΦB, computation of B may take much longer than computation of A. In
other words (

|A| > |B|
)
;
(
T (ΦA) > T (ΦB)

)
, (6.5)

where T (Φi) is the time it takes an SMT solver to compute all solutions corresponding
to the constraints Φi. To guarantee high frequency of model generation for effective deep
fuzzing we have to build our strategy around a time constraint. Therefore, in order to
assign probabilities to the paths c1, ..., cn we apply another strategy.
For a fixed time interval T0 let ki(φi, T0) denote the number of solutions for constraints

φi that the applied SMT solver finds in the amount of time T0. Among the paths c1, ..., cn
we choose the one whose constraints yield - when given to the SMT solver - the maximal
number of satisfying solutions in the fixed amount of time T0. Therefore, we distribute
the probabilities p(ci) belonging to path ci according to

p(ci) := ki (φi, T0)

 n∑
j=1

kj(φj , T0)

−1

(6.6)

for i = 1, ..., n. With
∑n

i=1 p(ci) = 1 this probability distribution is well defined.

6.3.4. Path Selection

Now that we have n explored paths C = {c1, ...., cn} weighted with probabilities according
to Equation (6.6) in the execution graph, our goal in this step is to select the paths that
provide us maximal model generation frequency. Such a set of paths will guarantee us
efficient fuzzing and maximal degree of freedom for subsequent payload generation in
case we detect a vulnerability.
The defined probabilities p(ci) in Equation (6.6) directly correspond to the performance

in computing inputs for subsequent fuzzing. Practical calculation of those probabilities
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6.3. The DeepFuzz Algorithm

Figure 6.3.: Execution paths cij for i = 1, ..., n′, j = 1, ..., bmax) and selected set Chigh =
{c11, c22, c33, c44}.

in an implementation (see Section 5.7) is very efficient: we simply let the SMT solver
compute solutions for the path constraints Φi(i = 1, ..., n) in a round-robin schedule and
count the number of solutions for each path, which directly yields the probabilities p(ci).
A sufficiently small choice of the computing time T0 will result in fast path selection. To
gain maximal input generation frequency, we could simply choose the single path whose
assigned probability is maximal. However, some paths are dead ends and if we would
restrict the algorithm to select only a single path for subsequent fuzzing, path exploration
might stop too early in some binaries.
Therefore, we select them ≤ n different paths c̃j (j = 1, ...,m) with highest probability.

In order to make sure that the following path choice is well defined, we prepend a short
side note first: It almost never happens in practice that there are two paths assigned
with exactly the same probability. If this unlikely situation occurs in practice, we could
just randomly choose one among these equiprobable paths and proceed without much
changes in the subsequent algorithm. For simplicity of notation we assume without loss
of generality that the set {p(ci) | i = 1, ..., n} is strictly ordered. We initially choose the
path with highest probability

c̃1 = arg max
ci∈C

p(ci) (6.7)

and then proceed in the same way

c̃j = arg max
ci∈C\{c̃1,...,c̃j−1}

p(ci) (6.8)

until we obtain the path set

Chigh = {c̃j | j = 1, ...,m} (6.9)
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including the m paths with hightest probability. On the one hand, setting the parameter
m = n will result in fast path explosion. On the other hand, setting m = 1 might be too
restrictive for some binaries. Therefore, we initially set m to a small integer and then
run parameter optimization to adapt to the specific binaries in testing experiments.
Path selection is illustrated in Figure 6.3, where we set m = 4 and mark an exemplary

set of paths with hightest probability

Chigh = {c11, c22, c33, c44}, (6.10)

indicated with dashed lines. As introduced in Equation (6.4), we refer to these paths as
c1, c2, c3, and c4 for simplicity of notation.

6.3.5. Constrained Fuzzing

Now that we have selected the paths Chigh with highest probability, we continue with
fuzzing deeper layers of the program. Remember we denoted the set of all possible con-
crete input values as X and the set of inputs belonging to path ci as Ii ⊂ X (i = 1, ..., n).
To start fuzzing into the program from an endpoint of a selected path ci ∈ Chigh, the
generated fuzzing inputs have to fulfill the respective path constraints φi, otherwise they
would result in a different execution path. There are basically three possible strategies
to generate inputs (i.e. subsets of Ii) that satisfy the respective constraints:

Random generation of inputs with successive constraint filtering This strategy would
initially generate a random input set Xrand ⊂ X, which would be given to an SMT
solver in order to check if a concrete input x ∈ Xrand satisfies the constraint φi and
therefore belongs to Ii. However, filtering the generated inputs in Xrand by checking
for satisfiability of respective path constraints would most unlikely leave any input over,
i.e. Xrand ∩ Ii = ∅ with high probability. This is obvious due to the fact that the
path constraints in φi symbolically represent all branch conditions along the path ci,
in particular fuzz-walls (as introduced at the beginning of this chapter). Randomly
generating input values that satisfy such a fuzz-wall constraint in φi is therefore clearly
as unlikely as passing such a wall with pure fuzzing.

Pure SMT solver-based input generation With this strategy we would inject all the
constraints in φi into an SMT solver, that in turn computes a set of possible solutions.
The problem with this strategy is that an SMT solver is sometimes slow and inefficient in
computing solutions and the fuzzing input generation rate would drop significantly. This
is due to the fact that an SMT solver cannot effectively handle large amounts of variables
constrained in large amounts of equations. For example, consider a situation where the
input consists of a large file F and the targeted program only checks a small part F ′ of
it during initial parsing. Using an SMT solver to generate both the constrained part F ′

and the unconstrained part of F would be inefficient. This motivates the third strategy.
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Random generation of independent input variables with subsequent constraint solv-
ing Here, we randomly generate input values for all variables that are independent
(also called free) in φi. An SMT solver subsequently generates a model for the remaining
dependent variable constraints.
To illustrate this situation with an example, consider a function which takes x =

(x1, ..., xl) ∈ X as input to test a checksum over the first l − 1 variables in such a
way that the check succeeds if

∑l−1
i=1 = xl, otherwise the program rejects the input. In

this case the variables x1, ..., xl−1 are independent in the constraints gathered from the
checksum path. Therefore, it is not necessary to feed them into the solver. We can just
randomly generate any concrete value for them and let the solver calculate xl so that the
checksum is correct. This guarantees that the SMT solver receives as small as possible
number of constraints in order to generate the dependent variables as fast as possible.

In summary, the first strategy is infeasible, whereas strategies two and three are more
similar to each other for small input sizes. However, if we deal with larger inputs where
only a small minority of input variables are constrained by the current path constraint
φi there is no need to feed a huge amount of path constraints for independent input
variables (e.g. a larger parameter file) into an SMT solver. We proceed with the third
approach as it guarantees us maximal input generation frequency and scales better to
large inputs.
In the following, we refer to the frequency of input generation for path ci as f(φi).

The above reasoning yields

f(φi) ≥
ki(φi, T0)

T0
, (6.11)

meaning that the number of models for φi found by the SMT solver in time T0 is less or
equal than the number of inputs generated with strategy three in time T0.

6.3.6. Joining the Pieces

Now that we have described all individual parts we can combine them for the the overall
DeepFuzz algorithm. After the initial seed generation (SG) is completed we run con-
colic execution (CE), distribution of path probabilities (DP), path selection (PS), and
constrained fuzzing (CF) in a loop until a halt condition is reached. A halt condition is
given either if a predefined goal (e.g. a program crash) is reached, of if the constrained
fuzzing performance collapses. In the latter case the total number of solutions that the
applied SMT solver finds in the fixed amount of time m ∗ T0 drops below a predefined
bound kmin

m∑
i=1

ki(φi, T0) < kmin (6.12)

and we leave the loop to procede with solely constrained fuzzing. The overall algorithm is
depicted in Figure 6.4. We show the efficiency and feasibility of the DeepFuzz algorithm
with our implementation in Section 5.7.
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Figure 6.4.: DeepFuzz main algorithm with parameters m, kmin, T0, and bmax.

In the language of Markov decision processes as introduced in Part I of this work the
actions aΦ ∈ A are given by the constrained fuzzing (CF) function. The reward R(x, a)
as introduced in Equation 4.5 on page 32 is given by the path probabilities defined in
Equation 6.6.

6.4. Implementation and Evaluation

In the following we present details of our implementation and evaluate DeepFuzz on an
OpenSSL X.509 certificate parser to show the feasibility of our approach. We choose the
OpenSSL libraries in order to have an evaluation on a real target with a wide range of
critical services in the internet today. Certificate parsing based on the widely deployed
TLS implementation OpenSSL is a suitable target for evaluation as it provides us a vivid
example for the powerful advantages of DeepFuzz. Note that in this section we refer to
OpenSSL source code functions in order to illustrate the target behavior, however all
results are gathered by applying DeepFuzz directly on the executable parser binary.
Our implementation is based on Intel’s dynamic instrumentation tool Pin [52] and

the concolic execution framework Triton [102], which itself uses the Z3 SMT solver [103]
developed by Microsoft Research. We conduct all tests on an Intel Xeon X5670 (2, 93
GHz) with 48 GB RAM.
Our target is a service that parses Base64-encoded X.509 certificates (in .pem format)

and reacts depending on the parsing results. The program triggers different logging and
response routines depending on the certificate’s subject and issuer, country code, version,
signature algorithm, validity period, and X.509 extensions. Our goal is to build paths
with high probability through the certification validation layer of this OpenSSL parser
in order to fuzz deeper layers of the unknown program routines.
The parser receives a certificate as input and parses it using common OpenSSL pars-
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ing functionality. During the parsing process, routines are executed depending on the
certificate’s properties. DeepFuzz initially generates a set of seed certificates in the seed
generation step and loops through concolic execution, distribution of path probabilities,
path selection, and constrained fuzzing until a halt condition is reached and a tunnel into
deep layers of the target is constructed. DeepFuzz then switches to purely constrained
fuzzing.

6.4.1. Time and Memory Complexity

First, we evaluate the overall performance of our approach in terms of RAM usage M ,
the time Tpc to build the path constraints Φ, and the time Tsolve to solve these constraints
with the SMT solver Z3. Our targeted service initially checks for a match in the certifi-
cate’s issuer string with several fixed substrings. This subroutine of the certificate parser
is a suitable target to measure time and memory complexity. DeepFuzz successively con-
structs certificates that match these substrings. For each character in the issuer string,
DeepFuzz runs the program with a concrete input, builds path constraints that must be
guaranteed to fulfill the character match, solves these constraints, injects the newly gen-
erated model into a new certificate and reruns the program until it has found the correct
substring. Subsequently, DeepFuzz assigns probabilities to the discovered paths, selects
Chigh according to Section 6.3 and then uses the path constraints Φ corresponding to
paths in Chigh for constrained fuzzing into deeper layers of the parser. In the following,
we measure path depth in the number of new branches along that path. This measure
directly corresponds to the number of newly discovered basic blocks.
Regarding memory complexity Figure 6.5 shows an almost linear dependance of RAM

usage on path depth. In our setup this did not cause severe limitations. For large sets
of constraints belonging to very deep paths this results in swapping data between RAM
and hard disk.
The almost linear dependence of the path constraint generation time Tpc adds to the

efficiency of DeepFuzz. Path constraints are generated (as described in Section 6.3) only
m times every cycle of CE-DP-PS-CF. Therefore, although Tpc is much larger than Tsolve,
generating Φ adds only little to the overall time complexity of DeepFuzz (which is true
even for larger choices of m). Finally, when the loop CE-DP-PS-CF is left DeepFuzz
proceeds with solely constrained fuzzing which is not influenced by Tpc.
Finally, Figure 6.5 shows a gradual increase of Tsove for very deep paths with around

4∗105 branches. Growth of model generation time Tsolve for deep paths directly translates
to a decay in fuzzing performance (i.e. input generation frequency). The growth rate of
Tsolve is determined by the program under test and the sort of operations it performs.
Depending on the choice of kmin this results in switching to pure constrained fuzzing (as
described in Section 6.3). The switching condition is determined by equation (6.12) where
the choice of parameters T0 and kmin depends on the overall available fuzzing time and
computing capability. One significant advantage of our approach is that model generation
can be highly parallelized with a computing cluster running multiple distributed instances
of Z3. Therefore, constrained fuzzing performance scales to parallelization. Since a
moderate increase of Tsolve can be countered with parallelization, the results suggest
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Figure 6.5.: Evaluation of time and memory complexity.

that if we want to apply DeepFuzz on very large targets, we are most likely to switch to
a cluster computing setup.

6.5. Discussion

With DeepFuzz we effectively relocate graph coverage to deeper layers of the program.
We achieve this by constructing a tunnel into deep layers of the execution graph with
subsequent constrained fuzzing through it. Instead of source code instrumentation, we
only need compiled binaries for program testing. This is a huge advantage for the same
reasons as stated in [104]. First, we are independent on the high level language and build
processes. Second, we avoid any problems caused by compiler transformation after the
build process, realized for example by obfuscation. Third, DeepFuzz is suited to fuzz
closed source targets.
Another important aspect of DeepFuzz is the ability to highly parallelize most parts of

the proposed algorithm in Section 6.3. All substeps, i.e. concolic execution, distribution
of path probabilities, path selection, and constrained fuzzing can be modularized and
distributed for parallel computing with a suitable framework.
One disadvantage of DeepFuzz is that it is not directed towards a tagged point in the

execution graph. It builds paths as deep as possible into the program, however with
no preferably direction. In order to address this issue we are currently considering how
to combine our approach with previous work on driving execution of the input space
towards a selected region. Such a directed exploration can be achieved by using fitness
functions as introduced in [105, 106], and [107]. For example, we could integrate fitness
functions in the path selection step in Section 6.3.
Further, we could improve DeepFuzz regarding fuzzing throughput by taking snapshots
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at certain predefined program execution points. For each selected path ci ∈ Chigh we
could run the program with corresponding input xi until the negated branch (as described
in the concolic execution step in Section 6.3) is reached. Directly after the alternative is
taken we then could generate a program snapshot including all processor registers and the
memory state. With |Chigh| = m we would have to take m snapshots. In the subsequent
fuzzing step, we would restore these snapshots and directly start fuzzing at those points.
This would allow us to skip the whole program execution before the snapshot, which
depending on the current path depth would save a significant amount of time. However,
before restoring the snapshot we must conduct taint analysis for all memory areas and
registers the input may reach and generate constraints for the tainted areas. The content
of each tainted area must then be computed by an SMT solver. It remains an open
question if such an approach is an improvement regarding fuzzing throughput or rather
a change for the worse.
Finally, our DeepFuzz approach may help to circumvent current bottlenecks related to

automatic exploit generation as described by Avgerinos et al. in [108] and [109], where
the authors explicitly stress that "programs with deep bugs" are currently not exploitable
by their tool.

6.6. Conclusion

We present a powerful approach to trigger vulnerabilities in deep layers of binary exe-
cutables. DeepFuzz constructs a tunnel into the program by applying concolic execution,
distribution of path probabilities, path selection, and constrained fuzzing in a way that
allows fuzzing deep and vulnerable areas of the program. This enables us to detect vul-
nerabilities that are completely out of reach for comparable random testing approaches.
We implement and evaluate our proposed algorithm on an OpenSSL X.509 certificate
parser. Further, we discuss advantages, current limitations, and possible expansions of
DeepFuzz. We assume that DeepFuzz will have impact in the related field of automatic
exploit generation, since it solves current bottlenecks in this research area.
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7. Guiding a Colony of Fuzzers with
Chemotaxis

In this chapter we introduce an elegant way to combine stochastic with formal methods
while keeping the overall fuzzing process efficient. As we saw in the last Chapter 6
combining stochastic fuzzing with symbolic combines the best of both worlds, but also
comes with a high price: Formal methods are computationally expensive and slow our
algorithms down. Larger fuzzing campaigns would therefore greatly benefit, if fast and
efficient worker fuzzers could run isolated from symbolic execution while being guided by
explorers. How can we create an information channel between isolated fuzzing instances
in order to allow such strategies? We approach this question via a state synchronization
mechanism.
We present a bio-inspired method for large-scale fuzzing to detect vulnerabilities in

binary executables. In our approach we deploy small groups of feedback-driven explorers
that guide colonies of high throughput fuzzers to promising regions in input space. We
achieve this by applying the biological concept of chemotaxis: The explorer fuzzers mark
test case regions that drive the target binary to previously undiscovered execution paths
with an attractant. This allows us to construct a force of attraction that draws the
trailing fuzzers to high-quality test cases. By introducing hierarchies of explorers we
construct a colony of fuzzers that is divided into multiple subgroups. Each subgroup is
guiding a trailing group and simultaneously drawn itself by the traces of their respective
explorers. We implement a prototype and evaluate our presented algorithm to show the
feasibility of our approach.

7.1. Motivation

As introduced in Chapter 2 of this work, state-of-the-art fuzzing frameworks all share one
overall goal: Generating and pitching suitable program inputs into the target in order to
eventually trigger an exploitable bug. For suchlike bug hunting there is a straight forward
track: The more input we generate to test a binary target the more code coverage we
achieve during program execution and the more likely we will find what we are looking
for. This results in parallel large-scale testing by running distributed fuzzer instances on
a computer cluster. However, state-of-the-art in distributed large-scale fuzzing basically
reduces to pure parallelization. Recent research focuses on advancing single fuzzers and
optimal scheduling of fuzzers, test case corpora, and targets during fuzzing campaigns
[110]. But how can we optimize the interaction between fuzzers? How can we transform
a cluster of isolated fuzzers into a colony that works together and collectively adapts to
the binary under test?
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Inspired by biology two observations in particular guide our research presented in this
section: Colonies with dedicated explorers and the concept of chemotaxis.

Colonies with Explorers Several species such as honeybees, ants, rats, and bats reveal
dedicated exploring behavior of colony individuals that primarily function as scouts.
Investigation of the environment by just a small fraction of explorers seems to be an
efficient way for some colonies to gain information regarding the surrounding territory. In
case the explorer found an interesting spot (for example a source of food during foraging)
it reports its findings back to the colony. The famous dance of the honeybees [111] is
just one example for this behavior. Hence we define dedicated subgroups of explorer
fuzzers that guide higher throughput worker fuzzers. In fact, we can divide modern
fuzzing frameworks into two categories, namely (1) feedback fuzzers that instrument
their targets in order to gain runtime information during program execution and (2)
black-box fuzzers that are blind to what happens during execution and only see program
crashes in case of a triggered bug. While fuzzers of the first category (including white-
box and evolutionary fuzzers) are relatively slow they nowadays achieve similar levels of
code coverage compared to traditional fast executing black-box fuzzers. Both categories,
the relatively slow feedback driven explorers as well as the fast and efficient black-box
worker fuzzers have their right to exist in modern fuzzing campaigns and both provide
comparable results. Inspired by colony behavior in biology, is there a way to combine
the explorer sight into runtime (gained by dynamic instrumentation) with the speed of
black-box worker fuzzers? How can we achieve guidance by the explorers and transfer
information to the blind black-box fuzzers? This brings us to the second observation
found in biology.

Chemotaxis Regardless if we look at bacteria, mold fungus, termites, ciliates, or algae,
all those species have one thing in common: They make use of chemical substances to
transmit information between individuals of the colony in order to trigger collective be-
havior. The movement of organisms responding to chemical stimuli is called chemotaxis.
Positive chemotaxis causes the individuals to move towards regions of higher concen-
tration of an attractant. Ant colonies [112] coordinating their foraging behavior using
attracting trail pheromones impressively illustrate the power of chemotaxis. Can we
mimic social behavior of biological colonies using the concept of chemotaxis?
In this chapter, we construct an algorithm for distributed large-scale fuzzing that equips

feedback-driven explorer fuzzers with the ability to attract high throughput fuzzers by
marking regions in the input space with an attractant. First, we develop the main idea
on a single subgroup of explorers guiding a single subgroup of workers: By controlling the
attractant concentration among promising test case regions the seeing feedback-driven
explorers guide the colony of blind (but fast) black-box fuzzers in order to maximize
code coverage. Second, we generalize this approach to multiple hierarchies of fuzzers: We
introduce multiple hierarchies of explorers by further subdividing our scouts according
to their overall test case throughput.
In summary, we make the following contributions:
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• We introduce a novel method for distributed large-scale fuzzing in computer clusters
based on the biological concept of chemotaxis in order to maximize coverage of
execution paths in the target under test.

• We construct a mechanism for distributing attractants in input space and define
the resulting force field of attraction exerted on high throughput fuzzers.

• We implement and evaluate our presented algorithm to show the feasibility of our
approach.

The remainder of this chapter is organized as follows. In Section 7.2 we present our
algorithm for guided fuzzing. We implement and evaluate our approach in Section 7.3 and
discuss properties, modifications, and expansions of the proposed algorithm in Section
7.4. The chapter concludes with a short outlook in Section 7.5.

7.2. Guided Fuzzing

In this section we present the overall algorithm for collective random testing of binary
targets by a colony of fuzzers guided by dedicated explorers.
Our final goal is to optimize massively parallel large-scale fuzzing in computer clusters

to find vulnerabilities in a binary target. Let Ḟ denote the set of feedback-driven fuzzers
and F the set of fast non-instrumenting black-box fuzzers, respectively. Inspired by bi-
ology we refer to Ḟ as the explorers and to F as the worker individuals. The explorers
receive information from dynamic instrumentation (e.g. regarding code coverage) and
therefore see what happens during execution of the target. As motivated in the intro-
duction we present a guidance mechanism that enables the seeing explorers to transfer
information to the blind black-box worker fuzzers by mimicking the concept of chemo-
taxis. We achieve this by constructing explorer traces in the target input space to attract
the workers F . In the following we first formalize how to construct such traces and then
define the force of attractivity and resulting colony movement analog to chemotaxis.

7.2.1. Attractant Trace Generation

We assume the inputs of the target binary under test to be bit strings of length N and
denote the input space as I = {0, ..., 2N}. Each fuzzer provides a corpus C ⊂ I of current
test cases. During a fuzzing campaign the individual fuzzers constantly update their set
of current test cases, which generates a trace in input space for each fuzzer. Inspired by
chemotaxis we want the explorers to leave behind an attractant on their way through
input space. More formally, assume we have nE explorers Ḟ i each starting with a set
of seed inputs Ċt0 . After some time t1 of fuzzing, each Ḟ i has updated its initial seed
inputs to the current working corpus Ċit1 . During the fuzzing campaign, the Ḟ i generate
corpora Ċit1 , Ċ

i
t2 , ... ⊂ I. To construct a trace of Ḟ i in I, we calculate the center of each

intermediate corpus of test cases and then mark these centers with an attractant.
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Trace Generation We first need to define the center of a corpus Ċ ⊂ I of test cases.
Instead of the arithmetical mean we are interested in the bit string ĉ that is most similar
to all of the strings in Ċ. This choice is justified by the following example: Consider a
corpus Ċ of bit strings each of which respects the input format of a given target. The
arithmetical mean of Ċ might be a bit string with corrupted file format including wrong
headers and metadata. Therefore, we define the center ĉ of Ċ to be the string of length
N that coincides with the majority of inputs in Ċ in each bit position. The complexity
of this calculation is bound by O(n2). Periodically extracting the corpus of current test
cases of the explorers Ḟi and calculating their centers ĉi yields a trace

T i :=
(
ĉi
)
τ∈T :=

(
ĉiτ0 , ĉ

i
τ1 , ĉ

i
τ2 , ...

)
(7.1)

where T = {τ0, τ1, τ2, ...} indicates the extraction times during the fuzzing campaign.

Attractant Spraying Now that we have a trace T i for each explorer Ḟ i we can spray
this trace with an attractant in order to draw the black-box worker fuzzers F i. In this
step we augment each center of trace T i with an attractant concentration that decreases
over time. Naturally, the most recently generated corpus of an explorer should have a
higher concentration of attractant than a previously generated corpus. This correlates
to diffusivity and resulting fall in concentration of real chemical attractants in biological
chemotaxis. To realize this we define a monotonically decreasing function f : R≥0 → R≥0

to yield the sprayed trace

T̄ i :=
( (
ĉiτ0 , f(t− τ0)

)
,
(
ĉiτ1 , f(t− τ1)

)
, ...
)

(7.2)

=
(
ĉiτ , f(t− τ)

)
τ∈T (7.3)

for i = 1, ..., nE , where t denotes the current time of the fuzzing campaign. In our
implementation (see Section 5.7) we generate the sprayed traces periodically after a fixed
amount of time so we can assume without loss of generality the discrete time indexing
set T = N. The choice of spraying function f determines attractant concentration
of explorer traces over time. If f decays fast, the explorers will leave only a short
attracting trace in time, whereas a slower decay yields longer attracting traces. To avoid
persistent attraction of already extensively explored regions we must construct f such
that attractant concentration decays to zero after some time, i.e. limt→∞ f(t) = 0.
Moreover to keep computing complexity in subsequent steps low we define f to map
identical to zero after time tz, i.e.

∀t ≥ tz : f(t) = 0. (7.4)

We discuss different choices of f and resulting attracting behavior of the black-box worker
fuzzers in Section 5.7.

7.2.2. Positive Chemotaxis

Next, we construct an attraction mechanism for the sprayed traces T̄ i left behind by the
explorers Ḟ i (i = 1, ..., nE). The traces T̄ i should attract the black-box worker fuzzers
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F j (j = 1, ..., nW ). Again, we refer to the position of an Ḟ i as the center ĉi ∈ I of
its current corpus of test cases Ċi ⊂ I. Mathematical modeling of chemotaxis usually
makes use of partial differential equations [113, 114], which describes movement and
emerging spatial pattern formation accurately in terms of biology. Since we are more
interested in computational efficiency than in biological accuracy, instead of simulating
our colony of fuzzers with partial differential equations we define a lightweight attracting
function g that acts as a force of gravity on the corpora of black-box fuzzers F j . While f
(as described above) determines the distribution and decay of attractant concentration
of traces in input space I, g determines the force of attraction dependent on both the
distance and the concentration of the attractant. Therefore, g : R2

≥0 → [0, 1] is a function
of two variables. We discuss and evaluate different choices of g and resulting attracting
behavior in Section 5.7.
To determine the force of attraction that an explorer trace exerts on a black-box worker

fuzzer F j (j = 1, ..., nW ) we need the attractant concentration of its trace as well as the
distance between centers of the trace T̄ i and the corpus Cj of F j . The individual centers
ĉi ∈ I of explorer traces T̄ i have already assigned a concentration as given in Equation
(7.2). For the metric we choose Hamming distance δ in I: Two bit strings x = (x1, ..., xN )
and x′ = (x′1, ..., x

′
N ) then have distance

δ(x, x′) :=
∣∣{j ∈ 1, ..., N | xj 6= x′j}

∣∣. (7.5)

For a single test sample x ∈ I function g then gives the force of attraction a ∈ [0, 1] that
a center ĉi exerts on x at time t:

a = g
(
f(t− τi), δ(ĉi, x)

)
. (7.6)

Now that we have defined the force a of attraction on x ∈ I, we construct a movement
of x analog to chemotaxis. We can move x towards ĉi in the Hamming distance if we flip
bits in x to match the corresponding bits in ĉi. Therefore, let a ∈ [0, 1] be the fraction
of bits in x that we flip to match bit string ĉi, where the bit positions to be flipped
are randomly chosen among 1, ..., N . For example, a = 1 causes all bits in the mutated
version x′ of x to match those in ĉi resulting in δ(ĉi, x′) = 0. An attracting force of a = 0
on the other hand leaves x unchanged.
Finally, an explorer Ḟ i draws a black-box worker F j by letting its trace T̄ i (i.e. all

centers ĉi of its trace with nonzero attractant concentration) simultaneously attract all
test cases in the current corpus Cj ⊂ I of F j .

7.2.3. Guided Fuzzing Algorithm

The algorithm for guiding a dedicated colony of black-box fuzzers is depicted in Figure
7.1.
The first two loops initialize the nE explorers as well as the nW black-box worker

fuzzers. The seed input corpora Ċit0 , C
j
t0
⊂ I are sets of bit strings of length N . They can

be generated randomly or alternatively may originate from a previous fuzzing campaign,
but we don’t assume any constraints on them (e.g. validity regarding the input format).
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Input: f, g, nE , nW , t0

for i = 1, ..., nE :
Ċi

t0  Seed()

Ḟ i  Initialize(Ċi
t0)

for j = 1, ..., nW :
Cj

t0  Seed()

F j  Initialize(Cj
t0)

do:
for i = 1, ..., nE :

Ċi  Corpus(Ḟ i)
ĉi  Center(Ċi)
T i  Trace(ĉi)
T̄ i  Spray(T i, f)

for j = 1, ..., nW :
Cj  Corpus(F j)

for ĉ in T̄ i :
Cj  Attract(ĉ, Cj , g)

for j = 1, ..., nW :
F j  Initialize(Cj)

Fuzz(t0)

while (true)

Figure 7.1.: Algorithm for guided fuzzing with input functions f , g and parameters nE ,
nW , and t′.
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After initialization phase we enter the process of attractant trace generation, positive
chemotaxis, and fuzzing. This main iteration is repeated until a tester stops the fuzzing
campaign. The first loop in the main iteration extracts the test case corpora Ċi of
explorers Ḟ i, calculates their centers ĉi, appends them to the respective traces T i and
sprays the traces with the attractant according to the choice of f . Next, the centers ĉi

of the sprayed traces T̄ i attract all nW test case corpora Cj of black-box worker fuzzers
F j . This force of attraction results in positive chemotaxis and is regulated by function
g as given in Equation (7.6).
Next, we reinitialize the black-box worker fuzzers F j with the updated respective test

case corpora and let the whole colony of fuzzers perform random testing for a fixed
amount of time t′.
Regarding computational complexity of the proposed algorithm we constructed each

step to be efficient. The cost of center calculation is bound by O(n2), which is tractable
considering that we only process the working set of current test cases of an explorer.
Spraying the traces T i with an attractant as indicated by Equation (7.2) is a lightweight
operation on a two-dimensional array that holds for each calculated center ĉi the corre-
sponding attractant concentration given by f . Calculation of the force of attraction as
defined in Equation (7.6) requires computing the Hamming distance, which requires low
overhead. Further, we carefully bound the time for computing the force of attraction
that the explorer traces T̄ i (i = 1, ..., nE) exert on the corpora Cj (j = 1, ..., nW ) by
limiting the number of centers with nonzero attractant concentration, as guaranteed by
Equation (7.4). Finally, we process these steps that lead to repositioning of the corpora
of F j only once for each time interval t′. During the fuzzing step (denoted by Fuzz(t′)
in Figure 7.1) all fuzzer instances of both the explorers and the black-box workers run
unaffected.

7.2.4. Explorer Hierarchies

Next, we generalize the algorithm for guided fuzzing as depicted in Figure 7.1 to multiple
hierarchies of explorers by further subdividing our scouts according to their overall test
case throughput. This further distinction is motivated by the observation that there is
a spectrum between feedback-driven fuzzers and black-box fuzzers. For example, test
frameworks enhanced with symbolic execution functionality (such as [17, 50, 87]) are
computationally more complex than more efficient evolutionary fuzzers (see [115] for a
recent benchmark), but both categories make use of feedback from binary instrumenta-
tion. Further, the efficiency of black-box fuzzers depends on the targeted input format:
In some cases (of complex input formats) it is useful to deploy a grammar-based fuzzer
that generates mostly valid test cases in order to feed them as seed into feedback-driven
fuzzers. In order to cover such situations with our approach, we need to define multiple
hierarchies of fuzzers. This results in a colony of fuzzers divided into multiple subgroups
each guiding a trailing group and simultaneously drawn itself by the traces of their re-
spective explorers.
To achieve this, we divide the whole fuzzing colony into nK classes F i and define a set

of arrows A between those classes. An arrow (F i,F j) indicates that fuzzers of class F i
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function as explorers for fuzzers in the class F j , i.e. fuzzers in F i attract fuzzers in F j
according to the guidance algorithm as depicted in Figure 7.1. This yields the directed
graph

G =

 ⋃
i∈{1,...,nK}

F i, A

 . (7.7)

For example, setting nK = 2 yields the previously described situation of a single colony
of explorers Ḟ = ∪i∈{1,...,nE}Ḟ

i attracting a single colony of workers F = ∪j∈{1,...,nW }F
j ,

i.e.

G2 =
(
Ḟ ∪ F , (Ḟ ,F)

)
. (7.8)

Such a graph definition is especially useful when distributing fuzzing instances on actual
computer clusters. If the fuzzing campaign is executed by a heterogenous hardware
infrastructure the graph should be adapted according to bandwidth and latency of the
respective interconnection network. In particular, if two fuzzing classes in the graph
are connected with an arrow, they are suited to be placed in the same high bandwidth
and low latency interconnection network. Vice versa, if two fuzzer classes have a large
geodesic distance in the graph (i.e. a relatively high number of arrows in the shortest
path between them), they may be distributed accordingly in computing clusters that are
interconnected with lower bandwidth and higher latency.

7.2.5. Choices for f and g

In choosing the spraying function f and the attraction function g we are guided by
the following considerations. f determines the actual attracting fraction of the explorer
traces. As determined by Equation (7.2) a fast decay of f leads to short attracting traces
and vice versa. In the extreme, f distributes the attractant nowhere on the explorer
trace except on the most recently computed center (corresponding to f(0) 6= 0 and
f(t) = 0 for all t > 0). For simultaneous strong force of attraction such a choice is
almost equivalent to direct corpus synchronization. However, we want the black-box
workers F j (j = 1, ..., nW ) to be guided along the explorer paths for two reasons: Close
proximity to actually all regions roamed by the explorers and enough time for black-
box worker exploration. To be more precise, for large periods t′ of pure fuzzing (as
indicated in Figure 7.1) corpus extraction provides only discrete snapshots of current
explorer positions in time. During fuzzing for time t′ the workers also diffuse their
corpora through input space. Too high attractivity of the most currently generated
explorer corpus would tend to ignore fuzzing the whole path between extracted corpus
snapshots. Since we want the black-box workers to follow the explorer paths as closely
as possible while simultaneously give them enough time to generate corner cases not
discovered by the explorers, we distribute the mass of f accordingly. As shown in our
evaluation in Section 7.3 we achieved good results with different Gaussian functions for f .
Regarding the attracting function g in Equation (7.6) we borrow from the law of gravity
and propose higher attraction forces for higher concentrations and closer distances. We
implement a sigmoid function made of two logistic functions in Section 7.3.
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7.3. Implementation and Evaluation

To show the feasibility of our approach we implemented a prototype of the algorithm as
depicted in Figure 7.1 with one dedicated group of explorers guiding a colony of high
throughput worker fuzzers. In this section we first present our choices for functions f
and g, and subsequently evaluate our method.
For spraying function f we implemented Gaussian functions

f (t) =

c1e
− (t−c2)

2

2c23 0 ≤ t < tz

0 t ≥ tz
(7.9)

parameterized by c1, c2, c3 ∈ R>0. While c1 determines the total amount of attractant, c3

controls the decomposition rate of attractant concentration on the traces T i. A nonzero
value of c2 > 0 translates to an attractant that unfolds its full attractive potential only
with a time delay, but we set c2 = 0 for the following benchmarks.
Function g assigns the force of attraction dependent on attractant concentration and

distance to the attractant. Shorter distance and higher concentration should result in
stronger attraction. We implemented g : R2

≥0 → [0, 1] as

g(f, δ) =
((

1 + a1e
a3−a2f

)(
1 + d1e

d2δ−d3
))−1

, (7.10)

where (f, δ) =
(
f(t− τi), δ(ĉi, x)

)
denote attractant concentration and distance, respec-

tively, and a1, a2, a3 ∈ R>0.
As testing target we chose the command line tool djpg for decompressing JPEG files

to image files (in BMP and GIF format). All explorers are slow moving versions of the
fuzzer presented in Chapter 5. We initialized both the explorers and black-box workers
with seed corpora containing image files of size 100 kB. Then we measured the distance
δ between most recently generated centers (corresponding to the end of trace T̄ ) of a
selected explorer and the respective corpus centers of a successfully attracted black-box
worker.
Figure 7.2 depicts attraction behavior of a single explorer (nE = 1). After each of

the first 100 iterations of the do-while loop of our algorithm (as depicted in Figure 7.1)
we indicate distance δ on the z-axis. After 100 iterations we stop the fuzzing campaign
and increase the force of attraction by increasing d2. After 10 fuzzing campaigns (d2 =
4, ..., 14) we receive the surface depicted in Figure 7.2. For strong forces of attraction
(corresponding to high values of d2) the single explorer successfully attracts all workers
and reduces the mean distance δ from averaged 400 kbit to 330 bit. Weak forces of
attraction (corresponding to low values of d2) do not lead to attraction. This is due to
the diffusivity of worker corpora in input space: With a black-box fuzzer mutation rate
of r = 4 ∗ 10−5 the workers diffuse their test case corpora stronger than the explorer
attracts them.
In a second experiment we increase the number of explorers to nE = 5 as well as

the black-box mutation ratio to r = 8 ∗ 10−4. The resulting benchmark is depicted in
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Figure 7.2.: Attraction of a single explorer (nE = 1) within the first 100 iterations, re-
sulting in a decrease of δ from averaged 400 kbit down to 330 bit, where
mutation ratio for the measured black-box fuzzer is r = 4 ∗ 10−5. Increasing
d2 from 4 to 14 causes a significant stronger attraction.

Figure 7.3.: Attraction for nE = 5 within the first 100 iterations and increasing d2 =
4, ..., 14, causing a decrease of δ from averaged 400 kbit down to 190 kbit,
where mutation ratio is r = 8 ∗ 10−4.

80



7.4. Discussion

Figure 7.3. Analog to the previous setting we measure distance δ (on the z-axis) in each
of the first 100 iterations for 10 fuzzing campaigns with respectively increasing force of
attraction d2 = 4, ..., 14. After successful initial attraction the distance δ reaches an
equilibrium state depending on the force of attraction. We can successfully reduce the
distance and guarantee proximity of the workers to the explorer traces by increasing the
force of attraction. The equilibrium of distance between an attracted worker and its
explorer guide is caused by three antagonizing forces: Attraction by its guide, attraction
by all competing explorers, and mutation ratio of the worker. Increasing the force of
attraction simultaneously for all explorers binds the worker further to its guide (because
of the sigmoid form of g as defined in Equation (7.10)) and additionally overcomes even
high mutation ratios.

7.4. Discussion

In this section we discuss characteristics, possible modifications, and expansions of our
approach.
As shown in our evaluation once a black-box worker fuzzer has joined an explorer it will

remain there most probably for the rest of the fuzzing campaign. However, the attraction
mechanism of the group of explorers after each period of time t′ brings in a small fraction
of valuable fresh input from the surrounding explorers. This is due to the construction
of our attraction mechanism as described in Section 7.2.2, where actual attraction is
lowering the Hamming distance by flipping bits to match the attracting center (which
is the test case that matches the majority of test cases of a current explorer corpus
regarding the bit string). Therefore, we achieve mixing of test cases between essentially
isolated explorers.
Further, attraction of the trace of an explorer as sprayed by f according to Equation

(7.2) guarantees optimal post-processing of input regions toughed by the explorers. As
discussed in Section 7.2 trace attraction gives two vital advantages compared to simple
corpus synchronization: Close proximity to actually all regions roamed by the explorers
and enough time for black-box worker exploration. Since black-box workers are signifi-
cantly faster and provide different mutation engines, their concentration around explorer
traces often reveals new side paths and corner cases that the explorers did not discover.
We put much emphasis on out-of-the-box deployment of existing fuzzing frameworks

to avoid any possibly time-consuming or (in case of closed source fuzzers) impossible
modifications. However, access to information inside the explorer fuzzers would allow
us to adapt attraction behavior for each explorer individually. Our presented spraying
mechanism as determined by function f in Equation (7.2) treats each explorer equally:
It assumes the explorer has found a region of quality test cases (e.g. regarding code
coverage), sprays the corpus center, and lets the concentration descent over time. If
an explorer discovers significantly more new basic blocks than all other explorers, we
should be able to assign a higher force of attraction to respective test cases. In other
words, comparing the numbers of newly discovered basic blocks found by the individual
explorers would allow us to allocate higher attractant concentrations to centers of higher
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quality corpora, enabling strongest attraction to the currently best performing explorer.
Further, we could introduce a repellent inducing negative chemotaxis for test cases that
for example consume too much time to process or enter code regions that are not relevant
for testing.
So far we do not provide any feedback from the black-box fuzzers back to the explorers.

This is motivated by the nature of basically blind black-box fuzzers which do not obtain
any information from the targeted binary during runtime, except a program crash. But
especially this crash information could be used to mark the corresponding test case as
attractive. Such modifications could improve the overall fuzzing campaign.

7.5. Conclusion

Inspired by insect and animal colonies that reveal a rich diversity of scouts and explorers
we introduce the first framework for large-scale random testing of binary executables
based on the concept of chemotaxis. In order to maximize coverage of execution paths in
the target under test we draw fast and efficient (but blind regarding runtime information)
black-box workers to regions in input space discovered by feedback-driven explorers. We
realize this by constructing a mechanism for distributing attractants in input space and
defining the resulting force field of attraction exerted on black-box fuzzers. This approach
combines the best of both worlds: The sight into runtime information from dynamic
instrumentation by the explorers and the speed of black-box worker fuzzers. Next, we
generalize this approach to multiple hierarchies of fuzzers to capture their attraction
network in a graph. Such a graph definition is especially useful when distributing fuzzing
instances on actual computing clusters, as we can adjust the graph of attraction to the
hardware infrastructure. We show the feasibility of our approach by evaluating it on
a real-world target with different parameter settings. Further, we discuss modifications
and expansions of our algorithm. Especially customized testing frameworks would allow
us to distribute attractant concentration significantly more fine-grained, which probably
results in faster code coverage and is subject to future work.
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Part III.

Fuzzing with Learning Behavior
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We finally enter the third and last phase of our journey. Let us take the bird’s eye
view first. Our mathematical model of Part I enabled us to translate specific stochastic
processes into algorithms for software testing in Part II. The model spans a rich world
that invites for exploration with different techniques and search strategies. Up to now,
we only explored a small part of this world as we did not take multiple action classes
or actual state structures into account. If we do so, we need to enhance our equipment
and means of transportation. How can we explore the full range of our model? In this
chapter we approach this question with some help from the field of machine learning.
Considering the full capabilities of our model, we soon realize the complexity we have

to deal with. In the reduced setting of similar actions and rewards independent of states
we were able to find adequate fuzzing strategies: We got inspired by biology in choos-
ing processes with suitable characteristics which directly determine fuzzing behavior (as
formalized in Equation 3.10 on page 25). For example, while the algorithm introduced
in Chapter 5 self-adapts its diffusivity and corresponding actions according to the re-
ceived reward, it always performs a Lévy flight in nature. From the bird’s eye view,
we constructed a subset of actions with known similar characteristics within A (as de-
fined in Equation 4.4) based on stochastic processes and defined a reward-based decision
mechanism for the actions to take (in terms of Equation 4.5 on page 32).
Let us enlarge our problem space by (1) offering the system multiple different classes

of actions and (2) taking the system state into account. In this setting two questions
arise:

• Do optimal behaviors (πt)t∈N ∈ Π exist?

• Is the definition of such a behavior accessible for a human?

For discrete and finite state and action spaces, Watkins [116] theoretically provides a
positive answer to the first question. However, our state space (as defined in Equation
4.2 on page 30) is huge and our action-value function Q(x, a) cannot be represented in
a look-up table. Therefore, we are in a similar situation as in chess or the game of Go:
While an optimal strategy might exist, we are currently bound to playing the game in
the search for it. In the same spirit, while we currently cannot give a satisfactory answer
to the first question, we can play the game against the program. In fact, we can apply
the same techniques that achieved super-human behavior in Backgammon [5, 6], Atari
games [7], and the game of Go [8]. We can do so because the mathematical model of Part
I provides a direct interface to reinforcement learning. And similar to gaming, we expect
that the definition of winning behaviors for fuzzing are not accessible for the human,
especially if we take into account states from binary input. In the following we will see
that deep Q learning turns out to be a fruitful new direction in software testing.
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8. Reinforcement Fuzzing

"But an effect can become a cause, reinforcing the original
cause and producing the same effect in an intensified form,
and so on indefinitely."

George Orwell

M

I

P

r(x, aQ) x aQ

Figure 8.1.: Reinforcement Fuzzing.

In this part we formulate random test generation for fuzzing as a reinforcement learning
problem. Modeling basic characteristics of random test generation as a Markov decision
process as described in detail in Part I of this work enables us to apply state-of-the-art
deep Q-learning algorithms that optimize predefined rewards measured during runtime
of the program under test. By observing the reward effects caused by mutating with a
set of actions performed on the seed file, the fuzzing agent learns a policy that converges
to the optimal behavior within the defined setting. To indicate the feasibility of our
approach we implement and evaluate a prototype of such a reinforcement learning agent.
We experiment with two different types of rewards to show that our fuzzing algorithm
learns to select highly rewarded string mutation actions better than a baseline of purely
random strategies.
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8.1. Motivation

Our mathematical model presented in Part I of this work theoretically captures rewards
that directly take the system state as defined in Equation 4.5 on page 32 into account.
Further, instead of a single class of similar actions, our model permits a generic actions
space A (as defined in Equation 4.4) that covers all possible string mutations. As dis-
cussed at the beginning of this part, in the following we will explore the full range of
our model: Let us enlarge our problem space by (1) offering the system multiple differ-
ent classes of actions and (2) taking the system state into account. In this setting two
questions immediately arise:
We propose an effective fuzzing method within the given problem space by formulating

random test generation for fuzzing as a reinforcement learning problem. The reinforce-
ment learning setting defines an agent that interacts with a system. Each performed
action causes a state transition of the system. Upon each performed action the agent
observes the next state and receives a reward. The goal of the agent is to maximize the
total reward over time. We introduced this setting in Part I of this work. In particu-
lar, we experiment with Q-learning, that just recently has successfully applied similarly
complex scenarios [8, 7, 5, 6].
In summary, we make the following contributions:

• We formulate fuzzing as a reinforcement learning problem.

• We introduce a fuzzing algorithm based on deep Q-learning that learns to choose
highly rewarded actions given an observed input string.

• We implement and evaluate a prototype of our defined approach.

The remainder of this paper is organized as follows. In Section 8.2 we discuss related
work. We introduce our reinforcement fuzzing algorithm in Section 8.4. Next, we give
details regarding our implementation and evaluation in Section 8.5 and discuss properties
and possible expansions of our algorithm in Section 8.6. We conclude with a short outlook
in Section 8.7.

8.2. Related Work

Our approach for reinforcement fuzzing in this chapter is influenced by two main streams
of research: Grammar reconstruction and reinforcement learning.
Our fuzzing algorithm we introduce in this chapter initially does not have any specifi-

cation or grammar regarding the input format and therefore initially acts like a mutation
fuzzer. However, during the fuzzing process it learns to perform optimally rewarded input
mutations based on the observed byte string. Performing actions (like token insertion,
token deletion, or random bit mutation) specific to an observed input strings can be in-
terpreted as a generalized grammar. Research on constructing grammars for generation
fuzzing made significant progress from its beginnings in the early 1970’s [117, 118] until
recent achievements [104, 87, 84, 119]. The authors of [120] propose an algorithm for
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automatic synthesis of a context-free grammar given a set of seed inputs and a black-box
target. Cui et al. [61] can automatically detect record sequences and types in the input
by identification of chunks based on taint tracking input data in respective subroutine
calls. Similarly, the authors of [62] apply dynamic tainting to identify failure-relevant
inputs. Another recent approach was proposed by Höschele et al. [63], who mine input
grammars from valid inputs based on feedback from dynamic instrumentation of the tar-
get by tracking input characters. In contrast, our fuzzer creates a generalized grammar
over time that is especially necessary when dealing with binary input. We discuss this
aspect further in Section 8.6.
Research on reinforcement learning [59] emerged from trial and error learning, and

optimal control for dynamic programming [121]. Especially the Q learning approach
introduced by Watkins [122, 116] was recently combined with deep neural networks [7] to
achieve impressive results in complex tasks like playing the game of Go against human.
We apply deep Q networks to learn fuzzing policies that perform optimally rewarded
actions in the face of a given input.
Combining machine learning with fuzzing is a novel approach and to the best of our

knowledge there is just one single effort into this direction: The authors of [123] apply
neural networks to generate fuzzing inputs with a sequence to sequence algorithm.

8.3. Q-Learning

In this section we give the necessary background on Q-learning and motivate the appli-
cation of deep Q-networks.
As discussed in Chapter 3 in Part I of this work, for each state-action pair (x, a) ∈ X×A

and each U ⊂ X×R the kernel P0 gives the probability P0(U |x, a) that performing action
a in state x causes the system to transition into some state of X and yielding some real
value reward as indicated by U . P0 directly provides the state transition probability
kernel P for single transitions (x, a, y) ∈ X ×A×X

P (x, a, y) = P0({y} × R|x, a). (8.1)

This naturally gives rise to a stochastic process: An agent observing a certain state
chooses an action to cause a state transition with corresponding reward. By subsequently
observing state transitions with corresponding rewards the agent aims to learn an optimal
behavior that earns the maximal possible cumulative reward over time. Formally, with
the stochastic variables (y(x, a), R(x, a)) distributed according to P0(·|x, a) the expected
immediate reward for each choice of action is given by E[R(x, a)]. During the stochastic
process (xt+t, Rt+1) ∼ P (·|xt, at) the aim of an agent is to maximize the total discounted
sum of rewards

R =
∞∑
t=0

γtRt+t, (8.2)

where γ ∈ (0, 1) indicates a discount factor that prioritizes rewards in the near future.
The choice of action at an agent makes in reaction to observing state xt is determined
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by its policy at ∼ π(·|xt). Let

Qπ(x, a) = E

[ ∞∑
t=0

γtRt+1|x0 = x, a0 = a

]
(8.3)

denote the expected cumulative reward for an agent that behaves according to policy π.
Then we can reduce our problem of approximating the best policy to approximating the
optimal Q function. One practical way to achieve this is adjusting Q after each received
reward according to

Q(xt, at)← Q(xt, at) + α
(
Rt + γmax

a
Q(xt+1, a)−Q(xt, at)

)
, (8.4)

where α ∈ (0, 1] indicates the learning rate. The process in this setting works as follows:
The agent observes a state xt, performs the action

at = arg max
a

Q(xt, a) (8.5)

that maximizes the total expected future reward and thereby causes a state transition
from xt to xt+1. Receiving reward Rt and observing xt+1 the agent then considers the
best possible action arg maxat+1 Q(xt+1, at+1). Based on this consideration, the agent
updates the value Q(xt, at). If for example the decision of taking action at in state xt
led to a state xt+1 that allows to choose a high reward action and additionally invoked
a high reward Rt, the Q value for this decision is adapted accordingly. Here, the factor
α determines the rate of this Q function update.
For small state and action spaces, Q can be represented as a table. However, for large

state spaces we have to approximate Q with an appropriate function. An approximation
using deep neural networks was introduced just recently by the authors of [7]. For such
a representation the update rule in Equation (8.4) directly translates to minimizing the
loss function

L =
(
r + γmax

a
Q(xt+1, a)−Q(xt, at)

)2
. (8.6)

The learning rate α in Equation (8.4) then corresponds to the rate of stochastic gradient
descent during backpropagation.
Deep Q-networks have been shown to handle large state spaces efficiently. This allows

us to define an end-to-end algorithm directly on raw input strings, as we will see in the
next section.

8.4. Reinforcement Fuzzing Algorithm

In this section, we present the overall reinforcement fuzzing algorithm. In our approach
we use Markov decision processes to generate test cases and adapt their behavior accord-
ing to feedback from dynamic instrumentation of the target.
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8.4.1. Initialization

We start with an initial seed x ∈ I. Theoretically, the choice of x is not constrained in
any way, it may not even be valid with regard to the input format of the target. However,
in our evaluation in Section 8.5 we show that correctly formated seeds yield better results.
Further, we initialize the Q function. Practically, we apply a deep neural net that maps
states to the estimated Q values of each action, i.e. we simultaneously approximate the
Q values for all actions A given a state x′ ∈ S(x) as defined in Equation (4.1). The
x′ 7→ Q(x′, a) representation provides the advantage that we only need one forward pass
to simultaneously receive the Q values for all actions a ∈ A instead of |A| forward passes.
During Q function initialization we distribute the network weights randomly.

8.4.2. State Extraction

The state extraction step takes as input a seed x ∈ I and outputs a substring of x′ ∈ S(x).
In Chapter 4 of Part I of this work we defined the states of our Markov decision process
to include I = Σ∗. For the given seed x ∈ I we extract a strict substring x′ ∈ S(x) at
offset o ∈ {0, ..., |x| − |x′|} of width |x′|. In words, the seed s corresponds to the system
and the reinforcement agent observes a fragment of the whole system via the substring
x′. We experimented with controllable (via action) and predefined choices of offsets and
substring widths, as discussed in Section 8.5.

8.4.3. Action Selection

The action selection step takes as input the current Q function representation and an
observed state x′ and outputs an action a ∈ A as defined in Equation (4.4). Actions are
selected according to the policy π following an ε-greedy behavior: With probability 1− ε
(for a small ε > 0) the agent selects an action

a = arg max
a′

Q(x′, a′) (8.7)

that is currently estimated optimal by the Q-function, i.e. it exploits the best possible
choice based on experience. With a probability ε it explores any other action, where the
probability of choice is uniformly distributed within |A|.

8.4.4. Mutation

The mutation step takes as input a seed x and an action a. It outputs the string that is
generated by applying action a on x. As indicated in Equation (4.4) we define actions
to be mappings to probabilistic rewriting rules and not rewriting rules on their own. So
applying action a on x means that we mutate x according to the rewrite rule mapped
by a within the probability space (I × I, F , P ). We make this separation to distinct
between the random nature of choice for the action a ∼ π(·|x) and the randomness within
the rewrite rule. For example, in Section 8.5 we define rewrite rules to be random bit
flips according to a predefined mutation ratio.
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8.4.5. Reward Evaluation

The reward evaluation step takes as input the target program P , an action a ∈ A, and an
input x ∈ I that was generated by the application of a on a seed. It outputs a positive
number r ∈ R+. As indicated in Equation (4.5) the stochastic reward variable R(x, a) =
E(x)+G(a) sums up the rewards for both generated input and selected action. Function
E rewards characteristics recorded during target program execution, such as the number
E1(x, I ′) of newly discovered basic blocks given a history of previously generated inputs
I ′ ⊂ I as defined in Equation (4.6), the total coverage in terms of unique basic blocks
E1(s, {}) without mutation history, or the time it takes the target program to process x.
According to the search heuristics, the reward should depend monotonically increasing
on coverage numbers. In contrast, actions with higher computational complexity should
be rewarded less. With such a definition of R the Q-learning algorithm is reinforced to
find an equilibrium between coverage advancements and action processing costs.

8.4.6. Q-Update

The Q-update step takes as input the extracted substring x′ ∈ S(x), the action a that
generated x, the evaluated reward r ∈ R+, and the Q function approximation, which in
our case is a deep neural network. It outputs the updated Q approximation. As indicated
above, the choice of applying a deep neural network Q is motivated by the requirement to
learn on raw substrings x′ ∈ S(x). The Q function predicts for a given state the expected
rewards for all defined actions of A simultaneously, i.e. it maps substrings according to
x′ 7→ Q(x′, a). We update Q in the sense that we adapt the predicted reward value
Q(xt, at) according to the target r + γmaxaQ(xt+1, a). This yields the loss function L
given by Equation (8.6) for action at. All other actions A \ {at} are updated with zero
loss. The convergence rate of Q is primarily determined by the learning rate of stochastic
gradient descent during backpropagation as well as the choice of γ.

8.4.7. Joining the Pieces

Now that we have presented all individual steps we can proceed with combining them to
the overall fuzzing algorithm as depicted in Figure 8.2.
We start with an initialization phase that outputs a seed x as well as the initial

version of Q. Then, the fuzzer enters the loop of state extraction, action selection, input
mutation, reward evaluation, Q update, and test case reset. Starting with a seed x ∈ I
the fuzzer extracts a substring x′ ∈ S(x) and based on the observed state x′ the chooses
the next action according to its policy. The choice is made looking at the best possible
reward predicted via x′ 7→ Q(x′, a) and applying an ε-greedy exploitation-exploration
strategy. To guarantee initial exploration we initially define a relatively high value for ε
and monotonically decrease ε over time until it reaches a final small threshold, from then
on it remains constant. The selected action provides a string substitution as indicated
in Equation (4.4) which is applied to x for mutation. The generated mutant is feed into
the target program P to evaluate the reward r. Together with Q, x, and a, this reward
is taken into account for Q update. Finally, we periodically reset input x to a valid seed.
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Input: Program P

x  Seed()
Q  Qnet()

do:
x0  State(x)
a  Action(x0, Q)
x  Mutate(x, a)
r  Reward(P, x)
Q  Update(Q, x0, a, r)
x  Reset()

while (true)

Figure 8.2.: Reinforcement fuzzing algorithm.

This is motivated by the observation that mutating valid input resulted in significantly
better results, as described in Section 8.5. After reset the fuzzer continues the loop.
The described algorithm describes reinforcement fuzzing with activated policy learning.

We show in our evaluation in Section 8.5 that the Q-network generalizes on states. This
allows us to switch to high-throughput mutant generation with a fixed policy after a
sufficiently long training phase.

8.5. Implementation and Evaluation

To indicate the feasibility of our approach we implemented a prototype of the reinforce-
ment fuzzing algorithm as depicted in 8.2. In this section we present details regarding
our implementation together with an evaluation of the prototype.

8.5.1. Target

As fuzzing target we chose programs processing files in the Portable Document Format
PDF. This format is complex enough to provide a realistic testbed for evaluation. From
the 1300 pages long PDF specification we just need the following basic understanding:
Each PDF document is a sequence of PDF bodies each of which includes three sections
named objects, cross-reference table, and trailer. Simplified, the trailer at the end of a
PDF file points to the beginning of the cross-reference table, which lists the offsets of all
objects in the object section, which in turn makes up by far the largest part of a file.
While our algorithm is defined to be independent of the targeted format, we make use of
this structure to define actions specifically crafted for PDF object. Therefore, we parse
the cross-reference table to get the offsets of all objects within the seed file.
We considered different PDF processing programs including the PDF parser in the

Microsoft Edge browser on Windows and several command line converters on Linux. All
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results in the following presentation refer to fuzzing the pdftotext program mutating a
168 kByte seed file with 101 PDF objects including binary fields.

8.5.2. Implementation

In the following we present details regarding our implementation of the proposed rein-
forcement fuzzing algorithm. We apply existing frameworks for binary instrumentation
and neural network training and implement the core framework including the Q-learning
module in Python 3.5.

State Implementation Our fuzzer observes and mutates input files represented as bi-
nary strings. With Σ = {0, 1} we can choose between state representations of different
granularity, for example bit or byte representations. We encode the state of a substring
x′ as the sequence of bytes of this string. Each byte is converted to its corresponding
float value when processed by the Q network. As introduced in Section 8.4 we denote
o ∈ {0, ..., |x| − |x′|} to be the offset of x′ and w = |x′| to be the width of the current
state.

Action Implementation We implement each action as a function in a Python dictionary.
As string rewriting rules we take both probabilistic and deterministic actions into account.
In the following we list the action classes we experiment with.

• Random Bit Flips. There are two types of actions that perform random bit flips.
Each class mutates the substring x′ with a mutation ratio. Actions of the first
type mutate x′ with a predefined fixed mutation ratio. We defined four actions to
mutate with fixed ratios. Actions of the second type adjust a global mutation ratio
and then flip the bits of x′ according to this ratio. We defined three actions of this
type: One that increases the global ratio, one that leaves the ratio constant, and
one that decreases the ratio. All actions of the second type mutate x′ after ratio
adjustment.

• Insert Dictionary Tokens. We define a single action that inserts tokens from a pre-
defined dictionary. The tokens in the dictionary consist of ASCII strings extracted
from a set of selected seed files.

• Shift Offset and Width. We define four actions that shift the offset and width of
the observed substring. Left and right shift take place at the PDF object level.
Increasing and decreasing the width take place with byte granularity.

• Shuffle. We define two actions for shuffling substrings. The first action shuffles
bytes within x′, the second action shuffles three segments of the PDF object that
is located around offset o.

• Copy Window. We define two actions that copy x′ to a random offset within x.
The first action inserts the bytes of x′, the second overwrites bytes.

• Delete Window. We define an action that deletes the observed substring.
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Reward Implementation For evaluation of the reward R(x, a) = E(x) + G(a) we ex-
perimented with both coverage and execution time information. We did not take into
account a reward depending on the selected action. If we expand the action space to in-
clude symbolic execution, taint-based analysis, or seq2seq algorithms, we could introduce
a negative reward for the time it takes to perform the action. However, this is subject
to future work.
To measure E(x) = E1(x, I ′) as defined in Equation (4.6) we made use of existing

instrumentation frameworks. We initially experimented with Microsoft iDNA and NIR-
VANA for measurements involving the PDF parser included in Edge. The iDNA setting
recorded each machine instruction of each loaded DLL during target program execution.
However, to speed up training of the Q net we switched to smaller parser targets: On
Linux we implemented a custom Intel PIN tool that counts the number of unique basic
blocks within the pdftotext program.

Q Network Implementation We implemented Q in the Google Tensorflow framework
by constructing a feed forward neural network with four layers connected with nonlinear
activation functions. We initialize the weights randomly and uniformly distributed within
wi ∈ [0, 0.1]. The initial learning rate of the gradient descent optimizer is set to 0.02.
From all activation functions provided by the Tensorflow framework, we found the tanh
function to yield the best results for our setting.

8.5.3. Evaluation

In this section we evaluate our implemented prototype. We present improvements to
a predefined baseline and also discuss current limitations. All measurements were per-
formed on a Xeon E5-2690 2.6 Ghz with 112 GB of RAM.

Baseline

To show that the defined algorithm actually learns to perform high rewarded actions
given an input observation we measure the baseline in terms of rewards for a policy that
randomly selects actions, where the choice is uniformly distributed among the action
space A. While this is quite a low baseline in terms of overall fuzzing performance,
it serves as an adequate reference point in terms of policy learning rate. Formally,
actions in the baseline policy πB are distributed uniformly according to a ∼ πB(·|x) and
∀a ∈ A : πB(a|x) = |A|−1. After ng = 1000 generations we calculated the quotient of
the most recent 500 accumulated rewards by our algorithm and the baseline to measure
the relative improvement.

Replay Memory

We experimented with two types of agent memory: The recorded state-action-reward-
state sequences as well as the history of previously discovered basic blocks. Our algorithm
did not show any improvement compared to the baseline with these two types of memo-
ries.
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The first type of memory is established during the fuzzing process by storing sequences
et := (xt, at, rt, xt+1) in order to regularly replay samples of them in the Q-update step.
For each replay step at time t a random experience out of {e1, ..., et} is sampled to train
the Q network. As discussed in [7] experience replay should provide several advantages,
e.g. countering strong correlations between trailing samples.
As indicated in Equation 4.6 we defined the coverage evaluation E1(x, I ′) to take a

history of basic blocks into account that have been previously discovered by executing
inputs in I ′. Initially, we kept all previously visited basic blocks in that history to reward
only new discoveries. This did not result in any improvement with regard to the baseline.
Then, we implemented I ′ to include only the nH ∈ N previously executed test cases. This
short term memory also did not increase total rewards with respect to the baseline. Only
a memoryless choice of I ′ = ∅ yielded good results. This behavior is explained by the
sparsely received rewards over time: After a while of fuzzing the discovery of new basic
blocks becomes rare and therefore the rewards become sparse. Learning with sparsely
distributed rewards is an active area of research and not yet fully understood [124].
Therefore, in the following we set I ′ = ∅ so that E1(x, {}) indicates execution path
length of the target given an input x. Regarding our algorithm as depicted in Figure 8.2
we reset the basic block history after each step via the Reset() function. Since experience
replay of state-action-reward-state sequences requires a history of previously discovered
basic blocks, we similarly did not achieve any improvement in comparison to the baseline.
Since both types of agent memory did not yield any improvement in comparison to the

baseline, we switched them off for the following measurements. Further, we deactivated
all actions that do not mutate the seed input, e.g. random bit flip actions of the second
type (altering the global mutation ratio) or shifting offsets and state widths. Instead of
active offset o and state width w = |x′| selection via an agent action, we set the offset for
each iteration randomly, where the choice is uniformly distributed within {0, ..., |x| − |x′|}
and fixed w = 32 Bytes.

Choices of Rewards

We experimented with three different types of rewards: Maximization of code coverage
R1(x, a) = E1(x, {}), execution time R2(x, a) = E2(x) = T (x), and a combined reward
R3(x, a) = E1(x, {}) + T (x) for multi-goal fuzzing. While R1(x, a) is deterministic,
R2(x, a) comes with minor noise in the time measurement. Measuring the execution time
for different seeds and mutations revealed a variance that is two orders of magnitude
smaller than the respective mean so that R2 is stable enough to serve as a reliable
reward function. All three choices provided improvements with respect to the baseline.
For example, Figure 8.3 depicts a direct reward comparison between reinforced fuzzing
and the defined baseline with time reward R2 for the first 1000 generations. We apply
Savitzky-Golay filters to indicate a median. Our proposed fuzzing algorithm cumulates
in average 7% higher execution time reward in comparison to the baseline.
In comparison rewarding coverage according to R1(x, a) yielded rewards as depicted

in Figure 8.4. Rewarding coverage with R1(x, a) provided slower increasing learning im-
provement compared to the baseline as a function of input generation steps. Further, it
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Figure 8.3.: R2 − ng diagram for w = 32, ε = 0.1, and γ = 0.2 for Q−learning (cyan)
and baseline (blue) rewards.

Figure 8.4.: R1 − ng diagram for w = 32, ε = 0.1, and γ = 0.2 for Q−learning (cyan)
and baseline (blue) rewards.
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was significantly slower than execution time rewards due to the high overhead of binary
instrumentation. Further, the average reward of reinforcement fuzzing is not a mono-
tonically increasing function of the learning iterations: Figure 8.3 clearly shows a decay
of average reward between generations 130 and 440. This corresponds to explorative
behavior of the learning algorithm. As stated in Section 8.4 we implemented an ε-greedy
exploitation-exploration strategy. To guarantee initial exploration we monotonically de-
crease ε over time until it reaches a final small threshold ε0 according to

ε(i) =


(
i
ε1

+ 1
)−1

i < i0

ε0 i ≥ i0
(8.8)

where i indicates the number of learning iterations, i.e. number of executed loops of the
main fuzzing algorithm as depicted in Figure 8.2.
Interestingly, coverage measurement as depicted in Figure 8.4 indicates certain levels

of execution path depths that could not be observed by rewarding execution time as
depicted in Figure 8.3. Since both time and coverage rewards yielded improvements
in comparison to the baseline, the question arises to what extend those two types of
rewards correlate: We measured an average Pearson correlation coefficient of 0.48 between
coverage R1 and execution time R2. This correlation motivates the combined reward
R3(x, a) = E1(x, {}) + T (x), where T (x) is a simple rescaling of execution time by a
multiplicative factor 1∗106 so that the execution time contributes to the reward equitable
to E1. Training the Q net with R3 yielded an improvement of 11.3% in execution time.
Note that this result is better that taking exclusivelyR1 orR2 into account. There are two
explanations standing to reason for this result: First, the noise of time measurement could
introduce rewarding explorative behavior of the Q net. Considering that the variance of
execution time is two orders of magnitude smaller than the respective mean and that we
already implemented an ε-greedy policy for exploration, this explanation seems unlikely.
Second, deterministic coverage information could add stability to R2.

State Width

Increasing the state width w = |x′| from 30 Bytes to 80 Bytes decreased the improvement
(measured in average reward R2(x, a) compared to the baseline) from 7% to 3.1%. In
other words, smaller substrings are better recognized than large ones. This indicates that
our proposed algorithm actually takes the structure of the state into account and learns
to perform best rewarded actions according to this specific structure.

Q-net Activation Functions

As stated above, from all activation functions provided by the Tensorflow framework, we
found the tanh function to yield the best results for our setting. Comparison of R2(x, a)
to the baseline after a relatively short period of 1000 generations yielded the results as
depicted in the following table, where the activation function f(x) is given in the second
row.
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(a) (b)

Figure 8.5.: E2−ng−A diagram for w = 32, ε = 0.1, and γ = 0.2 for |A| = 8. Figure (a)
shows an overall initial decrease of the Q function depending on the number
ng of generations, followed by explorative behavior (b).

tanh sigmoid elu softplus softsign relu

tanh(x) (1 + e−x)−1

{
α(ex − 1) x < 0

x x ≥ 0
ln(1 + ex) x

1+|x|

{
0 x < 0

x x ≥ 0

7.75% 6.56% 5.3% 2% 6.4% 1.3%

Learning Rates

As discussed in Section 8.4 the convergence rate of Q is primarily determined by the
learning rate of stochastic gradient descent during back-propagation as well as the choice
of γ. Increasing γ and gradient descent rate and comparing against the baseline shows
that small values of γ result in less steep mean reward improvements compared to the
baseline. A visualization for the Q function is depicted in Figure

State Generalization

In order to achieve high-throughput fuzzing we tested if the already trained Q net gen-
eralizes to previously unseen inputs. This would allow us to switch off Q net training
after a while and therefore avoid the high processing costs of evaluating the coverage
reward. To measure generalization we restricted the offset o ∈ {0, ..., |x| − |x′|} in the
training phase to values in the first half of the seed file. For testing, we omitted reward
measurement in the Q update step as depicted in Figure 8.2 to stop the training phase
and only considered offsets in the second half of the seed file. This way, the Q net is con-
fronted with previously unseen states. This resulted in an improvement in execution time
of 4.7% compared to the baseline. This shows that the algorithm generalizes to states
in the sense that it still performs better than the baseline given previously unobserved
states. This allows us to generate new mutations with a fixed Q function (corresponding
to a fixed policy) so that we can still tolerate slow Q network training.
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Effective Mutation Ratios

The defined action classes are quite different in nature and their effects on the state
differ significantly. This rises the question if we can still achieve better results if we only
allow very similar actions. In other words, is our reinforcement fuzzer able to distinct
the effects of similar actions? Therefore, we restricted the actions A to random bit flips.
We fixed 32 actions with 32 different mutation ratios {0.004 + k ∗ 0.001|k = 1, ..., 32} to
yield a 4.54% improvement compared to the baseline. This indicates that the Q network
can still distinguish between very similar actions, although naturally not as good as in
the setting of different action classes.

8.6. Discussion

The policy π as defined in Section 8.3 can be interpreted as a form of generalized grammar
for the input structure. Given a specific state it provides a string replacement based on
experience. Especially if we reward execution path depth, we indirectly reward validity
of the input with regard to the defined input structure, as non-valid inputs are likely
to be rejected early during parsing. From this perspective, the defined algorithm both
generates input according to the rewriting rules and simultaneously adapting these rules
based on successive feedback.
Further, current state-of-the art fuzzers define a fixed set of actions regardless of the

input string to be mutated. Enhancing fixed-action fuzzers with our approach would
require only small modifications to the mutator engines without changing the rest of the
fuzzing framework. It remains an open question if Q-learning integration into existing
frameworks will improve overall fuzzing quality or lower it due to performance overhead.

8.7. Conclusion

Inspired by the similar nature of feedback-driven random testing and reinforcement learn-
ing we introduce the first fuzzer that learns to perform highly rewarded mutations with
respect to a predefined search heuristics. By automatically rewarding runtime character-
istics of the target program we obtain inputs that likely drive program execution towards
a predefined goal, e.g. maximization of code coverage or processing time. To achieve
this we formulate fuzzing as a reinforcement learning problem based on the language
of Markov decision processes as introduced in Part I of this work. This allows us to
construct an algorithm based on deep Q-learning that learns to choose highly rewarded
actions given an input seed. Adapting the Q function iteratively yields a policy that
encodes the behavior of the Markov decision process. We indicate the feasibility of our
approach by implementing a prototype targeted against PDF parsers.
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Figure 9.1.: Overview.

This chapter ends our journey through the world of advanced fuzzing. After a short
recapitulation we return to the very beginning of this work and present the announced
connection of our discoveries and embedding of our overall map into a global atlas.
Putting our results in a slightly different context yields a dual view on the subject and
gives an outlook for the challenges to come.
Motivated by the urgent need for automated software testing and the lack of probability

theory in state-of-the-art random testing tools, we set the target to connect the deep
knowledge of stochastic processes with software testing. We achieved this by modeling
feedback-driven fuzzing in the language of Markov decision processes in Part I of this
work. This formulation allowed us to translate processes with suitable characteristics into
concrete fuzzing algorithms in Part II. By enhancing this stochastic approach with exact
computation based on symbolic execution we were able to fuzz into deep layers of the
targeted programs. In order to explore the full capabilities of our mathematical model,
we made use of very recent results from the field of reinforcement learning. Similar to
chess and the game of Go, we conjecture that machine learning techniques will continue
to surpass purely human fuzzing strategies in the future.
An overview of this work is depicted in Figure 9.1. In Part I we introduce the language

in which we formulate fuzzing with predefined behavior in Part II and fuzzing with

101



9. Conclusion

learning behavior in Part III. The mutator engine M generates an input I that is injected
into the program under test P in order to observe and evaluate feedback from P during
runtime. Each part of this work illuminates this feedback loop from a different perspective
and with a variety of mathematical methods. As we went along we took up all fragments
of Figure 9.1 and explained their meaning in detail.

9.1. Markov Decision Machines

Let us now look at fuzzing in another light. Similarly to the probabilistic Turing machine
that operates on a set of symbols with predefined transition relations, our mathematical
model of fuzzing gives rise to a Markov decision machine. In contrast to the probabilistic
Turing machine, we do not define accepting final states and consider probabilistic trans-
lation relations that are dynamically adapted during tape processing instead of statically
defined ones. In other words, our fuzzer directly implements a Semi-Thue system with
dynamically adapted substitution rules. Instead of accepting states we have rewards that
guide string substitution towards a predefined goal. The substitution rules are dynamic
in the sense that their probability of execution as defined in Equation (4.4) is adapted
by updating the policy π over time using the Q-learning approach (as defined in Section
8.3). The state of the Markov decision machine (not to be confused with the state x
of the decision process) is indicated by its behavior learned over time, i.e. the sequence
of kernels (πi)i∈N with πt = πt(·|x0, a0, r0, ..., xt−1, at−1, rt−1, xt). This dual view of our
approach might provide new impulses in theoretical informatics.

9.2. Outlook

We embed our thoughts into a broader view on the subject and open the gates to two
general directions for future research.

9.2.1. Hierarchies of Learning Agents

Let us place two illustrative examples first. In order to drive our fuzzers towards a
predefined goal, we gave them rewards as discussed in Section 4.3 to award good mutation
actions and sanction ineffective ones. With the help of machine learning techniques
we were able to take performed actions as well as raw system states into account for
learning rewarding policies and therefore establishing effective behavior. We applied
deep neural networks to be able to deal with the complex state structures. However, the
measurements for the concrete values were quite simple. We measured coverage of code,
execution time, or the time it takes to perform the mutation. We did this because these
values are correlated with finding bugs fast (as discussed in detail in Part I). How can we
bridge those indirect measures and reward the presence or neighborhood of bugs directly?
If we could find a way to detect characteristic conditions of certain bug classes during
program execution, we could feedback this information as a reward. If we could further
find some kind of similarity measure, we could define a distance to such bug conditions
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and directly reward the fuzzer to generate inputs that drive the program towards the
bug. Machine learning techniques helped us to deal with complex actions and system
states in Part III. Intuitively, machine learning might also help us in detecting complex
bug characteristics in the program flow.
Further, we could proceed to research the interaction between multiple fuzzers. In

Chapter 7 we discussed an approach to organize large-scale fuzzing in computer clusters.
In the spirit of Part III we could introduce learning techniques to this interaction. A
swarm of fuzzers that is controlled by an overall learning agent might reveal efficient
strategies for larger fuzzing campaigns.
Both examples, the sensing mechanism for characteristic bug classes and the controlling

agent for a swarm of fuzzers, have one thing in common: They introduce machine learning
into the overall testing process, the former via sub-agents within the feedback-loop, the
latter via super-agents above multiple fuzzing instances. Considering such hierarchies of
learning agents might be a fruitful new direction in software testing.

9.2.2. Alternative Models

The work at hand was motivated by two research challenges, namely to connect probabil-
ity theory to software testing and to translate stochastic processes into fuzzing algorithms.
We approached this adventure with constructing a mathematical model for fuzzing. All
results of the work at hand are findings from explorations within this model. It is impor-
tant to realize that this model is just one possibility within a manifold of alternatives.
Other models will most likely reveal very different techniques. To illustrate this thought
very impressively, let us have a look at the way we defined actions. In Section 4.2 we
modeled actions as random variables mapping substrings of an input to probabilistic
rewriting rules. Let us consider the following variant: What if actions could not only
transform the input of the program under test, but the program itself? Imagine an ac-
tion that transforms a program into representations that are more accessible to fuzzing.
As an example, such an action could replace compare instructions with large operands
by multiple comparisons with small operands, increasing the probability to pass them
during input generation. Such actions that translate the target into equivalent represen-
tations open the door to completely undiscovered fields of research. Similarly, alternative
mathematical models will reveal interesting new characteristics and novel approaches for
testing.
This thesis was written following the principle of "Calculemus!" in the spirit of Got-

tfried Wilhelm Leibniz. We hope that the reader is inspired to further explore the power
of mathematical modeling.
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