Lehrstuhl für Biotechnologie der Nutztiere

Analysis and optimisation of a porcine model for colorectal cancer Carolin Perleberg

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen

Grades eines
Doktors der Naturwissenschaften
genehmigten Dissertation.

Vorsitzende(r):	Prof. Dr. Harald Luksch
Prüfer der Dissertation:	1. Prof. Angelika Schnieke, Ph.D.
	2. apl. Prof. Dr. Dieter Saur

Die Dissertation wurde am \qquad 17.01.2019 \qquad bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am \qquad .06 .06 .2019 \qquad angenommen.

Abstract

Colorectal cancer (CRC) is the fourth most common cancer worldwide in both sexes and as it is often diagnosed late it has a high mortality. CRC is a very heterogeneous group of malignancies where a multitude of molecular changes such as chromosomal instability, microsatellite instability, mutations, deletions of chromosomal regions, aberrant epigenetic modifications and dysregulated microRNAs (miRNAs) disrupt the signalling pathways WNT, Ras/ MAPK, PI3K, TGF β /SMAD and p53. Animal models for CRC are essential to better understand the diseases and to identify novel treatment opportunities. Although mice are frequently used to model human disease, they do not replicate key aspects of human CRC pathology. The chair of livestock biotechnology at the University of Munich has generated pigs that carry a translational stop signal at codon 1311 in porcine APC that is orthologous to the human APC ${ }^{1309}$ mutation that is most frequently diagnosed in both CRC and familial adenomatous polyposis (FAP) a hereditary autosomal dominant disorder causing development of multiple polyps during puberty, resulting in a strong CRC risk. APC ${ }^{1309}$ germline mutation in human FAP is associated with very severe polyposis. The APC ${ }^{1311}$ pigs replicate hallmarks of human FAP and CRC including adenomatous polyps in the colorectum with loss of APC heterozygosity, β-catenin accumulation, upregulation of c MYC, MAPK pathway activation and progression to carcinoma in situ and phenotypic variation in polyposis severity ranging from ≥ 100 (high polyp animals (HP)) to only 1-10 polyps (low polyp animals (LP)) in the distal colorectum (last 40 cm).

The aim of this project was to identify elements in the genetic background such as modifier genes, single-nucleotide polymorphisms, gene sets and miRNAs that may contribute to severe polyposis using next generation mRNA and miRNA sequencing. The gene CYP7A1, miRNAs miR-215 and 194b-5p and gene sets associated with oestrogen response were found to be highly expressed and targeted by miRNAs differentially expressed in animals with severe polyposis (HP). Cis-regulation of CYP7A1 was analysed for CpG island methylation and SNPs in promoter region (>5000 bp prior to the ATG). One CpG site that is included in the binding sequence of STAT3, a known tumour-promoting factor, was significantly lower methylated in HP animals, likely allowing better binding of STAT3. Increased CYP7A1 expression could be traced to stromal cells of the normal mucosa rather than crypt cells.

Analysis of tumour progression from low grade (LG) to high grade (HG) intraepithelial neoplasia (IEN) revealed an increase in the expression of immune associated genes originating from HG tumour stroma, the genes PLXND1 and GBP6 in laser microdissected HG-IEN and miRNAs let-7e, miR-146a-5p, 146b, 183, 196a in HG-IEN bulk samples. High expression of these genes and miRNAs has been associated with tumour-promoting capacities in humans. Gene set enrichment showed gene sets such

as MYC targets and cell cycle related gene sets enriched that were also found enriched in human CRC, replicating broad molecular pathways of human CRC in the APC ${ }^{1311}$ pig model.

CRC in the $A P C^{1311}$ pigs progressed very slowly, just like in humans. Acceleration and increase of tumour progression of the model was aimed by introduction of oncogenic mutations. Therefore, the generation of APC ${ }^{1311}$ pigs with ubiquitous Cas9 expression in the ROSA26 locus was aimed to allow local genome editing with high efficiency of introducing sequential oncogenic mutations by in vivo administration of guide RNAs (gRNAs) via in vivo electroporation or adeno-associated viral vectors. Primary cells from APC ${ }^{1311}$ pigs were Cas9 (isolated from Streptococcus pyogenes) targeted into the porcine ROSA26 locus via homologous recombination using promoter trap strategy. Correctly targeted clones were analysed on genomic, RNA and protein level, validating correct targeting, expression and functional nuclease activity. However, the cells failed to generate viable offspring when used as nuclear donors for somatic cell nuclear transfer.

Zusammenfassung

Kolorektaler Krebs ist die vierthäufigste Krebserkrankung weltweit und weist aufgrund später Diagnosen eine hohe Sterblichkeitsrate auf. Die Betrachtung der molekularen Karzinogenese kolorektalen Krebses zeigt, dass es sich um eine sehr heterogene Gruppe von Krebserkrankungen handelt. Verschiedenste molekulare Veränderungen wie chromosomale Instabilität, Mikrosatelliteninstabilität, Mutationen, Deletionen chromosomaler Abschnitte, anormale epigenetische Modifikationen und dysregulierte microRNAs (miRNAs) stören die Signalwege WNT, Ras/MAPK, PI3K, TGFß/SMAD und p53. Tiermodelle für kolorektalen Krebs sind essenziell um die Erkrankung besser zu verstehen und neue Behandlungsmöglichkeiten identifizieren zu können. Obwohl hierbei sehr häufig auf Mäuse zurückgegriffen wird, um humane Erkrankungen zu modellieren, können sie Schlüsselaspekte humaner kolorektaler Krebspathologie nicht replizieren. Der Lehrstuhl für Biotechnologie der Nutztiere an der Technischen Universität München hat Schweine mit einem translationalen Stopsignal an Kodon 1311 des porzinen APC gens generiert, welches ortholog zur humanen APC ${ }^{1309}$ Mutation ist. APC ${ }^{1309}$ ist die am häufigsten diagnostizierte Mutation in sporadischem kolorektalen Krebs sowie der erblich autosomal dominanten Erkrankung familiäre adenomatöse Polypose (FAP) bei welcher sich unzählige Polypen bereits während der Pubertät im Darm entwickeln und so ein enormes Krebsrisiko darstellen. Die Keimbahnmutation APC ${ }^{1309}$ ist zudem mit einer sehr schweren Polypose der FAP Patienten assoziiert. Die APC ${ }^{1311}$ Schweine replizieren Schlüsselaspekte humaner FAP und kolorektalen Krebs wie adenomatöse Polypen im Kolorektum mit Verlust des APC wildtyp Alleles, β-catenin Akkumulierung, Hochregulierung von c-MYC, MAPK Signalwegaktivierung sowie die Progression zum Carcinoma in situ und phentopische Variation der Polypose von ≥ 100 Polypen (high polyp animals (HP)) zu 1-10 Polypen (low polyp animals (LP)) im distalen Kolrektum (letzten 40 cm).

Ziel dieses Projektes war die Identifizierung von Elementen im genetischen Hintergrund wie Modifier Gene, einzelner Nukleotidpolymorphismen (SNPs), Gen-Sets und miRNAs, welche zur Empfänglichkeit einer schwerwiegenden Polypose beitragen, mittels "next generation" RNA und miRNA Sequenzierung. Das Gen CYP7A1, miRNAs miR-215 und 194b-5p sowie Gen-Sets assoziiert mit Östrogen-Antwort wurden hoch exprimiert oder von dysregulierten miRNAs anvisiert in Tieren mit einer sehr schwerwiegenden Polypose (HP) nachgewiesen. Cis-Regulation von CYP7A1 wurde mittels CpG-Insel Methylierungsevaluation und SNP Detektion >5000 bp vor dem ATG analysiert. Eine CpG Position welche sich in der Bindungssequenz von STAT3, ein bekannter tumorfördernder Faktor, befindet, war signifikant weniger methyliert in HP Tieren, welches eine mögliche STAT3 Bindung
begünstigen kann. Darüber hinaus konnte die erhöhte CYP7A1 Expression Stromazellen der normalen Mukosa statt Kryptzellen zugeordnet werden.

Analysen der Tumorprogression von niedriggradigen intraepithelialen Neoplasien (LG-IEN) zu hochgradigen intraepithelialen Neoplasien (HG-IEN) offenbarten eine erhöhte Expression immunassoziierter Gene, welche dem Tumorstroma zugeordnet werden konnten, sowie der Gene PLXND1 und GBP6 in laser mikrodissektiertem intraepithelialen Neoplasien und miRNAs let-7e, miR-146a-5p, 146b, 183, 196a in Bulkproben. Im Menschen wurden hohe Expressionen dieser Gene und miRNAs tumorfördernden Fähigkeiten zugeordnet. "Gene set enrichment" Analysen zeigten Anreicherungen von MYC-Zielgenen und Zellzyklus assoziierte Gen-Sets, wie sie auch bei humanen kolorektalem Krebs gefunden wurden. Somit repliziert das Schweinemodell wesentlich molekulare Signalwege humanen kolorektalen Krebses.

Die Progression zu kolorektalem Krebs in den $A P C^{1311}$ Schweinen verlief, wie auch im Menschen, sehr langsam. Um eine Tumorbildung zu beschleunigen, sollte durch das Einfügen weiterer onkogener Mutationen erzielt werden. Hierfür, sollte die Generation eines APC ${ }^{1311}$ Schweins mit ubiquitärer Cas9 Expression im ROSA26 Lokus generiert werden. In Vivo Verabreichung von guide RNAs (gRNA) mittels in vivo Elektroporation oder adeno-assoziierter viraler Vektoren sollte hierbei das sequentielle Einfügen onkogener Mutationen ermöglichen. Cas9 (isoliert aus Streptococcus pyogenes) wurde in den porzinen ROSA26 Lokus primärer Nierenzellen eines APC ${ }^{1311}$ Schweins mittels homologer Rekombination und „promoter trap" Strategie eingebracht. Die korrekte Position der Cas9 Insertion sowie Expression und Nukleaseaktivität wurden auf genomischer, RNA- und Protein-Ebene erfolgreich transfizierter Klone validiert. Als Nukleus-Donator für Kerntransfer somatischer Zellen konnten die Zellklone jedoch keine lebenden Nachkommen generieren.

Content

Abstract 1
Zusammenfassung III

1. Introduction 1
1.1 Colorectal cancer 1
1.2 Molecular pathology of colorectal cancer 2
1.2.1 Epigenetic modifications in cancer 2
1.2.2 MicroRNAs in cancer 4
1.2.3 Microsatellite instability pathway 5
1.2.4 Classic adenoma-carcinoma sequence. 6
1.3 Adenomatous polyposis coli. 9
1.4 Familial adenomatous polyposis 10
1.5 Modifier genes 11
1.6 Next generation sequencing and colorectal cancer. 11
1.7 Early diagnosis 12
1.8 Animal models for CRC 13
1.8.1 Mouse 14
1.8.2 Pig 14
1.9 Genetic modification of pigs 15
1.9.1 Genome editing in pigs 16
1.10 Porcine cancer models 18
1.11 The porcine colorectal cancer model APC ${ }^{1311}$ pig 19
1.12 Objective 20
2. Materials and Methods 21
2.1 Material 21
2.1.1 Laboratory equipment 21
2.1.2 Consumables 23
2.1.3 Chemicals 24
2.1.4 Buffers and solutions 25
2.1.5 Bacterial media 27
2.1.6 Tissue culture media and solutions 27
2.1.7 Kits 28
2.1.8 Enzymes 29
2.1.9 Oligonucleotide primers 29
2.1.10 Oligonucleotides for hybridisation 32
2.1.11 Cloning vectors 33
2.1.12 Antibodies 33
2.1.13 Competent bacterial cells 34
2.1.14 Cultured mammalian cells 34
2.1.15 Pigs 34
2.1.16 Computer software 35
2.2 Molecular biological methods 37
2.2.1 Isolation of bacterial plasmid DNA 37
2.2.2 Isolation of mammalian genomic DNA using phenol-chloroform extraction 37
2.2.3 Isolation of mammalian genomic DNA using AllPrep Mini Kit 38
2.2.4 Isolation of mammalian genomic DNA using Quick Extract 38
2.2.5 Isolation of RNA 38
2.2.6 DNase digest 39
2.2.7 Quantification and Quality control of nucleic acids 39
2.2.8 Plasmid DNA purification for tissue culture by ethanol precipitation 40
2.2.9 Plasmid DNA purification for tissue culture by phenol-chloroform extraction 40
2.2.10 Column based DNA purification 40
2.2.11 Restriction enzyme digestion 41
2.2.12 Blunting 41
2.2.13 Oligonucleotide hybridisation 41
2.2.14 DNA ligation 41
2.2.15 DNA methylation 41
2.2.16 Bisulphite conversion 42
2.2.17 Whole genome amplification using the REPLI-g Mini Kit 42
2.2.18 Reverse Transcription. 42
2.2.19 5' Rapid amplification of cDNA ends (RACE) 42
2.2.20 Polymerase chain reaction 42
2.2.21 Colony PCR using GoTaq Polymerase. 43
2.2.22 Mycoplasma Test PCR using GoTaq 43
2.2.23 Reverse Transcription PCR 44
2.2.24 Quantitative Real-time PCR 44
2.2.25 Reverse transcription quantitative Real-time PCR 44
2.2.26 Enzymatic PCR purification 46
2.2.27 Sequencing with SmartSeq from MWG Eurofins 46
2.2.28 Sanger Sequencing 46
2.2.29 Pyrosequencing 47
2.2.30 Next Generation Sequencing using Illumina technology 47
2.2.31 Southern blot analysis 49
2.3 Microbiological methods 51
2.3.1 Bacterial culture 51
2.3.2 Cryoconservation of bacterial cultures 51
2.3.3 Transformation of bacteria 51
2.3.4 Blue white screening of bacterial colonies 51
2.4 Tissue culture methods 51
2.4.1 Passaging cells 52
2.4.2 Counting cells 52
2.4.3 Isolation and culture of primary porcine kidney fibroblasts 52
2.4.4 Cryoconservation of mammalian cells 52
2.4.5 Transfection of mammalian cells 53
2.4.6 Killing curve experiment 54
2.4.7 Selection 54
2.4.8 Clone picking 54
2.4.9 Clone expansion and screening 55
2.4.10 Cell preparation for somatic cell nuclear transfer. 55
2.5 Biochemical methods 55
2.5.1 Protein extraction from cultured cells 55
2.5.2 Determination of protein concentration. 55
2.5.3 Western blot Analysis. 56
2.5.4 Colonoscopy of pigs 58
2.5.5 Cryosectioning 58
2.5.6 Haematoxylin-Eosin staining of cryosections 58
2.5.7 Microscopy 59
2.5.8 Laser microdissection 59
2.6 Data analysis. 60
2.6.1 Statistical Analysis 60
2.6.2 In silico miRNA target prediction using Diana tools 60
2.6.3 Gene set enrichment analysis 60
3. Results 61
3.1 Attemp to identify modifier genes in the porcine model for colorectal cancer 61
3.1.1 Attempt to identify modifier genes on mRNA level 62
3.1.2 Attempt to identify modifier genes on miRNA level 77
3.2 Analysis of genes mediating tumour progression in the porcine model for colorectal cancer 85
3.2.1 Analysis of tumour progression on mRNA level 85
3.2.2 Analysis of tumour progression on miRNA level 90
3.3 Optimisation of the CRC model. 95
3.3.1 Generating targeting vectors for Cas9 placement into the porcine ROSA26 locus 95
3.3.2 Generation and analysis of Cas9-targeted clones 97
4. Discussion 105
4.1 Characterisation of the porcine model for colorectal cancer by transcriptional analyses using next generation sequencing technology 106
4.2 Attempt to identify modifier genes on mRNA level. 107
4.2.1 Gene expression analysis 108
4.2.2 Gene set enrichment analysis 109
4.2.3 Single-nucleotide polymorphisms 110
4.2.4 Computational analysis 110
4.3 Attempt to identify modifier genes on miRNA level 111
4.4 Analysis of tumour progression on mRNA level 112
4.5 Optimisation of the CRC model. 114
4.5.1 Generation and analysis of Cas9 targeted clones 115
4.5.2 Application of $A P C^{1311} /$ Cas9 pigs 116
5. Final remarks and outlook 117
6. List of abbreviations 118
7. List of figures 122
8. List of tables 123
9. Bibliography 125
10. Appendix 150
11. Acknowledgments 227

1. Introduction

1.1 Colorectal cancer

Cancers are the second leading cause of death worldwide, with more than 14 million new cases and 8 million mortalities in 2012 (Ferlay et al, 2015).

Colorectal cancer (CRC) is the fourth most common cancer in both sexes worldwide with 1.36 million cases and 51 \% mortalities in 2012 (Ferlay et al, 2015). Despite increasing efforts in research and healthcare to counter act cancer, the number of CRC cases is estimated to grow over time (Ferlay et al, 2010; Ferlay et al, 2015). The increasing number of CRC cases is associated with the increased age of people (World Health Statistics 2017: Monitoring health for the SDGs) but also with the expansion of western lifestyle and diet. This was evidenced by 51,508 more CRC incidents in first-world regions compared to those in developing areas in 2012 (Ferlay et al, 2015). High risk factors for CRC are high consumption of red meat, alcohol and tobacco, obesity and a lack of exercise which represent aspects of a western lifestyle (Jemal et al, 2011).

70-80 \% of all CRC cases are sporadic while 20-30 \% are caused by hereditary mutations (Whiffin et al, 2014). Both sporadic and hereditary CRC arise from mutations causing histological changes of the colorectal epithelium. Through early mutations of tumour suppressor genes, the stem cells or progenitor cells in the colorectal crypts give rise to aberrant crypt foci that progress to conventional adenomatous or serrated adenomas in colon and rectum. Only 10-15 \% of conventional adenomas will develop over a span of a decade to CRC (Fearon, 2011; Yang et al, 2004). No matter how slow this process is, CRC accounted for 8% of all cancer deaths worldwide in 2012, making it the fourth most deathly cancer (Ferlay et al, 2015). This is in large part due to late diagnosis of the disease as early stage CRC is often asymptomatic.

The survival rate of CRC is strongly dependent on the stage of the disease at the time of diagnosis (Tomlinson et al, 2012). According to the American cancer society CRC diagnosed in stage 1 has a 5year survival rate of 89.9 \% while later stages, with or without lymph node metastasis, range from 71.3 \% to 13.9 \% respectively (US national cancer institute). However, only about 12 \% of all CRC cases are diagnosed in stage 1 (Guinney et al, 2015). This emphasises the importance of early diagnostic methods and better implementation of screening methods.

1.2 Molecular pathology of colorectal cancer

The more research efforts were addressed to CRC, the more complex pathological pathways were uncovered, identifying CRC as a heterogeneous group of malignancies. The two best characterised CRC carcinogenesis pathways are the classic adenoma-carcinoma sequence (Fearon \& Vogelstein, 1990) and the microsatellite instability (MSI) pathway. The prognosis and strategies for treating CRC are dependent on the molecular mechanisms underlying the disease (Huth et al, 2014).

Genomic instability is a crucial feature of many cancer types. In CRC at least three main mechanisms are well known that cause genomic instability. One mechanism is microsatellite instability (MSI), which is the driving force of the MSI pathway. The second mechanism, aberrant DNA methylation is also strongly associated with the MSI pathway (Guinney et al, 2015; Hinoue et al, 2012). The third mechanism, chromosomal instability, is the driving force of the classic adenoma-carcinoma sequence. So far the MSI pathway and adenoma-carcinoma-sequence have been mainly characterised by the acquisition of specific mutations modulating the signalling pathways WNT, Ras/MAPK, PI3K, TGFß/SMAD and TP53. Integrative analysis revealed that 94% of all CRC carry an alteration (including mutations, amplification and deletions) in the WNT, 61 \% in the MAPK, 50% in the PI3K, 36% in the TGF β and 60% in the p53 signalling pathways (Guinney et al, 2015). However, the improved insight into epigenetic modifications with their genomic instability promoting capacity, microRNA (miRNA) interference and their influence on gene expression will lead to an increase of these numbers and expansion of the CRC carcinogenesis pathways.

1.2.1 Epigenetic modifications in cancer

The field of epigenetics is concerned with the study of the regulation of DNA-templated processes (transcription, repair and replication of DNA) by chromatin based events without changes to the DNA sequence (Dawson \& Kouzarides, 2012).

Chromatin is composed of nucleosomes that consist of an octamer containing two of each $\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}$, H 3 and H 4 histones with 147 bp DNA wrapped around (Luger et al, 1997). Tightly packed chromatin, rendering the DNA inaccessible for transcription factors (TFs), is termed heterochromatin and mainly contains inactive genes. Euchromatin on the other hand, is packed very loosely allowing the TFs to access the DNA and thus contains most of the active genes. The chromatin conformation can be modulated by two different mechanisms, DNA and histone modifications. So far, four different types of DNA and 14 different classes of histone modifications have been identified (Bannister \& Kouzarides, 2011; Dawson \& Kouzarides, 2012; Pfaffeneder et al, 2011; Tahiliani et al, 2009; Tan et al, 2011).

Methylation and acetylation at lysine and arginine residues of histones 3 and 4 are the best understood histone modifications. Histone acetylation neutralises the positive charge of the bound lysine residue at the amino terminal of the histone tail, reducing the affinity between negatively charged DNA and the histone complex (Luger et al, 1997). This results in accessible euchromatin upon acetylation by histone acetyltransferases (HATs). Histone deacetylases (HDACs) remove the acetyl groups from lysine residues of the histones, rendering the histone tail positively charged with higher affinity towards the negatively charged DNA, resulting in heterochromatin.

Histone methylation is more complex. Methylation occurs on both arginine and lysine residues governed by methyltransferases and demethylases. Methylation of arginine can be asymmetrical or symmetrical with one or two methyl groups (Blanc \& Richard, 2017). Methylation of lysine residues with one, two or three methyl groups can have repressing or enhancing effects on gene expression depending on the position of the lysine residue, the histone and the amount of methyl groups added. Even though the system is bivalent, active euchromatin is associated with H3K9me, H3K27me, H4K20me H3K4me/2/3, H3K36me/3 and H3K79me/2/3. While heterochromatin is associated with H3K9me2/3, H3K27me2/3, H3K4me3 and H4K20me3 (Black et al, 2012).

DNA methylation was the first modification discovered and is therefore the best characterised. In higher eukaryotes, three types of DNA methyl transferases (DNMTs) target the DNA directly and catalyse the conjugation of a methyl group to the 5C position of a CpG dinucleotide, generating a 5methylcytosine. DNMT1 is a maintenance methyltransferase catalysing the methylation of hemi methylated DNA after replication by copying the methylation patterns from the parental to the newly synthesised DNA strand (Li et al, 1992). De novo methylation during embryogenesis, for instance, is performed by de novo methyltransferases DNMT3a and DNMT3b (Okano et al, 1999).

Aberrant DNA methylation in the shape of global hypomethylation and local hypermethylation has been consistently found in all cancers including CRC (Feinberg \& Vogelstein, 1983a; Gama-Sosa et al, 1983). Global hypomethylation can be caused by loss of function of the maintenance methyltransferase DNMT1 or by the TET mediated oxidation of the 5-methylcytosine and subsequent base excision repair (Cortellino et al, 2011; Karpf \& Matsui, 2005; Li et al, 1992; Tahiliani et al, 2009). Global hypomethylation leads to loss of methylation of repetitive sequences that are mainly composed of transposable elements (TE) that make up about 50 \% of the human genome (Estecio et al, 2007; Szpakowski et al, 2009). The group of TEs contains long terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) including Alu sequences (Anwar et al, 2017) (Kapitonov \& Jurka, 2008). In normal cells TEs are silenced by DNA methylation and histone modifications. By DNA hypomethylation, TEs are activated and can translocate within the genome, rendering them highly mutagenic (Criscione et al, 2014; Lee et al, 2012). This causes genomic
instability, gene disruption of tumour suppressor genes such as APC, oncogenic activation and even chromosomal breakage (Daskalos et al, 2009; Feinberg \& Vogelstein, 1983b; Hur et al, 2014; Lee et al, 2012; Liu et al, 1997; Miki et al, 1992; Wolff et al, 2010).

Local hypermethylation of CpG islands (CGI) in promoter regions termed the CGI methylator phenotype (CIMP) is closely associated with the silencing of tumour suppressor genes (Esteller et al, 2000; Herman et al, 1998; Tse et al, 2017). The silencing can be caused by steric blockage of the binding of TFs when the consensus sequence of a TF is methylated (Klose \& Bird, 2006) or by methylationmediated recruitment of methyl-CpG-binding proteins (MBPs) which attract corepressor molecules to silence the expression and modulate chromatin conformations (Deaton \& Bird, 2011). DNA methylation-mediated silencing in CRC of genes from all five crucial signalling pathways WNT, MAPK, p53, PI3K and TGF β /SMAD have been reported.

1.2.2 MicroRNAs in cancer

The human haploid genome of the size of $\sim 3 \times 10^{9} \mathrm{bp}$ contains about 21000 protein-coding genes that make up only 1.5 \% of our entire genome. However, almost the entire genome is transcribed, leaving a vast amount of RNA that is not translated. These non-coding RNAs (ncRNAs) are subdivided into small ncRNAs, below 200 bp in size, and long ncRNAs. MicroRNAs (miRNA) are part of the small ncRNAs (Dawson \& Kouzarides, 2012) and are evolutionarily highly conserved 21-25 bp RNA sequences. 25 \% of all miRNA genes do not have their own regulatory elements including a promoter but are positioned in the intron region of other genes, dependent on host gene expression (Lin et al, 2006; Wu et al, 2011). MiRNA genes transcribed (Hayes et al, 2014) (pre-miRNAs) (Shirafkan et al, 2018) into ~22 nucleotide long mature miRNAs (Ha \& Kim, 2014). With assembly of the RNA-induced silencing complex (RISC) the mature miRNA binds to complementary sequences mainly of the 3^{\prime} untranslated region (UTR) of its mRNA targets (Easow et al, 2007; Fabian et al, 2010; Orom et al, 2008; Shirafkan et al, 2018). This will induce translational repression reducing protein numbers or mRNA degradation reducing both mRNA and subsequently protein numbers (Shirafkan et al, 2018). Although mRNA degradation is believed to mainly contribute to reduced protein expression (75-84\%) (Guo et al, 2010; Hendrickson et al, 2009). Just like genes, mi-RNAs have been found dysregulated in cancer with oncogenic (onco-miR) or tumour suppressive (ts-miRs) effects and in some cases even both.

The reasons for miRNA dysregulation are still poorly understood but more than 50% of miRNAs are localised in so called fragile regions of the genome, where genomic instability will lead to loss or amplification of miRNAs (Calin et al, 2004). Aberrant epigenetic modifications including DNA methylation of the genome also influence the expression of miRNA genes, resulting in aberrant miRNA
expression (Bandres et al, 2009; Toyota et al, 2008; Vogt et al, 2011). Therefore, dysregulated miRNA regulation can be observed in both the MSI and the classic adenoma carcinoma pathway modulating all 5 pathways WNT, MAPK, p53, PI3K and TGFß/SMAD (see 1.2.3 and 1.2.4).

1.2.3 Microsatellite instability pathway

The MSI pathway is responsible for about 13-16 \% of all human sporadic CRCs and mostly associated with lesions in the right colon (Bettington et al, 2013; Guinney et al, 2015). It is characterised by a defective DNA mismatch repair (MMR) system frequently caused by promotor methylation-mediated silencing or mutations of the gene MLH1 (Deng et al, 1999; Herman et al, 1998; Kane et al, 1997; Veigl et al, 1998). However, there are also MSI CRC cases, where other members of the MMR system, such as MSH2, MSH6, MGMT and MBD4 (Esteller et al, 1999; Lahtz \& Pfeifer, 2011) are aberrantly methylated and silenced, or downregulated by overexpressed miR-155 and miR-21 that target MLH1, MSH2 and MSH6 (Valeri et al, 2010; Volinia et al, 2006). The defective MMR system is incapable of repairing errors made during DNA replication leading to the accumulation of insertions, deletions and substitutions in stretches of short tandem repeats. These 1-6 bp repeats, called microsatellites, can be found throughout the entire genome of most mammals in both coding and non-coding regions (de la Chapelle \& Hampel, 2010). Therefore, microsatellite mutations can affect gene functions. Mutations of other MMR-related genes MSH3 and MSH6 (Duval \& Hamelin, 2002; Malkhosyan et al, 1996), the genes APC (Guinney et al, 2015), AXIN2 (Liu et al, 2000; Shimizu et al, 2002), BRAF ${ }^{V 600 E}$ (oncogenic mutation) (Guinney et al, 2015), PTEN (Guanti et al, 2000), TGFBR2 (Markowitz et al, 1995), ACVR2 (Jung et al, 2004) and proapoptotic factors BCL10 (Yamamoto et al, 2000) and BAX (Rampino et al, 1997) are also often diagnosed in MSI tumours, activating proliferation via the WNT and MAPK pathways and inactivating the growth inhibition via TGF β signalling and blocking apoptosis. Additionally, aberrant miRNA expression of miR-31, 223 and 26b was detected (Earle et al, 2010). MiR31 has been shown to target AXIN1, activating the WNT pathway (Slaby et al, 2007). The functions of miR-223 and 26b have not specifically been determined in the MSI pathway, but miR-223 has been associated with an oncogenic effect on the RAS pathways by targeting RASA1 (Sun et al, 2015). MiR26 b has been associated with oncogenic effects on metastasis targeting both PTEN and WNT5A (Fan et al, 2018).

As the MSI pathway is highly associated with CIMP high phenotype (Guinney et al, 2015; Hinoue et al, 2012), methylation-mediated silencing of WNT pathway components such as APC (Esteller et al, 2000; Segditsas et al, 2008), negative regulators SFRP1, 2, 4 and 5 (Suzuki et al, 2004), APCDD1, DKK1, AXIN2 (de Sousa et al, 2011),WNT targets LGR5 and ASCL2 and RAS/MAPK components RASSF1 and 2 (80\%
of CRC) (Akino et al, 2005; Fernandes et al, 2013; Harada et al, 2007), PI3K pathway elements PPP2R2B and PTEN (in 20\% of CRCs) (Goel et al, 2004; Tan et al, 2010), TGFß factors TSP1 and RUNX3 (20\% of CRCs) (Imamura et al, 2005; Rojas et al, 2008), p53 pathway components P14 (20% of CRCs) and IGFBP7 (Nyiraneza et al, 2012; Shen et al, 2003; Suzuki et al, 2010), genes involved in cell cycle control P16 (Shima et al, 2011)and TFs important for differentiation CDX1, CDX2, GATA4 and GATA5 (Baba et al, 2009; Hellebrekers et al, 2009; Hryniuk et al, 2014; Suh et al, 2002; Wong et al, 2004) are possible.

1.2.4 Classic adenoma-carcinoma sequence

The mechanism of chromosomal instability (CIN) is not quite understood, although it has been found to behave like a dominant trait causing deletions, inversion, translocations and duplications (Lengauer et al, 1997). Defects in the mitotic spindle formation, alignment and segregation of chromosomes during mitosis may contribute to CIN (Barber et al, 2008; Grady, 2004). Mutated APC, which occurs in more than 80% of all CRC cases, has also been discussed as potential cause of CIN, however some MSI tumours with APC mutations do not exhibit any CIN characteristics (Alberici \& Fodde, 2006; Guinney et al, 2015; Moran et al, 2010).

The classic adenoma-carcinoma sequence, first described by Fearon and Vogelstein and closely associated with the left colon and rectum (Bettington et al, 2013; Guinney et al, 2015), described CRC as a disease that acquires oncogenic mutations in APC, KRAS, DCC, SMAD and TP53 (Fearon \& Vogelstein, 1990). However, only very few cases of CRC show mutations in all of these genes collectively (Guinney et al, 2015) and new insights have shown that other mechanisms can modulate the crucial signalling pathways WNT, MAPK, PI3K, TGFß/SMAD and p53 (Figure 1).

The adenoma-carcinoma sequence in the human gut is initiated by dysregulation of the WNT pathway due to loss or reduction of $A P C$ ($>80 \%$ of all CRCs). The activation of the WNT pathway can also occur by mutations of CTNNB1 or AXIN2 (Fodde et al, 2001; Korinek et al, 1997; Liu et al, 2000; Morin et al, 1997), aberrant methylation and downregulation of the APC promotor (Esteller et al, 2000; Segditsas et al, 2008), negative regulators SFRP1, 2, 4 and 5 (Suzuki et al, 2004), APCDD1, DKK1, AXIN2 and downstream effectors such as ASCL2 and LGR5 (de Sousa et al, 2011). Increased expression of the onco-miRs miR-135a and b repressing APC translation (Nagel et al, 2008) and miR-146a stabilising β catenin (CTNNB1) (Hwang et al, 2014; Lu et al, 2017) have also been detected. Downregulation of the ts-miRs miR-145, disrupting translocation of β-catenin (Michael et al, 2003; Yamada et al, 2013) and miR-506 and miR-101 that both target the polycomb group protein EZH2 (Strillacci et al, 2013; Zhang et $a l$, 2015) have been identified. The activation of the WNT pathway leads to proliferation and the
development of a micro adenoma. CIN-mediated loss of heterozygosity of the wildtype APC allele causes further progression to an early adenoma.

Successive activation of the MAPK signalling pathway of EGFR signalling through oncogenic KRAS mutation in 30-60 \% of all CRCs and rarely NRAS mutations (Cekaite et al, 2016) (Irahara et al, 2010) leads to further proliferation and the development of an intermediate adenoma. RAS/MAPK activation can also occur through aberrant methylation of pro apoptotic and growth inhibition modulators RASSF1 and 2 (80% of CRC) (Akino et al, 2005; Fernandes et al, 2013; Harada et al, 2007). In normal non-mutant KRAS the ts-miRs miR-143 (Chen et al, 2009), miR-145 (Kent et al, 2010) and let-7 (Akao et al, 2006) target $K R A S$ directly and have been found downregulated, also allowing activation of the RAS/MAPK signalling and subsequent proliferation.

Figure 1 Display of the classic adenoma-carcinoma sequence incorporating mutations, aberrant methylation and miRNA dysregulation in the WNT, MAPK, PI3K, TGFß and p53 pathway observed in CRC (Adapted from (Fearon, 2011; Shirafkan et al, 2018). Red crosses indicate loss of protein by loss of function mutations or CIN mediated loss of alleles. Red octamers with me mark reduced protein level caused by methylation-mediated gene silencing. Blue arrows indicate oncogenic mutations causing increased protein function or increased expression of miRNAs. Red arrows symbolise reduced miRNA expression.

EGFR activation can also lead to signalling of the PI3K survival promoting pathway which is regulated via the tumour suppressor PTEN. PTEN has been found to be mutated in CRC (Molinari \& Frattini, 2013),
both in MSI and CIN marked tumours (Guinney et al, 2015). Altered methylation of PTEN (in 20 \% of CRCs) (Goel et al, 2004) and upregulation of a vast number of miRNAs targeting PTEN have been identified to reduce its tumour suppressor function in CRC. The upregulation of miR-181a, 221 and 222 induced by oncogenic KRAS (Ota et al, 2012; Tsunoda et al, 2011) combined with miR-21, 32, 92a, 20b and 130b (Sarver et al, 2009; Wu et al, 2013; Zhang et al, 2014a; Zhu et al, 2014) that all target and repress PTEN (Garofalo et al, 2009; Nishimura et al, 2012; Tsunoda et al, 2011; Zhang et al, 2017), highlight its significance in CRC progression and PI3K pathway control. Activation of the PI3K pathway has been observed by methylation-mediated downregulation of PPP2R2B (Goel et al, 2004; Tan et al, 2010) and downregulation of the ts-miR miR-126 repressing expression of $\mathrm{p} 85 \beta$, a regulatory subunit that stabilises PI3K itself (Guo et al, 2008) and miR-215 repressing the EGFR ligand epiregulin, which also influences the RAS/MAPK pathway (Vychytilova-Faltejskova et al, 2017).

The TGF β response is lost due to mutations or loss of DCC and SMAD4 by CIN, promoting development of a late adenoma (Mehlen \& Fearon, 2004; Mehrvarz Sarshekeh et al, 2017; Takayama et al, 2006). Mutations in SMAD2 and 3 but also in TGF6 were observed in CRC (Grady et al, 1999; Leary et al, 2008; Wood et al, 2007). The pathway components TSP1 and RUNX3 (20\% of CRCs) have been found to be downregulated by aberrant methylation (Imamura et al, 2005; Rojas et al, 2008). Inactivation of the TGF β response in CRC was observed by upregulation of miR-21, 106a, 301a and 135b, that target and repress the TGF β R2 and miR-490-3p, targeting TGF β R1 (Feng et al, 2012; Li et al, 2015a; Xu et al, 2015; Yu et al, 2012; Zhang et al, 2014b). Downstream miR-130a, 301a and 454 have also been found to be upregulated in CRC and inversely correlated with the expression of their target SMAD4 (Liu et al, 2013). The ts-miR miR-25 downregulated in CRC targets SMAD7 (Li et al, 2013). The modulation of the TGF β pathway enables survival, migration and evasion of growth inhibition and the progression to a late adenoma.

The p53 pathway plays a significant role in almost all cancers including CRC where TP53 itself is often mutated and the wildtype allele even lost (loss of heterozygosity (LOH)) resulting in evasion of apoptosis and carcinoma formation (Fearon \& Vogelstein, 1990). Additionally, miR-125b, upregulated in CRC, targets TP53 directly and reduces its expression (Nishida et al, 2011). Aberrant methylation of p53 target genes IGFBP7 and P14 (20 \% of CRCs), an inhibitor of p53 degradation, was found to inactivate this proapoptotic pathway (Nyiraneza et al, 2012; Shen et al, 2003; Suzuki et al, 2010). Activated p53 can induce the upregulation of ts-miRs miR-34a/b/c, that inhibit the p53-inhibiting factor SIRT-1 and essential factors for cell cycle progression and apoptosis inhibitors such as BCL2 (He et al, 2007; Misso et al, 2014; Rokavec et al, 2014). MiR-34a/b/c and miR-192, 194-2 and 215 that induce P21-mediated cell cycle arrest (Akao et al, 2011; Yamakuchi et al, 2008) were found to be
downregulated in CRC (Braun et al, 2008; Chiang et al, 2012) inactivating the p53 pathway of cell cycle arrest and apoptosis

The activated WNT and inactivated TGF β pathway contribute to epithelial mesenchymal transition (EMT) (by MYC activation in WNT), essential for metastasis (Weinberg, 2007). Additionally, upregulation of the miR-21 and 31 that target and repress TIMP3 and RECK, increases in turn matrix metalloproteinases (Bandres et al, 2006; Slaby et al, 2007). Downregulation of miR-200 inhibits TGF $\beta 1$ and also targets ZEB1/2 (Gregory et al, 2008). By increased ZEB1/2, E-cadherin is reduced and vimentin increased, allowing EMT and Metastasis (Mongroo \& Rustgi, 2010).

It must be noted that the classic adenoma-carcinoma sequence is associated with mainly CIMP negative and CIMP low, rendering local hypermethylation-mediated silencing rarer than in the MSI pathway (Guinney et al, 2015). However, there is often no clear distinction between the MSI pathway and classic adenoma-carcinoma sequence as they can blend into each other (Guinney et al, 2015). Therefore, the understanding of the importance of the five crucial signalling pathways in both carcinogenesis and the multitude of modulation mechanisms is essential to comprehend disease progression and to enable development and improvement of therapy (Figure 1).

1.3 Adenomatous polyposis coli

The gene adenomatous polyposis coli (APC) spans 21 exons in humans and encodes a very important tumour suppressor of 2843 amino acid length (Fearnhead et al, 2001). It plays an essential role in the regulation of the WNT pathway. Under normal conditions APC together with GSK3 β and AXIN regulates the proteasomal degradation of β-catenin (CTNNB1) (Rubinfeld et al, 1996) (Figure 2). When a WNT molecule binds its receptor frizzled (FZD), the protein dishevelled (DVL) becomes activated and dephosphorylates AXIN and thus inactivates the whole β-catenin degradation complex (Fagotto et al, 1999; Willert et al, 1999; Yamamoto et al, 1999). This leads to the accumulation of β-catenin in both the cytoplasm and the nucleus (Fearnhead et al, 2001; Kobayashi et al, 2000; Smalley et al, 1999). Together with the TFs T-cell factor (TCF) and lymphoid enhancer factor (LEF) (Behrens et al, 1996), β catenin induces the transcription of genes facilitating proliferation and migration (Roose \& Clevers, 1999).

More than 80 \% of all sporadic CRC cancers carry an APC mutation (Fearnhead et al, 2001; Moran et al, 2010). 70-80 \% of those mutations cause a premature stop resulting in translation of a truncated APC protein. 60% of these mutations are located between amino acid codon 1286 and 1513, the
mutation cluster region (MCR) (Fearnhead et al, 2001; Miyoshi et al, 1992). Mutations in this region specifically cause loss of many AXIN and β-catenin binding sites, resulting in reduced β-catenin degradation (Polakis, 1997). When both APC alleles carry such a mutation, or the wildtype allele is lost by CIN (Solomon et al, 1987) or hypermethylation (Esteller et al, 2000; Segditsas et al, 2008), there is no more proteasomal degradation of β-catenin (Figure 2). Thus, the WNT signalling pathway is constantly active, independent of a WNT signal, by constant β-catenin accumulation in cytoplasm and nucleus (Korinek et al, 1997; Munemitsu et al, 1995). Successively cancer promoting genes, facilitating proliferation, migration and EMT are constantly expressed (Boon et al, 2002; Mann et al, 1999). Additionally, the β-catenin bound by e-cadherins will be released upon EMT by reduction of ecadherin, further magnifying the signal (Heuberger \& Birchmeier, 2010; Lu et al, 2003). The codons 1309 and 1450 are by far the most frequently mutated amino acids in APC in sporadic CRC (Beroud \& Soussi, 1996)

Figure 2 A display of the inactive, active and WNT independent WNT pathway (Adapted from (Pennisi, 1998). APC, adenomatous polyposis coli; CTNNB1, β-catenin; DVL, dishevelled; GSK3 β, glycogen synthase kinase 3β.

1.4 Familial adenomatous polyposis

Familial adenomatous polyposis (FAP) is an autosomal dominant disease caused by germline mutations of the APC gene (Kinzler et al, 1991).

FAP can vary in severity but patients typically develop hundreds of adenomatous polyps already during puberty or their twenties (Croner et al, 2005). If these polyps are not removed surgically or medically treated, statistically 10% of them will proceed to adenocarcinomas by the average age of 36 (Croner
et al, 2005; Fearon, 2011; Fodde \& Smits, 2001). Just like in sporadic CRC, mutations in the APC gene at position 1309 are the most diagnosed in FAP patients and associated with a very severe phenotype of polyposis (Crabtree et al, 2002; Miyoshi et al, 1992). Just like in the adenoma-carcinoma sequence of sporadic CRC the initiating event of FAP is dysregulation of the WNT pathway by APC mutations. Thus FAP replicates many aspects of adenoma carcinoma sequence pathology (Bettington et al, 2013).

1.5 Modifier genes

CRC like other cancers is a systemic multifactorial disease. The two main carcinogenic pathways outlined here illustrate the variety of mechanisms and alterations that contribute to tumorigenesis (Figure 1). Therefore, it is not surprising that there are FAP patients carrying the same germline APC mutation but suffer different extents of polyposis severity (Crabtree et al, 2001). This difference is believed to be caused by genes and loci that pose a genetic low risk predisposition, so called modifier genes that modulate the polyposis severity (Crabtree et al, 2002; Houlston et al, 2001). Genome-wide association studies have been employed to detect SNPs that are associated with sporadic CRC (Broderick et al, 2007; Crabtree et al, 2002; Dunlop et al, 2012; Houlston et al, 2001; Tomlinson et al, 2007; Tomlinson et al, 2008; Whiffin et al, 2014). A study focussed on FAP patients showed, that two of the SNPs associated with sporadic CRC risk are also associated with severe polyposis in FAP (Ghorbanoghli et al, 2016). Thus the identification of modifier genes or loci mediating severe polyposis in FAP may also mediate severe polyposis and thus higher risk of CRC in sporadic CRC with APC mutations. The identification of such modifier genes with the help of next generation sequencing (NGS) methodology is of great value to determine susceptibility to CRC very early. The early identification of patients genetically susceptible to CRC may allow improved preventive screening.

1.6 Next generation sequencing and colorectal cancer

Sequencing, determining the order of nucleotides of DNA, was first aimed to identify the sequence of the genes and the entire genome. The first human genome was sequenced using the improved Sanger or termination sequencing method, where the chain-terminating dideoxynucleotides (ddNTPs) were labelled with four different fluorescent dyes (Sanger et al, 1977; Smith et al, 1986) in a shotgun sequencing approach (Anderson, 1981; Gardner et al, 1981; Staden, 1979) and paired end setting to eliminate and reduce sequencing gaps (Edwards et al, 1990; Ewing \& Green, 1998; Ewing et al, 1998; Roach et al, 1995; Venter, 2003; Venter et al, 2001).

NGS or high-throughput sequencing incorporate different technologies that all allow the sequencing of DNA and RNA in a cheaper, faster and larger scale (1000-1 $\times 10^{6}$ DNA molecules simultaneously) than Sanger sequencing.

One of NGS technologies is Illumina (Solex) sequencing. This technique is a combination of the Sanger termination method and pyrosequencing by synthesis (Nyren \& Lundin, 1985; Ronaghi et al, 1998) by using reversible terminator dye-labelled dNTPs (Canard \& Sarfati, 1994). Also the system is based on DNA colony sequencing (Kawashima, E. H. et al, 1998, International patent no. WO1998044151A1; Kawashima, E. H. et al. (1998) International patent no. WO1998044152A1).

Now that the genomes of many organisms were widely elucidated NGS whole genome sequencing was used to identify the genomic landscape of human cancers including CRC (Vogelstein et al, 2013; Wood et al, 2007). However, NGS methodology in oncology and CRC does not only help characterise the disease further (Cancer Genome Atlas, 2012), but is used to identify a consensus molecular classification (Guinney et al, 2015), to perform molecular diagnosis that aid treatment prognosis (Hsu et al, 2016; Jesinghaus et al, 2016), to identify genetic high, medium and low risk factors (Broderick et al, 2007; Fernandez-Rozadilla et al, 2014; Palles et al, 2013; Tomlinson et al, 2008; Whiffin et al, 2014) and to find biomarkers of disease, progression and drug vulnerability (Garnett et al, 2012). For the detection of specific known SNPs, mutations, genomic amplifications or deletions or gene or miRNA expression differences microarrays are useful (Malapelle et al, 2015; Serrati et al, 2016). However, also in diagnostics, there are cases where no gene of the microarray panels is tested positively (LaDuca et al, 2014; Susswein et al, 2016). Therefore, and for search of unknown mechanisms in CRC progression whole genome, whole exome, whole transcriptome, mRNA or miRNA sequencing is required. Both DNA and RNA sequencing allow comparative analysis between groups. RNA sequencing allows comparative quantitative expression analysis of genes, miRNAs and entire gene sets. This is important as shown above molecular changes in CRC are not only based on genomic changes but also by miRNAs dysregulation, epigenetic modifications and TFs.

1.7 Early diagnosis

The survival rate of CRC is strongly dependent on the stage of the disease at the time of diagnosis (Tomlinson et al, 2012). CRC diagnosed at stage 1 has a 5-year survival rate of 89.9% according to the American cancer society, while later stages without and with lymph node metastasis range from 71.3 - 13.9 \% respectively (US national cancer institute). However, only about 12% of all CRC cases are diagnosed at stage 1 (Guinney et al, 2015). Early diagnosis is challenging due to the fact that symptoms of CRC are often not very specific. Primary and most frequently observed symptoms are altered bowel
habits, such as diarrhoea or constipation, abdominal pain, change in stool size, weight loss, weakness, iron deficiency and anaemia, which can be mistaken as symptoms of digestive irregularities or other diseases (Dziki et al, 2015; Tomlinson et al, 2012). Only late very severe symptoms such as rectal bleeding and abdominal mass showed symptom specificity of >95 \% (Labianca et al, 2013).

The current standard method of diagnosis is colonoscopy (Kim et al, 2014). However, due to high invasiveness and high costs, many patients do not undergo colonoscopy, rendering it unsuitable as preventive screening. A less invasive and more frequently performed screening method is the group of faecal tests including faecal occult blood test (FOBT), the faecal immunochemical test (FIT), DNAand RNA-based biomarker tests, Protein biomarker test and faecal microbiome-based biomarker test (Schreuders et al, 2016). Even though the DNA based biomarker test showed higher sensitivity, the FIT displayed higher specificity and lower costs (Imperiale et al, 2014). Therefore, the FIT that detects traces of blood in the stool via antibody-based haemoglobin detection, is the most sensitive cost effective screening method (Brenner \& Tao, 2013; Hol et al, 2009; Song \& Li, 2016). However, these tests are not compulsory and many patients who are not aware of a disease risk are not inclined to undergo such tests voluntarily.

All cells in the organism and especially cancer cells secrete nucleic acids into the blood (O'Driscoll, 2007) which presents another non-invasive screening opportunity. The detection of oncogenic mutations and other biomarkers of CRC in the blood has already been shown (Cassinotti et al, 2013; Chen et al, 2015; Lim et al, 2013). The presence and detection of nucleic acids in blood could allow non-invasive screening for susceptibility factors for CRC. The knowledge of a susceptibility status towards CRC, would make patients more aware to the risk of CRC and might encourage them to undertake more screening procedures.

1.8 Animal models for CRC

No in vitro system can model the whole-body pathophysiology of a systemic disease as CRC. Therefore, to identify markers of susceptibility and to fully understand the heterogeneous aspects of CRC, well defined disease animal models, that replicate relevant aspects of human CRC pathology as closely as possible, are essential.

1.8.1 Mouse

The mouse is the best studied and most commonly used mammalian model organism in biomedical research. This is mainly due to convenient and cheap housing and the advances and ease of modifying them genetically (Chu et al, 2016; Skarnes et al, 2011).

Mice have provided valuable information on the molecular basis of many human diseases and facilitated multiple proof of principle studies. However, mice do not always replicate human disease pathology accurately, reducing their predictive value for preclinical studies (Mak et al, 2014). To improve the prediction of safety and effectiveness of novel drugs in clinical trials, non-rodent species may prove valuable in preclinical studies (Bahr \& Wolf, 2012; Justice \& Dhillon, 2016; Ledford, 2011). In mice many different approaches, mostly targeting $A p c$, have been applied to model human FAP, the hereditary predisposition to CRC (Karim \& Huso, 2013). The sole mutation of Apc however, did not achieve full replication of human polyposis. In contrary to human pathology where the polyps develop in the colon, the widely used $A p c^{M i n}$ mouse develops polyps mainly in the small intestine (Karim \& Huso, 2013). The combination of Apc mutations with tissue-specific and locally activated oncogenes, has allowed more successful modelling of FAP (Fearon, 2011; Hung et al, 2010; Tetteh et al, 2016). Engineered addition of extra mutations in mice does not allow accurate modelling and study of the spontaneous alterations and mutation events that occur in the human gut subsequent to an APC initiating event and drive disease progress towards cancer.

Therefore, other model organisms are required to model the disease more accurately and to provide better insight into the progression, to identify better diagnosis and therapy opportunities and to provide non-rodent preclinical data (Bahr \& Wolf, 2012)

1.8.2 Pig

Pigs share many key similarities with humans including anatomical features, physiology, body size and pathophysiological responses and are already used for research, development and refinement of medical equipment and biomedical procedures (Heinritz et al, 2013; Kararli, 1995; Schubert et al, 2016; Swindle et al, 1988). Further advantages are that they mature relatively quickly (6-7 months), produce large litters (~ 10 piglets) and have a short gestation time of ~ 114 days (Sachs, 1994). Where necessary specified pathogen free housing is easily adapted from the established domestication of the pig. In contrast to primates the use of pigs for research is ethically and socially more acceptable due to their use as food animals. Additionally, just like humans, pigs are omnivores which is a marked advantage for the study of CRC, facilitating dietary studies such as the effects of a western diet. The gastrointestinal structure and size allows the use and refinement of human diagnostic and operational
equipment. The relatively long lifespan of pigs (~ 10 years) enables the performance of longitudinal studies. Most importantly however, genetic modification technology was extended to the pig, allowing genetically modified pigs for biomedical research.

1.9 Genetic modification of pigs

Genetically modified pigs were first generated by pronuclear DNA microinjection (Hammer et al, 1985) (Figure 3). This rather inefficient procedure (Hammer et al, 1985; Logan \& Martin, 1994; Uchida et al, 2001) was technically challenging due to the opacity of porcine oocytes which required centrifugation to visualise the pronuclei (Kikuchi et al, 2002). The establishment of refined methods of microinjection including transposon systems and lentiviral vectors has increased transgenesis efficiency in pigs markedly (Clark et al, 2007; Garrels et al, 2011; Hofmann et al, 2003; Ivics et al, 2014; Whitelaw et al, 2004). Even though, pronuclear DNA microinjection allowed only random transgene integration but no gene targeting and remained the only method for genetic modification of livestock until 1997, when Schnieke et al. performed nuclear transfer of primary somatic ovine cells into ovine enucleated oocytes (Schnieke et al, 1997).

The generation of genetically modified mice by gene targeting via homologous recombination (HR) first performed and established in murine embryonic stem (ES) cells (Evans \& Kaufman, 1981; Smithies et al, 1985; Thomas \& Capecchi, 1987), could not be performed in pigs, as ES, embryonic germ or induced pluripotent stem cells, capable of germline transmission were elusive in pigs (Nowak-Imialek \& Niemann, 2012). Nuclear transfer of cultured cells, however, enabled gene targeting of primary somatic cells first in sheep (McCreath et al, 2000) and later in pigs (Dai et al, 2002; Lai et al, 2002). Genetic modification of primary porcine cells is more challenging than the modification of murine ES cells due to their limited lifespan (Schnieke et al, 1997). The efficiency of HR is also lower compared to mice, although loci such as the porcine ROSA26 allow more efficient gene targeting (Li et al, 2014). Additionally, the procedure of nuclear transfer requires time and skill and has a low efficiency in generating viable healthy offspring (Callesen et al, 2014; Kurome et al, 2013). Although nuclear transfer is the standard method for generating genetically tailored pigs, it is a very challenging process especially when compared to producing gene targeted mice using ES cells (Perleberg et al, 2018).

The optimisation of gene targeting in pigs has been inspired by techniques performed in mice. Therefore, methods such as site specific recombinase technology (Leuchs et al, 2012; Li et al, 2014), recombinase-mediated cassette exchange (RMCE) (Clark et al, 2007; Jakobsen et al, 2013) and adenoassociated viral (AAV) vectors (Luo et al, 2011) have all been extended to pigs.

The development of synthetic engineered nucleases, however, changed the procedure of both random transgene integration and gene targeting in all model organisms (Figure 3).

Figure 3 A collection of the different methods applicable for the generation of genetically modified pigs (adapted from (Perleberg et al, 2018).

1.9.1 Genome editing in pigs

Engineered endonucleases can induce a double strand break (DSB) at a unique targeted genomic location (Figure 4). The error prone repair mechanism of non-homologous end joining (NHEJ) introduces deletion or insertions of several bases, which can result in gene inactivation (Gabriel et al, 2011). The homology-directed repair uses templates, such as sister chromatids or exogenous homologous DNA fragments, for accurate repair, facilitating transgene introduction or sequence replacement (Joung \& Sander, 2013).

Zinc finger nucleases (ZFN) (Hauschild et al, 2011; Kwon et al, 2013) and transcription activator-like effector nucleases (TALENs) (Carlson et al, 2012) compose the second and third generation of engineered nucleases after meganucleases, respectively. Both bind the target via protein-DNA interaction (Font \& Mackay, 2010; Mussolino \& Cathomen, 2012) which hampers design, target and off-target prediction (Bogdanove \& Voytas, 2011; Jinek et al, 2013; Urnov et al, 2010). The newest
system is the RNA-guided endonuclease. The most famous representative is the clustered regularly interspaced short palindromic repeat (CRISPR) system (Tan et al, 2013), first identified as the adaptive immune system of bacteria and archaea (Barrangou et al, 2007). Extrachromosomal DNA incorporated into the genome transcribed into CRISPR RNA (crRNA) and the repeats transcribed into transactivating CRISPR RNA (tracrRNA) (Garneau et al, 2010) bind the endonuclease CRISPR-associated 9 (Cas9) and guide it to a sequence complementary to the crRNA (Wei et al, 2013). Cas9 cleaves the double stranded DNA if the crRNA target (protospacer) is followed by a protospacer adjacent motif (PAM) of NGG (Wei et al, 2013). This RNA-DNA interaction-based targeting system is much easier to design and to predict (Cho et al, 2013). Therefore, this system was simplified to a two-component system for genome editing, where the crRNA and tracrRNA were fused to a crRNA-tracrRNA chimera called guide RNA (gRNA) (Jinek et al, 2012) (Figure 4). Other RNA-guided endonucleases with different PAMs are known, for example Cpf1 (Zetsche et al, 2015) and of smaller sized CjCas9 (Kim et al, 2017).

Figure 4 The CRISPR/Cas9 system and its potential utilised for genome editing (adapted from (Perleberg et al, 2018). DSB, double strand break; dsDNA, double-stranded DNA; gRNA, guide RNA; PAM, protospacer adjacent motif; ssODN, single-stranded oligodeoxynucleotide.

Genome editing in general has not only improved efficiency of targeted genetic modifications of both knock-out and knock-ins in mice (Chu et al, 2016; Miyaoka et al, 2016) and pigs (Zhou et al, 2016) but
also facilitated direct zygote and early stage embryo modifications in mice (Meyer et al, 2010). HR in zygotes, which is very inefficient (<0.1 \%) (Brinster et al, 1989), was increased to an efficiency of 1.74.5 \% by the use of ZFN. This procedure has been extended to pigs avoiding nuclear transfer (Lillico et al, 2013).

The CRISPR/Cas9 system superseded ZFN and TALENs by easier design, higher efficiency, specificity and equal to better prediction of targets and off-targets (Cho et al, 2014; Fu et al, 2014; Mali et al, 2013; Wu et al, 2016). Therefore, it has been used for direct zygote modification to generate genetically modified pigs (Hai et al, 2014; Wang et al, 2015; Whitworth et al, 2014; Yu et al, 2016).

1.10 Porcine cancer models

Table 1 An overview of genetically modified porcine models of human cancers, the most promising and clinically relevant are marked with * (Perleberg et al, 2018). AAV, adeno-associated viral vector; MMTV, mouse mammary tumour virus; TALENs, transcription activator-like effector nucleases.

Human disease	Genetic modification	Produced by	Reference
Basal cell carcinoma	human truncated GLI2, with bovine keratin 5 promoter	random transgene integration + nuclear transfer	(McCalla-Martin et al, 2010)
Breast cancer	V-H-Ras, with MMTV promoter BRCA1	Pronuclear microinjection gene targeting by $A A V$ + nuclear transfer	(Yamakawa et al, 1999) (Luo et al, 2011)
Colorectal cancer	heterozygous APC ${ }^{1311}+$ $A P C^{1061}$ mutations APC Knockout	gene targeting + nuclear transfer TALENs + nuclear transfer	(Flisikowska et al, 2012)* (Tan et al, 2013)
Osteosarcoma	heterozygous and homozygous TP53 knockout homozygous TP53 ${ }^{\text {R167H }}$ mutation	gene targeting + nuclear transfer gene targeting by $A A V$ + nuclear transfer	(Saalfrank et al, 2016)* (Sieren et al, 2014)*
Other cancers	Cre-induced porcine KRAS ${ }^{G 12 D}$ TP53 ${ }^{\text {R167H }}$	random transgene integration + nuclear transfer	(Schook et al, 2015)*
	Cre-inducible TP53 ${ }^{\text {R167H }}$	gene targeting + nuclear transfer	(Leuchs et al, 2012)
	Cre-inducible $K R A S^{G 12 D}$	gene targeting + nuclear transfer	(Li et al, 2015b)

To date, random transgene integration, gene targeting and genome editing using TALENs have been utilised to generate a number of porcine cancer models for basal cell carcinoma, breast cancer, colorectal cancer, osteosarcoma and other cancers (Table 1). Even Cre-inducible systems have been introduced to allow a spatio-temporal activation of mutations to better model malignant diseases. However the most successful models with reported phenotypes similar to human disease are those marked with * (Perleberg et al, 2018). The other models were not reported with a phenotype (Tan et al, 2013; Yamakawa et al, 1999), were euthanized early due to bacterial infection (McCalla-Martin et al, 2010), did not survive beyond 18 days (Luo et al, 2011) or in case of the Cre-inducible mutations were not activated yet (Leuchs et al, 2012; Li et al, 2015b). The porcine model for CRC generated by the heterozygous targeted $A P C^{1311}$ mutation, however showed great potential (Flisikowska et al, 2012).

1.11 The porcine colorectal cancer model APC ${ }^{1311}$ pig

The chair of livestock biotechnology of the technical university of Munich, has generated a porcine model for colorectal cancer that carries a translational stop signal at codon 1311 in porcine APC (APC ${ }^{1311}$) (Flisikowska et al, 2012). It is orthologous to the human $A P C^{1309}$ mutation, which is frequently mutated in CRC and associated with a very severe form of FAP (Crabtree et al, 2002). This stop codon was introduced via homologues recombination-mediated gene targeting of porcine somatic cells and piglets were subsequently generated by nuclear transfer. The animals showed polyp development in the colorectum as early as 4 months of age, like humans during puberty or their twenties (Croner et al, 2005). Closer investigations showed that the polyps exhibit epithelial features such as aberrant crypt foci and adenomatous polyps of low and high grade intraepithelial neoplasia, that are typical for human adenoma-carcinoma sequence pathology (Flisikowska et al, 2012). Molecular analyses of adenomas showed loss of APC heterozygosity, accumulation of β-catenin and high expression of its target c-MYC and MAPK pathway activation by ERK1/2 phosphorylation, all hallmarks of human CRC (Albuquerque et al, 2002; Fearon, 2011). Although no invasive carcinomas were observed in pigs up to 3 years of age, carcinomas in situ were identified, a progression stage that has not been seen in mice. As a heterozygous $A P C^{1311}$ mutation was sufficient to initiate polyposis and those spontaneous molecular changes, that present hallmarks of human FAP and CRC, invasive CRC formation seems to be a function of time. Further validation and analysis of this model, is however required.

1.12 Objective

The two main goals of this work were the analysis of cancer susceptibility and progression of the $A P C^{1311}$ porcine colorectal cancer model (Flisikowska et al, 2012) on transcriptome level and the acceleration of CRC development of the model by introducing oncogenic mutations or in vivo knockout of tumour suppressors.

The established $A P C^{1311}$ pigs, consisting of more than five generations by now, replicate hallmarks of human FAP and early CRC development including adenomatous polyps in the colorectum with loss of APC heterozygosity, β-catenin accumulation, upregulation of c-MYC, MAPK pathway activation and progression to carcinoma in situ. However, the animals have displayed a phenotypic variation in polyposis severity from high (≥ 100) polyps (HP) to low (1-10) polyps (LP) in the distal colorectum (last 40 cm).

Therefore, more thorough characterisation of the model is required for use in translational biomedical research. In this work transcriptional analysis of normal mucosa and polyps from the APC ${ }^{1311}$ pigs, was aimed to identify elements in the genetic background such as single-nucleotide polymorphisms (SNPs), dysregulated genes, gene sets and miRNAs that may contribute to susceptibility towards severe polyposis and tumour progression, respectively. This process should reveal both similarities to human molecular pathology and novel markers for early detection and drivers. A holistic approach was performed where whole mRNA and whole miRNA were sequenced using next generation sequencing technology and computational analysis pipelines to compare expression and distribution of genes, miRNAs and SNPs between high polyp and low polyp normal mucosa samples and between high grade and low grade intraepithelial neoplasia.

Current data of the APC ${ }^{1311}$ animals showing no invasive carcinomas, suggest, that the progression from adenoma to adenocarcinoma in pigs, is a long process just like in humans. Therefore, APC ${ }^{1311}$ animals were to be generated carrying a ubiquitously expressed Cas9 endonuclease in the ROSA26 locus. This would allow acceleration of polyp progression in vivo, by introduction of gRNAs targeting tumour suppressor genes or gRNA combined with HR templates for the introduction of oncogenic mutations via in vivo electroporation of the polyps or adeno-associated viral vectors.

2. Materials and Methods

2.1 Material

2.1.1 Laboratory equipment

Table 2 laboratory equipment

2100 Bioanalyzer
3130xl/3100 Genetic Analyzer 16-Capillary Array
ABI 7500 Fast Real-Time PCR System
ABI Prism 3130xI Genetic Analyzer
Analytical semi-micro balance $\mathrm{PI}-214$
AREC.X Digital Ceramic Hot Plate Stirrer
AxioCam HRm Microscope Camera
Axiovert 200 M
Bag sealer Vacupack plus
BarnsteadTM MicroPure ${ }^{\text {TM }}$
Centrifuges Sigma 1-15, 1-15K, 3-16 and 4K-15C
Countess ${ }^{T M}$ automated cell counter
Digital Graphic Printer UP-D895MD
Dry block for heating and cooling PCH-2
Drying and heating chamber
Electronic multi-dispense pipet
Electrophoresis power supply EPS301
ELISA-Photometer
Fluorescence light source HXP120C
Gel documentation system QUANTUM ST5

Glassware
HiSeq 2500
Hybridisation oven Shake'n'Stack
iBind Western Device
Incubator Thermo Forma Orbital Shaker
Incubator Thermo Forma Steri-Cycle CO_{2}
Incubators
KGW Dewar-Transportgefäße mit Deckel Typ B

Laser Microdissection Systems 6000
Magnetic Stand-96
Mi Seq
Microm HM 560 Cryostat
Microscope Axiovert 40 CFL
Mini-PROTEAN 3 Cell system

Agilent, Santa Clara, USA
Life Technologies, Darmstadt, DEU
Applied Biosystems, Warrington, GBR
Life Technologies, Darmstadt, DEU
Denver Instrument GmbH, Göttingen DEU
Velp Scientifica, Usmate, ITA
Carl Zeiss Microscopy GmbH, Göttingen, DEU
Carl Zeiss Microscopy GmbH, Göttingen, DEU
KRUPS, Frankfurt, DEU
Thermo Fisher Scientific, Waltham, USA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Invitrogen GmbH, Darmstadt, DEU
Syngene, Cambridge, GBR
Grant Instruments, Camebridge, GBR
BINDER GmbH, Tuttlingen DEU
Qiagen, Hilden, DEU
Amersham Biosciences, Piscataway, USA
Thermo Electron Corporation, Shanghai, CHN
Carl Zeiss Microscopy GmbH, Göttingen, DEU
VILBER LOURMAT Deutschland GmbH, Eberhardzell, DEU
Marienfeld GmbH, Lauda-Königshofen, DEU
Illumina, San Diego, USA
Thermo Fisher Scientific, Waltham, USA
BINDER GmbH, Tuttlingen DEU
KGW-Isotherm Karlsruher Glastechnisches Werk -
Schieder GmbH, Karlsruhe, DEU
Leica Microsystems, Wetzlar, DEU
Invitrogen GmbH, Darmstadt, DEU
Illumina, San Diego, USA
Thermo Fisher Scientific, Waltham, USA
Carl Zeiss Microscopy GmbH, Göttingen, DEU
BioRad, Hercules, USA

Mini-PROTEAN ${ }^{\circledR}$ Comb, 10 -well, $0.75 \mathrm{~mm}, 33 \mu \mathrm{l}$, 1653354 and $1.5 \mathrm{~mm}, 66 \mu \mathrm{l}, 1653365$	BioRad, Hercules, USA
Mini-PROTEAN ${ }^{\bullet}$ Short Plates, 1653308	BioRad, Hercules, USA
Mini-PROTEAN ${ }^{\circledR}$ Spacer Plates with Integrated	BioRad, Hercules, USA
Spacers 0.75 mm, 1653310 and $1.5 \mathrm{~mm}, 1653312$	
Multiporator Eppendorf	Eppendorf, Hamburg, DEU
Nalgene ${ }^{\text {TM }}$ Mr. Frosty Freezing containers	Thermo Fisher Scientific, Waltham, USA
Nanodrop Lite	Thermo Fisher Scientific, Waltham, USA
Nucleofector ${ }^{\text {TM }}$ 2b Device	Lonza Group Ltd, Basel, CHE
Owl ${ }^{\text {TM }}$ EC-105 Compact Power Supply	Thermo Fisher Scientific, Waltham, USA
PeqSTAR 2x Gradient Thermocycler	Peqlab Biotechnologie GmbH, Erlangen, DEU
pH Meter CyberScan PC 510 Meter	Eutech Instruments Europe B.V., Landsmeer, NLD
Pipette controller accu-jet pro	Brand GmbH \& Co. KG, Wertheim, DEU
PyroMark Q48 Autoprep Instrument	Qiagen, Hilden, DEU
Qubit ${ }^{\text {® }}$ 2.0 Fluorometer	Thermo Fisher Scientific, Waltham, USA
Rainin Pipet-Lite (2, 20, 200, $1000 \mu \mathrm{l}$) and Multi	Mettler Toledo GmbH, Giessen, DEU
Pipette L8-20XLS+, L8-50XLS+	
Scales 440-33N	Kern \& Sohn GmbH, Balingen DEU
Shaker Unitwist 3-D	Uniequip, Martinsried, DEU
SpeedMill PLUS	Analytik Jena AG, Jena, DEU
Sterile laminal flow cabinet Herasafe Type HSP	Thermo Fisher Scientific, Waltham, USA
Table centrifuge blue spin mini	SERVA Electrophoresis GmbH, Heidelberg, DEU
Trans-Blot SD Semi-Dry Transfer cell	BioRad, Hercules, USA
Vacuum Centrifuge Savant, SpeedVac, DNA 110	Thermo Fisher Scientific, Waltham, USA
Vacuum Centrifuge Savant, Speed Vac Plus,	Thermo Fisher Scientific, Waltham, USA
SC110A	
Vortexer VELP Sccientifica $2 \mathrm{x}^{3}$	Velp Scientifica, Usmate, ITA
Water bath	Memmert GmbH + Co.KG, Schwabach, DEU
X-ray clip cassette	Rego X-Ray GmbH, Augsburg DEU

2.1.2 Consumables

Table 3 Consumables

Blotting Paper	BioRad, Hercules, USA
Cell counting chamber slides	Invitrogen GmbH, Darmstadt, DEU
Cell scraper	TPP Techno Plastic Products AG, Trasadingen, CHE
Countess ${ }^{\text {TM }}$ cell counting chamber slides	Invitrogen GmbH, Darmstadt, DEU
Cryo vials	Corning Incorporated, Corning, USA
Cutfix stainless scalpel 10, 5518059	B. Braun Melsungen AG, Melsungen, DEU
Disposable sterile needles, Sterican, $1.20 \times 40 \mathrm{~mm}$	B. Braun Melsungen AG, Melsungen, DEU
Electroporation cuvette $2,4 \mathrm{~mm}$	Peqlab Biotechnologie GmbH, Erlangen, DEU
Falcon tubes $15 \mathrm{ml}, 50 \mathrm{ml}$	Greiner Bio-One GmbH, Frickenhausen, DEU
iBind cards, Bi15126	Invitrogen GmbH, Darmstadt, DEU
innuSPEED Lysis Tube P	Analytik Jena AG, Jena, DEU
Kimtech Science Precision wipes, 055117552	Kimberly-Clark Professional, Roswell, USA
Lysing Matrix D, 2 mlTube	MP Biomedicals, Santa Ana, USA
Membrane, Roti-PVDF (0.45 $\mu \mathrm{m}$)	Brand GmbH \& Co. KG, Wertheim, DEU
MembraneSlide 1.0 PEN (D), 415190-9041-000	Carl Zeiss Microscopy GmbH, Göttingen, DEU
MicroAmp Fast Optical 96-Well Reaction Plate with	Applied Biosystems, Warrington, GBR
Barcode, 4346906	
MicroAmp ${ }^{\text {TM }}$ Optical Adhesive Film, 4360954	Applied Biosystems, Warrington, GBR
Mini Trans-Blot Filter paper 1703932	BioRad, Hercules, USA
MultiScreen HV plates, MAHVN4550	Millipore, Darmstadt, Deutschland
Nylon membrane (positively charged) Amersham	GE Healthcare Europe GmbH, Freiburg, DEU
Hybond-N+	
PCR tube 0.2 ml 8- strip, 11402-2900	STARLAB International GmbH, Hamburg, DEU
Petri dishes	Brand GmbH \& Co. KG, Wertheim, DEU
Rainin pipette tips with and without filter 20, 200, $1000 \mu \mathrm{l}$	Mettler Toledo GmbH, Giessen, DEU
Reaction tubes $1.5 \mathrm{ml}, 2 \mathrm{ml}$	Zefa Laborservice, Harthausen, DEU
Serological pipets Costar 1, 2, 5, 10, 25 ml	Corning Incorporated, Corning, USA
Sterile syringes $5 \mathrm{ml}, 10 \mathrm{ml}, 20 \mathrm{ml}$	Becton Dickinson GmbH, Sparks, USA
Sterile syringe filters $0.40 \mu \mathrm{~m}, 0.22 \mu \mathrm{~m}$	Berrytec GmbH, Grünwald, DEU
Tissue culture vessels T25, T75, T150, 24 well, 12 well, 6 well plates, 10 and 15 cm dishes	Corning Incorporated, Corning, USA
Tissue-Tek Cryomold ${ }^{\text {® }}$ Biopsy, $10 \times 10 \times 5 \mathrm{~mm}$,	Sakura Finetek Europe B.V., Alphen aan den
4565	Rijn, NLD
14 ml tubes	Becton Dickinson GmbH, Sparks, USA
Twin.tec PCR Plate 96 semi skirted, colorless, 951020303	Eppendorf, Hamburg, DEU
X-ray film	Agfa Healthcare, Mortsel, Belgium
PyroMark Q48 Absorber Strips, 974912	Qiagen, Hilden, DEU
PyroMark Q48 Discs, 974901	Qiagen, Hilden, DEU

2.1.3 Chemicals

Table 4 Chemicals

Acetic acid 100 \%
Agarose
Ammonium acetate $\left(\mathrm{NH}_{4} \mathrm{OAc}\right)$
Ammonium persulphate (APS)
Ampicillin
Boric acid
Chloroform
4',6'-Diamidino-2'-phenylindole-dihydrochloride (DAPI)
Difco Luria Broth Agar, Miller
Difco Luria Broth Base, Miller
Dimethyl sulphoxide (DMSO), A3672
Dithiotreitol (DTT)
Eosin solution, Conc. Watery 2 \%, 2C-140
Ethanol 100 \%
Ethidiumbromid
Ethylene diamine tetracetic acid (EDTA)
Formalin
Glacial acetic acid
Glycerol 99\%
Glycine 99\%, G7126
Hydrochloric acid, 37\%
IGEPAL, CA-630
Isopropanol
Isopropyl β-D-thiogalactopyranoside (IPTG)
Magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$
Maleic acid
Mayer's Hemalaun solution, A0884
Methanol
Milk powder
N,N-Dimethylformamid (DMF)
PeqGOLD Low Melt-Agarose
Phenol-chloroform-isoamyl alcohol
Ponceau S, 141194
POP-7 ${ }^{\text {TM }}$ Polymer for $3130 / 3130 x$ I
Potassium chloride
Sacharose
Sephadex G5050-100G
Sodium azide
Sodium chloride
Sodium deoxycholate, D6750
Sodium dodecyl sulphate (SDS)

Applichem, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Carl Roth GmbH, Karlsruhe, DEU
Carl Roth GmbH, Karlsruhe, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Applichem, Darmstadt, DEU
Roche Diagnostic GmbH, Mannheim, DEU

Becton Dickinson GmbH, Sparks, USA
Becton Dickinson GmbH, Sparks, USA
Applichem, Darmstadt, DEU
Omnilab, Bremen, DEU
Waldeck GmbH \& Co. KG, Münster, DEU
Riedel-de-Haen, Seelze, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Fluka Laborchemikalien GmbH, Seelzle, DEU
Carl Roth GmbH, Karlsruhe, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Applichem, Darmstadt, DEU
Bioline, London, GBR
Merck, Kenilworth, USA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Applichem, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Carl Roth GmbH, Karlsruhe, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Peqlab Biotechnologie GmbH, Erlangen, DEU
Applichem, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Life Technologies, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Applichem, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Omnilab, Bremen, DEU

Sodium hydroxide (NaOH)
Sodium chloride, A1371
Sodium citrate, S4641
Spectinomycin, 85555
Sucrose
Tetramethylethylenediamine (TEMED)
Triton-X 100
Trizma Base/Hydrochloride
Trizol
Tween 20
X-ray tank developer
X-ray tank fixer
β-glycerol phosphate
β-mercaptoethanol (14.3 M)

Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Applichem, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Fluka Laborchemikalien GmbH, Seelzle, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Carl Roth GmbH, Karlsruhe, DEU
Omnilab, Bremen, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Invitrogen GmbH, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Calbe Chemie GmbH, Calbe, DEU
Calbe Chemie GmbH, Calbe, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU

2.1.4 Buffers and solutions

Table 5 Buffers and solutions

10x TBE buffer
$5 x$ dilution buffer
2-Log DNA ladder
50x TAE buffer

6x Gel loading dye
Advanced protein assay reagent
Chemiluminescent substrate for alkaline phosphatase CDP-Star
cOmplete Protease Inhibitor Cocktail Tablets in EASYpacks, 04693124001
CytoBuster ${ }^{\text {TM }}$ Protein Extraction Reagent, 71009
DNA/RNA-dye, peqGREEN
dNTPs
EB Buffer
Gel loading buffer II, AM8546G
Low Molecular Weight DNA Ladder
Low TE Buffer
Lysis buffer for gDNA isolation
β-mercaptoethanol solution for TC
Miniprep solution I
Miniprep solution II
Miniprep solution III
O.C.T. ${ }^{\text {m }}$ Compound, 4583
0.9 M Tris, 20 mM EDTA, 0.9 M boric acid
$25 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ Tris-HCl pH 8.0
New England Biolabs, Frankfurt, DEU
2 M Trisbase, 50 mM EDTA, 5.71 \% (v/v) Glacial acetic acid
New England Biolabs, Frankfurt, DEU
Cytoskeleton Inc., Denver, USA
Roche Diagnostic GmbH, Mannheim, DEU

Roche Diagnostic GmbH, Mannheim, DEU

Merck, Kenilworth, USA
Peqlab Biotechnologie GmbH, Erlangen, DEU
New England Biolabs, Frankfurt, DEU
Qiagen, Hilden, DEU
Invitrogen GmbH, Darmstadt, DEU
New England Biolabs, Frankfurt, DEU
10 mM Tris-HCl pH7.4, 0.1mM EDTA
100 mM Tris-HCl pH7.4, 0.2 \% SDS, 5 mM EDTA,
0.2 M NaCl
$6 \mathrm{ml} \mathrm{H} 2 \mathrm{O}, 21 \mu \mathrm{l} \beta$-mercaptoethanol
5 mM sucrose, TRIS (pH 8.0), 10 mM EDTA
1 \% SDS, 0.2 N NaOH
3 M sodium acetate (pH 5.3)
Sakura Finetek Europe B.V., Alphen aan den Rijn, NLD

PhosSTOP Phosphatase Inhibitor Cocktail Roche Diagnostic GmbH, Mannheim, DEU
Tablets in EASYpacks, 04906845001
PyroMark Q48 Magnetic Beads, 974203
Quick-Load ${ }^{\circledR} 1$ kb Extend DNA Ladder
RiboRuler ${ }^{\text {TM }}$ High Range RNA Ladder
RIPA Buffer

Rnase Away
TE Buffer
Trypan blue solution (0.4 \%)
X-Gal solution

Qiagen, Hilden, DEU
New England Biolabs, Frankfurt, DEU
Thermo Fisher Scientific, Waltham, USA
$0.15 \mathrm{M} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris- HCl pH 8 , 1mM EDTA, 1 \% (v/v) Triton X, 0.5 \% sodium deoxycholate, 0.1 \% (w/v) SDS

Thermo Fisher Scientific, Waltham, USA
10 mM Tris-HCl pH 7.4, 1 mM EDTA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
100 mg X-Gal in N,N-Dimethylformamid (DMF)

Table 6 Buffers and solutions for Southern Blot

Blocking solution
Blocking reagent, 11096176001
Denaturation buffer
Depurination buffer
Detection buffer
DIG Easy Hyb Granules, 11796895001
Digoxigenin-11-dUTP, 11573152910
DNA Molecular Weight Marker VII, DIG-labeled
High stringency washing buffer
Low stringency washing buffer
Maleic acid buffer
Neutralisation buffer
Washing buffer
Ponceau S staining solution
20x SSC
2x SSC

1x Blocking solution in maleic acid buffer
Roche Diagnostic GmbH, Mannheim, DEU
0.5 M NaOH, 1.5 M NaCl

250 mM HCl
0.1 M Tris-HCl, 0.1 M NaCl, pH $9.5\left(20^{\circ} \mathrm{C}\right)$

Roche Diagnostic GmbH, Mannheim, DEU
Roche Diagnostic GmbH, Mannheim, DEU
Roche Diagnostic GmbH, Mannheim, DEU
0.1 \% SSC, 0.1 \% SDS

2x SSC, 0.1 \% SDS
0.1 M maleic acid, $0.15 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7.5$
0.5 M Tris-HCl, pH 7.5; 1.5 M NaCl
0.3 \% (v/v) Tween 20 in Maleic acid buffer
$0.5 \%(w / v), 1 \%$ glacial acetic acid
$3 \mathrm{M} \mathrm{NaCl}, 0.3 \mathrm{M}$ sodium citrate
$0.3 \mathrm{M} \mathrm{NaCl}, 30 \mathrm{mM}$ sodium citrate

Table 7 Buffers and solutions for Western Blot

10 \% APS	10 \% (w/v) APS
$4 \times$ Lämmli buffer + DTT	250 M Tris-HCl, pH 6,8, 4 \% (w/v) SDS, 0,1 M Saccharose, traces of bromphenol blue, 26 mM DTT (freshly added)
Milk powder blocking solution	$5 \%(w / v)$ Milk powder in $1 \times$ TBST
Pierce ${ }^{\text {TM }}$ ECL Western Blotting Substrate	Thermo Fisher Scientific, Waltham, USA
Precision Plus Protein ${ }^{\text {™ }}$ All Blue	BioRad, Hercules, USA
Standards (10-250 kDa), 161-0373	
10x Running Buffer, pH 8.3	0.25 M Trizma Base, 2 M Glycin, 1 \% SDS, pH 8.3
1 x Running Buffer $+\beta$-mercapto-	25 mM Trizma Base, 0.2 M Glycin, 0.1 \% SDS, pH 8.3,
Ethanol	10.64 mM ß-mercaptoethanol

1x Semi Dry Transfer Buffer + 0.1\% SDS 25 mM Trizma Base, 0.2 M Glycin, 20 \% (v/v) Methanol, 0.1 \% (w/v) SDS

10x TBS $\quad 0.2 \mathrm{M}$ Trizma Base, 1.4 M NaCl
$1 x$ TBST 20 mM Trizma Base, $140 \mathrm{mM} \mathrm{NaCl}, 0.1 \%(\mathrm{v} / \mathrm{v})$ Tween 20

2.1.5 Bacterial media

Table 8 Bacterial media

LB-agar	$4 \%(w / v)$ Difco LB Agar, Miller
LB-medium	$2.5 \%(w / v)$ Difco LB Base, Miller

2.1.6 Tissue culture media and solutions

Table 9 Solutions for tissue culture

1x Trypsin EDTA, T3924
Accutase, A6964
Advanced DMEM, 12491-015
Ala-Gln, G8541
Amphotericin B solution, A2942
Blasticidin S
BSA 7.5 \%
cell culture water, W3500
DMEM, D5671
D-PBS, D8537
Fetal calf serum (FCS)
G-418, M3118.0050
Hypoosmolar electroporation buffer
MEM Non-essential amino acids (NeAA), M7145
OptiMEM, 51985-026
Penicillin-Streptomycin, P0781 (100x)
Puromycin
Sodium pyruvate, S8636
Trypan blue 0.4 \%

Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Life Technologies, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
InvivoGen, San Diego, USA
Life Technologies, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Biochrom GmbH, Berlin, DEU
Genaxxon bioscience GmbH, Ulm, DEU
Eppendorf, Hamburg, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Life Technologies, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
InvivoGen, San Diego, USA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Invitrogen GmbH, Darmstadt, DEU

Table 10 Media compositions

cultured cells	Media components	Freezing medium composition
pADMSCs	500 ml AdvancedDMEM, 50 ml FCS, 5.6 ml Ala-Gln, 5.6	$10 \% \mathrm{DMSO}, 10 \%$
	ml NEAA, $560 \mu \mathrm{l} \beta$-mercaptoethanol	medium, $80 \% \mathrm{FCS}$
pKFs, HEK cells	$500 \mathrm{ml} \mathrm{DMEM}, 50 \mathrm{ml}$ FCS, 5.6 ml Ala-GIn, 5.6 ml NEAA,	$10 \% \mathrm{DMSO}, 10 \%$
	5.6 ml Sodium Pyruvate, $560 \mu \mathrm{\mu l} \beta$-mercaptoethanol	medium, $80 \% \mathrm{FCS}$
primary cell	medium with $100 \mathrm{U} / \mathrm{ml}$ penicillin, $0.1 \mathrm{mg} / \mathrm{ml}$	$10 \% \mathrm{DMSO}, 40 \%$
isolation	streptomycin, $2.5 \mathrm{mg} / \mathrm{ml}$ amphotericin B for first 3 days	medium, $50 \% \mathrm{FCS}$

2.1.7 Kits

Table 11 Kits

Agilent DNA 1000 Kit, 5067-1504
Agilent High Sensitivity DNA Kit, 5067-4626
Agilent RNA 6000 Nano Kit, 5067-1511
Agilent RNA 6000 Pico Kit, 5067-1513
AllPrep DNA/RNA Micro Kit and Mini Kit
Basic Nucleofector Solution Primary Fibroblasts, VPI1002

Big Dye Terminator v1.1 Cycle Sequencing Kit, 4337450
Biotool DNA Transfection Reagent
CloneJET PCR Cloning Kit
Directzol RNA MiniPrep
exoRNeasy Serum/Plasma Maxi Kit
EZ DNA Methylation-Direct ${ }^{\text {TM }}$ Kit
Fast SYBR ${ }^{\text {TM }}$ Green Master Mix
FirstChoice ${ }^{\text {TM }}$ RLM-RACE Kit
GenElute Mammalian Genomic DNA Purification Kit

HiSeq Rapid PE Cluster Kit v2
HiSeq Rapid SBS Kit v2 (200 cycles), FC-402-4021
Human MSC Nucleofector ${ }^{\circledR}$ Kit
iBind ${ }^{\text {TM }}$ Solution Kit
innuPREP RNA Mini Kit
KAPA SYBR FAST Master Mix Universal 2X, KK4602
Lipofectamine ${ }^{\text {TM }} 2000$ Transfection Reagent
miScript II RT Kit
miScript SYBR ${ }^{\circledR}$ Green PCR Kit
MiSeq Reagent Kit v2 (50-cycles), MS-102-2001
pGEM ${ }^{\circledR}$-T Easy Vector System
Plasmid DNA purification NucleoBond ${ }^{\circledR}$ Xtra Midi

PyroMark Q48 Advanced CpG Reagents, 974022
QIAamp DNA Micro Kit
QuantiFluor ${ }^{\circledR}$ RNA System
Qubit ${ }^{\circledR}$ RNA BR Assay Kit, Q10210
Qubit ${ }^{\text {TM }}$ dsDNA BR Assay Kit, Q32850
Qubit ${ }^{\text {TM }}$ dsDNA HS Assay Kit, Q32854/1
Qubit ${ }^{\text {TM }}$ RNA HS Assay Kit, Q32852
REPLI-g Mini Kit
RNeasy Mini
TruSeq RNA Library Preparation Kit v2, Set A
TruSeq Small RNA Library Prep Kit, Set-A
TURBO DNA-free ${ }^{\text {TM }}$ Kit

Agilent, Santa Clara, USA
Agilent, Santa Clara, USA
Agilent, Santa Clara, USA
Agilent, Santa Clara, USA
Qiagen, Hilden, DEU
Lonza Group Ltd, Basel, CHE

Life Technologies, Darmstadt, DEU
Biotool.com/bimake.com
Thermo Fisher Scientific, Waltham, USA
Zymo Research, Tustin, USA
Qiagen, Hilden, DEU
Zymo Research, Tustin, USA
Applied Biosystems, Warrington, GBR
Invitrogen GmbH, Darmstadt, DEU
Sigma-Aldrich Chemie GmbH,
Steinheim, DEU
Illumina, San Diego, USA
Illumina, San Diego, USA
Lonza Group Ltd, Basel, CHE
Invitrogen GmbH, Darmstadt, DEU
Analytik Jena AG, Jena, DEU
Kapa Biosystems, Wilmington, USA
Invitrogen GmbH, Darmstadt, DEU
Qiagen, Hilden, DEU
Qiagen, Hilden, DEU
Illumina, San Diego, USA
Promega Corporation, Madison, USA
MACHEREY-NAGEL GmbH \& Co. KG,
Düren, DEU
Qiagen, Hilden, DEU
Qiagen, Hilden, DEU
Promega Corporation, Madison, USA
Thermo Fisher Scientific, Waltham, USA
Qiagen, Hilden, DEU
Qiagen, Hilden, DEU
Illumina, San Diego, USA
Illumina, San Diego, USA
Invitrogen GmbH, Darmstadt, DEU

VenorGeM Mycoplasma Detection Kit, MP0025

Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System

Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Promega Corporation, Madison, USA

2.1.8 Enzymes

Table 12 Enzymes

AccuStart Taq DNA Polymerase HiFi
CollagenaseType I-A, C2674
DNA Polymerase I, Large Klenow Fragment
Exonuclease I
FastGene ${ }^{\circledR}$ Optima HotStart ReadyMix
PCR Extender System
Proteinase K
PyroMark PCR Kit
Q5 ${ }^{\circledR}$ High-Fidelity DNA Polymerase
Quickextract
Restriction enzymes
RiboLock Rnase Inhibitor, E00381
RNase A
Shrimp alkaline phosphatase
Sssl, CpG methyl transferase
SuperScript ${ }^{\text {TM }}$ II, III and IV Reverse Transcriptase
T4 DNA Ligase

Quantabio, Beverly, USA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
New England Biolabs, Frankfurt, DEU
New England Biolabs, Frankfurt, DEU
NIPPON Genetics Europe, Dueren, DEU
5Prime GmbH, Hamburg, DEU
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
Qiagen, Hilden, DEU
New England Biolabs, Frankfurt, DEU
Epicentre, Madison, USA
New England Biolabs, Frankfurt, DEU
Thermo Fisher Scientific, Waltham, USA
Sigma-Aldrich Chemie GmbH, Steinheim, DEU
New England Biolabs, Frankfurt, DEU
New England Biolabs, Frankfurt, DEU
Invitrogen GmbH, Darmstadt, DEU
New England Biolabs, Frankfurt, DEU

2.1.9 Oligonucleotide primers

All primers were ordered from Eurofins Genomics, Ebersberg, Germany.
Table 13 Primer list

Primer name	Sequence 5'-3'	Length
3'RACE Adapter	GCGAGCACAGAATTAATACGACTCACTATAGGTNNNNNNNN	45
5'RACEInnerPrimer	CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG	35
5'RACEOuterPrimer	GCTGATGGCGATGAATGAACACTG	24
BACH1_Ex8_for1	GCGTGTGTGATTAGCTTGGGA	21
BACH1_Ex9_rev1	GCGTTAAATGGCAGTTTCACCT	22
Cas9_3'LR_for1	GCAGATCAGCGAGTTCTCCA	20
Cas9_Probe_for1	AAAGACCGAGGTGCAGACAG	20
Cas9_probe_rev1	CGGTCGATGGTGGTGTCAAA	20
Cas9_RT_for2	AAAGACCGAGGTGCAGACAG	20
Cas9_RT_rev2	AAGCCGCCGTACTTCTTAGG	20
CRISPR_APC_F1	AGCCAGCTCCATCCAAGTTC	20
CRISPR_APC_R1	CTTGGTGGCATGGTTTGTCC	20

CRISPR_PTEN_F1	CTGAGGAGAAGCAGGCCC	18
CRISPR_PTEN_R1	GCTCACTAATCCACTAACACTGT	23
CYP7A1_AS_Ex3_F6	TCCCGAACCAGGTTTGTTTG	20
CYP7A1_AS_Ex4_R6	TGAATCACCTGCAAACTTCCG	21
CYP7A1_CpG1_F1	AGTTGGAATTATAGTTGTTAGTTTATGAT	29
CYP7A1_CpG1_R1_BIO	[BIO]-CCTTCCACACTTTAATTCTATACAC	25
CYP7A1_CpG1_S2	GTTTATGATATAGATA	16
CYP7A1_CpG2_F1	AAGAAGTGATATATGTAGAGGAAAGATAG	29
CYP7A1_CpG2_R1_BIO	[BIO]-ATAACTCCAAAAAAACTTCTTAAATCTTAC	30
CYP7A1_CpG2_S	GTGTGTTTTTTGGGT	15
CYP7A1_Ex4_ASV_F1	TGTTTGCTTTGGTCACTCAAGT	22
CYP7A1_Ex4_ASV_F2	CTGGAGCCTCTGTTGTGACG	20
CYP7A1_Ex4_F7	GGGGATTGTGACAGCAGTG	19
CYP7A1_Ex5_F1	TGTCCACTTCATCACAAATCCCT	23
CYP7A1_Ex5_R7	GCAGTGCACAACCCAGATAG	20
CYP7A1_Ex6_F2	TGACGCAGAGAAAGCCAAGT	20
CYP7A1_Ex6_R1	ATGCTTCTGTGCCCAAATGC	20
CYP7A1_Ex6_R1-2	GGTCAATGCTTCTGTGCCCA	20
CYP7A1_Ex7_F3	AAAACACTGGAGAAGGCGGG	20
CYP7A1_Ex7_R2	TGCTTTCATTGCTTCAGGGC	20
CYP7A1_Ex8_F4	CCACAATTAATGCACCTGGATCC	23
CYP7A1_Ex8_R3	GGAAAGCCTCAGAGACTCCTT	21
CYP7A1_Ex9_R4	CCATGACTGTAGAAGGTGGTCT	22
CYP7A1_SNPSeq_F1	GACCCAGCAAATCCACCCTT	20
CYP7A1_SNPSeq_F10	TTGAAACATGAAGCACAGAAACA	23
CYP7A1_SNPSeq_F2	TAATCCCAACACGACCCCTC	20
CYP7A1_SNPSeq_F3	TCGATACTAAGCCCGGTCCA	20
CYP7A1_SNPSeq_F4	AGGGGTGTGATAGATGCCATG	21
CYP7A1_SNPSeq_F5-2	ACCTACACCACAGCTCACAG	20
CYP7A1_SNPSeq_F6	TCTGTTTAAGGAGGCAAGAATCA	23
CYP7A1_SNPSeq_F7	CGATGGCCAGTTTCGTTGTC	20
CYP7A1_SNPSeq_F8	TCTGCCTGGAGTTCTCTTCCT	21
CYP7A1_SNPSeq_F9	GTTCCACTGCACCACAACG	19
CYP7A1_SNPSeq_R	GGAGGGAAGGCTGGACTTTT	20
CYP7A1_SNPSeq_R1	GTCACACCAGCTGTTTTCTTGA	22
CYP7A1_SNPSeq_R2	GCACGAGGAAGCCAGGAG	18
CYP7A1_SNPSeq_R3	ACACAACGAAAGCCCAGGAA	20
CYP7A1_SNPSeq_R4	CTGCAACTTCCTGTGACTCTATA	23
CYP7A1_SNPSeq_R5	CCTCTTCATTTCTTACGTGTGCA	23
CYP7A1_SNPSeq_R6	GGAAAACGCACAGGAAGCAA	20
CYP7A1_SNPSeq_R7	TGGGAGATGAGAGTGATGGGA	21
CYP7A1_SNPSeq_R8	ССТССТСТATTACTGCTCACTCA	23
CYP7A1_SNPSeq_R9	CTGTACAGGATCAACATCTCACA	23
DCC_CRISPR_F1	TGAGGGCATTTACAAAGGAGAG	22
DCC_CRISPR_R1	CGGAAGCTATTGTTGAATCAGC	22

ddCas9 F1	AGTTCATCAAGCCCATCCTG	20
ddCas9 R1	TCTTTTCCCGGTTGTCCTTC	20
ddGAPDH F Ya	CCGCGATCTAATGTTCTCTTTC	22
ddGAPDH R Ya	TTCACTCCGACCTTCACCAT	20
ddpoactin Ya F1	TAACCGATCCTTTCAAGCATTT	22
ddpoactin Ya R1	TGGTTTCAAAGCTTGCATCATA	22
ddpoGAPDH F1	CTCAACGACCACTTCGTCAA	20
ddpoGAPDH R1	CCCTGTTGCTGTAGCCAAAT	20
GAPDH_Ex4_for1	GTTGTGGATCTGACCTGCCGC	21
GAPDH_Ex5_rev1	TCAGTGTAGCCCAGGATGCCC	21
GS_MCS_Seq_for1	GGGCAGTTTCGAAGATCG	18
GS_MCS_Seq_rev1	TGGTGTAGTTGTGGGCTGAA	20
let-7a-5p_1	TGAGGTAGTAGGTTGTATAGTT	22
MCS_colonyPCR_F	CCACCGGTGTCGCGATTAATTA	22
MCS_colonyPCR_F	CCACCGGTGTCGCGATTAATTA	22
mGFP_end_F	ACTCTCGGCATGGACGAG	18
mGFP_start_R1	TACCTTCACGTGGCCATTCT	20
miR-16-5p_1	TAGCAGCACGTAAATATTGGCG	22
miR-191-5p_1	CAACGGAATCCCAAAAGCAGCTG	23
miR-25-3p_1	CATTGCACTTGTCTCGGTCTGA	22
miR-26a-5p_1	TTCAAGTAATCCAGGATAGGCT	22
mir-425-5p_1	AATGACACGATCACTCCCGTTG	22
mTom_end_F1	CTGTTCCTGTACGGCATGGA	20
mTom_end_R1	CTTGTACAGCTCGTCCATGC	20
Myco_1F	GGAGCAAACAGGATTAGATACC	22
Myco_1R	CACCATCTGTCATTCTGTTAACC	23
Neo_2pA_Age1_rev1	TAGACCGGTTTACTAGTCCCCAGCATGCC	29
Neo_colony_R1	CATCAGAGCAGCCGATTGTC	20
Neo_HindIII_for1	ATCCGATAAGCTTGATCCGGG	21
qPCR primer 1.1	AATGATACGGCGACCACCGAGAT	23
qPCR primer 2.1	CAAGCAGAAGACGGCATACGA	21
R26endoR	GTTTGCACAGGAAACCCAAG	20
Random hexamer primers	NNNNNN	6
RNU6B_1	ACGCAAATTCGTGAAGCGTT	20
R26_SA_Seq_R1	GGGGCCTAAGGTTTGGAGAT	20
Rosa26 E1 F1	CGCCTAGAGAAGAGGCTGTGC	21
Rosa26 I1 F2	TATGGGCGGGATTCTTTTGC	20
Rosa26 I1 R3	GTTTGCACAGGAAACCCAAG	20
Rosa26 I3 R2	CAGGTGGAAAGCTACCCTAGCC	22
Rosa26 Loc2R	GGAGCGGCGATACCGTAAAG	20
Rosa26 Loc3R	TCCGAAGCCCAACCTTTCAT	20
Rosa26_colony_F1	ATTCCCAGTCCCTCACACAG	20
ROSA26_SAR	GAAAGACCGCGAAGAGTTTG	20
SATB1_Ex6_F3	GCAAATGTCTCAGCGGCAAA	20
SATB1_Ex7_R3	CCTTGCTGGGATAGTTCGGA	20

SFRP5_Ex2_F1	TGCGCCCAGTGTGAGATG	18
SFRP5_Ex3_R1	CTTCCGGTCCCCACTCTCTA	20
ssc-miR-146a-5p	TGAGAACTGAATTCCATGG	19
ssc-miR-194b-5p	TGTAACAGCGACTCCATGTGGA	22
ssc-miR-215	ATGACCTATGAATTGACAGAC	21
ssc-miR-27a-3p	TTCACAGTGGCTAAGTTCCG	20
TP53_CRISPR_F2	ACCCTGGTCCCAAAGTTGAA	20
TP53_CRISPR_R2	GCCCGTAAATTCCCTTCCAC	20
Universal_Primer	CGAATTCTAGAGCTCGAGGCAGG	23

2.1.10 Oligonucleotides for hybridisation

Oligos for hybridisation, to generate tailored short double stranded DNA fragments, were ordered from Eurofins Genomics, Ebersberg, Germany or biomers.net GmbH, Ulm, Germany.

Table 14 CRISPR oligos

Oligo name	Sequence 5'-3'
CRISPR_APC_1A	CACCGCTAATGTGCTGTGGCACTGT
CRISPR_APC_1B	AAACACAGTGCCACAGCACATTAGC
CRISPR_DCC_Ex1_1A	CACCGTTTCTATCTCACCCCTA
CRISPR_DCC_Ex1_1B	AAACTAGGGGTGAGATAGAAAC
CRISPR_TP53_Ex5_1A	CACCGGCAAAACAGCTTATTGA
CRISPR_TP53_Ex5_1B	AAACTCAATAAGCTGTTTTGCC
CRISPR-pX300-PTEN-A	CACCGAGATCGTTAGCAGAAACAAA
CRISPR-pX300-PTEN-B	AAACTTTGTTTCTGCTAACGATCTC
DCC_Ex1-1_A	GTCGGTTTCTATCTCACCCCTACGG
DCC_Ex1-1_B	CGGTCCGTAGGGGTGAGATAGAAAC
PTEN_cCheck_A	GTCGGAGATCGTTAGCAGAAACAAAAGG
PTEN_cCheck_B	CGGTCCTTTTGTTTCTGCTAACGATCTC
TP53_Ex5_A	GTCGGGCAAAACAGCTTATTGAGGG
TP53_Ex5_B	CGGTCCCTCAATAAGCTGTTTTGCC

Table 15 Multiple cloning site oligos

Oligo name	Sequence 5'-3'	Length
MCS_RosaNeoCas_A	TCGAGCTGAGTTTAAACTGCAGGCCGGCCGATCTTCGAAACTGCCCG	64
	GGCGATCCTAGGTACGC	
MCS_RosaNeoCas_B	TCGAGCGTACCTAGGATCGCCCGGGCAGTTTCGAAGATCGGCCGGCC	64
	TGCAGTTTAAACTCAGC	

2.1.11 Cloning vectors

Table 16 Plasmid list

Plasmid	Antibiotic resistance	Source
pGEM-T Easy	Ampicillin	Promega Corporation, Madison, USA
pJET1.2/blunt	Ampicillin	Invitrogen GmbH, Darmstadt, DEU
pSL1180	Ampicillin	Amersham Biosciences, Piscataway, USA
pCAG-Cas9-bpA	Ampicillin	Dr. Oskar Ortiz Sanchez, IDG Helmholtz Center, DEU
pGEMT-Rosa26-Cas9-BS	Ampicillin	Chair of livestock biotechnology, TUM, DEU
pBs-LSL-Neo	Ampicillin	Chair of livestock biotechnology, TUM, DEU
pSL1180 + MR26 MTMG	Ampicillin	Chair of livestock biotechnology, TUM, DEU
p119-c-check	Spectinomycin	Yonglun Luo (Alun), MSc, Ph.D, Associate Professor,
pX330-U6-Chimeric_BB-	Ampicillin	Department of Biomedicine, Aarhus University, DNK
CBh-hSpCas9, 42230	Addgene, Cambridge, USA	
pX330-U6-Chimeric_BB-	Ampicillin	Chair of livestock biotechnology, TUM
CBh-hSpCas9_MCS		
pSL1180-SA-puro-LA	Ampicillin	Chair of livestock biotechnology, TUM

2.1.12 Antibodies

Table 17 List of primary antibodies

Primary antibodies	Source	Species reactivity	Description	Western blot dilution	iBind dilution
Mouse antiGAPDH, (monoclonal), G8795	Sigma-Aldrich Chemie GmbH, Steinheim, DEU	rat, chicken, turkey, human, mouse, mink, bovine, canine, monkey, rabbit, hamster	immunized with rabbit GAPDH	1:3000	1:3000
Cas9 (7A93A3) Mouse mAb \#14697	Cell Signaling Technology, Danvers, USA	-	N - terminus of Cas9 from S. pyogenes	1:1000	1:1000
Anti- Digoxigenin	Roche Diagnostic GmbH, Mannheim, DEU	-		Southern blot dilution 1:10000	

Table 18 List of secondary antibodies * when two primary antibodies were used simultaneous

Secondary Antibodies	Source	Western blot dilution	iBind dilution Goat anti-rabbit IgG, (polyclonal), A9169 Rabbit Anti-Mouse IgG H\&L (HRP), (polyclonal), Ab6728 Sigma-Aldrich Chemie GmbH, Steinheim DEU Abcam, Cambridge, England $1: 5000$

2.1.13 Competent bacterial cells

Table 19 Electro competent cells

E. Coli DH10B	Genotpye: F- mcrA $\Delta($ mrr-hsdRMS-mcrBC) Φ ©0lacZ $\Delta M 15$	Invitrogen GmbH,
ElectroMAX	$\Delta l a c X 74$ recA1 endA1 araD139 $\Delta($ ara, leu) 7697 galU galK $\lambda-$	Darmstadt, DEU
	rpsL nupG	

2.1.14 Cultured mammalian cells

Table 20 List of cultured mammalian cells

Cell lines	Organism	Description	Source
$\begin{aligned} & \text { pADMSCs } \\ & 110111 \end{aligned}$	pig	porcine adipose-derived mesenchymal stem cells	11.01.11 isolated by Dr. Benedikt Baumer, Chair of livestock biotechnology, TUM
pKF 270	pig	porcine kidney fibroblasts carrying a $\mathrm{mT} / \mathrm{mG}$ cassette in the Rosa26 locus	isolated by Dr. PD. Tatiana Flisikowska, Chair of livestock biotechnology, TUM
$\begin{aligned} & \text { pKF } 73 \text { APC }{ }^{1311} \\ & 240415 \end{aligned}$	pig	porcine kidney fibroblasts carrying a heterozygous APC ${ }^{1311}$ mutation	24.04.15 isolated by Dr. PD. Tatiana Flisikowska, Chair of livestock biotechnology, TUM
HEK293	human	1973 transformed embryonic kidney cells using DNA fragments of human Adenovirus 5 (Graham et al. 1977)	Chair of Nutrition and Immunology, TUM

2.1.15 Pigs

Table 21 List of individual pigs analysed

* Animals with more than 100 polyps were classified as high polyp (HP) and animals with 1-10 polyps as low polyp (LP) animals. Pigs with polyp numbers between 10 and 100 were classified as medium polyp (MP).

Animal ID	Born	Sex	Pheno- type*	Animal ID	Sorn	Sex	Pheno- type*
66	13.04 .2012	male	HP	534	18.01 .2016	female	LP
71	13.04 .2012	female	HP	586	11.03 .2016	female	LP
73	13.04 .2012	male	HP	588	11.03 .2016	female	HP
128	07.03 .2013	female	LP	591	15.03 .2016	castrated male	LP

145	14.03.2013	male	LP	598	15.03.2016	male	HP
148	14.03.2013	male	MP	722	26.09.2016	male	HP
150	14.03.2013	female	LP	727	26.09.2016	female	LP
152	14.03.2013	female	LP	388	04.04.2015	male	
153	14.03.2013	female	LP	909	18.06.2017	castrated male	HP
155	14.03.2013	male	LP	910	18.06.2017	male	HP
157	14.03.2013	female	LP	911	18.06.2017	castrated male	LP
163	15.03.2013	female	HP	913	18.06.2017	castrated male	LP
168	12.05.2013	male	HP	914	18.06.2017	castrated male	HP
173	12.05.2013	female	LP	916	18.06.2017	female	LP
174	12.05.2013	female	LP	917	18.06.2017	female	LP
251	21.02.2014	castrated male	HP	918	18.06.2017	female	HP
252	21.02.2014	castrated male	HP	919	18.06.2017	male	LP
253	21.02.2014	castrated male	HP	920	18.06.2017	female	LP
300	24.08.2014	female	LP	921	18.06.2017	female	LP
322	18.10.2014	male	HP	929	18.06.2017	male	LP
324	18.10.2014	male	HP	932	18.06.2017	castrated male	LP
326	18.10.2014	female	HP	933	18.06.2017	female	LP
328	18.10.2014	female	LP	937	09.07.2017	male	HP
339	20.10.2014	female	HP	941	09.07.2017	female	HP
471	17.08.2015	female	LP	943	09.07.2017	female	LP
474	17.08.2015	female	HP	944	09.07.2017	female	LP
524	18.01.2016	castrated male	LP	952	09.07.2017	female	LP
525	18.01.2016	castrated male	HP	953	09.07.2017	female	LP
527	18.01.2016	male	HP				

2.1.16 Computer software

Table 22 Software

ELISA-Reader
PyroMark Q48 Autoprep Software
7500 Software v2.0.5
A Plasmid Editor
AB Sequencing Analysis Software (v5.2)
Axiovision
AxioVision Rel. 4.8
Benchling
CASAVA BCL2FASTQ Conversion Software 1.8.3
CRISPR design

Ascent Software, Luqa, Malta
Qiagen, Hilden, DEU
Applied Biosystems, Warrington, GBR
M. Wayne Davis

Applied Biosystems, Warrington, GBR
Carl Zeiss Microscopy GmbH, Göttingen, DEU
Carl Zeiss Microscopy GmbH, Göttingen, DEU
https://benchling.com/
Illumina, San Diego, USA
http://crispr.mit.edu/, Zhang Lab, MIT 2017

DeSeq2

EdgeR
Every vector
FASTQC

FeatureCounts

Genecards
gNorm
GSEA software
HiSeq Control Software 2.2.58
IGV

Image J
Kallisto
Leica Application Suite software
MatInspector, Genomatix Matrix Library 11.0
mirPath v. 3
Normfinder
Phred/Phrap/Polyphred/Consed-Software

Picard
Primer 3
PyroMark Assay Design2.0
R Studio Version 1.0.153
R version 3.4.1 (2017-06-30)

Real-Time Analysis (RTA) 1.18.64
Run 3130xI Data Collection v.3.0
Sleuth

STAR
TarBase v7.0
TargetScan
TIDE: Tracking of Indels by Decomposition
Vector NTI
VISION
(Love et al, 2014), https://bioconductor.org/packages/release/bioc/html/DESeq2.html (McCarthy et al, 2012; Robinson et al, 2010) http://www.everyvector.com/users/login Andrews S. (2010), http://www.bioinformatics.babraham.ac.uk/projects/fastqc
(Liao et al, 2014), http://bioinf.wehi.edu.au/featureCounts/
http://www.genecards.org/
(Vandesompele et al, 2002)
(Mootha et al, 2003; Subramanian et al, 2005)
Illumina, San Diego, USA
(Robinson et al, 2011; Thorvaldsdottir et al, 2013), http://software.broadinstitute.org/software/igv/home
Nationla Institutes of Health, Bethesda, USA
(Bray et al, 2016)
Leica Microsystems, Wetzlar, DEU
https://www.genomatix.de/index.html
(Cartharius et al, 2005; Quandt et al, 1995)
(Vlachos et al, 2015b)
(Andersen et al, 2004)
(Ewing \& Green, 1998; Ewing et al, 1998)
(Gordon et al, 1998; Nickerson et al, 1997)
http://broadinstitute.github.io/picard
http://primer3.ut.ee/
Qiagen, Hilden, DEU
http://www.rstudio.com/
https://www.R-project.org/ (https://cran.rproject.org/)
Illumina, San Diego, USA
Applied Biosystems, Warrington, UK
(Pimentel et al, 2017), pachterlab.github.io/sleuth/
(Dobin et al, 2013)
(Vlachos et al, 2015a)
(Lewis et al, 2005)
https://tide.deskgen.com/, Brinkman
Invitrogen GmbH, Darmstadt, DEU
VILBER LOURMAT Deutschland GmbH, Eberhardzell, DEU

2.2 Molecular biological methods

2.2.1 Isolation of bacterial plasmid DNA

Mini prep

2 ml bacterial D10Hb cultures were pelleted for 5 min at full speed (12300-15493 xg). The supernatant was discarded and the bacterial pellet resuspended in 100μ l solution 1 (5 mM sucrose, 10 mM EDTA, 25 mM Tris-HCl pH 8.0). $200 \mu \mathrm{l}$ solution 2 ($0.2 \mathrm{M} \mathrm{NaOH}, 1 \%$ SDS) was added for alkaline lysis and inverted 6-8 times for complete mixture. After 3 min incubation at room temperature (RT) $150 \mu \mathrm{l}$ neutralising solution 3 (3 M sodium acetate pH 4.8) was added and inverted. After 30 min incubation on ice, the solution was centrifuged for 5 min . The supernatant, containing the plasmid DNA was mixed with $1 \mathrm{ml} 95 \%$ ethanol for plasmid DNA precipitation by 15 min centrifugation. The pellet was first washed with $500 \mu \mathrm{l} 80 \%$ ethanol, centrifuged for 10 min and subsequently with $500 \mu \mathrm{l} 95 \%$ ethanol. After aspiration of the supernatant the DNA pellet was dried using a vacuum centrifuge for 1-2 min at medium drying stage and resuspended in 50μ l water containing RNase $A(40 \mu \mathrm{~g} / \mathrm{ml})$.

Midi and Maxi prep

Plasmid DNA was isolated from 100 ml or 300 ml bacterial cultures with the Plasmid DNA purification NucleoBond ${ }^{\circledR}$ Xtra Midi Kit and Maxi Kit (Macherey-Nagel) respectively, following manufacturer's information. The resulting DNA pellet was eluted in 100 or 200μ I TE buffer for Midi and Maxi preps.

2.2.2 Isolation of mammalian genomic DNA using phenol-chloroform extraction

Isolation from tissue) The tissue piece was cleaned with ethanol and PBS before transferring it to a petri dish and cutting it into small pieces with a sterile scalpel. The petri dish was rinsed with $500 \mu \mathrm{l}$ lysis buffer (100 mM Tris-HCl pH7.4, 0.2 \% SDS, 5 mM EDTA, 0.2 M NaCl) or more (depending on tissue size) to convert the minced tissue to a falcon tube.

Isolation from cells) Cells were pelleted in a 15 ml falcon tube by centrifugation at $300 \times \mathrm{g}$ for 5 min . The cell pellet was resuspended in $500 \mu \mathrm{l}$ lysis buffer or more (depending on pellet size).

At this stage tissue samples and cultured cells were treated in a similar manner by supplementation with proteinase K to a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ and incubation at $37^{\circ} \mathrm{C}$ over night.

The next day, RNase A was added to a final concentration of $390 \mu \mathrm{~g} / \mathrm{ml}$ and incubated for 5 min . The solution was mixed with an equal volume of phenol-chloroform-isoamyl alcohol, vortexed and left at RT for 10 min before centrifugation ($4^{\circ} \mathrm{C}, 10 \mathrm{~min}, 15493 \times \mathrm{g}$). The top aqueous phase, containing DNA, was transferred to a new reaction tube. An equal volume of chloroform was added, mixed, incubated
and centrifuged as before. The top aqueous phase was collected and mixed with $0.7 x$ volume ice cold isopropanol. The DNA was pelleted at $4{ }^{\circ} \mathrm{C}$ for 15 min and washed with $200 \mu \mathrm{l}$ ice cold 70% ethanol and centrifuged for 5 min . The ethanol was aspirated and the DNA pellet dried for 10-15 min. When dried completely, the pellet was resuspended in 50-100 μ l TE Buffer.

2.2.3 Isolation of mammalian genomic DNA using AllPrep Mini Kit

A whole biopsy sample was placed in a lysis tube P with $600 \mu \mathrm{l}$ RLT Plus buffer (containing β mercaptoethanol). The samples were homogenised for $30-120$ sec in the precooled Speed Mill PLUS, until complete homogenisation. The isolation was performed using the AllPrep Mini Kit (Qiagen) according to manufacturer's information and gDNA was eluted in 100μ l nuclease-free water.

2.2.4 Isolation of mammalian genomic DNA using Quick Extract

Small cell amounts were pelleted and frozen for later, or resuspended right away in 20μ l QuickExtract (Epicentre) per $1 / 312$ well. Enzymatic cell lysis was performed at $68^{\circ} \mathrm{C}$ for 15 min and $95^{\circ} \mathrm{C}$ for 8 min .

2.2.5 Isolation of RNA

During the isolation and purification of RNA, samples were always kept on ice and centrifuged at $4{ }^{\circ} \mathrm{C}$.

2.2.5.1 RNA isolation from cells

Cells were washed with ice cold PBS and detached by pipetting with 350μ l RLT buffer per confluently covered 12 well. Further processing was performed according to protocol step 4 of RNeasy Kit (Qiagen). All centrifugations were run at $10000 \times g$ and RNA was eluted in 30μ l nuclease-free water.

2.2.5.2 RNA isolation from tissues

Biopsy samples were kept on liquid nitrogen and halved before they were placed into a Lysis tube P.
mRNA Isolation from tissues using innuSPEED Tissue RNA Kit

Biopsy samples were transferred to a lysis tube P with 450μ l lysis buffer (supplied) for at least 2x 20 seconds homogenisation using previously cooled Speed Mill PLUS and processed according to manufacturer's information. RNA was eluted in $30 \mu \mathrm{l}$ nuclease-free water.

Total RNA isolation from tissues using DirectZol RNA MiniPrep

Biopsy samples were placed into a Lysis tube P containing 400μ l Trizol for at least $2 x 20$ sec homogenisation using previously cooled Speed Mill PLUS. They were spun down for 1 min at 12000 x
g before $350 \mu \mathrm{l}$ cell lysate was mixed with $350 \mu \mathrm{l} 100 \%$ ethanol. Isolation was performed according to manufacturer's information and RNA was eluted in 30μ I nuclease-free water.

Total RNA isolation from tissues using AllPrep Mini Kit

Biopsy samples were transferred to a lysis tube P with 600μ I RLT Plus buffer (containing β-mercaptoethanol). for at least 30 sec homogenisation using precooled Speed Mill PLUS. Isolation was performed according to manufacturer's information and total RNA was eluted in 30μ l nuclease-free water.

2.2.5.3 Total RNA isolation from laser microdissected cryo sections

Laser microdissected samples mixed with RLT Plus buffer (containing β-mercaptoethanol) were vortexed for $30-120$ sec. Total RNA was isolated using the Allprep DNA/RNA Micro Kit (Qiagen) according to manufacturer's information and eluted in 14μ l nuclease-free water.

2.2.6 DNase digest

Isolated RNA was treated with TURBO DNA-free ${ }^{\text {TM }}$ Kit according to the manufacturer's information except no inactivation reagent was used.

2.2.7 Quantification and Quality control of nucleic acids

2.2.7.1 Determination of nucleic acid concentration using NanoDrop Lite

For dsDNA the NanoDrop Lite multiplied the absorbance at 260 nm by 50 and for RNA by 40 . The A260/A280 ratio indicating protein contamination should lie around 1.8 for dsDNA and 2.0 for RNA.
2.2.7.2 Determination of nucleic acid concentration using Qubit 2.0 fluorometer

RNA was fluorometrically quantified using the QuantiFluor ${ }^{\circledR}$ RNA System (Promega) (detection range $0.1-500 \mathrm{ng}$) and DNA using Qubit ${ }^{\text {TM }}$ dsDNA BR Assay Kit (Thermo Fisher Scientific) (detection range 21000 ng) and Qubit ${ }^{\text {TM }}$ dsDNA HS Assay Kit (Thermo Fisher Scientific) (detection range 0.2-100 ng) according to manufacturer's information.

2.2.7.3 Determination of nucleic acid quality using Bioanalyzer

The RNA integrity number (RIN), was determined using Agilent RNA 6000 Nano Kit and Agilent RNA 6000 Pico Kit for laser microdissected RNA isolations according to manufacturer's information.

Size distribution and quality of sequencing libraries were determined using Agilent DNA 1000 Kit and Agilent High Sensitivity DNA Kit according to manufacturer's information.

2.2.7.4 Gel electrophoresis

For analytical gels of RNA or DNA fragments after isolation, digestion or PCR the agarose was dissolved in $1 x$ TBE. For preparative gels (excision of DNA) $1 x$ TAE was used. Gels were always supplemented with a final concentration of $800 \times$ peqGREEN. RNA gels were additionally complemented with $400 \mu \mathrm{l}$ 37 \% formalin per 50 ml gel. Both DNA and RNA samples were mixed with gel loading dye prior to gel electrophoresis, the latter were denatured at $70^{\circ} \mathrm{C}$ for 2 min to destroy secondary structures.

2.2.8 Plasmid DNA purification for tissue culture by ethanol precipitation

The volume of plasmid DNA was set to 500μ l with water and $1 / 10$ volume of 3 M sodium-acetate pH 5.2 was added and mixed. A 2-2.5 x volume of cold 100% ethanol was added, mixed and incubated at $-20^{\circ} \mathrm{C}$ for at least 20 min before pelleting the DNA ($12300-15493 \mathrm{xg}, 10 \mathrm{~min}, 4{ }^{\circ} \mathrm{C}$). From now on, the tube containing the DNA was only opened under a sterile laminal flow cabinet. The supernatant was aspirated and the pellet washed with 1 ml sterile 70% ethanol. After centrifugation (full speed, 5 min , RT) the supernatant was aspirated and the pellet air dried. Plasmid DNA was eluted in sterile water or sterile low TE buffer, to gain a final concentration of 1-1.5 $\mu \mathrm{g} / \mu \mathrm{l}$.

2.2.9 Plasmid DNA purification for tissue culture by phenol-chloroform extraction

The volume of the plasmid DNA was set to 500μ l with water and mixed with 500μ l phenol-chloroformisoamyl alcohol. The procedure was performed according to 2.2.2 except, after chloroform addition the top aqueous phase was mixed with $1 / 20^{\text {th }}$ volume 3 M Sodium-acetate and a 0.7 volume isopropanol. This mixture was shaken and pelleted at full speed for 10 min . From now on, the DNA tube was only opened under a sterile laminal flow cabinet and proceeded according to 2.2.8.

2.2.10 Column based DNA purification

DNA after restriction digest, blunting, ligation or PCR was purified using the Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System (Promega) according to manufacturer's information with modifications (Appendix).

2.2.11 Restriction enzyme digestion

1μ g plasmid DNA, PCR products and gDNA was digested with 3-5 Units restriction enzyme (NEB), ≤ 5 \% enzyme glycerol concentrations for at least 1-4 h at the enzyme's temperature optimum for cloning, Southern blot, digital droplet PCR, and size determination. Digests after ligation were incubated for 20 min with 5-10 units restriction enzyme, water and restriction buffer to gain $1 x$ concentration.

2.2.12 Blunting

DNA sticky ends were blunted using the DNA Polymerase I Large Fragment (Klenow) from NEB. Successful blunting was achieved with $1 x$ concentrated NEB buffer (1.1, 2.1, 3.1 or CutSmart), a final concentration of $60 \mu \mathrm{M}$ dNTPs and ≤ 1 unit of the Klenow Enzyme ($5 \mathrm{U} / \mu \mathrm{l}$) per $1 \mu \mathrm{~g}$ DNA incubated at $25^{\circ} \mathrm{C}$ for 15 min and inactivated with a final concentration of 10 mM EDTA at $75^{\circ} \mathrm{C}$ for 20 min .

2.2.13 Oligonucleotide hybridisation

Each single-stranded oligonucleotide was dissolved in a $1 \mu \mathrm{~g} / \mu$ l concentration in TE buffer. $1 \mu \mathrm{l}$ of each complementary oligo was added to $98 \mu \mathrm{TE}$ buffer, heated for 5 min at $100^{\circ} \mathrm{C}$ and slowly cooled to RT.

2.2.14 DNA ligation

Vector DNA ranged from 50 to 200 ng (for DNA > 10 kb) and insert was calculated as below. 30 ng double-stranded oligonucleotides were ligated to 50 ng vector without calculation. To the DNA 1 x concentrated T4 Ligase buffer, 400-600 units of T4 DNA Ligase and water was added to a total volume of $20 \mu \mathrm{l}$ and incubated at RT for 1 h or at $16{ }^{\circ} \mathrm{C}$ over night.

Insert $_{n g}=\frac{\text { Vector }_{n g} * \text { size }_{\text {Insert }}}{\text { size }_{\text {Vector }}} * 3$

2.2.15 DNA methylation

All CpG sites in a gDNA sample were methylated by incubating 1μ g DNA with 4.8 units CpG methyltransferase Sssl, $160 \mu \mathrm{M}$ S-adenosylmethionine (SAM) and $1 x$ Buffer 2.1 (NEB) for 4 h at $37^{\circ} \mathrm{C}$. After each hour of incubation another 4.8 units of Sssl were added.

2.2.16 Bisulphite conversion

Bisulphite conversion of 200 ng genomic DNA was performed using EZ DNA Methylation-Direct Kit (Zymo Research) according to manufacturer's information.

2.2.17 Whole genome amplification using the REPLI-g Mini Kit

To generate CpG methylation-free DNA, 150 ng gDNA was amplified using the REPLI-g Mini Kit (Qiagen) according to manufacturer's information.

2.2.18 Reverse Transcription

500 ng total RNA were converted to cDNA using SuperScript ${ }^{T M}$ III Reverse Transcriptase (Invitrogen) with 100 pmol random hexamer primers according to manufacturer's information. Entire laser microdissected RNA was converted using Superscript IV Reverse Transcriptase (Invitrogen). For microRNA (miRNA) analysis, $1 \mu \mathrm{~g}$ total RNA was reverse transcribed using the miScript II RT Kit (Qiagen) according to the manufacturer's information.

2.2.19 5' Rapid amplification of cDNA ends (RACE)

5' RACE of $1 \mu \mathrm{~g}$ RNA was performed using the FirstChoice RLM-RACE Kit according to manufacturer's information with small modifications. Phenol:chloroform extraction with 15μ l supplied ammonium acetate solution, $115 \mu \mathrm{l}$ nuclease free water and $150 \mu \mathrm{l}$ phenol-chloroform-isoamyl alcohol was mixed and centrifuged following 2.2.2. After adding ice cold isopropanol, RNA was chilled on ice for 10 min . RNA pelleting for 20 min and washing with cold 70% ethanol for 10 min was performed at full speed at $4{ }^{\circ} \mathrm{C}$. The supernatant was discarded, the pellet air dried and resuspended in $4 \mu \mathrm{l}$ Tobacco Acid pyrophosphate (TAP) buffer. The entire volume was mixed with 1μ I TAP enzyme and incubated for 1 h at $37^{\circ} \mathrm{C}$. The complete mix was used for adapter ligation according to manufacturer's information over night at $16^{\circ} \mathrm{C}$. The whole reaction was used for reverse transcription using SuperScript III (2.2.18). The resulting cDNA was used for nested PCR.

2.2.20 Polymerase chain reaction

Depending on the purpose of the amplification, different DNA polymerases were used requiring different PCR conditions. The polymerases AccuStart Taq DNA Polymerase HiFi and GoTaq ${ }^{\circledR}$ DNA Polymerase produce 3^{\prime} A overhangs where Q5 ${ }^{\circledR}$ High-Fidelity DNA Polymerase generates blunt ends.

AccuStart Taq DNA Polymerase HiFi PCR was performed with 20-200 ng DNA, 1x HiFi PCR Buffer, 2 mM magnesium sulfate, 200 nM of each primer, $200 \mu \mathrm{M}$ dNTPs and $0.02 \mathrm{U} / \mu \mathrm{l}$ AccuStart Taq DNA Polymerase HiFi in $50 \mu \mathrm{l}$ total volume. Thermal cycling conditions were: $1 \mathrm{~min} 94{ }^{\circ} \mathrm{C}, 40$ cycles of 20 $\sec 94^{\circ} \mathrm{C}, 30 \sec 55-65^{\circ} \mathrm{C}$ (depending on primer annealing temperature) and $1 \mathrm{~min} / \mathrm{kb} 68^{\circ} \mathrm{C}$.

GoTaq ${ }^{\circledR}$ DNA Polymerase PCR was performed with 50-300 ng DNA, $1 \times$ Green GoTaq ${ }^{\circledR}$ Reaction Buffer (1.5 mM MgCl 2), 200 nM primer each, $200 \mu \mathrm{M}$ dNTPs and $0.025 \mathrm{U} / \mu \mathrm{l}$ GoTaq ${ }^{\circledR}$ DNA Polymerase in $50 \mu \mathrm{l}$ total volume. Cycling conditions were: $2 \min 95{ }^{\circ} \mathrm{C}, 40$ cycles of $30 \sec 95{ }^{\circ} \mathrm{C}, 30 \sec 42-65{ }^{\circ} \mathrm{C}$ and 1 $\min / \mathrm{kb} 72{ }^{\circ} \mathrm{C}$ and $5 \min 72{ }^{\circ} \mathrm{C}$.

Q5 ${ }^{\circledR}$ High-Fidelity DNA Polymerase PCR was performed with approx. 200 ng DNA, $1 \times$ Q5 Reaction Buffer, $1 \times$ Q5 High GC Enhancer, 500 nM of each primer, $200 \mu \mathrm{M}$ dNTPs and $0.01 \mathrm{U} / \mu \mathrm{I} \mathrm{Q}^{\circledR}$ High-Fidelity DNA Polymerase in 50μ l total volume. Thermal cycling conditions were: $30 \sec 98^{\circ} \mathrm{C}, 35$ cycles of 10 $\sec 98^{\circ} \mathrm{C}$, $30 \sec 50-72^{\circ} \mathrm{C}$ and $1 \mathrm{~min} / \mathrm{kb} 72^{\circ} \mathrm{C}$ and $2 \min 72^{\circ} \mathrm{C}$.

PyroMark PCR Kit PCR was performed with $\leq 500 \mathrm{ng}$ DNA or $10-20 \mathrm{ng}$ bisulphite converted DNA (bcDNA), 1x PyroMark PCR Master Mix, 1x Coral Load, $0.5 \mathrm{mM} \mathrm{MgCl} 2,200 \mathrm{nM}$ of each primer in $25 \mu \mathrm{l}$ total volume. Cycling conditions were: $15 \min 95^{\circ} \mathrm{C}, 45$ cycles of $30 \sec 94^{\circ} \mathrm{C}, 30 \sec 60^{\circ} \mathrm{C}$ for DNA/ 56 ${ }^{\circ} \mathrm{C}$ for bcDNA and $30 \sec 72{ }^{\circ} \mathrm{C}$ and a final $10 \min 72^{\circ} \mathrm{C}$.

2.2.21 Colony PCR using GoTaq Polymerase

Colony PCR was performed to screen replicate bacterial colonies for correctly cloned DNA constructs. GoTaq ${ }^{\circledR}$ DNA Polymerase PCR was assembled as above, without DNA, as the colonies were picked into the reaction mix and onto an agar plate for culture. Initial denaturation was extended to $5 \mathrm{~min} 95^{\circ} \mathrm{C}$.

2.2.22 Mycoplasma Test PCR using GoTaq

Medium conditioned by the cells for at least three days, was heated to $95^{\circ} \mathrm{C}$ for $5 \mathrm{~min} .2 \mu \mathrm{l}$ was added to GoTaq polymerase PCR with the primers Myco_1F and Myco_1R. Primer concentrations were increased to 500 nM and MgCl_{2} was added to a final concentration of 1.5 mM in $25 \mu \mathrm{l}$ total volume. Thermal conditions were: $2 \min 94{ }^{\circ} \mathrm{C}$, 40 cycles of $30 \sec 94^{\circ} \mathrm{C}, 30 \sec 55^{\circ} \mathrm{C}$ and $30 \sec 72{ }^{\circ} \mathrm{C}$. Noninfectious DNA-fragments of Mycoplasma orale genome from the VenorGeM Mycoplasma Detection Kit (Sigma-Aldrich Chemie GmbH) served as positive control.

2.2.23 Reverse Transcription PCR

The reverse transcription PCR (RT-PCR) is performed using cDNA as a template to confirm transcription. 1μ l undiluted cDNA was used, also in the case of RACE analysis.

2.2.24 Quantitative Real-time PCR

Quantification of sequencing libraries for mRNA sequencing was performed using KAPA SYBR FAST qPCR Master Mix (2X) Universal (Kapa Biosystems) according to Sequencing Library qPCR Quantification Guide (Illumina) with modifications. 5 nM libraries were diluted 1:1000 and vortexed (this and all following dilutions were prepared with $0.1 \%(v / v)$ Tween 20$)$. One previously sequenced 2 nM library served as a positive control and was diluted 1:500 and another was used for standard curve generation by preparing serial dilutions of $20 \mathrm{pM}, 2 \mathrm{pM}, 0.2 \mathrm{pM}, 0.02 \mathrm{pM}$ and 0.002 pM . All dilutions were prepared in triplicates. 4μ l of each dilution, $1 \times$ KAPA SYBR FAST qPCR Master Mix, 0.2 $\mu \mathrm{M}$ primer each were mixed in a total volume of $10 \mu \mathrm{l}$. Thermal conditions were: $2 \mathrm{~min} 50^{\circ} \mathrm{C}, 5 \mathrm{~min} 95$ ${ }^{\circ} \mathrm{C}$ and 30 cycles of $30 \sec 95^{\circ} \mathrm{C}$ and $45 \sec 60^{\circ} \mathrm{C}$.

2.2.25 Reverse transcription quantitative Real-time PCR

Reverse transcription quantitative real-time PCR (RT-qPCR) of mRNA was performed using Fast SYBR ${ }^{\text {TM }}$ Green Master Mix (Applied Biosystems) according to the following protocol (Table 23).

Table 23 RT-qPCR reaction set up using Fast SYBR Green Master Mix

Primer Master Mix		Sample Master Mix	
Components	Final concentration	Components	Amount $[\mu \mathrm{l}]$
$2 \times$ Fast SYBR $^{\circledR}$ Green Master Mix	$1 x(5 \mu \mathrm{l})$	cDNA	3
Forward primer $_{\text {Reverse primer }}$	$0.2 \mu \mathrm{M}$	Primer Master Mix	30
$\mathrm{H}_{2} \mathrm{O}$	$0.2 \mu \mathrm{M}$		

The Sample Master Mix was transferred into 3 wells (technical triplicates), each $10 \mu \mathrm{l}$, of a MicroAmp Fast Optical 96-Well Reaction Plate. The plate was sealed with MicroAmp ${ }^{\text {TM }}$ Optical Adhesive Film and pulse centrifuged. The reaction was run in the ABI 7500 Fast Real-Time PCR System, with cycling conditions: $20 \sec 95^{\circ} \mathrm{C}, 40-55$ cycles of $3 \sec 95^{\circ} \mathrm{C}$ and $30 \sec 60-64^{\circ} \mathrm{C}$. Subsequent high resolution melting (HRM) analysis ($60-95^{\circ} \mathrm{C}$) of the products was performed determining melting temperature and number of specific and unspecific products.

RT-qPCR of miRNA was perfomed using miScript SYBR ${ }^{\circledR}$ Green PCR Kit (Qiagen) according to Table 24.

Table 24 MiRNA RT-qPCR reaction set up using miScript SYBR Green PCR Kit

Primer Master Mix		Sample Master Mix	
Components	Final concentration	Components	Amount $[\mu \mathrm{l}]$
$2 \times$ QuantiTect SYBR Green PCR	$1 \times(6.26 \mu \mathrm{l})$	cDNA	3
Master Mix			
Forward primer	$0.7 \mu \mathrm{M}$	Primer Master Mix	33
miScript Universal Primer	$0.7 \mu \mathrm{M}$		
$\mathrm{H}_{2} \mathrm{O}$	up to $11.5 \mu \mathrm{l}$		

The Sample Master Mix was transferred into 3 wells (technical triplicates), each 11μ, of a MicroAmp Fast Optical 96-Well Reaction Plate, sealed and pulse centrifuged as above. The reaction was run in the ABI 7500 Fast Real-Time PCR System, using following cycle conditions: $15 \mathrm{~min} 95{ }^{\circ} \mathrm{C}, 40-55$ cycles of 15 $\sec 94^{\circ} \mathrm{C}$, $30 \sec 55^{\circ} \mathrm{C}$ and $30 \sec 70^{\circ} \mathrm{C}$. Subsequently, HRM analysis $\left(60-95^{\circ} \mathrm{C}\right)$ was performed.

RT-qPCR Data analysis

For relative quantification analysis of the expression of mRNA and miRNA, the Livak method was used (Livak \& Schmittgen, 2001). The fluorescence threshold for determination of the threshold cycle (Ct) was set manually for each gene (Table 25).

Table 25 Fluorescence threshold values for Ct determination

mRNA	Fluorescence threshold	MiRNA	Fluorescence threshold	LMD mRNA	Fluorescence
GAPDH	0.235651	mir-215	0.034205		threshold
CYP7A1	0.027038	mir-194b-5p	0.057749	CYP7A1	0.078585
SFRP-5	0.488557	mir-27a-3p	0.023887	GAPDH	0.297384
SATB1	0.542667	mir-146a-5p	0.050586		
		let-7a-5p	0.045831		

1) $d C t=\mu C t_{\text {Target gene }}-\mu C t_{\text {Reference gene }}$
2) $d d C t=d C t_{\text {test sample }}-\mu d C t_{\text {calibrator sample }}$
3) Foldchange $=2^{(-d d C t)}$

The mean (μ) Ct value of the gene of interest was normalised to the Ct value of the reference gene (1). All samples of the calibrator group were taken together to generate a mean dCt calibrator which was subtracted from the dCt of each test sample, forming the ddCt of each sample (2). DdCt represents the change in expression of the target gene between the test and calibrator group, normalised for any difference in loading between the calibrator and test samples. To obtain the fold change in expression between the test sample and the calibrator the following equation 3) was used. The Foldchange
determines at what fold the expression of the target gene in the test sample differs to the expression of the target gene in the calibrator sample.

2.2.26 Enzymatic PCR purification

For sequencing with SmartSeq from MWG Eurofins and for Sanger sequencing, PCR reactions were enzymatically purified. $10 \mu \mathrm{l}$ PCR reaction was mixed with $0.4 \mu \mathrm{l}$ exonuclease I $(20 \mathrm{U} / \mu \mathrm{l})$ and $1 \mu \mathrm{l}$ shrimp alkaline phosphatase (1U) and incubated at $37^{\circ} \mathrm{C}$ for 30 min and at $80^{\circ} \mathrm{C}$ for 15 min .

2.2.27 Sequencing with SmartSeq from MWG Eurofins

15μ l plasmid DNA ($50-100 \mathrm{ng} / \mu \mathrm{l}$) or $2 \mu \mathrm{l}$ purified PCR product (2.2.10, 2.2.26) were mixed with $2 \mu \mathrm{l} 10$ $\mu \mathrm{M}$ primer and water to $17 \mu \mathrm{l}$ total volume and transferred to a SmartSeq tube for sequencing.

2.2.28 Sanger Sequencing

Termination reaction

The termination reaction was performed using the Big Dye Terminator v1.1 Cycle Sequencing Kit (Life Technologies) with 2μ l purified PCR product (amplified using GoTaq ${ }^{\circledR}$ DNA Polymerase (2.2.20) and enzymatically purified (2.2.26)), $1 x$ BigDye sequencing buffer, $1 x$ dilution buffer ($5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.2 \mathrm{mM}$ Tris -HCl pH 8.0), $0.25 \mu \mathrm{M}$ sequencing primer and $1 x$ BigDye Terminator in a total volume of $10 \mu \mathrm{l}$. The thermal conditions were: $20 \sec 95^{\circ} \mathrm{C}$ and 25 cycles of $12 \sec 95^{\circ} \mathrm{C}, 8 \sec 51^{\circ} \mathrm{C}$ and $4 \min 60^{\circ} \mathrm{C}$.

Sephadex gel filtration

The termination reaction mix was purified using a sephadex gel filtrations method. 25 mg sephadex (determined volumetrically) was transferred into a MultiScreen HV plate (Millipore) and soaked in 300 $\mu \mathrm{l}$ water per well for 2 h at RT. After incubation, the plate was centrifuged at $960 \times \mathrm{g}$ for 5 min . The sequencing reaction ($10 \mu \mathrm{l}$) was diluted with $15 \mu \mathrm{l} 0.1 \mathrm{mM}$ EDTA. The total volume of $25 \mu \mathrm{l}$ was applied to the sephadex plate for gel filtration at $960 \times \mathrm{g}$ for 5 min and collected in a fresh 96 well plate.

Capillary gel electrophoresis

The 96 well plate was transferred to the ABI Prism 3130xl Genetic Analyzer for capillary gel electrophoresis in a 36 cm capillary using the POP-7 ${ }^{\text {TM }}$ Polymer (Life Technologies). The procedure ran with standard settings and the data was collected using the software Run 3130xl Data Collection v.3.0.

Analysis of polymorphisms

Quality assessment and base calling was performed by the AB Sequencing Analysis Software (v5.2). The polymorphisms in the sequences were detected using the Phred/Phrap/Polyphred/ConsedSoftware (Ewing \& Green, 1998; Ewing et al, 1998; Gordon et al, 1998; Nickerson et al, 1997).

2.2.29 Pyrosequencing

A sequence of interest was amplified from bcDNA (2.2.16) with one biotinylated primer and the PyroMark PCR Kit (Qiagen) (2.2.20). The samples were sequenced on the PyroMark Q48 Autoprep Instrument using the PyroMark Q48 Advanced CpG Reagents (Qiagen) according to manufacturer's information with small modifications. When all reagents except the enzyme and substrate were brought to RT, 4μ I PyroMark Q48 Magnetic Beads (Qiagen) and $12 \mu \mathrm{I}$ PCR reaction were loaded. $2 \mu \mathrm{l}$ sequencing primer ($10 \mu \mathrm{M}$ primers diluted in PyroMark Annealing Buffer) was added automatically.

2.2.30 Next Generation Sequencing using Illumina technology

mRNA Sequencing

400 ng total RNA was used for the library preparation with the TruSeq RNA Library Preparation Kit v2 (Illumina) according to "TruSeq RNA Sample Preparation v2 Guide" with one small modifications. Elution2-Frag-Prime program was reduced to 4 min at $94{ }^{\circ} \mathrm{C}$.

Quality and Quantity control was performed according to the "TruSeq RNA Sample Preparation v2 Guide" using the Bioanalyzer (2.2.7.3) and Qubit (2.2.7.2) respectively. Obtained average fragment/library size multiplied with the average molecular weight of a single DNA base pair (660 $\mathrm{g} / \mathrm{mol}$) and concentration resulted in the molarity of each library.
$\frac{\text { Concentration }[\mathrm{ng} / \mu \mathrm{l}]}{\text { average library size }[\mathrm{bp}] x 660 \mathrm{~g} / \mathrm{mol}} \times 10^{6}=$ molarity $[\mathrm{nM}]$
The libraries were set to a 5 nM with EB buffer and quantified with qPCR according to "Sequencing Library qPCR Quantification Guide" from Illumina (2.2.24). The molarities of the libraries were corrected according to qPCR results and set to 2 nM with EB buffer. Twelve 2 nM libraries carrying 12 different adapters were pooled and processed according to the "HiSeq and GAllx Systems Denature and Dilute Libraries Guide: Denature and Dilute Libraries for HiSeq Clustering Standard Normalization Method" (Illumina) with small modifications. $10 \mu \mathrm{l}$ pooled 2 nM libraries was mixed with $10 \mu \mathrm{l} 0.1 \mathrm{M}$ NaOH and incubated for 5 min at RT. The resulting 1 nM library pool was diluted with prechilled HT1 buffer to 20 pM in a total volume of 1000μ. The 20 pM solution was set to a chosen molarity with HT1
buffer reaching a total volume of $420 \mu \mathrm{l}$ and supplemented with $5 \mu \mathrm{l} 12.5 \mathrm{pM}$ PhiX library (Table 26). The PhiX library was denatured and diluted according to "HiSeq and GAllx Systems Denature and Dilute Libraries Guide: Denature and Dilute PhiX for HiSeq Clustering" (Illumina).

Table 26 Calculations for the molar adjustment of library pools for Illumina Sequencing of mRNA

Final concentration	$\mathbf{1 2} \mathbf{~ p M}$	$\mathbf{1 3} \mathbf{~ p M}$	$\mathbf{1 4} \mathbf{~ p M}$	$\mathbf{1 8} \mathbf{~ p M}$
20 pM denatured library pool	252	273	294	378
Prechilled HT1 buffer	168	147	126	42
12.5 pM PhiX	5	5	5	5
Total volume	425	425	425	425

The HiSeq was prepared and operated according to the "HiSeq ${ }^{\circledR} 2500$ System Guide, Chapter 5 Sequencing in Rapid Run Mode" (Illumina). The HiSeq Rapid v2 flow cell was rinsed with laboratory grade water, dried with low lint Kimtech Science Precision wipes (Kimberly-Clark Professional) and together with the library pool loaded into the HiSeq2500. Clustering and sequencing was performed using the HiSeq Rapid PE Cluster Kit v2 (Illumina) and HiSeq Rapid SBS Kit v2 (Illumina) at $2 \times 100 \mathrm{bp}$ read configuration to generate Fastq files.

Small RNA Sequencing

$1 \mu \mathrm{~g}$ total RNA was used for small RNA library preparation using the TruSeq Small RNA Library Prep Kit (Illumina) according to manufacturer's information. Quality and quantity of libraries was analysed using the Bioanalyzer Agilent High Sensitivity DNA Kit (2.2.7.3) and Qubit ${ }^{\text {TM }}$ dsDNA HS Assay Kit (2.2.7.2).

400 ng of 6 samples each, all carrying different adapters were pooled and run on a gel. After purification quality and molarity of the library pools were analysed using the Bioanalyzer Agilent High Sensitivity DNA Kit (2.2.7.3). Library pools were set to 4 nM with 10 mM Tris- HCl (pH 8.5) and processed according to the "MiSeq System Denature and Dilute Libraries Guide: Standard Normalization Method". $5 \mu \mathrm{l} 4 \mathrm{nM}$ library pool was mixed with $5 \mu \mathrm{l} 0.2 \mathrm{~N} \mathrm{NaOH}$ and incubated for 5 min at RT. $990 \mu \mathrm{l}$ prechilled HT1 buffer was added resulting in 1 ml 20 pM library pool. $360 \mu \mathrm{l} 20 \mathrm{pM}$ library pool was mixed with $240 \mu \mathrm{l}$ prechilled HT1 buffer for a 12 pM dilution. $594 \mathrm{\mu l} 12 \mathrm{pM}$ library pool was supplemented with $6 \mu 12.5 \mathrm{pM}$ PhiX library that was equally denatured. The flow cell was rinsed with laboratory-grade water and dried with low lint Kimtech Science Precision wipes (Kimberly-Clark Professional). The flow cell and library pool were loaded into the MiSeq and sequencing was performed using the MiSeq Reagent Kits v2 (Illumina) at 1×50 bp read configuration to generate Fastq files. The MiSeq was prepared and operated according to the "MiSeq ${ }^{\circledR}$ System Guide" (Illumina).

2.2.31 Southern blot analysis

2.2.31.1 Preparing Digoxygenin labelled probes

Digoxigenin (DIG) labelled DNA probes of 600-750 bp and 50-60 \% GC content were generated via GoTaq DNA Polymerase PCR (2.2.20) with supplementation of 60 mM Digoxigenin-11-dUTP (Roche Diagnostic GmbH). Successful labelling (slower gel migration than control PCR without digoxigenin addition) was assessed by gel electrophoresis and extracted from the gel (2.2.10).

2.2.31.2 Dot blot

Dot blot was performed to determine binding capacity and optimal hybridisation temperature of a probe. DNA was applied directly to the positively charged Nylon membrane. The membrane was baked for 30 min at $120^{\circ} \mathrm{C}$ and prepared according to Southern blot protocol (2.2.31.3).

2.2.31.3 Southern blot

$10 \mu \mathrm{~g}$ gDNA were digested for 4 h at $37^{\circ} \mathrm{C}$ with 4 Units Enzyme per $\mu \mathrm{g}$ DNA. The DNA was separated on a 1 TAE 0.8 \% agarose gel free of peqGREEN with 2-Log DNA Ladder (New England Biolabs) and the DIG-labeled DNA Molecular Weight Marker VII (Roche Diagnostic GmbH). The Gel ran at 120 V for 10 min and 30 V overnight. The next day, half the 2-Log DNA Ladder lane was cut off and stained in a peqGREEN bath for 10-30 min. The stained ladder was photographed with a ruler to visualise the run and cut the gel correspondingly. All following incubations or washings were performed at RT shaking. For hybridisation of targets larger than 5 kb , the gel was incubated in depurination solution (250 mM $\mathrm{HCl})$ for 10 min maximum. The gel was rinsed in demineralised water and incubated in denaturation solution ($0.5 \mathrm{M} \mathrm{NaOH}, 1.5 \mathrm{M} \mathrm{NaCl}$) twice for 15 min . The gel was rinsed and incubated twice in neutralisation solution (0.5 M Tris- $\mathrm{HCl}, \mathrm{pH} 7.5 ; 1.5 \mathrm{M} \mathrm{NaCl}$) for 15 min . The neutralised gel was equilibrated in $20 x \operatorname{SSC}(3 \mathrm{M} \mathrm{NaCl}, 0.3 \mathrm{M}$ sodium citrate) for at least 10 min .

The capillary transfer blot was assembled from bottom to top as follows: pan filled with two litres 20x SSC, a bridge of blotting paper, glad wrap with a window the size of gel and membrane, one blotting paper soaked in $20 x$ SSC, the gel facing down, the dry Nylon membrane (positively charged, Amersham Hybond-N+, GE Healthcare Europe GmbH), a dry blotting paper and a big stack of paper towels. The construct was set under pressure over night. The next day, blot was disassembled to wash the membrane in $2 x$ SSC ($0.3 \mathrm{M} \mathrm{NaCl}, 30 \mathrm{mM}$ sodium citrate) and bake it for 30 min at $120^{\circ} \mathrm{C}$. The dry membrane was placed into a hybridisation bottle with 3 ml DIG Easy Hyb Buffer (DIG Easy Hyb Granules, Roche Diagnostic GmbH) for blocking for 30 min to 3 h at the hybridisation temperature of the probe ($\mathrm{T}_{\text {нуb }}$), not exceeding $43^{\circ} \mathrm{C}$.

$$
\begin{gathered}
T_{H y b}=T_{m}-\left(20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\
T_{m}=49.82+0.41 * G C_{\text {probe }}-600 / \text { lengt }_{\text {probe }}
\end{gathered}
$$

During incubation, the DIG labelled hybridisation probe was diluted in 50μ l water, denatured for 5 min at $95^{\circ} \mathrm{C}$ and chilled on ice. When the probe had been used before, it was denatured for 5 min at $68{ }^{\circ} \mathrm{C}$. DIG Easy Hyb Buffer was removed from the membrane and replaced with fresh DIG Easy Hyb Buffer containing $40 \mathrm{ng} / \mathrm{ml}$ probe. The membrane was hybridised in motion over night at $\mathrm{T}_{\text {Hyb. }}$. The next day, the probe in DIG Easy Hyb buffer was stored at $-20^{\circ} \mathrm{C}$ for reuse. The membrane was shaken in low stringency buffer ($2 x$ SSC, 0.1% SDS) for 15 and 10 min . High stringency buffer was heated (Table 27).

Table 27 Incubation conditions with high stringency buffer, dependent on target homology and GC content of the probe

Target homology	GC content	Buffer	temperature
$80-100 \%$	Average (40 \%)	0.5% SSC, 0.1 \% SDS	$65{ }^{\circ} \mathrm{C}$ for probes $>100 \mathrm{bp},<65$
			${ }^{\circ} \mathrm{C}$ for probes $\leq 100 \mathrm{bp}$
$<80 \%$	Average (40 \%)	0.5% SSC, 0.1% SDS	approx. $60{ }^{\circ} \mathrm{C}$
$80-100 \%$	High $(\geq 50 \%)$	$0.1 \% \mathrm{SSC}, 0.1 \%$ SDS	$68^{\circ} \mathrm{C}$

The membrane was shaken in high stringency buffer (0.1% SSC, 0.1% SDS) for 15 min twice. The membrane was washed for 2 min with wash buffer ($0.3 \%(\mathrm{v} / \mathrm{v})$ Tween 20 in maleic acid buffer (0.1 M maleic acid, $0.15 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7.5$)) and incubated at RT for 1-1 $1 / 2 \mathrm{~h}$ in blocking solution ($1 \%(\mathrm{w} / \mathrm{v}$) Blocking Reagent 11096176001 (Roche Diagnostic GmbH) in maleic acid buffer). Next, the membrane was shaken in Anti-Digoxigenin-AP sheep antibody solution (1:10000 in blocking solution) for 30 min. Two washing steps of 15 min each with washing buffer followed. The membrane was equilibrated for 3 min in detection buffer (0.1 M Tris- $\mathrm{HCl}, 0.1 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 9.5\left(20^{\circ} \mathrm{C}\right)$) while the substrate for the phosphate conjugated antibody CDP-star solution (Roche Diagnostic GmbH) was diluted 1:100 in detection buffer. The membrane was placed on a plastic envelope and the CDP-star dilution was applied. The envelope was sealed and incubated at $37^{\circ} \mathrm{C}$ for 5 min in the dark. In a dark room, the membrane was placed on top of an x-ray film in an x-ray clip cassette. The closed cassette was incubated at $37^{\circ} \mathrm{C}$ for 1-2 h. After sufficient exposure the film was developed in the dark room rinsing it in developer (until the length marker was visible), water, fixer solution and water.

2.3 Microbiological methods

2.3.1 Bacterial culture

A mini culture of 3 ml , a midi culture of 100 ml or a maxi culture of 300 ml LB medium ($2.5 \%(\mathrm{w} / \mathrm{v}$) Difco LB Base, Miller) with ampicillin (Carl Roth GmbH) ($100 \mu \mathrm{~g} / \mathrm{ml}$) or spectinomycin (Fluka Laborchemikalien GmbH$)(50 \mu \mathrm{~g} / \mathrm{ml})$ was inoculated with a glycerol stock, a colony from an agar plate or a fluid bacterial culture. The culture was shaken over night at $37^{\circ} \mathrm{C}$.

2.3.2 Cryoconservation of bacterial cultures

$200 \mu \mathrm{l} 100 \%$ glycerol were mixed with $200 \mu \mathrm{l}$ bacterial culture and stored at $-80^{\circ} \mathrm{C}$.

2.3.3 Transformation of bacteria

$50 \mu \mathrm{l}$ competent DH10b E. coli cells (Invitrogen) were thawed on ice and mixed with 1-3 μ l ligation (3 $\mu \mathrm{l}$ purified ligation or 1:10000 diluted plasmid). The mix was transferred to a cold electroporation cuvette (2 mm gap, Peqlab Biotechnologie GmbH), put into the Multiporator ${ }^{\circledR}$ (Eppendorf) and shocked at 2500 V for 5 msec . The shocked cells were submerged in $500 \mu \mathrm{~L}$ LB medium and incubated for $30-45 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$ shaking. The recovered cells were plated onto agar (4 (w/v) Difco LB Agar, Miller) plates with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin or $50 \mu \mathrm{~g} / \mathrm{ml}$ spectinomycin and incubated over night at $37^{\circ} \mathrm{C}$.

2.3.4 Blue white screening of bacterial colonies

For cloning PCR fragments into the $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy Vector System (Promega Corporation), ampicillin agar plates were coated 30 min prior to bacteria culture with $20 \mu \mathrm{l} 100 \mathrm{mg} / \mathrm{ml}$ X-gal solution (solved in N, N-dimethylformamid) and $4 \mu \mathrm{l} 1 \mathrm{M}$ IPTG. After overnight culture at $37^{\circ} \mathrm{C}$ white bacterial colonies carried $\mathrm{pGEM}{ }^{\circledR}-\mathrm{T}$ Easy Vector where the lacZ gene was disrupted by incorporated PCR fragment.

2.4 Tissue culture methods

Mammalian cells were cultured in a humified Steri-Cycle CO2 incubator at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. and handled only with sterile equipment in a sterile laminal flow cabinet. The medium was exchanged every 2-3 days. Unsterile solutions were sterile filtered with $0.22 \mu \mathrm{~m}$ filters.

2.4.1 Passaging cells

Cells of 80-100 \% confluence, were washed with D-PBS (Sigma-Aldrich Chemie GmbH) and incubated with accutase (Sigma-Aldrich Chemie GmbH) for 4-10 min in the incubator. When cells were fully detached, the reaction was stopped by adding \geq volume of medium. The cell suspension was distributed to a new vessel, counted (2.4.2), frozen (2.4.4) or pelleted for DNA isolation (2.2.4).

2.4.2 Counting cells

$10 \mu \mathrm{l}$ cell suspension was mixed with $10 \mu \mathrm{l}$ trypan blue 0.4% (Invitrogen GmbH). 10μ l were transferred to a cell counting chamber slide (Invitrogen GmbH) and inserted into the Countess (Invitrogen GmbH). The Countess calculated the concentration of the total, life and dead cells and the viability.

2.4.3 Isolation and culture of primary porcine kidney fibroblasts

Kidneys of euthanized animals were cleared of their fine skin and rinsed in 80% ethanol for six times before transfer to a sterile laminal flow cabinet. A piece of ca . $1 \times 1 \mathrm{~cm}$ was cut from the inside of the kidney, avoiding fat, vascular tube or outside tissue, with a scalpel (B. Braun Melsungen AG). The piece was washed in three different tubes of each 80% ethanol and D-PBS containing $100 \mathrm{U} / \mathrm{ml}$ penicillin and $0.1 \mathrm{mg} / \mathrm{ml}$ streptomycin (Sigma-Aldrich Chemie GmbH) and $2.5 \mathrm{mg} / \mathrm{ml}$ amphotericin B (SigmaAldrich Chemie $G \mathrm{mbH}$) ($\mathrm{D}-\mathrm{PBS}-\mathrm{P} / \mathrm{S} / \mathrm{A}$). The cleaned tissue was minced in a petri dish with 2 ml D-PBS$P / S / A$ and incubated in an erlenmeyer flask with $1 \mathrm{mg} / \mathrm{ml}$ Collagenase Type I-A (Sigma-Aldrich Chemie GmbH) in D-PBS-P/S/A for $20-30 \mathrm{~min}$ at $37{ }^{\circ} \mathrm{C}$ stirring. If many tissue pieces remained intact, the suspension was filtered through a mesh and transferred to a 50 ml falcon. 13 ml medium containing $100 \mathrm{U} / \mathrm{ml}$ penicillin and $0.1 \mathrm{mg} / \mathrm{ml}$ streptomycin and $2.5 \mathrm{mg} / \mathrm{ml}$ amphotericin B (medium-P/S/A) were added to stop collagenase reaction and centrifuged at $300 \times \mathrm{g}$ for 5 min . The supernatant was aspirated and the pellet resuspended in 14 ml medium- $\mathrm{P} / \mathrm{S} / \mathrm{A}$ for centrifugation. This was repeated once more. The pellet was resuspended in medium-P/S/A and depending on its size distributed to 2-8 T150 flasks. The medium was exchanged daily for 3 days. On the fourth day, antibiotic and antimycotic-free medium was applied and conditioned for 3 days for mycoplasma testing 2.2.22.

2.4.4 Cryoconservation of mammalian cells

Cells were detached (2.4.1), pelleted at 300 xg for 5 min and resuspended in freezing medium (Table 10). The suspension was transferred to cryo vials and put into Nalgene Mr. Frosty Freezing containers (Thermo Fisher Scientific), filled with isopropanol.

Thawing was conducted as quickly as possible. Cryo vials were thawed in the $37{ }^{\circ} \mathrm{C}$ water bath and transferred directly to fresh medium, diluting the cytotoxic DMSO. The cells were pelleted at $300 \times \mathrm{g}$ for 5 min and cleared of the supernatant. The pellet was resuspended in DMSO-free medium and transferred to a fresh culturing vessel.

2.4.5 Transfection of mammalian cells

2.4.5.1 Electroporation

Cells were detached and counted. 1×10^{6} cells were pelleted at 300 xg for 5 min . The supernatant was aspirated and the cells were resuspended in 800μ l hypoosmolar electroporation buffer (Eppendorf). 10μ g sterile DNA (in sterile water or low TE buffer) was added, mixed and incubated at RT for 5 min . The suspension was transferred to an electroporation cuvette (4 mm gap, Peqlab Biotechnologie GmbH) avoiding bubbles and shocked with 1200 V for $85 \mu \mathrm{sec}$. The cells were incubated at RT for 5 min and transferred to two T25 flasks with fresh medium. The next day, dead cells were washed away with D-PBS and fresh medium was added.

2.4.5.2 Nucleofection

Cells were detached and counted. Different cell types required different nucleofector kits according to manufacturer's information and small modifications (Table 28). The required cell amount was pelleted at $300 \times \mathrm{g}$ for 5 min . The pellet was resuspended in $100 \mu \mathrm{l}$ nucleofector solution and mixed with $2-5 \mu \mathrm{~g}$ sterile DNA (in sterile water or low TE buffer). The suspension was transferred to a nucleofection cuvette and treated with the corresponding program. The nucleofected cells were submerged with fresh medium and transferred to a T25 flask. The next day, dead cells were washed away with D-PBS and fresh medium was added.

Table 28 Nucleofection conditions for different cell types

Cell type	Kit	Cell number	Nucleofector solution	DNA	Program
pADMSCs	Human MSC	5×10^{5}	$100 \mu \mathrm{l}$	$2-5 \mu \mathrm{~g}$	$\mathrm{C}-17, \mathrm{U}-23$
	Nucleofector ${ }^{\oplus}$ Kit				

2.4.5.3 Lipofection

One day prior lipofection, cells were plated on 10 cm culture dishes to reach 30-50\% confluence at the point of transfection. The cells were washed with D-PBS twice and covered with 4 ml OptiMEM (Life

Technologies). For each 10 cm dish 6μ Lipofectamine ${ }^{\text {TM }} 2000$ Transfection Reagent (Invitrogen GmbH) was mixed with 294μ OptiMEM in one reaction tube and 4-10 μ g DNA was mixed with OptiMEM (total volume $300 \mu \mathrm{l}$) in a second tube. Each tube was vortexed and incubated at RT for 5 min . The Lipofectamine 2000 mix was carefully dropped into the DNA mix, vortexed and incubated for 25-30 \min at RT. The Lipofectamine-DNA mix was dropped directly onto the cells. The cells were put into the incubator and after 4 h supplemented with 6 ml medium.

2.4.6 Killing curve experiment

To determine optimal selection concentrations, 1 and 0.5×10^{4} cells were plated onto a 12 well and cultured with different concentrations of the antibiotics (Table 29). The optimal concentration, was the one, where cells were dead after 7 days of cultivation.

Table 29 Concentration ranges for antibiotics when performing a killing curve experiment

Antibiotic	Range
G-418	$0-1200 \mu \mathrm{~g} / \mathrm{ml}$
Blasticidin S	$0-10 \mu \mathrm{~g} / \mathrm{ml}$
Puromycin	$0-1.5 \mu \mathrm{~g} / \mathrm{ml}$

2.4.7 Selection

24-48 h (depending on confluence) after lipofection cells were set under selection. 48 h after nucleofection and electroporation, cells were detached, counted, less than 1×10^{5} expanded onto a 15 cm culture dish and set under selection with G-418 (Genaxxon bioscience GmbH) or Blasticidin S (InvivoGen) for 10-14 days until single-cell clones had reached a size of about 100 cells. The antibiotic containing media were exchanged every 2-3 days. Puromycin (InvivoGen) selection was performed 24 h after transfection for 48 h . The puromycin medium was exchanged every day. 24 h after the end of puromycin selection, the cells were expanded and selected on G-418 as described above.

Table 30 optimal antibiotic concentrations for selection of different cell isolations

Cell isolate	G-418	Blasticidin-S	Puromycin
pADMSCs 110111	$600 \mu \mathrm{~g} / \mathrm{ml}$	$8 \mu \mathrm{~g} / \mathrm{ml}$	$1 \mu \mathrm{~g} / \mathrm{ml}$
pKFs 73	$1000 \mu \mathrm{~g} / \mathrm{ml}$	-	$1.5 \mu \mathrm{~g} / \mathrm{ml}$
pKF 270	$800 \mu \mathrm{~g} / \mathrm{ml}$	-	$0.5 \mu \mathrm{~g} / \mathrm{ml}$

2.4.8 Clone picking

Single-cell clones of ~ 100 cells were marked on the outer wall of the culturing vessel. Cells were washed with D-PBS. After D-PBS aspiration, small sterilised cloning rings were dipped into sterile silicon
fat and tightly placed around the marked single-cell clones. $50 \mu \mathrm{l}$ accutase was applied into each ring and incubated (2.4.1). When cells were fully detached 100μ l medium was added into each ring. The cell suspension in each ring was transferred into a 24 well with 1 ml fresh medium. If cells had been cultured in selection medium before, selection was reduced (eg. from $1000-800 \mu \mathrm{~g} / \mathrm{ml}$) but not taken off.

2.4.9 Clone expansion and screening

Confluent single-cell clones were detached (2.4.1) with 200μ l accutase and supplemented with $400 \mu \mathrm{l}$ medium after incubation. $400 \mu \mathrm{l}$ cell suspension was transferred to a 12 well and $200 \mu \mathrm{l}$ were transferred into a PCR reaction tube and pelleted for gDNA isolation (2.2.4) and screening PCR (2.2.20).

2.4.10 Cell preparation for somatic cell nuclear transfer

Correctly targeted clones (nuclear donors) were pooled or separately plated on a 12 well to reach 7080 \% confluence. 48 h before somatic cell nuclear transfer (SCNT) cells were washed $2 x$ with D-PBS and synchronised in G0/G1 phase by culture in starvation medium (0.5% FCS). SCNT and embryo transfer was done by the Chair for Molecular Animal Breeding and Biotechnology (LMU, Munich, Germany).

2.5 Biochemical methods

2.5.1 Protein extraction from cultured cells

Cells were washed $2 x$ with ice cold D-PBS. Per 15 cm dish cells were mechanically detached on ice with cells scrapers and 500μ l CytoBuster ${ }^{\text {TM }}$ Protein Extraction Reagent (Merck KGaA) or RIPA buffer containing 1x cOmplete Protease Inhibitor Cocktail and PhosSTOP Phosphatase Inhibitor Cocktail (Roche Diagnostic GmbH). After 2-5 min mechanical cell dissociation, the cells suspension was frozen at $-80^{\circ} \mathrm{C}$ for at least 30 min . The suspension was thawed on ice and centrifuged at $4{ }^{\circ} \mathrm{C}$ at $15493 \times \mathrm{g}$ for 30 min to pellet dead cells and cell debris. The supernatant containing proteins was converted into a new reaction tube and stored at $-80^{\circ} \mathrm{C}$.

2.5.2 Determination of protein concentration

Protein concentration was determined using the Advanced Protein Assay Reagent (Cytoskeleton Inc.). $5 \mu \mathrm{l}$ protein sample was mixed with $995 \mu \mathrm{l} 1 \times$ Advanced protein assay Reagent (1:200 dilution) and distributed to three 96 wells, 300μ l each. Blanks of Advanced Protein Assay Reagent alone and a 1:200
dilution of the protein extraction buffer were applied to three wells each. The plate was inserted into the ELISA -Photometer. Together with the ELISA-Reader software (Ascent Software) the absorbance at 595 nm was measured. Protein concentration was calculated using the following formula.
1.0 OD 570 to $615 \mathrm{~nm}=37.5 \mu$ grotein per ml reagent per 0.8 cm

2.5.3 Western blot Analysis

2.5.3.1 Sodium Dodecyl Sulfate Polyacrylamide Gel electrophoresis (SDS-PAGE)

The SDS polyacrylamide gel was prepared with different percentages depending on the molecular weight of the protein of interest (Table 31) using the Mini-PROTEAN 3 Cell system (BioRad). The separation gel was prepared first. TEMED and APS were applied last. Right after, the gel was mixed and $3-3.5 \mathrm{ml}$ (leaving room for the collection gel) applied into the gel pouring chambers. To remove bubbles, a mix of water and isopropanol (1:1) was added on top. After full polymerisation for 30 min the water-isopropanol mix was removed. The collection gel was prepared (Table 31) and applied on top. The Mini-PROTEAN ${ }^{\circledR}$ Comb (BioRad) was inserted and left to dry for 30 min . The fully polymerised gel was stored in a moist plastic bag at $4{ }^{\circ} \mathrm{C}$ for later use, or loaded into the running chamber. The running chamber was filled with running buffer (25 mM Trizma Base, 0.2 M Glycin, 0.1 \% SDS, pH 8.3, $10 \mathrm{mM} \beta$-mercaptoethanol). The protein samples were thawed on ice and 20-40 μ g protein was mixed with $4 x$ Laemmli buffer (including DTT) (250 M Tris-HCl, pH 6.8, 4% (w/v) SDS, 0,1 M saccharose, traces of bromphenol blue, 26 mM DTT (freshly added)) to reach a $1 x$ buffer concentration. The same was done with the Precision Plus Protein ${ }^{T M}$ All Blue Standard (BioRad) before both were denatured at $95{ }^{\circ} \mathrm{C}$ for 5 min . They were kept on ice until loaded into the pockets of the SDS-polyacrylamide gel. The electrophoresis ran for $20-30 \mathrm{~min}$ at $60 \mathrm{~V}, 100 \mathrm{~V}$ for 40 min and 140 V for $75-90 \mathrm{~min}$.

Table 31 Preparation and composition of 0.75 mm SDS-polyacrylamide gels

$\mathbf{0 . 7 5 ~ m m ~ g e l s ~}$	Separation gel	Collection gel		
	$<100 \mathrm{kDa}$	$>100 \mathrm{kDa}$	$<100 \mathrm{kDa}$	$>100 \mathrm{kDa}$
Reagents	12%	10%	5%	4%
0.5 M Tris-HCl, pH 6.8	-	-	$666 \mu \mathrm{l}$	$666 \mu \mathrm{l}$
1 M Tris-HCl, pH 8.8	1.5 ml	1.5 ml	-	-
Water	1.22 ml	1.42 ml	1.61 ml	1.68 ml
SDS (10 \%)	$40 \mu \mathrm{l}$	$40 \mu \mathrm{l}$	$26.6 \mu \mathrm{l}$	$26.6 \mu \mathrm{l}$
Polyacrylamide (40 \%)	1.2 ml	1 ml	$333 \mu \mathrm{l}$	$266.6 \mu \mathrm{l}$
Temed	$1.6 \mu \mathrm{l}$	$1.6 \mu \mathrm{l}$	$2.6 \mu \mathrm{l}$	$2.6 \mu \mathrm{l}$
APS (10 \%)	$40 \mu \mathrm{l}$	$40 \mu \mathrm{l}$	$26.6 \mu \mathrm{l}$	$26.6 \mu \mathrm{l}$
Total	4 ml	4 ml	2.6	2.6

2.5.3.2 Western blot

The proteins separated by SDS-PAGE were transferred onto the Roti-PVDF membrane ($0.45 \mu \mathrm{~m}$) by semidry transfer blot using the Trans-blot SD Semi-Dry Transfer cell. Two pieces blotting paper and the SDS-polyacrylamide gel were equilibrated in semi dry transfer buffer (25 mM Trizma Base, 0.2 M glycin, $20 \%(v / v)$ methanol, $0.1 \%(w / v)$ SDS). The Roti-PVDF membrane ($0.45 \mu \mathrm{~m}$) (Brand GmbH \& Co. KG) was activated in methanol for 1 min and soaked in semi dry transfer buffer. The blot was assembled on the Trans-Blot SD Semi-Dry Transfer cell as follows from bottom to top: semi dry transfer buffer, blotting paper, the activated membrane, the gel and another blotting paper. Air bubbles were rolled out using a serological pipette. Semi dry transfer buffer was poured on top of the blot, and the TransBlot SD Semi-Dry Transfer cell was closed. The blot was run at 15 V for 70 min to blot proteins of up to 160 kDa from a 10 \% 1.5 mm SDS-polyacrylamide gel. When two SDS-polyacrylamide gels were run at the same time, a voltage of 25 V and a time of 2.5 h was not exceeded. After blotting, the coloured bands of the Precision Plus Protein ${ }^{\text {TM }}$ All Blue Standard ladder were retraced on the membrane.

2.5.3.3 Ponceau S staining

The membrane was soaked for 2-3 min in Ponceau S solution (0.5 \% (w/v), 1 \% glacial acetic acid), shaking at RT. The membrane was washed with demineralised water, until the background turned white and only protein bands were stained red. A photo was taken and the dye was fully washed off.

2.5.3.4 Conventional Antibody application

The membrane was blocked in blocking solution ($5 \%(w / v$) milk powder (Carl Roth GmbH) in 1xTBST (20 mM Trizma Base, $140 \mathrm{mM} \mathrm{NaCl}, 0.1$ \% (v/v) Tween 20) for at least 1 h shaking at RT. The membrane was washed three times with 1x TBST and incubated with primary antibody (diluted in blocking solution Table 17) over night at $4{ }^{\circ} \mathrm{C}$ shaking. The next day the primary antibody dilution was supplemented with a trace of sodium azide and stored at $4{ }^{\circ} \mathrm{C}$ for reuse. The membrane was rinsed three times and incubated 3 times with 1 x TBST for 15 min shaking. The secondary antibody (horse-radish peroxidase (HRP) conjugated), diluted in blocking solution (Table 18), was added to the membrane and incubated for 1 h at RT. The membrane was again washed 3 times by rinsing and incubating for 15 min in 1 x TBST. For visualisation of the antibody bound proteins of interest, the membrane was covered with Pierce ${ }^{T M}$ ECL Western Blotting Substrate (Thermo Fisher Scientific), sealed in a plastic foil and incubated in the dark for 1 min . In the dark room, the membrane was placed onto an x-ray film in an x-ray clip cassette. The film was exposed to the membrane for 1-20 min and developed in the dark room by rinsing it in developer, water, fixer solution and water.

2.5.3.5 iBind antibody application

The membrane was blocked for at least 1 h in blocking solution and subsequently rinsed in 1 x TBST three times. The iBind ${ }^{\text {TM }}$ Solution Kit (Invitrogen $G \mathrm{mbH}$) was prepared according to manufacturer's information for HRP detection. The membrane was submerged in 1 x iBind solution and the antibodies were diluted with $1 x$ iBind solution according to Table 17 and Table 18. When two different primary antibodies were applied simultaneously the amount of secondary antibody was doubled (Table 18). The membrane was incubated for 2.5-6 h and washed 3 times by rinsing and incubating for 15 min in $1 x$ TBST. Visualisation was performed as above (2.5.3.4).

2.5.4 Colonoscopy of pigs

All experiments on animals were approved by the Government of Upper Bavaria (permit number 55.2-1-54-2532-6-13) and performed according to the German Animal Welfare Act and European Union Normative for Care and Use of Experimental Animals.

Colonoscopies were performed by Professor Dr. Dieter Saur (Klinikum Rechts der Isar II, Technische Universität München, Munich, Germany) ca. every 6 months, starting at 3 months. A STORZ colonoscopy system allowing macroscopic images of the colorectum and colonic lesions was used. Normal mucosa (at 40 cm depth) and polyp biopsies were collected and snap frozen for RNA, DNA and protein isolation or embedded into Tissue-Tek Cryomolds (Sakura Finetek Europe B.V.) with O.C.T. ${ }^{\text {tm }}$ Compound (Sakura Finetek Europe B.V.) on dry ice for cryosectioning and stored at $-80^{\circ} \mathrm{C}$.

2.5.5 Cryosectioning

Cryosectioning was performed using the Microm HM 560 Cryostat. During sectioning all samples were kept at $-20^{\circ} \mathrm{C}$ or on dry ice. $3-4$ sections of $4 \mu \mathrm{~m}$ thickness were mounted on a MembraneSlide 1.0 PEN (D) (Carl Zeiss Jena GmbH) and stored at $-80^{\circ} \mathrm{C}$ until staining and laser microdissection was performed (never exceeding more than 2 days). In general, cryosections were cut, stained, the areas of interest laser microdissected and the nucleic acids isolated, within one day.

2.5.6 Haematoxylin-Eosin staining of cryosections

To guarantee an RNase free environment, all staining solutions were made using autoclaved $0.2 \mu \mathrm{~m}$ filtered demineralised water and stored at RT.

Before staining the slides were thawed at RT for 2 min. Staining was performed in 50 ml falcons, with fresh solution aliquots every 8 slides, as follows: 1 min 70% ethanol, 30 sec water, 1 min Hematoxylin (Mayer's Hemalaun solution, Applichem), brief dip into two water aliquots, 1 min Eosin (Eosin solution, 2C-140, Waldeck GmbH \& Co. KG), brief dip into two 96% ethanol aliquots, 30 sec 100% ethanol followed by drying for 2-5 min.

2.5.7 Microscopy

Morphology, viability, density and fluorescence microscopy of cultured cells was visually assessed using the microscopes Axiovert 40CFL and Axiovert 200M (Carl Zeiss Microscopy GmbH). Red fluorescent proteins were excited at 554 nm with emission at 581 nm . Green fluorescent proteins were excited at 484 nm with emission at 510 nm . Photographs were acquired using the AxioCam HRm and AxioCam MRc cameras (Carl Zeiss Microscopy GmbH) and the Axiovision and Axiovision Rel. 4.8 (Carl Zeiss Microscopy GmbH) software respectively.

2.5.8 Laser microdissection

Laser microdissection was performed immediately after the haematoxylin-eosin staining using the UVlaser cutting system Laser Microdissection Systems 6000 (Leica Microsystems). Cryosection were scanned and areas of interest were marked on the Leica Application Suite software (Leica Microsystems). In total 15 crypts or $120000 \mu \mathrm{~m}^{2}$ of stromal tissue was marked and cut by the laser (DM6000 B9, Leica Microsystems). The excised areas were collected in a reaction tube cap containing $40 \mu \mathrm{l}$ RLT Plus buffer (including 1:100 β-mercaptoethanol) supplied by the AllPrep ${ }^{\circledR}$ DNA/RNA Micro Kit (Qiagen). After complete dissection, additional 60μ RLT Plus buffer was added. To prevent degradation of RNA the LMD procedure did not exceed 2 h per slide. Samples were stored at $-80^{\circ} \mathrm{C}$ until DNA and RNA isolation.

2.6 Data analysis

2.6.1 Statistical Analysis

Heat maps, statistical analysis and graph generation of sequencing data, RT-qPCR data, polymorphism analysis and the CpG methylation analysis was generated using the open source tool R (https://www.Rproject.org/).

2.6.2 In silico miRNA target prediction using Diana tools

To identify potential pathways influenced by differential miRNA expression, in silico target prediction was performed using mirPath v. 3 (Vlachos et al, 2015b) in combination with TarBase v7.0 (Vlachos et al, 2015a) and TargetScan (Lewis et al, 2005).

2.6.3 Gene set enrichment analysis

Gene set enrichment analysis was performed using the GSEA software (version 2.2.4) (Mootha et al, 2003; Subramanian et al, 2005).The log 2 fold change, adjusted p-Value and the Human Genome Organisation (HUGO) gene symbols were used to generate a preranked file as input for the GSEAPreranked tool. The enrichment analysis was performed under the following specifications: classic enrichment statistics, 1000 permutations and hallmark gene sets from Molecular Signatures Database (MSigDB) (version 6.1).

3. Results

3.1 Attemp to identify modifier genes in the porcine model for colorectal cancer

The generation of a porcine model for colorectal cancer (CRC) carrying a translational stop signal at codon 1311 of the endogenous APC gene, orthologous to human mutation 1309, was published in 2012 (Flisikowska et al, 2012). Four generations of $A P C^{1311}$ pigs were regularly analysed by colonoscopy. The analyses showed, just like in humans, a wide variation in the severity of polyposis (Crabtree et al, 2002), ranging from ≥ 100 (high polyp animals (HP)) to only 1-10 polyps (low polyp animals (LP)) in the distal colorectum (last 40 cm). Also like in humans, a correlation between severe polyposis and the amount of high grade neoplasia was observed, indicating that severe polyposis might be a susceptibility factor towards CRC also in pigs (Debinski et al, 1996; Shussman \& Wexner, 2014). Variability in polyposis severity in humans is believed to be mediated by genetic loci (Crabtree et al, 2002; Houlston et al, 2001). In humans some of these so called modifier loci have been identified using microarrays for genome wide association studies comparing healthy individuals and CRC patients (Broderick et al, 2007; Tomlinson et al, 2007; Tomlinson et al, 2008; Whiffin et al, 2014). A study focussed on FAP patients showed, that two of the single-nucleotide polymorphisms (SNPs) associated with sporadic CRC risk (rs16892766 at 8q23.3 and rs3802842 at 11q23.1) were also associated with severe polyposis in familial adenomatous polyposis (FAP) (Ghorbanoghli et al, 2016). Thus the identification of modifier genes or loci mediating severe polyposis in FAP may also mediate severe polyposis and thus higher risk of CRC in sporadic CRC with APC mutations. The APC ${ }^{1311}$ pigs, offer the possibility to analyse modifiers directly in the normal mucosa of the distal colorectum (last 40 cm) between HP and LP animals. Changes promoting CRC are not only due to genomic but also epigenetic alterations (1.2.1, 1.2.3, 1.2.4) and dysregulated microRNA (miRNA) (1.2.2, 1.2.3, 1.2.4) that influence the amount of functional proteins on pre and posttranscriptional level. Gene expression was compared between HP and LP to to investigate this in the porcine model. Messenger RNA (mRNA) sequencing analysis does not only allow detection of single-nucleotide polymorphisms (SNPs) and mutations in protein coding regions, but also epigenetic differences and miRNA differences that influence gene expression. Furthermore, protein coding regions are generally conserved between species and therefore better annotated in the porcine genome than non-coding regions. The power of epigenetic mechanisms and miRNAs on CRC development is similar if not equal to gene mutations (1.2.1, 1.2.2, 1.2.3, 1.2.4). Additional sequencing of miRNAs from normal mucosa and comparative miRNA expression analysis between HP and LP animals allowed identification of miRNA modifiers that influence cellular processes.

3.1.1 Attempt to identify modifier genes on mRNA level

MRNA of 35 normal mucosa samples at 40 cm colorectum depth of animals aged $3-9$ months was isolated. The RNA was DNase treated, and the quality and quantity determined. 400 ng RNA was used for library preparation. samples marked with * were enriched for 12 and all other for 15 cycles (Table 32). The quality and quantity of the resulting libraries were determined to calculate the molarity of each library. After QPCR quantification and molarity corrections (2.2.24), the libraries were pooled (12 libraries/ flow cell), clustered and sequenced.

Table 32 Animals sequenced for analysis of modifier genes on mRNA level
A, innuPREP RNA Mini Kit (Analytik Jena); Z, Direct-zol™ RNA Miniprep Kit (Zymo Research).

Animal ID	Born	Collection	Age	Sex	Phenotype	Kit	RIN	Sequenced
128*	07.03.2013	16.07.2013	0y 4m 9d	female	LP	Z	9.1	15.10.2014
145	14.03.2013	04.12.2013	0y 8m 20d	male	LP	Z	6.5	04.02.2015
145*	14.03.2013	25.06.2013	Oy 3m 11d	male	LP	Z	8.1	15.10.2014
150	14.03.2013	16.07.2013	0y 4m 2d	female	LP	A	8.4	16.03.2016
152*	14.03.2013	22.10.2013	0y 7m 8d	female	LP	Z	8.9	15.10.2014
153*	14.03.2013	23.10.2013	0y 7m 9d	female	LP	Z	7.4	15.10.2014
155*	14.03.2013	26.06.2013	Oy 3m 12d	male	LP	Z	9.2	15.10.2014
157*	14.03.2013	17.07.2013	0y 4m 3d	female	LP	Z	8.8	15.10.2014
163*	15.03.2013	19.09.2013	0y 6m 4d	female	HP	Z	9.1	15.10.2014
163	15.03.2013	03.12.2013	Oy 8m 18d	female	HP	Z	7.5	04.02.2015
168*	12.05.2013	18.09.2013	0y 4m 6d	male	HP	Z	8.7	15.10.2014
173*	12.05.2013	23.10.2013	Oy 5m 11d	female	LP	A	8.9	15.10.2014
173	12.05.2013	02.12.2013	Oy 6m 20d	female	LP	Z	7.3	04.02.2015
174*	12.05.2013	23.10.2013	Oy 5m 11d	female	LP	A	8.8	15.10.2014
251	21.02.2014	24.06.2014	0y 4m 3d	castrated male	HP	Z	6.6	10.03.2016
252	21.02.2014	25.06.2014	0y 4m 4d	castrated male	HP	Z	7.5	10.03.2016
253	21.02.2014	24.06.2014	Oy 4m 3d	castrated male	HP	A	7.9	10.03.2016
300	24.08.2014	16.03.2015	Oy 6m 20d	female	LP	A	7.8	10.03.2016
322	18.10.2014	16.03.2015	Oy 4m 26d	male	HP	A	8.1	16.03.2016
324	18.10.2014	16.03.2015	Oy 4m 26d	male	HP	A	8.3	16.03.2016
326	18.10.2014	17.03.2015	Oy 4m 27d	female	HP	Z	6.6	10.03.2016
328	18.10.2014	17.03.2015	Oy 4m 27d	female	LP	Z	7	10.03.2016
339	20.10.2014	17.03.2015	Oy 4m 25d	female	HP	A	8.6	16.03.2016
471	17.08.2015	04.12.2015	Oy 3m 17d	female	LP	A	9.1	12.05.2017
474	17.08.2015	09.12.2015	Oy 3m 22d	female	HP	A	8.6	12.05.2017
524	18.01.2016	18.04.2016	Oy 3m 0d	castrated male	LP	A	9.3	12.05.2017

525	18.01 .2016	18.04 .2016	Oy 3m Od	castrated male	HP	A	9	12.05 .2017
527	18.01 .2016	18.04 .2016	Oy 3m 0d	male	HP	A	10	12.05 .2017
534	18.01 .2016	19.04 .2016	Oy 3m 1d	female	LP	A	9.1	12.05 .2017
586	11.03 .2016	13.09 .2016	Oy 6m 2d	female	LP	A	9	12.05 .2017
588	11.03 .2016	12.09 .2016	Oy 6m 1d	female	HP	A	10	12.05 .2017
591	15.03 .2016	19.09 .2016	Oy 6m 4d	castrated male	LP	A	7.8	12.05 .2017
				HP	A	8.6	12.05 .2017	
598	15.03 .2016	12.09 .2016	Oy 5m 28d	male	HP			
722	26.09 .2016	17.01 .2017	Oy 3m 22d	male	HP	A	9.1	12.05 .2017
727	26.09 .2016	16.01 .2017	Oy 3m 21d	female	LP	A	8.3	12.05 .2017

The sequencing data of all 35 samples, were analysed for differential gene expression between HP and LP group using two different methods and computer algorithms for sequencing analysis. Both analyses were performed using the porcine reference genome assembly Sscrofa10.2.

3.1.1.1 Differential expression analysis

There is no gold standard for the computational analysis of gene expression data obtained by next generation sequencing. Therefore, two independent analysis pipelines using the same porcine genome annotation but different software for the analysis were utilised to increase specificity and true positive rates.

Data analysis pipeline 1

The analysis was performed in collaboration with Prof. Dr. Fries and later with Dr. Hongen Xu. The DNA fragments sequenced, called reads, from each sample were aligned to the porcine reference genome Sscrofa10.2 using STAR aligner (Dobin et al, 2013). Quality assessment using FASTQC, revealed an average of 30×10^{6} reads per sample sequenced, showing a good average coverage with about 80% reads mapping to the reference genome. Reads that sequenced the exact same fragment more than once (called duplicates), were marked using MarkDuplicates tool of Picard (http://broadinstitute.github.io/picard). All reads that aligned to the reference genome (except duplicates) were assigned to annotated gene sequences as defined in the 10.2.77 porcine gene set and counted for each sample using featureCounts (Liao et al, 2014). The resulting files containing the amount of reads sequenced for each annotated gene of all the samples were then used for gene expression analysis using DESeq. 2 (Love et al, 2014). The algorithm normalised all reads of each gene to the total number of reads of the sample, to allow accurate comparison also between samples of different total read numbers. The software then presented a table of genes that were found to be differentially expressed between the two groups sorted by p-value, to show those most significant at
the top (Table 33). Here the LP group was used as calibrator group, therefore the positive Log2FoldChange values signify higher expression in HP and values below 0 lower expression in HP.

Table 33 Differential expression results table of pipeline 1
adjusted p-value, the p-value multiplied by the number of comparisons in this case number of genes

Ensemble gene id	Log2Fold- Change	Fold- Change HP	P-value	Adjusted p-value	External gene name
ENSSSCG000000006238	$\mathbf{2 . 3 1 7 6 8 9 5 2 8}$	$\mathbf{4 . 9 9}$	$\mathbf{6 . 6 3 \times 1 0 ^ { - 1 1 }}$	$\mathbf{1 . 4 5 \times 1 0 ^ { - 0 6 }}$	CYP7A1
ENSSSCG00000026852	1.830310386	3.56	1.10×10^{-06}	0.012098162	NPPC
ENSSSCG00000004114	0.82133311	1.77	2.06×10^{-05}	0.150472607	ADGB
ENSSSCG00000010529	$\mathbf{- 1 . 0 7 9 4 2 1 8 3}$	$\mathbf{0 . 4 7}$	$\mathbf{4 . 8 9 \times 1 0 ^ { - 0 5 }}$	$\mathbf{0 . 2 3 4 3 9 5 7 9 7}$	SFRP5
ENSSSCG00000004578	-0.466422918	0.72	5.35×10^{-05}	0.234395797	ANXA2
ENSSSCG00000002780	-1.253950352	0.42	7.32×10^{-05}	0.26725109	TPPP3
ENSSSCG00000000398	-0.572581988	0.67	8.56×10^{-05}	0.267797495	
ENSSSCG00000004968	0.476938546	1.39	0.000106493	0.287989837	PAQR5
ENSSSCG00000007727	0.44963094	1.37	0.000120242	0.287989837	AUTS2
ENSSSCG00000011201	$\mathbf{0 . 6 0 7 5 8 8 9 0 3}$	1.52	$\mathbf{0 . 0 0 0 1 3 1 4 3}$	$\mathbf{0 . 2 8 7 9 8 9 8 3 7}$	SATB1
ENSSSCG00000001560	1.015986068	2.02	0.000177572	0.295143079	C6orf222
ENSSSCG00000029359	-0.725696293	0.6	0.000205919	0.295143079	PHLDA3
ENSSSCG00000029714	1.183631763	2.27	0.000212948	0.295143079	BPIFB2
ENSSSCG00000013919	-0.424007561	0.75	0.00022637	0.295143079	HOMER3
ENSSSCG00000007084	1.798886616	3.48	0.000242664	0.295143079	BFSP1
ENSSSCG00000014169	$\mathbf{0 . 6 6 6 0 5 5 7 6 9}$	$\mathbf{1 . 5 9}$	$\mathbf{0 . 0 0 0 2 5 9 1 0 9}$	$\mathbf{0 . 2 9 5 1 4 3 0 7 9}$	PCSK1
ENSSSCG00000029346	0.934230111	1.91	0.00026284	0.295143079	
ENSSSCG00000007038	2.093818278	4.27	0.000276619	0.295143079	
ENSSSCG00000014157	-0.586390819	0.67	0.000284305	0.295143079	NR2F1
ENSSSCG00000028518	0.781283303	1.72	0.000299205	0.295143079	

Data analysis pipeline 2

The analysis was performed in collaboration with Prof. Dr. Hubert Pausch. Here the reads were not aligned but pseudoaligned and assigned to 27,370 porcine transcripts obtained from ensembl version 89 (ftp://ftp.ensembl.org/pub/release-89/fasta/sus scrofa/cdna/) (compatible to reference genome assembly Sscrofa10.2) using kallisto software (Bray et al, 2016). Kallisto also quantified the abundance of reads assigned per transcript. Differential transcript expression between HP and LP was estimated with normalised reads using sleuth (Pimentel et al, 2017). WALD test was performed to obtain a regression coefficient that approximates Log2FoldChange and p-value and adjusted p-value.

That resulted in a table of genes that were differentially expressed, sorted by WALD p-value. As HP animals were taken as calibrator group here, positive WALD Log2FoldCahnge values signify higher expression in LP animals.

Table 34 Differential expression results table of pipeline 2

Transcript id	WALD Log2Fold- Change	Fold Change LP	p-value	adjusted p- value	External gene name
ENSSSCT00000006836.2	$\mathbf{- 1 . 5 8 4 6 5 9 2}$	$\mathbf{0 . 3 3}$	$\mathbf{1 . 1 5 \times 1 0 ^ { - 0 8 }}$	$\mathbf{0 . 0 0 0 2 1 0 1 8}$	CYP7A1
ENSSSCT00000012267.2	$-\mathbf{0 . 4 0 7 8 2 8 1}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 0 0 0 2 5 0 6 9}$	$\mathbf{0 . 5 5 4 5 8 7 1 3}$	SATB1
ENSSSCT00000028912.1	-0.628939	0.65	0.00025155	0.55458713	UPP2
ENSSSCT00000011519.2	$\mathbf{0 . 6 5 4 1 1 2 6 5}$	$\mathbf{1 . 5 7}$	$\mathbf{0 . 0 0 0 2 5 6 0 8}$	$\mathbf{0 . 5 5 4 5 8 7 1 3}$	SFRP5
ENSSSCT00000025876.1	-1.6445094	0.32	0.00033099	0.55458713	RAP2C-AS1
ENSSSCT00000004901.1	-0.9991806	0.5	0.00043884	0.55458713	COL1OA11
ENSSSCT00000007343.2	-0.4858069	0.71	0.000441	0.55458713	NBPF6
ENSSSCT00000034564.1	1.53329781	2.89	0.00044682	0.55458713	HSD17B10
ENSSSCT00000005400.2	0.3478905	1.27	0.00049678	0.55458713	SERPINB5
ENSSSCT00000015626.2	-0.2996278	0.81	0.00054336	0.55458713	JADE2
ENSSSCT00000024538.1	0.44512355	1.36	0.00071622	0.55458713	PHLDA3
ENSSSCT00000030802.1	-2.2810175	0.21	0.00076314	0.55458713	KIF16B
ENSSSCT00000026609.1	-1.0035712	0.5	0.00076783	0.55458713	STK32A
ENSSSCT00000009725.2	1.60534411	3.04	0.00080014	0.55458713	RPL15
ENSSSCT00000015478.2	-0.4153519	$\mathbf{0 . 7 5}$	$\mathbf{0 . 0 0 0 8 2 4 3 2}$	$\mathbf{0 . 5 5 4 5 8 7 1 3}$	PCSK1
ENSSSCT00000023378.1	-0.9929958	0.5	0.00084108	0.55458713	BCL2L11
ENSSSCT00000024120.1	-0.747594	0.6	0.00086092	0.55458713	GABRD
ENSSSCT00000029652.1	-1.2132739	0.43	0.00087033	0.55458713	CYP2B6
ENSSSCT00000028303.1	-1.1019999	0.47	0.00088974	0.55458713	CYP2B7
ENSSSCT00000004132.2	-0.7025889	0.61	0.00095227	0.55458713	MEP1B

The two independent data analysis approaches, presented different results among their top 20 differntially expressed genes. Only 4 were identical in both pipelines and only three of them were among the top ten in both pipelines: CYP7A1, SFRP5 and SATB1. Only CYP7A1 was significantly higher expressed in HP animals in both analyses according to p-value and adjusted p-value (multiple comparison adjustment) below 0.05 . This gene was specifically interesting because high expression of this gene in the liver has been found to associate with bile acid-mediated CRC promotion in humans (Gadaleta et al, 2017; Hagiwara et al, 2005). The gene SATB1 was also higher expressed in the HP group, significantly according to p-value but not significantly according to the adjusted p-value. This gene was also of interest as high SATB1 expression was found in human CRC, where it promotes tumorigenesis and tumour progression(Al-Sohaily et al, 2014; Brocato \& Costa, 2015; Lv et al, 2016; Mir et al, 2016; Zhang et al, 2014c).The gene SFRP5, a WNT antagonist that has been found methylation-silenced in human cancers including CRC (Samaei et al, 2014; Takagi et al, 2008; Veeck et al, 2008) showed significantly lower expression in the HP group according to p -value, however not significant on multiple comparison level (adjusted p-value) in both analyses. The detected differential expression was in all three cases in accordance with literature.

Quantitative reverse transcription PCR ($\mathrm{RT}-\mathrm{qPCR}$) validation of these three genes in the samples sequenced, using the primers SFRP5_Ex2_F1, SFRP5_Ex3_R1, SATB1_Ex6_F3, SATB1_Ex7_R3, Cyp7a1_Ex5_F1 and Cyp7a1_Ex6_R1-2, confirmed reduced expression of SFRP5 and higher expression of SATB1 and CYP7A1 in HP animals. However, like in the sequencing analyses, where the adjusted pvalues were above 0.05 , the differential expressions of SATB1 (1.5-fold higher expression in HP) and SFRP5 (0.6-fold lower expression in HP) were not significant. The differential expression of CYP7A1 (5.6 fold higher in HP) was in accordance with the sequencing analyses highly significant. As expression levels of CYP7A1 were rather low, the results were confirmed with five-fold higher template concentration, showing even clearer expression differences (7.6-fold higher expression in HP).

Figure 5 Differential expression validation of SFRP5, SATB1 and CYP7A1 using RT-qPCR with the primers SFRP5_Ex2_F1, SFRP5_Ex3_R1, SATB1_Ex6_F3, SATB1_Ex7_R3, Cyp7a1_Ex5_F1 and Cyp7a1_Ex6_R1-2.

Gene set enrichment analysis

Sequencing analysis showed only one gene, CYP7A1, significantly differentially expressed after multiple comparison adjustment. It is possible that not only one gene mediates susceptibility to severe polyposis but that a number of genes collectively contribute to significant differential pathway regulation. Therefore, gene set enrichment analysis was performed using differential expression data generated using both pipelines. For both data sets, differentially expressed genes with a p-Value below 0.05 and a Human Genome Organisation (HUGO) gene symbols were used. Resulting in 1779 genes as input for pipeline1 (file:///C:/Users/js ca/gsea home/output/mai29/Classic.GseaPreranked.1527607258798/index.html). The pipeline2 data was further reduced by excluding genes with multiple transcripts to an input of 1062 genes (file:///C:/Users/js ca/gsea home/output/mai29/my analysis.GseaPreranked.1527614804154/index.html). Hallmark gene sets that represent and summarise clearly-defined biological processes or states were used. The analysis of both datasets showed similar results (Table 35 and Table 36). Few gene sets were enriched in the HP group compared to a large amount of enriched gene sets enriched in LP. The gene set of oestrogen response was significantly enriched in the HP group analysed using pipeline 2 (false discovery rate (FDR) < 0.25). Gene sets significantly enriched in LP animals included DNA repair, UV response, p53 and apoptosis components, which are guarding the integrity and functioning of the genome and cell. However, gene sets associated with oncogenic pathways such as MYC targets and mesenchymal transition were also enriched significantly.

Table 35 Gene sets enriched in HP animals
size, number of genes in the gene set; ES, enrichment score; NES, normalised enrichment score across analysed sets; FDR, false discovery rate; Rank at max, position in the ranked list at which the maximum enrichment score occurred

Pipeline 1	SIZE	ES	NES	p- value	FDR	RANK AT MAX
Hallmark oestrogen response early	23	0.22	1.28	0.19	0.69	685
Hallmark unfolded protein response	17	0.18	0.91	0.57	1.00	1444
Hallmark mitotic spindle	18	0.17	0.84	0.64	0.87	1179
Hallmark oestrogen response late	31	0.09	0.56	0.96	0.96	21
Pipeline 2						
Hallmark oestrogen response early	16	-0.29	-1.40	0.11	0.21	163
Hallmark heme metabolism	16	-0.13	-0.62	0.93	0.92	594

Table 36 Gene sets enriched in LP animals
size, number of genes in the gene set; ES, enrichment score; NES, normalised enrichment score across analysed sets; FDR, false discovery rate; Rank at max, position in the ranked list at which the maximum enrichment score occurred

Pipeline 1	SIZE	ES	NES	pvalue	FDR	RANK AT MAX
Hallmark oxidative phosphorylation	76	-0.32	-3.23	0.00	0.00	1225
Hallmark MYC targets v1	67	-0.35	-3.22	0.00	0.00	1122
Hallmark E2F targets	57	-0.34	-2.97	0.00	0.00	1029
Hallmark DNA repair	34	-0.37	-2.51	0.00	0.00	807
Hallmark G2M checkpoint	31	-0.35	-2.36	0.00	0.00	1093
Hallmark adipogenesis	38	-0.30	-2.20	0.01	0.00	1199
Hallmark MTORC1 signalling	40	-0.28	-2.12	0.00	0.01	1012
Hallmark hypoxia	30	-0.29	-1.90	0.01	0.02	376
Hallmark epithelial mesenchymal transition	21	-0.34	-1.85	0.01	0.03	337
Hallmark UV response up	23	-0.31	-1.84	0.02	0.03	836
Hallmark fatty acid metabolism	37	-0.25	-1.78	0.02	0.04	1098
Hallmark glycolysis	30	-0.27	-1.77	0.02	0.03	359
Hallmark apoptosis	26	-0.29	-1.77	0.02	0.03	854
Hallmark myogenesis	18	-0.30	-1.51	0.07	0.11	1043
Hallmark p53 pathway	34	-0.20	-1.37	0.12	0.18	853
Hallmark IL2 STAT5 signalling	17	-0.26	-1.32	0.14	0.21	1096
Hallmark xenobiotic metabolism	23	-0.23	-1.32	0.16	0.20	900
Hallmark PI3K AKT MTOR signalling	15	-0.25	-1.19	0.23	0.30	1203
Hallmark heme metabolism	22	-0.20	-1.11	0.29	0.36	1098
Hallmark allograft rejection	17	-0.18	-0.91	0.55	0.62	1446
Hallmark complement	18	-0.15	-0.75	0.77	0.82	1409
Hallmark apical junction	19	-0.11	-0.61	0.94	0.93	267
Pipeline 2						
Hallmark MYC targets v1	49	0.48	3.98	0.00	0.00	569
Hallmark oxidative phosphorylation	53	0.45	3.73	0.00	0.00	610
Hallmark E2F targets	39	0.45	3.36	0.00	0.00	573
Hallmark MTORC1 signalling	25	0.52	3.04	0.00	0.00	441
Hallmark fatty acid metabolism	26	0.44	2.72	0.00	0.00	563
Hallmark adipogenesis	28	0.41	2.60	0.00	0.00	556
Hallmark DNA repair	26	0.41	2.43	0.00	0.00	514
Hallmark G2M checkpoint	24	0.36	2.09	0.00	0.01	550
Hallmark glycolysis	19	0.31	1.58	0.04	0.09	573
Hallmark UV response up	16	0.32	1.56	0.06	0.09	392
Hallmark hypoxia	24	0.25	1.44	0.07	0.13	360
Hallmark epithelial mesenchymal transition	16	0.26	1.24	0.21	0.27	390
Hallmark apoptosis	24	0.19	1.13	0.29	0.36	462
Hallmark p53 pathway	22	0.19	1.07	0.34	0.41	234
Hallmark xenobiotic metabolism	20	0.17	0.89	0.56	0.62	567
Hallmark oestrogen response late	22	0.14	0.79	0.72	0.72	382

3.1.1.2 SNP identification and allele-specific expression analysis

SNPs associated with severe polyposis and sporadic CRC risk have been identified in humans (Ghorbanoghli et al, 2016). Although those SNPs identified are located outside human exonic regions, the analysis of the RNA sequencing data for differentially expressed SNPs may reveal porcine equivalents. To identify SNPs and determine differential association and allele-specific expression differences, sequencing reads were aligned to the Sscrofa11.1 reference genome using STAR aligner (Dobin et al, 2013) by Prof. Dr. Hubert Pausch. Duplicates were marked using Picard tools (https://broadinstitute.github.io/-picard/). The reads were assigned to exons using SplitNCigarReads tool from the GATK software suite (DePristo et al, 2011). GATK's Haplotypecaller was used to identify SNPs and analyse them for differential association between HP and LP. The resulting genotypes were tested for non-random association between LP and HP using Fisher exact tests of allelic association using Plink (version 1.9) (Chang et al, 2015). The top 30 are shown in the table below (Table 37). The SNPs identified showed significance on p-value level. Porcine homologous regions of the known human SNPs associated with severe polyposis in FAP and sporadic CRC risk (rs16892766 at 8q23.3 and rs3802842 at 11q23.1) are located on chromosomes 9 and 4 in pigs (Ghorbanoghli et al, 2016). Although one SNP differentially associated between LP and HP is located on chromosome 4 it is far away from the region homologous to the human SNP location.

Table 37 The top 30 SNPs detected.

Chromosome	Base pair position	P-value	Chromosome	Base pair position	P-value
13	192206011	1.08×10^{-08}	1	268990705	1.36×10^{-06}
AEMK02000452.1	762390	5.76×10^{-08}	39	79426	1.36×10^{-06}
17	31868703	1.65×10^{-07}	6	71775092	1.55×10^{-06}
12	2263873	1.66×10^{-07}	18	8263672	1.55×10^{-06}
1	44967406	3.25×10^{-07}	13	157511545	1.58×10^{-06}
7	36791633	3.39×10^{-07}	1	166171033	1.79×10^{-06}
2	142947459	5.10×10^{-07}	1	161756743	1.90×10^{-06}
14	106776396	5.10×10^{-07}	17	8451491	2.29×10^{-06}
16	71219623	5.10×10^{-07}	17	30781986	2.29×10^{-06}
AEMK02000452.1	1042678	6.04×10^{-07}	13	135442206	2.31×10^{-06}
1	253094682	7.48×10^{-07}	2	151688112	2.69×10^{-06}
1	253094686	7.48×10^{-07}	4	111634710	2.98×10^{-06}
1	251101477	1.05×10^{-06}	17	30781990	3.13×10^{-06}
12	52303005	1.05×10^{-06}	1	268256223	3.22×10^{-06}
17	32654033	1.06×10^{-06}	10	46791255	3.22×10^{-06}

Allele-specific expression analysis

SNPs can not only be distributed differentially between two groups, but they can also show imbalanced expression associating with HP or LP animals. Allele-specific expression analysis was performed to identify SNPs that are expressed more abundantly in HP or LP and may modulate or promote severe polyposis. SNPs identified with the GATK's Haplotypecaller were filtered for strand unbiased SNPs of certain confidence that were heterozygous in at least 4 LP and HP animals with at least 30 reads. The probability of allelic imbalance for each SNP was calculated based on the number of reference and alternate allele reads in heterozygous animals using a two-sided binomial test that was implemented with the binom function in R. The SNPs that showed differential allele-specific expression between HP and LP were plotted according to their decadic logarithmic p-value versus chromosomal location (Figure 6).

Figure 6 Display of the allele-specific SNPs expressed differentially, plotted by p-value and chromosome.

Figure 7 Allele-specific expression of the SNP located in OAS1. gDNA, genomic DNA; Red, T variant; Blue, C variant.

SNPs in the genes PI3, SLA-2, UBB, ATP13A3, OAS1, COL3A1 and RF01684-sRNA showed among others high significance in differential allele-specific expression. From these selected SNPs, the SNP in the gene OAS1 on chromosome 14, position 38856577 bp C/T was validated using pyrosequencing (Figure
7). OAS1 is an interferone-induced enzyme that is involved in cellular innate antiviral response (http://www.genecards.org/). Therefore, pyrosequencing of laser microdissected epithelium from normal mucosa samples was performed to identify whether the imbalanced SNP expression originates from the epithelium or the stroma. The SNP variant T (in red) is significantly higher expressed in the stroma of LP animals compared to HP animals and expression analysis showed that the SNP variant T is associated with reduced OAS1 expression(Figure 6).

In summary mRNA Sequencing analysis helped to identify one potential modifier gene CYP7A1 which showed significantly higher expression in HP animals in both sequencing-based and PCR-based methods. Gene set enrichment analysis of the mRNA sequencing data identified estrogene response pathway enriched in HP. The differential distribution and allele specific expression between HP and LP animals showed the SNP in the OAS1 gene on chromosome 14 position 38856577 bp C/T has higher expression of the cytosine allele, associated with higher overall expression in the HP animals.

3.1.1.3 CYP7A1

3.1.1.3.1 Elucidating gene structure of CYP7A1

The gene structure of CYP7A1 was analysed to identify the source of differential expression. As many proteins are highly conserved between human and pig, the known DNA and amino acid sequences of porcine and human CYP7A1 were aligned. Protein alignment showed 80% identity between human and pig (UniprotKB). Alignment of the genomic CYP7A1 sequences revealed, different to the human sequence, two more untranslated exons more than 10 kb 5 ' of the ATG in the porcine CYP7A1 gene annotation (Sscrofa11.1, ensemble genome browser 93) (Figure 8)

AlignSlice Legend

Gene Legend	Indel ($>50 \mathrm{bp}$)
	Protein Coding
	Ensembl protein coding
merged Ensembl/Havana	

Figure 8 Ensembl genomic alignment of porcine CYP7A1 with human CYP7A1 (genome assemblies Sscrofa11.1 and GRCh38.p12) and depiction of CYP7A1 structure in colon mucosa of APC ${ }^{1311}$ pigs
The first two exons annotated according to ensemble Sscrofa11.1 were not found to be expressed. The primers used for RT-PCR, RACE sand RT-qPCR are marked. CpG islands (CGI) 1 and 2 are indicated. The region of SNP analysis 5742 bp 5' of the ATG is indicated by an arrow.

The DNA alignment showed no association of porcine exon 1 and 2 with the human CYP7A1 gene.
Therefore, RACE together with RT-PCR was performed to investigate the presence or absence of these two exons (Figure 8 and Figure 9). The resulting bands were gel extracted, subcloned into the pGEMT vector system (Promega) and sequenced. 5'RACE from the third exon (lane 1) and sequencing showed a lack of exon 1 and 2 (Figure 9). Other RT PCRs from exon 2 (not shown here) did not produce products. Furthermore, RT-PCRs from exon 3 to exon 6, 3-7 and 3-8 confirmed the presence of 6 exons of CYP7A1 in the porcine colon mucosa of the analysed animals and revealed the presence of two transcript variants visible by two bands in lane 2, 3 and 4 respectively. The higher molecular weigth bands showed the expected sizes of $898 \mathrm{bp}, 1039 \mathrm{bp}$ and 1248 bp . Sequencing of both the higher and lower molecular weight bands revealed one transcript variant with all 6 exons transcribed (higher molecular weigth band) and one variant that skips transcription of exon 5 (lower molecular weigth band). Taken together, the pigs analysed in this study express CYP7A1 composed of 6 exons, with two transcription variants, one of which skips exon 5 (Figure 8 and Figure 9). It should be noted however, that the differential expression determined via RT-qPCR was performed with primers positioned in exon 4 and 5. Thus the transcription variant containing exon 5 was found to be differentially expressed.

Figure 9 Gel photographs of the 5' RACE and the RT-PCR from exon 4-9.
Lane 1: 5'RACE from exon 4 to the 5^{\prime} end of the mRNA using primer CYP7A1_Ex5_R7. Lane 2, 3,4: RT-PCR from exon 3-6, 3-7 and 3-8 respectively using the primers CYP7A1_Ex4_F7, CYP7A1_Ex7_R2, CYP7A1_Ex8_R3 and CYP7A1_Ex9_R4. M: marker, C: water control.

3.1.1.3.2 Analysis of cis-regulation of CYP7A1

Once the structure of the CYP7A1 gene in the normal mucosa samples was analysed, the source of the differential expression was investigated on the level of cis-regulatory elements (CREs). CREs include promoters and transcription factors (TFs) that exhibit enhancing and silencing effects on gene expression. Therefore, the potential promoter region was analysed for altered TF binding sites. First, SNP analysis 5742 bp 5' of the ATG was performed (Figure 8) using Sanger sequencing with the primers CYP7A1_AS_Ex3_F6, CYP7A1_AS_Ex4_R6 and all CYP7A1_SNPSeq primers (Table 13). 78 SNPs were identified and analysed. 20 showed a different allelic distribution between HP and LP of at least 10% difference. However, none showed significant association with either LP or HP. As differential expression was validated in the transcript variant with exon 5 , intron 4 was sequenced to identify the cause of exon skipping using the primers CYP7A1_Ex5_F1, CYP7A1_Ex6_R1-2, CYP7A1_SNP_I5_F, CYP7A1_SNP_I5_F, CYP7A1_SNP_I5_R, CYP7A1_SNP_I5_R2. Severe heterozygous deletions and insertions in this region allowed no clear analysis.

Also epigenetic changes in the CpG methylation of the potential promoter region can alter TF binding sites, that in turn influences gene expression. Therefore, two CpG islands (CGI) up to $3459 \mathrm{bp} 5^{\prime}$ of the ATG, in the potential promoter region were analysed (Figure 8). 4 CpG sites were examined in CGI1 with the primers CYP7A1_CpG1_F1, CYP7A1_CpG1_R1_BIO and CYP7A1_CpG1_S2 and 3 CpG sites in CGI2 with the primers CYP7A1_CpG2_F1, CYP7A1_CpG2_R1_BIO and CYP7A1_CpG2_S using pyrosequencing (Figure 10).

No methylation differences between HP and LP were detected at CGI1 for any of the four CpG sites. At CGI2 significant methylation differences were detected at CpG site 1, that showed significantly higher methylation in the LP group compared to HP. Reduced methylation of the CpG site in HP animals may cause increased binding of both enhancing but also silencing TFs.

Therefore, the sequence 45 bp upstream and 45 bp downstream of the CpG site was analysed for TF binding sites using MatInspector by Genomatix Matrix Library 11.0 with standard parameters (Cartharius et al, 2005; Quandt et al, 1995) to determine whether the reduced CpG methylation in HP animals induces higher CYP7A1 expression via improved binding of activating TFs. This resulted in a list of 21 TFs binding to this sequence. Those that included the CpG in their binding site, but not their core sequence, were TF families signal transducer and activator of transcription 3 (STAT3), GLIS family zinc finger 1 (GLIS1), Ccaat/enhancer binding protein beta (CEBPB) and GA binding protein TF alpha (GABPA) (Figure 11).

CpG methylation of CGI1

Figure $\mathbf{1 0} \mathbf{C G I}$ methylation analysis of CGI1 and CGI2.

Genecards search showed expression of all 4 TFs in the colon and components of the immune system (http://www.genecards.org/). STAT3 is a transcription activator that responds to cell stimuli through cytokines and growth factors and is known to have oncogenic effects on proliferation, invasion and metastasis (Yu et al, 2014). GLIS1 functions are still widely unknown, however it is associated with reprogramming efficiency (Jetten, 2018). CEBPB regulates genes involved in immune and inflammatory response with tumour-promoting effects via NF-кB signalling (http://www.genecards.org/, NCBI) (Yang et al, 2017). GABPA functions are unknown.

```
    GABPA cpgttgtgtGGAAgagggacgg
    CEBPB cpgttgTGTGgaagag
    STAT3 gtgcTTCCtgggctttcpgt
CTCAGCCCACCAAGGAGAACTGGGTGTGTGTGCTTCCTGGGCTTTCpGTTGTGTGGAAGAGGGACGGTGTGGCCAAAGGGGGAAGACCAGC
```


Figure 11 Display of the four transcription factors (TFs) with their binding sequence.
The core sequence was capitalised and the CpG site marked by bold writing.

CYP7A1 in the normal mucosa of the pigs analysed is transcribed in two different variants in the colonic mucosa. The variant including all 6 exons (not skipping exon 5) is higher expressed in HP compared to LP animals. The cause of differential expression on cis-regulatory level could not be associated with differentially distributed SNPs in the potential promoter region but with reduced CpG methylation in the CGI2 of the potential promoter. The reduced methylation may influence the binding of TFs GLIS1, CEBPB, GABPA and STAT3, which is associated with oncogenic effects.

3.1.1.3.3 Function and source of high CYP7A1 expression in high polyp animals

 CYP7A1 is an endoplasmic reticulum membranous monooxigenase that contributes to drug metabolism and is the rate limiting enzyme of bile acid synthesis from cholesterol. High CYP7A1 expression in the liver, is associated with a high amount of bile acids in the colon, which correlates with a high risk of CRC development. The function of CYP7A1 in the colon however, is not yet elucidated. There were reports of CYP7A1 expression in macrophages (Bao et al, 2015). RT-qPCR validation of laser microdissected normal mucosa samples was aimed to reveal which cell type exhibits increased CYP7A1 expression in HP animals. Crypts and surrounding tissue, called stroma, was isolated from HE stained cryo sections vial laser microdissection. RNA was isolated and cDNA was generated followed by RTqPCR.. No significant difference between CYP7A1 expression in crypts and stroma was detected. Comparison of the expression in LP crypts and HP crypts and LP stroma and HP stroma, showed a significantly higher expression of CYP7A1 in HP stroma. This suggests that the CYP7A1 expression originates from cells located in the stroma.

Figure 12 Differential expression analysis of CYP7A1 in crypts and stroma using RT-qPCR.

3.1.2 Attempt to identify modifier genes on miRNA level

MiRNA from 19 normal mucosa samples taken at 40 cm colorectum depth of animals aged 3-9 months (Table 38) were sequenced to identify those that might cause or modulate susceptibility to severe polyposis. After DNase treatment, quality and quantity assessment $1 \mu \mathrm{~g}$ total RNA was used for the library preparation. The resulting libraries were again checked for quality and quantity and 6 libraries were pooled (6 libraries/flow cell), clustered and sequenced on the MiSeq. The resulting sequencing data was used to identify miRNA differentially expressed between HP and LP animals.

Table 38 Animal samples sequenced for the analysis of modifier genes on miRNA level

Animal ID	Born	Collection	Age	Sex	Pheno-	RIN	Sequenced
128	07.03 .2013	16.07 .2013	Oy 4m 9d	female	LP	9.1	16.02 .2016
145	14.03 .2013	25.06 .2013	0y 3m 11d	male	LP	8.1	16.02 .2016
150	14.03 .2013	16.07 .2013	0y 4m 2d	female	LP	7.9	19.02 .2016
152	14.03 .2013	22.10 .2013	0y 7m 8d	female	LP	8.9	11.02 .2016
153	14.03 .2013	23.10 .2013	0y 7m 9d	female	LP	7.4	11.02 .2016
155	14.03 .2013	26.06 .2013	0y 3m 12d	male	LP	9.2	11.02 .2016
157	14.03 .2013	17.07 .2013	0y 4m 3d	female	LP	8.8	16.02 .2016
163	15.03 .2013	19.09 .2013	0y 6m 4d	female	HP	9.1	11.02 .2016
168	12.05 .2013	18.09 .2013	0y 4m 6d	male	HP	8.7	16.02 .2016
173	12.05 .2013	02.12 .2013	0y 6m 20d	female	LP	7.3	16.02 .2016
251	21.02 .2014	24.06 .2014	0y 4m 3d	castrated male	HP	6.6	18.02 .2016
252	21.02 .2014	25.06 .2014	0y 4m 4d	castrated male	HP	7.5	18.02 .2016
253	21.02 .2014	24.06 .2014	0y 4m 3d	castrated male	HP	6.6	19.02 .2016
300	24.08 .2014	16.03 .2015	0y 6m 20d	female	LP	4.3	18.02 .2016
322	18.10 .2014	16.03 .2015	0y 4m 26d	male	HP	5.7	19.02 .2016
324	18.10 .2014	16.03 .2015	0y 4m 26d	male	HP	6.1	19.02 .2016
326	18.10 .2014	17.03 .2015	0y 4m 27d	female	HP	6.6	18.02 .2016
328	18.10 .2014	17.03 .2015	0y 4m 27d	female	LP	7	18.02 .2016
339	20.10 .2014	17.03 .2015	0y 4m 25d	female	HP	5.3	19.02 .2016

3.1.2.1 Differential expression analysis

The processing of miRNA sequencing data for differential expression analysis was performed by Dr. Stefan Bauersachs. Adapters (added in the process of library preparation) were removed from the reads and the read quality was assessed before and after this process using FastQC (v0.11.2) and multiqc (Galaxy Version 0.6). Sequences with read counts lower than 300 counts in sum of all samples were filtered out resulting in approx. 9000 sequences that were compared to all transcripts of Sus scrofa including non-coding RNAs and human and bovine sequences with NCBI BLAST+ (Cock et al, 2015) blastn-short. Duplicates were removed and sequences assigned to miRNAs were used for analysis of differential expression of miRNAs using EdgeR (Robinson et al, 2010). EdgeR presented a table of all sequences and stem sequences of mature miRNAs differentially expressed between HP and LP. Among the top 20 stem sequences of mature miRNA, 19 miRNAs were significantly differential expressed between LP and HP according to their p-value (Table 39). Only one of those, miR-215 was significantly higher expressed in HP animals according to both p-value and adjusted p-value (multiple comparison adjustment), here called FDR (false discovery rate). Here the LP group was used as calibrator group, therefore the positive Log2FoldChange values signify higher expression in HP and
values below 0 lower expression in HP. The miRNAs miR-215 (higher expressed in HP), miR-194b-5p (higher expressed in HP), miR-27a-3p (lower expressed in HP) and miR-146a-5p (lower expressed in HP) were chosen for RT-qPCR validation.

Table 39 Top 20 differentially expressed miRNAs

MiRNA	$\begin{aligned} & \text { Iso- } \\ & \text { miRs } \end{aligned}$	BLAST hits	Log2FoldChange	FoldChange	Pvalue	Adjusted p-value
mir-215	4	ssc-miR-215	2.14	4.41	0.0002	0.0476
mir-194b-5p	3	ssc-miR-194b-5p	1.86	3.63	0.0009	0.072
mir-27a-3p	5	bta-miR-27a-	-0.55	0.68	0.001	0.072
3p,ssc-miR-27a-3p						
mir-23a	4	ssc-miR-23a	-0.44	0.74	0.0088	0.4553
mir-192-5p-v1	6	miR-192-5p-v1	0.73	1.66	0.0139	0.4956
mir-146a-5p	7	ssc-miR-146a-5p	-0.72	0.61	0.0173	0.4956
let-7d-5p	2	ssc-let-7d-5p	-0.38	0.77	0.0247	0.4956
pre-mir-192-5p	12	pre-ssc-miR-192-5p	0.55	1.46	0.0247	0.4956
mir-375	13	bta-mir-375,hsa-miR-375	0.49	1.40	0.0292	0.4956
mir-192-5p	43	bta-miR-192-	0.39	1.31	0.0307	0.4956
5p,ssc-miR-192-5p						
mir-192-5p-v2	1	miR-192-5p-v2	0.67	1.59	0.0339	0.4956
mir-139-5p	1	ssc-miR-139-5p	0.55	1.46	0.0356	0.4956
mir-182-5p	9	$\begin{gathered} \text { bta-mir-182-5p,ssc- } \\ \text { miR-182-5p } \end{gathered}$	0.46	1.38	0.0367	0.4956
novel_mir_2	3	novel_miR_2	1.07	2.10	0.037	0.4956
mir-214	2	ssc-miR-214	-0.57	0.67	0.0384	0.4956
mir-6529a	1	bta-miR-6529a	-0.49	0.71	0.0394	0.4956
mir-192-5p-v3	1	miR-192-5p-v3	0.59	1.51	0.0431	0.4956
mir-582-3p	2	ssc-miR-582-3p	0.53	1.44	0.0445	0.4956
mir-92b-3p	9	$\begin{gathered} \text { bta-mir-92b-3p,ssc- } \\ \text { miR-92b-3p } \end{gathered}$	-0.39	0.76	0.046	0.4956
mir-340	2	ssc-miR-340	0.37	1.29	0.0501	0.4956

Establishment of a normalising miRNA for the analysed normal mucosa samples was essential to perform RT-qPCR validation of the top 3 differentially expressed miRNAs miR-215, 194b-5p, 27a-3p and the migration and invasion promoting miRNA 146a-5p (Lu et al, 2017). Therefore, literature search for human normaliser miRNA for normal colon and cancer samples lead to testing equivalent porcine sequences for RNU6B_1, miR-191-5p_1, miR-25-3p_1, miR-16-5p_1, miR-26a-5p_1, mir-425-5p_1, let-7a-5p_1 (Chang et al, 2010; Peltier \& Latham, 2008; Schmitz et al, 2009). MiR-191-5p_1, miR-25-3p_1, miR-16-5p_1, and let-7a-5p were tested for their stability on a subset of the sequenced normal mucosa samples using NormFinder (Andersen et al, 2004). Ct values were transformed into a linear form by
generating $2^{-\mathrm{Ct}}$ values for NormFinder analysis. The resulting stability value was calculated from intergroup and intragroup variation of comparing miRNA expression of MiR-191-5p_1, miR-25-3p_1, miR-16-5p_1, and let-7a-5p between LP animals 152, 155, 173, 328 and HP animals 163, 168, 253 and 339 (Table 40). The smallest stability value indicated the lowest variation. Let-7a-5p showed the best intra- and inter-group stability value of 0.065 and was therefore taken as a normaliser in the validation of the sequencing results.

Table 40 NormFinder analysis.

miR name	Without group identifiers		With group identifiers
	Stability value	Standard error	Stability value
miR-25-3p	$\mathbf{0 . 1 4 0}$	$\mathbf{0 . 0 6 2}$	0.073
miR-16-5p	0.211	0.068	0.098
miR-191-5p	0.192	0.066	0.093
let7a-5p	0.160	0.063	$\mathbf{0 . 0 6 5}$

Figure 13 Differential expression analysis of miR-215, 194b, 27a-3p and 146a-5p in the sequenced samples using RT-qPCR.

RT-qPCR Validation of miR-215, 194b, 27a-3p and 146a-5p expression confirmed significantly increased miR-215 expression in HP animals in accordance with sequencing results (Table 39). Higher expression of miR-194b in HP animals was significant in RT-qPCR (Figure 13). The reduced expression of miR-27a$3 p$ and $146 a-5 p$ detected in the sequencing analysis could not be confirmed (Figure 13).

The RT-qPCR results of miR-215 and 194b confirmed the sequencing results. Therefore we analysed a number of additional samples (909-953, 2.1.15), that had not been sequenced (Figure 14). Higher MiR215 expression was significant when the additional samples were analysed together with the sequenced samples and alone, highlighting the strength of this biological effect (Figure $14 \mathrm{~A}, \mathrm{C}$). Increased miR-194b expression in HP could only be confirmed in comibination with the sequenced samples but not in the additional samples alone (Figure 14 B, D).

Figure 14 Differential expression analysis of miR-215 and 194b in the sequenced and additional samples (A, B) and in the additional samples alone(C,D).

3.1.2.2 In silico miRNA target analysis

In silico target analysis was performed with all differentially expressed miRNAs with p-values < 0.05 and a human equivalent using Diana tools (2.6.2). The KEGG pathway analysis showed that the differentially expressed miRNAs miR-215-5p, 194-5p, 27a-3p, 23a-3p, 192-5p, 146a-5p, let-7d-5p, miR-$375-3$ p, 139-5p, 182-5p, 214-3p, 582-3p and 92b-3p influence many cancer associated pathways (Table 41).

Table 41 In silico miRNA target analysis of differentially expressed miRNAs between HP and LP animals.

KEGG pathway	P-value	Number of genes targeted	Number of miRNAs involved in pathway
Proteoglycans in cancer	1.77×10^{-17}	130	13
Adherens junction	2.71×10^{-12}	57	12
Protein processing in endoplasmic reticulum	1.80×10^{-11}	115	12
Cell cycle	9.47×10^{-11}	87	14
Hippo signalling pathway	2.21×10^{-10}	93	13
TGF-beta signalling pathway	9.53×10^{-10}	56	12
Pathways in cancer	2.59×10^{-09}	231	14
Viral carcinogenesis	1.24×10^{-08}	122	13
Renal cell carcinoma	1.69×10^{-08}	48	12
Glioma	1.69×10^{-08}	46	12
Chronic myeloid leukemia	2.68×10^{-08}	54	12
Prion diseases	3.00×10^{-08}	20	9
Hepatitis B	8.92×10^{-08}	90	12
Signalling pathways regulating pluripotency of stem cells	3.39×10^{-07}	90	12
Colorectal cancer	4.52×10^{-07}	46	13
Prostate cancer	5.06×10^{-07}	63	12
Oestrogen signalling pathway	7.05×10^{-07}	61	13
Oocyte meiosis	1.45×10^{-06}	71	13
Ubiquitin mediated proteolysis	5.00×10^{-06}	86	12
mTOR signalling pathway	9.60×10^{-06}	45	12
Neurotrophin signalling pathway	9.60×10^{-06}	76	13
Pancreatic cancer	1.05×10^{-05}	46	12
Mucin type O-Glycan biosynthesis	1.46×10^{-05}	17	6
Bacterial invasion of epithelial cells	2.06×10^{-05}	50	12
Bladder cancer	2.40×10^{-05}	30	12
Endocytosis	3.50×10^{-05}	118	12
AMPK signalling pathway	3.66×10^{-05}	79	14
Shigellosis	3.75×10^{-05}	45	12
Thyroid cancer	3.86×10^{-05}	22	12
FoxO signalling pathway	4.09×10^{-05}	84	12

Endometrial cancer	4.59×10^{-05}	37	12
ErbB signalling pathway	5.38×10^{-05}	57	14
Glycosaminoglycan biosynthesis - heparan sulphate / heparin	0.00012515	15	9
Non-small cell lung cancer	0.00013151	38	12
Transcriptional misregulation in cancer	0.00014138	96	12
HIF-1 signalling pathway	0.0001588	67	12
Spliceosome	0.00022485	78	13
p53 signalling pathway	0.00040416	45	13
Fatty acid biosynthesis	0.00057782	6	7
mRNA surveillance pathway	0.00057782	59	12
Focal adhesion	0.00063506	117	13
Glycosaminoglycan biosynthesis - keratan sulphate	0.00064327	10	7
Thyroid hormone signalling pathway	0.00133893	72	14
Central carbon metabolism in cancer	0.00179693	41	12
Acute myeloid leukaemia	0.00235642	36	12
Insulin signalling pathway	0.00298371	81	13
Gap junction	0.00328537	52	13
Small cell lung cancer	0.00387188	52	13
HTLV-I infection	0.00435804	138	13
Wnt signalling pathway	0.00473261	78	13
Sphingolipid signalling pathway	0.00483015	66	12
Melanoma	0.00659562	41	12
Glycosaminoglycan biosynthesis - chondroitin sulphate/ dermatan sulphate	0.00661598	11	7
Lysine degradation	0.00800587	25	13
ECM-receptor interaction	0.0080235	39	11
Pathogenic Escherichia coli infection	0.00894165	35	12
TNF signalling pathway	0.00979755	63	14
Vibrio cholerae infection	0.01295563	34	12
RNA transport	0.01320152	90	13
Progesterone-mediated oocyte maturation	0.01778249	51	13
Prolactin signalling pathway	0.02360585	42	13
Toxoplasmosis	0.02606497	65	12
Salmonella infection	0.03123455	48	13
Adrenergic signalling in cardiomyocytes	0.03993007	68	13
GnRH signalling pathway	0.03993007	51	13
Epstein-Barr virus infection	0.047274	105	13
Notch signalling pathway	0.04904792	29	11
Fc gamma R-mediated phagocytosis	0.04904792	50	12
MAPK signalling pathway	0.04904792	127	13
Regulation of actin cytoskeleton	0.04904792	106	13

Targeted analysis of the genes targeted by the miRNAs (Appendix) showed that none of the 13 miRNAs target CYP7A1 or SFRP5. The miR-194-5p (higher expressed in HP), 27a-3p and 23a-3p (both lower expressed in HP) have SATB1, which was found to be expressed in higher levels in the HP animals and has been associated with human CRC (Al-Sohaily et al, 2014; Brocato \& Costa, 2015; Lv et al, 2016; Mir et al, 2016; Zhang et al, 2014c), among their targets. MiR-192-5p and 182-5p, both highly expressed in HP, target APC. MiR-92b-3p, lower expressed in HP has KRAS among their targets and the miR-23a-3p, 214-3p (both lower expressed in HP) and 582-3p (higher expressed in HP) target PTEN. The miR - 27 a$3 p, 214-3 p$ and let-7d-5p (lower expressed in HP) and miR-182-5p (higher expressed in HP) target TP53. As miRNAs can influence protein expression also by reducing translation without reducing the transcript abundance significantly, these results suggest early modulation of the crucial 5 pathways of CRC in the APC ${ }^{1311}$ animals.

Taken together, the analysis of differentially expressed miRNAs between HP and LP animals revealed that miR-215 and 194b were significantly higher expressed in HP animals in both sequencing and PCRbased methods and miR-215 qualified as potential modifier of polyposis severity in pigs. In silico miRNA target analysis of all miRNAs significantly differentially expressed according to p-value revealed a multitude of targets, among which CYP7A1 and SFRP5 could not be identified, however SATB1, APC, KRAS, PTEN and TP53 were targets. KEGG pathway analysis showed, that the targeted mRNAs were playing a role in many cancer-associated pathways.

3.2 Analysis of genes mediating tumour progression in the porcine model for colorectal cancer

Regular endoscopy and molecular analysis of the APC ${ }^{1311}$ pigs revealed that the porcine model recapitulates key aspects of human FAP and CRC including adenomatous polyps in the colorectum with low-grade intraepithelial neoplasia (LG-IEN), high-grade intraepithelial neoplasia (HG-IEN), loss of APC heterozygosity, β-catenin accumulation, upregulation of c-MYC, MAPK pathway activation and progression to carcinoma in situ.

The search for novel unknown drivers of human CRC to fully understand disease pathology is a continuous focus of CRC research (Cancer Genome Atlas, 2012). Repeated analysis of one and the same polyp in humans is not possible and the analysis of early polyps is also difficult as the most part are diagnosed late in disease progression (US national cancer institute) (Guinney et al, 2015), therefore late stage adenomas or even carcinomas are mostly analysed in humans. The FAP pigs provide the opportunity to analyse early adenomas LG-IEN and to follow and analyse molecular changes from LGIEN to HG-IEN over time in vivo. Thus the model can not only help investigate the differences between adenomas and normal mucosa, but also between LG-IEN and HG-IEN.

Frequent mutations driving human CRC progression have been identified (Fearon \& Vogelstein, 1990), but CRC is very complex and very few cases of CRC carry all key mutations collectively (Guinney et al, 2015). Other mechanisms such as epigenetic modifications and mi-RNA dysregulation have been found to have similar if not equal CRC-promoting power (1.2.1, 1.2.2, 1.2.3, 1.2.4). Therefore, processes driving the progression from LG-IEN to HG-IEN were analysed in LG-IEN and HG-IEN adenomas of the colorectum on mRNA and miRNA level to detect gene and miRNA expression changes caused by genomic mutations but also by epigenetic mechanisms and miRNA dysregulation. The sequencing data was used to perform gene and miRNA expression analysis, the identification of SNPs differentially distributed and expressed and gene set enrichment analysis between LG-IEN and HG-IEN. The analysis was aimed to show molecular replication of human FAP and CRC but also to identify novel drivers through unique experimental setup that is not possible in humans.

3.2.1 Analysis of tumour progression on mRNA level

To compare porcine CRC pathology to human and to identify novel drivers of CRC, porcine tumour progression was analysed by comparing RNA sequencing results from 5 HG-IEN with 5 LG-IEN adenomas of 1 cm diameter of $A P C^{1311}$ animals. Additional to bulk samples, laser microdissected LG-

IEN and HG-IEN were sequenced and compared. These following results have been published in Scientific Reports (Flisikowska et al, 2017).

3.2.1.1 Differential expression analysis

Differential expression analysis resulted in 52 genes that were significantly (adjusted p-Value < 0.05) differentially expressed and showed a clear distinction between HG and LG-IEN (Figure 15). The top differentially expressed gene was AHNAK, which was lower expressed in HG-IEN. AHNAK is a known tumour suppressor that negatively regulates cell growth via the TGF β signalling pathway (Lee et al, 2014). Among the differentially expressed genes, where most showed a reduced expression in HG-IEN, were genes involved in metabolic processes (MAPK4, S100A9), intracellular transport (SLC46A1) and in immune response (IL7, CD40). Among highly expressed genes were genes associated with stress response (HSPA1L), WNT (WISP1) and TNF (SLC12A6) signalling. Selected genes, especially immune related genes (Table 42) were validated using RT-qPCR. LG samples served as calibrator group, therefore positive values signify higher regulation in HG samples.

Figure 15 A) cluster analysis of the expression of the top 52 differentially expressed genes between HG-IEN and LG-IEN. B) cluster analysis of the expression of the top 20 differentially expressed genes between laser microdissected HG-IEN and LG-IEN crypts.
Blue signifies low and red high expression.

Table 42 RT-qPCR validation results of genes differentially expressed between whole HG and LG-IEN.

Gene symbol	Gene description	RNA seq Log2Fold- Change	P-value	RT-qPCR Log2Fold- Change	P-value
		HG		HG	
		-1.09	6.88×10^{-6}	-5.18	4.02×10^{-7}
IL7	Interleukin 7	-1.69	7.33×10^{-10}	-4.03	0.008
EBF1	Early B-cell factor 1	-1.10	2.09×10^{-12}	-1.96	0.013
CD40-1	CD40 molecule isoform 1	-1.22	2.88×10^{-5}	-2.04	0.085
CD40-2	CD40 molecule isoform 2	CD40 ligand	-1.28	4.56×10^{-6}	-2.11
CD40-LG	TNF receptor associated factor 5	-1.16	1.20×10^{-9}	-2.21	0.009
TRAF5	Interleukin 21	-2.30	2.06×10^{-17}	-8.97	0.007
IL21	CD101 molecule	-0.95	0.0003	-3.08	0.044
CD101	S100 calcium-binding protein A8	2.79	3.16×10^{-12}	3.79	0.021
S100A8	S100 calcium-binding protein A9	-2.34	5.27×10^{-9}	-2.66	0.048
S100A9	Interleukin 20 receptor subunit	2.18	6.08×10^{-11}	3.40	6.7×10^{-6}
IL2ORA	alpha				

Figure 16 Immunohistochemical staining of HG-IEN.
A) and B) show brown staining of CD3+ infiltrating T-cells (B is a magnification of A). C) displays brown CD4+ and D) CD8+ infiltrating T-cells.

To specifically analyse aberrant epithelial tissue and eliminate signals from surrounding stroma, sequencing and differential expression analysis of laser microdissected LG and HG-IEN crypts was performed. Differential expression analysis of laser microdissected samples sequenced showed no differential expression of genes such as IL7, S100A8, and S100A9, assigning their expression to other cell types contained in the stroma, such as infiltrating immune cells (e.g. T-cells), observed in the polyps analysed (Figure 16). Differential expression visualisation showed clear distinction between LG and HGIEN (Figure 15).

High expression of the selected genes PLXND1, SLC30A1, GBP6, VASH1, and SMARCD3 in HG-IEN was confirmed using RT-qPCR (Table 43) suggesting novel drivers of CRC. PLXND1 has been found highly
expressed in a number of human tumours (Roodink et al 2009) and associated with epithelial mesenchymal transition and invasiveness and metastasis (Casazza et al, 2010; Tseng et al, 2011). The other genes were associated with interferon- γ signalling (GBP6) oxidative stress and anti-inflammatory activity (SLC3OA1), p53 regulation and cell proliferation (VASH1) and WNT pathway regulation (SMARCD3).

Table 43 RT-qPCR validation results of genes differentially expressed between laser microdissected HG and LG-IEN.
$\left.\begin{array}{llllll}\hline \hline \begin{array}{l}\text { Gene } \\ \text { symbol }\end{array} & \text { Gene description } & \begin{array}{l}\text { RNA seq } \\ \text { Log2Fold- } \\ \text { Change } \\ \text { HG }\end{array} & \text { P-value } & \begin{array}{l}\text { RT-qPCR } \\ \text { Log2Fold- } \\ \text { Change }\end{array} & \text { P-value } \\ & & 2.26 & 5.40 \times 10^{-8} & 4.23 & 1.40 \times 10^{-3} \\ \text { HG }\end{array}\right]$

Gene set enrichment analysis

Gene set enrichment analysis of porcine whole biopsy HG-IEN versus LG-IEN and laser microdissected HG-IEN versus LG-IEN were compared to human microsatellite stable (MSS) T1 polyps versus normal mucosa (data from TCGA database) to compare the porcine CRC carcinogenesis in a global molecular approach (Figure 17Figure 15). Of 26 significantly differentially enriched gene sets in human and 25 in pig, 19 sets were commonly enriched in both species. 13 genes sets were similarly significantly differentially enriched in the laser microdissected samples compared to the human and porcine bulk samples including HG-IEN enriched gene sets essential for CRC progression as MYC targets and cell cycle related E2F targets and G2M checkpoint components (Figure 17). This though broad comparison highlights the evident similarity between porcine and human CRC progression.

Figure 17 Gene set enrichment analysis of the pathways up or downregulated in porcine whole and microdissected polyps compared to human T1 microsatellite stable polyps.

3.2.1.2 Allele-specific expression analysis

Molecular changes in parts of the cancer over time have been observed in CRC by allele-specific expression (ASE) analysis (Tuupanen et al, 2008). In silico analysis of raw RNA sequencing data showed increased expression of the $A P C^{1311}$ allele in HG-IEN compare to LG_IEN (Figure 18).

Figure 18 Allele-specific expression of APC, analysed using raw sequencing data

ASE analysis using the RNA sequencing data from the bulk samples identified 48000 SNPs that showed significant allelic imbalance in at least one sample. SNPs in known CRC related genes with epithelial function MMP9, CEACAM7, LMAN2 and an immune related gene SLA2 were validated in bulk and laser
microdissected samples using pyrosequencing (Figure 19). The allelic imbalance that were well visible in laser microdissected samples were masked in bulk samples.

Figure 19 Allele-specific expression analysis of SLA2_1.0, MMP9, LMAN2 and CEACAM7 using pyrosequencing.

3.2.2 Analysis of tumour progression on miRNA level

MiRNA from 5 LG-IEN and 5 HG-IEN (same samples as used for mRNA analysis) were sequenced and compared. These results have been published in Oncotarget (Stachowiak et al, 2017). 44 differentially expressed miRNAs with a p-value below 0.05 were identified. Six of those had an adjusted p-value below 0.05 , rendering them significant even in the face of multiple comparison testing. Ten selected miRNAs including the top differentially expressed miR-126-3p between HG-IEN and normal mucosa, were selected for RT-qPCR validation (Table 44). HG was used as calibrator in this comparison, therefore, negative Log2FoldChange values signify increased expression in HG. All RT-qPCRs showed the same trend as the sequencing results, but the increased expression of let-7e, miR-98, 146a-5p, 146b, 183 an 196a and the reduced expression of miR-126-3p in HG-IEN were significant (p-value < 0.05) or even highly significant (p-value < 0.01) (Figure 20). Further all 7 miRNAs had been found to be associated with human CRC (Bandres et al, 2006; Chen et al, 2016; Ge et al, 2014; Lu et al, 2017; Mosakhani et al, 2012; Motoyama et al, 2009; Schimanski et al, 2009; Zhu et al, 2017a; Zhu et al, 2017b).

Table 44 Selected differentially expressed miRNAs between LG and HG-IEN and HG-IEN and normal mucosa.

MiRNA / IsomiR	Log2Fold- Change LG	P-value	Adjusted p-value		
ssc-miR-196a	-1.72	0.0000	0.0012		
ssc-miR-98	-0.95	0.0001	0.0118		
ssc-miR-146a-5p	-1.67	0.0003	0.0224		
ssc-miR-146b\|isomiR	20_42		-1.43	0.0005	0.0265
ssc-let-7e	-1.25	0.0014	0.0482		
ssc-miR-181b\|isomiR	12_33		-1.34	0.0020	0.0543
ssc-miR-191\|isomiR	9_30		-0.95	0.0035	0.0764
ssc-miR-155-5p\|isomiR	10_33		-1.19	0.0050	0.0945
ssc-miR-183\|isomiR	6_27		-1.11	0.0052	0.0945
MiRNA / IsomiR	Log2FC	p-value	Adjusted		
	HG/N		p-value		
ssc-miR-126-3p\|isomiR	45_66		-2.45	0.0000	0.0137

Figure $\mathbf{2 0}$ RT-qPCR validation of the differentially expressed miRNAs selected.

In silico miRNA target analysis

In silico target analysis revealed a large number of cancer related pathways influenced by the differentially expressed miRNAs including miRNAs in cancer, proteoglycans in cancer, p53 signalling pathway, viral carcinogenesis and colorectal cancer (Table 45).

Table 45 In silico miRNA target analysis of differentially expressed miRNAs between HG and LG-IEN.

KEGG pathway	P-value	Number of genes targeted	Number of miRNAs involved in pathway
MicroRNAs in cancer	9.53×10^{-74}	131	23
Proteoglycans in cancer	1.08×10^{-14}	146	23
Hepatitis B	5.68×10^{-12}	105	22
Protein processing in endoplasmic reticulum	1.21×10^{-09}	124	23
Renal cell carcinoma	1.25×10^{-08}	56	23
Cell cycle	1.44×10^{-08}	97	23
Lysine degradation	2.75×10^{-08}	37	23
Ubiquitin mediated proteolysis	2.75×10^{-08}	103	23
Adherens junction	3.67×10^{-08}	60	23
Hippo signalling pathway	1.69×10^{-07}	101	23
Prion diseases	3.21×10^{-07}	24	22
Pathways in cancer	6.92×10^{-07}	255	23
Oestrogen signalling pathway	1.33×10^{-06}	69	23
p53 signalling pathway	1.88×10^{-06}	56	23
Viral carcinogenesis	4.50×10^{-06}	146	23
Prostate cancer	7.91×10^{-06}	68	23
Transcriptional misregulation in cancer	1.68×10^{-05}	117	23
Pancreatic cancer	1.88×10^{-05}	52	23
Glioma	4.22×10^{-05}	47	23
Spliceosome	4.97×10^{-05}	94	23
Glycosaminoglycan biosynthesis - keratan sulphate	8.15×10^{-05}	11	18
Signalling pathways regulating pluripotency of stem cells	8.15×10^{-05}	95	23
Chronic myeloid leukaemia	8.73×10^{-05}	56	22
TGF-beta signalling pathway	0.000114499	55	22
Shigellosis	0.000114499	48	23
Bladder cancer	0.000114499	32	23
Sphingolipid signalling pathway	0.00011831	82	23
Oocyte meiosis	0.000125888	76	23
Acute myeloid leukaemia	0.00017571	42	23
Endocytosis	0.000195403	137	23
Thyroid hormone signalling pathway	0.000385396	84	23
Central carbon metabolism in cancer	0.000385396	46	23
Regulation of actin cytoskeleton	0.000455559	135	23
Fatty acid metabolism	0.000456395	29	20
FoxO signalling pathway	0.000456395	91	23
Focal adhesion	0.000587346	135	23
Colorectal cancer	0.000635242	45	23
Non-small cell lung cancer	0.000689357	41	22

RNA transport	0.000905502	110	23
TNF signalling pathway	0.000905502	77	23
ErbB signalling pathway	0.001752074	58	23
Bacterial invasion of epithelial cells	0.002263929	50	23
HIF-1 signalling pathway	0.002639591	76	23
mTOR signalling pathway	0.002897181	45	23
Steroid biosynthesis	0.003093938	13	15
Neurotrophin signalling pathway	0.003536926	79	23
RNA degradation	0.004208333	53	23
Thyroid cancer	0.006358412	21	22
AMPK signalling pathway	0.008043309	83	23
N-Glycan biosynthesis	0.008687542	32	20
Small cell lung cancer	0.009531305	58	23
NF-kappa B signalling pathway	0.009585347	56	23
Fc gamma R-mediated phagocytosis	0.010505971	59	23
Endometrial cancer	0.010954543	36	22
Axon guidance	0.012636065	75	23
Wnt signalling pathway	0.014365498	86	23
Chagas disease (American trypanosomiasis)	0.016876026	66	22
Huntington's disease	0.016876026	113	23
Legionellosis	0.016928086	38	22
Ribosome	0.021827887	86	23
HTLV-I infection	0.021827887	168	23
Salmonella infection	0.022887739	56	23
Notch signalling pathway	0.024647157	34	23
Fatty acid biosynthesis	0.025038322	6	23
Melanoma	0.030733908	45	23
Insulin signalling pathway	0.03093753	88	23
MAPK signalling pathway	0.032704866	151	23
Gap junction	0.040246432	55	23
PI3K-Akt signalling pathway	0.040246432	192	23
Progesterone-mediated oocyte maturation	0.040999811	57	23
Prolactin signalling pathway	0.049040505	47	22
			2

The characterisation of the $A P C^{1311}$ animals on mRNA and miRNA level revealed that only few genes and miRNAs are significantly differentially expressed between HP and LP. Higher gene expression of CYP7A1, the SNP in the OAS1 gene (chromosome 14, position $38856577 \mathrm{bp} \mathrm{C} / \mathrm{T}$) and the miR-215 in HP animals were validated with methods other than mRNA and miRNA sequencing and associated with a more severe polyposis (HP). Their potential function as modifier genes requires further confirmation in a larger set of samples. MiR-215 could already be validated in animals apart from the sequenced samples. The mechanism of differential CYP7A1 expression was analysed on cis-regulatory level and revealed reduced CpG methylation in the potential promoter region of HP animals where TFs STAT3, GLIS1, CEBPB and GABPA bind. MRNA targets of differentially expressed miRNAs were determined and clustered and showed involvement in many cancer-associated pathways.

Further analysis of tumour progression on mRNA level between low grade (LG) and high grade (HG) intraepithelial neoplasia (IEN) showed a clear distinction between the two on expression in both bulk and laser microdissected samples. Genes involved in metabolic processes and immune response were lower expressed in HG-IEN while genes associated with stress response were higher expressed. Analysis of laser microdissected IENs eliminated these signals originating from stroma and revealed high PLXD1 and GBP6 expression in HG-IEN. So both the stroma and the epithelium itself change during tumour progression. Further, SNPs in known CRC related genes with epithelial function MMP9, CEACAM7, LMAN2 and one immune related gene SLA2 were detected. Gene set enrichment analysis of differential gene expression data showed cancer-associated gene sets enriched and further presented homology to human CRC data. MiRNAs analysis in bulk samples identified miRNAs let-7e, miR-146a-5p, 146b, 183, 196a higher expressed in HG-IEN that have not only been reported to exhibit tumour promoting functions, but that also target genes involved in cancer relevant pathways.

3.3 Optimisation of the CRC model

The $A P C^{1311}$ pig model for FAP and CRC has replicated key aspects of human FAP such as the variation in polyposis severity and hallmarks of human CRC development and progression to carcinoma in situ. However, no progression to invasive colorectal carcinoma was so far observed in more than 100 animals of 4 generations of $A P C^{1311}$ pigs up to age of 2-3 years. This suggests, that just like in humans, where 10-15 \% of all adenomas progress to carcinoma over decades (Fearon, 2011), porcine CRC progression takes equivalent time. With the premise that development of an invasive carcinoma is a matter of time, it was decided to accelerate the CRC development by causing frequently diagnosed oncogenic mutations (Guinney et al 2015) in polyps of the pigs in vivo via genome editing using CRISPR/Cas9. It was planned to deliver the guide RNAs to target tumour suppressor genes and oncogenes together with single-stranded oligodeoxynucleotides (ssODNs) for the introduction of oncogenic mutations to the polyps by in vivo electroporation or adeno-associated viral vectors. The endonuclease Cas9 is very large. Therefore, ubiquitous Cas9 endonuclease isolated from Streptococcus pyogenes (SpCas9) was to be introduced into the ROSA26 locus of porcine kidney fibroblasts (pKFs) carrying heterozygous $A P C^{1311}$ mutation followed by generation of piglets via nuclear transfer.

3.3.1 Generating targeting vectors for Cas9 placement into the porcine ROSA26 locus

Targeted introduction of numerous transgenes via homologous recombination (HR) in mice have been directed to the murine Rosa26 locus because transgene introduction into intron 1 of Rosa26 resulted in viable fertile animals that expressed the transgene stably without silencing (Zambrowicz et al, 1997). Therefore, a targeting vector allowing SpCas9 placement into the porcine homologue ROSA26 locus (Kong et al, 2014; Li et al, 2014) via HR was performed (Figure 21).

Promoter trap strategy was applied (Friedel et al, 2005) to increase the efficiency of HR-mediated gene targeting. The $A P C^{1311}$ animals carried a targeting cassette with a blasticidin S resistance ($b s r$) gene in the endogenous APC gene. Therefore, the bsr of the vector GEMT-Rosa26-BS-Cas9 (previously generated by Dr. Judy Ng) was replaced with a neomycin resistance (neo) gene from the pBs-LSL-Neo plasmid (Figure 21). This resulted in the targeting vector GEMT-Rosa26-Neo-Cas9 with a splice acceptor (SA), a promoterless neo gene and a CAG-driven SpCas9 gene between the homologous arms targeting ROSA26.

Figure 21 Cloning strategy for the targeting vector GEMT-Rosa26-Neo-Cas9.
$b s r$, blasticidin S resistance gene; CAG, Chicken beta-actin promoter and cytomegalovirus enhancer element; LHA, long homology arm; neo, neomycin resistance gene; pA, polyadenylation signal; SA, splice acceptor; SHA, short homology arm

As in the future both the Cre-loxP system together with the CRISPR/Cas9 system shall be used together to model human cancers, the coupling of the SpCas9 gene and a Cre reporter cassette in the ROSA26 locus is an essential preparation. The Cre reporter system allows visualisation of the location of Cre recombination in vivo and represents a powerful tool to monitor Cre specificity when working with conditional and tissue-specific Cre inducible oncogenic mutations (Li et al, 2014).

> GEMT-Rosa26-
> Neo-Cas9
> 17759 bp

> pSL1180 + MR26
> MTMG
> 10395 bp

Figure 22 Cloning strategy for targeting vector GEMT-Rosa26-Neo-Cas9-mTmG
CAG, Chicken beta-actin promoter and cytomegalovirus enhancer element; LHA, long homology arm; LSL, loxP-Stop-loxP cassette; neo, neomycin resistance gene; mEGFP, membrane-targeted enhanced green fluorescent protein gene; mTomato, membrane-targeted tdTomato red fluorescent protein gene; pA, polyadenylation signal; PGK, phosphoglycerate kinase promoter; SA, splice acceptor; SHA, short homology arm

Therefore, the GEMT-Rosa26-Neo-Cas9 was expanded by introduction of a Cre reporter cassette mTmG consisting of a CAG promoter and the two fluorescent protein genes membrane-targeted tdTomato (mTomato) flanked by two loxP sites and membrane-targeted EGFP (mEGFP) (LSL-mTomato-pA-LSL-mEGPF-pA) (Figure 22). Both vectors were linearised to increase the rate of homologous recombination (Kucherlapati et al, 1984) and purified for nucleofection of pKFs of APC ${ }^{1311}$ pig 73.

3.3.2 Generation and analysis of Cas9-targeted clones

Clones were generated by transfection, selection and expansion of primary pKFs. The single-cell clones were screened for correct targeting of the ROSA26 allele via PCR amplification across the 5^{\prime} junction of the vector and the target site using the primer Rosa26 I1 F2 and Rosa26 Loc2R and sequence analysis (Appendix) of the amplified products (Figure 23). Targeting PCR identified 9 targeted clones (Figure 24). A PCR to detect the endogenous, unmodified ROSA26 allele with the primer Rosa26 I1 F2 and Rosa26 I1 R3 showed that only 1 allele of ROSA26 was targeted (Figure 24).

Figure 23 Targeting of the Rosa26 locus with the GEMT-Rosa26-Neo-Cas9 targeting vector
CAG, Chicken beta-actin promoter and cytomegalovirus enhancer element; LHA, long homology arm; neo, neomycin resistance gene; pA, polyadenylation signal; SA, splice acceptor; SHA, short homology arm.

The clones, 4, 5, 9, 19, 22,35 and 45 were used as donors for nuclear transfer without additional analysis as they had ceased to proliferate. Clones 89,92 and 93 could be expanded for further analysis and correct ROAS26 targeting was confirmed by PCR amplification across the 3'junction of the vector and target locus (Figure 25) and sequence analysis (Appendix) of the amplified products.

Figure $\mathbf{2 4}$ Gel electrophoresis of the 5' screening PCR of Cas9-targeted clones.
Targeting PCR of the clones was performed using primer Rosa26 I1 F2 binding the ROSA26 locus outside the homologous arm and Rosa26 Loc2R that binds the neo of the targeting vector to generate a 3313 bp . Endogenous PCR of 3105 bp was amplified using the primer Rosa26 I1 F2 and Rosa26 I1 R3 that binds only the untargeted wildtype allele of ROSA26. +, positive control; -, water control; M, marker.

Figure 25 Gel picture of the $\mathbf{3}^{\prime}$ LR PCR of clones 89,92 and 93.
The primer Cas9_3'LR_for1 and Rosa26 I3 R2 (Figure 23) were used to generate a product of 6118 bp. -, water control; M, marker; wt, wildtype control.

3.3.2.1 Southern blot analysis

Southern blot analysis was performed to validate correct targeting of the ROSA26 locus and to exclude additional random integration. Genomic DNA of clones $89,92,93,13$ (a cell clone generated by Beate Rieblinger and Nina Simm where SpCas9 was introduced into the ROSA26 locus of wildtype pKFs) and wildtype cells was isolated and digested with Xmnl.

Figure 26 Southern Blot of the clones 89, 92, 93 and 13.
M , marker; wt, wildtype control.
The clones showed the expected bands of 7777 bp (clones 89,92 and 93) and 7698 bp (clone 13) (Figure 26) using the Cas9 probe (Figure 23). No random bands were visible, confirming that the integration was not only targeted but also unique. However, although the DNA concentration of all clones was measured fluorometrically using the Qubit and based on this, $10 \mu \mathrm{~g}$ DNA was used for Southern blot, clearly clone 13 showed a significantly weaker band, indicative of less DNA.

3.3.2.2 Expression analysis

Correct splicing from exon 1 of the ROSA26 locus into neo was detected by reverse transcription (RT) PCR of cDNA of the clones 89,92 and 93 (Figure 23). The expected bands of 877 bp and 990 bp were well visible in all three clones and the positive control (Figure 27). Additionally, the correct sequence of the PCR products was confirmed by sequencing analysis (Appendix).

Figure 27 Gel electrophoresis of RT PCR of the clones 89, 92 and 93.
The PCR from exon 1 of the Rosa26 locus, using the primer Rosa26 E1 F1 to the neomycin cassette, using Rosa26 Loc2R and Rosa26 Loc3R resulted in 877bp and 990 bp respectively. +, positive control; -, water control; kb; kilo bases; M, marker.

SpCas9 expression was quantified by RT-qPCR. For this analysis unlike traditional RT-qPCR the primers were not separated by an intron, therefore RNA was also tested for DNA contamination. The RNA showed no PCR product. The results showed that SpCas9 was expressed in the clones.

Figure $\mathbf{2 8}$ Cas9 expression analysis of the clones 89,92 and 93 using RT-qPCR results.

3.3.2.3 Protein Analysis

3.3.2.3.1 Western blot analysis

The presence of mRNA does not necessarily indicate the presence of functional protein. Therefore, protein was isolated from the clones 89,92 and 93 to perform Western blot analysis. The SpCas9 protein of 160 kDa could be detected for all three clones. The negative control, protein from untransfected pKFs from $A P C^{1311}$ pig 73 showed only the loading control, GAPDH at 37 kDa .

Figure 29 Western blot analysis of the clones 89, 92 and 93 visualising Cas9 and GAPDH.
kDa, kilo Dalton; M, marker; wt, wildtype control.

3.3.2.3.2 Functional Assay

SpCas9 is a nuclease, therefore it is essential to validate its activity. A reporter assay that can verify Cas9 functionality was established and indels were detected using open source online tool TIDE (https://tide.deskgen.com/).

Establishing gRNAs

First, gRNAs were generated, that target tumour suppressor genes that play a crucial role in human CRC development: TP53, as the "guardian of the genome", APC to induce loss of heterozygosity, PTEN as the controller of the PI3K pathway and DCC. These were inserted into Cas9-gRNA vector and transfected into pKFs. The cells were not selected. Therefore, gene editing efficency evaluated by TIDE analysis (https://tide.deskgen.com/) was dependent on transfection efficiency (Table 46). However, all gRNAs were able to induce cleavage and gene editing in the endogenous loci (Table 46).

Table 46 Tide analysis results of wildtype cells transfected with Cas9 and gRNA targeting TP53, PTEN, APC and DCC.

Cells	vector	Gene editing efficiency
pKF 73 $A P C^{1311}$	pX330-Cas9-TP53	9.3
pKF 73 $A P C^{1311}$	pX330-Cas9-Puro-PTEN	5.4
pKF 73 $A P C^{1311}$	pX330-Cas9-APC	5.3
pKF 73 $A P C^{1311}$	pX330-Cas9-DCC_Ex1-1	5.8

Reporter Assay

The gRNA sequence from the pX330 vector was added to the P119_pFUS_C_Check reporter plasmid carrying a dsRed sequence (rendering all transfected cells red) and a CRISPR target site including the
protospacer adjacent motif (PAM) between two homologous incomplete eGFP sequences (Figure 30). Upon transfection of cells expressing functional SpCas9 nuclease, the gRNA complexes with the Cas9 and travels to the endogenous target site but also to the one between the two homologous eGFP sequences and induces a double strand break. In case of homology directed repair (HDR), the homologous eGFP sequences will serve as templates, resulting in an intact eGFP. Succesful gene editing on the plasmid by cleavage-induced HDR is thus visible by fluorescence microscopy. Gene editing of the endogenous locus by the more frequent repair mechanism non-homologous end joining is detectable using the TIDE tool (https://tide.deskgen.com/).

The clones 89, 92 and 93 were transfected with pX330-cCheck-TP53 and both the fluorescence microscopy (Figure 31) and Tide analysis (Table 47) confirmed that all three clones generated a fully functional SpCas9 protein that was able to cleave both exogenous DNA (plasmid) and endogenous DNA and induce cellular DNA repair mechanisms.

Figure 30 Cloning strategy of generating a reporter system for cleavage efficiency of Cas9-expressing cells.
AmpR, ampicillin resistance gene; CAG, Chicken beta-actin promoter and cytomegalovirus enhancer element; dsRed, red fluorescent protein gene isolated from Discosoma; eGFP, enhanced green fluorescent protein gene; pA, polyadenylation signal; PGK, phosphoglycerate kinase promoter; SpnR, spectinomycine resistance gene; U6, U6 promoter.

Table 47 Tide analysis of the clones 89, 92 and 93 transfected with pX330-cCheck-TP53.

Cells	Vector	Gene editing efficiency
pKF 73 APC^{1311}		0
pKF 73 $\mathrm{APC}^{1311} / \operatorname{Cas9}$ clone 89 P13	pX330-cCheck-TP53 ETOH	31.7
pKF 73 $\mathrm{APC}^{1311 / C a s 9 ~ c l o n e ~ 92 ~ P 13 ~}$	pX330-cCheck-TP53 ETOH	42.6
pKF 73 $\mathrm{APC}^{1311} /$ Cas9 clone 93 P12	pX330-cCheck-TP53 ETOH	40.4

Figure 31 Fluorescence microscopy of the clones 89, 92 and 93 transfected with pX330-cCheck-TP53.

A vector carrying only the gRNA was generated, eradicating the competing exogenous target site of the cCheck plasmid (Figure 32) to efficiently compare the endogenous target cleavage efficacy in SpCas9 expressing cells to cells where both SpCas9 and gRNA are delivered.

Figure 32 Cloning strategy of the generation of a vector carrying only the TP53 gRNA sequence for transfection of Cas9 expressing cells.

The clone 92 and pKF 73 APC ${ }^{1311}$ cells were transfected with pX330-cCheck-TP53 and gRNA-TP53 and the wildtype cells additionally with pX330-Cas-TP53. Tide analysis (https://tide.deskgen.com/) showed that the endogenous TP53 was cut more efficiently when the cells expressed Cas9, than when pKF 73 $A P C^{1311}$ had to be transfected with both gRNA and Cas9 (Table 48). However, as the determined gene editing efficiencies are dependent on transfection efficiency, gene editing in pKF 73 APC ${ }^{1311}$ transfected
with pX330-Cas9-TP53 was here three fold better than in the experiment inTable 46. Also, as expected the cleavage of the endogenous locus was improved, when the cells from clone 92 were transfected with the gRNA-TP53, without the competing target site. Furthermore, the cutting efficiency was influenced by the purification method of the DNA used. Plasmid DNA isolated using the plasmid DNA purification NucleoBond ${ }^{\circledR}$ Xtra Midi (MACHEREY-NAGEL GmbH \& Co. KG) without any additional purification showed better cutting efficiency than those additionally purified using ethanol precipitation.

Table 48 Tide analysis of wildtype cells and cells from clone 92 transfected with vectors carrying a gRNA targeting TP53.

Cells	Vector	Gene editing efficiency [\%]	Gene editing efficiency [\%] EtOH
pKF 73 $A P C^{1311}$	pX330-Cas9-TP53	30.1	19.5
pKF 73 $A P C^{1311}$	pX330-cCheck-TP53	0	-
pKF 73 $A P C^{1311}$	gRNA-TP53	0	-
pKF 73 $A P C^{1311 / C a s 9 ~ c l o n e ~ 92 ~}$	pX330-cCheck-TP53	62.7	45.2
pKF 73 $A P C^{1311} /$ Cas9 clone 92	gRNA-TP53	73	-

3.3.2.4 Nuclear transfer

All positive clones were used in nuclear transfer. The clones 4, 5, 22, 89, 92 and 93 were frozen and pooled for the use in 20 nuclear transfers and subsequent embryo transfers of which none resulted in the birth of $A P C^{1311} /$ Cas9 piglets. However, the clone 13 generated from wildtype pKFs resulted in birth of viable Cas9 pigs.

4. Discussion

Although mice are at the fore of mammalian research including modelling diseases such as cancer, they do not always replicate the human pathology, reducing their predictive value (Mak et al, 2014). The failure of many new drugs in clinical trials can be attributed to preclinical studies that fail to predict safety and effectiveness in human patients (Justice \& Dhillon, 2016; Ledford, 2011). Non-rodent species such as pigs can provide additional information and improve the predictive value of preclinical studies (Bahr \& Wolf, 2012; Perleberg et al, 2018). Work with laboratory animals requires to "replace, reduce and refine" their use whenever possible (Article 47 of Directive 2010/63/EU; National Center for the Replacement Refinement \& Reduction of Animals in Research, https://www.nc3rs.org.uk/). It is thus important to ensure that all data gained is valuable and relevant to the disease studied. This is best achieved with well-defined animal models that replicate relevant aspects of human pathology as closely as possible. The APC ${ }^{1311}$ pigs, analysed in this work replicate hallmarks of human familial adenomatous polyposis (FAP) and colorectal cancer (CRC) including adenomatous polyps in the colorectum with loss of APC heterozygosity, β-catenin accumulation, upregulation of c-MYC, MAPK pathway activation and progression to carcinoma in situ and phenotypic variation in polyposis severity. More thorough characterisation of the model is required for use in translational biomedical research. In this work transcriptional analysis of normal mucosa and polyps from the $A P C^{1311}$ pigs, was aimed to identify elements in the genetic background such as single-nucleotide polymorphisms (SNPs), dysregulated genes, gene sets and microRNAs (miRNAs) that may contribute to susceptibility towards severe polyposis and tumour progression, respectively. This process should reveal both similarities to human molecular pathology and novel markers for early detection and drivers. A holistic approach was performed where whole mRNA and whole miRNA were sequenced using next generation sequencing technology and computational analysis pipelines to compare expression and distribution of genes, miRNAs and SNPs between high polyp and low polyp normal mucosa samples and between high grade and low grade intraepithelial neoplasia.

Therefore, the identity of genes modifying this susceptibility towards severe polyposis was investigated by comparative NGS-based expression analysis of mRNA and miRNA of normal mucosa samples between LP and HP animals. The generated data were used not only for comparative gene and miRNA expression analysis but also for gene set enrichment analysis, genome wide association studies of SNPs and allele-specific expression analysis of SNPs to detect molecular changes associated with severe polyposis of HP animals. The identification of modifier genes and the potential translation to human, may allow early screening of these genes via novel NGS methods in the future. A possible
screening method such as blood testing to identify individuals with susceptibility towards CRC could make the patients more aware of the risk and allow better preventive health care services.

To further validate the porcine $A P C^{1311}$ colorectal cancer model, comparative transcriptome analysis was performed between low and high-grade adenomas of the animals. Differentially expressed genes and miRNAs, SNPs and gene sets associated with high grade adenomas, were compared to human data. Further analysis was conducted analysing gene expression from laser microdissected low and high grade intraepithelial neoplasia, a study not yet performed in human, to identify drivers of CRC development that are masked by stromal expression patterns.

Diseases such as cancer, including CRC acquire multiple mutations and cancer promoting alterations over time. CRISPR/Cas9 technology was extended to the APC ${ }^{1311}$ pigs, allowing spatio-temporal knockout and mutation activation to model human CRC most accurately. SpCas9 (isolated from Streptococcus pyogenes) was introduced into the ROSA26 locus of porcine kidney-derived fibroblasts (pKFs) from $A P C^{1311}$ pigs to generate $A P C^{1311}$ pigs that express SpCas9 ubiquitously to enable delivery of guide RNAs to the polyps to induce knockouts of tumour suppressor genes and oncogenic mutations by in vivo electroporation or adeno-associated viral vectors.

4.1 Characterisation of the porcine model for colorectal cancer by transcriptional analyses using next generation sequencing technology

The identification of both known and unknown genes and SNPs that may contribute to polyposis severity and CRC progression in normal mucosa and polyps of the APC ${ }^{1311}$ pigs respectively was performed in a holistic blind search approach to allow both, the search for specific targets and unknowns, at the same time. MRNA sequencing was preferred over genome sequencing because mRNA sequencing can give information not only about mutations and SNPs located in coding regions but also about changes in gene expression. Targeted analysis of DNA can follow later on. Computational analysis of sequencing data can be performed using different algorithms available, but transcriptional analysis of differential gene expression depends on alignment of sequenced reads to the porcine genome and assignment to features in the shape of a gene or transcript variant. If reads cannot be assigned to a feature in the shape of a gene or transcript variant they will not be compared between the analysed groups, and thus not detected even if they are differentially expressed. Furthermore, the lack and presence of different isoform annotations of a gene, influence
computational analysis strongly and determine if a gene is significantly differentially expressed or not. This is a disadvantage of mRNA sequencing compared to genome sequencing, specifically as the porcine genome is less well annotated than the human genome. However, the data sequenced remains extremely valuable, as the data can always be used at later time points for alignment to newer better annotated genome assemblies.

4.2 Attempt to identify modifier genes on mRNA level

Different degrees of polyposis severity among familial adenomatous polyposis (FAP) patients have been found to correlate in part with the site of APC mutation (Crabtree et al, 2002). However, variation in polyposis severity in patients with the same APC mutation have also been observed in humans evidencing the existence of modifier genes(Crabtree et al, 2002; Houlston et al, 2001). This severity in polyposis is attributed to increased initiation events rather than accelerated progression (Crabtree et al, 2001). Studies to investigate susceptibility towards colorectal cancer (CRC) have been performed in humans by searching for SNPs that associate with diseased patients versus controls (Broderick et al, 2007; Tomlinson et al, 2007; Tomlinson et al, 2008; Whiffin et al, 2014). Two SNPs associated with higher CRC risk (rs16892766 at 8q23.3 and rs3802842 at 11q23.1) have also been found to associate with more severe polyposis in FAP (Ghorbanoghli et al, 2016). Studies to identify modifier genes of severe FAP have been analysed in mice by cross-breeding of different inbred strains carrying $A p c^{\text {Min }}$ alleles rather than genome wide association studies (Karim \& Huso, 2013). Modifiers such as modifier of Min 1 (Mom1), Mom5, Mom7, Mom12, Mom13 and Pla2g2a have been identified but showed no association with human FAP severity (Karim \& Huso, 2013; Talseth-Palmer, 2017). This highlighted the dependence of polyposis severity to the genetic background, thus the status of genes that do not exhibit high penetrance and the need of other model organisms such as the APC ${ }^{1311}$ pigs that may help identify modifiers that associate with human polyposis severity.

Human studies to identify modifier genes have mainly been performed using blood samples and thus only genetic analyses were possible searching for SNPs. The affected tissue, the colonic mucosa has not been sampled, likely due to safety reasons as the sampling of supposedly normal mucosa might pose a health risk for the patients. The use of the $A P C^{1311}$ pig model allows comparative mRNA or miRNA sequencing analysis of colonic normal mucosa between animals with more and less severe polyposis in FAP, that has not been conducted in humans.

4.2.1 Gene expression analysis

MRNA Sequencing and two independent subsequent gene expression analyses of 16 high polyp (HP) versus 19 low polyp (LP) normal mucosa samples from animals between 3-9 months identified the genes CYP7A1 and SATB1 highly expressed and SFRP5 lower expressed in HP animals. The gene CYP7A1 was however the only gene significantly differentially expressed after multiple component testing (adjusted p-value). Significantly higher CYP7A1 expression was confirmed using RT-qPCR. The reason for increased expression of CYP7A1 was investigated by analysing cis regulatory factors such as SNP analysis of 5742 bp 5^{\prime} of the ATG and CpG island (CGI) methylation status of two islands $3459 \mathrm{bp} 5^{\prime}$ to the ATG. 78 SNPs detected showed no significant association with either LP or HP animals. CGI methylation analysis however revealed significantly reduced methylation of CpG1 site in CGI2, which may influence the binding capacities of the transcription factor (TF) families signal transducer and activator of transcription 3 (STAT3), GLIS family zinc finger 1 (GLIS1), Ccaat/enhancer binding protein beta (CEBPB) and GA binding protein TF alpha (GABPA). This may lead to increased transcription activation in HP animals. Further by elucidating the gene structure, a skipping of exon 5 was identified. The differential expression was observed in the transcript variant with exon 5 . The frequency of skipping might contribute to the differential expression. Therefore, Sanger sequencing of intron 4 was performed but analysis was not possible. However, this region is clearly relevant for exon skipping and needs to be thoroughly analysed with a new primer setup for Sanger sequencing. In Sanger sequencing, the quality of the first $15-40 \mathrm{bp}$ and after 700-900 bp is problematic due to primer binding and lack of separation power of large fragments that differ in only 1 base. Heterozygous deletions or insertions are very difficult to analyse, and quality is reduced even earlier. The previous set up of primer walking where 700 bp fragments were sequenced from both sides with overlaps between fragments of 100 bp was not sufficient. Shorter fragments of 400-500 bp are required to elucidate intron 4 sequence.

By laser microdissection, differential expression of CYP7A1 could be located to stromal rather than crypt composing cells. However, the set of 12 samples (5 HP and 7 LP) was small and the expression of the gene very low.

Cytochrome P450 family 7 subfamily A member 1 (CYP7A1) is a monooxygenase that catalyses bile acid synthesis from cholesterol in the liver. SNPs and high hepatic CYP7A1 expression promote CRC via increased bile acid synthesis that promote CRC development (Gadaleta et al, 2017; Hagiwara et al, 2005; Wertheim et al, 2012). Increased CYP7A1 expression in colon however has not been mentioned. To determine whether CYP7A1 functions indeed as a modifier of FAP severity, it first necessary to identify the origion of the increased CYP7A1 expression in HP animals. The identified increased CYP7A1 expression could be attributed to three different situations in the $A P C^{1311}$ pigs. 1) The high CYP7A1 expression in HP could reflect ubiquitous high CYP7A1 levels (suggested by higher CYP7A1 levels in HP
crypts (Figure 12)), causing also higher hepatic CYP7A1 expression leading to increased cancerpromoting bile acids in the colon. To test this hypothesis RNA from other tissues including liver would need to be analysed for CYP7A1 expression levels between HP and LP animals. 2) The CYP7A1 expression in the colon may exhibit an unknown carcinogenic effect inducing increased polyposis in HP animals. 3) The increased CYP7A1 expression detected in the HP normal mucosa samples may be caused by an increased immune cell infiltration, including macrophages that were associated with CYP7A1 expression for cholesterol efflux (Bao et al, 2015), in response to severe polyposis. This hypothesis was inspired by the observation of increased immune infiltration in analysed polyps (Figure 16) and literature where specifically alveolar macrophages showed high CYP7A1 expression in pigs (Freeman et al, 2012). The third hypothesis, would however mean that high CYP7A1 is not a cause not a cause but a consequence of high polyposis that also affects areas of the mucosa not closely associated with polyps. To identify whether hypothesis two or three are more likely more investigations including immunohistochemistry of normal mucosa samples are essential to identify which cells of the stroma express increased CYP7A1 levels.

Further the analysis of other genes contributing to the classic synthesis pathway of carcinogenic bile acids (deoxycholic acid and lithocholic acid) such as CYP8B1, CYP27A1 and HSD3B7 (Li \& Chiang, 2014) in the colon of HP and LP animals could elucidate, whether increased CYP7A1 expression contributes to bile acids formation in the gut or whether the increased CYP7A1 expression found is independent of bile acid synthesis.

4.2.2 Gene set enrichment analysis

Gene set enrichment analysis has revealed the expression of few genes enriched in HP versus many gene sets enriched in LP samples. This is likely due to the fact that the LP group is more homogeneous than the HP group. The gene set of oestrogen response was enriched in the HP group analysed using pipeline 1 and even significantly with pipeline 2 (FDR<0.25). Therefore, the distribution of male and female animals in the HP and LP group was analysed. Contradictory to the initial hypothesis HP animals were composed to 62.5 \% of males (25% castrated; 37.5% non-castrated males) and the LP group to 26 \% males (10\% castrated; 16\% non-castrated males). Meaning the HP group contained more noncastrated males in number and in proportion than the LP group, however, the HP group also contained more castrated males. Oestrogen signalling can exhibit a tumour-promoting, via oestrogen receptor α (ER α), or a tumour-suppressing capacity via ER (Caiazza et al, 2015). ER α levels in colon were generally reported to be low and $\operatorname{ER} \beta$ the predominant oestrogen receptor, which is reduced during carcinogenesis compared to normal mucosa (Caiazza et al, 2015). However, components of the
oestrogen response gene set enriched in HP were JAK2, PDZK1 and SYBU. Activation of JAK2/STAT3 signalling exhibits oncogenic potential (Alvarez et al, 2006; Yu et al, 2014) and that it's inhibition induced apoptosis in CRC cells (Du et al, 2012). Increased JAK2 expression together with the reduced methylation of a potential STAT3 binding site in CYP7A1 in the HP animals suggests oncogenic potential through increased activation in the HP group.

4.2.3 Single-nucleotide polymorphisms

Genome-wide association studies identifying SNPs in humans have been carried out in CRC-diseased patients compared to healthy individuals (Tomlinson et al, 2007; Tomlinson et al, 2008; Whiffin et al, 2014). The comparison of SNPs between pigs and humans specifically those outside of exons and even more so outside of genes is difficult as non-coding sequences are not as conserved as those coding for proteins. Nevertheless, SNP analysis was performed on the basis of the mRNA sequencing, comparing SNPs found in transcribed regions of the porcine genome between HP and LP animals. For this analysis the sequencing data was aligned to the Sscrofa11.1 genome assembly. This was performed under the premise that the novel assembly may have fewer gaps in the genomic sequence and possible incorrect gene annotation is irrelevant for this analysis.

However, the analysis of SNPs on RNA level has to be performed with caution due to a rare phenomenon in vertebrates called RNA-editing. These nucleotide substitutions occur mainly in repetitive elements but can also occur in coding sequences (Ramaswami et al, 2012). Therefore, the analysis of SNPs on RNA level should always be confirmed on DNA level as well, to avoid false positives (Kamps et al, 2017).

4.2.4 Computational analysis

With the increasing ease and reduced costs of genome and transcriptome sequencing, it has become a frequently used method for genome wide association studies but also gene expression experiments. RNA sequencing in specific gives tremendous amount of information of the gene expression without knowledge of the sequence. The management and analysis of these data has been tackled by the invention of numerous different pipelines using different algorythms and software. However, no one gold standard or consensus of analysis has been identified. The analysis of the data obtained by mRNA sequencing in this work was performed using two different pipelines. The pipelines worked with the same porcine genome annotation Sscrofa10.2 but different analysis algorythms and software were used to process and analyse the data. Both pipelines omitted adapter clipping as it can alter the gene
expression estimates (Williams et al, 2016). The main difference between the two pipelines applied was the alignment method. Pipeline 1 utilising the STAR aligner (Dobin et al, 2013), performs alignment of the reads directly to the genome, whereas pipeline 2 uses the pseudo alignment tool kallisto (Bray et al, 2016). Here the reads are broken up into k-mers and assigned to transcripts. However, it has been found that the alignment method does not necessarily have a major impact on the differential gene expression analysis. The specificity, accuracy and true positive rate seem to be really determined by the software utilised for the identification of the differential gene expression (Costa-Silva et al, 2017). Pipeline 1 used after duplicate marking (http://broadinstitute.github.io/picard) and gene assignment (Liao et al, 2014) DESeq. 2 (Love et al, 2014). Pipeline two applied after transcript quantification sleuth software (Pimentel et al, 2017). Both software showed high specificity, accuracy and true positive rates in comparative studies, although the DESeq. 2 performed slightly better (CostaSilva et al, 2017). The application of more than one pipeline for differential gene expression analysis, as performed here, was found beneficial for the increase of specificity and true positive rate of the resulting differentially expressed genes (Costa-Silva et al, 2017).

4.3 Attempt to identify modifier genes on miRNA level

MiRNA sequencing was performed to identify other mechanisms that could cause differential protein levels between HP and LP animals that cannot be visualised using mRNA sequencing. MiRNAs target the 3^{\prime} untranslated region of mRNAs and induce mRNA degradation which reduces the number of mRNA and protein or translational repression of their target mRNA (Shirafkan et al, 2018). Here the number of proteins is reduced but the mRNA amount is unaltered. It is believed that translational repression is less common than mRNA degradation (Guo et al, 2010; Hendrickson et al, 2009). However, miRNA-mediated translational repression cannot be detected by means of mRNA sequencing and can only be discovered by miRNA sequencing.

MiRNA sequencing and differential expression analysis of 9 HP and 10 LP normal mucosa samples from animals between 3-9 months revealed higher expression of miR-215 and 194b and lower expression of miR-27a-3p and 146a-5p in HP animals. Only the increased expression of miR-215 was significant (adjusted p-value <0.05). The high expression of miR-215 and 194b was confirmed using RT-qPCR. Even though miR-215 and 194b have been associated with tumour suppressor functions, miR-215 has also been discussed to promote gastric cancer (Zang et al, 2017). Especially since no data of these early events during carcinogenesis initiation are available, it is likely that miRNAs might exhibit oncogenic and tumour suppressor functions at different time points during carcinogenesis. Additionally, in silico
target analysis using all differentially expressed miRNAs with a p-value <0.05 (13 miRNAs) revealed many cancer-associated pathways targeted. Also oestrogen signalling pathway was targeted by the differentially expressed miRNAs according to in silico analysis. This is particularly interesting as gene set enrichment analysis of the mRNA sequencing data, revealed oestrogen early response gene set enriched in HP animals.

In this sequencing project, data analysis presented two differential expression tables. One table contained all different isoforms. These isoforms are variants of mature canonical miRNAs and differ in length and sequence by 1 or 2 bp at the ends or in the middle (Guo \& Chen, 2014), which is very hard to distinguish. Specifically, in the primer-based RT-qPCR distinguishability of the detected isoforms is very difficult. Primers could bind sequences with a SNP easily, thus detecting not only one isoform but several or all. As expression of canonical miRNAs and isoforms are strongly correlated as cooperative partners (Cloonan et al, 2011), the second table listing all canonical miRNAs according to differential expression of canonical and isoforms collectively was used for all analyses. This was also important for the in silico target analysis as only stem sequences were selectable.

Further, just like mRNA sequencing, miRNA sequencing is limited by the quality of the annotated miRNA database (MiRbase). The MiRbase release 22 documented 48885 mature miRNAs in 271 species. That includes 2654 mature miRNAs in homo sapiens and only 457 mature miRNAs in pigs (http://www.mirbase.org/cgi-bin/browse.pl). This highlights that the annotation of miRNAs in pigs is only about $1 / 5$ of the human annotation, resulting in loss of differentially expressed miRNAs due to no feature assignment. But again the data acquired by sequencing can always be reanalysed using newer better annotated databases at later time points.

4.4 Analysis of tumour progression on mRNA level

Carcinogenesis, the development from normal tissue to an adenoma and even carcinoma is a multistep process that is characterised by the acquisition of certain key properties or hallmarks. Genome instability and increased proliferation are the first essential steps followed by the evasion of growth repressors and apoptosis. The pathways essential for the acquisition of these properties such as WNT, MAPK, TGFß and TP53 are well known. However, the factors that can modulate these pathways are numerous. Therefore, targeted analysis for the identification for factors, was not possible especially because there are factors that might contribute to carcinogenesis that have not yet been identified. To perform a blind search for factors driving CRC carcinogenesis high grade (HG-IEN) and low grade intraepithelial neoplasia (LG-IEN) were compared. The reduction of AHNAK in HG-IEN bulk samples and
thus a reduced TGF β signalling indicates that the evasion of growth repression has already occurred in HG-IEN compared to LG-IEN. Bulk sample analysis further revealed many genes lower expressed in HG that were associated with the immune system. This can certainly be attributed to the infiltrating immune cells that were detected in HG (Figure 16). However, as the immune related genes were lower expressed, the immune infiltration in LG must be stronger or the immune cell composition is different. One of the hallmarks of cancer is the evasion or repression of immune-mediated destruction. IL7 which was significantly reduced in HG-IEN is an activation, growth and survival factor of T-cells (Shalapour et al, 2012). Therefore, a reduction of IL-7 would suggest also reduced mature T-cells and thus a less tumour suppressing immune milieu in the HG-IEN. However, the immune system is very complex and many more immune associated genes such as IL21, CD40 and IL2ORA were found to be differentially expressed. Therefore, it is certainly evident that the immune infiltration in HG-IEN differs from that in LG-IEN. Whether the change can be associated with increased immune response or the acquisition of immune repression requires more thorough analyses such as immunohistochemistry and flow cytometry to characterise the infiltrating immune cells.

The differential expression analysis of laser microdissected LG-IEN and HG-IEN then presented a different set of differentially expressed genes specifically excluding immune related genes that were seen in the bulk samples. This analysis deducted all stromal gene expression and only the gene expression coming from adenomatous epithelium were compared between LG and HG-IEN. Among the genes higher expressed in HG-IEN were genes associated with anti-inflammatory activity (SLC3OA1), WNT regulation (SMARCD3) and p53 regulation and cell proliferation (VASH1). Furthermore, the gene PLXND1 found highly expressed in HG-IEN, has been reported as highly expressed in human tumours (Roodink et al, 2009) associated with epithelial mesenchymal transition promoting invasiveness and metastasis (Casazza et al, 2010; Tseng et al, 2011). The results taken together validate on molecular level the advanced stage of the HG-IEN compared to the LG-IEN and present novel targets in treating CRC.

The genes differentially expressed in the HG-IEN compared to LG-IEN were numerous both in bulk and in laser microdissected samples, specifically compared to the susceptibility study where normal mucosa samples of HP and LP animals were compared. The cellular physiology is much more altered at the stage of neoplasia. Therefore, differential expression can reflect on the altered growth and differentiation properties (Fearon, 2011). Furthermore, many of the genes differentially expressed may be downstream targets of oncogenes or tumour suppressor genes essential for the cellular development of neoplasia, thus increase the amount of genes differentially expressed.

4.5 Optimisation of the CRC model

Diseases such as cancer, including colorectal cancer (CRC) acquire multiple mutations and cancer promoting alterations over time. To model CRC most accurately, animal models need to be generated that allow spatio-temporal knockout and mutation activation. So far recombinase systems such as the flipase-FRT (Flp-FRT) or Cre-loxP system have been utilised for sequential activation of mutations to model cancers (Schonhuber et al, 2014). The design of different lox sites that can be recognised by Cre recombinase enables multiple independent recombinations simultaneously (Sauer, 1996). Creexpressing mice and pigs have been generated to perform tissue-specific activation of knockouts or mutations (Chen et al, 2010; Schonhuber et al, 2014). A drawback ofthis system specifically in large animals such as pigs, is however, that the generation of both the conditionally mutated animal and the particular Cre line is required, which is extremely time consuming in pigs. The CRISPR/Cas9 system is much more flexible, and requires generation of only the Cas9 pig, with which all kinds of mutations can be introduced. Further, it offers the opportunity to multiplex by the combination of the endonuclease Cas9 with multiple different gRNAs (Cong et al, 2013). By administration of the gRNAs at different time points, the CRISPR/Cas9 system also allows time specific activation of mutations and knockouts.

A Cas9 expressing mouse was generated in combination with and without the Cre-loxP system (Platt et al, 2014). Thus, Cas9 expression is Cre-dependent. The potential of the model was shown by lung tumour induction by administering gRNAs targeting the three most frequently mutated genes in lung cancer by adeno associated viral vectors (AAVs). To expand this technology also to pigs, to enable acceleration of the CRC carcinogenesis and to better model CRC dynamics, Cas9 was introduced into the genome of somatic cells from an $A P C^{1311}$ pig with the aim to generate $A P C^{1311} /$ Cas9 pigs by nuclear transfer.

When introducing any transgene into the genome, it has to be made sure that the integration does not disrupt any essential genes. This is not only important for avoiding lethality caused by disruption of essential genes but also omitting phenotypes mediated by the mere introduction of a transgene. Therefore, Cas9 was introduced by gene targeting into the porcine ROSA26 locus. The Rosa26 locus has first been identified in mice (Friedrich \& Soriano, 1991) and has quickly become the locus of choice when introducing transgenes in mice. The Rosa26 gene does not translate into protein and targeting intron 1 of this locus resulted in viable fertile animals with constitutive ubiquitous expression of the integrated transgene (Zambrowicz et al, 1997). Silencing of transgenes integrated into the Rosa26 locus has not been reported so far. Homologues, sharing the same properties, have been identified in
both human and pig (Irion et al, 2007; Kong et al, 2014; Li et al, 2014). Thus, viable, gene targeted pigs were generated by transgene introduction into the ROSA26 locus (Kong et al, 2014; Li et al, 2014). In this work Cas9 was introduced into the porcine ROSA26 locus via gene targeting using a promoter trap vector.

4.5.1 Generation and analysis of Cas9 targeted clones

Gene targeting via homologous recombination (HR) in murine embryonic stem (ES) cells has been very efficient (Capecchi, 1989). In pigs, however, no equivalent cells exist (Nowak-Imialek \& Niemann, 2012). Gene targeting in pigs has to be performed in somatic cells, where HR is less efficient. Gene targeting using homologous arms that mediate homologous recombination of the vector and the genomic ROSA26 locus was combined with the promoter trap strategy (Friedel et al, 2005).

A neomycin resistance gene (neo) with a splice acceptor (SA) was placed between the homologous arms of the promoter trap vector. As mice expressing CAG-controlled SpCas9 (isolated from Streptococcus pyogenes) showed no Cas9-associated toxicity (Platt et al, 2014), CAG- driven SpCas9 was also placed between the homologous arms and behind the SA-neo-polyA construct resulting in the GEMT-Rosa26-Neo-Cas9 vector.

Porcine kidney fibroblasts from APC ${ }^{1311}$ pigs were isolated and targeted using the linearized GEMT-Rosa26-Neo-Cas9 vector to further increase HR (Kucherlapati et al, 1984). PCR and subsequent sequencing of the PCR product of the 5^{\prime} junction and 3^{\prime} junction between endogenous locus and the cassette introduced, showed correct targeting. Southern blot and digital droplet PCR gave discordant results. Cell clones were characterised on mRNA and protein level, showing correct splicing, sufficient expression and protein translation of fully functional SpCas9 nuclease, capable to traffic into the nucleus, evidenced by TIDE analysis (https://tide.deskgen.com//). All four cell clones were used for nuclear transfer to generate SpCas9 expressing pigs. The cell clones carrying both an APC ${ }^{1311}$ mutation and SpCas9 expression have failed to generate a viable pig, while the clone 13 , that only expresses SpCas9 resulted in a viable Cas9 pig.

While the Cas9 expressing pig was being generated, a Cre-dependent SpCas9 expressing pig was generated by a Chinese group (Wang et al, 2017) and proved that the Cas9 pig is a very powerful tool to generate porcine tumour models. They induced lung tumours by generating gRNAs targeting well known tumour suppressor genes including genes that were also targeted in this work TP53, APC and PTEN.

4.5.2 Application of $A P C^{1311} /$ Cas9 pigs

The use of Cas9 pigs alone enable more accurate modelling of human diseases specifically for diseases such as cancer.

An APC ${ }^{1311} / \operatorname{Cas} 9$ pig, that can be generated by breeding the SpCas9 pig to the $A P C^{1311}$ pig, will therefore enable a more accurate modelling of CRC and accelerate the carcinogenesis by sequential introduction of mutations into polyps in vivo. Such site specific introduction of mutations or knockouts in polyps can be achieved by in vivo electroporation and injection of the gRNA DNA sequences and singlestranded oligodeoxynucleotides (ssODNs) into the polyp. Once this will have led to full recapitulation of the human CRC carcinogenesis to an invasive carcinoma, the APC ${ }^{1311}$ /Cas9 pig can be used for testing gene therapy to stop or reverse the process of carcinogenesis. This could be done by tissue specific or global application for gRNAs with ssODNs to correct CRC-causative mutations. Tissue specific and global delivery of gRNAs is more challenging than site-specific administration, but can be accomplished by the use of adeno associated viral vectors (AAVs).

Successful gene therapy in disease models is aimed at the application in humans that could allow correction of oncogenic mutations such as spontaneous but also hereditary APC mutations (Cooney et al, 2016; Steines et al, 2016). The CRISPR/Cas9 is a potential tool for gene therapy. However, the problem of off-target cleavage of the widely used Streptococcus pyogenes-isolated Cas9 (SpCas9) remains a safety risk (Cradick et al, 2013; Frock et al, 2015; Fu et al, 2013; Hsu et al, 2013; Kim et al, 2015; Pattanayak et al, 2013; Tsai et al, 2015). To reduce these off-targets the SpCas9 enzyme has been modified in their amino acid sequence rationally or randomly, resulting in novel versions of Cas9, SpCas9-HF1, eSpCas9(1.1), HypaCas9 and evoCas9 (Casini et al, 2018; Chen et al, 2017; Kleinstiver et al, 2016; Slaymaker et al, 2016). Comparison to the unmodified SpCas9 showed that off-target activity was markedly reduced. Therefore, for gene therapy one of the optimised Cas9 enzymes are more likely to be used.

However, for gene therapy use in humans using the CRISPR/Cas9 system, not only the gRNA and ssODNs would need to be delivered but also the enzyme itself. AAVs can be utilised for this purpose, however, they have a limited capacity of 4.7 kb in wildtype AAVs and up to 6 kb for AAVs with only 2 capsid subunits (Grieger \& Samulski, 2005). SpCas9 and the modified versions of about 4000 bp are quite large, together with regulatory elements, gRNA and ssODN sequences breaching AAV capacity. Recent development of intein-mediated split-Cas9 and discovery of a smaller Cas9 orthologue isolated from Campylobacter jejuni (Kim et al, 2017; Truong et al, 2015), allow better AAV-mediated delivery. Therefore, the optimisation strategy of reducing off-target activity needs to be applied to these smaller versions and tested in animal models for diseases in order to make gene therapy a possibility.

5. Final remarks and outlook

This work has generated a vast amount of data and selected results require further validation and investigation.

Using Next generation RNA sequencing genes and miRNAs differentially expressed between APC ${ }^{1311}$ pigs with severe polyposis or very few polyps were identified. These potential modifiers of polyposis severity CYP7A1 and miR-215 and 194b that were validated using PCR-based methods require further analysis to determine their functions in polyposis severity. In silico analyses have revealed connection to the oestrogen signalling in both the results of mRNA and miRNA sequencing. However, the CYP7A1 expressing cell compartment has to be identified via immunohistochemistry and its tumour promoting potential by increased bile acid production in the colon needs to be evidenced via bile acid analysis in the colon. The targets of miRNAs miR-215 and 194b need to be analysed in vitro and their contribution to polyposis promoting pathways need to be validated. The SNPs differentially distributed and expressed, also require further analysis elucidating their function on gene expression or miRNA expression and on cellular processes. Once, mechanisms are confirmed and better understood, these findings might be translatable to human CRC research, where the knowledge obtained may help screen patients for susceptibility factors and to provide susceptible patients with better preventive care.

The identification of genes and miRNAs differentially expressed between HG-IEN and LG-IEN by RNA sequencing in this work helped validate the potential of the porcine model to replicate molecular changes of human CRC and to identify novel drivers of CRC that mediate the progression from LG to HG-IEN. The data revealed that the change of immune cells in the stroma of IENs may mediate the progression. However closer immunological analyses including determination of the identity of the immune cells in LG and HG-IEN stroma by immunohistochemistry is vital for the understanding of this process. MiRNAs with higher expression in HG-IENs need to be analysed in vitro to identify their targets and their role in CRC progression. By RNA sequencing analysis of laser microdissected LG and HG-IEN, highlighted the influence of the tumour stroma and identified potential novel drivers of CRC such as PLXND1 that was masked when hole polyps were analysed. Analysis of its migration and invasionpromoting properties require validation by in vitro migration assays.

The improvement of the $A P C^{1311}$ pig by crossbreeding with the SpCas9 pig generated during the time span of this work, will allow better modelling of human CRC and FAP by sequential introduction of oncogenic mutations via administration of gRNA locally or with adeno associated viral vectors. But also it will help to better understand the disease progression and to identify which potential driver mutation are really essential for the progression to CRC.

6. List of abbreviations

\%	percent
${ }^{\circ} \mathrm{C}$	degrees celsius
$\mu \mathrm{g}$	micro gram
$\mu \mathrm{l}$	micro litre
$\mu \mathrm{m}$	micro meter
$\mu \mathrm{M}$	micro molar
AHNAK	AHNAK nucleoprotein
AKT	AKT serine/threonine kinase
APC	adenomatous polyposis coli
APCDD1	APC down-regulated 1
APS	ammonium persulphate
ASCL2	achaete-scute family bHLH transcription factor 2
bcDNA	bisulphite converted DNA
BCL2	BCL2, Apoptosis Regulator
bp	base pair
CAG	chicken beta-actin promoter and cytomegalovirus enhancer element
CDK4	cyclin dependent kinase 4
CDK6	cyclin dependent kinase 6
cDNA	complementary DNA
CEBPB	ccaat/enhancer binding protein beta
CGI	CpG island
CIMP	CGI methylator phenotype
CIN	chromosomal instability
c-MYC	myelocytomatosis proto-oncogene
CRC	colorectal cancer
Cre	Cre recombinase
CRE	cis-regulatry element
CRISPR	clustered regularly interspaced short palindromic repeat
crRNA	CRISPR RNA
CTNNB1	β-catenin
CYP7A1	cytochrome P450 family 7 subfamily A member 1
DCC	deleted in colorectal carcinoma
ddNTP	dideoxyribonucleotide triphosphate
ddPCR	digital droplet PCR
DKK1	dickkopf WNT signaling pathway inhibitor
DMEM	dulbecco's modified eagle's medium
DMSO	dimethyl sulphoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
D-PBS	dulbecco's phosphate-buffered saline
dUTP	deoxyuridine triphosphate
DVL	dishevelled

ECM	extracellular matrix
EDTA	ethylene diamine tetracetic acid
EGF	epithelial growth factor
EGFR	epithelial growth factor receptor
EMT	extra cellular matrix
EtOH	ethanol
EZH2	enhancer of zeste 2 polycomb repressive complex 2 subunit
FAP	familial adenomatous polyposis
FCS	fetal calf serum
FIT	faecal immunochemical test
FLP	flipase
FOBT	faecal occult blood test
FZD	frizzled
g	gram
g	gravitational force
G418	geneticin
GABPA	GA binding protein transcription factor alpha
GAPDH	glyceraldehyde-3-phosphate dehydrogenase
gDNA	genomic DNA
GFP	green fluorescent protein
GLIS1	GLIS family zinc finger 1
gRNA	guide RNA
GSK3 β	glycogen synthase kinase 3 beta
h	hour
HR	homologous recombination
HRP	horse radish peroxidase
IL-7	interleukin 7
kb	kilo base
kDa	kilo Dalton
KRAS	Kirsten rat sarcoma viral oncogene homolog proto-oncogene
I	litre
LEF	lymphoid enhancer binding factor
LGR5	Leucine Rich Repeat Containing G Protein-Coupled Receptor 5
LSL	loxP-stop-loxP
MAPK	mitogen-activated protein kinase
MDM2	MDM2 proto-oncogene
MEK	mitogen-activated protein kinase kinase
min	minute
Min	multiple intestinal neoplasia
miRNA	microRNA
ml	millilitre
mM	millimolar
MMP	matrix metallo proteinase
MMR	mismatch repair
mRNA	messenger RNA

MSI	microsatellite instable
MSS	microsatellite stable
mTOR	mechanistic target of rapamycin kinase
neo	neomycin
ng	nanogram
NGS	next generation sequencing
NRAS	neuroblastoma ras oncogene
NT	nuclear transfer
P14	cyclin dependent kinase inhibitor 2A
P21	cyclin dependent kinase inhibitor 1A
pADMSCs	porcine adipose derived mesenchymal stem cells
PAM	protospacer adjacent motif
PCR	polymerase chain reaction
PDCD4	programmed cell death 4
PGK	phosphoglycerate kinase
PI3K	phosphoinositide 3-kinase
pKFs	porcine kidney fibroblast
PLXND1	plexin D1
pM	picomolar
PTEN	phosphatase and tensin homolog
qPCR	quantitative PCR
RECK	reversion inducing cysteine rich protein with kazal motifs
RISC	RNA-induced silencing complex
RNA	ribonucleic acid
RT-qPCR	quantitative reverse transcription PCR
RUNX3	runt related transcription factor 3
SATB1	SATB homeobox 1
SCNT	somatic cell nuclear transfer
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
sec	second
SFRP	secreted frizzled related protein
SIRT1	sirtuin 1
SNP	single-nucleotide polymorphism
ssODN	single-stranded oligodeoxynucleotide
STAT3	signal transducer and activator of transcription 3
TALEN	transcription activator-like effector nuclease
TCF	T-cell factor
TF	transcription factor
TGF β	transforming growth factor beta
TGF β RI	transforming growth factor beta receptor 1
TGF β RII	transforming growth factor beta receptor 2
TIMP3	TIMP metallopeptidase inhibitor 3
TP53	tumour protein p53
tracrRNA	transactivating crRNA

TSP-1	thrombospondin 1
uPAR	plasminogen activator, urokinase receptor
ZEB1/2	zinc finger E-box binding homeobox 1/2
ZFN	zinc finger nuclease

7. List of figures

Abstract

Figure 1 Display of the classic adenoma-carcinoma sequence incorporating mutations, aberrant methylation and miRNA dysregulation in the WNT, MAPK, PI3K, TGF6 and p53 pathway observed in CRC (Adapted from (Fearon, 2011; Shirafkan et al, 2018). Red crosses indicate loss of protein by loss of function mutations or CIN mediated loss of alleles. Red octamers with me mark reduced protein level caused by methylation-mediated gene silencing. Blue arrows indicate oncogenic mutations causing increased protein function or increased expression of miRNAs. Red arrows symbolise reduced miRNA expression 7

Figure 2 A display of the inactive, active and WNT independent WNT pathway (Adapted from (Pennisi, 1998). APC, adenomatous polyposis coli; CTNNB1, b-catenin; DVL, dishevelled; GSK3 b, glycogen synthase kinase 36 10
Figure 3 A collection of the different methods applicable for the generation of genetically modified pigs (adapted from (Perleberg et al, 2018). 16
Figure 4 The CRISPR/Cas9 system and its potential utilised for genome editing (adapted from (Perleberg et al, 2018). DSB, double strand break; dsDNA, double-stranded DNA; gRNA, guide RNA; PAM, protospacer adjacent motif; ssODN, single-stranded oligodeoxynucleotide. 17
Figure 5 Differential expression validation of SFRP5, SATB1 and CYP7A1 using RT-qPCR with the primers SFRP5_Ex2_F1, SFRP5_Ex3_R1, SATB1_Ex6_F3, SATB1_Ex7_R3, Cyp7a1_Ex5_F1 and Cyp7a1_Ex6_R1-2 66
Figure 6 Display of the allele-specific SNPs expressed differentially, plotted by p-value and chromosome. 70
Figure 7 Allele-specific expression of the SNP located in OAS1 70
Figure 8 Ensembl genomic alignment of porcine CYP7A1 with human CYP7A1 (genome assemblies Sscrofa11.1 and GRCh38.p12) and depiction of CYP7A1 structure in colon mucosa of APC ${ }^{1311}$ pigs. 72
Figure 9 Gel photographs of the 5' RACE and the RT-PCR from exon 4-9. 73
Figure 10 CGI methylation analysis of CGI1 and CGI2. 75
Figure 11 Display of the four transcription factors (TFs) with their binding sequence. 76
Figure 12 Differential expression analysis of CYP7A1 in crypts and stroma using RT-qPCR. 77
Figure 13 Differential expression analysis of miR-215, 194b, 27a-3p and 146a-5p in the sequenced samples using RT-qPCR. 80
Figure 14 Differential expression analysis of miR-215 and 194b in the sequenced and additional samples (A, B) and in the additional samples alone (C, D). 81
Figure 15 A) cluster analysis of the expression of the top 52 differentially expressed genes between HG-IEN and LG-IEN. B) cluster analysis of the expression of the top 20 differentially expressed genes between laser microdissected HG-IEN and LG-IEN crypts. 86
Figure 16 Immunohistochemical staining of HG-IEN. 87
Figure 17 Gene set enrichment analysis of the pathways up or downregulated in porcine whole and microdissected polyps compared to human T1 microsatellite stable polyps. 89
Figure 18 Allele-specific expression of APC, analysed using raw sequencing data 89
Figure 19 Allele-specific expression analysis of SLA2_1.0, MMP9, LMAN2 and CEACAM7 using pyrosequencing 90
Figure 20 RT-qPCR validation of the differentially expressed miRNAs selected. 91
Figure 21 Cloning strategy for the targeting vector GEMT-Rosa26-Neo-Cas9. 96
Figure 22 Cloning strategy for targeting vector GEMT-Rosa26-Neo-Cas9-mTmG 96
Figure 23 Targeting of the Rosa26 locus with the GEMT-Rosa26-Neo-Cas9 targeting vector 97
Figure 24 Gel electrophoresis of the 5' screening PCR of Cas9-targeted clones. 98
Figure 25 Gel picture of the 3'LR PCR of clones 89, 92 and 93. 98
Figure 26 Southern Blot of the clones 89, 92, 93 and 13. 99
Figure 27 Gel electrophoresis of RT PCR of the clones 89, 92 and 93. 100
Figure 28 Cas9 expression analysis of the clones 89, 92 and 93 using RT-qPCR results. 100
Figure 29 Western blot analysis of the clones 89, 92 and 93 visualising Cas9 and GAPDH 101
Figure 30 Cloning strategy of generating a reporter system for cleavage efficiency of Cas9-expressing cells. 102
Figure 31 Fluorescence microscopy of the clones 89, 92 and 93 transfected with pX330-cCheck-TP53. 103
Figure 32 Cloning strategy of the generation of a vector carrying only the TP53 gRNA sequence for transfection of Cas9 expressing cells. 103

8. List of tables

Table 1 An overview of genetically modified porcine models of human cancers, the most promising and clinically relevant are marked with * (Perleberg et al, 2018). AAV, adeno-associated viral vector; MMTV, mouse mammary tumour virus; TALENs, transcription activator-like effector nucleases. 18
Table 2 laboratory equipment 21
Table 3 Consumables 23
Table 4 Chemicals 24
Table 5 Buffers and solutions 25
Table 6 Buffers and solutions for Southern Blot 26
Table 7 Buffers and solutions for Western Blot 26
Table 8 Bacterial media 27
Table 9 Solutions for tissue culture. 27
Table 10 Media compositions 27
Table 11 Kits. 28
Table 12 Enzymes 29
Table 13 Primer list 29
Table 15 CRISPR oligos 32
Table 16 Multiple cloning site oligos 32
Table 17 Plasmid list 33
Table 18 List of primary antibodies 33
Table 19 List of secondary antibodies * when two primary antibodies were used simultaneous 34
Table 20 Electro competent cells 34
Table 21 List of cultured mammalian cells 34
Table 22 List of individual pigs analysed 34
Table 23 Software 35
Table 24 RT-qPCR reaction set up using Fast SYBR Green Master Mix 44
Table 25 MiRNA RT-qPCR reaction set up using miScript SYBR Green PCR Kit 45
Table 26 Fluorescence threshold values for Ct determination 45
Table 28 Calculations for the molar adjustment of library pools for Illumina Sequencing of mRNA. 48
Table 29 Incubation conditions with high stringency buffer, dependent on target homology and GC content of the probe 50
Table 30 Nucleofection conditions for different cell types 53
Table 31 Concentration ranges for antibiotics when performing a killing curve experiment 54
Table 32 optimal antibiotic concentrations for selection of different cell isolations 54
Table 33 Preparation and composition of 0.75 mm SDS-polyacrylamide gels 56
Table 34 Animals sequenced for analysis of modifier genes on mRNA level 62
Table 35 Differential expression results table of pipeline 1 64
Table 36 Differential expression results table of pipeline 2 65
Table 37 Gene sets enriched in HP animals. 67
Table 38 Gene sets enriched in LP animals 68
Table 39 The top 30 SNPs detected. 69
Table 40 Animal samples sequenced for the analysis of modifier genes on miRNA level 78
Table 41 Top 20 differentially expressed miRNAs 79
Table 42 NormFinder analysis. 80
Table 43 In silico miRNA target analysis of differentially expressed miRNAs between HP and LP animals. 82
Table 44 RT-qPCR validation results of genes differentially expressed between whole HG and LG-IEN. 87
Table 45 RT-qPCR validation results of genes differentially expressed between laser microdissected HG and LG-IEN 88
Table 46 Selected differentially expressed miRNAs between LG and HG-IEN and HG-IEN and normal mucosa 91
Table 47 In silico miRNA target analysis of differentially expressed miRNAs between HG and LG-IEN. 92
Table 48 Tide analysis results of wildtype cells transfected with Cas9 and gRNA targeting TP53, PTENAPC and DCC.101
Table 49 Tide analysis of the clones 89, 92 and 93 transfected with pX330-cCheck-TP53. 102
Table 50 Tide analysis of wildtype cells and cells from clone 92 transfected with vectors carrying a gRNA targeting TP53 104

9. Bibliography

Akao, Y., Nakagawa, Y. \& Naoe, T. (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 29(5), 903-6.
Akao, Y., Noguchi, S., lio, A., Kojima, K., Takagi, T. \& Naoe, T. (2011) Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett, 300(2), 197-204.
Akino, K., Toyota, M., Suzuki, H., Mita, H., Sasaki, Y., Ohe-Toyota, M., Issa, J. P., Hinoda, Y., Imai, K. \& Tokino, T. (2005) The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology, 129(1), 156-69.
Al-Sohaily, S., Henderson, C., Selinger, C., Pangon, L., Segelov, E., Kohonen-Corish, M. R. \& Warusavitarne, J. (2014) Loss of special AT-rich sequence-binding protein 1 (SATB1) predicts poor survival in patients with colorectal cancer. Histopathology, 65(2), 155-63.
Alberici, P. \& Fodde, R. (2006) The role of the APC tumor suppressor in chromosomal instability. Genome Dyn, 1, 149-70.
Albuquerque, C., Breukel, C., van der Luijt, R., Fidalgo, P., Lage, P., Slors, F. J., Leitao, C. N., Fodde, R. \& Smits, R. (2002) The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet, 11(13), 1549-60.
Alvarez, J. V., Greulich, H., Sellers, W. R., Meyerson, M. \& Frank, D. A. (2006) Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancerassociated mutations of the epidermal growth factor receptor. Cancer Res, 66(6), 3162-8.
Andersen, C. L., Jensen, J. L. \& Orntoft, T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res, 64(15), 5245-50.
Anderson, S. (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res, 9(13), 3015-27.
Anwar, S. L., Wulaningsih, W. \& Lehmann, U. (2017) Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci, 18(5).
Article 47 of Directive 2010/63/EU (http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32010L0063\&from=EN), retrieved 02.09.2018
Baba, Y., Nosho, K., Shima, K., Freed, E., Irahara, N., Philips, J., Meyerhardt, J. A., Hornick, J. L., Shivdasani, R. A., Fuchs, C. S. \& Ogino, S. (2009) Relationship of CDX2 loss with molecular features and prognosis in colorectal cancer. Clin Cancer Res, 15(14), 4665-73.
Bahr, A. \& Wolf, E. (2012) Domestic animal models for biomedical research. Reprod Domest Anim, 47 Suppl 4, 59-71.
Bandres, E., Agirre, X., Bitarte, N., Ramirez, N., Zarate, R., Roman-Gomez, J., Prosper, F. \& GarciaFoncillas, J. (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer, 125(11), 2737-43.
Bandres, E., Cubedo, E., Agirre, X., Malumbres, R., Zarate, R., Ramirez, N., Abajo, A., Navarro, A., Moreno, I., Monzo, M. \& Garcia-Foncillas, J. (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer, 5, 29.
Bannister, A. J. \& Kouzarides, T. (2011) Regulation of chromatin by histone modifications. Cell Res, 21(3), 381-95.
Bao, L. D., Li, C. Q., Peng, R., Ren, X. H., Ma, R. L., Wang, Y. \& Lv, H. J. (2015) Correlation between the decrease of cholesterol efflux from macrophages in patients with type II diabetes mellitus and downregulated CYP7A1 expression. Genet Mol Res, 14(3), 8716-24.

Barber, T. D., McManus, K., Yuen, K. W., Reis, M., Parmigiani, G., Shen, D., Barrett, I., Nouhi, Y., Spencer, F., Markowitz, S., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Lengauer, C. \& Hieter, P. (2008) Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A, 105(9), 3443-8.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. \& Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-12.
Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., GrosschedI, R. \& Birchmeier, W. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638-42.
Beroud, C. \& Soussi, T. (1996) APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res, 24(1), 121-4.
Bettington, M., Walker, N., Clouston, A., Brown, I., Leggett, B. \& Whitehall, V. (2013) The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology, 62(3), 367-86.
Black, J. C., Van Rechem, C. \& Whetstine, J. R. (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell, 48(4), 491-507.
Blanc, R. S. \& Richard, S. (2017) Arginine Methylation: The Coming of Age. Mol Cell, 65(1), 8-24.
Bogdanove, A. J. \& Voytas, D. F. (2011) TAL effectors: customizable proteins for DNA targeting. Science, 333(6051), 1843-6.
Boon, E. M., van der Neut, R., van de Wetering, M., Clevers, H. \& Pals, S. T. (2002) Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res, 62(18), 5126-8.
Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., Orntoft, T. F., Andersen, C. L. \& Dobbelstein, M. (2008) p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res, 68(24), 10094-104.
Bray, N. L., Pimentel, H., Melsted, P. \& Pachter, L. (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol, 34(5), 525-7.
Brenner, H. \& Tao, S. (2013) Superior diagnostic performance of faecal immunochemical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy. Eur J Cancer, 49(14), 3049-54.
Brinster, R. L., Braun, R. E., Lo, D., Avarbock, M. R., Oram, F. \& Palmiter, R. D. (1989) Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci U S A, 86(18), 7087-91.
Brocato, J. \& Costa, M. (2015) SATB1 and 2 in colorectal cancer. Carcinogenesis, 36(2), 186-91.
Broderick, P., Carvajal-Carmona, L., Pittman, A. M., Webb, E., Howarth, K., Rowan, A., Lubbe, S., Spain, S., Sullivan, K., Fielding, S., Jaeger, E., Vijayakrishnan, J., Kemp, Z., Gorman, M., Chandler, I., Papaemmanuil, E., Penegar, S., Wood, W., Sellick, G., Qureshi, M., Teixeira, A., Domingo, E., Barclay, E., Martin, L., Sieber, O., Consortium, C., Kerr, D., Gray, R., Peto, J., Cazier, J. B., Tomlinson, I. \& Houlston, R. S. (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet, 39(11), 1315-7.
Caiazza, F., Ryan, E. J., Doherty, G., Winter, D. C. \& Sheahan, K. (2015) Estrogen receptors and their implications in colorectal carcinogenesis. Front Oncol, 5, 19.
Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M. \& Croce, C. M. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101(9), 2999-3004.
Callesen, H., Liu, Y., Pedersen, H. S., Li, R. \& Schmidt, M. (2014) Increasing efficiency in production of cloned piglets. Cell Reprogram, 16(6), 407-10.

Canard, B. \& Sarfati, R. S. (1994) DNA polymerase fluorescent substrates with reversible 3'-tags. Gene, 148(1), 1-6.
Cancer Genome Atlas, N. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330-7.
Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science, 244(4910), 1288-92.

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B. \& Fahrenkrug, S. C. (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A, 109(43), 17382-7.
Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M. \& Werner, T. (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 21(13), 2933-42.
Casazza, A., Finisguerra, V., Capparuccia, L., Camperi, A., Swiercz, J. M., Rizzolio, S., Rolny, C., Christensen, C., Bertotti, A., Sarotto, I., Risio, M., Trusolino, L., Weitz, J., Schneider, M., Mazzone, M., Comoglio, P. M. \& Tamagnone, L. (2010) Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest, 120(8), 2684-98.
Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F., Prandi, D., Romanel, A., Demichelis, F., Inga, A. \& Cereseto, A. (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol, 36(3), 265-271.
Cassinotti, E., Boni, L., Segato, S., Rausei, S., Marzorati, A., Rovera, F., Dionigi, G., David, G., Mangano, A., Sambucci, D. \& Dionigi, R. (2013) Free circulating DNA as a biomarker of colorectal cancer. Int J Surg, 11 Suppl 1, S54-7.
Cekaite, L., Eide, P. W., Lind, G. E., Skotheim, R. I. \& Lothe, R. A. (2016) MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget, 7(6), 6476-505.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M. \& Lee, J. J. (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4, 7.

Chang, K. H., Mestdagh, P., Vandesompele, J., Kerin, M. J. \& Miller, N. (2010) MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer, 10, 173.
Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., Welch, M. M., Sousa, A. A., Harrington, L. B., Sternberg, S. H., Joung, J. K., Yildiz, A. \& Doudna, J. A. (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 550(7676), 407-410.
Chen, L., Li, L., Pang, D., Li, Z., Wang, T., Zhang, M., Song, N., Yan, S., Lai, L. X. \& Ouyang, H. (2010) Construction of transgenic swine with induced expression of Cre recombinase. Animal, 4(5), 767-71.
Chen, W. Y., Zhao, X. J., Yu, Z. F., Hu, F. L., Liu, Y. P., Cui, B. B., Dong, X. S. \& Zhao, Y. S. (2015) The potential of plasma miRNAs for diagnosis and risk estimation of colorectal cancer. Int J Clin Exp Pathol, 8(6), 7092-101.
Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., Cai, X., Wang, K., Wang, G., Ba, Y., Zhu, L., Wang, J., Yang, R., Zhang, Y., Ren, Z., Zen, K., Zhang, J. \& Zhang, C. Y. (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28(10), 1385-92.
Chiang, Y., Song, Y., Wang, Z., Liu, Z., Gao, P., Liang, J., Zhu, J., Xing, C. \& Xu, H. (2012) microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. Exp Ther Med, 3(3), 560-566.
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. \& Kim, J. S. (2013) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res.
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. \& Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1), 132-41.

Chu, V. T., Weber, T., Graf, R., Sommermann, T., Petsch, K., Sack, U., Volchkov, P., Rajewsky, K. \& Kuhn, R. (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol, 16, 4.

Clark, K. J., Carlson, D. F., Foster, L. K., Kong, B. W., Foster, D. N. \& Fahrenkrug, S. C. (2007) Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol, 7, 42.
Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., Heater, S., Barbacioru, C., Steptoe, A. L., Martin, H. C., Nourbakhsh, E., Krishnan, K., Gardiner, B., Wang, X., Nones, K., Steen, J. A., Matigian, N. A., Wood, D. L., Kassahn, K. S., Waddell, N., Shepherd, J., Lee, C., Ichikawa, J., McKernan, K., Bramlett, K., Kuersten, S. \& Grimmond, S. M. (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol, 12(12), R126.
Cock, P. J., Chilton, J. M., Gruning, B., Johnson, J. E. \& Soranzo, N. (2015) NCBI BLAST+ integrated into Galaxy. Gigascience, 4, 39.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. \& Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-23.

Cooney, A. L., Abou Alaiwa, M. H., Shah, V. S., Bouzek, D. C., Stroik, M. R., Powers, L. S., Gansemer, N. D., Meyerholz, D. K., Welsh, M. J., Stoltz, D. A., Sinn, P. L. \& McCray, P. B., Jr. (2016) Lentiviralmediated phenotypic correction of cystic fibrosis pigs. JCI Insight, 1(14).
Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., Le Coz, M., Devarajan, K., Wessels, A., Soprano, D., Abramowitz, L. K., Bartolomei, M. S., Rambow, F., Bassi, M. R., Bruno, T., Fanciulli, M., Renner, C., Klein-Szanto, A. J., Matsumoto, Y., Kobi, D., Davidson, I., Alberti, C., Larue, L. \& Bellacosa, A. (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell, 146(1), 67-79.
Costa-Silva, J., Domingues, D. \& Lopes, F. M. (2017) RNA-Seq differential expression analysis: An extended review and a software tool. PLoS One, 12(12), e0190152.

Crabtree, M. D., Tomlinson, I. P., Hodgson, S. V., Neale, K., Phillips, R. K. \& Houlston, R. S. (2002) Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes. Gut, 51(3), 420-3.
Crabtree, M. D., Tomlinson, I. P., Talbot, I. C. \& Phillips, R. K. (2001) Variability in the severity of colonic disease in familial adenomatous polyposis results from differences in tumour initiation rather than progression and depends relatively little on patient age. Gut, 49(4), 540-3.
Cradick, T. J., Fine, E. J., Antico, C. J. \& Bao, G. (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res, 41(20), 9584-92.
Criscione, S. W., Zhang, Y., Thompson, W., Sedivy, J. M. \& Neretti, N. (2014) Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics, 15, 583.
Croner, R. S., Brueckl, W. M., Reingruber, B., Hohenberger, W. \& Guenther, K. (2005) Age and manifestation related symptoms in familial adenomatous polyposis. BMC Cancer, 5, 24.
Dai, Y., Vaught, T. D., Boone, J., Chen, S. H., Phelps, C. J., Ball, S., Monahan, J. A., Jobst, P. M., McCreath, K. J., Lamborn, A. E., Cowell-Lucero, J. L., Wells, K. D., Colman, A., Polejaeva, I. A. \& Ayares, D. L. (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol, 20(3), 251-5.
Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J. K. \& Liloglou, T. (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer, 124(1), 81-7.
Dawson, M. A. \& Kouzarides, T. (2012) Cancer epigenetics: from mechanism to therapy. Cell, 150(1), 12-27.
de la Chapelle, A. \& Hampel, H. (2010) Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol, 28(20), 3380-7.
de Sousa, E. M. F., Colak, S., Buikhuisen, J., Koster, J., Cameron, K., de Jong, J. H., Tuynman, J. B., Prasetyanti, P. R., Fessler, E., van den Bergh, S. P., Rodermond, H., Dekker, E., van der Loos, C. M., Pals, S. T., van de Vijver, M. J., Versteeg, R., Richel, D. J., Vermeulen, L. \& Medema, J. P. (2011) Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell, 9(5), 476-85.
Deaton, A. M. \& Bird, A. (2011) CpG islands and the regulation of transcription. Genes Dev, 25(10), 1010-22.
Debinski, H. S., Love, S., Spigelman, A. D. \& Phillips, R. K. (1996) Colorectal polyp counts and cancer risk in familial adenomatous polyposis. Gastroenterology, 110(4), 1028-30.
Deng, G., Chen, A., Hong, J., Chae, H. S. \& Kim, Y. S. (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res, 59(9), 202933.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D. \& Daly, M. J. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 43(5), 491-8.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. \& Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21.
Du, W., Hong, J., Wang, Y. C., Zhang, Y. J., Wang, P., Su, W. Y., Lin, Y. W., Lu, R., Zou, W. P., Xiong, H. \& Fang, J. Y. (2012) Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway. J Cell Mol Med, 16(8), 1878-88.
Dunlop, M. G., Dobbins, S. E., Farrington, S. M., Jones, A. M., Palles, C., Whiffin, N., Tenesa, A., Spain, S., Broderick, P., Ooi, L. Y., Domingo, E., Smillie, C., Henrion, M., Frampton, M., Martin, L., Grimes, G., Gorman, M., Semple, C., Ma, Y. P., Barclay, E., Prendergast, J., Cazier, J. B., Olver, B., Penegar, S., Lubbe, S., Chander, I., Carvajal-Carmona, L. G., Ballereau, S., Lloyd, A., Vijayakrishnan, J., Zgaga, L., Rudan, I., Theodoratou, E., Colorectal Tumour Gene Identification, C., Starr, J. M., Deary, I., Kirac, I., Kovacevic, D., Aaltonen, L. A., Renkonen-Sinisalo, L., Mecklin, J. P., Matsuda, K., Nakamura, Y., Okada, Y., Gallinger, S., Duggan, D. J., Conti, D., Newcomb, P., Hopper, J., Jenkins, M. A., Schumacher, F., Casey, G., Easton, D., Shah, M., Pharoah, P., Lindblom, A., Liu, T., Swedish Low-Risk Colorectal Cancer Study, G., Smith, C. G., West, H., Cheadle, J. P., Group, C. C., Midgley, R., Kerr, D. J., Campbell, H., Tomlinson, I. P. \& Houlston, R. S. (2012) Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet, 44(7), 770-6.
Duval, A. \& Hamelin, R. (2002) Mutations at Coding Repeat Sequences in Mismatch Repair-deficient Human Cancers. Toward a New Concept of Target Genes for Instability, 62(9), 2447-2454.
Dziki, L., Pula, A., Stawiski, K., Mudza, B., Wlodarczyk, M. \& Dziki, A. (2015) Patients' Awareness Of The Prevention And Treatment Of Colorectal Cancer. Pol Przegl Chir, 87(9), 459-63.
Earle, J. S., Luthra, R., Romans, A., Abraham, R., Ensor, J., Yao, H. \& Hamilton, S. R. (2010) Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn, 12(4), 433-40.
Easow, G., Teleman, A. A. \& Cohen, S. M. (2007) Isolation of microRNA targets by miRNP immunopurification. RNA, 13(8), 1198-204.
Edwards, A., Voss, H., Rice, P., Civitello, A., Stegemann, J., Schwager, C., Zimmermann, J., Erfle, H., Caskey, C. T. \& Ansorge, W. (1990) Automated DNA sequencing of the human HPRT locus. Genomics, 6(4), 593-608.
Estecio, M. R., Gharibyan, V., Shen, L., Ibrahim, A. E., Doshi, K., He, R., Jelinek, J., Yang, A. S., Yan, P. S., Huang, T. H., Tajara, E. H. \& Issa, J. P. (2007) LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One, 2(5), e399.

Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B. \& Herman, J. G. (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res, 59(4), 793-7.
Esteller, M., Sparks, A., Toyota, M., Sanchez-Cespedes, M., Capella, G., Peinado, M. A., Gonzalez, S., Tarafa, G., Sidransky, D., Meltzer, S. J., Baylin, S. B. \& Herman, J. G. (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res, 60(16), 4366-71.
Evans, M. J. \& Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154-6.
Ewing, B. \& Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res, 8(3), 186-94.
Ewing, B., Hillier, L., Wendl, M. C. \& Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res, 8(3), 175-85.
Fabian, M. R., Sonenberg, N. \& Filipowicz, W. (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem, 79, 351-79.
Fagotto, F., Jho, E., Zeng, L., Kurth, T., Joos, T., Kaufmann, C. \& Costantini, F. (1999) Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J Cell Biol, 145(4), 741-56.

Fan, D., Lin, X., Zhang, F., Zhong, W., Hu, J., Chen, Y., Cai, Z., Zou, Y., He, X., Chen, X., Lan, P. \& Wu, X. (2018) MicroRNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless-type MMTV integration site family member 5A. Cancer Sci, 109(2), 354362.

Fearnhead, N. S., Britton, M. P. \& Bodmer, W. F. (2001) The ABC of APC. Hum Mol Genet, 10(7), 72133.

Fearon, E. R. (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol, 6, 479-507.
Fearon, E. R. \& Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-67.
Feinberg, A. P. \& Vogelstein, B. (1983a) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89-92.
Feinberg, A. P. \& Vogelstein, B. (1983b) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun, 111(1), 47-54.
Feng, B., Dong, T. T., Wang, L. L., Zhou, H. M., Zhao, H. C., Dong, F. \& Zheng, M. H. (2012) Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One, 7(8), e43452.
Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C. \& Parkin, D. M. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127(12), 2893-917.
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. \& Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5), E359-86.
Fernandes, M. S., Carneiro, F., Oliveira, C. \& Seruca, R. (2013) Colorectal cancer and RASSF family--a special emphasis on RASSF1A. Int J Cancer, 132(2), 251-8.
Fernandez-Rozadilla, C., Cazier, J. B., Tomlinson, I., Brea-Fernandez, A., Lamas, M. J., Baiget, M., Lopez-Fernandez, L. A., Clofent, J., Bujanda, L., Gonzalez, D., de Castro, L., Consortium, E., Hemminki, K., Bessa, X., Andreu, M., Jover, R., Xicola, R., Llor, X., Moreno, V., Castells, A., Castellvi-Bel, S., Carracedo, A. \& Ruiz-Ponte, C. (2014) A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum Genet, 133(5), 525-34.
Flisikowska, T., Merkl, C., Landmann, M., Eser, S., Rezaei, N., Cui, X., Kurome, M., Zakhartchenko, V., Kessler, B., Wieland, H., Rottmann, O., Schmid, R. M., Schneider, G., Kind, A., Wolf, E., Saur, D. \&

Schnieke, A. (2012) A porcine model of familial adenomatous polyposis. Gastroenterology, 143(5), 1173-5 e1-7.

Flisikowska, T., Stachowiak, M., Xu, H., Wagner, A., Hernandez-Caceres, A., Wurmser, C., Perleberg, C., Pausch, H., Perkowska, A., Fischer, K., Frishman, D., Fries, R., Switonski, M., Kind, A., Saur, D., Schnieke, A. \& Flisikowski, K. (2017) Porcine familial adenomatous polyposis model enables systematic analysis of early events in adenoma progression. Sci Rep, 7(1), 6613.
Fodde, R. \& Smits, R. (2001) Disease model: familial adenomatous polyposis. Trends Mol Med, 7(8), 369-73.

Fodde, R., Smits, R. \& Clevers, H. (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer, 1(1), 55-67.
Font, J. \& Mackay, J. P. (2010) Beyond DNA: zinc finger domains as RNA-binding modules. Methods Mol Biol, 649, 479-91.

Freeman, T. C., Ivens, A., Baillie, J. K., Beraldi, D., Barnett, M. W., Dorward, D., Downing, A., Fairbairn, L., Kapetanovic, R., Raza, S., Tomoiu, A., Alberio, R., Wu, C., Su, A. I., Summers, K. M., Tuggle, C. K., Archibald, A. L. \& Hume, D. A. (2012) A gene expression atlas of the domestic pig. BMC Biol, 10, 90.
Friedel, R. H., Plump, A., Lu, X., Spilker, K., Jolicoeur, C., Wong, K., Venkatesh, T. R., Yaron, A., Hynes, M., Chen, B., Okada, A., McConnell, S. K., Rayburn, H. \& Tessier-Lavigne, M. (2005) Gene targeting using a promoterless gene trap vector ("targeted trapping") is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci U S A, 102(37), 13188-93.
Friedrich, G. \& Soriano, P. (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev, 5(9), 1513-23.
Frock, R. L., Hu, J., Meyers, R. M., Ho, Y. J., Kii, E. \& Alt, F. W. (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol, 33(2), 179-86.
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. \& Sander, J. D. (2013) Highfrequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol.
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. \& Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3), 279-84.
Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C. C., Wang, J., Friedman, G., Holmes, M. C., Gregory, P. D., Glimm, H., Schmidt, M., Naldini, L. \& von Kalle, C. (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol, 29(9), 816-23.
Gadaleta, R. M., Garcia-Irigoyen, O. \& Moschetta, A. (2017) Bile acids and colon cancer: Is FXR the solution of the conundrum? Mol Aspects Med, 56, 66-74.
Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C. W. \& Ehrlich, M. (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res, 11(19), 688394.

Gardner, R. C., Howarth, A. J., Hahn, P., Brown-Luedi, M., Shepherd, R. J. \& Messing, J. (1981) The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res, 9(12), 2871-88.
Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A. H. \& Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau, K. W., Greninger, P., Thompson, I. R., Luo, X., Soares, J., Liu, Q., Iorio, F., Surdez, D., Chen, L., Milano, R. J., Bignell, G. R., Tam, A. T., Davies, H., Stevenson, J. A., Barthorpe, S., Lutz, S. R., Kogera, F., Lawrence, K., McLarenDouglas, A., Mitropoulos, X., Mironenko, T., Thi, H., Richardson, L., Zhou, W., Jewitt, F., Zhang, T., O'Brien, P., Boisvert, J. L., Price, S., Hur, W., Yang, W., Deng, X., Butler, A., Choi, H. G., Chang, J. W., Baselga, J., Stamenkovic, I., Engelman, J. A., Sharma, S. V., Delattre, O., Saez-Rodriguez, J., Gray, N. S.,

Settleman, J., Futreal, P. A., Haber, D. A., Stratton, M. R., Ramaswamy, S., McDermott, U. \& Benes, C. H. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483(7391), 570-5.
Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., Taccioli, C., Pichiorri, F., Alder, H., Secchiero, P., Gasparini, P., Gonelli, A., Costinean, S., Acunzo, M., Condorelli, G. \& Croce, C. M. (2009) miR-221\&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498-509.
Garrels, W., Mates, L., Holler, S., Dalda, A., Taylor, U., Petersen, B., Niemann, H., Izsvak, Z., Ivics, Z. \& Kues, W. A. (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One, 6(8), e23573.
Ghorbanoghli, Z., Nieuwenhuis, M. H., Houwing-Duistermaat, J. J., Jagmohan-Changur, S., Hes, F. J., Tops, C. M., Wagner, A., Aalfs, C. M., Verhoef, S., Gomez Garcia, E. B., Sijmons, R. H., Menko, F. H., Letteboer, T. G., Hoogerbrugge, N., van Wezel, T., Vasen, H. F. \& Wijnen, J. T. (2016) Colorectal cancer risk variants at $8 q 23.3$ and 11q23.1 are associated with disease phenotype in APC mutation carriers. Fam Cancer, 15(4), 563-70.
Goel, A., Arnold, C. N., Niedzwiecki, D., Carethers, J. M., Dowell, J. M., Wasserman, L., Compton, C., Mayer, R. J., Bertagnolli, M. M. \& Boland, C. R. (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res, 64(9), 3014-21.
Gordon, D., Abajian, C. \& Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res, 8(3), 195-202.

Grady, W. M. (2004) Genomic instability and colon cancer. Cancer Metastasis Rev, 23(1-2), 11-27.
Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., Neumann, A., Brattain, M. G., Chang, J., Kim, S. J., Kinzler, K. W., Vogelstein, B., Willson, J. K. \& Markowitz, S. (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res, 59(2), 320-4.
Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., KhewGoodall, Y. \& Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10(5), 593-601.
Grieger, J. C. \& Samulski, R. J. (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol, 79(15), 9933-44.
Guanti, G., Resta, N., Simone, C., Cariola, F., Demma, I., Fiorente, P. \& Gentile, M. (2000) Involvement of PTEN mutations in the genetic pathways of colorectal cancerogenesis. Hum Mol Genet, 9(2), 2837.

Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., Bot, B. M., Morris, J. S., Simon, I. M., Gerster, S., Fessler, E., De Sousa, E. M. F., Missiaglia, E., Ramay, H., Barras, D., Homicsko, K., Maru, D., Manyam, G. C., Broom, B., Boige, V., Perez-Villamil, B., Laderas, T., Salazar, R., Gray, J. W., Hanahan, D., Tabernero, J., Bernards, R., Friend, S. H., Laurent-Puig, P., Medema, J. P., Sadanandam, A., Wessels, L., Delorenzi, M., Kopetz, S., Vermeulen, L. \& Tejpar, S. (2015) The consensus molecular subtypes of colorectal cancer. Nat Med, 21(11), 1350-6.
Guo, C., Sah, J. F., Beard, L., Willson, J. K., Markowitz, S. D. \& Guda, K. (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 47(11), 939-46. Guo, H., Ingolia, N. T., Weissman, J. S. \& Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835-40.
Guo, L. \& Chen, F. (2014) A challenge for miRNA: multiple isomiRs in miRNAomics. Gene, 544(1), 1-7.
Ha, M. \& Kim, V. N. (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15(8), 509-24.

Hagiwara, T., Kono, S., Yin, G., Toyomura, K., Nagano, J., Mizoue, T., Mibu, R., Tanaka, M., Kakeji, Y., Maehara, Y., Okamura, T., Ikejiri, K., Futami, K., Yasunami, Y., Maekawa, T., Takenaka, K., Ichimiya, H. \& Imaizumi, N. (2005) Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Res, 65(7), 2979-82.

Hai, T., Teng, F., Guo, R., Li, W. \& Zhou, Q. (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res, 24(3), 372-5.
Hammer, R. E., Pursel, V. G., Rexroad, C. E., Jr., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D. \& Brinster, R. L. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315(6021), 680-3.
Harada, K., Hiraoka, S., Kato, J., Horii, J., Fujita, H., Sakaguchi, K. \& Shiratori, Y. (2007) Genetic and epigenetic alterations of Ras signalling pathway in colorectal neoplasia: analysis based on tumour clinicopathological features. Br J Cancer, 97(10), 1425-31.
Hauschild, J., Petersen, B., Santiago, Y., Queisser, A. L., Carnwath, J. W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P. D., Schwinzer, R., Cost, G. J. \& Niemann, H. (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A, 108(29), 12013-7.
Hayes, J., Peruzzi, P. P. \& Lawler, S. (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med, 20(8), 460-9.
He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A. L., Linsley, P. S., Chen, C., Lowe, S. W., Cleary, M. A. \& Hannon, G. J. (2007) A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130-4.
Heinritz, S. N., Mosenthin, R. \& Weiss, E. (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev, 26(2), 191-209.
Hellebrekers, D. M., Lentjes, M. H., van den Bosch, S. M., Melotte, V., Wouters, K. A., Daenen, K. L., Smits, K. M., Akiyama, Y., Yuasa, Y., Sanduleanu, S., Khalid-de Bakker, C. A., Jonkers, D., Weijenberg, M. P., Louwagie, J., van Criekinge, W., Carvalho, B., Meijer, G. A., Baylin, S. B., Herman, J. G., de Bruine, A. P. \& van Engeland, M. (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res, 15(12), 3990-7.
Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E. \& Brown, P. O. (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol, 7(11), e1000238.
Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J. P., Markowitz, S., Willson, J. K., Hamilton, S. R., Kinzler, K. W., Kane, M. F., Kolodner, R. D., Vogelstein, B., Kunkel, T. A. \& Baylin, S. B. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A, 95(12), 6870-5.
Heuberger, J. \& Birchmeier, W. (2010) Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol, 2(2), a002915.
Hinoue, T., Weisenberger, D. J., Lange, C. P., Shen, H., Byun, H. M., Van Den Berg, D., Malik, S., Pan, F., Noushmehr, H., van Dijk, C. M., Tollenaar, R. A. \& Laird, P. W. (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res, 22(2), 271-82.
Hofmann, A., Kessler, B., Ewerling, S., Weppert, M., Vogg, B., Ludwig, H., Stojkovic, M., Boelhauve, M., Brem, G., Wolf, E. \& Pfeifer, A. (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep, 4(11), 1054-60.
Hol, L., Wilschut, J. A., van Ballegooijen, M., van Vuuren, A. J., van der Valk, H., Reijerink, J. C., van der Togt, A. C., Kuipers, E. J., Habbema, J. D. \& van Leerdam, M. E. (2009) Screening for colorectal cancer: random comparison of guaiac and immunochemical faecal occult blood testing at different cut-off levels. Br J Cancer, 100(7), 1103-10.
Houlston, R., Crabtree, M., Phillips, R., Crabtree, M. \& Tomlinson, I. (2001) Explaining differences in the severity of familial adenomatous polyposis and the search for modifier genes. Gut, 48(1), 1-5.

Hryniuk, A., Grainger, S., Savory, J. G. \& Lohnes, D. (2014) Cdx1 and Cdx2 function as tumor suppressors. J Biol Chem, 289(48), 33343-54.
Hsu, H. C., Thiam, T. K., Lu, Y. J., Yeh, C. Y., Tsai, W. S., You, J. F., Hung, H. Y., Tsai, C. N., Hsu, A., Chen, H. C., Chen, S. J. \& Yang, T. S. (2016) Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget, 7(16), 22257-70.
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G. \& Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9), 827-32.
Hung, K. E., Maricevich, M. A., Richard, L. G., Chen, W. Y., Richardson, M. P., Kunin, A., Bronson, R. T., Mahmood, U. \& Kucherlapati, R. (2010) Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A, 107(4), 1565-70.
Hur, K., Cejas, P., Feliu, J., Moreno-Rubio, J., Burgos, E., Boland, C. R. \& Goel, A. (2014)
Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of protooncogenes in human colorectal cancer metastasis. Gut, 63(4), 635-46.
Huth, L., Jakel, J. \& Dahl, E. (2014) Molecular Diagnostic Applications in Colorectal Cancer. Microarrays (Basel), 3(3), 168-79.
Hwang, W. L., Jiang, J. K., Yang, S. H., Huang, T. S., Lan, H. Y., Teng, H. W., Yang, C. Y., Tsai, Y. P., Lin, C. H., Wang, H. W. \& Yang, M. H. (2014) MicroRNA-146a directs the symmetric division of Snaildominant colorectal cancer stem cells. Nat Cell Biol, 16(3), 268-80.
Imamura, Y., Hibi, K., Koike, M., Fujiwara, M., Kodera, Y., Ito, K. \& Nakao, A. (2005) RUNX3 promoter region is specifically methylated in poorly-differentiated colorectal cancer. Anticancer Res, 25(4), 2627-30.
Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Levin, T. R., Lavin, P., Lidgard, G. P., Ahlquist, D. A. \& Berger, B. M. (2014) Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med, 370(14), 1287-97.
Irahara, N., Baba, Y., Nosho, K., Shima, K., Yan, L., Dias-Santagata, D., lafrate, A. J., Fuchs, C. S., Haigis, K. M. \& Ogino, S. (2010) NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol, 19(3), 15763.

Irion, S., Luche, H., Gadue, P., Fehling, H. J., Kennedy, M. \& Keller, G. (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol, 25(12), 1477-82.
Ivics, Z., Garrels, W., Mates, L., Yau, T. Y., Bashir, S., Zidek, V., Landa, V., Geurts, A., Pravenec, M., Rulicke, T., Kues, W. A. \& Izsvak, Z. (2014) Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc, 9(4), 810-27.
Jakobsen, J. E., Johansen, M. G., Schmidt, M., Dagnaes-Hansen, F., Dam, K., Gunnarsson, A., Liu, Y., Kragh, P. M., Li, R., Holm, I. E., Callesen, H., Mikkelsen, J. G., Nielsen, A. L. \& Jorgensen, A. L. (2013) Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res, 22(4), 709-23.
Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. \& Forman, D. (2011) Global cancer statistics. CA Cancer J Clin, 61(2), 69-90.
Jesinghaus, M., Pfarr, N., Endris, V., Kloor, M., Volckmar, A. L., Brandt, R., Herpel, E., Muckenhuber, A., Lasitschka, F., Schirmacher, P., Penzel, R., Weichert, W. \& Stenzinger, A. (2016) Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH Center for Molecular Pathology. Genes Chromosomes Cancer, 55(6), 505-21.

Jetten, A. M. (2018) GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. \& Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-21.

Jinek, M., East, A., Cheng, A., Lin, S., Ma, E. \& Doudna, J. (2013) RNA-programmed genome editing in human cells. Elife, 2, e00471.
Joung, J. K. \& Sander, J. D. (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1), 49-55.
Jung, B., Doctolero, R. T., Tajima, A., Nguyen, A. K., Keku, T., Sandler, R. S. \& Carethers, J. M. (2004) Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology, 126(3), 654-9.

Justice, M. J. \& Dhillon, P. (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech, 9(2), 101-3.
Kamps, R., Brandao, R. D., Bosch, B. J., Paulussen, A. D., Xanthoulea, S., Blok, M. J. \& Romano, A. (2017) Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci, 18(2).
Kane, M. F., Loda, M., Gaida, G. M., Lipman, J., Mishra, R., Goldman, H., Jessup, J. M. \& Kolodner, R. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res, 57(5), 808-11.
Kapitonov, V. V. \& Jurka, J. (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet, 9(5), 411-2; author reply 414.
Kararli, T. T. (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos, 16(5), 351-80.
Karim, B. O. \& Huso, D. L. (2013) Mouse models for colorectal cancer. Am J Cancer Res, 3(3), 240-50.
Karpf, A. R. \& Matsui, S. (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res, 65(19), 8635-9.
Kawashima, E. H., Farinelli, L., Mayer, P. (1998) International patent no. WO1998044151A1, Method Of Nucleic Acid Amplification, https://www.lens.org/images/patent/WO/1998044151/A1/WO \%201998 044151 A1.pdf, retrieved 02.09.2018
Kawashima, E. H., Farinelli, L., Mayer, P. (1998) International patent no. WO1998044152A1, Method Of Nucleic Acid Sequencing; https://www.lens.org/images/patent/WO/1998044152/A1/WO 1998044152 A1.pdf, retrieved 02.09.2018

Kent, O. A., Chivukula, R. R., Mullendore, M., Wentzel, E. A., Feldmann, G., Lee, K. H., Liu, S., Leach, S. D., Maitra, A. \& Mendell, J. T. (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev, 24(24), 2754-9.
Kikuchi, K., Ekwall, H., Tienthai, P., Kawai, Y., Noguchi, J., Kaneko, H. \& Rodriguez-Martinez, H. (2002) Morphological features of lipid droplet transition during porcine oocyte fertilisation and early embryonic development to blastocyst in vivo and in vitro. Zygote, 10(4), 355-66.
Kim, B. C., Joo, J., Chang, H. J., Yeo, H. Y., Yoo, B. C., Park, B., Park, J. W., Sohn, D. K., Hong, C. W. \& Han, K. S. (2014) A predictive model combining fecal calgranulin B and fecal occult blood tests can improve the diagnosis of colorectal cancer. PLoS One, 9(9), e106182.
Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J. I. \& Kim, J. S. (2015) Digenomeseq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 12(3), 237-43, 1 p following 243.
Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H. Y., Song, D. W., Lee, K. J., Jung, M. H., Kim, S., Kim, J. H., Kim, J. H. \& Kim, J. S. (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun, 8, 14500.
Kinzler, K. W., Nilbert, M. C., Su, L. K., Vogelstein, B., Bryan, T. M., Levy, D. B., Smith, K. J., Preisinger, A. C., Hedge, P., McKechnie, D. \& et al. (1991) Identification of FAP locus genes from chromosome 5q21. Science, 253(5020), 661-5.

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z. \& Joung, J. K. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490-5.

Klose, R. J. \& Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89-97.
Kobayashi, M., Honma, T., Matsuda, Y., Suzuki, Y., Narisawa, R., Ajioka, Y. \& Asakura, H. (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer, 82(10), 1689-93.
Kong, Q., Hai, T., Ma, J., Huang, T., Jiang, D., Xie, B., Wu, M., Wang, J., Song, Y., Wang, Y., He, Y., Sun, J., Hu, K., Guo, R., Wang, L., Zhou, Q., Mu, Y. \& Liu, Z. (2014) Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS One, 9(9), e107945.
Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., Vogelstein, B. \& Clevers, H. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/colon carcinoma. Science, 275(5307), 1784-7.
Kucherlapati, R. S., Eves, E. M., Song, K. Y., Morse, B. S. \& Smithies, O. (1984) Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci U S A, 81(10), 3153-7.
Kurome, M., Geistlinger, L., Kessler, B., Zakhartchenko, V., Klymiuk, N., Wuensch, A., Richter, A., Baehr, A., Kraehe, K., Burkhardt, K., Flisikowski, K., Flisikowska, T., Merkl, C., Landmann, M., Durkovic, M., Tschukes, A., Kraner, S., Schindelhauer, D., Petri, T., Kind, A., Nagashima, H., Schnieke, A., Zimmer, R. \& Wolf, E. (2013) Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol, 13, 43.
Kwon, D. N., Lee, K., Kang, M. J., Choi, Y. J., Park, C., Whyte, J. J., Brown, A. N., Kim, J. H., Samuel, M., Mao, J., Park, K. W., Murphy, C. N., Prather, R. S. \& Kim, J. H. (2013) Production of biallelic CMPNeu5Ac hydroxylase knock-out pigs. Sci Rep, 3, 1981.
Labianca, R., Nordlinger, B., Beretta, G. D., Mosconi, S., Mandala, M., Cervantes, A., Arnold, D. \& Group, E. G. W. (2013) Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 24 Suppl 6, vi64-72.
LaDuca, H., Stuenkel, A. J., Dolinsky, J. S., Keiles, S., Tandy, S., Pesaran, T., Chen, E., Gau, C. L., Palmaer, E., Shoaepour, K., Shah, D., Speare, V., Gandomi, S. \& Chao, E. (2014) Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med, 16(11), 830-7.
Lahtz, C. \& Pfeifer, G. P. (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol, 3(1), 51-8.
Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., Samuel, M., Bonk, A., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., Hawley, R. J. \& Prather, R. S. (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295(5557), 108992.

Leary, R. J., Lin, J. C., Cummins, J., Boca, S., Wood, L. D., Parsons, D. W., Jones, S., Sjoblom, T., Park, B. H., Parsons, R., Willis, J., Dawson, D., Willson, J. K., Nikolskaya, T., Nikolsky, Y., Kopelovich, L., Papadopoulos, N., Pennacchio, L. A., Wang, T. L., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Vogelstein, B. \& Velculescu, V. E. (2008) Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A, 105(42), 16224-9.
Ledford, H. (2011) Translational research: 4 ways to fix the clinical trial. Nature, 477(7366), 526-8.
Lee, E., Iskow, R., Yang, L., Gokcumen, O., Haseley, P., Luquette, L. J., 3rd, Lohr, J. G., Harris, C. C., Ding, L., Wilson, R. K., Wheeler, D. A., Gibbs, R. A., Kucherlapati, R., Lee, C., Kharchenko, P. V., Park, P. J. \& Cancer Genome Atlas Research, N. (2012) Landscape of somatic retrotransposition in human cancers. Science, 337(6097), 967-71.

Lee, I. H., Sohn, M., Lim, H. J., Yoon, S., Oh, H., Shin, S., Shin, J. H., Oh, S. H., Kim, J., Lee, D. K., Noh, D. Y., Bae, D. S., Seong, J. K. \& Bae, Y. S. (2014) Ahnak functions as a tumor suppressor via modulation of TGFbeta/Smad signaling pathway. Oncogene, 33(38), 4675-84.

Lengauer, C., Kinzler, K. W. \& Vogelstein, B. (1997) Genetic instability in colorectal cancers. Nature, 386(6625), 623-7.
Leuchs, S., Saalfrank, A., Merkl, C., Flisikowska, T., Edlinger, M., Durkovic, M., Rezaei, N., Kurome, M., Zakhartchenko, V., Kessler, B., Flisikowski, K., Kind, A., Wolf, E. \& Schnieke, A. (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One, 7(10), e43323.

Lewis, B. P., Burge, C. B. \& Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15-20.
Li, E., Bestor, T. H. \& Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69(6), 915-26.
Li, J., Liang, H., Bai, M., Ning, T., Wang, C., Fan, Q., Wang, Y., Fu, Z., Wang, N., Liu, R., Zen, K., Zhang, C. Y., Chen, X. \& Ba, Y. (2015a) miR-135b Promotes Cancer Progression by Targeting Transforming Growth Factor Beta Receptor II (TGFBR2) in Colorectal Cancer. PLoS One, 10(6), e0130194.
Li, Q., Zou, C., Zou, C., Han, Z., Xiao, H., Wei, H., Wang, W., Zhang, L., Zhang, X., Tang, Q., Zhang, C., Tao, J., Wang, X. \& Gao, X. (2013) MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett, 335(1), 168-74.
Li, S., Edlinger, M., Saalfrank, A., Flisikowski, K., Tschukes, A., Kurome, M., Zakhartchenko, V., Kessler, B., Saur, D., Kind, A., Wolf, E., Schnieke, A. \& Flisikowska, T. (2015b) Viable pigs with a conditionallyactivated oncogenic KRAS mutation. Transgenic Res, 24(3), 509-17.
Li, S., Flisikowska, T., Kurome, M., Zakhartchenko, V., Kessler, B., Saur, D., Kind, A., Wolf, E., Flisikowski, K. \& Schnieke, A. (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS One, 9(7), e102455.
Li, T. \& Chiang, J. Y. (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev, 66(4), 948-83.

Liao, Y., Smyth, G. K. \& Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-30.
Lillico, S. G., Proudfoot, C., Carlson, D. F., Stverakova, D., Neil, C., Blain, C., King, T. J., Ritchie, W. A., Tan, W., Mileham, A. J., McLaren, D. G., Fahrenkrug, S. C. \& Whitelaw, C. B. (2013) Live pigs produced from genome edited zygotes. Sci Rep, 3, 2847.
Lim, S. H., Becker, T. M., Chua, W., Caixeiro, N. J., Ng, W. L., Kienzle, N., Tognela, A., Lumba, S., Rasko, J. E., de Souza, P. \& Spring, K. J. (2013) Circulating tumour cells and circulating free nucleic acid as prognostic and predictive biomarkers in colorectal cancer. Cancer Lett.
Lin, S. L., Miller, J. D. \& Ying, S. Y. (2006) Intronic microRNA (miRNA). J Biomed Biotechnol, 2006(4), 26818.

Liu, J., Nau, M. M., Zucman-Rossi, J., Powell, J. I., Allegra, C. J. \& Wright, J. J. (1997) LINE-I element insertion at the $t(11 ; 22)$ translocation breakpoint of a desmoplastic small round cell tumor. Genes Chromosomes Cancer, 18(3), 232-9.
Liu, L., Nie, J., Chen, L., Dong, G., Du, X., Wu, X., Tang, Y. \& Han, W. (2013) The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One, 8(2), e55532.
Liu, W., Dong, X., Mai, M., Seelan, R. S., Taniguchi, K., Krishnadath, K. K., Halling, K. C., Cunningham, J. M., Boardman, L. A., Qian, C., Christensen, E., Schmidt, S. S., Roche, P. C., Smith, D. I. \& Thibodeau, S. N. (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet, 26(2), 146-7.
Livak, K. J. \& Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-8.

Logan, J. S. \& Martin, M. J. (1994) Transgenic swine as a recombinant production system for human hemoglobin. Methods Enzymol, 231, 435-45.
Love, M. I., Huber, W. \& Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12), 550.
Lu, D., Yao, Q., Zhan, C., Le-Meng, Z., Liu, H., Cai, Y., Tu, C., Li, X., Zou, Y. \& Zhang, S. (2017)
MicroRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway. Oncotarget, 8(14), 22674-22684.
Lu, Z., Ghosh, S., Wang, Z. \& Hunter, T. (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4(6), 499-515.
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. \& Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648), 251-60.
Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L. \& Sorensen, C. B. (2011) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res, 20(5), 975-88.
Lv, J. H., Wang, F., Shen, M. H., Wang, X. \& Zhou, X. J. (2016) SATB1 expression is correlated with beta-catenin associated epithelial-mesenchymal transition in colorectal cancer. Cancer Biol Ther, 17(3), 254-61.
Mak, I. W., Evaniew, N. \& Ghert, M. (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res, 6(2), 114-8.
Malapelle, U., Vigliar, E., Sgariglia, R., Bellevicine, C., Colarossi, L., Vitale, D., Pallante, P. \& Troncone, G. (2015) Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J Clin Pathol, 68(1), 64-8.
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. \& Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9), 833-8.

Malkhosyan, S., Rampino, N., Yamamoto, H. \& Perucho, M. (1996) Frameshift mutator mutations. Nature, 382(6591), 499-500.
Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gratchev, A., Ilyas, M., Bodmer, W. F., Moyer, M. P., Riecken, E. O., Buhr, H. J. \& Hanski, C. (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A, 96(4), 1603-8.
Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., Fan, R. S., Zborowska, E., Kinzler, K. W., Vogelstein, B. \& et al. (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 268(5215), 1336-8.
McCalla-Martin, A. C., Chen, X., Linder, K. E., Estrada, J. L. \& Piedrahita, J. A. (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res, 19(5), 869-87.
McCarthy, D. J., Chen, Y. \& Smyth, G. K. (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res, 40(10), 4288-97.
McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E. \& Kind, A. J. (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405(6790), 1066-9.
Mehlen, P. \& Fearon, E. R. (2004) Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol, 22(16), 3420-8.
Mehrvarz Sarshekeh, A., Advani, S., Overman, M. J., Manyam, G., Kee, B. K., Fogelman, D. R., Dasari, A., Raghav, K., Vilar, E., Manuel, S., Shureiqi, I., Wolff, R. A., Patel, K. P., Luthra, R., Shaw, K., Eng, C., Maru, D. M., Routbort, M. J., Meric-Bernstam, F. \& Kopetz, S. (2017) Association of SMAD4 mutation
with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS One, 12(3), e0173345.
Meyer, M., de Angelis, M. H., Wurst, W. \& Kuhn, R. (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A, 107(34), 15022-6.
Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P. \& James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 1(12), 882-91.

Miki, Y., Nishisho, I., Horii, A., Miyoshi, Y., Utsunomiya, J., Kinzler, K. W., Vogelstein, B. \& Nakamura, Y. (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res, 52(3), 643-5.
Mir, R., Pradhan, S. J., Patil, P., Mulherkar, R. \& Galande, S. (2016) Wnt/beta-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression. Oncogene, 35(13), 1679-91.
Misso, G., Di Martino, M. T., De Rosa, G., Farooqi, A. A., Lombardi, A., Campani, V., Zarone, M. R., Gulla, A., Tagliaferri, P., Tassone, P. \& Caraglia, M. (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids, 3, e194.
Miyaoka, Y., Berman, J. R., Cooper, S. B., Mayerl, S. J., Chan, A. H., Zhang, B., Karlin-Neumann, G. A. \& Conklin, B. R. (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep, 6, 23549.
Miyoshi, Y., Nagase, H., Ando, H., Horii, A., Ichii, S., Nakatsuru, S., Aoki, T., Miki, Y., Mori, T. \& Nakamura, Y. (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet, 1(4), 229-33.
Molinari, F. \& Frattini, M. (2013) Functions and Regulation of the PTEN Gene in Colorectal Cancer. Front Oncol, 3, 326.
Mongroo, P. S. \& Rustgi, A. K. (2010) The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther, 10(3), 219-22.

Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. \& Groop, L. C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34(3), 267-73.
Moran, A., Ortega, P., de Juan, C., Fernandez-Marcelo, T., Frias, C., Sanchez-Pernaute, A., Torres, A. J., Diaz-Rubio, E., Iniesta, P. \& Benito, M. (2010) Differential colorectal carcinogenesis: Molecular basis and clinical relevance. World J Gastrointest Oncol, 2(3), 151-8.
Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B. \& Kinzler, K. W. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275(5307), 1787-90.
Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. \& Polakis, P. (1995) Regulation of intracellular betacatenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A, 92(7), 3046-50.
Mussolino, C. \& Cathomen, T. (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol, 23(5), 644-50.
Nagel, R., le Sage, C., Diosdado, B., van der Waal, M., Oude Vrielink, J. A., Bolijn, A., Meijer, G. A. \& Agami, R. (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res, 68(14), 5795-802.
National Center for the Replacement Refinement \& Reduction of Animals in Research, https://www.nc3rs.org.uk/

Nickerson, D. A., Tobe, V. O. \& Taylor, S. L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res, 25(14), 2745-51.
Nishida, N., Yokobori, T., Mimori, K., Sudo, T., Tanaka, F., Shibata, K., Ishii, H., Doki, Y., Kuwano, H. \& Mori, M. (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol, 38(5), 1437-43.
Nishimura, J., Handa, R., Yamamoto, H., Tanaka, F., Shibata, K., Mimori, K., Takemasa, I., Mizushima, T., Ikeda, M., Sekimoto, M., Ishii, H., Doki, Y. \& Mori, M. (2012) microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep, 28(6), 2221-6.
Nowak-Imialek, M. \& Niemann, H. (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev, 25(1), 103-28.
Nyiraneza, C., Sempoux, C., Detry, R., Kartheuser, A. \& Dahan, K. (2012) Hypermethylation of the 5' CpG island of the p14ARF flanking exon 1beta in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression. Clin Epigenetics, 4(1), 9.

Nyren, P. \& Lundin, A. (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem, 151(2), 504-9.
O'Driscoll, L. (2007) Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Res, 27(3A), 1257-65.
Okano, M., Bell, D. W., Haber, D. A. \& Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247-57.
Orom, U. A., Nielsen, F. C. \& Lund, A. H. (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 30(4), 460-71.
Ota, T., Doi, K., Fujimoto, T., Tanaka, Y., Ogawa, M., Matsuzaki, H., Kuroki, M., Miyamoto, S., Shirasawa, S. \& Tsunoda, T. (2012) KRAS up-regulates the expression of miR-181a, miR-200c and miR210 in a three-dimensional-specific manner in DLD-1 colorectal cancer cells. Anticancer Res, 32(6), 2271-5.

Palles, C., Cazier, J. B., Howarth, K. M., Domingo, E., Jones, A. M., Broderick, P., Kemp, Z., Spain, S. L., Guarino, E., Salguero, I., Sherborne, A., Chubb, D., Carvajal-Carmona, L. G., Ma, Y., Kaur, K., Dobbins, S., Barclay, E., Gorman, M., Martin, L., Kovac, M. B., Humphray, S., Consortium, C., Consortium, W. G. S., Lucassen, A., Holmes, C. C., Bentley, D., Donnelly, P., Taylor, J., Petridis, C., Roylance, R., Sawyer, E. J., Kerr, D. J., Clark, S., Grimes, J., Kearsey, S. E., Thomas, H. J., McVean, G., Houlston, R. S. \& Tomlinson, I. (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet, 45(2), 136-44.
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. \& Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 31(9), 839-43.
Peltier, H. J. \& Latham, G. J. (2008) Normalization of microRNA expression levels in quantitative RTPCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA, 14(5), 844-52.
Pennisi, E. (1998) How a growth control path takes a wrong turn to cancer. Science, 281(5382), 14389, 1441.
Perleberg, C., Kind, A. \& Schnieke, A. (2018) Genetically engineered pigs as models for human disease. Dis Model Mech, 11(1).
Pfaffeneder, T., Hackner, B., Truss, M., Munzel, M., Muller, M., Deiml, C. A., Hagemeier, C. \& Carell, T. (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl, 50(31), 7008-12.

Pimentel, H., Bray, N. L., Puente, S., Melsted, P. \& Pachter, L. (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods, 14(7), 687-690.

Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., Dahlman, J. E., Parnas, O., Eisenhaure, T. M., Jovanovic, M., Graham, D. B., Jhunjhunwala, S., Heidenreich, M., Xavier, R. J., Langer, R., Anderson, D. G., Hacohen, N., Regev, A., Feng, G., Sharp, P. A. \& Zhang, F. (2014) CRISPRCas9 knockin mice for genome editing and cancer modeling. Cell, 159(2), 440-55.
Polakis, P. (1997) The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta, 1332(3), F127-47.

Quandt, K., Frech, K., Karas, H., Wingender, E. \& Werner, T. (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res, 23(23), 4878-84.
Ramaswami, G., Lin, W., Piskol, R., Tan, M. H., Davis, C. \& Li, J. B. (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods, 9(6), 579-81.
Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J. C. \& Perucho, M. (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275(5302), 967-9.
Roach, J. C., Boysen, C., Wang, K. \& Hood, L. (1995) Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics, 26(2), 345-53.
Robinson, J. T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. \& Mesirov, J. P. (2011) Integrative genomics viewer. Nat Biotechnol, 29(1), 24-6.

Robinson, M. D., McCarthy, D. J. \& Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-40.
Rojas, A., Meherem, S., Kim, Y. H., Washington, M. K., Willis, J. E., Markowitz, S. D. \& Grady, W. M. (2008) The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer. Int J Cancer, 123(1), 14-21.

Rokavec, M., Li, H., Jiang, L. \& Hermeking, H. (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol, 6(3), 214-30.
Ronaghi, M., Uhlen, M. \& Nyren, P. (1998) A sequencing method based on real-time pyrophosphate. Science, 281(5375), 363, 365.

Roodink, I., Verrijp, K., Raats, J. \& Leenders, W. P. (2009) Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies. BMC Cancer, 9, 297.
Roose, J. \& Clevers, H. (1999) TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta, 1424(2-3), M23-37.
Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. \& Polakis, P. (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 272(5264), 1023-6.
Saalfrank, A., Janssen, K. P., Ravon, M., Flisikowski, K., Eser, S., Steiger, K., Flisikowska, T., MullerFliedner, P., Schulze, E., Bronner, C., Gnann, A., Kappe, E., Bohm, B., Schade, B., Certa, U., Saur, D., Esposito, I., Kind, A. \& Schnieke, A. (2016) A porcine model of osteosarcoma. Oncogenesis, 5, e210.
Sachs, D. H. (1994) The pig as a potential xenograft donor. Vet Immunol Immunopathol, 43(1-3), 18591.

Samaei, N. M., Yazdani, Y., Alizadeh-Navaei, R., Azadeh, H. \& Farazmandfar, T. (2014) Promoter methylation analysis of WNT/beta-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer. J Biomed Sci, 21, 73.
Sanger, F., Nicklen, S. \& Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12), 5463-7.
Sarver, A. L., French, A. J., Borralho, P. M., Thayanithy, V., Oberg, A. L., Silverstein, K. A., Morlan, B. W., Riska, S. M., Boardman, L. A., Cunningham, J. M., Subramanian, S., Wang, L., Smyrk, T. C.,

Rodrigues, C. M., Thibodeau, S. N. \& Steer, C. J. (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer, 9, 401.

Sauer, B. (1996) Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res, 24(23), 4608-13.
Schmitz, K. J., Hey, S., Schinwald, A., Wohlschlaeger, J., Baba, H. A., Worm, K. \& Schmid, K. W. (2009) Differential expression of microRNA 181b and microRNA 21 in hyperplastic polyps and sessile serrated adenomas of the colon. Virchows Arch, 455(1), 49-54.
Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A. \& Campbell, K. H. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278(5346), 2130-3.
Schonhuber, N., Seidler, B., Schuck, K., Veltkamp, C., Schachtler, C., Zukowska, M., Eser, S., Feyerabend, T. B., Paul, M. C., Eser, P., Klein, S., Lowy, A. M., Banerjee, R., Yang, F., Lee, C. L., Moding, E. J., Kirsch, D. G., Scheideler, A., Alessi, D. R., Varela, I., Bradley, A., Kind, A., Schnieke, A. E., Rodewald, H. R., Rad, R., Schmid, R. M., Schneider, G. \& Saur, D. (2014) A next-generation dualrecombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med, 20(11), 1340-7.
Schook, L. B., Collares, T. V., Hu, W., Liang, Y., Rodrigues, F. M., Rund, L. A., Schachtschneider, K. M., Seixas, F. K., Singh, K., Wells, K. D., Walters, E. M., Prather, R. S. \& Counter, C. M. (2015) A Genetic Porcine Model of Cancer. PLoS One, 10(7), e0128864.
Schreuders, E. H., Grobbee, E. J., Spaander, M. C. \& Kuipers, E. J. (2016) Advances in Fecal Tests for Colorectal Cancer Screening. Curr Treat Options Gastroenterol, 14(1), 152-62.
Schubert, R., Frank, F., Nagelmann, N., Liebsch, L., Schuldenzucker, V., Schramke, S., Wirsig, M., Johnson, H., Kim, E. Y., Ott, S., Holzner, E., Demokritov, S. O., Motlik, J., Faber, C. \& Reilmann, R. (2016) Neuroimaging of a minipig model of Huntington's disease: Feasibility of volumetric, diffusionweighted and spectroscopic assessments. J Neurosci Methods, 265, 46-55.

Segditsas, S., Sieber, O. M., Rowan, A., Setien, F., Neale, K., Phillips, R. K., Ward, R., Esteller, M. \& Tomlinson, I. P. (2008) Promoter hypermethylation leads to decreased APC mRNA expression in familial polyposis and sporadic colorectal tumours, but does not substitute for truncating mutations. Exp Mol Pathol, 85(3), 201-6.
Serrati, S., De Summa, S., Pilato, B., Petriella, D., Lacalamita, R., Tommasi, S. \& Pinto, R. (2016) Nextgeneration sequencing: advances and applications in cancer diagnosis. Onco Targets Ther, 9, 73557365.

Shalapour, S., Deiser, K., Kuhl, A. A., Glauben, R., Krug, S. M., Fischer, A., Sercan, O., Chappaz, S., Bereswill, S., Heimesaat, M. M., Loddenkemper, C., Fromm, M., Finke, D., Hammerling, G. J., Arnold, B., Siegmund, B. \& Schuler, T. (2012) Interleukin-7 links T lymphocyte and intestinal epithelial cell homeostasis. PLoS One, 7(2), e31939.
Shen, L., Kondo, Y., Hamilton, S. R., Rashid, A. \& Issa, J. P. (2003) P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology, 124(3), 62633.

Shima, K., Nosho, K., Baba, Y., Cantor, M., Meyerhardt, J. A., Giovannucci, E. L., Fuchs, C. S. \& Ogino, S. (2011) Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. Int J Cancer, 128(5), 1080-94.
Shimizu, Y., Ikeda, S., Fujimori, M., Kodama, S., Nakahara, M., Okajima, M. \& Asahara, T. (2002) Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes Cancer, 33(1), 73-81.

Shirafkan, N., Mansoori, B., Mohammadi, A., Shomali, N., Ghasbi, M. \& Baradaran, B. (2018) MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother, 97, 1319-1330.

Shussman, N. \& Wexner, S. D. (2014) Colorectal polyps and polyposis syndromes. Gastroenterol Rep (Oxf), 2(1), 1-15.
Sieren, J. C., Meyerholz, D. K., Wang, X. J., Davis, B. T., Newell, J. D., Jr., Hammond, E., Rohret, J. A., Rohret, F. A., Struzynski, J. T., Goeken, J. A., Naumann, P. W., Leidinger, M. R., Taghiyev, A., Van Rheeden, R., Hagen, J., Darbro, B. W., Quelle, D. E. \& Rogers, C. S. (2014) Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest, 124(9), 4052-66.

Skarnes, W. C., Rosen, B., West, A. P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A. O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P. J., Stewart, A. F. \& Bradley, A. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 474(7351), 337-42.
Slaby, O., Svoboda, M., Fabian, P., Smerdova, T., Knoflickova, D., Bednarikova, M., Nenutil, R. \& Vyzula, R. (2007) Altered Expression of miR-21, miR-31, miR-143 and miR-145 Is Related to Clinicopathologic Features of Colorectal Cancer. Oncology, 72(5-6), 397-402.
Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X. \& Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268), 84-8.
Smalley, M. J., Sara, E., Paterson, H., Naylor, S., Cook, D., Jayatilake, H., Fryer, L. G., Hutchinson, L., Fry, M. J. \& Dale, T. C. (1999) Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCFdependent transcription. EMBO J, 18(10), 2823-35.
Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. \& Hood, L. E. (1986) Fluorescence detection in automated DNA sequence analysis. Nature, 321(6071), 674-9.

Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. \& Kucherlapati, R. S. (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature, 317(6034), 230-4.
Solomon, E., Voss, R., Hall, V., Bodmer, W. F., Jass, J. R., Jeffreys, A. J., Lucibello, F. C., Patel, I. \& Rider, S. H. (1987) Chromosome 5 allele loss in human colorectal carcinomas. Nature, 328(6131), 616-9.

Song, L. L. \& Li, Y. M. (2016) Current noninvasive tests for colorectal cancer screening: An overview of colorectal cancer screening tests. World J Gastrointest Oncol, 8(11), 793-800.
Stachowiak, M., Flisikowska, T., Bauersachs, S., Perleberg, C., Pausch, H., Switonski, M., Kind, A., Saur, D., Schnieke, A. \& Flisikowski, K. (2017) Altered microRNA profiles during early colon adenoma progression in a porcine model of familial adenomatous polyposis. Oncotarget, 8(56), 96154-96160.
Staden, R. (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res, 6(7), 2601-10.
Steines, B., Dickey, D. D., Bergen, J., Excoffon, K. J., Weinstein, J. R., Li, X., Yan, Z., Abou Alaiwa, M. H., Shah, V. S., Bouzek, D. C., Powers, L. S., Gansemer, N. D., Ostedgaard, L. S., Engelhardt, J. F., Stoltz, D. A., Welsh, M. J., Sinn, P. L., Schaffer, D. V. \& Zabner, J. (2016) CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight, 1(14), e88728.
Strillacci, A., Valerii, M. C., Sansone, P., Caggiano, C., Sgromo, A., Vittori, L., Fiorentino, M., Poggioli, G., Rizzello, F., Campieri, M. \& Spisni, E. (2013) Loss of miR-101 expression promotes Wnt/betacatenin signalling pathway activation and malignancy in colon cancer cells. J Pathol, 229(3), 379-89.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. \& Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43), 15545-50.

Suh, E. R., Ha, C. S., Rankin, E. B., Toyota, M. \& Traber, P. G. (2002) DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J Biol Chem, 277(39), 35795-800.
Sun, D., Wang, C., Long, S., Ma, Y., Guo, Y., Huang, Z., Chen, X., Zhang, C., Chen, J. \& Zhang, J. (2015) C/EBP-beta-activated microRNA-223 promotes tumour growth through targeting RASA1 in human colorectal cancer. Br J Cancer, 112(9), 1491-500.
Susswein, L. R., Marshall, M. L., Nusbaum, R., Vogel Postula, K. J., Weissman, S. M., Yackowski, L., Vaccari, E. M., Bissonnette, J., Booker, J. K., Cremona, M. L., Gibellini, F., Murphy, P. D., PinedaAlvarez, D. E., Pollevick, G. D., Xu, Z., Richard, G., Bale, S., Klein, R. T., Hruska, K. S. \& Chung, W. K. (2016) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med, 18(8), 823-32.
Suzuki, H., Igarashi, S., Nojima, M., Maruyama, R., Yamamoto, E., Kai, M., Akashi, H., Watanabe, Y., Yamamoto, H., Sasaki, Y., Itoh, F., Imai, K., Sugai, T., Shen, L., Issa, J. P., Shinomura, Y., Tokino, T. \& Toyota, M. (2010) IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis, 31(3), 342-9.
Suzuki, H., Watkins, D. N., Jair, K. W., Schuebel, K. E., Markowitz, S. D., Chen, W. D., Pretlow, T. P., Yang, B., Akiyama, Y., Van Engeland, M., Toyota, M., Tokino, T., Hinoda, Y., Imai, K., Herman, J. G. \& Baylin, S. B. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 36(4), 417-22.
Swindle, M. M., Smith, A. C. \& Hepburn, B. J. (1988) Swine as models in experimental surgery. J Invest Surg, 1(1), 65-79.
Szpakowski, S., Sun, X., Lage, J. M., Dyer, A., Rubinstein, J., Kowalski, D., Sasaki, C., Costa, J. \& Lizardi, P. M. (2009) Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene, 448(2), 151-67.
Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L. \& Rao, A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930-5.
Takagi, H., Sasaki, S., Suzuki, H., Toyota, M., Maruyama, R., Nojima, M., Yamamoto, H., Omata, M., Tokino, T., Imai, K. \& Shinomura, Y. (2008) Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol, 43(5), 378-89.
Takayama, T., Miyanishi, K., Hayashi, T., Sato, Y. \& Niitsu, Y. (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol, 41(3), 185-92.
Talseth-Palmer, B. A. (2017) The genetic basis of colonic adenomatous polyposis syndromes. Hered Cancer Clin Pract, 15, 5.
Tan, J., Lee, P. L., Li, Z., Jiang, X., Lim, Y. C., Hooi, S. C. \& Yu, Q. (2010) B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell, 18(5), 459-71.
Tan, M., Luo, H., Lee, S., Jin, F., Yang, J. S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., Lu, Z., Ye, Z., Zhu, Q., Wysocka, J., Ye, Y., Khochbin, S., Ren, B. \& Zhao, Y. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 146(6), 1016-28.
Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B. \& Fahrenkrug, S. C. (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A.
Tetteh, P. W., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., Morsink, F., Farin, H., van Es, J. H., Offerhaus, G. J. \& Clevers, H. (2016) Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research. Proc Natl Acad Sci U S A, 113(42), 11859-11864.
Thomas, K. R. \& Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51(3), 503-12.

Thorvaldsdottir, H., Robinson, J. T. \& Mesirov, J. P. (2013) Integrative Genomics Viewer (IGV): highperformance genomics data visualization and exploration. Brief Bioinform, 14(2), 178-92.
Tomlinson, C., Wong, C., Au, H. J. \& Schiller, D. (2012) Factors associated with delays to medical assessment and diagnosis for patients with colorectal cancer. Can Fam Physician, 58(9), e495-501.
Tomlinson, I., Webb, E., Carvajal-Carmona, L., Broderick, P., Kemp, Z., Spain, S., Penegar, S., Chandler, I., Gorman, M., Wood, W., Barclay, E., Lubbe, S., Martin, L., Sellick, G., Jaeger, E., Hubner, R., Wild, R., Rowan, A., Fielding, S., Howarth, K., Consortium, C., Silver, A., Atkin, W., Muir, K., Logan, R., Kerr, D., Johnstone, E., Sieber, O., Gray, R., Thomas, H., Peto, J., Cazier, J. B. \& Houlston, R. (2007) A genomewide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at $8 q 24.21$. Nat Genet, 39(8), 984-8.
Tomlinson, I. P., Webb, E., Carvajal-Carmona, L., Broderick, P., Howarth, K., Pittman, A. M., Spain, S., Lubbe, S., Walther, A., Sullivan, K., Jaeger, E., Fielding, S., Rowan, A., Vijayakrishnan, J., Domingo, E., Chandler, I., Kemp, Z., Qureshi, M., Farrington, S. M., Tenesa, A., Prendergast, J. G., Barnetson, R. A., Penegar, S., Barclay, E., Wood, W., Martin, L., Gorman, M., Thomas, H., Peto, J., Bishop, D. T., Gray, R., Maher, E. R., Lucassen, A., Kerr, D., Evans, D. G., Consortium, C., Schafmayer, C., Buch, S., Volzke, H., Hampe, J., Schreiber, S., John, U., Koessler, T., Pharoah, P., van Wezel, T., Morreau, H., Wijnen, J. T., Hopper, J. L., Southey, M. C., Giles, G. G., Severi, G., Castellvi-Bel, S., Ruiz-Ponte, C., Carracedo, A., Castells, A., Consortium, E., Forsti, A., Hemminki, K., Vodicka, P., Naccarati, A., Lipton, L., Ho, J. W., Cheng, K. K., Sham, P. C., Luk, J., Agundez, J. A., Ladero, J. M., de la Hoya, M., Caldes, T., Niittymaki, I., Tuupanen, S., Karhu, A., Aaltonen, L., Cazier, J. B., Campbell, H., Dunlop, M. G. \& Houlston, R. S. (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet, 40(5), 623-30.
Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y. \& Tokino, T. (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res, 68(11), 4123-32.
Truong, D. J., Kuhner, K., Kuhn, R., Werfel, S., Engelhardt, S., Wurst, W. \& Ortiz, O. (2015) Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res, 43(13), 6450-8.

Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvekens, N., Khayter, C., lafrate, A. J., Le, L. P., Aryee, M. J. \& Joung, J. K. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2), 187-197.
Tse, J. W. T., Jenkins, L. J., Chionh, F. \& Mariadason, J. M. (2017) Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? Trends Cancer, 3(10), 698-712.
Tseng, C. H., Murray, K. D., Jou, M. F., Hsu, S. M., Cheng, H. J. \& Huang, P. H. (2011) Sema3E/plexinD1 mediated epithelial-to-mesenchymal transition in ovarian endometrioid cancer. PLoS One, 6(4), e19396.
Tsunoda, T., Takashima, Y., Yoshida, Y., Doi, K., Tanaka, Y., Fujimoto, T., Machida, T., Ota, T., Koyanagi, M., Kuroki, M., Sasazuki, T. \& Shirasawa, S. (2011) Oncogenic KRAS regulates miR-200c and miR-221/222 in a 3D-specific manner in colorectal cancer cells. Anticancer Res, 31(7), 2453-9.
Tuupanen, S., Niittymaki, I., Nousiainen, K., Vanharanta, S., Mecklin, J. P., Nuorva, K., Jarvinen, H., Hautaniemi, S., Karhu, A. \& Aaltonen, L. A. (2008) Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res, 68(1), 14-7.
Uchida, M., Shimatsu, Y., Onoe, K., Matsuyama, N., Niki, R., Ikeda, J. E. \& Imai, H. (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res, 10(6), 577-82.
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. \& Gregory, P. D. (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 11(9), 636-46.
Valeri, N., Gasparini, P., Fabbri, M., Braconi, C., Veronese, A., Lovat, F., Adair, B., Vannini, I., Fanini, F., Bottoni, A., Costinean, S., Sandhu, S. K., Nuovo, G. J., Alder, H., Gafa, R., Calore, F., Ferracin, M., Lanza, G., Volinia, S., Negrini, M., Mcllhatton, M. A., Amadori, D., Fishel, R. \& Croce, C. M. (2010)

Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A, 107(15), 6982-7.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. \& Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3(7), RESEARCH0034.
Veeck, J., Geisler, C., Noetzel, E., Alkaya, S., Hartmann, A., Knuchel, R. \& Dahl, E. (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis, 29(5), 991-8.

Veigl, M. L., Kasturi, L., Olechnowicz, J., Ma, A. H., Lutterbaugh, J. D., Periyasamy, S., Li, G. M., Drummond, J., Modrich, P. L., Sedwick, W. D. \& Markowitz, S. D. (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A, 95(15), 8698-702.
Venter, J. C. (2003) A part of the human genome sequence. Science, 299(5610), 1183-4.
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M., Subramanian, G., Thomas, P. D., Zhang, J., Gabor Miklos, G. L., Nelson, C., Broder, S., Clark, A. G., Nadeau, J., McKusick, V. A., Zinder, N., Levine, A. J., Roberts, R. J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z., Ketchum, K. A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina, N., Moore, H. M., Naik, A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch, D. B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., et al (2001) The sequence of the human genome. Science, 291(5507), 1304-51.
Vlachos, I. S., Paraskevopoulou, M. D., Karagkouni, D., Georgakilas, G., Vergoulis, T., Kanellos, I., Anastasopoulos, I. L., Maniou, S., Karathanou, K., Kalfakakou, D., Fevgas, A., Dalamagas, T. \& Hatzigeorgiou, A. G. (2015a) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res, 43(Database issue), D153-9.
Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T. \& Hatzigeorgiou, A. G. (2015b) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res, 43(W1), W460-6.
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., Jr. \& Kinzler, K. W. (2013) Cancer genome landscapes. Science, 339(6127), 1546-58.
Vogt, M., Munding, J., Gruner, M., Liffers, S. T., Verdoodt, B., Hauk, J., Steinstraesser, L., Tannapfel, A. \& Hermeking, H. (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch, 458(3), 313-22.
Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C. \& Croce, C. M. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 103(7), 2257-61.
Vychytilova-Faltejskova, P., Merhautova, J., Machackova, T., Gutierrez-Garcia, I., Garcia-Solano, J., Radova, L., Brchnelova, D., Slaba, K., Svoboda, M., Halamkova, J., Demlova, R., Kiss, I., Vyzula, R., Conesa-Zamora, P. \& Slaby, O. (2017) MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis, 6(11), 399.
Wang, K., Jin, Q., Ruan, D., Yang, Y., Liu, Q., Wu, H., Zhou, Z., Ouyang, Z., Liu, Z., Zhao, Y., Zhao, B., Zhang, Q., Peng, J., Lai, C., Fan, N., Liang, Y., Lan, T., Li, N., Wang, X., Wang, X., Fan, Y., Doevendans, P.
A., Sluijter, J. P. G., Liu, P., Li, X. \& Lai, L. (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res, 27(12), 2061-2071.
Wang, Y., Du, Y., Shen, B., Zhou, X., Li, J., Liu, Y., Wang, J., Zhou, J., Hu, B., Kang, N., Gao, J., Yu, L., Huang, X. \& Wei, H. (2015) Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep, 5, 8256.
Wei, C., Liu, J., Yu, Z., Zhang, B., Gao, G. \& Jiao, R. (2013) TALEN or Cas9 - Rapid, Efficient and Specific Choices for Genome Modifications. J Genet Genomics, 40(6), 281-9.

Weinberg, R. A. (2007) The biology of cancer, 1 vols. New York: Garland Science.
Wertheim, B. C., Smith, J. W., Fang, C., Alberts, D. S., Lance, P. \& Thompson, P. A. (2012) Risk modification of colorectal adenoma by CYP7A1 polymorphisms and the role of bile acid metabolism in carcinogenesis. Cancer Prev Res (Phila), 5(2), 197-204.
Whiffin, N., Hosking, F. J., Farrington, S. M., Palles, C., Dobbins, S. E., Zgaga, L., Lloyd, A., Kinnersley, B., Gorman, M., Tenesa, A., Broderick, P., Wang, Y., Barclay, E., Hayward, C., Martin, L., Buchanan, D. D., Win, A. K., Hopper, J., Jenkins, M., Lindor, N. M., Newcomb, P. A., Gallinger, S., Conti, D., Schumacher, F., Casey, G., Liu, T., Swedish Low-Risk Colorectal Cancer Study, G., Campbell, H., Lindblom, A., Houlston, R. S., Tomlinson, I. P. \& Dunlop, M. G. (2014) Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet, 23(17), 4729-37.
Whitelaw, C. B., Radcliffe, P. A., Ritchie, W. A., Carlisle, A., Ellard, F. M., Pena, R. N., Rowe, J., Clark, A. J., King, T. J. \& Mitrophanous, K. A. (2004) Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett, 571(1-3), 233-6.
Whitworth, K. M., Lee, K., Benne, J. A., Beaton, B. P., Spate, L. D., Murphy, S. L., Samuel, M. S., Mao, J., O'Gorman, C., Walters, E. M., Murphy, C. N., Driver, J., Mileham, A., McLaren, D., Wells, K. D. \& Prather, R. S. (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod, 91(3), 78.

Willert, K., Shibamoto, S. \& Nusse, R. (1999) Wnt-induced dephosphorylation of axin releases betacatenin from the axin complex. Genes Dev, 13(14), 1768-73.
Williams, C. R., Baccarella, A., Parrish, J. Z. \& Kim, C. C. (2016) Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics, 17, 103.

Wolff, E. M., Byun, H. M., Han, H. F., Sharma, S., Nichols, P. W., Siegmund, K. D., Yang, A. S., Jones, P. A. \& Liang, G. (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet, 6(4), e1000917.
Wong, N. A., Britton, M. P., Choi, G. S., Stanton, T. K., Bicknell, D. C., Wilding, J. L. \& Bodmer, W. F. (2004) Loss of CDX1 expression in colorectal carcinoma: promoter methylation, mutation, and loss of heterozygosity analyses of 37 cell lines. Proc Natl Acad Sci U S A, 101(2), 574-9.
Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E. \& Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108-13.
World health statistics 2017: Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO; http://apps.who.int/iris/bitstream/handle/10665/255336/9789241565486eng.pdf;jsessionid=73C27896EAA6A4A17FDF776E162EEOFA?sequence=1, retrieved 02.09.2018

Wu, M., Wei, C., Lian, Z., Liu, R., Zhu, C., Wang, H., Cao, J., Shen, Y., Zhao, F., Zhang, L., Mu, Z., Wang, Y., Wang, X., Du, L. \& Wang, C. (2016) Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep, 6, 24360.
Wu, W., Yang, J., Feng, X., Wang, H., Ye, S., Yang, P., Tan, W., Wei, G. \& Zhou, Y. (2013) MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol Cancer, 12, 30.
Wu, W. K., Law, P. T., Lee, C. W., Cho, C. H., Fan, D., Wu, K., Yu, J. \& Sung, J. J. (2011) MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis, 32(3), 247-53.
Xu, X., Chen, R., Li, Z., Huang, N., Wu, X., Li, S., Li, Y. \& Wu, S. (2015) MicroRNA-490-3p inhibits colorectal cancer metastasis by targeting TGFbetaR1. BMC Cancer, 15, 1023.
Yamada, N., Noguchi, S., Mori, T., Naoe, T., Maruo, K. \& Akao, Y. (2013) Tumor-suppressive microRNA-145 targets catenin delta-1 to regulate Wnt/beta-catenin signaling in human colon cancer cells. Cancer Lett, 335(2), 332-42.
Yamakawa, H., Nagai, T., Harasawa, R., Yamagami, T., Takahashi, J., Ishikawa, K., Nomura, N. \& Nagashima, H. (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. Journal of Reproduction and Development, 45, 111-118.
Yamakuchi, M., Ferlito, M. \& Lowenstein, C. J. (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A, 105(36), 13421-6.
Yamamoto, H., Gil, J., Schwartz, S., Jr. \& Perucho, M. (2000) Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype. Cell Death Differ, 7(2), 238-9.
Yamamoto, H., Kishida, S., Kishida, M., Ikeda, S., Takada, S. \& Kikuchi, A. (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem, 274(16), 10681-4.
Yang, S., Farraye, F. A., Mack, C., Posnik, O. \& O'Brien, M. J. (2004) BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol, 28(11), 1452-9.
Yang, X., Zou, J., Cai, H., Huang, X., Yang, X., Guo, D. \& Cao, Y. (2017) Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPbeta/NF-kappaB signaling. Biomed Pharmacother, 96, 1240-1245.
Yu, H., Lee, H., Herrmann, A., Buettner, R. \& Jove, R. (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer, 14(11), 736-46.
Yu, H. H., Zhao, H., Qing, Y. B., Pan, W. R., Jia, B. Y., Zhao, H. Y., Huang, X. X. \& Wei, H. J. (2016) Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy. Int J Mol Sci, 17(10).
Yu, Y., Kanwar, S. S., Patel, B. B., Oh, P. S., Nautiyal, J., Sarkar, F. H. \& Majumdar, A. P. (2012) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis, 33(1), 68-76.
Zambrowicz, B. P., Imamoto, A., Fiering, S., Herzenberg, L. A., Kerr, W. G. \& Soriano, P. (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A, 94(8), 3789-94.

Zang, Y., Wang, T., Pan, J. \& Gao, F. (2017) miR-215 promotes cell migration and invasion of gastric cancer cell lines by targeting FOXO1. Neoplasma, 64(4), 579-587.
Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V. \& Zhang, F. (2015) Cpf1 is a single RNAguided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759-71.

Zhang, G., Zhou, H., Xiao, H., Liu, Z., Tian, H. \& Zhou, T. (2014a) MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci, 59(1), 98-107.

Zhang, W., Zhang, T., Jin, R., Zhao, H., Hu, J., Feng, B., Zang, L., Zheng, M. \& Wang, M. (2014b) MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human colorectal cancer. J Exp Clin Cancer Res, 33, 113.
Zhang, X., Li, X., Tan, F., Yu, N. \& Pei, H. (2017) STAT1 Inhibits MiR-181a Expression to Suppress Colorectal Cancer Cell Proliferation Through PTEN/Akt. J Cell Biochem, 118(10), 3435-3443.

Zhang, Y., Lin, C., Liao, G., Liu, S., Ding, J., Tang, F., Wang, Z., Liang, X., Li, B., Wei, Y., Huang, Q., Li, X. \& Tang, B. (2015) MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2. Oncotarget, 6(32), 32586-601.
Zhang, Y., Tian, X., Ji, H., Guan, X., Xu, W., Dong, B., Zhao, M., Wei, M., Ye, C., Sun, Y., Yuan, X., Yang, C. \& Hao, C. (2014c) Expression of SATB1 promotes the growth and metastasis of colorectal cancer. PLoS One, 9(6), e100413.

Zhou, X., Wang, L., Du, Y., Xie, F., Li, L., Liu, Y., Liu, C., Wang, S., Zhang, S., Huang, X., Wang, Y. \& Wei, H. (2016) Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes. Hum Mutat, 37(1), 110-8.
Zhu, J., Chen, L., Zou, L., Yang, P., Wu, R., Mao, Y., Zhou, H., Li, R., Wang, K., Wang, W., Hua, D. \& Zhang, X. (2014) MiR-20b, -21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum Immunol, 75(4), 348-53.

10. Appendix

10.1 Wizard $^{\circledR}$ SV Gel and PCR Clean-Up System

Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System
 INSTRUCTIONS FOR USE OF PRODUCTS A9280, AC881, Ag882, AND A9285

Protocos

DNA Purification by Centrifugation

Gel Slice and PCR Product Preparation

A. Dissolving the Gel Slice

1. Following electrophoresis, excise DNA band from gel and place gel slice in a 1.5 ml microcentrifuge tube.
2. Add 10 H I Membrane Binding Solution per 10 mg of gel slice. Vortex and incubate at $50-65^{\circ} \mathrm{C}$ until gel slice is completely dissolved.

B. Processing PCR Amplifications

1. Add an equal volume of Membrane Binding Solution to the PCR amplification.

Binding of DNA

1. Insert SV Minicolumn into Collection Tube.
2. Transfer dissolved gel mixture or prepared PCR product to the Minicolumn assembly. Incubate at roomtemperature for 1 minute.
3. Centrifuge at $16,000 \times g$ for 1 minute. Discard flowthrough and reinsert Minicolumn into Collection Tube.

Washing

4. Add 700 l I Membrane Wash Solution (ethanol added). Centrifuge at $16,000 \times g$ for 1 minute. Discard flowthrough and reinsert Minicolumn into Collection Tube.
5. Repeat Step 4 with $500 \mu \mathrm{l}$ Membrane Wash Solution. Centrifuge at $16,000 \times \mathrm{g}$ forfmicos 2 min

3 min
6. Empty the Collection Tube and recentrifuge the column assembly for minnute with the microcentrifuge lid open (or off) to allow evaporation of any residual ethanol.

Elution

7. Carefully transfer Minicolumn to a clean 1.5 ml mi crocentrifuge tube.
8. Add Eopl of Nuclease-Free Water to the Minicolumn. Incubate at room $30 \mu \mathrm{l}$ of $65^{\circ} \mathrm{C}$ temperature for 1 minute. Centrifuge at $16,000 \times \mathrm{g}$ for 1 minute. warm water
9. Discard Minicolumn and store DNA at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$.

Additional protocol information is available in Technical Bulletin 新B308, available online at: www.promegacom
10.2 Unbiased miRNA target analysis

miRNA	$\begin{gathered} \hline \text { hsa- } \\ \text { miR- } \\ 215- \\ 5 p \\ \hline \end{gathered}$	$\begin{gathered} \text { hsa- } \\ \text { miR- } \\ \text { 215-5p } \end{gathered}$	$\begin{gathered} \text { hsa- } \\ \text { miR- } \\ \text { 215-5p } \end{gathered}$	hsa-miR-194-5p	hsa-miR- 27a-3p	hsa-miR- 23a-3p	$\begin{gathered} \text { hsa-miR-192- } \\ 5 p \end{gathered}$	hsa-miR- 146a-5p	hsa-let-7d-5p	hsa-miR-375-3p	hsa-miR-139-5p	hsa-miR-182-5p	hsa-miR- 214-3p	hsa-miR-582-3p	hsa-miR- 92b-3p
$\begin{gathered} \text { databas } \\ \mathrm{e} \end{gathered}$	Tarba se	$\begin{gathered} \text { Targetsc } \\ \text { an } \end{gathered}$	microT	Tarbase											
higher (+) or lower(-) expressi on in HP	+	+	+	+	-	-	+	-	-	+	+	+	-	+	-
		PLXNB2	$\begin{gathered} \hline \text { CTNNBI } \\ \text { P1 } \end{gathered}$	BMI1	TERF2	TERF2	FZD7	CALU	CALU	CALU	BMI1	TMSB10	GPAT2	CALU	RTN4
		$\begin{gathered} \text { ALS2CR1 } \\ 1 \end{gathered}$	ESR1	TBC1D20	CALU	CCNT2	EFNB2	SLK	TGDS	EFNB2	RTN4	FAM102B	PLXNA2	$\begin{gathered} \text { EPB41L4 } \\ A \end{gathered}$	ARPC5
		TTL	ZEB2	LAMB2	BMI1	FAM102B	CTNNBIP1	EPB41L4A	CCNT2	SLK	SLK	GOLPH3L	CCNG1	SCLT1	ZNF503
		FGD5	ZMAT3	CCNG1	TMSB10	ABCD4	WWC2	PELI1	ZDHHC18	WWC2	PELI1	ZDHHC18	NEK7	NEK7	DDI2
		DIEXF	FRMD4B	IGFBP5	ZKSCAN5	RPRD2	C10orf6 (hsa)	ATF6	SLK	CELF2	VPS13C	RTN4	ZEB2	PAQR3	IRS2
		MED14	$\begin{gathered} \hline \text { C10orf1 } \\ 26 \end{gathered}$	TMED8	RNF41	$\begin{gathered} \hline \text { EPB41L4 } \\ A \end{gathered}$	COPS7A	C16orf52	ESPL1	TBC1D20	IRS2	COPS7A	$\begin{gathered} \text { FAM120 } \\ \mathrm{A} \end{gathered}$	ZEB2	RNF11
		ARL2BP	$\begin{gathered} \text { ALS2CR1 } \\ 1 \end{gathered}$	HBEGF	CCNT2	YTHDC2	B2M	BRK1	$\underset{\mathrm{A}}{\mathrm{EPB41L4}}$	PELI1	KLHL28	ESR1	FST	WIPF2	BRAF
		PTPN4	BLCAP	MFAP3	POLR2B	ESR1	$\begin{gathered} \hline \text { HSSO0104143 } \\ \text { (hsa) } \end{gathered}$	NCAPG2	ESR1	CAMTA1	CAMK2D	DDI2	SCAMP2	GSK3B	FHL2
		$\begin{gathered} \text { C16orf4 } \\ 6 \end{gathered}$	TTL	UBXN7	GOLPH3L	E2F7	PPP1CA	(PTPRG) (hsa)	PPP1CA	SLC44A2	POU2F1	RAB2B	STAT3	PRKCA	POU2F1
		PREPL	GPR22	SCAMP3	RTN4	DDI2	TRIB3	SCARF2	TRIB3	ABCB10	ZNF544	LARP6	HPCAL1	ITPRIP	ANP32E
		$\begin{gathered} \text { SPATA1 } \\ 3 \end{gathered}$	DICER1	BRMS1L	VAPB	RAB2B	ABCB10	SLC38A1	SLC44A2	RPA1	$\begin{gathered} \text { IQCJ- } \\ \text { SCHIP1 } \end{gathered}$	TRIB3	ASB1	PEAK1	$\begin{gathered} \text { TNFRSF11 } \\ \text { B } \end{gathered}$
		DDX6	ADCY7	ARL6IP5	SLK	CAMTA1	RPA1	TLR2	ABCB10	ZBTB40	SEC16A	CAMTA1	PNPLA2	RREB1	DUSP4
		RAB2A	DIEXF	TNPO1	RPRD2	RPA1	VPS13C	NEK7	PLXNA2	GABBR1	PDLIM5	RGS17	ARID3A	TNPO1	MTO1
		CRB1	PHAX	NAA35	ESPL1	VPS13C	SRRT	GSK3B	RGS17	KLHL28	TRA2B	FBXO5	NDST1	CDH2	$\begin{gathered} \text { TMEM50 } \\ \text { A } \end{gathered}$
		CXCL2	BRIX1	ARFGEF1	YTHDC2	KLHL28	C16orf52	SOX4	PFN1	CEP70	CTNND2	PFN1	ATP2C1	G3BP1	BRI3BP
		$\begin{gathered} \hline \mathrm{CCDC12} \\ 1 \end{gathered}$	RIC8B	CDH2	SEMA6A	FHL2	FBXO5	FBXL3	IRS2	RPGR	ZNF786	PTPDC1	YAP1	TBC1D13	RAPGEF3
		$\begin{gathered} \text { B3GALN } \\ \text { T1 } \end{gathered}$	MED14	G3BP1	NDUFS2	FASN	BUD13	OTUD1	RBM14	тС7B	TSC1	COMMD5	RNF38	TCEB3	SERTAD3
		LIMS1	$\begin{gathered} \hline \text { PRR23D } \\ 1 \end{gathered}$	ZSCAN25	CELF2	ZNF544	POU2F1	DAZAP2	BUD13	NACA	PTPN3	ZBTB40	TM9SF1	OTUD3	PPP1R37
		LPAR4	$\begin{gathered} \text { PRR23D } \\ 2 \\ \hline \end{gathered}$	MMS19	PPP1CA	CCNG1	UBASH3B	NFIX	BRAF	PRLR	MYBL1	SLC25A44	NUCKS1	FEM1B	PCGF6

$\begin{aligned} & \tilde{\sim} \\ & \underset{\sim}{\underset{\sim}{x}} \end{aligned}$			$\begin{aligned} & \stackrel{T}{2} \\ & \sum_{4}^{N} \end{aligned}$	홍	$\begin{aligned} & \text { 씀 } \\ & \hline \text { a } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { Z } \end{aligned}$	$\underset{\substack{\bar{\infty}}}{\sum_{\substack{n}}^{n}}$	$\begin{aligned} & \text { ư } \\ & \stackrel{y}{4} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{-0}{\mathbf{W}} \\ & \stackrel{\sim}{\propto} \end{aligned}$	$\frac{0}{2}$	$\begin{aligned} & O_{0}^{0} \\ & \sum_{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \text { S } \\ & \text { U } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { M } \end{aligned}$	$\stackrel{\stackrel{\sim}{\underset{\sim}{u}}}{ }$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { M } \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \sum_{\mathrm{I}}^{0} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { ó } \\ & \text { O} \end{aligned}$	2		N	\sum_{u}^{∞}	¢
$\frac{\stackrel{\sim}{\sim}}{\stackrel{1}{c}}$		5	$\stackrel{\rightharpoonup}{0}$	${\underset{U}{-0}}_{\sim}^{0}$	～	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{y}{N} \end{aligned}$	$\stackrel{\rightharpoonup}{\hat{\sim}}$		E	$\begin{aligned} & \overrightarrow{\tilde{n}} \\ & \stackrel{y}{\ddot{z}} \end{aligned}$		$\begin{aligned} & \text { 毞 } \\ & \hline \end{aligned}$			\sum_{i}^{I}		\sum_{i}^{O}	$\sum_{S}^{ \pm}$	$\left\|\begin{array}{c} \underset{\sim}{2} \\ \stackrel{y}{n} \\ \substack{n} \end{array}\right\|$		$\begin{aligned} & \text { I } \\ & \text { U } \\ & \text { I } \\ & \Sigma \end{aligned}$		¢
$\sum_{\ll}^{\stackrel{N}{4}}$	$\begin{array}{l\|l} \underset{\sim}{c} \\ \underset{\sim}{2} & \vec{\sim} \\ \end{array}$		$\begin{aligned} & \text { Z } \\ & \text { 热 } \end{aligned}$	$\stackrel{\mathbb{U}}{J}$	$\begin{aligned} & \stackrel{m}{3} \\ & \stackrel{y}{\underline{x}} \end{aligned}$		$\begin{aligned} & \vec{U} \\ & \stackrel{\rightharpoonup}{U} \\ & \stackrel{y}{\Sigma} \end{aligned}$	$\stackrel{0}{i}$	$\sum_{N}^{ \pm}$	$\begin{aligned} & \text { § } \\ & \text { x्य } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { ت} \\ & \hat{O}_{4}^{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \underset{\square}{0} \end{aligned}$	$\begin{aligned} & \text { ت̈ } \\ & \text { 옻 } \end{aligned}$	$\underset{\substack{x}}{\underset{y}{x}}$	$\begin{gathered} \frac{m}{4} \\ \stackrel{y}{4} \end{gathered}$		曻	$\begin{aligned} & \text { O్ત્ત } \\ & \text { O} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\lambda}{\vec{T}} \mid \\ \sum_{\overline{1}} \\ \hline \end{gathered}\right.$	$\frac{\underset{1}{2}}{\frac{2}{2}}$	$\begin{aligned} & \text { O} \\ & \text { 㐫 } \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \frac{n}{n} \\ & \frac{\tilde{c}}{\substack{2}} \\ & \sum_{<}^{2} \end{aligned}$	－
$\stackrel{\text {－}}{\text { O}}$	令近	析	$\underset{\substack{x}}{\underset{\alpha}{x}}$	$\stackrel{\vec{\Gamma}}{\stackrel{\rightharpoonup}{\Psi}}$	$\begin{aligned} & \overrightarrow{\mathbf{~}} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 를 } \end{aligned}$	$\frac{\stackrel{y}{b}}{2}$		ㄷ⿳亠二口丿 O 조 \sum^{∞}			$\begin{aligned} & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		\sum_{N}^{N}	$\begin{gathered} \text { O} \\ \stackrel{\text { U }}{2} \end{gathered}$	$\frac{-1}{\Sigma}$	$\begin{aligned} & \text { n} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \frac{\stackrel{\rightharpoonup}{I}}{1} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{N}{O} \end{aligned}$	$\begin{aligned} & \vec{\circ} \\ & 0 \\ & 0 \overline{0} \end{aligned}$	旁
			$\stackrel{N}{\mathrm{I}}$	$\begin{aligned} & \ddot{(0} \\ & \stackrel{y}{4} \end{aligned}$	$\begin{gathered} \underset{\sim N}{\sim} \\ \underset{\sim}{x} \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{\mid}}{\stackrel{\rightharpoonup}{2}}$	تِّ	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{y}{z} \end{aligned}$	$\underset{X}{Z}$	$\begin{aligned} & \text { N } \\ & \text { 己⿱⿰㇒一㐄凵} \end{aligned}$	$\begin{aligned} & \text { 모 } \\ & \text { ㄲㅗㅗ } \end{aligned}$	$\begin{aligned} & \text { O/ } \\ & \stackrel{\omega}{\omega} \\ & \text { N } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{M}{0}}$		$\begin{aligned} & \text { İ } \\ & \text { تै } \end{aligned}$	$\begin{aligned} & \text { U} \\ & \text { O} \\ & \models \end{aligned}$	$\begin{aligned} & \text { г } \\ & \text { 人̀ } \end{aligned}$	$\underset{\underset{\sim}{\boxed{7}}}{\substack{-1}}$	$\left\|\begin{array}{c} \vec{\sim} \\ \stackrel{\sim}{3} \end{array}\right\|$	苂	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \sum_{N}^{\infty} \end{aligned}$	N
$\begin{aligned} & \text { N} \\ & \text { 를 } \\ & \text { an } \end{aligned}$			$\begin{aligned} & \text { N } \\ & \text { ¿ } \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	O	$\stackrel{\infty}{\stackrel{\infty}{\Perp}}$		$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\rightharpoonup}{㐅} \\ & \hline \end{aligned}$	홍	$\begin{aligned} & \mathbb{Y} \\ & \stackrel{y}{⿺ 辶} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\alpha} \\ & \stackrel{\rightharpoonup}{j} \\ & = \end{aligned}$	\sum_{Σ}^{∞}	in	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\mathbb{d}} \end{aligned}$	$\stackrel{\underset{\rightharpoonup}{\vec{~}}}{\substack{\text { r }}}$	$\begin{aligned} & \stackrel{7}{\infty} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$	$\stackrel{N}{4}$	U	$\left\|\begin{array}{c} 0 \\ 0 \\ 2 \\ 2 \\ 2 \end{array}\right\|$	$$	$\begin{aligned} & \underset{\vec{W}}{J} \\ & \text { 岂 } \\ & \text { W } \end{aligned}$	～	O
$\stackrel{\underset{\sim}{\square}}{\stackrel{\rightharpoonup}{0}}$			$\underset{\substack{\mathbb{Z}}}{\substack{2}}$	옴		$\begin{aligned} & \frac{N}{\bar{N}} \\ & \frac{1}{\Sigma} \end{aligned}$	$\stackrel{\text { ®̃ }}{\stackrel{\text { Un }}{\Sigma}}$	$\begin{aligned} & \overrightarrow{\widetilde{\sim}} \\ & \underset{W}{n} \end{aligned}$	$\frac{\stackrel{a}{4}}{\sum_{4}^{4}}$	命	$\stackrel{ \pm}{\stackrel{~}{\Sigma}}$			\sum_{3}^{N}	$\overrightarrow{0}$ $\stackrel{\rightharpoonup}{0}$ $\stackrel{1}{4}$	$\underset{\sim}{\underset{\sim}{z}}$	$\begin{aligned} & \text { O} \\ & \text { ¢్ర } \\ & \text { UO } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { © } \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} \stackrel{a}{\grave{a}} \\ \hat{a} \\ \hline \end{array}\right\|$	$\begin{aligned} & \frac{1}{1} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \frac{1}{a} \end{aligned}$	乭	¢
$\sum_{\frac{\lambda}{\alpha}}^{\frac{1}{4}}$				Z \vdots i i	$\begin{aligned} & \overrightarrow{3} \\ & \text { O} \\ & \text { 攵 } \end{aligned}$	$\begin{aligned} & \sqrt{0} \\ & \underset{\sim 0}{3} \end{aligned}$			$\underset{\substack{\mathrm{N}}}{\substack{\text { N }}}$	$\begin{aligned} & \text { ָ̃ } \\ & \text { O} \\ & \underline{W} \end{aligned}$		Z		$\begin{aligned} & \underset{3}{3} \\ & \text { 롬 } \end{aligned}$	${\underset{U}{-0}}_{\sim}^{0}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\alpha}{\alpha} \end{aligned}$	$\stackrel{\substack{~}}{2}$	$\begin{aligned} & \overrightarrow{\mathbf{n}} \\ & \stackrel{y}{3} \end{aligned}$	$\left\|\begin{array}{c} \hat{a} \\ \hat{a} \\ \hat{a} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { o } \end{aligned}$	N̂̀		先
毖				$\begin{aligned} & \text { ヘ̃ } \\ & \text { O} \\ & \text { ® } \end{aligned}$	$\begin{aligned} & 太 \\ & \vdots . 甘 \\ & \vdots \end{aligned}$	ت尺্氏丶		n	$\begin{aligned} & \mathbb{Q} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\mid c} \end{aligned}$		哭	$\frac{ \pm}{\Sigma}$	$\sum_{N}^{\stackrel{m}{4}}$	$\begin{aligned} & \text { 미 } \\ & \text { 운 } \end{aligned}$	$\begin{aligned} & \tilde{\tilde{y}} \\ & \stackrel{\text { 롶 }}{ } \end{aligned}$	解	$\begin{aligned} & \stackrel{-1}{\omega} \\ & \stackrel{y}{4} \end{aligned}$		$0 \begin{aligned} & 0 \\ & \substack{0 \\ 0 \\ 0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ~ี } \\ & \stackrel{\sim}{\check{y}} \end{aligned}$		$\begin{aligned} & \text { 岕 } \\ & \text { Wָ } \end{aligned}$	N
				$\begin{aligned} & \times \\ & \text { 중 } \end{aligned}$	$\sum_{i}^{\infty} \varangle$		$\frac{\stackrel{N}{\stackrel{~}{2}}}{}$	$\frac{N}{\bar{n}}$	$\stackrel{n}{n}$	$\begin{aligned} & \tilde{N} \\ & \stackrel{\text { 人x }}{4} \end{aligned}$	$\begin{aligned} & \underset{\hat{N}}{\mathbf{0}} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\tilde{y}}{\frac{\tilde{1}}{\bar{I}}}$	$\underset{\longmapsto}{\underset{ }{N}}$	$\underset{\substack{\mathrm{m}}}{\substack{2}}$	$$	$\underset{\sim}{\sim}$	$\begin{aligned} & \overrightarrow{\breve{y}} \\ & \text { 新 } \\ & \text { x } \end{aligned}$	$\stackrel{\rightharpoonup}{2}$ \sum_{4} \sum_{4}	$\left\|\begin{array}{c} \stackrel{a}{\grave{a}} \mid \\ \hat{a} \end{array}\right\|$	$\frac{2}{0}$	$\begin{aligned} & \text { 들 } \\ & \underset{a}{n} \end{aligned}$	$\frac{\stackrel{⿺}{a}}{2}$	发
岗			$\underset{\substack{\underset{\infty}{\infty}}}{\underset{\sim}{x}}$	$\begin{aligned} & \underset{O}{0} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \sum_{i}^{N} \\ & \sum_{i} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\sim} \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\underset{1}{2}} \\ & \stackrel{\rightharpoonup}{\mathbf{1}} \end{aligned}$			$\underset{\text { 픞 }}{ }$	$\begin{aligned} & \text { K} \\ & \sum_{0}^{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{山}{\sim} \\ & \sum_{<}^{2} \end{aligned}$	\sum_{Σ}^{\sim}	$\underset{\substack{\text { z } \\ \hline}}{ }$	$$	ت্ָర	$\underset{k}{\underset{k}{2}}$		$\left\|\begin{array}{c} \frac{9}{⿺} \\ \frac{\rightharpoonup}{2} \end{array}\right\|$	$\sum_{i}^{\text {in }}$		$\stackrel{\stackrel{\rightharpoonup}{4}}{\underset{z}{2}}$	～
			$\underset{\aleph}{\tilde{\aleph}}$		$$	$\sum_{\substack{n \\ \stackrel{N}{N}}}^{\substack{n}}$	$\stackrel{\sqrt{4}}{\frac{2}{4}}$	$\begin{aligned} & \vec{N} \\ & \frac{1}{3} \end{aligned}$	～～3	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{\bullet} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{N}{K}}{\mathbb{K}}$	$\begin{aligned} & \overrightarrow{3} \\ & \stackrel{y}{\hat{3}} \\ & \underset{z}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { © } \end{aligned}$		\sum_{4}^{N}	$\begin{aligned} & \text { J } \\ & \text { X্ত } \end{aligned}$	\sum_{\sum}^{∞}	$\begin{aligned} & \text { N } \\ & \text { 00 } \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\underset{\sim}{2}} \\ \underset{\sim}{\underset{\sim}{2}} \\ \underset{y}{2} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 芒 } \end{aligned}$	$\begin{aligned} & \stackrel{N}{ふ} \\ & \sum_{i}^{(1)} \end{aligned}$	$\underset{\substack{\text { w }}}{\stackrel{y}{x}}$	모
$\sum_{\substack{0 \\ 0 \\ \hline}}$			$\sum_{\sum}^{ \pm}$	$\begin{aligned} & \text { 구 } \\ & \text { B } \end{aligned}$	$\sum_{3}^{\stackrel{\rightharpoonup}{3}}$	$\begin{aligned} & \ddagger \\ & \stackrel{t}{\grave{0}} \\ & \stackrel{-}{U} \\ & 0 \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{i}{\mathscr{C}}}$		$\left\lvert\, \begin{aligned} & \underset{\sim}{2} \\ & \sum_{\mathbb{L}}^{\sim} \\ & \hline \end{aligned}\right.$	$\sum_{J}^{\overrightarrow{0}}-1$	$\begin{aligned} & \mathbb{\bigotimes} \\ & \stackrel{y}{\approx} \end{aligned}$		$\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{\underset{U}{2}} \end{aligned}$	$\begin{gathered} \text { n } \\ \substack{4\\ } \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	\sum_{Σ}^{2}	$\stackrel{n}{t}_{\substack{0 \\ 0 \\ 0}} n$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{1}{6}}$				$\stackrel{\text { U }}{\underset{\sim}{x}}$	$\sum_{=}^{n}$
$\frac{-1}{2}$			$\begin{aligned} & \text { t } \\ & \text { 立 } \end{aligned}$		\sum_{i}^{0}	$\underset{3}{3}$ $\underset{G}{3}$	$\stackrel{\stackrel{n}{x}}{\stackrel{y}{c}}$	ত		$\begin{aligned} & \text { 곰 } \\ & \stackrel{U}{\Sigma} \end{aligned}$	도 1	$\begin{aligned} & \stackrel{\sim}{\Psi_{1}} \\ & \stackrel{د}{\Phi} \end{aligned}$	No.	$\begin{aligned} & \text { N } \\ & \underline{\underline{N}} \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$\sum_{\propto<}^{\infty}$	$\begin{aligned} & \text { 志 } \\ & \text { N } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \hline \stackrel{y}{4} \\ & \hline \end{aligned}\right.$	$\underset{\propto}{\stackrel{\rightharpoonup}{\underset{~}{~}}}$	$\begin{aligned} & \stackrel{\sim}{2} \\ & \frac{1}{z} \end{aligned}$	$\begin{aligned} & \text { 씄 } \\ & \hline \end{aligned}$	

	$\begin{aligned} & \stackrel{\sim}{\widetilde{N}} \\ & \stackrel{\tilde{\omega}}{4} \end{aligned}$			$\begin{gathered} \frac{n}{x} \\ \frac{\kappa}{2} \end{gathered}$			$\begin{gathered} \stackrel{\rightharpoonup}{\mathbf{x}} \\ \text { ex } \end{gathered}$		$\begin{array}{\|c} \hline \\ \hline \\ \hline \end{array}$			$\begin{aligned} & \text { U } \\ & \text { x } \\ & \text { x} \end{aligned}$	$\sum_{\underset{\sim}{\sim}}^{\stackrel{y}{0}}$			$\stackrel{ \pm}{\overleftarrow{~}}$	$\left\|\begin{array}{c} \underset{\sim}{0} \\ \stackrel{y}{4} \\ \frac{1}{x} \end{array}\right\|$	$\sum_{\substack{\mathbb{\sim}}}^{\substack{n}}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \sum_{i}^{0} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathbf{N}}$	$\begin{aligned} & \underset{\sim}{J} \\ & \underset{0}{3} \end{aligned}$	
\sum_{n}^{∞}	$\sum_{\text {d }}$			$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$			$\begin{aligned} & \stackrel{0}{\overleftarrow{N}} \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{array}{l\|l} \overrightarrow{\hat{y}} & \tilde{\sim} \\ \text { 管 } \end{array}$	$\left\|\begin{array}{c} \tilde{y} \\ \tilde{\sim} 4 \\ \hline \end{array}\right\|$			$\begin{aligned} & \stackrel{H}{\stackrel{H}{4}} \\ & \stackrel{y}{ء} \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\text { P}}{\gtrless}}$			$\begin{aligned} & \underset{y}{\mathrm{I}} \\ & \text { z } \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{2} \\ \stackrel{y}{\alpha} \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\text { Ñ }}{\underset{\sim}{4}}$	$\sum_{\underset{\sim}{m}}^{N}$		\|ris	$\begin{aligned} & \text { 조 } \\ & \stackrel{1}{N} \end{aligned}$	굴
$\begin{aligned} & \text { U } \\ & \underset{\sim}{2} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\Delta}}$				C\|r		$\begin{aligned} & \sum_{i n}^{1} \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \frac{\rightharpoonup}{\mathbf{m}} \\ & \frac{\mathbf{N}}{\frac{1}{4}} \\ & \frac{2}{\Sigma} \end{aligned}$				$\begin{aligned} & \underset{\sim}{\Psi} \\ & \text { 포 } \end{aligned}$	\sum_{\sum}^{N}		$\frac{2}{\Sigma}$		$\stackrel{\rightharpoonup}{\Sigma}$		
$\begin{aligned} & \text { 뫃 } \\ & \text { 풍 } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { ্ָত } \\ & \text { N } \end{aligned}$		$\begin{gathered} n \\ \\ \substack{n \\ n_{n} \\ \hline} \end{gathered}$	Z			$\stackrel{-1}{\unlhd}$		$\left\|\begin{array}{c} \underset{\sim}{n} \\ \hat{N} \\ \underset{\sim}{c} \end{array}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{\Sigma} \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \sum_{i}^{\prime} \\ & \stackrel{y}{4} \end{aligned}$	$\frac{\vec{y}}{\frac{1}{2}}$			$\begin{aligned} & \stackrel{\widetilde{\infty}}{\infty} \\ & \sum_{i}^{e} \end{aligned}$		$\begin{aligned} & \text { u } \\ & \text { N } \\ & \text { 층 } \end{aligned}$	$\begin{aligned} & \text { 좀 } \\ & \text { a } \end{aligned}$	$\sum_{\underset{\sim}{\infty}}^{\substack{\infty\\}} \mid \underset{\sim}{x}$	$\frac{\stackrel{N}{\mathbb{W}}}{}$	㞱	
	$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{y}{n} \\ & \underset{z}{2} \end{aligned}$			$\begin{aligned} & \text { ờ } \\ & \text { ì } \\ & \text { ® } \end{aligned}$		$\left\|\begin{array}{c} -1 \\ \substack{1 \\ \sum_{X}^{2} \\ 0} \end{array}\right\|$	$\underset{N}{\stackrel{\rightharpoonup}{y}}$	$\stackrel{\underset{N}{n}}{\stackrel{\rightharpoonup}{2}}$	$\left\|\frac{N}{2}\right\|$	츲		$\begin{aligned} & \text { @ } \\ & \text { 들 } \end{aligned}$	$\frac{\widetilde{4}}{\stackrel{\rightharpoonup}{a}}$		$\begin{array}{lll} 7 & \begin{array}{c} n \\ \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{array} \\ \hline \end{array}$	Z્ত	$\left\|\begin{array}{c} \underset{0}{0} \\ \hat{0} \end{array}\right\|$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\Sigma} \end{aligned}$	岀	$\begin{array}{\|l\|l\|} \hline \end{array} \left\lvert\, \begin{gathered} n \\ \\ \hline \end{gathered}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\mathbf{N}_{1}} \\ & \stackrel{1}{2} \end{aligned}$	
				氙		$\left\|\begin{array}{c} \frac{1}{4} \\ \stackrel{y}{4} \end{array}\right\|$	$\begin{aligned} & \underset{\breve{0}}{\substack{\infty \\ \propto}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\Xi}{=} \end{aligned}$	$\left\|\begin{array}{c} ⿳ ⺈ ⿴ 囗 十 灬 \\ \dot{4} \\ \hline \end{array}\right\|$			$\stackrel{\text { N }}{\text { Nan }}$	$\begin{aligned} & \text { U} \\ & \text { 山 } \end{aligned}$		O	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{y}} \\ & \stackrel{y}{2} \end{aligned}$	$\left\|\begin{array}{l} \overrightarrow{7} \\ \vec{y} \\ \stackrel{y}{c} \end{array}\right\|$	$\begin{aligned} & \sum_{0}^{m} \\ & \text { O} \\ & \text { M } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\sum_{\mathbb{<}}^{\sqrt{n}}$	$\begin{aligned} & \stackrel{7}{0} \\ & \stackrel{y}{N} \end{aligned}$	（1）
Ò	$\stackrel{\substack{0}}{0}$						$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{M}} \\ & \stackrel{\leftrightarrow}{U} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\frac{\stackrel{m}{\circ}}{\lambda}$				$\begin{aligned} & \text { 区. } \\ & \text { ó } \end{aligned}$	$\sum_{\mathbb{L}}^{\infty} \sum_{4}^{\infty} \infty$				$\left\lvert\, \begin{gathered} \stackrel{a}{4} \\ \substack{\mathrm{c}} \end{gathered}\right.$	$\begin{aligned} & \text { H} \\ & \text { d } \end{aligned}$	恙	둥	N్ల్ల	\sum_{0}^{0}	
总	$\stackrel{\stackrel{\rightharpoonup}{\mid}}{\underline{\text { E}}}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{O}} \\ & \stackrel{y}{2} \end{aligned}$		\sum_{i}^{e}	$\stackrel{3}{3}$	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{l} \frac{2}{2} \\ \frac{1}{4} \\ \overrightarrow{1} \\ \frac{2}{4} \end{array}\right\|$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{c} \\ & \stackrel{\alpha}{\delta} \end{aligned}$	$\frac{\underset{\sim}{N}}{\stackrel{y}{w}}$			드́	$\left\lvert\, \begin{gathered} \substack{0 \\ 0} \\ \hline \end{gathered}\right.$	$\stackrel{\text { N }}{\underset{N}{N}}$	$\stackrel{\mathbb{I}}{\sum_{U}^{\mathbb{I}}}$			$\begin{aligned} & \stackrel{\sim}{0} \\ & \underline{0} \end{aligned}$	¢
\sum_{i}^{\sum}	zo			$\stackrel{\text { n}}{\stackrel{N}{2}}$				긍 胥	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{3} \\ \vec{x} \end{array}\right\|$	$\begin{aligned} & \text { U } \\ & \text { Ü } \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { 荘 } \\ & \text { 保 } \end{aligned}$	$\begin{gathered} \text { ~ } \\ \substack{\text { ¢ }} \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{\infty} \\ \substack{u \\ u} \end{array}\right\|$			$\left\|\begin{array}{l} \infty \\ \Delta \\ \Sigma \end{array}\right\|$		N			$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{\mid} \end{aligned}$	（1）
$\underset{\Delta}{2}$	ছ		$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{7}{x}$	\sum_{i}^{i}	$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ 0 \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & \stackrel{\substack{\infty \\ \underset{\sim}{4}}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{m}{7} \\ & \stackrel{y}{n} \end{aligned}$	$\left\|\begin{array}{c} \underset{N}{N} \\ \underset{N}{N} \end{array}\right\|$			$\begin{aligned} & \text { n } \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \text { ت-0 } \\ & 0 \\ & \hline \end{aligned}$			$\stackrel{\vec{m}}{\stackrel{\rightharpoonup}{2}}$	$\left\|\begin{array}{c} 0 \\ 3 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{c} \\ & \underset{\propto}{2} \end{aligned}$	$\sum_{\substack{\text { cuc }}}^{7}$		$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{\rightharpoonup}{\alpha} \end{aligned}$		N
$\begin{aligned} & \text { O. } \\ & \text { 区्ए } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { 凹د } \end{aligned}$			$\stackrel{\tilde{y}}{\delta}$		$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{\sim}{\sim} \\ \underset{N}{2} \end{array}\right\|$		\sum_{s}^{n}		$\sum_{i n}^{0}$	$\sum_{\substack{n}}^{\substack{n}} \mid$	$\underset{\sim}{\breve{H}}$	حِّ			苍	$\left\|\begin{array}{c} u \\ \stackrel{y}{c} \\ \stackrel{y}{心} \end{array}\right\|$	$\begin{aligned} & \text { U} \\ & \text { O} \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{y y}{4} \end{gathered}$		$\underset{\text { cic }}{\substack{\underset{\sim}{u}}}$	$\frac{\underset{J}{\mathbf{Z}}}{2}$	¢
2 2 0	$\sum_{0}^{N} 0$		$\begin{gathered} 9 \\ \frac{a}{a} \\ \frac{a}{4} \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { I } \\ & \sum_{0}^{3} \\ & \sum_{0} \end{aligned}\right.$	\sum_{n}^{\sim}	$\left\|\begin{array}{c} m \\ \stackrel{m}{5} \end{array}\right\|$		$\sum_{\Sigma}^{\hat{O}}$	$\left\|\begin{array}{c} \vec{x} \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	$\stackrel{7}{4}$	$\begin{array}{\|c\|c} \substack{0 \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & \text { 崔 } \\ & \underset{\sim}{\vec{x}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ì } \\ & 0 . \end{aligned}$	足会		$\sum_{\substack{0 \\ 0 \\ 0 \\ \hline}}$	$\left\|\begin{array}{l} u \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{aligned} & \stackrel{\nwarrow}{\infty} \\ & \stackrel{\alpha}{\propto} \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\tilde{c}}{\underset{\alpha}{c}} \end{aligned}$	$\begin{array}{\|c\|c} \stackrel{\rightharpoonup}{2} \\ \\ \stackrel{y}{2} \\ \hline \end{array}$	을	$\underset{\sum_{i}^{N}}{\tilde{N}}$	\cdots
4 	$\underset{\Delta}{\mathbb{N}}$	\|ợ		$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{p}} \\ & \stackrel{4}{\Delta} \end{aligned}$	$\underset{\substack{N \\ \underset{y}{N} \\ \\ \hline}}{ }$	$\left\|\begin{array}{c} \underset{\sim}{\underset{\sim}{c}} \\ \underset{\sim}{2} \end{array}\right\|$		$\begin{aligned} & \underset{N}{N} \\ & \stackrel{n}{n} \end{aligned}$	$\left\|\begin{array}{l} \sum_{0}^{y} \\ \sum_{1} \end{array}\right\|$	$\underset{\substack{\widetilde{2}}}{\substack{2}}$					0	$\begin{aligned} & \stackrel{⺊}{c} \\ & \stackrel{2}{2} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ \stackrel{n}{1} \\ \stackrel{y}{c} \\ \underset{\sim}{w} \end{array}\right\|$	\sum_{y}^{3}	$\begin{aligned} & 7 \\ & \stackrel{1}{\circ} \\ & \times \end{aligned}$		$\underset{\underset{\sim}{\underset{\sim}{y}}}{\vec{y}}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{w}}$	2

$\underset{\sim}{\stackrel{y}{c}}$	$\left\|\begin{array}{c} \underset{\sim}{2} \\ \underset{y}{x} \end{array}\right\|$	$$	$\begin{aligned} & \underset{\sim}{2} \\ & \underline{2} \end{aligned}$			$\stackrel{\underset{\sim}{7}}{\stackrel{1}{\sim}}$	O응웅		$\underset{\sim}{\underset{N}{N}}$	$\left\lvert\, \begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	$\frac{4}{3}$		$\begin{gathered} \infty \\ \stackrel{\rightharpoonup}{4} \\ \stackrel{\sim}{u} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{\rightharpoonup}{x}} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underline{\underline{x}} \end{aligned}$		$\begin{aligned} & \text { ñ } \\ & \text { © } \end{aligned}$			$\begin{aligned} & \underset{N}{\mathrm{a}} \\ & \frac{2}{4} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{y}{\top} \\ & \sum_{y}^{4} \end{aligned}\right.$	$\sum_{\underset{1}{2}}^{N}$		罂
$\begin{aligned} & \overline{\vec{u}} \\ & \vec{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\times}{\text { ¢ }}$	$\frac{n}{4}$		Nocio		$\begin{aligned} & \stackrel{0}{\tilde{0}} \\ & \stackrel{y}{\approx} \end{aligned}$			$\stackrel{7}{N}$	$\underset{\sim}{2}$		$\left\lvert\, \begin{gathered} \vec{y} \\ \vec{y} \end{gathered}\right.$	$\left\|\begin{array}{l} \underset{\substack{2 \\ \vdots \\ \infty \\ \infty \\ \infty}}{ } \end{array}\right\|$	$\sum_{4}^{\infty}{ }_{4}^{\infty} \infty$		$\begin{aligned} & \hat{M} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \text { 仓̀ } \end{aligned}$				$\left\|\begin{array}{c} \tilde{0} \\ \vdots \\ 0 \end{array}\right\|$	$\stackrel{\rightharpoonup}{\sqrt{n}}$	$\|\underset{\sim}{\underset{\sim}{\sim}}\| \underset{\sim}{\infty} \mid \sum_{\substack{\infty}}^{\infty}$	
$\begin{aligned} & \stackrel{0}{\underset{\sim}{7}} \\ & \underset{N}{4} \end{aligned}$		$\sum_{i}^{\infty} \sum_{i}^{\infty} n_{n}$	ָㅗㅁ			No								N N ín						$\sum_{\underset{x}{x}}^{\substack{x}}$	$\left\|\begin{array}{c} -1 \\ \sum_{W}^{0} \end{array}\right\|$	$\begin{aligned} & \underset{\vdots}{\stackrel{1}{2}} \\ & \text { ¢ } \end{aligned}$		$\underset{\sim}{\mathbb{T}}$
$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{4}{心} \end{aligned}$	$\|\underset{\substack{4}}{\underset{\mathbb{N}}{ }}\|$	$\begin{aligned} & \underset{\sim}{\underset{N}{y}} \\ & \underset{\frac{1}{4}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\widetilde{\sim}} \\ & \stackrel{\rightharpoonup}{\widetilde{\alpha}} \end{aligned}$			$\underset{\underset{\sim}{x}}{\stackrel{\sim}{x}}$		$\begin{array}{c\|c} \underset{\sim}{\infty} & \underset{\sim}{0} \\ \hline \end{array}$	$\begin{aligned} & \underset{\tilde{W}}{\substack{\alpha}} \end{aligned}$	$\left\|\begin{array}{l} \vec{\sim} \\ \stackrel{U}{\partial} \\ \hline \end{array}\right\|$	$\stackrel{4}{4}$	僉	\sum_{0}^{N}	\sum_{\sum}^{∞}	$\stackrel{N}{\Sigma}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathscr{C}} \\ & \underset{X}{\prime} \end{aligned}$	\sum_{∞}^{\sim}		$\begin{aligned} & \underset{\substack{\mathbb{N}}}{\sum_{4}^{\mathbf{N}}} \end{aligned}$	$\left\lvert\, \begin{array}{l\|l\|l\|} \substack{m \\ \sum_{i}^{m} \\ \hline} \\ \hline \end{array}\right.$	$\begin{aligned} & \text { n n } \\ & \stackrel{y}{\Sigma} \end{aligned}$		$\begin{aligned} & \frac{n}{x} \\ & \frac{\kappa}{2} \end{aligned}$
亗	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\frac{\underset{\sim}{\stackrel{\sim}{\Sigma}}}{\stackrel{\Sigma}{\Sigma}}$	$\begin{aligned} & \text { n n } \\ & \text { ¢ } \end{aligned}$						$\begin{aligned} & \stackrel{\sim}{N} \\ & \sum_{\overleftarrow{N}} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \underset{N}{2} \\ \mid \end{array}\right\|$	$\begin{aligned} & \text { ơ } \\ & \stackrel{0}{0} \\ & \sum_{N}^{2} \end{aligned}$		$\begin{aligned} & \frac{1}{\mathbf{o}} \\ & \frac{1}{c} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 区 } \\ & \text { 区 } \end{aligned}$	$\begin{aligned} & \text { 고 } \\ & \text { 군 } \end{aligned}$	\sum_{i}^{n}	$\begin{aligned} & \stackrel{\sim}{N} \\ & \stackrel{\rightharpoonup}{\dagger} \end{aligned}$	$\sum_{\substack{0}}^{0}$		$\stackrel{\infty}{\stackrel{\infty}{2}}$	$\left\|\begin{array}{c} \underset{\sim}{\overrightarrow{1}} \\ \overrightarrow{\underline{2}} \\ \hline \end{array}\right\|$	$\sum_{\lll}^{\stackrel{y}{4}}$		$\stackrel{\text { I }}{5}$
$\stackrel{\text { ¢ }}{\stackrel{\sim}{1}}$	$\left\|\begin{array}{l} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right\|$	$\underset{\sim}{\stackrel{5}{4}}$	$\begin{gathered} \hat{0} \\ \text { 岕 } \end{gathered}$	N\|N			8		N্ড	$\left\|\begin{array}{c} \frac{m}{n} \\ \hat{a} \\ \vdots \end{array}\right\|$	$\begin{aligned} & \text { İ } \\ & \text { O} \end{aligned}$	\|a	$\left\lvert\, \begin{gathered} \substack{0 \\ \\ \\ \hline} \end{gathered}\right.$	$\begin{aligned} & \infty \\ & \text { 몽 } \end{aligned}$	$\begin{aligned} & \stackrel{\substack{2\\ }}{ } \end{aligned}$		$\stackrel{N}{\circ}$			$\begin{aligned} & \sum_{2}^{K} \\ & \frac{E}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\underset{\alpha}{x}} \end{aligned}$		－
$\sum_{i}^{\infty} \sum_{i}^{N} n$	$\left\lvert\, \begin{gathered} n \\ \substack{n \\ \\ \\ \hline} \end{gathered}\right.$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \\ & \underline{\omega} \end{aligned}$	$\underset{\text { N }}{N}$	Nod		$\begin{aligned} & \text { O} \\ & \sum_{u}^{U} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \text { y } \\ & \text { Wi } \end{aligned}$	$\left\|\begin{array}{l} \frac{n}{\alpha} \\ \frac{1}{2} \end{array}\right\|$	$\sum_{\underset{1}{N}}^{N}$		$\left\|\begin{array}{c} \tilde{n} \\ \hat{y} \\ 0 \end{array}\right\|$	$\stackrel{\overrightarrow{\text { bu}}}{\underline{0}}$	$\sum_{i}^{9} \mathbb{C}$	$\underset{\substack{\underset{\alpha}{2} \\ \underset{\sim}{2} \\ \hline}}{ }$		另		$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{u}{\Sigma} \end{aligned}$	$\left\|\begin{array}{c} \overrightarrow{2} \\ \underset{x}{x} \\ \stackrel{y}{2} \end{array}\right\|$	$\underset{\sim}{\tilde{\omega}}$		$\begin{gathered} \text { Nָה } \\ \underset{\sim}{n} \end{gathered}$
$\begin{aligned} & \text { 㞻 } \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{x}{\alpha} \\ \stackrel{1}{c} \end{gathered}\right.$		$\stackrel{N}{\tilde{N}}$			$\begin{aligned} & \text { 츰 } \end{aligned}$	\sum_{N}^{9}		$\begin{aligned} & \tilde{\sim} \\ & \text { ra } \\ & \text { N } \end{aligned}$	$\left\|\sum_{\Sigma}\right\|$	$\begin{aligned} & \text { n n } \\ & \frac{1}{1} \\ & \hline \end{aligned}$	$\stackrel{\sim}{6}$		$\begin{aligned} & \overline{0} \\ & \stackrel{0}{y} \\ & \sum_{0} \\ & 0 \end{aligned}$	$\stackrel{\text { O}}{\stackrel{+}{4}}$	$\begin{aligned} & \stackrel{y}{d} \\ & \stackrel{y}{3} \end{aligned}$	$\underset{\sim}{\underset{\sim}{n}}$				$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\frac{N}{\underset{\alpha}{⿺}}$		乲
$\sum_{\substack{ \pm}}^{ \pm}$	$\left\lvert\, \begin{gathered} n \\ \underset{1}{2} \\ \hline \end{gathered}\right.$	Ò		Br		$\begin{aligned} & \text { N } \\ & \underset{2}{2} \end{aligned}$				$\left\|\begin{array}{l} \hat{y} \\ \underset{\sim}{c} \end{array}\right\|$	$\begin{aligned} & \overline{0} \\ & \stackrel{y}{c} \\ & \hat{N} \\ & \end{aligned}$	$\begin{array}{\|c} \hat{n} \\ \substack{2 \\ \vdots \\ 0 \\ \hline} \end{array}$	$\begin{array}{\|c} \substack{9 \\ \frac{2}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\leftrightarrow}{\tilde{u}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{ت}{3} \\ & \text { N } \\ & 3 \end{aligned}$	n \sum_{1}^{N} $\stackrel{N}{1}$			\sum_{i}^{m}		$\frac{x}{\frac{x}{a}}$	${\underset{\sim}{u}}_{7}^{7}$	亲学势	$\stackrel{\rightharpoonup}{\text { P1 }}$
$\sum_{\underset{\sim}{0}}^{\substack{~}}$	$\left\lvert\, \begin{gathered} \text { St } \\ i \end{gathered}\right.$	$\begin{aligned} & \text { - } \\ & \text { O } \\ & \text { 邑 } \end{aligned}$	$\begin{aligned} & \stackrel{7}{\infty} \\ & \sum_{\substack{\infty}} \end{aligned}$			$\begin{aligned} & \overrightarrow{\tilde{0}} \\ & \text { O} \end{aligned}$	뭉		$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{y}{区} \end{gathered}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\mathrm{O}} \\ \mathrm{Q} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \text { 쏟 } \end{aligned}$	N Ò ô	$\sum_{\infty<x}^{\infty}$	$\begin{aligned} & \stackrel{3}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$			$\left\lvert\, \begin{gathered} \tilde{N} \\ \hat{0} \\ \stackrel{3}{2} \end{gathered}\right.$			$\sum_{N}^{-} \sum_{N}-$
$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{n}{0} \\ \stackrel{y}{c} \\ \underset{c}{2} \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { ol } \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$		0	$\sum_{\text {cx }}^{7}$		$$	出	$\left\|\begin{array}{c} \stackrel{n}{0} \\ \underset{\sim}{2} \\ \stackrel{y}{N} \end{array}\right\|$	$\begin{aligned} & \underset{W}{0} \\ & \stackrel{N}{E} \end{aligned}$	$\left\|\begin{array}{c} \frac{1}{4} \\ \frac{1}{8} \end{array}\right\|$				$\begin{aligned} & \text { 寸 } \\ & \mathbf{\omega} \\ & \text { N } \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$			$\sum_{\mathbb{U}}$	$\left\lvert\, \frac{\mathcal{N}}{\mathbb{N}}\right.$	$$		$\begin{aligned} & \infty \\ & \stackrel{\sim}{\infty} \\ & \stackrel{\omega}{\omega} \end{aligned}$
$\frac{\tilde{1}}{\frac{\pi}{c}}$	$\left\|\begin{array}{c} \underset{\sim}{t} \\ \underset{\sim}{4} \end{array}\right\|$	$\begin{aligned} & \text { 昏 } \\ & \stackrel{y}{8} \end{aligned}$					2		$\stackrel{\rightharpoonup}{\text { 공 }}$	$\left\|\begin{array}{c} \tilde{\infty} \\ 0 \end{array}\right\|$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \substack{2 \\ 2} \\ \hline \end{array}$	$\underset{\underset{u}{\underset{u}{2}}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\text { ® }}{\text { ® }}$	$\begin{aligned} & \text { N} \\ & \underset{N}{\stackrel{1}{2}} \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\bullet}}$				$\mid \stackrel{\rightharpoonup}{\bar{O}}$	$\sum_{\substack{\infty}}^{\infty}$	気苍希	N

$\begin{aligned} & \text { ñ } \\ & \text { 区 } \end{aligned}$	$\left\|\begin{array}{c} 7 \\ \underset{u}{3} \\ 3 \end{array}\right\|$	$\stackrel{N}{3}$	$\underset{\sim}{\underset{\sim}{4}}$	$\sum_{\sum}^{\stackrel{5}{2}}$	Ü0	$\left\|\begin{array}{c} \frac{9}{2} \\ \stackrel{\rightharpoonup}{\mathrm{~m}} \\ \mathbf{n} \end{array}\right\|$	$$	$\sum_{\substack{s \\ y}}^{\substack{w \\ a}}$		$\begin{aligned} & \text { O } \\ & \text { O} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 주 } \\ & \text { 포N } \end{aligned}$	$\sum_{0}^{\frac{m}{2}}$		$\sum_{\substack{n}}^{m}$		$\begin{aligned} & \text { OD } \\ & \stackrel{\infty}{N} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{>}$	$\begin{aligned} & \stackrel{\sim}{\mathbb{N}} \\ & \stackrel{T}{4} \end{aligned}$		$\left\|\begin{array}{c} \underset{\sim}{N} \\ \underset{N}{2} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \stackrel{U}{U} \\ & \text { 花 } \end{aligned}$		$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{c} \\ \stackrel{c}{\mathrm{~S}} \\ \hline \end{array}\right\|$	豈
$\begin{aligned} & \text { ̃ } \\ & \text { Z } \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{u} \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{y}{*} \end{array}\right\|$	$\begin{aligned} & \mathbb{N} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{~}{x}} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { O/ } \\ & \sum_{N}^{2} \end{aligned}$	$\begin{aligned} & \text { 믈 } \\ & \text { 폼 } \end{aligned}$	$\left\|\begin{array}{l} \bar{y} \\ \cline { 1 - 4 } \\ \hline \end{array}\right\|$	$\begin{aligned} & \text { 【 } \\ & \underset{\sim}{\triangle} \end{aligned}$			$\begin{aligned} & m \\ & \begin{array}{l} m \\ \vdots \\ \vdots \end{array} \end{aligned}$	$\underset{~}{\text { 山 }}$	$\underset{\sim}{x}$	$\underset{\sim}{\sim}$		$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$			$\left\lvert\, \begin{aligned} & \vec{S} \\ & \stackrel{\rightharpoonup}{\mathbf{n}} \\ & \hline \end{aligned}\right.$	$\sum_{\underset{\sim}{\mathrm{N}}}^{\substack{0}}$	岕	$\left\lvert\, \begin{array}{\|c\|} \hline \frac{\mathrm{C}}{\mathbb{C}} \\ \hline \end{array}\right.$	\sum_{n}^{D}		$\left\|\begin{array}{c} \infty \\ \underset{N}{e} \\ \underset{N}{2} \end{array}\right\|$	S
$\begin{aligned} & 7 \\ & \stackrel{n}{n} \end{aligned}$	$\left\|\begin{array}{c} 1 \\ \frac{1}{c} \\ \frac{y}{z} \\ z \end{array}\right\|$	$\begin{aligned} & \text { d } \\ & \frac{1}{4} \end{aligned}$	$\sum_{\leq}^{\stackrel{\rightharpoonup}{2}}$		$\begin{aligned} & \underset{\sim}{2} \\ & \text { 人̀ } \\ & \text { in } \end{aligned}$	$\left\|\right\|$	$\begin{aligned} & \text { 쓴 } \\ & \underline{E} \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{y}{4} \\ & \text { an } \end{aligned}$		$\frac{\underset{U}{U}}{}$	$\frac{u}{\frac{u}{z}}$			tut	$\sum_{\mathbb{U}}^{\stackrel{\circ}{\infty}}$		$\begin{aligned} & \underset{\sim}{\tilde{n}} \\ & \hline \end{aligned}$	\sum_{0}^{1}	$\left\lvert\, \begin{gathered} m \\ \stackrel{m}{\omega} \\ \stackrel{\rightharpoonup}{x} \\ \stackrel{\rightharpoonup}{4} \\ \hline \end{gathered}\right.$	$\underset{\stackrel{\rightharpoonup}{c}}{ \pm}$		$\left\|\frac{\vec{y}}{\frac{\mathbf{y}}{2}}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \vec{\otimes} \\ & \stackrel{\rightharpoonup}{\oplus} \end{aligned}$
$\begin{aligned} & \stackrel{4}{m} \\ & \stackrel{4}{3} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ \hat{0} \\ \vdots \end{array}\right\|$		$\begin{aligned} & \vec{N} \\ & \sum_{\Sigma} \end{aligned}$	$\begin{aligned} & \text { ल } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{m}} \\ & \text { 足 } \end{aligned}$	$\left\|\begin{array}{c} \mathrm{O} \\ \mathrm{I} \end{array}\right\|$					$\begin{aligned} & \mathscr{\infty} \\ & \frac{\mathscr{U}}{\underline{x}} \end{aligned}$	$\underset{\text { Na }}{\substack{\text { I. }}}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\widetilde{1}} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\left\lvert\, \underset{\substack{y}}{\frac{1}{4}} \underset{y}{y}\right.$	$\left\lvert\, \begin{gathered} \infty \\ \hline \end{gathered}\right.$		\sum_{i}^{J}	$\stackrel{\mathrm{y}}{\mathrm{y}}$	$\underset{\substack{7 \\ \underset{\sim}{\infty} \\ \hline}}{ }$	$\sum_{\substack{n \\ \hline}}^{\text {n }}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\sum_{\mathbb{d}}^{1}$	\sum_{N}^{N}	$\left\|\begin{array}{l} \overrightarrow{1} \\ \vec{y} \end{array}\right\|$	$\underset{\sim}{\underset{N}{x}}$
	\sum_{0}^{0}		\sum_{Σ}^{N}		$$		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{w} \\ & \stackrel{y y}{*} \end{aligned}$		$\frac{a}{3}$	先	$\begin{aligned} & \text { 곰 } \\ & \stackrel{y}{0} \end{aligned}$	ت⿹弋工二⿰亻丨丶⿻工二又	$\stackrel{\text { N}}{\infty}$		$:$		$\begin{aligned} & \text { O } \\ & \text { 0̀ } \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{y}{z} \\ & \underset{x}{x} \end{aligned}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{Q} \\ & \stackrel{\square}{0} \\ & \stackrel{y}{n} \end{aligned}$	$\sum_{\text {İㄹㄹ }}^{N}$	$\underset{\substack{\infty \\ 2}}{\infty}$	\sum_{E}^{∞}		15	
$\begin{aligned} & \frac{0}{4} \\ & \frac{2}{4} \end{aligned}$	$\left\|\begin{array}{c} 1 \\ \stackrel{\rightharpoonup}{w} \\ \stackrel{\sim}{心} \\ \end{array}\right\|$	$\underset{\underset{\sim}{\stackrel{N}{s}}}{ }$	$\stackrel{\text { 곷 }}{\stackrel{\rightharpoonup}{\lambda}}$	\sum_{i}^{n}	$\begin{aligned} & \stackrel{-1}{0} \\ & \frac{0}{2} \end{aligned}$	$\left\|\begin{array}{c} \tilde{N} \\ \underset{\sim}{t} \\ \underset{W}{4} \end{array}\right\|$	$\underset{\stackrel{I}{U}}{\underset{L}{2}}$			$\underset{\underset{\sim}{\underset{\sim}{x}}}{\substack{2}}$	$\stackrel{\cong}{\underset{\sim}{x}}$	$\begin{aligned} & 0 \\ & \stackrel{1}{n} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \sum_{\text {zen }}^{\text {un }} \end{aligned}$	N			$\stackrel{\underset{\sim}{7}}{\stackrel{y}{n}}$			$\sum_{\substack{0}}^{N}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \end{array}\right\|$	$\sum_{i<i}^{o}$		$\left\lvert\, \begin{array}{\|c\|} \hline 8 \\ \mid \end{array}\right.$	－
$\underset{\substack{\stackrel{m}{4} \\ \hline}}{ }$	$\left\|\begin{array}{c} \overrightarrow{4} \\ \hat{h} \\ \underset{\sim}{\mathbf{N}} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\bar{n}}$	$\underset{\substack{x \\ \underset{\sim}{x} \\ \hline}}{\substack{\text { n}}}$	$\sum_{i}^{\infty} \sum_{i}^{\infty} \mathbb{L}$	$\begin{aligned} & \text { O} \\ & \text { O} \end{aligned}$	$\|\approx\|$	$\stackrel{\underset{N}{n}}{\stackrel{n}{N}}$			$\begin{array}{\|l\|l} \text { 思 } \\ \text { on } \end{array}$	$\sum_{\mid}^{\mid} \sum_{i}^{O}-1$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\overleftarrow{6}} \end{aligned}$	$$		$\underset{N}{\infty}$			$\left\|\begin{array}{\|c} \mathfrak{n} \\ \vec{心} \end{array}\right\|$	$\frac{\tilde{N}}{\frac{N}{2}} \underset{\frac{1}{2}}{\substack{2}}$	$\sum_{\underset{U}{m}}^{n}$		$\begin{aligned} & \text { N } \\ & \underset{\underline{\Sigma}}{\text { N}} \end{aligned}$		$\left\|\sum_{i}^{\infty}\right\|$	
$\underset{\substack{0}}{\stackrel{\rightharpoonup}{0}}$	$\left\|\begin{array}{c} \mathbf{~} \\ \underset{N}{N} \\ \underset{N}{2} \end{array}\right\|$	$\frac{\stackrel{N}{E}}{\underline{E}}$	$\begin{aligned} & \frac{N}{1} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{\sim}{\mathbb{N}} \\ & \hline \end{aligned}$	$\sum_{\substack{\infty \\ \infty}}^{\stackrel{\rightharpoonup}{\infty}}$	$\left\|\sum_{\substack{0}}^{m}\right\|$				$\begin{aligned} & \mathbf{I} \\ & \mathbf{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{2}$ $\stackrel{c}{\sim}$	음	$\sum_{\substack{\stackrel{y}{\mid}}}$	守解				$\left\|\begin{array}{r} 2 \\ \hline \mathbf{4} \\ \hline \end{array}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \sum_{ }^{0} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \sum_{i}^{n} \\ & \sum_{U}^{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \\ & 3 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\rightharpoonup}{\underset{\sim}{0}} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		$\left\|\begin{array}{l} \dot{w} \\ \stackrel{\rightharpoonup}{c} \\ \stackrel{y}{c} \\ \stackrel{y}{2} \end{array}\right\|$	릉
	Bl\|		ت N్N Un	$\begin{aligned} & 7 \\ & \frac{7}{0} \\ & \cline { 1 - 1 } \end{aligned}$	$\begin{aligned} & \stackrel{U}{\mathbf{M}} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\left\|\begin{array}{l} \square \\ \sum_{n}^{7} \\ \sum_{N} \end{array}\right\|$	$\begin{aligned} & \stackrel{7}{5} \\ & \stackrel{5}{5} \\ & \stackrel{y}{5} \end{aligned}$		$\underset{y}{y}$		z	$\begin{aligned} & \text { 글 } \\ & \text { ò } \end{aligned}$		OM	$\begin{aligned} & \dot{j} \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { ָ } \\ & \text { 도 } \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { O} \\ & \text { N} \end{aligned}$		$\left\lvert\, \begin{gathered} \stackrel{y}{2} \\ \stackrel{y}{x} \\ \frac{1}{2} \end{gathered}\right.$	$\underset{\underset{\sim}{\underset{\sim}{u}}}{\substack{\text { r }}}$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \frac{ֻ}{2} \\ & \frac{2}{4} \\ & \hline \end{aligned}\right.$	
さ	$\left\|\begin{array}{l} \widetilde{\infty} \\ 0 \\ \substack{\mathbb{x}\\ } \end{array}\right\|$	$\begin{aligned} & \text { ఱ } \\ & \text { É } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \frac{\pi}{2} \end{aligned}$	呈	$\stackrel{\stackrel{\rightharpoonup}{x}}{\stackrel{y}{0}}$	$\|\underset{\underset{\sim}{\underset{\sim}{4}}}{\underset{\sim}{7}}\|$	$\stackrel{\infty}{\underset{\sim}{w}}$		\mathfrak{c}	$\stackrel{N}{N}$	$$	$\begin{aligned} & \text { 人 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	ふ		0	$\stackrel{\rightharpoonup}{\varrho}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\underset{\sim}{2}} \end{aligned}$	$\left\lvert\, \begin{gathered} \sum_{n} \\ \end{gathered}\right.$	$\begin{aligned} & \underset{\rightharpoonup}{7} \\ & \frac{\square}{\Sigma} \end{aligned}$	$\sum_{\text {U }}$	$\left\|\begin{array}{c} \underset{\sim}{y} \\ \underset{N}{2} \end{array}\right\|$	圼		$\left\|\begin{array}{c} \widetilde{\sim} \\ \underset{\sim}{\underset{\sim}{u}} \\ \hline \end{array}\right\|$	$\begin{aligned} & \text { U } \\ & \text { a } \\ & \text { a } \end{aligned}$
$\stackrel{\infty}{\stackrel{\infty}{\otimes}}$	$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & \sum_{N}^{2} \end{aligned}\right.$	$\sum_{\mathbb{<}}^{\sqrt{n}}$	$\begin{aligned} & \stackrel{N}{n} \\ & \stackrel{N}{3} \end{aligned}$	$\stackrel{\text { n }}{\substack{\overleftarrow{6}}}$		$\stackrel{\rightharpoonup}{0}$				$\begin{aligned} & \vec{\sim} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$	$\stackrel{8}{⿺ 𠃊}$		さ̃		$\sum_{5}^{n} \sum_{0}^{N}$	$\begin{aligned} & \dot{\sim} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\dddot{U}}{ } \end{aligned}$	\sum_{4}^{N}	$\left\lvert\, \begin{gathered} \underset{\substack{\tilde{y}}}{\hat{N}} \mid \end{gathered}\right.$	$\sum_{\mathbb{\sim}}^{N}$	$\begin{aligned} & \text { ol } \\ & \text { p } \\ & \text { Non } \end{aligned}$	$\left\|\begin{array}{c} \stackrel{N}{2} \\ 0 \\ \hline \mathbf{2} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\underset{1}{4}} \\ & \text { ® } \end{aligned}$		$\left\|\begin{array}{l} n \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right\|$	咅
$\frac{m}{J}$		3 0 0	$\sum_{\underset{\sim}{n}}^{n} \infty$	$\begin{aligned} & \text { e } \\ & \stackrel{(}{\infty} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\underset{\sim}{\tilde{N}}} \\ \underset{\sim}{n} \end{gathered}\right.$	$\left\|\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right\|$	$\begin{aligned} & \stackrel{-1}{4} \\ & \sum_{i c}^{c} \\ & \sum_{n}^{2} \end{aligned}$		0	譣	$\begin{aligned} & u \\ & \vec{u} \\ & \underset{c}{\alpha} \end{aligned}$	恙	$\begin{aligned} & \stackrel{U}{U} \\ & \stackrel{0}{n} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\underset{\sim}{u}}}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \mathbf{x} \end{aligned}$	$\frac{\infty}{\alpha}$		$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$	픈			$\begin{aligned} & \mathbb{N} \\ & \underset{\infty}{\mathbb{D}} \end{aligned}$		$\left\|\sum_{a}^{2}\right\|$	－

		閣吾					
					${ }^{*}$		（ ）
		䑶咢					
							号
－	，						

10.3 Sequencing analysis of the Cas9 targeted clones

Sequencing analysis of PCR amplification across the 5^{\prime} junction of the vector and the target site using the primer Rosa26 I1 F2 and Rosa26 Loc2R of the clones 89, 4, 93, 5, 92 and a positive control (from top to bottom) was performed using R26_SA_Seq_R1.

Sequencing analysis of PCR amplification across the 3^{\prime} junction of the vector and target site 3' LR PCR using the primer Cas9_3'LR_for1 and Rosa26 I3 R2 of the clones 92,93 and 89 was performed using Rosa26 I3 R2.

atgaaaataaaatttcttaaatatggcttgttggtcgcatacttcatctacaaggctctttgcttctatttacaaatagaaatgtctatttagttctaaaactctgcctttcaattaggctagggtagctttccacctgctacagtgctata
Fonernacic.ass

Sequencing analysis of the RT-PCR amplification from exon 1 of ROSA26 locus to the neomycin resistance gene using the primer Rosa26 E1 F1 and Rosa26 Loc2R and Rosa26 Loc3R of the clones 93, 92 and 89 was performed using the primer Neo_colony_R1 and Rosa26 Loc3R.

template sequence R26 Ex1-Neo

TATCGAAGATGATATCGCCGCCACCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCA aligned sequence FR12945443 (FR12945443.ab1)

位 caacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatg Neo_colony_R1
 CAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATG
 CAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATG aligned sequence FR12945439 (FR12945439.abl)
 AACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCT
aligned sequence FR12945438 (FR12945438.ab1)

AACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCT

AACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCT

1110 gctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacg
template sequence R26 Ex1-Neo

GCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACG aligned sequence finsuch38 (FR12945438.ab1)
socex>呗 GCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAGGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACG Oitisees seweenece frize4s
 GCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACG

 cttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctgg template sequence R26 Ex1-Neo Neomycin
CTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGG

CTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGG
 CTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGG

प11

 acgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgtemplate sequence R26 Ex1-Neo

ACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTG
aligned sequence FR12945438 (FR12945438.ab1)

ACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTG aligned sequence FR12945439 (fR12945439.a61)
 ACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTG aligned sequence FR12945437 (FR12945437.ab1)

प11 cttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacc template sequence $\mathrm{R} 26 \mathrm{Ex1}$ - Neo

CTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACC

CTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACC
an CTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACC aligned sequence FR12945437 (FR12945437.ab1)

Gel electrophoresis and sequencing analysis of the endogenous ROSA26 locus of the clones 89, 92 and 93 using the primer Rosa26 I1 F2and Rosa26 I1 R3.

ctaaatgcattcctcaaggattcccagtttgttcttgattcctcagtgccttaacacagacctgggttctcagtaaatgttgatttatt-gatttatat
 CTAAATGCATTCCTCAAGGATTCCCAGTTTGTTCTTGATTCCTCAGTGCCTTAACACAGACCTGGGTTCTCAGTAAATGTTGATTTTATG-GATTTATAT
 CTAAATGCATTCCTCAAGGATTCCCAGTTTGTTCTTGATTCCTCAGTGCCTTAACACAGACCTGGGTTCTCAGTAAATGTTGATTTTATTGGATTTATAT
 CTAAATGCATTCCTCAAGGATTCCCAGTTTGTTCTTGATTCCTCAGTGCCTTAACACAGACCTGGGTTCTCAGTAAATGTTGATTTTATT-GATTTATAT

 CTAAATGCATTCCTCAGGATTCCAGTTGTTCTTGATTCCTCAGTGCCTTAACACAGACCTGGGTTCTCAGTAAATGTTGATTTTATT-GATTTATAT

11. Acknowledgments

An dieser Stelle möchte ich gerne die Möglichkeit ergreifen und mich herzlichst bei den Menschen bedanken, ohne deren Mithilfe, Unterstützung und Motivation der Beginn sowie die Fertigstellung dieser Promotionsarbeit unmöglich gewesen wäre.

Zu Beginn möchte ich meiner Doktormutter Frau Prof. Dr. Angelika Schnieke danken, die mir die Möglichkeit eröffnet hat, am Lehrstuhl für Biotechnologie der Nutztiere im spannenden Bereich der Onkologie und neuster Forschungserkenntnisse zu arbeiten und zu promovieren. Ich möchte mich auch herzlich für die stete Unterstützung durch wertvolle Hilfestellungen bei Problemen sowie allen meinen Vorhaben bedanken, welche ich zu keiner Zeit als selbstverständlich empfunden habe. Zudem gilt ein sehr großer Dank der Studienstiftung des deutschen Volkes, welche mich während drei meiner vier Jahre im Labor nicht nur finanziell, sondern auch ideell unterstützt hat. Mein Dank gebührt auch meinem Zweitprüfer Herrn Prof. Dr. Dieter Saur, welcher während der gesamten Zeit meiner Doktorarbeit ein sehr wichtiger und geschätzter Kollaborationspartner war. Außerdem möchte ich Herrn Prof. Dr. Harald Luksch meinen herzlichsten Dank aussprechen, welcher mich seit meinem ersten Semester begleitet, bereits als Zweitprüfer meiner Masterarbeit fungierte und sich ohne zu zögern bereit erklärt hat, den Vorsitz meiner Prüfungskommission zu übernehmen.

Ein ausgesprochenes Dankeschön gilt ebenso Herrn Dr. Alex Kind, der mir inhaltlich und sprachlich stets unter die Arme gegriffen hat und sowohl bei meinem Review-Artikel als auch bei der sprachlichen Gestaltung dieser Arbeit stets eine große Hilfe war.

Ganz besonders möchte ich meinen Betreuern Frau PD. Dr. Tatiana Flisikowska und Herrn PD Dr. Krzysztof Flisikowski danken. Sie haben mich zu jeder Zeit mit Ihrer wissenschaftlichen Expertise und Tatenkraft unterstützt. Ob an Wochenenden, Feiertagen, im Feierabend oder im anspruchsvollen Alltag haben sie sich immer Zeit genommen und waren stets mit einem Rat, einem offenen Ohr oder tröstenden Worten für mich da. Diese wohlwollende Unterstützung und gute Freundschaft ist keine Selbstverständlichkeit, weshalb sehr dankbar bin, solche Betreuer an meiner Seite gehabt zu haben.

Die Laborarbeit kann nicht immer alleine gestemmt werden, so gebührt meinen Kollaborationspartnern Frau Dr. Monika Stachowiak, Herrn Prof. Dr. Hubert Pausch, Herrn Prof. Dr. Hans-Rudolf Fries, Herrn Dr. Hongen Xu, Herrn Dr. Stefan Bauersachs und Frau Dr. Christine Wurmser mein aufrichtiger Dank, welche durch das Teilen Ihrer Expertise oder gemeinsamen Durchführung wichtiger Experimente und Analysen, einen signifikanten Beitrag an dieser Arbeit geleistet haben.

Auch im Laboralltag haben liebe Menschen Abläufe durch eine freundliche Atmosphäre und produktive Zusammenarbeit erleichtert. Daher auch ein großes Dankeschön an unsere TAs und Sekretärin Kristina Mosandl, Peggy Müller-Fliedner, Nina Simm, Sulith Christan, Marlene Stumbaum,

Toni Kuhnt, Robert Grötschel, Sandra Wantschner, Johanna Tebbing, Alex Carrapeiro und Barbara "Bobbylein" Bauer.

Außerdem möchte ich mich bei Joanna Madej, Agnieszka Bak und Guanglin Niu bedanken, die mich ganz uneigennützig bei Experimenten unterstützt haben. Auch die Studenten Mona Baumgartner, Sandra Romero und Johanna Steinhard haben im Rahmen ihrer Forschungspraktika einen Beitrag zu dieser Arbeit geleistet, wofür ich gerne Danke sagen möchte.

Weiterhin vielen Dank an die PostDocs Anja Saalfrank, Simone Kraner Schreiber, Konrad Fischer und Hicham Sid für ihren Rat und ihre Unterstützung. Meinen Mitdoktoranden Daniela Huber, Denise Nestle-Nguyen, Shun Li, Rahul Dutta, Benedikt Baumer, Erica Schulze, Andrea Schäffler, Romina Hellmich, Bernhard Klinger, Guanglin Niu, Liang Wei, Melanie Manyet, Alessandro Grodziecki, Daniela Kalla und Beate Rieblinger möchte ich für spannende Diskussionen, Abende am See und Kollegialität danken.

Das Arbeiten mit Schweinen benötigt geschulte Tierpfleger. So haben Viola und Steffen Loebnitz stets eine erstklassige Arbeit mit den Tieren geleistet, was meine eigene Arbeit nicht nur erleichtert, sondern auch bereichert hat. Auch die lieben Gespräche während der Plasmaprozessierung und Ihr Entgegenkommen im Rahmen meiner Experimente werden mir immer im Kopf bleiben. Dafür möchte ich mich ausdrücklich bedanken.

Die Freundschaften mit Tatiana, Erica, Denise, Rahul und Tinie, welche im Rahmen dieser Arbeit zustande gekommen sind und weit über diese hinausreichen, stellen ein großes Glück für mich dar.

Vielen Dank an meine Eltern Dagmar und Uwe Wander, ohne deren Unterstützung ich nie die Möglichkeiten gehabt hätte, all das zu erreichen, was ich heute geschafft habe.

Ganz besonders möchte ich mich für die starke emotionale Unterstützung meiner lieben Schwiegereltern Ilona und Mike Perleberg, meines lieben Opas Horst Kerzig, meines Bruders Sebastian und seiner kleinen Familie Steffanie und Benjamin Wander, sowie meiner wundervollen Freunde Denise Nestle-Nguyen, Melanie Gieseke, Daniela Dichtler, Maja Huber, Franziska und Fabian Drasdo, Maria Frystacki, Julia Hofmann, Franka Hirsch, Alina Huntgeburth, Tinie Wurmser, Simone Jung, Linda Tuchen, Sarah Bynevelt, Colleen Blake und Heidi Bisping-Arnold bedanken. Ihr ward stets für mich da und immer an meiner Seite, hierfür möchte ich mich von ganzem Herzen bei Euch bedanken.

Abschließend gibt es noch eine Person die mich über alle Höhen und Tiefen zusammengehalten hat, mir über jede Hürde geholfen, und jeden Moment zu etwas Besonderem gemacht hat, Kevin Perleberg. Mein Schatz ich liebe dich über alle Maßen und ich bin soooooo unsagbar Dankbar für deine Unterstützung. Ohne dich hätte ich das hier nie, nie, niemals geschafft. Your love is lifting me up!

