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Abstract

Dynamical processes on social networks, e.g., information diffusion and opinion dynamics,
draw enormous attention for researchers from multitudes of fields. This growing trend mo-
tivates our works in this dissertation. Our focus is to build a bridge filling the gap between
control theory and dynamical processes on social networks by providing mathematical tools
for modeling, analysis, and control.

By analogy, the information diffusion process is modeled as epidemic spreading, which
is then termed as information epidemics. In particular, the susceptible-infected-susceptible
(SIS) model and the susceptible-infected-recovered /removed-susceptible (SIRS) model are
adopted. Hence, by using the mean-field approximation, the node-based SIS and SIRS
models are introduced, which characterize both the heterogeneities in the communication
topology and individual transition rates. Additionally, the node-based SIS model is extended
to multi-layer networks in light of diverse information diffusion paths. Apart from the
modeling, the existence, uniqueness and stability of the disease-free and endemic equilibria
are analyzed by using the properties of Metzler matrices. The attained conditions emphasize
the significance of the social connections and the diffusion process itself.

In addition to the analysis and modeling, the control problems of the information epidemics
are inspected, especially the optimal control design such that the information spreads in a
desired manner. By interacting with the spreading rate, two optimal control problems are
proposed with respect to two typical scenarios, i.e., to impede the spread of rumors and to
enhance the spread of marketing or campaign information. This framework is then utilized to
the SIS model with noisy transition rates. By using the distribution analysis techniques, we
address the robust optimal control problem: maximizing the spreading performance at the
finite time instant given a fixed budget. A novel approach combining the forward backward
sweep method and the secant method is proposed to efficiently reduce the computation
burden.

Following the diffusion process, the opinion dynamics are studied in light of the social
influence. Opinion dynamics on social networks with coopetitive (cooperative-competitive)
interactions may result in polarity, consensus or neutrality under different opinion protocols.
The antecedent of protocol design is to study the accessibility problem: whether or not
there exist admissible control rules to polarize, consensus, or neutralize individual opinions
in a large population. From an operational perspective, we investigate the polarizability,
consensusability, and neutralizability of opinion dynamics in question. Particular emphasis
is on the joint impact of individual dynamical properties and their social ties. Sufficient
and/or necessary conditions for these accessibility problems are provided by using powerful
tools from spectral analysis and algebraic graph theory. To characterize the individual
diversity in real life, we further investigate the solvability of opinion formation problems in
heterogeneous systems with non-identical dynamics. Accordingly, sufficient and /or necessary
criteria for heterogeneous network polarizability, consensusability, and neutralizability are
derived.
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Zusammenfassung

Dynamische Prozesse in sozialen Netzwerken, wie beispielsweise die Informationsdiffusion
und Meinungsdynamik, ziehen enorme Aufmerksamkeit von Forschern verschiedenster Diszi-
plinen auf sich. Dieser weiterhin wachsende Trend motiviert die Arbeiten dieser Disserta-
tion. Der Fokus dieser Arbeit ist es, die Liicke zwischen Regelungstheorie und dynamischen
Prozessen in sozialen Netzwerken durch die Bereitstellung der dazu benotigten mathematis-
chen Werkzeuge fiir die Modellierung, Analyse und Regelung zu schlielen.

Analog dazu wird der Prozess der Informationsverbreitung als Epidemiologie modelliert,
die im Folgenden als Informationsepidemie bezeichnet wird. Dabei werden insbesondere
das Suszeptible-Infected-Susceptible-Modell (SIS), sowie das Suszeptible-Infected-Recovery
/ Removal-Susceptible-Modell (SIRS) angenommen. Daher werden unter Verwendung der
Mittelfeldnédherung die knotenbasierten SIS- und SIRS-Modelle eingefithrt, die sowohl die
Heterogenitét in der Kommunikationstopologie, als auch die individuellen Ubergangsraten
charakterisieren. Auflerdem wird das knotenbasierte SIS-Modell im Hinblick auf verschiedene
Informationsdiffusionspfade auf mehrschichtige Netzwerke erweitert. Auflerdem werden Ex-
istenz, Kinzigartigkeit und Stabilitat der krankheitsfreien und endemischen Gleichgewichte
anhand der Eigenschaften der Metzler-Matrizen analysiert. Die erreichten Bedingungen un-
terstreichen die Bedeutung der sozialen Verbindungen und des Diffusionsprozesses selbst.

Neben der Analyse und Modellierung werden die regelungstheoretischen Probleme der
Informationsepidemie tiberpriift. Dabei wird insbesondere der Entwurf einer optimalen
Steuerung betrachtet, um so die Informationsausbreitung einem gewtinschten Verhalten
folgen zu lassen. Durch die Interaktion mit der Ausbreitungsrate werden zwei optimale
Steuerungsprobleme in Bezug auf zwei typische Szenarien dargelegt, zum einen die Verhin-
derung der Verbreitung von Geriichten, zum anderen die Verbesserung der Verbreitung von
Marketing- oder Kampagneninformationen. Dieses Framework wird dann fiir das SIS-Modell
mit verrauschten Ubergangsraten verwendet. Durch die Verwendung der Verteilungsanaly-
severfahren behandeln wir das robuste optimale Steuerungsproblem: Die Maximierung der
Ausbreitungsleistung bei endlicher Zeit und fixem Budget. Es wird ein neuartiger Ansatz
eingefiihrt, der das Vorwérts-Riickwérts-Sweep-Verfahren und das Sekanten-Verfahren kom-
biniert, um den Rechenaufwand effizient zu reduzieren.

Im Anschluss an den Diffusionsprozess wird die Meinungsdynamik unter Berticksichti-
gung des sozialen Einflusses untersucht. Die Meinungsdynamik in sozialen Netzwerken
mit kooperativ-kompetitiven Interaktionen kann unter verschiedenen Meinungsprotokollen
zu Polaritiat, Konsens oder Neutralitat fithren. Die Vorstufe des Protokolldesigns besteht
darin, das Problem der Zuganglichkeit zu untersuchen: Gibt es zuldssige Regelegesetze, um
einzelne Meinungen zu polarisieren, vereinbaren oder zu neutralisieren? Aus methodischer
Sicht untersuchen wir die Polarisierbarkeit, Konsensfiéhigkeit und Neutralisierbarkeit der
jeweiligen Meinungsdynamik. Ein besonderer Schwerpunkt liegt dabei auf der gemeinsamen
Wirkung einzelner dynamischer Eigenschaften, sowie deren sozialen Bindungen. Ausre-
ichende und/oder notwendige Bedingungen fiir diese Zugénglichkeitsprobleme werden unter
Verwendung leistungsfahiger Werkzeuge aus der Spektralanalyse und der algebraischen Grap-
hentheorie bereitgestellt. Um die Vielfalt der Realitdt zu charakterisieren, untersuchen wir
iiberdies die Losbarkeit von Meinungsbildungsproblemen in heterogenen Systemdynamiken.
Basierend darauf, werden ausreichende und/oder notwendige Kriterien fiir heterogene Net-
zwerkpolarisierbarkeit, Konsensfahigkeit und Neutralisierbarkeit abgeleitet.
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Introduction

Social networks are constituted by social agents, e.g., individuals and communities, and
social relations, e.g., friendship or competition, among them. Recent decades witnessed the
explosive development of the online social media thanks to the advancement of information
technology, apart from which the study of social network becomes attractive in multitudes
of research fields recently including sociology, psychology, economics, computer science, and
control engineering [1], [2]. Nonetheless, the history of the research of social networks dates
back to a century ago.

The concept of social network is gradually formed by the early researchers around the
early 20th century. Among the first researches of social networks, Georg Simmel pointed
out that it is the network but not the individual themselves plays the key role in social
interactions [3]. This idea is finally formed as an axiom of the social network approach to
understanding social interaction, i.e., social phenomena should be primarily conceived and
investigated through the properties of relations between and within units, instead of the
properties of these units themselves [4]. The 1930s experienced the breakthrough in the
analysis of social networks in the fields of psychology, anthropology, and mathematics. As
a pioneering work among the major developments, the systematic and quantitative method
for measuring social relationships, named sociometry is introduced by Jacob Moreno [5], 6]
as well as the graphically representation, sociogram. Concomitantly, the term “network” is
widely used and finally the term social network arises. It is well known now that sociom-
etry has given birth to the science of Social Network Analysis (SNA) which focuses on the
analyzing the topological properties of social networks and movements (7], [§].

Apart from the structural properties of social networks, the dynamic processes related to
social networks are more attractive from the control theoretical point of view. On social
networks, one of the typical dynamic processes is the information diffusion process [9]. As
the media through which the information spreads, social networks plays dominant role in
the form of conventional face-face communication, email networks within companies, the
online social media, etc. Nowadays, all major brands, as well as many small businesses,
run their own websites online and advertise their products and services using social media.
The warming up promotion of movies has become a must in order to be box office smashes.
In combination with the social media, movie distributors can create strong buss before the
release |[10]. More instances can be found for scientific conferences, sport teams and charity
campaigns. It is undeniable that the social media have become indispensable for information
diffusion and have the trend to eliminate the traditional way. From another perspective,



1 Introduction

individuals may also be strongly influenced by the information obtained from networks,
especially their opinions and beliefs towards certain topics and events. It is reported in |11]
that the fluctuations of U.S. population’s certainties of belief on the decision to invade Iraq is
highly guided by several political statements. From scientific point of view, to understand the
mechanisms of opinion evolution and even to guide the public opinion becomes interesting
topics in the fields of sociology, psychology, and politics.

However, few works have been done in the field of social systems by modern control theory
[12]. To model, analyze, and control these processes is of great significance for both theory
and applications. Very recently, the coordination and control of social systems is regarded
as the fundamental problem of sociology [13]. Thus in this dissertation, the focus is to build
a bridge filling the gap between control theory and dynamical processes on social networks
by providing mathematical tools for modeling, analysis, and control.

1.1 Challenges

In this thesis, we concern the following three challenges revolving around dynamical systems
on social networks from control theoretical perspective.

i) How to model dynamical systems on social networks.
ii) What are the mathematical properties of the models.
iii) How to control the dynamical systems on social networks.

Among multitudes of dynamical systems on social networks, the representative ones are
the information diffusion processes and the opinion dynamics. Information diffusion can be
macroscopically regarded as the information cascade from sources to targets. The specific
concerns are: How can we model the diffusion process? What is the steady state? Can
we efficiently influence the diffusion to achieve desired performance? Thus the study of
this dynamical process is naturally associated to the aforementioned challenges. Besides,
opinion dynamics describes the evolution of individual states on social networks. To model
the opinion update mechanisms is the fundamental step to understand opinion dynamics.
Following the models, the limit behavior of public opinion may become consensus, polarized,
and neutral under different conditions. Hence, in order to influence and to guide the indi-
vidual opinions, the control design is required. Thus in this dissertation, we inspect these
two specific dynamical systems, which, in turn, can provide valuable insights on the general
topic of dynamical processes on social networks.

A brief introduction of these two categories of systems is provided in the following subsec-
tions. In the end of this chapter, we highlight the contribution and illustrate the structure
of this dissertation.

1.1.1 Information Diffusion Dynamics

Nowadays, social networks, no matter offline or online, are important media for information
diffusion. Multitudes of research has been conducted to shed light on the dynamics of
information diffusion on social networks. Mathematical modeling and analysis of information
diffusion processes plays the fundamental role in this field and still is the main trend [9)].



1.1 Challenges

Numerous models have been reported from different points of view, to name a few, the
self-excited Hawkes process model [14], the SPIKEM model [15], and the linear influence
model [16]. Since all the models mentioned above mainly concentrate on the population
performance, we name them the macroscopic or population-based models. Apart from these
models, the epidemic models plays an important role. For certain kind of information, e.g.,
a rumor, a commercial advertisement of a product or the political views, its dissemination
can be described as the disease-like dissemination over networks and is consequently named
as information epidemics. Thus it is not surprising that epidemic models are deployed [17].
The shared feature of the epidemic models is that individuals in networks are distinguished
into different compartments. The elementary compartments are susceptible (S) and infected
(I). By considering the transition between different compartments and introducing other
classes, e.g. recovered/removed (R) and exposed (E), diverse models are obtained, e.g. the
SIR, SIRS and SEIR models [18]. Since information epidemics is one of the main models
considered in this dissertation, the macroscopic epidemic models are reviewed as follows.

The SI Model The elemental epidemic model is the SI model [19], where only two com-
partments and no impact of birth and death rates are considered. For a network of N people,
denote s(t) and i(t) the proportion of the susceptible and infected at time ¢, respectively.
The infection rate or daily contact rate A is assumed to be constant. It follows that given
the initial proportion of the infected, the SI model reads

i(t) = Ni(t)(1 —i(t)). (1.1)

The dynamics (1.1)) implies that the expectation of the susceptible individuals becoming
infected within time dt is \i(¢)s(t)N. Meanwhile, the differential equation regarding s(t)
can be omitted because there always holds s(t) + i(t) = 1.

The SIS Model Apparently, the SI model only allows the one-way transition from S to
I, which is not practical in real situations. By introducing the backward transition from I to
S and the corresponding curing rate y, the SIS model [20] can be derived as follows

i(t) = Ni(t)(1 —i(t)) — pi(t). (1.2)

Compared with the ST model in (1.1)), the SIS model also takes into account the curing
process, i.e., there will be pi(t) N people become susceptible in time dt.

The SIRS Model Distinct from the SIS model, the SIRS model [21] introduces the re-
covered or removed state bearing in mind the fact there could exist the temporary immunity
phenomenon. In addition to the aforementioned efficients and variables, we denote r(t), o
as the proportion of the recovered at time ¢ and the recovering rate, respectively. Akin to
the idea to obtain the SIS model, the SIRS model can be achieved as

i(t) = Xi(t)(1 — i(t)) — pi(t)
#(t) = i) — or (D).

The dynamics of s(t) is omitted due to the fact that there always holds s(t) +i(t) +r(t) = 1.
Apart from the three epidemic models, there exist many other extended versions which
are detailed gathered in [22].

(1.3)
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Although the population-based models capture the feature of information diffusion macro-
scopically, the reason and mechanism underneath, which may be more important, are ig-
nored. To this end, the microscopic models are introduced. The microscopic models, in
contrast, concentrate on individuals. Thus they are also called the node-based models. Since
every character is the investigated subject and his/her activities may be influenced by oth-
ers, the related networks, e.g. (online) social networks, need to be taken into consideration.
Thus the microscopic models are able to characterize the feature of information diffusion
dynamics on social networks in nature. To this end, the microscopic models are our main
focus in this dissertation. Typical examples of the microscopic models are briefly introduced
as follows.

Independent Cascade Model In order to characterize the adoption probability, the
independent cascade model (ICM) is proposed. The fundamental assumptions in the ICM
are i) the diffusion probability, p,, (from node w to node v) are given and ii) the the diffusion
processes from distinct active nodes to the target node are independent.

Firstly, the nodes in the social group to be studied are set to be in one of the following
two states, a) inactive, i.e. the agent is still not be aware of the information or be influenced
and b) active, i.e. the agent has known the information and is willing to spread it to her
neighbors. The initial active agents in the network are called seeds. Note that the active
nodes will never be inactive again.

At each sampling instant, an active node will choose one of the inactive neighbors to
spread the information according to the given diffusion probability, p.,., which can be chosen
randomly or selected proportional to the tightness of the connection between these two
agents. The propagation runs in discrete time and node v becomes active if the diffusion
succeeds. Specially, if multiple neighbors of node v are active, the overall diffusion probability
are calculated as 1 — [],,(1 — py,) where w is the active neighbor of node v.

Threshold Model Taking into consideration whether to spread the information or not,
an agent should make a decision according to some given rules. An intuitive way, e.g. in the
threshold model, is to assign a threshold of each agent to judge whether she is active or not.

Threshold model is first described in 1970s and among the earliest articles and papers,
[23] and [24] propose the node-based threshold, i.e. the number or proportion of others who
must make one decision before a given actor does so. The threshold for different agent is
different according to the preference, goal, perception of the situation, etc..

The early threshold model is developed to linear threshold (LT) model [25] where the
influence on a vertex v are assumed to come from the active vertices at time instant ¢ in the
set Y (v,t). The specific influence of vertex w to v is normalized as

1

>\wv = T A N
1+ Y (v, )|

(1.4)
such that the total influence for each node is bounded by 1.

To start the diffusion process, an initial active set S is given usually randomly. Hence, for
any node v, a threshold 6, € [0, 1] is assigned randomly. At time-step ¢, an inactive node v
is influenced by each of its active parent nodes v according to weight \,,. If the sum of the
influence of its activated neighbors reaches its threshold, i.e.

Ewesva Z ev, (15)
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node v turns to be active at time ¢t + 1. The process terminates if no more activations are
possible.

Microscopic Epidemic Models Distinct from the macroscopic epidemic models, the
microscopic epidemic models focus on the states of individuals in the social networks. One
of the thoroughly studied node-based epidemic models is the N-intertwined SIS model,
which is first reported in [26]. By introducing Markov chain into the transmission between
the susceptible and infected compartments, the N-intertwined SIS model can be obtained
by using the mean-field approximation. Impressive results on the equilibria analysis and
the condition for disease free case have been reported in [27] and [28]. In this dissertation,
the node-based SIS and SIRS model are inspected as important examples of information
diffusion models. Detailed derivations of these models are presented in Section

1.1.2 Opinion Dynamics

Individuals’ opinions reveal their cognitive orientations towards some objects in terms of
displayed attitudes [29] or subjective certainties of belief [30]. These orientations is able
to be influenced by the environment and other individuals, especially the ones in the same
social group. By taking the social influences into consideration, the opinion dynamics models
are introduced where the opinions are scalars or vectors associated with social actors from
mathematical point of view.

The original idea of the research in sociology focuses on social influence, which is a perva-
sive force in human social interaction [31]. Meanwhile, individuals’ opinions can be changed
according to the social influence in the forms of persuasion by convincing arguments, leader-
ship, and social pressures [32]—[34]. Thus the opinion dynamics, as a result, also reveals the
process and the effect of social influence. In this dissertation, we generally name the related
models as opinion dynamics since the dynamic system is the main focus in the context of
control theory.

In the recent survey [31], The models regarding opinion dynamics can be classified into
three categories based on the assimilative social influence, the similarity biased influence and
the repulsive influence, respectively.

The research on assimilative influence dates back to the early pioneering works of Festinger
and Heider. As one of the fundamental theories of the assimilative influence, the cognitive
consistency theory and social balance theory point out that individuals seek to be similar
to people they like or respect [35], [36]. Representatives of this kind of opinion dynamic
models are the averaging models developed in the 1950s and 60s, among which the French-
DeGroot model [37], [38] and the Abelson’s model [39] are prominent. Although the opinion
evolution process is respectively illustrated in continuous and discrete time in these two
models, the idea underneath is identical. By taking into consideration a group of individuals
in a network sharing opinions, the opinion update law of each agent is set as averaging
the neighbors’ opinions with weights representing the social influence. In these kind of
models, the limit performance of the public opinion may converge and even reach consensus
under certain condition on the communication topology. It is interesting that the consensus
problem which plays an important role in multi-agent systems occurs much earlier in the
study of opinion dynamics. In Section [B| the properties of the aforementioned models and
the conditions for them to establish consensus are discussed in detail.



1 Introduction

One may notice that in the assimilative-influence-based models, the structural connection
is usually fixed and the influence is always available through the connection. However, this
is not always true since individuals, who are similar to each other, may be more influential.
Conversely, the connected individuals with large opinion difference even have no mutual
influence. This assumption is adopted by the models with similarity bias, which emphasizes
that the similarity of individuals plays an determinant role on the influence through the social
tie. Prominent examples are the Hegselmann-Krause (HK) model |40] and the Deffuant
model [41]. A general description for these models is as follows

zi(t +1) = wi(t) + f(2i(1), 25 (1)) (25 () — 2:(1), (1.6)

with
i it [ay(t) = 2i(t)] < e

Flai(t), 2;(t)) = {O, otherwise, (1.7)

where z;(t) € R is the opinion of agent i at time instant ¢, f : R Xx R — R is the influence
weight function, and g is the convergence rate. At each time step, a random agent i is
selected to update her opinion based on the opinion of a randomly chosen agent j. Since the
opinion evolution is active only when the confidence level (the upper bound of the opinion
difference) € > 0 is not exceeded, the models similar to the form (1.6) are also named the
bounded confidence models. Unlike the models based on assimilative influence, there exists
no prior fixed communication network in (1.6). Furthermore, due to the truncate function
in (1.7), this model is essentially nonlinear.

In both kinds of models mentioned above, assimilation comes into being once the influ-
ence occurs between individuals. This assumption is relaxed by the models with repulsive
influence by allowing differentiation (to become more dissimilar to others) [42], [43]. This
opposite effect is also named as boomerang in [29]. The implementation of this assumption
can be illustrated with the same dynamics in but with discrepant influence weight as
follows

f@it), xi(t)) = p(l = 2fa;(t) — i(t)]). (1.8)

In the expression (1.8)), the opinion value is bounded in [0, 1] for each agent. It implies that
the critical value which determines the pulling towards or pushing away effect of the jth
agent’s opinion is set to 0.5. These requirements are relaxed by smoothening or truncating
function in [44] and [45], respectively.

From control theoretical point of view, the averaging behavior of the public opinion is of
great significance. This is highly related to the consensus problem in multi-agent systems.
Apart from that, the scholars in control science start to pay more attention to the original
model analysis problem regarding diverse opinion dynamic models, especially for the models
based on assimilative influence and bounded confidence. In detail, the popular Altafini’s
model 46| is proposed based on the Abelson’s model while on signed graphs. Further
extensions to nonlinear opinion protocols [47] and time-varying network structures [48] have
been thoroughly studied. Our work [49] extends the original model analysis problem into the
accessibility problem based on the protocol similar to the one in Altafini’s model. As for the
bounded confidence model, detailed analysis has been reported in [50]. While introducing
noise into the HK model, the robust consensus problem is addressed recently in [51]. The
main trend of the research on opinion dynamics in theoretical control field is to provide
rigorous mathematical proof to guarantee certain performance of the systems, which is also
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one of the major concern of this dissertation. Future work may include the study of opinion
dynamics in general cases and optimal guiding strategy for the public opinion.

1.2 Contribution and Framework

This dissertation provides solutions to the motivated challenges arising for dynamical sys-
tems on social networks. Before going into details, the reader may refer to Appendix [A] for
the preliminary information on graph theory and Appendix [B| for the helpful background
on consensus theory. Chapter [2] and [3| are on our first focus, the information epidemic
processes. The modeling and analysis parts are provided in Chapter In the modeling
section, the detailed derivation of the node-based information epidemic model is provided.
Furthermore, we extend the single-layer model into the multi-layer model. Following the
modeling, the rigorous mathematical proof for the existence, uniqueness, and stability of the
equilibria of the SIRS model is given. In Chapter [3] we address the control design of the
information epidemics in the form of optimal control for both noise-free and noisy models.
Numerical experiments on real social networks are conducted to demonstrate the effective-
ness of the proposed approaches. As another focus of this dissertation, the opinion dynamics
on cooperative-competitive social networks are considered in Chapter [dl Specifically, we
address the fundamental question: Under what conditions, there exists certain kind of dis-
tributed protocols such that the opinion dynamics over coopetitive (cooperative-competitive)
networks are polarized, consensus and neutralized, respectively. Sufficient and/or necessary
conditions are provided for these accessibilities of both homogeneous and heterogeneous
opinion dynamic models. We conclude this dissertation in Chapter [5| as well as providing
future work on the related topics.

The contribution of this dissertation is to build a bridge between control theory and
the study of dynamical processes on social networks by providing mathematical tools for
modeling, analysis, and control. Specifically, the contribution are as follows:

i) Modeling and analysis of information epidemics (Chapter [2))

For the modeling and analysis of information epidemics, we introduce the node-based
epidemic models by taking into consideration the similarity between the epidemic
spread and information dissemination processes. By using the mean-field approxi-
mation approach, we extend the thoroughly studied SIS model into the node-based
SIS and SIRS models. It is worthy to point out that both the heterogeneities on the
network structure and the diffusion processes are considered. Bearing in mind the
diverse information spreading media in our daily lives, the multi-layer SIS model is
proposed in which each layer stands for certain diffusion channel. Apart from the
modeling, mathematical analysis of the properties of the information epidemic mod-
els are discussed, especially for the existence, uniqueness, stability of both the trivial
and non-trivial equilibria. These results shed light on the interesting behavior of the
information epidemics which is essentially nonlinear.

These results on the modeling and analysis of the SIRS model were partially published
m [52/.

ii) Control design for information epidemics (Chapter (3)
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iii)

For the control of information epidemics, we aim at offering a framework to design
control strategy to guide the information spreading such that the desired performance
can be achieved. For the SIRS mode, two practical situations of information diffusion
are considered, i.e., to impede the rumor propagation and to enhance the positive in-
formation spreading. Furthermore, for the first time, a robust optimal control strategy
enhancing the information diffusion with perturbed parameters is designed for infor-
mation epidemics over heterogeneous communication networks. In light of the real life
scenarios, the fixed budget constraint is taken into account. Recalling the distribution
analysis approach, the inspected problem is transformed into an optimal control prob-
lem with a cost function combining the nominal control performance and the influence
of the noise. The solution to the proposed problem is achieved taking advantage of
the Pontryagin Maximum Principle (PMP). To attain a practically efficient solution,
a computationally cheap algorithm combining the forward backward sweep method
(FBSM) and the secant method is provided. This result is especially significant for
large scale social networks.

The contribution in the directions of optimal control is partially based on the publication
155]. Furthermore, the results on the robust optimal control for information epidemics
has been published in Physica A: Statistical Mechanics and its Applications [54).

Polarizability, consensusability, and neutralizability of opinion dynamics
(Chapter 4)

For the opinion dynamics on coopetitive (cooperative-competitive) networks, we ad-
dress the fundamental question: Under what conditions, there exists certain kind of
distributed protocols such that the opinion dynamics over coopetitive networks are
polarized, consensus and neutralized, respectively. In specific, the formal definitions of
these novel concepts, under the umbrella of “modulus consensusability”, are introduced
as an appetizer. In view of the bipartite consensus at the heart of modulus consensus,
we set out to study the bipartite consensusability that examines whether or not there
exist admissible protocols such that the individual opinions asymptotically reach the
same value but may differ in signs. Specifically, sufficient and/or necessary conditions
for bipartite consensusability of opinion systems with identical dynamics are provided.
The developed criterion emphasizes the functional role of interaction topological prop-
erties in conjunction with the dynamic structure of the subsystems. Along with the
examination of bipartite consensusability, neutralizability is taken into account as well
and is characterized by sufficient and necessary conditions. With the emphasis on indi-
vidual diversity, another significant contribution of this technical note is to extend the
procured results to heterogeneous opinion dynamics. Criteria to examine the polar-
izability, consensusability, and neutralizability of non-identical opinion dynamics are
explored. In particular, some common algebraic properties shared among individuals
play an essential role in establishing polarization, consensus, and neutralization.

The materials presented in Chapter [J| has been published in IEEE Transactions on
Automatic Control [49].
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Modeling and Analysis of Information Epide-
mics

Information spreading via diverse media, e.g., face-to-face conversations, television and In-
ternet, is indispensable in our daily lives. It is inevitably influential to our decision making,
opinions and even activities. Modeling and analysis of information diffusion process be-
come attractive topics and have drawn wide interests in the fields of sociology, psychology,
computer science and control in recent years [55]-[57].

As a fundamental issue, mathematical modeling of information diffusion has been thor-
oughly studied and multitudes of models have been reported 58], [59]. Among the models
from diverse points of view, epidemic models have received great attention taking advantage
of the analogy between diffusion process of viruses and the status of individuals during in-
formation dissemination [22]. The term, information epidemics [60], is deployed to describe
the disease-like spread of information, e.g., the propagation of a commercial advertisement
or a piece of rumor. An obvious common feature of the information epidemic models is
that populations are classified into different compartments. Susceptible (S) and infected (I)
are primary compartments in most literature, since they are natural analogies with people’s
accessibility of news (unaware or aware) or opinion of innovation (cons or pros). Further
compartments, e.g., recovered /removed (R), can be introduced for different situations, which
leads to numerous models, e.g., SIR and SIRS models [61].

Among all the information epidemic models, the main focus in this chapter is on the
SIS and SIRS models. We first introduce the node-based SIS and SIRS models in both
single-layer and multi-layer networks. The analysis of these models, especially the existence,
uniqueness, and stability of the equilibria, is provided afterwards.

2.1 Information Epidemics Models

In this subsection, the node-based information epidemic models on both single-layer and
multi-layer social networks are introduced. Specifically, on single-layer networks, the SIS and
SIRS models are considered in continuous-time manner, whereas on multi-layer networks,
the general form of the discrete-time SIS model is proposed.
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2.1.1 Single-Layer Models

As is discussed in multitudes of literature works, the node-based epidemic models are able to
characterized the information diffusion on graphs. To distinguish the model on multi-layer
networks, in this subsection, only the single-layer SIS and SIRS model are introduced.

The Node-based SIS model Among all the information epidemic models, there exist
several common compartments, e.g., susceptible (S) and infected (I). These compartments
are naturally connected to the individual states, e.g., unawareness and awareness, or to refuse
and to accept in the context of information diffusion. The susceptible-infected-susceptible
(SIS) model [61] is a basic epidemic model, which is widely used in viral marketing and
information diffusion processes.

The mechanism of the transitions in the SIS model can be described by a Markov chain
with 2V states, where N is the number of nodes in the network. Specifically, we denote the
random variable X;(t) as the state of node i at time t. For the convenience of the further
analysis, binary numbers are assigned, i.e., X; = 0 or X; = 1 if node 7 is in state S or I,
respectively. Without loss of generality, the communication topology is assumed to be a
strongly connected weighted digraph G(V,E, W), where V = {1,2,..., N} and £ CV x V
are the sets of vertices and edges, respectively; and W = [w;;] € RNV is the nonnegative
adjacency matrix. It is assumed that w;; > 0 if and only if there exists a link from j to
i; w;; = 0, otherwise. The local rule of the SIS model consists of two possible actions
modeled as Poisson processes: i) the infection process: a susceptible node can be infected
by its infected neighbors and ii) the curing process: an infected node can cure and become
susceptible again. The infection process is considered as a proactive action, i.e., each infected
individual 7 infects his/her susceptible social neighbors with rate «; [62]. Whereas, the curing
process is assumed to be passive with rate ;. Note that generally there hold o; # «a; and
Bi # B for all 4,5 € V, ¢ # j. It follows that the node-based SIS model is heterogeneous in
view of both the communication topology and the transition process.

The local nodal dynamics can be modeled as a two-state Markov chain in continuous time.
For a sufficiently small time At, there hold

Prob[X;(t + At) = 1].X;(t = > oywyX;(t)At
JENIn (21)
Prob[X;(t + At) = 0|X;(t) = 1] = B, X (t) At

By using the mean field approximation (MFA), the actual infection rate - ;cpin ojw;; X;(t)
is replaced by >-V; o;w;;E[X;(¢)]. This replacement is accurate if the states of the neighbors
are sufficiently independent and the number of the in-neighbors of node i is large. In this
case, the Central Limit Theorem [63] is applicable. It follows that if At — 0, we have

dE[X]

dt = Za]ww — B X;(1)]
= Z awiB[X; ()] — BiE[X;(2)] — ; ojwi BLXG (8) X;(2)] (2.2)
= ( Z O‘wa 61 [ i )} - z_:l ajwijCOV[Xi? Xj]?

10
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Figure 2.1.: Transitions between different states (S and I) of node i with rates a; =
Z;-v:l a;w;;p; and B; in the node-based SIS model

where the equation E[X;] = Prob[X; = 1] is utilized. It is worth noting that the last equation
is obtained by using

The covariance plays a fundamental role in and it has been reported that cov[X;, X;] > 0
for the SIS model in any graph [64]. Notice that Prob[X; = 1] = E[X;]. It yields that if
cov[X;, X;] = 0, by denoting p;(t) = Prob[X; = 1], one can have the node-based SIS model
as follows

N

pi=(1—p)>_ ajwip; — Bipi. (2.4)

j=1
The interpretation of the node-base SIS model is as follows: The change of the infection
probability of node ¢ during a time interval d¢ consists of two parts, i.e. the influence of the
infected neighbors if node 7 is susceptible; and the curing probability if node 7 is infected.
The equal transition map is presented in Figure 2.1} Note that & is the equivalent infection
rate which covers all the influence of the infected in-neighbors of node 1.

The node-based SIS model is a nonlinear differential equation which gives insights into
the information diffusion process from the nodal point of view. Especially, it is efficient for
large scale networks compared with the Markov chain model. Although the model has
been widely used and many existing literature works directly ignore the dynamics , the
fundamental problem of the applicability of the node-based SIS model is of great importance.
Apparently, the accuracy of the model relies on the value of cov[X;, X;]. To this end,
the normalized accuracy criterion

9 N N
rr = EZZO@U}”COV[XZ',X]'] (25)

i=1j=1

is introduced in [65] for the SIS model on undirected graphs and homogeneous diffusion
processes. It is pointed out that the worst accuracy of the model increases with av-
erage degree of the graph as well as the network scale. It implies that the node-based SIS
model is generally sufficiently accurate on large scale networks. To this end, the variable
p; in is considered as the infection probability of node i in this dissertation.

The Node-based SIRS model In the epidemic processes, there exist not only susceptible
and infected compartments but also short-term immunity [66]. It follows that the recovered
or the removed state is necessary to be taken into account, which forms the SIRS model
[67]. Akin to the short-term immunity phenomenon, the temporary oblivion is inevitable in
the information diffusion processes. In Blogspace and web forums, the temporary oblivion
or boredom regarding certain topic is vividly characterized by the process from R to S

11
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[68], [69]. Apart from that, the SIRS model is also naturally applicable in marketing. The
individuals, to whom a firm wants to sell the product, can be in one of three states: potential
customer (susceptible), willing to buy (infected), and ignoring all the related information of
the product (recovered). Additionally, this model is valuable to the long-term brand strategy
[70] and viral marketing.

The underneath mechanism of the transition of the SIRS model can be described by a
Markov chain with 3V states. As an MFA of the Markov chain, a continuous-time node-
based SIRS model taking into considerations of heterogeneity in networks and diffusion
processes is adopted in this paragraph in the context of information diffusion.

We assume that there are three possible states in each node, i.e. susceptible (S), infected
(I) and recovered (R) where an individual could fall into when facing a disease. Analogously,
these three states refer to unawareness, awareness and oblivion of the information, respec-
tively. In the SIRS model, it is assumed that the individual is infectious (willing to spread
the news) once he/she is infected. Another widely adopted assumption is that the disease
propagates only via interactions between people. Thus individuals have no chance of getting
infected unless at least one of her neighbors is infectious.

The SIRS model could be naturally modeled as a Markov chain. Inspired by the model
(2.1), we introduce ternary numbers for the compartments in SIRS model, i.e., the random
variable X;(t) = 0,1 or 2 represents the state of node i to be S, I, and R at time instant ¢,
respectively. It yields that the following conditional probabilities hold

Prob[XZ(t + At) = 1|X2(t) = O] = Z Oéjwij(SXj(t)let,
jENin

Prob[Xi(t + Af) = 2|X,(t) = 1] = B;At, (2.6)
where 9,, ,, is the Kronecker delta function defined as
1, ifm=n
Omn = {O, it m # n. (2.7)

It follows that the time derivative of the expectation of dx,; and dx, o can be respectively
attained as

dE[dx. N
[d?’l] :E[(l - 5XZ-,1 - 5Xi,2) Z &jwij5xj,1 - 51'5)(2-,1]
j=1
N
Z ajwi;E 5X 1 E[0x, 1] Z%wzg [0x, 15X 1]+ E[ox,, 25X 1))
=(1 - Eldx, 1] — E[dx,2]) Z ajwi;E[0x; 1] — BiE[0x, 1] (2.8)
j=1
N
— Z Oéij'j(COV[(SXiJ, 5)(].’1} + COV[(5XZ.72, 5X]-,1])
j=1
dE[jf’Q] :@'wai,l] - %’E[5X¢,2]‘

The covariances cov[dx, 1, dx;,1] and cov[dx, 2, 0x;1] can be neglected since the correspond-
ing variables are assumed to be independent. Denote p}(t) = Prob[X;(¢) = 1] and pl(t) =

12
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Bi

Figure 2.2.: Node-based SIRS model of node ¢ with transition rates a; = Zé\f:l ozjwijp;, Bi
and 7; between different states

Prob[X;(t) = 2]. By using the MFA, the heterogeneous node-based SIRS model for node ¢
in a directed network G = (V, &, W) can be described as

pi(t) = (1= pi(t) = pi*()) 2_:1 ajwip(t) — Bipi(t),

pi(t) = Bipi(t) — vipi (),

(2.9)

Note that p$(t) is redundant due to the fact that every node must be in one of the three
states, i.e. the equality p?(t) + pi(t) + pR(t) = 1 always holds. The interpretation of the
node-base SIRS model is as follows: i) The change of the infection probability of node
¢ during a time interval dt consists of two parts, i.e. the influence of the infected neighbors
if node i is susceptible; and the recovery probability if node ¢ is infected. ii) The change of
the recovery probability of node i during time interval dt is also made of two parts, i.e. the
recovery probability if node i is infected; and the probability of being susceptible if node @
is recovered.

The state variables in node-based SIRS model are actually approximations of v} :=
E[0x, 1] and v}* := E[dx, o] in ([2.8), respectively. In the case where the actions of node ¢ due to
each of his/her infectious in-neighbors are independent, one could know that the approxima-
tions behave well thanks to the central limit theorem. Unfortunately, it is evident that the
independence condition can hardly hold in information diffusion processes. Nevertheless, the
node-based SIRS model is utilized taking into consideration its comprehensive physical
meaning and far less computational consumption, especially in large-scale networks. Akin
to the previous works [28], [71], [72], we still name p! and pft as the probabilities of infection
and recovery for node ¢ due to convenience of presentation in case of no ambiguity. To eval-
uate the validation of this node-based SIRS model, numerical experiments are conducted to
compare the performance of the Markov chain and the node-based SIRS model in digraphs.

Comparison of node-based SIRS model and 3"-state Markov chain In this sub-
section we focus on the detailed comparisons between the 3V-state Markov chain and the
node-based SIRS model over strongly connected directed networks.

The simulations are conducted with homogeneous coefficients over line graphs, E-R ran-
dom graphs, small scale graphs and complete graphs with 5 nodes. The 5-node graphs
used in these simulations are presented in Figure 2.3l Bearing in mind that the compu-
tation capacity and also the fact that the node-based model approximates the behavior of
Markov chain less well in small networks, the number of nodes in the examples are chosen
to be small. The value of the transition rates «, 5 and v are all limited in the set {0.1,1}

13
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(c) B-A graph (d) Complete graph

Figure 2.3.: Examples of 5-node graphs

such that the results can cover major range of the coefficients. For each simulation in the
graphs with the same number of nodes, the initial values are the same. Specifically, the
initial sates are randomly chosen as (01020)s; and (0120110)3. The corresponding initial
states for the node-based SIRS model are then set as ((0,0), (0, 1), (0,0), (1,0),(0,0)). We
run all the simulations with sampling period 0.001 and ¢t; = 50. The differences between
the infected and removed probabilities at ¢; are obtained as Ap'(t;) = v'(t;) — p'(¢;) and
ApR(ty) = ov®(ty) — pR(tf). In Table the results are listed in the form of 2-norm. The
errors less than 0.005 is recorded as 0 in both tables. It is evident that for the same type of
graph, the node-based SIRS model approximate the Markov chain best when «/5 = 1/10.
In this setting, the process finally reaches the rumor free equilibrium. However, for the
case when «/v = 10, the difference could be extremely large (1.18) and the process reaches
the nontrivial equilibrium. Thus we conclude that the node-based SIRS model performs
generally better with rumor free configurations. As for different kinds of graphs, the two
models have the most similar final values in complete graphs. The largest error occurs in
B-A networks and a potential reason is the heterogeneity caused by directed connections.
The results in E-R and B-A networks may vary with respect to different connection settings.

2.1.2 Multi-Layer Model

Although the node-based models in subsection is able to describe the information diffu-
sion processes on social networks, only single epidemic and single layer network is considered,
which is not general enough for diverse information dissemination phenomena. In this sub-
section, we extend the SIS model on single-layer network into multi-information SIS model
on multi-layer networks.
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2.1 Information Epidemics Models

Table 2.1.: (||Ap'(tf)|l2, [|Ap™(t4)|l2) in 5-node graphs

a: By Line E-R B-A Complete
L:1:1 (0.31,0.20) (0.27,0.19) (0.50,0.39) (0.04,0.01)
1:1:10  (0.55,0.05) (0.46,0.05) (0.67,0.07) (0.09,0.01)
1:10:1 (0,0.01) (0,0.01) (0,0.01) (0,0.01)
1:10:10 (0,0) (0,0) (0,0) (0,0)
10:1:1  (0.73,0.62) (0.77,0.68) (0.62,0.51) (0.56,0.45)
10:1:10  (0.15,0.01) (0.17,0.02) (0.07,0.01) (0.16,0.02)
10:10:1  (0.08,0.74) (0.07,0.68) (0.12,1.18)  (0,0.01)

A multilayer network structure is introduced to describe the interconnection in the popula-
tion with fixed capacity via diverse media, e.g., face-to-face conversation and online chatting.
Generally, we consider a multilayer network consists of L layers (L € Nx¢). This setting pre-
cisely mimics the scenario that the contact networks are non-identical via various media for
certain group of population.

Inspired by [73], we denote G, = (V,&;,W;),i € Npy.zj as the ith layer of the multilayer
network, where V and & C V x V are the sets of vertices and edges, respectively. The
nonnegative matrix W; = [w; jr] € RV*V is the adjacency matrix. w; ;; > 0 if and only if
there exists a link from node j to k in the 7th layer network. In this case, we say node j
listens to node k or node k£ can influence node j via communication topology G;. Bearing
in mind that multitudes of communications like campaigning and news propagation are not
mutual but with direction, digraphs are considered. To this end, w; iz = w;x; does not
generally hold. It is also assumed that there exists no self loop, i.e., w; ;; = 0,Vj € V. For
the convenience of further presentation, the in-neighborhood of node j € V in the ith layer
is introduced as

N =k wije >0,k € V;}. (2.10)

Note that we do not require the graph in each layer to be strongly connected. It reflects
the fact that not all the individuals in the inspected group of population are accessible via
every social media. For the case when L = 1, the multilayer network degenerates to a single
network.

In this subsection, the competitive information epidemics is described as the discrete-
time SIS model with heterogeneous transition rates. We take into account the SIS model
where there are two states i.e., susceptible (S) and infected (I). Specially, to distinguish
the infected states due to different pathogens, we assume that there exist M(M € Nsg)
independent epidemics labeled as I, m = 1,..., M. The transition relation between the
states is presented in Figure 2.4 Specifically, there exist M stochastic transitions in this SIS
model. By denoting Xj(¢) as the random variable standing for the state of node k at time
instant ¢, one could obtain the following conditionally probabilities.

i) The infection process: A susceptible agent k can get infected by epidemic m from
its infected neighbor j in the ith layer network with infection rate aj. Under the
assumption of independent Poison process, the transition probability is the sum of all
the k’s neighbors infected by epidemic m in every layer, i.e.,

L N
PI’Ob[Xk(t + 1) = Im’Xk(t) = S] = hz Za%wi7kj5xj’1m,

i=1j=1

(2.11)
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2 Modeling and Analysis of Information Epidemics

Figure 2.4.: State transitions of the SIS model for M-competitive information

ii) The curing process: An agent k infected by epidemic m can get cured with rate g}

Prob[X(t + 1) = S|X,(t) = I'"] = g (2.12)

Apart from the transition processes, a widely adopted assumption in the competitive epi-
demics is that the case when any node is infected by both epidemics is excluded. By denoting
pit(t) = Prob[X(t) = I"], one can obtain the following dynamics

M L N
pr(t+1) = (1= pl)h YD allypy () + (i (t) — B hpf (1)) (2.13)

q=1 i=1j=1
where offy; = ajw; ;. By encapsulating the states as p™ = (p1",...,p'), m € Ny, the

compact form of the SIS model then reads
~ M ~
pr(t+1) = (I +hA™ —hY_ PIt)A™ — hB™)p™(t),m € Ny, (2.14)
q=1

where A™ = YL Am Am = [af;] = diag(afy, ..., o')W, B™ = diag(B5, . . ., Bfy), and
P = diag(p9).

The model in (2.14]) is equivalent to the scenario of multiple competitive information
epidemics spreading on one single layer network G = (V, £ ) with different adjacency matrices,
i.e., A™. In other words, the spreading paths for the two competitive information are identical
whereas the spreading rates differ. As is shown in Figure 2.5 the equivalent graph ca be
regarded as a compressed version of all the layers. Note that not all the nodes are active
in each layer which vividly characterizes the fact that people are only into certain kinds of
social media.

2.2 Equilibria and Stability Analysis of Single-Layer In-
formation Epidemics

The equilibria are of great significance for dynamic systems from control theoretical point
of view. As for the information epidemics systems, the equilibria are also important since
they imply the steady states of the information diffusion processes. Evidently, the origin
is an equilibrium of the SIS model in (2.4)), as well as the SIRS model in (2.9). Thus it is
referred to as the nontrivial equilibrium or the disease-free equilibrium (DFE) in the context
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Layer 1

Layer 2

Layer L

Equivalent
Graph

Figure 2.5.: Multi-layer networks and its equivalent graph on which the information spreads

of dynamical systems or the epidemiology, respectively. This zero equilibrium is naturally
essential since its stability conditions infers the way for immunization. On the other hand,
there may exist trivial equilibrium or the endemic equilibrium of the information epidemic
models. The endemic equilibrium is straightforwardly associated with the propagation per-
formance at the finite time so that more inspection is needed.

Since the SIRS model contains more compartments compared with the SIS model, we
focus on the equilibrium analysis of the SIRS model in as an instance and provide the
stability conditions in this subsection. The results regarding the SIS model can be referred
to in [27], [2§].

By encapsulating the state variables as pt = [p,...,p§]T and p® = [pft, ... pR]T, the
compact form of the SIRS reads

p= (1= P = PYWap - By,

_ (2.15)
pt = Bp' —TI'p",

where A = diag(ay,...,ay), B = diag(f,...,Ay) and I = diag(yy,...,vn). P! = diag(p')
and P% = diag(p®) are diagonal matrices whose entries are the infection and recovering
probabilities of each node at time instant ¢, respectively.

Henceforth we denote p; = [p}, pR]T which should take value in the domain described as

A= {pilp; € [0,1],pi* € [0,1],pi +pi* € [0, 1]} (2.16)

Before embarking on the equilibria of the SIRS model, the boundaries of the state variables
are first studied, whose result is concluded in the following lemma.

Lemma 1. Consider the system described in (2.15)), if p;(0) € A, pi(t) € A, ¥t > 0.
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2 Modeling and Analysis of Information Epidemics

Proof. Assume that for a time instant 7 > 0 there exist p;(7) € A. Then we have the
following three cases (a) if pi(7) = 0, p!(7) > 0, Vpi(7) € [0, 1], (b) if p(7) = 0, pF(7) > 0,
Vpi(r) € [0,1] and (c) if pi(7) + pR((7)) = 0, p!(7) + p!(7) < 0. From (a) and (b), we have
phpt > 0 and along with (c), we have p! + pi < 1, which is equal to p;(t) € A, Vt > 0, if

From Lemma 1, one can straightforwardly conclude that p;(t) € A always hold with
reasonable initial condition, i.e., A" is an invariant set of the system (2.15)). In the remaining
part, p;(0) € A is omitted for simplicity if there is no ambiguity.

For the convenience of the further analysis, we first fix some notations that will be used in
this section. For matrix X = [z4],Y = [y;;] € R™*", we introduce the entry-wise comparison
symbols. X < (<, >,>)Y represents there holds z;; < (<,>,>)y;; for all the responding
entries in X and Y. X > (<)Y means that X < (>)Y and X # Y. These symbols are also
valid for vectors. Hence, we denote p(X) and s(M) as the spectral radius and the largest
real part of the eigenvalues of a square matrix X, respectively.

2.2.1 Preliminaries
For the convenience of the analysis, we the background knowledge on Metzler matrix and

dynamical systems are briefly introduced.

Metzler Matrix A matrix M € R™" is a Metzler matrix if its off diagonal entries are
nonnegative. The properties related to the analysis of the node-based SIRS model are
provided in the following lemmas.

Lemma 2. Given an irreducible Metzler matriz M, there holds that s(M) is a simple eigen-
value of M and the associated eigenvector of s(M) is unique (up to scalar multiple) and
strictly positive.

Lemma 3. Given a irreducible Metzler matrix M € R™™ and a vector x > 0,,, there hold:
For any scalar p,

i) if Mx > px, then s(M) > u;
it) if Mz = px, then s(M) = p;
iii) iof Mx < px, then s(M) < p.

Lemma 4. (7] If a Metzler matriz M is Hurwitz, then there exists a positive definite
diagonal matriz D such that MTD + DM = —Q where Q 1is positive definite.

Lemma 5. Given an irreducible Metzler matrix M, there exists a positive definite diagonal
matriz D such that MTD + DM = —Q where Q is positive semi-definite.

Lemma [2| and |3| are originally given in [75] for nonnegative matrices. They also hold for
Metzler matrices taking into consideration that sp{M + (I} = sp{M } + ( for any real scalar

C.
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2.2 Equilibria and Stability Analysis of Single-Layer Information Epidemics

Equilibrium and Stability Apart from the preliminaries on Metzler matrix, we recall
some fundamental definitions on equilibrium and domain of attraction from [76], which are
necessary for the analysis in the following subsections.

Consider the general form of autonomous systems:

#(t) = f(x(t),  =(0) = xo, (2.17)

where f: X — R" is locally Lipschitz and X C R™. The equilibrium of ({2.17) is defined as
follows.

Definition 1 (Equilibrium). Consider the system in (2.17). z. € X, (X, C X) is an
equilibrium if there holds
f(ze) =0. (2.18)

The stability of an equilibrium is of great significance in dynamical systems. In this
dissertation, we highlight the asymptotic stability, which is rigorously defined as follows.

Definition 2 (Asymptotic stability). Consider the system in (2.17)) with equilibrium z. €
X,. This equilibrium is asymptotically stable, if for any z(0) € X, there holds lim; ., z(t) =
Z.. Then X, is said to be a domain of attraction for x.. x. is unstable if it is not stable.

Based on the above background, we can proceed on the analysis of the equilibria of the

SIRS model.

2.2.2 The Disease-Free Equilibrium

Trivial equilibrium of is associated with rumor-free case. For certain kind of rumor diffusion,
there exist no one to believe it after a period of time. Typical examples are the rumors
refuted by science like the heavier object falls faster than the lighter. Specifically, for the
SIRS model, we have the following theorem.

Theorem 1. Given the node-based SIRS model (2.15), the origin is asymptotically stable
with domain of attraction AV, if (WA — B) <0.

Proof. Since the graph G is strongly connected, W is an irreducible nonnegative matrix. In
addition, A and B are positive definite diagonal matrices, which implies that (WA — B) is
an irreducible Metzler matrix. For the case s(WA — B) < 0, according to Lemma [4] there
exists a positive diagonal matrix &2 such that (WA — B)T2 + Z(W A — B) is negative
definite. For the dynamics of p', consider a Lyapunov function V (p'(t)) = (p')T(t) 2p'(t).
The time derivative of V' then reads

(PHYT 2 (WA - B)p' (2.19)

The inequality holds because 2(p!) T (P! + PR)W Ap! > 0 for all ¢. It yields that p' approaches
Oy asymptotically. Additionally, since I' = 0 and p' and p® are bounded by Lemma 7 it is
apparent that p? — Oy as t — o0.
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2 Modeling and Analysis of Information Epidemics

For the case when s(IWA — B) = 0, there exists a positive diagonal matrix 2 such that
(WA - B)T2 + 2(W A — B) is negative semi-definite. By choosing the Lyapunov function
V(p'(t)) = (p")T(t)2p'(t), one can obtain the time derivative of V as

V(') =20")"2((I - P' = PYYWA - Blp!
=2(p"YT2(WA - B)p' —2(p" YT 2(P" + P*YW Ap' (2.20)
0

IN

If V =0, one has (p)T[(WA — B)T2 4+ 2(WA — B)]p' = 0. We then show p' = Oy is
the only solution by contradiction. Suppose p' > Oy. Since WA is irreducible Metzler,
there holds W Ap! > Oy. In addition, Q and P!+ P® is positive definite. It is evident that
(PHT2(P' + PRYW Ap! > 0, which implies that V < 0. Suppose Suppose p' > Oy and at
least one of p'’s element is 0. Taking into consideration that (WA — B)T2 + 2(WA — B)
is negative semi-definite, we have s(WA — B)T2+ 2(WA — B)) = 0. By Lemma[2 0 is a
simple eigenvalue associated with a unique strictly positive eigenvector. Thus the considered
p'is not the eigenvalue since it possesses at least one 0 element. It yields that 2(p')T 2(W A—
B)p' < 0. Hence, V < 0. Then we conclude that neither of the aforementioned situations
of p' is possible to achieve V' = 0. It follows that V = 0 if and only if p' = 0. By La
Salle’s invariant principle, the system of p' is asymptotically in the origin. Following the
same techniques for the case when s(WA — B) < 0, one can conclude that the dynamics
of p® also converge to Oy asymptotically. Apart from the stability analysis, one can notice
that no further requirements are needed for the region of p' and p®. Thus the whole region
of AV is the domain of attraction. Thus we complete the proof. O]

According to Theorem , s(WA — B) plays the key role for the stability of the DFE of
the SIRS model. Moreover, by directly inspect the dynamics in (2.15]), we can obtain

P < (WA - B)p. (2.21)

Since p' is nonnegative, the comparison principle is applicable. It yields that the dynamics
of p' is upper bounded by (2.2I). Thus one can easily obtain the origin is asymptotically
stable if s(WA — B) < 0.

To visualize the results for the DEF, a numerical experiment is conducted on a strongly
connected random network with 300 nodes and connection probability 0.3. The transition
rates, a;, (i, and 7;, are randomly selected in the intervals (0.05,0.15), (0.25,0.35), and
(0.2,0.3), respectively. As is shown in Figure , the DEF is achieved. Note that in this
case (WA — B) = —0.1890 < 0, i.e., the condition given in Theorem [ is satisfied.

Until now, we only focus on the analysis of the DFE. However, for information diffusion,
the endemic equilibrium is also significant. To this end, we continue this subsection to
analyze the nontrivial equilibrium.

2.2.3 The Endemic Equilibrium

Unlike the obvious existence of the DEF, there may not exist an endemic equilibrium of
the SIRS model in . To this end, prior to the stability analysis, the existence of the
endemic equilibrium needs to be inspected. Let us first look into some properties of the
endemic equilibrium if it does exist.
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Figure 2.6.: The infection and recovery probabilities reach the DFE on a strongly connected
random network with 300 nodes and connection probability 0.3. The transi-
tion rates, «;, f;, and 7;, are randomly selected in the intervals (0.05,0.15),
(0.25,0.35), and (0.2,0.3), respectively. In this figure, s(WA — B) = —0.1890 <
0. The initial conditions are chosen in the intervals [0,0.1) and [0, 0.01) for p}(0)
and pR(0), respectively.
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Lemma 6. If there exists an endemic equilibrium p* = [(p™)7, (p%*)T|T of the SIRS model
(2.15)), there holds p* > 0.

Proof. Since p* = [(p™)T, (p™*)T] is an equilibrium of the system (2.15]), there hold

fO",p*) =0, g(p™,p*)=0. (2.22)

Without loss of generality, we consider two cases. First, suppose pi* = 0 for some i € V.

By (2.9), we have
N
(1=pi") > agwypl =0, wp™ =0. (2.23)
j=1

Thus pi* = 0. In addition, since the graph is strongly connected, for any node i, N # 0. It

follows that, there exists at least one j € V such that w;; > 0. In conjugation with «a; > 0,

we have p§* = 0 and hence p?* = 0. It implies that for any other node k € V \ {i,j}, if

node k is in the in-neighborhood of either of the inspected nodes i and j, there hold pi* =

and pi* = 0. Since the graph G is strongly connected, it is obvious by induction that

p™* = p** = 0. Thus our assumption pi* = 0 is impossible to derive an endemic equilibrium.
We then suppose pi* = 0 for some i € V. Similarly, by , we have

N
(1=pi*) > aywypy =0, Bip = 0. (2.24)
j=1

Thus one can obtain pi* = 0. Following the same approaches for the first case, one can
conclude that pf* = 0 is impossible to derive an endemic equilibrium. To conclude, the
opposite is true and there must hold p* > 0. O

It can be implied from Lemma [6] that if there exists an endemic equilibrium of the node-
based SIRS model, it is strictly positive. Bearing in mind that if s(IWA— B) < 0, the DFE is
asymptotically stable for any initial condition in AN, the case when s(WA — B) > 0, as the
other side of condition in Theorem (1] should be discussed. Inspired by this idea, we obtain
the following theorem.

Theorem 2. Consider the node-based SIRS model (2.15)). There exist two equilibria, the
origin, which is unstable and a nontrivial equilibrium p* > 0, which is unique, if s(WA —
B) > 0.

Proof. We first prove the instability of the origin. The Jacobian of (2.15)) at the origin reads

J(0) = %WA_B)T (ir . (2.25)

Since s(WA — B) > 0, the origin is not stable because not all the eigenvalues of J(0) are in
the left complex plane.

We then prove the existence of p* if s(IWA — B) > 0 by Brouwer’s fixed-point theorem.
This proof is inspired by the proof in [77] and we extend the proof for the SIRS model.

For any p*, there holds

(WA — B)p™* = (I +T7'B)P*W Ap"™, (2.26)
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where the equation

P =T""Bp" (2.27)
is used. By ([2.26)), one can derive
p™ = [I + (I +T7'B)diag(B~'WAp™)| ' B~'W Ap™. (2.28)

Inspired by the above equation, we consider a continuous map f(x) : (0, 1] — [0,1]" defined
as
f(x) =[I + (I +T7'B)diag(B~'WAz)]"'B~'W Ax. (2.29)

Note that f(p™) = p™. We then look for a compact invariant set of the map f(z). The i-th
entry of f(z) reads
- (B71WAZL‘)Z
f1<x) = —1 _1
L+ (1+9; 8:)(B7'WAz);

(2.30)

1 1
T 1+ i LB <1 14 (14 ”yi_lﬂi)(BIWAa:)) '

Since 14 7;'8; > 0 and B~'W A is nonnegative, it follows that for any z,y € (0, 1]V, there
holds f(x) < [(y) if 2 < y.

Besides, taking into account s(WA — B) > 0, one can derive p := p(B~'WA) > 1. In
addition, B~'W A is an irreducible nonnegative matrix. Thus by Perron-Frobenius theorem,
there exists a vector v > Oy such that

B™'W Av = pu. (2.31)
It follows that there must exist a sufficiently small scalar e > 0 such that
p =1+ epv;, (2.32)

where v; is the ith entry of v. It implies that ev < 1. By substituting x = ev into ﬁ(x), in
conjugation with (2.31]), one has

= EPVU;

i(€V) = 2.33
) = T T Aers (233
Since € is sufficiently small, it can be chosen such that

. p—1

€ < min — : (2.34)

P B
Under this condition, there holds )

f(ev) > ev. (2.35)

Recalling the results that for any z,y € (0,1]V, there holds f(z) < f(y) if z < vy, we
conclude that f maps the compact convex set [ev, 1y] to itself. Thus by Brouwer’s fixed-
point theorem, there exists a fixed point in [ev,1y]. Moreover this fixed point is strictly
positive since ev > Oy. Additionally, since ['"!'B is invertible, p®* > Oy also exists. Thus
we confirm the existence of the endemic equilibrium under the condition s(WA — B).

23



2 Modeling and Analysis of Information Epidemics

It remains to show the endemic equilibrium is unique. Since the mapping from p™ to p?*
is one-on-one, only the uniqueness of p™ needs to be shown by taking advantage of (2.27)).
Suppose there exist two distinct endemic equilibria z,y € [ev, 1] of the SIRS model. This
assumption is valid since e can be selected sufficiently small. Consider
X
= —. 2.36
n=max (2.36)
It implies that x < ny and there exists k € V such that x; = nyi. A fundamental step to
show the uniqueness of the endemic equilibrium is to illustrate that n < 1. We then prove
it by contradiction, i.e., we suppose n > 1. B
Since for any z,y € (0, 1], there holds f(x) < f(y) if z < y, it follows that

(B_1WA$>J'
x; = —
P14+ (14718 (BIW Az (2.37)
n(B~'WAy);
T 1 (14 B)(BTIW Ay),
By assumption that n < 1, one has
B™1W Ay),
z; < 0B y)f . (2.38)
L+ (147 8:)(B'WAy);
In addition, y is a fixed point of of f, there holds
B1W Ay);
L+ (149 8)(B~W Ay);
By combining the above two expressions, it yields that
Tj < 1NYj = Tj, (2.40)

which is naturally a contradiction. Thus there holds xleqy. Dually, by exchanging x and y
in the relation ([2.36)), one can show that y < x by using the similar approach. To conclude,
we have x = y, which is equivalent with the uniqueness of the endemic equilibrium. O

Theorem [2| reveals that the endemic equilibrium does exist and is unique under the condi-
tion s(IWA— B) > 0. However, the detailed information of this equilibrium is still unknown.
To this end we provide the following theorem.

Theorem 3. The endemic equilibrium of node-based SIRS model (2.15)) is expressed as an

iteration

Ix 1
pi = K; 1-— ’
1 N awiiés (1 - ' )
+¢& E]—l Q;w Jgj 1+¢; 25:1 arw;rér(1—...) (2 41)
1
N 1
L+ & 2250 aywigé; (1 BTN akwjkgk(l...))

24



2.2 Equilibria and Stability Analysis of Single-Layer Information Epidemics

where §; = ’82, &= ﬂ, and K; = Hence, the equilibria is bounded by

1+6
0<pt <n <1_1>
’ 1+ :max 7
Sio (2.42)
0<pf <om [1-— 1
p ' 1+£iamax ‘

Proof. Since (p™, p?*) is the endemic equilibrium of the SIRS model (2.15)), there hold

a; 0; 0

Ix
[« _ " 2.43
b (1 +di)au + Bi n (1 +0i)ai + Bi (2:43)
where o; := Z?’Zl ajwijpi'*. Along with the notation & and k;, we have
1 Z @]wz]p]
P =
L1446 N
Z &]wl]pj + 62/(1 + 51)
(2.44)
1
= K; 1— N
1 + fz Zl ajwijp§*
j:
Thus in conjugation with p?* = ipi-*, we can obtain (2.41)) by iteration.
It remains to show that the equilibrium is bounded. Since p?* < 1, we have
I 1
D, <kKi|l— ~
1+ Kiomax Z Wi (2.45)
Jj=
: < 1t &ozmaX)

where apa.x = max;ey ;. In light of Z lajwwp] > 0 and p = lpj , one can simply
obtain (2.42)). Thus we complete the proof O

From Theorem |3 the endemic equilibrium is strictly smaller than 1. The upcoming ques-
tion is whether this endemic equilibrium is stable or not. We have the following conjecture.

Conjecture 1. Given the node-based SIRS model (2.15)), the epidemic equilibrium p* is
asymptotically stable with domain of attraction AN \ {Oan}, if sS(WA — B) > 0.

This conjecture is proposed based on the result regarding the SIS model given in |77,
where the properties of the Metzler matrix is utilized. Here we provide a potential way
leading to the proof of the conjecture.

Let z;(t) = p} —pi* and y;(t) = pi —pi*. By using the dynamics (2.9), the time derivatives
of z;(t) and y;(t) read

N
=(1- i Z ajwijr; — (T + Yi) Z O‘jwij(p;* +z5) — Bixi
j=1

(2.46)
Ui = Bixi — Vi,
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where the relations

N
(1- p?‘ - pf‘*) Z Oéjwijpi‘* - @pg* =0
j=1

(2.47)
5127%* - %’sz* =0
are used.
By denoting x = [z1,...,25]", ¥y = [y1,...,yn]" and z = [27,y"]T, the compact form
of (2.46]) reads
z = 95(2)z, (2.48)
where
I Ix
Sz) = 1) —diag(WAW™ +2))| o (7 ple_ PRy A — diag(W A" +2))— B.

B —C

(2.49)
In conjugation with , the domain of the state variables can be directly obtained as
follows.

Thus the node-based SIRS model is asymptotically stable at the endemic equilibrium
if and only if the system is asymptotically stable at the origin.

We then on the way to show that S(x) is essentially negative definite, i.e., S(z) + ST (z)
is negative definite for all proper z. For any two nonzero vectors v, and v, satisfying the
domain of x and y, respectively, we have

H, = [v],v]]S(x)[v],v]]"

T T I T T (2.51)
= v, 51(7)v, — v, diag(WA(p™ + 2))v, + v, Bv, — v, Cv,
Denote the first three items as
H, = v} S (z)v, — v] diag(WA(p™ + z))v, + v;Bvx. (2.52)

The extremum of H, can be achieved at the point where the gradient is zero. Thus we set

) i\ oA\
vit,= | (5) (5 _o, (2.53)
z y

where ~

0H, .

5o = (S(z) + ST(z))v, — diag(WA(p"™ + z))v, + Bu,

8]:; (2.54)

Y = —diag(WA(p™ + 2))v, + Bu,.

v,

By combining the above equations and bearing in mind that
1
vl Si(7)v, = 51}2(51 (z) + S| (2))v,, (2.55)

it is clear that the extremum of H, is 0. If the extremum is the maximum, the essentially
negativeness of S(z) is obtained, which is a critical milestone to build a common Lyapunov
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function for all . However, this result seems not apparent unless looking into the row sum
and column sum of S(z) [78]. The major obstacle is that a Hurwitz matrix is not naturally
to be essentially negative definite but with further condition [79).

To visualize the results for the endemic equilibrium, a numerical experiment is conducted
on a strongly connected random network with 300 nodes and connection probability 0.3. The
transition rates, oy, 3;, and ~y;, are randomly selected in the intervals (0.55,0.65), (0.15,0.25),
and (0.3,0.4), respectively. Figure manifests that the model converges to the endemic
equilibrium. In this case, s(WA—B) = 0.4018 > 0, i.e., the condition given in the conjecture
is satisfied.

2.3 Equilibria and Stability Analysis of Multi-Layer In-
formation Epidemics

Prior to the analysis of the multi-layer information epidemics (2.14]), the following lemma is
necessary.

Lemma 7. Given an irreducible nonnegative matriz (), there exists a positive diagonal ma-

triv & such that QT P2Q — P is negative (semi-)definite, if s(Q)(<) < 1.

It is clear that Lemma [7] is the discrete-time version of Lemma [5] Hence, for the ease of
the remaining analysis, we have the following assumptions.

Assumption 1. For system (2.14)), there hold p™(0) € [0, 1], Vm € Np.ag and Zf]\ilpq(()) €
[0, 1]V,

Assumption 2. For allk € V, there hold h3{" < 1,¥m € Ny and h 37, Y0, maxpmen,.,,
{ag’}gj} <1.

]

Assumption 3. A™ s irreducible for all m € Ny, d.e., the equivalent network G is
strongly connected.

Assumption [1|is natural to make sure that the initial condition of the system is reasonable.
In conjugation with [2 we will show that the multi-layer information epidemics model is
well-defined. Besides, in Assumption [3, the strong connectivity of the equivalent network
guarantees the information flow among alway the agents.

Before embarking on the equilibrium analysis of the system (2.14)), we first provide the
following lemma to bound the infection probabilities.

Lemma 8. Given Assumptions [l and[3, for the system in (2.13), there hold p*(t) € [0, 1]
for all m € Ny and 00 pi(t) € [0,1] for all k € V and ¢ € N.

Proof. We prove the lemma by using mathematical induction. Based on Assumption [I} at
time ¢ = 0, the results hold straightforwardly. Suppose that at time instant 7 € N5, there
hold py*(7) € [0,1] and 307, p{(7) € [0,1]. Apparently, pi*(7 + 1) > 0 holds since each item
of the right hand side of is nonnegative. It implies that Y07, pf(7 + 1) > 0. Thus
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Figure 2.7.: The infection and recovery probabilities reach the endemic equilibrium on a
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strongly connected random network with 300 nodes and connection probability
0.3. The transition rates, oy, (;, and ;, are randomly selected in the intervals
(0.55,0.65), (0.15,0.25), and (0.3,0.4), respectively. In this figure, s(WA—B) =
0.4018 > 0. The initial conditions are chosen in the intervals [0,0.1) and [0,0.01)
for pi(0) and pi*(0), respectively.
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we only have to show they are upper bounded by 1. By rearranging the dynamics of p}’ as
follows
pr(t+1) =1 —-pi'(r hZZa%pﬂ 7) +pr (T)(1 = By'h)

=1 j=1

(2.56)

M L N
— 2 ) 2> alyp (7).
g=1,qg#m i=1j=1
we have pj"(T+1) equals a sum of the convex combination of h 37, 33, o kjp]( 7) and (1—
Bi*h), and a nonpositive term. Since Assumptlonlholds it follows that h 3% i1 Qiggpi(T) <1
and (1 — Bxh) < 1. Thus the convex combination is upper bounded by 1. Therefore there
holds p}*(t) < 1. Furthermore one can compute

M M N M M
D p(r+ 1) == pi(r)hd_ > D afypi(r) + > pi(r)(1 = Bih)
q=1 q=1 i=1j=1¢q=1 q=1 (257)
M L N M
< (=2 phDh 2 ) max {afiy}+ 2 pi(r) max {1- 5}

According to Assumption , one can attain Zé‘il pi(7+1) < 1. By mathematical induction,
we have pj(t) € [0,1] for all m € Nyi.ay and 00, pii(t) € [0,1] forall k € V and ¢ € N5g. [

Lemma [§ reveals that there exists a invariance set P denoted as

M
P={p" €RY,m € Ny : 0<p™, > pfl <1}, (2.58)

q=1

if the system ([2.14)) is properly configured.

2.3.1 The Disease-Free Equilibrium

Akin to the single-layer models, the disease-free equilibrium (DFE) is the origin of the
system , i.e., p. = 0. This equilibrium is of great importance for information diffusion
where the DFE means the rumor-free case. The existence, uniqueness and stability analysis
of the DFE are inspected in this subsection.

In order to deal with the issues of competitive information diffusion processes, the prior
step is the analysis of the DFE of the single epidemic spreading model as follows.

z(t+1)= (I +hA—-hX(t)A - hB)x(t), (2.59)

where x(t) € [0,1]" is the vector consists of the individual infection probabilities at time
t and X (t) = diag(z(t)). A and B are similarly defined as A” and B™. Since only single
epidemic is considered, m can only be 1 and is omitted. This discrete-time SIS model has
been validated in [80] by using the Snow dataset and the USDA dataset. The following lemma
provide a condition leading to the asymptotic stability of the DFE of the model .

Lemma 9. Given Assumptions @ and@ 0 is the unique equilibrium of the system ,
which is asymptotically stable with the domain of attraction [0,1]V if s(I + hA — hB) < 1.
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Proof. Denote Q@ = I + hA — hB. Based on Assumption [2 I and |3 I is an irreducible
nonnegative matrix. Since s(Q)) < 1, by using Lemma [7] I there exists a positive diagonal
matrix P such that QT2Q — & is negative definite. Consider the Lyapunov function
V(z(t)) = 27(t) Px(t). The increment of V(z(t)) can be calculated as

AV(t) =V(+1) - V()
=2 (t+1)Pa(t+1) — 2" (t) Px(t)
=2"(Q - hXA)T2(Q - hXA)x — 2" P
=2 (QTPQ — Pz —2ha " ATX PQu 4+ h2TATX P X Ax

(2.60)

Since s(Q) < 1, we have

AV (t) < —2ha" ATX 2Qx + W22 TATX P X Ax
= 22 TATX P X Az — 2ha"ATX P(I + hA — hB)x (2.61)
= W22 ATX P X Ax — 2ha" ATX P(I — hB)x

Based on Assumption we have [ — hB < O. It yields that AV < 0. Note that if
s(Q) < 1, one can attain AV < 0 because the first row in is strict. If s(Q) =1, it is
straight forward that the last row in ([2.61)) is equal to 0 if and only if x = 0. Therefore, 0 is a
asymptotically stable equilibrium by La Salle’s invariance principle. Meanwhile, since all the
states in [0, 1]V are included in the above derivation, the origin is the unique equilibrium. [

A numerical experiment is conducted to validate Lemma [9} Taking into consideration
an SC random network of 300 nodes and 0.3 connection probability, the single-layer SIS
model is simulated with configurations: «aj; € (0.05,0.15), 5; € (0.25,0.35) and

= 1. It is clear by calculation that s(I + hA — hB) <1 is satisfied. Thus x approaches 0
asymptotically as is shown in Figure [2.8] (in this case s(I + hA — hB) = 0.8034).

The result in Lemma [9] reminds us of the condition given in Theorem [I] More specifically,
the result above can be regarded as an discrete-time version of the condition in Theorem [I]
It implies that s(I + hA — hB) plays an important role in the equilibrium and stability of
the model . This inspires us to come up with the following lemma which is significant
for the result of the multi-layer model.

Lemma 10. 80/[P7’0posztzon 2] Given Assumptions 14 and [3, there exists two equilibria of
the system (2.59): 0 and 0 < v* < 1, if s(I + hA — hB) > 1.

The proof is similar with the proof for Lemma [2] and is saved for triviality. Note that we
point out z* < 1, which is straight forward by checking the model .

A numerical experiment is conducted to show the endemic equilibrium in Lemma [10]
Taking into consideration an SC random network of 300 nodes and 0.3 connection probability,
the single-layer SIS model (| is simulated with configurations: ax; € (0.45,0.55), B €
(0.25,0.35) and h = 1. It is clear by calculation that s([ +hA—hB) > 1is satlsﬁed Thus z
approaches 0 asymptotically as is shown in Figure [2.9| (in this case s(I+hA—hB) = 1.2059).

Based on the aforementioned results on the equilibria of the single-layer model, we are on

our way to provide the condition for the stability of the DFE of the multi-layer SIS model,
which is presented in the following theorem.
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20 30

Time Steps

Figure 2.8.: The infection probabilities in the model reaches the DFE on a strongly
connected network of 300 nodes and 0.3 connection probability. The transition
rates are randomly selected as ay; € (0.05,0.15), B € (0.25,0.35). The sampling
period is set to h = 1. In this figure, s(I + hA — hB) = 0.8034 < 1.

Theorem 4. Given Assumptions @ and @ there exists the DFE of the system (12.14)),
which is unique and asymptotically stable with domain of attraction P, if and only if s(I +
hA™ — hB™) <1 for all m € Np.aq.

Proof. Sufficiency: Since Assumption |1 holds, according to Lemma |8 p}*(t) is always non-
negative. In light of the system ([2.14]), we have

Pt + 1) < (I +hA™ — hP™(t)A™ — hB™)p™(t), (2.62)

which shows that the trajectory of p™(t) is bounded by the single epidemic spreading
model (2.59). Thus based on Lemma [9]and the comparison principle [76], p™(¢) converges to
the unique equilibrium O asymptotically for all initial states satisfying Assumption [I] Hence
by Lemma [§] the domain of attraction is P.

Necessity: The necessity part can be proved by contradiction. Suppose there holds s(I +
hA™— hB™) > 1 for certain m and p? = 0 for all ¢ # m, ¢ € Np.p;. Under this circumstance,
the dynamics degenerates to . Therefore we only have to show that the model
in converge to an nontrivial equilibrium, which is contradictory to the uniqueness of
the DFE. This nontrivial equilibrium does exist based on Lemma [I0] Thus we complete the
proof. O

This theorem is validated on a two layer network where each layer is a random graph
of 300 nodes and 0.3 connection probability. Consider three kinds of information with the
transition rates presented in Table 2.2] By choosing the sampling period as 1, we show the
performance of the infection probabilities in Figure 2.10, where p™, m = 1,2, 3 reaches the
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Time Steps

Figure 2.9.: The infection probabilities in the model reaches the endemic equilib-
rium on a strongly connected random network of 300 nodes and 0.3 connection
probability. The transition rates are randomly selected as ax; € (0.45,0.55),
Br € (0.25,0.35). The sampling period is set to h = 1. In this figure,
s(I +hA —hB) =1.2059 > 1.

Table 2.2.: Transition rates of three kinds of information reaching the DFE in a two-layer

network.
m=1 m =2 m=3
a?fjk(i =1,2) (0.05,0.15) (0.15,0.25) (0.05,0.35)
B (0.25,0.35) (0.35,0.45) (0.35,0.45)

DFE asymptotically. In this case, we have s(I + hA' — hB') = 0.9034, s( + hA* — hB?) =
0.9942; and s(I + hA3 — hB3) = 0.8024 , i.e., the condition given in Theorem 4| is satisfied.

2.3.2 The Endemic Equilibrium

It has been already shown in Lemma [9] for the single-layer discrete-time SIS model, there
exist a unique strictly positive endemic equilibrium if s(I+hA—hB) > 1. We then investigate
the stability of this endemic equilibrium, which is necessary for the analysis of the multi-layer
case.

Lemma 11. Given Assumptions[q and[3, the endemic equilibrium of the discrete-time single-
layer SIS model (2.59)) is locally asymptotically stable, if s(I +hA — hB) > 1.

Proof. Since s(I + hA — hB) > 1, there exists a unique endemic equilibrium z* based on
Lemma [10] Let y(¢) = x(t) — 2* be the error variable. It follows that the difference equation
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(a) Infection probabilities of information 1 reach the DFE
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(b) Infection probabilities of information 2 reach the DFE
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(c) Infection probabilities of information 3 reach the DFE

Figure 2.10.: The multi-layer SIS model reaches the DFE on a two layer network where each
layer is a random graph of 300 nodes and 0.3 connection probability. The
transition rates are listed in Table 2.2l The sampling period is set to h = 1. In
cach subfigure, there holds s(I +hA' —hB') = 0.9034 < 1, s(I + hA?> —hB?) =
0.9942 < 1, and s(I 4+ hA® — hB?) = 0.8024 < 1, respectively.
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for (t) reads
y(t +1) = (I + hA — hB — h(Y (t) + X*)A — hdiag(Az*))y(2), (2.63)
where Y () = diag(y(t)) and the relation
(A—X*A—-B)2* =0 (2.64)

is utilized. It is clear that y = 0 at the equilibrium z*. The Jacobian of (2.63) at y = 0 can
be obtained as

Jly=o = [(I + hA = hB = h(Y + X*)A — hdiag(Az"))" — hdiag(Ay)| |0

- . . (2.65)
= (I +hA—hB—hX*A — hdiag(Az™))".
One can check that J|,—¢ is irreducible and Metzler. Notice that
(2*)"J|y=0 = [(I — hdiag(Az"))z*]". (2.66)

Since Assumptionholds, in conjugation with Lemma , one can attain (I—h diag(Az*))z* >
z*. It implies that s(J|,—0) < 1 by Lemma . Thus for any autonomous discrete-time linear
time-invariant system z(t + 1) = J|,—0z(t), z(t) is asymptotically stable by Lemma [7} It is
equivalent that all the eigenvalues of J|,—o lay in the unit circle. To this end, we conclude
that the Jacobian at 0 is Schur stable, which yields that the equilibrium y = 0 is locally
asymptotically stable. This completes the proof. O

In Lemma [11], the local stability of the endemic equilibrium is guaranteed. However, the
global (P \ {0} in this case) stability of the endemic equilibrium of the single-layer discrete-
time SIS model is still an open problem. We provide a conjecture as follows.

Conjecture 2. Given Assumptions[q and [3, the endemic equilibrium of the discrete-time
single-layer SIS model (2.59) is asymptotically stable with domain of attraction P\ {0}, if
s(I + hA—hB) > 1.

This conjecture is inspired not only by the local stability condition in Lemaa [TI] but also
the result for the continuous SIS model [77]. Here we provide a brief idea towards the proof
of Conjecture [2]

Denote

A(y(t)) = I+ hA — hB — h(Y (t) + X*)A — hdiag(Az*) (2.67)

as the system matrix in the error dynamics (2.63)). It is clear that A(y(t)) is an irreducible
Metzler matrix for any y(¢). Furthermore, there holds

A(y(t))x* = (I —hX(t)A)x™ < z”. (2.68)

It implies that s(A(y(t))) < 1 for all y(¢). To this end, if there exists a common Lyapunov
function V = yT Py where & is the positive diagonal matrix in Lemma 7| and is valid for all
t, the stability of endemic equilibrium can be obtained. Further application of the LaSalle’s
invariance principle can be expected to finally prove the asymptotic stability.

Back to the endemic equilibrium of the multi-layer SIS model, it is interesting to note that
there may exist different situations. Here we give one example of the equilibrium where only
one piece of information is dominant.
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Table 2.3.: Transition rates of three kinds of information reaching the SDIE in a two-layer

network.
m=1 m=2 m=3
agfljk(i =1,2) (0.05,0.15) (0.25,0.35) (0.05,0.35)
Bt (0.25,0.35) (0.05,0.15) (0.35,0.45)

Single Dominant Information Equilibrium In the multi-layer SIS model, there could
exist a situation when one piece of information dominates the steady state while other
information vanishes. This case reflects the case when one of the company defeats other
competitors and its advertisements is well spread.

The rigorous condition to achieve this single dominant information equilibrium (SDIE)
remains to be inspected. Here we provide a conjecture based on Lemma [11]

Conjecture 3. Given Assumptions @ and@ the system possesses two equilibria,
i.e., the DFE and a unique endemic equilibrium (p™*,0) with p™ > 0, if s(I+hA™—hB™) >
1 and s(I—l—hflq—th) <1 forallq € Ny.a, g # m. Furthermore, the DFE is asymptotically
stable with domain of attraction {p : p™ = 0} and (p™*,0) is asymptotically stable with
domain of attraction P\ {p : p™ = 0}.

We provide an idea to prove this conjecture as follows.

By using the similar approach in the proof of Theorem [4] one can straightforwardly obtain
that p? converges to 0 asymptotically for initial conditions p™ € [0, 1] since s(I + hA? —
hB?) <1 for all ¢ € Npy.pp, ¢ # m. If p™(0) = 0, p™(t) = 0 for all t € N5g. Thus the claims
regarding the DFE is proved.

If p™(0) # 0, the dynamics can be regarded as an autonomous system

p(t+1) = (I +hA™ — hP™(t)A™ — hB™)p™(t) (2.69)

since the item —h Zé\il Pa(t)A™p™(t) converges to O asymptotically. Thus the problem
degenerates to the stability endemic equilibrium of the single-layer discrete-time SIS model
([2.59). It yields that Conjecture [3]is true, if Conjecture [2]is confirmed.

This conjecture is tested in a two-layer network where each layer is a random graph of 300
nodes and 0.3 connection probability. Consider three kinds of information with the transition
rates presented in Table By choosing the sampling period as 1, we show the performance
of the infection probabilities in Figure 2.11] where p' and p® reach the DFE asymptotically
while p? reaches the endemic equilibrium. In this case, we have s(I + hA' — hB') = 0.9051,
s(I + hA? — hB?) = 1.5022, and s(I + hA® — hB?) = 0.8105 , i.e., the condition given in
Conjecture [3] is satisfied.

2.4 Discussion

In this chapter, we focus on the modeling and analysis of the information diffusion processes
on social networks. By adopting epidemics models and using the mean-field approximation,
the node-based SIS and SIRS model are introduced. Distinct from the existing models,
the heterogeneities in both the communication topology and the diffusion process itself are
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Figure 2.11.: The multi-layer SIS model reaches the SDIE on a two layer network where
each layer is a random graph of 300 nodes and 0.3 connection probability. The
transition rates are listed in Table 2.3, The sampling period is set to h = 1. In
cach subfigure, there holds s(I +hA' —hB') = 0.9051 < 1, s(I + hA%> —hB?) =
1.5022 > 1, and s(I + hA® — hB?) = 0.8105 < 1, respectively.
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considered. We then extend the continuous single-layer single epidemic model into discrete-
time multi-layer multiple epidemics model.

The analysis of the information epidemic models emphasizes the existence, uniqueness,
and stability of the equilibria. Specifically, the node-based SIRS model may possess the
DFE and the endemic equilibrium under different conditions. The parameters associated
with the transition rates and the underneath networks play the dominant role. This result
is also valid for the uniqueness and stability. For the multi-layer model, similar results are
obtained in combination with the requirement in the sampling period.

The main contribution in this chapter are twofolds:

i)

ii)

We propose the heterogeneous node-based SIRS model and provide the equilibrium
analysis results. Although there exist many macroscopic and microscopic epidemics
models, very few consider the SIRS model. By associating the temporary immunity
in epidemics spreading and the oblivion phenomenon in information diffusion process,
the SIRS model is adopted. Distinct from the conventional literature, we take into
account both the influence of the network topology and the heterogeneous transition
rates. For the proposed model, there exist two equilibria: the disease-free equilibrium
(DFE) and the endemic equilibrium. By using the properties of Metzler matrix, the
condition s(WA — B) < 0 is obtained which can guarantee the asymptotic stability
of the DFE. Besides, if there holds s(WA — B) > 0, the node-based SIRS possesses a

unique endemic equilibrium.

We propose the multi-layer node-based SIS model for multiple information spreading
processes. The multi-layer network characterizes the diverse media from which the
information is propagated. Apart form the network structure, we consider multiple
information diffusion processes. By assuming the infection states caused by different
information are mutually exclusive, the competitive spreading are investigated. This
model vividly describe the marketing competition of companies by propagating their
product from diverse media. The equilibrium analysis of this model is based on the
newly reported results for the discrete-time SIS model on single-layer networks. Specif-
ically, the DFE of the multi-layer node-based SIS model is asymptotically stable if and
only if s(I + hA™ — hB™) < 1. Thus the network topology, the transition rates of the
information diffusion process, and the sampling period play dominant role for the limit
behavior of the proposed model.

The nonlinear nature of the proposed models is the major difficulty to achieve the afore-
mentioned results. Furthermore, the influence of the network topology makes the analysis
more complicated. Due to these reasons, several immediate problems are still open.

i)

ii)

The stability of the endemic equilibrium of the node-based SIRS model. In Section
2.2 we provide a conjecture as the stability condition as well as the promising way
leading to the proof. The precise and rigorous proof are left for the future work.

The stability of the endemic equilibrium of the discrete-time single-layer SIS model. In
Section [2.3] we provide a conjecture for the stability condition inspired by the results
for the continuous-time SIS model. If this conjecture is confirmed, the condition for
the asymptotic stability of the single dominant information equilibrium (SDIE) can be
attained.
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iii) Existence and stability of other endemic equilibria of the multi-layer SIS model. In the

iv)

38

last part of Section [2.3] an example is provided to show the existence of the SDIE. An
interesting question is whether there exist other kinds of endemic equilibria. Inspired
by the co-exist equilibrium of the single-layer bi-virus SIS model, the limit behavior of
the proposed model could also be the co-exist state, i.e., there exists p]* > 0 for some
i €V and all m € Np.pp.

Computationally cheap algorithms to check the existence, uniqueness, and stability of
the DFE and endemic equilibria. In the proposed conditions, the eigenvalues of the
matrices of dimension N are need to be calculated. It is of high computational burden
for large scale networks. In order to solve this problem, an attractive way is to develop
fast algorithms taking into consideration the network structure, e.g., the sparseness of
the network.

General epidemics model. Although there exist many different kinds of epidemics
models, no general one has been reported in literature. The recent the generalized
susceptible-exposed-infected-vigilant (G-SEIV) model paves the way to this target.
However, to develop a generic model that covers all the possible compartments, as well
as the time-varying network topology, and the potential noise, is still an open problem.



3

Control Design for Information Epidemics

Apart from modeling and analysis problems addressed in Chapter [2| an attractive topic
for information epidemics is to design an optimal control strategy that guides information
propagation in complex networks as a desired way. Although there exist several very recent
works regarding optimal control or model predictive control for epidemic models, e.g., [81]-
[83], none of them considers time-dependent control rules, which naturally belongs to optimal
resource allocation or optimization. Other related papers dealing with control problem for
epidemic models [84], [85], but very few inspect the node-based models. Besides, according
to the recent survey [86], the optimal control design for information epidemics is still an
open problem. The previous study [87] inspects the node-based model, however, in their
approach, the model needs to be linearized and only the disease free case is set to be the
target. From information epidemics’ perspective, in Section we introduce two practical
scenarios: to impede the rumor spreading and to improve propagation for marketing or
campaigning. Furthermore, the robust optimal control problem is considered in Section
taking into account the noisy transition rates.

3.1 Optimal Control for the SIRS Information Epidemics

In this section, we address the optimal control problem for the SIRS information epidemics
and propose optimal control rules for two practical situations.

To guide the information diffusion process, we introduce the word-of-mouth communica-
tion which is a common way to influence social neighbors. As is shown in Figure we take
enhancing (or impeding) the information spreading to node 1 for example. By influencing in
infection way with respect to his/her in-neighbors (node 5), the infection probability of node
1 could be increased (or decreased). This word-of-mouth way is based on the fact that the
decision-making of individuals will be influenced by their social neighbors. To this end, a
control signal is introduced to interact with the infection rate. Note that although this kind
of strategy is widely used in the control design for epidemics and information diffusion pro-
cesses [88], [89], seldom works have implemented it for the node-based models. Specifically,
for the node-based SIRS model (2.9)), the controlled system can be written as

pi=(1—pi— (aj + u;)wi;ph — Bipl,

p? = @‘pi - %’pi .
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Figure 3.1.: Control frame for node-based SIRS model

The stacked control input is denoted as u = [uy,...,un]". Let U(t) = diag(u(t)), the
compact form of the controlled information epidemics reads

p'=(I—P—PHYW(A+U)p' - By,

. (3.2)
pR — BpI - FpR
Note that we have the following admissible set for the control inputs.
u € U = {u: u; is Lebesgue integrable, uyin < 1;(t) < tmax, Vi € V}, (3.3)

where up;, and un. are real scalars to bound all the functions in &. We assume that
UninUmax > 0. Taking enhancing the diffusion for example, there is no doubt that to increase
the infection rates is the intuitive option, i.e., the bounds are both nonnegative in this case.
Umin 18 usually chosen as the worst acceptable increment of the infection rates while .y is
roughly calculated according to the budget. It is required that wmin(t) +; > 0 such that the
underneath mechanism of the SIRS model is satisfied. Notice that w;(t) + a; = 0 indicates
that there is no infection procedure activated by node i. Based on the above settings, we
propose the two optimal control problems for information epidemics.

Situation 1: Aiming at impeding the spread of rumors, we introduce the following optimal
control problem.

¢
min J; = / ! r1Tph(t) 4+ u' (1) Qu(t)dt,
u(t)eU 0

s.t. (3:2),p'(0) = pg, p™(0) = pif, pi(t) € A Vi€V,

where r is a positive scalar and @Q is a constant positive definite diagonal matrix. p{ and
pi are the given initial conditions, i.e. the probabilities of each people being infected and
recovered in the very beginning. The terms 17 p'(#) is the sum of the infection probability of
people at time instant ¢. It also describes the (approximated) mathematical expectations of
the number of people being infected. The first item of the cost function in (3.4]) represents
the penalty corresponding to the number of individuals who believe the rumor. Note that
since rumor-free is the desired performance, we do not distinguish states S and R, which
leads to no item contain p® explicitly. Apart from the penalty, the consumption of the
control is also considered. The inputs can be explained as the incentive for each individual
so that they can act as desired. Inspired by the related works e.g., [89], [90], the quadratic
form is chosen to model the cost. The non-quadratic forms of consumption can be referred
to in [83], [86], which is covered by the second situation.

(3.4)
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3.1 Optimal Control for the SIRS Information Epidemics

Situation 2: Aiming at enhancing the information diffusion of campaign and marketing,
we consider the optimal control problem as follows.

min Jo = —sIlTpI(tf) = sRlTpR(tf),

u(t)eU
s.t. - p pO? (0) :p0R=
t
/”zmwmmHgamweawEv, (3.5)
0 =1

where s; and sg are positive scalars, b;(u;(t)) is the budget function and & € R is the
fixed budget. The cost function in only considers the terminal performance because
for the political campaign nothing counts but the final number of supporters on the voting
day. Furthermore, the infected and the recovered are not of the same importance for the
campaigner or product manager and generally there holds s; > sg > 0. Apart from the
cost function, it is rationally assumed that in the constraint, b;(-) is continuous, positive and
increasing in u;. This is based on the fact that the more increment of the infection rate, the
more budget is needed as the incentives. Since companies or the campaign teams usually
have limited budget, the constant % is introduced as the upper bound for the overtime cost.
It is worth noting that one can calculate the maximum resource needed by substituting tmax
into the budget function. In this paper we only consider the case when & < Y b;(tUmax)-
There is no doubt that the value of £ plays an significant role in the performance of the
information diffusion process, which is further illustrated in the numerical experiments.

3.1.1 Existence of the Solutions

From practical point of view, the existence issue should be examined to ensure that an
optimal control problem has a solution before attempting to calculate the solution. The
existence of the solutions is confirmed by the following theorem.

Theorem 5. Given optimal control problems (3.4) and (3.5, there exist control signals in
U such that the cost functions are minimized, respectively.

In order to prove Theorem [5, We first show the properties of the node-based SIRS model
in the following Lemma.

Lemma 12. The node-based SIRS model (3.2)) is globally Lipschitz continuous in p(t), where
p(t) = [(p")7, (™))"

Proof. The system in (3.2) is denoted as p(t) = F(p(t),u(t)) for simplicity. Since u(t) is a

function of ¢, we can directly consider the Lipschitz continuity of F(p,t) in p. Let p := [p', p&]

satisfy (3.2). Then we use 1-norm to prove the Lipschitz continuity.

1F@.t) = F.0ll = 15 = 811 + 15" ~ %)
< N(Oémax + umax)”pl - ﬁIHl + 6max||pI - ﬁI“l

+ (amax + Umax Z Z |p1,pj ﬁiﬁ; (36)
=1 j=1

+ (Cmax + Umax) ZZ’Z& p; — iy
i=17j5=1
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3 Control Design for Information Epidemics

By rewriting (pipj — pipj) as (pip} — pip} + pip; — pip}), one can have

>

N AI

Mz

pip; — Pip;|
i=175=1
N (3.7)
Z IZIPJ - ;] +ZIPJIZIPZ — pjl
Nl|p" = P[]
and similarly there holds
N N
o> Ipitpy — 75 < N(lIpt =9l + 1Ip" = %) (3.8)
i=1j=1
Substitute (3.7]) and ( into ( ., it follows that
where L = 3N (max + Umax) + Bmax > 0 is the Lipschitz constant. O

Based on Lemma [I]and [12] we provide the following proof for the existence of the solution
to (3.4) by examining the conditions given by Cesari Theorem in [91].

1) The admissible input set ¢ and the set of solutions to Cauchy problem, i.e. p = F(p,u),
p'(0) = pp, pR(0) = pf, is apparently non-empty since F(p,u) is Lipschitz in p |76
Theorem 3.2].

2) We prove that F(p,u) is bounded by Ci(1 + ||p|| + [|u|). Since u is bounded, it is
needed to show C1(1 + [[p||). Similar to the calculation above, we have

N
||F(p7 u>||1 < (amax +umax Z 1+pZ —i—pl |wszj|
i (3.10)

N
+ 1Bl + Z B} — vipl|
i=1 =1

Generally, since N > Ypax, we choose C; = 2[N(max + Umax) + Omax] such that
1 F(p,w)|| < Ci(1+ [[pl]).

3) F(p,u) is linear in u and the integrand satisfies the inequality 17 p' + u"Qu >
02Hu|]§3 — (4. It is required that Cy > 0, C3 > 1, which can be fulfilled by choosing
Cz = )\min{Q}a 03 = 2 and C4 =0.

Thus all the conditions of Cesari Theorem are satisfied, which infers the existence of the
solution to the problem described as .

For Situation 2, taking into consideration that the optimum is unlikely to be achieved
without sufficient use of the budget, we rewrite the limited budget constraint as

N

h(t) =3 bi(ui(t)), h(0) =0, h(t;) = B. (3.11)

=1

42



3.1 Optimal Control for the SIRS Information Epidemics

However, since the convexity of b;(u;(t)) in u; is not guaranteed, the proof for is not
applicable for (3.5). Therefore an alternative approach based on extreme value theorem is
provided.

Based on the extreme value theorem [92, Theorem 4.16], we prove the existence of the
solution to . First we show that the solution of the node-based SIRS model is
continuous. From Lemma[12] the model is Lipschitz continuous. Moreover, F(p(t), u(t))
is obviously bounded. To attain the continuous dependence on parameter u(t), the following
proposition needs to be validated.

Proposition 1. Give |[u—1a| < 6, > 0, there exist p > 0 such that | F(p,u)—F(p,4)| < p.

Proof. 1-norm is utilized here to prove the proposition. By directly calculation, we have

I1F(p,u) — F(p, )1

N N
=3 |1 =pi —pi) D (u; — ) wip;
) =1

N (3.12)
N N
<> P =p oD ey —
j=1
< N|lu—1af
Let 1 = N§, the result in the proposition can be obtained. O

Now we can come to the result that F(p,u) is continuous in u. Define the following set
for the constraint

S={u: /0 Y S b7 = 8, < () < ) (3.13)

which is compact. Along with the compact set U, the product & x U is also compact. Since
the conditions of [92, Theorem 4.16] are all satisfied, there exist a solution to (3.5]).

3.1.2 Solutions to the Optimal Control Problems

Since the existence of the solution is guaranteed, we are now focusing on solving the optimal
control problem and (3.5).

Solution to (3.4)): Pontryagin’s Maximum Principle is utilized here. Denote p = (p', p?)
and rewrite the system as p = F(p,u). the Hamiltonian of the optimal control problem
reads:

Hi(p,u,\) = —r1"p" —u"Qu + A" F(p,u), (3.14)

where \(t) € R?Y denotes the costate vector and the integrand in ([3.4]) is multiplied by -1
to form a maximization problem. Let A = (M, AR), where M, AR € RY are the Lagrange
multipliers. Then we can compute the costate equations as follows

1 OHi(p,u,\)
M=
=r1-[(A+U)WT(I — P*) - B]A' = BAR 3.15)
+ AW (A 4+ U)p' 4+ AW (A + U], @
(e) = 2B At vt 4 o,
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where A! = diag(\") and A® = diag(A®). By solving 2% =0 at p = p*,u = u* and A = \*,
the optimal control rule can be expressed as

u(t) = ;Q‘lPI*(t)WT(I — P™(t) — PR*(t)A™(t),u*(t) e U, (3.16)

or more specifically, for each node we have

)

u; (t) = min { max {p;";t) ; wji(1 = py(t) — pi(6)) A (¢), umin}, umax}. (3.17)

Moreover, we have the following further property of the solution.

Theorem 6. The solution (3.17) to the optimal control problem (3.4) is unique.

Proof. This proof follows the idea of the proof in |91, Theorem 6.2]. It is evident that p* and
A are continuous on interval [to, ts], hence they are bounded therein. In conjugation with of
2) and 3) in the proof of Theorem 5 it follows that

IATE(p,u)| < C5(1+ [lul]),

3.18
— Hy > Cyllul® = C5(1 + [Jul) o

for some constant Cs. Then —|u|| "' H; — oo as ||u]| = oco. Besides, @ is positive definite
implies H; is strictly concave in u. Thus H; reaches its maximum at a unique u* on 4. [

According to the terminal term of the cost function, the transversality conditions read
M(tp) =0, M(t;) =0. (3.19)

Although the optimal control inputs can be analytically presented as , it cannot be
directly calculated because p*(t) and A\*(t) are unknown beforehand. To tackle this issue,
the shooting method is used in [89]. However, in that case, the arbitrary initial condition
of a scalar costate is hard to choose, let alone the situation in equation (3.15) with 2/N-
dimension costate vector. Thus we introduce the forward backward sweep method (FBSM)
with modification such that it can be used in this N-dimension optimal control problem as
follows.

In the FBSM above, Euler method is used such that the continuous model is discretized
with sampling period AT. The convergence and further properties of FBSM can be referred
to in [93].

Solution to .' The Hamiltonian here is written as

Hy(p,u,0) = (e")T[(I — P' — PRW (A + U)p'

I R\T( 12,1 R - (3.20)
— Bp'l 4 (™) (Bp' = Tp™) + on > bi(us),
i=1

where ¢! € RY, o® € RN and o0;, € R are the Lagrange multipliers and o := (o', 0%, 0y,).

The costates dynamics of o' and o® are similar to those in ([3.15]) while

0H,

Y= — 2 = () 3.21
Op oh ) ( )
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3.1 Optimal Control for the SIRS Information Epidemics

Algorithm 1 Forward-backward sweep method

1: Input: pj, p&, initial guess u = [u(0), ..., u(end)].
2: for k=0:1:enddo

3 pl(k+1) « p'(k) + ATp' (k)

4 PRk +1) « pR(k) + ATpR (k)

5. end for

6: for k=end: —1:2do

7 ME—1) « M(k) = ATN (k- 1)

8 AR(k—1) « AR(k) — ATAR(k —1).
9: end for

10: Compute @ according to ([3.17).

11: if |Ju — |2 > € then

12: u<+u

13: goto line 2

14: else

15: output u* = 1.

16: end if

which infers that o}, is a constant scalar but unknown. If the budget function is chosen as
quadratic form as that in (3.4), by using similar techniques to obtain (3.16[), we obtain the
control law as

1

u*(t) = .

Q 'PY ()W T(I — P™(t) — P®**(t))o™(t),u*(t) € U. (3.22)
Thus to obtain the value of o5 becomes a natural idea to solve the problem in . An
approach combining the FBSM and the secant method has been reported to be implemented
to solve a similar problem with low dimension in [94]. However, to propose an initial guess
which leads to a convergent solution is technically hard, let alone with far larger scale of
networks. One alternative method is proposed in [90] where the value of o}, is obtained by
trial-and-error. Moreover, the budget function b;(u;) may not be differentiable which could
be another obstacle to implement the mentioned approaches. To deal with this problem,
the Matlab function fmincon is utilized to solve this problem numerically. The detailed
configurations and further discussions are presented in the following subsections. Note that
in this case the solution to optimal control problem ({3.5) may not be unique since the solution
is highly related to the property of b;(u;).

3.1.3 Numerical Experiments

The performance of the node-based SIRS model under optimal control and are
examined to show the effectiveness of the designed control strategy.

We implement the optimal control on a real network in [95] with slight modification.
This network describes the friendships between boys in a small highschool in Illinois. The
largest strongly connected subgraph containing 67 nodes is utilized. The weights of the in-
edges are normalized such that the adjacency matrix is row stochastic. The transition rates
a;, B; and ~; are randomly chosen in the intervals (0.55,0.65), (0.15,0.25) and (0.3,0.4),
respectively. This guarantees the heterogeneity of the SIRS model. The initial condition
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pL(0) and pf(0) are scalars in [0,0.01) for all i € V. Note that there are around 20% of the
nodes with pi(0) = 0 or p(0) = 0, respectively. These configurations are valid for both
situations mentioned. Since the steady states of the diffusion process in fixed graphs are
highly dependent on the transition rates, optimization rather than optimal control is a more
direct way to reach the desired performance. To this end, we mainly focus on the transient
states but not the steady states of the information epidemics. Thus in this subsection we
set the terminal time as t; = 6 and the sampling period as AT = 0.1.

For Situation 1 to impede rumor spreading described in ([3.4)), the weight associated with
the infected individuals is set to » = 5. Note that the weighting matrix () is chosen to be
diagonal whose entries read

g = qIN;"|, Vi €V, (3.23)

where ¢ is a scalar set as 0.1 in this case and |[NV"| is the cardinality of the in-neighborhood
set of node 7. The weighting matrix () mimics the fact that the more individuals one can
influence, the resources he/she deserves to obtain to make sure that rumors are less possible
to spread via his/her social connections. Thanks to the strongly connectivity of the network,
one has ¢; > 0, i.e., @ is positive definite. The bounds of inputs are set as [—0.3,0].

Figure shows the performance of optimal control in (3.4)) compared with those under
no control as well as the cost overtime. It yields that the number of individuals who believe
the rumor is diminished within the terminal time. To show the control implemented to
the specific individuals, two typical nodes labeled 26 and 61 are selected. These two nodes
possess (one of) the most and least in-neighbors (18 and 1 in-neighbors), respectively. As
is presented in Figure the probabilities of these two nodes getting infected are vastly
decreased. It is notable to point out that during most of the controlled period, ug, stays
on the boundary while uyg is only in a low level. This phenomenon is due to the fact that
the consumption is linear in the number of in-neighbors. The control inputs, evidently, do
not behave as bang-bang controllers but mostly in between —0.3 and 0. In the end of the
control, i.e., around ¢ = 5.1, the absolute value of u; turns to decrease, which is a trade-off

in light of the cost function in J;. The terminal value of w; is zero based on the expression
of control law in (3.17) and the transversality condition of Al in ([3.19).

For Situation 2, the performance of optimal control to enhance the spread with a limited
budget is validated. The bounds of input are now set as Uy, = 0 and up.e = 1. The
budget £ is chosen as 70. For simplicity, the budget function is still in quadratic form,
i.e., bi(u(t)) = qui(t). Besides, the weights sy and sy are set as 5 and 1, respectively.
The solution to is obtained by fmincon, where we choose the initial guess of all the
input as up.y and the sqp algorithm is used. The performance of the controlled information
epidemics is presented in Figure which manifests that the optimal control can increase
the diffusion extraordinarily and the budget is adequately utilized during the time interval.
Detailed information of the two nodes with the most and the least in-neighbors are presented
in Figure [3.5] The contributions to —J; of these two nodes are remarkably increased at t;.
The control input wug; stays at the upper bound most of the time while uqg stays at a low
level. According to the input in Figure [3.5] it is apparent that the budget is not sufficiently
enough to support the maximal resources allocated to each individual.
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Figure 3.2.: Performance of information epidemics with optimal control in and with-
out control as well as the cost overtime. on the highschool network with 67
nodes. The transition rates «a;, ;, and ~; are randomly chosen in the intervals
(0.55,0.65), (0.15,0.25) and (0.3,0.4), respectively. The initial condition p}(0)
and pi*(0) are scalars in [0,0.01). The terminal time is set to t; = 6 and the
sampling period AT = 0.1. The configurations for the optimal control in ({3.4])
are: 7 =5, ¢; = 0.1|N™|, tpmin = —0.3, and uyax = 0.

3.1.4 Discussions on Influence of the Parameters

The solutions to the optimal control problems and are inevitably influenced by the
parameters therein. The impacts of the main parameters are discussed in this subsection. An
E-R random graph of 30 nodes with connectivity probability 0.1 is generalized. The initial
conditions are randomly chosen in the interval [0,0.01). The transition rates in Subsection
B.1.3] are adopted with slight modification.

In Situation 1, the boundary of the input and the terminal time play significant role to
impede the rumor spreading. The comparisons among different configurations of w,;, and
tr are studied. In this case, o, is within the interval (0.75,0.85) and .y is set to 0. The
simulations are conducted under the same initial conditions and network topology while y;,
changes from —0.1 to —0.5 with step 0.1 and ¢; increases from 3 to 7 with step 2. As is
shown in Figure [3.6, we can conclude that generally with shorter terminal time and the
larger input bound, the better performance can be achieved to impede rumor spreading.
Specifically, with the same terminal time, the lager |um,m| is, the less people tend to believe
the rumor. However, the decrement of the infected is retarded. From the view of time limit,
with identical uy;,, the longer time we plan to impede the dissemination, the rumor spreads
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Figure 3.3.: Selected p! for nodes labeled 26 and 61. The simulation is conducted on the
highschool network with 67 nodes. The transition rates «;, §; and ~; are ran-
domly chosen in the intervals (0.55,0.65), (0.15,0.25) and (0.3, 0.4), respectively.
The initial condition p}(0) and pf(0) are scalars in [0,0.01). The terminal time
is set to t; = 6 and the sampling period AT = 0.1. The configurations for the
optimal control in (3.4)) are: r =5, ¢; = 0.1JN®|, umin = —0.3, and U,y = 0.

more widely. The reason underneath is that the rumor also spreads meanwhile we take the
control action. Note that for the case when wuy;, = —0.5, the approximated numbers of
infected nodes at the terminal time are very similar for different ¢y, which infers that for
certain long period of time, the bound of input plays the dominant role in the performance
of the system. Thus to impede the spread of rumors, we should wisely make decisions on
the resources we can pay and start as early as possible.

In Situation 2, the role of the budget as well as terminal time are selected for further
inspection. In this case, «; is within the interval (0.25,0.35) and i, and .y are set to 0
and 1, respectively. The simulations are conducted via changing % from 4 to 20 with step
4 and t; from 4 to 6 with step 1. In Figure 3.7, we show the corresponding variation of —Js
under different configurations. It yields that the more budget we have, the better diffusion
we can obtain, which also means that more people would buy the product or vote for the
desired campaigner. Similar to the result on impeding rumors, for identical budget, more
people turn to be infected in longer diffusion time. However, the effect of time expansion
is weakened as time interval increases because the limited sources are distributed for longer
periods. To conclude, the budget is the dominant factor in marketing or campaigning in a
short period of time.
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Figure 3.4.: Performance of information epidemics with optimal control in and without
control along with the consumption overtime on the highschool network with 67
nodes. The transition rates «;, §; and ~; are randomly chosen in the intervals
(0.55,0.65), (0.15,0.25) and (0.3,0.4), respectively. The initial condition p}(0)
and pi*(0) are scalars in [0,0.01). The terminal time is set to t; = 6 and the
sampling period AT = 0.1. The configurations for the optimal control in (3.5
are: sy =05, sg = 1 ¢; = 0.1N™|, tpmin = 0, Umax = 1, and B = 70.

3.2 Robust Optimal Control for Information Epidemics
with Noisy Infection Rates

Until now, we only consider the modeling, analysis, and control for information epidemics
without noise. Nevertheless, noise is inevitable in the diffusion processes in practical situ-
ations. For instance, the behavior of randomly accepting or refusing the information [96]
and the individualization force in opinion dynamics [97] are regarded as noise in recent lit-
erature. Instead of the aforementioned scenarios, the transition processes between different
compartments are sensitive to perturbation caused by external noise [62]. Whereas this topic
is seldom inspected.

Moreover, since the optimal control design for information epidemics is still an open prob-
lem [86], the robust optimal controller design problem for information epidemics with noise
is still untouched.. To the best of our knowledge, there exist few literature regarding the
control of such kind of model with perturbations. To this end, we address the robust optimal
control problem for information epidemics with noisy transition rates.

This section is mainly based on our article [54]. For the first time, a robust optimal control
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Figure 3.5.: Selected —J,(t) for nodes labeled 26 and 61. The simulation is conducted on the
highschool network with 67 nodes. The transition rates «;, §; and ~; are ran-
domly chosen in the intervals (0.55,0.65), (0.15,0.25) and (0.3, 0.4), respectively.
The initial condition p}(0) and pf(0) are scalars in [0,0.01). The terminal time
is set to t; = 6 and the sampling period AT = 0.1. The configurations for the
optimal control in (3.5) are: s; =5, sg = 1 ¢ = 0.1N™|, umin = 0, tmax = 1,
and £ = 70.

strategy enhancing the information diffusion with perturbed parameters is designed for in-
formation epidemics over heterogeneous communication networks. Both the heterogeneities
in the network structure and the transition processes are considered by using directed graph
description and different transition rates, such that the diversities rooted in the social en-
vironment and the individual character are considered. Moreover, the perturbation on the
transition rates is introduced, which generally covers most types of uncertainties in infor-
mation diffusion processes. By manipulating the infection rates, the control input which
mimics word-of-mouth is to be designed to robustly maximizing the dissemination. In light
of the practical scenarios, the fixed budget constraint is taken into account. Recalling the
distribution analysis approach, the inspected problem is transformed into an optimal control
problem with a cost function combining the nominal control performance and the influence
of the noise. The solution to the proposed problem is achieved taking advantage of the
Pontryagin Maximum Principle (PMP). To attain a practically efficient solution, a compu-
tationally cheap algorithm combining the forward backward sweep method (FBSM) and the
secant method is provided. This result is especially significant for large scale social networks.
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Figure 3.6.: Influence of i, and ¢; in (3.4). This simulation is conducted on an E-R ran-
dom graph of 30 nodes with connectivity probability 0.1. The initial conditions
are randomly chosen in the interval [0,0.01). The transition rates «;, §; and
7; are randomly chosen in the intervals (0.75,0.85), (0.15,0.25) and (0.3,0.4),
respectively. The sampling period is set to AT = 0.1. Uy, is set to 0. The
configurations up;, changes from —0.1 to —0.5 with step 0.1 and ¢; increases
from 3 to 7 with step 2.

3.2.1 The Node-Based SIS Model with Noisy Transition Rates

In this section, the information epidemics is described as the SIS model with heterogeneous
transition rates. The SIS epidemic model could be naturally modeled as a Markov chain
which possesses two possible states i.e. susceptible (S) and infected (I) [26]. Analogously, in
the context of information diffusion, these two states may refer to unawareness and aware-
ness, respectively. In this section, the infection process (from S to I) is considered as a
proactive action, i.e., each infected individual 7 infects his/her susceptible social neighbors
with rate o; [62]. The curing process (from I to S) is assumed to be passive with rates ;. In
light of the diversity of individual character, the transition rates are assumed to be generally
different for each agent. This setting as well as the directed communication networks leads
to the heterogeneity of the inspected dynamics.

By denoting p = [p1,...,pn|", @ = [aq,...,ax]|" and 8 = [B4,..., x|, the compact form
of (2.4) reads
p= (I — PYWAp— Bp, (3.24)

where P = diag(p), A = diag(a) and B = diag(5). Taking into consideration the noise in
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Figure 3.7.: Influence of umax and ¢ in . This simulation is conducted on an E-R ran-
dom graph of 30 nodes with connectivity probability 0.1. The initial conditions
are randomly chosen in the interval [0,0.01). The transition rates «;, §; and
7; are randomly chosen in the intervals (0.25,0.35), (0.15,0.25) and (0.3,0.4),
respectively. The sampling period is set to AT = 0.1. Ui, and uy., are set to 0
and 1, respectively is set to 0. The configurations % changes from 4 to 20 with
step 4 and ¢y from 4 to 6 with step 1.

the diffusion process, the transition rates in the system ([2.4) are assumed to be perturbed,
which is described as A
a=d+da, B=p+0B, (3.25)

where & and ﬁ are the deterministic nominal transition rates which could be obtained by
statistics. da and 0 are the noise reflecting the uncertainties in the transition process.
They might be related to the characteristics and decisions of the individuals, as well as the
disseminated information, in the social network. For example, to what extend an infected
individual would like to share the information to his/her social neighbors is not constant.
Without any further investigation to the distribution of the noise, it is natural to assume
them as Gaussian Process and independent of each other. Specifically, suppose there holds
the following probability density function (PDF)

1

—156TV,50
fp,d‘(e) = 2\ 2 det(Vb)l/Ze 2 0% 0 =« or f3, (3.26)

where V,,, V3 € RN*N are the positive definite covariance matrices. Similar arguments could
be referred to in [62]. Based on the node-based SIS model, we are on the way to design the
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3.2 Robust Optimal Control for Information Epidemics with Noisy Infection Rates

optimal control strategy to enhance the information diffusion.

3.2.2 Problem formulation

By interacting with the infection rates, we introduce the control input u; € R to each
individual, which yields the compact form of the control as u = [uj,...,uy]". Thus the
controlled information epidemics reads

p={—-P)W(A+U)p— Bp, (3.27)

where U = diag(u). The control input is required to be limited in the following admissible
set
U = {u : u; € [umin, Umax], Lebesgue integrable,Vi € V}, (3.28)

where Umin, Umax € R are the lower and upper boundaries of the input. Since we consider
enhancing the information spreading, it is assumed that 0 < Upin < Umax-
The robust optimal control problem is described as follows.

rq?eialJ = —1Tp(tf)a

s.t. (3.27)), p(to) = po, (3.29)
t N

/f sz(uz> < B,

o i=1

where B > 0 is the fixed budget. py is the given initial condition, i.e. the probabilities
of each people being infected in the very beginning. The term |J(t;)| = 17 p(t;) describes
the (approximated) mathematical expectations of the number of infected people at the fixed
terminal time ¢¢. The cost function only considers the terminal performance mimics many
practical scenarios. For example, in a political campaign nothing counts but the final number
of supporters on the voting day. Apart from the cost, b;(-) : RY — R is the consumption
function and B € R is the fixed budget, which forms the constraint. It is rationally assumed
that b;(+) is continuous, positive and increasing in w;. This is based on the fact that the
more increment of the infection rate, the more budget is needed as the incentives. Since
companies or the campaign teams usually have limited budget, the constant B is introduced
as the upper bound for the overtime consumption. It is worth noting that one can calculate
the maximum resource needed by substituting . into the consumption function. In this
paper we only consider the case when B < 3 b;(umax). There is no doubt that the value of
B plays an significant role in the performance of the information diffusion process, which is
further illustrated in Subsection 5. Inspired by the related works e.g., [89], [90], the quadratic
form is chosen to model the consumption, i.e., we choose u"Qu as the consumption function
where () is a constant positive definite diagonal matrix.

Based on the problem formulated in (3.29)), we then provide the solution techniques to
calculate the robust optimal control.

3.2.3 Solution to the Robust Control Problem

To deal with the optimal control for systems with noise, two fundamental ways are com-
monly used. In the case when the disturbance is deterministic, the optimal control problem
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3 Control Design for Information Epidemics

can be formulated as zero or non-zero differential games [98]. However, it is not suitable
for the situation in information epidemics which is perturbed by the noise with stochastic
nature, let alone the case in conjugation with the fixed time horizon. An alternative is the
stochastic optimal control which takes the expectation as the cost function. Nonetheless, the
standard approaches, e.g., solving the Hamilton-Jacobi-Bellman (HJB) equation and utiliz-
ing stochastic maximum principle [99], are computationally expensive, especially for systems
with large scales which is a general characteristic owned by dynamics on social networks. To
this end, a novel approach is provided to solve the problem in approximately. Taking
advantage of the property of the dynamics , the distribution analysis technique is used
to solve the robust optimal control problem. As the fundamental of the proposed method,
the optimal control of the nominal information epidemics is first introduced.

Optimal Control of Nominal Information Epidemics Before embarking on the robust
optimal control problem (3.29)), we investigate the nominal control, i.e., the optimal control
of the nominal system. By ignoring the influence of the noise, the nominal system can be

obtained as follows ‘ R L R
b= (- PYW(A+0U)p- Bp, (3.30)

where the variables and parameters are similarly defined as those in (3.24)). Based on the

system ((3.30)), the problem in (3.29)) can be rewritten as
P
min J = —17p(ty),
s.t. 7ﬁ(t0> = Do, (331)
¢ N
/bei(ﬁi) <B.

to j=1

In order to solve the problem, the isoperimetric constraint in (3.31f) is transformed into the
following differential equation

h(t) == 4" (1)Qu(t), h(0) =0, h(t;) = B. (3.32)

Note that the equation of h(t) in is obtained based on the fact that the optimum
is unlikely to be achieved unless the budget is sufficiently used. The optimal control prob-
lem is then solved based on Pontryagin Maximum Principle (PMP). By introducing
the Lagrangian multiplier 5\1, € RY and 6 € R, we have the Hamiltonian

AT 2 LA PAl L ArTOs
H=M\[I—-PW(A+U)p— Bp|+6a Q. (3.33)

According to PMP, we have the dynamics of the costate as follows
Ap = — 9 =—(A+UW' (I —P)\,+ B\, — A, W(A+U)p (3.34)

with the transversality conditions ;\p(t f) = — 1. Specially, by taking the constraint (3.32)
into consideration, one has & = 0, which implies that & is a constant but to be fixed.

By setting %12 = (0, we can obtain the control input as follows
N 1 —1 | D*xyx/T P\ 3 * A% “
=0 [PWT(I = PA] ot e, (3.35)
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3.2 Robust Optimal Control for Information Epidemics with Noisy Infection Rates

Although the solution can be analytically presented in the form of , the problem in
are unlikely to be directly solved following this approach and a numerical solution
is necessary. However, inspired by the solution of the nominal information epidemics, the
problem in are transformed into a similar formulation in the underlying subsection.

Distribution Analysis Approach In order to solve the problem in , the distribu-
tion analysis approach is introduced. It is evident that p is linear in the infection and curing
rates, respectively. According to [100], it implies that the covariance of J(t) = — 17 p(t) can
be computed by the covariance of a and [ as

V=1 Vala + 15 Vals, (3.36)

where
0J(t)

1w =20 - 27

i) = 2240 .
’ B
a:dﬂ:ﬁ 65 QZ@,/B:B

(3.37)

Note that the numerator layout notation of the matrix calculus is used. In order to calculate
the terminal values of [, and l3, an additional set of sensitivity equations are integrated in
[101]. However, this approach cannot be directly used in because what we consider
here is a functional. With slight modification, let

Ip dp
M, :=—=, Ms:=_—. 3.38
%0 5= 35 (3.38)
It is clear that
lo=—=1"Mo|apep ls=—1"Mp|o_g s s (3.39)

By using the chain rule and the rule for interchanging the order of differentiation for certain
mixed partials, the time derivative of M, and Mg can be obtained as follows

-9y 900 _ 0.
Mo =5Me = 5150 = 2a?
S —Pwiarvp-Bp+ s
=5 p—Bp)+ 75 (3.40)

=(I-PYWP+ #M,
Mg = —P+ # Ms,

where ¢ is the Jacobian matrix and reads,

o

7= 8£ — (I — P)W(A+U) — diag(W(A + U)p) — B. (3.41)

To this end, the minimization of J in (3.29)) can be approximated by the combination of
the following two parts

Ji=—=1Tp(ty), Jo=Vlty), (3.42)

where J; is the nominal cost function with respect to the controlled nominal system (3.30))
and J; is the variance of J around the nominal value caused by the parameter uncertainty.
Note that by introducing the auxiliary systems (3.40)), the problem with noise in
is transformed into the optimal control problem in deterministic systems. Rather than
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3 Control Design for Information Epidemics

formulating a multi-objective problem of [.J;, J5], we introduce the weighted sum of J; and
Jo, which yields the following optimal control problem.

min Jl + TJQ,
uel

s.t. (8.30), (3.40), p(to) = po, (3.43)
t
/ ! uTQu <B

to

where r > 0 is the weighting coefficient. It is worth noting that as a trade-off between
the desired cost J; and the influence of the noise Js, the value of r is of great significance
in (3.43)). Generally, r is set in advance by the companies or the campaign teams based on
their knowledge or prediction of the noise. Specifically, smaller r infers that the influence of
noise is not considered as very important and vice versa. Further discussions are given in
Subsection to provide valuable insights on the selection of 7.

Remark 1. By doing the distributional analysis, the robust optimal control problem in ({3.29))
is transformed into the optimal control problem in . As a sacrifice, the dynamics are
augmented with 2N vector differential equations in (3.40). To deal with this problem, the
simultaneous corrector method is proposed in [102] to solve this large-scale problem in an
efficient manner. Bearing in mind the following solution to the optimal control problem, an
alternative approach is used which is presented in detail in the last part of this section.

The optimal control problem (3.43)) is then solved based on PMP. As a prior step, the

dynamics in (3.40)) should be reshaped in a vector form. By denoting m,; the ith column
of My|._4 s—p: Vi € V and similarly for mg;, one has

Ma; = Pi(L — p)VVZ + I ma;

) R . (3.44)
mgi; = —Pi€; + /mgﬂ‘,VZ € V,

where e; € RY is the ith column of the unity matrix and W; is the ith column of the
adjacency matrix W.

By introducing the Lagrangian multiplier \,, Ao, \g; € RY, Vi € V and 0 € R, we have
the Hamiltonian

T 3 A A o T
H=\[(I—-P)W(A+U)p— Bp|+ou Qu

N . - (3.45)
+ 2 Aaalbill = PYWit Fma] + Ag[=piei + Fmg]
i=1
According to PMP, the time-derivatives of the costates read
‘ oH A T A . .
Ap = — 9 =—(A+ U)W (I —P)\,+ B\, —A,W(A+U)p
N A
+ > pidiag(Wi)Aay — €A (I — P)W; + diag(e;) Ag,;
i=1
(3.46)

N
-+ Z Aaﬂ'W(A + U)ma,i + AgﬂW(A + U)mgﬂ'
i=1

+ (A + U)WT(Ma,i)\a,i -+ Mﬁ,i)\ﬁ,i)7
. H . H
WL S S U VL AW

B (‘3ma7i B 8m5,i
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3.2 Robust Optimal Control for Information Epidemics with Noisy Infection Rates

with the transversality conditions

Mte) = =1, Mailty) = —2r(1T @ ;) VaM,(ts) 1,

T ‘ (3.47)
)\gﬂ'(tf) = —27’(1 (059 ei)V5M5(tf) 1, VieV.
Specially, in light of the constraint (3.32)), one has ¢ = 0, which implies that ¢ is a constant
but to be fixed.
By setting %—ZI = 0, we can obtain the control input as follows

1 R R N
ut = Q' [PWT(I — PN+ > Mo ;W' (I — P)Aay
=1

20

(3.48)
+ MW = P)Xg; = PWT (Mo ihai + Mais,)| ,u" € U.

Remark 2. On one hand, the terms in the dynamics of costates and the input
of the nominal system are reserved in (|3.46)) and , respectively. On the other hand, the
distinguishing terms shows the influence of the noise. To this end, the distribution analysis
approach reveals the consistency associated with the nominal optimal control solution.

As with the control in , u* in cannot be directly calculated due to the impos-
sibility of attaining the optimum in advance. Thus a novel algorithm is proposed to obtain
the control input numerically, which is also applicable to the problem with slight
modification.

3.2.4 Solution Techniques for Robust Optimal Control of Informa-
tion Epidemics

As a commonly adopted approach, the shooting method is used in [89]. However, in that case,
the arbitrary initial condition of a scalar costate is hard to choose. Taking advantage of the
fact that o is a constant scalar, an alternative way to obtain its value becomes a natural idea
to solve the problem in . Conventionally, the value of o is obtained by trial-and-error
[90] which is technically difficult and time-consuming to implement because a sufficiently
small initial guess is needed and no efficient update law is given. As a modification, the secant
method has been reported to be implemented to solve a similar problem in [94]. However, the
issue tacked there is of low dimension and the algorithm is not precisely presented. Inspired
by the previous works, we provide the a novel algorithm systematically. Apart from the
secant method to search the value of o, the forward backward sweep method (FBSM) is also
utilized to calculate the control input iteratively. Thus we provide the combined approach
as in Algorithm 1.

Apparently, once the costate o is given, one can obtain a cost according to the consumption
function. It implies that there exists a map error = B— f(o) where f(-) : R — Ris a function
of o. It yields that o is the root when the error equals zero. Based on this fact, the FBSM
and the secant method can be combined together. Given the initial condition of p and initial
guess of the control input, the states overtime can be obtained by forwardly implementing the
dynamics (3.30). As a successive step, the costates can be computed backwardly. By utilizing
the errors between the budget and the consumption resulted from two initial values of o, the
secant method can be applied to update this constant costate. This iteration ends when the
errors reach certain tolerance. The convergence analysis of the FBSM can be referred to in
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3 Control Design for Information Epidemics

Algorithm 2 Forward-backward sweep with secant method

Input: po, initial guess ul®” = [u(0),...,u(end)], o!",0!? given tolerance e > 0, budget B
for k=0:1:end do '
P+ 1) - p(k) + ATH(R)
end for
for k=end: —1:2do
(k= 1)« N (k) — AT, (k)
Aa(k = 1) ¢ Aa(k) — AT Ao (K)
Mgk — 1) < Ag(k) — AT \z(k)
end for
According to (3.48)), compute u'l using ol
. errortl «+ B — hll(end)
. According to (3.48)), compute ul? using o2
. error? « B — hP(end)

— = = =
WD = O

14: while (|errortl] > € or |error®?!| > ¢ or |error™ — error?l| > €) do
15: errorltl < 67’7“0’/‘[2], olll ol

16: ol < ol — errorll(ol® — o) /(error® — errorit)

17: ul « u?

18: Compute error? similarly as line 2 to 10

19: error® « errorl!, ol « ol

20: end while

21: Output ul?

[93] and is saved for triviality. Compared with conventional optimization algorithms, e.g.,
Matlab fmincon, the proposed approach is computationally much cheaper and also capable
of dealing with high dimensional problems. Note that the proposed algorithm is able to be
applied to the problem in by replacing the respective equations of costates in lines 6
to 8 by the ones in . The detailed discussions are presented in Subsection m

3.2.5 Numerical Experiments

In this section, the performance of the node-based SIS model under robust optimal con-
trol is examined to show the effectiveness of the designed control strategy.

We inspect the information epidemics on two real networks with slight modification. The
first network describes the friendship between boys in a small highschool in Illinois [103]
(referred as the highschool network), whose largest strongly connected subgraph containing
67 nodes is utilized. The second network shows the friendship between the residents living
at a residence hall located on the Australian National University campus [104] (referred as
the residence hall network). Similarly, a 214-node strongly connected subgraph is extracted.
The weights of the in-edges are normalized such that the adjacency matrix is row stochastic.
The effectiveness of the proposed robust optimal control and its comparison with the nominal
control are examined in both networks such that the results are convincing. The nominal
transition rates &; and f3; are randomly chosen in the intervals (0.05,0.15) and (0.005, 0.015),
respectively. This guarantees the heterogeneity of the SIS model. The covariance matrices
Vo and Vj are selected to be diagonally dominant and their diagonal entries are randomly
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3.2 Robust Optimal Control for Information Epidemics with Noisy Infection Rates

chosen within (0.3,0.35). The diagonal weighting matrix @ is selected according to the
cardinality of each node, i.e., the ith diagonal entry ¢; = 0.1|A"|, which mimics the natural
fact that more influential one individual is the more incentives should be paid to gain his/her
help for information spreading.

The initial condition p;(0) is a scalar in [0,0.01) for all ¢ € V. Note that there are around
20% of the nodes with initial value zero. These configurations are valid for all the simulations
in this section. During all the simulations, the information epidemics is discretized with the
sampling period AT = 0.01. Other fixed parameters are the initial time instant tq = 0,
Umin = 0 and Uy, = 0.5.

The validation of the proposed robust optimal control is first conducted by comparing with
the system under no control and heuristic control on the highschool network. By choosing
the budget B = 30, t; = 5, the robust optimal control can be calculated by Algorithm
1. Note that according to [101], the initial conditions for m,; and mg; are both set to O.
To make an evaluable comparison, a heuristic control is implemented such that the control
input is identical for each node at every time instant. In light of the consumption function
and the given budget B, this control input equals 0.4088 entry-wise. The simulation results
of the expectation of the number of infected people overtime (|J(¢)|) are shown in Figure
3.8l A similar numerical experiment is conducted on the residence hall network. We set
the budget as B = 30 while other parameters remain unchanged. The respective heuristic
control is 0.2602. The results are presented in Figure It is evident that the controlled
epidemics, both the heuristic and the robust optimal control, shows better performance,
since the diffusion processes are extraordinarily enhanced compared with the uncontrolled.
Apart from that, the proposed robust optimal control scheme reveals a superior performance
in terms of |J(t)]. It is worth noting that this performance is achieved by making full use of
the budget over the fixed control horizon which implies that the constraints are fulfilled.

We then compare the performance of the dynamics under robust control obtained by
solving with that of the nominal control using the same configuration as in the first
simulations. The control inputs are calculated offline: the robust control is obtained by
solving while the nominal control by solving but with respect to the nominal
system . The simulations on both networks are conducted 1,000 times, each of which
contains noise in both infection and curing rates. By taking the differences in 17 p(t;)
(]J(ts)|) as the index, the performance is shown in Figure [3.10] For the highschool network
(Figure[3.10] (a) and (b)) and the residence hall network (Figure [3.10] (¢) and (d)), almost all
the simulations show that the robust optimal control results in slightly better performance
than the nominal control. It implies that under this configuration, the information spreads
generally wider under the robust control. Although the differences are not notably large,
T-test for both scenario shows a two-tailed p-value far less than 0.001, which means that the
results are significantly different and the results in Figure are convincing. Note that if
the control input is dominant compared with the transition rates and social networks with
larger scale are considered, better performance can be expected.

Based on the problem formulation and the proposed solution technique, the weight r and
the budget B are two of the most influential factors. Specifically, » determines the trade-off
between the real objective and the influence of the noise and B stands for the upper bound
of resources. By choosing r from 0 to 1 with step 0.1 and B from 15 to 35 with step 5, we
compare |J(t;)| under each settings on the highschool network. Other configurations are the
same with those in the first simulation. As is presented in Figure [3.11] it is evident that for
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Figure 3.8.: The performance of the diffusion process on the highschool network with 67
nodes. (a) Comparison of |J(t)| with no control, with heuristic control (identi-
cal control input, 0.4088, for each node at each time instant) and with robust
optimal control. The robust optimal controller shows better performance than
the heuristic control and uncontrolled epidemics. (b) The control input of the
robust optimal control for each node, which is bounded in [tmpin, Umax]- (¢) The
consumption over time. For both heuristic control and robust optimal control,
the budget is adequately used. The initial condition is set as p;(0) € [0,0.01).

(a)

(b)

(c)

Other parameters are: & € (0.05,0.15), B € (0.005,0.015), B = 30, tg =

tr =5, Umin = 0 and Upmax = 0.5.

the same weight r, more budget results in better spreading performance. It is worth noting
that the increment of |.J(t;)| slows down as the budget increases. This yields that companies
and campaign teams should wisely plan their budget to reach a balance between the resource
and objective. As for the case when the budget is fixed, the performance of |J(tf)| fluctuate
with respect to the change of r. Taking B = 20 and 35 as examples, |.J(tf)| reaches the peak
when r = 0.1 and 0.2, respectively. To this end, the choice of r is nontrivial which may
highly related with the feature of noise. Thus the prior knowledge and the estimation of the
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Figure 3.9.: This simulation is conducted over the residence hall network with 214 nodes.
The initial condition is set as p;(0) € [0,0.01). Other parameters are chosen
as: & € (0.05,0.15), B e (0.005,0.015), B = 90, tg = 0, tf = 5, Unin = 0
and Upax = 0.5. (a) The performance of the diffusion process with no control,
with heuristic control (identical control input, 0.2602, for each node at each
time instant) and with optimal control is compared in the form of |J(¢)]. The
robust optimal controller shows better performance than the heuristic control
and uncontrolled epidemics. (b) The control input of the optimal control for
each node, which is bounded in [tmin, Umax] (¢) The consumption over time. For
both heuristic control and robust optimal control, the budget is adequately used.

affordable impact of the noise are necessary.
3.3 Discussion

In this section, focusing on information diffusion processes in social networks, heterogeneous
node-based SIRS model is introduced to describe the dissemination process. An optimal
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Figure 3.10.: Comparison between robust optimal control and nominal control in the form
|J|nom on highschool network and residence hall network with 1000
runs. (a) and (b) are the scatter plot and box plot of the index for the scenario
on the highschool network, respectively.
the residence hall network. In both cases, the robust optimal control results in

Of ‘Jlrob —

1000

(d)

(c) and (d) are for the scenario on

slightly better performance than the nominal control.

control framework on interacting the infection rate is proposed, following which two scenarios,
i.e., to impede rumor spreading and to enhance the diffusion in marketing or campaign, are
separately described. The solutions to the optimal control problems are proved to exist
and obtained by Pontryagin Maximum Principle.
fmincon are used to get the solution numerically. Several simulations are conducted to show
effectiveness of the model as an approximation of the Markov chain and the performance
of the optimal control law. By comparing the performance of the system under different
configurations, we also conclude that: i) it is effective and critical to start to impede the
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|7 (ty)]

Figure 3.11.: |J(ts)| under different configuration of » and B. The parameter r is chosen
from 0 to 1 with step 0.1 and B from 15 to 30 with step 5. The control input
is computed by Algorithm 1 with each pair of the parameters. The initial
condition p;(0) is chosen in [0,0.01) and is identical for every experiment. It
reveals that more budget results in better spreading performance whereas the
choice of r is nontrivial which may depends on the knowledge of noise.

rumor spreading as early as possible and ii) enough budget is the key factor to enhance the
diffusion in a short period of time.

Furthermore, we address the robust optimal control problem for information epidemics in
a heterogeneous network with noisy transition rates. Thus for the first time, the effects of
natural uncertainties of the transition rates are considered to determine a robust optimal
control strategy. A numerical solution is obtained based on distribution analysis. The
diffusion is maximized in finite horizon with the proposed control strategy allowing for the
constraint of limited budget. The proposed algorithm, which combines the forward backward
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sweep method and the secant method, shows its effectiveness and efficiency in dealing with
the diffusion processes over real networks. The numerical experiments on the influence
of parameters confirm the common sense that the more budget the better dissemination
performance. Apart from that, it is of great significance to properly weigh the impact of the
noise while utilizing the proposed approach. The addressed formulation and the proposed
optimal strategy not only solve the specific problem caused by the noisy transition rates but
also provide a general solution to social networks with stochastic perturbations.

Although the control problems proposed in this chapter are successfully addressed, the
following interesting topics for this young field remain to be solved.

i)

ii)

iii)

iv)

64

Distributed control algorithms for information diffusion processes. The proposed al-
gorithms are actually centralized control but not in a distributed manner. These
algorithms are valid when rich data sources are accessible. For general case when only
limited access is possible, the fully distributed control algorithms should be considered,
which is also naturally suitable for large scale social networks.

Effectiveness of the proposed algorithms in the Markov chain models. In this chapter,
the control rules are directly designed for the node-based models. Although the node-
based models can well approximate the performance of the Markov chain models, the
error between them may the effectiveness of the proposed control law. However, the
difficulty of conducting the comparisons lays in the simulation of the Markov chain
model with huge amount of states. A potential approach to tackle this issue may be
using the Monte Carlo simulation. The Monte Carlo simulation, however, takes long
period of time as a trade-off to make the simulation possible for large scale networks.
Apart from the comparison, to directly control the Markov chain model is of great
interests since precisely the node-based models are the approximations of the Markov
chain model.

Control design for the node-based models with stochastic noise. In Section we deal
with the deterministic disturbances and propose the robust optimal control. Whereas,
taking into consideration the randomness in spreading processes, the impacts of the
stochastic noise needs to be investigated.

Control design for multi-layer multiple information epidemics. In this chapter, we only
focus on the control of single-layer single information epidemics. Bearing in mind the
single dominant information equilibrium of the multi-layer multiple SIS model in Sec-
tion a promising extension is to design an optimal strategy for certain propagator
such that his/her information can be dominant.



4

Opinion Dynamics on Coopetitive Social Net-
works

Although the well-known French-Degroot model could result in the consensus opinion, public
opinions do not always exhibit unanimous behavior but lead to persistent disagreement or
clustering. Among others, the phenomenon “polarity” or “polarization” under a specific
protocol that the opinions of the agents reach two opposite values is of considerable interest.
The phenomenon of polar opinions appears broadly in multitudes of fields, e.g., political
voting, segregation of residential communities, and cultural conflicts [105)-[107]. Apart from
polarity and consensus, people may also keep neutral on topics in which they have no interest.
Accordingly, the concept of “neutralization” is another central issue in opinion-dynamics
engineering [105].

Although a notable size of the dedicated literature works on opinion clustering problems
of DeGroot-type dynamics on signed graphs [46], [48], the primary focus is on the control
protocol design and the associated convergence analysis. However, the manipulability of
opinion dynamics, which concerns the existence of opinion protocols such that systems in
question empower polarity, neutrality, and consensus, is a fundamental problem and of great
significance in both theoretic synthesis and engineering implementation. Only very recently,
researchers from the control theory field have started to investigate the consensusability
[108] and synchronizability [109] of multi-agent systems on cooperative networks. These
articles, nevertheless, focus only on addressing the existence question for linear time-invariant
(LTT) systems with identical continuous dynamics and trustful interactions. Thus, studying
polarizability, consensusability, and neutralizability of opinion dynamics in a more general
setting becomes a prime desideratum in social network science.

The main contribution of this chapter is to address the fundamental question: Under
what conditions, there exists certain kind of distributed protocols such that the opinion
dynamics over coopetitive (cooperative-competitive) networks are polarized, consensus and
neutralized, respectively. In specific, the formal definitions of these novel concepts, under
the umbrella of “modulus consensusability”, are introduced as an appetizer. In view of the
bipartite consensus at the heart of modulus consensus, we set out to study the bipartite
consensusability that examines whether or not there exist admissible protocols such that the
individual opinions asymptotically reach the same value but may differ in signs. Specifi-
cally, sufficient and/or necessary conditions for bipartite consensusability of opinion systems
with identical dynamics are provided. The developed criterion emphasizes the functional
role of interaction topological properties in conjunction with the dynamic structure of the
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subsystems. Along with the examination of bipartite consensusability, neutralizability is
taken into account as well and is characterized by sufficient and necessary conditions. With
the emphasis on individual diversity, another significant contribution of is to extend the
procured results to heterogeneous opinion dynamics. Criteria to examine the polarizability,
consensusability, and neutralizability of non-identical opinion dynamics are explored. In
particular, some common algebraic properties shared among individuals play an essential
role in establishing polarization, consensus, and neutralization.

4.1 Modulus Consensusability

Consider N > 2 agents indexed 1 through N and the interaction among individuals charac-
terized by a digraph G = (V,&, W) with W = [w;;] € R¥*¥. In contrast to the conventional
opinion models which usually consider scalar-valued opinions, we deal with simultaneous
opinion discussion on multiple topics, thus necessitating the consideration of vector-valued
opinions [11], |110], [111].

Each agent is associated with a vector z; € R™ that represents her attitudes on n issues
(subtopics) and updates continuously her opinion in the following fashion

where u; € R™ is the control input of individual 7. The state matrix A € R™*™ characterizes
the level of “anchorage” on their topic-specific opinions, which has been formed by some
exogenous conditions, e.g., the past social experience, or endogenous factors, e.g., personal
intelligence and character. The input matrix B € R"*™ stands for the susceptibility of agents
to the interpersonal influence. We consider a distributed feedback control under coopetitive
interaction as follows,

Uz(t) =-K Z |’UJU|(.Z'Z — sgn(wij)ycj), 1€ V, (42)
(4i)e€

where K € R™™ is the feedback gain matrix. In the recent literature of opinion evolution
on signed graphs [46], [48], the control protocol (4.2)) can often be found.

Remark 3. This LTI system has been widely adopted in analyzing the collective be-
havior of multi-agent systems on cooperative networks, including agreement- [109], [112] and
disagreement-problems |113]. Only very recently in the context of coopetitive networks have
researchers started to employ such a state-feedback LTI model to study bipartite consen-
sus [110], [114]. In the special case A = O, B = I, the model of opinion evolving on
single topic degenerates to Altafini-type model [46]. Furthermore, a nonlinear counterpart
of the model with the controller is proposed in [47].

After denoting u(t) := [u! (t),...,u}(t)]T, we consider the following admissible set,

U = {u(t) € R™|u;(t) = —K; |wij| (2 — sgn(wij);), (43)

V>0, K eR™" i=1,...,N}

The admissible control set (4.3]) covers a relatively large number of distributed protocols
with antagonistic interactions. The overarching question before entering into the stage of
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protocol design is to determine under what conditions, the opinion dynamics of interest
is polarizable, consensusable, and neutralizable w.r.t. such an admissible control set U.
To investigate such question, we first provide the formal definitions of the polarizability,
consensusability, and neutralizability in the context of the so-called modulus consensusability
of an opinion system w.r.t. U.

Definition 3 (Modulus consensusability). The system (4.1)) is modulus consensusable w.r.t.
U, if one can find a u € U and scalars p;, p; € {1}, Vi, j € V such that for any initial value
z;(0), the solution of (4.1)) on a graph G = (V, &, W) satisfies

Jim piai(t) = pyo(8) = O, Jim [ls(8)] < oo, i j € V. (4.4
Specifically, modulus consensusability can be classified into the following cases:

a). if limy_,o z;(t) = 0,Vi € V, we say the system (4.1)) is neutralizable w.r.t. U;

b). if p; = p;,Vi,j € V and a) is not satisfied, we say the system (4.1) is consensusable
w.r.t. U;

c). if p; = —p; holds for at least a pair of nodes i, j € V and a) is not satisfied, we say the
system (4.1)) is polarizable w.r.t. U.

d). the system (4.1)) is bipartite consensusable if it is either consensusable or polarizable.
Specially, the system (4.1)) is stationary bipartite consensusable, if limy; o piz;(t) = v
is further satisfied for all ¢ € V, where v € R™ \ {0} is a constant vector.

A Venn diagram is presented in Figure to illustrate the relations of the concepts pro-
posed in Definition [3] Note that modulus consensusability proposed in this technical note is
equivalent to consensusability in [108] on unsigned graphs, where the trivial case of neutral-
ization is not specialized. In the literature on opinion dynamics, neutralization is commonly
referred to stabilization as an inheritance of the seminal work [46]. Since social actors prefer-
ably take a neutral stance on sensitive issues and uninteresting topics, we tend to use the
sociological terminology, neutralization, instead in this technical note. Furthermore, agents
constantly keep neutralized in the neutral configuration of initial opinions. In the following
of this technical note, we are more interested in studying opinion dynamics when the initial
conditions are non-neutral. The non-trivial case of modulus consensus, i.e., the opinions
reach consensus or oppositely separate, is named as bipartite consensus. Polarizability is
based on the phenomenon of polarity |46], [48], but the detailed content here is slightly dif-
ferent. First, the opinion variable is a vector rather than a scalar, thus the case when some
(not all) of the entries of the opinion vector are 0 is also allowed for bipartite consensusabil-
ity. Second, Definition [3| enables us to investigate the opinion formation process in a more
general setting in which the opinion states may converge to trajectories but not to a set of
fixed points. Convergence to trajectories mirrors the fact that the amplitudes of the steady-
state opinions may fluctuate in some degree caused by exogenous influence or endogenous
vibration, but an about-turn of individual attitudes seldom happens. We also point out that
the opinion states should be bounded no matter how extreme they could be since infinite
values of opinions make no sense from the perspective of sociology and psychology.

One may notice that there may exist two types of bipartition of the opinion dynamics over
coopetitive networks, i.e., the bipartition of the graph structure (the SB property defined
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4 Modulus Consensusability N

Bipartite Consensusability
( Consensusability )

( Polarizability )

< Neutralizability >
S 7/

Figure 4.1.: Venn diagram on the relations between the concepts in Definition

in Section and the bipartition of the public opinions. Modulus consensusability by
definition only focuses on the opinion partition in the view of dynamic systems. A natural
conjecture is that the SB property of the graph may serve as a condition for modulus consen-
susability, which will be further illustrated in the following sections. To make the concepts
clear and precise, we fix some notations and terminology, before embarking on the main re-
sults. Throughout this chapter, symbols p; € {£1} characterize the signatures of individual
opinions at steady-state, while the structural balance of a graph, if it has, is specified by

d; € {£1}.

4.2 Modulus Consensusability of Homogeneous Opinion
Dynamics on Coopetive Networks

In this section, we elaborate on whether or not there exist a matrix K € R”™*™ and a signed
graph G such that the system (4.1]) with a controller (4.2)) establishes polarization, consensus,
and neutralization.

4.2.1 Bipartite Consensusability of Opinion Dynamics

In comparison to the trivial case in modulus consensus, the bipartite consensus is of great
interest for sociological studies. Such bipartition of opinions is known to have a tight con-
nection to the structural balance of the underlying interaction topology. Following this line
of thought, the sufficient condition for bipartite consensusability of the system can be
derived.

For the convenience of presentation, we introduce the set of marginally stable matrices

M = {M sp{ M} C Ceo,sp{M} N R # 0,
(4.5)
A is semi-simple, VA € sp{M} N ZR},

where ¢ is the imaginary unit, i.e., 1> = —1, and a semi-simple eigenvalue possesses equal

algebraic and geometric multiplicities. In the next theorem, we fist provides a sufficient
condition for bipartite consensusability of opinion dynamics.
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Theorem 7. Given a graph G = (V,E, W), the system (4.1)) is bipartite consensusable for
any non-zero initial conditions w.r.t. U, if the following conditions are satisfied:

i) G is structurally balanced and quasi-strongly connected.
ii). A e M and (A, B) is stabilizable.

Moreover, the system (4.1)) is consensusable if G is an unsigned graph, otherwise polarizable
if G is a signed graph.

Proof. The SB property of G means that there exist NV scalars d; € {£1} such that d;d;w;; =
w;;. By denoting z;(t) := d;z;(t), one can obtain its time-derivative from (4.1]) as follows

7;(t) = Az;i(t) — BK z_j Wi (Z:(t) — 74(t)),i € V. (4.6)

By adopting Kronecker product, the system (4.6) can be rewritten in a compact form as
below.

#(t) = (Iv® A—L® BK) (t), (4.7)

where Z(t) = [z]{(t),...,ZN(t)]" and L is the Laplacian matrix of the associated unsigned

graph G.

The bipartite consensusability problem of can be transformed into the consensus-
ability problem of . According to [108, Theorem 2], the system is modulus con-
sensusable if the unsigned graph G associated to G is QSC and (A, B) is stabilizable. After
setting p;, = d;, Vi € V, the system achieving consensus, i.e., lim;_ o Z; — 7; = 0,
implies the establishment of bipartite consensus in the opinion dynamics , specifically,
limy o piz; — pjz; = 0. Accordingly, it is illuminating to view that the original system (4.1)
is bipartite consensusable if condition i) and ii) occur. It is worthy to note that for non-zero
initial opinions, the constraint A € M guarantees that z;(¢) does not converge to 0, and is
bounded when ¢t — oo, Vi € V.

Moreover, a signed graph G associated with at least one negative weighted edge results in
opinion polarization otherwise opinion consensus. ]

Remark 4. The feedback control gain K which guarantees the system to be bipartite con-
sensus can be obtained by the following approach given in [115]:

Let 0 = miny,csprap oy {ReA;}. Bearing in mind that (A, B) is stabilizable, there holds
that A — BBTP is Hurwitz, where P is the unique positive semi-definite solution of the
following Riccati equation

AP+ PA—-PBB'P+1,=0. (4.8)
It follows that the feedback control gain can be selected as
K =max{1,07'}B"P. (4.9)

The conditions in Theorem [7] involve two aspects, i.e., the requirements for the network
topology and for the subsystem dynamics. In condition i), quasi-strongly connectivity en-
sures that there exists at least one agent who can deliver directly or indirectly his/her willing
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to the remaining members, while the structural balance of graphs paves the way for the bi-
partite consensus of opinions. Condition ii), on the other hand, emphasizes the importance
of the dynamical properties of individuals. Specifically, to excludes the situation of neutral-
ization and the meaningless case in which opinions are unbounded, A € M is of significance.
Besides, the stabilizability of (A, B) implies that the individual is open to interpersonal
influence.

In Theorem [7], we only focus on the sufficient conditions for bipartite consensusability,
wherein a graph being SB is indispensable in the sufficient criterion. Through the next
analysis, however, we will address that this graph property is not necessary for an opinion
dynamics to achieve stationary bipartite consensus, let alone for the generic case.

Theorem 8. Given a graph G = (V,E, W), the system (4.1)) is stationary bipartite consen-
susable w.r.t. U, only if the following conditions are satisfied:

i). G is quasi-strongly connected and there exists a non-negative scalar o > 0 such that
there holds
o=a, VieV (4.10)

where a; 1= Z?f:l(miﬂ — W;;) and W;j = pipjwi;.

it). (A, B) is stabilizable, A—aBK € M and the spectral subset sp{A—aBK }uR contains
only 0.

Proof. We first prove G is QSC by contradiction. If G is not QSC, then it has either at least
two nodes without inward edges or two separate subgraphs |116]. The first situation means
that there exist at least two “isolated” actors (say agent p and agent ¢) whose opinions
remain independent of the others’ thoughts. Accordingly, the dynamics of these two agents
reduces to iy = Axy with k = p, q. It is evident that such subsystems cannot reach bipartite
consensus for arbitrary initial states. In the second case, even if a stationary bipartite
consensus is achieved in each subgraph, it is unlikely to established across the entire graph
G for all initial configuration. As a result, the contradictions arising in both two cases allows
us to state that the QSC property of a graph is necessary for bipartite consensusability.

Next, we begin to demonstrate the relation . According to Definition |3 the sys-
tem being stationary bipartite consensusable means there exist a sequence of scalars
pi,p; € {£1} and a constant vector v € R™ \ {0} such that lim; . p;x;(t) = v is valid for
all © € V. After denoting Z; := p;x; for ¢« € V, in analogy with the system dynamics ,
one can obtain

Ti(t) = Azy(t) Z ;]2 (L) — Wi 74(t)), i €V, (4.11)

where w;; := p;pjw;;. With the notation & = [Z],...,Z}]", the compact form of (4.11)) can
be given by ~
z(t)=(Iy®A—L® BK)x(t), (4.12)

where -
Z;-V:Nl |1 {zu]

Loy Loy
Arisen from the fact that the system (4.1)) is stationary bipartite consensusable, the station-
ary consensusability of the dynamics (4.11]) is unambiguous.

L := diag(p)L diag(p) = [ (4.13)
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To promote the analysis, we introduce an auxiliary variable §; =2, — &; (i = 2,3,...,N)
associated with the time evolution as follows

N
& = A& — BKZ (15 — Wij)&5 + [i5]&i]

7=1
N (4.14)

— BKiy Z ([i015] = w15) — (|| — i) -

We can immediately infer that the auxiliary system (4.14) is asymptotically stable, i.e.,
lim; . &(t) = O as the system (4.11)) is stationary consensusable. As a consequence, the
third item in the right-hand side of (4.14)) needs to approach to 0 as t — oo for all 1 =

2,..., N, which is equivalent to the condition
Z (|1 — @1;) — (J@ij] — ;)] = 0, fori=2,...,N. (4.15)
Jj=1

and/or lim;_,,, BKZ; = 0 succeeds.

In order to rule out the second situation, we first postulate, without loss of generality,
that lim;_,., BKZ; = BKv = 0 holds for all © € V due to the fact lim; ..o Z; = v for
¢ € V. In other words, we have v € ker BK. The limiting behavior of the dynamics
and its stationary consensusability manifest that Av = 0, i.e., v € ker A. Meanwhile, let
e(t) :== Z(t) — 1y ®v be an error vector. By noticing the fact that

(In®A—-L®BK)1y®v) =1y ® (Av) — (L1y) ® (BKv) = O,y, (4.16)
the dynamics of the error vector obeys the evolution rule
é(t) = (Iy ® A— L ® BK)e(t). (4.17)

Thanks to lim,_,. e = 0, one can obtain sp{Iy ® A — L ® BK} C C.,. That is to say,
the system is asymptotically stable, i.e., lim; .o, Z = 0, which is contradictory to the
definition of stationary bipartite consensus. To this end, we illustrate that the equality
is necessary for bipartite consensusability of the opinion system , which is equivalent to

N
> (|wy] = wy) =, VieV, (4.18)

Jj=1

where o > 0 is a non-negative scalar. As a result, the dynamics (4.14]) can be compactly
written as

) = (In-1® A— L ® BK)E(), (4.19)

where £(t) = [€](t), ..., €N (1)]T and £ = Ly, — I La.
Next, we illustrate (A B) stabilizable in condition ii). The equality (4.18]) can be rephrased
to L1 = a1 which facilitates the matrix decomposition as follows

-1 ~

1 0 = 1 0 a Lo
L = =1 4.20
[1N1 [N1‘| |J-N1 IN1‘| [O .,2”1 (420)
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Then, the fact that the transformation L — diag(p)L diag(p) is a similar transformation
leads to sp{L} = sp{L}, which immediately implies sp{L} = sp{.Z} U {a}. As a result, one
can compute .

Sp{]N_1 RA-ZL® BK} = Uxesp{L}\{a} Sp{A — )\BK}. (4.21)

Thereby, the asymptotic stability of the auxiliary system (4.19) accords to
sp{A— ABK} C Cy, VA esp{ZL}. (4.22)

We then prove (A, B) is stabilizable by using (4.22).

On the one hand, for A = 0, the negative definiteness of matrix A— ABK entails a Hurwitz
matrix A. Thus, it is intuitively clear that (A, B) is stabilizable. On the other hand, for
those non-zero eigenvalues, we discuss the necessity on two cases: real-valued and complex-
valued eigenvalues. For any real-valued A, sp{A—ABK} € C., means obviously that (4, B)
is stabilizable.

In regard to the complex-valued case, without loss of generality, we suppose \j 2 = a £ be
is a pair of conjugate eigenvalues of sp{g }. By means of the properties of the determinant
operator, one can have the reformulation of the characteristic polynomial to

dt(I [A-aBK 1BK
€\t —bBK A—aBK

] ) = det(sl, — (A~ \iBIK)) det(s1, — (A~ \BK)).
(4.23)

A—aBK  bBK _
_bBK A-— aBK] are in Co because of sp{A — \{BK} C

C.o and sp{A — \yBK} C C_g. In addition, the decomposition

Namely, all eigenvalues of

(4.24)

—bBK A—aBK

A—aBK bBK
bK aK

] = diag(A, A) — diag(B, B) [GK ‘bK]

discloses that the pair (diag(A, A), diag(B, B)) must be stabilizable. According to Popov-
Belevitch-Hautus (PBH) stabilizability criterion [117], the stabilizability of the linear system
with state matrix diag(A, A) and input matrix diag(B, B) equals to

ra”k[ 0, slL—A 0, B

] =2n, Vs € Cso, (4.25)

from which one can straightforwardly derive rank(sl, —A B) =mn, for all s € Cy. Thus, we
can conclude that (A, B) is stabilizable if system (4.1]) is stationary bipartite consensusable.
We are now on our way to prove the last part of the statement ii). The system matrix

in (4.11)), in spirit similar to (4.21]), has the spectrum

sp{Iy ® A— L ®BK} =U sp{A — \BK}. (4.26)

Aesp{.ZIU{a}
Based upon the fact that sp{A — ABK} C C_q for all \ € sp{g}, the spectral property
of matrix A — aBK primarily characterizes the dynamical behavior of the system (4.12)).
Then, the statement that & converges to a bounded constant non-zero vector 1 ®v for any
initial conditions, indicates that A —aBK € M and all the marginally stable eigenvalues of
matrix A — aBK are 0. Therefore, we complete the proof. n
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The most noticeable point of Theorem [§ is no explicit requirement of SB graphs for sta-
tionary bipartite consensus of opinion dynamics. Nevertheless, one still can extract the SB
condition from the equality relation but far more than that. Structural balance the-
ory [30] states that for an unweighted graph being not exactly SB, the least number of edges
that must be changed of sign can be used to compute a distance to exact structural balance
(i.e., a measure of the amount of structural unbalance in the network.). This statement has
an immediate extension in weighted graphs [118]. In specific, we can argue that the quantity
> = > i(|Wi;| — ;) can be treated as an unbalance metric which measures the distance
to a desired SB structure specified by p = [p1,...,pn]". Since such a metric captures the
collective effect of unbalance, the index «; distinguishes the individual contribution of node
¢ to disrupt the global structural balance w.r.t. p. Hence, the relation reads that all
agents contribute an equal impact on network unbalance. In the special case of o; = 0 for
all i € V, all nodes exhibit a local structural balance, and the network entails a natural SB
structure: the community splits into two hostile camps, individuals with the same sign of
p; come from the same camp, the social ties inside each fraction are cooperative, whereas
the interrelations cross fractions are competitive. Hence, Theorem [§ reveals an appealing,
and previously unexplored, relationship between SB bipartition of topology and state clus-
tering of opinion dynamics. In particular, the scenario a@ > 0 meaning the mismatch of the
bipartition pattern between opinion organization and network structure, mirrors real-world
phenomena, especially, in political and commercial voting. The U.S. House Vote [119] in the
two-party congress serves as a typical example. Although the underlying interconnection
topology of Republicans and Democrats exhibits a natural SB graph, representatives from
the same party would not always vote for the same (pros or cons, usually) and the vote re-
sult is highly dependent on the specific content of the bills. For instance, in the House Vote
#132 in 2018, it is clear that within both Republicans and Democrats, the representatives
did not reach an agreement. This reveals that not only the graph but also the topic and
even other exogenous reasons could lead to the bipartition of opinions. Moreover, in some
act, the representatives in two parties may even achieve consensus, like H.R. 5447: Music
Modernization Act.

Throughout this chapter, we call the polarization is consistent if the bipartition of the
public opinions and the network topology is the same; and inconsistent while different.
From mathematical point of view, the inconsistent case can be illustrated as the fact that
there exists a > 0 such that the limit performance of the dynamics is governed by A —aBK.
To fulfill this condition, one may raise the algebraic requirement for the communication
topology that there exists d € RY with each entry in {#1} such that Ld = ad, i.e., (a,d)
is an eigen-pair of L. Thus by proper choice of K, the inconsistent polarization can be
achieved. For an SB and QSC graph, dimker L = 1 holds by Lemma (17, It follows that,
d # d in this situation. Further explanations are provided in Subsection by numerical
experiments.

Until now, the discussion is carried out in terms of sufficient and necessary conditions,
respectively. In particular, the necessary conditions in a generic circumstance are missing.
In the following theorem, we make a step towards filling this gap.

Theorem 9. Let the system (4.1)) with non-zero initial conditions be of a non- Hurwitz matriz
A and satisfy
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The opinion dynamics (4.1)) evolving over a SB graph G is bipartite consensusable w.r.t. U,
if and only if the following conditions hold:

i) G is quasi-strongly connected.
it). A € M and (A, B) is stabilizable.

Proof. Sufficiency is an immediate result from Theorem [7] Here we need only to prove the
necessity.

The assembly line of Theorem exposes that a QSC graph is necessary. The relation (4.27))
results in a; = >0L, (|| — wi;) = 0 for i € V, implying v = 0. Meanwhile, the dynamics

becomes
i(t) = AZi(t) — BK Y _(|wyy|:(t) — wi@;(2)), (4.28)

j=1
where w;; = d;djw;; > 0 due to the structural balance of the graph. Consequently, the
auxiliary system (4.14)) here reduces to

N
& = A& — BK Y [(wyj — wy)&; + Wil (4.29)

j=1
where §; = 7; — &; and i = 2,..., N. The compact form of (4.29)) can be given by
Et) = (In-1 ® A — Z @ BK)E(t), (4.30)

where % := Ly — 1n5_1 L12 upon the matrix partition

- . Z;-V:l wy; Lo
L—=DLD = l 20 (4.31)

The remainder of the proof mimics the procedure of Theorem |8 which entails the stabiliz-
ability of (A, B) and A € M as a result. Noteworthily, by revisiting the similarity trans-

formation (4.20) with the Laplacian matrix L of the associated unsigned graph G which is
QSC, & inherits all nonzero eigenvalues of L. O

4.2.2 Neutralizability of Opinion Dynamics

Besides bipartition of opinions, either unanimous or opposite behaviors, among individuals,
sometimes people tend to hold neutral opinions for certain political or economic reasons in
social activities. This phenomenon motivates us to discuss the neutralizability of opinion
dynamics.

The answer to neutralizability of systems with a Hurwitz matrix A, is affirmative,
where K = O is an intuitive option. In this scenario, individuals, who are totally closed to
the social influence, persist neutral attitudes to all topics. Thus, we restrict ourselves to the
case of non-Hurwitz A while dealing with neutralizability.

Theorem 10. Given a graph G = (V,E, W), the system (4.1) with non-Hurwitz matriz A
1s neutralizable w.r.t. to U, if and only if the following conditions are satisfied,

i) (A, B) is stabilizable.
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Figure 4.2.: An example of SB and QSC graph

it) G is neither structurally balanced nor contains an in-isolated structurally balanced sub-

graph.
Proof. Consider the compact form of the system as below
#(t) = (In®A—L® BK)x(t), (4.32)
from which, one can easily obtain
sp{In ® A — L ® BK} = Ujcepiry SP{A — ABK}. (4.33)

Therefore, the neutralizability problem can be transformed to show sp{A — ABK} C C_q
for all A € sp{L}.

Sufficiency: Since G is not SB and contains no isolated SB subgraphs, it is already known
that 0 ¢ sp{L}. In addition, the stabilizability of (A, B) always allows one to find a ma-
trix K to such that the matrix A — ABK,V\ € sp{L} is stable, thereby evidencing the
neutralizability of the compact system w.r.t. U.

Necessity: The background that the system is neutralizable w.r.t. U amounts to
sp{A — ABK} C C.g for all A € sp{L}. We posit that graph G is SB or contains an in-
isolated SB subgraph, which leads to 0 € sp{L}. The condition sp{A — ABK} C C_q for
A = 0 means A is a stable matrix which is contradictory to the fact that A is not Hurwitz.
Therefore, we derive the necessity of condition ii). In reference to condition i), we can adopt
the same method presented in Theorem [8| to display that (A, B) is stabilizable. O

4.2.3 Numerical Experiments

In this subsection, several simulations serve to demonstrate the main results of the homoge-
neous opinion dynamics. As is shown in Figure [£.2] a paradigmatic network consisting of 6
individuals is introduced as an example. The weighted adjacency matrix is

0 15 0 0 0 0
05 0 0 0 0 0
1 0 0 0 0 —16
=10 2 0o 01 o0 (4.34)
0 0 0 060 1
0 0 -13 040 0 |
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4 Opinion Dynamics on Coopetitive Social Networks

Evidently, the underlying weighted graph is QSC as any node can be regarded as a root.
The graph in Figure [4.2] is selected to be SB: node 1, 2, and 3 are in the same camp while
the rest nodes in the competitive camp.

Consider a homogeneous opinion dynamics in (4.1) with the state and input matrices

0 0 O 1
A=1lo o 1|, B=|1], (4.35)
0 -1 0 1
respectively. It is apparent that (A, B) is stabilizable by Kalman’s criterion. By solving
(4.8) and using (4.9), the feedback gain matrix can be attained as

K =[1,1.41,0]. (4.36)

As is shown in Figure [4.3] individual opinions achieve asymptotically polarization wherein
the steady-state opinions on the second and third issues are non-stationary, but they are
stationary on the first issue. In this case, the bipartition of opinions and the network
topology is consistent, i.e., nodes 1, 2, and 3 hold the same opinions towards three different
subtopics and their opinions are opposite to the ones held by nodes 4, 5, and 6 towards each
subtopics, respectively.

Theorem [§ implies that there could exist the case when the inconsistency happen, i.e.,
opinion polarization is achieved but the individuals in the same camp do not reach an
agreement. The following simulation serves as an explanatory example. Consider the 4-node
QSC and SB network in Figure The weighted adjacency matrix reads

0 0 -07 03
-01 0 0 -1
=" 0 o _odl (4.37)

0 -1 =009 0

Let the homogeneous opinion dynamics described by the pair (A, B) as

-4 1
A= [_1 _4] and B = 1. (4.38)

By selecting the feedback gain matrix as

RT:[I? fg], (4.39)

we can attain the opinion dynamics shown in Figure [£.5] It manifests that node 1 and 3
reaches an agreement and their opinions towards two subtopics are opposite to the ones of
node 2 and 4. However, as is shown in Figure [f.4] node 1 and 4 are in the same camp while
node 2 and 3 are in the other. Notice that the Lagrangian of the network in Figure [4.4]
possesses two eigenvector with entries all in {+1}. To be specific, these two eigen-pairs are
(0,[1,=1,—1,1]7) and (2,[1,—1,1,—1]T). Tt yields that « in this case can be chosen as 0 or
2. If @ = 0, neutralization will be achieved since A is Hurwitz. By choosing K in , the
limit behavior of the dynamics is governed by (A —2BK), whose eigenvalues are £2. To this
end, oscillation occurs in Figure [£.5 Furthermore, the opinion polarization is characterized
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Figure 4.3.: Polarization of homogeneous opinion dynamics

by the signs of the entries of the eigenvector [1,—1,1,—1]T, i.e., node 1 and 3 shares the
same opinion as well as node 2 and 4.

As is mentioned in the discussion of Theorem [§ structural balance is not a necessary
condition for bipartite consensus. Here an example is provided. As is presented in Figure
this communication network is QSC but not SB. Hence, the adjacency matrix reads

0 0 0.1 0.25
-1 0 -0.03 0.07
W = 01 0 0 R (4.40)

0 01 -1 0

Let the homogeneous opinion dynamics described by the pair (A, B) as

0.2 —1 10
A= 2  wan- [ Y). wan
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Figure 4.4.: A network topology on which the opinion dynamics can achieve inconsistent
polarization

2 I I I
=11 L21==TL31==L41|a

Time

Figure 4.5.: Polarization can be inconsistent with structural bipartition in homogeneous
opinion dynamics
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By selecting the feedback gain matrix as

10
K = lO 1], (4.42)

the opinions over time is shown in Figure[4.7] Apparently, polarization is achieved and nodes
1 and 4 are in a camp while node 2 and 3 in the other, although the communication topology
is not SB. In this case, & = 0.2 and the corresponding eigenvector of L at v is [1, -1, —1,1]T.

Both of the simulations on inconsistent polarization and polarization on structurally unbal-
anced graph infers that the eigen-pair (o, d) where diag(d) € D, but not structural balance,
plays the key role in the bipartite consensus phenomenon. Hence, further inspections on the
eigenvalues and eigenvectors of I ® A — BK ® L is needed to provide precise results on the
analysis of the closed-loop system.

Finally, by adding an edge of weight +1 from node 4 to node 1 in Figure 4.2} a structurally
unbalanced graph with no in-isolated SB subgraphs is obtained. For a homogeneous opinion
dynamics described by the pair (A, B) given in and the same feedback gain matrix K
in , the public opinions become neutral asymptotically in Figure .

4.3 Modulus Consensusability of Heterogeneous Opin-
ion Dynamics on Coopetive Networks

In the real world, individuals even living in the same house may be tremendously different
in educational background, life history, personal preference, etc., and all these discrepancies,
in turn, influence the decision-making of each agent. Therefore, heterogeneity is of great
significance and necessity in practice.

4.3.1 Problem Formulation

With the illustration of individual heterogeneity in mind, we consider the following dynamics
for the opinion-forming process,

;i (t) = Axi(t) + Bu(t),i € V, (4.43)

where A; € R™" and B; € R™"™ are system and input matrices, respectively. Correspond-
ingly, the feedback control is chosen as

(J1)e€
and the admissible protocol set in the heterogeneous case becomes
N
U = {u(t) € R™ |ui(t) = —K; Y lwij|(z; — sgn(wi;)a;),
j=1 (4.45)
Vi >0, K; e R™" i=1,...,N}.
Aside from the same social interpretations as in the homogeneous setting, the subscripts

associated to the matrices A;, B; and K; emphasize individual diversity. The compact form
of the closed-loop system (|4.43)) reads

#(t) = [A — B(L® I)]x(t), (4.46)
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Figure 4.6.: A structurally unbalanced graph on which the opinion dynamics is polarizable
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Figure 4.7.. Polarization of homogeneous opinion dynamics on a structurally unbalanced

graph
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=11 T ==T31~ Ty] HT51 4T

0 5 10 15 20

Ty H—T52 —A—$672

0 5 10 15 20

Ty 3—+T534AT63

0 5 10 15 20

Figure 4.8.: Neutralization of homogeneous opinion dynamics
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where A = diag(Ay,...,Ay) and B = diag(B1 K1, ..., ByKyx). We then address the prob-
lem: Under which conditions there exist a series of K; such that the heterogeneous opinion

dynamics (4.43) is polarizable, consensusable and neutralizable with the opinion protocol in
U.

4.3.2 Bipartite Consensusability of Opinion Dynamics

Although the involvement of system heterogeneity in opinion formation opens up the possi-
bility of richer social psychological findings, considerable challenges arise naturally in their
theoretical and empirical exploration. As a starting point, we study the necessary condi-
tions for bipartite consensusability of heterogeneous dynamics. To save cliché, we assume
that (A;, B;) of the individual systems is stabilizable for i = 1,..., N.

Theorem 11. Let the relation (4.27)) hold. The stabilizable systems ({.43)) evolving on a
SB graph G is bipartite consensusable w.r.t. U, only if both of the following conditions are
satisfied:

i). G is quasi-strongly connected.

it). There exist a positive integer ¢ < n, a sequence of matrices Q; € R™*9 of full column
rank and a diagonalizable matriz S € R satisfying sp{S} € 1R such that

AQi=QS, VieV. (4.47)

Proof. The proof of condition i) is an immediate result of Theorem [§]
As for condition ii), the bipartite consensusability of systems (4.43]) amounts to the acces-
sibility of the following systems to consensus,

1(t) = [A - B(L® I,)]#(t), (4.48)

where & = [Z],...,2}]" with #; = p;z;. The matrix L is defined in and is, thanks
to the implication p;pjw;; = d;d;w;; in - the Laplacian matrix of the unsigned graph
associated to G. Therefore, the dynamics achieving consensus lim; ,, Z; — Z; =
0 for all 4,5 € V infers the existence of an asymptotlcally attractive invariant subspace
X on which #; = Z;. By noticing 1 C ker L, the dynamical behavior of the closed-loop
system on X is governed by the dynamics Z(t) = AZ(t). The requirement that the
uniformly bounded #; has no asymptotically stable equilibrium set, allows X to contain
marginally stable modes with dimension ¢ € Nyy and ¢ < n. Especially, one can construct
a diagonalizable matrix § € R9*? which possesses ¢ marginally stable eigenvalues and a
block matrix Q := [Q],..., QL]T € R*¥*4 whose columns span the subspace X, such that
AQ = QS from which the equalities emerge and sp{S} C R can be inferred. O]

It should be emphasized that sp{S} C N;ey { sp{A;} N zR}, which implies matrix S lumps
together some (or all) of those marginally stable modes t fhat individual system matrices
commonly share. In other words, the existence of one or more common pure imaginary
eigenvalues in the spectrum of matrix A; is essentially important to bipartite consensusability
of opinion dynamics. This finding is reminiscent of the real-life situation that certain basic
social norms serve a baseline to reach an opinion consensus among diverse social actors.
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Note that the statements shown in Theorem [11]are a necessary but not sufficient condition.
This is because, for example, when A; for all i € V share a common eigenvalue \. which
associates with an identical eigenspace, i.e., there exists p € R™ \ {0} such that A;u = A.u,
then one can obtain

(A-BLL)p=Apn—-B(L® L)1y @ p) = A, (4.49)

where p = [u',...,u"]" € R™™. Thus, ). is an eigenvalue of the system matrix of the

dynamics with corresponding eigenvector p. That is to say, the mode associated
with A\, would appear in the solution of equation . If )\ is a defective pure imaginary
eigenvalue or A\, € C., individual opinions may not converge to bipartite consensus, even
go to infinity.

To avoid the occurrence of these undesired scenarios, we impose some specifications on
the system matrix A; and then provide sufficient conditions for bipartite consensusability of
heterogeneous opinion dynamics.

Theorem 12. Consider the stabilizable system (4.43) with non-zero initial conditions form-
ing opinions on a graph G = (V,E,W). Suppose A; satisfies the similarity transformation

T AT, = diag(S, S, J;), VieV, (4.50)

where S € Rk qnd § € R@K)*(@=F) yitp, positive integers k and q satisfying k < q < n
and S := diag(S, g) € R 4s a diagonalizable matriz in real Jordan normal form satisfying
sp{S} CR; J; € R"=9*x(=9) js ¢ stable matriz. Moreover, T; = [Q,Q;, Pi] € R™™ is a
nonsingular matriz wherein Q; = [Q, Q;] € R™ of full column rank with Q € R™* and
Q; € Rk gpd P, € R (n—a),

If the following conditions hold,

i). G is structurally balanced and quasi-strongly connected.

it). Matriz = is Hurwitz, where

O L,_JI7t O --- O
~1Q, O I, -+ O
= =diag(J1, Ay, -+ , An) — )
|ag( 1, 412 N) : (4‘51)
—[QN O]Tfl o --- I,

x B(L ® I,)diag(Py, L., -+ , I,),

then the system (4.43) is bipartite consensusable w.r.t. U. Moreover, the system (4.43) is
consensusable if G is an unsigned graph while polarizable if G is a signed graph.

Proof. Since G is SB, one can denote z;(t) = d;x;(t) for all i € V, and obtain a closed-loop
system as below

7i(t) = Aiiy(t) — BiK, i Wi (34(t) — (1)), Vi € V. (4.52)

With the help of the notation z; := T, 'z; and the matrix transformation (.50, it is not
difficult to attain

N

Jj=1
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For the convenience of further derivation, the following decompositions are needed

F;

21(t) = [Zlq] , T7'BK; = [F

le

] . VieV, (4.54)

where z1,(t) and z;,(t) are the first ¢ rows and the last (n — q) rows of z(t), respectively.
F;, and Fy, are analogously defined. After denoting 2;(t) := z(t) — [2{,(¢),0;]T and e;(t) =
Sy (zi(t) — Z4(t)), Vi € V, the opinion dynamics [#.52) for i = 2,3,..., N can be

rewritten as
Zip(t) = Jiz1p(t) — Fipes(t)
. . 4.55
5(0) = dag(s. 5~ [ et + | ] xt e
Let ((t) == [2{,(t), 25 (t),..., 2 (t)]" to be the aggregation of variables. The compact form

of (4.55)) can be written as
¢(t) = =¢(), (4.56)

where )
== diag(Jl,S, JQ, ce ,S, JN)

P, O O

| O R Byl e O (4.57)
CELOT 0 e [F, FLT

X (L ® I,,) diag(P1, Ty, - -+ , Tn).

The observation that = is similar to the Hurwitz matrix = in condition ii) can be obtained
from the transformation below

= =diag(ly_q, To,- -, Tn)Ediag(Li_g, Ty Y, -, Tb), (4.58)
which guarantees that = is also Hurwitz and lim,_,o ((t) = 0. Then the difference between
Ty and Ty, i = 2,3, ..., N needs to be inspected and thus, we denote §(¢t) = [Z{ —7J,...,7 —
zL]T and one can obtain

5(t) = TC(1), (459)
where
Pl _T2 A O
r=1|: . (4.60)
PO - Ty

The asymptotic stability of yields that lim; .., §(¢t) = 0 in (4.59), which implies
that reaches consensus. Since the eigenvalues in sp{S} have the same eigenspace @,
in reference to (4.49)), one can explore sp{S} C sp{A — B(L ® I,,)}. That is to say, the
matrix A —B(L®I,) contains at least one eigenvalue on imaginary axis, which is commonly
shared by all A; with ¢ € V. As the equation (4.50) stated that S is a diagonalizable matrix
with all eigenvalues on the imaginary axis and J; is stable, we can further display that the
matrix A is marginally stable. Namely, for any non-zero initial conditions, the limit behavior
of z;(t) is bounded and does not converge to 0, Vi € V. Finally, if d; = 1, Vi € V, which
implies L = L, the sufficient conditions for consensusability can be also derived. O
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4.3.3 Neutralizability of Opinion Dynamics

In the homogeneous case, we conclude that structural balance is an obstacle for public
opinions to achieve neutralization. However, according to the compact form , the
impact of L is extraordinarily weakened because of the diversity of A;, B;, and K;. It
implies that neutralization is much easier to establish in heterogeneous case. Here only a
necessary condition is provided as an insight of the relation between neutralizability and
network topology. Note that the assumption in the homogeneous case is then naturally
extended as A; is not Hurwitz for all i € V.

Theorem 13. Consider a strongly connected signed graph G = (V,E, W) and the matriz
transformation (4.50) holds. The stabilizable dynamics (4.43)) is neutralizable w.r.t. U only
if G is not structurally balanced.

Proof. Taking the compact form of the heterogeneous opinion dynamics in into con-
sideration, one can obtain sp{A —B(L®I,,)} € C, if is neutralized. Then we prove
Theorem (13| by contradiction. If G is SB, according to and in conjugation with ,
the modes associated with the eigenvalues in & appear in the solution of which yields
that neutralization is negated. Thus the opposite is true and we complete the proof. O

Based on the above results and analysis, one may notice that the heterogeneity of the
opinion dynamics and the weak reliability of neutralizability on network topology are the
major reasons for incapability of forming valuable sufficient and necessary conditions. In-
tuitively, it is a primary requirement that the dynamics share some common eigenvalues to
achieve modulus consensus, which is also true for bipartite consensus. However, neutraliza-
tion is peculiar because the target is the origin which means that the common eigenvalues of
all the agent dynamics are not necessary. Moreover, the diversity of parameter matrices in
the dynamics leads to multitudes of ways to reach neutralization. As a consequence of the
aforementioned facts, sufficient and necessary condition for modulus consensusability cannot
be expected.

4.3.4 Numerical Experiments

In this subsection, several simulations serve to demonstrate the main results of the heteroge-
neous opinion dynamics over the same Figure[d.2l 'We consider the non-identical subsystems
dynamics (4.43)) whose state and input matrices are given respectively by

[—0.5 0.25 —0.5 0 0 O
A= 0 =1 0|, A=]-2 -1 —2f,
0 -05 0 -2 0 =2
0 0 0 -2 1 =2
A3 =1 0 -3 0|, A4=|0 -5 0],
—35 —0.25 —35 0 —-25 0 (4.61)
[0 0 0 0 0 O
A5: —].3 —].5 —13 y AGZ 0 —1 O 5
-8 0 -8 -3 1 -3

By =1[1,2,3]", By=[-1,3,1]", Bs=][1,1,-7]",
By=1[1,-3,1]", Bs=[-21,1]", Bs=[1,1,-1]".

85



4 Opinion Dynamics on Coopetitive Social Networks
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Figure 4.9.: Polarization of heterogeneous opinion dynamics

Note that A; for ¢ = 1,...,6 shares the same marginally stable eigenvalue 0 w.r.t. the same
eigenvector [1,0, —1]T but possesses different stable eigenvalues. By choosing

Ky = [—0.1437,-0.0853,1.2705], K, = [—1.2283,0.4789, 0.1860],
K3 = [0.8217,0.0701, —0.5925], K, = [—0.1401, —0.7124, 1.2742], (4.62)
K5 = [~1.5199,0.2548, —0.1057], and Kg = [1.2190,0.1231, —0.1952],

the bipartite consensusability conditions of Theorem [12] are satisfied. It can be observed
from Figure that the opinions of individuals reach polarity on the first and third topics,
while neutrality on the second topic, which is allowable from Definition

Finally, after adding an edge of weight +1 from node 4 to node 1 in Figure [£.2] we
obtain a structurally unbalanced graph which has no in-isolated SB subgraph and test the
heterogeneous dynamics on this modified network by choosing the same series of the
feedback control gain matrices in . Figure shows the opinion formation process of
heterogeneous dynamics over such network achieves asymptotically neutralization.

86



4.4 Discussion
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Figure 4.10.: Neutralization of heterogeneous opinion dynamics

4.4 Discussion

Opinion dynamics on social networks with coopetitive (cooperative-competitive) interac-
tions may result in polarity, consensus or neutrality under different opinion protocols. The
antecedent of protocol design is to study the accessibility problem: whether or not there
exist admissible control rules to polarize, consensus, or neutralize individual opinions in a
large population. From an operational perspective, this chapter is aimed at the investiga-
tion of polarizability, consensusability, and neutralizability of opinion dynamics in question.
Particular emphasis is on the joint impact of the dynamical properties of individuals and
the interaction topology among them on polarizability, consensusability, and neutralizabil-
ity, respectively. Sufficient and/or necessary conditions for those accessibility problems are
provided by using powerful tools from spectral analysis and algebraic graph theory. To char-
acterize the individual diversity in real life, we further investigate the solvability of opinion
formation problems in heterogeneous systems with non-identical dynamics. Accordingly, suf-
ficient and/or necessary criteria for heterogeneous network polarizability, consensusability,
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and neutralizability are derived.

In Section [4.2] we provide the necessary conditions for stationary bipartite consensus-
ability. The conditions for non-stationary bipartite consensusability, however, cannot be
included in this result. If the non-stationary bipartite consensusability is achieved, there
may exist no limit of individual opinion. Intuitively, the conditions given in Theorem [§| seem
to be correct for this case, if the last part in condition ii) is replaced by “sp{A —aBK}NR
contains o1, 0 € R”. Although no simulation till now can serve as a counterexample for this
result, rigorously prove is required to confirm this necessity condition.

We have to admit that the sufficient condition in Theorem [12]is not generally applicable
due to the strict requirements on individual opinion dynamics and the network topology.
However, bipartite consensusability w.r.t. the static protocol shows an interesting insight
into the difficulty of individuals to (separately) reach an agreement. The heterogeneity
rooted in different aspects, e.g., languages, ages, genders, political beliefs, is the major
obstacle. Alternatively, dynamic protocols based on self-learning are more promising for
bipartite consensusability of heterogeneous opinion dynamics, which will be our future work.
It is worth pointing out that consistent polarization and structural balance are listed as prior
conditions in Theorem [I1]and Theorem [I2] respectively. As is discussed in Section [4.2] these
two conditions do not play dominant role for homogeneous opinion dynamics, let alone for
heterogeneous. Whereas, they are adopted because they are commonly accepted and existed
in the real life.

Besides, the opinion dynamics considered in this chapter is a linear system. In [47], the
nonlinear dynamics is considered. However, the neutralization case, which is of significant
social meaning, is not separately analyzed. It is still open problem on how to distinguish
the neutralization situation from general consensus in the nonlinear opinion dynamics on
coopetitive networks.

Furthermore, in this chapter, we only consider the opinion dynamics on fixed social net-
works. A naturally extension is to take into account non-fixed networks. This is inspired
by [48] and [120], where the Altafini’s model has been considered on time-varying networks
and switching networks, respectively. As another trend in the field of opinion dynamics,
the opinions between individuals are considered to influence the social ties. Related works
can be referred to in [121]. Thus the opinion dynamics is changed from the dynamics on
networks to the dynamics of networks and their interactions.
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Conclusions and Outlook

5.1 Conclusions

In this dissertation, we inspect the dynamical processes on social networks focusing on the
modeling, analysis, and control problems. Here we conclude this dissertation by chapters.

In Chapter [2] the information diffusion processes are well modeled as epidemics spreading
on social networks by using the mean-field approximation for the Markov chain. Focusing
on information diffusion processes in heterogeneous networks, the node-based susceptible-
infected-recovered /removed-susceptible (SIRS) model is introduced. Under different con-
ditions, the node-based SIRS model could possess different equilibria, i.e., the disease-free
equilibrium and the endemic equilibrium. Specifically, the existence and stability of both the
equilibria are analyzed. The procured results emphasize the importance of both the tran-
sition rates of the information diffusion process and network connection. We then extend
the information epidemics into multi-layer networks and propose the heterogeneous discrete-
time susceptible-infected-susceptible (SIS) model for multiple information spreading. The
existence, uniqueness, and stability of the equilibria are highly dependent with the transition
rates, communication topology, and the sampling period.

In Chapter [3, an optimal control framework by interacting with the infection rate is
proposed, following which two scenarios, i.e., to impede rumor spreading and to enhance the
diffusion in marketing or campaign, are separately described. The solutions to the optimal
control problems are proved to be existed and obtained by Pontryagin Maximum Principle.
Forward-backward sweep algorithm and fmincon are used to get the solution numerically.
Furthermore, for the first time, the effects of natural uncertainties of the transition rates
are considered to determine a robust optimal control strategy. A numerical solution is
obtained based on distribution analysis. The diffusion is maximized in finite horizon with
the proposed control strategy allowing for the constraint of limited budget. The proposed
algorithm, which combines the forward backward sweep method and the secant method,
shows its effectiveness and efficiency in dealing with the diffusion processes over real networks.
The numerical experiments on the influence of parameters confirm the common sense that
the more budget the better dissemination performance. Apart from that, it is of great
significance to properly weigh the impact of the noise while utilizing the proposed approach.
The addressed formulation and the proposed optimal strategy not only solve the specific
problem caused by the noisy transition rates but also provide a general solution to social
networks with stochastic perturbations.
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5 Conclusions and Outlook

In Chapter , we investigate modulus consensusability (polarizability, consensusability,
and neutralizability) of opinion-forming protocols in coopetitive networks. Criteria to test
those accessibility-like issues in terms of sufficient and/or necessary conditions are our major
contributions. Specifically, the joint effect of the algebraic constraints of the system dynam-
ics and topological properties of the interaction structure is underlined in the examination
of modulus consensusability. Different from sufficient conditions, we demonstrate that the
structural balance of quasi-strongly connected social networks is not necessary for polariz-
ability. With the emphasis on the individual heterogeneity, the investigation of modulus
consensusability of systems with non-identical dynamics displays that the existence of com-
monality in eigenvalues and eigenvectors of system dynamics is of central importance to
develop consensus and polarization protocol.

5.2 Outlook

The topic inspected in this dissertation is giant, highly interdisciplinary, and of broad ex-
tensions. There remain variant future works and open problems to be investigated. Thus
we list several potential interesting fields for the dynamical processes on social networks.

Modeling and Analysis of Information Epidemics

i) General epidemics model. Although there exist many different kinds of epidemics
models, no general one has been reported in literature. Very recently the generalized
susceptible-exposed-infected-vigilant (G-SEIV) model paves the way to this target.
However, to develop a generic model that covers all the possible compartments, as well
as the time-varying network topology, and the potential noise, is still an open problem.

ii) The stability of the endemic equilibrium of the node-based SIRS model and the discrete-
time SIS model. In Chapter [2| we provide two conjectures on these two problems and
support them by simulation, respectively. The precise and rigorous proofs are left for
the future work.

iii) Computationally cheap algorithms to check the existence, uniqueness, and stability
of the DFE and endemic equilibrium. In the conditions obtained in In Chapter [2]
the eigenvalues of an N-dimensional matrix need to be calculated. For large scale
networks, this result cannot be expected due to high computation cost. An attractive
idea is to develop fast algorithms taking into consideration the network structure. The
sparseness and connectivity properties may be of great significance.

Control Design for Information Epidemics

i) Distributed control algorithms for information diffusion processes. In Chapter |3 we
proposed the optimal control and the robust optimal control algorithms for the infor-
mation epidemics. It is actually centralized control but not in a distributed manner.
For general case when only limited access is possible, the distributed control algorithms
should be considered, which is also naturally suitable for large scale social networks.
The algorithms for the consensus problem of multi-agent systems may provide a hint
for the control of information diffusion processes.
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5.2 Outlook

ii)

iii

iv)

Effectiveness of the proposed algorithms in the Markov chain models. In this chapter,
the control rules are directly designed for the node-based models. Although the node-
based models can well approximate the performance of the Markov chain models,
the error between them may the effectiveness of the proposed control law. However,
the difficulty of conducting the comparisons lays in the simulation of the Markov
chain model with huge amount of states. Alternatively, this issue may be tackled by
using the Monte Carlo simulation. The Monte Carlo simulation, however, takes long
period of time as a trade-off to make the simulation possible for large scale networks.
Apart from the comparison, to directly control the Markov chain model is of great
interests since precisely the node-based models are the approximations of the Markov
chain model. The challenges arising from designing such control law are the massive
computation burden due to large scale social networks, the rigorous proof to guarantee
the optimality, and the method to conduct (numerical) experiments implementing the
control.

Control design for the node-based models with stochastic noise. In Section we deal
with the deterministic disturbances and propose the robust optimal control. Whereas,
taking into consideration the randomness in spreading processes, the impacts of the
stochastic noise needs to be investigated.

Control design for multi-layer multiple information epidemics. In this chapter, we only
focus on the control of single-layer single information epidemics. Bearing in mind the
single dominant information equilibrium of the multi-layer multiple SIS model in Sec-
tion a promising extension is to design an optimal strategy for certain propagator
such that his/her information can be dominant.

Opinion Dynamics

i)

ii)

iii)

General opinion dynamic model and validating experiments. As is discussed in Chap-
ter |1} opinion dynamic models are mainly in three categories. General model of social
influence is needed to understand the fundamental mechanisms of the change of opin-
ions. Furthermore, most existing opinion dynamic models have not been tested by
real experiments. The validation of these models is essential and may also lead to new
theory to build more general models.

Evolution of social ties. Instead of the prior given social networks, individuals may
form their own social ties in a group. The appraisals between each pair of individuals
thus play an important role in this process. Compared with opinion dynamics, which
is the dynamics of nodes in graphs, the dynamics of appraisals is the dynamics of
edges. Furthermore, the appraisals, in turn, can influence the individual’s opinion. To
this end, there exists an interplay between dynamics on networks and the dynamic of
networks. They are still open problems to model, analyze, and control this interplay
model.

Extracting opinion values from accessible information. In the study of the opinion
dynamic models, the opinions are considered as exact numbers. However, in real
word, to obtain the accurate opinion values seems to be impossible. Common ways
to collect public opinions, e.g., questionnaires and customer reviews, may only need
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iv)

to an approximation of the true opinion. Sentiment analysis should be introduced
in combination of opinion dynamics to better understanding the opinion forming and
updating process.

Local rule-global emergent properties (LrGep). On social networks, an interesting
phenomenon is that a certain local rule or protocol may result in global emergence,
e.g., the opinion consensus or polarization. Why this kind of emergence is possible
and how to design the local rule to achieve desired global emergence are attractive
topics to be solved. Possible frameworks may be the social influence theory and the
evolutionary game theory.



Graph Theory

The major focus of this dissertation is on the dynamical processes on social networks. Thus
how to model the social networks is a fundamental problem. Mathematically, graphs are
commonly used to describe the structure of the networks where the agents and their relation
are abstracted as vertices and edges. The elementary graph theory that is used in this
dissertation is introduced.

A.1 Unsigned Graphs

A graph G is made up of vertices (nodes) and edges (links, arcs). We denote the set of labeled
vertices as V = {1,2,..., N} and the set of edges as € CV x V. G,(Vs, &) is a subgraph of
Gif Vs CVand & C (Vs x V) NE. To avoid ambiguity, the terms vertex, node, individual,
and agent are interchangeably used in this dissertation. The graph G is an undirected graph
if for any edge (v;,v;) € € there exist an edge (vj,v;) € &, 1,5 € V; otherwise, a directed
graph (digraph).

Weights can be assigned to each edge to form a weighted graph. Thus an adjacency matrix
W = [w;;] € RV*N is obtained. w;; # 0 if and only if (vj,v;) € V. The graph G is called an
unsigned graph if and only if w;; > 0 for all ¢, 5 € V. The Lagrangian of an unsigned graph
is defined as follows N

L=l 1y ={ T 120 (A1)
The spectrum of L satisfied the following lemma. There holds sp{L} € Cx [116].

A weighted graph is said to be directed if there exist some 4, € V such that w;; # wj;.
Weighted digraphs are commonly adopted in social network models because of the fact that
it characterizes a significant feature: asymmetry. On one hand, the connection between
people are not always bidirectional, especially in online social networks. This phenomenon
is named as asymmetric follow referring to the fact that many people follow an individual
or account without having to follow them back. On the other hand, the influence between a
pair of social neighbors is generally different, which may lead to the study of social power.

Apart from the direction and weight of the links, the connectivity of the graph is of great
importance. The basic concept, path, e.g. from vertex 7y to i,, is defined as a series of vertices
i0,11,92, - . ., in, n € Nt such that (ij,i;41) € £, =0,1,...,n— 1. A digraph is said to be
quasi-strongly connected (QSC) if there exists one node (root) which possesses paths to all
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Figure A.1.: A graph with in-isolated subgraphs

other nodes in this graph. Moreover, if each node is a root, the digraph is strongly connected
(SC). Any SC graph is QSC and a graph is QSC if and only if it contains a spanning tree.
As is shown in Figure it is evident that every node is a root in Figure while only
node 1 is a root in Figure [A.2D] From the algebraic point of view, we have the following
lemmas.

Lemma 13. A graph G with adjacency matriz W is SC'if and only if W is irreducible.

Lemma 14. [116/ Given an unsigned graph G with Lagrangian L, the zero eigenvalue of L
is simple and Re\ > 0 for all A € sp{L} \ {0} if and only if G is QSC.

The proofs are saved for triviality. The structure of the Lagrangian of a QSC graph is
characterized by the following lemma.

Lemma 15. [122], [125] Given a QSC graph G with Lagrangian L, there exists a vertex
permutation such that L is transformed to the Frobenius normal form

én p e 0
A e (A2
Lot Loz - Lom
where Ly, i =1,...,m—1,m < N are irreducible square matrices, each L;; has at least one

row with positive row sum, and L,,,, is irreducible or a scalar zero.

A subgraph is in-isolated if there exist no edges from outside of itself.
In Chapter |2, we confine ourselves to consider only unsigned graphs.

A.2 Signed Graphs

In social relations, there exist not only cooperation but also competition. Taking into this
phenomenon into consideration, the signed graphs are introduced.

94



A.2 Signed Graphs

0? O @&
OO (=~

(a) An SC graph (b) A QSC graph

Figure A.2.: Examples of SC and QSC graphs

A weighted singed digraph G is described as a triple (V,E, W), where ¥V = {1,2,..., N},
ECVYxVand W = [w;] € R¥*N are the set of vertices, the set of edges and the weighted
adjacency matrix, respectively. For any entry of W, w;; # 0 if and only if there exists a
link from j to ¢. Furthermore, w;; > 0 indicates that j is cooperative with 4, while w;; < 0
means that j is competitive towards ¢. We call G a signed graph if at least one of the entries
of W is negative; otherwise, G is unsigned. The associated unsigned graph of signed graph
G = (V,E,W) is denoted as G = (V, €, W). They possess the same sets of nodes and links,
respectively, while W = [w;] € RY*Y is formed by |w;;|,Vi,j € V at each entry. Two

fundamental assumptions about the signed graphs in this dissertation are as follows.
Assumption 4. There exist no self-loops, i.e., w; =0, Vi € V.
Assumption 5. The graphs are digon sign-symmetric, i.e., wj;w;; > 0, Vi,j € V.

Assumption 1 implies that there is no self influence in the communication graph. Assump-
tion 2 is based on the common sense that in most circumstances it may not happen that
agent ¢ treats j as a friend while j treats ¢ as a foe.

The connectivity of a digraph G is of great significance in the analysis of network-based
dynamics. A subgraph of G = (V, £, W) is a graph formed from subsets of V, £ and the
associated weights in W.

For the subsequent analysis, the Laplacian matriz of G = (V,E€, W) is introduced as

N oo s
R R (A.3)

Analogously, L is denoted as the Laplacian of the associated unsigned graph G = (V, €, V_V)
To cluster the nodes and analysis the performance of dynamics, structurally balanced (SB)
signed graph is introduced following the definition

Definition 4 (Structural Balance). [48] A graph G = (V,&, W) is structurally balanced,
if there exist two disjoint subsets V; and Vs, i.e., Vi NV, = 0 and V; UV, = V, such that
wi; >0ifi,5€V,,qe{l,2} and w;; <0ifi €V, j€V,,q#r,qr € {l,2}.

An illustrative figure on structural balance is given in Figure [A.3] Tt is notable that the
definition of structural balance is independent of connectivity of graphs, i.e., SB is established
no matter the graph is SC, QSC, etc., which is ignored by most of the previous works.
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Figure A.3.: Structural balance and unbalance of coopetitive networks

Structural balance plays an important role in the convergence analysis of systems on networks
with antagonistic interaction (negative weighted edges on graphs). For illustration, we can
consider in the context of the election campaign. The SB graph picturesquely implies votaries
of two political parties splitting into two hostile camps, where the relations inside each
faction are supportive and between them are repellent. In contrast to general graphs with
negative weighted edges, SB graph organizes only a subset but is critical to forming opinion
polarity or polarization. In addition, despite of minority, SB topological structure appears
widely in real-world society, such as the system of governance, political voting, commercial
investigation, etc. Especially, an unsigned graph is always SB where one of the subsets is
(). Moreover, we have the following criterion to describe the algebraic characterization of an
SB graph.

Lemma 16. A graph G = (V,E, W) is structurally balanced, if and only if there exists a
diagonal matriz D = diag(dy, ds, ..., dy),d; € {+1},i =1,2,..., N such that all entries of
DW D are nonnegative.

Proof. Sufficiency: From the condition, we have d;w;;d; > 0,¢,5 € V. Construct the follow-
ing two sets of nodes.

VIZ{ZGVdZ:]_},VQZ{'LGVdZ:_].} (A4)

Then we examine the edges to show that graph G is SB.
Without loss of generality, for two nodes p,q € Vi, we have d, = d, = 1. If there exists
an edge from ¢ to p, it follows that

Wpg = dpwyedy > 0. (A.5)

The result in (A.5)) is also true when p,q € V,. Thus we conclude that all weights of edges
(if the edges exist), which link the nodes in the same set, are positive. In case two nodes in
the same set are not connected, the weight is 0, which also fulfill Definition [4]

When p and ¢ are in different sets, say, p € V; and ¢ € V,, we obtain d, = 1 and d, = —1.
If there exists an edge from ¢ to p, it follows that

Wpg = —dpWpedy < 0. (A.6)

96



A.2 Signed Graphs

The result in (A.6]) is also true when the edge is from p to g. Thus we conclude that all
weights of edges (if the edges exist), which link nodes in different sets, are negative. In case
two nodes in different sets are not connected, the weight is 0, which also fulfills Definition []

Necessity: Assume that graph G = (V, €, W) is SB. Choose d; = 1 if i € V; and d; = —1
otherwise, to construct the matrix D = diag(dy,ds,...,dy). It is evident that D has the
property described in Lemma (16| O

To characterize the property of D, the set
D = {diag(di, ds, . ..,dy,) : d; € {£1},i=1,2,...,n} (A.7)

is introduced. The transformation with D € D to make DW D a nonnegative matrix is
named as gauge transformation [105], [124]. Obviously, there exists a gauge transformation
for graph G = (V, &€, W) if and only if it is SB. Lemma [16]is a general extension of the results
in [110], |125], i.e., both unsigned and signed weighted digraphs are considered.

Further properties of an SB graph are characterized by the following lemma.

Lemma 17. [48/ Given an SB graph G(V,E,W), there holds that L has eigenvalue at 0.
Furthermore, the graph G is QSC if and only if dimker L = 1.

Lemma [17] implies that for an SB and QSC graph, d is the eigenvector of L at 0, where
diag(d) € D.

Note that to avoid ambiguity, the signed graphs are only considered here and in Chapter
[l In other parts of this dissertation, we generally take into account only unsigned graphs.
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Consensus Theory

With the increasing interest in distributed control and coordination of networks consisting
of multi-agents, the consensus problem becomes canonical in the field of networked dynamic
systems, e.g., ad hoc wireless communication networks, sensor networks, power networks, and
social networks. Specially, in sociology, the consensus theory, as an opposite to the conflict
theory, means a fair system to hold particular political or economic entities, in which the
social changes should take place within the social institutions provided by it [126], |127]. In
this section, we introduce the consensus theory in view of both control theory and social
theory.

Distinct to the conventional control systems, the networked systems usually possess the
features of large scale, big data, diverse information flow, and time-varying connectivity.
These characteristics lead to the impractical implement of centralized control strategy due
to the expensive computation and the fully access to information. To this end, the distributed
protocols are more preferable in which only the local information is required. In addition,
the distributed control laws are more robust with respect to the network topology and can
be implemented more easily compared with centralized control. Taking this reason into
consideration, the interesting topic is to design a distributed control such that consensus of
states or outputs of the agents in networks can be reached.

Among all the consensus algorithms, the linear consensus algorithm plays an important
role in multitudes of networked systems. The pioneering works [128], [129] in multi-agent
system theory have thoroughly studied the collective group behaviors such as consensus,
synchronization, flocking, swarming [130]-[134]. The consensus phenomena occur not only
in the above typical multi-agent systems but also social systems, e.g., the opinion formation
processes. The focus on the consensus of opinion traced back to the study by French and
Degroot [37], [38]. The proposed iterative opinion pooling process is now known as the
DeGroot model or the French-DeGroot model.

Mathematically, the French-DeGroot model is described as the following discrete-time
difference equation.

z(k+1) =Waz(k), (B.1)
where z(k) = [z1(k),...,zn(k)]T € RY is vector encapsulating the respective opinions
of each individual in a N-node network; W = [w;;] € RV*¥ is the adjacency matrix of

the communication topology representing the influence weights among each pair of nodes.
Without loss of generality, w;; is normalized such that W is row stochastic, i.e., for any
1 € V, there holds Zj»v:l w;j = 1. In detail, w;; > 0 stands for node j can influence node .
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0 < wy; < 1 represents that individual 7 is open-minded so that the opinions of her social
neighbors and herself are all considered; w;; = 0 implies that individual ¢ only rely on others’
opinions; whereas w; = 1 indicates that ¢ is a stubborn person who only consider her own
opinion. Entry-wise, the individual opinion dynamics reads

i(k+1) Z w;jxi(k (B.2)

It implies that the individual ¢ updates her opinion by taking weighted average of all her
social neighbors (including herself if w; > 0). In this case, consensus is defined as follows.

Definition 5 (Consensus). Consider the opinion dynamic in (B.1)) on a graph G = (V,E, W).
The opinions are said to be consensus if there holds

lim z;(k) — z;(k) =0,Vi,j € V. (B.3)

k—o0

Besides consensus, a weaker phenomenon is convergence described as follows

Definition 6 (Convergence). Consider the opinion dynamic in (B.1)) on a graph G =
(V,E,W). The opinions are said to be convergent if there exists

z(00) = lim x(k) = lim W*2(0), Vx(0). (B.4)
k—o00 k—o0
Clearly, the opinions reaches consensus if z1(00) = ... = zy(00). Although the French-

DeGroot model is developed to illustrate the social power but not aiming at the consensus
or convergent study, it serves as a perfect instance to combine the social-network-based
model with control theory. Mathematically, the convergence and consensus of this model is
confirmed by the following lemma under certain condition on the communication topology.

Lemma 18. [135] The French-DeGroot model (B.1)) is convergent if and only if A = 1 is
the only eigenvalue of W on the unit circle. Moreover, the opinions reach consensus if and
only if this eigenvalue 1 is simple.

Lemma [18 infers that it is equivalent for the French-DeGroot model to be convergent and
consensus if W is irreducible, i.e., the underneath graph is strongly connected. Figure
depicts an example of the French-DeGroot model where the public opinion reaches consensus.
By writing down the adjacency matrix of the graph in the left subgraph, it is straightforward
to check that the conditions in Lemma [18] are satisfied. Thus the consensus is established.

In the French-DeGroot model, the opinion pooling is based on the average of the social
neighbors and in the discrete time. As a counterpart of the French-DeGroot model, the
Abelson’s model [39] is proposed in a continuous-time manner.

Bearing in mind the model and the relation w;; = 1 — 37, w;;, we can attain for
each node 7, there holds

ri(k+1)—x;(k gww zj(k) — z;(k)). (B.5)

It implies that the increment of node 7th opinion is the weighted sum of the opinion difference
between each of her neighbors and herself. Moreover, the equation (B.5)) also infers that node

100



(a) An example graph which runs the French-DeGroot model
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(b) Public opinion reaches consensus in the French-DeGroot model

Figure B.1.: Opinion dynamics described as the French-DeGroot model reaches consensus
¢ shifts her opinion towards node j with certain weights. For sufficiently small amount of
time between two steps, the dynamics (B.5]) is rewritten in continuous-time as

Recalling the Laplacian for unsigned graph in (A.1]), the compact form of the Abelson’s
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model reads ~
x(t) = —Lx(t). (B.7)

The differential equation is not only valid to explain the opinion dynamics in social
networks but also plays an important role in the recent works in the field of multi-agent
systems [116], [130].

Since all the eigenvalues of L are not in the right half complex plain, the limit lim;_,, e~
always exists. It implies that the opinions in the Abelson’s model always converges. By
using Lemma [I4] one can obtain the following lemma regarding the consensus condition.

Lt

Lemma 19. The Abelson’s model (B.7)) reaches consensus if and only if the graph G is

quasi-strongly connected. Moreover, the consensus opinion satisfies
. T
Jim (1) = p"2(0), (B5)

where p is the left eigenvector of L associated with the simple eigenvalue 0, i.e., p' L = 0,
such that p" 1 =1.

This result which is fully proved in [116] is now fundamental in the study of multi-agent
systems. What is interesting is that Abelson is the first one to point out that the quasi-
strongly connectivity is sufficient and necessary for achieving consensus. The remarkable
connection between opinion dynamics and multi-agent system continues and is extended to
generic cases where the vector opinions, nonlinear consensus algorithms and time-varying
networks are taken into consideration. Here we show several examples of the performance
of the Abelson’s model. This model is first implemented on the same network which is used
in Figure . Since sp{—L} C C.o, the public opinion becomes neutral as is presented
in Figure [B.2l By slightly modification of the underneath communication topology, we use
the graph in the left subgraph in Figure [B.3] On this graph, the public opinion establishes
consensus.

Very recently, the Abelson’s model is extended to the signed graph by the seminal work of
C. Altafini |46, which leads the trend of research on opinion dynamics on the coopetitive-
competitive networks. The Altafini’s model on a time invariant network is described as the
following differential equation

x(t) = —Lx(t), (B.9)

where x € RY encapsulates the opinion values of the N nodes in a signed graph G =
{V,E,W}. Compared with the Abelson’s model, the Laplacian L is specifically for signed
graphs, which is defined in (A.3]).

Due to the properties of signed graphs, the Altafini’s model may result in modulus con-
sensus, i.e., there exist a scalar a > 0 such that

Jim |z;(t)| = a,Vi e V. (B.10)

Specially, if a = 0, we name it neutralization, which is a trivial case. Whereas, the non-trivial
case of modulus consensus, bipartite consensus, contains two situations: i) consensus, i.e.,
the opinion of each node converge to a same value and ii) polarization, i.e., the absolute value
of the converged opinion is the same but there exists at least one node with the opposite
opinion. The conditions on modulus consensus of the Altafini’s model has been thoroughly
studied. We conclude the associated results in the following lemma.
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(a) An example network on which runs the Abelson’s model
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(b) Public opinion becomes neutral in the Abelson’s model

Figure B.2.: Opinion dynamics described as the Abelson’s model reaches neutralization

Lemma 20. Given the Altafini’s model on a signed graph G with Laplacian L, the
opinion reaches bipartite consensus if and only if G is quasi-strongly connected and structural
balanced. Moreover, if w;; > 0,V4, 5, consensus is established; polarization is achieved other-
wise. The opinion approaches neutralization if and only if neither G is structurally balanced
nor G contains in-isolated structurally balanced subgraphs.

The proof of Lemma [20] can be referred to in [48] and is saved here for triviality. Two
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(a) An example network on which runs the Abelson’s model
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(b) Public opinion reaches consensus in the Abelson’s model

Figure B.3.: Opinion dynamics described as the Abelson’s model reaches consensus

numerical experiments are conducted to illustrate the modulus consensus defined in (B.10)).
In Figure [B.4] the signed graph is not SB, which leads to the neutralization of the public
opinion. While on an SB signed graph, polarization is established as is shown in Figure [B.5

The polarization phenomenon reflects Heider’s theory on social balance [136], which can be
vividly described as “my friend’s friends are my friends; my friend’s enemies are my enemies;
my enemy’s friends are my enemies; my enemy’s enemies are my friends.". Based on this
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(a) Public opinion becomes neutral in the Altafini’s model

—] e Ly == 123 x4+x5_A_x6

(b) Public opinion reaches polarization in the Altafini’s model

Figure B.4.: Opinion dynamics described as the Altafini’s model reaches neutralization on
structural unbalanced graphs

setting, the modulus consensus problem has been extended to time-varying networks in [48]
and the accessibility problem in [49].
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(b) Public opinion reaches polarization in the Altafini’s model

Figure B.5.: Opinion dynamics described as the Altafini’s model reaches polarization on SB
graphs.
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