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Abstract 

 

Phenology, cyclic events in living organisms, is among others triggered by climatic conditions 

and hence affected by climate change. The timing of such events are important factors 

influencing species interactions and ecosystem functioning. Thus, phenology is an indicator 

of any changes in climate and the well-being of an ecosystem. Traditionally, phenology has 

been observed through surveying of species locally and sporadically in time. In contrast, 

remote sensing based estimations of phenology provide avenues for repetitive and cost-

effective solutions for monitoring plant development at both local and global scales. The 

central idea of this thesis revolves around remote sensing based estimation of key 

phenophases of plants (Land Surface Phenology or LSP), their drivers, and their validation 

with observed ground phenology (GP). Several phenological metrics such as Start of Season 

(SOS), End of Season (EOS), Length of Season (LOS), maximum NDVI value (NDVImax), 

NDVI integrated over the growing season (NDVIsum) and day of maximum NDVI 

(maxDOY) were estimated from remote sensing based time series of MODIS NDVI data.  

 

This thesis consists of three case studies carried out in Germany with sites near Stuttgart 

(southwestern Germany), in the Bavarian Forest National Park, and in the Bavarian Alps that 

posed different challenges in terms of land cover, climate, and topography. Different methods 

for smoothing and extraction of phenological metrics were also discussed in this thesis. The 

phenological metrics derived from remote sensing data were validated with ground 

phenological records and LiDAR observations. It was found that the earliest phenological 

phases such as bud burst or the first leaf are difficult to detect from satellite data. The 50% 

amplitude method of estimating LSP-SOS provided superior results in detecting leaf 

unfolding as compared to other available techniques. A further analysis revealed other 

controls on phenology apart from climatic drivers. Homogeneity of land cover or the mixing 

of broad leaves and conifers in a pixel also significantly affected the estimated LSP. The final 

case study in the Bavarian Alps provided clues regarding the changing nature of elevational 

rates of LSP in the Alpine and pre-Alpine regions which are primarily driven by variations in 

spring and winter temperatures. 



 

Zusammenfassung 

 
Phänologie, zyklische Ereignisse in lebenden Organismen, wird unter anderem durch klimatische 

Bedingungen gesteurt und ist folglich auch vom Klimawandel betroffen. Die Eintrittstermine 

dieser Ereignisse sind wichtige Faktoren, die Arteninteraktionen und Ökosystemfunktionen 

beeinflussen. Die Phänologie kann als Indikator über Veränderungen des Klimas und den Zustand 

des Ökosystems Auskunft geben. Phänologie wurde herkömmlicherweise über lokale und 

sporadische Beobachtungen von Arten durchgeführt. Im Gegensatz dazu bieten fernerkundliche 

Abschätzungen der Phänologie neue Wege für repetitive und kostengünstige Lösungen, um die 

Pflanzenentwicklung sowohl lokal als auch global zu überwachen. Der Grundgedanke dieser 

Arbeit dreht sich um die fernerkundlich basierte Abschätzung von Schlüsselphasen der 

Pflanzenphänologie (Phänologie der Landschaftsoberfläche oder LSP), ihre Antriebe und ihre 

Validierung mittels phänologischer Bodenbeobachtungen (ground phenology, GP). Verschiedene 

phänologische Kennzahlen wie Beginn der Saison (Start of Season, SOS), Ende der Saison (End 

of Season EOS), Länge der Saison (Length of Season LOS), Wert des maximalen NDVI 

(NDVImax), über die Wachstumsperiode integrierter NDVI (NDVIsum) und Tag des maximalen 

NDVI (maxDOY) wurden über Satellitenbasierten Zeitreihen von MODIS NDVI-Daten 

abgeschätzt.  

 

Diese Arbeit besteht aus drei Fallstudien in Deutschland, die unterschiedliche Herausforderungen 

aufgrund der Landbedeckung, des Klimas und der Topographie stellten. Diese Studien wurden 

durchgeführt mit Flächen nahe Stuttgart (Südwestdeutschland), im Nationalpark Bayerischer 

Wald und in den bayerischen Alpen. Zusätzlich wurden verschiedene Methoden zur Glättung und 

Gewinnung von phänologischen Kennzahlen diskutiert. Die aus phänologischen fernerkundlichen 

Daten abgeleiteten Kennzahlen wurden mit phänologischen Bodenbeobachtungen und LiDAR-

Beobachtungen validiert. Es zeigte sich, dass die frühesten phänologischen Phasen, wie erste 

Blätter und Laubaustrieb, sich nur schwer über Satellitendaten erkennen lassen. Im Vergleich mit 

anderen verfügbaren Techniken lieferte die Kennzahl der 50%-Amplitude zur Abschätzung von 

LSP-SOS die besten Ergebnisse, um den Laubaustrieb zu erkennen. Eine weitere Analyse ergab, 

dass die Phänologie neben den klimatischen Antriebsfaktoren von weiteren Einflüssen kontrolliert 

wird. Es zeigte sich, dass die Homogenität der Landbedeckung oder die Mischung von Laub- und 

Nadelbäumen innerhalb eines Pixels signifikant die abgeschätzte LSP beeinflusste. Die letzte 

Fallstudie in den bayerischen Alpen lieferte Hinweise, dass Veränderungen der 

Höhenabhängigkeit von LSP im alpinen und voralpinen Bereich hauptsächlich durch Winter- und 

Frühjahrestemperaturen ausgelöst werden. 
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1. Introduction 

 

Phenology, the study of annual recurring events in the life cycle of living organisms has been 

well documented (Schwartz, 2003; Zhang et al., 2012). The cyclic events of leaf unfolding, 

flowering, fruiting and leaf-fall, etc. of plants (i.e. the primary producers) influence ecosystem 

productivity, succession and migration of species (Pettorelli et al., 2017). These events are 

primarily driven by temperature and other meteorological parameters and hence are also 

affected by climate change (Menzel and Fabian, 1999; Parmesan and Yohe, 2003). Diez et al. 

(2012) showed the varied responses to climate change across different spatial scales and 

levels of organisation (Figure 1). In the context of the already established climate driven 

phenology of organisms and the implications of future climate change on the timing of  key 

phases, very little justification is needed for more intensive efforts in studying of phenology 

for understanding its changing patterns and drivers (Chang et al., 2017; Cleland et al., 2007; 

Garonna et al., 2018; Ovaskainen et al., 2013). Monitoring of phenology is also important due 

to the species specific responses to similar climatic drivers (Basler and Körner, 2014), which 

may lead to desynchronisation of interaction among species and consequent loss of 

biodiversity (Burgess et al., 2018; Visser et al., 1998). For e.g. across the trophic levels, shifts 

in plant phenology could lead to mismatches in food availability and peak species abundance 

leading to decoupling of the food web phenology. Therefore, a comprehensive understanding 

of the spatial and temporal variability of phenology is essential to develop strategies for 

adaptation to and mitigation of risks of climate change (Doi et al., 2008; Thackeray et al., 

2016).   

 
Figure 1. A conceptual diagram of species’ responses to climate change at various levels of 

organisation and scales (source: Diez et al., 2012). 
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1.1 History of phenology 

 

Traditionally phenology has been observed by volunteers who traverse a fixed path 

periodically and record key phases in the life cycle of both plants and animals. The oldest 

evidences of phenological records have been found in the early civilisations of Egypt, 

Mesopotamia and China (Schwartz, 2003). It was probably after Carl Linnaeus in the end of 

eighteenth century that phenology was studied systematically as a science and the first survey 

networks of phenology were established around the globe (Giovanna, 2007). An example of 

an early phenological record by Carl Linnaeus is shown in Figure 2. Some of the best known 

phenological records are hundreds of years old i.e. the Japanese cherry blossoms of the 9th 

century, the grape harvest dates of central Europe from the 1300s and the 200 year old 

Marsham phenological records from the UK (Chuine et al., 2004; Nagai et al., 2016; Sparks 

and Carey, 1995). Such long term records of phenology are important works of history 

documenting distribution and the life cycles of plants, animals and agricultural systems, and 

also provide critical clues to the climate of the past (Chuine et al., 2004; Sparks and Carey, 

1995).  

 

Many global and regional phenological networks such as the National Phenological Network 

in the USA (USA-NPN), International Phenological Gardens (IPG) in Europe and the camera 

based Japanese Phenological Eyes Network (PEN) among several others are operating 

currently and continue to provide information on phenology of plants (Zhang et al., 2012).  A 

comprehensive list of phenological networks is available at the website of Potsdam Institute 

for Climate Research (http://www.pik-potsdam.de/~rachimow/epn/html/frameok.html). The 

earliness in the timing of spring events in Europe and North America (Diez et al., 2012; 

Walther et al., 2002), the extension of growing season in Europe (Menzel and Fabian, 1999), 

decrease in elevational rates of phenology in central Europe (Vandvik et al., 2018; Vitasse et 

al., 2017), increased biodiversity and shifting treelines in the higher latitudes (Kullman, 2010; 

Leonelli et al., 2011) and asynchrony in community level phenology (Ovaskainen et al., 2013; 

Visser et al., 1998) are few of the climate change induced anomalies observed in ground 

phenology records and confirmed by satellite remote sensing. In view of the climate induced 

changes in phenology and also the feedbacks of phenology on climate, observing 

phenological phases that started as a pastime for naturalists has now therefore become a 

critical yardstick for studying the global climate change process (Menzel, 2002; Peñuelas, 

2009; Richardson et al., 2013).   
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Figure 2. Carl Linnaeus’ record of phenological timings of few common trees and shrubs in 

Northern Europe during 1750-1752 (source: Giovanna, 2007).  

 

1.2 Remote sensing of phenology 

 

Remotely sensed data from space-borne satellite platforms provide periodic information on 

the earth’s surface and its atmosphere. The revolution in earth observation satellites for 

imaging of the earth’s surface and its natural resources started in 1972 with the launch of the 

Landsat Mission under the “Project Eros” by the United States of America (Wulder et al., 

2019). Subsequently, other satellites such as the SPOT, NOAA-AVHRR, Resoucesat, 

MODIS and Sentinel among several others were launched that provide a myriad of 

information about the earth’s surface and not limited to mapping of vegetation status, 

moisture stress, atmospheric components (clouds, aerosols and precipitation), ocean 

properties, surface temperature, etc. The advent of remote sensing technology provided easy 

access to high resolution information both in time and space, and are cost-effective in 

comparison to land based survey methods. The promise of monitoring of vegetation through 

remote sensing was first recognised in the early 1970s when vegetation indices were found to 
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be well correlated with biomass (Rouse et al., 1974).  Later, with the improvement in sensing 

technologies, several other properties of vegetation such as fractional cover, leaf area index, 

plant pigments (chlorophyll and carotenoids), etc. could be determined with great precision 

from satellite sensors (Frampton et al., 2013; Glenn et al., 2008; Verger et al., 2016).  

 

The Normalised Difference Vegetation Index (NDVI) is the preferred and most commonly 

used measure among several vegetation indices that were developed over time (Helman, 

2018). It is the ratio of the difference and the sum of the reflectance of an object in the near 

infra-red and red region of the spectrum. Its values ranges from -1 and +1, and helps 

exploiting the fact that green vegetation reflects strongly in the near infra-red and absorbs in 

the red region (Glenn et al., 2008). The vegetation spectral response curve in shown in Figure 

3. NDVI is easy to calculate and is directly correlated to properties such as carbon 

assimilation, photosynthetic activity and plant transpiration (Glenn et al., 2008). Temporal 

NDVI data is known to be sensitive to seasonal changes in vegetation and have also been used 

to study effects of extreme events and pest infestation, map species abundance (Berner et al., 

2011; Pettorelli et al., 2005; Spruce et al., 2011), and identify species based on their unique 

phenology (Clerici et al., 2012; Massey et al., 2017).  

 

 

Figure 3. The spectral response curve of vegetation and soil (source: Clark, 1999). The 

contrasting near infra-red reflectance of the green and dry (stressed) vegetation is clear. The 

chlorophyll present in the green vegetation also leads to strong absorption in the visible range 

of the spectrum.  
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In addition to conventional space based platforms, several near surface measuring techniques 

such as fixed digital cameras or phenocams and drone mounted cameras have also emerged in 

the past decade that work with the same principle of repeated photography of land surface and 

help in monitoring of vegetation phenology at multiple scales (Browning et al., 2017; 

Klosterman and Richardson, 2017). Figure 4 is a vivid representation of capturing vegetation 

phenology through different remote sensing platforms (drones or UAV are not shown in the 

picture). Recently, Hufkens et al. (2019) demonstrated the suitability of inexpensive 

smartphones in close range monitoring of crop phenology in India. Data from remote sensing 

platforms have been able to provide critical insights into vegetation performance and 

ecosystem functioning in response to biotic and abiotic triggers that aid developing strategies 

for adaptation and policy measures (Foster et al., 2019; Heumann et al., 2007; Ma et al., 

2015). Some studies demonstrating advancements in the science of remote sensing of 

vegetation phenology or land surface phenology (LSP) are listed in Table 1. 

 

 

Figure 4. Remote sensing of vegetation phenology through various platforms. (Source: 

Bennet and Hope, 2018) 
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Table1. Few major developments in land surface phenology studies. 

S/No. Findings Data Time period Author  

1)  Measures of central 

tendency, variability of 

phenological measures  

(timing of key events) and 

the NDVI value at key 

phases estimated from time 

series NDVI data over 

coterminous USA 

corresponded well with the 

observed phenology of 

grasslands, deciduous and 

conifer forests, and spring 

wheat.   

AVHRR (1 km 

and 14 day 

maximum value 

composite or 

MVC) 

1989-1992 (Reed et al., 

1994) 

2)  Increased seasonal 

amplitude of NDVI and 

lengthening of the growing 

season in the northern 

hemisphere.  

NOAA-GIMMS 

NDVI (8km and 

monthly 

averaged values) 

1981-1991 (Myneni et al., 

1997) 

3)  Integrated seasonal NDVI 

(I-NDVI) provided a good 

estimate of biomass in the 

semi-arid and arid regions of 

Australia and correlated well 

with rainfall patterns.  

AVHRR- 

GIMMS (14 day 

MVC) 

1992-1999 (Holm et al., 

2003) 

4)  An advance in spring and 

delay in autumn timings 

globally. Phenological 

timings were highly 

correlated with climatic 

indices based on ocean 

currents and sea surface 

temperature. 

AVHRR-

GIMMS (8 km 

and 15 MVC) 

1981-2003 (Julien and 

Sobrino, 2009) 

5)  Apart from elevation, 

distance to urban land cover 

was found to strongly 

influence phenological 

timing of vegetation near 

Baltimore and Washington 

cities in the USA. Green 

down in summer was found 

to affect estimates of autumn 

onset in the study area. 

Landsat TM and 

ETM+ data (16 

day and 30m 

resolution) 

 

Phenocam data 

based greenness 

and redness 

(2004-2008; 

daily data) 

1983-2008 (Elmore et al., 

2012)  

6)  Vegetation phenology in 

semi-arid regions in South-

eastern Australia showed 

higher sensitivity to climate 

anomalies. Years with 

MODIS EVI (16 

days and 0.05 

degree) and 

Standardized 

Precipitation 

2000-2014 (Ma et al., 2015) 
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extreme droughts revealed a 

complete loss of vegetation 

seasonality.  

Evaporation 

Index or SPEI (3 

month interval 

and 0.05 degree) 

7)  Phenocam based greenness 

was able detect the invasive 

mesquite shrub phenology 

better than satellite based 

NDVI which tracked the 

dominant native grassland 

species seasonality. This 

study validates the reliability 

of phenocams in bridging 

the gap in observations from 

field and space. 

Digital camera 

(20m from 

horizontal and 

capturing images 

every 15 mins 

from 10:00 to 

16:00 hrs) and  

MODIS NDVI 

(250m and 16 

day interval) 

2012-2016 (Browning et al., 

2017) 

8)  Drone based repeated 

imaging at mixed forest sites 

in Harvard forest, USA 

revealed species specific 

differences in phenology. 

Greenness and redness based 

indices from the drone 

mounted camera correlated 

strongly with field 

observations of start and end 

of season. Few Oak trees 

displayed redness at leaf out 

which had to be processed 

accordingly. 

Drone mounted 

digital camera 

(16MP, flight 

frequency- 5days 

during leaf out 

and weekly 

during leaf 

colouring). 

2015 (Klosterman and 

Richardson, 

2017) 

9)  SOS, peak and EOS 

obtained from high temporal 

and spatial resolution 

Sentinel 2 data were 

strongly linked to 

phenological metrics 

estimates from close range 

cameras in the Netherlands.  

Green colour 

coordinate or 

GCC from 

Sentinel 2 data 

(10 m spatial and 

5 day temporal 

resolution) 

2016 (Vrieling et al., 

2018) 

 

 

Review of literature provide evidence of increased interest in plant phenology with almost a 

10 times growth in peer-reviewed articles on the topic in the last 30 years (Tang et al., 2016). 

This renewed interest in plant phenology is mainly due to the debate around the global 

climate change, especially after the 1990s, and the ability of plant phenology to track such 

changes in climate (Richardson et al., 2013). This has led to enhanced curiosity in the 

performance of pioneer techniques such as remote sensing for improving monitoring of 

phenology at multiple temporal and spatial scales. Processing of remote sensing data however 

requires high expertise and skills in data and image processing, which could prove to be a 
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hindrance in the further advancement of this field. But confidence can be drawn from the fact 

that the scientific community in last decade has developed several open source software and 

packages that help now help in processing time series remote sensing data. TIMESAT 

(Jönsson and Eklundh, 2004), Phenopix (Filippa et al., 2016), green-brown (Forkel et al., 

2013), Phenor (Hufkens et al., 2018) and nnphen (Estay and Chavez, 2018) are few such 

noteworthy packages and software. However, caution must be exercised while using these 

packages and their appropriateness and accuracy must be tested before being used for specific 

studies. The existence of several free to use remote sensing data (i.e. Landsat, AVHRR, 

MODIS, etc.) and open source software provides an incredible opportunity to critically study 

the various drivers of Land Surface Phenology (LSP) that were non-existent in the past. 

 

Despite huge advancements in sensor technologies and data processing techniques, remote 

sensing of phenology has its own limitations. Several studies have discussed the limitations of 

remote sensing data and suggested solutions to overcome those. Most notably the processing 

of raw satellite data is crucial in time series analysis of LSP and so are the choice of methods 

adopted that are known to affect conclusions derived from studies (Jönsson and Eklundh, 

2004). Since no single method can be claimed to address all the issues with data processing 

sufficiently and applied to all case studies equally, it is pertinent that such decisions are based 

on the characteristics of the data and area under study (Cai et al., 2017; Hufkens et al., 2019).  

 

The versatility of LSP in revealing various aspects of ecosystem functioning and its 

performances is evident from the case studies carried out as part of this thesis and Table 1, 

however utmost care should be taken to ensure high quality of data used in such studies to 

generate high confidence in the results. For example, divergent effects of droughts on the 

Amazon forests were reported during the droughts of 2005 and 2010. The greening of the 

Amazon in 2005 as reported by Saleska et al., (2007) and the decreased greenness of forests 

in 2010 as concluded by Xu et al., (2011) cannot be attributed to droughts alone. Quality of 

data in form of gaps in the time series of vegetation indices and sensor degradation (Atkinson 

et al., 2011; Samanta et al., 2010), and other climatic factors such as clouds, aerosols and 

variability in the received solar radiation are also known to influence data and introduce errors 

(Saleska et al., 2007).  

 

The inability of coarse resolution satellite data to discriminate among individual species is  

another major hindrance in fruitfully deriving conclusions from LSP based studies (Panchen 
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et al., 2015).  Fu et al., (2014) reported a reversal of the advancing trends in spring phenology 

in Western Central Europe post year 2000. The delayed trends in LSP were probably driven 

by a combination of the inability of satellite data to discriminate between species and the 

delay in the SOS of earliest species that are affected by cooling in late winter. In contrast, the 

ground observed phenology revealed an advancing but weakened trend in the spring phases of 

species during the same period. Most importantly, issues concerned with matching LSP with 

ground phenology or GP arise due to the absence of attribution of a biological meaning to the 

various methods of estimating phenology from remote sensing data i.e. LSP (Eklundh and 

Jonsson, 2015). As stated earlier, an arbitrary selection from a myriad of methods available 

for estimating LSP can complicate matters when comparing LSP with GP observations. 

Therefore, it is essential to carefully chose pre-processing methods and the framework for 

analysing data to minimise errors and uncertainties in results.  
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2. Aims and outline of the thesis 

 

This thesis aims to better understand the process of estimating phenology from remote 

sensing data. The basic premise of the studies carried out in this thesis revolves around a) 

challenges in pre-processing of data, b) matching pixel based LSP with point based GP 

observations, and c) interpreting LSP patterns in light of various drivers such as climate, 

topography and LiDAR based forest stand information.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart depicting the various themes in the case studies undertaken as part of this 

thesis. 

 

Remote sensing based estimation of phenology (Land Surface Phenology or LSP) provides 

promising alternatives to time consuming, labour intensive and localised ground based 

observations (Ground Phenology or GP) of phenological phases. Though various methods of 

extracting phenological information from time series of remote sensing data have been 

studied in detail (Beck et al., 2006; Forkel et al., 2015; Ivits et al., 2013; White et al., 2009), 

there still lack successful efforts in the temporal matching of LSP estimates with GP 
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observations. Chapter 4.1 of this thesis deals with extraction of various start of season (SOS) 

estimates of LSP and correlating it temporally with observed dates of GP-SOS of several 

understory, broadleaf and conifer species. Chapter 4.1 also discusses the challenges in the pre-

processing of raw NDVI times series data and subsequently the problems faced in matching 

pixel based LSP estimates with species specific GP observations. The central aim of the study 

in this chapter was to test whether different LSP-SOS metrics correspond to specific GP-SOS 

observations, and if the GP-SOS observations match with the LSP-SOS in terms of their long 

term trends, mean values and interannual variability.  

 

Apart from the influence of pre-processing of remotely sensed NDVI data, the LSP at the 

pixel level is also affected by several other drivers. The validation of pixel based LSP 

following segregation of pixels using popular land cover maps such as CORINE and 

GlobeCover, etc. and its matching with GP observations of dominant species on the ground is 

commonly advocated (Hamunyela et al., 2013; Rodriguez-Galiano et al., 2015). However, as 

completely homogenous pixels are rarely found in nature, it is important to consider the 

accuracy of such land cover maps and subpixel mixing of classes to correctly interpret the 

meaning of the LSP metrics estimated from a pixel. In absence of high resolution or sub-pixel 

information, it is difficult to ascribe the variability in the estimated LSP to climate alone. 

Therefore, the role of subpixel information on forest stands in driving the spatial variability in 

mean LSP metrics is discussed in chapter 4.2. The advantage of using LiDAR data to include 

subpixel information on forest stand with respect to percentages of broadleaf and conifer 

species, crown volume and Shannon’s entropy helped in studying the variability observed in 

LSP metrics, which is not otherwise discernible through coarse resolution remote sensing 

data. The neglected end of season (EOS) metric along with several other phenological 

measures are also discussed in this chapter.  

 

Climate change is known to have differential effects on the phenology of different plant 

species. Moreover, there are now evidences for the weakening of the widely accepted 

Hopkin’s bioclimatic law dealing with the elevation linked lapse rates of leaf out in trees 

(Vitasse et al., 2017). In such a situation, not only long term climate change impacts but also 

the inter-annual or seasonal temperature patterns need to be investigated for their role in 

affecting vegetation phenology. Chapter 4.3 discusses the role of spring and winter 

temperatures in driving variability in elevation linked lapse rates of vegetation phenology in 

the pre-Alpine and Alpine regions of Bavaria. A synopsis of results from remote sensing and 
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ground observations-based phenology and their elevational lapse rates is also presented in the 

chapter.  

 

The succeeding sections of this thesis contain description of the data and complete 

methodology followed for three studies (two individual accepted publications and one case 

study to be submitted). Also listed are the abstracts of the three studies in the subsections of 

chapter 4.  A short description of the results of the and their implications are also presented in 

chapter 5. The reprints of the published articles and the case study (to be submitted) is 

attached at the end of this thesis. 
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3. Data and Methods 

3.1 Data used 

The data used in this thesis have been described in detailed in the two individual publications 

and one case study (to be submitted). However, a brief overview of the data and its sources 

are listed in this section as below.  

 

3.1.1. Satellite remote sensing based NDVI data 

 
The 16-day maximum value composite (MVC) Normalised Difference Vegetation Index 

(NDVI) data (MOD13Q1) and its corresponding pixel reliability information for the years 

2001-2013 (used in chapter 4.1) was downloaded from the now retired MRTweb application 

(https://lpdaac.usgs.gov/tools/modis_reprojection_tool) of the United State Geological Survey 

(USGS) website. This data can now be downloaded from the AppEARS portal of USGS 

(https://lpdaacsvc.cr.usgs.gov/appeears/).  

 

A 4-day MVC NDVI data along with its respective pixel quality and exact day of the year for 

the composites were accessed from EURAC, Bolzano (Asam et al., 2018) for use in chapter 

4.2 and 4.3. This 4-day MVC product was derived from the daily MOD09GQ product 

collection 6 and use in conjunction with MOD09GA product for constraints on quality and 

viewing geometry of the pixels. The NDVI measure was calculated from the red and near 

infra-red bands of the of the satellite product. The details of this NDVI product are discussed 

in detail in Misra et al. (2018) and Asam et al. (2018).  

 

3.1.2. LiDAR based forest stand data 

 
A LiDAR based spatial points data frame was obtained from the Bavarian Forest National 

Park (BFNP) administration. The LiDAR data is based on an aerial survey carried out in June 

2012 using a Riegl LMS-680i scanner under leaf-on conditions at a height of 650 m with a 

density of 30 points/m2. The database contained structural information of individual trees (i.e. 

tree type, crown volume, height, species type (conifer or broadleaf), etc.) in the BFNP, which 

was later resampled and rasterized to 250 m grids for comparison with MODIS pixels. 

Several aggregated measures of forest stand characteristics were calculated (in chapter 4.2) 

such as average tree height, average crown volume, average crown area, broadleaf %, conifer 
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% and Shannon’s entropy for comparison with MODIS based phenology. The LiDAR data 

used in chapter 4.2 is described in detail in Misra et al. (2018).  

 

3.1.3. Topography data 

 
The digital elevation model at a spatial resolution of 30 metres was downloaded from the 

Shuttle Radar Topography Mission (SRTM) data available through the earthexplorer portal of 

the United State Geological Survey website (USGS, 2018) for use in chapter 4.3. The digital 

terrain model (DTM) used in chapter 4.2 from the LiDAR survey of the Bavaria Forest 

National Park (BFNP) was obtained from the BFNP at 1-meter resolution and was resampled 

to 250 metres. The slope and aspect were calculated from the LiDAR- DTM using the terrain 

function available in raster package of R (Hijmans, 2016).  

 

3.1.4. Land cover maps 

 
The CORINE (COoRdination of INformation on the Environment) land cover maps used in 

for chapters 4.1, 4.2 and 4.3 were downloaded from the Copernicus Land Monitoring Service 

of the European Environment Agency (EEA, 2012). The land cover maps were downloaded 

in raster format at a spatial resolution of 250 meters for the year 2012, and consist of land 

cover classes such as broadleaf, conifer, mixed forests, pasture, urban areas, transitional 

woodlands, arable land and water bodies. The classes in the land cover map were used as such 

in chapter 4.2, and aggregated to forested (broadleaf, conifer and mixed forests) and non-

forested areas in chapter 4.3 and masked for broadleaf forests in chapter 4.1.  

 

A habitat map generated was also obtained from the BFNP administration. This land cover 

map used in chapter 4.2 was generated by visual interpretation of digital colour infra-red 

images from a DMC camera in the year 2012. The habitat map consists of various land cover 

classes such as urban areas, broadleaf, conifer and mixed forests, clear-cut areas, water, dead-

wood lying and regenerating areas. Further details of the habitat map is available in Dupke et 

al., (2017).  

 

3.1.5. Ground phenology data 

 
The ground phenology data used in chapter 4.1 was obtained from a dedicated naturalist who 

previously worked at the German Meteorological Service (DWD) for decades. He provided 
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records of phenological phases of several broadleaf, conifer and understory species present 

around a single site near Stuttgart, Germany, covering a transect of 8-10 km in the 

surrounding woods and agricultural areas (48.73oN/9.26oE, 410 m a.s.l). The dates of leaf 

unfolding and leaf greening of several species for years 2001- 2013 were used in this study. 

Further details of species and their phenophases are provided in the supplementary 

information of Misra et al. (2016).  

 

The International Phenological Gardens (IPG, n.d.) and the German Meteorological Service 

(DWD) monitor phenological phases of species through a network of stations in Germany. 

The ground phenological data for the BFNP used in chapter 4.2 was collected at IPG station 

Freyung Waldhaeuser (956 m a.sl.), and DWD stations Neureichenau (770m a.sl.), 

Schönbrunn (775m a.s.l.) and Großer Arber (1436 m a.s.l.). The dates of leaf unfolding and 

leaf fall of broadleaf species i.e. mountain ash (Sorbus aucuparia L.) and European beech 

(Fagus sylvatica L.), and the may shoot dates for conifer species i.e. Norway spruce (Picea 

abies L.) were collected for the years 2002-2015.  

 

Gridded phenological information from DWD for the years 2001-2016 were used for 

validation of MODIS based phenological data in chapter 4.3. The grids for start of season 

(leaf unfolding) and end of season (i.e. leaf colouring and leaf fall) for European beech trees 

were downloaded from the Climate Date Center web portal of the German Meteorological 

Service (DWD, n.d.). These DWD annual gridded values at 1km x 1 km resolution are a result 

of spatial interpolation of species and site specific phenological phases reported by observers 

(as day of the year or DOY). The spatial interpolation of these values are based on latitude, 

longitude, height and weighted by distance to four nearest observations (DWD, n.d.). 

 

3.2 Methods of processing and analysis of data 

 
This section describes the methods used in pre-processing of remote sensing data and the 

various statistical methods used for modelling and validation with ground phenological 

observations.      

 

3.2.1 Pre-processing of NDVI data 

 
Remote sensing data in the form of Normalised Difference Vegetation Index (NDVI) was 

used for various case studies carried out in this thesis. The NDVI data available as maximum 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

16 

value composites (MVC) were first stacked in chronological order. However, they could not 

be used in their available form and required special treatment before extraction of different 

phenological metrics. Satellite based remote sensing data are many times contaminated by 

atmospheric components such as clouds, rain, snow, aerosols, etc., and such errors or 

contamination in observations were identified and accounted for before any further analysis of 

time series of NDVI data. The complimentary pixel reliability information obtained along 

with the NDVI MVC data were used in this regard and pixels with only high confidence 

(pixels labelled as good or marginal) were retained.  

 

The gaps introduced in the NDVI data due to removal of outliers were then filled in two steps: 

a) gaps occurring in the winter period (January and December) of the NDVI times series were 

filled with averages of available high confidence values from the same period in other years 

and b) linear interpolation of the remaining gaps (in non-winter period). Another round of 

outlier detection in the NDVI values was necessary after the removal of outliers and the 

subsequent filling of gaps. Such outliers were present as sudden spikes in time series of NDVI 

data (assuming NDVI profile of vegetation to follow a gradual rate of increase or decrease) 

and hence needed further attention. A Gaussian filter was applied twice to the NDVI time 

series: (1) in the first instance to detect high differences (values beyond two standard 

deviations) in NDVI values in comparison to its neighbouring values and such values were 

subsequently removed and replaced with the average of nearest available values, and (2) a 

second time to obtain a smooth NDVI times series that would represent the smooth and 

gradual transition of values over the growing season of vegetation. In chapter 4.1, the NDVI 

time series was alternatively fitted with a Double Logistic function after the initial Gaussian 

smoothing to compare the performance of two different smoothing approaches. The NDVI 

MVC data was then set to their day of year (from the ancillary information layer) and linearly 

interpolated to daily values.  

 

The Gaussian function used in the case studies in this thesis was so designed that the weights 

(Wi) of the of each value within a window followed a Gaussian distribution (see equation 1). 

These fractional weights were distributed symmetrically around the central value.  

 

𝑊𝑖 = (1
0.5 ∗ 𝑘 ∗ √𝜋

⁄ ) ∗ 𝑒𝑥𝑝 ∗ (
𝑤𝑖

2

(0.5 ∗ 𝑘)2⁄ ) … … … … … … . . (equation 1) 
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where, k is the half window size of the filter and wi is the ith value in the local window of 

sequence –k to k. The weight Wi was normalised by its sum to add to 1. The pre-processing 

and smoothing of NDVI data are explained in detail in Misra et al. (2016). 

 

Instead of using the readily available 16 day NDVI MVC (MOD13Q1) data, a 4 day NDVI 

MVC data was used in chapters 4.2 and 4.3 of this thesis. This 4 day NDVI time series data 

was generated from MOD09GA and MOD09GQ reflectance products of the MODIS sensor. 

The NDVI values were calculated from the red and near infra-red bands and were filtered 

according to geometry information (sun and senor zenith angles) and scene acquisition quality 

flags. This NDVI product was obtained from the Institute for Earth Observation, EURAC, 

Italy and the methods are explained in detail in Asam et al. (2018). A similar pre-processing 

algorithm as in chapter 4.1 for outlier detection, gap filling, smoothing and interpolation was 

applied to this 4-day NDVI MVC product.  

 

 

Figure 5. Example of pre-processing and smoothing of raw NDVI (time series) from a pixel. 

Note: The raw NDVI values are shown as circles, the good and marginal NDVI values (using 

the pixel reliability information) are shown as grey lines, the outlier removed and gap filled 

values are shown as black lines, and the Gaussian filtered NDVI time series is shown as a 

dashed red line. 
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3.2.2 Extraction of phenological information (Land Surface Phenology) from NDVI 

time series  

 
The pre-processed daily NDVI time series data was used to extract several phenological 

metrics (land surface phenology or LSP).  In chapter 4.1 various thresholds based start of 

season (SOS) were computed from the NDVI time series by determining the time period 

when the increasing curve of NDVI values reached the 20%, 50%, 60% and 75% of the 

seasonal amplitude. Similarly, a derivative (first, second and third derivatives) based SOS was 

also calculated for determining the time of greatest rate of change occurring in the growing or 

greening phase of the NDVI profile. Additionally, a delayed moving average (DMA) method 

of estimating phenology was also evaluated. Subsequently, in chapters 4.2 and 4.3, the SOS 

and EOS (by determining the time period when the receding curve of NDVI profile reached 

the 50% of the seasonal amplitude) were calculated using the 50% amplitude method for its 

robustness in terms of its application to a variety of ecosystems (Hamunyela et al., 2013; 

Wang et al., 2016; White et al., 2009, 1997). Apart from calculating the SOS and EOS, 

several other phenological metrics such as DOYmax (day of maximum NDVI value), 

NDVImax (the maximum NDVI value), NDVIsum (NDVI values integrated over the growing 

season) and length of season or LOS (difference between annual EOS and SOS) were 

calculated in chapter 4.2. 

 

Figure 6. Estimation of different LSP metrics from the smoothed and daily interpolated times 

series of a pixel. 
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3.2.3 Validation of Land Surface Phenology  

 

To begin with, in chapter 4.1, the validation of the different LSP metrics was carried out 

through a measure of Spearman’s rank correlation strength with observer reported dates of 

different phenological phases (ground phenology or GP) to check for their match in inter-

annual variations. For this purpose, annual LSP-SOS calculated from threshold and derivative 

based approaches were compared with the annual GP records of leaf unfolding of several 

common understory and conifer species, and leaf unfolding and greening of broadleaf species 

found at the study site. A comparison of means and trends of LSP and GP was undertaken to 

assess the match in seasonality and climate change impacts respectively.  

 

In chapter 4.2, the match between annual phenology of LSP and GP were evaluated. The LSP 

were first segregated for broadleaf and conifers using the land cover map and their correlation 

strength with GP i.e. leaf unfolding and fall for broadleaf and conifer species was analysed. 

Additionally, the drivers of spatial variability of mean LSP metrics were evaluated with 

respect to LiDAR based topography (slope, aspect and elevation) and forest stand 

characteristics (broadleaf%, conifer%, average crown volume, average height, Shannon’s 

entropy, etc.). First the predictors were subjected to a variance inflation factor (VIF) analysis 

and variables with VIF> 10 were removed from further analysis. Additionally, a non-

parametric Kruskal-Wallis test followed by a posthoc Dunn’s test was conducted to test 

whether different land cover types reveal significant differences in their LSP. The 

uncorrelated predictors were then applied to a stepwise multiple regression analysis to predict 

various LSP metrics. As an initial model, multiple regressions were run on mean LSP metrics 

as response and topography variables as predictors respectively.  Subsequently, additional 

predictors in form of land cover information and LiDAR based forest stand information were 

included to evaluate improvements in the explained variance of models. A stepwise BIC 

function (stepAIC function from MASS package in R) (Venables et al., 2002) was applied to 

the different models in order to select the predictors resulting in minimum BIC. Subsequently, 

the relative importance of the predictors in the selected best models were also calculated 

(from calc.relimp function in relaimpo package in R) (Grömping, 2006). A bootstrapping 

analyses of all modelled parameters as described in Buras et al., (2017) was also carried out to 

evaluate stability of the models.    
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In chapter 4.3, the elevation linked lapse rates of MODIS based LSP-SOS and EOS were 

calculated using a bootstrapping analysis. The LSP-SOS and EOS dates of pre-Alpine and 

Alpine regions in Bavaria were sampled separately for each year from 2001-2016. The slope 

from a linear regression analysis of LSP with elevation was calculated over 1000 iterations. 

The different years from 2001-2016 were then analysed for their mean spring and winter 

temperatures and classified in to four groups of warmest and coldest seasons. These 

calculated slopes were then grouped into their location (Alpine and pre-Alpine) and the years 

grouped according to their spring-winter temperatures. A Kruskal-Wallis test followed by a 

posthoc Dunn’s test was then conducted to test for differences in the groups for the 

elevational linked lapse rates of LSP.  The ground phenology observations of leaf unfolding 

and leaf colouring/ fall obtained in the form of gridded datasets from the German 

Meteorological Sevice (DWD) were used to validate both the distribution of annual LSP-SOS 

and EOS values and their elevational rates. 

 

3.2.4 Software and tools used  

 
All data handling, pre-processing, analysis and plotting of figure in the above mentioned case 

studies were carried out in the R statistical programming environment (Core Team, 2014). 

The ArcGIS and ERDAS Imagine software were also used for preliminary exploration and 

visualisation of spatial data. 
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4. Abstracts of individual publications 

4.1 Effects of different methods on the comparison between Land Surface and Ground 

Phenology - A methodological case study from South-Western Germany  

 

Gourav Misra, Allan Buras & Annette Menzel. Remote Sens. 8, 753 (2016). doi: 

10.3390/rs8090753 

 

Several methods exist for extracting plant phenological information from time series of 

satellite data. However, there have been only a few successful attempts to temporarily match 

satellite observations (Land Surface Phenology or LSP) with ground based phenological 

observations (Ground Phenology or GP). The classical pixel to point matching problem along 

with the temporal and spatial resolution of remote sensing data are some of the many issues 

encountered. In this study, MODIS-sensor’s Normalised Difference Vegetation Index (NDVI) 

time series data were smoothed using two filtering techniques for comparison. Several start of 

season (SOS) methods established in the literature, namely thresholds of amplitude, 

derivatives and delayed moving average, were tested for determination of LSP-SOS for 

broadleaf forests at a site in southwestern Germany using 2001–2013 time series of NDVI 

data. The different LSP-SOS estimates when compared with species-rich GP dataset revealed 

that different LSP-SOS extraction methods agree better with specific phases of GP, and the 

choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods 

mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in 

means and trends, and high, significant correlations of up to 0.7 with leaf unfolding and 

greening of late understory and broadleaf tree species. GP-SOS of early understory leaf 

unfolding partly were significantly correlated with earlier detecting LSP-SOS, i.e., 20% 

amplitude and 3rd derivative. Early understory SOS were, however, more difficult to detect 

from NDVI due to the lack of a high resolution land cover information. 

 

Contributions: The study was conceptualized and designed by me and Annette Menzel. I 

wrote the manuscript and carried out the data processing with support from Allan Buras. All 

authors contributed to the interpretation of results and editing of the manuscript. About 70% 

of the work was done by me.  
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4.2 LiDAR derived topography and forest stand characteristics largely explain the spatial 

variability observed in MODIS land surface phenology 

 

Gourav Misra, Allan Buras, Marco Heurich, Sarah Asam & Annette Menzel. Remote Sens. 

Environ. 218, 231–244 (2018). doi: 10.1016/j.rse.2018.09.027 

 

In the past, studies have successfully identified climatic controls on the temporal variability of 

the land surface phenology (LSP). Yet we lack a deeper understanding of the spatial 

variability observed in LSP within a land cover type and the factors that control it. Here we 

make use of a high resolution LiDAR based dataset to study the effect of subpixel forest stand 

characteristics on the spatial variability of LSP metrics based on MODIS NDVI. Multiple 

linear regression techniques (MLR) were applied on forest stand information and topography 

derived from LiDAR as well as land cover information (i.e. CORINE and proprietary habitat 

maps for the year 2012) to predict average LSP metrics of the mountainous Bavarian Forest 

National Park, Germany. Six different LSP metrics, i.e. start of season (SOS), end of season 

(EOS), length of season (LOS), NDVI integrated over the growing season (NDVIsum), 

maximum NDVI value (NDVImax) and day of maximum NDVI (maxDOY) were modelled 

in this study. It was found that irrespective of the land cover, the mean SOS, LOS and 

NDVIsum were largely driven by elevation. However, inclusion of detailed forest stand 

information improved the models considerably. The EOS however was more complex to 

model, and the subpixel percentage of broadleaf forests and the slope of the terrain were 

found to be more strongly linked to EOS. The explained variance of the NDVImax improved 

from 0.45 to 0.71 when additionally considering land cover information, which further 

improved to 0.84 when including LiDAR based subpixel forest stand characteristics. Since 

completely homogenous pixels are rare in nature, our results suggest that incorporation of 

subpixel forest stand information along with land cover type leads to an improved 

performance of topography based LSP models. The novelty of this study lies in the use of 

topography, land cover and subpixel vegetation characteristics derived from LiDAR in a 

stepwise manner with increasing level of complexity, which demonstrates the importance of 

forest stand information on LSP at the pixel level. 

 

Contributions: The study was conceptualized and designed by me and Annette Menzel. I 

wrote the manuscript and carried out the data processing and statistical analyses for this study. 

The raw LiDAR data and raw 4-day composite NDVI data were processed and provided by 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

23 

Marco Heurich and Sarah Asam respectively. All authors contributed to the interpretation of 

results and editing of the manuscript. About 80% of the work was done by me.  

 

4.3 Elevation linked phenological lapse rates show differences in the pre-alpine and alpine 

regions of Bavaria: Overview from ground and satellite observations  

 

Gourav Misra, Sarah Asam & Annette Menzel. (to be submitted to Environmental Research 

Letters) 

 

The role of temperature in driving phenology of vegetation is well established. However, with 

the changing climate leading to differences in temperature regimes during the year and 

especially also during winter chilling, a pronounced variability in the already established 

phenological rates is now being observed along the elevational gradient of mountains. In this 

study, we analysed the elevation linked lapse rates of phenological dates in the pre-alpine and 

alpine regions of the Bavarian Alps in Germany. The dates for the start of season (SOS) and 

the end of season (EOS) were extracted from a 4-day maximum value composite Moderate 

Resolution Imaging Spectrometer (MODIS) sensor’s Normalised Difference Vegetation Index 

(NDVI) time series data for the years 2001-2016. Analyses of SOS data showed higher 

elevational lapse rates in the alpine areas than the pre-alpine areas, possibly due to longer 

duration of snow. Maximal differences in rates of SOS of alpine and pre-alpine areas were 

observed in years with preceding warm winters with lack of chilling. Minimum differences in 

the rates of SOS were found along the elevational gradient during cold spring and cold winter 

years. The MODIS based SOS showed the highest correspondence when validated against the 

gridded German Meteorological Service (DWD) leaf unfolding data. The EOS dates showed a 

comparatively lower correspondence to DWD data and their lapse rates in the pre-alpine and 

alpine regions were tricky to validate. Contrary to SOS, EOS dates revealed lower, but still 

positive lapse rate in the alpine areas than the pre-alpine areas. 

 

Contributions: I and Annette Menzel led and conceptualised the design of the study. I wrote 

the manuscript and carried out the data processing and statistical analyses for this study. The 

raw 4-day composite NDVI data was processed and provided by Sarah Asam. All authors 

contributed to the interpretation of results and editing of the manuscript. About 70% of the 

work was done by me. Special thanks to Dr. Nicole Estrella and Dr. Stefan Haerer for their 

support in analysing the temperature and DWD data respectively.  
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5. Discussion 

This thesis describes and tests different pre-processing methods for MODIS NDVI data, 

estimation of various LSP metrics and its interpretation, and its validation with various 

species-specific GP and LiDAR data. In this chapter a general discussion of the results from 

two publications and the paper to be submitted is presented.  

 

5.1 Issues and considerations in pre-processing of NDVI data 

Pre-processing of data is the first consideration in any study and was predictably crucial in the 

case studies (two published papers and one to be submitted) carried out as part of this thesis. 

The methods of pre-processing of data are known to affect LSP estimates (Clerici et al., 2012; 

White et al., 2009) and hence requires careful consideration of several issues for decision 

making. To begin with, the decision to use daily or a composited NDVI product is critical in 

LSP studies. Previous research suggests using satellite data with a temporal resolution not 

more than the phase of vegetation growth period or phenophase under study (Ahl et al., 2006; 

Kross et al., 2011; Zhang et al., 2009). In chapters 4.2 and 4.3 of this thesis, a 4 day NDVI 

MVC product as suggested by Asam et al. 2018 was used. In contrast to the 8 day, bi-weekly 

or monthly composites, the 4 day MVC aimed at capturing fast occurring changes in the 

phenology of vegetation and potentially increases the temporal sampling of valid observations 

that were discarded in the 8 day NDVI MVC. NDVI data with lower compositing periods i.e. 

less than 8 days and a high quality criteria for data inclusion, may lead to larger data gaps but 

did not impair subsequent fitting of phenological models and concurrently improved the 

accuracy of mean NDVI estimates (Asam et al., 2018). Moreover, the use of maximum value 

composites, especially for MODIS data, helped minimise error in data and also mitigate 

problems due to the variable daily footprint of MODIS sensor that may lead to inconsistency 

in spectral signatures (Jin and Sader, 2005; Tan et al., 2006; Xin et al., 2013).   

 

Though the MVC NDVI data consisted of fewer outliers than the daily values and the pixel 

reliability layer provides indication of contaminated data, there still existed unexplained 

deviations or outliers in the temporal NDVI profile of the pixels. Existing methods of outlier 

detection such as from Hamunyela et al., (2013), evaluating the n+1 and n-1 values in time 

series of data for unusually high deviations or “spikes”, were found to be sub-optimal in our 

case. NDVI time series with longer durations of unexplained deviations from the normal 

course of NDVI development had to be removed by using a unique two-step function 

operating in a larger temporal window as described in Misra et al., (2016). Removal of 
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outliers in any time series data presents challenges in filling of gaps. The choice of gap filling 

technique can introduce errors in the time series data and hence must be decided according to 

the area and subject under study. For example, Beck et al. (2006) filled the winter gaps in 

high northern latitudes by assuming the NDVI values to be constant (i.e. complete cessation 

of vegetation activity) between the last and first snow free observation. However, in the case 

studies carried as part of this thesis, the filling of winter gaps with mean of available winter 

values from other years was found to provide satisfactory results as suggested by previous 

studies (Bradley et al., 2007; Clerici et al., 2012). The summer gaps however had to be filled 

using mean of available neighbouring values in the time series, as filling of gaps in the 

growing season from other years would have introduced artificial similarity in the annual 

growing season NDVI values and hence defeated the purpose of studying the impacts of 

drivers on vegetation phenology. Subsequently, a decision to choose from various existing 

smoothing functions also had to be made for the smoothing of NDVI data in order to mimic a 

gradually progressing phenological curve. In chapter, 4.1, a Gaussian function was found to 

be superior to a double logistic function in modelling both the winter and summer NDVI 

values. Cai et al., (2017) showed very similar results in their study, where they demonstrated 

the improved performance of local filtering methods over function fitting methods in 

smoothing of time series NDVI. The Gaussian algorithm was therefore the preferred choice 

for outlier detection and smoothing in all the case studies carried out as a part of this thesis.  

 

Remote sensing data such as Landsat and MODIS have associated pixel quality information 

that helps identify and remove poor quality pixels from time series analyses of data. However, 

it has been observed that such information alone is not sufficient to completely remove 

outliers from a data. In such a situation, experiences from the case studies in chapter 4 of this 

thesis and previous studies (Asam et al., 2018; Tan et al., 2011) suggest use of  ancillary 

information from other sensors or sources that can provide details on meteorological 

conditions such as snow depth, temperature and cloud cover, etc. and aid in explaining any 

aberrations in the NDVI time series. Apart from removal of outliers, attention should be given 

to the choice of gap filling and smoothing functions, ensuring that such choices do not 

introduce bias into the data.    

 

5.2 Matching LSP with GP 

Chapter 4 of this thesis consists of different sections that deal with the validation of LSP 

estimates with GP observations at various scales i.e. time, space and elevation. Chapter 4.1 
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examines the challenge in the temporal matching of several LSP-SOS estimates to GP 

observations. The pixel (LSP) to point (GP) matching of phenology was a major challenge 

and as suggested by previous studies (Hamunyela et al., 2013; Rodriguez-Galiano et al., 

2015) had to be carried out by pairing LSP masked by land cover maps and GP observations 

of dominant species in the study area. In chapter 4.1, the strong similarities observed in the 

inter-annual behaviour of different species-specific GP observations indicates serious issues 

when correlating LSP estimates with GP observations in the absence of a very detailed land 

cover map. A species level map as generated by Brus et al., (2012) would be best way to 

validate LSP estimates, however, such maps require considerable efforts and statistical skills. 

A careful selection of LSP methods for studying and interpreting phenological behaviour is 

also of utmost importance. Equally high correlation strengths between LSP and GP might be 

observed at locations (pixels) where GP consist of several species having similar 

meteorological forcing (Rodriguez-Galiano et al., 2015), and in turn making it difficult to 

rationally match LSP with all or any of the different species that are reported from a study 

area. The correlation between inter-annual estimates of LSP and GP also showed different 

strengths with each different method. The phenology of late understory and broadleaf species 

revealed a strong match in their inter-annual behaviour. Results from chapter 4.1 suggest the 

use of 20% amplitude and 3rd derivative that best correspond with leaf unfolding of early 

understory species, and 75% amplitude and 1st derivative to detect broadleaf SOS (greening). 

In contrast to Nagai et al. (2010)  analyses in chapter 4.1 demonstrate the limitation of an 

overall threshold (of an absolute NDVI value) in detecting species specific differences in 

phenology.  

 

The results of from chapter 4.1 corroborates the findings of previous studies that suggest 

attributing specific LSP methods to specific GP (Eklundh and Jonsson, 2015; Schwartz et al., 

2002). Analyses of phenological data in this cases study also reveal a higher inter-annual 

variability in the GP-SOS of early species that are generally limited by the frost period and 

have a higher sensitivity to temperature fluctuations (C Cornelius et al., 2013; Wang et al., 

2015). In agreement with Helman (2018), we find that the absence of detailed land cover 

maps (including understory distribution) and mixing of signals from pre-existing understory 

and the growing overstory before reaching its full canopy maturity, makes the matching of 

early season LSP-SOS with a species specific GP a major challenge. 
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Another major source of variability in LSP and GP observations is the lack of a common 

definition for senescence across species (Gill et al., 2015; Panchen et al., 2015). Additionally, 

it is difficult to compare species specific observations of minute and detailed changes such as 

bud burst or fruiting in vegetation as reported by observers on the ground with remote sensing 

based estimates of phenology that are based on change in the average greenness of vegetation 

in a pixel (Badeck et al., 2004; White et al., 2014). Additionally, observation of GP dates are 

often affected by inconsistent collection of data that renders missing data in phenological 

records. This was evident in Chapter 4.2 where the broadleaf species (i.e. Fagus sylvatica and 

Sorbus aucuparia) had EOS as day of leaf fall reported but the conifer species i.e. Picea abies 

did not have an equivalent day of senescence in the records. Hence, the EOS extracted from 

the remote sensing data could not be compared to any equivalent GP-EOS. Analysis was also 

hampered in chapter 4.2 due to many years of missing entries for the GP dates at higher 

elevations (> 900 metres) of BFNP. The GP information used in chapter 4.3 was generated by 

interpolating observer reported dates of SOS and EOS, hence the method of interpolation and 

the changes in the observation network might be partly responsible for the inter-annual 

variability in GP values (DWD, n.d.), and hence further complicated validation of LSP.  

 

In agreement with previous studies (Fisher and Mustard, 2007; Hamunyela et al., 2013) strong 

correlations in the inter-annual behaviour were detected in the 50% amplitude based LSP-

SOS estimates and GP-SOS (leaf unfolding) observations in chapters 4.2 and 4.3. This was 

also shown in chapter 4.1 where 50% and 75% amplitude both revealed high correlations with 

leaf unfolding and greening. However, very weak linkages were found in the LSP-EOS 

estimates and GP observations of senescence i.e. leaf fall. In chapter 4.3, GP-EOS depicting 

the leaf fall rather than the leaf colouring was more closely linked to the LSP-EOS estimates. 

In contrast to the spring, the autumn or EOS has received very limited attention in previous 

studies. The difficulty in identifying EOS in the NDVI time series and its weak correlation 

with GP observations are evident in chapters 4.2 and 4.3 of this thesis. The limitations of LSP 

based estimates in detecting the senescence or EOS have been discussed in several studies. 

This is because EOS unlike SOS is very subjective and lasts a period of gradual change in leaf 

colouring to complete leaf fall, which makes senescence difficult to observe (Estrella and 

Menzel, 2006; Gallinat et al., 2015; Richardson and O’Keefe, 2009; Stöckli et al., 2008). The 

overreliance on greenness based measures such as NDVI for tracking the entire phenology 

might be one of the limiting factors of existing studies. Inclusion of redness based indices and 

pigment ratios such as the chlorophyll to carotenoid index (CCI) might help in better 
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detection of colouring of leaves and photosynthetic activity of plants (Gamon et al., 2016; 

Yingying et al., 2018). Alternative indices were however not tested in the case studies carried 

out as part of this thesis. 

 

5.3 What drives variability in LSP? 

Chapter 4.2 examines different drivers of mean-LSP at the sub-pixel level. The topography 

based MLR models primarily covering micro-climatic influences were able to explain most of 

the spatial variability observed in the SOS and LOS estimates from LSP which correspond 

well with previous studies by Chen and Pan, (2002) and Reaves et al., (2018). The use of 

popular and freely downloadable land cover maps such as CORINE though led to 

improvements in the topography based LSP models, but was not able to provide the best 

performing models. This was most probably due to the heterogeneity present in the land cover 

classes of CORINE maps (Doktor et al., 2009; Kosztra et al., 2014). The use of a proprietary 

habitat map that included information on land cover affected by disasters (windstorms), 

management (clear cut) and affected areas under regeneration further improved our 

understanding of the variability observed in LSP metrics. These insights are consistent with 

Norman et al., (2017), who reported phenological behaviour of land cover to be affected by 

vegetation type and extreme events such as wildfires and pest infestation. In agreement with 

Doktor et al., (2009) inclusion of additional predictors such as land cover information and 

forest stand data from LiDAR led to large improvements in the modelled LSP results for 

EOS, maxDOY, NDVImax and NDVIsum. The LSP-EOS however yielded the least 

explained variance (i.e. 37%) among all the modelled LSP metrics. The difficulty in the 

modelling EOS phases of vegetation has been discussed in previous studies that have 

incorporated drivers such as complex interactions between temperature, rainfall and 

photoperiod among different triggers (Estrella and Menzel, 2006; Meng et al., 2016; Xie et 

al., 2018, 2015b). The species specific dependence of EOS hypothesised in Richardson and 

O’Keefe, (2009)  was corroborated in chapter 4.2, where the percentage of broadleaf species 

in the pixel was found to be one of the stronger drivers of variability in EOS. Analyses 

revealed improvements in modelled LSP when accounting for subpixel heterogeneity and 

inclusion of LiDAR based forest stand information (Chen et al., 2018; Hwang et al., 2011; 

Xie et al., 2018). In contrast to Hwang et al., (2011), chapter 4.2 reveals the importance of 

sub-pixel proportions of not only conifers but also broadleaves species in driving the spatial 

variability of LSP metrics. Since different species are known to respond to different drivers 

and conversely, similar triggers driving differential responses (Basler and Körner, 2014; 
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Burgess et al., 2018; Laube et al., 2014), the sub-pixel composition of land cover is critical in 

modelling and correctly interpreting drivers of LSP behaviour. Similar to Kraus et al., (2016), 

no significant influence of aspect on the LSP estimates was found. This is in contradiction to 

Xie et al., (2015a) and Reaves et al., (2018) who reported differences in the LSP observed in 

the north and south facing slopes. For NDVIsum and maxNDVI, the respective models 

revealed the maximum explained variance (> 80%). These indices are known to be 

comparatively less sensitive to outliers and methods of pre-processing. They are important 

measures of vegetation productivity, least insensitive to user bias and are  hence the perfect 

candidates to study effects of biotic and abiotic drivers on vegetation (Berner et al., 2011; 

Heumann et al., 2007; Lumbierres et al., 2017; Wylie et al., 2008).  

 

5.4 Climate change and phenology in the mountains 

Studying differences in the seasonal variations of temperature are important as they can affect 

the phenological response of vegetation differently at different locations and in turn affect 

ecosystem functioning (Norman et al., 2017; Vandvik et al., 2018). Chapter 4.3 examines the 

spring-winter temperature driven phenological rates of forests in the pre-alpine (< 1000 metre 

elevation) and alpine region (> 1000 metre elevation) of the Bavarian Alps region. The 

influence of spring and winter temperatures on the SOS and EOS revealed differential effects 

on forest phenology. In comparison to pre-alpine regions, higher lapse rates of SOS were 

observed in the alpine areas, possibly due to longer duration of snow in the higher elevations 

(Asam et al., 2018). In agreement with Vitasse et al., (2017), the highest lapse rates in SOS 

were observed in years with cold spring with preceding warm winters. Previous studies have 

indicated the importance of winter temperatures along with the spring temperatures in driving 

spring timings in plants (Cook et al., 2012). Warm winters with a lack of chilling are known 

to delay the start of season in plants, yet warmer springs could expedite plant growth due to 

accumulation of heat (Laube et al., 2014; Wang et al., 2016). Therefore, it is also essential to 

evaluate the inter-annual seasonal temperature variations to obtain a synoptic overview of the 

complete plant growth cycle. Minimum difference in the LSP-SOS rates of pre-Alpine and 

Alpine regions was observed in years with both cold winters and spring. In general the pre-

Alpine elevational rates of EOS were found to be higher than that of Alpine region. The LSP 

at lower elevations (pre-Alpine region) matched closely with the DWD based estimates of 

phenology. However, the DWD phenology at higher elevations (> 1000 meters) was difficult 

to analyse and validate due to uncertainties in interpolated data (due to limited/ varying 

observation sites for interpolation and the lack of detailed information on data processing) 
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(DWD, n.d.). This study provides important clues to drivers of inter-annual variability in 

phenological timings along climatic gradients. 
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6. Outlook 

 
It is essential to understand both uncertainties and drivers of LSP to elucidate the effects of 

climate change on vegetation. This thesis evaluates various techniques of pre-processing 

satellite data and estimating LSP metrics. In agreement with previous studies, we find that 

such decisions (pre-processing and phenology estimation) are subjective and known to 

introduce bias into results. Therefore, a critical consideration is essential for selection of such 

methods. Additionally, it is essential to have high quality of input data (both remote sensing 

and ground based) to generate results with a greater degree of confidence. Inclusion of 

alternative and novel sources of data capturing such as LiDAR, drones or UAVs and close 

range camera (phenocams) can prove to be the essential bridge between space borne and 

ground observations. Remote sensing of phenology presents a promising future with missions 

such as Sentinel (from the European Union) that now provide high spatial and temporal 

resolution data. Use of field-based spectrometers mimicking spectral regions of space borne 

sensors could be used for calibrating models for detection of LSP (which was beyond the 

scope of this thesis). Applications of remote sensing indices other than NDVI, and microwave 

techniques for remote sensing (i.e. RADAR) for its all-weather visibility is also another 

avenue for research in the future.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

32 

7. References 

 

Ahl, D.E., Gower, S.T., Burrows, S.N., Shabanov, N. V, Myneni, R.B., Knyazikhin, Y., 2006. 

Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. 

Remote Sens. Environ. 104, 88–95. https://doi.org/10.1016/j.rse.2006.05.003 

Asam, S., Callegari, M., Matiu, M., Fiore, G., Gregorio, L. De, Jacob, A., Menzel, A., 

Zebisch, M., Notarnicola, C., 2018. Relationship between Spatiotemporal Variations of 

Climate, Snow Cover and Plant Phenology over the Alps—An Earth Observation-Based 

Analysis. Remote Sens. 2018, Vol. 10, Page 1757 10, 1757. 

https://doi.org/10.3390/RS10111757 

Atkinson, P.M., Dash, J., Jeganathan, C., 2011. Amazon vegetation greenness as measured by 

satellite sensors over the last decade. Geophys. Res. Lett. 38, n/a-n/a. 

https://doi.org/10.1029/2011GL049118 

Badeck, F.W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., Sitch, S., 2004. 

Responses of spring phenology to climate change. New Phytol. 

https://doi.org/10.1111/j.1469-8137.2004.01059.x 

Basler, D., Körner, C., 2014. Photoperiod and temperature responses of bud swelling and bud 

burst in four temperate forest tree species. Tree Physiol. 34, 377–388. 

https://doi.org/10.1093/treephys/tpu021 

Beck, P.S.A., Atzberger, C., Høgda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved 

monitoring of vegetation dynamics at very high latitudes: A new method using MODIS 

NDVI. Remote Sens. Environ. 100, 321–334. https://doi.org/10.1016/j.rse.2005.10.021 

Bennet, K., Hope, D., 2018. PhenoCam network harnesses ‘big data’ to predict impact of 

warmer climate on ecosystem productivity and carbon cycling [WWW Document]. URL 

http://news.nau.edu/andrew-richardson-phenocam/#.XBpeOs8zbVo (accessed 12.19.18). 

Berner, L.T., Beck, P.S.A., Bunn, A.G., Lloyd, A.H., Goetz, S.J., 2011. High-latitude tree 

growth and satellite vegetation indices: Correlations and trends in Russia and Canada 

(1982-2008). J. Geophys. Res. Biogeosciences 116, G01015. 

https://doi.org/10.1029/2010JG001475 

Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F., 2007. A curve fitting procedure to 

derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote 

Sens. Environ. 106, 137–145. https://doi.org/10.1016/j.rse.2006.08.002 

Browning, D.M., Karl, J.W., Morin, D., Richardson, A.D., Tweedie, C.E., 2017. Phenocams 

bridge the gap between field and satellite observations in an arid grassland. Remote 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

33 

Sens. in review, 1071. https://doi.org/10.3390/rs9101071 

Brus, D.J., Hengeveld, G.M., Walvoort, D.J.J., Goedhart, P.W., Heidema, A.H., Nabuurs, 

G.J., Gunia, K., 2012. Statistical mapping of tree species over Europe. Eur. J. For. Res. 

131, 145–157. https://doi.org/10.1007/s10342-011-0513-5 

Buras, A., Zang, C., Menzel, A., 2017. Testing the stability of transfer functions. 

Dendrochronologia 42, 56–62. https://doi.org/10.1016/j.dendro.2017.01.005 

Burgess, M.D., Smith, K.W., Evans, K.L., Leech, D., Pearce-Higgins, J.W., Branston, C.J., 

Briggs, K., Clark, J.R., Du Feu, C.R., Lewthwaite, K., Nager, R.G., Sheldon, B.C., 

Smith, J.A., Whytock, R.C., Willis, S.G., Phillimore, A.B., 2018. Tritrophic 

phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970–975. 

https://doi.org/10.1038/s41559-018-0543-1 

Cai, Z., Jönsson, P., Jin, H., Eklundh, L., 2017. Performance of smoothing methods for 

reconstructing NDVI time-series and estimating vegetation phenology from MODIS 

data. Remote Sens. 9, 1271. https://doi.org/10.3390/rs9121271 

Chang, J., Ciais, P., Viovy, N., Soussana, J.F., Klumpp, K., Sultan, B., 2017. Future 

productivity and phenology changes in European grasslands for different warming 

levels: Implications for grassland management and carbon balance. Carbon Balance 

Manag. 12, 11. https://doi.org/10.1186/s13021-017-0079-8 

Chen, X., Pan, W., 2002. Relationships among phenological growing season, time-integrated 

normalized difference vegetation index and climate forcing in the temperature region of 

Eastern China. Int. J. Climatol. 22, 1781–1792. https://doi.org/10.1002/joc.823 

Chen, X., Wang, D., Chen, J., Wang, C., Shen, M., 2018. The mixed pixel effect in land 

surface phenology: A simulation study. Remote Sens. Environ. 211, 338–344. 

https://doi.org/10.1016/j.rse.2018.04.030 

Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., Ladurie, E.L.R., 2004. Grape ripening 

as a past climate indicator. Nature 432, 289–290. https://doi.org/10.1038/432289a 

Clark, R.N., 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in: 

Rencz., A.N. (Ed.), Remote Sensing for the Eartb Sciences: Manual of Remote Sensing. 

John Wiley & Sons, Inc. 

Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., Schwartz, M.D., 2007. Shifting plant 

phenology in response to global change. Trends Ecol. Evol. 

https://doi.org/10.1016/j.tree.2007.04.003 

Clerici, N., Weissteiner, C.J., Gerard, F., 2012. Exploring the use of MODIS NDVI-based 

phenology indicators for classifying forest general habitat categories. Remote Sens. 4, 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

34 

1781–1803. https://doi.org/10.3390/rs4061781 

Cook, B.I., Wolkovich, E.M., Parmesan, C., 2012. Divergent responses to spring and winter 

warming drive community level flowering trends. Proc. Natl. Acad. Sci. 109, 9000–

9005. https://doi.org/10.1073/pnas.1118364109 

Core Team, R., 2014. R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing; 2014. 

Cornelius, C, Estrella, N., Franz, H., Menzel, A., 2013. Linking altitudinal gradients and 

temperature responses of plant phenology in the Bavarian Alps. Plant Biol. 15, 57–69. 

https://doi.org/10.1111/j.1438-8677.2012.00577.x 

Cornelius, C., Estrella, N., Franz, H., Menzel, A., 2013. Linking altitudinal gradients and 

temperature responses of plant phenology in the Bavarian Alps. Plant Biol. 15, 57–69. 

https://doi.org/10.1111/j.1438-8677.2012.00577.x 

Diez, J.M., Ibáñez, I., Miller-Rushing, A.J., Mazer, S.J., Crimmins, T.M., Crimmins, M.A., 

Bertelsen, C.D., Inouye, D.W., 2012. Forecasting phenology: From species variability to 

community patterns. Ecol. Lett. 15, 545–553. https://doi.org/10.1111/j.1461-

0248.2012.01765.x 

Doi, H., Gordo, O., Katano, I., 2008. Heterogeneous intra-annual climatic changes drive 

different phenological responses at two trophic levels. Clim. Res. 36, 181–190. 

https://doi.org/10.3354/cr00741 

Doktor, D., Bondeau, A., Koslowski, D., Badeck, F.W., 2009. Influence of heterogeneous 

landscapes on computed green-up dates based on daily AVHRR NDVI observations. 

Remote Sens. Environ. 113, 2618–2632. https://doi.org/10.1016/j.rse.2009.07.020 

Dupke, C., Bonenfant, C., Reineking, B., Hable, R., Zeppenfeld, T., Ewald, M., Heurich, M., 

2017. Habitat selection by a large herbivore at multiple spatial and temporal scales is 

primarily governed by food resources. Ecography (Cop.). 40, 1014–1027. 

https://doi.org/10.1111/ecog.02152 

DWD, n.d. Climate Data Center- German Meteorological Service [WWW Document]. URL 

https://cdc.dwd.de/portal/201810240858/index.html (accessed 11.26.18). 

EEA, 2012. CLC 2012 — Copernicus Land Monitoring Service [WWW Document]. URL 

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (accessed 

6.26.17). 

Eklundh, L., Jonsson, P., 2015. TIMESAT: A software package for time-series processing 

and assessment of vegetation dynamics, in: Kuenzer, C., Dech, S., Wagner, W. (Eds.), 

Remote Sensing and Digital Image Processing. Springer International Publishing, Cham, 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

35 

pp. 141–158. https://doi.org/10.1007/978-3-319-15967-6_7 

Elmore, A.J., Guinn, S.M., Minsley, B.J., Richardson, A.D., 2012. Landscape controls on the 

timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. 

Chang. Biol. 18, 656–674. https://doi.org/10.1111/j.1365-2486.2011.02521.x 

Estay, S.A., Chavez, R., 2018. npphen: an R-package for non-parametric reconstruction of 

vegetation phenology and anomaly detection using remote sensing. bioRxiv 301143. 

https://doi.org/10.1101/301143 

Estrella, N., Menzel, A., 2006. Responses of leaf colouring in four deciduous tree species to 

climate and weather in Germany. Clim. Res. 32, 253–267. 

https://doi.org/10.3354/cr032253 

Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., 

Tomelleri, E., Morra di Cella, U., Richardson, A.D., 2016. Phenopix: A R package for 

image-based vegetation phenology. Agric. For. Meteorol. 220, 141–150. 

https://doi.org/10.1016/j.agrformet.2016.01.006 

Fisher, J.I., Mustard, J.F., 2007. Cross-scalar satellite phenology from ground, Landsat, and 

MODIS data. Remote Sens. Environ. 109, 261–273. 

https://doi.org/10.1016/j.rse.2007.01.004 

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M.D., Neigh, C.S.R., Reichstein, M., 

2013. Trend Change detection in NDVI time series: Effects of inter-annual variability 

and methodology. Remote Sens. 5, 2113–2144. https://doi.org/10.3390/rs5052113 

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., 

Carvalhais, N., 2015. Codominant water control on global interannual variability and 

trends in land surface phenology and greenness. Glob. Chang. Biol. 3414–3435. 

https://doi.org/10.1111/gcb.12950 

Foster, T., Gonçalves, I.Z., Campos, I., Neale, C.M.., Brozović, N., 2019. Assessing 

landscape scale heterogeneity in irrigation water use with remote sensing and in situ 

monitoring. Environ. Res. Lett. 14. https://doi.org/10.1088/1748-9326/aaf2be 

Frampton, W.J., Dash, J., Watmough, G., Milton, E.J., 2013. Evaluating the capabilities of 

Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. 

Photogramm. Remote Sens. 82, 83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007 

Fu, Y.H., Piao, S., Op de Beeck, M., Cong, N., Zhao, H., Zhang, Y., Menzel, A., Janssens, 

I.A., 2014. Recent spring phenology shifts in western Central Europe based on 

multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263. 

https://doi.org/10.1111/geb.12210 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

36 

Gallinat, A.S., Primack, R.B., Wagner, D.L., 2015. Autumn, the neglected season in climate 

change research. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2015.01.004 

Gamon, J.A., Huemmrich, K.F., Wong, C.Y.S., Ensminger, I., Garrity, S., Hollinger, D.Y., 

Noormets, A., Peñuelas, J., 2016. A remotely sensed pigment index reveals 

photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. 113, 13087–

13092. https://doi.org/10.1073/pnas.1606162113 

Garonna, I., De Jong, R., Stöckli, R., Schmid, B., Schenkel, D., Schimel, D., Schaepman, 

M.E., 2018. Shifting relative importance of climatic constraints on land surface 

phenology. Environ. Res. Lett. 13, 024025. https://doi.org/10.1088/1748-9326/aaa17b 

Gill, A.L., Gallinat, A.S., Sanders-DeMott, R., Rigden, A.J., Short Gianotti, D.J., Mantooth, 

J.A., Templer, P.H., 2015. Changes in autumn senescence in northern hemisphere 

deciduous trees: A meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888. 

https://doi.org/10.1093/aob/mcv055 

Giovanna, P., 2007. Origin and development of phenology as a science. Ital. J. Agrometeorol. 

3, 24–29. 

Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008. Relationship between remotely-

sensed vegetation indices, canopy attributes and plant physiological processes: What 

vegetation indices can and cannot tell us about the landscape. Sensors. 

https://doi.org/10.3390/s8042136 

Grömping, U., 2006. Relative Importance for Linear Regression in R : The Package relaimpo. 

J. Stat. Softw. 17, 1–27. https://doi.org/10.18637/jss.v017.i01 

Hamunyela, E., Verbesselt, J., Roerink, G., Herold, M., 2013. Trends in spring phenology of 

western European deciduous forests. Remote Sens. 5, 6159–6179. 

https://doi.org/10.3390/rs5126159 

Helman, D., 2018. Land surface phenology: What do we really ‘see’ from space? Sci. Total 

Environ. https://doi.org/10.1016/j.scitotenv.2017.07.237 

Heumann, B.W., Seaquist, J.W., Eklundh, L., Jönsson, P., 2007. AVHRR derived 

phenological change in the Sahel and Soudan, Africa, 1982-2005. Remote Sens. Environ. 

108, 385–392. https://doi.org/10.1016/j.rse.2006.11.025 

Hijmans, R.J., 2016. Geographic Data Analysis and Modeling. R package raster version 2.5-8. 

[WWW Document]. URL https://cran.r-project.org/web/packages/raster/index.html 

(accessed 10.4.17). 

Holm, A.M., Cridland, S.W., Roderick, M.L., 2003. The use of time-integrated NOAA NDVI 

data and rainfall to assess landscape degradation in the arid shrubland of Western 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

37 

Australia. Remote Sens. Environ. 85, 145–158. https://doi.org/10.1016/S0034-

4257(02)00199-2 

Hufkens, K., Basler, D., Milliman, T., Melaas, E.K., Richardson, A.D., 2018. An integrated 

phenology modelling framework in r. Methods Ecol. Evol. 9, 1276–1285. 

https://doi.org/10.1111/2041-210X.12970 

Hufkens, K., Melaas, E.K., Mann, M.L., Foster, T., Ceballos, F., Robles, M., Kramer, B., 

2019. Monitoring crop phenology using a smartphone based near-surface remote sensing 

approach. Agric. For. Meteorol. 265, 327–337. https://doi.org/S0168192318303484 

Hwang, T., Song, C., Vose, J.M., Band, L.E., 2011. Topography-mediated controls on local 

vegetation phenology estimated from MODIS vegetation index. Landsc. Ecol. 26, 541–

556. https://doi.org/10.1007/s10980-011-9580-8 

Ide, R., Oguma, H., 2013. A cost-effective monitoring method using digital time-lapse 

cameras for detecting temporal and spatial variations of snowmelt and vegetation 

phenology in alpine ecosystems. Ecol. Inform. 16, 25–34. 

https://doi.org/10.1016/j.ecoinf.2013.04.003 

IPG, n.d. The International Phenological Gardens of Europe [WWW Document]. URL 

http://ipg.hu-berlin.de/ (accessed 11.18.18). 

Ivits, E., Cherlet, M., Mehl, W., Sommer, S., 2013. Ecosystem functional units characterized 

by satellite observed phenology and productivity gradients: A case study for Europe. 

Ecol. Indic. 27, 17–28. https://doi.org/10.1016/j.ecolind.2012.11.010 

Jin, S., Sader, S.A., 2005. MODIS time-series imagery for forest disturbance detection and 

quantification of patch size effects. Remote Sens. Environ. 99, 462–470. 

https://doi.org/10.1016/j.rse.2005.09.017 

Jönsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of satellite 

sensor data. Comput. Geosci. 30, 833–845. https://doi.org/10.1016/j.cageo.2004.05.006 

Julien, Y., Sobrino, J.A., 2009. Global land surface phenology trends from GIMMS database. 

Int. J. Remote Sens. 30, 3495–3513. https://doi.org/10.1080/01431160802562255 

Klosterman, S., Richardson, A.D., 2017. Observing spring and fall phenology in a deciduous 

forest with aerial drone imagery. Sensors (Switzerland) 17. 

https://doi.org/10.3390/s17122852 

Kosztra, B., Arnold, S., Banko, G., Hazeu, G., Büttner, G., 2014. Proposal for enhancement of 

CLC nomenclature guidelines, EEA Technical Report. 

Kraus, C., Zang, C., Menzel, A., 2016. Elevational response in leaf and xylem phenology 

reveals different prolongation of growing period of common beech and Norway spruce 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

38 

under warming conditions in the Bavarian Alps. Eur. J. For. Res. 135, 1011–1023. 

https://doi.org/10.1007/s10342-016-0990-7 

Kross, A., Fernandes, R., Seaquist, J., Beaubien, E., 2011. The effect of the temporal 

resolution of NDVI data on season onset dates and trends across Canadian broadleaf 

forests. Remote Sens. Environ. 115, 1564–1575. 

https://doi.org/10.1016/j.rse.2011.02.015 

Kullman, L., 2010. Alpine flora dynamics - a critical review of responses to climate change in 

the Swedish Scandes since the early 1950s. Nord. J. Bot. 28, 398–408. 

https://doi.org/10.1111/j.1756-1051.2010.00812.x 

Laube, J., Sparks, T.H., Estrella, N., Höfler, J., Ankerst, D.P., Menzel, A., 2014. Chilling 

outweighs photoperiod in preventing precocious spring development. Glob. Chang. Biol. 

20, 170–182. https://doi.org/10.1111/gcb.12360 

Leonelli, G., Pelfini, M., Cella, U.M. Di, Garavaglia, V., 2011. Climate warming and the 

recent treeline shift in the European alps: The role of geomorphological factors in high-

altitude sites. Ambio 40, 264–273. https://doi.org/10.1007/s13280-010-0096-2 

Lumbierres, M., Méndez, P., Bustamante, J., Soriguer, R., Santamaría, L., 2017. Modeling 

Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface 

Phenology. Remote Sens. 9, 392. https://doi.org/10.3390/rs9040392 

Luo, X., Chen, X., Xu, L., Myneni, R., Zhu, Z., 2013. Assessing performance of NDVI and 

NDVI3g in monitoring leaf unfolding dates of the deciduous broadleaf forest in Northern 

China. Remote Sens. 5, 845–861. https://doi.org/10.3390/rs5020845 

Ma, X., Huete, A., Moran, S., Ponce-Campos, G., Eamus, D., 2015. Abrupt shifts in 

phenology and vegetation productivity under climate extremes. J. Geophys. Res. 

Biogeosciences 120, 2036–2052. https://doi.org/10.1002/2015JG003144 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., 

Sánchez Meador, A.J., 2017. MODIS phenology-derived, multi-year distribution of 

conterminous U.S. crop types. Remote Sens. Environ. 198, 490–503. 

https://doi.org/10.1016/j.rse.2017.06.033 

Meng, J., Li, S., Wang, W., Liu, Q., Xie, S., Ma, W., 2016. Mapping forest health using 

spectral and textural information extracted from SPOT-5 satellite images. Remote Sens. 

8, 719. https://doi.org/10.3390/rs8090719 

Menzel, A., 2002. Phenology: Its importance to the global change community: An editorial 

comment. Clim. Change 54, 379-385. https://doi.org/10.1023/A:1016125215496 

Menzel, A., Fabian, P., 1999. Growing season extended in Europe. Nature 397, 659. 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

39 

https://doi.org/10.1038/17709 

Menzel, A., Jakobi, G., Ahas, R., Scheifinger, H., Estrella, N., 2003. Variations of the 

climatological growing season (1951-2000) in Germany compared with other countries. 

Int. J. Climatol. 23, 793–812. https://doi.org/10.1002/joc.915 

Menzel, A., Sparks, T.H., Estrella, N., Roy, D.B., 2006. Altered geographic and temporal 

variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–

504. https://doi.org/10.1111/j.1466-822X.2006.00247.x 

Misra, G., Buras, A., Heurich, M., Asam, S., Menzel, A., 2018. LiDAR derived topography 

and forest stand characteristics largely explain the spatial variability observed in MODIS 

land surface phenology. Remote Sens. Environ. 218, 231–244. 

https://doi.org/10.1016/j.rse.2018.09.027 

Misra, G., Buras, A., Menzel, A., 2016. Effects of Different Methods on the Comparison 

between Land Surface and Ground Phenology—A Methodological Case Study from 

South-Western Germany. Remote Sens. 8, 753. https://doi.org/10.3390/rs8090753 

Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., Nemani, R.R., 1997. Increased plant 

growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702. 

https://doi.org/10.1038/386698a0 

Nagai, S., Nasahara, K.N., Inoue, T., Saitoh, T.M., Suzuki, R., 2016. Review: advances in in 

situ and satellite phenological observations in Japan. Int. J. Biometeorol. 

https://doi.org/10.1007/s00484-015-1053-3 

Nagai, S., Nasahara, K.N., Muraoka, H., Akiyama, T., Tsuchida, S., 2010. Field experiments 

to test the use of the normalized-difference vegetation index for phenology detection. 

Agric. For. Meteorol. 150, 152–160. https://doi.org/10.1016/j.agrformet.2009.09.010 

Norman, S., Hargrove, W., Christie, W., 2017. Spring and Autumn Phenological Variability 

across Environmental Gradients of Great Smoky Mountains National Park, USA. 

Remote Sens. 9, 407. https://doi.org/10.3390/rs9050407 

Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, 

N., Shcherbakov, A., Meyke, E., Delgado, M. del M., 2013. Community-level 

phenological response to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 13434–9. 

https://doi.org/10.1073/pnas.1305533110 

Panchen, Z.A., Primack, R.B., Gallinat, A.S., Nordt, B., Stevens, A.D., Du, Y., Fahey, R., 

2015. Substantial variation in leaf senescence times among 1360 temperate woody plant 

species: Implications for phenology and ecosystem processes. Ann. Bot. 116, 865–873. 

https://doi.org/10.1093/aob/mcv015 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

40 

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts 

across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 

Peñuelas, J., 2009. Phenology feedbacks on climate change. Science 324, 887-888. 

https://doi.org/10.1126/science.1173004 

Pettorelli, N., Schulte to Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A.M., 

Keith, D.A., Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G.N., 

Roy, S., Somers, B., Murray, N., Bland, L., Geijzendorffer, I., Kerr, J.T., Broszeit, S., 

Leitão, P.J., Duncan, C., El Serafy, G., He, K.S., Blanchard, J.L., Lucas, R., Mairota, P., 

Webb, T.J., Nicholson, E., 2017. Satellite remote sensing of ecosystem functions: 

opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93. 

https://doi.org/10.1002/rse2.59 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. 

Using the satellite-derived NDVI to assess ecological responses to environmental 

change. Trends Ecol. Evol. 20, 503–510. https://doi.org/10.1016/j.tree.2005.05.011 

Reaves, V.C., Elmore, A.J., Nelson, D.M., McNeil, B.E., 2018. Drivers of spatial variability 

in greendown within an oak-hickory forest landscape. Remote Sens. Environ. 210, 422–

433. https://doi.org/10.1016/j.rse.2018.03.027 

Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O., 1994. 

Measuring phenological variability from satellite imagery. J. Veg. Sci. 5, 703–714. 

https://doi.org/10.2307/3235884 

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 

2013. Climate change, phenology, and phenological control of vegetation feedbacks to 

the climate system. Agric. For. Meteorol. 169, 156–173. 

https://doi.org/10.1016/j.agrformet.2012.09.012 

Richardson, A.D., O’Keefe, J., 2009. Phenological differences between understory and 

overstory a case study using the long-term Harvard Forest records, in: Phenology of 

Ecosystem Processes: Applications in Global Change Research. Springer New York, 

New York, NY, pp. 87–117. https://doi.org/10.1007/978-1-4419-0026-5_4 

Rodriguez-Galiano, V.F., Dash, J., Atkinson, P.M., 2015. Intercomparison of satellite sensor 

land surface phenology and ground phenology in Europe. Geophys. Res. Lett. 42, 2253–

2260. https://doi.org/10.1002/2015GL063586 

Rouse, R.W.H., Haas, J.A.W., Deering, D.W., 1974. Monitoring vegetation systems in the 

Great Plains with ERTS, in: NASA. Goddard Space Flight Center 3d ERTS-1 Symp. pp. 

309–317. 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

41 

Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., 2007. Amazon forests green-up 

during 2005 drought. Science 318, 612. https://doi.org/10.1126/science.1146663 

Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., 

Nemani, R.R., Myneni, R.B., 2010. Amazon forests did not green-up during the 2005 

drought. Geophys. Res. Lett. 37, n/a-n/a. https://doi.org/10.1029/2009GL042154 

Schwartz, M.D., 2003. Phenology: An Integrative Environmental Science, Phenology: An 

Integrative Environmental Science, Tasks for Vegetation Science. Springer Netherlands, 

Dordrecht. https://doi.org/10.1007/978-94-007-0632-3 

Schwartz, M.D., Reed, B.C., White, M.A., 2002. Assessing satellite-derived start-of-season 

measures in the conterminous USA. Int. J. Climatol. 22, 1793–1805. 

https://doi.org/10.1002/joc.819 

Sparks, T.H., Carey, P.D., 1995. The Responses of Species to Climate Over Two Centuries: 

An Analysis of the Marsham Phenological Record, 1736-1947. J. Ecol. 83, 321. 

https://doi.org/10.2307/2261570 

Spruce, J.P., Sader, S., Ryan, R.E., Smoot, J., Kuper, P., Ross, K., Prados, D., Russell, J., 

Gasser, G., McKellip, R., Hargrove, W., 2011. Assessment of MODIS NDVI time series 

data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. 

Environ. 115, 427–437. https://doi.org/10.1016/j.rse.2010.09.013 

Stöckli, R., Rutishauser, T., Dragoni, D., O’Keefe, J., Thornton, P.E., Jolly, M., Lu, L., 

Denning, A.S., 2008. Remote sensing data assimilation for a prognostic phenology 

model. J. Geophys. Res. Biogeosciences 113. https://doi.org/10.1029/2008JG000781 

Tan, B., Morisette, J.T., Wolfe, R.E., Gao, F., Ederer, G.A., Nightingale, J., Pedelty, J.A., 

2011. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics 

from MODIS data, in: IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing. pp. 361–371. https://doi.org/10.1109/JSTARS.2010.2075916 

Tan, B., Woodcock, C.E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Yang, W., Knyazikhin, 

Y., Myneni, R.B., 2006. The impact of gridding artifacts on the local spatial properties of 

MODIS data: Implications for validation, compositing, and band-to-band registration 

across resolutions. Remote Sens. Environ. 105, 98–114. 

https://doi.org/10.1016/j.rse.2006.06.008 

Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J., Yang, X., 2016. 

Emerging opportunities and challenges in phenology: A review. Ecosphere 7, e01436. 

https://doi.org/10.1002/ecs2.1436 

Thackeray, S.J., Henrys, P.A., Hemming, D., Bell, J.R., Botham, M.S., Burthe, S., Helaouet, 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

42 

P., Johns, D.G., Jones, I.D., Leech, D.I., Mackay, E.B., Massimino, D., Atkinson, S., 

Bacon, P.J., Brereton, T.M., Carvalho, L., Clutton-Brock, T.H., Duck, C., Edwards, M., 

Elliott, J.M., Hall, S.J.G., Harrington, R., Pearce-Higgins, J.W., Høye, T.T., Kruuk, 

L.E.B., Pemberton, J.M., Sparks, T.H., Thompson, P.M., White, I., Winfield, I.J., 

Wanless, S., 2016. Phenological sensitivity to climate across taxa and trophic levels. 

Nature 535, 241–245. https://doi.org/10.1038/nature18608 

USGS, 2018. EarthExplorer - Home [WWW Document]. EarthExplorer. URL 

https://earthexplorer.usgs.gov/? (accessed 11.17.18). 

Vandvik, V., Halbritter, A.H., Telford, R.J., 2018. Greening up the mountain. Proc. Natl. 

Acad. Sci. 115, 833–835. https://doi.org/10.1073/pnas.1721285115 

Venables, W.N., Ripley, B.D., Venables, W.N. (William N.)., 2002. Modern applied statistics 

with S, 4th ed. Springer. 

Verger, A., Filella, I., Baret, F., Peñuelas, J., 2016. Vegetation baseline phenology from 

kilometric global LAI satellite products. Remote Sens. Environ. 178, 1–14. 

https://doi.org/10.1016/j.rse.2016.02.057 

Visser, M.E., Both, C., 2005. Shifts in phenology due to global climate change: The need for 

a yardstick. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2005.3356 

Visser, M.E., Van Noordwijk, A.J., Tinbergen, J.M., Lessells, C.M., 1998. Warmer springs 

lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 265, 

1867–1870. https://doi.org/10.1098/rspb.1998.0514 

Vitasse, Y., Signarbieux, C., Fu, Y.H., 2017. Global warming leads to more uniform spring 

phenology across elevations. Proc. Natl. Acad. Sci. 115, 201717342. 

https://doi.org/10.1073/pnas.1717342115 

Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A.K., Wang, T., Zurita-Milla, R., 

Oosterbeek, K., O’Connor, B., Paganini, M., 2018. Vegetation phenology from Sentinel-

2 and field cameras for a Dutch barrier island. Remote Sens. Environ. 215, 517–529. 

https://doi.org/10.1016/j.rse.2018.03.014 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, 

J.M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate 

change. Nature 416, 389–395. https://doi.org/10.1038/416389a 

Wang, H., Ge, Q., Rutishauser, T., Dai, Y., Dai, J., 2015. Parameterization of temperature 

sensitivity of spring phenology and its application in explaining diverse phenological 

responses to temperature change. Sci. Rep. 5, 8833. https://doi.org/10.1038/srep08833 

Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., Peng, Y., 2016. Temporal trends and spatial 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

43 

variability of vegetation phenology over the Northern Hemisphere during 1982-2012. 

PLoS One 11, e0157134. https://doi.org/10.1371/journal.pone.0157134 

White, K., Pontius, J., Schaberg, P., 2014. Remote sensing of spring phenology in 

northeastern forests: A comparison of methods, field metrics and sources of uncertainty. 

Remote Sens. Environ. 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017 

White, M.A., de Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., 

O’Keefe, J., Zhang, G., Nemani, R.R., van Leeuwen, W.J.D., Brown, J.F., de Wit, A., 

Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., 

Baldocchi, D.D., Lee, J.T., Lauenroth, W.K., 2009. Intercomparison, interpretation, and 

assessment of spring phenology in North America estimated from remote sensing for 

1982-2006. Glob. Chang. Biol. 15, 2335–2359. https://doi.org/10.1111/j.1365-

2486.2009.01910.x 

White, M.A., Thornton, P.E., Running, S.W., 1997. A continental phenology model for 

monitoring vegetation responses to interannual climatic variability. Global Biogeochem. 

Cycles 11, 217–234. https://doi.org/10.1029/97gb00330 

Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., 

Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., 

Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., 

Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, 

J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., Storey, J., Vermote, 

E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., 2019. Current status of Landsat 

program, science, and applications. Remote Sens. Environ. 225, 127–147. 

https://doi.org/10.1016/j.rse.2019.02.015 

Wylie, B.K., Zhang, L., Bliss, N., Ji, L., Tieszen, L.L., Jolly, W.M., 2008. Integrating 

modelling and remote sensing to identify ecosystem performance anomalies in the boreal 

forest, yukon river basin, Alaska. Int. J. Digit. Earth 1, 196–220. 

https://doi.org/10.1080/17538940802038366 

Xie, Y., Ahmed, K.F., Allen, J.M., Wilson, A.M., Silander, J.A., 2015a. Green-up of 

deciduous forest communities of northeastern North America in response to climate 

variation and climate change. Landsc. Ecol. 30, 109–123. 

https://doi.org/10.1007/s10980-014-0099-7 

Xie, Y., Wang, X., Silander, J.A., 2015b. Deciduous forest responses to temperature, 

precipitation, and drought imply complex climate change impacts. Proc. Natl. Acad. Sci. 

112, 13585–13590. https://doi.org/10.1073/pnas.1509991112 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

44 

Xie, Y., Wang, X., Wilson, A.M., Silander, J.A., 2018. Predicting autumn phenology: How 

deciduous tree species respond to weather stressors. Agric. For. Meteorol. 250–251, 

127–137. https://doi.org/10.1016/j.agrformet.2017.12.259 

Xin, Q., Olofsson, P., Zhu, Z., Tan, B., Woodcock, C.E., 2013. Toward near real-time 

monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. 

Environ. 135, 234–247. https://doi.org/10.1016/j.rse.2013.04.002 

Xu, L., Samanta, A., Costa, M.H., Ganguly, S., Nemani, R.R., Myneni, R.B., 2011. 

Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. 

Geophys. Res. Lett. 38. https://doi.org/10.1029/2011GL046824 

Yingying, X.I.E., Civco, D.L., Silander, J.A., 2018. Species-specific spring and autumn leaf 

phenology captured by time-lapse digital cameras. Ecosphere 9, e02089. 

https://doi.org/10.1002/ecs2.2089 

Yu, H., Luedeling, E., Xu, J., 2010. Winter and spring warming result in delayed spring 

phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. 107, 22151–22156. 

https://doi.org/10.1073/pnas.1012490107 

Zhang, X., Friedl, M., Tan, B., Goldberg, M., Yu, Y., 2012. Long-Term Detection of Global 

Vegetation Phenology from Satellite Instruments. Phenol. Clim. Chang. 297–320. 

https://doi.org/10.5772/39197 

Zhang, X., Friedl, M.A., Schaaf, C.B., 2009. Sensitivity of vegetation phenology detection to 

the temporal resolution of satellite data. Int. J. Remote Sens. 30, 2061–2074. 

https://doi.org/10.1080/01431160802549237 

 

 

 

 

 

 

 

 

 

 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

45 

8. Tables and figures 

Figure 1. A conceptual diagram of species’ response to climate change at various levels of 

organisation and scales (source: Diez et al., 2012) 

 

Figure 2. Figure 2. Carl Linnaeus’ record of phenological timings of few common trees and 

shrubs in Northern Europe during 1750-1752 (source: Giovanna, 2007). 

 

Figure 3. Remote sensing of vegetation phenology through various platforms. (Source: 

Bennet and Hope, 2018) 

 

Figure 4. The spectral response curve of vegetation and soil (source: Clark, 1999). 

 

Figure 5. Flowchart depicting the various themes in the case studies undertaken as part of this 

thesis. 

 

Figure 6. Example of pre-processing and smoothing of raw NDVI (time series) from a pixel. 

 

Figure 7. Estimation of different LSP metrics from the daily interpolated times series of a 

pixel. 

 

Table 1.  Some major developments in land surface phenology studies.          
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Elevation linked-phenological lapse rates show differences in the pre-Alpine and 

Alpine regions of Bavaria: Overview from ground and satellite observations 

 

Gourav Misra, Sarah Asam and Annette Menzel. 
 

Abstract 

The role of temperature in driving phenology of vegetation is well established. However, with 

the changing climate leading to differences in temperature regimes during the year and 

especially also during winter chilling, a pronounced variability in already established 

phenological rates is now being observed along the elevational gradient of mountains. In this 

study, we analysed the elevation linked lapse rates of phenological dates in the pre-alpine and 

alpine regions of the Bavarian Alps in Germany. The dates for the start of season (SOS) and 

the end of season (EOS) were extracted from a 4-day maximum value composite Moderate 

Resolution Imaging Spectrometer (MODIS) sensor’s Normalised Difference Vegetation Index 

(NDVI) time series data for the years 2001-2016. Analyses of SOS data showed higher 

elevational lapse rates in the alpine areas than the pre-alpine areas, possibly due to longer 

duration of snow. Maximal differences in rates of SOS of alpine and pre-alpine areas were 

observed in years with preceding warm winters with lack of chilling. Minimum differences in 

the rates of SOS were found along the elevational gradient during cold spring and cold winter 

years. The MODIS based SOS showed the highest correspondence when validated against the 

gridded German Meteorological Service (DWD) leaf unfolding data. The EOS dates showed a 

comparatively lower correspondence to DWD data and their lapse rates in the pre-alpine and 

alpine regions were tricky to validate. Contrary to SOS, EOS dates revealed lower, but still 

positive lapse rate in the alpine areas than the pre-alpine areas. 

 

Keywords: elevation, phenology, lapse rates, climate change, forest, Alps. 

 

1. Introduction 

 

Climate change induced shifts in phenology have been studied extensively in the past 

decades. Advances in spring phenology with warming are well established (Menzel and 

Fabian, 1999), however studies in recent years have also pointed to a decreased sensitivity to 

spring warming as consequence of lacking chilling in warmer winters (Laube et al., 2014). 

This timing of phenological events is crucial for key species interactions such as feeding 

habits, reproduction and migration, and are indicators of species abundance at any location 

(Burgess et al., 2018; Visser and Both, 2005). Moreover, climate change is known to not only 

affect occurrence of key phenophases (Menzel and Fabian, 1999), but it is also now changing 

the established phenological patterns regionally (Menzel et al., 2006; Vitasse et al., 2017).  

However, changing phenological timings of key species along with the now documented 

changes in phenological patterns could lead to mismatches or desynchrony in species 

interactions having far reaching consequences on ecosystem structure and functioning 

(Parmesan and Yohe, 2003; Vitasse et al., 2017). E.g. spatially more uniform phenological 

onset dates may influence the vulnerability of migratory species in terms of decreasing their 

choice of alternative sites in case of risk of mismatch (Diez et al., 2012). 

 

Elevational gradients constitute powerful tools to study in a space-for-time approach triggers 

for phenological onset dates, providing a large set of meteorological conditions however with 

identical photoperiod. Few examples have also addressed the role of chilling and snow as 

additional phenological triggers across gradients. Vandvik et al. (2018) report a climate 

change induced decrease in the chilling period in lower elevations and an increase in the 
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effective chilling period in higher elevations of temperate regions. Additionally, the early 

melting of snow and the lengthening of the frost free period has led to early leaf out in trees 

across many regions of the world (Asam et al., 2018; Menzel et al., 2003). For e.g., such 

climate change impacts lead to earlier growth of trees and faster closure of overstory canopy 

which could pose challenges for growth of forest understory species. Thus, it is important to 

carefully study the challenges presented by the changing climate with respect to its varying 

effects on species at various gradients of environmental conditions and regions. Therefore 

knowledge of temporal and spatial variations in phenology and its drivers is necessary to 

develop mitigation and adaptation strategies. Although a few first studies have dealt with 

chilling influence on warming sensitivity at gradients based on ground phenological 

observations, not many studies based on remote sensing products exist. 

 

Since, ground observation of phenology at higher elevation is severely limited due to a lack of 

permanent settlements and thus observers (Menzel et al., 2003), this study uses pioneer 

techniques such as remote sensing for repetitive mapping of forest seasonality at elevational 

gradients in the Alps. The main research questions of this study are: 1) are there differences in 

the annual elevational rates of phenology observed in the pre-alpine and alpine regions of the 

Bavarian Alps? and 2) how do the spring and (preceding) winter temperatures drive the 

elevational phenological response rates in forests?   

 

2. Study Area and Data 

This study was carried out in the Bavarian alpine region of Germany (corresponding to the 

administrative units of the alpine convention, Figure 1) for which we defined areas with 

elevations < 1000 m a.s.l. as pre-alpine and > 1000 m a.s.l. as alpine. The elevation of the 

forested area ranges from ~400 to 1800 m a.s.l. (see also Figure S1), and primarily consists of 

three classes (broad-leaved, coniferous and mixed forests). The species composition 

comprises mainly Norway spruce (Picea abies (L.) H.KARST) besides silver fir (Abies alba 

MILL.), European larch (Larix decidua MILL) as well as the deciduous tree species European 

beech (Fagus sylvatica L.) and sycamore (Acer pseudoplatanus L.), however with only spruce 

reaching elevation beyond 1500 m a.s.l.  

 

Remote sensing information in the form of 4-day MODIS NDVI MVC data for the years 

2001 to 2016 was used in this study. As described in detail in Asam et al. (2018), this NDVI 

product was generated from the daily MOD09GQ product collection 6 and used in 

conjunction with MOD09GA product for constraints on quality and viewing geometry of the 

pixels.  

 

A CORINE land use cover map for year 2012 with 250 metre spatial resolution was used in 

this study which is freely available for download from the Copernicus Land Monitoring 

Service portal (EEA, 2012). A 30 meter resolution Shuttle Radar Topography Mission 

(SRTM) based digital elevation model was obtained from the earthexplorer portal of the 

United State Geological Survey website (USGS, 2018).  

In the phenological network of the German Meteorological Service volunteers observe 

various phenological phases at up to 43 stations in the Bavarian study region. We selected the 

spring and autumn phenological phases of Fagus sylvatica L. (European beech), namely start 

of leaf unfolding, leaf colouring and leaf fall. This ground phenological information (GP, 

onset of phenophases in days of the year (DOY)) was retrieved in the form of gridded datasets 

at a 1 km resolution from the Climate Data Center portal of the German Meteorological 

Service (DWD, n.d.).. Further information on the methodology of the interpolation of point 

ground observations to the gridded phenology product is available at the DWD portal.  
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Furthermore, we used temperature data of three climate stations of the DWD in the study area 

(Garmisch 720 m, Mittenwald 981 m, Hohenpeißenberg 977 m a.s.l.) in order to generally 

characterise seasaonal temperatures for 2001 to 2016 (see Methods 3.3). 

 

 
Figure1. A) Location of Bavarian Alps in Germany and, B) elevation (metre a.s.l.) of the 

forested region in the Bavarian Alps study area.  

 

3. Methods 

 

3.1 Estimation of Land Surface Phenology (LSP) 

 

The 4-day MODIS NDVI data for the years 2001-2016 were first stacked in chronological 

order. The outliers in data were removed prior to calculation of NDVI using the pixel 

reliability and geometry (sun and solar zenith angle) information as described in Asam et al. 

(2018). Such gaps in the time series data were linearly interpolated and smoothed using a 

Gaussian function. The start (SOS) and end of season (EOS) dates were then calculated based 

on the 50% amplitude technique, i.e. the dates when the NDVI values cross the half-

amplitude threshold in the respective ascending and descending part of the annual NDVI 

profile. The pre-processing of NDVI data and the calculation of LSP metrics are discussed in 

detail in Misra et al. (2018, 2016).  Figure 2 displays the average LSP dates for start and end 

of the season in the study area. 
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Figure 2. Mean LSP (DOY) of the forest pixels in the Bavarian alpine region during 2001-

2016 derived from MODIS NDVI data. Upper panel: Start of season (SOS), lower panel: End 

of season (EOS). 

 

 

3.2 Calculation of elevational rates of LSP and GP 

 

The elevation data from SRTM was resampled from the native 30 m resolution to 250 m and 

1 km to match the spatial resolution of MODIS-based LSP and ground phenology (GP) from 

DWD respectively. The pixels were then masked for the forest cover classes using a similarly 

resampled CORINE land cover map. Around 45,550 and 27,907 forest pixels lie in the pre-

alpine and alpine region, respectively (Figure S1). The annual elevational rates of phenology 

were calculated using simple linear regression models over bootstrapped samples for pre-

alpine and alpine regions of both MODIS-LSP and DWD-GP separately. For this, sampling of 

pixels containing information regarding phenological dates and their corresponding elevation 

was done and for each year (2001-2016) and region (pre-alpine, alpine), linear regression 

models between onset dates of phenology and elevation were run over 1000 iterations.  

 

3.3 Testing of seasonal temperature driven differences in phenology and phenological 

lapse rates 

The mean annual temperatures for the spring season (April and May) and winter season 

(January and February of current year, as well as November and December of previous year) 
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were calculated from the climate station data Based on these 16 annual seasonal temperatures, 

years were then grouped into the eight warmest and eight coldest years of spring and winter, 

respectively, yielding to four groups (CC cold spring-cold winter, CW cold spring-warm 

winter, WC warm spring-cold winter, WW warm spring-warm winter) which, by chance, 

were identical in size (4 years each) comprising the years 2002, 2006, 2010 and 2013 (CC), 

2001, 2004, 2014 and 2016 (CW), 2005, 2009, 2011 and 2012 (WC) and 2003, 2007, 2008 

and 2015 (WW). 

 

The LSP and DWD-GP data were then grouped or classified based on the groups of spring 

and winter temperatures, and tested for significant differences using a Kruskal-Wallis test and 

a posthoc Dunn’s test at p<0.05 significance level (using kruska.test and dunn.test functions 

in R). All data preparation, analysis and plotting of figures in this paper was carried out in the 

R statistical programming environment (Core Team, 2014).  

 

4. Results 

 

4.1 Annual Start of Season and End of Season 

 

Annual LSP phenology for the pre-alpine and alpine region of the Bavarian Alps regions are 

shown in Figure 3 for spring (SOS dates) and in Figure 4 for autumn (EOS dates). 

Additionally, DWD-GP dates for leaf unfolding corresponding to SOS (Fig. 3) and leaf 

colouring and leaf fall representing EOS (Fig. 4) are also given for the pre-alpine region.  

Based on remote sensing data, SOS on average starts between DOY 100 and 150 in the 

lowlands and between DOY 105 and 160 in the higher elevations. LSP-SOS and DWD-GP 

dates of the both regions show similar corresponding inter-annual variations with 

comparatively early SOS dates in 2007 and 2014 as well as to a lesser extent, in 2009, and 

late SOS dates in 2006, 2010 and 2012. LSP-SOS in 2011 exhibits a very high spatial 

variability in comparison with the other years. Mean annual leaf unfolding dates (DWD-SOS) 

occur between DOY 110 to 120, largely matching LSP-SOS, however with much smaller 

inter-annual variation. 

 

 
Figure 3. Annual LSP- and DWD-SOS for pre-alpine and alpine region of the Bavarian Alps 

from 2001 to 2016.  LSP is derived from MODIS NDVI whereas DWD-SOS corresponds to 

leaf unfolding of European beech (see Data section). 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

89 

 

Leaf colouring (around DOY 280) and leaf fall (around DOY 300) of European beech are 

observed considerably earlier than LSP-EOS from MODIS NDVI time series and exhibit 

smaller inter-annual variation (Fig. 4). Therefore, pre-alpine LSP-EOS corresponds 

(relatively) better to leaf fall than leaf colouring estimated from DWD-GP data.  

 

 
Figure 4. Annual LSP- and DWD-EOS for pre-alpine and alpine region of the Bavarian Alps 

from 2001 to 2016. LSP is derived from MODIS NDVI whereas DWD-EOS corresponds to 

leaf colouring and leaf fall of European beech (see Data section). 

 

4.2 Annual elevational rates of Start of Season and End of Season 

 

As expected, spring onset is delayed with elevation indicated by positive elevational rates. 

Overall, annual elevational rates of LSP-SOS in the alpine region are considerably higher than 

in the pre-alpine region with the exception of four years (2006, 2008, 2010, 2012) (see Figure 

5). The annual elevational rates of DWD-GP (i.e. leaf unfolding) for the pre-alpine region 

strongly correlate to that of LSP-SOS rates in the pre-Alpine region. The inter-annual 

variability in the elevational rates of both the pre-alpine and alpine region largely matches 

with a few exceptions around the years 2006 / 2007 and 2011 / 2012.  

 

 
Figure 5. Annual elevational rates of SOS from MODIS-LSP and DWD-GP. 
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The annual EOS elevational rates based on MODIS NDVI data are still positive (sic !), 

however much smaller in absolute numbers than SOS elevational rates (Figure S2). They 

show contrasting behaviour in comparison to SOS rates, i.e. EOS rates in the pre-alpine 

region exhibit higher inter-annual variation than in the alpine region.  

 

4.3 Differences in spring and warm temperature driven rates of annual phenology 

When grouping the elevational rates in the pre-alpine and alpine region into the four spring-

winter temperature groups, significant differences in their SOS rates become apparent (see 

Figure 6), apart from the groups CW and WC in the alpine region (Table S1). The smallest 

SOS elevational rates are revealed for pre-alpine WW, the largest for CW alpine. Differences 

between respective pre-alpine and alpine  SOS rates are smallest in the group CC, followed by 

WC. In contrast, for the two groups with warm winters (WW, CW) the differences between 

elevational regions are considerably higher.  In the case of warm springs (WW, WC), the 

variability of pre-alpine SOS rates is larger than for CC and CW. 

 

 
Figure 6. Annual LSP-SOS elevational rates grouped by spring and preceding winter 

temperatures as well as elevational regions. Note: The first letter of the group abbreviation is 

the assessed mean spring temperature (April, May) and the second corresponds mean winter 

temperature (November to February), e.g. CW is cold spring after a warm winter.  

 

The EOS rates reveal opposing behaviour for the CC group in comparison to the EOS rates of 

other groups (Figure S3). The CC group shows a higher rate of EOS in the alpine region as 

compared to the pre-alpine region. The results of Kruskal-Wallis and posthoc Dunn’s test 

reveal significant differences between the EOS rates of all groups (Table S2). Similarly to 

SOS, warm springs (WW, WC) are related to higher variability in pre-alpine EOS rates.  

 

 

5. Discussion 

 

In this study we found a close match in LSP-SOS estimates and GP observations of leaf 

unfolding dates. In agreement with previous research (Hamunyela et al., 2013; Luo et al., 

2013), our analysis also indicates strong links between 50% amplitude based LSP-SOS and 

GP dates for leaf unfolding. The temperature dependent earliness in SOS is observed in the 

years 2007, 2009 and 2011 when the mean spring temperatures were higher than normal. The 
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high variability in the LSP-SOS during years 2010-2012 could not be supported by DWD-GP 

data which reveal a narrow range of SOS dates. Interestingly, the inter-annual patterns for 

both leaf colouring and leaf fall from DWD-GP strongly match with that of LSP-EOS. 

However, in comparison to leaf colouring, the LSP-EOS and leaf fall data show minimal 

differences in their absolute values. Therefore, only a correlation based measure in itself 

cannot sufficiently provide clues regarding a particular LSP method mirroring a specific 

phenophase on the ground i.e. GP. This observation corroborates suggestions from previous 

studies that recommend caution while comparing LSP based estimates with ground phenology 

(Misra et al., 2016).  

 

The alpine elevational lapse rates of LSP-SOS were on average higher than the pre-alpine 

ones. This is most likely due to snow cover in the higher elevations which take 

disproportionately longer time to melt and warm the soil for creating favourable conditions 

for the starting of vegetation development. Previous research has indicated strong links 

between snow cover duration or snow melt and vegetation dynamics in high latitudes (Asam 

et al., 2018; C. Cornelius et al., 2013; Ide and Oguma, 2013). The significant differences in 

pre-alpine and alpine LSP-SOS of years with different spring and winter temperatures find 

agreement with Cook et al. (2012) who found flowering of plants to be strongly influenced by 

both spring and winter/ fall temperatures. Supporting Vitasse et al. (2017), we found 

maximum differences in the elevational rates of LSP-SOS in years of warm winters with lack 

of chilling. This study in this paper we have compared the pre-alpine  and alpine rates of SOS 

and EOS in Bavaria, whereas, Vitasse et al. (2017) compares one elevational lapse rates 

across Switzlerland. Studies in the past have discussed the critical role of chilling in driving 

spring phenology, when warmer winters are known to delay the break of dormancy and the 

initiation of spring in plants (Laube et al., 2014; Yu et al., 2010). However, in case of years 

with cold spring following a cold winter, all the vegetation development is pretty late. In 

those years, the vegetation starts late and then has to speed up their development (leading to 

small elevational lapse rates). In such years the differences between pre-alpine and alpine 

rates of LSP-SOS are minimal possibly due to late melting of snow and the delayed start of 

season in higher elevations. The elevational rates of LSP-SOS were perfectly mirrored in the 

DWD-GP but only in the pre-alpine region. DWD-GP data are not shown in the analyses 

since gridded DWD-GP values in higher elevations seemed to be capped to a maximum value 

in the interpolation procedure.  

 

In contrast, the LSP-EOS rates in the pre-alpine were generally higher than in the alpine 

region. No reasonable explanation was found for the significant differences observed between 

LSP-EOS rates of spring-winter temperature groups. This is possibly due to a complex 

interplay of factors other than temperature in driving EOS timings. Modelling of EOS 

phenology is known to be tricky and often reported to be triggered by combinations of 

temperature, photoperiod and precipitation (Hwang et al., 2011; Panchen et al., 2015; Stöckli 

et al., 2008). In light of the difficulties in modelling EOS and thus producing gridded 

products, the alpine DWD-GP rates of EOS were not included in analyses.  

 

6. Conclusions 

 

In this study we present analyses of spring and winter seasonal temperature-induced 

differences in regional phenological patterns. It is shown that not only spring temperatures but 

the preceding winter temperatures influence spring phenology in terms of elevational 

gradients. This study provides for the first time support to claims of previous studies (mostly 

based on ground observations) that suggest changing phenological patterns and the 

importance of seasonal temperature trends in high alpine regions. Both attempts hint to 
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reduced phenological variation at the landscape level with warming winters; however our 

study underlines that there are differences across altitudinal bands 
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Supplementary Information 

 

 
Figure S1. Frequency plot of forested pixels in the pre-alpine and alpine region of the study 

area. 

 

 
Figure S2. Annual elevational rates of LSP-EOS. 

 



 

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 
multispecies ground observation and LiDAR. 

95 

 
Figure S3. Annual LSP-EOS elevational rates grouped by spring and preceding winter 

temperatures as well as elevational regions. Note: The first letter of the group abbreviation is 

the assessed mean spring temperature (April, May) and the second corresponds mean winter 

temperature (November to February), e.g. CW is cold spring after a warm winter.  
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Table S1. Kruskal-Wallis test (stats package in R) followed by Dunn’s test (dunn.test package 

in R) for testing differences in SOS rates for different groups in alpine and pre-alpine areas, 

i.e. from Fig 6 (aCC is alpine- cold spring- cold winter, and prCC is prealpine- cold spring 

following a cold winter) 

 
Kruskal-Wallis rank sum test 
Kruskal-Wallis chi-squared = 19591.3008, df = 7, p-value = 0 
 
                           Comparison of x by group                             
                             (Benjamini-Hochberg)                               
Col Mean-| 
Row Mean |        aCC        aCW        aWC        aWW       prCC     prCW 
---------+-----------------------------------------------------------------
- 
     aCW |  -44.52444 
         |    0.0000* 
         | 
     aWC |  -44.31971   0.204728 
         |    0.0000*     0.4189 
         | 
     aWW |  -27.19651   17.32793   17.12320 
         |    0.0000*    0.0000*    0.0000* 
         | 
    prCC |   26.41004   70.93449   70.72976   53.60655 
         |    0.0000*    0.0000*    0.0000*    0.0000* 
         | 
    prCW |   43.17128   87.69572   87.49099   70.36779   16.76123 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000* 
         | 
    prWC |   21.10517   65.62962   65.42489   48.30168 -5.304870 -22.06610 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000*  0.0000* 
         | 
    prWW |   46.45781   90.98225   90.77752   73.65432 20.04776   3.286530 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000*  0.0005* 
Col Mean-| 
Row Mean |       prWC 
---------+----------- 
    prWW |   25.35263 
         |    0.0000* 
 
alpha = 0.05 
Reject Ho if p <= alpha/2 
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Table S2. Kruskal-Wallis test (stats package in R) and Dunn’s test (dunn.test package in R) 

for Testing differences in eos rates of broadleaf forests for different groups in alpine and pre-

alpine areas, i.e. from Figure S7. 
Kruskal-Wallis rank sum test 
 
data: x and group 
Kruskal-Wallis chi-squared = 7855.7159, df = 7, p-value = 0 
 
                           Comparison of x by group                           
 
                             (Benjamini-Hochberg) 
 
 
                               
Col Mean-| 
Row Mean |        aCC        aCW        aWC        aWW       prCC     prCW 
---------+-----------------------------------------------------------------
- 
     aCW |   23.69851 
         |    0.0000* 
         | 
     aWC |   40.66801   16.96950 
         |    0.0000*    0.0000* 
         | 
     aWW |   20.90552  -2.792990  -19.76249 
         |    0.0000*    0.0027*    0.0000* 
         | 
    prCC |   38.22196   14.52344  -2.446058   17.31643 
         |    0.0000*    0.0000*    0.0072*    0.0000* 
         | 
    prCW |  -17.28513  -40.98364  -57.95315  -38.19065  -55.50709 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000* 
         | 
    prWC |   15.86532  -7.833183  -24.80268  -5.040192  -22.35663   
33.15046 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000*  0.0000* 
         | 
    prWW |  -22.45755  -46.15606  -63.12557  -43.36307 -60.67951 -5.172424 
         |    0.0000*    0.0000*    0.0000*    0.0000*    0.0000*  0.0000* 
Col Mean-| 
Row Mean |       prWC 
---------+----------- 
    prWW |  -38.32288 
         |    0.0000* 
 
alpha = 0.05 
Reject Ho if p <= alpha/2 

 

 


