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Abstract

Phenology, cyclic events in living organisms, is among others triggered by climatic conditions
and hence affected by climate change. The timing of such events are important factors
influencing species interactions and ecosystem functioning. Thus, phenology is an indicator
of any changes in climate and the well-being of an ecosystem. Traditionally, phenology has
been observed through surveying of species locally and sporadically in time. In contrast,
remote sensing based estimations of phenology provide avenues for repetitive and cost-
effective solutions for monitoring plant development at both local and global scales. The
central idea of this thesis revolves around remote sensing based estimation of key
phenophases of plants (Land Surface Phenology or LSP), their drivers, and their validation
with observed ground phenology (GP). Several phenological metrics such as Start of Season
(SOS), End of Season (EOS), Length of Season (LOS), maximum NDVI value (NDVImax),
NDVI integrated over the growing season (NDVIsum) and day of maximum NDVI

(maxDOY) were estimated from remote sensing based time series of MODIS NDVI data.

This thesis consists of three case studies carried out in Germany with sites near Stuttgart
(southwestern Germany), in the Bavarian Forest National Park, and in the Bavarian Alps that
posed different challenges in terms of land cover, climate, and topography. Different methods
for smoothing and extraction of phenological metrics were also discussed in this thesis. The
phenological metrics derived from remote sensing data were validated with ground
phenological records and LIDAR observations. It was found that the earliest phenological
phases such as bud burst or the first leaf are difficult to detect from satellite data. The 50%
amplitude method of estimating LSP-SOS provided superior results in detecting leaf
unfolding as compared to other available techniques. A further analysis revealed other
controls on phenology apart from climatic drivers. Homogeneity of land cover or the mixing
of broad leaves and conifers in a pixel also significantly affected the estimated LSP. The final
case study in the Bavarian Alps provided clues regarding the changing nature of elevational
rates of LSP in the Alpine and pre-Alpine regions which are primarily driven by variations in

spring and winter temperatures.



Zusammenfassung

Phénologie, zyklische Ereignisse in lebenden Organismen, wird unter anderem durch klimatische
Bedingungen gesteurt und ist folglich auch vom Klimawandel betroffen. Die Eintrittstermine
dieser Ereignisse sind wichtige Faktoren, die Arteninteraktionen und Okosystemfunktionen
beeinflussen. Die Phénologie kann als Indikator Gber Verédnderungen des Klimas und den Zustand
des Okosystems Auskunft geben. Phanologie wurde herkémmlicherweise iiber lokale und
sporadische Beobachtungen von Arten durchgefuhrt. Im Gegensatz dazu bieten fernerkundliche
Abschatzungen der Phénologie neue Wege fir repetitive und kostenguinstige Lésungen, um die
Pflanzenentwicklung sowohl lokal als auch global zu uberwachen. Der Grundgedanke dieser
Arbeit dreht sich um die fernerkundlich basierte Abschédtzung von Schlisselphasen der
Pflanzenphédnologie (Phanologie der Landschaftsoberflache oder LSP), ihre Antriebe und ihre
Validierung mittels phanologischer Bodenbeobachtungen (ground phenology, GP). Verschiedene
phanologische Kennzahlen wie Beginn der Saison (Start of Season, SOS), Ende der Saison (End
of Season EOS), Lénge der Saison (Length of Season LOS), Wert des maximalen NDVI
(NDVImax), uber die Wachstumsperiode integrierter NDVI (NDVIsum) und Tag des maximalen
NDVI (maxDOY) wurden Uber Satellitenbasierten Zeitreihen von MODIS NDVI-Daten

abgeschatzt.

Diese Arbeit besteht aus drei Fallstudien in Deutschland, die unterschiedliche Herausforderungen
aufgrund der Landbedeckung, des Klimas und der Topographie stellten. Diese Studien wurden
durchgefuhrt mit Flachen nahe Stuttgart (Sldwestdeutschland), im Nationalpark Bayerischer
Wald und in den bayerischen Alpen. Zusatzlich wurden verschiedene Methoden zur Gléttung und
Gewinnung von phanologischen Kennzahlen diskutiert. Die aus phanologischen fernerkundlichen
Daten abgeleiteten Kennzahlen wurden mit phanologischen Bodenbeobachtungen und LiDAR-
Beobachtungen validiert. Es zeigte sich, dass die frihesten phanologischen Phasen, wie erste
Blatter und Laubaustrieb, sich nur schwer Uber Satellitendaten erkennen lassen. Im Vergleich mit
anderen verfugbaren Techniken lieferte die Kennzahl der 50%-Amplitude zur Abschdtzung von
LSP-SOS die besten Ergebnisse, um den Laubaustrieb zu erkennen. Eine weitere Analyse ergab,
dass die Phanologie neben den klimatischen Antriebsfaktoren von weiteren Einflissen kontrolliert
wird. Es zeigte sich, dass die Homogenitét der Landbedeckung oder die Mischung von Laub- und
Nadelbdumen innerhalb eines Pixels signifikant die abgeschatzte LSP beeinflusste. Die letzte
Fallstudie in den bayerischen Alpen lieferte Hinweise, dass Veranderungen der
Hohenabhangigkeit von LSP im alpinen und voralpinen Bereich hauptsachlich durch Winter- und

Frihjahrestemperaturen ausgeldst werden.
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1. Introduction

Phenology, the study of annual recurring events in the life cycle of living organisms has been
well documented (Schwartz, 2003; Zhang et al., 2012). The cyclic events of leaf unfolding,
flowering, fruiting and leaf-fall, etc. of plants (i.e. the primary producers) influence ecosystem
productivity, succession and migration of species (Pettorelli et al., 2017). These events are
primarily driven by temperature and other meteorological parameters and hence are also
affected by climate change (Menzel and Fabian, 1999; Parmesan and Yohe, 2003). Diez et al.
(2012) showed the varied responses to climate change across different spatial scales and
levels of organisation (Figure 1). In the context of the already established climate driven
phenology of organisms and the implications of future climate change on the timing of key
phases, very little justification is needed for more intensive efforts in studying of phenology
for understanding its changing patterns and drivers (Chang et al., 2017; Cleland et al., 2007;
Garonna et al., 2018; Ovaskainen et al., 2013). Monitoring of phenology is also important due
to the species specific responses to similar climatic drivers (Basler and Kdrner, 2014), which
may lead to desynchronisation of interaction among species and consequent loss of
biodiversity (Burgess et al., 2018; Visser et al., 1998). For e.g. across the trophic levels, shifts
in plant phenology could lead to mismatches in food availability and peak species abundance
leading to decoupling of the food web phenology. Therefore, a comprehensive understanding
of the spatial and temporal variability of phenology is essential to develop strategies for
adaptation to and mitigation of risks of climate change (Doi et al., 2008; Thackeray et al.,
2016).
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Figure 1. A conceptual diagram of species’ responses to climate change at various levels of
organisation and scales (source: Diez et al., 2012).

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 1
multispecies ground observation and LiDAR.



1.1 History of phenology

Traditionally phenology has been observed by volunteers who traverse a fixed path
periodically and record key phases in the life cycle of both plants and animals. The oldest
evidences of phenological records have been found in the early civilisations of Egypt,
Mesopotamia and China (Schwartz, 2003). It was probably after Carl Linnaeus in the end of
eighteenth century that phenology was studied systematically as a science and the first survey
networks of phenology were established around the globe (Giovanna, 2007). An example of
an early phenological record by Carl Linnaeus is shown in Figure 2. Some of the best known
phenological records are hundreds of years old i.e. the Japanese cherry blossoms of the 9™
century, the grape harvest dates of central Europe from the 1300s and the 200 year old
Marsham phenological records from the UK (Chuine et al., 2004; Nagai et al., 2016; Sparks
and Carey, 1995). Such long term records of phenology are important works of history
documenting distribution and the life cycles of plants, animals and agricultural systems, and
also provide critical clues to the climate of the past (Chuine et al., 2004; Sparks and Carey,
1995).

Many global and regional phenological networks such as the National Phenological Network
in the USA (USA-NPN), International Phenological Gardens (IPG) in Europe and the camera
based Japanese Phenological Eyes Network (PEN) among several others are operating
currently and continue to provide information on phenology of plants (Zhang et al., 2012). A
comprehensive list of phenological networks is available at the website of Potsdam Institute
for Climate Research (http://www.pik-potsdam.de/~rachimow/epn/html/frameok.html). The
earliness in the timing of spring events in Europe and North America (Diez et al., 2012;
Walther et al., 2002), the extension of growing season in Europe (Menzel and Fabian, 1999),
decrease in elevational rates of phenology in central Europe (Vandvik et al., 2018; Vitasse et
al., 2017), increased biodiversity and shifting treelines in the higher latitudes (Kullman, 2010;
Leonelli et al., 2011) and asynchrony in community level phenology (Ovaskainen et al., 2013,
Visser et al., 1998) are few of the climate change induced anomalies observed in ground
phenology records and confirmed by satellite remote sensing. In view of the climate induced
changes in phenology and also the feedbacks of phenology on climate, observing
phenological phases that started as a pastime for naturalists has now therefore become a
critical yardstick for studying the global climate change process (Menzel, 2002; Pefiuelas,
2009; Richardson et al., 2013).

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 2
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Figure 2. Carl Linnaeus’ record of phenological timings of few common trees and shrubs in

Northern Europe during 1750-1752 (source: Giovanna, 2007).

1.2 Remote sensing of phenology

Remotely sensed data from space-borne satellite platforms provide periodic information on
the ecarth’s surface and its atmosphere. The revolution in earth observation satellites for
imaging of the earth’s surface and its natural resources started in 1972 with the launch of the
Landsat Mission under the “Project Eros” by the United States of America (Wulder et al.,
2019). Subsequently, other satellites such as the SPOT, NOAA-AVHRR, Resoucesat,
MODIS and Sentinel among several others were launched that provide a myriad of
information about the earth’s surface and not limited to mapping of vegetation status,
moisture stress, atmospheric components (clouds, aerosols and precipitation), ocean
properties, surface temperature, etc. The advent of remote sensing technology provided easy
access to high resolution information both in time and space, and are cost-effective in
comparison to land based survey methods. The promise of monitoring of vegetation through

remote sensing was first recognised in the early 1970s when vegetation indices were found to

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 3
multispecies ground observation and LiDAR.



be well correlated with biomass (Rouse et al., 1974). Later, with the improvement in sensing
technologies, several other properties of vegetation such as fractional cover, leaf area index,
plant pigments (chlorophyll and carotenoids), etc. could be determined with great precision
from satellite sensors (Frampton et al., 2013; Glenn et al., 2008; Verger et al., 2016).

The Normalised Difference Vegetation Index (NDVI) is the preferred and most commonly
used measure among several vegetation indices that were developed over time (Helman,
2018). It is the ratio of the difference and the sum of the reflectance of an object in the near
infra-red and red region of the spectrum. Its values ranges from -1 and +1, and helps
exploiting the fact that green vegetation reflects strongly in the near infra-red and absorbs in
the red region (Glenn et al., 2008). The vegetation spectral response curve in shown in Figure
3. NDVI is easy to calculate and is directly correlated to properties such as carbon
assimilation, photosynthetic activity and plant transpiration (Glenn et al., 2008). Temporal
NDVI data is known to be sensitive to seasonal changes in vegetation and have also been used
to study effects of extreme events and pest infestation, map species abundance (Berner et al.,
2011; Pettorelli et al., 2005; Spruce et al., 2011), and identify species based on their unique
phenology (Clerici et al., 2012; Massey et al., 2017).
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Figure 3. The spectral response curve of vegetation and soil (source: Clark, 1999). The
contrasting near infra-red reflectance of the green and dry (stressed) vegetation is clear. The
chlorophyll present in the green vegetation also leads to strong absorption in the visible range

of the spectrum.
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In addition to conventional space based platforms, several near surface measuring techniques
such as fixed digital cameras or phenocams and drone mounted cameras have also emerged in
the past decade that work with the same principle of repeated photography of land surface and
help in monitoring of vegetation phenology at multiple scales (Browning et al., 2017;
Klosterman and Richardson, 2017). Figure 4 is a vivid representation of capturing vegetation
phenology through different remote sensing platforms (drones or UAV are not shown in the
picture). Recently, Hufkens et al. (2019) demonstrated the suitability of inexpensive
smartphones in close range monitoring of crop phenology in India. Data from remote sensing
platforms have been able to provide critical insights into vegetation performance and
ecosystem functioning in response to biotic and abiotic triggers that aid developing strategies
for adaptation and policy measures (Foster et al., 2019; Heumann et al., 2007; Ma et al.,
2015). Some studies demonstrating advancements in the science of remote sensing of

vegetation phenology or land surface phenology (LSP) are listed in Table 1.

Figure 4. Remote sensing of vegetation phenology through various platforms. (Source:
Bennet and Hope, 2018)

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 5
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Tablel. Few major developments in land surface phenology studies.

S/No. | Findings Data Time period Author

1) | Measures of central AVHRR (1 km 1989-1992 (Reed et al.,
tendency, variability of and 14 day 1994)
phenological measures maximum value
(timing of key events) and composite or
the NDVI value at key MVC)
phases estimated from time
series NDVI data over
coterminous USA
corresponded well with the
observed phenology of
grasslands, deciduous and
conifer forests, and spring
wheat.

2) | Increased seasonal NOAA-GIMMS | 1981-1991 (Myneni et al.,
amplitude of NDVI and NDVI (8km and 1997)
lengthening of the growing | monthly
season in the northern averaged values)
hemisphere.

3) | Integrated seasonal NDVI AVHRR- 1992-1999 (Holm et al.,
(I-NDVI) provided a good GIMMS (14 day 2003)
estimate of biomass in the MVC)
semi-arid and arid regions of
Australia and correlated well
with rainfall patterns.

4) | An advance in spring and AVHRR- 1981-2003 (Julien and
delay in autumn timings GIMMS (8 km Sobrino, 2009)
globally. Phenological and 15 MVC)
timings were highly
correlated with climatic
indices based on ocean
currents and sea surface
temperature.

5) | Apart from elevation, Landsat TM and | 1983-2008 (Elmore et al.,
distance to urban land cover | ETM+ data (16 2012)
was found to strongly day and 30m
influence phenological resolution)
timing of vegetation near
Baltimore and Washington Phenocam data
cities in the USA. Green based greenness
down in summer was found | and redness
to affect estimates of autumn | (2004-2008;
onset in the study area. daily data)

6) | Vegetation phenology in MODIS EVI (16 | 2000-2014 (Maet al., 2015)

semi-arid regions in South-
eastern Australia showed
higher sensitivity to climate
anomalies. Years with

days and 0.05
degree) and
Standardized
Precipitation

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 6
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extreme droughts revealed a
complete loss of vegetation
seasonality.

Evaporation
Index or SPEI (3
month interval

and 0.05 degree)

7) | Phenocam based greenness | Digital camera 2012-2016 (Browning et al.,
was able detect the invasive | (20m from 2017)
mesquite shrub phenology horizontal and
better than satellite based capturing images
NDVI which tracked the every 15 mins
dominant native grassland from 10:00 to
species seasonality. This 16:00 hrs) and
study validates the reliability | MODIS NDVI
of phenocams in bridging (250m and 16
the gap in observations from | day interval)
field and space.

8) | Drone based repeated Drone mounted | 2015 (Klosterman and
imaging at mixed forest sites | digital camera Richardson,
in Harvard forest, USA (16MP, flight 2017)
revealed species specific frequency- 5days
differences in phenology. during leaf out
Greenness and redness based | and weekly
indices from the drone during leaf
mounted camera correlated | colouring).
strongly with field
observations of start and end
of season. Few Oak trees
displayed redness at leaf out
which had to be processed
accordingly.

9) | SOS, peak and EOS Green colour 2016 (Vrieling et al.,
obtained from high temporal | coordinate or 2018)

and spatial resolution
Sentinel 2 data were
strongly linked to
phenological metrics
estimates from close range
cameras in the Netherlands.

GCC from
Sentinel 2 data
(10 m spatial and
5 day temporal
resolution)

Review of literature provide evidence of increased interest in plant phenology with almost a

10 times growth in peer-reviewed articles on the topic in the last 30 years (Tang et al., 2016).

This renewed interest in plant phenology is mainly due to the debate around the global

climate change, especially after the 1990s, and the ability of plant phenology to track such

changes in climate (Richardson et al., 2013). This has led to enhanced curiosity in the

performance of pioneer techniques such as remote sensing for improving monitoring of

phenology at multiple temporal and spatial scales. Processing of remote sensing data however

requires high expertise and skills in data and image processing, which could prove to be a

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by

multispecies ground observation and LiDAR.
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hindrance in the further advancement of this field. But confidence can be drawn from the fact
that the scientific community in last decade has developed several open source software and
packages that help now help in processing time series remote sensing data. TIMESAT
(Jonsson and Eklundh, 2004), Phenopix (Filippa et al., 2016), green-brown (Forkel et al.,
2013), Phenor (Hufkens et al., 2018) and nnphen (Estay and Chavez, 2018) are few such
noteworthy packages and software. However, caution must be exercised while using these
packages and their appropriateness and accuracy must be tested before being used for specific
studies. The existence of several free to use remote sensing data (i.e. Landsat, AVHRR,
MODIS, etc.) and open source software provides an incredible opportunity to critically study

the various drivers of Land Surface Phenology (LSP) that were non-existent in the past.

Despite huge advancements in sensor technologies and data processing techniques, remote
sensing of phenology has its own limitations. Several studies have discussed the limitations of
remote sensing data and suggested solutions to overcome those. Most notably the processing
of raw satellite data is crucial in time series analysis of LSP and so are the choice of methods
adopted that are known to affect conclusions derived from studies (Jonsson and Eklundh,
2004). Since no single method can be claimed to address all the issues with data processing
sufficiently and applied to all case studies equally, it is pertinent that such decisions are based
on the characteristics of the data and area under study (Cai et al., 2017; Hufkens et al., 2019).

The versatility of LSP in revealing various aspects of ecosystem functioning and its
performances is evident from the case studies carried out as part of this thesis and Table 1,
however utmost care should be taken to ensure high quality of data used in such studies to
generate high confidence in the results. For example, divergent effects of droughts on the
Amazon forests were reported during the droughts of 2005 and 2010. The greening of the
Amazon in 2005 as reported by Saleska et al., (2007) and the decreased greenness of forests
in 2010 as concluded by Xu et al., (2011) cannot be attributed to droughts alone. Quality of
data in form of gaps in the time series of vegetation indices and sensor degradation (Atkinson
et al.,, 2011; Samanta et al., 2010), and other climatic factors such as clouds, aerosols and
variability in the received solar radiation are also known to influence data and introduce errors
(Saleska et al., 2007).

The inability of coarse resolution satellite data to discriminate among individual species is

another major hindrance in fruitfully deriving conclusions from LSP based studies (Panchen
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et al., 2015). Fu et al., (2014) reported a reversal of the advancing trends in spring phenology
in Western Central Europe post year 2000. The delayed trends in LSP were probably driven
by a combination of the inability of satellite data to discriminate between species and the
delay in the SOS of earliest species that are affected by cooling in late winter. In contrast, the
ground observed phenology revealed an advancing but weakened trend in the spring phases of
species during the same period. Most importantly, issues concerned with matching LSP with
ground phenology or GP arise due to the absence of attribution of a biological meaning to the
various methods of estimating phenology from remote sensing data i.e. LSP (Eklundh and
Jonsson, 2015). As stated earlier, an arbitrary selection from a myriad of methods available
for estimating LSP can complicate matters when comparing LSP with GP observations.
Therefore, it is essential to carefully chose pre-processing methods and the framework for

analysing data to minimise errors and uncertainties in results.
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2. Aims and outline of the thesis

This thesis aims to better understand the process of estimating phenology from remote
sensing data. The basic premise of the studies carried out in this thesis revolves around a)
challenges in pre-processing of data, b) matching pixel based LSP with point based GP
observations, and c) interpreting LSP patterns in light of various drivers such as climate,
topography and LIiDAR based forest stand information.

Supplementary information
- DOY of NDVI MVC
MODIS NDVI MVC data -Pixel Reliability Info.

VALIDATION
Pre-processing (filtering, gap-
filling, smoothing &

interpolation to daily values) Ground Phenology

observations

Land Surface
Phenology

LiDAR data

Topography and
Climate

Figure 5. Flowchart depicting the various themes in the case studies undertaken as part of this

thesis.

Remote sensing based estimation of phenology (Land Surface Phenology or LSP) provides
promising alternatives to time consuming, labour intensive and localised ground based
observations (Ground Phenology or GP) of phenological phases. Though various methods of
extracting phenological information from time series of remote sensing data have been
studied in detail (Beck et al., 2006; Forkel et al., 2015; lvits et al., 2013; White et al., 2009),

there still lack successful efforts in the temporal matching of LSP estimates with GP
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observations. Chapter 4.1 of this thesis deals with extraction of various start of season (SOS)
estimates of LSP and correlating it temporally with observed dates of GP-SOS of several
understory, broadleaf and conifer species. Chapter 4.1 also discusses the challenges in the pre-
processing of raw NDVI times series data and subsequently the problems faced in matching
pixel based LSP estimates with species specific GP observations. The central aim of the study
in this chapter was to test whether different LSP-SOS metrics correspond to specific GP-SOS
observations, and if the GP-SOS observations match with the LSP-SOS in terms of their long

term trends, mean values and interannual variability.

Apart from the influence of pre-processing of remotely sensed NDVI data, the LSP at the
pixel level is also affected by several other drivers. The validation of pixel based LSP
following segregation of pixels using popular land cover maps such as CORINE and
GlobeCover, etc. and its matching with GP observations of dominant species on the ground is
commonly advocated (Hamunyela et al., 2013; Rodriguez-Galiano et al., 2015). However, as
completely homogenous pixels are rarely found in nature, it is important to consider the
accuracy of such land cover maps and subpixel mixing of classes to correctly interpret the
meaning of the LSP metrics estimated from a pixel. In absence of high resolution or sub-pixel
information, it is difficult to ascribe the variability in the estimated LSP to climate alone.
Therefore, the role of subpixel information on forest stands in driving the spatial variability in
mean LSP metrics is discussed in chapter 4.2. The advantage of using LIDAR data to include
subpixel information on forest stand with respect to percentages of broadleaf and conifer
species, crown volume and Shannon’s entropy helped in studying the variability observed in
LSP metrics, which is not otherwise discernible through coarse resolution remote sensing
data. The neglected end of season (EOS) metric along with several other phenological

measures are also discussed in this chapter.

Climate change is known to have differential effects on the phenology of different plant
species. Moreover, there are now evidences for the weakening of the widely accepted
Hopkin’s bioclimatic law dealing with the elevation linked lapse rates of leaf out in trees
(Vitasse et al., 2017). In such a situation, not only long term climate change impacts but also
the inter-annual or seasonal temperature patterns need to be investigated for their role in
affecting vegetation phenology. Chapter 4.3 discusses the role of spring and winter
temperatures in driving variability in elevation linked lapse rates of vegetation phenology in

the pre-Alpine and Alpine regions of Bavaria. A synopsis of results from remote sensing and
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ground observations-based phenology and their elevational lapse rates is also presented in the

chapter.

The succeeding sections of this thesis contain description of the data and complete
methodology followed for three studies (two individual accepted publications and one case
study to be submitted). Also listed are the abstracts of the three studies in the subsections of
chapter 4. A short description of the results of the and their implications are also presented in
chapter 5. The reprints of the published articles and the case study (to be submitted) is
attached at the end of this thesis.
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3. Data and Methods

3.1 Data used
The data used in this thesis have been described in detailed in the two individual publications
and one case study (to be submitted). However, a brief overview of the data and its sources

are listed in this section as below.

3.1.1. Satellite remote sensing based NDVI data

The 16-day maximum value composite (MVC) Normalised Difference Vegetation Index
(NDVI) data (MOD13Q1) and its corresponding pixel reliability information for the years
2001-2013 (used in chapter 4.1) was downloaded from the now retired MRTweb application
(https://Ipdaac.usgs.gov/tools/modis_reprojection_tool) of the United State Geological Survey
(USGS) website. This data can now be downloaded from the AppEARS portal of USGS

(https://Ipdaacsvc.cr.usgs.gov/appeears/).

A 4-day MVVC NDVI data along with its respective pixel quality and exact day of the year for
the composites were accessed from EURAC, Bolzano (Asam et al., 2018) for use in chapter
4.2 and 4.3. This 4-day MVC product was derived from the daily MOD09GQ product
collection 6 and use in conjunction with MODO9GA product for constraints on quality and
viewing geometry of the pixels. The NDVI measure was calculated from the red and near
infra-red bands of the of the satellite product. The details of this NDVI product are discussed
in detail in Misra et al. (2018) and Asam et al. (2018).

3.1.2. LiDAR based forest stand data

A LiDAR based spatial points data frame was obtained from the Bavarian Forest National
Park (BFNP) administration. The LIiDAR data is based on an aerial survey carried out in June
2012 using a Riegl LMS-680i scanner under leaf-on conditions at a height of 650 m with a
density of 30 points/m?. The database contained structural information of individual trees (i.e.
tree type, crown volume, height, species type (conifer or broadleaf), etc.) in the BFNP, which
was later resampled and rasterized to 250 m grids for comparison with MODIS pixels.
Several aggregated measures of forest stand characteristics were calculated (in chapter 4.2)

such as average tree height, average crown volume, average crown area, broadleaf %, conifer
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% and Shannon’s entropy for comparison with MODIS based phenology. The LiDAR data
used in chapter 4.2 is described in detail in Misra et al. (2018).

3.1.3. Topography data

The digital elevation model at a spatial resolution of 30 metres was downloaded from the
Shuttle Radar Topography Mission (SRTM) data available through the earthexplorer portal of
the United State Geological Survey website (USGS, 2018) for use in chapter 4.3. The digital
terrain model (DTM) used in chapter 4.2 from the LiDAR survey of the Bavaria Forest
National Park (BFNP) was obtained from the BFNP at 1-meter resolution and was resampled
to 250 metres. The slope and aspect were calculated from the LIDAR- DTM using the terrain

function available in raster package of R (Hijmans, 2016).

3.1.4. Land cover maps

The CORINE (COoRdination of INformation on the Environment) land cover maps used in
for chapters 4.1, 4.2 and 4.3 were downloaded from the Copernicus Land Monitoring Service
of the European Environment Agency (EEA, 2012). The land cover maps were downloaded
in raster format at a spatial resolution of 250 meters for the year 2012, and consist of land
cover classes such as broadleaf, conifer, mixed forests, pasture, urban areas, transitional
woodlands, arable land and water bodies. The classes in the land cover map were used as such
in chapter 4.2, and aggregated to forested (broadleaf, conifer and mixed forests) and non-

forested areas in chapter 4.3 and masked for broadleaf forests in chapter 4.1.

A habitat map generated was also obtained from the BFNP administration. This land cover
map used in chapter 4.2 was generated by visual interpretation of digital colour infra-red
images from a DMC camera in the year 2012. The habitat map consists of various land cover
classes such as urban areas, broadleaf, conifer and mixed forests, clear-cut areas, water, dead-
wood lying and regenerating areas. Further details of the habitat map is available in Dupke et
al., (2017).

3.1.5. Ground phenology data

The ground phenology data used in chapter 4.1 was obtained from a dedicated naturalist who
previously worked at the German Meteorological Service (DWD) for decades. He provided
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records of phenological phases of several broadleaf, conifer and understory species present
around a single site near Stuttgart, Germany, covering a transect of 8-10 km in the
surrounding woods and agricultural areas (48.73°N/9.26°E, 410 m a.s.l). The dates of leaf
unfolding and leaf greening of several species for years 2001- 2013 were used in this study.
Further details of species and their phenophases are provided in the supplementary

information of Misra et al. (2016).

The International Phenological Gardens (IPG, n.d.) and the German Meteorological Service
(DWD) monitor phenological phases of species through a network of stations in Germany.
The ground phenological data for the BFNP used in chapter 4.2 was collected at IPG station
Freyung Waldhaeuser (956 m asl.), and DWD stations Neureichenau (770m a.sl.),
Schénbrunn (775m a.s.l.) and GrolRer Arber (1436 m a.s.l.). The dates of leaf unfolding and
leaf fall of broadleaf species i.e. mountain ash (Sorbus aucuparia L.) and European beech
(Fagus sylvatica L.), and the may shoot dates for conifer species i.e. Norway spruce (Picea
abies L.) were collected for the years 2002-2015.

Gridded phenological information from DWD for the years 2001-2016 were used for
validation of MODIS based phenological data in chapter 4.3. The grids for start of season
(leaf unfolding) and end of season (i.e. leaf colouring and leaf fall) for European beech trees
were downloaded from the Climate Date Center web portal of the German Meteorological
Service (DWD, n.d.). These DWD annual gridded values at 1km x 1 km resolution are a result
of spatial interpolation of species and site specific phenological phases reported by observers
(as day of the year or DOY). The spatial interpolation of these values are based on latitude,

longitude, height and weighted by distance to four nearest observations (DWD, n.d.).

3.2 Methods of processing and analysis of data

This section describes the methods used in pre-processing of remote sensing data and the
various statistical methods used for modelling and validation with ground phenological

observations.

3.2.1 Pre-processing of NDVI data

Remote sensing data in the form of Normalised Difference Vegetation Index (NDVI) was

used for various case studies carried out in this thesis. The NDVI data available as maximum
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value composites (MVC) were first stacked in chronological order. However, they could not
be used in their available form and required special treatment before extraction of different
phenological metrics. Satellite based remote sensing data are many times contaminated by
atmospheric components such as clouds, rain, snow, aerosols, etc., and such errors or
contamination in observations were identified and accounted for before any further analysis of
time series of NDVI data. The complimentary pixel reliability information obtained along
with the NDVI MVC data were used in this regard and pixels with only high confidence

(pixels labelled as good or marginal) were retained.

The gaps introduced in the NDVI data due to removal of outliers were then filled in two steps:
a) gaps occurring in the winter period (January and December) of the NDVI times series were
filled with averages of available high confidence values from the same period in other years
and b) linear interpolation of the remaining gaps (in non-winter period). Another round of
outlier detection in the NDVI values was necessary after the removal of outliers and the
subsequent filling of gaps. Such outliers were present as sudden spikes in time series of NDVI
data (assuming NDVI profile of vegetation to follow a gradual rate of increase or decrease)
and hence needed further attention. A Gaussian filter was applied twice to the NDVI time
series: (1) in the first instance to detect high differences (values beyond two standard
deviations) in NDVI values in comparison to its neighbouring values and such values were
subsequently removed and replaced with the average of nearest available values, and (2) a
second time to obtain a smooth NDVI times series that would represent the smooth and
gradual transition of values over the growing season of vegetation. In chapter 4.1, the NDVI
time series was alternatively fitted with a Double Logistic function after the initial Gaussian
smoothing to compare the performance of two different smoothing approaches. The NDVI
MVC data was then set to their day of year (from the ancillary information layer) and linearly

interpolated to daily values.
The Gaussian function used in the case studies in this thesis was so designed that the weights

(Wi) of the of each value within a window followed a Gaussian distribution (see equation 1).

These fractional weights were distributed symmetrically around the central value.
Wi = (1/ ) * exp * (le/ > (equation 1)
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where, k is the half window size of the filter and wi is the i value in the local window of
sequence —k to k. The weight Wj was normalised by its sum to add to 1. The pre-processing
and smoothing of NDVI data are explained in detail in Misra et al. (2016).

Instead of using the readily available 16 day NDVI MVC (MOD13Q1) data, a 4 day NDVI
MVC data was used in chapters 4.2 and 4.3 of this thesis. This 4 day NDVI time series data
was generated from MODO9GA and MODO09GQ reflectance products of the MODIS sensor.
The NDVI values were calculated from the red and near infra-red bands and were filtered
according to geometry information (sun and senor zenith angles) and scene acquisition quality
flags. This NDVI product was obtained from the Institute for Earth Observation, EURAC,
Italy and the methods are explained in detail in Asam et al. (2018). A similar pre-processing
algorithm as in chapter 4.1 for outlier detection, gap filling, smoothing and interpolation was
applied to this 4-day NDVI MVC product.
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Figure 5. Example of pre-processing and smoothing of raw NDVI (time series) from a pixel.
Note: The raw NDVI values are shown as circles, the good and marginal NDV1 values (using
the pixel reliability information) are shown as grey lines, the outlier removed and gap filled
values are shown as black lines, and the Gaussian filtered NDVI time series is shown as a

dashed red line.
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3.2.2 Extraction of phenological information (Land Surface Phenology) from NDVI

time series

The pre-processed daily NDVI time series data was used to extract several phenological
metrics (land surface phenology or LSP). In chapter 4.1 various thresholds based start of
season (SOS) were computed from the NDVI time series by determining the time period
when the increasing curve of NDVI values reached the 20%, 50%, 60% and 75% of the
seasonal amplitude. Similarly, a derivative (first, second and third derivatives) based SOS was
also calculated for determining the time of greatest rate of change occurring in the growing or
greening phase of the NDVI profile. Additionally, a delayed moving average (DMA) method
of estimating phenology was also evaluated. Subsequently, in chapters 4.2 and 4.3, the SOS
and EOS (by determining the time period when the receding curve of NDVI profile reached
the 50% of the seasonal amplitude) were calculated using the 50% amplitude method for its
robustness in terms of its application to a variety of ecosystems (Hamunyela et al., 2013;
Wang et al., 2016; White et al., 2009, 1997). Apart from calculating the SOS and EOS,
several other phenological metrics such as DOYmax (day of maximum NDVI value),
NDVImax (the maximum NDVI value), NDVIsum (NDVI values integrated over the growing
season) and length of season or LOS (difference between annual EOS and SOS) were

calculated in chapter 4.2.
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Figure 6. Estimation of different LSP metrics from the smoothed and daily interpolated times

series of a pixel.
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3.2.3 Validation of Land Surface Phenology

To begin with, in chapter 4.1, the validation of the different LSP metrics was carried out
through a measure of Spearman’s rank correlation strength with observer reported dates of
different phenological phases (ground phenology or GP) to check for their match in inter-
annual variations. For this purpose, annual LSP-SOS calculated from threshold and derivative
based approaches were compared with the annual GP records of leaf unfolding of several
common understory and conifer species, and leaf unfolding and greening of broadleaf species
found at the study site. A comparison of means and trends of LSP and GP was undertaken to

assess the match in seasonality and climate change impacts respectively.

In chapter 4.2, the match between annual phenology of LSP and GP were evaluated. The LSP
were first segregated for broadleaf and conifers using the land cover map and their correlation
strength with GP i.e. leaf unfolding and fall for broadleaf and conifer species was analysed.
Additionally, the drivers of spatial variability of mean LSP metrics were evaluated with
respect to LIDAR based topography (slope, aspect and elevation) and forest stand
characteristics (broadleaf%, conifer%, average crown volume, average height, Shannon’s
entropy, etc.). First the predictors were subjected to a variance inflation factor (VIF) analysis
and variables with VIF> 10 were removed from further analysis. Additionally, a non-
parametric Kruskal-Wallis test followed by a posthoc Dunn’s test was conducted to test
whether different land cover types reveal significant differences in their LSP. The
uncorrelated predictors were then applied to a stepwise multiple regression analysis to predict
various LSP metrics. As an initial model, multiple regressions were run on mean LSP metrics
as response and topography variables as predictors respectively. Subsequently, additional
predictors in form of land cover information and LiDAR based forest stand information were
included to evaluate improvements in the explained variance of models. A stepwise BIC
function (stepAIC function from MASS package in R) (Venables et al., 2002) was applied to
the different models in order to select the predictors resulting in minimum BIC. Subsequently,
the relative importance of the predictors in the selected best models were also calculated
(from calc.relimp function in relaimpo package in R) (Gromping, 2006). A bootstrapping
analyses of all modelled parameters as described in Buras et al., (2017) was also carried out to
evaluate stability of the models.
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In chapter 4.3, the elevation linked lapse rates of MODIS based LSP-SOS and EOS were
calculated using a bootstrapping analysis. The LSP-SOS and EOS dates of pre-Alpine and
Alpine regions in Bavaria were sampled separately for each year from 2001-2016. The slope
from a linear regression analysis of LSP with elevation was calculated over 1000 iterations.
The different years from 2001-2016 were then analysed for their mean spring and winter
temperatures and classified in to four groups of warmest and coldest seasons. These
calculated slopes were then grouped into their location (Alpine and pre-Alpine) and the years
grouped according to their spring-winter temperatures. A Kruskal-Wallis test followed by a
posthoc Dunn’s test was then conducted to test for differences in the groups for the
elevational linked lapse rates of LSP. The ground phenology observations of leaf unfolding
and leaf colouring/ fall obtained in the form of gridded datasets from the German
Meteorological Sevice (DWD) were used to validate both the distribution of annual LSP-SOS

and EOS values and their elevational rates.

3.2.4 Software and tools used

All data handling, pre-processing, analysis and plotting of figure in the above mentioned case
studies were carried out in the R statistical programming environment (Core Team, 2014).
The ArcGIS and ERDAS Imagine software were also used for preliminary exploration and

visualisation of spatial data.
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4. Abstracts of individual publications

4.1 Effects of different methods on the comparison between Land Surface and Ground

Phenology - A methodological case study from South-Western Germany

Gourav Misra, Allan Buras & Annette Menzel. Remote Sens. 8, 753 (2016). doi:
10.3390/rs8090753

Several methods exist for extracting plant phenological information from time series of
satellite data. However, there have been only a few successful attempts to temporarily match
satellite observations (Land Surface Phenology or LSP) with ground based phenological
observations (Ground Phenology or GP). The classical pixel to point matching problem along
with the temporal and spatial resolution of remote sensing data are some of the many issues
encountered. In this study, MODIS-sensor’s Normalised Difference Vegetation Index (NDVI)
time series data were smoothed using two filtering techniques for comparison. Several start of
season (SOS) methods established in the literature, namely thresholds of amplitude,
derivatives and delayed moving average, were tested for determination of LSP-SOS for
broadleaf forests at a site in southwestern Germany using 2001-2013 time series of NDVI
data. The different LSP-SOS estimates when compared with species-rich GP dataset revealed
that different LSP-SOS extraction methods agree better with specific phases of GP, and the
choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods
mirroring late SOS dates, i.e., 75% amplitude and 1% derivative, indicated a better match in
means and trends, and high, significant correlations of up to 0.7 with leaf unfolding and
greening of late understory and broadleaf tree species. GP-SOS of early understory leaf
unfolding partly were significantly correlated with earlier detecting LSP-SOS, i.e., 20%
amplitude and 3" derivative. Early understory SOS were, however, more difficult to detect

from NDVI due to the lack of a high resolution land cover information.

Contributions: The study was conceptualized and designed by me and Annette Menzel. |
wrote the manuscript and carried out the data processing with support from Allan Buras. All
authors contributed to the interpretation of results and editing of the manuscript. About 70%
of the work was done by me.
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4.2 LiDAR derived topography and forest stand characteristics largely explain the spatial
variability observed in MODIS land surface phenology

Gourav Misra, Allan Buras, Marco Heurich, Sarah Asam & Annette Menzel. Remote Sens.
Environ. 218, 231-244 (2018). doi: 10.1016/j.rse.2018.09.027

In the past, studies have successfully identified climatic controls on the temporal variability of
the land surface phenology (LSP). Yet we lack a deeper understanding of the spatial
variability observed in LSP within a land cover type and the factors that control it. Here we
make use of a high resolution LiDAR based dataset to study the effect of subpixel forest stand
characteristics on the spatial variability of LSP metrics based on MODIS NDVI. Multiple
linear regression techniques (MLR) were applied on forest stand information and topography
derived from LiDAR as well as land cover information (i.e. CORINE and proprietary habitat
maps for the year 2012) to predict average LSP metrics of the mountainous Bavarian Forest
National Park, Germany. Six different LSP metrics, i.e. start of season (SOS), end of season
(EOS), length of season (LOS), NDVI integrated over the growing season (NDVIsum),
maximum NDVI value (NDVImax) and day of maximum NDVI (maxDOY) were modelled
in this study. It was found that irrespective of the land cover, the mean SOS, LOS and
NDVIsum were largely driven by elevation. However, inclusion of detailed forest stand
information improved the models considerably. The EOS however was more complex to
model, and the subpixel percentage of broadleaf forests and the slope of the terrain were
found to be more strongly linked to EOS. The explained variance of the NDVImax improved
from 0.45 to 0.71 when additionally considering land cover information, which further
improved to 0.84 when including LIiDAR based subpixel forest stand characteristics. Since
completely homogenous pixels are rare in nature, our results suggest that incorporation of
subpixel forest stand information along with land cover type leads to an improved
performance of topography based LSP models. The novelty of this study lies in the use of
topography, land cover and subpixel vegetation characteristics derived from LIiDAR in a
stepwise manner with increasing level of complexity, which demonstrates the importance of

forest stand information on LSP at the pixel level.

Contributions: The study was conceptualized and designed by me and Annette Menzel. |
wrote the manuscript and carried out the data processing and statistical analyses for this study.

The raw LiDAR data and raw 4-day composite NDVI data were processed and provided by
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Marco Heurich and Sarah Asam respectively. All authors contributed to the interpretation of

results and editing of the manuscript. About 80% of the work was done by me.

4.3 Elevation linked phenological lapse rates show differences in the pre-alpine and alpine

regions of Bavaria: Overview from ground and satellite observations

Gourav Misra, Sarah Asam & Annette Menzel. (to be submitted to Environmental Research
Letters)

The role of temperature in driving phenology of vegetation is well established. However, with
the changing climate leading to differences in temperature regimes during the year and
especially also during winter chilling, a pronounced variability in the already established
phenological rates is now being observed along the elevational gradient of mountains. In this
study, we analysed the elevation linked lapse rates of phenological dates in the pre-alpine and
alpine regions of the Bavarian Alps in Germany. The dates for the start of season (SOS) and
the end of season (EOS) were extracted from a 4-day maximum value composite Moderate
Resolution Imaging Spectrometer (MODIS) sensor’s Normalised Difference Vegetation Index
(NDVI) time series data for the years 2001-2016. Analyses of SOS data showed higher
elevational lapse rates in the alpine areas than the pre-alpine areas, possibly due to longer
duration of snow. Maximal differences in rates of SOS of alpine and pre-alpine areas were
observed in years with preceding warm winters with lack of chilling. Minimum differences in
the rates of SOS were found along the elevational gradient during cold spring and cold winter
years. The MODIS based SOS showed the highest correspondence when validated against the
gridded German Meteorological Service (DWD) leaf unfolding data. The EOS dates showed a
comparatively lower correspondence to DWD data and their lapse rates in the pre-alpine and
alpine regions were tricky to validate. Contrary to SOS, EOS dates revealed lower, but still

positive lapse rate in the alpine areas than the pre-alpine areas.

Contributions: I and Annette Menzel led and conceptualised the design of the study. | wrote
the manuscript and carried out the data processing and statistical analyses for this study. The
raw 4-day composite NDVI data was processed and provided by Sarah Asam. All authors
contributed to the interpretation of results and editing of the manuscript. About 70% of the
work was done by me. Special thanks to Dr. Nicole Estrella and Dr. Stefan Haerer for their

support in analysing the temperature and DWD data respectively.
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5. Discussion
This thesis describes and tests different pre-processing methods for MODIS NDVI data,

estimation of various LSP metrics and its interpretation, and its validation with various
species-specific GP and LiDAR data. In this chapter a general discussion of the results from

two publications and the paper to be submitted is presented.

5.1 Issues and considerations in pre-processing of NDVI data

Pre-processing of data is the first consideration in any study and was predictably crucial in the
case studies (two published papers and one to be submitted) carried out as part of this thesis.
The methods of pre-processing of data are known to affect LSP estimates (Clerici et al., 2012;
White et al., 2009) and hence requires careful consideration of several issues for decision
making. To begin with, the decision to use daily or a composited NDVI product is critical in
LSP studies. Previous research suggests using satellite data with a temporal resolution not
more than the phase of vegetation growth period or phenophase under study (Ahl et al., 2006;
Kross et al., 2011; Zhang et al., 2009). In chapters 4.2 and 4.3 of this thesis, a 4 day NDVI
MVC product as suggested by Asam et al. 2018 was used. In contrast to the 8 day, bi-weekly
or monthly composites, the 4 day MVC aimed at capturing fast occurring changes in the
phenology of vegetation and potentially increases the temporal sampling of valid observations
that were discarded in the 8 day NDVI MVC. NDVI data with lower compositing periods i.e.
less than 8 days and a high quality criteria for data inclusion, may lead to larger data gaps but
did not impair subsequent fitting of phenological models and concurrently improved the
accuracy of mean NDVI estimates (Asam et al., 2018). Moreover, the use of maximum value
composites, especially for MODIS data, helped minimise error in data and also mitigate
problems due to the variable daily footprint of MODIS sensor that may lead to inconsistency
in spectral signatures (Jin and Sader, 2005; Tan et al., 2006; Xin et al., 2013).

Though the MVC NDVI data consisted of fewer outliers than the daily values and the pixel
reliability layer provides indication of contaminated data, there still existed unexplained
deviations or outliers in the temporal NDVI profile of the pixels. Existing methods of outlier
detection such as from Hamunyela et al., (2013), evaluating the n+1 and n-1 values in time
series of data for unusually high deviations or “spikes”, were found to be sub-optimal in our
case. NDVI time series with longer durations of unexplained deviations from the normal
course of NDVI development had to be removed by using a unique two-step function
operating in a larger temporal window as described in Misra et al., (2016). Removal of
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outliers in any time series data presents challenges in filling of gaps. The choice of gap filling
technique can introduce errors in the time series data and hence must be decided according to
the area and subject under study. For example, Beck et al. (2006) filled the winter gaps in
high northern latitudes by assuming the NDVI values to be constant (i.e. complete cessation
of vegetation activity) between the last and first snow free observation. However, in the case
studies carried as part of this thesis, the filling of winter gaps with mean of available winter
values from other years was found to provide satisfactory results as suggested by previous
studies (Bradley et al., 2007; Clerici et al., 2012). The summer gaps however had to be filled
using mean of available neighbouring values in the time series, as filling of gaps in the
growing season from other years would have introduced artificial similarity in the annual
growing season NDVI values and hence defeated the purpose of studying the impacts of
drivers on vegetation phenology. Subsequently, a decision to choose from various existing
smoothing functions also had to be made for the smoothing of NDVI data in order to mimic a
gradually progressing phenological curve. In chapter, 4.1, a Gaussian function was found to
be superior to a double logistic function in modelling both the winter and summer NDVI
values. Cai et al., (2017) showed very similar results in their study, where they demonstrated
the improved performance of local filtering methods over function fitting methods in
smoothing of time series NDVI. The Gaussian algorithm was therefore the preferred choice
for outlier detection and smoothing in all the case studies carried out as a part of this thesis.

Remote sensing data such as Landsat and MODIS have associated pixel quality information
that helps identify and remove poor quality pixels from time series analyses of data. However,
it has been observed that such information alone is not sufficient to completely remove
outliers from a data. In such a situation, experiences from the case studies in chapter 4 of this
thesis and previous studies (Asam et al., 2018; Tan et al., 2011) suggest use of ancillary
information from other sensors or sources that can provide details on meteorological
conditions such as snow depth, temperature and cloud cover, etc. and aid in explaining any
aberrations in the NDVI time series. Apart from removal of outliers, attention should be given
to the choice of gap filling and smoothing functions, ensuring that such choices do not

introduce bias into the data.

5.2 Matching LSP with GP
Chapter 4 of this thesis consists of different sections that deal with the validation of LSP

estimates with GP observations at various scales i.e. time, space and elevation. Chapter 4.1
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examines the challenge in the temporal matching of several LSP-SOS estimates to GP
observations. The pixel (LSP) to point (GP) matching of phenology was a major challenge
and as suggested by previous studies (Hamunyela et al., 2013; Rodriguez-Galiano et al.,
2015) had to be carried out by pairing LSP masked by land cover maps and GP observations
of dominant species in the study area. In chapter 4.1, the strong similarities observed in the
inter-annual behaviour of different species-specific GP observations indicates serious issues
when correlating LSP estimates with GP observations in the absence of a very detailed land
cover map. A species level map as generated by Brus et al., (2012) would be best way to
validate LSP estimates, however, such maps require considerable efforts and statistical skills.
A careful selection of LSP methods for studying and interpreting phenological behaviour is
also of utmost importance. Equally high correlation strengths between LSP and GP might be
observed at locations (pixels) where GP consist of several species having similar
meteorological forcing (Rodriguez-Galiano et al., 2015), and in turn making it difficult to
rationally match LSP with all or any of the different species that are reported from a study
area. The correlation between inter-annual estimates of LSP and GP also showed different
strengths with each different method. The phenology of late understory and broadleaf species
revealed a strong match in their inter-annual behaviour. Results from chapter 4.1 suggest the
use of 20% amplitude and 3 derivative that best correspond with leaf unfolding of early
understory species, and 75% amplitude and 1% derivative to detect broadleaf SOS (greening).
In contrast to Nagai et al. (2010) analyses in chapter 4.1 demonstrate the limitation of an
overall threshold (of an absolute NDVI value) in detecting species specific differences in

phenology.

The results of from chapter 4.1 corroborates the findings of previous studies that suggest
attributing specific LSP methods to specific GP (Eklundh and Jonsson, 2015; Schwartz et al.,
2002). Analyses of phenological data in this cases study also reveal a higher inter-annual
variability in the GP-SOS of early species that are generally limited by the frost period and
have a higher sensitivity to temperature fluctuations (C Cornelius et al., 2013; Wang et al.,
2015). In agreement with Helman (2018), we find that the absence of detailed land cover
maps (including understory distribution) and mixing of signals from pre-existing understory
and the growing overstory before reaching its full canopy maturity, makes the matching of
early season LSP-SOS with a species specific GP a major challenge.
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Another major source of variability in LSP and GP observations is the lack of a common
definition for senescence across species (Gill et al., 2015; Panchen et al., 2015). Additionally,
it is difficult to compare species specific observations of minute and detailed changes such as
bud burst or fruiting in vegetation as reported by observers on the ground with remote sensing
based estimates of phenology that are based on change in the average greenness of vegetation
in a pixel (Badeck et al., 2004; White et al., 2014). Additionally, observation of GP dates are
often affected by inconsistent collection of data that renders missing data in phenological
records. This was evident in Chapter 4.2 where the broadleaf species (i.e. Fagus sylvatica and
Sorbus aucuparia) had EOS as day of leaf fall reported but the conifer species i.e. Picea abies
did not have an equivalent day of senescence in the records. Hence, the EOS extracted from
the remote sensing data could not be compared to any equivalent GP-EOS. Analysis was also
hampered in chapter 4.2 due to many years of missing entries for the GP dates at higher
elevations (> 900 metres) of BFNP. The GP information used in chapter 4.3 was generated by
interpolating observer reported dates of SOS and EOS, hence the method of interpolation and
the changes in the observation network might be partly responsible for the inter-annual
variability in GP values (DWD, n.d.), and hence further complicated validation of LSP.

In agreement with previous studies (Fisher and Mustard, 2007; Hamunyela et al., 2013) strong
correlations in the inter-annual behaviour were detected in the 50% amplitude based LSP-
SOS estimates and GP-SOS (leaf unfolding) observations in chapters 4.2 and 4.3. This was
also shown in chapter 4.1 where 50% and 75% amplitude both revealed high correlations with
leaf unfolding and greening. However, very weak linkages were found in the LSP-EOS
estimates and GP observations of senescence i.e. leaf fall. In chapter 4.3, GP-EQOS depicting
the leaf fall rather than the leaf colouring was more closely linked to the LSP-EOS estimates.
In contrast to the spring, the autumn or EOS has received very limited attention in previous
studies. The difficulty in identifying EOS in the NDVI time series and its weak correlation
with GP observations are evident in chapters 4.2 and 4.3 of this thesis. The limitations of LSP
based estimates in detecting the senescence or EOS have been discussed in several studies.
This is because EOS unlike SOS is very subjective and lasts a period of gradual change in leaf
colouring to complete leaf fall, which makes senescence difficult to observe (Estrella and
Menzel, 2006; Gallinat et al., 2015; Richardson and O’Keefe, 2009; Stockli et al., 2008). The
overreliance on greenness based measures such as NDVI for tracking the entire phenology
might be one of the limiting factors of existing studies. Inclusion of redness based indices and

pigment ratios such as the chlorophyll to carotenoid index (CCI) might help in better
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detection of colouring of leaves and photosynthetic activity of plants (Gamon et al., 2016;
Yingying et al., 2018). Alternative indices were however not tested in the case studies carried
out as part of this thesis.

5.3 What drives variability in LSP?
Chapter 4.2 examines different drivers of mean-LSP at the sub-pixel level. The topography
based MLR models primarily covering micro-climatic influences were able to explain most of
the spatial variability observed in the SOS and LOS estimates from LSP which correspond
well with previous studies by Chen and Pan, (2002) and Reaves et al., (2018). The use of
popular and freely downloadable land cover maps such as CORINE though led to
improvements in the topography based LSP models, but was not able to provide the best
performing models. This was most probably due to the heterogeneity present in the land cover
classes of CORINE maps (Doktor et al., 2009; Kosztra et al., 2014). The use of a proprietary
habitat map that included information on land cover affected by disasters (windstorms),
management (clear cut) and affected areas under regeneration further improved our
understanding of the variability observed in LSP metrics. These insights are consistent with
Norman et al., (2017), who reported phenological behaviour of land cover to be affected by
vegetation type and extreme events such as wildfires and pest infestation. In agreement with
Doktor et al., (2009) inclusion of additional predictors such as land cover information and
forest stand data from LiDAR led to large improvements in the modelled LSP results for
EOS, maxDOY, NDVImax and NDVIsum. The LSP-EOS however vyielded the least
explained variance (i.e. 37%) among all the modelled LSP metrics. The difficulty in the
modelling EOS phases of vegetation has been discussed in previous studies that have
incorporated drivers such as complex interactions between temperature, rainfall and
photoperiod among different triggers (Estrella and Menzel, 2006; Meng et al., 2016; Xie et
al., 2018, 2015b). The species specific dependence of EOS hypothesised in Richardson and
O’Keefe, (2009) was corroborated in chapter 4.2, where the percentage of broadleaf species
in the pixel was found to be one of the stronger drivers of variability in EOS. Analyses
revealed improvements in modelled LSP when accounting for subpixel heterogeneity and
inclusion of LiDAR based forest stand information (Chen et al., 2018; Hwang et al., 2011;
Xie et al., 2018). In contrast to Hwang et al., (2011), chapter 4.2 reveals the importance of
sub-pixel proportions of not only conifers but also broadleaves species in driving the spatial
variability of LSP metrics. Since different species are known to respond to different drivers

and conversely, similar triggers driving differential responses (Basler and Kdorner, 2014;
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Burgess et al., 2018; Laube et al., 2014), the sub-pixel composition of land cover is critical in
modelling and correctly interpreting drivers of LSP behaviour. Similar to Kraus et al., (2016),
no significant influence of aspect on the LSP estimates was found. This is in contradiction to
Xie et al., (2015a) and Reaves et al., (2018) who reported differences in the LSP observed in
the north and south facing slopes. For NDVIsum and maxNDVI, the respective models
revealed the maximum explained variance (> 80%). These indices are known to be
comparatively less sensitive to outliers and methods of pre-processing. They are important
measures of vegetation productivity, least insensitive to user bias and are hence the perfect
candidates to study effects of biotic and abiotic drivers on vegetation (Berner et al., 2011;
Heumann et al., 2007; Lumbierres et al., 2017; Wylie et al., 2008).

5.4 Climate change and phenology in the mountains
Studying differences in the seasonal variations of temperature are important as they can affect
the phenological response of vegetation differently at different locations and in turn affect
ecosystem functioning (Norman et al., 2017; Vandvik et al., 2018). Chapter 4.3 examines the
spring-winter temperature driven phenological rates of forests in the pre-alpine (< 1000 metre
elevation) and alpine region (> 1000 metre elevation) of the Bavarian Alps region. The
influence of spring and winter temperatures on the SOS and EOS revealed differential effects
on forest phenology. In comparison to pre-alpine regions, higher lapse rates of SOS were
observed in the alpine areas, possibly due to longer duration of snow in the higher elevations
(Asam et al., 2018). In agreement with Vitasse et al., (2017), the highest lapse rates in SOS
were observed in years with cold spring with preceding warm winters. Previous studies have
indicated the importance of winter temperatures along with the spring temperatures in driving
spring timings in plants (Cook et al., 2012). Warm winters with a lack of chilling are known
to delay the start of season in plants, yet warmer springs could expedite plant growth due to
accumulation of heat (Laube et al., 2014; Wang et al., 2016). Therefore, it is also essential to
evaluate the inter-annual seasonal temperature variations to obtain a synoptic overview of the
complete plant growth cycle. Minimum difference in the LSP-SOS rates of pre-Alpine and
Alpine regions was observed in years with both cold winters and spring. In general the pre-
Alpine elevational rates of EOS were found to be higher than that of Alpine region. The LSP
at lower elevations (pre-Alpine region) matched closely with the DWD based estimates of
phenology. However, the DWD phenology at higher elevations (> 1000 meters) was difficult
to analyse and validate due to uncertainties in interpolated data (due to limited/ varying

observation sites for interpolation and the lack of detailed information on data processing)
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(DWD, n.d.). This study provides important clues to drivers of inter-annual variability in

phenological timings along climatic gradients.
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6. Outlook

It is essential to understand both uncertainties and drivers of LSP to elucidate the effects of
climate change on vegetation. This thesis evaluates various techniques of pre-processing
satellite data and estimating LSP metrics. In agreement with previous studies, we find that
such decisions (pre-processing and phenology estimation) are subjective and known to
introduce bias into results. Therefore, a critical consideration is essential for selection of such
methods. Additionally, it is essential to have high quality of input data (both remote sensing
and ground based) to generate results with a greater degree of confidence. Inclusion of
alternative and novel sources of data capturing such as LiDAR, drones or UAVs and close
range camera (phenocams) can prove to be the essential bridge between space borne and
ground observations. Remote sensing of phenology presents a promising future with missions
such as Sentinel (from the European Union) that now provide high spatial and temporal
resolution data. Use of field-based spectrometers mimicking spectral regions of space borne
sensors could be used for calibrating models for detection of LSP (which was beyond the
scope of this thesis). Applications of remote sensing indices other than NDVI, and microwave
techniques for remote sensing (i.e. RADAR) for its all-weather visibility is also another

avenue for research in the future.
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8. Tables and figures

Figure 1. A conceptual diagram of species’ response to climate change at various levels of

organisation and scales (source: Diez et al., 2012)

Figure 2. Figure 2. Carl Linnaeus’ record of phenological timings of few common trees and

shrubs in Northern Europe during 1750-1752 (source: Giovanna, 2007).

Figure 3. Remote sensing of vegetation phenology through various platforms. (Source:
Bennet and Hope, 2018)

Figure 4. The spectral response curve of vegetation and soil (source: Clark, 1999).

Figure 5. Flowchart depicting the various themes in the case studies undertaken as part of this

thesis.
Figure 6. Example of pre-processing and smoothing of raw NDVI (time series) from a pixel.

Figure 7. Estimation of different LSP metrics from the daily interpolated times series of a

pixel.

Table 1. Some major developments in land surface phenology studies.
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Abstract: Several methods exist for extracting plant phenological information from time series
of satellite data. However, there have been only a few successful attempts to temporarily match
satellite observations (Land Surface Phenology or LSP) with ground based phenological observations
(Ground Phenology or GP). The classical pixel to point matching problem along with the temporal
and spatial resolution of remote sensing data are some of the many issues encountered. In this study,
MODIS-sensor’s Normalised Differenced Vegetation Index (NDVI) time series data were smoothed
using two filtering techniques for comparison. Several start of season (SOS) methods established in
the literature, namely thresholds of amplitude, derivatives and delayed moving average, were tested
for determination of LSP-SOS for broadleaf forests at a site in southwestern Germany using 2001-2013
time series of NDVI data. The different LSP-SOS estimates when compared with species-rich GP
dataset revealed that different LSP-SOS extraction methods agree better with specific phases of GP,
and the choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods
mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in means
and trends, and high, significant correlations of up to 0.7 with leaf unfolding and greening of late
understory and broadleaf tree species. GP-SOS of early understory leaf unfolding partly were
significantly correlated with earlier detecting LSP-SOS, i.e., 20% amplitude and 3rd derivative.
Early understory SOS were, however, more difficult to detect from NDVI due to the lack of a high
resolution land cover information.

Keywords: broadleaf forests; understory; phenology; start of season (SOS); leaf unfolding; match in
LSP and GP

1. Introduction

Phenology, the science of periodic events in plant and animal life cycle, has been widely studied
and well documented for many decades (e.g., [1-3]). It has been a core parameter for demonstrating
and studying the impact of climate change on terrestrial ecosystems. However, the major drawback of
traditional phenological observations (hereafter referred to as Ground Phenology (GP)) is the fact that
they are labour intensive, localised and lacking global coverage, and cover only a limited number of
species. The advent of modern remote sensing techniques provides a promising alternative and new
opportunities for phenological studies [4], a departure from the traditional ground based observations
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of phenology. In comparison to GP, remote sensing techniques provide a global coverage of data at
various temporal and spatial scales, which can support the study of trends in phenology and its drivers.

Satellite based determination of vegetation phenology (hereafter referred to as Land Surface
Phenology (LSP)) has been an active research area since the past two decades. Many studies have
been conducted at global and local scales, which provide an ensemble of techniques and algorithms to
handle varied spatial resolution and temporally discontinuous satellite data [5-10]. Though several
methods exist for extracting phenological information or LSP from time series of satellite data, there
have been only a few successful attempts to temporarily match GP with LSP [11-14]. Studies of such
kind are known to be plagued with temporal and spatial resolution issues, where spatially continuous
and pixel based or area averaged LSP-SOS have to be matched with spatially discontinuous and
point-based, mostly species-specific GP. A further cause of mismatch in GP and LSP is the inherent
difference in their respective definitions of phenology. GP is the visual interpretation of species-specific
phenological phases such as bud-burst, leafing, flowering, etc., whereas LSP is defined in terms of
area averaged intensity of dominant vegetation or canopy greenness and cover, including background
such as soil and understory [6,15]. Moreover, the minute differences in phenology observed by ground
volunteers might not be sufficient to produce changes in satellite measured reflectance of vegetation
due to temporal and spectral limitations of satellite data [4,16]. Apart from differences in definition, LSP
estimates are also known to be influenced by the methods used for corrections, smoothing, phenology
detection [8,17], and the accuracy or homogeneity of land cover data analysed [18]. Despite the
mentioned limitations, satellite data nevertheless may provide valuable and spatially continuous
information about the LSP [19-21].

Among various available methods for determination of LSP, distinctions cannot be made to select
a single best technique as such a decision would differ for various study areas, data and species
studied [22-24]. Often various LSP-SOS have been matched with GP in form of leaf unfolding or a
phenology index of vegetation [11-14] and past research has shown variability among various LSP
measures. The selection of a LSP method for deriving or matching a specific GP event is therefore not
so straightforward and more research is needed to attribute ecological meanings to various LSP-SOS
methods [25].

Therefore, the central aim of this study is to test the hypothesis that different LSP-SOS correspond
to specific GP-SOS observations. This is done by comparing and correlating various phases of GP with
different measures of LSP obtained from two of many relevant smoothing algorithms (i.e., weighted
Gaussian and Double Log) and using an ensemble of LSP-SOS detection methods established in the
literature. Since GP and LSP have different definitions, an absolute match in terms of specific day of
year is unlikely to occur. However, the general behaviour of trends in start of season from ground and
satellite observations can be assumed to be fairly related, since both observe various starting points in
the vegetation growth cycle [13,26]. Therefore in order to match GP and LSP, a three step validation
was carried out as: (a) match in seasonality or mean onset dates; (b) match in climate change impacts
in terms of temporal trends using linear regression techniques; and (c) match in inter-annual variation
using correlations (see Section 2 for details).

In absence of reliable and high resolution land cover information, a successful match in LSP
and GP might just be a matter of chance. In such a case there are higher chances of tracking species
with similar behaviour, and it might be difficult to make any assumptions about the distribution of
specific species in the study area as mentioned in Rodriguez-Galiano et al. [14]. In our study, GP-SOS
are therefore used as reference points, and a higher correlation between LSP-SOS and GP-SOS only
indicates the phenological similarity between pixel level LSP and species-specific GP during 2001-2013.
This present study therefore calls for close scrutiny of studies comparing GP and LSP and addressing
several important concerns. The first issue is the choice and reliability of data used, and compromising
between spatial and temporal resolution of remote sensing data. The second is the choice of data
processing and smoothing function used, which has to be decided according to data properties and can
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affect the LSP estimates. The third important decision is regarding the ways of assessing the agreement
between intrinsically different measures of SOS, i.e., GP and LSP.

2. Materials and Methods

2.1. Study Area and Data

The rural area east of Stuttgart (Figure 1) in the southwest of Germany covering an area of
approximately 150 km? was selected for this study. The reason for choosing this particular site was
the availability of a very detailed GP dataset. Data from various sources such as remote sensing
Normalised Difference Vegetation Index (NDVI), land cover information (CORINE) and ground
phenological data were used. The corresponding data sources are briefly described as below:

2.1.1. Remote Sensing Data

The Normalised Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging
Spectrometer (MODIS) MOD13Q1 product was used for this study. These data are maximum value
composites of 16 day and available at 231.65-m resolution. The NDVI and its corresponding pixel
reliability information were downloaded from the MRT Web application of the United States Geological
Survey website (https://mrtweb.cr.usgs.gov/) for 2001-2013.

2.1.2. Land Cover Data

The CORINE land cover (CLC) 2006 vector dataset was obtained from the European Environment
Agency website [27] for determination of broadleaf forests in the study area. The CLC data for year
2006 has a reported 85% thematic and 100 m geometric accuracy.

2.1.3. Ground Phenological Data (GP)

The ground phenological (GP) observations for 2001-2013 were made at one single site east
of Stuttgart, Germany, with surrounding agricultural areas and woods (48.73°N/9.26°E, elevation
410 m a.s.l.). Records were made by a highly dedicated naturalist, who also served as a phenological
observer for the German Meteorological Service (DWD) for decades. He recorded the phenological
development of numerous species 2-3 times a week following a permanent transect. Depending on
the season and weather conditions, the entire transect took approximately 2-3 h by foot and a distance
of 8-10 km was covered. For each species, onset dates of several phenological development stages
were recorded. We used the phenophases leaf unfolding and forest greening-up of 8 and 13 common
deciduous tree species, respectively, as well as leaf unfolding of 97 common understory species for
our analysis. The leaf unfolding dates of 4 common conifer evergreen species were also included
into the analyses (see Supplementary Figures S5 and S6 and Table S1 for complete details of GP).
The leaf unfolding phase corresponds to the appearance of the first leaf (5%-10%) and the greening-up
is the date when all leaves are out at their final size. This GP information was used for validation
of the various satellite start of season estimates (LSP-SOS). Since the exact location of GP was not
known, the GP was temporally linked with LSP (see Section 2.4 for details). From a limited ground
survey in our study area, it was observed that the overstory of the forest stand marked as broadleaf
species in CORINE cover were dominantly deciduous with presence of few conifer- evergreen tree
species. The various GP observations were further grouped into understory comprising of Herbaceous
Annuals, Herbaceous Perennials and Woody Perennials. The overstory species were grouped into
coniferous- evergreen and deciduous species.

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 54
multispecies ground observation and LiDAR.



Remote Sens. 2016, 8, 753 40f 18

® Study Area

NDVI
1
-
0
Legend

D Study Area

E Broad leaf forests
A GP observation site

0 125 25 5 Kilometers

Figure 1. Study area and CORINE land cover map showing the distribution of broadleaf forests.
(NDVI image is for day of the year (DOY) 145 in 2001). Inset: Location of study area in Germany.

2.2. Pre-Processing and Smoothing of Satellite Time Series Data

The times series of 16-day NDVI raster data from MODIS sensor for the years 2001-2013 were
first layer stacked to obtain a time series of data for each pixel. The CORINE land cover mask was
used to restrict the study to the broadleaf forests pixels only; 278 broadleaf forests pixels were finally
assessed. In the NDVI time series of each pixel, data marked as good or marginal (in the corresponding
pixel reliability information) were retained and those labelled as contaminated with snow or cloud or
missing were removed. Thus, a raster stack of NDVI time series with reliable and uncontaminated
values but with gaps was obtained. In order to create a complete NDVI time series, filling of gaps
was done in two steps: (a) filling of winter gaps; and (b) linear interpolation of the remaining short
gaps in 16-day data. The winter gaps of a pixel occurring in the months of December and January of
each year were filled with the average of the available and uncontaminated winter NDVI from the
same months in other years as in Beck et al. [7], Clerici et al. [28], and Forkel et al. [10]. Even though
spurious NDVI values were removed, the time series still contained values supposed to be outliers
due to high differences to the precedent and subsequent values. To cope with these “sudden spikes”,
a weighted Gaussian filter (the weighted Gaussian filter is explained in the Supplementary Material
Equation (S1)) was applied to the time series. Deviations of raw NDVI from the Gaussian filtered data
were z-transformed and values beyond two standard deviations were considered outliers and removed
from the raw data, and replaced with the mean of the two neighbouring raw values. This outlier
removed NDVI data were again smoothed using the weighted Gaussian filter. Alternatively, a double
logistic smoothing function [7,29] was also applied to the outlier removed NDVI time series for testing
one of the frequently used NDVI smoothing algorithms. In conclusion, the raw NDVI time series was
initially filtered for obvious outliers using the Gaussian filter and then smoothed again using Gaussian
or Double Log function to remove undetected outliers. A similar two-step process of outlier detection
and consequently smoothing is also mentioned in [13,30]. All pixels in this study were treated in the
same manner. An example of both smoothing methods is presented in Figure 2. The Gaussian and
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Double Log smoothed NDVI time series were then spline and linearly interpolated to daily values,
respectively. Different interpolations were used in order to retain much of the original shape of the
16-day smoothed NDVI for determination of LSP-SOS as described in Section 2.3.
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Figure 2. Illustration of smoothing of a pre-processed and outlier removed NDVI time series using
Gaussian and Double Log functions. Note: In comparison to the Double Log smoothed NDVI, the
Gaussian smoothed NDVI shows lower residuals in the winter troughs. The residuals in the non-winter
period are almost similar for both the smoothing techniques.

2.3. Determination of Satellite Start of Season (LSP-SOS)

It has been observed by many researchers in the past [22,24,31,32] that different LSP-SOS
derivation methods provide different results and therefore no single method can be claimed to
best describe the phenology from satellite NDVI data. In this context Schwartz et al. [26] notes,
“though all (methods of LSP-SOS are) assessing the start of spring vegetation growth in some fashion, are
effectively measuring different processes”. Hence, an ensemble of methods established in literature was
used to determine several LSP-SOS in this study. The various start of season methods used for this
study can be classified into three broad categories, namely thresholds of amplitude, delayed moving
average (DMA) and rates of change (derivatives). The 20% [33,34], 50% [8,13,35], 60% and 75% [36]
thresholds of amplitude determines the specific day of the year on which the smoothed NDVI time
series crosses 20%, 50%, 60% and 75% of the NDVI amplitude of a given year. The delayed moving
average [6,9,26,28] method used in this study is established from auto regressive moving average
(ARMA) models that compare the NDVI time series with its moving average to determine the start of
season. The derivatives, namely 1st [37-39], 2nd [38,40] and 3rd derivatives [32,38], determine the start
of season as the date of the maximum increase in the respective NDVI derivative curve. As explained
by Tan et al., 2011 [38], the local maxima of 1st derivative corresponds to the maximum rate of increase
of green up phase, whereas, the local maxima of 2nd and 3rd derivative corresponds to the beginning
of green up. In particular the SOS from 2nd derivative indicates the timing when the majority of pixel
is turning green and 3rd derivative indicates where the change of green up rate is greatest (first flush
of greenness on the ground). For ecological and detailed interpretation of these approaches, we refer
to the cited literature.
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2.4. Methods of Matching Satellite (LSP) and Ground (GP)-SOS

The objective of matching GP- and LSP-SOS was studied based on SOS obtained from a single
regionally averaged NDVI time series as well as individual pixel SOS at native MODIS resolution
of 231.65 m. The SOS from the regional averaged NDVI was compared with the SOS averaged
from native resolution NDVI in order to check whether an spatially or regionally averaged NDVI
could track the general behaviour of the local area phenology as mentioned in Atzberger et al. [41].
A three step validation between GP and LSP-SOS was carried out in this study as: (a) match in
seasonality or mean onset dates; (b) match in climate change impacts (temporal trends) using linear
regression analysis, where the slope of linear regression between time and SOS was used to compare
the resulting trends; and (c) match in inter-annual variation of SOS using a Spearman’s rank correlation
measure. Correlations with p < 0.05 were considered to be significant for this study. Since the exact
location and sub-pixel proportion of species was not known, each pixel in reality could be anything
between a homogenous stand to a mixture of several species. Therefore each pixel LSP-SOS time
series was correlated to each of the species-specific GP-SOS as mentioned in [13,14]. Our study
uses specific GP-SOS records as reference points, and intends to show similarity in phenological
behaviour of pixels (LSP) marked as broadleaf forests in CORINE land cover and species-specific GP
during 2001-2013. The means and trends of LSP-SOS for individual pixels (analysis at native MODIS
resolution of 231.65 m) were also checked for spatial dependence using a two-tailed correlation analysis.
Finally, correlation strength among GP of species was also measured to examine the inter-species
similarity with respect to inter-annual GP-SOS behaviour.

3. Results

3.1. Intra- and Inter-Annual Variability of LSP-SOS

Figure 2 shows the Gaussian and Double Log smoothed NDVI time series. It can be seen that the
Gaussian filter was able to follow the winter troughs better than the Double Log function. In addition
the variance of start of season dates and their annual means obtained from different methods was
better described using the Gaussian smoothed NDVI (Figure 3). The different LSP-SOS methods
showed more variability and differentiation when applied for the Gaussian smoothed series, whereas
the Double Log did not differentiate well among the derivatives. Hence, the Gaussian smoothed time
series is selected for further discussion in this paper (please refer to the Supplementary Figures S3
and S4 for Double Log smoothed results). The years 2007, 2009 and 2011 reveal relatively early mean
LSP-SOS and on visual inspection they strongly correspond to the GP observations (see Supplementary
Figure S5 for species specific GP-SOS time series). The year-to year variability in SOS reflects the
different spring weather patterns. Overall the trends for LSP-SOS obtained from both smoothing
methods show higher variability in the 2nd and 3rd derivatives, and lower variability for the 50%,
60% and 75% amplitudes and the 1st derivative (Figure 3). On average, the trends for 20% amplitude
and 3rd derivative were positive, and the rest of the LSP-SOS methods provided negative trends,
indicating an advance in onset over time.
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Figure 3. LSP-SOS from (a) Gaussian and (b) Double Log smoothed NDVI for broadleaf pixels using
various methods (spatially averaged SOS for specific years as filled-coloured circles and one standard
deviation as error bars). Overall mean is the mean SOS (2001-2013), which is a temporal and spatially
averaged measure of LSP-SOS. The temporal trends in days/year (right y-axis) for all pixels’ LSP-SOS
are given as means and respective one standard deviation during 2001-2013. The year-to year variability
in SOS reflects the different spring weather patterns.

3.2. Mean LSP-SOS and Their Trends

The spatial heterogeneity of LSP-SOS of broadleaf pixels in the study area is well captured
in Figure 4a,b. The figure show the time averaged LSP-SOS (2001-2013) and the respective linear
trends of the broadleaf pixels in the study area. However, no significant spatial correlation (at
p < 0.05, two-tailed) was found between each mean LSP-SOS and its respective trends for any of the

different methods.
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Figure 4. (a) Mean LSP-SOS (day of year) for the broadleaf pixels in the study area; (b) Linear trends of
LSP-SOS (days/year) for the broadleaf pixels in the study area.

3.3. Comparison of Means and Trends of LSP-SOS and GP-SOS

The means and linear trends of GP and LSP were compared to analyse the effect of choosing
different LSP-SOS extraction methods from NDVI (Figure 5). The various methods of LSP extraction
revealed a wide range of SOS annual means and trends with major overlaps for both axes in
particular for trends. Among all the methods of LSP-SOS extraction, the 20% amplitude, and 2nd
and 3rd derivative SOS occur earliest in the calendar year and match better with the mean GP-SOS
of understory species; however, there was a large disagreement in their respective observed mean
trends. The other methods to determine LSP-SOS (50%, 60% and 75% of amplitude and 1st derivative)
matched better with GP-SOS, both in trends and mean of broadleaf unfolding and greening, which

occur in the later spring of the calendar year.
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Figure 5. Comparison of LSP-SOS from Gaussian smoothed NDVI (mean LSP-SOS as special symbols
in black and one standard deviation as error bars) and various species-specific GP-SOS (as filled and
coloured circles, refer to Supplementary Table S1). Numbers are given in order of increasing mean SOS.
Codes for GP: HA (herbaceous annuals), HP (herbaceous perennials) and WP (woody perennials) refer
to understory leaf unfolding dates; U (Conifers leaf unfolding); LU (leaf unfolding) and G (greening) of
broadleaf species (see Supplementary Table S1 for complete details of species-specific information).

3.4. Inter-Annual Variations of GP-SOS and LSP-SOS

The match in inter-annual variations of GP-SOS and LSP-SOS was assessed by non-parametric
Spearman’s rank correlation. Since the exact location and sub-pixel proportion of species was not
known, each pixel LSP-SOS time series was correlated to each of the species-specific GP-SOS. Some of
the species” SOS are higher correlated with specific methods of LSP extraction (see Supplementary
Figure S2 for details). Figure 6 displays Spearman’s rank correlations coefficients (at p < 0.05, one-tailed
positive) between selected GP-SOS of understory /broadleaf species and selected LSP-SOS for all pixels
in the study area. In general, leaf unfolding of understory species was found to be well correlated with
LSP-SOS derived by methods covering the earlier part of the calendar year such as 20% amplitude and
3rd derivative, when the understory is believed to be dominant and the canopy cover of broadleaves is
still minimal. LSP-SOS methods covering the later part of the year (i.e., 50% and 75% amplitude, and
1st derivative) strongly correlated with leaf unfolding and greening, when the canopy of the broadleaf
tree species or overstory is mature and full.

GP-SOS of late understory species were better described by LSP-SOS methods providing onset
dates of the later part of the year (namely 75% amplitude and 1st derivative). This behaviour of
late understory phenology was similar to that of broadleaf phenology and was also mirrored in the
correlations between the various species-specific GP in Figure 7. This correlation matrix revealed
two phenological clusters, one for early understory and a second for late understory and broadleaf
species. The early understory GP was, however, very different from the second cluster and was best
(i.e., most significantly correlated pixels) described by early LSP-SOS methods such as 20% amplitude
and 3rd derivative. For example, the raster maps in Figure 6 revealed higher significant correlations
for: (1) early understory, i.e., Myosotis sylvatica (mean SOS = 70.5) with early LSP methods such as
20% amplitude and 3rd derivative; and (2) late understory, i.e., Lathyrus niger (mean SOS = 102.7) and
broadleaf greening, i.e., Fagus sylvatica (mean SOS = 120.9) with 75% amplitude and 1st derivative.

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 60
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Figure 6. Maps showing Spearman’s rank correlations (p < 0.05, one-tailed positive) between LSP-50S
and GP-SOS for selected understory and broadleaf tree species. MS, Myosotis sylvatica (leaf unfolding);
LN, Lathyrus niger (leaf unfolding); and FG(G), Fagus sylvatica (greening), with mean SOS of 70.5, 102.7
and 120.9 day of year, and species ID/No. 12, 95 and 119, respectively. Note: The mean correlations of
each species GP-SOS over the study area are shown in Figure S2 in supplement. Refer to Table S1 for
details of GP-SOS.
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Figure 7. Spearman’s rank correlation matrix for selected species-specific GP-SOS; the heatmap
confirms that the phenology of many late understory species is highly correlated with broadleaf tree
phenology. Note: Species are arranged in increasing order of their mean SOS; refer to Supplementary
Table S1 for details of species-specific information.
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3.5. Analyses Based on Spatially Averaged NDVI Time Series

The analyses of LSP-SOS at the native MODIS resolution of 231.65 m revealed the spatially
heterogeneous behaviour of broadleaf pixels in the study area. Hence, an analysis at a regional
scale was also undertaken by averaging the daily NDVI of the pixels. This spatially aggregated or
regionally averaged NDVI time series was expected to capture the general phenological behaviour of
the broadleaf pixels of the region. LSP-SOS by the different methods were then estimated from this
averaged NDVI time series as described earlier. The annual LSP-SOS from this regionally-averaged
NDVI time series strongly agreed with the annual averaged LSP-SOS obtained from the native MODIS
scale with R? = 0.99 (Figure 8). The agreement was worse in the early part of the year when the NDVI
is expected to be a mixture of understory, broadleaf and other background, e.g., soil.
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Figure 8. Comparison of LSP-SOS time series (day of year) obtained from spatially or regionally
averaged NDVI for the broadleaf pixels in the study area (y-axis) and SOS averaged from
single/individual pixels SOS (x-axis). Note: SOS time series as coloured unfilled circles and its
mean as coloured crosses.

In order to analyse the match in inter-annual variability annual LSP-SOS from the spatially or
regionally-averaged NDVI and GP-SOS time series were correlated by Spearman’s rank correlations
(Figure 9). Most of the significant and high coefficients (at p < 0.05, one-tailed positive) were revealed
for broadleaf unfolding and greening. However, leaf unfolding of very few early understory species
such as Geranium robertianum, Myosotis sylvatica and Alliaria petiolata displayed significant and high
correlations for 20% amplitude method. Leaf unfolding of late understory as well as greening of
broadleaf tree species showed significant and higher correlations with LSP-SOS by 75% amplitude or
1st derivative. This indicates that the choice of LSP method should be governed by the species and the
phenophase under study.

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by
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Figure 9. Spearman’s rank correlation coefficients between GP-SOS and selected LSP-SOS based on a
regionally averaged NDVI for broadleaf pixels during 2001-2013. Region above dotted horizontal red
line comprises significant correlation coefficients, p < 0.05. Note: Species on the x-axis are grouped
according to traits (Early Understory = leaf unfolding of early understory, Late Understory = leaf
unfolding of late understory, U = leaf unfolding of conifers, LU = leaf unfolding of broadleaf species
and G = greening of broadleaf species) and arranged in order of increasing mean GP-SOS; the x-labels
are species ID number (see Supplementary Table S1 for complete details of GP).

4. Discussion

4.1. The Choice of Data Processing Technique

The smoothing of NDVI time series by two methods revealed considerable differences in the final
smoothed NDVI (Figure 2) and eventually the LSP-SOS estimates from each method (Figure 3), as it has
also been mentioned in Jonsson and Eklundh [17], White et al. [8] and Atkinson et al. [30]. Especially the
winter troughs were better fitted by the Gaussian filter than the Double Log function (Figure 2). Since in
the study area winters are not too long and continuous, the retention of winter troughs for broadleaf
forests may still provide meaningful information. In addition, pre-processing before smoothing, e.g.,
outlier removal and gap filling of NDVI data, equally affect LSP-SOS estimates [28]. This indicates
that each step of data processing and smoothing adds some uncertainty to the original data, and
thus should be wisely decided by the researcher. The Double Log function used in this study was
proposed by Beck et al. [7] for modelling of vegetation cycles in higher northern latitudes where the
vegetation is completely inactive during the long winters. He therefore estimated the missing winter
NDVI from the maximum value of first/last snow free winter NDVI values in the time series and then
assumed it to be constant through all the winters. In another study by Tan et al. [38], first the growing
season was defined by a minimum temperature threshold and values below this were removed, and
connected by a line. Some studies substituted all gaps, winter or summer with the seasonal mean
obtained from the time series [10,28,35]. However, in this present study winter and summer gaps were
treated differently (see Section 2.2). The identification of outliers, their removal and subsequent filling
is debatable, and has been handled by different authors in varied ways [13,17,28,42]. From a review of
literature, the absence of agreement among researchers in gap filling is evident and this disagreement
persists in the other steps of data handling. Since several ways have been proposed to handle noisy
data, the choice of data processing should therefore be governed by the properties of the data, amount
of noise and the area under study.

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by
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4.2. Mean of LSP- and GP-SOS

The inter-annual pattern of mean LSP-SOS (Figure 3) obtained from both the smoothing methods
matched strongly with the GP-SOS records (see Supplementary Figure S5). The years 2007, 2009 and
2011 indicate a relatively early mean SOS for the majority of species, where these years also show
higher preseason (March-April) temperatures, confirming the temperature dependence of vegetation
SOS [1,2,43]. This general match in inter-annual pattern of mean SOS obtained from different LSP
methods and GP was also reported by Schwartz et al. [26]. For the sake of brevity, the results from
the Gaussian smoothed NDVI time series are discussed here forth (refer to Supplementary Figures S3
and S4 for results of Double Log smoothing results). The various mean LSP-SOS estimates (Figure 5
and Supplementary Figure S1) indicate that each method corresponds to a particular region of the
seasonal NDVI growth curve and therefore mirrors specific seasonal occurring GP-SOS observations.
In this present study, among all the methods of LSP-SOS extraction, a few such as 20% amplitude,
2nd and 3rd derivative SOS that occur earliest in the calendar year, and match better with the mean
GP-SOS of understory species. The other methods of LSP-SOS (50%, 60% and 75% of amplitude and
1st derivative) match very strongly with mean GP-SOS of broadleaf unfolding and greening, and occur
later part in the year.

4.3. Trends in LSP- and GP-SOS

In this study, the GP-SOS observations reveal a positive trend for understory, i.e., leaf unfolding of
understory species occurring later over the last 13 years, and a weaker positive and even some negative
(earlier) trends for broadleaf species which were observed in later spring (Figure 5). In contrast,
although LSP-SOS dates spread over the whole spring season depending on the method applied
as found by Studer et al. [12], Hird and McDermid [44] and White et al. [8], their temporal trends
were quite uniform indicating almost no change over the study period. In contrast to Fu et al. [24]
who reported stronger advancing trends of GP-SOS than of LSP-SOS (2000-2011) in central Europe,
our study for southwestern Germany (2001-2013) sees for early season events stronger advancing of
LSP-SOS than of GP-SOS of understory species.

It is therefore important to attribute specific LSP methods to specific GP, as also noted by some
previous studies [25,26]. In general, the earliest LSP-SOS dates based on 2nd and 3rd derivative equally
revealed positive trends for 42% and 52% of the pixels, respectively. The last LSP-SOS dates, i.e., based
on the 60% and 75% amplitude, revealed negative trends for 59% and 63% of pixels, respectively.
On average, trends for 20% amplitude and 3rd derivative were positive and the rest of the LSP-5OS
methods revealed negative trends. The largest mismatches in trends from GP-SOS and LSP-SOS (2nd,
3rd derivatives and 20% amplitude) occurred in the early part of the year, i.e., the early understory leaf
unfolding occurring before the 90th day of the year.

4.4. Inter- and Intra-Annual Variability in LSP- and GP-SOS

The correlation analyses between GP-SOS and LSP-SOS confirmed these findings, since GP-SOS
of specific species matched better with specific LSP-SOS methods (Supplementary Figure S2).
Different categories of GP, i.e., early understory, late understory and broadleaf species dictated the
different best performing LSP method. The early understory species (e.g., Geranium robertianum,
Muyosotis sylvatica, Alliaria petiolata) were better correlated with the earliest detected LSP-SOS
method such as the 3rd derivative and 20% amplitude. Alternatively, leaf unfolding of broadleaf
species (e.g., Fagus sylvatica, Quercus petraea, Fraxinus excelsior) and greening (e.g., Fagus sylvatica,
Quercus robur, Prunus padus) significantly corresponded to the later detected LSP-SOS methods such
as the 75% amplitude and 1st derivative. The understory species with late GP-SOS (Vinca minor,
Lathyrus niger and Rhamnus cathartica), however, were significantly related to LSP-SOS based on the
75% amplitude and 1st derivative. This similarity in the phenological behaviour of late understory and
broadleaf species was also revealed by the two clusters obtained from correlation analysis between
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GP-SOS observations comprising two phenologically similar clusters, first for early understory and
second for late understory and broadleaf species. In addition, we also correlated GP-S0OS and LSP-SOS
with mean SOS and trends of corresponding pixels (not shown). Although no clear pattern was
observed, there was an indication of earlier LSP-SOS mirroring early understory GP-SOS and the later
LSP-SOS pixels corresponding strongly with broadleaf phenology.

In general, the inter-annual variability in GP-SOS decreased as the season progressed in time
(Supplementary Figure S6), which also corresponds well to LSP-SOS based on the different methods
operating in the various regions of the NDVI curve (Figure 3). Apart from the mean GP-SOS and its
trends, the early detecting LSP-SOS in form of 20% amplitude and 3rd derivative were also able to
capture the high inter-annual variability of early species GP-SOS (understory) occurring before 90th
day of the year (Supplementary Figure S6). These early species are limited by the frost period and
hence show higher response to temperature fluctuations and therefore a higher inter-annual variability
in their SOS [45,46]. The lower correlations of early understory species’ GP-SOS with LSP-SOS could
be due to the short time series of data or may be due to artefacts introduced in smoothing of early
season NDVI. In comparison, species with later GP-SOS, however, had lower variability in their SOS,
which was also evident in the corresponding LSP-SOS such as 75% amplitude and 1st derivative.
The broadleaf species with later GP-SOS showing higher correlations with the mentioned LSP-SOS
(75% amplitude and 1st derivative) can be classified as either climax or intermediate species according
to their successional strategy [47].

As discussed before, previous research has provided a variety of LSP-SOS methods for detection
of start of season, which in turn has been analysed for matching with GP. However, our study
clearly demonstrates that specific LSP methods are tightly linked to specific GP phases. Our study
also indicates that in order to match LSP estimates with GP, a complete knowledge of the species
composition of the landscape is required. Since in heterogeneous landscapes the satellite green-up
might actually capture the understory green-up that occurs several weeks earlier than broadleaf
overstory greening. In absence of detailed land cover information, it is difficult to attribute the changes
in NDVI profile (for estimating LSP-SOS) to changes in either overstory or understory [4,18].

4.5. Does the Regionally Averaged NDVI Capture the General Behaviourof Local Area Phenology?

To tackle the issue of heterogeneity of LSP at individual pixel level and due to the lack of detailed
ground-truth information for each pixel, the pixel based NDVI was averaged to a daily measure for
the broadleaf pixels in the study area. It was expected to capture the general trend of the broadleaf
forests’ phenology, though losing the specific behaviour of the pixels. The LSP-SOS obtained from this
regionally averaged-NDVI was found to have a strong linearity (R? = 0.99) with the averaged LSP-50S
obtained from individual pixels (Figure 8). The maximum departure in the LSP-SOS pairs occurred
in the early part of the calendar year, which covers understory growth period. Here, the NDVI is
expected to be a contribution of understory and/or dormant overstory and/or background (e.g., soil).
The positive trends for the early understory in the pixel based LSP-SOS were lost in the LSP-SOS
obtained from averaged NDVI. As mentioned earlier we emphasize the importance of having a reliable
land cover classification at high resolution for both understory and broadleaf forests. In absence of such
reliable land cover information, the uncertainty in NDVI is higher, especially in the earlier part of year
and thus also increasing the uncertainty in the LSP-SOS extracted. However, in the later part of the year,
when the broadleaf canopy is mature and full, the uncertainty in NDVI is expected to decrease since
NDVI predominantly provides broadleaf canopy reflectance, though the information about specific
species within the pixel would still be lacking. The correlation measure of the regionally-averaged
NDVI SOS and the species-specific GP-SOS yield similar results as with the pixel level-native resolution
LSP-SOS. In general, it was observed that GP of early understory species were highly correlated with
earliest LSP methods such as 20% amplitude or 3rd derivative, whereas the GP of late understory
and broadleaf were strongly correlated with later occurring LSP methods such as 75% amplitude or
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1st derivative (Figure 9). There were, however, only a few species of early understory corresponding
to LSP-SOS, indicating the general difficulty in detecting their phenology.

4.6. Detecting Specific GP in NDVI Curves

The success in matching LSP-SOS with GP is most likely linked as whether the understory species
can be seen as typical for the broadleaf forest communities. Then, their phenology of explicitly covering
the spring gap before full canopy maturity is adjusted to the climax species” phenology and therefore
might be mirrored in the respective NDVI curves. Additionally, the possibility of finding an important
phenological event in the interpolated period of NDVI would only increase the uncertainty of LSP-SOS
estimates along with the sub-pixel heterogeneity issue [28,42]. For example, bud break, the first
noticeable swelling of the buds is traditionally a phase recorded in GP but is reportedly undetectable
in LSP. Definitively, phenological phases such as bud break are a too small feature or event to produce
detectable changes in the NIR band of satellite sensor [4]. The mixing of bud burst signals with
pre-existing understory might also be another reason for the poor detection of early phenophases of
broadleaf species. Fisher and Mustard [15] indicate this in their study where inter-annual behaviour
of LSP-SOS obtained from 50% amplitude of NDVI indicated a stronger linear relationship with GP
records of greening of 75% of leaves than with 50% bud break. Soudani et al. [42] also reported a
better performance of the inflection point of the fitted NDVI curve or late LSP-SOS with the start of
onset of greening in 90% of trees, whereas the day of minimum NDVI or earlier LSP-SOS showed
higher agreement with the earlier phase of onset of greening i.e., in 10% of trees. As pointed out
by Nagai et al [48] NDVI thresholds may also be used to detect spring phenology of broad-leaved
forests. However, our results suggest that an overall threshold may not account for the vegetation
type specific differences of spring phenology. Though earlier research has reported a better agreement
of some specific LSP methods with some GP phases, but none of them had systematically tested the
performance of various LSP methods with a variety of GP observations. Hence, our paper reveals some
of the characteristics of commonly used LSP estimation methods, their variability and its agreement
with GP observations. Since there seems to be a fair indication of correspondence of specific GP-SOS
to specific LSP-SOS, we therefore suggest that the 20% amplitude and 3rd derivatives are the best
measures of early understory SOS; and 75% amplitude and 1st derivative to best correspond with
broadleaf SOS. However, these results need to be tested further with improved data resolution and at
different sites.

5. Conclusions

This paper aimed at studying the LSP of broadleaf forests and to assess its agreement with a rich
set of GP observations for specific species. The problem of attributing or matching pixel based LSP
estimates to GP of specific species is one of the important underlying limitations of this paper and
many similar studies. A variety of available LSP-SOS estimation methods were tested and revealed
an inherent uncertainty associated with the initial processing and smoothing of data, estimation of
LSP-SOS and finally the validation with GP. Therefore, this study reveals and discusses some of the
limitations of LSP studies from remote sensing data.

It was found that the agreement between GP and LSP method is governed by the species and
phenophase under study. Broadleaf species and late understory occurring after the 90th day of the year
reveal stronger significant correlation (p < 0.05) with late detected LSP methods such as 75% amplitude
and 1st derivative, whereas early understory reveal stronger significant correlation (p < 0.05) with early
detected LSP methods like 20% amplitude and 3rd derivative. There were several mismatches either
in mean SOS or trends or both when comparing GP of species and LSP, which accentuate the need for
detailed studies with data quality of highest order. The limitations of using a 13-year length satellite
NDVI time series also have to be considered. Past studies and our analyses indicate the importance of
a reliable land cover map both for understory and broadleaves, in order to improve our understanding
of phenology from LSP and relate it to GP. Even though the results from this study are specific to a
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small area and a specific GP dataset, it nonetheless provides vital insights into problems of matching
LSP estimates with GP observations. We therefore recommend careful analyses of LSP methods and
land use cover of the study area for future studies and redoing similar analyses in other regions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/753/s1,
Equation (S1) Weighted Gaussian filter, Figure S1: Gaussian smoothing results-I, Figure S2: Gaussian smoothing
results-II, Figure S3: Double Log smoothing results-I, Figure S4: Double Log smoothing results-II, Figure S5:
Time series of GP-SOS-I, Figure S6: Time series of GP-SOS-II and Table S1: showing Mean-SOS and trends of
species-specific GP and their ID numbers (No.).
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ABSTRACT

In the past, studies have successfully identified climatic controls on the temporal variability of the land surface
phenology (LSP). Yet we lack a deeper understanding of the spatial variability observed in LSP within a land
cover type and the factors that control it. Here we make use of a high resolution LiDAR based dataset to study the
effect of subpixel forest stand characteristics on the spatial variability of LSP metrics based on MODIS NDVI.
Multiple linear regression techniques (MLR) were applied on forest stand information and topography derived
from LiDAR as well as land cover information (i.e. CORINE and proprietary habitat maps for the year 2012) to
predict average LSP metrics of the mountainous Bavarian Forest National Park, Germany. Six different LSP
metrics, i.e. start of season (SOS), end of season (EOS), length of season (LOS), NDVI integrated over the growing
season (NDVIsum), maximum NDVI value (NDVImax) and day of maximum NDVI (maxDOY) were modelled in
this study. It was found that irrespective of the land cover, the mean SOS, LOS and NDVIsum were largely driven
by elevation. However, inclusion of detailed forest stand information imp d the model. iderably. The
EOS however was more complex to model, and the subpixel percentage of broadleaf forests and the slope of the
terrain were found to be more strongly linked to EOS. The explained variance of the NDVImax improved from
0.45 to 0.71 when additionally considering land cover information, which further improved to 0.84 when in-
cluding LiDAR based subpixelforest stand characteristics. Since completely homogenous pixels are rare in
nature, our results suggest that incorporation of subpixel forest stand information along with land cover type
leads to an improved performance of topography based LSP models. The novelty of this study lies in the use of
topography, land cover and subpixel vegetation characteristics derived from LiDAR in a stepwise manner with
increasing level of complexity, which d rates the importance of forest stand information on LSP at the
pixel level.

1. Introduction

affecting the stability of whole ecosystems. Phenology has been ex-
tensively studied to elucidate the impact of climate change on biota

Phenology, the science of annual recurring events in organisms, has
been studied and manually recorded for centuries, e.g. the observations
of Japanese cherry blossoms started in the 9th century (Nagai et al.,
2016). Since the changing climate is known to affect species in various
degrees, such long term records provide insights into the life cycle of
organisms and their adaptation strategies (Thackeray et al., 2016). The
study of temporal and spatial variations of phenology is therefore
particularly important in assessing threats to key species interactions

* Corresponding author.
E-mail address: misra@wzw.tum.de (G. Misra).

(Cleland et al., 2007; Menzel et al., 2006; Parmesan and Yohe, 2003)
based on various data types such as in situ observations of species'
phenology including citizen science initiatives, remote sensing indices,
as well as measurement of carbon fluxes and isotopes (Gonsamo et al.,
2017; Menzel and Fabian, 1999; Walther et al., 2002; White et al.,
2009).

In the last few decades, remote sensing based detection of vegeta-
tion phenology or Land Surface Phenology (LSP) has gained
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considerable attention due to its ease in data acquisition with very little
time lag. Unlike traditional methods of surveying, remote sensing based
platforms provide repetitive coverage of the earth at multiple spatial
scales, allowing the analysis of important events in the vegetation cy-
cles over large areas. Remote sensing based studies of vegetation dy-
namics have therefore been used to map land cover, to report trends in
phenology, to detect disturbances (i.e. fire, wind throws and pests) as
well as to assess ecosystem productivity (Di-Mauro et al., 2014; Matiu
et al., 2017; Myneni et al., 1997; Simonetti et al., 2015).

Despite several advantages when compared to classical i.e. ground
based phenological approaches, LSP studies face certain limitations and
require specialized knowledge to process and interpret time series of
remote sensing data adequately. Apart from choosing from multiple
options of data selection and processing, there is no optimal method to
derive LSP (Cai et al., 2017). Therefore studies have used multiple
approaches/methods to process remote sensing data and to estimate
LSP interchangeably (Eklundh and Jonsson, 2015; Hird and McDermid,
2009; Studer et al., 2007; White et al., 1997). The start of season (SOS),
end of season (EOS), and length of season (LOS) and other phenological
metrics have been computed in various ways including fixed thresholds,
amplitudes and rate of change of curvature (derivatives), with each
method providing a different estimate (Misra et al., 2016; Nagai et al.,
2010; Soudani et al., 2008). Studies suggest a large variability among
different LSP measures (Schwartz et al.,, 2002; Shang et al., 2017;
Studer et al., 2007), which might however be explicitly used for esti-
mating different phenological phases (Fisher and Mustard, 2007; Misra
et al., 2016; Soudani et al., 2008) or to differentiate understory from
tree canopy (Badeck et al., 2004; Misra et al., 2016; Rautiainen et al.,
2012; Richardson and O'Keefe, 2009). The ecological meaning of many
LSP estimates is therefore still not very clear and requires further in-
vestigation (Eklundh and Jonsson, 2015; Nagai et al., 2016).

Additionally, studies frequently lack clarity in validating LSP esti-
mates with ground phenology (GP) observations (Duncan et al., 2015;
Hanes et al., 2014). In this regard, pixel based LSP has been linked with
species based GP and the limitations of this approach have been dis-
cussed (Han et al., 2013; Rodriguez-Galiano et al., 2015a; Studer et al.,
2007). Apart from the difficulty in detecting a single date from the
NDVI time series to report SOS or the even more prolonged EOS period
(Gallinat et al., 2015; Stockli et al., 2008), errors in estimation of LSP
have also been reported to be affected by flowering and retention of
withered leaves which are a species specific characteristic (Nakaji et al.,
2011). Most importantly, mixing of land cover with in a pixel presents
challenges in correlating GP data. More specifically, GP data are based
on visual observation of phenological events of single plant species on
the ground which are correlated with LSP estimates based on changes
observed in the spectral reflectance of vegetation mixtures within the
pixel. Since completely pure and homogenous pixels of forest tree
species with 100% fractional cover are rare and difficult to identify in
medium to coarse resolution remote sensing data, data on the mixing of
land cover and vegetation types that occurs in the pixel from which the
LSP is estimated seems important (Fisher and Mustard, 2007; Liang
et al., 2011), especially when drivers of the observed temporal and
spatial variability in LSP are to be analyzed. Variability in LSP has been
linked to different climatic factors, geo-location (latitude, longitude and
elevation) and general land use types (with discrete classes) so far, but
has not considered the effect of subpixel composition of vegetation
(Koster et al., 2014; Luo and Yu, 2017; S. Wang et al., 2016; Y. Wang
et al., 2016; Wang et al., 2017; Y. Zhang et al., 2017). In this context,
the lack of subpixel information has certain drawbacks such as re-
porting an underestimation of green-up dates and overestimation of
dormancy dates in coarser resolution data as observed in studies on the
effect of different pixel sizes on LSP (Klosterman et al., 2014; S. Wang
et al., 2016; Y. Wang et al., 2016; Zhao et al., 2012).

Since the uncertainty in LSP estimates increases in the absence of
sub pixel land cover information (Doktor et al., 2009; Liang et al.,
2011), the importance of high resolution land cover cannot be ignored.
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It is therefore essential to understand the uncertainties associated with
LSP estimated from readily available and popular medium to coarse
resolution data sets since high resolution datasets are not always readily
accessible. In this regard a few recent studies have reported LSP to be
linearly or logarithmically varying across scales, with earlier greening
pixels driving the SOS more strongly than later pixels (Peng et al., 2017;
X. Zhang et al., 2017). Even though previous studies (Cho et al., 2017;
Fuller, 1999) have reported the influence of the percentage of general
canopy cover or fractional cover on LSP, the effect of subpixel based
detailed forest stand information on LSP needs further investigation.
Hwang et al. (2011) found that apart from topographical variables, the
minimum Leaf Area Index (indicating the evergreen proportion of the
pixel) significantly influenced the LSP, too. However, their study was
restricted to broadleaf dominated pixels and mainly used topographical
predictors to explain variability in LSP. The effect of mixed pixel on LSP
was simulated by Chen et al. (2018) through varying fractional cover of
two different end members that revealed considerable effects of the
proportions of sub pixel land cover or species on the estimated LSP
metrics. Subpixel information on land cover mixing is also important to
attribute changes in LSP behavior to its real cause i.e. climatic or land
cover changes (Chen et al., 2018; Doktor et al., 2009; Helman, 2018;
Xie et al., 2015b).Though limited research exists on effects of mixed
pixels on LSP and uncertainty in LSP can be better estimated using
information on homogeneity of pixels, an intensive investigation is
however required in this field in to understand the role of class mixing
on the LSP of complex landscapes. For this purpose, high resolution
LiDAR and hyperspectral data may provide valuable insights for map-
ping species at the subpixel level (Branson et al., 2018) and under-
standing the LSP estimates obtained from medium to coarse resolution
remote sensing data. Apart from land cover type and homogeneity of
pixels, LSP is also known to be affected by events such as snow,
droughts, fire and pest infestation (Gessner et al., 2015; Kobayashi
et al., 2016; Norman et al., 2017; Studer et al., 2007; Xie et al., 2015b).
Therefore, besides high quality remote sensing data, research has also
indicated the importance of not only detailed but also up-to-date land
cover information in LSP studies (Badeck et al., 2004; Doktor et al.,
2009; Misra et al., 2016; Norman et al., 2017; S. Wang et al., 2016; Y.
Wang et al., 2016).

To overcome this knowledge gap, we here assess here the effects of
land cover information and subpixel forest stand characteristics on the
estimated pixel based mean LSP (2002-2015) of the mountainous
Bavarian Forest National Park (BFNP) in Germany. High resolution
LiDAR data was aggregated at Moderate Resolution Imaging
Spectrometer (MODIS) pixel resolution (250 m) to various measures
describing forest stand characteristics and was then compared to two
other land cover products (the freely available CORINE and proprietary
habitat maps for the BFNP) regarding their ability to improve topo-
graphy based LSP models. A 4-day maximum value composite
Normalized Difference Vegetation Index (NDVI) dataset covering the
years 2002-2015 from the MODIS sensor was used in this study since a
shorter compositing period is known to be more robust in estimating
LSP (Brown and de Beurs, 2008; Kross et al., 2011). Since inter-annual
NDVI variations are driven by climatic anomalies (Schultz and Halpert,
1993; Zeng et al., 2013), we assume that the 14-year mean values of
phenological metrics represent the site or pixel specific climatic aver-
aged signal. Therefore, temporal deviations from this mean MODIS
pixel LSP would be the result of yearly weather conditions, whereas
spatial variations in the pixel means may be traced back both to the
spatial variability in topography reflecting site specific mean climatic
conditions and in the characteristics of the forest stands. We hence
hypothesize that the models predicting mean LSP increase in the ex-
planatory power when incorporating high resolution forest stand in-
formation. In this study, we set forth to understand the spatial varia-
bility observed in the mean LSP metrics of the BFNP region. The central
research questions of this study are:
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1. Does sub pixel based information on forest stand characteristics
improve the prediction of LSP based metrics?

2. Which variables are most important for understanding the spatial
variability of LSP metrics?

2. Materials and methods
2.1. Study area and data

2.1.1. Study area

The study area of 24,222 ha comprises the whole Bavarian Forest
National Park (BFNP) which is a protected and extensively monitored
forest area in southeastern Germany (49°3’19”N, 13°12’9”E). It is si-
tuated at the border to the Czech Republic. The area is mountainous,
with elevations between 600 and 1453 m a.s.l, the mean annual tem-
perature varies between 7.5 °C in the valleys and 2 °C along the ridges
and at higher elevations. Mean annual precipitation ranges between
830 and 2230 mm, of which a considerable amount occurs as snowfall
(Heurich et al., 2010).

Three major forest types exist within the BFNP along the elevation
gradient, dominated by Norway spruce (Picea abies L.) and European
beech (Fagus sylvatica L.) (Cailleret et al., 2014). A summary of the
domi getation is pr d in Table 1. Since the mid-1980s, the
forests of the BFNP have been affected by wind throws and subsequent
spruce bark beetle (Ips typographus L.) infestation resulting in large
amounts of dead wood and consecutively regenerating mixed forest
stands (Lausch et al., 2011; Zeppenfeld et al., 2015).

2.1.2. Land cover data

The freely available CORINE (COoRdination of INformation on the
Environment) land cover map at 250 m resolution for the year 2012
was downloaded from the Copernicus Land Monitoring Service of the
European Environment Agency (EEA, 2012). The CORINE maps have
been optimized for the entire European region and hence consist of
generalized land cover classes i.e. broadleaf, conifer, mixed forest,
transitional woodlands, pasture, arable land, urban areas and water
bodies. A more detailed proprietary habitat map of the BFNP was also
provided by the BFNP administration. This land cover habitat map is
based on visual interpretation of digital color infrared images acquired
in August 2012 using a DMC camera. The flight height was 1900 m,
leading to a spatial resolution of 20 cm. On this basis nine different land
cover classes were identified namely urban, clear-cut, conifer, broad-
leaf, meadow, mixed forest, dead wood-lying, dead wood-regenerating
and water (Dupke et al., 2017). Fig. 1 shows the CORINE and habitat
land cover maps (resampled at 250 m resolution) of BFNP for the year
2012.

2.1.3. LiDAR data

Full-waveform LiDAR data were acquired in June 2012 using a Riegl
LMS-680i scanner under leaf-on conditions. The system was run at an
altitude of 650 m with a pulse repetition rate of 350 KHz resulting in a
nominal point density of around 30 points per m% During the pre-
processing steps, a decomposition of the LiDAR waveforms using
Gaussian functions and a correction of the intensity values according to
Reitberger et al. (2009) was used. Single dead and living trees were
detected by a 3D-segmentation, whereas, tree species were identified

Table 1
Dominant vegetation along the elevation gradient in the BFNP.
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using a supervised maximum likelihood classification technique with an
accuracy of 95%, c ing mean i ity in entire tree, mean dis-
tances of layer points to tree trunk, mean pulse widths of single and first
reflections of the entire tree segment and ratio of number of single
reflection to multiple reflections within an individual tree polygon (Yao
et al., 2012). After that a two-step procedure for classification with
linear regression and an active learning approach to distinguish living
and dead trees based on the properties of the LiDAR point cloud and
aerial images was applied (Polewski et al., 2016). The land cover in-
formation from LiDAR data mostly consists of information on forests
types since the landscape in BFNP is dominated by forests. The LiDAR
based digital terrain model at 1 m resolution was also obtained for
mapping the topography of the study area.

2.1.4. MODIS- NDVI data

A 4-day Maximum Value Composite (MVC) of MODIS NDVI product
was used for this study. The 4-day NDVI time series for 2002-2015
were derived from the daily MOD09GQ Terra product at 250 m re-
solution (Survey, 2015) for all vegetated areas. From this surface re-
flectance product, the bands in the red (0.62-0.67 um) and near in-
frared (0.84-0.88 um) spectrum were extracted for the calculation of
NDVI. They were used in conjunction with the daily MOD0O9GA product
which includes geometry information (solar and sensor zenith and
azimuth angles) as well as scene acquisition quality flags at 1 km spatial
resolution (Vermote and Wolfe, 2015). In a first step, the 1 km resolu-
tion bands were oversampled, all necessary bands were stacked, and
non-vegetated areas were masked based on the CORINE land cover
classification for the reference year 2012. The vegetated area of the
CORINE and BFNP habitat maps reveal a high degree of overlap
(> 95%) and only differ in the type of vegetation, hence the choice of
land cover map for masking did not make much difference. Processing
and interpretation of time series of daily MODIS data is complicated by
the variation of its footprint on consecutive days that may lead to false
variability in spectral signatures. Therefore, a MVC method has been
suggested in literature to minimize noise in the data (Jin and Sader,
2005; Tan et al., 2006; Xin et al., 2013). Subsequently, the 4-day MVC
were generated omitting pixels of poor observation, geometry and
quality. Pixels with topographically corrected sun and sensor zenith
angles higher than 70° and 80° respectively were omitted. No further
steps were taken to address the BRDF effects. On average, 2.8% of all
pixels of the daily input images had to be excluded due to bad geometry
conditions, and 75.4% of the pixels had to be masked due to bad quality
(cloud, aerosol, or snow contamination) derived from the MODIS pro-
duct quality flags. Nevertheless, this 4-day NDVI MVC increased the
temporal sampling of valid data points in comparison to the MOD13 16-
day NDVI product. In addition to the NDVI values layer, two other
layers containing the pixel-wise quality flag information as well as the
day of the year (DOY) of the respective selected maximum value were
generated for each dataset. Lastly, the NDVI raster datasets were re-
projected from the original Sinusoidal projection to the geographic
Latitude/Longitude projection (WGS84 ellipsoid, EPSG:4326) and then
used for estimating different land surface phenology metrics (see
Section 2.2.1).

All datasets i.e. the two land cover maps (CORINE and habitat
maps) and the digital terrain model from LiDAR were resampled to
MODIS pixel resolution of 250 m by applying a mode function and

Elevation

Dominant vegetation

a) Bottom of valleys (~600-700 m); often characterized by cold air
pockets in course of inversions.
b) Hill slopes (600-1100 m)

Norway spruce (Picea abies), mountain ash and birch (Betula pendula, Betula pubescens).

Mixed montane forests with Norway Spruce (Picea abies), silver fir (Abies alba), sycamore maple (Acer

pseudoplatanus) and European beech (Fagus sylvatica)

¢) >1100m

Sub-alpine spruce forests with Norway spruce (Picea abies) and mountain ash (Sorbus aucuparia)
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b) Habitat Map
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Fig. 1. a) CORINE land cover map for year 2012 and b) the detailed habitat map of the Bavarian National Forest Park. There is high degree of overlap in the vegetated
areas, however the transitional woodlands in CORINE are classified as clear cut, deadwood-lying and dead wood-regeneration in habitat map.

Table 2

List of all pixel based response and predictor variables (used in multiple linear regressions). Predictor variables except CORINE and Habitat are based on LiDAR data
(see Sections 2.1.3 and 2.2.2), the LSP response variables represent averaged values from MODIS NDVI over the period 2002-2015.

S/No. Variable Description Unit

Response

1 Sos Mean day of the year when 50% of seasonal amplitude is reached in spring (start of season). Day of year

2, EOS Mean day of the year (DOY) when 50% of seasonal amplitude is reached in autumn (end of season). Day of year

3 LOS Mean of length of season in days calculated as EOS - SOS. Day of year

4 NDVImax Mean of maximum NDVI value or maximum greenness (Duchemin et al., 1999). Unitless

5 maxDOY Mean day of year when maximum NDVI value is registered. Day of year

6. NDVisum Mean of lly integrated NDVI obtained by adding the daily values between two troughs of the NDVI time series or the gross  Unitless
primary productivity (Berner et al., 2011).

Predictors

1. Lat Latitude Degree

2 Lon Longitude Degree

3 Slope Slope Degree

4. Aspect Aspect calculated as folded aspect (McCune and Keon, 2002) Degree

5. Elevation Elevation ma.s.|

6. Heat Load incident solar radiation (McCune and Keon, 2002) MJ/cm?/yr

7.8 Tree Height Average tree height m

8. Crown Volume Average crown volume m®

9. Crown Area Total crown area m?

10. Conifer % Percentage of crown area of conifer trees Percentage

11. Broadleaf % Percentage of crown area of broadleaf trees Percentage

12. No. of Trees Total number of trees

13. Shannon's Entropy ~ SE = X,_,"Pi. In (Pi); where Pi is the proportion of the ith species in the pixel and n is the number of species in the pixel (Muller et al.,  Unitless
2000).

14. Habitat Classes of proprietary habitat map of the study area for the year 2012 Factor

15. CORINE Classes of CORINE land use land cover for year 2012. Factor

calculating the zonal mean respectively, before any further data pro-
cessing.

2.1.5. Ground phenological observations

Both the German Meteorological Service (DWD) and International
Phenological Gardens (IPG) run phenological networks for ground
survey based information. Information for DWD sites is available at
Freyung Schonbrunn (775ma.s.l.), Neureichenau (770ma.sl.) and
GroRRer Arber (1436 m a.s.l.), and IPG site at Waldhaeuser (956 m a.s.l).
Collection of ground phenological data for mountainous regions such as
the BFNP is challenging because of difficult accessibility and lack of
volunteer observers. Though all the sites are not located exactly in the
BFNP, they are within a 10 km radius of the study area and therefore
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they may very well depict the phenological conditions at different
elevations inside the BFNP. Dates of leaf unfolding and leaf fall of
broadleaf species (i.e. Fagus sylvatica and Sorbus aucuparia) were col-
lected as day of the year events. Similarly, dates of May shoot for start
of season were obtained for conifer species (Picea abies) during the
years 2002-2015.

2.2. Data preparation

2.2.1. NDVI data processing and of LSP es

The MODIS NDVI dataset consisting of 1254 raster layers for the
period 2002-2015 were stacked in chronological order to obtain a
raster time series. The NDVI time series for each pixel was then

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by
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screened for local outliers, gap filled and smoothed using a Gaussian
smoothing function as described in Misra et al. (2016). The NDVI values
from the 4 day MVC were then set to their actual dates as recorded in
the DOY layer and were linearly interpolated between available ob-
servations to daily values assuming a continuous plant growth behavior
over a limited time of four days, in order to enable day-exact LSP metric
calculation using a threshold approach. Since the uncertainty and
mismatch in LSP measures and GP is well documented (Hmimina et al.,
2013; Misra et al., 2016; Verger et al., 2016), we calculated various
phenological metrics as suggested in the literature to cover the entire
period of seasonal vegetation activity. Phenological metrics such as
start of the season (SOS), end of the season (EOS), length of the season
(LOS), seasonal maximum NDVI value (NDVImax), day of season
maximum NDVI (maxDOY) and integrated seasonal NDVI (NDVIsum)
were calculated (Gessner et al., 2015; Heumann et al., 2007; Misra
etal., 2016; Spruce et al., 2011). In this study we focus on SOS, EOS and
LOS calculated using the 50% amplitude method (see Table 2 for de-
finitions of various LSP metrics). The 50% amplitude method is widely
applied over a variety of ecosystems and was shown to be most con-
sistent in extracting phenological metrics from time series of NDVI
(Hamunyela et al., 2013; S. Wang et al., 2016; White et al., 1997; White
et al., 2009). These metrics were then averaged to estimate the corre-
sponding mean LSP of the BFNP for the years 2002-2015 (see Section
3.2 and Fig. 3 for maps).

2.2.2. Aggregating LiDAR data at MODIS resolution

The LiDAR data available in the form of a spatial point database was
overlaid on an empty MODIS raster grid and summarized to calculate
several pixel based indices such as total crown area, average crown
volume, average tree height, number of trees in pixel, percentage crown
area of conifers and broadleaf trees. This summarized forest stand in-
formation was then exported to a raster format comparable to MODIS
using rasterize function in R. The digital terrain model from LiDAR was
used for calculating various topographical variables such as elevation,
slope and aspect using the terrain function available in the raster
package (Hijmans, 2016) of the R programming language. The heat
load or the incoming solar radiation for the pixels was calculated as
explained in McCune and Keon (2002) and the species measure of di-
versity aka Shannon's Entropy (SE) was calculated according to Muller
et al. (2000) (see Section 3.1 and, Fig. 3 and Supplement Fig. S1 for
maps). The response variables based on LSP measures as well as pre-
dictor variables derived from two land cover maps and from LiDAR data
were used in multiple linear regressions (see Table 2).

2.2.3. Statistical analyses

The SOS and EOS dates from MODIS LSP were separated by tree
type, i.e. conifers and broadleaf areas using the habitat map. Their time
series were compared to by species (conifer/Picea abies, broadleaf/
Fagus sylvatica, Sorbus aucuparia) and season (SOS/leaf unfolding and
EOS/leaf fall).

Next, we computed multiple linear regressions (MLR) to obtain a
better understanding of the LSP metrics with regards to the different
predictors already listed in Table 2. Since, strongly collinear predictors
are known to cause problems in regression models, we used a stepwise
Variance Inflation Factors (VIF) function to remove such predictors
from the set of independent variables (vifstep function in usdm package
in R (Naimi, 2017)). VIF; provides a measure of the proportion of
variance that the ith predictor shares with other predictors in the
model. A VIF; > 10 is considered to be a collinearity problem in the
model (Naimi et al., 2014). This means that the estimated variance of
the ith predictor is 10 times higher than what it would have been if it
was linearly independent of other predictors (O'Brien, 2007). Therefore,
predictors with VIF > 10 were removed from the multiple linear re-
gression analyses (see supplement Fig. S2 for the output of the vifstep
function). Additionally, a non-parametric Kruskal-Wallis test was car-
ried out for multiple comparisons of LSP according to habitat classes to
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test whether differences existed between classes, followed by a posthoc
Dunn'’s test (using Kruskal.test (Core Team, 2014) and dunn.test (Dinno,
2016) functions in R) to reveal the classes that show significant dif-
ferences in their mean LSP. The correlation strength (Spearman's rank
correlation) between various pairs of predictors and response variables
was also checked after the VIF procedure and plotted as a heat map to
represent the strength of interrelationships.

MLR analyses (see also Archetti et al., 2013; Kariyeva and van
Leeuwen, 2011; Matthews and Mazer, 2016; Stoner et al., 2016) were
computed to model mean LSP metrics using topography, land cover and
LiDAR based forest characteristics as the predictors following a step-
wise procedure. Since LSP is known to be affected by variations in to-
pography due to differences in thermal accumulation (Cornelius et al.,
2013; Kraus et al., 2016; Menzel et al., 2003; Tansey et al., 2017; Yu
et al., 2016), we carry out multiple linear regression (MLR) analyses
with mean LSP as response and topography as predictor being the initial
model. Subsequently, land cover in the form of CORINE and detailed
habitat maps of BFNP, as well as LiDAR based forest stand information
were added to the topography model to evaluate improvements in the
explained variance. Interactions between specific predictors i.e. land
cover and LiDAR based forest stand information was also allowed in the
MLR analyses. A stepwise BIC function (stepAIC function in MASS
package in R (Venables et al., 2002), with k = log(n) for BIC) was ap-
plied to select the models with the best predictors, such that the re-
sulting BIC was minimized. The relative importance of the independent
variables for the best models was also calculated (using calc.relimp
function in relaimpo package in R) and normalized to sum to 1 as
suggested by (Gromping, 2006). The recommended Img (Lindeman,
Merenda and Gold) metric was used to report the relative importance as
it defines the importance of a predictor as the averaged contribution to
R? (coefficient of determination) across all possible orderings. It is
known to account for both direct effects and effects adjusted for other
independent variables while decomposing the modelled R? (Gromping,
2006; Johnson and LeBreton, 2004). It is not yet possible to calculate
the relative importance for models with interactions using the available
function in R and hence Img is not reported for these cases. Finally, to
account for possibly instable model parameters, all model parameters
were bootstrapped in a similar manner as explained in (Buras et al.,
2017). That is, over 1000 iterations calibration data were randomly
split in two sub-sets to estimate model parameters (slopes, intercept,
R?), respectively. Differences of the sub-set parameters were expressed
as ratios, and the bootstrapped ratio estimates were tested for similarity
to the value of one (indicating stability of parameters) using empirical
cumulative distribution functions (Buras et al., 2017). All data pre-
paration, analyses and plotting of figures for this study was carried out
in the R programming environment (Core Team, 2014).

3. Results
3.1. Agreement between LSP and GP

Fig. 2 shows the comparison between the LSP i.e. SOS and EOS from
MODIS sensor and the leaf unfolding and leaf fall dates from ground
survey during the period 2002-2015. Even though an exact match be-
tween LSP and GP dates is not expected due to reasons already dis-
cussed in the introduction, there is a high correlation between the time
series of both datasets (R?> > 0.70).The elevation dependent delay in
the SOS and the advancement of EOS is also clearly evident from the
distributions of phenological dates of both conifers and broadleaf spe-
cies.

3.2. Variation in LSP and predictor variables
Spatial patterns of SOS strongly resembled topographical variations

of the Bavarian forest, mostly being related to elevation with later onset
of spring in higher elevations (Fig. 3a compared to Fig. S1). Mean
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Fig. 2. Comparison between LSP and GP of conifers (a,b,c) and broadleaf (d,e,f,g,h,i) at different elevations. The red and blue filled circles are GP of Fagus sylvatica
and Sorbus aucuparia respectively, whereas, the red filled triangle is GP of Picea abies. Subplots (a,d,g) and (c,f,i) show GP from DWD sites at 770 m and 1436 m
elevation respectively, and the corresponding boxplots of LSP filtered for broadleaf and conifer species at 750-800 m and > 1200 m elevation. Similarly, subplots
(b,e,h) show GP from IPG site at 956 m elevation and the boxplots for LSP filtered for broadleaf and conifer species at 925-975 m elevation. Note: the GP information
during 2015 and 2002-2005 was unavailable at IPG 956 m and DWD 1436 m sites. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

spring onsets in lowest elevations of 700 m a.s.l were observed around
DOY 80 whereas on the mountain peaks (~1400 m a.s.l.) around DOY
160. However, the EOS patterns (Fig. 3b) did not seem to be related to
elevation nor any other explanatory variables. EOS of a few pixels
(< 1% in the study area), most of which were conifers or dead trees,
was determined later than DOY 365, thus already in the next calendar
year. Since the length of the growing season (LOS, Fig. 3¢) is only partly
driven by SOS, it was only moderately linked to elevation. NDVImax
and NDVIsum revealed a spatial heterogeneity, which appeared to be
related to elevation and forest stand characteristics (Fig. 3e-f compared
to Figs. S1 and 4c-d-e). The conifers in the frost affected valleys
(Fig. 4a) and the broadleaves (Fig. 4b) in the mid-mountain ranges can
be clearly seen in the spatial maps. The areas affected by storms and
bark beetle infestation are characterized by lower values of average tree
height, average crown volume and the number of trees in the pixels (see
Fig. 4c-d-e). Land cover classes also had a significant effect on the
different LSP-metrics at the 95% confidence level according to Kruskal
Wallis and the post-hoc Dunn's test (supplement Table S3 and Fig. 5).
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Fig. 5 revealed the various classes to have significantly different mean
LSP, with broadleaf trees having a significantly later EOS and higher
NDVImax, and the conifers having a longer LOS and a later maxDOY as
compared to other land cover classes.

3.3. Collinearity and interdependency

Among the explanatory variables, only total crown area was re-
moved due to strong collinearity with percentage of broadleaf (see Fig.
$2). However, some of the retained explanatory variables still expressed
relatively high correlations among each other (Supplement Fig. S4).
When relating response variables to the independent predictor vari-
ables, it was obvious that elevation had a strong effect on SOS, LOS, and
NDVIsum. Moreover, NDVImax and NDVIsum were strongly related to
LiDAR based forest stand characteristics such as tree height, crown
volume, percentage of conifers and broadleaved trees as well as the
number of trees within the pixel (Fig. S4). Significantly differing effects
of LiDAR information were observed on the different LSP metrics in
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Fig. 3. Mean LSP metrics calculated from MODIS NDVI time series data for the period 2002-2015 in the Bavarian Forest National Park. The variability in different
LSP measures is clearly evident from the maps, especially the el pend: of a) SOS and, the land cover driven ¢) NDVImax and f) NDVIsum.
237

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 76
multispecies ground observation and LiDAR.



G. Misra et al. Remote Sensing of Environment 218 (2018) 231-244

a) Conifer % b) Broadleaf %

49.10
49.10

49.05
49.05

49.00

48.95
49.00

48.95

48.90
48.90

49.10
49.10

49.05
49.05

49.00

49.00

48.95
48.95

48.90
48.90

f) Shannon's
Entropy

49.10
49.10

49.05
49.05

49.00

49.00

48.95
48.95

48.90
48.90

132 133 134 135

13.2 13.3 134 135
Fig. 4. Important LiDAR derived predictor variables aggregated at MODIS resolution.

Remote sensing of vegetation phenology by MODIS- challenges in data processing and validation by 77
multispecies ground observation and LiDAR.



G. Misra et al. Remote Sensing of Environment 218 (2018) 231-244
160 . . . - -
-4+ T 7 380 - o 3 G . 200 4 = 4 T T 3 4
140 A _;_ =R 1 - - { 20] | | m Iy =
’E:EELE wl ] - 7T Tat i B'EE
Dol B ! I » e st I B S w200~EBS T
O 120 E_:_E: ik O30 ! E = o ' i T :
«n : o4 +E : w E I T 804 : : : R |
god T i T2 204 T L T T+ | v T i1 T
s : i ' 1604 - ¢ *
: . s04 T I+ | i s 3
80 4 ’ + 140 - ’
5 5 9285 v % 5 5 99295 ° % % 5 G2 ° %
ERiLiEE RRiLEiEE R
§go€§gg‘ § 838 258 3=" 8 238 g88°=°
& 3 3 @ 3 $§, @ 3 8%,
o D. o D. [=] 0.
250 - 1 - . ) oAso-E‘l T - i - 1 T i T i
240 - ; . : I E ifl 4 & L§
- - o | 085 i TE b . E250 E : H oL E
* H H H s © ' ! | i 1 H H
Q204 , i s l £ ' ] . 3 : : i
Q 1 ! f - 7 = T H H ! - : @2 ' T ! :
X _L + i ! o >0.80 i | S : | H !
®220- + + ! 1 |a : i : 02004 ! o
bt St M il L P =l
i ¢ 0754 «+ | | 4 ¢ Lot
210 ET i 7 ;E: o i v ! 1 S
2004 ~ 4 14 0704 e i 150 4o !
T T = T T S g .
T EgfgE v § 3 EgEgEd it S ERERE i it
8 & S @ 2.5_ S o g g s8 2 8 S @ zé
3 2o U§ ? 9 8 2 o 3 9 8 2 & §o o
& o $ = & o SE & o $ -
D o @ @ [} '
o of o of o aof

Fig. 5. Averaged annual phenological metrics (years 2002-2015) for the BFNP grouped by habitat classes. The different habitats reveal significant differences in LSP
metrics, except for SOS of conifer, broadleaf and mixed forest; EOS of clearcut, deadwood-lying and meadow; LOS of clearcut and dead-regeneration; maxDOY of
clearcut and deadwood-lying; NDVImax of clearcut and deadwood-regeneration; and NDVIsum of clearcut and deadwood-lying classes. (see Table S3 in supplement
for significance of differences in class means of LSP metrics, the Kruskal-Wallis tests were significant at p < 0.001).

dependence of land cover class, which indicated the possibility of in-
teractions between LiDAR and land cover information (Fig. 6 and
Supplement Figs. $5-S6).

3.4. Model comparison

The topography based models were able to explain between 17%
(EOS) and 62% (SOS) of LSP variability (Table 3). The SOS, LOS,
NDVImax as well as NDVIsum exhibited higher predictive powers and
were more strongly linked to elevation among the topographical vari-
ables. When adding land-cover information (CORINE and habitat) as
well as LiDAR based forest stand characteristics independently, the
model performance improved significantly for all LSP-parameters with
R? ranging from 0.29 (EOS) to 0.78 (NDVIsum and NDVImax, see
Table 3). CORINE and habitat almost equally improved the model fit
except for NDVImax and NDVIsum for which CORINE seemed to better
fitting information. Finally, allowing for interactions between LiDAR
and other two land-cover information significantly improved the per-
formance of all models (Table 3), with explained variances ranging
from 0.36 for EOS to 0.84 for NDVImax. The results of bootstrapping
analyses (see Section 2.2.3) revealed stable models for all phenological
metrics, except the two interaction models for EOS and LOS, and the
Topo+ (CORINE  LiDAR) models for maxDOY, NDVImax and
NDVIsum. The relative importance of variables and the results of the
best LSP models i.e. with minimum BIC are shown in supplement Tables
S7 and S8 respectively. The coefficients of the models reveal the re-
lationship between the respective LSP metrics and its predictors. For
e.g. the direct relationship between SOS and MaxDOY with elevation is
clearly evident, whereas, the inverse relationship between EOS and LOS
with elevation and proportion of broadleaf in pixel (Broadleaf %) is also
revealed. The Broadleaf % also affects different LSP metrics differently,
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where it directly affects NDVIsum and has an inverse relationship with
maxDOY.

4. Discussion

In this study we modelled 2002-2015 mean values from six dif-
ferent LSP metrics for 5141 pixels within the BENP. For this purpose, we
used a higher temporal resolution MODIS NDVI data set to derive LSP
metrics, and prepared topographical and stand variables aggregated
from a LiDAR database as well as two land cover maps in order to ex-
plain spatial variations in LSP. MLR analyses with land cover in-
formation, i.e. the freely available CORINE and proprietary habitat
maps along with LiDAR information on forest stand improved the ex-
plained variances of the topography based LSP models. Inclusion of
LiDAR information on forest stand characteristics along with a land
cover map and allowing for interactions between them was the best
option to represent subpixel dynamics that drive intra-class variability
in LSP.

4.1. Topography and land cover drives the spatial variability of mean LSP

Our analyses revealed a clear dependency of mean LSP metrics on
topography, particularly for SOS, LOS and NDVIsum (Figs. 3 and 6).
The strongest topographical driver of LSP was elevation (Fig. 6 and
Table 3). For instance, we observed a delay in SOS and a weak advance
in EOS of 3.7 days and —0.65 days respectively with every 100 m in-
crease in elevation, confirming previous studies (Hwang et al., 2011;
Norman et al., 2017; Richardson et al., 2006). SOS in most species is
dominantly driven by air temperature along the elevation gradient
(Cornelius et al., 2013; Hwang et al., 2011; Stockli et al., 2008). In
agreement with Kraus et al. (2016), little to no influence of aspect on
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Fig. 6. Relationship between selected mean LSP metrics and percentage of broadleaf in different habitat classes (Spearman correlation coefficients (rho) and its
corresponding p values are shown in the subplots). The LiDAR based subpixel information (here percentage of broadleaf) clearly shows an impact on the intra-class

variability of LSP.

LSP was found in our study area. Previous studies have however re-
ported the influence of aspect on the LSP behavior due to the difference
in radiation received in the south and north facing slopes (Reaves et al.,
2018; Xie et al., 2015a). A plausible explanation for the absence of this
effect in our study could be that other factors override possible effects
of aspect on LSP variability. These factors could be related to the con-
tribution of conifers and broadleaves in mixed forests, an overriding
effect of elevation, as well as the temperature inversion in the valleys,
which frequently experience late-spring and early autumn frost
(Schuster et al., 2014a, 2014b).

Besides topography, land cover characteristics as derived from the
habitat map revealed a significant effect on mean LSP variability
(Fig. 5) which has also been reported in previous studies for instance
using bio-geographical units (Doktor et al., 2009; Ivits et al., 2013;
Norman et al., 2017; Rodriguez-Galiano et al., 2015b). Inclusion of
either CORINE or Habitat information led to similar improvements in
the topography only models, and hence they could be used inter-
changeably. The effect of forest stand characteristics on LSP metrics
however was more pronounced when considering LiDAR-based sub-
pixel information and their interactions (Fig. 6). Consequently, LIDAR
based information on the forest stand characteristics revealed highest or
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comparably high explained variances in LSP-models, confirming that it
provides additional information in comparison to the categorical land
cover maps.

The better performance of LIDAR based models is likely to be ex-
plained by the fact that LiDAR provides information rich subpixel in-
formation compared to the categorical land cover maps. That is, land
cover maps were not able to resolve the varying proportions of tree
types in general, and more specifically the proportion of conifers and
broadleaves within each class (see Fig. 6). This information however
plays an important role, since these proportions have a significant and
land-cover class dependent effect on LSP variability (Fig. 6 and
Table 3). As a consequence, LSP models allowing for interactions be-
tween LIDAR and land cover maps revealed the highest explained
variance for all considered LSP metrics. It is therefore important to
consider the subpixel composition of vegetation as similar climatic
drivers are known to influence species phenology differently, and
conversely different species responding to different triggers (Korner and
Basler, 2010; Xie et al., 2015a). Our results also agree with Doktor et al.
(2009), who found LSP variability to be not only driven by interannual
weather conditions but also to be affected by the deciduous fraction of
pixels. For example, in their study, an earlier SOS similar to that of
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Table 3

Results of multiple linear regression models of LSP metrics (response variables
SOS, EOS, LOS, maxDOY, NDVImax, NDVIsum) for different model types
(groups of explanatory variables). Topography model version includes topo-
graphical variables (latitude, longitude, slope, elevation, aspect as well as heat
load), +CORINE/+ Habitat comprises Topography as well as CORINE and
Habitat land cover classes respectively, +LiDAR comprises Topography as well
as various stand characteristics (tree height, crown volume, Conifer %,
dleaf %, ber of trees, Sh 's Entropy). The respective best multiple
linear regression models were selected in a stepwise procedure based on
minimum BIC. The Adj.R? and the p-values for bootstrapping analyses in also
shown for the respective models (refer Tables S7-8 for detailed results). The
models with the minimum BIC are shown in bold.

LSP Model Adj. R*  BIC p-Value (Bootstrapping)
SOS Topography 0.62 18,275 0.95
+ CORINE 0.64 18,058 0.78
+ Habitat 0.65 17,898 0.90
+LiDAR 0.64 18,038 0.90
+CORINE + LIDAR  0.65 17,934 0.30
+ Habitat « LIDAR 0.67 17,754 0.10
EOS Topography 0.17 24,300 0.95
+CORINE 0.24 23,951 0.22
+ Habitat 0.25 23,826 0.13
+LiDAR 0.29 23,531 0.90
+CORINE » LIDAR  0.35 23,314 < 0.001***
+Habitat « LIDAR ~ 0.36 23,180 < 0.001***
LOS Topography 0.42 25,314 0.94
+CORINE 0.45 25,090 0.73
+ Habitat 0.47 24,876 0.50
+LiDAR 0.48 24,758 0.95
+CORINE » LIDAR  0.53 24,468 < 0.001***
+ Habitat « LIDAR 0.55 24,206 < 0.05*
maxDOY Topography 0.19 19,689 0.98
+ CORINE 0.31 18,900 0.53
+ Habitat 0.33 18,750 0.32
+LiDAR 0.34 18,638 0.94
+CORINE « LIDAR  0.41 18,296 < 0.001***
+ Habitat » LIDAR 0.42 18,172 0.43
NDVImax  Topography 0.45 —-3499 0.94
+CORINE 0.71 —38,174 0.28
+ Habitat 0.64 -37,224 096
+LiDAR 0.78 —39,063 095
+CORINE » LIDAR  0.84 —40,992 < 0.001***
+ Habitat « LIDAR 0.82 -40,629 0.30
NDVisum  Topography 0.61 30,121 0.95
+ CORINE 0.72 28,490 0.42
+ Habitat 0.68 29,169 0.96
+LiDAR 0.78 27,293 0.94
+CORINE » LIiDAR  0.80 26,931 < 0.001***
+ Habitat » LIDAR 0.80 26,904 0.112

grasslands was observed as the non-deciduous fraction increased in the
pixels. This is particularly interesting when using frequently considered
land cover maps such as the CORINE for LSP studies, where the
broadleaf forest class is defined as pixels with minimum 30% crown
cover and 75% of planting pattern. As a consequence, pixels defined
accordingly could at worst still contain 70% non-broadleaf (Doktor
et al., 2009; Kosztra et al., 2014). Depending on the relative contribu-
tion of such pixels, existing land cover maps might not sufficiently be
able to describe the observed spatial variability in LSP. This problem
could however be addressed in the future through the use of newer
higher resolution satellite data, e.g. as derived from the Sentinel mis-
sion from the European Space Agency (ESA, 2016).

Although elevation was revealed as the most important predictor in
the various LSP models, we found EOS to be driven more strongly by
LiDAR based percentage of broadleaves in the pixels and slope
(Table 3). This is reasonable since the proportion of broadleaf trees
would also determine the extent of leaf coloration in the pixels i.e. most
conifers do not show distinct leaf coloration and hence have a different
EOS than broadleaf trees. Typically EOS has been cited to be driven by
complex factors, showing non-linear relationships with elevation and to
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be more tightly linked to light than temperature (Hwang et al., 2011;
Stockli et al.,, 2008). Xie et al. (2015b) studied a set environmental
factors affecting dormancy in deciduous forests and reported cold, frost
and heat stress to induce earlier EOS, and moderate-heat and drought
stress to delay EOS. Previous research also discussed the difficulty in
modelling EOS in vegetation (Estrella and Menzel, 2006; Schuster et al.,
2014a, 2014b), which unlike the SOS is less abrupt, and might span a
prolonged period, sometimes taking weeks from leaf coloring to com-
plete abscission and hence making it comparatively difficult to observe
(Gallinat et al., 2015; Stockli et al., 2008). Our analyses thus provide
vital insights into one of the least understood aspects of LSP (i.e. EOS)
and suggests it to be partly spatially driven by subpixel characteristics
of forest stand characteristics along with topography.

The NDVImax and the NDVIsum provided the maximum explained
variance among the LSP metrics (Table 3). These phenological metrics
have been used to quantify ecosystem productivity, post-disaster eco-
system resilience and detection of pest infestation (Berner et al., 2011;
Spruce et al.,, 2011; Wylie et al., 2008). Metrics such as NDVImax,
NDVIsum and maxDOY are measures of overall productivity or biomass
and timing of maximum availability of vegetation respectively, and are
cited to be highly correlated to various ecosystem characteristics such
as species richness, migratory and feeding behavior of herbivores
(Heumann et al., 2007; Pettorelli et al., 2005). They are known to be
robust to outliers and data processing methods, and also correspond
better with ground observations (Lumbierres et al., 2017). Such in-
tegrated measures of LSP that are not based on specific dates of the
year, which are less influenced by user bias might therefore be con-
sidered more suitable for tracking climatic effects and phenologically
similar pixels in remote sensing data. Hence, these metrics were also
included in this study to evaluate the spatial variability in LSP. Since,
LSP metrics such as NDVImax are liable to change over time in pixels
undergoing land cover disturbances, we have used categorical in-
formation from a habitat map to model influence of different land cover
types (some of which are undergoing changes such as clear cut, dead
wood-lying and dead wood-regenerating) on LSP.

Bootstrapping analyses revealed the different models for SOS to be
stable. The inclusion of LiDAR based information on forest stand
characteristics still provided additional insight. However, some in-
stability was found in the interaction models for the other phenological
metrics. Such instabilities should in future investigations be accounted
for using more complex modelling analyses such as random forest
models, however care must be taken as such methods can create the
impression of a black box if not properly understood (Palczewska et al.,
2014).

Previous studies considering land cover effect on LSP have often
included oly generic information on land cover classes that might not
be able to describe the mixing of different classes and their status
(vegetation under stress or undergoing different succession patterns
after disturbance, etc.) that is known to affect LSP (Fisher and Mustard,
2007; Helman, 2018; Norman et al., 2017; Spruce et al., 2011; S. Wang
et al., 2016). Here, high resolution data from multi spectral sensors
along with LIDAR can help identify species and species-specific attri-
butes (Bolton et al., 2018; Fassnacht et al., 2016; Immitzer et al., 2018;
Pu and Landry, 2012; Yao et al., 2012) that could improve our under-
standing on the effect of mixing of classes on LSP at the subpixel level.
In our current study, inclusion of LiDAR based information on forest
stand helped improve models explaining variability in LSP in the BFNP
that shows a complex topography and an even more complex vegeta-
tion pattern. Thus, the novelty of this study lies in the use of subpixel
vegetation characteristics from LiDAR data that demonstrates the im-
portance of land cover as well as subscale level information in the ex-
pression of LSP at the pixel level. Building upon previous studies
(Dinno, 2016; Archetti et al., 2013; Klosterman et al., 2014; Nakaji
et al,, 2011; Schwartz et al., 2002) and our analyses, we therefore
strongly recommend incorporating detailed land cover maps and in-
formation regarding vegetation characteristics along with disturbances
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in LSP models to better account for vegetation composition variability,
ideally supplemented with high resolution LiDAR measurements.

4.2. Limitations and outlook

The mismatch in LSP and GP dates as seen in our study is a well-
known problem in literature (Misra et al., 2016; Stockli et al., 2008;
Verger et al., 2016). The uncertainties in estimating EOS are larger than
other phenoph due its ¢ and less understood nature (Gallinat
et al., 2015; Hwang et al., 2011; Reaves et al., 2018; Stockli et al.,
2008). However, matching of GP and LSP, and choosing the best
method is an issue of ongoing debate and beyond the scope of this
study, we therefore use commonly cited methods to extract LSP and
discuss the variability observed in them.

Certain limitations of our study need to be noted regarding the
temporal averaging of LSP measures. Long term variability in LSP
measures has not been included for simplicity since frequent or major
changes in climatic drivers (i.e. temperature and precipitation) were
not expected within the study period (2002-2015). Subsequent studies
may find a way to take temporal factors into account for more complex
modelling of LSP. Our results however provide a clear improvement in
the understanding of land cover and its subpixel heterogeneity that
drives spatial variability in mean LSP.

We have to stress, that the acquisition of LiDAR based information is
very time consuming and labor intensive, particularly concerning the
in-situ measurements as well as the post-processing. Once the data are
obtained, they may allow for improving models explaining spatial LSP-
variability by up to 112% in explained variance (EOS-model in
Table 3), however for SOS the improvement was as low as 8%. Thus, it
seems to be a case sensitive decision whether to incorporate LiDAR
ground truth information in LSP-models. For EOS, NDVImax and
maxDOY it seems meaningful to take the effort in order to extend our
knowledge on these yet hardly understood LSP metrics (Gallinat et al.,
2015; Stockli et al., 2008).

5. Conclusions

This study shows the importance of high resolution land cover and
forest stand information for understanding the spatial variability of
mean LSP. Consequently, detailed land cover information can help to, I)
understand the phenology of vegetation cover or forests better and II)
link variability or anomalies in LSP to sub pixel information or dis-
turbances. In our study we found significant differences in the mean
LSP of the different land cover classes. Even though previous studies
have reported the influence of percentage of general canopy cover or
fractional cover on LSP, our study is unique as it uses detailed LiDAR
information to model the effect of subpixel forest stand information on
the mean LSP. We therefore recommend including up-to-date land
cover information to better understand the variability in the esti d
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LiDAR based forest stand information. Moreover, our results hold valid
for our study area but we highly recommend further studies and re-
plications in areas with different climate, vegetation cover, and con-
sequently phenology to confirm these results.
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Elevation linked-phenological lapse rates show differences in the pre-Alpine and
Alpine regions of Bavaria: Overview from ground and satellite observations

Gourav Misra, Sarah Asam and Annette Menzel.

Abstract

The role of temperature in driving phenology of vegetation is well established. However, with
the changing climate leading to differences in temperature regimes during the year and
especially also during winter chilling, a pronounced variability in already established
phenological rates is now being observed along the elevational gradient of mountains. In this
study, we analysed the elevation linked lapse rates of phenological dates in the pre-alpine and
alpine regions of the Bavarian Alps in Germany. The dates for the start of season (SOS) and
the end of season (EOS) were extracted from a 4-day maximum value composite Moderate
Resolution Imaging Spectrometer (MODIS) sensor’s Normalised Difference Vegetation Index
(NDVI) time series data for the years 2001-2016. Analyses of SOS data showed higher
elevational lapse rates in the alpine areas than the pre-alpine areas, possibly due to longer
duration of snow. Maximal differences in rates of SOS of alpine and pre-alpine areas were
observed in years with preceding warm winters with lack of chilling. Minimum differences in
the rates of SOS were found along the elevational gradient during cold spring and cold winter
years. The MODIS based SOS showed the highest correspondence when validated against the
gridded German Meteorological Service (DWD) leaf unfolding data. The EOS dates showed a
comparatively lower correspondence to DWD data and their lapse rates in the pre-alpine and
alpine regions were tricky to validate. Contrary to SOS, EOS dates revealed lower, but still
positive lapse rate in the alpine areas than the pre-alpine areas.

Keywords: elevation, phenology, lapse rates, climate change, forest, Alps.

1. Introduction

Climate change induced shifts in phenology have been studied extensively in the past
decades. Advances in spring phenology with warming are well established (Menzel and
Fabian, 1999), however studies in recent years have also pointed to a decreased sensitivity to
spring warming as consequence of lacking chilling in warmer winters (Laube et al., 2014).
This timing of phenological events is crucial for key species interactions such as feeding
habits, reproduction and migration, and are indicators of species abundance at any location
(Burgess et al., 2018; Visser and Both, 2005). Moreover, climate change is known to not only
affect occurrence of key phenophases (Menzel and Fabian, 1999), but it is also now changing
the established phenological patterns regionally (Menzel et al., 2006; Vitasse et al., 2017).
However, changing phenological timings of key species along with the now documented
changes in phenological patterns could lead to mismatches or desynchrony in species
interactions having far reaching consequences on ecosystem structure and functioning
(Parmesan and Yohe, 2003; Vitasse et al., 2017). E.g. spatially more uniform phenological
onset dates may influence the vulnerability of migratory species in terms of decreasing their
choice of alternative sites in case of risk of mismatch (Diez et al., 2012).

Elevational gradients constitute powerful tools to study in a space-for-time approach triggers
for phenological onset dates, providing a large set of meteorological conditions however with
identical photoperiod. Few examples have also addressed the role of chilling and snow as
additional phenological triggers across gradients. Vandvik et al. (2018) report a climate
change induced decrease in the chilling period in lower elevations and an increase in the
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effective chilling period in higher elevations of temperate regions. Additionally, the early
melting of snow and the lengthening of the frost free period has led to early leaf out in trees
across many regions of the world (Asam et al., 2018; Menzel et al., 2003). For e.g., such
climate change impacts lead to earlier growth of trees and faster closure of overstory canopy
which could pose challenges for growth of forest understory species. Thus, it is important to
carefully study the challenges presented by the changing climate with respect to its varying
effects on species at various gradients of environmental conditions and regions. Therefore
knowledge of temporal and spatial variations in phenology and its drivers is necessary to
develop mitigation and adaptation strategies. Although a few first studies have dealt with
chilling influence on warming sensitivity at gradients based on ground phenological
observations, not many studies based on remote sensing products exist.

Since, ground observation of phenology at higher elevation is severely limited due to a lack of
permanent settlements and thus observers (Menzel et al., 2003), this study uses pioneer
techniques such as remote sensing for repetitive mapping of forest seasonality at elevational
gradients in the Alps. The main research questions of this study are: 1) are there differences in
the annual elevational rates of phenology observed in the pre-alpine and alpine regions of the
Bavarian Alps? and 2) how do the spring and (preceding) winter temperatures drive the
elevational phenological response rates in forests?

2. Study Area and Data

This study was carried out in the Bavarian alpine region of Germany (corresponding to the
administrative units of the alpine convention, Figure 1) for which we defined areas with
elevations < 1000 m a.s.l. as pre-alpine and > 1000 m a.s.l. as alpine. The elevation of the
forested area ranges from ~400 to 1800 m a.s.l. (see also Figure S1), and primarily consists of
three classes (broad-leaved, coniferous and mixed forests). The species composition
comprises mainly Norway spruce (Picea abies (L.) H.KARST) besides silver fir (Abies alba
MILL.), European larch (Larix decidua MILL) as well as the deciduous tree species European
beech (Fagus sylvatica L.) and sycamore (Acer pseudoplatanus L.), however with only spruce
reaching elevation beyond 1500 m a.s.l.

Remote sensing information in the form of 4-day MODIS NDVI MVC data for the years
2001 to 2016 was used in this study. As described in detail in Asam et al. (2018), this NDVI
product was generated from the daily MODO09GQ product collection 6 and used in
conjunction with MODOQ9GA product for constraints on quality and viewing geometry of the
pixels.

A CORINE land use cover map for year 2012 with 250 metre spatial resolution was used in
this study which is freely available for download from the Copernicus Land Monitoring
Service portal (EEA, 2012). A 30 meter resolution Shuttle Radar Topography Mission
(SRTM) based digital elevation model was obtained from the earthexplorer portal of the
United State Geological Survey website (USGS, 2018).

In the phenological network of the German Meteorological Service volunteers observe
various phenological phases at up to 43 stations in the Bavarian study region. We selected the
spring and autumn phenological phases of Fagus sylvatica L. (European beech), namely start
of leaf unfolding, leaf colouring and leaf fall. This ground phenological information (GP,
onset of phenophases in days of the year (DOY)) was retrieved in the form of gridded datasets
at a 1 km resolution from the Climate Data Center portal of the German Meteorological
Service (DWD, n.d.).. Further information on the methodology of the interpolation of point
ground observations to the gridded phenology product is available at the DWD portal.
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Furthermore, we used temperature data of three climate stations of the DWD in the study area
(Garmisch 720 m, Mittenwald 981 m, Hohenpeil’enberg 977 m a.s.l.) in order to generally
characterise seasaonal temperatures for 2001 to 2016 (see Methods 3.3).
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Figurel. A) Location of Bavarian Alps in Germany and, B) elevation (metre a.s.l.) of the
forested region in the Bavarian Alps study area.

3. Methods
3.1 Estimation of Land Surface Phenology (LSP)

The 4-day MODIS NDVI data for the years 2001-2016 were first stacked in chronological
order. The outliers in data were removed prior to calculation of NDVI using the pixel
reliability and geometry (sun and solar zenith angle) information as described in Asam et al.
(2018). Such gaps in the time series data were linearly interpolated and smoothed using a
Gaussian function. The start (SOS) and end of season (EOS) dates were then calculated based
on the 50% amplitude technique, i.e. the dates when the NDVI values cross the half-
amplitude threshold in the respective ascending and descending part of the annual NDVI
profile. The pre-processing of NDVI data and the calculation of LSP metrics are discussed in
detail in Misra et al. (2018, 2016). Figure 2 displays the average LSP dates for start and end
of the season in the study area.
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Figure 2. Mean LSP (DOY) of the forest pixels in the Bavarian alpine region during 2001-
2016 derived from MODIS NDVI data. Upper panel: Start of season (SOS), lower panel: End
of season (EOS).

3.2 Calculation of elevational rates of LSP and GP

The elevation data from SRTM was resampled from the native 30 m resolution to 250 m and
1 km to match the spatial resolution of MODIS-based LSP and ground phenology (GP) from
DWD respectively. The pixels were then masked for the forest cover classes using a similarly
resampled CORINE land cover map. Around 45,550 and 27,907 forest pixels lie in the pre-
alpine and alpine region, respectively (Figure S1). The annual elevational rates of phenology
were calculated using simple linear regression models over bootstrapped samples for pre-
alpine and alpine regions of both MODIS-LSP and DWD-GP separately. For this, sampling of
pixels containing information regarding phenological dates and their corresponding elevation
was done and for each year (2001-2016) and region (pre-alpine, alpine), linear regression
models between onset dates of phenology and elevation were run over 1000 iterations.

3.3 Testing of seasonal temperature driven differences in phenology and phenological
lapse rates

The mean annual temperatures for the spring season (April and May) and winter season
(January and February of current year, as well as November and December of previous year)
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were calculated from the climate station data Based on these 16 annual seasonal temperatures,
years were then grouped into the eight warmest and eight coldest years of spring and winter,
respectively, yielding to four groups (CC cold spring-cold winter, CW cold spring-warm
winter, WC warm spring-cold winter, WW warm spring-warm winter) which, by chance,
were identical in size (4 years each) comprising the years 2002, 2006, 2010 and 2013 (CC),
2001, 2004, 2014 and 2016 (CW), 2005, 2009, 2011 and 2012 (WC) and 2003, 2007, 2008
and 2015 (WW).

The LSP and DWD-GP data were then grouped or classified based on the groups of spring
and winter temperatures, and tested for significant differences using a Kruskal-Wallis test and
a posthoc Dunn’s test at p<0.05 significance level (using kruska.test and dunn.test functions
in R). All data preparation, analysis and plotting of figures in this paper was carried out in the
R statistical programming environment (Core Team, 2014).

4. Results
4.1 Annual Start of Season and End of Season

Annual LSP phenology for the pre-alpine and alpine region of the Bavarian Alps regions are
shown in Figure 3 for spring (SOS dates) and in Figure 4 for autumn (EOS dates).
Additionally, DWD-GP dates for leaf unfolding corresponding to SOS (Fig. 3) and leaf
colouring and leaf fall representing EOS (Fig. 4) are also given for the pre-alpine region.
Based on remote sensing data, SOS on average starts between DOY 100 and 150 in the
lowlands and between DOY 105 and 160 in the higher elevations. LSP-SOS and DWD-GP
dates of the both regions show similar corresponding inter-annual variations with
comparatively early SOS dates in 2007 and 2014 as well as to a lesser extent, in 2009, and
late SOS dates in 2006, 2010 and 2012. LSP-SOS in 2011 exhibits a very high spatial
variability in comparison with the other years. Mean annual leaf unfolding dates (DWD-SOS)
occur between DOY 110 to 120, largely matching LSP-SOS, however with much smaller
inter-annual variation.
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Figure 3. Annual LSP- and DWD-SOS for pre-alpine and alpine region of the Bavarian Alps
from 2001 to 2016. LSP is derived from MODIS NDVI whereas DWD-SOS corresponds to
leaf unfolding of European beech (see Data section).
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Leaf colouring (around DOY 280) and leaf fall (around DOY 300) of European beech are
observed considerably earlier than LSP-EOS from MODIS NDVI time series and exhibit
smaller inter-annual variation (Fig. 4). Therefore, pre-alpine LSP-EOS corresponds
(relatively) better to leaf fall than leaf colouring estimated from DWD-GP data.
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Figure 4. Annual LSP- and DWD-EQS for pre-alpine and alpine region of the Bavarian Alps
from 2001 to 2016. LSP is derived from MODIS NDVI whereas DWD-EQOS corresponds to
leaf colouring and leaf fall of European beech (see Data section).

4.2 Annual elevational rates of Start of Season and End of Season

As expected, spring onset is delayed with elevation indicated by positive elevational rates.
Overall, annual elevational rates of LSP-SOS in the alpine region are considerably higher than
in the pre-alpine region with the exception of four years (2006, 2008, 2010, 2012) (see Figure
5). The annual elevational rates of DWD-GP (i.e. leaf unfolding) for the pre-alpine region
strongly correlate to that of LSP-SOS rates in the pre-Alpine region. The inter-annual
variability in the elevational rates of both the pre-alpine and alpine region largely matches
with a few exceptions around the years 2006 / 2007 and 2011 / 2012.
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Figure 5. Annual elevational rates of SOS from MODIS-LSP and DWD-GP.
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The annual EOS elevational rates based on MODIS NDVI data are still positive (sic !),
however much smaller in absolute numbers than SOS elevational rates (Figure S2). They
show contrasting behaviour in comparison to SOS rates, i.e. EOS rates in the pre-alpine
region exhibit higher inter-annual variation than in the alpine region.

4.3 Differences in spring and warm temperature driven rates of annual phenology

When grouping the elevational rates in the pre-alpine and alpine region into the four spring-
winter temperature groups, significant differences in their SOS rates become apparent (see
Figure 6), apart from the groups CW and WC in the alpine region (Table S1). The smallest
SOS elevational rates are revealed for pre-alpine WW, the largest for CW alpine. Differences
between respective pre-alpine and alpine SOS rates are smallest in the group CC, followed by
WC. In contrast, for the two groups with warm winters (WW, CW) the differences between
elevational regions are considerably higher. In the case of warm springs (WW, WC), the
variability of pre-alpine SOS rates is larger than for CC and CW.
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Figure 6. Annual LSP-SOS elevational rates grouped by spring and preceding winter
temperatures as well as elevational regions. Note: The first letter of the group abbreviation is
the assessed mean spring temperature (April, May) and the second corresponds mean winter
temperature (November to February), e.g. CW is cold spring after a warm winter.

The EOS rates reveal opposing behaviour for the CC group in comparison to the EOS rates of
other groups (Figure S3). The CC group shows a higher rate of EOS in the alpine region as
compared to the pre-alpine region. The results of Kruskal-Wallis and posthoc Dunn’s test
reveal significant differences between the EOS rates of all groups (Table S2). Similarly to
SOS, warm springs (WW, WC) are related to higher variability in pre-alpine EOS rates.

5. Discussion

In this study we found a close match in LSP-SOS estimates and GP observations of leaf
unfolding dates. In agreement with previous research (Hamunyela et al., 2013; Luo et al.,
2013), our analysis also indicates strong links between 50% amplitude based LSP-SOS and
GP dates for leaf unfolding. The temperature dependent earliness in SOS is observed in the
years 2007, 2009 and 2011 when the mean spring temperatures were higher than normal. The
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high variability in the LSP-SOS during years 2010-2012 could not be supported by DWD-GP
data which reveal a narrow range of SOS dates. Interestingly, the inter-annual patterns for
both leaf colouring and leaf fall from DWD-GP strongly match with that of LSP-EOS.
However, in comparison to leaf colouring, the LSP-EOS and leaf fall data show minimal
differences in their absolute values. Therefore, only a correlation based measure in itself
cannot sufficiently provide clues regarding a particular LSP method mirroring a specific
phenophase on the ground i.e. GP. This observation corroborates suggestions from previous
studies that recommend caution while comparing LSP based estimates with ground phenology
(Misra et al., 2016).

The alpine elevational lapse rates of LSP-SOS were on average higher than the pre-alpine
ones. This is most likely due to snow cover in the higher elevations which take
disproportionately longer time to melt and warm the soil for creating favourable conditions
for the starting of vegetation development. Previous research has indicated strong links
between snow cover duration or snow melt and vegetation dynamics in high latitudes (Asam
et al., 2018; C. Cornelius et al., 2013; Ide and Oguma, 2013). The significant differences in
pre-alpine and alpine LSP-SOS of years with different spring and winter temperatures find
agreement with Cook et al. (2012) who found flowering of plants to be strongly influenced by
both spring and winter/ fall temperatures. Supporting Vitasse et al. (2017), we found
maximum differences in the elevational rates of LSP-SOS in years of warm winters with lack
of chilling. This study in this paper we have compared the pre-alpine and alpine rates of SOS
and EOS in Bavaria, whereas, Vitasse et al. (2017) compares one elevational lapse rates
across Switzlerland. Studies in the past have discussed the critical role of chilling in driving
spring phenology, when warmer winters are known to delay the break of dormancy and the
initiation of spring in plants (Laube et al., 2014; Yu et al., 2010). However, in case of years
with cold spring following a cold winter, all the vegetation development is pretty late. In
those years, the vegetation starts late and then has to speed up their development (leading to
small elevational lapse rates). In such years the differences between pre-alpine and alpine
rates of LSP-SOS are minimal possibly due to late melting of snow and the delayed start of
season in higher elevations. The elevational rates of LSP-SOS were perfectly mirrored in the
DWD-GP but only in the pre-alpine region. DWD-GP data are not shown in the analyses
since gridded DWD-GP values in higher elevations seemed to be capped to a maximum value
in the interpolation procedure.

In contrast, the LSP-EOS rates in the pre-alpine were generally higher than in the alpine
region. No reasonable explanation was found for the significant differences observed between
LSP-EOS rates of spring-winter temperature groups. This is possibly due to a complex
interplay of factors other than temperature in driving EOS timings. Modelling of EOS
phenology is known to be tricky and often reported to be triggered by combinations of
temperature, photoperiod and precipitation (Hwang et al., 2011; Panchen et al., 2015; Stockli
et al., 2008). In light of the difficulties in modelling EOS and thus producing gridded
products, the alpine DWD-GP rates of EOS were not included in analyses.

6. Conclusions

In this study we present analyses of spring and winter seasonal temperature-induced
differences in regional phenological patterns. It is shown that not only spring temperatures but
the preceding winter temperatures influence spring phenology in terms of elevational
gradients. This study provides for the first time support to claims of previous studies (mostly
based on ground observations) that suggest changing phenological patterns and the
importance of seasonal temperature trends in high alpine regions. Both attempts hint to
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reduced phenological variation at the landscape level with warming winters; however our
study underlines that there are differences across altitudinal bands
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Figure S1. Frequency plot of forested pixels in the pre-alpine and alpine region of the study
area.
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Figure S2. Annual elevational rates of LSP-EOS.
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temperature (November to February), e.g. CW is cold spring after a warm winter.
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Table S1. Kruskal-Wallis test (stats package in R) followed by Dunn’s test (dunn.test package
in R) for testing differences in SOS rates for different groups in alpine and pre-alpine areas,
i.e. from Fig 6 (aCC is alpine- cold spring- cold winter, and prCC is prealpine- cold spring
following a cold winter)

Kruskal-wallis rank sum test
Kruskal-wallis chi-squared = 19591.3008, df = 7, p-value = 0

Ccol Mean-
Row Mean
acw -44
0
awcC -44
0
aww -27
0
prcc 26
0
prcw 43
0
prwcC 21
0
prww 46
0
Ccol Mean-
Row Mean
prww 25
alpha = 0.05

Comparison of x by group

(Benjamini-Hochberg)

.52444
.0000%*

.31971
.0000%*

.19651
.0000%*

.41004
.0000%*

.17128
.0000%*

.10517
.0000%*

.45781
.0000*

0.204728
0.4189

17.32793
0.0000%*

70.93449
0.0000%*

87.69572
0.0000%*

65.62962
0.0000%*

90.98225
0.0000%*

Reject Ho if p <= alpha/2

17.
.0000%*

70.
.0000%*

87.
.0000%*

65.
.0000%*

90.
0.

12320

72976

49099

42489

77752
0000%*

53.

70.

48.

73.
0.

aww prcc prcw
60655
.0000%*
36779 16.76123
.0000%* 0.0000%*
30168 -5.304870 -22.06610
.0000%* 0.0000* 0.0000%*
65432 20.04776  3.286530
0000* 0.0000* 0.0005*
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Table S2. Kruskal-Wallis test (stats package in R) and Dunn’s test (dunn.test package in R)

for Testing differences in eos rates of broadleaf forests for different groups in alpine and pre-

alpine areas, i.e. from Figure S7.
Kruskal-wallis rank sum test

data: x and group
Kruskal-wallis chi-squared = 7855.7159, df = 7, p-value = 0

col Mean-
Row Mean

aww

prcc

prcw

prwc
33.15046

priww

col Mean-
Row Mean

alpha = 0.

Comparison of x by group

(Benjamini-Hochberg)

05

.90552
.0000%*

.22196
.0000%*

.28513
.0000%*

.86532
.0000%

.45755
.0000%

16.96950
0.0000%*

-2.792990
0.0027%*

14.52344
0.0000%*

-40.98364
0.0000%*

-7.833183
0.0000%*

-46.15606
0.0000%*

Reject Ho if p <= alpha/2

-19.76249
0.0000%

-2.446058
0.0072%

-57.95315
0.0000%

80268
0.0000*

-63.12557
0.0000*

-24.

17.31643
0.0000%

-38.19065
0.0000%

-5.040192
0.0000*

-43.36307
0.0000*

-55.50709
0.0000%

-22.35663
0.0000*

0.0000*

0.0000*

-60.67951 -5.172424

0.0000*
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