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Abstract—In this paper, a backstepping control approach is
developed and analyzed for a setting where the system model is
partially unknown and is modeled using Gaussian processes. The
proposed approach encompasses the classical backstepping and
command filtered approaches as special cases. The tracking error
is globally uniformly ultimately bounded, and the performance is
shown to be improved by adding new training data. The stability
analysis is carried out by employing a quadratic Lyapunov func-
tion and Tikhonov’s theorem. The proposed method outperforms
an established adaptive backstepping approach given sufficient
training data.

Index Terms—Data-driven, Gaussian processes, machine learn-
ing, nonlinear control systems, uncertainty

I. INTRODUCTION

Backstepping is a widely employed control design approach
for trajectory tracking for a wide class of nonlinear sys-
tems [1]. In settings where system uncertainties are present,
adaptive backstepping approaches mitigate these uncertainties
by updating the system model during the control process [2],
[3]. However, adaptive backstepping methods require a para-
metric structure for the model to be assumed a priori, which
can lead to poor performance if the choice of parametric
structure is inadequate.
In practice, backstepping requires multiple time derivatives
of the system models to be computed, which implies a
prohibitively complex control law formulation for high-
dimensional systems. The use of command filters to compute
the control signals has become a common form of avoiding
such formulations [3]–[5]. Formal guarantees for command
filtered backstepping approaches are given in [3], [4]. How-
ever, [4] requires exact system knowledge, which is a rigid
assumptions in practice, whereas [3] requires a parametric
structure for the system uncertainties to be specified a priori.
In the context of system identification for control, Gaussian
processes (GPs) are increasingly employed [6]–[8]. GPs pro-
vide a flexible nonparametric data-driven modelling frame-
work that incorporates an automatic trade-off between data
fitting and regularization in noisy settings [9]. Moreover, GP
models explicitly quantify system uncertainty, which can be
employed to derive model error bounds [10]. Other conven-
tional system identification tools, such as Volterra series [11]
and artificial neural networks [12], require an appropriate
selection of the model structure in order to provide satisfying
results. Furthermore, such methods do not explicitly quantify
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model uncertainty.
In this work, we employ a command filtered backstepping
approach to control a system that is learned with GPs, where
the training data is collected prior to the control design. The
tracking error is reduced with high probability when new
training data points are added. We employ a command filter
similar to the one given by [4] without needing full knowledge
of the system model. The proposed method contrasts with [3]
in that the parametric structure of the model uncertainty is not
required, and the model is not updated online.
This paper is structured as follows. Section II describes the
problem setting, Section III discusses how GPs are employed
in this paper. In Section V, the convergence of the proposed
method is analyzed. A numerical simulation is contained in
Section VI and Section VII provides some concluding remarks.

II. PROBLEM SETTING

We consider systems in strict feedback-form [1], which are
formulated as

ẋi = Fi(wi) + Gi(wi)xi, i = 1, · · · , h− 1 (1a)
ẋh = Fh(wh) + Gh(wh)u, (1b)

xi(0) = xi,0, i = 1, · · · , h (1c)

where xi ∈ Xi ⊆ Rn, i = 1, ..., h are the system’s
states, u ∈ U ⊆ Rn is the vector of control inputs, and
wi =

[
xT
1, · · · ,xT

i

]T
, i = 1, ..., h, denote the concatenations

of the state vectors, which are employed for notational
simplicity. Similarly, the notation Wi = X1×X2×· · ·×Xi is
used to denote concatenations of subspaces of the state space.
For the sake of brevity, unless stated otherwise, whenever
the subscript i is employed, the full set, i.e., i = 1, ..., h, is
referred to. The initial conditions are given by xi,0 ∈ Xi. The
nonlinear functions Fi :Wi 7→ Rn represent unknown system
dynamics, whereas the nonlinear functions Gi :Wi 7→ Rn×n

are assumed to be known. The arguments of the functions
Fi, Gi, are henceforth omitted. The states xi are assumed
to be available for measurement during the control process.
We assume that the functions Fi vanish at the origin, which
is a common assumption for systems in strict feedback
form [1]. The functions Gi are invertible for all points within
the domain of interest. Even though this requirement can
seem somewhat restrictive, in practice it can be bypassed by
exploiting physical properties of the system [2]. A wide range
of systems can be described using the form given above [1].
The goal of this paper is to design a control signal u,
such that the state x1 accurately follows a predefined
trajectory x1,d(t) : R+ 7→ X1. In order to perform this task,
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measurements of the time derivative of the states are assumed
to be available, with which a GP model can be computed.
The system is then controlled using a backstepping approach.
For the system at hand, the following assumptions are made.

Assumption 1. The desired trajectory x1,d(t) and its deriva-
tive with respect to time are bounded.

Assumption 2. For every i ∈ {1, · · · , h}, the functions Fi and
Gi are bounded and h− i times continuously differentiable.

These assumptions are are not very restrictive and are
common for backstepping settings [1]. The following
assumption concerns the reproducing kernel Hilbert space
(RKHS) norm ‖·‖ki of the functions Fi. An RKHS
is a Hilbert space induced by a symmetric positive-
definite function ki :Wi ×Wi 7→ R, i ∈ {1, · · · , h},
called kernel, and contains elements of the form∑∞
j=1 αjki(w

(j)
i , ·), αj ∈ R, w

(j)
i ∈ Wi. The respective

norm ‖·‖ki measures smoothness with respect to the
corresponding kernel ki. Moreover, for many commonly used
kernels, such as the squared-exponential or Matérn kernel,
functions from the corresponding RKHS space are Lipschitz
continuous. For a detailed discussion on RKHSs, the reader
is referred to [13].

Assumption 3. For every i ∈ {1, · · · , h}, the function Fi has
a bounded RKHS norm with respect to a known kernel ki, i.e.,
‖Fl,i‖ki ≤ BFi <∞, l = 1, · · · , n.

Assumption 4. For every i ∈ {1, · · · , h}, the kernel ki is
bounded and h− i times continuously differentiable.

Since the kernels ki encode information about Fi, As-
sumption 3 implies that the functions Fi contain the same
characteristics as ki, which in this case are boundedness and
h − i times continuous differentiability, i.e., Assumption 2.
Furthermore, a critical aspect of Assumption 3 is that it
implies that the kernels ki can adequately approximate the
functions Fi. Hence, the choice of ki is governed by knowl-
edge of the system at hand. However, this task is simpler
than choosing a parametric structure in nonlinear system
identification methods, since kernels pose significantly less
restrictions than parametric structures. Multiple characteristics
can be encoded by composing different kernels. In practice,
squared-exponential kernels are often employed, as they have
the property that the members of the corresponding RKHS
can uniformly approximate continuous functions on compact
sets. Kernels that satisfy this characteristic are called universal
kernels [14]. Other examples of universal kernels include the
Laplacian and spline kernels. An exhaustive review of kernels
and respective properties can be found in [9]. For simplicity of
exposition, the case where different kernels are used for each
component of Fi is not considered. However, the method and
analysis provided in this work extend straightforwardly to such
cases.

III. GAUSSIAN PROCESS MODEL

A GP, denoted as GP(m, k), is fully specified by a mean
function m :Wi 7→ R and kernel ki, i ∈ {1, · · · , h}. A GP is

as a nonparametric regression tool to approximate a nonlinear
function f : Wi 7→ R using (potentially noisy) system
measurements [9]. Here we consider σ-sub-Gaussian noise as
specified in the sequel.

Definition 1. Let σ > 0. A scalar random variable r is said
to be σ-sub-Gaussian [15] if for every t ∈ R

E(exp(tr)) ≤ exp(
1

2
σ2t2) (2)

holds, where E denotes the expected value operator.

Examples of such distributions are Gaussian and uni-
form distributions. We assume a mean m of zero for all
GPs, which does not pose any restrictions and is often
assumed if no prior system knowledge is available [9].
Given a σ > 0 and N system measurements of the
form y(j) = f(w

(j)
i ) + ε(j), where ε(j) corresponds to σ-sub-

Gaussian noise, and w
(j)
i ∈ Wi, j = {1, · · · , N}, the poste-

rior distribution corresponding to f at a point wi ∈ Wi is then
computed as a normal distribution N (µN (wi), σN (wi)) with
mean and covariance

µN (wi) = kT(wi)
(
K + σ2I

)−1
yN , (3)

σN (wi) = k(wi,wi)− kT(wi)
(
K + σ2I

)−1
k(wi), (4)

where yN = (y(1), ..., y(N))T ∈ RN contains the output mea-
surements, [k(·)]a = k(w

(a)
i , ·), and [K]ab = k(w

(a)
i ,w

(b)
i ).

Hence, in order to compute a GP model, the inverse of an
N ×N matrix needs to be computed, which corresponds to
a computational complexity of order O(N3). However, this
computation only needs to be performed once per GP model.
Afterwards, evaluating a GP model essentially corresponds to
N evaluations of the kernel function.
Based on [16], we define the maximum information gain γiN ,
which is given by

γiN = max
w̃

(1)
i ,··· ,w̃(N)

i ∈Wi

1

2
log |I + σ−2K̃|, (5)

where [K̃]ab = k(w̃
(a)
i , w̃

(b)
i ) and | · | is the determinant op-

erator. Intuitively, γiN measures the reduction of uncertainty
achievable in a setting where the measurements are taken in the
best possible fashion. On a compact setWi, γiN has sub-linear
dependence on N for a multitude of kernels and can efficiently
be approximated up to a small constant by employing the
approach given in [16]. The following theorem gives a bound
for the model error obtained when using a GP trained using
noisy measurements, and is due to [10].

Theorem 1. Let f : Wi 7→ R be a nonlinear function,
Bf ∈ R a bound for the corresponding RKHS norm w.r.t.
ki, i.e., ‖f‖ki ≤ Bf , and δ ∈ (0, 1). For all N ∈ N, define

βN = Bf + 4σ
√
γiN + 1 + ln(1

δ ), where γiN is defined in (5).
Then, for all N ≥ 1 and wi ∈ Wi, the following holds with
probability of at least 1− δ.

|f(wi)− µN−1(wi)| ≤ βNσN−1(wi). (6)

If Bf is not available a priori, a guess-and-doubling strategy
can be employed to obtain an estimate [16]. Moreover, σ
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can be estimated by sampling the same data point multiple
times. Since γiN grows sub-linearly with N on a compact
set, the term βN grows slowly with N on a compact set.
The covariance term σN−1(wi) is typically very small next to
training data points [9]. Hence, the variance term σN−1(wi)
can be decreased if the region of interest is sampled densely
enough. This is achieved on a compact set [16] by selecting
new training data points w

(N+1)
i corresponding to highest

model uncertainty, i.e.,

w
(N+1)
i = arg max

w̃i∈Wi

σN (w̃i). (7)

In Section V, we show that the control law enforces compact-
ness of the portion of the state space explored by the state
trajectory.
For each entry of the functions Fi, a GP is trained using mea-
surements of the form y

(j)
l,i = Fl,i(w

(j)
i ) + ε(j), w

(j)
i ∈ Wi.

The necessary measurements can readily be obtained from
measurements of the derivatives ẋ(j)

i , by subtracting the known
components Gi(w

(j)
i )x

(j)
i−1, ...,Gh(w

(j)
h )u(j). Even though a

multivariate GP formulation exists [9] and can be used to
approximate each Fi by a single GP, such a formulation is very
cumbersome and corresponds to a high computational cost,
as opposed to employing multiple scalar GPs. The estimated
models F̂i are then given by

F̂i =
(
µ1,i(wi) · · · µn,i(wi)

)T
, (8)

where µ1,i(wi), · · · , µn,i(wi) are GP means.

IV. BACKSTEPPING CONTROL WITH GPS

A backstepping control design approach using GP models
is presented. The control law is given directly in the command
filtered form, as it encompasses the common backstepping
approach as a special case. For a detailed introduction to the
standard backstepping method, the reader is referred to [1].
The design approach and notation closely follow that given
by [4].
The idea of the command filtered approach is that the control
signals xi,d, i = 2, · · · , h are computed by means of a
second order filter with natural frequency ωf , as opposed
to employing differentiation. In order to do so, the model
estimates F̂i are firstly computed using data collected prior to
the control design. The corresponding formulations are given
by (8). The following signals are then defined.

α1 = G−11

(
−F̂1 + ẋ1,d −C1e1

)
(9)

αi = G−1i

(
−F̂i + ẋi,d −Ciei −Gi−1vi−1

)
,

i = 2, · · · , h
(10)

u = αh, (11)

where Ci ∈ Rn×n are positive definite matrices, vi = ei − ξi
denotes the difference between the tracking errors ei and
compensation terms ξi, which in turn computed as

ξ̇i = −Ciξi + Gi(xi+1,d −αi) + Giξi+1, (12)

ξ̇i(0) = 0, i = 1, · · · , h− 1 (13)
ξh = 0. (14)

The control signals xi,d are computed by means of the
following second order filter.

ẍi,d = −2ζωf ẋi,d − ω2
f (xi,d −αi−1) (15)

xi,d(0) = αi−1(x1(0), · · · ,xi(0),xi,d(0),vi−1(0)) (16)
ẋi,d(0) = 0, i = 2, · · · , h (17)

where ωf > 0 and ζ ∈ [0, 1) are scalar design parameters. By
increasing ωf , the difference between xi,d and αi−1 tends to
zero more quickly. If ωf →∞ is chosen, then xi,d = αi−1
holds. In this case, one can verify that the control approach
corresponds to the standard backstepping equations, with the
difference that the exact model dynamics Fi are not known
and are substituted by F̂i. The dynamics of the compensation
terms ξi are directly affected by the differences between xi,d
and αi−1, and become zero if ωf →∞ holds.
The tracking error dynamics are given by

ė1 =F1 − F̂1 −C1e1 + G1(x2,d −α1) + G1e2 (18)

ėi =Fi − F̂i −Ciei −Gi−1vi−1 + Gi(xi+1,d

−αi) + Giei+1, i = 2, · · · , h− 1,
(19)

ėh =Fh − F̂h −Cheh −Gh−1vh−1, (20)

whereas the compensated tracking errors are given by

v̇1 = F1 − F̂1 −C1v1 + G1v2 (21)

v̇i = Fi − F̂i −Civi −Gi−1vi−1 + Givi+1,

i = 2, · · · , h− 1
(22)

v̇h = Fh − F̂h −Chvh −Gh−1vh−1. (23)

V. CONVERGENCE ANALYSIS

The tracking error performance resulting from the proposed
control law is shown to be directly related to the training
data points. Moreover, the performance is improved by adding
new training data points. The performance and convergence
of the closed loop dynamics are analyzed as follows. Firstly,
the control law is analyzed in a setting where ωf →∞ holds,
which corresponds to the standard backstepping approach with
GP models. Afterwards, the setting where ωf < ∞ holds is
analyzed. In order to avoid cumbersome notation, the analysis
is performed for a system with n = 1. However, the analysis
can readily be extended to systems where n > 1 using a
similar approach and matrix operations.
For the analysis, the vector

e = (e1 · · · eh)T, (24)

is used to denote the concatenation of the tracking errors.

A. Convergence Analysis for ωf →∞
In this section, the convergence of the controlled system

for ωf → ∞ is analyzed. This corresponds to the standard
backstepping design approach [4], with the difference that
the system functions Fi are substituted by GP models. The
following results show how the tracking error performance
depends on the data points used to train the GP models.
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Lemma 1. For each i = 1, ..., h and N ∈ N, choose
βiN,h = BFi + 4σ

√
γiN + 1 + ln( 1

δh
), where BFi

≥ ||Fi||ki ,
γiN is given by (5), and δh = δ

h with δ ∈ (0, 1). The following
then holds with probability of at least 1− δ.

|Fi − µi| ≤ βiN,hσiN ∀ i = 1, ..., h, N ∈ N. (25)

Proof: Due to Assumption 3 and Theorem 1,
P
{
|Fi − µi| > βiN,hσ

i
N

}
< δh holds with probability

of at least 1− δ for all i = 1, ..., h. Applying the union bound
yields

P

{⋃
i=1

|Fi − µi| > βiN,hσ
i
N

}
≤

h∑
i=1

δh = hδh = δ.

This in turn implies

P

{⋂
i=1

|Fi − µi| ≤ βiN,hσiN

}
≥ δ.

Lemma 2. Consider the system given by (1), with n = 1, and
the control law given by (11) with ωf → ∞. The system’s
tracking error e is globally uniformly ultimately bounded.
Moreover, with probability of at least 1 − δ, the system’s
ultimate error bound is given by

lim
t→∞

|e| ≤

(
h∑
i=1

(
max

wi∈Wi

βiN,hσ
i
N

)2
) 1

2

min
i

(Ci)
, (26)

where βiN,h is chosen as in Proposition 1,

Proof: For ωf → ∞, the differential equations corre-
sponding to the fictitious control signals are reduced to

xi+1,d = αi (27)
ξi = −Ciξi = 0 (28)
vi = ei (29)

where (28) is due to ξi(0) = 0. As such, only the true error
dynamics corresponding to the terms ei have to be considered.
Equations (18) to (20) can then be reformulated as

ė = ∆F − (C +G)e, (30)

where

∆F = ((F1 − F̂1) · · · (Fh − F̂h))T

C = diag
(
C1 · · · Ch

)

G =


0 G1 0 · · · 0

−GT
1 0 G2

...
0 −G2 0
...

. . . Gh−1
0 · · · −Gh−1 0

 .

Consider the Lyapunov candidate

V (e) =
1

2
eTe. (31)

Differentiation with respect to time yields

V̇ (e) =
1

2
(eTė+ ėTe) =

h∑
i=1

(
ei(Fi − F̂i)− eiCiei

)
+
h−1∑
i=1

eiGi+1ei+1 +
h∑
i=2

(−eiGiei−1)

=eT∆F − eTCe.

(32)

Hence, V̇ (e) < 0 holds if |∆F | < |e|min
i

(Ci).
Due to Assumptions 2 and 4, |∆F | is bounded. Hence,
|∆F | < |e|min

i
(Ci) holds for |e| large enough, which means

that e is globally uniformly ultimately bounded. Lemma 1 in

turn implies that |∆F | ≤
(∑h

i=1(maxwi
βiN,hσ

i
N )2

) 1
2

holds
with probability of at least 1− δ, which yields the desired
result.

Note that Assumption 3 is not needed to show global
uniform ultimate boundedness of e. The proof shows that the
ultimate error bound of the controlled system can be made
arbitrarily small with high probability either by increasing the
control gains Ci or by selecting data points such that the terms
σiNβ

i
N,h are reduced. The latter is achieved by collecting new

system measurements at points of high uncertainty. This is
particularly interesting in a setting where the control input u
is constrained and high gains Ci cannot be realized. Moreover,
the proof shows the control law can be used to enforce
compactness of the portion of the state space explored by the
state trajectory. This in turn can be employed to guarantee sub-
linear dependence of γiN on N , which enables the ultimate
bound of e to be efficiently reduced with new training data.

B. Convergence Analysis for ωf <∞
The following section analyzes the performance of the

command filtered control, i.e., eqs. (9) to (12) and (14) to (23),
for a fixed ωf <∞.

Lemma 3. The variables vi of the controlled system using
(11) are globally uniformly ultimately bounded.

Proof: Consider the Lyapunov candidate

V (v1, · · · , vh) =
1

2

h∑
i=1

v2i . (33)

Taking the derivative with respect to time yields

V̇ (v1, · · · , vh) =
h∑
i=1

viv̇i

=
h∑
i=1

vi

(
Fi − F̂i − Civi

)
+

h∑
i=2

vi (−Gi−1vi−1)

+
h−1∑
i=1

vi (Givi+1) =
h∑
i=1

vi

(
Fi − F̂i − Civi

)
.

(34)

Hence, V̇ (v1, · · · , vh) < 0 if |∆F ||C|−1 < |v|. Due to
Assumptions 2 and 4, the difference between Fi and F̂i is
bounded for i = 1, ..., h, which completes the proof.

The following definition is due to [17, Def. 10.1].
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Definition 2. A function y(t, ε) is said to be of order O(ε) if
there exist constants c and k, such that

|y(t, ε)| ≤ k|ε| ∀ε, |ε| ≤ c. (35)

This is denoted by y(t, ε) = O(ε).

Theorem 2. Denote the tracking error and the desired control
trajectories obtained using eqs. (9) to (12) and (14) to (23)
with ωf → ∞, i.e., the solution resulting from the backstep-
ping approach, as e∞(t) and x∞i,d(t), respectively. Let e(t) and
xi,d(t) be the tracking error and desired control trajectories
obtained using eqs. (9) to (12) and (14) to (23) for a fixed
ωf <∞. Choose an arbitrary positive scalar T > 0. For all
0 < t < T , the following holds.

(i) e(t)− e∞(t) = O( 1
ωf

)

(ii) xi,d(t)− x∞i,d(t) = O( 1
ωf

)

(iii) 1
ωf
ẋi,d(t) = O( 1

ωf
) .

Proof: The proof consists of showing that all conditions
required for Tikhonov’s theorem [17, Theorem 11.1] are
satisfied by the controlled system. Hence, the notation closely
follows that of [17, Theorem 11.1]. In the following proof, the
definitions DX =: R(2h−1)n and DZ = R(2h−2)n are utilized.
For the proof, the pseudo control signals are redefined as
zi,1 := xi+1,d and zi,2 := 1

ωf
ẋi+1,d, i = 1, · · · , h − 1. The

equations corresponding to the command filter, i.e., eqs. (15)
to (17), are thus reformulated as

żi,1 = ωfzi,2 (36)
żi,2 = −2ζωfzi,2 − ωf (zi,1 − αi) (37)

zi,1(0) = αi(0) (38)
zi,2(0) = 0. (39)

This enables a similar analysis to the one given in [4].
Define the vectors

X =
[
e1, · · · , eh, ξT

1 , · · · , ξT
h−1
]T ∈ DX (40)

Z = [z1,1, z1,2 · · · , zh−1,1, zh−1,2]
T ∈ DZ (41)

Equations (9) to (12) and (14) to (20) are reformulated as

Ẋ = F(t,X,Z, ε) (42)

εŻ = G(t,X,Z, ε) (43)
X(0) = X0 (44)
Z(0) = Z0 (45)

where the definition ε := 1
ωf

is utilized. Here the entries of
F correspond to the differential equations for the variables
ei and ξi, i = 1, · · · , h, i.e., eqs. (18) to (20) and eqs. (12)
and (14). On the other hand, the entries of G correspond to
eqs. (36) and (37) after division by ωf , i.e.,

G =[zT
1,2 (−2ζz1,2 − (z1,1 − α1))T

· · · zT
h−1,2 (−2ζzh−1,2 − (zh−1,1 − αh−1))T].

(46)

We now show that all three conditions required for [17,
Theorem 11.1] hold.

• The functions F , G, and the initial conditions X0, Z0

are independent of ε. Together with Assumption 1 and
Assumption 2, this implies that the following holds on
any compact subset of DX ×DZ. The functions F and G,
their first partial derivatives with respect to (X,Z, ε), and
the partial derivative of G with respect to t are continuous
and bounded. For ε = 0, (43) reduces to an algebraic
equation whose unique solution is given by

Z∞(t) = (x∞i,d(t) 0 · · · x∞h,d(t) 0),

and has continuous partial derivatives with respect to x∞i,d
and t. Moreover, the Jacobian ∂G(t,X,Z,0)

∂Z has continuous
first partial derivatives with respect to its arguments, and
the initial conditions X0, Z0 are smooth functions of ε.

• Let X∞(t) denote the solution of (42) for ε = 0. Denote
the solution of eqs. (9) to (12) and (14) to (23) for
ωf →∞ as x∞(t). Due to Lemma 1 and Assumption 1,
x∞(t) is globally ultimately uniformly bounded, which
implies x∞(t) ∈ S ⊂ DX for a compact S. Together
with Assumptions 1 and 2, and the Picard-Lindelof theo-
rem [18], this implies that x∞(t) is unique for t ∈ [0, T ].

• An exhaustive proof of the satisfaction of the third
condition is given in [4].

Therefore, there exists a positive constant ε∗, such that
eqs. (42) to (45) possess a unique solution Xωf (t), Zωf (t),
and the following holds for all t ∈ [0, T ) and all ε ∈ [0, ε∗].

Xωf (t)−X∞(t) = O(ε) (47)
Zωf (t)− Z∞(t) = O(ε). (48)

Theorem 2 shows that the solution of the controlled system
can be brought arbitrarily close to that of the standard back-
stepping algorithm over an arbitrary finite time interval by
increasing the frequency ωf of the command filter. As such,
the system’s performance over any finite time interval depends
essentially on the quality and number of training data.

Corollary 1. Choose βiN,h and δ as in Lemma 1. For the
solution of the controlled system, the following holds for all
t ∈ [0, T ] with probability of at least 1− δ.

x1(t)− x1,d(t) = O


1

ωf
+

(
h∑
i=1

(
max

wi∈Wi

βiN,hσ
i
N

)2
) 1

2

min
i

(Ci)


(49)

Proof: The proof follows directly from Theorem 2 and
Lemma 1.

VI. NUMERICAL SIMULATION

The proposed approach is illustrated for the control a one-
link manipulator in a numerical simulation. The simulation
results are compared to those obtained using an adaptive neural
network-based backstepping method, which is implemented as
described in [2]. Note that the approach from [2] makes use of
Assumptions 1 and 2, but not Assumptions 3 and 4. However,
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while Assumption 4 is very mild, Assumption 3 is only needed
to improve tracking performance, but not to guarantee global
uniform ultimate boundedness, as shown in Section V-A.
A one-link manipulator can be described as in (1) by employ-
ing the following definitions [2].

F1 = 0, G1 = 1

F2 = (−p1 sin(x1)− p2x2)/p3, G2 =
1

p3
,

F3 = (−p4x2 − p5x3)/p6, G3 =
1

p6
,

where p1 = 10, p2 = p3 = 1, p4 = 10, p5 = 0.5, and
p6 = 0.05. The desired trajectory is given by x1,d = sin(2πt).
The control parameters are set to C1 = C2 = C3 = 50,
ωf = 300, and ζ = 0.8. The initial conditions are
x1,0 = x2,0 = x3,0 = 0. The control law is employed using
two different model estimates, one trained using N = 5 data
points per GP, and another using N = 50 data points per GP.
Since the portion of the state space covered by the trajectory
is small, good generalizations can be obtained with few data
points. The training data is collected using a controller with
N = 0 measurements, and the data points are selected as
shown in (7). For the GPs, squared-exponential kernels are
employed, which encode infinitely differentiable functions.
The adaptive approach updates the model parameters using
online measurements and requires time to obtain the ideal
parameters. Hence, in order to obtain an objective comparison,
the L2-norm of the tracking error over the time interval [0, 100]
is measured. The entries ei of the tracking error during the
initial stage of the simulation are shown in Figure 1. The L2-
norms over the time interval [0, 100] are given in Table I. As
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Fig. 1. Tracking errors of system variables for proposed control approach
with N = 5 data points per GP, N = 50 data points per GP, and alternative
adaptive backstepping approach from [2].

expected from Corollary 1, the tracking error converges to a
neighborhood of the origin in both cases. When using N = 5
data points, the long-term performance is poor compared to the
adaptive method, as indicated by the high L2-norm of the error.
By employing N = 50 data points, the uncertainty in the GP
model is reduced, which leads to a lower L2-norm of the error
than in the adaptive case. This illustrates that the performance
of the proposed approach depends on the number and quality
of the system measurements, whereas the adaptive method is

ultimately limited by the choice of parametric structure, even
though it updates its parameters during the control process.

TABLE I
L2-NORM OF TRACKING ERRORS OVER TIME INTERVAL [0,100].

Bs. with GPs, N=5 Bs. with GPs, N=50 Adaptive bs. [2]

‖e‖L2
333.2 31.4 74.8

VII. CONCLUSION

We present a Gaussian process based backstepping method
for systems with partially unknown dynamics. The resulting
tracking error is globally uniformly ultimately bounded, and its
ultimate bound is decreased by using additional training data.
The proposed approach is also employable with command
filters, which can be tuned such that the resulting trajectories
are arbitrarily close to those achieved using the standard
backstepping approach with high probability over a finite time
interval. Given enough training data, the proposed method
achieves better results than a state-of-the-art adaptive method.

REFERENCES

[1] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
adaptive control design. Wiley, 1995.

[2] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear
systems using neural networks,” IEEE Trans. on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 30, no. 6, pp. 753–766,
2000.

[3] W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma,
“Command filtered adaptive backstepping,” IEEE Trans. on Control
Systems Technology, vol. 20, no. 3, pp. 566–580, 2012.

[4] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong, “Command
filtered backstepping,” IEEE Trans. on Automatic Control, vol. 54, no. 6,
pp. 1391–1395, 2009.

[5] Z. Zuo, “Trajectory tracking control design with command-filtered
compensation for a quadrotor,” IET control theory & applications, vol. 4,
no. 11, pp. 2343–2355, 2010.

[6] J. Umlauft, T. Beckers, M. Kimmel, and S. Hirche, “Feedback lineariza-
tion using Gaussian processes,” in IEEE Conference on Decision and
Control, 2017. IEEE, 2017, pp. 5249–5255.
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