
TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Lehrstuhl für Sprachen und Beschreibungsstrukturen

Binary Analysis using On-Demand
Tabulation of Function Summaries

Julian Kranz

TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Lehrstuhl für Sprachen und Beschreibungsstrukturen

Binary Analysis using On-Demand
Tabulation of Function Summaries

Julian Kranz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation:
1. Prof. Dr. Helmut Seidl
2. Prof. Dr. Antoine Miné

Die Dissertation wurde am 16.01.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 10.04.2019 angenommen.

Abstract

Program analysis tries to recover properties of software in order to find flaws or to
understand the ideas behind a software system. Modern software is typically written
in a high-level programming language and then translated into machine instructions by
a compiler. An analysis can either work on the source code written by the programmer
directly or use the compiled binary as input. Analyzing the source code has the
advantage of being able to gather information from abstractions and control structures
of the respective programming language. For example, the type of a variable constrains
the set of operations that may modify its value. However, source code level analysis
also has drawbacks. First and foremost, the source may not be available. This is
the case, e.g., when analyzing proprietary systems or malware. In addition, source
code analysis relies on the semantics specification of the programming language. This
specification, however, may not be exact or may intentionally not cover all possible
program constructs (as is the case for C and C++). Last but not least, the compiler itself
may contain bugs resulting in a divergence between the language specification and the
actual program behaviour. As a result, binary program analysis has recently gained
attention.

This work addresses two main challenges of binary program analysis. Due to the
complexity of modern processors (consider, e.g., the Intel x86 architecture) writing an
analysis for a specific machine architecture is cumbersome and not portable. Thus,
the binary has to be decoded and translated into an analysis-friendly architecture-
independent intermediate representation (IR). Implementing a decoder is itself error-
prone because general-purpose programming languages lack constructs required for
an intuitive decoder specification. Therefore, we present a DSL that offers built-in
syntax for instruction decoders. We also show how we compile our specifications into
naturally-looking C code which can be easily understood and debugged by a human
reader. The second challenge of binary analysis is scalability. Binary analysis has
to deal with sized inputs resulting from code size increases by large factors during
compilation and translation into an IR. A common means of dealing with the problem
of analyzing a large program is breaking it up into smaller chunks – e.g. functions –
and analyzing these in isolation. However, modularity may lead to a precision loss
that is not acceptable. As a remedy, we present an analysis methodology that tabulates
functions for certain properties of calling contexts on-demand. This approach allows us

ii

Abstract

to reach the necessary performance while not giving up contextual information where
it is required.

We demonstrate our analysis algorithm using benchmarks gathered from an imple-
mentation that is based on our DSL for binary disassembly and that implements the
modular analysis using on-demand tabulation of function summaries.

iii

Zusammenfassung

Programmanalyse ist darum bemüht, Eigenschaften von Software zu rekonstruieren,
um auf diese Weise Fehler zu entdecken oder die Ideen hinter einem Softwaresystem
zu verstehen. Moderne Software wird üblicherweise in einer höheren Programmier-
sprache geschrieben und anschließend von einem Compiler in Maschinen-Instruktionen
übersetzt. Eine Analyse kann entweder direkt mit dem Quelltext arbeiten, den der Pro-
grammierer verfasst hat, oder das kompilierte Binärprogramm als Eingabe verwenden.
Den Quelltext zu analysieren hat den Vorteil, die Möglichkeit zu haben, Informationen
aus den Abstraktionen und Kontrollstrukturen der jeweiligen Programmiersprache
gewinnen zu können. Zum Beispiel beschränkt der Typ einer Variablen die Menge an
Operationen, die ihren Wert verändern können. Allerdings hat die Analyse von Quell-
text auch Nachteile. Zuallererst ist möglich, dass der Quelltext nicht verfügbar ist. Dies
ist zum Beispiel der Fall, wenn ein proprietäres System oder Schadsoftware analysiert
werden soll. Außerdem muss sich eine Analyse des Quelltextes auf die Spezifikation
der Semantik der Programmiersprache verlassen. Diese Spezifikation kann allerdings
ungenau sein oder sogar bewusst einige Programmkonstrukte nicht abdecken (dies ist
bei C und C++ der Fall). Schließlich kann auch der Compiler selbst Fehler enthalten,
was zu einer Divergenz zwischen der Spezifikation der Sprache und dem tatsächlichen
Verhalten des Programms führt. Aus diesen Gründen hat die Analyse auf Binärebene
an Wichtigkeit gewonnen.

Diese Arbeit beschäftigt sich mit zwei zentralen Herausforderungen von Binär-
analyse. Wegen der Komplexität moderner Prozessoren (man bedenke, z.B., die
x86-Achitektur von Intel) ist umständlich und nicht portabel, eine Analyse für eine
spezifische Maschinen-Architektur zu entwerfen. Aus diesem Grund muss der Binär-
code zunächst dekodiert und in eine analysefreundliche und nicht von der Architek-
tur abhängige Zwischendarstellung (IR) übersetzt werden. Die Implementierung
des Dekodierers selbst ist fehleranfällig, da Allzweck-Programmiersprachen keine
passenden Konstrukte mitbringen, um Dekodierer intuitiv zu spezifizieren. Aus diesem
Grund stellen wir eine domänenspezifische Sprache (DSL) vor, eine eingebaute Syntax
für Instruktionsdekodierer anbietet. Wir erklären außerdem, wie wir die resultierenden
Spezifikationen in natürlich aussehenden Quelltext der Programmiersprache C über-
setzen, der von einem menschlichen Leser leicht verstanden und auf Fehler geprüft
werden kann. Die zweite Herausforderung von Binäranalyse ist die Skalierbarkeit.

iv

Zusammenfassung

Binäranalyse muss mit umfangreichen Eingaben umgehen können, die sich aus starken
Vergrößerungen des Codes während der Kompilierung bzw. der Übersetzung in eine
IR ergeben. Eine übliche Herangehensweise, um mit dem Problem der Analyse großer
Programme umgehen zu können, ist es, diese in kleinere Teile – z.B. Funktionen –
herunterzubrechen und diese Teile in Isolation zu analysieren. Allerdings kann Modu-
larität zu einem Präzisionsverlust führen, der nicht akzeptabel ist. Als Abhilfe hierfür
stellen wir eine Analysemethodik vor, die Funktionen nach bestimmten Eigenschaften
der Aufruf-Kontexte nach Bedarf tabelliert. Dieser Ansatz erlaubt es uns, die nötige
Performanz zu erreichen, ohne dabei Informationen über den Kontext zu verlieren, wo
ebendiese nötig sind.

Wir demonstrieren unseren Analyse-Algorithmus durch Messungen anhand einer
Implementierung, die auf unserer DSL zur Disassemblierung von Binärcode aufbaut
und die unsere modulare Analyse umsetzt, die bedarfsorientiert Funktionsabstraktionen
tabelliert.

v

Acknowledgments

I would like to give thanks to Axel Simon. He officially was my supervisor until January
2015 and continued to assist me throughout my time as a doctoral candidate. This
work would have not been possible without his constant support over the past years.

vi

Contents

Abstract ii

Zusammenfassung iv

Acknowledgments vi

I. Introduction 1

1. Introduction 2

II. The GDSL Toolkit: An Architecture-Independent Framework for
Machine Code Disassemblers 9

2. GDSL: The Generic Decoder Specification Language 10
2.1. General Language Overview . 12

2.1.1. Endianness Configuration . 15
2.2. Decoding x86 Prefixes . 16
2.3. Evaluation . 18

2.3.1. Performance . 19
2.3.2. Correctness . 20

2.4. Related Work . 20

3. Semantics Translation using RReil 24
3.1. RReil Intermediate Representation . 24
3.2. The Generic Decoder Specification Language (GDSL) 25
3.3. Writing Semantics using GDSL . 26

3.3.1. An Example Intel Instruction . 26
3.3.2. Generating RReil Statements using GDSL Monadic Functions . . 27
3.3.3. The Translator . 28

3.4. Optimizing the RReil Code . 29
3.4.1. Liveness Analysis and Dead Code Elimination 29
3.4.2. Forward Expression Substitution 30

vii

Contents

3.5. Empirical Evaluation . 31
3.6. Future Work . 32

4. Verification of the Decoder and the Translator 34
4.1. Automatic Generation of End-to-End Tests 34
4.2. Generation of x86 Machine Instructions 35
4.3. Execution of the Generated Instruction 36
4.4. Test Results and Error Conditions . 38

5. Compiling GDSL to C 40
5.0.1. Heap-Allocation and Avoidance of Garbage Collection 40
5.0.2. Unboxing of Polymorphic Values and Closures 41
5.0.3. Transformation of Monadic Functions 42

5.1. Lowering GDSL to Core . 43
5.2. Conversion to an Imperative Language 48

5.2.1. Translating Monadic Sequences 58
5.3. Optimizing the Intermediate Representation Imp 60

5.3.1. Simplifying Imp . 60
5.3.2. Removing Monadic Actions . 62
5.3.3. Unboxing by Type Inference . 65

5.4. Implementation . 70
5.5. Experimental Evaluation . 71
5.6. Related Work . 73
5.7. Conclusion . 75

III. Scalability Through Modular Analysis 77

6. Modular Analysis of Executables using On-Demand Heyting Completion 78
6.1. Preliminary Definitions . 81

6.1.1. Abstract Interpretation of the Collecting Semantics 83
6.2. Modular Program Semantics . 86

6.2.1. Abstract Interpretation of the Relational Semantics 86
6.2.2. Abstract Semantics of Memory Accesses 88
6.2.3. Application of Function Summaries 90
6.2.4. Computing a Fixpoint of the Abstract Relational Semantics . . . 101

6.3. On-Demand Heyting Completion . 103
6.3.1. Extracting Refinement Information using Herbrand Terms 103
6.3.2. Specializing Summaries with Herbrand Terms 106
6.3.3. Combining Specialized Function Summaries 107

viii

Contents

6.3.4. Heyting Completion . 109
6.4. Implementation . 110
6.5. Related Work . 112

6.5.1. Conclusion . 113

IV. Analysis Implementation and Evaluation 115

7. The Summy Analysis Tool 116
7.1. Getting Started . 116
7.2. Running the Analyzer . 117
7.3. Output of the Driver Tool . 118
7.4. RReil Code Optimization . 122
7.5. Fixpoint Computation . 125

7.5.1. Additional Narrowing Iteration 129
7.6. Implementation of Memory Regions . 130

7.6.1. Handling of Conflicting Accesses 130
7.6.2. Further Ideas for Improvement . 131

7.7. Evaluation . 131

V. Conclusion 135

List of Figures 138

List of Tables 141

Bibliography 142

ix

Part I.

Introduction

1

1. Introduction

Program analysis tries to recover properties of software programs in order to find flaws
or understand the ideas behind a software system. The latter particularly applies to
malware as there is no documentation available that describes its functionality. Finding
flaws is particularly relevant for strengthening the security of systems since software
nowadays is immensely important for every part of modern life and, thus, exposes a
massive attack surface.

In general, an analysis can work with different input program representations: It
can either analyze the source code of a program in some higher level programming
language or it can analyze the machine instructions which were generated by a compiler
from the source of a program. Generally, the task of the analyzer is significantly simpler
when dealing with source code because programming languages are geared towards
readability and understandability which can also be exploited by the analysis tool. For
example, programming languages offer high-level control flow structures and help
in componentization of large system, both of which help during program analysis.
As a matter of fact, programming languages are sometimes designed with certain
types of program analyses in mind (e.g. automatic lifetime deduction for references in
Rust [58]) in order to allow for meaningful error messages and aid refactoring during
development.

However, analyzing the source code also has drawbacks. First, the source code needs
to be available which is not always the case. This may be because of software licensing
or because the authors of the software are unwilling to allow the analysis of their
software, e.g. in case of malware. Second, the analysis of source code needs to rely on
the specified semantics of the programming language. However, the definition of the
semantics may be vague, implementation defined, or even undefined for some language
constructs (and, indeed, many C and C++ programs rely on undefined behaviour [62]).
Here, the semantics implemented by the compiler needs to be approximated which
can be a very laborious task, in particular in the presence of different compilers and
optimization settings that can affect the behaviour of the generated program. As a
result, binary program analysis is a necessity.

Binary program analysis uses the CPU-specific instructions of a program as an input.
Thus, it directly processes the code as seen by the machine and only has to rely on the
semantics specification of the silicon manufacturer. However, there is a multitude of

2

1. Introduction

hardware architectures, some of which include hundreds of instructions with complex
semantics. It is therefore desirable to separate the analysis algorithm itself from both
the complexity of machine instructions and the concrete hardware architecture. A
common approach for this is to first translate the input program into some intermediate
representation (IR) that is common to all supported architectures. The analysis then
only needs to implement transformers for the semantic statements of the IR. In such a
design, new hardware can easily be supported by the analyzer by providing a suitable
decoder and semantics translator. In this work, we use a refined version of the REIL IR
[19] called RReil (Relational Reverse Engineering Intermediate Language) [48] which
is geared towards binary analysis by having a very small and simple set of semantic
statements while offering flexibility through, e.g., allowing accesses at arbitrary bit
offsets into registers.

Decoding machine instructions and translating them into an IR seems to be a simple
and straight forward software engineering problem at first sight. However, instruction
sets are built for interpretation by machines and are – in some well-known cases
such as Intel x86 – extended oftentimes during their lifespan. As a result, software
implementations of decoders tend to contain a huge number of rules which makes
them hard to understand and maintain. Even though a large number of decoding
tools already existed [1], none of them seemed to be a perfect fit for our requirements:
We needed a decoding tool that allows for an easy specification of machine decoders
that closely follows the layout of the documentation of the chip manufacturer as we
deem this to be the best way to keep the code readable and, thus, extensible and
maintainable. We therefore developed the GDSL (Generic Disassembler Specification
Language) toolkit that offers a functional ML-like DSL that is specifically designed for
instruction decoder specifications. In this work, we present the current state of the
GDSL project and future directions.

Figure 1.4 contains the software lifecycle from the viewpoint of binary program
analysis. First, source code is written. This source code is then compiled to machine
code. Later, the machine code is decoded and translated into an IR which is used
by an analysis tool to recover properties of the software. As an example, consider
the C++ code in Fig. 1.1. The code defines two structures A and B where B inherits
from A. Line 15 uses dynamic function binding in order to invoke the function f()
in structure B. Figure 1.2 shows the x86 assembly code that results from compiling
the code with version 6 of clang from the LLVM project using the -O1 optimization
flag. The figure shows the assembly code for all relevant functions. Each line within a
function begins with the address of the instruction in memory which is followed by the
bytes that encode the instruction. Finally, each line contains a string representation of
the instruction in AT&T assembly syntax. Note that mangled function names have been
replaced by more readable identifiers. The main function commences by calling the

3

1. Introduction

1 struct A {
2 virtual int f() {
3 return 99;
4 }
5 };
6

7 struct B : public A {
8 virtual int f() {
9 return 42;

10 }
11 };
12

13 int main(void) {
14 A *a = new B();
15 return a->f();
16 }

Figure 1.1.: Example code that uses dynamic function binding.

memory allocation function in line 4 which returns a pointer to the object in register
%rax. Next, main() calls the constructor of structure B in line 8 which expects a pointer
to the object it is constructing in register %rdi. The constructor of structure B, in turn,
calls the constructor of structure A which initializes the virtual table pointer in line 23.
The pointer to the virtual table is replaced by a pointer to the virtual table of the
subclass, i.e. the virtual table of B, in line 18. This way, when tail-calling the first
entry in the virtual table in line 12, control dispatches to the subclass version of f,
namely B::f(). Note that the two lines of C++ code in main() translated to 11 assembly
instructions. Further note that the instructions are encoded using a varying number of
bytes. This is caused by the rather complex encoding rules of the Intel x86 architecture.

Figure 1.3 contains a string representation of the RReil code that is generated by the
GDSL toolkit for the main function in Fig. 1.2. RReil allows for arbitrary bit sizes and
offsets. For example, line 9 writes the 32 bit value 0 to DI at offset 32. Note that a
single machine instruction is translated into a number of RReil statements, resulting in
another increase in code size compared to the x86 machine code. Also note that the
shown RReil code is not optimal; for example, the register IP is incremented multiple
times without being read in between. Such updates could be merged together.

The increase in size of the source code becomes a challenge to the scalability of a

4

1. Introduction

1 0000000000400600 <main>:
2 400600: 53 push %rbx
3 400601: bf 08 00 00 00 mov $0x8, %edi
4 400606: e8 f5 fe ff ff callq 400500 <memory_alloc>
5 40060b: 48 89 c3 mov %rax, %rbx
6 40060e: 48 c7 03 00 00 00 00 movq $0x0, (%rbx)
7 400615: 48 89 df mov %rbx,%rdi
8 400618: e8 13 00 00 00 callq 400630 <B_constructor>
9 40061d: 48 8b 03 mov (%rbx), %rax

10 400620: 48 89 df mov %rbx, %rdi
11 400623: 5b pop %rbx
12 400624: ff 20 jmpq *(%rax)
13

14 0000000000400630 <B_constructor>:
15 400630: 53 push %rbx
16 400631: 48 89 fb mov %rdi, %rbx
17 400634: e8 17 00 00 00 callq 400650 <A_constructor>
18 400639: 48 c7 03 18 07 40 00 movq $0x400718, (%rbx)
19 400640: 5b pop %rbx
20 400641: c3 retq
21

22 0000000000400650 <A_constructor>:
23 400650: 48 c7 07 68 07 40 00 movq $0x400768,(%rdi)
24 400657: c3 retq
25

26 0000000000400660 <B_f>:
27 400660: b8 2a 00 00 00 mov $0x2a, %eax
28 400665: c3 retq
29

30 0000000000400670 <A_f>:
31 400670: b8 63 00 00 00 mov $0x63, %eax
32 400675: c3 retq

Figure 1.2.: Assembly code for the C++ program in Fig. 1.1

5

1. Introduction

1 push %rbx
2 IP =:64 (IP + 1)
3 T0 =:64 B
4 SP =:64 (SP - 8)
5 *[64]SP =:64 T0
6 mov $0x8, %edi
7 IP =:64 (IP + 5)
8 DI =:32 8
9 DI.32 =:32 0

10 callq 400500
11 IP =:64 (IP + 5)
12 SP =:64 (SP - 8)
13 *[64]SP =:64 IP
14 goto [CALL] [64](IP + -267)
15 mov %rax, %rbx
16 IP =:64 (IP + 3)
17 B =:64 A
18 movq $0x0, (%rbx)
19 IP =:64 (IP + 7)
20 *[64]B =:64 0
21 mov %rbx, %rdi
22 IP =:64 (IP + 3)
23 DI =:64 B

24 callq 400630
25 IP =:64 (IP + 5)
26 SP =:64 (SP - 8)
27 *[64]SP =:64 IP
28 goto [CALL] [64](IP + 19)
29 mov (%rbx), %rax
30 IP =:64 (IP + 3)
31 T0 =:64 *[64]B
32 A =:64 T0
33 mov %rbx, %rdi
34 IP =:64 (IP + 3)
35 DI =:64 B
36 pop %rbx
37 IP =:64 (IP + 1)
38 T0 =:64 *[64]SP
39 SP =:64 (SP + 8)
40 B =:64 T0
41 jmpq *(%rax)
42 IP =:64 (IP + 2)
43 T1 =:64 *[64]A
44 goto [JUMP] [64]T1

Figure 1.3.: Translated RReil code for the main function in Fig. 1.2.

6

1. Introduction

Source
code

Machine
code

IR
code

lo
w

e
r

le
v
e
l h

ig
h
e
r le

v
e
lCom

pilation

Decoding
&

Translation

Analysis

Figure 1.4.: Software lifecycle from the viewpoint of binary analysis.

program analysis. Figure 1.3 illustrates this for our example code. In general, compiling
a single line of C code results in around 10 x86 machine instructions on average. Each
of these machine instructions is then translated into an IR program which requires
around four IR statements (already taking optimizations into account) per instruction.
As a result, scalability needs careful consideration during development of a binary
analysis tool. In this work, we discuss an analysis algorithm that uses on-demand
tabulation of function summaries. Here, the analyzer initially processes each function
in isolation, thus keeping the analysis modular. However, this modularity may lead to
a severe precision loss – consider, for example, a function that expects a pointer to a
structure of type A as parameter and invokes the function f() on it. In this case, a fully
modular analysis would need to make worst-case assumptions about the target of the
call. Our analyzer recognizes such situations. It tabulates the function for each concrete
function pointer value passed to the function and makes use of the now fixed target
during summary computation. This way, we compromise on modularity in order to
keep the analysis as precise as necessary, however without sacrificing scalability.

Again consider the code in Fig. 1.1 and Fig. 1.2. In the C++ code, the static type of the
variable a constrains the set of possible targets of the virtual call in line 15 (the call can
either dispatch to A::f() or B::f()). In the assembly code, on the other hand, line 12
alone gives no clue as to where the tail-call dispatches. Indeed, an analysis has to infer

7

1. Introduction

the effects of the constructor calls and apply them to the state of the object pointed to by
%rax in order to build the inter-procedural control flow graph. The analysis algorithm
presented in this work is able to do that.

In summary, we make the following contributions:

• We describe a functional ML-like language called GDSL that is geared towards
the implementation of instruction decoders and semantics translators. We provide
a compiler from GDSL to C, but other back-end languages are possible.

• We evaluated the language design by implementing a decoder for all 897 (as of
September 2012) instructions of the Intel x86 architecture and offering semantics
translations for about half of those instructions.

• We show how we use GDSL to implement basic optimizations on the produced
IR. This allows us to provide optimizations that are independent of both the
machine architecture of the translated instructions and the target language of the
DSL compiler.

• We present a structure preserving compilation of our functional language GDSL
to C that results in code that resembles manually written C code. This enables
the developer of the DSL program to use an off-the-shelf C debugger to debug
the DSL code.

• We present an analysis framework for programs in executable format that makes
use of on-demand tabulation of function summaries in order to achieve both
scalability and sufficient precision. We demonstrate our framework using an
analysis that reconstructs the control flow and call graph.

Parts of this work have been published in the following papers:

1. GDSL: A Generic Decoder Specification Language for Interpreting Machine Language [1]

2. GDSL: A Universal Toolkit for Giving Semantics to Machine Language [33]

3. The GDSL Toolkit: Generating Frontends for the Analysis of Machine Code [55]

4. Structure-Preserving Compilation: Efficient Integration of Functional DSLs into Legacy
Systems [34]

5. Modular Analysis of Executables Using On-Demand Heyting Completion [36]

8

Part II.

The GDSL Toolkit: An
Architecture-Independent

Framework for Machine Code
Disassemblers

9

2. GDSL: The Generic Decoder
Specification Language

The reconstruction of assembler instructions from an input (byte) sequence that com-
prises the program is the first step towards binary program analysis. The second
step is to map each statement to a meaning which may be a value-, timing- or energy
semantics, etc., depending on the goal of the analysis. Both aspects are commonly
addressed by writing an architecture-specific decoder and a translator to some internal
representation expressed in the implementation language of the analysis. The goal of
our work is to build an infrastructure to specify decoders and translations to semantics
using a domain specific language (DSL) that can be compiled into the programming
language of the analysis tools. To this end, we present GDSL and motivate its design
by the task of specifying decoders for Intel x86.

The incentive for creating a DSL to specify decoder and semantics of assembler
instructions was a discussion at a Dagstuhl seminar on the analysis of executable
code. Here, it was realized that many research groups implemented prototype analyses
using an architecture-specific decoder and a hand-written semantics interpretation.
Besides duplication of work, these approaches are usually incomplete, are bound to
one architecture and are hard to maintain since their representation of instructions is
geared towards a specific project. In the presence of steadily increasing instruction sets
and the need to adapt an analysis to new targets such as virtual machines contained
in malware, maintainability and simplicity of decoder specifications is of increasing
importance.

To this end, it is desirable to group instructions logically or, when converting a
manufacturer’s manual, in alphabetical order; we call this mnemonic-centric specifica-
tion. For the sake of efficiency, however, a decoder must make a decision based on the
next value from the input sequence (opcode-centric dispatch) which precludes testing
opcode patterns one after the other. While a classic scanner generator like lex can
convert a mnemonic-centric specification to an opcode-centric decoder, it allows and
encourages overlapping patterns. Consider the following lex scanner specification:

1 while|do|switch|case { printf("keyword %s", yytext); }
2 [a-zA-Z][a-zA-Z0-9]* { printf("ident %s", yytext); }

10

2. GDSL: The Generic Decoder Specification Language

Opcode Instruction Description
00 /r ADD r/m8,r8 Add r8 to r/m8.
28 /r SUB r/m8,r8 Subtract r8 from r/m8.

Table 2.1.: Two typical instructions in the Intel x86 manual.

Here, the patterns for the keywords and the identifier are overlapping: the input
while matches both rules. In this case, lex uses the rule that appears first in the
specification file. Thus, a keyword is returned. Overlapping patterns are desirable in a
scanner specification since they improve readability and conciseness. In an instruction
decoder, however, overlapping patterns are undesirable since the sequence in which
the rules are written starts to matter which, in turn, precludes a mnemonic-centric
specification. Hence, a DSL for maintainable decoder specifications must provide a
concise way of writing non-overlapping patterns to exactly match an instruction.

Another challenge is the processing of non-constant bits of an instruction that are
used to specify parameters. Since parameter bits often follow recurring patterns, an
abstraction mechanism is required to keep the specification concise. For example, the
mod/rm-byte in Intel x86 instructions follows many opcodes and determines which
register or memory addressing mode to use. Table 2.1 shows an excerpt of the Intel
manual where the first column shows the two bytes that together form an instruction.
The second byte /r is the mod/rm-byte that determines which 8-bit registers r8 and
which pointer or register r/m8 stand for. Within our decoder specification language, we
define functions r/m81 and r8 to generate the arguments of an instruction. The contents
of the mod/rm-byte are read by a sub-decoder named /r that stores the read byte in an
internal decoder state. This sub-decoder can be re-used in the decoder for ADD and
SUB:

1 val main [0x00 /r] = binop ADD r/m8 r8
2 val main [0x28 /r] = binop SUB r/m8 r8

Here, the decoder main is declared as reading 0x00 (resp. 0x28) from the input before
running the sub-decoder /r. The binop function is a simple wrapper that executes
functions r/m8 and r8 (which access the values stored by /r) and applies the results
to the passed-in constructor (here ADD and SUB). By using sub-decoders such as /r
that communicate via the internal state, our main decoder comes very close to the
specification in Table 2.1 which is a simplified excerpt from the Intel manual.

1We allow / as part of an identifier to accommodate the Intel nomenclature.

11

2. GDSL: The Generic Decoder Specification Language

Since our DSL is an ML-like functional language, it is powerful enough to describe
all parts of a decoder, even r/m8 and r8 that are often hand-coded primitives in other
decoder frameworks. This comprehensive approach enables users to add instructions
that have not been anticipated in the original design of /r. In summary, GDSL improves
over existing approaches as follows:

• Its abstraction mechanisms enable the definition of instruction decoders that
are very close to the syntax used in manufacturer’s manuals, thereby ensuring
maintainability even by the end users of the decoder framework.

• Our specification is type checked during compilation and overlapping patterns
are detected. This ensures high fidelity of the resulting decoder, especially in the
presence of mistakes in the manufacturer’s manuals.

• The DSL is flexible enough to accommodate a variety of architectures. Due to its
general nature, it is possible to add translations from native instructions to some
abstract semantics, which will enable binary analysis tools to analyse code for
any architecture that is described with our framework. In Chap. 3, we describe
how we use GDSL for a translation to our IR called RReil.

• We provide a prototype compiler that generates C code which is competitive with
other decoders. The specifications can be translated to other languages or used
for other purposes (e.g. test generation) by writing a new backend.

After the next section presents the design of GDSL, Sect. 2.2 illustrates its expressive-
ness by detailing the decoding of Intel prefixes. Section 2.3 presents an evaluation of
our implementation before Sect. 2.4 presents related work.

2.1. General Language Overview

This section discusses the design of GDSL by illustrating the use of the various syntactic
constructs. The general idea is that the decoder specification is an executable functional
program that consumes the input sequence and produces a heap containing the abstract
syntax tree (AST) that represents the recognized instruction. After the AST in the
heap has been processed, the heap can be reused for decoding the next instruction,
thereby avoiding the need for a garbage collector or for allocating memory with each
instruction.

The grammar of GDSL is shown in Fig. 2.1 on page 22. In the following, we refer to
single productions using their name in the right column of the table. A file consists of
a sequence of definitions given by Decl.

12

2. GDSL: The Generic Decoder Specification Language

Line type decl. shows the production for algebraic data types that introduce (or
extend) the type t-id with constructors con. As in ML, each constructor takes zero or
one argument, allowing the definition of enumerations such as type register = AX |
BX | CX | DX or AST nodes such as type op = Reg of register | Mem of {size :
int, reg : op} | Imm8 of [8]. Here, the argument to the Mem constructor is a record
while Imm8 takes a bit vector of 8 bits, written [8]. Bit vectors and int are the only basic
data types with singleton bit-vectors acting as Booleans. Abbreviations for complex
types can be introduced using the syntactic construct in line type abbrev.. Line action
type contains the production for the type of a monadic action. A monadic action has
a result type (first non-terminal Type) and transforms a state of type t to a state of
type t′. The export keyword states which of the decoders, functions and constants are
publicly visible to the client code. In line 1 of Fig. 2.2 on page 23, we export an action
decode that produces a result of type instr. It requires a state of sub-type of {} and
produces a new state which has a type that is a super-type of {}.

Productions function decl., decoder decl., and guarded decoder decl. introduce functions,
decoders and decoders with guards, respectively. Functions and decoders differ in
that functions take arguments and have exactly one definition whereas decoders read
from the implicit input stream and definitions with the same name augment each other.
Consider the decoder snipped in Fig. 2.2. Here, binop and r/m8 in lines 10 and 20 are
functions taking three and no arguments, respectively. In contrast, lines 16, 18 and 25
define decoders whose right-hand-side is evaluated if the token sequence in the square
brackets matches the current input. Tokens can be specified in three ways (Production
single token in Fig. 2.1): either as a hexadecimal number (c.f. the first token of main), as
a call to another decoder (c.f. the second token of main) or as a bit pattern (as used in
the /r and /0 decoders). Bit patterns, in turn, are enclosed in ticks and are given by
Productions bit patterns, pattern binding, and pattern var:

• strings of 0,1,. (c.f. 000 in /0); the dot acts as a wildcard; a set of bit strings can be
specified by separating them using a vertical bar, e.g. 00|01|10.

• as above, with a leading variable separated by @; the variable is bound to the
actual bits in the input; for instance, /0 could have been written as follows:

1 val /0 ['mod:2 reg@000 rm:3'] =
2 update @{mod=mod, reg/opcode=reg, rm=rm}

• a variable with a width in bits; the notation v:3 is syntactic sugar for v@...;
examples are mod, reg and rm in the decoders /r and /0.

The semantics of “calling” another decoder within a token sequence is that the
pattern of the called decoder is substituted where it appears and that its body is

13

2. GDSL: The Generic Decoder Specification Language

prepended to the right-hand-side of the decoder. For instance, main [0x80 /0] is
translated internally as follows:

1 val main [0x80 'mod:2 000 rm:3'] = do
2 update @{mod=mod, reg/opcode='000', rm=rm};
3 binop ADD r/m8 imm8
4 end

After inlining sub-decoders, an equivalent function without decoder syntax can easily
be derived using a consume8 primitive that reads one byte from the input stream. Here,
all patterns of the rules of main are transformed into the following combined function:

1 val main = do
2 byte1 <- consume8;
3 case byte1 of
4 '0x80' : do
5 byte2 <- consume8;
6 case byte2 of
7 'mod:2 000 rm:3' : do
8 update @{mod=mod, reg/opcode='000', rm=rm};
9 binop ADD r/m8 imm8

10 ...
11 '0x00' : ...

During this translation, overlapping patterns are detected. For rules of varying
lengths, a prefix length n is determined as the minimum number of bits that all rules
read. Each rule is examined in turn by taking its prefix of size n and removing the
matched patterns from an initial set of all patterns of size n. If this fails, i.e. the
pattern to remove is no longer contained in the set, the rule is reported to overlap
with a previous rule. Consider, for example, a prefix of size 2 which leads to the
initial set {'00', '01', '10', '11'} and two overlapping rules '0.' and '00'. For the
first rule, the patterns '00' and '01' are removed from the initial set, resulting in the
set {'10', '11'}. For the second rule, the pattern '00' would need to be removed;
however, '00' is not contained in the set of remaining patterns. As a result, the second
rule is reported to overlap with a previous rule. Note that the actual implementation
has to represent the set of remaining patterns more efficiently in order not to require
an exponential amount of memory.

Once it is known that rules do not overlap, they can be re-arranged for more efficient
pattern matching. Specifically, we repeatedly identify those bit positions that contain

14

2. GDSL: The Generic Decoder Specification Language

the most constant bits (i.e. 0 or 1 but not wildcards) and generate a switch-statement
for those bits. The results are nested switch-statements that mostly have consecutive
cases and are therefore translated by the compiler into efficient tables.

The bodies of functions and decoders are given by the Expr productions. Here,
productions binding, bifurcation, conditional, function appl., constants, and constructor/var
give the standard constructs found in a functional language with Expr Expr in line
function appl. denoting function application. Our language allows the creation of
compound values using records which are collections of field names bound to a value.
Production record constant allows the construction of new records (used in line 13 of
Fig. 2.2 on page 23). The value of a field foo is extracted using $foo which itself is
a function. Thus, $foo {foo=7} evaluates to 7. Analogously, @{foo=x} is a function
taking a record and setting the field foo to x. For instance, @{bar='110'} {foo=7}
evaluates to {bar='110', foo=7}.

In order to allow for an internal state, each decoder is a monad, a concept borrowed
from the pure functional language Haskell [44]. A monad is an abstract type containing
a function from an input state to an output state and a result. The motivation for
monads is to chain together computations that operate on a state without requiring
side-effects in the language. Production monadic seq. details the do-statement which
threads together monadic actions whose result can be bound to an identifier. A monadic
action is a normal function that has a monadic type, i.e. expects the monadic state
as parameter and produces a new, possibly modified state as result. The result of
the do-statement is that of the last action. Production basic actions presents the three
basic monadic actions of our language: update f applies f to the internal state (and is
usually a record update); query f returns the result of applying f to the internal state
(and is usually a record field selector); and return x that returns x as a result (this is a
shorthand for let val f _ = x in query f).

The internal state can also be accessed using guards. Guards allow an additional case
distinction based on the global state after a matching decoder rule has been selected.
An example of guards can be seen in Fig. 2.2. Here, the first guard of $opndsz, $rexw,
and otherwise in lines 27f that evaluates to '1' determines which right-hand-side is
evaluated. Guards are functions taking the internal state as argument. Thus, opndsz
and rexw are record fields in the internal state and otherwise is a function always
returning '1'.

2.1.1. Endianness Configuration

When reading from the input stream, we have to take its instruction word size and
endianness into account. For example, assume an architecture that uses 32 bit instruc-
tion words in big endian mode. Here, the first byte of an instruction at address i is not

15

2. GDSL: The Generic Decoder Specification Language

found at address i, but at an offset of three, i.e. at i + 3. We allow the configuration of
the endianness through the endianness primitive as can be seen in line 6 of Fig. 2.2 on
page 23. The primitive expects a bit vector as parameter. The integer value of this bit
vector is XOR’ed with the offset when reading the instruction stream. For little endian
architectures, we use the vector 0. For big endian architectures, we use a vector ending
in n one bits for an architecture word size of 8 ∗ (n + 1). As an example, assume we
want to read the second byte of the 4th instruction using the aforementioned 32-bit big
endian architecture. The 4th instruction can be found at offset 3 ∗ 4 = 12 (3 preceding
instructions of size 32 bits, i.e. 4 bytes, each). Thus, we want to access the 13th (counting
from zero) byte of the instruction stream when not taking endianness into account. In
order to find a proper endianness configuration vector for the architecture, we need to
determine an n such that 8 ∗ (n + 1) equals the word size, i.e. 32. It follows that n is 3
and the respective vector is 0b11. XOR’ing the offset 13 with the vector 0b11 gives us
13⊕ 112 = 14. Indeed, given that the instruction spans 4 bytes starting from offset 12,
this is the 2nd last byte, i.e. the byte we want to read.

2.2. Decoding x86 Prefixes

One challenge in decoding x86 instructions is the correct handling of prefixes: they
either serve to modify the following instruction or they are part of the following opcode
(a so-called mandatory prefix). In the latter case, other prefixes are allowed between
the mandatory prefix and the actual opcode. For example, both instruction sequences
67 f3 45 0f 7e d1 and f3 67 45 0f 7e d1 encode movq xmm10, xmm9 where 67 is an
ADDRSZ prefix and f3 is a REPNE prefix, but used here as mandatory prefix to extend
the opcode 0f 7e. Moreover, 45 is another “standard” REX prefix and d1 the mod/rm
byte. Confusingly, the REX prefix must immediately precede the opcode, otherwise it
is ignored.

Since the mandatory prefix extends the opcode, there may be multiple instructions
with the same opcode but different mandatory prefixes. For example, the instructions
mulss, mulsd, and mulpd share the same opcode, here 0f 59, but have different manda-
tory prefixes, namely f2, f3, and 66, respectively. If multiple mandatory prefixes are
present, the order in which these prefixes occur and dominance rules become important.
For example, while the last occurrence of f2 and f3 determines the mandatory prefix,
an occurrence of 66 is only recognized as mandatory prefix if f2 and f3 cannot start an
instruction. A correct decoder recognizes2:

2Some of these instructions contain illegal prefixes; however, remember that we want our decoder to be
able to decode all instructions accepted by Intel processors.

16

2. GDSL: The Generic Decoder Specification Language

f3 f2 0f 59 ff mulsd xmm7, xmm7 Mandatory prefix: 0xf2
66 f3 f2 0f 59 ff mulsd xmm7, xmm7 Mandatory prefix: 0xf2
66 f2 f3 0f 59 ff mulss xmm7, xmm7 Mandatory prefix: 0xf3

66 0f 59 ff mulpd xmm7, xmm7 Mandatory prefix: 0x66
f2 66 0f 59 ff mulsd xmm7, xmm7 Mandatory prefix: 0xf2

Mandatory prefixes can easily be handled in GDSL by using different decoders,
depending on the last relevant prefix. We decode prefixes using the following decoders
that encode a state machine with start state “prefixes”:

1 val prefixes [0x66] = p/66
2 val prefixes [0xf2] = p/f2
3 val prefixes [0xf3] = p/f3
4 val prefixes [] = main
5 val p/66 [0x66] = p/66
6 val p/66 [0xf2] = p/66/f2
7 val p/66 [0xf3] = p/66/f3
8 val p/66 [] = after /66 main
9 val p/f3 [0x66] = p/66/f3 #f3 dominates 66

10 val p/f3 [0xf2] = p/f3/f2
11 val p/f3 [0xf3] = p/f3
12 val p/f3 [] = after /f3 main
13 val p/f3/f2 [0x66] = p/66/f3/f2 #f3/f2 dominates 66
14 val p/f3/f2 [0xf2] = p/f3/f2
15 val p/f3/f2 [0xf3] = p/f2/f3
16 val p/f3/f2 [] = after /f2 (after /f3 main)
17 ... #analogous for p/f2, p/66/f2, p/66/f3, p/f2/f3,
18 # p/66/f3/f2, p/66/f2/f3
19 val /66 [] = continue #no match, continue with next decoder
20 val /f2 [] = continue #no match, continue with next decoder
21 val /f3 [] = continue #no match, continue with next decoder
22 val /66 [0x0f 0x59 /r] = binop MULPD xmm xmm/m128
23 val /f2 [0x0f 0x59 /r] = binop MULSD xmm xmm/m64
24 val /f3 [0x0f 0x59 /r] = binop MULSS xmm xmm/m32
25 val main [...] = ...

The entry point that is exported to the user is prefixes. When reading the sequence
f3 f2 0f 59 ff, it dispatches to p/f3 which itself reads f2 and enters the decoder
p/f3/f2. Since the next byte 0f has no match in p/f3/f2, the expression after /f2

17

2. GDSL: The Generic Decoder Specification Language

(after /f3 main) is executed. The after function calls the decoder /f2 and, if it fails,
continues with (after /f3 main). The latter expression runs f3 and, if this decoder
fails, runs main. On our example byte sequence, the /f2 decoder succeeds in consuming
the remaining bytes 0f 59 ff and returns the mulsd instruction. By construction of the
prefix decoders, at most four decoder calls can fail to make progress, that is be unable
to decode at least one further byte: one prefix decoder, plus one call to /66, /f2, and
/f3, respectively. Thus, the adherence of the prefix rules only adds a small constant to
the runtime complexity of the decoder.

Note that the example code does not contain the logic for recording which prefixes
have been seen and are not mandarory, i.e. need to be taken into account to configure
the decoded instruction. In pratice, this makes the rules a little harder to read:

1 val p/f2/f3 [] = after (with-f2 /f3) (
2 after (with-f3 /f2) (with-f2 (with-f3 /)))

Here, the with-XX calls encapsulate the calls to the decoders and set the respective
prefix bits in the global state before calling the decoder passed as parameter. After the
call to the decoder, the prefix bits are reset in the state so that they do not interfere with
further decoder calls. Observe that after and continue can be defined directly within
GDSL:

1 val after fst snd = do update @{cont=snd}; fst end
2 val continue = do decoder <- query $cont; decoder end

Here, after stores its argument snd in the decoder state and executes the decoder
fst. The continue function retrieves the stored decoder and dispatches to it. Note
that the main decoder has no default rule calling continue and, thus, fails in case no
pattern matches. This completes the design of our prefix decoders.

2.3. Evaluation

Our GDSL decoder handles all 897 (as of September 2012) instructions of the Intel x86
instruction set; we also offer decoders for AVR, MSP430, and a substantial subset of
ARMv7. In this section we compare the performance and correctness of the Intel x86
decoder.

18

2. GDSL: The Generic Decoder Specification Language

Framework Time #Instrs p/f2/f3 p/66/f2/f3 REX
BeaEngine 238ms 672207 − − −
distorm 204ms 671991 − − −
GDSL 673ms 671991

√ √ √

IDA Pro / /
√

−
√

libopcodes 309ms 671991 − − −
metasm 4m21s / − −

√

udis86 705ms 673965 − − −
xed2 338ms 671991

√ √ √

Table 2.2.: Evaluation of different disassembler frameworks.

2.3.1. Performance

We compare the performance of our generated code with several existing disassembler
projects. Table 2.2 shows the running time for a linear sweep disassembly of a binary
consisting of 671991 instructions in the .text segment. The size of the .text segment
was 3032027 bytes. The binary is one of our earlier decoders and is a statically linked
x86_64 executable for Linux. Due to linking libc statically, it included several SSE
and VEX instructions. We used BeaEngine [6], distorm [18], IDA Pro [28], libopcodes as
shipped in a Debian package [38], metasm [41], udis86 [60], and the xed2 disassembler
library that comes with the pintool [63] package. We ran all tests on an Intel Core i7
on Linux in 64-bit mode. The discrepancy in the number of decoded instructions for
BeaEngine and udis86 is due to incorrectly decoded instructions which subsequently
results in decoding further incorrect instructions due to different offsets.

We included the metasm package to complete the comparison with a disassembler
not written in C. A possible reason for the results of the metasm package being slower
is that it does not only do a linear sweep but also resolves symbols and does some
control-flow analyses using the decoded instructions. Similarly, we were unable to run
a linear-sweep disassembly using IDA Pro.

As can be seen from Table 2.2, the generated C code of GDSL is comparable in speed,
being about 3 times slower than the fastest hand-written library. Since decoding is
unlikely to be a bottleneck in program analysis, we deem the performance acceptable.
However, Chapter 5 describes how we apply further optimizations during code genera-
tion that help us not only to improve the readability of the generated C code, but also
allow us to leverage existing optimizations found in off-the-shelf C compilers.

19

2. GDSL: The Generic Decoder Specification Language

2.3.2. Correctness

Due to the complications of decoding byte sequences that contain prefix bytes, we
compared the various disassemblers for correctness. Table 2.2 features three columns,
labelled p/f2/f3, p/66/f2/f3, and REX, which test various prefix combinations as de-
scribed in Sect. 2.2: p/f2/f3 states if the order of f2 and f3 is honoured, p/66/f2/f3 states
if additionally 66 loses its mandatory prefix status once f2 or f3 was read, and REX
states if this prefix is correctly ignored if not immediately preceding the opcode. A tick
indicates a correct decoder.

According to the Intel manual, adding arbitrary prefixes may result in unpredictable
behavior for certain instructions. We created byte sequences whose behaviour is
unpredictable according to the manual and verified that an Core i7 processor executes
them as if the superfluous prefixes were absent. While it could be argued that decoding
sequences that are marked with unpredictable behavior is undesirable for program
analysis, such sequences are routinely emitted by the gcc compiler which inserts prefixes
in front of nop and ret instructions for alignment purposes. As an example, consider
the following 14-byte padding sequence that occurred in our test binary:

1 666666662e0f1f840000000000:
2 nop WORD PTR cs:[rax+rax*1+0x0]

Here, four 66 prefixes precede a segment override prefix 2e before a nop opcode
f1 f8 follows which takes an elaborate argument. Furthermore, malware may add
spurious prefixes as additional code obfuscation technique. Thus, a decoder has to
recognize more than what the manual recommends.

On the contrary, certain applications, such as the search for gadgets (byte sequences
that form a specific instruction), require that a decoder only recognizes instructions
common to all processors. Our GDSL language can use guards from barring certain
instructions from being recognized. Certain aspects, such as the difference between
32-bit and 64-bit mode can be implemented using different prefix decoders (the REX
prefix is a normal instruction in 32-bit mode). We believe that an open-source imple-
mentation of a decoder is likely to converge to a decoder that is correct under all such
configurations.

2.4. Related Work

Most decoder libraries for the Intel x86 instructions generate or use tables for mapping
opcodes to instructions, however, the decoding of prefixes and arguments is usually
hand-coded [38, 6, 18, 41]. One notable exception is SLED [45], a specification language

20

2. GDSL: The Generic Decoder Specification Language

for encoding and decoding, which is a comprehensive specification language similar to
GDSL. SLED specifies mnemonics using opcode-centric tables, thereby assigning fixed
values to mnemonics. Besides mnemonics, it is possible to define pattern variables that
associate names with sequences of bits. The mnemonics and pattern variables are then
used to define an instruction. The fields of a pattern variable in such a definition can be
specialized using constraints. Since these constraints are rather generic, it is not clear
to which extent they can check if the resulting instruction definitions overlap (i.e. that
the intersection of the constraint set of one rule with the constraint set of another rule
is empty) and, thus, how often it can be avoided that constraints must be tested in
sequence in order to find a matching pattern. Their approach is similar to regular
expression matching, but without allowing repetition. Since the x86 instruction set
allows for multiple and identical prefixes in many, but not arbitrary sequences, certain
prefixed instructions are difficult to specify. In particular, the padding example using
a nop in Sect. 2.3.2 is difficult to specify using SLED due to the inability to specify
repetition. In fact, to our understanding, the specification given in [45] for x86 would
not accept any instruction with superfluous prefixes. Even then, the ability of SLED
to decode and encode instructions requires the specification to be bi-directional and
therefore becomes relatively hard to understand and to maintain.

Another approach was taken by Fox et al. [23]. In their work they describe a formal
model of the complete ARMv7 instruction set encoded in the HOL4 proof system [56].
The model directly operates on word sequences, as even the decoding logic is specified
in the proof system. Besides mere decoding logic, a full semantics of the ARMv7
instruction set is also provided whose fidelity against an ARMv7 implementation was
proved. Since the direct use of the decoder that is written in the HOL4 proof system is
difficult, a provably correct translation to GDSL would be desirable.

The next chapter addresses the specification of semantics for which many interme-
diate representations have been suggested [11, 5, 48]. The expressed goal of GDSL is
to also specify how a processor instruction can be translated to an intermediate repre-
sentation that describes its semantics. Using a common framework can help to make
the various intermediate representations comparable and usable in various analysis
frameworks. Recently, Reps et al. have proposed to compile an abstract transformer for
each processor instruction in order to obtain a more efficient analysis [39]. Future work
will address how a different backend to our compiler can follow this setup.

Our implementation of GDSL is available at the website https://github.com/
gdslang/gdsl-toolkit. It is written in SML/NJ v110.74 and released under a BSD
license.

21

https://github.com/gdslang/gdsl-toolkit
https://github.com/gdslang/gdsl-toolkit

2. GDSL: The Generic Decoder Specification Language

Decl ::= export id : Type export decl.
| type id = con (of Type)?(| con (of Type)?)∗ type decl.
| type id = Type type abbrev.
| val id id ∗ = Expr function decl.
| val id [TokPat ∗] = Expr decoder decl.
| val id [TokPat ∗] (| Expr = Expr)+ guarded dec.

TokPat ::= hex-num | id | ’ BitPat ∗ ’ single token
Type ::= int || num | | id

| { field : Type (, field : Type)∗ }
| (TypeList) -> Type
| S Type < Type => Type > action type

TypeList ::= ε

| Type (, Type)∗

BitPat ::= BitStr (| BitStr)∗ bit patterns
| id @ BitStr (| BitStr)∗ pattern binding
| id : num pattern var

BitStr ::= (0 | 1 | .)+ bit string
Action ::= id ← Expr ; Action monadic stmts

| Expr ; Action
| Expr

Cases ::= CasePat : Expr ; Cases | ε body of case
CasePat ::= ′ BitStr ′ | num

| con id | con
Expr ::= let Decl in Expr end binding

| if Expr then Expr else Expr bifurcation
| case Expr of Cases end conditional
| Expr Expr + function appl.
| " string " | ′ (0 | 1)∗ ′ | num constants
| con | id constructor/var
| { } | { field = Expr (, field = Expr)∗ } record constant
| @ { field = Expr (, field = Expr)∗ } record update
| $ field record selector
| do Action end monadic seq.
| query Expr | update Expr | return Expr basic actions

Figure 2.1.: The GDSL language grammar without monadic and generic types; we use
the well-known POSIX syntax for regular expressions [29].

22

2. GDSL: The Generic Decoder Specification Language

1 export decode : () -> S instr <{} => {}>
2

3 type instr = ADD of {op1:op, op2:op}
4

5 val decode = do
6 endianness '';
7 main
8 end
9

10 val binop cons giveOp1 giveOp2 = do
11 operand1 <- giveOp1;
12 operand2 <- giveOp2;
13 return (cons {op1=operand1, op2=operand2})
14 end
15

16 val /r ['mod:2 reg:3 rm:3'] =
17 update @{mod=mod, reg/opcode=reg, rm=rm}
18 val /0 ['mod:2 000 rm:3'] =
19 update @{mod=mod, reg/opcode='000', rm=rm}
20 val r/m8 = do #similar for r8, r/m16, r16, ...
21 r <- query $rm;
22 return (case r of '000': Reg AL | '001': Reg BL)
23 end
24

25 val main [0x80 /0] = binop ADD r/m8 imm8
26 val main [0x00 /r] = binop ADD r/m8 r8
27 val main [0x01 /r] | $opndsz = binop ADD r/m16 r16
28 | $rexw = binop ADD r/m64 r64

Figure 2.2.: Specification for decoding the Intel ADD instruction.

23

3. Semantics Translation using RReil

In the last chapter of this work, we presented how we use the GDSL language to specify
instruction decoders. The specification of such decoders is the first step towards binary
program analysis, followed by the translation of the instructions into the representation
used by the analyzer; that is, semantics needs to be associated with the instructions.
Recall that the challenge here is one of scalability: a single line in a high-level language
is translated into several assembler instructions. Each native instruction, in turn, is
translated into a number of semantic primitives. These semantic primitives are usually
given as an intermediate representation (IR) and are later evaluated over an abstract
domain [15] tracking intervals, value sets, taints, etc. In order to make the evaluation
of the semantic primitives more efficient, a transformer-specification language (TSL) was
recently proposed that compiles the specification of each native instruction directly into
operations (transformers) over the abstract domain [39], thus skipping the generation
of an IR. These tailored transformers are then optimized by a standard compiler. Our
toolkit follows the more traditional approach of generating an IR that an analysis later
interprets over the abstract domains. In contrast to the TSL approach, we perform
optimizations on the IR program that represents a complete basic block rather than on
a single native instruction. We show that the semantics of instructions can be simplified
considerably when taking the surrounding instructions into account which highlights
the optimization potential of using an IR.

3.1. RReil Intermediate Representation

Many intermediate representations for giving semantics to assembler instructions exist,
each having its own design goals such as minimality [5, 19], mechanical verifiability [23],
reversibility [45], or expressivity [5, 48]. Our own RReil IR [48], presented in Fig. 3.1,
was designed to allow for a precise numeric interpretation. For instance, comparisons
are implemented with special tests rather than expressed at the level of bits which is
common in other IRs [19, 23, 39].

24

3. Semantics Translation using RReil

stmts ::= ε | stmt ; stmts
stmt ::= var = : int expr

| var = : int [addr]

| [addr] = : int expr
| if (sexpr) { stmts } else { stmts }
| while (sexpr) { stmts }
| cbranch sexpr ? addr : addr
| branch (jump | call | ret) addr
| (var : int)∗ = " id " (linear : int)∗

cmp ::= ≤s | ≤u | <s | <u | = | 6=

var ::= id | id . int
addr ::= linear : int
linear ::= int · var + linear | int
sexpr ::= linear | arbitrary

| linear cmp : int linear
expr ::= sexpr

| linear bin linear
| sign-extend linear : int
| zero-extend linear : int

bin ::= and | or | xor | shr | . . .

Figure 3.1.: The syntax of our RReil (Relational Reverse Engineering Language) IR. The
construct “ : int ” denotes the size in bits whereas “ . int ” in the var rule
denotes a bit offset. The statements are: assignment, read from address,
write to address, conditional, loop (both only used to express the semantics
within a native instruction), conditional branch, unconditional branch with
a hint of its original purpose, and a primitive "id".

3.2. The Generic Decoder Specification Language (GDSL)

We developed a domain specific language called GDSL that is best described as a
functional language with ML-like syntax. It features bespoke pattern matching syntax
for specifying instruction decoders. Dependability of GDSL programs is increased by a
sophisticated type inference [54] that eliminates the need of specifying any types. The
algebraic data types and a special infix syntax facilitates the specification of instruction
semantics and program optimizations.

The GDSL toolkit contains a compiler for GDSL as well as decoders, semantic
translations and optimizations written in GDSL. The benefit of specifying optimizations
in GDSL is that they can be re-used for any input architecture since they operate
only on RReil. Besides a few instruction decoders for 8-bit processors, the toolkit
provides a partial ARMv7 decoder and an Intel x86 decoder for 32- and 64-bit mode
that handles all 897 (as of September 2012) Intel instructions. In terms of translations
into RReil, we provide semantics for 457 instructions. Of the 440 undefined instructions,
228 are floating point instructions that we currently do not handle since our own
analyzers cannot handle floating point computations. Many of the remaining undefined
instructions would have to be treated as primitives as they modify or query the
internal CPU state or because they perform computations whose RReil semantics is too
cumbersome to be useful (e.g. encryption instructions).

25

3. Semantics Translation using RReil

a)

1 val sem-cmovcc insn cond = do
2 size <- sizeof insn.opnd1;
3 dst <- lval size insn.opnd1;
4 dst-old <- rval size insn.opnd1;
5 src <- rval size insn.opnd2;
6

7 temp <- mktemp;
8 mov size temp dst-old;
9

10 _if cond _then
11 mov size temp src;
12

13 write size dst (var temp)
14 end

b)

1 t0 =:32 B
2 if (ZF) {
3 t0 =:32 A
4 } else {
5 }
6 B =:32 t0
7 B.32 =:32 0

Figure 3.2.: The translator function a) and a translation result b)

3.3. Writing Semantics using GDSL

As a pure, functional language with algebraic data types and a state monad, GDSL
lends itself for writing translators in a concise way as illustrated next.

3.3.1. An Example Intel Instruction

The following GDSL example shows the translation of the Intel instruction cmov. The
instruction copies the contents of its source operand to its destination operand if a given
condition is met. The instruction contains a condition (which is part of the opcode)
and two operands, one of which can be a memory location. The translation of the
instruction instance cmovz ebx, eax (using the Intel x86 architecture with the 64 bit
extension) into RReil is shown in Fig. 3.2b). In order to illustrate the translation, we
first detail the output of the GDSL decoder which is a value of the algebraic data type
insn that is defined as follows:

1 type insn = #an x86 instruction
2 CMOVZ of {opnd1: opnd, opnd2: opnd}
3 | ... #other instruction definitions omitted

Thus, the CMOVZ constructor carries a record with two fields as payload. Both fields are

26

3. Semantics Translation using RReil

of type opnd and, for instance, carry a register or a memory location:

1 type opnd = #an x86 operand
2 REG of register
3 | MEM of memory
4 | ... #immediates, scaled operands and operands with offsets omitted

Note that all variants (here REG and MEM) implicitly contain information about the access
size. In the example above, the instruction cmovz ebx, eax is represented by CMOVZ
{opnd1 = REG EBX, opnd2 = REG EAX} where EAX has a size of 32-bits. The following
section details helper functions that operate on opnd values.

3.3.2. Generating RReil Statements using GDSL Monadic Functions

Each semantic translator function generates a sequence of RReil statements. The
sequence is stored inside the state of a monad. An RReil statement is added to the
sequence by calling a GDSL monadic function which builds the abstract syntax tree of
the statement. In order to explain the example in Fig. 3.2, we detail the GDSL functions
for assignment, called mov, and conditional:

• val mov sz dst src = ...
The mov function generates the RReil assignment statement dst =:sz src that
copies the RReil expression src to the RReil variable dst.

• val _if cond _then stmts = ...
This function generates the RReil statement if (cond) { stmts } else {}. The
special mix-fix notation _if cond _then stmts is a call to a mix-fix function
whose name _if _then is a sequence of identifiers that each commence with an
underscore.

We further require the following functions that operate on x86 operands of type
opnd. They are necessary to translate x86 registers, memory locations, or immediate
values, that are encoded in the x86 operand, into RReil:

• val sizeof x86-operand = ...
The sizeof function returns the size of an x86 operand in bits; here, sizeof (REG
EBX) = 32.

• val lval size x86-operand = ...
The lval function turns an x86 operand into an RReil left hand side expression,
that is, either var or [addr]. Here, lval 32 (REG EBX) yields the RReil register B
that contains the 32 bits of the Intel EBX register.

27

3. Semantics Translation using RReil

• val rval size x86-operand = ...
The rval function turns an x86 operand into an RReil expr . In the example, rval
32 (REG EAX) yields the RReil register A.

• val write size destination source = ...
The write function emits all statements necessary to write to an x86 operand.
The operand is specified using the destination parameter; it is the return value of
an associated call to lval. In Fig. 3.2b) lines 6 through 7 originate from the call to
write.

Finally, the mktemp function is used to allocate a temporary variable.

3.3.3. The Translator

The translator function for cmovz ebx, eax is shown in Fig. 3.2a). The do ... end
notation surrounding the function body is used to execute each of the enclosed monadic
functions in turn. The decoded Intel instruction is passed-in using the insn parameter;
the condition is determined by the caller depending on the actual mnemonic. The
condition is a one-bit RReil expression. In the cmovz ebx, eax example, it is ZF which
corresponds to the zero-flag.

The translation itself starts with a code block that is very common in instruction
semantics: The operation’s size is determined by looking at the size of one operand
(line 2) and the respective operands are prepared for reading (using the rval monadic
function) and writing (using the lval monadic function). Next, a new temporary RReil
register is allocated and initialized to the current value of the destination operand (lines
7 and 8). This completes all preparations; the actual semantics of the instruction is
implemented by the code lines 10 through 11. The condition is tested and, if it evaluates
to true, the source operand is copied to the destination operand. It is important to note
that the conditional is not evaluated at translation time, but that it is part of the emitted
code. Finally, the (possibly) updated value of the temporary RReil register is written to
the corresponding Intel register by code line 13.

One might think that the instruction pointlessly reads the source operand and writes
the destination operand in case the condition evaluates to false. It is, however, necessary
since the writeback can also cause further side effects that still need to occur, even if
no data is copied. This is exemplified in Fig. 3.2b): since the instruction uses a 32 bit
register in 64 bit mode, the upper 32 bits of the register are zeroed even if the lower 32
bits are unchanged (see line 7). The additional code is emitted by the write function.

28

3. Semantics Translation using RReil

t0 =:32 A - B
CF =:1 A <u:32 B
CForZF =:1 A ≤u:32 B
SFxorOF =:1 A <s:32 B
SFxorOForZF =:1 A ≤s:32 B
ZF =:1 A =:32 B
SF =:1 t0 <s:32 0
OF =:1 SFxorOF xor SF
cbranch SFxorOF ? nxt : tgt

⇒
dead-code
elimination

SFxorOF =:1 A <s:32 B
cbranch SFxorOF ? nxt : tgt

⇓ forward
expression
substitution

cbranch A <s:32 B ?
nxt : tgt

Figure 3.3.: Translation of the native Intel instructions cmp eax, ebx; jl tgt into
RReil and applying optimizations. Here, CForZF, SFxorOF, SFxorOForZF
are virtual flags, that is, translation-specific variables whose value reflect
what their names suggest [48]. Note that this example is idealized since the
removed flags may not actually be dead.

3.4. Optimizing the RReil Code

The design of RReil also allows for an effective optimization of the IR [48] which is
illustrated in Fig. 3.3. The example shows the typical code bloat when translating two
native instructions where the first sets many flags of which the second only evaluates
one. Implementing these optimizations in GDSL is not only concise but also avoids the
need to re-implement them in the individual analyses. The next sections consider two
optimizations, both of which are implemented in the toolkit.

3.4.1. Liveness Analysis and Dead Code Elimination

The optimization strategy we implement is a dead-code elimination using a backwards
analysis on the RReil code. To this end, we first need to obtain a set of live variables
to start with. A simple approach assumes that all variables are live at the end of the
block. This has the drawback that assignments to variables that are always overwritten
in the succeeding blocks cannot be removed. We address this problem by refining
the live-set for basic blocks that do not jump to computed addresses: Specifically, we
infer the live variable set of the immediately succeeding blocks and use this live set
as start set, thereby removing many more assignments to dead variables. We perform
a true liveness analysis [47], that is, we refrain from marking a variable as live if it
is used in the right-hand side of an assignment to a dead variable. For the body of
while loops, however, this approach would require the calculation of a fixpoint. Since
while loops are used rarely by our translator and since their bodies show little potential
for optimization, a more conservative notion of liveness is used that does not require

29

3. Semantics Translation using RReil

a fixpoint computation. This approach marks a variable as live even if it used in an
assignment to a dead variable. With this strategy, the dead code elimination takes
linear time in the size of the basic block. See Fig. 3.3 for an example of how our liveness
analysis helps in reducing the size of the RReil code.

3.4.2. Forward Expression Substitution

In addition to the liveness analysis, our analyzer also features a forward expression
substitution pass [35]. This pass is responsible for the last step in Fig. 3.3 where the
computation of SFxorOF is forward-substituted into the cbranch statement. While this
seems to be a minor improvement on first sight, it actually reduces the complexity
of subsequent analyses considerably. This is because without this transformation, an
additional domain is required in the static analysis tool to recover the relation between
the flag SFxorOF and the two registers A and B. Additionally, the forward substitution
allows the removal of temporaries.

In the future, we plan to perform further optimizations. In particular, we plan
better support for architectures like ARM where most instructions may be executed
conditionally, depending on a processor flag. Compilers use this feature to translate
small bodies of conditionals without jumps. Consider a conditional whose body
translates to two native instructions i1; i2 that are executed if f holds. These are
translated into the RReil statements

1 if (f) {
2 i1
3 }
4 if (f) {
5 i2
6 }

which ideally should be simplified as follows:

1 if (f) {
2 i1
3 i2
4 }

Without this optimization, a static analysis will compute a join of the unrelated states
of the then- and else-branches of the first if -statement. The thereby incurred loss of
precision is particularly problematic for the TSL approach since each instruction is
executed on a single domain that, in general, will not be able to join two states without
loss of precision.

30

3. Semantics Translation using RReil

3.5. Empirical Evaluation

We measured the impact of our dead-code elimination on a linear-sweep disassembly of
standard Unix programs. Each basic block, that is, a sequence of Intel instructions up to
the next jump, is translated into semantics. Table 3.1 presents our experimental results
where the ‘fac’ column denotes the size of the RReil code (in 1000 lines of code, ‘kloc’)
in relation to the native x86 disassembly (‘nat. kloc’). Here, column ‘translation’ shows
that, without optimizations, about six RReil statements are generated for each Intel
instruction. The colums ‘single’, ‘intra’, and ‘inter’ show how the size of the RReil code
reduces due to our optimizations and the time required to do so. Performing liveness
analysis and dead code elimination on the semantics of a single instruction reduces
the size by about 14% (column ‘single’). Applying these optimizations on basic blocks
reduces the size by about one third (column ‘intra’). The ‘inter’ column shows the result
of the optimizations as per Sect. 3.4.1: for basic blocks ending in a direct jump, the
(one or two) blocks that are branched-to are translated and their set of live variables is
computed. Using this refined liveness set, the dead code elimination removes between
40% and 60% of the RReil code relative to the non-optimized translation. Thus, with
the information of the neighboring basic blocks, our RReil semantics is roughly 3 times
larger than the x86 disassembly.

In order to compare our translation into RReil with the TSL approach [39] where a
bespoke abstract transformer is generated for each native instruction, again consider
column ‘single’ of Table 3.1. Since this column shows the reduction when considering
the semantics of a single instruction, it provides an estimate of how many abstract
transformers in a TSL translation a standard compiler can remove due to dead code
elimination. While the TSL translations are optimized in other ways, it is questionable
if this can rival the effect of removing not 14%, but around 50% of instructions, as our
inter-basic block analysis does.

The GDSL compiler emits C code that closely resembles handwritten C programs.
As a consequence, the resulting C code is easy to debug and allows the GDSL compiler
to rely on the optimizations implemented by off-the-shelf C compilers. Indeed, the
optimizations should be fast enough to re-apply them on-the-fly each time a basic block
is analyzed. Even then, future work will address the elimination of bottlenecks in both,
the GDSL compiler and optimizations written in GDSL.

Given these benefits, we hope that our open-source GDSL toolkit becomes an attrac-
tive front-end for any analysis targeting executable programs.

31

3. Semantics Translation using RReil

3.6. Future Work

Future work will extend our toolkit with decoders and translations for other archi-
tectures. While the toolkit currently already contains a partial ARMv7 decoder and
semantics translator, it would be particularly interesting to mechanically translate the
verified bit-level ARM semantics [23] into RReil. Moreover, given that an analysis that
features a GDSL front-end can handle any architecture specified in GDSL, we hope
for contributions from the community to further extend the range of architectures that
GDSL offers. GDSL would also lend itself for defining semantics besides the RReil
value semantics, namely energy or timing semantics.

In the long run, we hope that the GDSL toolkit will become the preferred choice for
analyzing machine code, thereby replacing proprietary decoders (such as the popular
xed2 decoder from Intel’s PIN toolkit [63]) that are often equipped with a minimal,
application-specific semantics covering only a few instructions.

32

3. Semantics Translation using RReil

prog. nat. translation opt. single
kloc kloc time fac kloc time red fac

bash 144 907 1.0s 6.3 778 5.1s 14% 5.4
cat 7 39 0.0s 5.9 34 0.2s 15% 5.0
echo 3 15 0.0s 5.6 13 0.1s 14% 4.8
less 21 152 0.1s 7.3 131 0.7s 14% 6.3
ls 15 106 0.1s 6.9 90 0.5s 16% 5.8
mkdir 7 45 0.0s 6.5 37 0.2s 16% 5.4
netstat 15 86 0.1s 5.6 75 0.4s 12% 4.9
ps 13 68 0.1s 5.3 57 0.4s 16% 4.5
pwd 3 19 0.0s 5.6 16 0.1s 14% 4.8
rm 8 47 0.0s 6.0 41 0.2s 14% 5.2
sed 9 54 0.1s 6.3 45 0.3s 16% 5.3
tar 50 317 0.3s 6.4 270 1.6s 15% 5.4
touch 8 47 0.0s 6.3 41 0.2s 14% 5.4
uname 3 15 0.0s 5.6 13 0.1s 14% 4.8
Xorg 346 2080 2.3s 6.0 1803 10.6s 13% 5.2

opt. intra opt. inter
kloc time red fac kloc time red fac

bash 640 3.7s 30% 4.4 454 9.1s 50% 3.2
cat 28 0.2s 30% 4.1 21 0.4s 46% 3.2
echo 11 0.1s 29% 4.0 8 0.1s 46% 3.0
less 105 0.6s 31% 5.1 61 1.4s 60% 2.9
ls 66 0.4s 38% 4.3 49 1.0s 54% 3.2
mkdir 29 0.2s 35% 4.2 21 0.4s 53% 3.1
netstat 63 0.3s 26% 4.2 53 0.7s 39% 3.5
ps 45 0.3s 33% 3.5 40 0.6s 41% 3.1
pwd 14 0.1s 27% 4.1 11 0.2s 43% 3.2
rm 33 0.2s 30% 4.2 25 0.4s 47% 3.2
sed 37 0.2s 31% 4.3 28 0.5s 49% 3.2
tar 215 1.3s 32% 4.3 161 3.1s 49% 3.2
touch 31 0.2s 34% 4.1 23 0.5s 51% 3.1
uname 11 0.1s 28% 4.1 8 0.1s 45% 3.1
Xorg 1408 8.4s 32% 4.1 1067 20.9s 49% 3.1

Table 3.1.: Evaluating the reduction of the RReil code size due to dead-code optimiza-
tion. The overall running time is the sum of the translation time plus the
time for one of the optimizations. All measurements were obtained on an
Intel Core i7 running at 3.40Ghz.

33

4. Verification of the Decoder and the
Translator

Our current definition of the semantics translator has been written by hand in GDSL
using the documentation offered by the chip manufacturer, e.g. Intel for the x86
architecture. The manufacturers usually offer a mixture of a textual description in
combination with some more or less formally defined pseudo code to define the
semantics of the processor instructions. As discussed in Sect. 2.4, there is a model of the
ARMv7 architecture which has been formally proven; however, translating this model
into GDSL is future work. Note that the definition of the translator is particularly
error-prone because the description in the documentation is sometimes vague and can
easily be misunderstood.

4.1. Automatic Generation of End-to-End Tests

A practical approach to finding and avoiding bugs in software is testing. A downside of
testing is that tests need to be written and maintained. Plus, a manually crafted test can
only detect a wrong implementation, but is unable to detect a mistake that originates
from misunderstanding the original specification, i.e. the instruction set manual in this
case. In addition, manually crafting tests for each machine instruction is a huge amount
of work. In order to address these problems, we decided to automatically generate
test cases for our decoding and translation pipeline. To this end, we came up with the
following approach:

1. We start by generating an arbitrary machine instruction.

2. We decode and translate the instruction using GDSL.

3. We feed the resulting RReil code into an interpreter that executes it.

4. We execute the instruction on a physical processor.

5. We compare the effect of the interpretation and the execution on the physical
processor.

34

4. Verification of the Decoder and the Translator

Instr.
Generator

Testbed
Function

Comparator

0101... Decoder Translator

RReil
code

instruction
bytes

registers, memory locations

effects of execution
of RReil code

effects of execution
on real hardware

test result

GDSL instr.
object

address of test instruction

RReil
Interpreter

Figure 4.1.: Overview of the end-to-end GDSL test framework.

This approach allows us to to test all aspects of the decoder and the translator as only
a valid decoding and translation will allow us to observe the same effects on both the
physical hardware and the interpreter. Our testing tool is shipped with GDSL; however,
since it contains architecture-specific parts, it currently only supports Intel x86. As part
of our development roadmap, we are planning to port the tester to all our supported
architectures as well as factor out architecture-specific code into sub-modules so that
adding further architectures gets easy and straight forward.

An overview of our testing framework is given in Fig. 4.1. The following sections
discuss the most important design decisions we made and challenges we faced during
the implementation. The testing framework has initially been described in [32].

4.2. Generation of x86 Machine Instructions

The first step towards automatic testing is to obtain suitable machine instructions. As
pointed out above, we currently only support the Intel x86 architecture. Generally, we
considered the following approaches:

1. Random bytes: We could generate a random sequence of bytes and use it as
input to the decoder.

2. Rule-based generation: We could use a set of rules derived from the architecture
manual to generate valid machine instructions.

3. Using exiting executables: We could scan through existing executables and
gather instructions from them.

35

4. Verification of the Decoder and the Translator

For architectures that feature fixed-size instructions of small size, like ARM, the
first approach is most thorough: one can generate and test every possible instruction.
However, x86 instructions have a length of up to 15 bytes, making it impossible
to systematically generate all instructions. A possible solution to this problem is
using rules from the manual to generate valid instructions only while refraining
from generating all possible immediate values within instructions (second approach).
However, implementing such a generator is cumbersome and error-prone because of
the size and complexity of the architecture (think of, for example, the rules regarding
legitimate prefix combinations and orders) and its documentation. Thus, we have
chosen a hybrid approach that takes the most important rules into account but does
not guarantee to generate valid instructions only. For example, our generator generates
prefix bytes only before the opcode, but it does not make sure that generated prefixes
are in the correct order or are valid in combination with the given opcode.

The last approach, that is taking instructions from existing binaries, does not suffice
on its own since it does not cover instructions that are not generated by standard
compilers. It would, however, be an interesting addendum as it would make sure that
our tests cover the most prominent instruction types and, thus, make translation bugs
for these common cases less likely. Such a generator is currently not implemented in
our testing framework.

4.3. Execution of the Generated Instruction

After generating an instruction, it needs to be executed on both an RReil interpreter
and the physical hardware as a reference. To this end, we first decode and translate
the instruction using GDSL. If the decoding fails, we consider the instruction as
invalid and abort the test1. If the decoding and the semantics translation succeeds,
the generated RReil code is passed to the RReil interpreter. In addition, we allocate
memory for the dynamically generated testbed function that will later execute the
instruction on the processor. Using this allocation we compute the memory address
of the instruction which is used by the interpreter as contents of the RIP register (the
program counter). During the execution of the RReil code by the interpreter, we record
register and memory accesses. In case values are read from registers or memory,
suitable random values are used as input and stored together with the access type (i.e.
read or dereference access). Write accesses update the stored values to the values that
are written. Using the data from the execution of the RReil code, we derive a set of
registers and memory locations that are accessed during the execution of the instruction

1An alternative would be to execute the instruction on the processor while expecting an illegal instruction
exception.

36

4. Verification of the Decoder and the Translator

access type recorded data remark
read register register name, initial

value
initial value needs to be written to register
before execution

write register register name register contents need to be compared
after execution

read memory memory address, initial
value

memory needs to be mapped; initial value
needs to be written to memory before
execution

write memory memory address memory needs to be mapped; memory
contents need to be compared after exe-
cution

jump target target address memory needs to be mapped; jump
recorder code needs to be written to the
mapped memory

Table 4.1.: Handling of accesses during RReil code interpretation.

on the processor. We use this data to initialize the read registers and map memory
addresses from which the processor is expected to read, write, or execute. Memory
regions that are used as jump targets additionally need to be initialized with machine
code that records the realization of the jump and subsequently returns to the origin of
the jump. Table 4.1 contains a summary of data we record during the interpretation of
the RReil program and how we use that data later on.

Note that our approach relies on knowledge from the execution of the RReil code
to prepare the environment for the execution of the instruction on the processor. This
is problematic since the RReil code generation is under test and may, thus, contain
bugs. In order to cope with this, we randomly select additional registers which take
part in the test, i.e. are inspected after the test and are expected not to change. In
case, for example, the RReil generator generates an empty RReil program it is, thus,
likely that the test fails because one of these additional registers is modified by the
instruction under test when executed on the physical hardware. In addition, note that
if the instruction accesses additional memory it is likely that the corresponding address
is not mapped which is again detected.

As an example, consider the instruction add rbx, rax. The instruction adds the
64-bit registers rbx and rax, saving the result to rbx. For this instruction, the tester
generates the following output describing the data collected from the interpretation
and the initialization of the read registers.

37

4. Verification of the Decoder and the Translator

1 Read registers:
2 Register B: ffffffffffffffff
3 Register A: ffffffffffffffff
4 Register FLAGS: 0000000000000884
5 Written registers:
6 Register FLAGS: 00000000000008d5
7 Register B: ffffffffffffffff
8 Dereferenced registers: none
9 ------------------

10 Register IP: 00007f06c1e2105c [defined:ffffffffffffffff]
11 Register FLAGS: 0000000000040084 [defined:0000000000244cd5]
12 Register A: 4b5d000137b47f92 [defined:ffffffffffffffff]
13 Register B: ec936e00e0ff4d52 [defined:ffffffffffffffff]

The read and written bits are given as a bit mask. Within the flags register, only
certain bits (i.e. flags) are read and / or written. Note that the tester also stores a so
called domain for each register; the domain stores which bits have a defined value.
Only bits that have a defined value after an operation according to the reference manual
need to be compared for equality at the end of the test.

4.4. Test Results and Error Conditions

There are a number of possible test outcomes that indicate different errors of the
decoder or semantics translator. Note that the instruction is executed in a separate
process in order to limit the effects its execution might have on the tester if the effects
of the instruction are predicted wrongly (e.g., the instruction might overwrite arbitrary
regions of memory). The error types and their causes are discussed in the following.

Decoding error The instruction under test cannot be decoded. Since the instructions
generated by our simplified instruction generator are invalid with a probability of
around 50% [32], we abort the test in case of a decoding error. In order to confirm
the correctness of decoder, it would be helpful to check whether the instruction
generates the correct exception if executed on the processor. However, this is,
currently not implemented.

Interpreter error The RReil interpreter is unable to execute the RReil code produced
by the GDSL translator. This indicates a bug in the semantics translation. For
example, an interpreter error occurs if an undefined value is stored to memory or
if selecting a branch of a conditional statement depends on an undefined value.

38

4. Verification of the Decoder and the Translator

Signal SIGSEGV during execution The process executing the instruction under test on
the physical hardware receives a segmentation fault signal. This signal indicates an
invalid memory access. This is most likely caused by an invalid or incomplete
semantics translation as the execution of the corresponding RReil code failed to
predict an access to the memory address causing the signal.

Signal SIGILL during execution The process executing the instruction under test on
the physical hardware receives an illegal instruction signal. This indicates an error
in the decoder because an instruction has been successfully decoded by GDSL
but has been rejected by the processor. In addition, illegal instruction signals can
occur if an instruction requires a more recent hardware version or additional chip
features.

Signal SIGALARM during execution The process executing the instruction under test on
the physical hardware receives an alarm signal. This means the execution of the
instruction has timed out. Even though unlikely, some instructions can take a
long time or never terminate (e.g. a self-branch). We detect such situations by
configuring a timeout for the execution of one second.

If none of the above errors occurs, the execution results are compared. If the values in
the registers and memory locations match, the instruction passes the test.

39

5. Compiling GDSL to C

Advances in programming languages are difficult to transfer into an existing product
as rewriting existing software using a modern language is usually not cost effective.
Furthermore, since interfacing with modern languages is usually problematic, pro-
grammers fall back to using legacy programming languages for development: besides
the technical challenges of marshaling data and transferring ownership of memory,
there are practical maintenance problems in building, debugging, porting and profil-
ing multi-language projects. An interesting alternative for reaping some benefits of
higher-level languages is to develop a domain-specific language (DSL) that is translated
into the legacy programming language [22]. One example are Cobol programs that
nowadays feature embedded SQL statements that a pre-processor translates into the
corresponding Cobol primitives. A general framework for creating such extensions
is provided by the Xtext framework [7] that targets the Java programming language,
thereby providing access to the garbage-collected heap and the introspection facilities
of Java. In this chapter, we address the challenge of bridging a wider semantic gap,
namely from the pure functional language GDSL to the C language so that we can
neither rely on a garbage-collected heap nor on run-time type information.

Language features of GDSL such as boxed values, polymorphic functions, flexible
records (where fields can be added to an existing record), monads, and closures thus
have to be implemented explicitly using C data structures which generally clobber the
logic of the generated code with boilerplate implementation details. The observation
in this work is that these features are often not used to their full extent in which case
they can be compiled into C code that resembles hand-written code. Based on this
observation, we combined the following three optimizations into one highly efficient
translation scheme.

5.0.1. Heap-Allocation and Avoidance of Garbage Collection

We solve the lack of a garbage-collected heap by equipping each translated DSL
program with a micro-runtime that provides a heap. During the evaluation of a DSL
function, objects may be allocated on this heap. The returned result may also contain
pointers to the DSL heap. Once the C program has processed the result (possibly
but not necessarily by copying the result to malloc’d memory regions), a function

40

5. Compiling GDSL to C

reset_heap() can be called that discards all allocated data on the DSL heap. This
operation can be as simple as setting the free-pointer to the beginning of the DSL heap
and is thus a very cheap way of reclaiming the memory. Moreover, since no actual
garbage collector is needed that traces the reachable set, the objects on the heap do not
have to be tagged to distinguish pointers from data. Hence, an object stored on the heap
has the same C type as when stored in a stack-allocated variable. As a consequence,
code accessing the heap resembles hand-written C code. Moreover, the initialization of
newly allocated objects is cheaper and the memory consumption is lower compared to
garbage-collected languages that use tagged heap objects.

A consequence is that a long-running DSL program has to be broken down into
a number of smaller, isolated tasks between which the heap is reclaimed so that the
overall memory usage remains reasonable. These smaller tasks need to be designed so
that they do not communicate heap-allocated data among one another. While this may
seem as a major restriction, it fits many uses of DSLs [20, 24].

5.0.2. Unboxing of Polymorphic Values and Closures

GDSL allows for parametric polymorphism [10] where functions and data types can be
defined that are agnostic to the data they operate on, such as a list reversal function.
Translating such a function into a single C function requires that polymorphic values
are represented uniformly, which usually means that they are represented by a pointer
to the heap where the actual, variable-sized value resides. Values stored on the heap are
called boxed. The efficiency of a program can be greatly improved by unboxing values
that have a fixed type [37]. For instance, computing x+(y+z) without unboxing would
allocate the intermediate result i of y+z on the heap before it is read from the heap to
compute x+i. An unboxing optimization avoids this unnecessary allocation step.

The type information necessary to perform unboxing is usually obtained in the
front-end through type checking/inference and must be retained up to the unboxing
optimization pass which complicates the compiler [49]. Also, a polymorphic function
is often only used in a restricted context. For instance, consider sorting a list of tuples
xs : (int*char) list by the first component in ML:

1 let fun cmp (xKey, xVal) (yKey, yVal) = xKey <= yKey
2 in sort cmp xs

Here, cmp is polymorphic in the second tuple element which therefore cannot be
unboxed even if it is only used for the type char. Indeed, it has been proposed
to specialize polymorphic functions for the sake of more unboxing [8]. Our type-
refinement optimization unboxes all variables that are used monomorphically such

41

5. Compiling GDSL to C

as cmp above. For example, if all the lists in a program range over the same type, the
payload of the list constructor Cons is unboxed. Moreover, it does not require any type
information from the front-end and thus also works for dynamically typed DSLs.

Since the monomorphic types used in our optimization can be different from the
types inferred in the front-end, we are able to infer additional information on function
types and record types. Specifically, a function type carries a tag that indicates if it
represents only trivial closures, that is, closures that only contain a function pointer but
no arguments. We unbox these closures by passing the address of the function instead
of passing the pointer to the heap-allocated closure. With respect to record types, note
that our language features flexible records where fields can be added to and extracted
from an existing record. These records are realized in the runtime by heap-allocating
a linked list of field/value pairs. For readability and for the sake of calling functions
with record arguments from C, it is desirable to use C structs instead. To this end,
the optimization infers a set of fields (and their types) and whether these fields always
exist. Any variable of record type whose fields always exist is turned into a C struct.

5.0.3. Transformation of Monadic Functions

A monadic function f is of type α1× . . .× αn → M α where M α is itself an abbreviation
for s → s× α, that is, a function from state s to a new state s and the result α. Thus,
the evaluation of f a1 ... an yields yet another function which is a closure. Since
creating, returning and invoking a closure for each monadic function is hard to read and
expensive, we transform the type of f to s× α1 × . . .× αn → s× α if all of its call sites
are monadic, that is, they all supply α1 . . . αn as well as s. Due to this transformation,
most monadic functions are translated into normal C functions and many closures are
avoided.
In summary, the presented translation scheme contributes the following novelties:

• It illustrates how structure preserving translation can turn a high-level DSL
language into readable C code (or other legacy languages), thereby making it
possible to re-use existing debuggers, profilers and other tools for C.

• A front-end independent unboxing optimization is proposed and evaluated that
is able to unbox closures and flexible records.

• Our evaluation shows that the generated code can be optimized by off-the-shelf
C compilers, yielding code that is as fast as a hand-written C library.

GDSL serves as a reference language throughout the chapter. During the transla-
tion, GDSL is first transformed into an intermediate language called Core. Core is a

42

5. Compiling GDSL to C

functional language similar to GDSL but without the domain-specific decoder syntax.
Core is then translated into an imperative language Imp. Imp is designed to be suitable
for our optimizations and also to be easily translatable into C. The C code can then be
handed to an off-the-shelf C compiler.

The chapter is organized as follows: Section 5.1 presents the lowering of GDSL
to Core. Section 5.2 illustrates how Core translates to Imp. Section 5.3 discusses
the optimization of Imp. Our implementation, described in Sect. 5.4, is evaluated in
Sect. 5.5. Related work is presented in Sect. 5.6 before Sect. 5.7 concludes.

5.1. Lowering GDSL to Core

The GDSL language described in the previous chapters is a domain specific language
that offers a special syntax geared towards the specification of instruction decoders.
Here, we introduce a language called Core which corresponds to GDSL without the
decoder syntax. A GDSL program can easily be translated into Core. To understand
this, consider the example decoder for Intel x86 instructions in Fig. 5.1 on page 44.

In the figure, we declare an algebraic data type to represent instructions. Then we
define two decoders decode and /r which use the special pattern syntax in [...] to
indicate that they read from the input byte stream. This pattern syntax is desugared
to the Core code in Figure 5.2 on page 45. Here, the consume8 function is used to
extract a byte from the input stream over which a case-statement dispatches. The
pattern 0x00 is translated into bit-pattern '00000000' which is a built-in data type
containing the bit-string and its size. The use of the sub-decoder /r in both patterns is
translated by inlining the body of the sub-decoder starting from lines 5 and 15, before
the right-hand-side of the decode rules are evaluated. Note that because the patterns of
sub-decoders can contain constant parts, their patterns need to be added to the patterns
of the calling decoders and their bodies need to be prepended to the right-hand-side of
the matching decode rules. Inside the code of /r, another byte is read and its bits are
extracted using a built-in function slice.

The desugared code of decode and /r in Fig. 5.2 and the remaining code in Fig. 5.1
now only use language constructs from Core whose grammar is defined in Fig. 5.6 on
page 48.

The translation scheme and the optimizations developed in this chapter allow a
translation of Core into the C code shown in Fig. 5.4 and 5.5 that is sufficiently similar
to allow the user of the DSL to debug or profile the program at the C level (note that we
have added some additional comments in the listing for clarification; manually added
comments are in purple). Note that this close correspondence is only possible if the
program does not exploit the whole flexibility of the source language (which is usually

43

5. Compiling GDSL to C

1 #declare a datatype for instructions
2 type insn = ADD of {opnd1:opnd,opnd2:opnd}
3 | INC of {opnd1:opnd} #increment
4

5 #define decoding rules for streams starting with 0x00 and 0x01; the
6 #latter queries the $opndsz flag of the monadic state
7 val decode [0x00 /r] = binop ADD r/m8 r8
8 val decode [0x01 /r] = do
9 opndsz <- query $opndsz;

10 if opndsz then binop ADD r/m16 r16
11 else binop ADD r/m32 r32
12 end
13

14 #a sub-decoder reading one byte and storing 2 (mod), 3 (reg/opcode)
15 #and 3 (rm) bits of it in the monadic state
16 val /r ['mod:2 reg/opcode:3 rm:3'] =
17 update @{mod=mod, reg/opcode=reg/opcode, rm=rm}
18

19 #a function that generates two-argument instructions; giveOpX are
20 #monadic functions, cons is an instruction constructor
21 val binop cons giveOp1 giveOp2 = do
22 op1 <- giveOp1; op2 <- giveOp2;
23 return (cons {opnd1=op1, opnd2=op2})
24 end
25

26 #a typical function passed as argument to binop: it queries the value
27 #of the reg/opcode field in the monadic state and returns an AST in
28 #the form of an algebraic data type, here a register REG XX
29 val r16 = do
30 r <- query $reg/opcode;
31 case r of
32 '000': return (REG AX)
33 | '001': return (REG CX)
34 | '010': return (REG DX)
35 | '011': return (REG BX)
36 end #other cases omitted
37 end

Figure 5.1.: A minimal decoder for Intel x86 instructions.

44

5. Compiling GDSL to C

1 val decode = do
2 tok <- consume8; #read byte from stream
3 case tok of #make pattern matching explicit
4 '00000000' : do
5 # inlined code of /r
6 tok <- consume8;
7 rm <- slice tok 0 3;
8 reg/opcode <- slice tok 3 3;
9 mod <- slice tok 6 2;

10 update @{mod=mod, reg/opcode=reg/opcode, rm=rm};
11 # end of inlined code of /r
12 binop ADD r/m8 r8
13 end
14 | '00000001' : do
15 # inlined code of /r
16 tok <- consume8;
17 rm <- slice tok 0 3;
18 # ... (remaining code of /r omitted)
19 opndsz <- query $opndsz;
20 if opndsz
21 then binop ADD r/m16 r16
22 else binop ADD r/m32 r32
23 end
24 end
25 end

Figure 5.2.: Desugaring the decoders to Core. We omit code handling pattern match
failures.

1 val decode = do
2 opndsz <- query $opndsz;
3 if opndsz
4 then binop ADD r/m16 r16
5 else binop ADD r/m32 r32
6 end

Figure 5.3.: Example Core code which is based on lines 19–22 from Fig. 5.2.

45

5. Compiling GDSL to C

1 typedef struct { /* struct for parameter of ADD */
2 obj_t opnd1;
3 obj_t opnd2;
4 } struct1_t;
5

6 typedef struct { /* a variant of datatype insn */
7 int_t tag;
8 struct1_t payload;
9 } con_struct1_t;

10

11 static inline /* constructor function ADD */
12 obj_t constructor_ADD(struct1_t arg_of_ADD) {
13 return alloc_con_struct1((con_struct1_t) {1/* ADD */ , arg_of_ADD});
14 }
15

16 obj_t decode() { /* decode */
17 int_t tok, rm, reg_slash_opcode, mod;
18 tok = consume8();
19 switch (slice(tok, 0, 8)) {
20 case 0: /* '00000000' */ {
21 /* start of sub-decoder /r */
22 tok = consume8(); /* get the next token */
23 rm = slice(tok, 0, 3); /* cut out lower 3 bits */
24 reg_slash_opcode = slice(tok, 3, 3);
25 mod = slice(tok, 6, 2);
26 state.mod = mod;
27 state.reg_slash_opcode = reg_slash_opcode;
28 state.rm = rm;
29 /* end of sub-decoder /r */
30 return binop(constructor_ADD, r_slash_m8, r8);
31 };
32 break;
33 case 1: /* '00000001' */ {
34 /* ... (inlined sub-decoder /r omitted) */
35 /* query mondic state */
36 int_t opndsz = state.opndsz;
37 if (opndsz) return binop(constructor_ADD, r_slash_m16, r16);

Figure 5.4.: The C code of the decoders (part 1). Some lines and variable declarations
are rearranged for presentational purposes.

46

5. Compiling GDSL to C

38 else return binop(constructor_ADD, r_slash_m32, r32);
39 };
40 break;
41 };
42 }
43

44 static obj_t constructor_REG(int_t arg_of_REG) {
45 return alloc_con_int((con_int_t) {3/* REG */ , arg_of_REG});
46 }
47

48 static obj_t r16() { /* r16 */
49 int_t r = state.reg_slash_opcode;
50 switch (slice(r, 0, 3)) {
51 case 0: /* '000' */ {
52 return constructor_REG(CON_AX); };
53 break;
54 case 1: /* '001' */ {
55 return constructor_REG(CON_CX); };
56 break;
57 case 2: /* '010' */ {
58 return constructor_REG(CON_DX); };
59 break;
60 case 3: /* '011' */ {
61 return constructor_REG(CON_BX); };
62 break;
63 };
64 }
65

66 /* binop expects a pointer to the constructor function as parameter */
67 static obj_t binop(obj_t (*cons)(struct1_t),
68 obj_t (*giveOp1)(), obj_t (*giveOp2)()) {
69 obj_t op1 = giveOp1();
70 obj_t op2 = giveOp2();
71 return /* build parameter, call constructor */
72 cons((struct1_t){.opnd1=op1,.opnd2=op2});
73 }

Figure 5.5.: The C code of the decoders (part 2). Some lines and variable declarations
are rearranged for presentational purposes.

47

5. Compiling GDSL to C

Core ::= Func ∗

Func ::= val id id ∗ = Expr
Action ::= id ← Expr ; Action

| Expr ; Action
| Expr

Cases ::= Pat : Expr ; Cases | ε

Pat ::= ′ (. | 0 | 1)∗ ′ | num
| con id | con

Expr ::= let Func ∗ in Expr end
| if Expr then Expr else Expr
| case Expr of Cases end
| Expr Expr +

| { (field = Expr)∗ }
| @ { (field = Expr)∗ }
| $ field
| query Expr | update Expr
| do Action end
| " string " | ′ (0 | 1)∗ ′ | num
| con | id

Figure 5.6.: The input language Core.

the case). For instance, none of the arguments to binop is a partially applied function.
Due to this, the address of a C function can be passed as argument as done in line 30,
37, and 38, rather than a pointer to a heap-allocated closure. Also, the arguments of the
REG constructor in lines 51-61 are preprocessor-defined constants instead of pointers
to heap allocated constructors which would be required if one of the registers had an
argument. In order to apply these ideas we translate Core to an imperative language
Imp.

5.2. Conversion to an Imperative Language

This section details the conversion from the functional language Core to a language we
call Imp whose grammar is given in Fig. 5.7. Imp is imperative in that the body of a
function is a Block that contains a sequence of statements Stmt. Imp is meant to be
lowered directly to C. As such, record operations are no longer first class citizens but
expressions that require a record as argument. Moreover, Core makes all allocations

48

5. Compiling GDSL to C

Imp ::= TLDecl ∗

TLDecl ::= id (Decl ∗) : Type = id where Block
| constructor id (Decl)
| closure cid [Decl ∗] (Decl ∗) : Type → id

Decl ::= Type id
Stmt ::= (id =)? Expr ;

| if Expr then Block else Block ;
| case Expr of Cases ;

Block ::= (Decl ;)∗ Stmt ∗

Cases ::= num + : Block ; Cases | ε

Expr ::= id | num | " string "
| Expr (Expr ∗)
| ∗ Expr (Expr +)

| { (field = Expr)∗ }
| @ { (field = Expr)∗ } Expr
| $ field Expr
| box (Type , Expr)

| unbox (Type , Expr)

| gen-closure cid [Expr ∗]
| λs→ Block Expr
| exec Expr

Figure 5.7.: The intermediate language Imp. Note that the non-terminal Type is
defined in Fig. 5.18.

49

5. Compiling GDSL to C

1 val f x =
2 let
3 val g y = x + y
4 in
5 g
6 end
7 val six = (f 1) 5
8 val seven = six + 1

Figure 5.8.: A Core example program that uses a closure.

1 closure g_cl[obj x](int y): obj -> g
2 g(int x int y) : int = gRes where
3 gRes = +(x y);
4 f(obj x) : obj = fRes where
5 fRes = gen-closure g_cl[x];
6 six() : int = sixRes where
7 sixRes = *f(1) (5);
8 seven() : obj = sevenRes where
9 sevenRes = +(six() 1);

Figure 5.9.: The optimized Imp program generated from the code in Fig. 5.8.

on the heap explicit. For values, box(t, e) returns a pointer to a freshly allocated heap
region containing e while unbox(t, p) returns the value pointed to by p. In both cases,
the type t ∈ int , obj , . . ., determines the size of the object. A function f is boxed by
creating a closure on the heap using gen-closure fcl [a1 . . . ak] and unboxed by invoking
the closure using ∗p(ak+1 . . . an) (note the star: a normal function call is written p(. . .)).
Here, ai with i ≤ k is a value from the environment in which f was defined. We
illustrate this using the Core program in Fig. 5.8. The corresponding Imp code is shown
in Fig. 5.9. Note that the optimized code is shown for better readability. For example,
our unboxing optimization described in Sect. 5.3.3 has been applied; therefore, only
the closure itself has to live on the heap while all integers are passed by value. After
introducing the details of the translation scheme, we will discuss the unoptimized
output of the translator.

50

5. Compiling GDSL to C

1 typedef struct {
2 int_t (*func)(obj_t, int_t);
3 int_t arg1;
4 } closure_t;
5

6 static int_t g(int_t x, int_t y) {
7 return x + y;
8 }
9

10 static int_t g_closure(obj_t v, int_t y) {
11 closure_t* c = (closure_t*) v;
12 return g(c->arg1, y);
13 }
14

15 static obj_t gen_closure(int_t (*func)(obj_t, int_t), int_t arg1) {
16 closure_t* closure = (closure_t*) alloc(sizeof(closure_t));
17 *closure = (closure_t){func, arg1};
18 return (obj_t) closure;
19 }
20

21 static obj_t f(int_t x) {
22 return gen_closure(&g_closure, x);
23 }
24

25 static int_t invoke_closure(obj_t closure, int_t arg1) {
26 return ((struct {int_t (*func)(obj_t, int_t);}*) closure)
27 ->func(closure, arg1);
28 }
29

30 static int_t six() {
31 return invoke_closure(f(1), 5);
32 }
33

34 static int_t seven() {
35 return six() + 1;
36 }

Figure 5.10.: Simplified C code for a Core example that uses closures.

51

5. Compiling GDSL to C

The Core program defines a function f that locally defines g. Since g refers to the
variable x from the environment, the Imp program defines g to take x in addition to its
parameter y. The value g returned by f in the Core program is translated by computing
a closure that contains a pointer to gcl as well as x where gcl is a special declaration
that is later translated to code invoking g with the arguments in the passed-in closure.
Specifically, the call f(1) in line 7 of the Imp program returns an address of a closure
on the heap, say acl , that contains a pointer to gcl and an integer 1. The invocation
*acl (5) calls gcl and passes acl and the argument 5 to it. The C code emitted for gcl in
line 1 in Fig. 5.9 then invokes g with the argument 1 from the closure and the actual
argument 5.

The corresponding C code can be seen in Fig. 5.10. The function g is defined in
line 6 and invoked in line 12 by the invocation function g_closure() which extracts
additional parameters from the closure and uses them to call g. The function f generates
the closure in line 22 by calling the closure generator function gen_closure. Note that
f provides the argument x from the context in which the closure is constructed. The
second argument to g, in contrast, is provided at the closure invocation site in line 31.

The translation scheme for all Core constructs (except case) is formalized in Fig. 5.13,
5.14, and 5.15 which are discussed in the following. Note that we assume all identifiers
to be unique; this can easily be ensured by renaming shadowing declarations. There
is a schema [[·]]C for translating a list of declarations, for functions and contants [[·]]F,
for blocks [[·]]Bρ , for expressions [[·]]E and for monadic sequences [[·]]S, some of which
add a top-level declaration specified using a call to the declare primitive. A Core
program is a list of declarations d that is translated by calling [[d]]C; the result of the
translation is returned as side effect. [[·]]C branches to [[·]]F in order to translate functions
and constants; here, the translation of a function f creates a closure declaration fcl
and requires that all occurrences of f in the generated program are replaced by the
expression that generates a closure of f . This is done by declaring the closure fcl
and generating a substitution. The substitution is collected by [[·]]C and applied after
translating all functions on the same level, thereby allowing all functions within one
declaration list to access each other. Constants are represented by functions in Core;
however, they do not require a closure in Imp. Instead, each usage site of a constant
that is computed from the Core expression e is replaced by a call to a function that
computes the value of the constant from the free variables in e.

52

5. Compiling GDSL to C

applySubst B : (id → Expr)× Block → Block
applySubst B (σ, ~decls stmt1 . . . stmtn) =

return ~decls applySubst S (σ, stmt1) . . . applySubst S (σ, stmtn));

applySubst S : (id → Expr)× Stmt → Stmt
applySubst S (σ, id = expr) =

return id = applySubst E (σ, expr)

applySubst S (σ, stmt) = . . . (* apply other kind of statement *)

applySubst E : (id → Expr)× Expr → Expr
applySubst E (σ, id) =

return

{
id id 6∈ dom(σ)

σ(id) otherwise

applySubst E (σ, e (e1 . . . en)) =
return applySubst E (σ, e) (applySubst E (σ, e1) . . . applySubst E (σ, en))

applySubst E (σ, λid 7→ block expr) =
return λid 7→ applySubst B (σ, block) applySubst E (σ, expr)

applySubst E (σ, expr) = . . . (* apply other kind of expression *)

applySubst C : (id → Expr)× Cases → Cases
applySubst C (σ, expr) = . . . (* apply to cases *)

applySubst T : (id → Expr)× TLDecl → TLDecl
applySubst T (σ, id ~params : type = f where block) =

return applySubst B (σ, block)

Figure 5.11.: Application of substitutions on an Imp AST node.

The translation scheme uses the two functions applySubst B and applySubst E to sub-
stitute function calls with calls to newly generated closures and uses of constants with
calls to the functions that compute their values. The functions expect an Imp AST
node as second parameter. The most relevant part of its implementation can be seen in
Fig. 5.11. The applySubst * functions recursively traverse the argument node. Whenever
an id is encountered which is in the domain of the substitution (first argument), the
substitution is applied. Note that shadowing of declarations is not possible by virtue of
requiring that all variables have different names. The function returns the new Imp
AST with the substituted values in place.

Consider again the Core code in Fig. 5.8. The result of applying the translation scheme

53

5. Compiling GDSL to C

9 closure g_cl[obj x](obj y): obj -> g
10 g(obj x obj y) : obj = gRes where
11 gRes = box(int, +(unbox(int, x), unbox(int, y)));
12 closure f_cl[](obj x): obj -> f
13 f(obj x) : obj = fRes where
14 fRes = gen-closure g_cl[x];
15 six() : obj = sixRes where
16 sixRes = *(*(gen-closure f_cl[](box(int, 1))))(box(int, 5));
17 seven() : obj = sevenRes where
18 sevenRes = box(int, +(unbox(int, six()), unbox(int, box(int, 1))));

Figure 5.12.: The non-optimized Imp program generated from the code in Fig. 5.8 using
the translation scheme in Fig. 5.13, 5.14, and 5.15.

can be seen in Fig. 5.12. The translation commences with the first top level declaration,
i.e. the declaration of f. Here, it continues with the declaration of g which is reached via
the translation scheme for let expressions. The function translation scheme declares
a closure closure g_cl[obj x](obj y): obj -> g and returns a tuple consisting of
the translated body of g as first element and the substitution [g/gen-closure g_cl[x]]
as second element. The function g is subsequently declared (the call to applySubst T

does not change its body) and the substitution is returned to the let translator. Here,
the body of f is first translated to code that returns g. Applying the substitution
[g/gen-closure g_cl[x]] then yields the code in line 14. This concludes the let
translation; thus, the function translation of f is finished by declaring the closure for f
(line 12) and returning the function f together with the substitution [f/gen-closure
f_cl[]]. Back on the top level of the translation, the translation continues with the
functions six and seven. Both are functions taking zero arguments; thus, the constant
translator is used here. As a result, no closure declarations are generated. The constant
generator generates the substitutions [six/six()] and [seven/seven()], respectively.
Before the bodies of f, six, and seven are emitted, the substitutions from the sub-
translators are applied, replacing f with gen-closure f_cl[] (see line 16) and six
with six() (see line 18).

The schema for translating e into a basic block [[e]]Bv takes an additional variable v to
which the result of evaluating e is assigned to. The translation of an expression [[e]]E, in
turn, returns a tuple 〈~s, e′〉 where~s is a sequence of statements that need to be executed
in order to compute e whose result is given by the Imp-expression e′. As an example,
consider applying the translation of the conditional in Fig 5.13 on lines 20–22 of Fig. 5.2.

54

5. Compiling GDSL to C

The translation first computes the code of the two branches (given by [[et]]Bite and [[ee]]Bite)
so that the result is stored in the freshly created variable ite. Based on these two blocks,
the tuple 〈s, ite〉 is returned where s is the single Imp-statement if opndz then ite =
...; else ite = ...;.

Recall that the record selector $foo in Imp requires an argument, e.g. $foo r, so that
it can be emitted as the C code r.foo. The translation therefore replaced $foo with a
closure of select-foo which is a newly generated function that extracts this field from
a record. Creating named functions instead of the traditional approach of using an
anonymous function λr → $foo r [31] has the advantage that a duplicate generation
of select-foo is easily avoided by checking whether a function with that name already
exists. Moreover, the resulting C code is easier to read. One speciality is the translation
of algebraic data types: a constructor that takes no arguments is translated as a pointer
to an integer that stores a tag identifying the represented variant. A constructor that
does take an argument is translated into a special top-level constructor function that
heap-allocates an integer for its tag followed by the payload.

55

5. Compiling GDSL to C

translation of a declaration list: translate functions and constants, declare them as
new top-level entities, and return substitutions for accesses to them
[[val f1 ~x1 = e1 . . . val fm ~xm = em]]C = σ

let fs = ∅ and σ = ∅;
for 〈 f (~x) : obj = e where b, σ′〉 ∈ {[[val f1 ~x1 = e1]]

F, . . . , [[val fm ~xm = em]]F} :
σ = σ ◦ σ′; fs = fs∪ { f (~x) : obj = e where b};

for f (~x) : obj = e where b ∈ fs :
declare applySubst T (σ, f (~x) : obj = e where b)

function translation: explicitly add environment variables ci to parameter list, translate
body, declare closure cls, generate substitution of f with new instance of cls
[[val f x1 . . . xn = e]]F = 〈 f (obj c1 . . . obj ck obj x1 . . . obj xn) : obj = fr where [[e]]Bfr

,
[f /gen-closure fcl [c1 . . . ck]]〉

declare closure fcl [obj c1 . . . obj ck] (obj x1 . . . obj xn) : obj → f where ci∈ free(e)

contant translation: a Core constant is a function without arguments; we generate a
function that computes the value of the constant from the free variables
[[val f = e]]F =

〈 f (obj c1 . . . obj ck) : obj = fr where [[e]]Bfr
, [f / f (c1 . . . ck)]〉, ci ∈ free(e)

block translation: translate expression e into block, assigning the result of e to x

[[e]]Bx = obj v1 ; . . . obj vn ; ~s x = e′ ; where 〈~s, e′〉 = [[e]]E and {v1, . . . vn} = free(e)

let translation: evaluate b, assign result to x, evaluate the body e

[[let decls in e end]]E = 〈applySubst B (σ, ~se), applySubst E (σ, e′)〉 where
σ = [[decls]]C and 〈~se, e′〉 = [[e]]E

if translation: evaluate condition ec by executing~sc, fetch result from heap, compute
value of then or else branch into the fresh variable ite, return ite as result
[[if ec then et else ee]]E=

〈~sc if unbox (int e′c) then [[et]]Bite else [[ee]]Bite ; , ite〉∧〈~sc, e′c〉=[[ec]]E ite fresh

closure invocation: evaluate function expression and arguments; invoke function
closure
[[e0 e1 . . . en]]E = 〈~s0 . . .~sn, * e′0 (e′1 . . . e′n) 〉 where 〈~si, e′i〉 = [[ei]]

E for i = 0, n

Figure 5.13.: Translation scheme from Core to Imp (part 1).

56

5. Compiling GDSL to C

record constant: evaluate field expressions ei before returning the record value
{ f0 = e′0 . . . fn = e′n } , set fields fi to resulting values
[[{ f0 = e0 . . . fn = en }]]E = 〈~s1 . . .~sn, { f0 = e′0 . . . fn = e′n } 〉 where 〈~si, e′i〉 = [[ei]]

E

record update: evaluate new field values e′i, generate an update function update- f1· · · fn

and its closure updcl ; return a new closure containing the field values
[[@ { f0 = e0 . . . fn = en }]]E = 〈~s1 . . .~sn, gen-closure upd [e′0 . . . e′n] 〉; 〈~si, e′i〉 = [[ei]]

E

declare closure updcl [obj c1 . . . obj cn] (obj r) : obj → update- f1· · · fn

declare update- f1· · · fn (c1 . . . cn r) : obj = r′ where r′ = @ { f1 = c1 . . . fn = cn } r

record selector function: generate a function select- f and its closure; return a new
closure as result
[[$ f]]E = 〈∅, gen-closure selcl [] 〉

declare closure selcl [] (obj r) : obj → select- f
declare select- f (obj r) : obj = r′ where r′ = $ f r

query translation: invoke function e on the monadic state and return the result

[[query e]]E = 〈~s, λ s→ * e′ (s) 〉 where 〈~s, e′〉 = [[e]]E

update translation: destructively set the monadic state to * e′ (s) and return a dummy
value
[[update e]]E = 〈~s s = * e′ (s) ; , λ s → box (int 0) 〉 where 〈~s, e′〉 = [[e]]E

do translation: return the empty statement sequence and the expression λ s → ~d ; ~s e
that evaluates to a closure containing declarations ~d, statements ~s, and the resulting
expression e of the monadic sequence
[[do seq]]E = 〈[], λ s → ~d ; ~s e〉 where 〈~d, ~s, e〉 = [[seq]]S

translation of assignment within monadic sequence: add declaration of x to assign-
ments ~d, evaluate e and apply it to the global state, assign the result to x; append
translation of remaining sequence
[[x ← e ; seq]]S =

〈~d obj x, ~se x = exec e′ ; ~s, ē〉 where 〈~se, e′〉 = [[e]]E ∧ 〈~d, ~s, ē〉 = [[seq]]S

translation of expression within monadic sequence: evaluate e, apply it to the global
state, append translation of remaining sequence

[[e ; seq]]S = 〈~d, ~se exec e′ ; ~s, ē〉 where 〈~se, e′〉 = [[e]]E ∧ 〈~d, ~s, ē〉 = [[seq]]S

translation of expression at the end of a monadic sequence: evaluate e, apply it to
the global state, use the result of the application as result for the sequence
[[e]]S = 〈∅, ~s, exec e′〉 where 〈~s, e′〉 = [[e]]E

Figure 5.14.: Translation scheme from Core to Imp (part 2).

57

5. Compiling GDSL to C

translation of string-, integer- and bit vector-constants: return the respective boxed
value
[[" string "]]E = 〈∅, " string " 〉 [[n]]E = 〈∅, box (int n) 〉
[[’ bn . . . b1 ’]]E = 〈∅, box (bits [n] 2n−1 ∗ bn + . . . + 20 ∗ b1) 〉

translation of constructors without argument: place the tag into a heap cell

[[x]]E = 〈∅, x〉 [[con]]E = 〈∅, box (int tag) 〉 if con has no argument

constructors with argument: generate a function that places the tag and the playload
onto the heap
[[con]]E = 〈∅, gen-closure concl [] 〉 if con has an argument

declare closure concl [] (obj payload) : obj → con
declare constructor con (obj payload)

Figure 5.15.: Translation scheme from Core to Imp (part 3).

5.2.1. Translating Monadic Sequences

The Core language provides a state monad, that is, a monad that threads a state through
a sequence of monadic actions. An action may query or update this state using the
primitives query and update. The do-notation is borrowed from Haskell and is syntactic
sugar for combining the actions in a sequence:

1 val f x y = do
2 a <- actA;
3 b <- actB;
4 actC
5 end

val f x y =
actA >>= (λa →

actB >>= (λb →
actC))

Here, the type of actA : M r is a monad where r is the type of the result. In our
language, M r is syntactic sugar for s→ 〈r, t〉, that is, our monad has an internal state
(of type s) that each action may modify to type t. Two actions are combined using the
infix “bind” operator >>= as follows:

1 val (act >>= cont) = λs →
2 let val <a,t> = act s in cont a t end

Compiling monadic code into efficient machine code that does not generate any
closures requires that >>= and the λ-term in its right argument cont are suitably inlined.

58

5. Compiling GDSL to C

Not only is the desugared do-notation hard to read, avoiding generating closures
for the λ-expressions also requires inlining of >>= and β-reduction (evaluation of λ-
terms). These optimizations destroy the structure of the input program and may lead
to excessive code duplication if not applied carefully. Thus, we propose a less literal
translation by observing that the state s in the definition of >>= is not used once act
is evaluated and the new state t is produced. Hence, we use a global variable s to
store the state and use monadic functions that, instead of returning a tuple like act,
destructively update s and only return the result a. This translation preserves the pure
functional semantics of the input program because of some deliberate restrictions of
our language. In particular, the evaluation of the sequence of monadic actions is started
at exactly one place, i.e. in the main function, and the actions of a do-sequence are
emitted in the order in which they appear in the source program. Monadic actions can
call non-monadic functions, but these then cannot call any monadic actions. Also, there
is no parallelism. Imagine the language would offer a primitive fork that expects two
actions as parameters which are then run in different threads. Here, each of these two
actions would need to work on a copy of the state. However, with our translation, both
would write to the same shared global state and, thus, interfere with each other.

The translation scheme in Fig. 5.13 and 5.14 makes the idea of using a global variable
explicit. The do statement is translated literally to a special lambda abstraction λs→ b e
where b is the Block representing the body of the do and e is the last expression in the
sequence. The [[·]]S scheme translates each action e by wrapping it with exec e which
applies e to the global state s. Indeed, exec e could be written e s but we chose the
former notation for the sake of readability. The result of e s is the result of the monadic
action, that is, no new state is returned. Thus, all built-in monadic functions have to
use destructive assignments to s to update the state. The only function that modifies
the state is update e, which is translated into the destructive assignment s = ∗e′(s);
(here, e′ is a closure containing e as its body) and otherwise behaves as an action
λs→ box(int , 0) that returns the dummy value zero. The query e action merely invokes
e on s and returns the result. As an example, consider the following code:

1 val f = do
2 a <- actA;
3 opndsz <- query $opndsz;
4 actC
5 end

Applying the translation scheme to this code yields the Imp code shown below.

1 f(): obj = fRes where

59

5. Compiling GDSL to C

2 fRes = λs →
3 obj a;
4 obj opndsz;
5 a = exec actA;
6 opndsz = exec (λ s→ *(gen-closure select_opndsz_cl)(s));
7 exec actC

This code is optimized further. In particular, the λ-expressions are removed as
detailed in Sect. 5.3.2. In the next section, we introduce the optimizations we apply to
the Imp code.

5.3. Optimizing the Intermediate Representation Imp

This section details various optimizations that bring the code closer to natural C code,
that is, C code that might have been written by hand. The challenge lies in removing
the functional language artifacts as far as possible. These artifacts mostly relate to the
boxing of values. The key transformations to avoid the boxing of functions and values
are local simplifications, as detailed next. The transformation of monadic actions and
the type-based refinement in Sect. 5.3.2 and 5.3.3, respectively, merely transform the
program so that further simplifications are possible. The simplifier is run once after
each transformation.

As a running example, we apply the translation scheme to the code in Fig. 5.3 which
is based on lines 19–22 of decode in Fig. 5.2 (see page 45), yielding the code in Fig. 5.16
(note that r/m16, etc. are constants that are turned into calls with no arguments).

The code contains the construction of many unnecessary closures such as the invoca-
tion *(gen-closure binop[]) that is equivalent to a direct call to binop.

5.3.1. Simplifying Imp

The simplifier traverses the AST looking for sequences of computations that can be
replaced with cheaper or no operations. A dead code elimination pass is run as
final pass in order to remove any declarations that are no longer required due to the
optimizations. The rules of the simplifier are presented in Table 5.1 and motivated as
follows:

• Rules 1 and 2 remove superfluous boxing and unboxing pairs on base types.

• Rule 3 identifies monadic closures that are immediately executed. However, a
monadic closure λs → ~d ; ~s e declares additional variables ~d and executes the

60

5. Compiling GDSL to C

1 decode(): obj = decodeRes where
2 decodeRes = λ s→
3 obj opndsz; obj ite;
4 opndsz = exec (λ s→ *(gen-closure select_opndsz_cl)(s));
5 if unbox(int, opndsz) then
6 ite =
7 *(gen-closure binop[]) (gen-closure ADD_cl[], r/m16(), r16());
8 else
9 ite =

10 *(gen-closure binop[]) (gen-closure ADD_cl[], r/m32(), r32());
11 ;
12 exec ite;

Figure 5.16.: Unoptimized translation of Fig. 5.3.

statements ~s before returning the value e. Hence, these declarations must be
moved to the enclosing block to ensure that they are visible when evaluating~s
and e. The statements~s must be executed before evaluating e.

• Rule 4 identifies closures that are constructed and then immediately invoked. The
pattern corresponds to the Core call f ~e with ~e ∈ Expr n where f is defined as a
function that expects n parameters.

• Rules 5 and 6 inline functions that have been generated during the conversion
from Core to Imp, namely functions select-foo for a record selector $foo and
update-f1· · · fn for record update functions. The rules apply when the functions
are applied to a record in which case the select and update expressions from Imp
can be used directly. Note that this is not always the case: A selector or update
function is a first-class object in Core.

The rules of the simplifier are rather standard when compiling functional programs
[37]. Applying them to the example code of the last section yields:

61

5. Compiling GDSL to C

no rule remark
1 box(t, unbox(t, e)) e
2 unbox(t, box(t, e)) e
3 x = exec(λs→ ~d; ~s; e) ~s; x = e insert declarations ~d in sur-

rounding block
4 ∗(gen-closure fcl [~a])(~a′) f (~a~a′) fcl is declared as

closure fcl [~d](~d′) : tr → f ,
~a ∈ Expr n, ~d ∈ id n,
~a′ ∈ Expr m, ~d′ ∈ id m

5 select-f (r) $f (r) select-f was generated for the
selector $ f

6 update- f1· · · fn(e1 . . . en r) @{ f1 = e1 . . . update- f1· · · fn was generated
fn = en} (r) for the record update function

@{ f1 = e1 . . . fn = en}

Table 5.1.: Rules of the Simplifier

1 decode() : obj = decodeRes where
2 decodeRes = λ s→
3 obj opndsz; obj ite;
4 opndsz = $opndsz s;
5 if unbox(int,opndsz) then
6 ite = binop(gen-closure ADD_cl[], r/m16(), r16());
7 else
8 ite = binop(gen-closure ADD_cl[], r/m32(), r32());
9 ;

10 exec ite;

In particular, rules 3, 4, and 5 have been applied to line 4 of Fig. 5.16. Rule 4 has been
applied to lines 7 and 10.

As another example again consider the code in Fig. 5.12. Applying the rules yields
the optimized code in Fig. 5.9. Note that the closure for f is then unused and can be
omitted.

5.3.2. Removing Monadic Actions

A major source of inefficiency and illegibility of the code generated so far relates to
monadic actions: every Core function whose body consists of a do-block returns a

62

5. Compiling GDSL to C

closure. One example is the binop function that commences as follows:

1 binop(obj cons, obj giveOp1, obj giveOp2) : obj
2 = binopRes where binopRes = λ s→ body

Note that, in order to obtain a result from binop, it must first be called with its three
arguments, then the resulting closure must be run by applying exec to it. Since the state
of the monad is updated destructively, the translation retains the source code semantics
if the sequence in which computations are performed remains the same. In particular,
we can rewrite the function binop : (obj , obj) → S → obj and all its call-sites so
that its type becomes (obj , obj) → obj without altering when a result is computed.
Hence, we replace λs→ body with body and we convert each call site of binop(...) to
λs→binop(...). In general, we traverse the program and gather all functions whose
top-level expression is a monadic closure λs → If this set contains a function f
whose closure is computed anywhere in the program, it has to be removed from the set
since a correct transformation would have to transform all invoke-expressions to which
the closure of f can flow and, in turn, all other functions from closure computations
that flow to this invoke-expression. In Fig. 5.16, all monadic functions can be converted:

1 decode() : obj = decodeRes where
2 obj opndsz; obj ite;
3 opndsz = $opndsz s;
4 if unbox(int, opndsz) then
5 ite =
6 λs → binop(gen-closure ADD_cl[], λs → r/m16(), λs → r16());
7 else
8 ite =
9 λs → binop(gen-closure ADD_cl[], λs → r/m32(), λs → r32());

10 ;
11 decodeRes = exec ite;

The converted program cannot be simplified since the monadic abstractions λs→
are not surrounded by exec. Note, however, that the monadic closure that is assigned
to ite is executed in the last line. We thus apply a transformation by performing a
backward-substitution on variables that were generated by the Core to Imp translation.
In particular, the assignment decodeRes = exec ite is removed and any assignment of
the form ite = exp is replaced by decodeRes = exec exp. In general, we also propagate
the simpler pattern var1 = var2 (where var1 was generated by the translation to Imp)

63

5. Compiling GDSL to C

1 decode() : obj = decodeRes where
2 obj opndsz; obj ite;
3 opndsz = $opndsz s;
4 if unbox(int, opndsz) then
5 decodeRes =
6 binop(gen-closure ADD_cl[], λs → r/m16(), λs → r16());
7 else
8 decodeRes =
9 binop(gen-closure ADD_cl[], λs → r/m32(), λs → r32());

10 ;

Figure 5.17.: Partially optimized code after applying backwards substitution.

backwards and replace var2 = exp with var1 = exp. Applying this transformation on
the code above and running the simplifier yields the code in Fig. 5.17.

Finally, we perform a pass that generates for each expression λs→ body a top-level
function containing body that takes the free variables x1, . . . xn of body as arguments.
The λ-expression is then replaced by gen-closure f_cl[x1, . . . xn]. As a consequence,
exec e has to be turned into a function invocation ∗e(). Applying this transformation to
decode() from above yields the following code:

1 closure r16_new_cl[](): obj -> r16_new
2 r16_new() : obj = Res where
3 Res = r16();
4

5 closure r/m16_new_cl[](): obj -> r/m16_new
6 r/m16_new() : obj = Res where
7 Res = r/m16();
8

9 closure r32_new_cl[](): obj -> r32_new
10 r32_new() : obj = Res where
11 Res = r32();
12

13 closure r/m32_new_cl[](): obj -> r/m32_new
14 r/m32_new() : obj = Res where
15 Res = r/m32();
16

17 decode() : obj = decodeRes where

64

5. Compiling GDSL to C

18 obj opndsz; obj ite;
19 opndsz = $opndsz s;
20 if unbox(int, opndsz) then
21 decodeRes = binop(gen-closure ADD_cl[],
22 gen-closure r/m16_new_cl[], gen-closure r16_new_cl[]);
23 else
24 decodeRes = binop(gen-closure ADD_cl[],
25 gen-closure r/m32_new_cl[], gen-closure r32_new_cl[]);
26 ;

A better translation of the code in Fig. 5.17 is possible for patterns of the form
λs → f () since replacing it by the closure of a top-level function that calls f () is
equivalent to replacing λs → f () by gen-closure f_cl[]. Thus, in the example, the
monadic closure λs→ r/m16() is translated to gen-closure r/m16_cl[]:

1 closure r16_cl[](): obj -> r16
2 closure r/m16_cl[](): obj -> r/m16
3 closure r32_cl[](): obj -> r32
4 closure r/m32_cl[](): obj -> r/m32
5

6 decode() : obj = decodeRes where
7 obj opndsz; obj ite;
8 opndsz = $opndsz s;
9 if unbox(int, opndsz) then

10 decodeRes = binop(gen-closure ADD_cl[],
11 gen-closure r/m16_cl[], gen-closure r16_cl[]);
12 else
13 decodeRes = binop(gen-closure ADD_cl[],
14 gen-closure r/m32_cl[], gen-closure r32_cl[]);
15 ;

This concludes the optimization of monadic actions. In the following, we explain our
unboxing optimization which makes of use a special kind of type inference.

5.3.3. Unboxing by Type Inference

By default, all variables are pointers to the heap, thus requiring heap-allocating the
result of each computation which is slow and produces hard-to-read C code. Our

65

5. Compiling GDSL to C

a)
Type ::= void | obj | int

| bits [num] | vec | str

| (Type ∗)
Flag→ Type

| box [Type] | M Type
| { (field : Type ,)∗ Flag }

Flag ::= true | false
b)

void t t = t t void = t
t t t = t
bits [c] t vec = vec t bits [c] = vec
bits [c1] t bits [c2] = vec
box [t1] t box [t2] = box [t1 t t2]
M t1 t M t2 = M (t1 t t2)

(t1, . . . tn)
c→ r t (t′1, . . . t′n)

c′→ r′ = (t1 t t′1, . . . tn t t′n)
c∨c′→ r t r′

{ fl , el} t { fr, er} = mergeRec(fl , el , fr, er)

t1 t t2 = obj
c)

mergeRec
(

f c
1 : tl

1, . . . f c
k : tl

k, f l
k+1 : tl

k+1, . . . f l
n : tl

n, el ,
f c
1 : tr

1, . . . f c
k : tr

k, f r
k+1 : tr

k+1, . . . f r
m : tr

m, er

)
=

obj if er ∧ n 6= k ∨ el ∧m 6= k
{ f c

1 : tl
1 t tr

1, . . . f c
k : tl

k t tr
k, f l

k+1 : tl
k+1, . . . f l

n
: tl

n, f r
k+1 : tr

k+1, . . . f r
m : tr

m, el ∨ er} otherwise

Figure 5.18.: Definition of Types, their union and merging of record types.

central and – as far as we know – novel optimization is a type inference that determines
which data can be stored in variables.

66

5. Compiling GDSL to C

Γ(f) = (t1 . . . tn)
false→ tr Γ(ai) = ti Γ(r) = tr Γ ` b : tr

Γ ` f (t1a1 . . . tnan) : tr = r where b
(fun)

Γ(id) = (t)
false→ obj

Γ ` constructor id(t a)
(con)

Γ(cid) = (t1 . . . tk)
false→ (tk+1, . . . tn)

k>0→ tr Γ(f) = (t1 . . . tn)
false→ tr

Γ ` closure cid[t1a1 . . . tkak](tk+1ak+1 . . . tnan) : tr → f
(clo)

Γ(x) = t Γ ` e : t

Γ ` x = e;
(ass)

Γ ` e : int Γ ` bt Γ ` be

Γ ` if e then bt else be;
(if)

Γ ` e : int Γ ` bi

Γ ` case e of p1 : b1; . . . pn : bn;
(case)

Γ[x1 7→ t1, . . . xn 7→ tn] ` si

Γ ` t1 x1 . . . tn xn; s1 . . . sm
(block)

Γ ` id : Γ(id) (var) Γ ` 42 : int (int) Γ ` ”string” : str (str)

Γ ` ′b1 . . . bn
′ : bits [n] (vec) Γ ` e : (t1 . . . tn)

false→ tr Γ ` ei : ti

Γ ` e(e1 . . . en) : tr
(call)

Γ ` ei : ti

Γ ` { f1 = e1 . . . fn = en} : { f1 : t1 . . . fn : tn, true}
(rec)

Γ ` e : box [(t1 . . . tn)
non-triv→ tr] Γ ` ei : ti

Γ ` ∗e(e1 . . . en) : tr
(inv) where non-triv ∈ {true, false}

Γ ` r : { f : t, e}
Γ ` $ f r : t

(sel)
Γ ` ei : ti Φ(fi) = ti

Γ ` { f1 = e1 . . . fn = en} : obj
(rec-glob)

Γ ` ei : ti Γ(cid) = (t1 . . . tk)
false→ (tk+1 . . . tn)

non-triv→ tr

Γ ` gen-closure cid[e1 . . . ek] : box [(tk+1 . . . tn)
non-triv→ tr]

(gen-clo)

Figure 5.19.: Typing rules that characterize programs on which unboxing can be applied
(part 1).

67

5. Compiling GDSL to C

Γ ` r : obj Φ(f) = t

Γ ` $ f r : t
(sel-glob)

Γ ` ei : ti Γ ` r : obj Φ(fi) = ti

Γ ` @{ f1 = e1 . . . fn = en} r : obj
(upd)

Γ ` e : box [t]

Γ ` unbox(t, e) : t
(unbox)

Γ ` e : t

Γ ` box(t, e) : box [t]
(box)

Γ ` e : M t

Γ ` exec e : t
(exec)

Γ ` b : tb Γ ` e : tr

Γ ` λs→ b e : M tr
(do)

Figure 5.20.: Typing rules that characterize programs on which unboxing can be applied
(part 2).

The type universe of Imp is shown in Fig. 5.18 a) (Fig. 5.18 b) and Fig. 5.18 c) are
discussed on page 68). Here, the special type void represents the empty set of program
values whereas obj represents all possible program values. Other types are bits [n]
for vectors of n bits, vec for bit vectors whose size is not statically known and whose
size is therefore tracked at runtime, monadic actions M r with result type r, boxed
types box [t] where t is not a monadic action, and record types. Figures 5.19 and 5.20
present typing rules that characterize Imp programs that have monomorphic typings
which are exactly those programs whose variables have a fixed type in all executions
and which therefore can be unboxed. Most Imp programs are not well-typed under
these rules, in these cases, our inference will over-approximate this typing.

The top three rules in Fig. 5.19 specify how the top-level declarations are represented
in the environment Γ. Rules for statements and for expressions follow. A specialty of

our types is the flag f in a function type (t1 . . . tn)
f→ t that is true if k > 0 in rule (clo),

that is, if the closure contains environment variables. Such non-trivial closures always
have boxed function types and are later represented by a heap-allocated structure that
contains a function pointer together with the required environment variables.

Another non-standard aspect are the types of records that may be either flexible
(later represented by a linked list of field/value pairs) or fixed (later represented by
a C struct). Any record r to which update r is applied is flexible, its type is obj
and the type of the fields is given in a global map Φ (rules (upd), (rec-glob) and
(sel-glob)). Fixed records have the type { f1 : t1, . . . fn : tn, all} where the flag all
indicates whether all fields of the record are known. For instance, the set of fields in a
record { f1 = 1, f2 = 2} = { f1 : int , f2 : int , true} is always known whereas the set in
a selector type $ f1 : ({ f1 : t, false})→ t is not known which is reflected by the all flag.
The remaining rules are standard.

In order to infer a typing that is sound with respect to these rules, we define the
union of two types t1 t t2 in Fig. 5.18b). The shown rules are to be read from top to

68

5. Compiling GDSL to C

rule inferred new type original new
writing x box [int] int x = e x = unbox(int , e)
reading x box [int] int x box(int , x)
writing x box [vec] vec x = e x = unbox(vec , e)
reading x box [vec] vec x box(vec , x)
writing x box [bits [c]] int x = e x =

unbox(bits [c] ,
unbox(vec , e))

reading x box [bits [c]] int x box(vec , box(
bits [c] , x))

closure
cid→ f

box [(~t)
false→ tr] (~t)

false→ tr gen-closure cid[] f

invoke e box [(~t)
false→ tr] (~t)

false→ tr ∗e(a1, . . . an) e(a1, . . . an)

Table 5.2.: Unboxing rules.

bottom, thus, bits [5] t bits [5] = bits [5] due to the third rule. The union of two
fixed records is defined in Fig. 5.18c). The first rule applies if all fields are known in
one of the records (say, the right one: er = true) and the other record contains extra
fields (n 6= k). Returning obj implies that the record can only be represented as a
flexible record. For example, consider the insn type in Fig. 5.1 and the expression case
inst of ADD arg2 -> eval arg2 | INC arg1 -> eval arg1. Since arg1 and arg2
are both passed to eval, a common type must be computed. But {opnd1 : obj , opnd2 :
obj , true} t {opnd1 : obj , true} = obj since er = true ∧ 2 = n 6= k = 1. Hence, the
argument to eval and to ADD and INC must be a flexible record.

Algorithmically, we replace the void type in the universe of types Type with a set
of type variables and associate a different variable with each record operation and
all positions in the program where the grammar in Fig. 5.7 specifies Type . Based on
the typing rules, we equate these type variables with the stipulated types and apply
the union operation t if two types differ. This inference can be implemented very
efficiently using a union-find data structure where an equivalence class representative
holds the type of the type variables in that class.

Note that our type inference is non-standard: a fresh type variable corresponds to the
void type and equating it with other types applies t which encodes anti-unification.
In the worst case, the most general type obj is inferred. In contrast, standard type
inference performs unification and a fresh type variable corresponds to obj , the most
general type. In the worst case, the least general type void is inferred, indicating a type
error since no program values exist in this type. Thus, while standard type inference

69

5. Compiling GDSL to C

init()
reset_heap(...)
...

decode(...)
pretty(...)
...

void main() {
 state_t s = init();

 decode(s, ...);
 ...
 pretty(s, ...);
 ...
 destroy(s);
}

decode(...)
pretty(...)
...

Imp code

compilable
C code

host C program
runtime template

specialization

Figure 5.21.: GDSL program assembly.

infers the most general type, ours infers the most specific type, thereby solving the
problem of inferring a type that is sufficiently specific to unbox the arguments of the
cmp function in Sect. 5.0.2 on page 41.

Given the inferred types, Table 5.2 shows the rules used to re-write various expres-
sions in the program. The rewriting of function return values and arguments are
handled analogously to writing/reading rules. The box/unbox constructors also show
when a variable contains a bit-vector bits [c] of fixed size c in which case the bit-string
is stored as int .

Finally, we infer a fixed record for the monadic state if all update actions are of
the form update @{. . .} and all query actions are of the form query $ f . In this case
the record does not escape and can be updated in-situ. An update rule analogous to
(sel) infers the set of fields and we translate update @{ f = 42} to state.f = 42 where
state contains the C struct of the monadic state. This is exemplified by lines 26–28 of
Fig. 5.5.

5.4. Implementation

We designed the GDSL toolkit with the goal to write concise x86 instruction decoders,
semantic translators to RReil and RReil optimizers. The optimizations are crucial to
reduce the size of the resulting code. Figure 5.21 illustrates how a GDSL library is
synthesized. In particular, a generic runtime template is specialized for the input GDSL
program by adding declarations for the monadic state, constructors, and heap allocation
functions. This bespoke runtime is combined with the generated code and compiled to
a library. A host C program can then link against this library.

Our C back-end adds a pointer to the runtime environment s as the first argument
to every emitted function. This runtime environment also contains the monadic state in

70

5. Compiling GDSL to C

s->state, thereby alleviating the need for any global state and, thus, making the library
thread-safe - this is important since GDSL does not provide means for concurrency
itself and, thus, concurrency has to be implemented by using multiple GDSL instances.
As hinted at in Fig. 5.21, the host program obtains an initial runtime environment by
calling init(). It is then at liberty to call and use the result of any GDSL function that
returns basic C types and structs. In order to transfer algebraic data types, such as
ASTs, to C, a structural induction can be programmed in the DSL that calls a different
function for each constructor. Passing these functions as a record generates a traversal
function that takes a C struct containing well-typed pointers to C functions. Thus,
marshaling data between the DSL and C is very simple and no extra tools are needed.

Once the results are extracted, the host program may reset the GDSL heap through
the reset_heap() function. The function frees all heap space except for the first page
which yields a slight performance advantage when running many small DSL functions.
GDSL uses fast bumper pointer allocation [30] within each page and increases the heap
size by one four kilobyte page when running out of memory.

The GDSL language requires the programmer to specify which functions to export.
All non-exported functions are declared static and are aggressively optimized by the C
compiler. Indeed, by annotating the runtime function that allocates a new page so that
it is not inlined, the size of the executable decreases by nearly one third. Modern C
compilers turn tail-recursive function calls into jumps, thereby allowing recursive loops
written in the DSL to run without any overhead over loops written in C.

5.5. Experimental Evaluation

We evaluated our implementation regarding the following three aspects: effectiveness
of the optimizations, comparison of the performance to hand-written code, and heap
consumption for various task sizes. We assess the optimizations by benchmarking
the decoding and pretty printing of the 11Mb clang binary. Table 5.3 shows the
performance results for different GDSL compiler optimization configurations. Table 5.4
contains measurements for the memory usage. We use the term fixed records when
emitting C structs whenever possible. We call records unboxed if the C structs are
passed by value rather than allocated on the heap. In contrast, compilation without fixed
records exclusively relies on lists of field/value pairs which are always heap-allocated.
The table shows the difference to the optimal case where type-based refinement has
been applied, records are fixed if possible and all fixed records are unboxed. The
second column shows the size of the generated C code. Thereafter, the binary code
size of the decoder and the program runtime are displayed both with and without C
compiler optimizations (-O0 and -O2). Finally, the last columns contain the average

71

5. Compiling GDSL to C

lines of with -O0 with -O2
optimization options code exe size time exe size time
all optimizations 36k 511kb 3.6s 295kb 1.1s
all w/o unboxed records 36k 499kb 4.0s 284kb 1.2s
all w/o type refinement 41k 855kb 5.4s 719kb 1.5s
all w/o fixed records 37k 605kb 9.9s 388kb 3.7s
all w/o fixed records

w/o type refinement
42k 945kb 11.4s 764kb 3.8s

Table 5.3.: Decoding performance depending on the GDSL compiler optimization level.

avg. heap max. heap
residency residency

all optimizations 1.0kb 2.5kb
all w/o unboxed records 1.1kb 3.14kb
all w/o type refinement 1.9kb 6.2kb
all w/o fixed records 4.6kb 10.9kb
all w/o fixed records

w/o type refinement
5.3kb 14.4kb

Table 5.4.: Decoding memory footprint depending on the GDSL compiler optimization
level.

per-instruction and the maximum heap residency of the decoder.
Table 5.5 compares our decoder to Intel’s XED decoder [12] using the same binary
input as above. In Sect. 2.3, we have observed XED to be the fastest freely available
instruction decoder that is also correct. Since XED is distributed in compiled form,
we cannot assess what changes were made between versions 2.11 and 2.12 besides
them being compiled by different gcc compiler versions. Still an increase in speed by
nearly 30% suggests that the library has been manually tuned for speed. Given that all
optimizations that our GDSL program has encountered lie in the application-agnostic
optimization passes described in this work, we believe that this highlights the merit of
using pure functional programs based on a state monad as core for a DSL.

Finally, Table 5.6 presents measurements for various GDSL programs. The test cases
are ordered by task complexity; we used the same test input as above. The table
starts by recapitulating the performance of the decoder. The decoder processes the
binary instructions independently, that is, the heap is reset after the decoding of each

72

5. Compiling GDSL to C

decoder time dec. insn. exe size
XED 2.12 1.2s 2667248 1344kb
XED 2.11 1.7s 2667248 1024kb
GDSL opt. 1.1s 2667248 295kb

Table 5.5.: Decoding performance of XED from the Intel Pin toolkit.

heap residency
GDSL program time avg. max. alloc. rate
x86 decoder + printing 1.2s 1.0kb 2.5kb 2090Mb/s
x86 decoder + translator + printing 8.2s 7.7kb 66kb 2459Mb/s
x86 decoder + translator + liveness 92s 206kb 67Mb 1305Mb/s
x86 decoder + translator + lookahead live. 241s 497kb 67Mb 1203Mb/s

Table 5.6.: GDSL program performance using all optimizations

instruction. Next, measurements for the semantic translation of single instructions
are shown. Again, instructions are handled independently, but the heap can only
be reset after the semantic translation of a decoded instruction completes. The third
line of the tables provides measurements for our liveness analysis which processes
the binary input basic-block-wise. In order to perform the analysis, the translation
of the whole basic block needs to be kept in memory and the heap can only be reset
after finishing that block. Finally, the last line presents measurements for an enhanced
liveness analysis that does not only consider one basic block, but also its successors
(if they can be determined). Here, the data for up to three basic blocks needs to be
stored in memory. The high maximal memory usage of 67Mb indicate that there is
a single basic block that is rather large. In production quality applications, the task
size run as DSL program should be artificially limited in size in order to prevent an
out-of-heap situation. In our case, it would be enough to split up basic blocks once they
have reached a certain size.

5.6. Related Work

A common perception of domain-specific languages is that they should be “small” and
not Turing-complete [22] since they otherwise encompass more than the domain-specific
aspect of the problem. This work proposes that a general functional language as carrier
is an effective approach to symbolic computations. Since it is seamlessly embedded

73

5. Compiling GDSL to C

into C, as soon as logic has to be encoded for which a pure functional language is
unsuitable, it can be easily implemented in C.

Our translation scheme can furthermore be characterized as a “shallow embedding”,
that is, an implementation that translates the DSL program into the native operations
of the target language. In contrast, a “deep embedding” is an implementation in which
the DSL program is evaluated using an interpreter written in the target language [21].
In practice, there is a continuum between these extremes and, indeed, our type-based
optimization transforms the DSL program to be more shallow: as an example, a non-
optimized program represents every record as a linked list of field/value pairs which
is not a common way to represent data structures in C. The optimization of turning
most of the records into C structs makes the DSL program more C-like and, hence,
more shallowly embedded.

While many DSLs focus on making programming simpler and safer, the FFTW library
for computing discrete Fourier transforms uses a DSL specifically to obtain programs
that are more efficient than hand-written C programs [24]. The underlying principle is
to express the transform as a directed acyclic graph of codelets that implement building
blocks and to optimize this graph by rewriting. Another example is the Pan library
for image manipulation [20] which embeds a DSL into the general purpose language
Haskell. The DSL constructs are Haskell functions that generate an abstract syntax tree
which is then optimized using inlining and common-subexpression elimination. The
resulting code is emitted as C code and compiled by a C compiler. In both approaches,
the goal of obtaining good performance sacrifices the structure of the input program
during translation, so that finding bugs in the emitted program is difficult for the user of
the DSL. An even more ambitious way of optimizing a functional DSL is to use standard
compiler techniques such as a translation to continuation passing style (CPS). Our
initial back-end was based on the CPS transformation and optimization by Kennedy
[31]. We found that removing the bind function that concatenates two monadic actions
was crucial to obtain code with few closure allocations. Unfortunately, this optimization
required a somewhat aggressive inlining (using β-reduction). Controlling the inlining
turned out to be a major difficulty and even in the best setting, a translation of the x86
decoder alone resulted in 13MB of C code which becomes difficult to compile and very
hard to debug. Moreover, the resulting code had about 1/3 of the performance of our
current back-end. The presented translation scheme therefore lies at a sweet-spot in
that it creates readable C code that has a small executable footprint while achieving the
performance of hand-written C/C++ code.

The idea of performing a task on a fresh heap and discarding the heap upon
completion is a form of region-based memory management [30]. It finds widespread
use in the implementation of plug-in modules for the Apache web-server. In some
applications, the DSL program might allocate a lot of memory and a garbage collector

74

5. Compiling GDSL to C

might be useful. However, a generic garbage collector for our DSL requires that data on
the heap is tagged, which may reduce the performance of the generated code. Instead,
a built-in garbage collection primitive could be added that allows the programmer
to specify which data to keep and ensures that all other identifiers can no longer be
accessed. In this case, the compiler would generate a bespoke copying function for
the data to keep based on the types. Note that these types must be monomorphic
since copying polymorphic types requires the data on the heap to be tagged in order
to determine the size of the heap object. An interesting case is to apply the garbage
collection primitive only to the monadic state. Such a setup would enable the use of
high-level, functional DSLs in small embedded control systems that repeatedly execute
an infinite loop. The DSL would require that the state of the system is stored inside the
monad which is then the only data that remains alive between loop iterations.

Type-based unboxing of heap values has been investigated by Leroy in the context
of the OCaml compiler [37]. His work was generalized to also cope with the module
system of ML and, thus, separate compilation [49]. The latter work observes that
many functions are used with a type that is more monomorphic than their inferred
type as illustrated by the cmp function in Sect. 5.0.2. Since a polymorphic argument
to a function requires that it is boxed, Bjørner proposes to specialize a function type
as much as possible in order to perform more unboxing [8]. Our approach achieves
the same effect by performing a monomorphic type inference and to use the special
type obj to represent a type that is not monomorphic. Moreover, any constructor
that is only used to store specific types will have its payload stored unboxed. Thus,
a polymorphic list that is only used with integers will store the integer directly in
each list cell. On the downside, compiling DSL modules separately requires that the
monomorphic type information can be propagated between the different modules in
order to propagate the type requirements between all call sites and functions. The
infrastructure for communicating types between separate modules is always built into
the type checker/inference of the compiler front-end but is unlikely to be available to
the back-end. Thus, our monomorphic type inference is easiest to apply as a whole-
program analysis that requires all DSL modules at once. A bespoke type inference
algorithm that can deal with separate compilation has been presented by Thiemann
[59]. While his inference uses a simpler lattice and allows for polymorphic function
types, our context-insensitive inference seems to be much simpler.

5.7. Conclusion

We have presented a translation scheme for a purely functional language that provides
a built-in state monad. The goal is to perform a structure-preserving translation that

75

5. Compiling GDSL to C

enables the user to easily relate the emitted code with the DSL program and thereby
allows for simple debugging and profiling using the emitted code. To this end, several
simple transformations were presented that replace concepts from the input DSL (such
as boxed values, closures, and curried functions) into concepts used in C programs
(such as structs and function pointers). The key insight is that even larger DSL
programs are often simple enough to optimize most closure and boxing operations
away, thereby yielding an imperative program that resembles hand-written C code.
Due to this resemblance, many of the optimizations found in off-the-shelf C compilers
are applicable to the generated code, thus yielding a highly efficient executable.

76

Part III.

Scalability Through Modular
Analysis

77

6. Modular Analysis of Executables using
On-Demand Heyting Completion

One challenge in static analysis is the sheer size of the input program. This is
particularly true for the analysis of executables that have easily an order of magnitude
more statements than the corresponding source program. One key to scalability is the
treatment of functions: On the one hand, the highest precision needed to prove the
absence of run-time errors [4] can be obtained by inlining functions at each call site
with the cost of increasing the code to be analyzed dramatically. On the other hand,
the duplicate evaluation of code can be avoided by performing a context-insensitive
analysis in which all calling contexts of a function are merged and the return state is
propagated to all call sites. A context-sensitive analysis without duplicate evaluation
of functions can be obtained by inferring an input/output relation for each function.
These function summaries are then combined to obtain a solution to the whole program
using a global fixpoint computation. This approach is known as modular analysis [14].

We illustrate the challenges of a modular analysis using the code in Fig. 6.1. Here,
the tests CheckEven and CheckOdd rely on the helper function Check to test an invariant
of the two sub-classes Even and Odd. In a modular analysis, the methods Even::IsEven
and Even::IsOdd are summarized by their effect of returning a constant value. The
Odd::IsEven method modifies the even_call field pointed-to by this. A summary
for this method must therefore assume the existence of a memory region at *this
containing an int field. A precise summary of this function can be expressed by
x′ = x + 1 where x, x′ is the value of the field before, resp. after, the call1. A more
challenging task is the summary of Check. Invoking the virtual methods accessed
through the parity pointer amounts to an indirect function call. Without knowing
which functions can be dispatched to, a summary of this function would have to make
worst case assumptions: the invoked function may modify any memory reachable from
global variables or the this pointer. Without any additional information, a summary
of a function fi containing indirect calls provides little or no information.

One way to ensure that no precision loss occurs, even in the presence of higher-order
functions, is to use only abstract domains that are able to condense the effect of a

1Note that using field names requires a well-typed program. As discussed later, our implementation
therefore uses offsets instead of field names.

78

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 struct Parity {
2 virtual bool IsEven() = 0;
3 virtual bool IsOdd() = 0;
4 };
5

6 struct Even : public Parity {
7 bool IsEven() { return true; }
8 bool IsOdd() { return false; }
9 };

10

11 struct Odd : public Parity {
12 bool IsEven() {
13 even_call++;
14 return false;
15 }
16 bool IsOdd() { return true; }
17 int even_call = 0;
18 };

19 void CheckEven() {
20 Even even;
21 Check(&even);
22 }
23

24 void CheckOdd() {
25 Odd odd;
26 Check(&odd);
27 assert(odd.even_call > 0);
28 }
29

30 void Check(Parity* parity) {
31 assert(parity->IsEven()
32 != parity->IsOdd());
33 }

Figure 6.1.: The running example C++ program.

function without loss of precision. By using these so-called condensing domains [25],
it is possible to compute a summary of a function even if it takes other functions as
parameters. Examples are type inference for functional programs [54], groundness
analysis in Prolog [40] and instances of the IFDS framework [46]. These well-known
domains are too imprecise to distinguish function behaviors based on pointer aliasing
and numeric properties.

One particular kind of condensing domains are those whose meet distributes over
the join of the lattice, i.e. s u (t t u) = (s u t) t (s u u). Giacobazzi and Scozzari
propose Heyting completion to make an existing domain meet-distributive [26]. This
process adds new elements to a domain and may thereby refine an abstract domain
until it is isomorphic to the concrete domain (which is a set of states and thus forms
a distributive lattice). Heyting completion is therefore not generally practical. In this
work, we use Heyting completion on-demand, namely when the analysis of a function
requires it to avoid a severe loss of precision. In particular, once a particular property
p is identified for which we want to avoid the lossy approximation {p} u (s t t) A
({p} u s) t ({p} u t), we track a new abstract state p → ({p} u s) t ({p} u t) and
postpone the computation of a state in which p does not hold until a call site is

79

6. Modular Analysis of Executables using On-Demand Heyting Completion

encountered that requires it. Ultimately, a function is summarized by a table [p1 7→
{p1} u s1, . . . pn 7→ {pn} u sn] and a call site c applies this summary by computing⊔

i c u {pi} u si. We present an analysis whose predicates p state that an input to a
function is equal to a function address. For instance, analyzing CheckEven creates a
summary sE of Check and stores the mapping (parity->vtable[0] = aE) 7→ sE where
aE is the address of Even::IsEven. A second summary of Check is created for the call
site in CheckOdd. A call site such as Check(rand() ? new Odd() : new Even()) can
thereafter be evaluated by instantiating the two summaries and without re-analyzing
Check.

Given a function with the predicated summary [p1 7→ s1, . . . pn 7→ sn] and a call site
with state c, the question arises if the predicates cover the state described by c, i.e. if
γ(c) ⊆ γ(p1)∪ . . .∪ γ(pn). If not, new predicates pn+1, . . . pn+k must be identified and
a new summary must be computed for each predicate. For instance, calling Check with
a new sub-class Mark whose method Mark::IsEven has address aM, the computation
of a new summary sM of Check is needed, giving the table entry (parity->vtable[0]
= aM) 7→ sM. The challenge here is how to observe when a new predicate is needed
and how to obtain it. Our contribution to this end is to represent predicates as a
Herbrand abstraction (uninterpreted terms with variables as placeholder for other
terms) which gives the analyzer the flexibility to express cross-cutting properties from
several abstract domains. By evaluating these predicates wrt. a call site state, the
variables in the predicates will be instantiated with values that make the predicate
true. Each variable assignment of a predicate gives a ground (i.e. fully instantiated)
Herbrand term. A summary of the function is computed for each ground Herbrand
term.

In summary, we make the following contributions towards modular analysis:

• We apply Heyting completion [26] on-demand in order to make the summary
of a function complete for some predicate. Predicates are created on-demand,
namely when incompleteness would lead to an unusably imprecise result.

• We propose Herbrand abstractions to express symbolic predicates that functions
postulate and that call-sites instantiate, thereby providing an abstract interface
between the base analysis and the completion mechanism.

• We present an implementation of this framework using an inter-procedural
control-flow-graph analysis that is able to resolve function calls in an x86 exe-
cutable compiled from our higher-order functional language GDSL.

The remainder of this chapter is organized as follows: The next section defines a
collecting and abstract semantics for an imperative language with indirect function calls.
Section 6.2 generalizes these semantics to one that relates function inputs to outputs.

80

6. Modular Analysis of Executables using On-Demand Heyting Completion

Prog ::= FDecl∗

FDecl ::= ident(){Stmt∗}
Lhs ::= ident.field(→field)?

Expr ::= Lhs | Loc

Stmt ::= LocS : br (Expr : LocS;)? LocS

| LocS : Lhs = Expr

| LocS : call Expr

| LocS : return

Figure 6.2.: The abstract grammar of the analyzed program. (E)? denotes zero or one
E.

Section 6.3 enhances this abstract interpretation with the generation of Herbrand terms
and presents how a fixpoint is obtained in a modular way. Section 6.4 discusses our
implementation before Sect. 6.5 presents related work.

6.1. Preliminary Definitions

In this section we define a language with functions and define a collecting semantics
for it. Let [] denote an empty map, m := [k1 7→ v1, . . . kn 7→ vn] a map where n
values can be looked up with m[ki] = vi, let m \ k denote a map without a mapping
for k and let m[k 7→ v] denote an update at k. Let dom(m) denote the keys in m. Let
Loc = LocS] LocM be the set of memory locations of a program P that is partitioned
into statement labels LocS and statically and dynamically allocated memory regions
LocM. Define LocF ⊆ LocS to be the set of function entry points which coincide with
the first statement in each function. We assume a C-like language where a variable
v is stored at address &v ∈ LocM. Let σ ∈ Σ : LocM → (F → V) define the program
state with σ(m) being a field map of the memory at address m ∈ LocM. A field map
takes field names F to their content V where V := Loc ∪Z denotes numeric values
and addresses. The ability to partition a memory region into fields allows our analysis
to express that a function call only accesses some but not all fields of a memory region.

Figure 6.2 defines the grammar of P ∈ L(Prog). A function is a sequence of
statements consisting of conditional jumps, assignments, function calls, and returns.
Note that every statement is preceded by its unique address l ∈ LocS. The statement
Lhs = Expr updates the specified field of a memory region or, via the optional C arrow
notation, a field in the pointed-to memory region. For brevity, we write even_call for
Even::IsEven:this.this->even_call ∈ L(Lhs) (where Even::IsEven is the method
in Fig. 6.1). The concrete semantics of a statement takes an input program state σ ∈ Σ
and returns a tuple consisting of the output state and the location where execution
continues. The individual rules are explained below.

81

6. Modular Analysis of Executables using On-Demand Heyting Completion

[[·]]\ : L(Stmt)× Σ→ (LocS × Σ)

[[ls: br e : lt; l f]]
\σ =

{
〈lt, σ〉 if [[e]]\Exprσ = 0
〈l f , σ〉 otherwise

(6.1)

[[ls: m.f = e]]\σ = 〈next(ls), σ[m 7→ σ(m)[f 7→ v]]〉 where v = [[e]]\Exprσ (6.2)

[[ls: m.f→f′= e]]\σ = [[ls: m′.f′ = e]]\σ where &m′ = [[m.f]]\Exprσ (6.3)

[[ls: call e]]\σ = 〈&f, σ[f 7→ [ret 7→ next(ls)]]〉 where &f = [[e]]\Exprσ (6.4)

[[ls: return]]\σ = 〈lr, σ \ f〉 where lr = [[f.ret]]\Exprσ (6.5)

The evaluation of an expression e ∈ L(Expr) is defined as follows:

[[·]]\Expr : L(Expr)× Σ→ V

[[m.f]]\Exprσ = σ(m)(f) (6.6)

[[m.f→f′]]\Exprσ = [[m′.f′]]\Exprσ where &m′ = [[m.f]]\Exprσ (6.7)

[[l]]\Exprσ = l (rule Expr ::= Loc) (6.8)

Jumps, defined by Eqn. 6.1, are unconditional if e : lt is omitted. Equation 6.2
updates the field f in σ(m). It returns the program location following this statement
using a function next : LocS → LocS that we assume to be suitably defined for all
non-branching statements. A write through a pointer in Eqn. 6.3 assumes that the
pointer value m.f matches the beginning of a memory region m′ and is undefined
otherwise. Thus, we do not model general pointer arithmetic and array accesses but
assume that parity->vtable[0] is interpreted such that vtable[0] is a field name.
Our implementation supports general pointer arithmetic.

The call instruction in Eqn. 6.4 continues execution at the called function. For a called
function f, it creates a memory region f and a region f:var for each local variable var
of f which altogether serve as the stack frame. We denote the region f:var of a local
variable by var if the function is clear from the context. A variable of base type (e.g. an
integer or a pointer) corresponds to a memory region with a single field that has the
same name as the region itself. The return instruction in Eqn. 6.5 jumps to the location
in the field f.ret, where f is the current function. (Note that supporting recursion
requires the use of unique names for stack frames.) The semantics of expressions in
Eqns. 6.6 to 6.8 is straight forward.

A suitable collecting semantics is the classic merge-over-all-paths solution. Let Σs ⊆ Σ
be the initial state at the program entry point lmain. We define:

82

6. Modular Analysis of Executables using On-Demand Heyting Completion

Definition 1. The collecting semantics of P is a map colP : LocS → ℘(Σ) satisfying Σs ⊆
colP(lmain) and for all l : stmt ∈ P, σ ∈ colP(l), and 〈l′, σ′〉 = [[l: stmt]]\(σ) it holds that
σ′ ∈ colP(l′).

The structure 〈LocS → ℘(Σ), ⊆̇, ∪̇〉 is the complete partial order of the concrete
domain where ⊆̇ and ∪̇ are the point-wise liftings of the corresponding operations on
the images of the map. The next section details how it is approximated by an abstract
domain.

6.1.1. Abstract Interpretation of the Collecting Semantics

The segregation of memory into distinct regions lies at the heart of a modular analysis
where a function summary leaves all but a small set of memory regions untouched. We
therefore lift the concept of a memory region to the abstract.

Specifically, an abstract interpretation of the collecting semantics abstracts the un-
bounded set of memory regions in the concrete environments Σ by a bounded set
of abstract memory regions R. The memory regions define a set of non-overlapping
areas of memory. The structure of a memory region r ∈ R is defined by a map
MS = R → (F → X) whose mappings are written [r1 7→ φ]

1, . . . , rn 7→ φ]
n] where

each φ]
i maps fields of a memory region ri to a value domain variable x ∈ X that takes

on values in V = Z∪ Loc.
The values of X ⊆ X are given by a domain DX = 〈DX, vDX , tDX , uDX , ⊥D〉. Here,

X is the support set of DX, that is, the variables that DX restricts. In our implementation,
DX is a reduced product [13] of several abstract domains. Since the inference of
summaries requires the ability to express relations between input and output variables,
a domain d ∈ DX must be concretized in a way that retains these relations. Thus,
the concretization γDX : DX → ℘(V∗) maps d ∈ DX to γDX (d) = {~v1, . . .} where
each vector ~vi has one dimension for each abstract variable x ∈ X . For instance,
let d ∈ D{x, y} have its variables restricted by the interval constraint x ∈ [3, 5] and
the equality x + 1 = y then 〈x, y〉 ∈ γD(d) = {〈3, 4〉, 〈4, 5〉, 〈5, 6〉}. We write
~v(x) to extract the value from the vector corresponding to the dimension x ∈ X .
Changes to the support set X of a domain DX are implemented by two functions
addVarx : DX → DX]{x} (leaving x unrestricted) and delVarx : DX]{x} → DX that are
defined iff x /∈ X.

6.1.1.1. Combining Memory Structure and Value Domain

We now describe how MS and DX are combined. For the sake of this section, let
vars(ms) ⊆ X denote the variables occurring in ms ∈ MS. The lattice of our analysis
contains elements 〈m, d〉 ∈ MS× {DX | X ⊆ X} such that d ∈ Dvars(m). We denote

83

6. Modular Analysis of Executables using On-Demand Heyting Completion

this universe as MS× D. The concretization of MS× D to environments Σ proceeds in
three steps: First, we define a function embed that updates an environment σ ∈ Σ with
the values in a vector ~v ∈ V∗ based on the fields of a memory region. The function
recursively processes each mapping by pattern matching against the empty map and a
map {r 7→ φ]}]m containing a mapping for region r and other mappings m:

embed : MS× (Loc ∪Z)∗ × Σ→ Σ
embed([], ~v, σ) = σ

embed([r 7→ φ]]]m, ~v, σ) = embed(m, ~v, σ[r 7→ embedφ(σ(r), φ], ~v)])
where embedφ(m, φ], ~v) = m[f 7→ ~v(φ](f)) | f ∈ dom(φ])]

Second, we apply the function embed to the set of all concrete stores Σ, thereby obtaining
{embed(m, ~v, σ) | σ ∈ Σ}, the set of concrete stores in which the fields tracked by the
abstract domain are restricted to values in ~v. The final step is to compute this set for
each value vector, giving the concretization function:

γMS×D : MS× D → ℘(Σ)

γMS×D(〈m, d〉) =
⋃

~v∈γD(d)

{embed(m, ~v, σ) | σ ∈ Σ}

We now address the task of defining the lattice operations on MS× D. The problem to
address is that two structures m1, m2 ∈ MS, that are propagated to the same program
point, are associated with domains di ∈ Dvars(mi), i = 1, 2, so that d1 and d2 range over
different variables and cannot be compared or joined.

We address this problem using cofibered abstract domains [61] and define three
sound morphisms2 addRegionr, addFieldr, f , renameField f : MS× D → MS× D that are

2In categorical terms, MS× D is a Grothendieck construction F o C using functor F : C → Cat where
C is a small category with obj(C) = MS and Cat is a category of small categories with obj(Cat) =
{〈DX , ρ〉 | X ⊆ X , ρ : X → (LocM × F)}. Here, the translation ρ provides information on how
X relates to the field names of memory regions. F maps a category of memory structures to a
category of domains over variables in that memory structure. Thus, the category F o C contains

tuples 〈m, 〈d, ρ〉〉 ∈ obj(F o C) where m ∈ MS and d ∈ Dvars(m). The morphisms 〈m1, 〈d1, ρ1〉〉
(f , g)−→

〈m2, 〈d2, ρ2〉〉 ∈ homFoC are pairs (f , g) where m1
f−→ m2 is a functor in C and g is a morphism

F(f)(〈d1, ρ1〉)
g−→ 〈d2, ρ2〉 in Cat. A morphism is sound if g defines an inclusion relation between its

arguments [61] which is given if the values of d1 are a subset of those in d2 modulo the translation
of variables: g(〈d1, ρ1〉, 〈d2, ρ2〉) iff ∀~v1∈γDX (d1).∃~v2∈γDX (d2).∀x∈dom(ρ1) ∧ ρ1(x) ∈ dom(ρ−1

2) .
~v1(x) = ~v2(ρ

−1
2 (ρ1(x))). We omit ρ when defining morphisms as it is not needed.

84

6. Modular Analysis of Executables using On-Demand Heyting Completion

applied if the memory structures ms1, ms2 differ:

〈m, d〉
addRegionr−→ 〈m[r 7→ []], d〉 (6.9)

〈[r 7→ φ]]]m, d〉
addFieldr, f−→ 〈[r 7→ φ][f 7→ x]]]m, addVarx(d)〉 (6.10)

〈[r 7→ φ][f 7→ x]]]m, d〉
renameField f , x, y−→ 〈 r 7→ φ][f 7→ y]]]m,

delVarx([[y := x]]]addVary(d))〉
(6.11)

Here, [[y := x]]] in Eqn. 6.11 is the update transformer onDX. By applying a composition
of the three morphisms on the domain tuples 〈mi, di〉, i = 1, 2, one can obtain tuples
〈m′i, d′i〉 with m′1 = m′2 so that the lattice operations vDX , tDX can be applied to d′i.
The morphisms can be shown as sound wrt. γMS×D and we obtain the abstract lattice
〈MS× D, vMS×D, tMS×D, ⊥MS×D〉.

Example 1. We give an intuition on where the above morphisms are applied using an alias
domain with universe DX = X → ℘(Loc ∪ {abad}). It implements addVarx adding the
mapping x 7→ {abad} where abad is a symbolic constant that represents all illegal addresses.
Consider the following two functions:

1 void foo() {
2 struct { void* a; } s;
3 if (rand())
4 s.a = &f;
5 }
6

7 void bar() {
8 struct{ void* a; } s;
9 if(rand())

10 s.a = &f;
11 else
12 s.a = &g;
13 }

Assume that s is initially associated with a region without fields, i.e. s 7→ []. Assume further
that, in foo and bar, the then-branch updates s such that s 7→ [a 7→ x1]. For foo, we have to
apply the addFields, a morphism on the else-branch state before the join; the join, consequently,
results in the alias set x1 7→ {abad, &f}. In the else-branch of bar, the update creates, e.g.,
s 7→ [a 7→ x2]. In this case, we have to apply renameFielda, x2, x1 so that the states to be joined
have the same support set. The join results in x1 7→ {&f, &g} for the field a.

85

6. Modular Analysis of Executables using On-Demand Heyting Completion

The presented memory structures MS do not allow for summarized memory regions
as every abstract memory region r ∈ R corresponds to exactly one concrete memory
region in σ, albeit at varying addresses. Although this suffices to illustrate our modular
analysis, our implementation requires a simple form of summarized memory regions as
described in Sect. 6.4. A concretization that caters for summarized memory regions [52]
would complicate the presentation unnecessarily.

6.2. Modular Program Semantics

In this section we generalize the collecting semantics and its abstract interpretation
to function summaries. Specifically, we summarize the behavior of a function by a
set of tuples 〈σ, σ̄〉 that state how an input environment σ is mapped to an output
environment σ̄ and lift this relation to an abstract input/output relation.

We first define the input/output function semantics for a single input state. Recall
that the semantics of calling f and returning from f in Eqns. 6.4 and 6.5 use the field
f.ret to store the return address. In order to define the semantics of f independently
of a caller, we evaluate it in an environment σ = [f.ret 7→ lres

f] where lres
f ∈ Loc is a

location that is not used in P.

Definition 2. The semantics of f at l f ∈ LocS and executing in state σ is a map colσ
f : LocS →

℘(Σ) satisfying σ[f.ret 7→ lres
f] ⊆ colσ

f (l f) and for all l : stmt ∈ P, σ′ ∈ colσ
f (l), and

〈σ′′, l′〉 = [[l: stmt]]\(σ′) it holds that σ′′ ∈ colσ
f (l
′).

We use the previous definition to define the relational semantics of f , that is, how
each input state relates to the states at each statement of f :

Definition 3. The relational semantics rel f : LocS → ℘(Σ× Σ) of a function f is given by
rel f (l) = {〈σ, σ̄〉 | σ ∈ Σ ∧ σ̄ ∈ colσ

f (l)}.

Observe that rel f is defined in terms of Eqn. 6.4 which defines the semantics of a call
to evaluate the called function rather than using the summary rel f . We therefore use
the following definition from now on:

[[ls: call e]]\σ = 〈next(ls), σ̄〉 where &f = [[e]]\Exprσ ∧ 〈σ, σ̄〉 ∈ rel f (lres
f) (6.12)

6.2.1. Abstract Interpretation of the Relational Semantics

The relational semantics of a function is approximated by an abstract domain MS 2 × D
that is used to abstract rel f (l) for all locations l ∈ LocS within function f . Here,
MS 2 = MS×MS are two memory structures, the first describing the memory at the

86

6. Modular Analysis of Executables using On-Demand Heyting Completion

entry point of f , the second describing the memory at l. The relation between the
abstract and the concrete domain is given by γMS 2×D:

γMS 2×D : MS 2 × D → ℘(Σ× Σ)

γMS 2×D(〈min, mout, d〉) =
⋃

~v∈γD(d)

{〈embed(min, ~v, σ), embed(mout, ~v, σ)〉 | σ ∈ Σ}

The concretization retains the relational character of rell in two ways: first, the embed
functions are applied on the same numeric vector ~v ∈ Z∗ so that relational information
between numeric variables are manifest in the concrete states. Second, the information
of the abstract domain is embedded into the same σ ∈ Σ. As a consequence, a field in
any concrete memory region in σ that is not present in either min nor mout is not altered.
These relational properties are illustrated in the following example:

Example 2. Let le ∈ LocF be the entry point of the method Odd::IsEven() in Fig. 6.1.
The relational semantics at le is the identity, that is, relle(le) = {〈σ, σ〉 | σ ∈ Σ} =

γMS 2×D(〈min, mout, d〉) where min = mout = [] and d ∈ D∅. Let li ∈ LocS denote the
location after the even_call++ statement, then 〈σin, σout〉 ∈ relle(li) contains a memory region
o at lo ∈ LocM that contains the object instance. An abstract state s = 〈m1, m2, d〉 ∈
MS 2 × D with relle(li) ∈ γMS 2×D(s) is mi = [Odd::IsEven:this 7→ [this 7→ yi

val], o 7→
[even_call 7→ xi

val]], i = 1, 2 and a value domain d ∈ D containing the constraints
y1

val = y2
val = lo and x1

val + 1 = x2
val .

The algebra 〈MS 2 × D, vMS 2×D, tMS 2×D, ⊥MS 2×D, ./MS 2×D〉 defines the abstract
domain. Here, ./MS 2×D is a special meet operator that combines the current state in a
caller with a function summary. It is explained below. Other operations can be reduced
to D using the following morphisms:

〈m1, m2, d〉
addRegionr−→ 〈m1[r 7→ []], m2[r 7→ []], d〉 (6.13)

〈[r 7→ φ]
1]]m1, m2, d〉

addField1
r, f−→ 〈 [r 7→ φ]

1[f 7→ x1]]]m1,
m2, addVarx1(d)〉

(6.14)

〈 [r 7→ φ]
1] [f 7→ x1]]]m1,

[r 7→ φ]
2]]m2, d〉

addField2
r, f−→ 〈 [r 7→ φ]

1] [f 7→ x1]]]m1,
[r 7→ φ]

2[f 7→ x2]]]m2,
[[x2 := x1]]

]addVarx2(d)〉

(6.15)

〈[r 7→ φ][f 7→ x]]]m1, m2, d〉
renameField1

f , x, y−→ 〈 [r 7→ φ][f 7→ y]]]m1, m2,
delVarx([[y := x]]]addVary(d))〉

(6.16)

87

6. Modular Analysis of Executables using On-Demand Heyting Completion

〈 [r f rom 7→ φ]
1]]m1,

[r f rom 7→ φ]
2]]m2, d〉

renameRegionr f rom , rto−→ 〈 [rto 7→ φ]
1]]m1,

[rto 7→ φ]
2]]m2, d〉

(6.17)

One obvious difference between these morphisms and those in Eqns. 6.9 - 6.11 is that
they operate on two memory structures, namely the input ms1 and the current state
m2 that eventually becomes the output state. In Eqn. 6.13, addRegionr is defined such
that a region is always added in both the input and output memory structure, thereby
ensuring that dom(m1) = dom(m2) at all times. Note that this is motivated by the fact
that each memory region that is present in the output structure of a function fun must
have had some state in the input of fun, even if it is the result of a memory allocation
within fun. In Eqn. 6.14 resp. 6.15 we define morphisms that add a variable and field to
a region of the input resp. output memory structure. The morphism addField2

r, f is only
used if the respective variable is already contained in m2. It additionally makes sure
that the output variable is made equal to the input variable in the numeric domain,
so that the domain maps each value of the field in the input to the same value in the
output. When accessing an unknown field in m2, these two morphisms need to used
together. For this, we define the helper function addFieldr, f as follows:

addFieldr, f (m1, m2, d) =


addField2

r, f (m1, m2, d) f ∈ dom(m1(r))

addField2
r, f ◦

addField1
r, f (m1, m2, d) otherwise

(6.18)

Analogous to Eqn. 6.11, Eqn. 6.16 renames the value domain variable of a field f in
m1 from x to y. We omit the symmetric definition renameField2

f that renames a variable
of a field in m2 for brevity. Eqn. 6.17 contains the definition of renameRegionr f rom, rto

which renames region r f rom to rto in both the input and the output memory structure.

6.2.2. Abstract Semantics of Memory Accesses

This section details the abstract semantics of memory accesses and illustrates how to
deal with accesses to unknown locations. Figure 6.3 presents the abstract semantics
for expressions (abstracting Eqns. 6.6 and 6.7 by Eqns. 6.19 and 6.20, respectively) and
assignments (abstracting Eqns. 6.2 and 6.3 by Eqns. 6.21 and 6.22, respectively).

The expression semantics returns a set of variables or locations so that Eqn. 6.20 can
return one variable for each dereferenced pointer. Note here that γD returns vectors
of possible values and that ms2(m)(f) returns the domain variable that is used to
index into the vector. As shown in Eqn. 6.21, each element returned by the expression
semantics is assigned by Eqn. 6.2 and the various results are joined. Equation 6.22

88

6. Modular Analysis of Executables using On-Demand Heyting Completion

[[·]]]Expr : L(Expr)× (MS 2 × D)→ ℘(X ∪ Loc)

[[m.f]]]Expr〈ms1, ms2, d〉 = {ms2(m)(f)} (6.19)

[[m.f→f′]]]Expr〈ms1, ms2, d〉 =
⋃

&m′∈γD(d)(ms2(m)(f))

[[m′.f′]]]Expr〈ms1, ms2, d〉 (6.20)

[[·]]] : L(Stmt)× (MS 2 × D)→ ℘(LocS ×MS 2 × D)

[[ls: m.f = e]]]〈ms1, ms2, d〉 = {〈next(ls), (6.21)⊔
e′∈[[e]]]Expr〈ms1, ms2, d〉

〈ms1, ms2, [[ms2(m)(f) = e′]]]d〉〉}

[[ls: m.f→f′= e]]](s = 〈ms1, ms2, d〉) = {〈next(ls), (6.22)⊔
&m′∈γD(d)(ms2(m)(f))

s′ with {〈l, s′〉} = [[ls: m′.f′ = e]]]s〉}

[[ls: return]]]〈ms1, ms2, d〉 = {〈lres
f , 〈ms1, ms2, d〉〉} (6.23)

[[ls: br e : lt; l f]]
]s = {〈lt, [[test [[e]]]Expr s 6= {0}]]]s〉,

〈l f , [[test [[e]]]Expr s = {0}]]]s〉} (6.24)

Figure 6.3.: Abstract Semantics (without Call).

89

6. Modular Analysis of Executables using On-Demand Heyting Completion

computes the assignment via a pointer as the join of writing to all possible locations
&m′.

Note that the expression ms2(m)(f) is undefined when either the memory region m
does not exist in ms2 or it does not contain a field f . Rather than handling this case
in the semantic definition, we assume that the morphisms in Eqn. 6.13 and 6.18 are
applied to prevent undefinedness. In case the transformer would access an unknown
location through a pointer (i.e. m.f in Eqn. 6.20 or 6.22), a new region r is added using
Eqn. 6.13 and m.f is restricted to point to it. Note that this behavior is not sound as it
assumes that m.f does not alias with any other function inputs which may be wrong.
We discuss this design choice in Sect. 6.4.

Example 3. We analyze even_count++ in Odd::IsEven of Fig 6.1. Let f.this == &i be a
test that forces this to point to the object instance i. For brevity, we use f for Odd::IsEven,
ev for even_count, and write d ∈ D as set of constraints:

〈[], [], ∅〉
addRegionf:this−→ 〈[f:this 7→ []], [f:this 7→ []], ∅〉

addFieldf:this, this−→
〈[f:this 7→ [this 7→ x1]], [f:this 7→ [this 7→ x2]], {x1 = x2}〉

addRegioni−→ f:this.this==&i−→
〈[. . . , i 7→ []], [. . . , i 7→ []], {x1 = x2 = li}〉

addFieldi, ev−→ 〈[. . . ,

i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 = x4}〉
[[f:this.this→ ev++]]]−→

〈[. . . , i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 + 1 = x4}〉

6.2.3. Application of Function Summaries

The idea of applying morphisms as a precursor to a domain operation is also the
underlying idea for defining the ./MS 2×D operation that combines a call site state
〈m1

in, m1
out, d1〉 with the summary of a function 〈m2

in, m2
out, d2〉. Assuming that the

value domain states d1 and d2 share no variables, we define ./MS 2×D in terms of a
function applySummaryparams, globals which we discuss below:

〈m1
in, m1

out, d1〉 ./MS 2×D 〈m2
in, m2

out, d2〉 =
applySummaryparams, globals(m

1
in, m1

out, d1, m2
in, m2

out, d2) (6.46)

Note that the analyzer has to know globally defined variables globals ⊆ R and
the function parameters params ⊆ R×R of the called function from the context of
the call. Here, a function parameter is a tuple consisting of the actual parameter
(caller memory region) and formal parameter (callee memory region). The definition
of applySummaryparams, globals can be found in Fig. 6.4. The function commences by
building a mapping regm ⊆ R×R that states which caller memory region corresponds
to which callee memory region. The relation regm is initialized in Eqn. 6.25 such that

90

6. Modular Analysis of Executables using On-Demand Heyting Completion

applySummaryparams, globals : MS 2 × D×MS 2 × D → MS 2 × D

applySummaryparams, globals(m
1
in, m1

out, d1, m2
in, m2

out, d2) =

let regm = params∪ {〈g, g〉 | g ∈ globals∧ g ∈ dom(m2
in)} (6.25)

let 〈regm, m1
in, m1

out, d1〉 := (6.26)

buildRegionMap(regm, m1
in, m1

out, d1, m2
in, m2

out, d2) (6.27)

for rcaller ∈ {rcaller | 〈rcaller, _〉 ∈ regm} (6.28)

let rscallee = {rcallee | 〈rcaller, rcallee〉 ∈ regm} (6.29)

if |rscallee| ≤ 1 then continue (6.30)

〈rcombined, m2
in, m2

out, d2〉 := handleCalleeAliasing(rscallee, m2
in, m2

out, d2) (6.31)

regm := (regm \ {〈rcaller, rcallee〉 | rcallee ∈ rscallee})] {〈rcaller, rcombined〉} (6.32)

let foldMap = ∅ (6.33)

for rcallee ∈ {rcallee | 〈_, rcallee〉 ∈ regm} (6.34)

let rscaller = {rcaller | 〈rcaller, rcallee〉 ∈ regm} (6.35)

if |rscaller| ≤ 1 then continue (6.36)

〈rcombined, m1
in, m1

out, d1〉 := handleCallerAliasing(rscaller, m1
in, m1

out, d1) (6.37)

regm := (regm \ {〈rcaller, rcallee〉 | rcaller ∈ rscaller})] {〈rcombined, rcallee〉} (6.38)

foldMap := foldMap] {〈rcombined, rscaller〉} (6.39)

for 〈r, r′〉 ∈ regm (6.40)

〈m2
in, m2

out, d2〉 := renameRegionr′, r(m
2
in, m2

out, d2) (6.41)

〈m2
in, m2

out, d2〉 := addOrRenameFields(m1
in, m1

out, d1, m2
in, m2

out, d2) (6.42)

let d′ = delVarvars(m1
out)∪vars(m2

in)
(addVarvars(m2

out)
(d1) uD addVarvars(m1

in)
(d2)) (6.43)

〈m1
in, m2

out, d′〉 := expandCallerRegions(foldMap, m1
in, m2

out, d′) (6.44)

return 〈m1
in, m2

out, d′〉 (6.45)

Figure 6.4.: Definition of the applySummaryparams, globals function which applies a sum-
mary (last three arguments) to a call site state (first three arguments).

91

6. Modular Analysis of Executables using On-Demand Heyting Completion

it associates each actual parameter with a formal parameter and each callee global
with the same global within the caller. The remaining callee regions are associated by
following pointers in both the callee and the caller. This is implemented by the function
buildRegionMap which updates regm and is discussed in Sect. 6.2.3.1. It is our goal to
use regm as basis for renaming the callee regions such that they match the caller regions.
However, it is possible for the same caller (resp. callee) region to appear multiple times
in the first (resp. second) position of tuples in regm as a result of pointer aliasing (see
below for two example scenarios). In order to deal with this, we first look for caller
regions that are associated with multiple callee regions (Eqn. 6.28 through Eqn. 6.32).
For each such region r, we call handleCalleeAliasing in Eqn. 6.31 which is discussed in
Sect. 6.2.3.3. The function returns an updated summary and a combined callee region
rcombined. We replace all mappings in regm to regions in rscallee by a single mapping to
the combined region in Eqn. 6.32.

Next, we look for callee regions that are associated with multiple caller regions
(Eqn. 6.33 through Eqn. 6.39). Our basic idea to handle this case is to derive different
caller states for every possible aliasing configuration, apply the summary to each of
these states, and finally join all of them into a new state for the caller after the call.
However, given a function that accepts k parameters that each have an alias set of
size n, this results in up to nk many summary applications. Thus, the running time
is exponential in the number of parameters in the worst case. As a consequence, this
approach is not practical. Instead, we combine all caller regions associated with a
single callee region. For this, we call handleCallerAliasing (see Sect. 6.2.3.4) for each
callee region rcallee that is associated with multiple caller regions rscaller in Eqn. 6.37. The
function returns the modified caller state and – as was the case for handleCalleeAliasing
–, the combined region rcombined. In Eqn. 6.38, we replace all occurrences of rcallee in regm
with the one single association 〈rcombined, rcallee〉. In addition, we collect the combined
regions in Eqn. 6.39 because the summary effects on them need to be propagated back
to the original caller regions at the end of the summary application (see Eqn. 6.44 and
Fig. 6.10 which are explained below).

After considering both caller and callee aliasing, we can be sure that regm is indeed a
1 : 1 mapping between caller and callee regions. As a result, we are now able rename
the callee regions based on regm as shown in Eqn. 6.40f so that they match the call site
regions. In addition, we call addOrRenameFields in Eqn. 6.42 which makes sure that
each region and field of the caller output memory structure exists in the callee input
memory structure and that the respective value domain variables have the same name.
The function is explained in detail in Sect. 6.2.3.5.

Finally, we compute the meet of the value domain states in Eqn. 6.43. Note that due
to the fact the input value domain variables of the summary have been renamed to
match the output value domain variables at the call site, this applies the effect of the

92

6. Modular Analysis of Executables using On-Demand Heyting Completion

function to the call site state. Afterwards, we remove variables contained in m1
out and

m2
in from the combined value domain state so that the resulting state d′ only contains

the input variables of the caller and the output variables that reflect the state after the
call.

At the end of the function summary application, the contents of the combined caller
regions need to be propagated back to the respective original caller regions. In order to
do this, we call expandCallerRegions explained below in Eqn. 6.44 and pass foldMap as
parameter.

The next subsections detail the individual steps in applying the function summary,
namely computing the caller/callee relation regm in Sect. 6.2.3.1, the concept of merging
memory regions in Sect. 6.2.3.2 which is used to handle callee (Sect. 6.2.3.3) and caller
(Sect. 6.2.3.4) aliasing, and adding missing caller regions and fields to the function
summary (Sect. 6.2.3.5).

6.2.3.1. Construction of the Caller/Callee Region Relation

This section details how regm is constructed which relates caller and callee memory
regions. Recall that the callee memory regions were created on-demand when comput-
ing the summary of the callee and therefore have arbitrary names. We compute the
relation regm ⊆ R×R between the caller and the callee memory regions by iteratively
following pointers, starting with the actual and formal function arguments (as shown
by the initialization in Eqn. 6.25). The matching is implemented through the function
buildRegionMap shown in Fig. 6.5 which is called by applySummary in Eqn. 6.27. Note
that a single callee region is associated with a set of caller regions. This is because
we match the callee input memory structure to the caller output memory structure.
Because the input memory structure is created through read accesses by assuming
that input memory regions do not alias, the input regions form a tree. However, the
points-to relationships in the output structure are arbitrary. Thus, dereferencing a
pointer in the caller output memory structure can lead to multiple regions and, thus,
associate a set of regions with a single callee region.

The matching proceeds using a queue curr of region associations from which we
dequeue one element in Eqn. 6.49. For each callee field and caller region (Eqn. 6.50),
Eqns. 6.51 through 6.54 ensure that a field and its region exist in the caller memory
structure. Note that a region name can be introduced without an actual region through
addFieldr, f . Equation 6.55 queries the points-to set of the field in the callee which
contains exactly one element p2 because it is a field in the callee input. However,
the region p2 may not be tracked by the callee memory structure, in which case the
traversal of the callee tree stops here (Eqn. 6.56). Otherwise, we query the caller aliases
in Eqn. 6.57. Note that a freshly inserted caller field aliases its respective input field; if

93

6. Modular Analysis of Executables using On-Demand Heyting Completion

buildRegionMap : R2 ×MS 2 × D×MS 2 × D → R2 ×MS 2 × D

buildRegionMap(regm, m1
in, m1

out, d1, m2
in, m2

out, d2) =

let curr = {〈{r1}, r2〉 | 〈r1, r2〉 ∈ regm} (6.47)

while ∃〈R1, r2〉 ∈ curr do (6.48)

curr := curr \ {〈R1, r2〉} (6.49)

for f ∈ { f | 〈 f , _〉 ∈ m2
in(r2)}, r1 ∈ R1 do (6.50)

if r1 6∈ dom(m1
out) then (6.51)

〈m1
in, m1

out, d1〉 := addRegionr1
(〈m1

in, m1
out, d1〉) (6.52)

if f 6∈ dom(m1
out(r1)) then (6.53)

〈m1
in, m1

out, d1〉 := addFieldr1, f (〈m1
in, m1

out, d1〉) (6.54)

let {p2} = queryPointsTo(d2, m2
in(r2)(f)) (6.55)

if p2 6∈ dom(m2
in) = ∅ then continue (6.56)

let P1 = queryPointsTo(d1, m1
out(r1)(f)) (6.57)

if P1 = ∅ then issue invalid dereference warning and continue (6.58)

regm := regm∪ {〈p1, p2〉 | p1 ∈ P1} (6.59)

curr := {c ∈ curr = 〈R1, r2〉 | r2 6= p2} ∪ (6.60)

{〈R1 ∪ P1, p2〉 | 〈R1, p2〉 ∈ curr} (6.61)

return 〈regm, m1
in, m1

out, d1〉 (6.62)

Figure 6.5.: Definition of buildRegionMap which constructs an association between caller
and callee memory regions.

94

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 struct S {
2 int i;
3 };
4

5 S *s;
6

7 void g() {
8 s->i = 42;
9 }

10

11 void f() {
12 g();
13 }

Figure 6.6.: Example code that requires a caller region to be added during
buildRegionMap.

the caller alias set is empty, this means the field has been overwritten by a non-pointer
value and, thus, we output an invalid dereference warning in Eqn. 6.58. Otherwise, we
update regm in Eqn. 6.59 and insert a new association into our queue in Eqns. 6.60f.

Note that because we follow pointers in the memory structure of the callee input and
this callee input forms a tree, the algorithm is guaranteed to terminate.

Example 4. Consider the code in Fig. 6.6. Note that the caller f of g does not initialize the
variable s in line 5. As a result, the summary at the call site of g is empty. The summary of g,
in contrast, contains the memory region resulting from the assignment to the memory pointed
to by s, that is 〈[s 7→ [s 7→ xin

1], *s 7→ [i 7→ xin
2], . . .], 〈{. . . }, [xin

1 7→ {&(*s)}, xin
2 7→

{&(**s)}]〉, [s 7→ [s 7→ xout
1], *s 7→ [i 7→ xout

2], . . .], 〈{. . . , xout
2 = 42}, [xout

1 7→
{&(*s)}, xout

2 7→ {abad}]〉〉. In buildRegionMap, we first encounter the callee region s which
does not exist in the caller. As a result, we add s and its only field s in Eqns. 6.51f and
Eqns. 6.53f, respectively, to the caller state. Dereferencing the one alias &(*s) in the alias set
of xin

1 leads us to the region *s which is contained in the summary input memory structure.
As a result, 〈{*s}, *s〉 is added to curr and the loop in Eqn. 6.48 is entered again. This time,
Eqns. 6.51f and Eqns. 6.53f add the region *s and its field i to the caller state. In contrast to
the last iteration, however, the one alias of &(**s) in the alias set of xin

2 is not tracked by the
summary memory structure. As a result, curr is not updated and the main loop in Eqn. 6.48
exits.

95

6. Modular Analysis of Executables using On-Demand Heyting Completion

mergerdst, rsrc
: MS 2 × D → MS 2 × D

mergerdst, rsrc
(min, mout, d) =

let 〈φ]
dst, φ]

src〉 = 〈mout(rdst), mout(rsrc)〉 (6.63)

for f ∈ dom(φ]
dst) ∩ dom(φ]

src) do (6.64)

d := d tD ([[φ]
dst(f) := φ]

src(f)]]] d) (6.65)

for f ∈ dom(φ]
src) \ dom(φ]

dst) do (6.66)

〈min, mout, d〉 := addFieldrdst, f (〈min, mout, d〉) (6.67)

d := [[mout(rdst)(f) := φ]
src(f)]]] d (6.68)

return 〈min, mout, d〉 (6.69)

Figure 6.7.: Definition of the merge function that merges rsrc into rdst.

6.2.3.2. Merging of Regions

In the following, we use the function mergerdst, rsrc
defined in Fig. 6.7 that merges two

regions. For each field f contained in rsrc, the function distinguishes two cases – if f is
also contained in rdst, the value of f in rdst is updated such that it is an upper bound
of its current value and the value of f in rsrc (shown in Eqn. 6.64f). If, on the other
hand, f is not contained in rdst, a new field is added to rdst and its value is copied from
rsrc (shown in Eqns. 6.66ff). This way, when merging several regions r1

src, r2
src, . . . into a

region rdst, each field in rdst contains an upper bound of all existing fields in all source
regions.

6.2.3.3. Handling of Callee Aliasing

A caller of a function may pass the same pointer to a callee multiple times, i.e. the
summary might have been computed using the incorrect assumption that no input
pointers alias. In order to deal with this case, we call handleCalleeAliasing shown in
Fig. 6.8 for each non-singleton set of callee regions that is associated with a single caller
region. If two aliasing callee regions contain at least one common field, the summary
has been built using a wrong aliasing assumption. As a consequence, it is unsound
to apply the summary to the current call site: it has to be rebuild with an additional
aliasing constraint. Currently, our analyzer issues a warning and ignores the summary,
i.e. continues as if no targets for the call site were known. The analysis is sound
if no warnings are emitted. This behavior is implemented in handleCalleeAliasing in

96

6. Modular Analysis of Executables using On-Demand Heyting Completion

handleCalleeAliasing : ℘(R)×MS 2 × D → R×MS 2 × D

handleCalleeAliasing(rscallee, m2
in, m2

out, d2) =

for {r2, r′2} ⊆ rscallee do (6.70)

let 〈φ]
2, φ]

2′〉 = 〈m
2
in(r2), m2

in(r
′
2)〉 (6.71)

if ∃ f ∈ dom(φ]
2). f ∈ dom(φ]

2′) then (6.72)

issue warning and abort summary application (6.73)

〈m2
in, m2

out, d2〉 := addRegionrcombined
(〈m2

in, m2
out, d2〉) (6.74)

for rcallee ∈ rscallee do (6.75)

〈m2
in, m2

out, d2〉 := mergercombined, rcallee
(〈m2

in, m2
out, d2〉) (6.76)

return 〈rcombined, m2
in, m2

out, d2〉 (6.77)

Figure 6.8.: Definition of the handleCalleeAliasing function which combines aliasing
regions in a summary if possible and aborts the summary application
otherwise.

Eqns. 6.70 through 6.73. The following example demonstrates that a summary becomes
invalid in the presence of callee aliasing.

Example 5. Consider the code in Fig. 6.13. Here, the caller passes a reference to a single
S object to the callee as first and as second parameter. As a result, these two parameters
alias. The summary is built on the assumption that no input pointers alias. However, the
function g also accesses the same field i through the two pointers. On first sight, it might
seem reasonable to merge the two aliasing regions, joining the respective variables of the fields.
However, this does not result in a correct over-approximation and it is, thus, unsound to use the
summary for the given call site as shown in the following. In the summary of function g, say
〈[. . .], [*s1 7→ [i 7→ xout

1], *s2 7→ [i 7→ xout
2], . . .], {xout

1 = {4}, xout
2 = {4}, . . . }〉, the

two different fields representing the same callee field i both contain the value 4 as can be seen by
following the assignments carried out in g. Thus, joining the respective domain variables xout

1
and xout

2 yields the singleton set {4}. In fact, however, the field i contains the value 2 after the
call to g. It is thus obvious that it is unsound to apply this summary to the caller state.

Yet, if no regions contain common fields, we implement one special case where we
allow callee aliasing by using the function mergerdst, rsrc

to merge aliasing regions; here,
this amounts to copying fields which only exist in either rsrc or rdst (see Eqns. 6.74ff).
One might consider the extra effort for handling this case overly complex; however,
region aliasing with no common fields is not as much of a special case as it might

97

6. Modular Analysis of Executables using On-Demand Heyting Completion

handleCallerAliasing : ℘(R)×MS 2 × D → R×MS 2 × D

handleCallerAliasing(rscaller, m1
in, m1

out, d1) =

〈m1
in, m1

out, d1〉 := addRegionrcombined
(〈m1

in, m1
out, d1〉) (6.78)

for rcaller ∈ rscaller do (6.79)

〈m1
in, m1

out, d1〉 := mergercombined, rcaller
(〈m1

in, m1
out, d1〉) (6.80)

return 〈rcombined, m1
in, m1

out, d1〉 (6.81)

Figure 6.9.: Definition of handleCallerAliasing which combines multiple caller regions.

seem. This is because it is common to pass references to stack variables to functions. In
our implementation that works with field offsets and sizes instead of names, all stack
variables reside in the same region, i.e. the region the stack pointer dereferences to.
As a result, it is indeed important to precisely handle aliasing callee regions with no
overlapping fields.

6.2.3.4. Handling of Caller Aliasing

As pointed out above, there is another kind of aliasing which we call caller aliasing.
Caller aliasing results from passing a pointer parameter to a callee that has a non-
singleton alias set in the caller. In order to deal with caller aliasing, we call the function
handleCallerAliasing defined in Fig. 6.9 for each non-singleton set of caller regions that
is associated with a single callee region. Again, we use the function mergerdst, rsrc

in
Eqn. 6.80. As explained above, mergerdst, rsrc

copies fields that only exist in either rdst or
rsrc. Note, however, that this time it is possible to deal with the case of finding a field in
multiple regions; see Sect. 6.2.3.2 for details.

The expandCallerRegions function shown in Fig. 6.10 is used to propagate the result
of applying a function summary to combined regions back to their original regions.
For this, the function iterates over the associations in foldMap (Eqn. 6.82). For each
association, we expand the callee region (Eqn. 6.83) yielding a new region rnew. In
general, expanding a region into another region consists of a field-wise assignment
while stripping relational information between the newly created fields. (This is a
simplification of a generic expand function [53].) We then weakly assign each field
in rnew to the corresponding field in the original region rorig by computing the least
upper bound of the value domain state after the assignment and the current value
domain state d as shown in Eqn. 6.86. The weak assignment is necessary because we
update multiple original abstract memory regions while a concrete execution of the

98

6. Modular Analysis of Executables using On-Demand Heyting Completion

expandCallerRegions : R× ℘(R)×MS 2 × D → MS 2 × D

expandCallerRegions(foldMap, m1
in, m2

out, d) =

for rorig ∈ rsorig where 〈rcombined, rsorig〉 ∈ foldMap do (6.82)

〈m1
in, m2

out, d〉 := expandrcombined, rnew
(〈m1

in, m2
out, d〉) (6.83)

let 〈φ]
orig, φ]

new〉 = 〈m2
out(rorig), m2

out(rnew)〉 (6.84)

for f ∈ dom(φ]
orig) do (6.85)

d := d tD ([[φ]
orig(f) := φ]

new(f)]]] d) (6.86)

for f ∈ dom(m2
out(rcombined)) \ dom(φ]

orig) do (6.87)

〈m1
in, m2

out, d〉 := addFieldrorig, f (〈m1
in, m2

out, d〉) (6.88)

d := [[m2
out(rorig)(f) := >D]] d (6.89)

return 〈m1
in, m2

out, d〉 (6.90)

Figure 6.10.: Definition of expandCallerRegions which expands folded caller regions and
propagates their contents back to the original regions.

function only updates one specific region, depending on the actual pointer value. In
Eqns. 6.87ff, we set all fields to >D which only exist in a combined region, but not
in the corresponding original region. Finally, expandCallerRegions returns the updated
state.

It is not trivial to understand why our combination of using the functions mergerdst, rsrc

and expandCallerRegions is sound. For this, we have to consider two cases:

1. Missing fields: Consider a region rorig and a field f which exists in the combined
region rcombined but not in rorig to which the contents of rcombined are propagated.
Such a field is set to >D. Thus, the value of f after the summary application is an
over-approximation of the actual contents of f .

2. Existing field: Consider a region rorig and a field f which exists in the combined
region rcombined and also in rorig to which the contents of rcombined are propagated.
In this case, the existing value of f has been taken into account by mergerdst, rsrc

when computing the upper bound for the combined region to which the effect of
the function is applied. Because of this and the fact that we do a weak update,
the resulting value of f is again a sound over-approximation of the concrete value
of f after the function call.

99

6. Modular Analysis of Executables using On-Demand Heyting Completion

addOrRenameFields : MS 2 × D×MS 2 × D → MS 2 × D

addOrRenameFields(m1
in, m1

out, d1, m2
in, m2

out, d2) =

for r ∈ dom(m1
in) do (6.91)

if r 6∈ dom(m2
in) (6.92)

〈m2
in, m2

out, d2〉 := addRegionr(〈m
2
in, m2

out, d2〉) (6.93)

for f ∈ dom(m1
in(r)) ∧ f 6∈ dom(m2

in(r)) do (6.94)

〈m2
in, m2

out, d2〉 := addFieldr, f (〈m2
in, m2

out, d2〉) (6.95)

for f 7→ x1
out ∈ m1

out(r), f 7→ x2
in ∈ m2

in(r) do (6.96)

〈m2
in, m2

out, d2〉 := renameField1
r, f , x2

in, x1
out
(〈m2

in, m2
out, d2〉) (6.97)

return 〈m2
in, m2

out, d2〉 (6.98)

Figure 6.11.: Definition of the addOrRenameFields function which makes sure that each
region and field of the caller output memory structure (first three ar-
guments) exists in the summary input memory structure (second three
arguments) and that the respective value domain variables have the same
name.

Example 6. Consider the code in Fig. 6.12. Here, the caller f first initializes two S objects
before it randomly passes one to the callee g. Thus, dereferencing the passed-in pointer leads
to two possible memory regions in the caller. In the callee, only the memory pointed to by a
single variable, the parameter, is changed. Thus, there is one callee region related to multiple
caller regions in regm. Assume the caller state at the call site to be 〈[...], [s1 7→ [i 7→
xout

1], s2 7→ [i 7→ xout
2], . . .], {xout

1 = 0, xout
2 = 1, . . . }〉. Because the two memory

regions s1 and s2 are associated with a single callee region, handleCallerAliasing merges them
into a new summary region rnew = [i 7→ x] with d1(x) = {0, 1}. Given the summary
〈[*s 7→ [i 7→ xin], . . .], [*s 7→ [i 7→ xout], . . .], {xout = xin + 1, . . . }〉, Eqn. 6.43
computes d′ with d′(xout) = {1, 2}. The call to expandCallerRegions in Eqn. 6.44 propagates
xout back to xout

1 and xout
2 by setting xout

1 to d′(xout
1) t d′(xout) = {0} t {1, 2} = {0, 1, 2}

and xout
2 to d′(xout

2) t d′(xout) = {1} t {1, 2} = {1, 2}.

6.2.3.5. Aligning the Summary Input to the Caller Output

The addOrRenameFields function defined in Fig. 6.11 makes sure that each region and
field of the output part of the caller memory structure exists in the callee input memory
structure and that the respective value domain variables have the same name. Note

100

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 struct S {
2 int i;
3 };
4

5 void f() {
6 S s1 = { 0 };
7 S s2 = { 1 };
8 g(rnd() ? &s1 : &s2);
9 }

10

11 void g(S *s) {
12 s->i += 1;
13 }

Figure 6.12.: Example code that results in one callee region that maps to multiple caller
regions. The summary effect has to be applied to both caller regions.

that at the point at which the function is called, summary regions have already been
renamed to match caller regions according the caller/callee relation regm. Thus, when
iterating over the caller regions as shown in Eqn. 6.91, the regions can be used to index
into the memory structure of the function summary. If the caller region is not found
in the summary, a fresh region is added to the summary (Eqns. 6.92f). Next, we add
missing caller fields to the function summary (Eqns. 6.94f). Finally, we rename the
value domain variables in the summary fields such that they have the same name as in
the caller output (Eqns. 6.96f).

6.2.4. Computing a Fixpoint of the Abstract Relational Semantics

This section details how the modular abstract semantics is used to compute a fixpoint
of the whole program. A whole-program analysis populates a table T ∈ T = LocF →
MS 2 × D that takes function addresses to their summaries. Since a function f may
call other functions, a call statement in f will access T to obtain the most up-to-date
summary for the called function. The semantics of the call statement is therefore
parameterized by T:

[[ls: call e]]]T〈ms1, ms2, d〉 = {〈next(l),⊔
l f∈γD(d)([[e]]])

〈ms1, ms2, d〉 ./MS 2×D T(l f)〉} (6.99)

101

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 struct S {
2 int i;
3 };
4

5 void f() {
6 S s = { 0 };
7 g(&s, &s);
8 }
9

10 void g(S *s1, S *s2) {
11 s1->i = 4;
12 s2->i = 2;
13 s2->i = s1->i;
14 }

Figure 6.13.: Example code that results in two callee regions that relate to one caller
region.

The resulting summary for f must therefore be re-computed if any summaries taken
from T change. In the presence of recursive calls, widening [13] must be applied on the
summaries to ensure termination.

The summary of f , given the table T and initial state s (which may or may not be
specialized as described in the following sections), is defined as follows:

Definition 4. The abstract state of f is a map absT
f , s : LocS → MS 2 × D with s vMS 2×D

absT
f , s(l f) and for all l : stmt ∈ P and 〈l′, s′〉 ∈ [[l : stmt]]]T(absT

f , s(l)) it holds that
s′ vMS 2×D absT

f , s(l
′). (Note: The abstract semantics in Fig. 6.3 has been written as [[l : stmt]]]

instead of [[l : stmt]]]T for simplicity; the table of function summaries T has to be added as
parameter.)

Let init = 〈m1, m2, {x1 = x2 = lres
f }〉 with mi = [f 7→ [ret 7→ xi]], i = 1, 2 be the

initial summary state. The summary semantics of f relates the first statement of the
function at l f with the location lres

f that the return statement branches to:

Definition 5. The abstract summary of f under T is sumT
f = absT

f , init(l
res
f).

This concludes the presentation of the concrete relational semantics and the abstract
summary domain and semantics. The next section tackles the challenge of computing
precise summaries in the presence of indirect function calls.

102

6. Modular Analysis of Executables using On-Demand Heyting Completion

6.3. On-Demand Heyting Completion

This section details how we use Herbrand terms to refine a function summary in
cases where the most generic input would lead to an unacceptable precision loss. In
particular, the next sections discuss the creation of Herbrand terms to express a need for
refinement, the computation of a specialized function summary and the call semantics
that combines specialized function summaries.

6.3.1. Extracting Refinement Information using Herbrand Terms

The challenge in specializing the summary of Check in Fig. 6.1 is that the variable
over which to specialize is not known until the indirect call parity->IsEven() is
analyzed. Our solution is that the analysis poses the question “What value can
parity->vtable[0] take on?” to all callers of Check who may answer “The expression
parity->vtable[0] may contain &Odd::IsEven()”. (Recall that we use vtable[0] as a
field name to fit our restricted grammar.) For each different answer, the summary of
the analysis is specialized to the value in that answer. The analysis of Check can now
proceed to the next indirect call parity->IsOdd() for which a new question is posed
to the caller. Once the indirect function calls are resolved, Check can be summarized
without posing further questions.

The “question” in the exposition above is represented by a Herbrand term that
contains variables in places where the answer is expected. The answer to the question is
given by a set of ground Herbrand terms, that is, Herbrand terms where the variables
have been replaced by values.

Definition 6. Herbrand terms Herb = L(Term) are defined by the grammar

Term ::= constructor Term∗

| variable

where variable is drawn from XH. Note that XH is distinct from X . Let vars(h) denote all
variables in h ∈ Herb. Let GHerb = {h ∈ Herb | vars(h) = ∅} denote ground Herbrand
terms. A substitution θ ∈ Θ : XH → Herb is a total map with θ(x) = x except for a finite
number of variables y ∈ XH where θ(y) 6= y. We write [x/y] ∈ Θ with [x/y](x) = y and
[x/y](v) = v for all v 6= x. Given a term h ∈ Herb, we write θ(h) to denote the result of
replacing all variables x in h by θ(x). Let θ(H) = {θ(h) | h ∈ H} be the lifting to sets.

The generic nature of Herbrand terms enables us to formulate questions that cut
across several abstract domains in an abstract state 〈m1, m2, d〉 ∈ MS 2 × D.

103

6. Modular Analysis of Executables using On-Demand Heyting Completion

Example 7. Suppose that the constructors Deref and Field are used by the memory domain m ∈
MS to denote a pointer or field access, respectively, while ConstPtr is used by the numeric domain
d ∈ D to denote a function pointer. Then the term ConstPtr (Field (Deref parity) vtable[0])
aE is the request to access the field vtable[0] of the memory region pointed-to by parity and
to extract the value as a constant pointer, denoting the result by aE ∈ XH. This query accesses
m(f:parity) = [parity 7→ x, ...] where f is the currently analyzed function in order to
obtain the numeric variable x ∈ X that contains the points-to set of parity. The numeric
domain d is queried for the points-to set of x which resolves to, say, the address of memory
region even ∈ R. Finally, the memory domain is used to look up m(even) = [vtable[0] 7→
vtE, . . .] and d is queried for the values of vtE, the constant address vtable[0] of Even, which
becomes the solution of aE.

For the sake of readability, we leave the exact definition of the term structure open and
write var->field . . . ->field = aE, that is, we use C-like access paths that generalize
L(Expr) by allowing several indirections. Moreover, we also omit the memory region
(i.e. we write this->vtable[0] instead of f:this.this->vtable[0]) since a Herbrand
term is always relative to the stack frame of the current function.

Herbrand terms are used in the abstract semantics when a precise value is needed.
For instance, the call e instruction requires a precise value for the function address
e that determines which function is being invoked. An answer is computed using a
function herbEval that evaluates a term set (e.g. {“e = x′′} ⊆ Herb for the call) given an
abstract state. herbEval has the following signature:

herbEval : ℘(Herb)×MS 2 × D → ℘(Θ)× ℘(Herb)

For variables a1, . . . an in the input Herbrand terms, herbEval returns assignments in
form of substitutions θ1, . . . θk where each θj = [a1/cj

1, . . . an/cj
n] maps variables to

constants cj
1, . . . cj

n ∈ V, j = 1, . . . k, or it rewrites the Herbrand terms into terms over
the function’s input arguments and globals. In order to illustrate this, we say that a
Herbrand term hi matches a domain variable xi if hi represents a field access (possibly
via one or more pointer indirections) whose value is given by the domain variable xi.
We give an intuitive overview of herbEval by describing the four cases it distinguishes:

A set of values for tabulation can be constructed. The term hi with variable ai mat-
ches a domain variable xi, i = 1, . . . n. In case xi are finite in the value
domain state d, herbEval returns a set of constant value vectors ~c1, . . . ~ck ∈
{〈~v(x1), . . . ~v(xn)〉 | ~v ∈ γDX (d)} in the form of the k substitutions θj =

[a1/~cj(x1), . . . an/~cj(xn)] ∈ Θ. For example, herbEval({m. f = a}, 〈[m 7→ [f 7→
x1]], [m 7→ [f 7→ x2]], d〉) evaluates to 〈{[a/42]}, ∅〉 where d = {x2 = 42}
represents the value domain.

104

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 bool Case1() {
2 Odd odd;
3 Even even;
4 Parity* parity =
5 rnd() ? &odd : &even;
6 return Check(parity);
7 }

1 void Case2(Parity *p) {
2 Check(p);
3 }
4

5 void Case3(Parity *p, Parity *q) {
6 Check(rnd() ? p : q);
7 }

Figure 6.14.: Creating Herbrand terms for calls to Check in Fig. 6.1.

An exact precondition can be synthesized. A term hi matches a variable xi. There
exists x′i = xi where x′i is a domain variable of a field in the input memory
region. For each x′i , we return a Herbrand term h′i that matches x′i . For example,
herbEval({m. f = a}, 〈[m 7→ [f 7→ x1], r 7→ [g 7→ x2]], [m 7→ [f 7→ x3], r 7→ [g 7→
x4]], d) = 〈∅, {r.g = a}〉 if d = {x2 = x3} is the value domain.

A sufficient precondition can be synthesized. The term hi matches a variable xi. There
exist several variables {x1

i , . . . xki
i } from which there is a flow of information to xi.

We translate the single term hi to Herbrand terms h1
i , . . . hki

i that match x1
i , . . . xki

i
and return the term Set h1

i . . . hki
i . For example, herbEval({t.q = a}, [u 7→ [r 7→

x1], v 7→ [s 7→ x2]], [. . . , t 7→ [q 7→ x3]], d) = 〈∅, {Set u.r = a1 v.s = a2}〉
where d = [x1 7→ {&p1}, x2 7→ {&p2}, x3 7→ {&p1, &p2}] represents the
information of our aliasing domain DX = X → ℘(Loc ∪ {abad}) used in Ex. 1. We
will disregard this case until our discussion in Sect. 6.4.

No values can be synthesized. The term hi matches no variable xi nor can a field
variable be added using addFieldr, f . Thus, the values of variables in hi are neither
finite nor traceable to the input. An empty set of substitutions and Herbrand
terms is returned. A warning is generated so that the analysis is sound if no
warnings are emitted.

Example 8. We illustrate cases 1 to 3 using the functions in Fig. 6.14. We assume that Check
has been analyzed with no specialization such that the first indirect call cannot be resolved.
The resulting summary state is 〈⊥MS 2×D, H〉 where H = {parity->vtable[0] = a}. As a
consequence, H is evaluated at each call site using herbEval.

Consider the code of Case1 in Fig. 6.14. When reaching the call to Check with summary
state s ∈ MS 2 × D, we evaluate herbEval(H, s) which amounts to evaluating the value
of parity->vtable[0] in s. In this case, the state at the call site contains a finite set of
values for this field, namely ~v1 = 〈&Odd::IsEven〉 and ~v2 = 〈&Even::IsEven〉. Thus,

105

6. Modular Analysis of Executables using On-Demand Heyting Completion

two new table entries have to be generated for Check, one for H1 = {parity->vtable[0]
= &Odd::IsEven} and H2 = {parity->vtable[0] = &Even::IsEven}. No further queries
are raised. In Case2, the state at the call site of Check does not contain a finite set of values
for the queried fields. However, there exists an equality relation with the parameter p. Thus,
herbEval rewrites H to H′ = {p->vtable[0] = a} in terms of the parameter and propagates it
to the callers of Case2. Finally, in Case3, herbEval is able to use the flow information computed
by the points-to domain to determine that the l-values in parity->vtable[0] is a superset of
the values in p->vtable[0] and q->vtable[0]. Thus, herbEval returns a single Herbrand
term Set hp hq where hi ≡ {i->vtable[0] = ai}.

We omit a formal definition of herbEval as it is parametric in the value domain it
operates on: In this case, herbEval extracts finite value sets and equalities between
variables from the value domain, but other information can be exploited as well. The
next section discusses how herbEval is used to compute specialized summaries.

6.3.2. Specializing Summaries with Herbrand Terms

This section illustrates how a function summary is computed that is specialized wrt. a
set of ground terms Hg ∈ GHerb. To this end, we first define the lattice of an abstract
domain where transformers can generate Herbrand terms whenever the function
context needs to be refined. The lattice of this analysis is a product of MS 2 × D and a
set of Herbrand terms Herb that we write as 〈MS 2 × D× ℘(Herb), vH, tH, ⊥H〉. All
lattice operations are the point-wise liftings, i.e. 〈s1, H1〉 vH 〈s2, H2〉 ≡ s1 vMS 2×D
s2 ∧ H1 ⊆ H2, etc. In particular, note that the product is not reduced [43], so that
〈⊥MS 2×D, H〉 6= ⊥H unless H = ∅.

The analysis populates a table in THerb = LocF ×GHerb→ MS 2×D× ℘(Herb). Each
entry 〈 f , Hg〉 7→ 〈s, H〉 states that f , when specialized by Hg, has the summary s and
requires further specializations by instantiating H in its callers. We define the following
transformer to impose Hg on an abstract state:

[[test Hg]]
] : (MS 2 × D)→ MS 2 × D (6.100)

For example, given the terms Hg = {var.field = 42}, the initial state init in
Sect. 6.2.4 is refined to [[test Hg]]]init = 〈[f 7→ [ret 7→ x1], var 7→ [field 7→ x3]], [f 7→
[ret 7→ x2], var 7→ []], {x1 = x2 = lres

f , x3 = 42}〉. This refines the input of the summary
state and may add empty regions to the output, however no output fields or variables are
added. As soon as the output field var.field is accessed, the addField2

var, field morphism
shown in Eqn. 6.15 is applied which results in the summary state 〈m1, m2, {x1 =

x2 = lres
f , x3 = x4 = 42}〉 where mi = [f 7→ [ret 7→ xi], var 7→ [field 7→ xi+2]] for

106

6. Modular Analysis of Executables using On-Demand Heyting Completion

i = 1, 2. The semantics of a function f for a specialization Hg is defined by sumTH
f that

generalizes Def. 5. It uses absTH
f , s which generalizes absT

f , s from Def. 4:

Definition 7. The specialized abstract summary of f under TH ∈ THerb is given by sumTH
f :

GHerb→ (MS 2 × D)× ℘(Herb) where sumTH
f (Hg) = absTH

f , [[test Hg]]]init.

Here, TH ∈ THerb is the table of specialized summaries. Its elements are defined in
terms of sumTH

f :

Definition 8. TH ∈ THerb is a well-formed table if TH(〈 f , Hg〉) = sumTH
f (Hg) for all

〈 f , Hg〉 ∈ dom(TH).

The analysis bootstraps by computing a summary for each function f with no
specialization, thus providing the table entries with key 〈 f , ∅〉. For any specialization
Hg, a result 〈s, H〉 ∈ TH(〈 f , Hg〉) may contain a non-empty set H ∈ Herb that states
how the function input must be specialized further so that the summary is an over-
approximation of the function’s concrete semantics. We now define how a call site of
f instantiates H to a set of ground Herbrand terms Hg ∈ GHerb that can be used to
compute a specialized function summary 〈 f , Hg〉 in TH.

6.3.3. Combining Specialized Function Summaries

We now explain the differences between the semantics of the call-statement in Eqn. 6.99
and the following definition over the (MS 2 × D)× ℘(Herb) domain:

[[ls: call e]]]TH
: (MS 2 × D)× ℘(Herb)→

℘(Loc[S]× (MS 2 × D)× ℘(Herb)) (6.101)

[[ls: call e]]]TH
〈s, H〉 = {〈next(ls),

〈⊥MS 2×D, H ∪ H f 〉 tMS 2×D

⊔
l f∈{l1

f , ... ln
f }

applyEntriesTH
l f
(s, ∅, ∅)〉}

〈{[a/l1
f], . . . [a/ln

f]}, H f 〉 = herbEval({“e = a′′}, s) (6.102)

Rather than using the concretization function γMS 2×D to obtain the callee addresses
l f , we evaluate a Herbrand term e = a in the current state s ∈ MS 2 × D where e is
the called expression. We obtain a set of function addresses li

f , i ∈ [1, n] and/or
Herbrand terms H f . Recall that a non-empty H f contains predicates over the inputs of
this function that need to be restricted to a finite set of callers before this call has an
effect. Thus, the predicates H ∪ H f are returned with a bottom summary ⊥MS 2×D. The

107

6. Modular Analysis of Executables using On-Demand Heyting Completion

applyEntriesTH
f : ((MS 2 × D)× ℘(Herb)× ℘(GHerb))→ (MS 2 × D)× ℘(Herb)

applyEntriesTH
f (s, H, Hg) =

let 〈s′, H′〉 ∈ TH(〈 f , Hg〉) (6.103)

if H′ = ∅ then return 〈s ./MS 2×D s′, ∅〉 (6.104)

let 〈Θ, Hnew〉 = herbEval(H ∪ H′, s) (6.105)

let H′g = {H′g | H′g = θ(H ∪ H′) ∩GHerb, θ ∈ Θ, Hg ⊆ H′g} (6.106)

return 〈⊥MS 2×D, Hnew〉 tMS 2×D

⊔
H′g∈H′g

applyEntriesTH
f (s, H ∪ H′, H′g) (6.107)

Figure 6.15.: Applying a specialized function summary in TH ∈ THerb

effect of each known callee at li
f is composed with the current state s using a helper

function applyEntries that is defined in Fig. 6.15.
The idea of applyEntries is to find those specializations of callee f that match the

caller state s and to combine those specializations with s. The arguments H and Hg

always contain the same number of terms, where Hg is one specialization of H in s.
In Eqn 6.103, we assume the table TH contains an entry for the specialization 〈 f , Hg〉.
It is up to the fixpoint engine to compute a missing entry on-the-fly or to resume the
evaluation of the caller once the entry is available. If the retrieved summary s′ requires
no new specializations, i.e. if H′ = ∅, the summary s′ is composed with the caller state
in Eqn. 6.104 and returned. In case H′ 6= ∅, the summary s′ is an under-approximation
and a more specialized summary must be consulted by instantiating H ∪ H′ in the
caller state as done in Eqn. 6.105. The evaluation has two outcomes (which are not
necessarily mutually exclusive): if Hnew 6= ∅ then herbEval was able to translate the
terms H′ of the callee to inputs of the caller. These terms are therefore returned with
the bottom summary ⊥MS 2×D so that the caller will be refined. The second case is
that H ∪ H′ could be instantiated to concrete values in form of a set of substitutions Θ.
Equation 6.106 applies Θ to obtain sets of ground terms H′g ∈ ℘(℘(GHerb)) of which
only those are returned that match the current specialization Hg. Each set H′g ∈ H′g is
used to look up a more specialized summary of f by calling applyEntries recursively.
We illustrate these definitions with an example.

Example 9. We illustrate the call semantics using the call to Check in Case1 in Fig. 6.14.
Assume that TH has the following entries (vt is short for parity->vtable):

108

6. Modular Analysis of Executables using On-Demand Heyting Completion

1 〈&Check, ∅〉 〈⊥MS 2×D, {vt[0] = a0}〉
2 〈&Check, {vt[0]=&Even::IsEven}〉 〈s1, {vt[1] = a1}〉
3 〈&Check, {vt[0]=&Odd::IsEven}〉 〈s2, {vt[1] = a2}〉
4 〈&Check, {vt[0] = &Even::IsEven,

vt[1] = &Even::IsOdd}〉
〈s3, ∅〉

5 〈&Check, {vt[0] = &Odd::IsEven,
vt[1] = &Odd::IsOdd}〉

〈s4, ∅〉

The abstract call semantics in Eqn. 6.102 invokes applyEntriesTH
&Check(s, ∅, ∅) where s is the

caller state at the call site. The fact that Eqn. 6.103 returns a non-empty H′ = {vt[0] = a0}
means that a specialization needs to be computed, based on s which is done by Eqn. 6.105. Since s
provides a finite set of values for a0, Θ = {[a0/&Even::IsEven], [a0/&Odd::IsEven]} while
Hnew is empty. Applying these substitutions in Eqn. 6.106 gives two specializations in H′g,
leading to two recursive calls in Eqn. 6.107, namely applyEntries(s, {vt[0] = a0}, {vt[0] =

&Even::IsEven}) and applyEntries(s, {vt[0] = a0}, {vt[0] = &Odd::IsEven}). We
only consider the first call as the second is analogous. Equation 6.103 extracts the 2nd table entry
which, yet again, returns a non-empty H′. Equation 6.105 computes Θ = {θ1, θ2} where θ1 =

[a0/&Even::IsEven, a1/&Even::IsOdd], θ2 = [a0/&Odd::IsEven, a1/&Odd::IsOdd] for
the terms H ∪ H′ = {vt[0] = a0, vt[1] = a1}, thereby preserving the information at
the call site that both, vt[0] and vt[1], are taken from the same object instance. However,
θ2(H ∪ H′) is not a superset of Hg and is therefore discarded by Eqn. 6.106 as it is not a
specialization of table entry 2. Thus, the only recursive call applyEntries(s, H ∪H′, {vt[0] =

&Even::IsEven, vt[1] = &Even::IsOdd}) consults table entry 4 and applies summary s3

to the caller state using Eqn. 6.104.

6.3.4. Heyting Completion

In this section we show that the iterative tabulation of specialized function summaries
is a Heyting completion, a well-known domain refinement technique [26]. A domain
refinement adds new elements to an abstract domain. Our contribution is that comple-
tion is done on-demand, that is, only those elements are added to the lattice that are
required by the program that is being analyzed.

Let 〈L, vL, tL, uL〉 be a complete lattice and αX : L → X a closure operator, i.e.,
monotone Y vL Z ⇒ αX(Y) vL αX(Z), idempotent αX(αX(Y)) = αX(Y), extensive
Y vL αX(Y), ∀Y, Z ⊆ L. Then 〈L, α, X, id〉 is a Galois insertion [43].

Let ⇒ ∈ L2 → L be a binary operator with a ⇒ b =
⊔

L{c ∈ L | a uL c vL b}. If
a uL (a ⇒ b) vL b then a ⇒ b is called the pseudo-complement of a relative to b. A
lattice in which all pairs of elements have a pseudo-complement is called a Heyting
algebra. We lift · ⇒ · to sets A, B ⊆ L as A⇒ B = {a⇒ b ∈ L | a ∈ A, b ∈ B}.

109

6. Modular Analysis of Executables using On-Demand Heyting Completion

For any X ⊆ L let
c
(X) = {

d
L Y | Y ⊆ X} define the Moore closure of X. Let

A, B ∈ L such that αA, αB exist. Then the Heyting completion of A with respect to B isc
(A⇒ B). Let H = ℘(

⋃
HG⊆GHerb{[[test HG]]

]s | s ∈ MS 2 × D}).

Theorem 1. H is a Heyting completion of GHerb with respect to MS 2 × D.

Proof. First, show
c
(H) = H. Given S1, S2 ∈ H, let S = {s1 uMS 2×D s2 | s1 ∈

S1, s2 ∈ S2}. Let [[test Hi]]
]si ∈ Si for i = 1, 2. Then S contains an element s =

[[test H1]]
]s1 uMS 2×D [[test H2]]]s2. Here, s = [[test H1]]

][[test H2]]](s1 uMS 2×D s2) if there
exists H ∈ GHerb with [[test H]]] = [[test H1]]

] ◦ [[test H2]]]. If “e = c′′i ∈ Hi exists
with ci ∈ Z and c1 6= c2 then s = ⊥MS 2×D. Otherwise, since s1 uMS 2×D s2 has finitely
many fields, there exists a finite H ⊆ H1 ∪ H2. Thus, H ∈ GHerb. It follows that
S1 uH S2 = S ∈H.

Now show H = GHerb⇒ MS 2×D. Let S1 vH S2 if for all s1 ∈ S1 there exists s2 ∈ S2

with s1 vMS 2×D s2 and note that uH exists due to
c
(H) = H. Choose H ⊆ GHerb,

b ∈ MS 2 × D. Let a = [[test H]]]〈[], [], >D〉 ∈ MS 2 × D. For the sake of contradiction,
assume there exist ci with {a} uH ci vH {b} and {a} uH (c1 tH c2) 6vH {b}. Let
C = c1 tH c2 := c1 ∪ c2. From the definitions of tH and vH it follows that there is an
element c ∈ C such that {a} uH {c} 6vH {b}. However, since c must originate from
either c1 or c2, this is contradictory to {a} uH ci vH {b}.

Corollary 1. The entries of the table TH ∈ THerb defined in Def. 8 are a partial Heyting
completion of GHerb with respect to MS 2 × D.

Proof. Given some table entry 〈 f , Hg〉 7→ 〈s, ∅〉 ∈ TH, let S = {[[test HG]]
]s | s ∈

MS 2 × D} ∈H and observe that s ∈ S.
Note that in the implementation, the result of an application of the tH operator

never contains two summaries that are constraint by the same preconditions, i.e. share
a semantically equal input memory structure. This is because we only compute a new
table entry if we encounter a call site that instantiates a set of Herbrand queries with
new, thus far unknown constants.

6.4. Implementation

In this section, we discuss some implementation aspects of our analyzer. Further
details and our evaluation results are presented in Chap. 7. Our analyzer reconstructs
the control flow- and call graph of an x86 binary. The input binary is decoded and
translated into the RReil language using the GDSL toolkit, starting at all function entry
points defined in the ELF header.

Inter-procedurally, the analysis computes summaries for all functions starting from
the initial state init defined in Sect. 6.2.4. The fixpoint computation proceeds by

110

6. Modular Analysis of Executables using On-Demand Heyting Completion

computing the summary of a callee before continuing at a call site using a dynamically
updated partial order on the caller/callee relation. Intra-procedurally, the basic blocks
of a function are discovered on-the-fly and we identify loops by observing jumps from
higher to lower machine addresses. Within each loop, we apply a combined widening
and narrowing operator for faster convergence [2].

The value domain D of the analysis is implemented as a set of three domains. The
equality domain tracks predicates of the form x = y + c for x, y ∈ X and c ∈ Z.
The pointer domain DX = X → ℘(Loc ∪ {abad})× X tracks relationships of the form
xp − xo ∈ {l1, . . . , ln} with xp, xo ∈ X , li ∈ Loc. Here, xp is the pointer variable that
is being tracked, xo contains the offset relative to the beginning of li, the addresses of a
memory region. Finally, the value set domain is used to track finite subsets of Z and
intervals. We impose no fixed bound on the size of the subsets (i.e. no k-limiting) but
widen a growing set to an interval. The three domains form a hierarchy where a parent
domain forwards any domain operation to its child. For instance, the pointer domain
transforms operations on pointer variables to operations on pointer offsets and passes
them on to its child domain.

Section 6.3.1 raised the possibility that only necessary preconditions can be synthe-
sized that are represented by a Herbrand term Set For instance, the call to Case3
in Fig. 6.14 would generate the term parity->vtable = a which is translated to a
precondition Set {p->vtable = a1, q->vtable = a2}. Currently, we handle this case by
generating a query for each set element, thus resulting in a different table entry for each
possible variable instantiation. While this does not affect the precision of the analysis, a
more considered handling would allow us to reduce the size of the resulting tables.

Our analysis uses a simple means to flag summary memory regions that are created
when accessing memory regions within loops. This way, we are able to emit a warning
when accessing a summary memory region so that the analysis is sound if no warnings
are emitted. A more precise handling of summary memory regions is future work.

Currently, each time a pointer is accessed that can be traced to the input, we create
a fresh memory region. As a result, we implicitly assume that none of the pointer
parameters alias. As explained in Sect. 6.2.3, a conflicting aliasing assumption is
recognized during summary application and the respective summary is ignored. Again,
a warning can be generated such that the analysis is sound if no warnings are emitted.
Future work will address how to incorporate the input aliasing configurations into the
tabulation scheme such that a function is re-analyzed with specific aliasing assumptions
as soon as this is required by a call site.

111

6. Modular Analysis of Executables using On-Demand Heyting Completion

6.5. Related Work

One traditional approach of improving the precision of context-insensitive analysis is
to only merge call sites whose last k parent call sites are the same (so-called k-CFA) [51].
While the k-CFA approach improves the precision (i.e. Fig. 6.1 verifies with k = 1), it
does so without consideration for the semantics of the program.

Modular analyses are context-sensitive by combining summaries of components or
functions to a solution of the whole program. There are four principles [14]: compute a
global fixpoint over some simplified semantics of each component, compute summaries
under worst case assumptions, compute summaries using (possibly user-supplied)
interfaces, and symbolic relational separate analysis (input/output abstractions). Most
analyses combine some of these four principles.

Analyses that rely on condensing domains [25, 40, 42, 46, 54] perform a pure symbolic
relational analysis based on a restricted class of domains that comprise Herbrand terms
with variables, Boolean functions and affine equalities.

The SeaHorn analyzer allows arguing over rich, numeric properties in a modular way
[27]. It simplifies the input program into Horn clauses over predicates that are tailored
to the analyzed program. These are then solved in a modular way. The downside
is that no new invariants can be synthesized inter-procedurally. Our tabulation over
Herbrand terms is, in theory, less efficient than SeaHorn’s Horn clauses since we store
a summary state for each set of predicates. Yet, our summaries allow the computation
of new invariants even inter-procedurally.

Specializing the input of a summary falls into the category of summarizing with
interfaces. One instance of this idea is the inference of preconditions that, when violated,
lead to an error in the analyzed code [16]. An approach called “angelic verification”
[17] goes further by restricting inputs to likely correct inputs.

Modular analyses that re-evaluate a component several times also adhere to the
principle of computing summaries with interfaces, as each summary of a component is
somehow specialized. The classic work on tabulation proposes to analyze a function
for any possible input state and to combine table entries that match a call site [50]. Our
approach is an on-demand tabulation that uses concrete values of function pointers as
keys. Amato et al. perform tabulation based on the equality of the abstract input state
[2]. Their tabulation approach may re-analyze a function unnecessarily, i.e. when a
call site state has no match in the table but matches the join of several tabulated states.
Moreover, matching tabulated states by equality may lead to non-monotone behavior
[2, Example 1].

In the context of binary analysis, Xu et al. manually summarise functions using pre-
and postconditions [64] that are similar to our Herbrand terms.

Finally, one “simplified semantics” idea is to break the program down so that it

112

6. Modular Analysis of Executables using On-Demand Heyting Completion

consists of parts that can be summarized with little precision loss (with the extreme of
synthesizing transfer functions for groups of instructions [9, 57]).

6.5.1. Conclusion

We presented a framework for modular analysis that judiciously computes multiple
summaries. Each summary is specialized by Herbrand terms whose template is
created by the function that is being analyzed and that is instantiated by its callers.
We illustrated that this versatile approach corresponds to an on-demand Heyting
completion of the domain and recovers indirect function calls.

113

Part IV.

Analysis Implementation and
Evaluation

115

7. The Summy Analysis Tool

In part II we have presented the GDSL toolkit, a software framework for machine
instruction disassemblers and semantics translators. GDSL translates machine code
into our intermediate representation RReil, on top of which we have built our analysis
tool Summy. The tool implements the analysis discussed in Chap. 6. In the following,
we show how to use the tool and discuss the format of its output. Thereafter, we detail
the design decisions we have made during the development and go into the most
important details of the implementation.

7.1. Getting Started

Summy is distributed as open source software and is available as a Git repository at
https://github.com/gdslang/summy. The analyzer runs on Linux only and can be
built using the following shell commands:

1 git clone --recursive https://github.com/gdslang/summy.git
2 mkdir summy/build
3 cd summy/build/
4 cmake .. && make

Note that we use the --recursive flag for the git clone command which makes
sure that the GDSL toolkit is cloned alongside with Summy. Building Summy requires
CMake1 and a C/C++ compiler (LLVM clang or GCC) recent enough to support C++17.
GDSL is automatically built together with Summy, so all its dependencies are required
as well – in particular, the MLton standard ML compiler2. After building Summy, a
front-end for the machine architecture that we want to analyze needs to be chosen; in
the following example, we select the front-end for the x86 architecture:

1 ln -s dependencies/gdsl-toolkit/libgdsl_x86_rreil.so libgdsl-current.so

1https://cmake.org/
2http://mlton.org/

116

https://github.com/gdslang/summy
https://cmake.org/
http://mlton.org/

7. The Summy Analysis Tool

The successful setup of Summy can be verified by running the tests using the make
test command.

7.2. Running the Analyzer

The repository contains a simple driver tool (see the tools/ folder) that can be used
to run the analyzer on an ELF binary. It is crucial for our analysis to find a set of
function start addresses within the executable. To this end, the driver tool performs the
following preparatory steps:

1. Extraction of function start addresses from ELF data: The ELF data of a binary
contains a number of function addresses, for example an entry point if the binary
is an executable program (and not a library). It also contains the addresses and
names of exported functions; associating function start addresses with names is
helpful for debugging the analyzer.

2. Call scanning: A program usually consists of a large number of direct calls. The
callee addresses can be collected and added to the set of known function start
addresses. Functions that are only called indirectly cannot be found this way;
indeed, resolving these indirect function calls is the task of the main analysis.

The main analysis uses the set of functions collected this far as a starting point.
During the main analysis, more functions are discovered from indirect jumps. The
main fixpoint computation only terminates after having analyzed each known function
at least once (due to tabulation, a single function can be analyzed multiple times). In
the following, we refer to program points using the term node as each node in a control
flow graph represents a program point while an edge represents a statement. The
driver tool accepts the command-line arguments described below.

• --noopt: Disable any RReil code optimizations that would result in the loss of a
well-defined mapping between individual machine instructions and RReil code
blocks. See Sect. 7.4 for details on the effects of turning optimizations on and off.

• --noref: Disable reference management for analysis states. With reference
management turned on, the analysis state of a node is only kept if it may be
involved in the computation of future states (e.g. during widening) or at function
return sites. In particular, the states of intermediary nodes of straight-line code are
freed, greatly reducing the memory footprint of the analyzer. Disabling reference
management is helpful for debugging.

117

7. The Summy Analysis Tool

• --node=n: Output the whole state (instead of just the node id) for the node n in
the output control flow graph. This argument can be passed multiple times.

• --func=f: Only analyze the function with the name f. Note that this only works
if the ELF data of the binary contains a function with name f and a corresponding
start address. This argument can be passed multiple times.

As a final argument, the analyzer expects a path to the ELF executable or library
to analyze. As an example, the following command analyzes the /bin/echo program,
outputting the whole state of nodes 42 and 247:

1 tools/driver/driver --node=42 --node=247 /bin/echo

7.3. Output of the Driver Tool

The analyzer outputs two files, cfg.dot and cfg_machine.dot. The former contains the
inter-procedural control flow graph as discovered by the analysis. The latter contains
the same graph, however reduced to the machine address level; the control flow within
instructions or machine-level basic blocks3, consisting of RReil code, is abstracted away.
Note that depending on the level of optimization (see Sect. 7.4), the RReil translator
either translates one machine instruction or one whole basic block at a time. A node in
the machine control flow graph either represents an instruction or a basic block starting
at a specific address. Thus, the machine control flow graph is much smaller, but does
not offer enough information to debug the analyzer in detail.

As an example, consider the following simple C function:

1 int f(int a, int b) {
2 if(a > b)
3 b = a;
4 return a + b;
5 }

Fig. 7.1 shows a simplified and polished version of the resulting control flow graph
with RReil optimizations turned on. For the last node of the graph, printing the state
has been enabled. The conditional in line 2 can be found at node 249 in the graph. Due
to our forward expression substitution, the branch condition has been substituted into

3We use the term basic block for any sequence of instructions that are executed consecutively; a basic
block ends with a jump, call, or return instruction.

118

7. The Summy Analysis Tool

the actual test that determines which of the two branches is taken (shown as dotted
blue graph edges). As a result, the analysis is able to constrain the values of DI and SI
appropriately. We now detail the contents of the example node 260. In the example, the
analysis tracks a state only for the default context. The label context 0 refers to the line
index of the table of the currently analyzed function. Next, memory input and output
regions are shown. Note that instead of using field names, our implementation works
with bit offsets into the different memory regions. Thus, a field has no name but a start
address and a size; see Sect. 7.6 for details. The final section of the state contains the
value domain state. In the example, there are three different child domains:

• The affine domain at the top tracks relationships of the form x = y + c for two
variables x and y and a constant offset c. For example, variable #280 is equal to
variable #282 with an offset of zero; this is printed as Eq(#280) -> {..., (#282
-> 0)} in the figure.

• The alias domain tracks aliasing relationships. It uses the value set domain (see
below) to model offsets. For example, the stack pointer output variable #287
aliases the stack pointer input variable #286 at offset 8 (printed as P(#287) ->
{<#286>} in the alias domain and #287 -> {8} in the value set domain), i.e. it has
been increased by 8 by the function. Integer values that do not represent a pointer
and pointers to absolute addresses are stored as offsets in the value set domain.
In this case, the alias domain tracks the nullptr as alias. For example, consider
the instruction pointer (IP) – its value domain variable aliases the nullptr at an
offset of 4195465. Thus, it contains the integer value 4195465. We use a special
bad pointer to indicate that some variable may alias an invalid pointer.

• The value set domain tracks value sets and is used by the alias domain to store
offsets. It can track finite sets of values and half-open intervals.

On first sight, the affine and alias domains seem to be storing similar properties.
Note, however, that the alias domain tracks may-alias information while the affine
domain tracks must-equal information. For example, Eq(#0) -> {(#0 -> 0), (#1 ->
0), (#2 -> 0)} in Fig. 7.1 means that variable #0 is equal to itself and both variables
#1 and #2 (the offset is 0 in all three cases) while P(#0) -> {#1, #2} means that #0
either aliases #1 or #2. As mentioned above, the analyzer also outputs a condensed
machine level control flow graph that only contains a single node for each analyzed
machine address; Sect. 7.4 discusses the machine level control flow graph for an example
assembly program with and without RReil optimizations turned on.

In addition to the control flow graphs, the analyzer also outputs data for debugging
and evaluation to the standard output. Fig. 7.3 shows an example of this output. The
analysis commences by collecting function start addresses as can be seen in lines 1-4.

119

7. The Summy Analysis Tool

234 ~ f:0x400480

235

IP =:64 (4195456 + 2)

248

IP =:64 (4195458 + 3)

249

t5 =:32 SI

261

[DI <s SI]:32

262

!([DI <s SI]:32)

250

251

SI =:32 t5

252

SI.32 =:32 0

253

IP =:64 (4195461 + 3)

t7 =:32 [z->64](SI + 1*DI)

254

A =:32 t7255

256 A
.32 =:32 0

257 IP =:64 (4195464 + 1)

258 t8 =:64 *(SP/64)

259 SP =:64 (SP + 8)

RET => (t8/64)

263

t5 =:32 DI

...

{Eq(#233) -> {#233 -> 0), (#259 -> 0)}, Eq(#280) -> {#280 -> 0), (#282 -> 0)},

back(#280) -> #280, back(#282) -> #280, back(#289) -> #289, back(#291) -> #289}

{P(#229) -> {<bad>}, P(#230) -> {<#230>, <bad>}, P(#231) -> {<null>},
P(#232) -> {<#232>, <bad>}, P(#233) -> {<null>}, P(#234) -> {<#234>, <bad>},

P(#238) -> {<#238>, <bad>}, P(#239) -> {<null>}, P(#240) -> {<#240>, <bad>},

P(#244) -> {<#244>, <bad>}, P(#245) -> {<null>}, P(#246) -> {<#246>, <bad>},

P(#252) -> {<#252>, <bad>}, P(#253) -> {<#253>, <bad>}, P(#254) -> {<null>},

P(#258) -> {<#258>, <bad>}, P(#259) -> {<null>}, P(#277) -> {<#277>, <bad>},

P(#281) -> {<#281>, <bad>}, P(#282) -> {<null>}, P(#283) -> {<#283>, <bad>}, P(#284) -> {<null>},
P(#286) -> {<#286>, <bad>}, P(#287) -> {<#286>}, P(#288) -> {<#288>, <bad>}

{#226 -> {0}, #227 -> {4195465}, #228 -> {0}, #229 -> {0}, #230 -> {0},

#239 -> {0, 1}, #240 -> {0}, #241 -> {0, 1}, #242 -> {0}, #243 -> {0, 1}, #244 -> {0},

#253 -> {0}, #255 -> {0}, #256 -> {0}, #257 -> {0}, #258 -> {0}, #277 -> {0},

#287 -> {8}, #288 -> {0}, #289 -> {0}, #290 -> {0}, #291 -> {0}}

f_addr = {4195456}260, context 0

Registers input:

Memory input:

A #281#283
0:32 32:32

DI #230
0:32

Flags #238
0:1

#256 #248 #236 #234 #244
2:1 4:1 6:1 7:1 11:1

SI #232 #277
0:32 32:32

SP #286
0:64

*<#286> #288
0:64

IP #226
0:64

A #282 #284
0:32 32:32

DI #231
0:32

Flags #239
0:1

#257 #249 #237 #235 #245
2:1 4:1 6:1 7:1 11:1

SI #233 #278
0:32 32:32

SP #287
0:64

IP #227
0:64

*<#286> #289
0:64

Registers output:

Memory output:

Affine domain state:

Eq(#289) -> {#289 -> 0), (#291 -> 0)} ### {back(#233) -> #233, back(#259) -> #233,

Alias domain state:
{P(#226) -> {<#226>, <bad>}, P(#227) -> {<null>}, P(#228) -> {<#228>, <bad>},

P(#235) -> {<null>}, P(#236) -> {<#236>, <bad>}, P(#237) -> {<null>},

P(#241) -> {<null>}, P(#242) -> {<#242>, <bad>}, P(#243) -> {<null>},

P(#247) -> {<null>}, P(#248) -> {<#248>, <bad>}, P(#249) -> {<null>},

P(#255) -> {<bad>}, P(#256) -> {<#256>, <bad>}, P(#257) -> {<null>},

P(#278) -> {<null>}, P(#279) -> {<#279>, <bad>}, P(#280) -> {<null>},

P(#289) -> {<#288>}, P(#290) -> {<#290>, <bad>}, P(#291) -> {<#288>}}
Value set domain state:

#232 -> {0}, #234 -> {0}, #235 -> {0, 1}, #236 -> {0}, #237 -> {0, 1}, #238 -> {0},

#246 -> {0}, #247 -> {0, 1}, #248 -> {0}, #249 -> {0, 1}, #252 -> {0},

#278 -> {0}, #279 -> {0}, #281 -> {0}, #283 -> {0}, #284 -> {0}, #286 -> {0},

Figure 7.1.: Example control flow graph.

120

7. The Summy Analysis Tool

1 f:
2 ret
3

4 main:
5 mov %r11, f
6 xor %r11, 42
7 xor %r11, 42
8 call *%r11
9 ret

Figure 7.2.: Simple example for precision loss.

Next, the main analysis is started (lines 6-8). During the main analysis, the analyzer
outputs progress data, e.g. the number of nodes visited (not shown here). After the
analysis, statistical data is printed. The first block of statistics contains data about the
binary (lines 10-13); here, the section size refers to the .text section of binary that
contains all executable code. The number of decoded bytes are usually smaller than the
section size. There are three possible reasons for bytes in the .text section not to be
decoded by the analyzer:

• They belong to one or multiple functions that are not reachable from the func-
tions discovered in the function collection phase of the analysis which has been
described at the beginning of Sect. 7.2.

• They are part of padding; compilers sometimes insert padding bytes at the end of
functions in order to make sure that function start addresses are aligned.

• The analyzer is unable to discover the target of a branch or call due to precision
loss. A simple example for this case is shown in Fig. 7.2. Here, two XOR operations
are used on the value of a pointer. While the value of the pointer does not change,
the points-to relationship with the function f is lost. As a result, the function f is
not decoded or analyzed (if its address is not found in the ELF header, for details
see Sect. 7.2).

Next, the analyzer outputs data about its success in resolving branch targets (lines 15-
20). Since the amount of actually possible branch targets per call site or jump instruction
is not known, this is only meant as a rough indication of the performance of the analysis.
Finally, lines 22 through 29 contain statistics regarding the tabulation of functions. In the
example, there are 14 table entries for 12 functions; thus, at least one function has been

121

7. The Summy Analysis Tool

analyzed in multiple contexts. These two additional table entries correspond to two
non-zero analysis contexts (context zero is the default context with no specializations),
see line 27. Line 28 contains the number program points and Herbrand terms for which
it was not possible to match the query to the given state. This happens, for example, if
the query dereferences a field which does not point to a memory region in the caller
state, e.g. because it has been modified using bitwise operations that result in a loss of
aliasing information.

7.4. RReil Code Optimization

As described in Sect. 3.4, our intermediate representation RReil is designed towards
allowing optimization. In order for optimization to be effective, the optimizer needs to
transform the RReil statements of multiple machine instructions or even basic blocks in
combination. As a consequence, transformations cut across the boundaries of individual
machine instructions such that a well-defined mapping from machine instructions to
a sequence of RReil statements is lost. Thus, with optimizations turned on, applying
the RReil translator to a machine address does not return a RReil program for one
instruction, but the optimized program for the basic block starting at the given address.

As an example, consider the following x86 code that implements a simple loop, using
r11 as loop counter:

1 main:
2 0x00: mov $0, %r11
3 head:
4 0x07: cmp $100, %r11
5 0x0b: je end
6 0x0d: inc %r11
7 0x10: jmp head
8 end:
9 0x12: ret

In order to ease the understanding of the control flow graphs, the listing contains
the machine addresses of the instructions at the beginning of each line. Note that in
line 7, the control branches back to evaluating the loop condition which lies in the
middle of top basic block. Fig. 7.4 shows the control flow graph as recovered by the
analysis without RReil optimizations on the left. Again, each node contains its id
(first number) and the machine address of the respective instruction (second number).
There is a 1:1 correspondence between the instructions in the assembly code shown

122

7. The Summy Analysis Tool

1 *** Starting the 'fcollect' analysis...
2 *** Collecting functions from ELF data...
3 Adding function 4004b0 (main)
4 Adding function 4004a0 (h)
5 (...)
6 Starting main analysis.
7 (...)
8 End of main analysis.
9 (...)

10 Section size: 466
11 Decoded bytes: 311
12 Analyzed addresses: 27
13 Decoded start addresses: 27
14 (...)
15 Total indirect branches: 7
16 Indirect branches with targets: 4 (57.142857%)
17 Total indirect jmps: 2
18 Indirect jmps with targets: 0 (0.000000%)
19 Total indirect calls: 5
20 Indirect calls with targets: 4 (80.000000%)
21 (...)
22 Maximum table entries: 3
23 Average table entries: 1.166667
24 Total number of functions: 12
25 Total table entries: 14
26 Total number of field requests: 1
27 Non-zero contexts at head nodes: 2 (zero: 5)
28 Path construction errors: 0
29 Zero HBs: 6, one HB: 1, multiple HBs: 0

Figure 7.3.: Example statistical output of the analyzer.

123

7. The Summy Analysis Tool

1 ~ 0x12

2 ~ 0xd

3 ~ 0x7

0 ~ @@_entry:0x00 ~ @@_entry:0x0

1 ~ 0x7

2 ~ 0xb

3 ~ 0x12 4 ~ 0xd

5 ~ 0x10

Figure 7.4.: Example control flow graph without (left) and with (right) RReil optimiza-
tions applied.

above and sub-graphs of the control flow graph; as a result, this representation lends
itself for debugging. The control flow graph resulting from running the analyzer with
optimizations turned on is depicted on the right. This time each node represents a
basic block. However, since branches can jump to addresses inside existing basic blocks,
the resulting blocks can overlap. In the example graph, the back branch from node
3 (shown in red) leads into the middle of the entry basic block. As a result, these
two blocks (shown in light blue) overlap regarding the instructions from which their
RReil code has been translated. Thus, the analysis may store multiple states for the
same original program point, differentiating between different paths on which control
reaches it. This can lead to a improved precision for these program points which, in
turn, may have unexpected effects and, thus, makes debugging harder.

Our analyzer relies on our forward expression substitution pass as described in
Sect. 3.4.2. As a consequence, turning block-wise optimizations off renders the analyzers
unable to constrain variables that take part in the evaluation of branch conditions. This
leads to a loss of precision.

124

7. The Summy Analysis Tool

locSmaller : LocS × LocS → Boolean

locSmaller(l1, l2) =

if stackDepth(l1) 6= stackDepth(l2) (7.1)

return stackDepth(l1) < stackDepth(l2) (7.2)

if machineAddress(l1) 6= machineAddress(l2) (7.3)

return machineAddress(l1) < machineAddress(l2) (7.4)

return nodeId(l1) < nodeId(l2) (7.5)

Figure 7.5.: Program location comparer.

7.5. Fixpoint Computation

Our fixpoint implementation is based on worklist iteration. We use the box operator
[3] for combined widening and narrowing. Using the operator requires that nodes
are always visited in the same order so that termination is guaranteed. While any
fixed order is sufficient for termination, choosing a meaningful order is crucial for the
efficiency of the analyzer. However, finding such a node order is a non-trivial problem,
in particular since we discover the control flow graph on the fly during the analysis. As
a compromise between efficiency and simplicity, we have chosen a heuristics to impose
a total ordering on node locations in our priority queue which we use as worklist. Our
node comparator is shown in Fig. 7.5. We compare the nodes by location and locations
based on the properties shown below. The first property regarding which two locations
l1 and l2 are not equal defines order of the nodes at that l1 and l2.

1. First, we compare analysis specific properties; currently, the only property is the
call stack depth of nodes. The idea behind this is to prioritize the computation
of callee nodes over caller nodes. In Eqns. 7.1f, we use the function stackDepth()
in order to retrieve the stack depth of a location. For this, we define the stack
of a program location to be the stack of function calls the analyzer is analyzing
when it first discovers a location. The stack depth is then defined as the number
of functions in the stack. The code to track the current stack and store a stack
depth together with each location is not shown.

2. Next, we compare nodes by machine address (see Eqns. 7.3f). Generally, control
is more likely to flow in the direction of increasing than decreasing addresses. As
a result, we prioritize nodes with a lower machine address (as we run a forward
analysis).

125

7. The Summy Analysis Tool

3. Finally, within one machine instruction (or basic block if block-wise optimization
is turned on), we resort to the numeric ids of nodes (see Eqn. 7.5). This way, we
order the nodes according to the order in which they have been created during
disassembly.

We identify widening / narrowing points using the isBackEdge(lfrom, lto) function
that determines whether the edge from lfrom to lto is a backward edge. For example, an
edge from a program point p that originates from a machine instruction at address ap

to a program q that originates from a machine instruction at a different address aq with
aq < ap is a backward edge. If an edge is a backward edge, we apply the box operator
on that edge. This approach guarantees at least one widening / narrowing point for
each loop.

Because of using combined widening and narrowing through the box operator, our
fixpoint algorithm iterates until states do neither grow nor shrink any longer. Newly
discovered parts of the binary are disassembled on the fly and the resulting control
flow graph nodes are added to the worklist in order to make sure that they take part in
the fixpoint computation.

Fig. 7.6 contains the function computeFixpoint which implements our generic fixpoint
algorithm. It expects a program prog as parameter which is used as a starting point
for the analysis. The function computes a map abs ∈ LocS → State which assigns an
abstract state to each program location. As explained in Sect. 7.2, we make use of a few
simple heuristics to discover a base set of function start offsets within a given binary.
The program is subsequently extended (see below) during fixpoint computation as
new parts of the input binary program are discovered and finally returned together
with the mapping abs. The function next : LocS → ℘(LocS) models the edges of the
control flow graph. Note that given a call site lc, next(lc) contains all program locations
l f ∈ LocF that have been discovered as possible call targets of the call at lc. In turn,
given a return location lres

f of a function f , the set next(lres
f) contains all instructions

following a call instruction which may call function f . As a result, the specialization of
an initial state of a function can be implemented as a transformer on an edge from a
call site to a called function, while the application of a summary can be implemented as
a transformer on an edge from a return location to an instruction following a call4. The
fixpoint computation proceeds using the loop in Eqn. 7.9 which updates the state of one
program location in each iteration. We make use of a two-stage worklist initialized in
Eqn. 7.6 and Eqn. 7.7, respectively. This way, we make sure that narrowing is performed
after widening as explained in Sect. 7.5.1. The set postproc contains all locations for
which the last application of the box operator has resulted in widening (see Eqns. 7.27
and 7.28). After finishing the main worklist iteration, such nodes are revisited by again

4The summary application additionally needs the state at the call instruction; this is not shown in Fig. 7.6.

126

7. The Summy Analysis Tool

adding them to the main worklist in Eqns. 7.10ff. The main worklist is initialized to
the set of locations that do not appear as successor of any other location; this way, we
approximate the set of function start addresses LocF within prog (see Eqn. 7.6). The
next location to process is determined by a call to orderedDequeue in Eqn. 7.12 which
dequeues a location while adhering to the fixed order of program points shown in
Fig 7.5. Given this location, we iterate all incoming edges in Eqn. 7.16 and evaluate
the abstract transformer associated with the statement on that edge (Eqn. 7.17). This
transformer returns a set of abstract states and program locations where one element
matches the control flow graph edge from lpred to l.

Note that the transformer may also discover new instruction addresses. We model
this by allowing the transformer to return an additional set Lnew. The instructions
at these new program addresses are decoded, translated, and added to the program
in the following equation. Next, Eqn. 7.21 checks whether the current control flow
graph edge is a backward edge. If so, we have to apply the box operator as shown in
Eqn. 7.22. Note that the application of the box operator additionally returns whether it
has applied widening; as explained above, this is important because such nodes have
to be revisited. Finally, Eqns. 7.29 through 7.31 add successor program points of the
current program point l to the worklist and update the state map if the state at l has
changed. The function returns the updated program and the mapping that assigns an
abstract state to each program location.

127

7. The Summy Analysis Tool

computeFixpoint : (LocS → L(Stmt))→ (LocS → L(Stmt))× (LocS → State)

computeFixpoint(prog) =

let worklist = {l ∈ dom(prog) | ∀l′ ∈ dom(prog) \ {l}. l 6∈ next(l′)} (7.6)

let postproc = ∅ (7.7)

let abs = {l 7→ ⊥ | l ∈ dom(prog)} (7.8)

while worklist∪ postproc 6= ∅ do (7.9)

if worklist = ∅ then (7.10)

worklist := postproc; postproc := ∅ (7.11)

let 〈l, worklist〉 = orderedDequeue(worklist) (7.12)

let preds = {l′ ∈ dom(prog) | l ∈ next(l′)} (7.13)

let s = if preds = ∅ then init else ⊥ (7.14)

let widened = false (7.15)

for lpred ∈ preds do (7.16)

let 〈{〈l, s′〉, . . . }, Lnew〉 = [[lpred : prog(lpred)]]
] abs(lpred) (7.17)

abs = abs∪ {l 7→ ⊥ | l ∈ Lnew} (7.18)

prog := prog∪ decodeAndTranslate(Lnew) (7.19)

worklist := worklist∪ {l ∈ Lnew | ∀l′ ∈ Lnew \ {l}. l 6∈ next(l′)} (7.20)

if isBackEdge(lpred, l) then (7.21)

let 〈widenededge, sboxed〉 = abs(l) � s′ (7.22)

s := s tMS 2×D sboxed (7.23)

widened := widened∨widenededge (7.24)

else (7.25)

s := s tMS 2×D s′ (7.26)

if widened then (7.27)

postproc := postproc∪ {l} (7.28)

if s 6= abs(l) then (7.29)

worklist := worklist∪ next(l) (7.30)

abs(l) := s (7.31)

return 〈prog, abs〉 (7.32)

Figure 7.6.: Fixpoint algorithm.

128

7. The Summy Analysis Tool

1 int f() {
2 int x = 4;
3 while(rnd())
4 x = 2;
5 return x;
6 }

Figure 7.7.: Example code for a loss of precision without an additional narrowing
iteration.

7.5.1. Additional Narrowing Iteration

As explained above, our fixpoint algorithm uses a two-stage worklist that makes
sure that we revisit a program point after performing widening during the application
of the box operator. This is not required for a sound analysis result but potentially
improves precision as demonstrated in the following. Consider the code in Fig. 7.7. The
following table contains the steps performed by the fixpoint algorithm given a simple
domain that tracks sets of values for x that are abstracted to half-open intervals during
widening:

iteration program point state of x worklist postproc remark

1 2 {4} [3] []
2 3 {4} [4, 5] []
3 4 {2} [3, 5] []
4 3 [−∞; 4] [4, 5] [3] widening
5 4 {2} [5] [3]
6 5 [−∞; 4] [3] [] swapped worklist
7 3 {4, 2} [4, 5] [] narrowing
8 4 {2} [5] []
9 5 {4, 2} [] []

Here, the iteration column contains the iteration count for the main loop in Eqn. 7.9.
A program point corresponds to a line in the program; the state at a line is defined as the
state tracked after applying the transformer of the statement on that line. The worklist
and postproc columns show the contents of the worklist and the postproc list at the
end of the respective iteration. Note that in iteration 5, the state of x at line 4 does
not change although the box operator applied widening in iteration 4, yielding a less
precise value for the loop head. As a result, the loop head in line 3 is not put into the

129

7. The Summy Analysis Tool

worklist again. Instead, iteration 6 evaluates the statement after the loop, resulting in
the use of the widened value for x after the loop. After this iteration, the worklist is
empty and the resulting state is a post-fixpoint. In order to refine this post-fixpoint
and, thereby, the state at line 5, we re-evaluate the nodes in postproc which contains the
loop head. This time, the box operator narrows the state at the loop head which then
propagates to line 5, resulting in a more precise fixpoint for x.

7.6. Implementation of Memory Regions

According to our presentation in Chap. 6, a memory region maps named fields to
value domain variables. However, our implementation uses a bit offset and size instead
of a name to identify fields. As an invariant, our implementation makes sure that
the fields of a single memory region never overlap. When using field names, it is
sufficient to distinguish cases where fields exist or do not exist during memory accesses.
However, when identifying fields by offset and size, more complex scenarios need to
be considered due to overlappings between accessed parts of a region and the fields
that are contained in the region.

7.6.1. Handling of Conflicting Accesses

Fig. 7.9 shows a few possible overlapping scenarios. Here, case (1) is a fully a aligned
access which is similar to an access to an existing field in Chap. 6. Reading resp. writing
such a field amounts to reading resp. writing the value domain variable of the field f1.
All other cases correspond to conflicting accesses into a memory region. It is possible to
handle them by replacing all conflicting fields with fresh fields that contain unrestricted
values. However, since our analyzer works on assembly code, this leads to precision
loss. In order to see why, consider the Intel assembly code on left of Fig. 7.8. Here,
we first load the address of a function into the register eax which corresponds to the
lower 32 bis of register A. Compilers generate this instruction instead of a move to the
full 64 bit register if they know the size of the function address fits into 32 bits. The 32
bit move instruction is preferable because the 64 bit version is two bytes longer. Note
that the upper 32 bits of register A are automatically set to zero when writing the lower
half of the register. This effect is made explicit in the translated RReil code shown
on the right of Fig. 7.8. However, the call instruction accesses the full 64 bits of the
register. As a result, when evaluating the call target during our analysis, a 64 bit field
is queried within a memory region that contains two 32 bit fields. The corresponding
access pattern is depicted in case (2) of Fig. 7.9.

Because the approach shown in the above example is very common in real-world
binaries, our analyzer supports this access pattern without loss of precision. For this,

130

7. The Summy Analysis Tool

1 mov eax, func
2 call rax

1 IP =:64 (IP + 5)
2 A =:32 func
3 A.32 =:32 0
4 IP =:64 (IP + 2)
5 SP =:64 (SP - 8)
6 *[64]SP =:64 IP
7 goto [CALL] [64]A

Figure 7.8.: Example assembly (left) and RReil (right) code that results in an access that
corresponds to case (2) in Fig. 7.9.

we first distinguish between read and write accesses. A conflicting read access does
not change the fields tracked by the respective region. If the read access does not
exactly cover a contiguous range of fields, the access returns an unconstrained value
(see, for example, cases (3) and (4) of Fig. 7.9). If the read access covers a contiguous
range of fields, we replace the access to a single field with a shift expression. For
example, assume that the access in case (2) of Fig. 7.9 is a read access to region r and
that field f2 has a size of 14 bits. Then, the access returns the value domain expression
r(f1) ∗ 214 + r(f2)5. Write accesses, on the other hand, always replace conflicting fields
with a single new field that spans the accessed bit range.

7.6.2. Further Ideas for Improvement

The above ideas allow to preserve values when larger fields of a memory region (e.g. a
64 bit field) are created by incrementally writing smaller parts (e.g. higher and lower
32 bit fields). The approach could be easily extended to support the opposite direction –
i.e. reading a smaller part of a field – by masking bits outside of the accessed range and
shifting the resulting value(s) into place. Further note that merging and partitioning of
fields can lead to a loss of precision – for example, think of an aliasing domain which
looses information about aliasing relationships when fields are merged. A possible
solution to this problem could be to allow fields to overlap.

7.7. Evaluation

We have evaluated our implementation on the set of example binaries shown in Table 7.1.
In particular, the benchmarks starting with libgdsl are GDSL decoder and translator

5Note that this assumes that f1 and f2 contain nonnegative values only. A simple means to handle
negative values would be to emit a warning or widen den result to >.

131

7. The Summy Analysis Tool

(1) f1

f1 f2(3)

f1 f2(2)

f1 f2(4)

Figure 7.9.: Different access patterns; the accessed part of the region is marked in red.

Binary Exact Set None Max. Avg. Ind. Res. Time Size
H H Tbl. Tbl.

libgdsl_avr 147 0 3 23 1.054 223 156 9.63m 300kb
libgdsl_arm7 88 0 7 33 1.084 152 71 11.0m 406kb

echo 0 0 0 1 1.000 6 2 98s 7.9kb
cat 0 0 0 1 1.000 6 2 5.7m 11.9kb

Table 7.1.: Evaluation Results

libraries. As described in Chap. 5, the GDSL code is translated into idiomatic C code
where higher-order functions are translated into C function pointers or heap-allocated
closures containing function pointers.

Column Exact H contains the number of call / br statements for which we were
able to synthesize an exact precondition (see page 105). The column Set H reports call
sites that generate a term with a Set constructor, i.e. the cases where only necessary
preconditions can be synthesized. The number of Herbrand terms that could not be
translated to an input memory field is shown in None. Column Max. Tbl. contains
the maximum size a single function table has got while column Avg. Tbl. contains
the average table size. Columns Ind. and Res. show the total number of indirect
call/br statements and the fraction of them that were resolved to at least one target.
Not all call sites can be resolved. This can be caused by imprecision in our analysis,
i.e. if the analyzed program uses complex expressions to compute a target address. In
addition, it is also possible for targets to depend on running time data. For example, a
library may have exported functions that expect function pointers as parameter. Finally,
columns Time and Size contain the analysis time and the size of the .text section.

Note that the gathering of the experimental data has been done using a simplified
implementation that does not build a minimal set of function summaries as detailed
in Sect. 6.3.3. Instead, a summary is computed for every possible instantiation of the

132

7. The Summy Analysis Tool

Herbrand terms. This may lead to a greater table size in case one query depends on
the answer to another query. In order to illustrate this, consider the following code:

1 int b() { return 2; }
2

3 int c() { return 3; }
4

5 int f(int (*fun1)(), int (*fun2)(int), int (*fun3)(int)) {
6 int (*fp)();
7 if(fun1()) fp = fun2;
8 else fp = fun3;
9 return fp() + fp();

10 }
11

12 int main() {
13 auto pred = rnd() ? []() { return 1 } : []() { return 0 };
14 return f(pred, rnd() ? &b : &c, rnd() ? &b : &c);
15 }

In the code, function main passes a predicate (i.e. a function pointer to a function
returning a boolean value) to function f that assigns a function pointer conditionally
depending on the return value of the predicate (lines 7 through 8). Note in particular
that in this example the value of fp is fixed after picking one of the two possible
predicates in main.

An analysis that is implemented as shown in Sect. 6.3.3 would build a table of size
5. The table would contain one entry for analyzing f without queries and two entries
for each value of pred. This is because each assignment for pred results in one further
query, i.e. for either the second or third function parameter. Our current analysis
implementation, on the other hand, would produce 9 table entries - one entry for the
default case with no query answers and one entry for each possible assignment of the
three parameters of f.

Note that the summary application detailed in Sect. 6.2.3 and the fixpoint algorithm
discussed in Sect. 7.5 do not support recursion. This is because the summary application
expects the caller state and the summary to share no variables and the fixpoint algorithm
uses a node ordering that always prioritizes callee nodes. In addition, widening would
need to be applied to table entries in order to ensure termination in the presence of
recursion. As a result, recursive calls are currently ignored in the implementation.
Proper support for recursion is future work.

133

Part V.

Conclusion

135

Binary program analysis is an interesting subdomain of program analysis. It can be
applied in cases where the source code of a program is not available, the semantics of a
high level programming language is not fully defined, or possible compiler bugs have
to be taken into account. However, binary program analysis also poses challenges, in
particular due to the complexity of modern CPU architectures which are constantly
being extended by the hardware manufacturers and due to scalability requirements in
the absence of abstractions offered by modern programming languages.

In the first part of this work, we have shown how we achieve architecture inde-
pendence by using our self-made DSL called GDSL which is geared towards the
specification of instruction decoders by offering a special syntax for reading from a byte
input stream and matching patterns on it. We have demonstrated the practicality of
GDSL by implementing a decoder for one of the most complex CPU architectures on the
market, namely Intel x86. An important design goal of the decoder syntax has been the
ability to specify decoders in close resemblance to the documentation provided by the
manufacturer in order to minimize the chances of bugs and allow for maintainability
of the resulting code. Our x86 decoder demonstrates that the design of GDSL indeed
allows such an intuitive specification. GDSL is a functional ML-like language that
goes beyond its main purpose of offering syntax for instruction decoders. We have
demonstrated this by implementing the translation of machine instructions into the
RReil intermediate representation and a few simple optimizations for the resulting IR
code directly in GDSL. Finally, we have shown how we translate functional GDSL code
into naturally looking C code which allows us to debug GDSL code using an existing
C debugger. It is an important observation that such a translation is indeed possible
for real-world functional code as it drastically reduces the development overhead of a
programming language if existing tools can be leveraged. The GDSL toolkit combines
our DSL compiler with a few decoder and translator specifications, including the
aforementioned x86 decoder and translator. Since the toolkit is open source software,
we hope to involve the community in the future in order to provide a fully-fledged
toolkit for disassembling and translating arbitrary machine code.

In the second part of this work, we have addressed the problem of achieving a
scalable analysis by introducing an analysis algorithm that combines modularity and
context-sensitivity in a novel way. A well-known technique to achieve scalability is to
analyze each function of a program in isolation and apply a summary of a function
at its call sites. However, this can lead to a severe precision loss as the analyzer has
no knowledge about the context in which a function is called while analyzing it. Our
idea to this end has been to find a reasonable compromise between modularity and
scalability by tabulating for certain properties of the calling context which allows the
analysis to achieve the required precision. As a result, the analyzer produces a table
of function summaries for each function. However, it does not re-analyze a function

136

for every possible context it is called in, thereby retaining most of the benefits of a
modular analysis. As a concrete application, we have implemented an analysis tool
that recovers the inter-procedural control flow graph of an executable based on the
analysis algorithm presented in this work. Recovering the control flow graph is an
important first step towards further analyses that rely on the control flow graph to be
known. For the control flow graph recovery, we tabulate for function pointers that are
used as call targets. Future work needs to address a second property which is of great
relevance here, namely different aliasing relationships between function parameters,
and include them in the tabulation scheme. As discussed in our evaluation, however,
our implementation already suggests that our approach is suitable to devise scalable
and precise analyzers.

137

List of Figures

1.1. Example code that uses dynamic function binding. 4
1.2. Assembly code for the C++ program in Fig. 1.1 5
1.3. Translated RReil code for the main function in Fig. 1.2. 6
1.4. Software lifecycle from the viewpoint of binary analysis. 7

2.1. The GDSL language grammar without monadic and generic types; we
use the well-known POSIX syntax for regular expressions [29]. 22

2.2. Specification for decoding the Intel ADD instruction. 23

3.1. The syntax of our RReil (Relational Reverse Engineering Language) IR.
The construct “ : int ” denotes the size in bits whereas “ . int ” in the
var rule denotes a bit offset. The statements are: assignment, read from
address, write to address, conditional, loop (both only used to express the
semantics within a native instruction), conditional branch, unconditional
branch with a hint of its original purpose, and a primitive "id". 25

3.2. The translator function a) and a translation result b) 26
3.3. Translation of the native Intel instructions cmp eax, ebx; jl tgt into

RReil and applying optimizations. Here, CForZF, SFxorOF, SFxorOForZF
are virtual flags, that is, translation-specific variables whose value reflect
what their names suggest [48]. Note that this example is idealized since
the removed flags may not actually be dead. 29

4.1. Overview of the end-to-end GDSL test framework. 35

5.1. A minimal decoder for Intel x86 instructions. 44
5.2. Desugaring the decoders to Core. We omit code handling pattern match

failures. 45
5.3. Example Core code which is based on lines 19–22 from Fig. 5.2. 45
5.4. The C code of the decoders (part 1). Some lines and variable declarations

are rearranged for presentational purposes. 46
5.5. The C code of the decoders (part 2). Some lines and variable declarations

are rearranged for presentational purposes. 47
5.6. The input language Core. 48

138

List of Figures

5.7. The intermediate language Imp. Note that the non-terminal Type is
defined in Fig. 5.18. 49

5.8. A Core example program that uses a closure. 50
5.9. The optimized Imp program generated from the code in Fig. 5.8. 50
5.10. Simplified C code for a Core example that uses closures. 51
5.11. Application of substitutions on an Imp AST node. 53
5.12. The non-optimized Imp program generated from the code in Fig. 5.8

using the translation scheme in Fig. 5.13, 5.14, and 5.15. 54
5.13. Translation scheme from Core to Imp (part 1). 56
5.14. Translation scheme from Core to Imp (part 2). 57
5.15. Translation scheme from Core to Imp (part 3). 58
5.16. Unoptimized translation of Fig. 5.3. 61
5.17. Partially optimized code after applying backwards substitution. 64
5.18. Definition of Types, their union and merging of record types. 66
5.19. Typing rules that characterize programs on which unboxing can be

applied (part 1). 67
5.20. Typing rules that characterize programs on which unboxing can be

applied (part 2). 68
5.21. GDSL program assembly. 70

6.1. The running example C++ program. 79
6.2. The abstract grammar of the analyzed program. (E)?denotes zero or one

E. 81
6.3. Abstract Semantics (without Call). 89
6.4. Definition of the applySummaryparams, globals function which applies a sum-

mary (last three arguments) to a call site state (first three arguments). . 91
6.5. Definition of buildRegionMap which constructs an association between

caller and callee memory regions. 94
6.6. Example code that requires a caller region to be added during buildRegionMap. 95
6.7. Definition of the merge function that merges rsrc into rdst. 96
6.8. Definition of the handleCalleeAliasing function which combines aliasing

regions in a summary if possible and aborts the summary application
otherwise. 97

6.9. Definition of handleCallerAliasing which combines multiple caller regions. 98
6.10. Definition of expandCallerRegions which expands folded caller regions

and propagates their contents back to the original regions. 99

139

List of Figures

6.11. Definition of the addOrRenameFields function which makes sure that
each region and field of the caller output memory structure (first three
arguments) exists in the summary input memory structure (second three
arguments) and that the respective value domain variables have the same
name. 100

6.12. Example code that results in one callee region that maps to multiple
caller regions. The summary effect has to be applied to both caller regions.101

6.13. Example code that results in two callee regions that relate to one caller
region. 102

6.14. Creating Herbrand terms for calls to Check in Fig. 6.1. 105
6.15. Applying a specialized function summary in TH ∈ THerb 108

7.1. Example control flow graph. 120
7.2. Simple example for precision loss. 121
7.3. Example statistical output of the analyzer. 123
7.4. Example control flow graph without (left) and with (right) RReil opti-

mizations applied. 124
7.5. Program location comparer. 125
7.6. Fixpoint algorithm. 128
7.7. Example code for a loss of precision without an additional narrowing

iteration. 129
7.8. Example assembly (left) and RReil (right) code that results in an access

that corresponds to case (2) in Fig. 7.9. 131
7.9. Different access patterns; the accessed part of the region is marked in red.132

140

List of Tables

2.1. Two typical instructions in the Intel x86 manual. 11
2.2. Evaluation of different disassembler frameworks. 19

3.1. Evaluating the reduction of the RReil code size due to dead-code opti-
mization. The overall running time is the sum of the translation time plus
the time for one of the optimizations. All measurements were obtained
on an Intel Core i7 running at 3.40Ghz. 33

4.1. Handling of accesses during RReil code interpretation. 37

5.1. Rules of the Simplifier . 62
5.2. Unboxing rules. 69
5.3. Decoding performance depending on the GDSL compiler optimization

level. 72
5.4. Decoding memory footprint depending on the GDSL compiler optimiza-

tion level. 72
5.5. Decoding performance of XED from the Intel Pin toolkit. 73
5.6. GDSL program performance using all optimizations 73

7.1. Evaluation Results . 132

141

Bibliography

[1] A. Sepp, J. Kranz, and A. Simon. “GDSL: A Generic Decoder Specification
Language for Interpreting Machine Language.” In: Tools for Automatic Program
Analysis. ENTCS. Deauville, France: Springer, Sept. 2012. url: https://code.
google.com/p/gdsl-toolkit/.

[2] G. Amato et al. “Efficiently intertwining widening and narrowing.” In: Sci.
Comput. Program. 120 (2016), pp. 1–24.

[3] K. Apinis, H. Seidl, and V. Vojdani. “How to Combine Widening and Narrowing
for Non-monotonic Systems of Equations.” In: Programming Language Design and
Implementation. Seatle, Washington, USA: ACM, 2013, pp. 377–386.

[4] B. Blanchet et al. “A Static Analyzer for Large Safety-Critical Software.” In:
Programming Language Design and Implementation. File Cabinet.: ACM, June 2003.

[5] S. Bardin et al. “The BINCOA Framework for Binary Code Analysis.” In: Computer
Aided Verification. LNCS. Springer, 2011, pp. 165–170.

[6] BeaEngine. http://www.beaengine.org. Version 4.1 rev 172. 2012. url: http:
//www.beaengine.org.

[7] L. Bettini. “Implementing Java-like languages in Xtext with Xsemantics.” In:
Symposium on Applied Computing. Ed. by S. Y. Shin and J. C. Maldonado. Coimbra,
Portugal: ACM, Mar. 2013, pp. 1559–1564.

[8] N. S. Bjørner. “Minimal Typing Derivations.” In: Workshop on ML and its Applica-
tions. ACM, 1994, pp. 120–126.

[9] J. Brauer and A. King. “Automatic Abstraction for Intervals using Boolean For-
mulae.” In: Static Analysis Symposium. Ed. by R. Cousot and M. Martel. Vol. 6337.
LNCS. Springer, Sept. 2010, pp. 182–196.

[10] L. Cardelli and P. Wegner. “On understanding types, data abstraction, and
polymorphism.” In: ACM Computing Surveys 17.4 (1985), pp. 471–522.

[11] C. Cifuentes and S. Sendall. “Specifying the Semantics of Machine Instructions.”
In: International Workshop on Program Comprehension. IWPC ’98. Washington: IEEE
Computer Society, 1998.

142

https://code.google.com/p/gdsl-toolkit/
https://code.google.com/p/gdsl-toolkit/
http://www.beaengine.org
http://www.beaengine.org
http://www.beaengine.org

Bibliography

[12] Intel Corp. Pin - A Dynamic Binary Instrumentation Tool. http://www.pintool.org.
2012. url: http://www.pintool.org.

[13] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.”
In: Principles of Programming Languages. Los Angeles, California, USA: ACM, Jan.
1977, pp. 238–252.

[14] P. Cousot and R. Cousot. “Modular Static Program Analysis.” In: Compiler Con-
struction. Ed. by R. N. Horspool. invited paper. file cabinet: Springer, Apr. 2002,
pp. 159–178.

[15] P. Cousot and R. Cousot. “Static Determination of Dynamic Properties of Pro-
grams.” In: International Symposium on Programming. Ed. by B. Robinet. File
Cabinet, Apr. 1976, pp. 106–130.

[16] P. Cousot et al. “Automatic Inference of Necessary Preconditions.” In: Verification,
Model Checking, and Abstract Interpretation: 14th International Conference. Rome,
Italy: Springer Berlin Heidelberg, 2013, pp. 128–148. isbn: 978-3-642-35873-9.

[17] A. Das et al. “Angelic Verification: Precise Verification Modulo Unknowns.” In:
Computer Aided Verification: 27th International Conference, CAV 2015. San Francisco,
CA, USA: Springer International Publishing, 2015, pp. 324–342. isbn: 978-3-319-
21690-4.

[18] distorm. http://www.ragestorm.net/distorm/. Version 3.1. 2012. url: http:
//www.ragestorm.net/distorm/.

[19] T. Dullien and S. Porst. REIL: A platform-independent intermediate representation of
disassembled code for static code analysis. CanSecWest Vancouver, Canada. 2009. url:
http://www.zynamics.com/downloads/csw09.pdf.

[20] C. Elliott, S. Finne, and O. de Moor. “Compiling Embedded Languages.” In:
Journal of Functional Programming 13.2 (2003).

[21] M. Erwig and E. Walkingshaw. “Semantics-Driven DSL Design.” In: Formal
and Practical Aspects of Domain-Specific Languages: Recent Developments. Ed. by M.
Mernik. IGI Global, Oct. 2013. Chap. 3, pp. 56–80. doi: 10.4018/978-1-4666-
2092-6.

[22] M. Fowler. Domain Specific Languages. 1st. Addison-Wesley Professional, 2010.
isbn: 978-0-321-71294-3.

[23] A. Fox and M. O. Myreen. “A Trustworthy Monadic Formalization of the ARMv7
Instruction Set Architecture.” In: Interactive Theorem Proving. Vol. 6172. LNCS.
Edinburgh, UK: Springer, 2010, pp. 243–258.

143

http://www.pintool.org
http://www.pintool.org
http://www.ragestorm.net/distorm/
http://www.ragestorm.net/distorm/
http://www.ragestorm.net/distorm/
http://www.zynamics.com/downloads/csw09.pdf
https://doi.org/10.4018/978-1-4666-2092-6
https://doi.org/10.4018/978-1-4666-2092-6

Bibliography

[24] M. Frigo. “A fast Fourier transform compiler.” In: Programming Language Design
and Implementation. Atlanta, Georgia, USA: ACM, 1999, pp. 169–180. isbn: 1-58113-
094-5. doi: 10.1145/301618.301661.

[25] R. Giacobazzi, F. Ranzato, and F. Scozzari. “Making Abstract Domains Condens-
ing.” In: Trans. Comput. Log. 6.1 (2005), pp. 33–60.

[26] R. Giacobazzi and F. Scozzari. “A Logical Model for Relational Abstract Do-
mains.” In: Transactions on Programming Languages and Systems 20.5 (1998), pp. 1067–
1109. issn: 0164-0925.

[27] A. Gurfinkel et al. “The SeaHorn Verification Framework.” In: Computer Aided
Verification. San Francisco, California, USA: Springer, July 2015, pp. 343–361.

[28] Hex-Rays. IDA Pro Disassembler. http://www.hex-rays.com/idapro. Version
6.0.101001. 2012. url: http://www.hex-rays.com/idapro.

[29] IEEE and The Open Group. The Open Group Base Specifications. Issue 7. 2018. url:
http://pubs.opengroup.org/onlinepubs/9699919799/.

[30] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of
Automatic Memory Management. CRC Applied Algorithms and Data Structures.
Chapman & Hall, Aug. 2012. isbn: 978-1-420-08279-1.

[31] A. Kennedy. “Compiling with Continuations, Continued.” In: International Con-
ference on Functional Programming. Freiburg, Germany: ACM, 2007, pp. 177–190.
doi: 10.1145/1291151.1291179.

[32] J. Kranz. “Validating the Decoding and the Translation into Value Semantics of
X86 Machine Code.” Master’s Thesis. Technical University of Munich, 2013. url:
https://mediatum.ub.tum.de/1470553.

[33] J. Kranz, A. Sepp, and A. Simon. “GDSL: A Universal Toolkit for Giving Semantics
to Machine Language.” In: Asian Symposium on Programming Languages and Systems.
Ed. by C. Shan. Melbourne, Australia: Springer, Dec. 2013.

[34] J. Kranz and A. Simon. “Structure-Preserving Compilation: Efficient Integration
of Functional DSLs into Legacy Systems.” In: Principles and Practice of Declarative
Programming. ACM, Sept. 2014.

[35] J. Kranz et al. IR Preprocessing for Deep Binary Analysis. Tech. rep. Lehrstuhl für
Sprachen und Beschreibungsstrukturen in der Informatik (Prof. Seidl), 2016. url:
https://mediatum.ub.tum.de/1470488.

[36] Julian Kranz and Axel Simon. “Modular Analysis of Executables Using On-
Demand Heyting Completion.” In: Verification, Model Checking, and Abstract In-
terpretation. Ed. by Isil Dillig and Jens Palsberg. Cham: Springer International
Publishing, 2018, pp. 291–312. isbn: 978-3-319-73721-8.

144

https://doi.org/10.1145/301618.301661
http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
http://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.1145/1291151.1291179
https://mediatum.ub.tum.de/1470553
https://mediatum.ub.tum.de/1470488

Bibliography

[37] X. Leroy. “Unboxed objects and polymorphic typing.” In: Principles of Programming
Languages. ACM Press, 1992, pp. 177–188.

[38] libopcodes. http://packages.debian.org/testing. Package binutils-dev-2.22-6.
2012. url: http://packages.debian.org/testing.

[39] J. Lim and T. Reps. “A System for Generating Static Analyzers for Machine
Instructions.” In: Compiler Construction. Ed. by L. Hendren. Vol. 4959. LNCS.
Springer, 2008, pp. 36–52. doi: 10.1007/978-3-540-78791-4_3. url: http:
//dx.doi.org/10.1007/978-3-540-78791-4_3.

[40] K. Marriott and H. Søndergaard. “Precise and Efficient Groundness Analysis for
Logic Programs.” In: ACM Lett. Program. Lang. Syst. 2 (1-4 Mar. 1993), pp. 181–196.

[41] metasm. http://metasm.cr0.org/. Retrieved on 2012/05/25. 2012. url: http:
//metasm.cr0.org/.

[42] M. Müller-Olm and H. Seidl. “Precise Interprocedural Analysis through Linear
Algebra.” In: Principles of Programming Languages. Venice, Italy: ACM, Jan. 2004,
pp. 330–341.

[43] P. Cousot and R. Cousot. “Systematic Design of Program Analysis Frameworks.”
In: Principles of Programming Languages. San Antonio, Texas, USA: ACM, Jan. 1979,
pp. 269–282.

[44] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. Cam-
bridge University Press, 2003.

[45] N. Ramsey and M. F. Fernández. “Specifying Representations of Machine In-
structions.” In: Trans. of Programming Languages and Systems 19.3 (May 1997),
pp. 492–524.

[46] T. Reps, S. Horwitz, and M. Sagiv. “Precise Interprocedural Dataflow Analysis
via Graph Reachability.” In: Principles of Programming Languages. San Francisco,
California, USA: ACM, 1995, pp. 49–61. doi: 10.1145/199448.199462.

[47] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design - Analysis
and Transformation. Springer, 2012. isbn: 978-3-642-17547-3. doi: 10.1007/978-3-
642-17548-0. url: http://dx.doi.org/10.1007/978-3-642-17548-0.

[48] A. Sepp, B. Mihaila, and A. Simon. “Precise Static Analysis of Binaries by Extract-
ing Relational Information.” In: Working Conference on Reverse Engineering. Ed. by
M.Pinzger and D. Poshyvanyk. Limerick, Ireland: IEEE, Oct. 2011.

[49] Z. Shao and A. W. Appel. “A Type-based Compiler for Standard ML.” In: Pro-
gramming Language Design and Implementation. La Jolla, California, USA, June 1995,
pp. 116–129.

145

http://packages.debian.org/testing
http://packages.debian.org/testing
https://doi.org/10.1007/978-3-540-78791-4_3
http://dx.doi.org/10.1007/978-3-540-78791-4_3
http://dx.doi.org/10.1007/978-3-540-78791-4_3
http://metasm.cr0.org/
http://metasm.cr0.org/
http://metasm.cr0.org/
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/978-3-642-17548-0

Bibliography

[50] M. Sharir and A. Pnueli. “Two Approaches to Interprocedural Data Flow Anal-
ysis.” In: Program Flow Analysis: Theory and Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1981. Chap. 7, pp. 189–234.

[51] O. Shivers. “Control-Flow Analysis of Higher-Order Languages.” PhD thesis.
Carnegie Mellon University: School of Computer Science, May 1991.

[52] H. Siegel and A. Simon. “FESA: Fold- and Expand-based Shape Analysis.” In:
Compiler Construction. Vol. 7791. LNCS. Rome, Italy: Springer, Mar. 2013, pp. 82–
101.

[53] H. Siegel and A. Simon. “Summarized Dimensions Revisited.” In: Workshop on
Numeric and Symbolic Abstract Domains. Ed. by L. Mauborgne. ENTCS. Venice,
Italy: Springer, Sept. 2011.

[54] A. Simon. “Deriving a Complete Type Inference for Hindley-Milner and Vector
Sizes using Expansion.” In: Science of Computer Programming 95, Part 2.0 (2014),
pp. 254–271.

[55] A. Simon and J. Kranz. “The GDSL toolkit: Generating Frontends for the Analysis
of Machine Code.” In: Program Protection and Reverse Engineering Workshop. San
Diego, California, USA: ACM, Jan. 2014.

[56] K. Slind and M. Norrish. “A Brief Overview of HOL4.” In: International Conference
on Theorem Proving in Higher Order Logics. LNCS. Springer, 2008, pp. 28–32.

[57] A. Thakur and T. Reps. “A Method for Symbolic Computation of Abstract
Operations.” In: Computer Aided Verification. LNCS. Berkeley, CA: Springer, 2012,
pp. 174–192.

[58] The Rust Programming Language: Validating References with Lifetimes. 2018. url:
https://doc.rust- lang.org/book/second- edition/ch10- 03- lifetime-
syntax.html.

[59] P. J. Thiemann. “Unboxed Values and Polymorphic Typing Revisited.” In: Interna-
tional Conference on Functional Programming Languages and Computer Architecture.
FPCA. La Jolla, California, USA: ACM, 1995, pp. 24–35.

[60] udis86. http://udis86.sourceforge.net. Version 1.7. 2012. url: http://udis86.
sourceforge.net.

[61] A. Venet. “Abstract Cofibered Domains: Application to the Alias Analysis of
Untyped Programs.” In: Static Analysis Symposium. LNCS. London, UK: Springer,
1996, pp. 366–382.

[62] Xi Wang et al. “A Differential Approach to Undefined Behavior Detection.”
In: Commun. ACM 59.3 (Feb. 2016), pp. 99–106. issn: 0001-0782. doi: 10.1145/
2885256. url: http://doi.acm.org/10.1145/2885256.

146

https://doc.rust-lang.org/book/second-edition/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/second-edition/ch10-03-lifetime-syntax.html
http://udis86.sourceforge.net
http://udis86.sourceforge.net
http://udis86.sourceforge.net
https://doi.org/10.1145/2885256
https://doi.org/10.1145/2885256
http://doi.acm.org/10.1145/2885256

Bibliography

[63] xed2. http://www.pintool.org. Version 2.13. 2013. url: http://www.pintool.
org.

[64] Z. Xu, T. Reps, and B. Miller. “Typestate Checking of Machine Code.” In: Pro-
gramming Languages and Systems: 10th European Symposium on Programming, ESOP
2001. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 335–351. isbn:
978-3-540-45309-3.

147

http://www.pintool.org
http://www.pintool.org
http://www.pintool.org

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Introduction

	The GDSL Toolkit: An Architecture-Independent Framework for Machine Code Disassemblers
	GDSL: The Generic Decoder Specification Language
	General Language Overview
	Endianness Configuration

	Decoding x86 Prefixes
	Evaluation
	Performance
	Correctness

	Related Work

	Semantics Translation using RReil
	RReil Intermediate Representation
	The Generic Decoder Specification Language (GDSL)
	Writing Semantics using GDSL
	An Example Intel Instruction
	Generating RReil Statements using GDSL Monadic Functions
	The Translator

	Optimizing the RReil Code
	Liveness Analysis and Dead Code Elimination
	Forward Expression Substitution

	Empirical Evaluation
	Future Work

	Verification of the Decoder and the Translator
	Automatic Generation of End-to-End Tests
	Generation of x86 Machine Instructions
	Execution of the Generated Instruction
	Test Results and Error Conditions

	Compiling GDSL to C
	Heap-Allocation and Avoidance of Garbage Collection
	Unboxing of Polymorphic Values and Closures
	Transformation of Monadic Functions

	Lowering GDSL to Core
	Conversion to an Imperative Language
	Translating Monadic Sequences

	Optimizing the Intermediate Representation Imp
	Simplifying Imp
	Removing Monadic Actions
	Unboxing by Type Inference

	Implementation
	Experimental Evaluation
	Related Work
	Conclusion

	Scalability Through Modular Analysis
	Modular Analysis of Executables using On-Demand Heyting Completion
	6.1 Preliminary Definitions
	6.1.1 Abstract Interpretation of the Collecting Semantics
	6.1.1.1 Combining Memory Structure and Value Domain

	6.2 Modular Program Semantics
	6.2.1 Abstract Interpretation of the Relational Semantics
	6.2.2 Abstract Semantics of Memory Accesses
	6.2.3 Application of Function Summaries
	6.2.3.1 Construction of the Caller/Callee Region Relation
	6.2.3.2 Merging of Regions
	6.2.3.3 Handling of Callee Aliasing
	6.2.3.4 Handling of Caller Aliasing
	6.2.3.5 Aligning the Summary Input to the Caller Output

	6.2.4 Computing a Fixpoint of the Abstract Relational Semantics

	6.3 On-Demand Heyting Completion
	6.3.1 Extracting Refinement Information using Herbrand Terms
	6.3.2 Specializing Summaries with Herbrand Terms
	6.3.3 Combining Specialized Function Summaries
	6.3.4 Heyting Completion

	6.4 Implementation
	6.5 Related Work
	6.5.1 Conclusion

	IV Analysis Implementation and Evaluation
	7 The Summy Analysis Tool
	7.1 Getting Started
	7.2 Running the Analyzer
	7.3 Output of the Driver Tool
	7.4 RReil Code Optimization
	7.5 Fixpoint Computation
	7.5.1 Additional Narrowing Iteration

	7.6 Implementation of Memory Regions
	7.6.1 Handling of Conflicting Accesses
	7.6.2 Further Ideas for Improvement

	7.7 Evaluation

	V Conclusion
	List of Figures
	List of Tables
	Bibliography

