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ScienceDirect
Systems genetics is defined as the simultaneous assessment

and analysis of multi-omics datasets. In the past few years,

metabolomics has been established as a robust tool describing

an important functional layer in this approach. The metabolome

of a biological system represents an integrated state of genetic

and environmental factors and has been referred to as a ‘link

between genotype and phenotype’. In this review, we

summarize recent progresses in statistical analysis methods for

metabolomics data in combination with other omics layers. We

put a special focus on complex, multivariate statistical

approaches as well as pathway-based and network-based

analysis methods. Moreover, we outline current challenges and

pitfalls of metabolomics-focused multi-omics analyses and

discuss future steps for the field.
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Introduction
In recent years, the biomedical research field has experi-

enced tremendous advancements in high-throughput

measurement technologies. Various layers of the central

molecular dogma are now well covered by so-called

‘omics’ data, including the assessment of DNA variation,

DNA modifications, transcript expression, protein abun-

dances and modifications, as well as metabolite profiles.

In human population studies, nowadays millions of mo-

lecular markers are screened across many omics levels in

thousands of samples. The promise of such multi-omics

datasets is to provide a holistic picture of the biological

system in health and disease, giving rise to an exciting

new branch of systems biology called ‘systems genetics’

[1��]. The central idea is that only by simultaneously

assessing as many layers of the biological system as
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possible and, importantly, the complex interactions be-

tween them, we can develop a fundamental understand-

ing of the underlying mechanisms between genotype and

(patho)phenotype. The computational challenge is to

develop statistical approaches that identify the additional

knowledge expected to be buried in multi-omics datasets

[2�].

Among the omics technologies, metabolomics plays a

special role. The metabolome is the set of all small

molecules, such as amino acids, sugars and lipids, in a

biological system. It is considered to be an endpoint of

biological processes and carries an imprint of all genetic,

epigenetic and environmental factors [3]. It has therefore

also been referred to as the ‘link between genotype and

phenotype’ [4] (Figure 1a). As a consequence, the major-

ity of biological and medical perturbations can be

expected to be visible in the metabolome, making me-

tabolites ideal biomarkers. Metabolomics has been par-

ticularly successful in the field of human epidemiology,

with studies ranging from neurological disorders over type

2 diabetes to cardiovascular disease [5].

In this review, we summarize recent papers and devel-

opments in the analysis of metabolomics data with other

molecular omics layers, with a special focus on studies in

the human system. We particularly discuss statistical and

computational methods, including pathway analysis, net-

works and multivariate integration methods. We deliber-

ately omit the discussion of public resources, such as

metabolic pathway and protein–protein interaction data-

bases, since this would be beyond the scope of this

review. For this topic, we refer the interested reader to

Ng et al. [6�].

Metabolomics and DNA variation
High-throughput genotyping methods gave rise to large-

scale genome-wide association studies (GWAS) over a

decade ago [7], with the promise to elucidate the genetic

basis of complex diseases. Many traits have since been

correlated with single nucleotide polymorphisms (SNPs),

including metabolomics measurements from human

cohorts. Compared to other traits, a substantial amount

of metabolites in human blood have been reported with

remarkable heritability, showing exceptionally high frac-

tions of variance explained by common genetic variants

[8].

The first association study between genetic variation in

the general population and metabolic traits in blood

measured by mass-spectroscopy was performed by Gieger

et al. [9], based on 363 metabolites measured in 284 male
www.sciencedirect.com
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Systems metabolomics. (a) Complex interplay between molecular omics, environment and the phenotype. The different layers of the biological

system are nowadays well covered by various omics technologies. The metabolome is of special interest, since it integrates all molecular and

environmental effects. It is to be noted that this chart represents a simplified view of information flow which is still subject of active debate. (b)
Univariate associations between single metabolites and other omics markers are usually computed as a first line of analysis. These associations

can then either be visualized and further analyzed as multi-omics networks, or grouped into overrepresented pathways using pathway

enrichment analysis. (c) Multivariate methods exploit the usually high covariation of measurements within and between omics layers. Canonical

correlation analysis is shown as an example. It seeks to find canonical weight vectors, such that the resulting canonical variables b1X and b2Y

(X and Y representing the two data matrices), are maximally correlated. It then searches for the next pair of variables orthogonal to the first

ones, and so on.
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individuals of the German KORA cohort. The authors

discovered that by using ratios of metabolites as meta-

bolic traits, the associations with SNPs increase dramati-

cally. Later studies steadily extended the number of

associating loci by increasing statistical power with thou-

sands of samples [10], larger panels of measured metab-

olites [8,11��], urine as an alternative biomarker fluid

[12,13], NMR-based metabolite measurements  [14] and

non-Caucasian cohorts [15]. Metabolomics GWAS stud-

ies have identified hundreds of mQTLs, metabolomics

quantitative trait loci, involving a variety of metabolic

pathways. Notably, many genes occurring as top hits in

these studies have previously been described as disease-

related genes and drug targets [11��]. A recent, compre-

hensive review of the metabolomics GWAS field can be

found in Kastenmüller et al. [16�].

Extending the common one SNP/one metabolite anal-

yses, several authors suggested to associate correlated

modules of metabolites with genetic variation. Such an

approach increases statistical power (due to a reduced

number of tests) while simultaneously removing un-

wanted variation in the data. For example, Inouye et al.
[17] used canonical correlation analysis (Figure 1c), a

multivariate extension of regular pairwise correlation, to

associate correlated metabolite modules with SNPs in a

GWAS. They identified several novel genetic loci that

had not been linked with metabolic traits before. In a

similar fashion, Ried et al. [18] defined metabolite

modules from partial correlation networks and associat-

ed them with genetic variation using a permutation-

based approach called ‘phenotype set enrichment

analysis’.

Several studies incorporated prior knowledge into the

analysis to functionally characterize the substantial

number of hits found in a metabolomics GWAS. The

straight-forward and commonly used approach for this

is gene set enrichment analysis (see e.g. Subramanian

et al. [19], Figure 2a). It assesses whether SNPs identi-

fied in metabolomics GWAS tend to statistically accu-

mulate in genes of predefined pathways. Two recent

studies followed this approach, identifying systematic

associations of lipid metabolites with the glycerolipid

pathway [20] and the acetyl-CoA dehydrogenase

pathway [21�].

Finally, extending the concept of set-based analysis to a

more fine-grained level, our group used correlation anal-

ysis and Gaussian graphical models to establish a large-

scale map (an ‘atlas’) of statistical associations between

SNPs and metabolic pathways. This provided a detailed

in vivo picture of the influence of genetic variation on

metabolism in humans [11��,22�] (Figure 2b). Future

studies could query this atlas, for example, to identify

candidate genes for metabolites that have been associated

with a disease phenotype.
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Metabolomics and transcriptomics
Another molecular layer frequently correlated with meta-

bolomics data are gene expression profiles. Transcrip-

tomics is a well-established measurement technology

enabling the genome-wide assessment of gene expres-

sion. Coding transcripts are frequently used as proxies for

protein levels, the direct physical interaction partners of

metabolites. Moreover, in contrast to genetic data, tran-

script profiles also reflect environmental and lifestyle

influences. Pioneering efforts for integrated metabolo-

mics/transcriptomics analyses have been made in plant

research, with papers that are now highly acknowledged

in the field [23,24]. A recent review summarizes different

strategies and methods for the integration of metabolo-

mics and transcriptomics data [25�], including challenges

with respect to experimental design and general multi-

omics analysis strategies.

Multivariate statistical methods, which model the shared

covariance between datasets, have become particularly

important to associate high-dimensional, quantitative

omics measurements. Simple univariate analyses, that

is, comparing one metabolite and one transcript at a time,

do not account for correlation structures within each

omics level and are thus not able to capture the complex

interplay between them. The general concept of multi-

variate methods is to find highly correlating directions

(components, clusters) of markers within each dataset,

which can then be associated between datasets (cf.

Figure 1c). These methods include partial least squares

(PLS) regression [26], O2-PLS [27] and canonical corre-

lation analysis [28]. Griffin et al. used PLS regression to

analyze time-resolved metabolomics and transcriptomics

data of rat liver tissue to study fatty liver disease [26]. The

authors identified systematic changes in lipid metabolism

affected at both the transcriptional and metabolic level.

Jozefczuk et al. used canonical correlation analysis to

analyze the time-dependent metabolic and transcrip-

tomic stress response of E. coli [28]. They were able to

monitor metabolic adaptations to environmental condi-

tions over time, identifying numerous condition-depen-

dent associations between metabolites and transcripts. In

a related approach, Wahl et al. used ‘weighted correlation

network analysis’ (WGCNA) to separately define clusters

of metabolites and transcripts, which were then correlated

and later associated with weight gain in humans [29].

Extending the above-mentioned, purely statistical

approaches, several authors suggested the use of prior

knowledge in pathway-based methods for the joint anal-

ysis of metabolomics and transcriptomics. Su et al.
mapped correlations computed in the NCI60 cancer cell

line dataset onto a metabolic network model to identify

correlating metabolite/transcript pairs involved in the

same metabolic reactions or the same metabolic pathways

[30]. Similarly, Ç akir et al. mapped metabolites and

transcripts to a genome-scale metabolic model in yeast
www.sciencedirect.com
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Figure 2
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Integration of metabolomics data and SNPs. GWAS with metabolic traits generate significantly correlating SNP-metabolite pairs. (a) To determine

which pathways accumulate a significant amount of metabolite-associating SNPs, gene set enrichment analysis can be performed (example in

[21�]). (b) Integrating metabolite and SNP associations into a network view provides a detailed picture of in vivo pathway associations (panel B

adapted from [22�]).
in order to identify different modes of metabolic regula-

tion [31]. The need for pathway-based analysis methods

also gave rise to publically available toolboxes. One of the

first projects was the ‘Integrated Molecular Pathway-

Level Analysis’ (IMPaLA) web tool, which provides

pathway enrichment tools for joint metabolomics/tran-

scriptomics datasets [32].

Only rather recently, several groups started to integra-

tively analyze metabolomics and transcriptomics data
www.sciencedirect.com 
from well-powered, large-scale human population

cohorts. For instance, Inouye et al. were the first to build

a large-scale correlation network from whole blood gene

expression data of more than 500 individuals [33��]. The

authors investigated the association between a leukocyte-

specific gene expression module and circulating metab-

olites, mostly lipid parameters, in blood.

In a similar study, our group systematically analyzed the

interplay between serum metabolites and whole blood
Current Opinion in Biotechnology 2016, 39:198–206
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transcriptomics data from more than 700 individuals on a

substantially wider metabolomics panel [34��]. We con-

structed a correlation network, the human ‘Blood Metabo-

lome-Transcriptome Interface’, containing 114 metabolites

and 522 transcripts. This network was then subjected to a

series of bioinformatics analyses for further characteriza-

tion. In brief, we showed that blood correlations between

metabolites and transcripts represent parts of true meta-

bolic pathways, especially lipid transport and immune

system processes. We then identified signatures of cor-

egulation by performing transcription-factor binding site

enrichment analysis on all transcripts associated with a

given metabolite or metabolic pathway. Finally, mapping

statistical associations with HDL-C, LDL-C and TG,

known risk factors for common diseases, revealed various

pathways affected pathways in the network.

Metabolomics and proteomics
In contrast to the combination with transcriptomics data,

integrative analysis studies of metabolomics and proteo-

mics are still rare. While microarray-based and modern

sequencing-based methods assess the transcriptome pu-

tatively in a genome-wide fashion, the coverage of mass-

spectrometry-based peptide profiling is still limited [35].

Nevertheless, even at this early stage, integrating meta-

bolomics and proteomics data provides valuable insights

by investigating physically interacting molecules (metab-

olites and proteins) which are tightly connected to the

phenotype. Importantly, merely investigating transcripts

as proxies for proteins is not always sufficient due to the

well-described discrepancy between protein concentra-

tions and their respective coding mRNAs levels [36].

First studies on joint metabolomics/proteomics measure-

ments also originated in the field of plant biology, for

example to assign new enzymatic functions to proteins

[37] and to gain mechanistic insights into plant-specific

biochemical processes [38]. Wienkoop et al. used inde-

pendent component analysis (ICA) combined with corre-

lation networks to study the stress-induced associations

between metabolites and proteins in Arabidopsis thaliana
[39]. In the human system, Oberbach et al. used ICA to

analyze time-resolved serum metabolomics and proteo-

mics data from lean and obese healthy participants of a

challenging study, revealing molecules and pathways

associated with obesity [40�] (Figure 3a).

Similar to other omics combinations, specific methods

have been developed to incorporate prior knowledge into

the analysis process. For instance, integrative omics-met-

abolic analysis (IOMA) quantitatively integrates metabo-

lomics and proteomics data into genome-wide metabolic

models to predict kinetic rates under given experimental

conditions [41]. To this end, it formulates a quadratic

programming optimization problem to compute a set of

metabolic fluxes which are compatible with rates inferred

from the metabolomics and proteomics measurements. As
Current Opinion in Biotechnology 2016, 39:198–206 
another example, our group developed a method to

identify regulated regions in metabolic pathways which

show differential concentrations of both metabolites

and proteins under different experimental conditions

[42�]. The method is based on a random walk algorithm

and attempts to combine ‘seed’ nodes with strong dif-

ferential changes in the network into modules

(Figure 3b). We applied the method to identify regu-

lated pathways in Jurkat T cells stimulated with an

environmental pollutant.

Future perspectives and challenges
The field of metabolomics is now firmly established in

systems genetics, and substantial improvements in multi-

omics analysis methods have already been achieved in the

past years. In the following, we will outline future direc-

tions and current challenges.

Commonly in biomedical research, major advances in the

field can be expected from more efficient and precise

measurement technology. For example, there are major

efforts to further develop mass-spectrometry-based tech-

niques [43�], in order to provide true ‘metabolomes’

covering the entirety of molecules in the biological sys-

tem. In addition, more fine-grained omics technologies

are currently being established, for instance covering

post-translational modifications, such as glycoproteomics

[44] and quantitative phosphoproteomics [45]. Integrat-

ing these novel technologies with metabolomics data will

create interesting new computational challenges.

A crucial prerequisite to further advance the multi-omics

research field will be the establishment of data processing

standards and data depositing infrastructure. For exam-

ple, in contrast to microarray-based and sequencing-based

transcriptomics, there are no standardized pipelines for

the normalization and quality control of mass-spectrome-

try-based metabolomics data. Different groups follow

different approaches, and standardization efforts would

facilitate reproducibility of results and increase overall

research quality. On a related note, for gene expression

data there are central data repositories, such as the Gene

Expression Omnibus, GEO [46], which gives scientists

open access to the raw data of published studies. For

metabolomics, valuable first steps in this direction have

been made with the MetaboLights project [47�], but

more comprehensive efforts are required to achieve a

higher coverage of publically available data.

On the analysis side, the metabolomics field should further

adopt and extend methods from other ‘omics disciplines.

For example, substantial efforts have been made to anno-

tate and prioritize GWAS hits using functional annotations

from ENCODE and related projects [48�]. Similar

approaches could be used to gain further insights into

the nature and functional relevance of mQTLs. Moreover,

extended GWAS methods are currently being developed,
www.sciencedirect.com
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Figure 3

ICA on proteomics data(a)

(b)

ICA on metabolomics data ICA on combined data

In
d

ep
en

d
en

t 
co

m
p

o
n

en
t 

2

In
d

ep
en

d
en

t 
co

m
p

o
n

en
t 

2

In
d

ep
en

d
en

t 
co

m
p

o
n

en
t 

2

Independent component 1 Independent component 1 Independent component 1

context-specific subnetwork

case

proteins /
metabolites

metabolic network

Protein

Group A
Group B
Group C
Group D
Group E

Metabolite

Seeds = significantly changed

control

high

low

Current Opinion in Biotechnology

Integration of metabolomics and proteomics data. (a) Independent component analysis on proteomics data, metabolomics data, and the

combined data set. While there is no clear separation of experimental groups with any of the two omics alone, the combination of both provides a

substantially stronger signal. Inspired by results from Oberbach et al. [40�]. (b) Module identification by a random walk algorithm. The algorithm

identifies pathway modules with a high abundance of significantly changed proteins and metabolites, here called ‘seed’ nodes. Algorithm was

used in Baumann et al. [42�].
such as prior knowledge-based ranking methods to identify

pathways shared across different diseases [49]. Another

branch of methods that should be further extended for

multi-omics studies are machine-learning approaches,

such as support vector machines, Bayesian networks and

neural networks. For instance, Zhu et al. integrated meta-

bolomics and transcriptomics data using Bayesian net-

works to construct causal regulatory networks in yeast [50].

One layer of molecular biology that we have not sys-

tematically addressed in this review are epigenetic
www.sciencedirect.com 
modifications. Systematic high-throughput assessment

of DNA methylation is possible today by microarray-based

and sequencing technologies [51]. To the best of our

knowledge, only a single epigenome-wide association study

(EWAS) with systematic metabolomics measurements has

been published to date [52�]. The authors reported 15 hits

between metabolome and epigenome in humans and,

importantly, point out various challenges in the assessment

and interpretation of such associations. For example, cor-

relations between CpG sites and metabolites are particu-

larly confounded by underlying genetic variation and
Current Opinion in Biotechnology 2016, 39:198–206
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environmental factors, thereby complicating direct func-

tional interpretations. Since the metabolomics/epigenetics

field is still young, pathway-based and network-based

methods will have to be developed and applied after solving

the fundamental issue of result interpretation.

Another upcoming omics layer not addressed here is the

gut microbiome. Results from recent studies integrating

metabolomics with metagenomics data from the human

intestinal surface [53] or fecal samples [54] already

revealed strong interactions between metabolism and

gut microbiota. However, the field of metagenomics is

still in its infancy, and further experimental and statistical

methods need to be developed to infer true microbial

compositions from DNA sequencing data.

Following up on result interpretation, associations be-

tween omics layers often raise the question of effect

direction and causality. For genetic data, effect direction

is a trivial issue due to the obvious immutability of the

germline DNA. For any other omics level, assessment of

causality poses a highly complex problem. If the effect

directionality is not given by the study design, for exam-

ple, in longitudinal studies, the possibilities to assess

directionality become quite limited. Previous studies

have attempted to model causality between two omics

layers using SNPs as instrumental variables in structural

equation modeling (SEM) [55,56] or Mendelian random-

ization [34��,57]. These approaches exploit the natural

randomization of genotypes in an attempt to mimic ran-

domized controlled trials, the gold standard to assess

causality. However, most studies still lack statistical power

and make strong, possibly false assumptions on the absence

of confounding factors. Thus, substantial developments

are still necessary to truly infer causal links from data.

Leaving the field of purely observational analyses, mech-

anistic models that define precise kinetic relationships of

enzymatic reactions and transport processes will be a

major next step in the metabolomics/multi-omics inte-

gration field. For unicellular model organisms, such as

E. coli and yeast, detailed insights into the regulation of

cellular metabolism have been established in the past

years. For example, Fendt et al. [58] provide a detailed

analysis of the relationship between enzyme capacity and

metabolic concentrations in S. cerevisiae. In the human

system, first steps have been taken towards the develop-

ment of systematic mechanistic models, such as a whole-

cell kinetic model of the human erythrocyte [59]. Future

studies will have to face the challenge of a complex,

multi-compartmental system in higher organisms, espe-

cially in the light of multi-omics datasets.

The ultimate application of system genetics will be large-

scale, possibly longitudinal studies of pathophenotypes

with simultaneous measurements for all omics layers,

including phenotypic information (the phenome) [60].
Current Opinion in Biotechnology 2016, 39:198–206 
This represents the transition from ‘systems genetics’ to

‘systems medicine’, that is, the patient-centric view on

multi-omics data [61�]. A recent, famous study in this

direction was the ‘integrative personal omics profile,

iPOP’ study [62], where a single individual was monitored

over a 14-month period with time-resolved measure-

ments of genomics, transcriptomics, proteomics, metabo-

lomics and clinical data. As outlined in this review,

integrating and analyzing two omics layers at a time

has already proved complicated, and the actual benefit

and novel insights of true multi-omics datasets still

remains to be demonstrated. Novel computational meth-

ods must be developed to process and analyze the massive

data sets that will be produced.

We believe that metabolomics, as an established, strong

link between genotype and phenotype, will continue to

play a major role in the systems genetics field. Advance-

ments both on the measurement and especially on the

analysis side will produce exciting novel insights in the

years to come.
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