
Technische Universität München

Fakultät für Mathematik
Lehrstuhl für Geometrie und Visualisierung

Stroke-based Handwriting
Recognition: Theory and

Applications
Bernhard Odin Werner

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Massimo Fornasier

Prüfer der Dissertation: 1. Prof. Dr. Dr. Jürgen Richter-Gebert

2. Prof. Dr. Kristina Reiss

3. Prof. Dr. Sven de Vries
Universität Trier

Die Dissertation wurde am 12.02.2019 bei der Technischen Universität
München eingereicht und durch die Fakultät für Mathematik am 16.07.2019

angenommen.

iv

v

Acknowledgements

First and foremost I want to thank Jürgen Richter-Gebert and Kristina Reiss for
this amazing opportunity to work in two different scientific fields, and Frank
Reinhold and Stefan Hoch for the marvellous collaboration. I am very grateful
that I learned many different things unrelated to my actual dissertation and
happy that we managed to produce a piece of software that met the appeal of
students, teachers and other researchers alike. The experiences I made during
ALICE will, without a doubt, shape my professional future.

I want to thank everyone at the chairs for Geometry and Visualisation, for
Algebra, and for Mathematics Education for all the enlightening academic dis-
cussions and the occasional diverting private ones. I want to thank all my
friends in Traunstein, Munich, Münster, Berlin and Boston for many, many di-
verting private discussions and the occasional academic ones.

I want to thank Matt, Noel, Amora, Pedro, Lena, Kevin and Madeline for
showing me how to climb a mountain; and Steve and every other Rebel for
your support and help on my epic and less epic quests over the last four years.

Last, but most important, I want to thank Jan-Christian and Dorothea for
keeping me sane during the last few years.

vi

Contents

1 Writing on touchscreens in technology, education & mathematics 3
1.1 Handwriting recognition in technology 5

1.2 The ALICE project . 13

1.3 The problem of handwriting recognition 29

1.4 Structure & notation . 34

2 A mathematical model of handwriting 39
2.1 Mathematical fundamentals . 40

2.2 A base model for strokes . 65

2.3 An overview of ALICE:HWR . 78

3 Geometric transformations of strokes 105
3.1 Four classes of geometric transformations 106

3.2 Applications . 132

4 Aspects of stroke classification 143
4.1 Directional vectors . 144

4.2 Exclusion rules via FCA hypotheses 153

4.3 Fuzzy matching of feature vectors 162

5 Characterising strokes via determinants 171
5.1 Curvature . 173

5.2 Determinants . 178

6 Looking back at ALICE:HWR 191
6.1 Training . 194

6.2 Classification . 197

6.3 Parsing . 200

6.4 Performance . 202

7 Looking ahead 205

Appendix A The Manual for the companion iBook 211

Appendix B The code of ALICE:HWR 221

Bibliography 241

1 Writing on touchscreens in

technology, education &

mathematics

“What are letters?”
“Kinda like mediaglyphics except they’re all black, and they’re tiny, they
don’t move, they’re old and boring and really hard to read. But you can use
’em to make short words for long words.”

— Harv to Nell, The Diamond Age, by Neal Stephenson

A very well-known problem in machine learning and pattern recognition is
to identify written/drawn characters, icons and figures. This usually comes
in two flavours: off-line and on-line. The former deals with pixel data as the
raw input and encompasses scanned book pages, handwritten exams by stu-
dents, and even blackboards seen in video-recorded lessons. The latter, how-
ever, may use the precise position of the tip of a pen or stylus sampled by a
finite number of points and is used when writing on an electronic whiteboard
or a touchscreen. In this thesis, we will focus on the latter one and explore
several approaches to this task.

When surveying the literature on on-line handwriting recognition, three
things become eminent: First, as a purely practical problem, handwriting re-
cognition is “solved”. There are more than enough different algorithms that
work good enough. Second, the various approaches to handwriting recogni-
tion (HWR for short) differ greatly depending on the area of application —
Latin letters, simple geometric shapes, Chinese characters, etc. Third, most
development processes for these algorithms seem to start with the application
in mind and are tailored to recognise a specific symbol set.

4 1 Writing on touchscreens in technology, education & mathematics

This thesis aims to shift the thought process away from the purely pragmatic
mindset and to establish mathematical foundations that can be applied to vari-
ous tasks with only small adaptations. Additionally we want to build the clas-
sification process in a way that produces descriptive, humanly understandable
results. Both these goals are motivated by the use in interactive educational
software.

The practical background for this thesis is given by the ALICE:fractions project
which was established in 2015 by the Heinz Nixdorf Foundation. In it, the
Heinz Nixdorf chair for Mathematics Education and the chair for Geometry
and Visualization at the TUM together created an interactive schoolbook on
iPads for sixth-graders on the topic of fractions. The handwriting recognition
algorithm developed for it is the guidepost for the theoretical considerations
here.

So, in order to motivate the assumptions and requirements for the algorithm,
we will also discuss the role of handwriting recognition in educational software
and describe how it was implemented in ALICE:fractions. Before we do so, we
start with an overview of the history of technical devices capable of handwrit-
ing recognition and how they benefit from such programs.

1.1 Handwriting recognition in technology 5

1.1 Handwriting recognition in technology

To understand the peculiarities of tablets and other touch surface devices better,
we give a brief overview of how this technology arose.

1.1.1 Computers and touch surfaces

When asked about “computers on which you can write on the screen” most
people nowadays think about state-of-the-art touchscreen devices: smart-
phones, tablets and video game consoles. People old enough to remember
might come up with Personal Digital Assistants (PDAs) like the PalmPilot,
which have been prominent in the 1990s. That decade saw a surge of other
technical gadgets like mobile phones and virtual reality devices.

The image of the 1990s was shaped by these technical advances even though
not all of them were successful.1 Of course, the origins of all these technolo-
gies lie farther in the past. For example, mobile phones — in the shape of car
phones — were made public in 1946 by Bell System.

The advent of interactive computer screens came shortly after screens were
added to computers at all. Before the 1960s computers mostly had tele-
printers (also known as teletypes) as their “graphical” output device. These
were typewriter-like machines that printed the relevant output data on pa-
per. The technology of screens was of course known in 1960, but updating the
data to be displayed was very memory-expensive and, therefore, screens were
used scarcely. Even after introducing a fixed character set to be displayed —
circumventing the need to update every light point individually in the cathode
ray tubes — screens were mostly used to show process data. “Proper” output
was still printed to paper via teletypes.

Then, in 1962 and 1963, three major inventions saw the light of the world.
First, Steve Russell and several other members of the Tech Model Railroad Club
at MIT created Spacewar!, which is seen by many as the first video game in
history and which is, therefore, one of the first “interactive” programs. The

1The failed Nintendo Virtual Boy comes to mind.

6 1 Writing on touchscreens in technology, education & mathematics

significance of this lies in the formal definition of the term “interactive”: It is
ambiguous, but most attempts to define it are in the vein of:

An interactive software is a computer program which enables and demands input
from a (human) user while it is running.

See, for example, [18]. What that means — especially in the context of early
computer science — is that an interactive software is not a glorified calculator
that gets started and then works away for hours uninfluenced by any human.
It requires frequent, near constant back-and-forth with a user.2

Second, Ivan Sutherland invented Sketchpad — also at the MIT — as part of
his PHD thesis in 1963; which made him the father of interactive computing
in many eyes. This program used the input of a light pen: a light-sensitive
pen that detects the electron beam that generates the image on screen. Because
the beam moves with a known speed over a known path across the screen, the
light pen is able to compute the exact pixel it points to. Sketchpad uses this
information to allow the user to draw straight lines, circles and other simple
geometric shapes “onto” the screen and manipulate them in real time. This
is the predecessor of all touch surfaces we are interested in this thesis. Both
applications make it necessary to update screens fast and often and made it
clear that, from then on, it is highly desired.

Third, Douglas Engelbart invented the computer mouse only a year later.
However, for our concerns here, computer mice are less important as an input
device. But it and its success made it clear that the interactivity of computer
programs will come to the fore, and that a focus will be put on special peri-
pherals for this interaction.

So, even in the early 1960s, everything was set for educational software on a
technological level. However, the mouse gained popularity over the light pen
over the next decades.3

We saw the first big wave of widespread devices with touch surfaces in PDAs

2This is also know as ’on-line processing’; in contrast to ’batch processing’ which dominated
the early years of computer science. Note the double use of the term ’on-line’ both in the
context of processing and handwriting recognition.

3Maybe because holding a pen in front of a screen is much more strenuous than pushing a
mouse over a flat surface? This phenomenon is sometimes called ’gorilla arm’.

1.1 Handwriting recognition in technology 7

in the 1980s and 1990s starting with the Psion Organizer in 1984 which evolved
into smartphones during the first decade of the 21st century. Parallel to this
advancement of computers with a touch-sensitive surface or screen, graphics
tablets were developed. These are external devices transmitting the movement
of a pen or stylus one-to-one to a computer. At the base level, they serve as
a simple alternative for a computer mouse or directional keys. But the main
application lies in graphics design, art and handwriting input. The first proper
graphics tablet for home computers though was Koala Technologies’ KoalaPad
produced from 1983 for several computers including the Apple II and the Com-
modore 64. Around the same time, several handwriting recognition programs
started to get distributed taking advantage of both touch screens and graphics
tablets.

The culmination of all these various technologies — at least seen from the
year 2019 — are tablet computers. The idea of book- and notepad-like com-
puters is prevalent throughout the history of computers as can be seen in many
works of science fiction as, for example, Isaac Asimov’s novel Foundation (1951),
Arthur C. Clarke and Stanley Kubrick’s film 2001: A Space Odyssey (1968) and
Neal Stephenson’s novel The Diamond Age (1995). However, as such a device
has to be small by design, it took a bit longer to see the first models. The earli-
est predecessor of what nowadays is considered a tablet can be found in 1989:
the GRiDPad. But the big breakthrough for tablet computer came in 2010 with
Apple’s iPad. Since then, tablets permeated more and more areas of everyday
life.

It is obviously hard to predict how the future of computers and, in particular,
how in- and output devices will look like. However, as of 2019, there is a push
on advancing machine learning based on neural networks. Also, the progress
on hardware performance — forecast by Moore’s law (see [38]) and similar ex-
ponential predictions on technological growth — seem to continue for at least
a couple of years. Moreover, virtual reality is on the rise, and there is even
slow but steady progress on haptic feedback — as can be seen, for example, in
the actuators used in mobile phones (like the iPhone X) and video game con-
trollers (like the Nintendo Joy-Cons) to generate “meaningful” vibrations, and in

8 1 Writing on touchscreens in technology, education & mathematics

the trackpads used on the newer Apple MacBook series simulating a click via a
small hammer.

This puts the technology of tablets in an interesting spot in the year 2018. On
the one hand, such devices are capable of real-time computations (and high-
quality rendering). On single-purpose HWR applications — e.g., recognising
Latin letters, Chinese characters, simple geometric forms — they perform ex-
ceptionally well. And while reducing the test error rate further when it already
is well-below one percent4 is often very hard, it is mostly unnoticeable in prac-
tice.

On the other hand, sophisticated machine learning techniques need to be
trained and fine-tuned and can often not be adapted on the fly to expand the
symbol pool. Even if these algorithms allow such flexibility, asking the user
to provide a significant amount of samples for the new characters is imprac-
tical. And most mobile devices still lack the computational power to re-train
the algorithm; especially when the main application program is supposed to
continue.5

Moreover, having to develop different variations of symbol recognition for
different character sets to be included in the same program takes up many re-
sources. However, having a single recognition system built for all symbols will
usually be rather ineffective. See, for example, the Detexify project by Daniel
Kirsch, [32]: while the algorithm has solid theoretical foundations, it just can-
not handle the sheer amount of all LATEX symbols.6

So, despite the rise of neural networks and powerful (soft) artificial intelli-
gence, a more heuristic approach to handwriting recognition is still relevant.
And works like [11] show that there is an interest in it. However, to understand
why handwriting recognition is at all relevant, especially on tablets, we have to

4For example, a drop by 0.04% when comparing the latest two MNIST database entries in [35]
in the category ’convolutional nets’.

5There is, of course, always the possibility to let both the training and the classification be
executed on a dedicated web server. But even in 2019 the wifi coverage in schools and other
public buildings is not universal. And relying on electronic devices to be always connected
to the internet creates many other problems.

6Users of Detexify can provide their own samples. So, common, often used symbols are
recognised much easier by this program.

1.1 Handwriting recognition in technology 9

look at it from the point of view of a user.

1.1.2 User experience

The rise of interactive software created another concept in its wake: user exper-
ience. It is usually defined as

how a user feels and reacts to the use of a program

or similar to that. See [34] and [37] for some alternatives.7 Some questions
that lead to good user experience are whether buttons with similar design have
similar functions, whether often-used tools are positioned at a high level in a
drop-down menu or whether there is significant input lag using a peripheral.
User experience also encompasses the vital topic of accessibility options for
disabled people (and others).8

Seen from another perspective, user experience tries to facilitate optimal flow.
This term was coined by psychologist Mihály Csíkszentmihályi, most famously
via his book [10], and it describes a mental state in which a person is completely
absorbed in a task. With this in mind, improving user experience can be seen
as the effort to reduce obstructions during a working process to allow the user
to work as efficiently as possible. For programs on tablets, in particular, this
means to make essential elements like buttons and (text) input areas large and
easily identifiable (cf. [61]). Moreover, buttons should be at the lower side of
the screen, and interface elements that display information should be at the
top as the user will cover the screen with her hand while interacting with vari-
ous elements.9 As a rule of thumb: the easier a program is to operate, the better.

Handwriting recognition now is one significant contribution to immersive
work. There are two main reasons for that: Firstly, many programs that utilise
the touchscreen need the whole area of the screen. Thus, an on-screen keyboard

7There is also an International Standard defining user experience in this vein for all products.
However, the definition given here is enough for our considerations.

8On a base level, this means a colour palette for colour-blind users or the option to increase
the font size.

9Designing for left- and right-handed users is another challenge. So, arranging screen ele-
ments vertically makes it easier overall.

10 1 Writing on touchscreens in technology, education & mathematics

for text input usually has to pop up whenever needed. As its buttons have to be
of a certain size to be usable — preventing the notorious fat-finger problem —
the keyboard has to be large and will subsequently cover a significant part of
the application interface. Secondly, the ability to recognise hand-written/ -
drawn symbols increases the interaction possibilities; especially when control
gestures are implemented. This is less of a problem with graphics tablets as
they are usually attached to a “proper” computer that also has a physical key-
board. On tablets, however, this becomes relevant as they are more limited as
an input device. The basic input methods are a Home Button (which does not
even exist on the iPhone X), volume buttons on the side and a stand-by button
(which also falls more and more out of fashion). “Advanced” input factors
are, for example, 6-axis accelerometers, gyroscopes and cameras. These are
powerful tools that allow the use sophisticated applications. However, they are
highly specialised and are rarely used for “menial tasks” like operating an in-
ternet browser, a music player or a word processor. This leaves the touchscreen
as main interaction method between user and device.

The basic interaction method between a user and the touchscreen is the se-
quence of Finger Down, Finger Move and Finger Up. Or, in a other words, a
stroke with a finger (or stylus). All interaction falls back to these three building
blocks: E.g., tapping on a spot on the screen is given by a very short Finger

Move phase; and multi-touch gestures employ several of these sequences at the
same time. For our goal to analyse handwriting, we assume that these strokes
form concrete symbols and characters on the screen. They are characterised by
having a concrete, abstract meaning, but not a unique way to write them. We
will talk about this dissonance in Section 2.3.

Apart from the fundamental advantages as an interaction method between
humans and computers, HWR has much potential in interactive educational
software. Flight simulators have shown for years that such educational and
training programs can be very successful if they are coupled with the right
devices and peripherals. And with the advancement in both hardware and soft-
ware, there is tremendous potential across all subjects and across many areas
of live. Some examples for this that already exist are: virtual tours through an-
cient Egypt; surgery simulations for young doctors without the danger to harm

1.1 Handwriting recognition in technology 11

humans (or animals); teaching fractions in 6th grade by cutting and distributing
virtual pizzas on an iPad. The primary reason why these applications work is
their potential for immersion. But it is only fulfilled if working with interactive
software is not hindered by clunky designs (of hardware or software).

Looking specifically at interactive educational software for schools it is evid-
ent that tablets are a very promising tool. From a design point of view, this
becomes clear as tablets are basically electronic books and they built around
that idea. But even though digital tools, in general, are used for a long time
now in schools (see for example [65], [54] or [57]), there are not many invest-
igations into tablets specifically (cf. [21]). And as most studies in this area are
devised to have specific environments and set-ups, it is understandable to look
at meta-analyses for deeper insights into the feasibility of tablets in schools (cf.
[20] or [21]).

Specifically for handwriting input there are, for example, the works by Aziz
et al. (see [2]) and by the group around Read and MacFarlane (see [43] and
[39]) who study the design of HWR software to teach preschool and primary
school children. In particular, as [44] and [42] show, there are little problems
with children using a touchscreen to write per se — especially compared to
an ordinary keyboard. However, many, many small issues hinder the user
experience. Notably:

— The slow writing speed of children that results in wrong parsing and
grouping of strokes into words. (See Section 5.1.1 in [44].)

— Children trying to “fix” letters by adding more strokes and lines; regularly
after they have continued to write the next letters. (See Section 5.2.3 in
[44].)

The last point is especially interesting as this exemplifies the dissonance
between off- and on-line handwriting recognition we already mentioned at the
very start: The former focusses more on the images produces while the lat-
ter concentrates on the movement of the pen/finger. When using this second,
gesture-focussed approach, adding additional lines is detrimental to the recog-
nition process and has to be taken into account separately.

12 1 Writing on touchscreens in technology, education & mathematics

Due to the relatively small number of research endeavours into the feasibil-
ity of tablets and the fact that it is approached from an academic angle, a flaw
emerges that can be seen, for example, in the handwriting software used in [44]
and [39]: The software itself is rarely optimised for broad use and often lacks
polish.

In the next section, we will present the ALICE study which motivated this
thesis. It takes full advantage of iPads as a digital learning tool. Moreover, the
project was built with both an academic and a practical goal in mind: the two
intervention studies conducted explore how effective interactive educational
software can be; at least for the topic of fractions. Also, the iBook10 created
in the process was not only designed for the studies but to be a standalone,
ready-made product for school lessons.

This was achieved by a diverse team of mathematicians, teachers and pro-
grammers11 and a solid footing in Educational Science. In particular, the two
main theories ALICE is based on — Cognitive Load Theory and Embodied Cog-
nition — are closely related to flow and optimal user experience. We will sum-
marise these theories, but only to the extent of understanding their role in the
design of ALICE.

As a last note before talking about ALICE in detail: There may be many more
applications for the methods presented here and in other HWR research than
just the actual recognition of what was written. Apart from obvious ideas like
signature identification, there are even utilisations in medicine like diagnosing
Parkinson’s disease (see [73]). However, here we will proceed with the use as
an input method in interactive educational software in mind.

10Apple re-branded the program iBook as Apple Book. We will use the term iBook throughout
this thesis to denote the file format that can be read via this program on Apple devices.

11Every member fulfilled at least two of these roles.

1.2 The ALICE project 13

1.2 The ALICE project

As discussed in the previous section, computer hard- and software changed
and grew rapidly in the second half of the 20th century. Moreover, children are
nowadays exposed to technical devices like smartphones from a very young
age on. Their growing brains allow them to learn many complicated things
very fast and, most importantly, in a very natural way. So natural in fact that
we have a word for them: Digital natives. It was coined by Marc Prensky in
his 2001 paper Digital Natives, Digital Immigrants [41], but it can even be traced
back to John Barlow’s A Declaration of the Independence of Cyberspace [4] from
1996.

This contrast between digital natives and digital immigrants — people who
grew up with computer and people who learned to work with them later in
their lives, respectively — created a substantial problem in the educational sys-
tem: While most parents, teachers and government official agree that working
with the new technology and media is essential and that we should take the
chance to incorporate them in classrooms and curricula, there is no clear plan
on how to do this. Two main hurdles are the training of the teachers and the
development of adequate software.12 Since many teachers, as well as the au-
thors of school books and employees of publishing houses, are not intuitively
familiar with tablets (yet), the training becomes time-consuming. Moreover,
early software lacks the utilisation of computers in general and touchscreens
in particular. Notably, many digital schoolbooks are still just scans of ordinary
schoolbooks and do not take digital, interactive media to their full potential.

Here we will now present the research project ALICE:fractions which ex-
plores the theoretical foundations of sensible interactive educational software
design and the appurtenant iBook implementing these ideas. This project
tackles the second of the problems mentioned above directly: How can/should
educational software for tablets look like and function? However, it also
brushes on the first one by taking the feedback of both teachers and pupils

12Aside from obvious organisational problems like buying computers in class sets.

14 1 Writing on touchscreens in technology, education & mathematics

into account. The easier such a program is to use, the fewer resources have to
be invested to train the teachers, and the fewer reservations exist to use it.

Thematically it is restricted to fractions — in particular to introducing their
fundamental properties. The primary reason for this is that this topic lends
itself very well to an enactive approach. Also, it is an area where the perform-
ance of students leaves a lot to be desired, so, there is room for measurable
improvements.

Figure 1.1: Children working with ALICE:fractions.

1.2 The ALICE project 15

1.2.1 Overview & design

The project ALICE:fractions was created under the (German) name

Lernen mit dem Tablet-PC: Eine Einführung in das Bruchrechnen für Klasse 6,

which roughly translates to

Learning with tablets PCs: An introduction to fractions for grade 6.

As a joint research project between the Heinz Nixdorf Chair for Mathematics
Education and the chair for Geometry and Visualization and funded by the
Heinz Nixdorf Foundation, it had the goal to develop an interactive iBook on
iPads to teach fractions. Three PhD students worked on this project under
the supervision of Prof. Dr. Kristina Reiss and Prof. Dr. Dr. Jürgen Richter-
Gebert. These students — Frank Reinhold, Stefan Hoch and the author — as
well as the two project leads have backgrounds across mathematics, education
and software development. Taking advantage of this, the entire content of the
resulting iBook was created from the ground up. In particular, the interactive
exercises were built using the dynamic geometry software CindyJS (see [13]).

The main design goal was to take advantage of the computer-environment to
react in real time to the behaviour and answers of the students, and the desired
outcome was to foster an intuitive and descriptive understanding of fractions.
To emphasise these two aspects, the name of the project was changed to ALICE
which is an acronym for

Adaptive Learning in an Interactive Computer-supported Environment.

The addendum fractions shall accentuate that this general design idea is inde-
pendent of the actual topic or subject and the hope to apply the results to other
areas.13

Here in this section, we will give a brief overview of the project — explaining
the importance of the adaptivity and interactivity as well as why the topic of
fractions is both relevant and interesting in this context. We will also explain

13Topics from geometry and stochastics are especially desirable. They lend themselves well
to an interactive learning experience. And various professors at the TUM spoke out their
interest in seeing them come to fruition.

16 1 Writing on touchscreens in technology, education & mathematics

the role of handwriting recognition in this project and how it fits the design
of the iBook. This will be a summary of ALICE:fractions in order to provide
the practical framework for the work presented here in this thesis. For more
detailed information, please see the other two (German) dissertations written
within this project:

— Mathematikdidaktische und psychologische Perspektiven zur Wirksamkeit von
Tablet-PCs bei der Entwicklung des Bruchzahlbegriffs – Eine empirische Studie in
Jahrgangsstufe 6 by Frank Reinhold describing the theoretical background
of the iBook design and analysing how students improved using it. See
[45].

— Prozessdaten aus digitalen Schulbüchern (working title) by Stefan Hoch ana-
lysing the user behaviour and inferring how successful pupils work. See
[22].

The two main theories from educational science used in ALICE:fractions are
Cognitive Load and Embodied Cognition. These two concepts have been de-
veloped in the late 20th century and gained much more significance since the
introduction of tablet computers into schools. Here we will give a brief over-
view of them and describe how they influenced the development of both the
ALICE iBook in general and the handwriting recognition software in particular.

The basic idea behind the Cognitive Load Theory (see the works of Sweller
starting in 1988 with [62]) is that any form of mental activity uses a form of cog-
nitive capacity and that this capacity is finite. I.e., the more it is used through-
out the day, the more laborious mental tasks become. There are many different
experiments from psychology illustrating this and similar effects.14 In the con-
text of education, the core insight of Cognitive Load Theory is that there are
internal and extraneous factors contributing to how taxing and hard to solve

14One interesting fact, for example, is how every form of mental strain can affect every other
mental effort. This is illustrated by a famous experiment from Baumeister, Bratslavsky,
Muraven and Tice from 1998, see [5]: Participants waited in a room with two plates of
cookies and radishes, respectively. One group was told that they have to eat the radishes
while the other group could do/eat whatever they wanted. In a relative demanding puzzle
afterwards, people from group one performed significantly worse than the ones in group
two.

1.2 The ALICE project 17

an exercise is. Moreover, these factor stands in the way of the actual learning
process. (Cf. [63].)

Intrinsic factors are the parts that constitute the core problem of solving an
exercise. E.g., doing mathematical computations is hard in itself, and solving
17 · 39 is much harder than solving 2 · 2. (Of course, barely anyone “solves”
2 · 2; it is usually recalled from memory.) The relevance of considering these
intrinsic factors in designing educational environments is, among other things,
whether solving many, relatively easy exercises is more beneficial than solving
fewer, hard exercises.

Extraneous factors are the elements outside the actual task that contribute to
its difficulty nevertheless. They include things like the presence/absence and
quality of a sketch, the font style, colour, size and length of the instructional text
as well as the complexity of the words used. However, there are also external
factors in the environment like loud (unpleasant) noises and bad lighting.

There is the third category of germane cognitive load which describes the
work someone puts into solving a problem by creating and using mental
schemata. This is the desired focus of mental work while learning. I.e., the
primary goal of designing exercises, explanatory texts, diagrams, etc. is to re-
duce intrinsic and extraneous factors in order to facilitate this process.

The second building block of ALICE is Embodied Cognition. Its idea is
that performing appropriate actions with one’s hands (or body) accompanying
mental work can improve the degree and speed of understanding (and that
performing inapt actions hinders it). An exact definition of embodied cognition
is amiguous15; the design of ALICE revolves around simple embodiment as
introduced by Clark on page 348 of [9]:

[Simple embodiment] concentrates attention on an inner representational resource ...
and is exploring the ways in which usefulness in the guidance of real-world action can

both constrain and inform the nature of inner representations and processing.

We will return to Embodied Cognition after quickly presenting why the topic
of fractions was chosen to be the focus of ALICE.

15See[45] for references to eight different versions.

18 1 Writing on touchscreens in technology, education & mathematics

Studies like [3] show that there are connections between an understanding
of fractions and more complex topics.16 And the extent of the inability to work
efficiently with fractions is not only limited to schoolchildren — it can also be
found in adults. Moreover, there are various psychological effects which are at
least partially explicable by this lack of an intuitive understanding of fractions:
For example, Kimihiko Yamagishi has shown in [70] that a fictitious disease
with a mortality rate of 1286 persons out of 10000 is perceived as worse than
another one with a mortality rate of 24.14 persons out of 100.

The reason why fractions are so hard to grasp is an aggregation and combin-
ation of many different conceptual changes, which emerge when going from
integers to rational numbers, and the subsequent mishandling of fractions.17

Concepts that have to change when learning fractions are, for example, the
idea of a unique successor for rational numbers, that a single number always
has a unique representation and that multiplication makes numbers bigger.
Additionally, fractions fulfil many different roles: as ratios, quotients, operat-
ors, portions, etc. And all of these are different conceptions in the mind of
children. (Cf. [40].) See [45] for a detailed discussion on how and why frac-
tions are complicated to understand when first introduced in grade 6.

Fractions and fractional calculus are decidedly descriptive and geometric
concepts. Introducing them as a notation without adequately explaining what
the names ’numerator’ and ’denominator’ mean leads to pupils seeing them
as a pair of “normal” numbers without any significant relation. And then the
rules for expanding/reducing, comparing, addition and multiplication have no
reference to real objects and are perceived as random.

Here comes Embodied Cognition into play: a central focus of the iBook
design are the interactive widgets — both for exploratory tasks at the start of
each chapter and for ordinary exercises — which predominantly show fractions
in iconic representations. Manipulating them “directly” with a finger move-
ment means that abstract operations and concepts — like expanding/reducing

16Of course, this is not entirely surprising. Many “higher” topics like solving linear equations
and definining the derivative of a function use the knowledge of fractions directly.

17The study by Yamagishi illustrates one of these mistakes: denominator neglect. (A term
attributed to Paul Slovic.) People often compare fractions by merely comparing the numer-
ators.

1.2 The ALICE project 19

or comparing — are linked to “real” ones. The hope behind this design is that
the same graphical depictions and manipulations come to mind when the pu-
pils have to solve more classical arithmetic tasks. (And the results of the studies
conducted suggest that this is the case.)

With all these ideas in mind, the iBook designed and built during the ALICE
project took a certain form. First, all explanations of new concepts are opened
by an exploratory task using iconic representations of fractions. Second, a ma-
jority of the interactive exercises also make use of iconic representations and
allow the pupils to interact as directly as possible with fractions.

The goal to make as many things in the iBook “touchable” now indicates the
use of a handwriting recognition algorithm.

1.2.2 ALICE:HWR

As mentioned above in Section 1.1.2, being able to use handwritten words,
sketches and gestures directly as input increases the user experience of software
that focuses on art and text processing. It makes the touchscreen feel more
diverse than it actually is.18 And in the ALICE iBook, we focus on manual
manipulation of “real” and iconic depictions of fractions. Moreover, a work-
in-progress feature for a future version of the iBook is a scribble mode. With
it, a user can superimpose a semi-transparent layer on which they can write
and draw with a small assortment of (digital) pens. As already alluded to in
Section 1.1.2, it would break the immersion if an on-screen keyboard popped
up whenever the input of numbers is requested.

In tasks that require the pupils to enter running text answers, such a key-
board is unavoidable. However, they are scarce and mostly serve to record
pupils thought and allow for a discussion with the teacher afterwards.

Enhancing the benefits of iconic fraction representations via handwriting re-
cognition becomes much more perceptible when sketch recognition is included.
This was contemplated during the development of some interactive widgets.

18For a similar reason the buttons in the ALICE iBook are drawn and animated in a way that
mimics three-dimensionality, and in pizza-cutting tasks a hand or knife is shown at the
finger-/pen-down point on the screen.

20 1 Writing on touchscreens in technology, education & mathematics

However, it was not included due to the ambiguity of fraction representations
and the problem of evaluating them. In Figure 1.2 we see examples of both
these problems.

On top is a typical error by someone who just learned about fractions. When
the task is to subdivide a circle into three equal parts, we will often see this
picture: A diameter (most often the horizontal one) is divided into three equal
parts, and then perpendicular lines to it are drawn to divide the circle. Of
course, this is not correct. However, the correct solution of subdividing a circle
by two parallel lines is so close to this wrong one that it is nigh impossible to
assert the falseness of such a solution with high confidence. At least, when the
user cannot provide explanations for their answer. An alternative is to label
this kind of solution as wrong, regardless of the position of the parallel lines,
and only permit lines through the centre of the circle. But, of course, it is
very bad practice to condemn creative solutions just because they do not fit the
established mould.

Figure 1.2: A typical error in subdividing a circle (top) and unusual graphical expand-
ing by 2 (bottom).

The second problem can be observed at the bottom of Figure 1.2. A common
way to explain expanding and reducing fractions is via refining and coarsening
of an iconic depictions of fraction. As Widget/Exercise 39 in the ALICE iBook
shows, this can be done for reducing in a computer environment. However, it
is hard to implement intuitive controls for such an exercise and to accurately

1.2 The ALICE project 21

classify mistakes. In a potential expanding widget we would have to decide
which input by the pupils is considered correct. Is every correct subdivision
of each rectangle eligible? If not, should the lines that can be added limited?
If yes, how can we assure that the student did not find the correct solution by
guessing? Also, if the answer options are limited, is there even a benefit in
doing this exercise? And judging the correctness of a refinement becomes even
more complicated when the pupils use non-straight lines.

These two small examples illustrate that automatic recognition of written
and drawn symbols and shapes, while useful in general, is not applicable in
every situation — in particular when the interpretation of the input is unclear.
Therefore, it is used solely for numbers in the ALICE iBook, and we want
to keep that as the prime example/application in mind. Practically, they are
limited to the range 1,...,99 as the iBook is aimed at six graders and focusses
on introducing fractions as a new concept. But theoretically, any integer is
possible.

As a guideline for the design of the HWR algorithm used in ALICE — which
we will call ALICE:HWR from now on — we present some criteria that were
decided upon at the beginning of the project.

The algorithm should not depend on an extensive training dataset because
of two reasons: Firstly, children are notorious for their bad handwriting, and
a sub-goal was to foster the proper ways of writing numbers. And since
ALICE:HWR is a stroke-based, on-line classifier, it focuses more on the overall
movement of the finger or pen tip than the picture created on the touchscreen.
So, this sub-goal is compatible with the general approach of the software.

Secondly, it became clear in the early stages of ALICE that we want to “tell”
the algorithm how certain strokes look like instead of just “showing” it many
samples. This way, it is easier to generalise the algorithm and adapt it to other
characters set.

Speaking of generalisation: with a future application of the basic ideas of
ALICE to other areas of mathematics or even other subjects in mind, the hand-
writing recognition algorithm is built universally. It should be easily adaptable
to (block) letters, simple geometric forms, symbols from electrical engineer-
ing and also control gestures. Because of that, the actual classifying step in

22 1 Writing on touchscreens in technology, education & mathematics

ALICE:HWR is very simple and uses, decidedly, no advanced methods from
machine learning.

We revisit these design criteria in Section 1.3. And the actual classification
steps of ALICE:HWR will be presented in Section 2.3, Chapter 4 and Section
6.2.

1.2.3 Results of the studies

As as last part of this overview of ALICE:fractions we will give a summary of
the studies conducted to test the theoretical hypotheses and practical imple-
mentations. We will only give the main results here. A complete overview can
be gained from the other two dissertations associated with the project [45] and
[22] as well as the following articles:

— General information and overviews can be found in [23], [31], [46], [48],
[49], [50] and [53] .

— Analyses of process data like finger movements, time on task and differ-
ences in visualisation in circle and bar diagrams are presented in [24], [28]
and [30].

— The effect of explaining different strategies to compare fractions is ex-
plained in [47] and [52].

— The influence of the demographic factors gender and school type is
presented in [29] and [51].

Now, some details about the two studies that were conducted. The first in
2016 at German Gymnasien (higher-level high schools) and the second in 2017

at German Mittelschulen (lower-level high schools). Both studies had the same
set-up. In particular, the participating classes were divided into three groups:

1. A first intervention group in which teachers and pupils worked with the
iBook.

2. A second intervention group in which teachers and pupils worked with a
printed workbook version of the iBook.

3. A control group in which teachers worked as they always did.

1.2 The ALICE project 23

Figure 1.3: The structure of the ALICE studies.

The original German iBook, an English version of it and the German printed
workbook can be found online; see [25], [27] and [26], respectively. The intro-
duction of the second intervention group aimed at separating the effects of the
general design of the teaching material and additional benefits of the tablet-
based environment. Layout and design of the printed workbook were identical
to the iBook. But for interactive exercises, only a finite number of subtasks was
printed. Notable characteristics of both studies were the following:

— The scope of the ALICE iBook is the introduction of fraction It covers
the following areas of comprehension: understanding fractions both
as parts of a whole and as parts of many; expanding and reducing;
the number line; mixed fractions and comparing fractions by size.
The arithmetic of fractions was omitted.

First, because of time-constrains on the development phases: produ-
cing the remaining material would have taken more than a full year
if it were to be of the same quality as the introductory part. So, the
team decided on improving this introduction based on the results of
the first study and to conduct another one at a different school type.

Second, because the introduction can rely more heavily on iconic
and graphical depictions — whereas the communication of “complic-
ated” operations like the division of fractions cannot avoid imposing
certain abstract rules.

24 1 Writing on touchscreens in technology, education & mathematics

— The layout and design of the iBook are the same as of a regular
schoolbook. In particular, it contains motivations, explanations, take-
home messages as well as exercises. It can be used together with
reading assignments, group work and all other teaching methods.

— The teachers in the first intervention group were asked to work as
much as possible with the iBook. However, they were encouraged to
use additional material if desired.

— The pupils were tested before and after the intervention. The pre-test
was conducted to correct the post-test score for prior knowledge of
the children — which they might have gained from being taught at
home or having had to repeat the sixth grade. In order to guarantee
the reliability of the post-test, the teachers were told the areas of skill
that have to be covered. Beyond that, they were given plenty of rope
to arrange the content of the lessons.

— The iPads for the study were provided by the Technical University of
Munich. Because of that, the pupils were not allowed to take them
home. This especially is a point of enquiry for future studies, since
using interactive educational software for homework and repetition
should have a much bigger effect on the level of comprehension and
skill than just using them at school.

In total, 1108 pupils participated in the study. Unfortunately, some were sick
during either the pre- or post-test and some did not get permission from their
parents to take these tests. Moreover, several classes exceeded the scheduled
15 lessons and had to be excluded from the evaluation.

— 29 classes with a total of 808 children participated in the first study at
Gymnasien, but only the results of 476 were evaluated. Of these, 156 pupils
were in intervention group one, 182 in group two and 138 in the control
group.

— 16 classes with a total of 300 children participated in the first study at
Mittelschulen, but only the results of 236 were evaluated. Of these, 105

pupils were in intervention group one, 64 in group two and 67 in the

1.2 The ALICE project 25

control group.

The post-tests of both studies tested the knowledge of the pupils in the areas
of comprehension mentioned above. Moreover, every test item was categorised
in one of three areas of skill:

— Working with and understanding of graphical representations.

— Applying arithmetic rules.

— Explaining mathematical statements and situations.

That means that the task

Draw 3
4 of 4 pizzas

falls into the first category, while

Compute 3
4 · 4

falls into the second and

Explain why the following picture shows 3
4 of 4 pizzas

into the third. As the iBook focusses much more on the first skill both in
conveying new content and in practice, it stands to reason that pupils might be
less able to perform arithmetic calculations. Fortunately, this is not the case as
our results show. Moreover, only two out of 21 items fell into the third category.
They were evaluated only qualitatively for the most part.

The mean solution rates in the post-test split between the first two areas of
skill are shown in Figures 1.4 and 1.5. The results of the pre-test at Mittelschulen
were so low, that the previous knowledge of these pupils can be considered
non-existent. These scores are omitted in Figure 1.5.

26 1 Writing on touchscreens in technology, education & mathematics

pre-test post-test

total visualisation arithmetics
0

20

40

60

80

100

Solution rate / %

iPad workbook control

Figure 1.4: Mean solution rates, together with their 95% confidence intervals, at
Gymnasien.

At Gymnasien, both intervention groups were significantly better than the
control group. This also holds when we only look at visualisation items. And
when evaluating arithmetic items, all three groups performed approximately
equal. I.e., even though the iBook focuses on graphical representations, pu-
pils still improved in calculation tasks just as much as “traditionally” taught
children.

At Mittelschulen there is a much bigger difference between the first interven-
tion group, which worked with iPads, and the others. At the same time, the
second intervention group and the control group showed no significant differ-
ences.

1.2 The ALICE project 27

post-test

total visualisation arithmetics

20

40

60

80

100

Solution rate / %

iPad workbook control

Figure 1.5: Mean solution rates, together with their 95% confidence intervals, at Mit-
telschulen.

Overall, an potential explanation for the results might be that for higher-
achieving students at Gymnasien the interactivity of iPads itself is less import-
ant than the overall design and presentation. In contrast to that, children at
Mittelschulen profited much more from working with iPads.

Apart from these solution rates, much more data was collected and analysed.
For example, when comparing the fractions 5

8 and 5
10 a large portion of students

in both control groups expanded them to have the same denominator. In the
intervention groups, however, this strategy was used much less. Another ex-
ample is the fact that the total time spent on a task is a much better predictor
for the performance in a test than the number of individual exercises worked
on.

28 1 Writing on touchscreens in technology, education & mathematics

These and other results are discussed in great detail in the aforementioned
dissertations and articles.

After this overview we want to shift our attention to actual handwriting
recognition. We start by discussing why it is a problem at all.

1.3 The problem of handwriting recognition 29

1.3 The problem of handwriting recognition

When there is a choice, on-line handwriting recognition has the potential to
be better simply because it allows to analyse more data: At least the order
of the recorded points and at best the exact times at which they were recorded
together with additional parameters of the pen like the pressure on the drawing
surface or the azimuth of the pen19.

The rapid advancement in machine learning in the last years, however, makes
these differences minuscule. The newest method (as of January 2019) found
on the website of the MNIST database of handwritten digits (see [35]) is by
Cireşan, Meier and Schmidhuber [8] and they achieve an error rate of 0.23%
for the test data set provided by the database. They use deep neural networks
which have shown time and time again that they are incredibly in pattern re-
cognition of any kind. The central reservation against the use of neural net-
works comes from the need to have an extensive training set and to hand-craft
the exact architecture of them.20 The last point, in particular, means that neural
networks used for different character sets and areas of application can look
vastly different.

In contrast, classical on-line handwriting recognition algorithms are highly
heuristic and descriptive. For example, one can decompose a recorded stroke
into smaller parts which are relatively easy to recognise as done in [7]. A
more common idea is to compute specific geometric properties of a stroke like
its length, its local curvature at every point or point spread information like
whether more points are in the upper half of the stroke than the lower. Then,
after a certain amount of these features are measured they get compared and
classified via well-known methods like support vector machines and k-nearest
neighbour algorithms.

In order to find or build appropriate features for such an on-line method, we
have to talk about the ambiguity of strokes first.

19I.e., the angle of the pen when projected onto the drawing surface.
20There are, however, some approaches like NeuroEvolution of Augmented Topologies to adjust

the architecture of a neural network. See [60].

30 1 Writing on touchscreens in technology, education & mathematics

1.3.1 Symbols as abstract pictures

In order to understand how we can describe hand-written symbols, we first
illustrate the core problem with this particular data. In chapter 2 of Under-
standing Comics – The Invisible Art (see [36]) Scott McCloud states the problem
of abstract symbols the following way:

In the non-pictorial icons, meaning is fixed and absolute. Their appearance doesn’t
affect their meaning because they represent invisible ideas.

This means that any visual resemblance to an established symbol will make
this symbol recognisable. In Figure 1.6 below is a small collection of ways to
write the symbol 3 by combining strokes and lines in extremely different ways.
In all of them, the number 3 is easy to recognise.21

Figure 1.6: Different iconic representations of the number symbol 3. Inspired by panel
1 on page 28 in Understanding Comics – The Invisible Art [36].

The problem herein is that the inherent 3-ness of a stroke or a collection of
strokes cannot be measured in a deterministic way. Moreover, the semantic
meaning of such a picture might depend on the surrounding characters. E.g.
the word test usually makes more sense than te5t. Keeping in mind that we
are primarily interested in on-line handwriting recognition used for a school

21Of course, this is massively intensified by the fact, that these pictures represent a 3 was given
beforehand. Any reader is therefore primed to recognise it.

1.3 The problem of handwriting recognition 31

book, it is clear that the 3 at the top left in Figure 1.6 is what we want to regard
as valid.

The goal now is to find geometric and graphic descriptions of what consti-
tutes a stroke like this 3 at the top left. As explained in the sections above,
this allows us to better comprehend any subsequent classification process and
to control the algorithm more directly. Furthermore, it allows for a potentially
automatic explainer: as we aim the application at young students, it is desir-
able to have future iteration of ALICE:HWR that can explain them directly why
something was not recognised.

The procedure to find explicit features, however, is just as ambiguous as the
symbols themselves. In particular, we will see that certain properties are very
easy to recognise and that — at least for the Arabic numerals — they are often
enough to make a decision. But other features will behave more unpredictably.

For example, we will see at various points that recognising straight line seg-
ments is very easy and that these particular strokes can be considered the
simplest ones. That makes it enticing to create a recognition software for
Chinese characters as they quite easily decompose into straight lines. And
while [7] illustrates that Fuzzy Logic alone is good enough for the recognition
process, there are numerous design challenges for a program used in practice;
some of which are explored in [16].

On the other hand, it will turn out that distinguishing between 0 and 8 is
relatively hard in contrast. A 0 forms, more or less, a circle and is as such
characterised by a constant curvature. The feature to measure this (see Section
2.3.3), however, will be unstable and unreliable due to significant variations
both in the way people write 0’s and 8’s. So, we combined this feature with
others in ALICE:HWR.

However, we will not focus too much on how this problem of unclear strokes
and features was tackled in praxis. It is mentioned to some extend in Section
2.3.3 and Chapter 6. The major part of this thesis will deal with more general
ideas that can be applied to any form of stroke recognition.

32 1 Writing on touchscreens in technology, education & mathematics

1.3.2 Leading questions

The main source for ALICE:HWR is Delaye and Anquetil’s 2013 paper [11] on
a broad and universal feature set for on-line handwriting recognition. They
showed that the actual classification method used is of lesser importance when
based on a good and thorough model of strokes. They surveyed various works
on handwriting recognition and compiled 49 features. But no matter how good
these are, they are still hand-crafted and cherry-picked. Here in this thesis, we
want to approach this with a little bit more generality in mind. The reason
for this is a potential transfer of the ideas and results presented here to other
areas and projects — e.g. other interactive schoolbooks under the ALICE label
or a geometric sketch recognition plug-in for the dynamic geometry software
CindyJS.

This means that we care less about the actual process of finding features for
our symbols set in question and focus on an analysis of the objects we want to
classify.

As stated above, we are concerned with on-line handwriting recognition both
here in this thesis and in ALICE:HWR. That means that the strokes we record
are sequences of points with two coordinates that model the precise finger/pen
movement of the user. They form the underlying object for all subsequent
analyses and discussions. We will see that the set of all strokes (trivially) forms
an affine space. So, the basic geometry of the set of all strokes is very simple.
However, we are more interested in the connection between the semantic of
a written symbol and its realisation as a specific stroke. So, the fundamental
question of this thesis is

(1.) How do strokes of similar shape or meaning relate to each other?

Taking a cue from Felix Klein’s Erlangen program, we will focus a large part of
this consideration on

(2.) How can strokes be deformed while retaining their meaning?

Finally, we want to keep the requirements of ALICE:HWR in mind. For ap-
plications like the ALICE project, it is desirable to have a recognition algorithm
that can “tell” the user what went wrong in writing/drawing something. In

1.3 The problem of handwriting recognition 33

particular, when the user is a schoolchild and is still learning. This leads to the
practical questions

(3.) Can a recognition software be trained by only a small selection of good samples?

(4.) Can the classification itself be done such that its decision making is transparent
and explainable?

As mentioned in Section 1.3.1, a large part in answering the last question is to
find properties of strokes that have concrete meaning. In this thesis, however,
we will, for the most part, assume that this is given and focus a bit more on the
classification process itself. Nevertheless, we will always work with concrete
and expressive properties.

Question (1.) will permeate every part of this thesis, but will be approached
more directly in Chapters 2 and 5. Question (2.) is the central focus of Chapter
3; and that chapter will also answer Question (3.). Finally, Question (4.) will be
the topic of Chapter 4.

Before we start, we will describe the structure of this thesis more linearly and
fix some general notation.

34 1 Writing on touchscreens in technology, education & mathematics

1.4 Structure & notation

1.4.1 Structure

In this thesis, we make various statements about both the general structure of
strokes and features and the way they are used in ALICE:HWR. The goal will
always be to explain how and why ALICE:HWR works as well as the more
abstract mathematical background. Focus might shift between sections, but
both aspects should always be kept in mind. That means, in particular, some
statements will be presented more matter-of-factly if they are more concerned
with the practical implementation. And some points will be analysed more
in-depth if we expect broader usefulness.

Moreover, we will make some implicit assumptions based on the concrete
character set we want to classify in ALICE:HWR and the good will of the user.
For example:

— Strokes that form Arabic numerals are usually of similar length and there-
fore we will discretise all of them with the same number of points.

— We assume that the finger/pen will not leave the touchscreen when a
single stroke is written. I.e., we assume we do not have to concatenate
two or more strokes together before we can analyse them.

— We assume that every number is written the proper way that is taught
in German (or rather Bavarian) elementary school. In particular, we will
work with only a small set of possible stroke types from which we as-
semble all numbers.

Some of these points we will repeat when they become relevant. The same
points will hold true for all examples throughout this thesis: Some will present
very concrete applications, some will be more general.

The order of the chapters will loosely follow the development process of
ALICE:HWR. And while Chapter 2 contains the foundation for everything, the
others chapters are more or less independent from each other. Their topics are
the following:

1.4 Structure & notation 35

In Chapter 2 we give a short, self-contained introduction to the three main
mathematical theories used to build ALICE:HWR: Projective Geometry, Fuzzy
Logic and Formal Concept Analysis. Afterwards we discuss the used base
model for strokes and how strokes can be described by features. Lastly, we
give an informal overview of how ALICE:HWR works and describe all features
it uses.

In Chapter 3 we discuss how strokes can be deformed in different ways.
These deformations will all be motivated by concrete visual incentives and,
in one way or another, preserve the appearance of the strokes. We will also
present applications both for ALICE:HWR and otherwise.

Chapter 4 then contains the three main methods ALICE:HWR uses to actu-
ally classify strokes.

In Chapter 5 we introduce a new way to model and describe strokes — in
particular their shape. We also show that most transformations introduced in
Chapter 3 (which were based on practical considerations) operate in a reason-
able way on this new model. Lastly, we discuss how this descriptions allow for
similar descriptive analyses as hand-crafted features do.

In Chapter 6 we come back to ALICE:HWR and describe in detail how it uses
the ideas from the previous chapter. Moreover, we explain a few points that are
essential for the software to work, but which were not introduced beforehand.
Also, we give an assessment of the the recognition rate ALICE:HWR achieves.

We close in Chapter 7 with presenting a selection of questions and problems
based on the result of this thesis that should be tackled next.

The appendices then contain the manual for the companion iBook [67] for
this thesis which shows an interactive demonstration of many concepts presen-
ted. Moreover, the complete code for ALICE:HWR version 4 is laid out. This
version is the one that is currently (as of January 2019) used in the ALICE iBook
[27].

1.4.2 Notation

Throughout this thesis, we will talk about many concepts which have different
meanings in our mathematical framework compared to colloquial English. To
emphasise this difference, we will use different fonts at three specific occur-
rences:

36 1 Writing on touchscreens in technology, education & mathematics

First, when we talk about specific symbols written or drawn on a touch sur-
face (and which we want to recognise afterwards), we write their names in
typewriter font. E.g. when we talk about the mathematical object

Cp,r := {x ∈ R2 | ‖x− p‖2 = r}

of all points which have a fixed distance to a fixed point, we will call it a circle.
However, when a circle is drawn on a touchscreen, we will call it a circle.

Likewise, we will denote the number of elements of the set {a, b, c, d, e} by 5

or by five; but the S-like symbol representing this number will be called 5 or
five.

Second, when we talk about specific geometric properties of lines and sym-
bols drawn on a touch surface, we will write their name in small capitals. E.g.,
we might talk about the length of a vector (i.e. its Euclidean norm) as a math-
ematical concept or about the Length of a stroke on a touchscreen as one of its
specific geometric features.

Third, we will give heuristic rules in italic and centralised text. E.g. we might
say that

all digits from 0 to 9 consist of at most two strokes.

Fourth, we write a 4 at the right side of a page after the end of definitions,
remarks and examples in order to clarify where “ordinary” prose starts again.

Fifth, some mathematical notation:

— On R we denote rounding down to the next integer by b.c, round up by
d.e and “ordinary” rounding by b.e.

— We denote the n× n unit matrix (over any ring) by In.

— We denote the power set of a set X by P(X).

— When we talk about subsets we will use the symbols⊂ and⊆ interchange-
ably — both will allow for the subset to be equal to the whole set.

— We abbreviate the zero vector and the all-one vector in Rm by

0 = (0, 0, ..., 0)T and 1 = (1, 1, ..., 1)T.

1.4 Structure & notation 37

Figure 1.7: Depicting strokes qualitatively and quantitatively.

Sixth, when we discuss strokes written on a touchscreen, we will usually do
this either qualitatively or quantitatively. In the first case, we are more inter-
ested in the image drawn or created on the screen, which is the object the user
relates to while writing. In the second case, we are interested in the underlying
mathematical object which is used for the subsequent analysis.

When we draw/visualise a stroke in the first, qualitative situation we will do
this via a brush stroke (created in the graphics software Krita). In the second,
quantitative one we will talk about stroke as an ordered list of points. So
we will show them as small circles representing these point connected by line
segments indicating both the order of the points and the picture on the screen
when the stroke is properly rendered.22 See Figure 1.7.

When we draw strokes, and we deform or change them in any way, the
original stroke will be blue while the alterations will be orange.

22In general, we will not indicate which point is the first or the last. So the writing order is
ambiguous; but it will be minuscule in the context of these images.

38 1 Writing on touchscreens in technology, education & mathematics

2 A mathematical model of

handwriting

... if you want to talk about a person walking, you have to also describe the
floor, because people don’t just dangle their legs around in empty space.

— Alan Watts, Out of your Mind

This chapter deals with the general set-up of this thesis. As alluded to in Sec-
tion 1.3, handwriting recognition is, in its essence, a purely practical problem.
In the following chapters, however, we will explore mathematical properties
of various aspects of strokes and, therefore, we will assume specific situations.
So, the ideas and results here might not be transferable one-to-one to an actual
HWR program.

40 2 A mathematical model of handwriting

2.1 Mathematical fundamentals

To start, we will give a self-contained introduction to Projective Geometry,
Fuzzy Logic and Formal Concept Analysis. Almost all of this information can
be found in [55], [33] and [15], respectively, but we will include it here explicitly
since we will use it to various degrees in the subsequent chapters. Readers who
are familiar with the notion of

— homogeneous coordinates (used for the general geometric set-up),

— fuzzy sets (used as a valuation function/likelihood predictor for various
statements) and

— contexts, concepts and attribute exploration (used to find decision rules
for the classifier),

should feel free to skip the next few pages and start directly with Section 2.2
about the basic model of handwriting recognition.

2.1.1 Projective Geometry

There are many different entry points into Projective Geometry. For ex-
ample, from a purely algebraic point of view, projective spaces are sets of one-
dimensional subspaces in a linear vector space over any field. Here, however,
we want a more geometric and descriptive approach.

First of all, for handwriting recognition we are only interested in the real
plane R2 — here called the drawing plane — since this models the touchscreen
we write on. Then we ask the practical question: How can we determine the
intersection of two lines without having to consider the separate case of the
lines being parallel? The answer to this is simple: We add “points at infin-
ity” which are then precisely the intersection points of parallel lines. Again,
we could make this construction on a conceptual level by adding an abstract
point for every bundle of parallel lines to the plane and then explain how the
geometry of this new plane-like object looks like. This is done, for example, in
Foundations Of Geometry. Here, we choose a more concrete way instead.

2.1 Mathematical fundamentals 41

Imagine the plane R2 embedded into R3 as any affine plane which does not
contain the origin. In particular, we can look at the embedding

(x, y) 7→

x
y
1

 .

I.e., the plane we embed to is z = 1, and we call this the standard embedding,
which we will use from now on. The act of converting 2D-coordinates to 3D-
vectors is called homogenisation.

The crucial part now is that we identify all scalar multiples λP, λ ∈ R× of
this vector P with the same point. I.e. we represent any point in the embedded
plane with the line running through it and the origin. We can retrieve the
original Euclidean point simply via de-homogenisationx

y
z




x
z
y
z
1

 (x
z

,
y
z

)
.

This is illustrated in Figure 2.1.

λ

x
y
1



(x, y)

Figure 2.1: An embedding of the projective plane.

42 2 A mathematical model of handwriting

In particular, this means that every line through the origin in R3 that inter-
sects the embedded plane represents a point in our original drawing plane.
This leaves the question: What do lines parallel to this plane represent? These
are precisely the points at infinity we talked about before. Lines in R3 given
by
(x

y
0

)
(or any non-zero multiple of it) can be imagined to intersect the plane

z = 1 in a point which lies in direction (x, y), but infinitely far away. This can

be demonstrated by considering the vector
(

tx
ty
1

)
for a t ∈ R\{0}. By definition

it represents the same point as
(x

y
1
t

)
. On the one hand, when t approaches in-

finity this vector converges towards
(x

y
0

)
and, on the other hand, the associated

point (tx, ty) in the drawing plane moves towards infinity in direction (x, y).
Combining the above ideas, we can consider the set

PR =
R3\{0}

R×

of all vectors in R3 modulo scalar multiples. The elements of PR are equival-
ence classes

[P] =
{

λP
∣∣ λ ∈ R×

}
,

however, we will usually omit the square brackets and only write the repres-
entatives. If the last coordinate is zero, it represents a point at infinity, and if it
is non-zero, it represents a finite point from our original drawing plane.

Note, that most constructions below utilise explicit representatives and,
therefore, we have to check whether they are unaffected by re-scaling of these
representatives.

Next, we do something similar for lines: Every line in R2 is given by an
equation of the form

ax + by + c = 0.

We associate the non-zero vector
(a

b
c

)
with it.1 Scaling the equation by a non-

zero real number does not change its solution, so we can, again, represent the

1It is better and more sound to use elements of Hom(R3, R) or at least row vectors here. But
the description we give here will suffice.

2.1 Mathematical fundamentals 43

line by any scalar multiple of the vector
(a

b
c

)
.

In R3, we can consider the plane spanned by the origin and such a line within
the embedding plane z = 1. Then,

(a
b
c

)
is just one of its normal vectors. And,

the other way around, any such vector 6= 0 represents its normal plane which
intersects the embedding plane giving a line in the original drawing plane. The
only vector which does not intersect the plane is

(0
0
1

)
, and we call the line it

represents the line at infinity. With a similar argument as above for the points,(0
0
1

)
is the normal vector of the x, y-coordinate plane which is parallel to z = 1

and hence they do intersect “infinitely far away”.
This leads to the set

LR =
R3\{0}

R×

representing all lines, in which all represent finite lines form our drawing plane
except for

(0
0
1

)
.

Figure 2.2: Incidence in the projective plane.

The beauty of these definitions starts to show when we consider the incid-
ence relation of points and lines. A finite point given by

(x
y
1

)
lies on a finite

line
(a

b
c

)
if and only if ax + by + c = 0. Moreover, this is compatible with the

vectors in R3 representing our geometric objects:
(x

y
1

)
represents a line through

44 2 A mathematical model of handwriting

the origin and
(a

b
c

)
represents the plane perpendicular to it. This line lies in

this plane if and only if
(x

y
1

)
is perpendicular to

(a
b
c

)
. Thus the same holds for

their intersections with the embedding plane, which are the points and lines in
the drawing plane we are actually interested in. You can see this in Figure 2.2.

It is a natural choice to extend this to all points and lines: For any P ∈ PR

and l ∈ LR we say that P lies on l if

PTl = 0.

Note that this definition is independent of the choice of the representatives.
I.e., we can scale P and l by any non-zero number without changing the fact
whether their scalar product is zero or not. In particular we get the proposition
that every point at infinity lies on the line at infinity. The reason is simply that

(
x y 0

)
·

0
0
1

 = 0.

All the above considerations give rise to the following definition.

Definition 2.1.1: The real projective plane is the triple

RP2 := (PR,LR, IR)

with IR ⊂ PR × LR a relation given by PIRl ⇐⇒ PTl = 0. This we call the
incidence relation of RP2. 4

A key feature of projective planes is that every two points have a unique line
connecting them and every two lines have a unique intersection point. When
projective planes are constructed as above, these connections and intersections
can be explicitly computed.

2.1 Mathematical fundamentals 45

Lemma 2.1.2:

— Let P, Q ∈ PR be distinct points. Then P∨Q := P×Q ∈ LR is the unique line
on which both these points lie.

— Let l, m ∈ LR be distinct lines. Then l ∧m := l ×m ∈ PR is the unique point
which lies on both these lines.

The next major point in understanding this projective construction is to
define structure-preserving maps on it — with the incidence relation being the
structure that should be preserved. We want to think of them as perspect-
ive distortions — e.g., what happens when one looks at a chess board from an
angle. This directly leads to the following definition.

Definition 2.1.3: A projective transformation is a map given by a mat-
rix M ∈ GL3(R) which operates on PR via P 7→ MP and on LR via
l 7→

(
M−1)T l. 4

Note that matrices that are scalar multiples of each other induce the same
map on PR and LR and, consequently, the same projective transformation.

That this is indeed structure-preserving is easy to see: We have

(MP)T
((

M−1
)T

l
)
= PT MT

(
M−1

)T

︸ ︷︷ ︸
=I3

l = PTl

for all points P, lines l and projective transformations M. So, any point is in-
cident to a line if and only if the same holds for the images under M.

Proposition 2.1.4: Let A, B, C, D and A′, B′, C′, D′ be two point quadruples, each in
general position. That means that no three points of a quadruple lie on a common line.
Then there exists a unique projective transformation M such that

MA = A′, MB = B′, MC = C′, MD = D′.

The last proposition is not surprising. A projective transformation has nine
coordinates/entries and hence eight degrees of freedom since we can scale the
matrix by scalars. Similarly, every point has two degrees of freedom and so

46 2 A mathematical model of handwriting

the above four equations impose two linear conditions each on the entries of a
projective transformation.

This is all we can and will say about the basic structure of the real projective
plane for now. Before we continue with the next topic, however, we will shortly
talk about two notions which we will use in this thesis.

First, there are higher-dimensional projective spaces RPd, for an integer
d ≥ 1. Their point sets are defined analogously as

Rd+1\{0}
R×

.

The dual objects there are then given by hyperplanes and not by lines. But
we will only use the point and the basic fact that scalar multiples of vectors
represent the same point again.

Second, for vectors X1, ..., Xn ∈ Rn we set

[X1, ..., Xn] := det

 | | · · · |
X1 X2 · · · Xn

| | · · · |

 ,

with these n vectors as the columns of the matrix. Mostly, we will be interested
in the case n = 3, i.e., when we deal with representatives of points in RP2.

A variant of the first fundamental theorem of projective invariant theory
states that every projectively invariant function of point configurations in RP2

can be expressed via such determinants with the points appearing as the
columns of the determinants.2 The points we deal with — as discretisations
of strokes — will never be in a stable relation to each other. Nevertheless, we
will use this theorem as one motivation in Chapter 5 when we describe one
possible characterisation of the shape of strokes.

The central concept in understanding why determinants of points are pre-
dominant in projective geometry is the following lemma.

2See [55] for more on that.

2.1 Mathematical fundamentals 47

Lemma 2.1.5: Let A, B, C be three finite points in RP2 in standard embedding. I.e.,
their last coordinate is equal to 1. Then, 1

2 [A, B, C] is the signed area of the triangle
ABC.

Idea of proof. We can use a Euclidean transformation to map A to the origin
and B onto the x-axis and then the statement can be shown by computing the
determinant explicitly.

A consequence of this lemma is that three points A, B, C are collinear if and
only if [A, B, C] = 0.

In a general projective setting, it makes little sense to use this interpretation
of determinants as some points in the determinant might lie at infinity. How-
ever, it is possible to generalise statements and proofs in the Euclidean plane
to the projective one via determinants.

As we will use Projective Geometry mainly to describe our data, the basic
definitions presented are everything we need.

2.1.2 Fuzzy Logic

Fuzzy Logic concerns itself to describe properties that do not hold with cer-
tainty — the prime example here in this section will be whether a person can
be considered old and how that can be modelled based on age.

And of course, this notion of uncertainty is also a prominent phenomenon
in handwriting recognition (and other applications of pattern matching and
machine learning): We will rarely be 100% sure that a line drawn on a touch
surface is, say, the number 3, but we will be able to give a gauge or likelihood
for how much the recorded stroke resembles a 3.

All definitions and propositions here in this section can be found in [33].

We replace the concept of whether “a property holds” by “being the element
of a set” because it is much more palpable. Moreover, we will also describe sets
by functions, which makes it much easier to introduce a level of ambiguity.

48 2 A mathematical model of handwriting

Given any base set or universal set X there is the well-known bijection

P(X) −→ {0, 1}X

A 7−→


X → {0, 1}

x 7→

1, if x ∈ A

0, if x /∈ A

 .

It maps any subset to a function — which is sometimes called the characteristic
function or indicator function of A — which simply encodes whether an ele-
ment of X lies in A by the integers 0 and 1. When we now want to generalise
the notion of a set to account for uncertainty we can do that easily with indic-
ator functions.

Definition 2.1.6: Given a base set X, a fuzzy (sub-)set of X is a function
m : X → [0, 1]. 4

Every element x ∈ X with m(x) = 1 is thought to be definitely an element
of this “set” and an element m(x) = 0 is thought to be definitely not in the set.
For all other element the values in-between 0 and 1 describe varying degrees
of “maybe”. To make it a bit easier to talk about this new definition of sets
one usually gives a name to the abstract set, say A, and calls the associated
function mA : X → [0, 1] the membership function of A. With this we can
make statements like

Element x mostly likely lies in A, because mA(x) = 0.99999.

Before we illustrate fuzzy sets by an example, a few more basic definitions:

Definition 2.1.7: Let X be a base set and A a fuzzy subset of it. The complement
Ā of A is defined by the membership function mĀ(x) := 1−mA(x). The fuzzy
set A is called a crisp set if mA(X) ⊆ {0, 1}. 4

So, crisp sets are just ordinary sets for which the membership function takes
the shape of an indicator function. Moreover, the definition of the complement
to any fuzzy set is very natural in the sense that it is compatible with indicator
function of ordinary sets. We will see similar constructions soon.

2.1 Mathematical fundamentals 49

Example 2.1.8: Let X = R+
0 be the base set describing the age of a human in

years. Then we can consider the fuzzy set OLD with the following membership
function:

mOLD(x) :=


0, if x ≤ 20,
1

40 x− 1
2 , if 20 < x ≤ 60,

1, if 60 < x.

Its graph can be seen in Figure 2.3.

mold =: myoung

mold

20 40 60 80

1

Figure 2.3: A simple function modelling how old or young someone is.

This is a very crude and simplistic model to describe when a person is OLD.
With a life expectancy of roughly 80 years it is at least somewhat reasonable to
declare the upper quartile as OLD and the lower quartile as OLD =: YOUNG. So
it makes sense that mOLD(40) = 0.5 with the graph of the membership function
being centrosymmetric with respect to this point. We could say that a person
who is 40 years is both OLD and YOUNG at the same time; or neither of them.
So, this model might be very simplistic, but at least it is not entirely flawed.
However, we can improve it.

Note that the above function is piecewise linear which implies that 20 years
and 60 years are hard transition points for being OLD and YOUNG. To allow for
more flexibility we consider the following (smooth) S-shaped function:

mOLD(x) :=


1

3200 x2, if x ≤ 40,

− 1
3200(x− 80)2 + 1, if 40 < x ≤ 80,

1, if 80 < x.

50 2 A mathematical model of handwriting

mold =: myoung

mold

20 40 60 80

1

Figure 2.4: Another function modelling how old or young someone is.

Again a symmetric function, which is shown in Figure 2.4. This is already
better, since the OLD-ness of a person gradually increases with age.

Lastly, one could also say that getting OLD does not even start before turning
60, i.e.,

mOLD(x) :=



0, if x ≤ 60,
1

200(x− 60)2, if 60 < x ≤ 70,

− 1
200(x− 80)2 + 1, if 70 < x ≤ 80,

1, if 80 < x.

Applying the same logic to being YOUNG results in

mYOUNG(x) :=


− 1

200 x2 + 1, if x ≤ 10,
1

200(x− 20)2, if 10 < x ≤ 20,

0, if 20 < x.

These functions are illustrated in Figure 2.5. We see that OLD is not the same as
YOUNG; in contrast to what we assumed in the first two versions above. This
makes sense even in colloquial English, since YOUNG is not the complementary
attribute to OLD, but its polar opposite. This shows that one must be careful
modelling real-world phenomena via fuzzy sets. 4

The attribute names old and young used in the example above to evalu-
ate, judge or organise the elements of the base set via fuzzy values are called
linguistic variables. They allow the classification of elements via a natural lan-
guage which makes decision rules derived from them in practice much more

2.1 Mathematical fundamentals 51

mold

mold

myoung20 40 60 80

1

Figure 2.5: Asymmetric membership functions.

comprehensible. E.g., saying

Person x is rather old

is usually much more intelligible that

Person x’s age has a membership value of 0.9 with respect to the fuzzy set old.

And here we see the applicability for handwriting recognition, as we want to
make precisely such qualitative statements like

this recorded stroke looks more like a 3 than a 7,

which we now can easily model via fuzzy sets.

There is a lot more to say about Fuzzy Logic. For our purposed though, the
basic definition above is almost enough. What is still missing is how we can
combine fuzzy sets. More precisely, is there a way to intersect and join fuzzy
sets, such that for crisp sets we get the usual operations? To answer that, we
introduce the concept of t-norms.

Definition 2.1.9: A t-norm is a binary operator � : [0, 1]× [0, 1] → [0, 1] with
the following properties:

— Commutativity: x� y = y� x for all x, y ∈ [0, 1].

— Associativity: (x� y)� z = x� (y� z) for all x, y, z ∈ [0, 1].

— Monotonicity: a� b ≤ c� b for all a, b, c ∈ [0, 1] with a ≤ b.

— The number 1 is an identity element: 1� x = x for all x ∈ [0, 1].

52 2 A mathematical model of handwriting

4

Note that monotonicity also holds in the second argument due to the com-
mutativity. The prime example for a t-norm is the ordinary product x · y of two
real numbers — and that is the reason for the choice of the symbol �. Other
important examples are

— the minimum t-norm (x, y) 7→ min{x, y},

— the Łukasiewicz t-norm (x, y) 7→ max{0, x + y− 1} and

— the Hamacher t-norms (x, y) 7→

0, if p = x = y = 0,
xy

p+(1−p)·(x+y−xy) , else,

for any p ∈ R+
0 .

The last one is itself a direct generalisation of the ordinary product (choose
p = 1), it is the only t-norm given by a rational function and it is related
relativistic physics.

Fuzzy values share many properties with probabilities even though they are
technically vastly different things. However, after all, the interpretations of
statements like

The element x is in a fuzzy set with an 80% likelihood

and

The event A occurs with an 80% probability

are very similar. So it is no surprise that many ideas in Fuzzy Logic are mod-
elled not only after classical Set Theory but also after Probability Theory. In
particular, the probability of two (independent) events happening at the same
time is equal to the product of the individual probabilities. This leads to the
idea that the likelihood of an element being in two fuzzy sets should be the
product of the respective membership functions.

In practice, this might lead to unsatisfying results depending on what the
fuzzy sets model. And this is where t-norms come into the picture: as a gener-
alisation of the product of two real numbers.

2.1 Mathematical fundamentals 53

Definition 2.1.10: Given two fuzzy sets A, B on the same base set X and a t-
norm �, the intersection A ∩ B of A and B (with respect to �) is given by the
membership function

mA∩B(x) := mA(x)�mB(x).

4

Before we show some examples, we give two fundamental properties of t-
norms.

Proposition 2.1.11: Let � be any t-norm. Then the following properties hold:

(1.) For all x, y ∈ [0, 1] we have

x� y ≤ min{x, y}.

(2.) For all x ∈ [0, 1] we have
0� x = 0.

Note how the second property above makes sense in our context of general-
ised sets: If an element x is not in a (fuzzy) set A, it will not be in an intersection
of A with another (fuzzy) set.

There are many more properties of t-norm — e.g. whether they are continu-
ous or have the Archimedean property3 — but these two fundamental ones are
enough for our considerations.

Example 2.1.12: Computing the t-norm of two given membership functions of
fuzzy sets is, in general, tedious and not very insightful. So, in order to illus-
trate the intersection of fuzzy sets, let us look at their graphs and describe the
intersection membership function only qualitatively.

Consider the base set X = R and a fuzzy set A given by a triangular member-
ship function and a fuzzy set B given by a bell-shaped membership function in

3This means that for all x, y ∈ (0, 1) there exists an n ∈N such that x� ...� x︸ ︷︷ ︸
n times

≤ y.

54 2 A mathematical model of handwriting

Figure 2.6.

1 1 1

1 1 1

Figure 2.6: Graphs of fuzzy sets and their intersection w.r.t. six different t-norms.
Top row: product (left), minimum (middle) and Łukasiewicz norm (right).
Bottom row: Hamacher norm for p = 2 (left), p = 30 (middle) and
p = 100 (right).

Observe the intersection with respect to the minimum norm. It is given by the
intersection of the areas limited by the x-axis and the graphs of the membership
functions. This is the reason why the intersection of fuzzy sets is often defined
by the minimum as the canonical way. Moreover, this allows for an interpreta-
tion of the area below the graphs as the actual fuzzy set. 4

In order to define the union of fuzzy sets, we can do two things: Define a
dual concept to t-norm, called t-conorm, or use De Morgan’s laws from Set
Theory and consider the map

(x, y) 7→ 1− ((1− x)� (1− y)).

As it turns out, the results are the same. For the range of this thesis, however,
we do not need that. We will use fuzzy sets to describe various uncertain
geometric properties and determine the likelihood of combinations of them via
t-norms.

2.1 Mathematical fundamentals 55

2.1.3 Formal Concept Analysis

Formal Concept Analysis (FCA for short) is an all-purpose data analysis and
data visualisation technique that can be very useful, given the right circum-
stances. The basic idea is to describe objects by specific attributes and then
analyse what a combination of certain attributes can say about the correspond-
ing objects.

This is precisely what we want to do in handwriting recognition: We have
lines drawn on a touchscreen, we measure geometric properties of them and
then we want to make deductions on how the lines look by just considering the
measured features.

All definitions and propositions here in this section can be found in [15].

Definition 2.1.13: A (formal) context is a triple (G, M, I) of a set G of objects, a
set M of attributes and an incidence relation I ⊂ G×M. 4

Subsequently, we will call these objects just ’contexts’ and not ’formal con-
texts’. This is also true for all other definitions here in this section: There are
formal objects, formal attributes, formal concepts, formal implications, and so
on. The adjective ’formal’ is added, because all these terms carry much mean-
ing in colloquial speech, especially in the areas of data analysis FCA is mostly
used in. However, for the purely mathematical considerations here, we drop it.

The incidence relation of a context is easily depicted as a table in which a cell
has an ’x’ if and only if the object of its row and the attribute of its column are
together in the relation.

Example 2.1.14: Consider the mathematicians

G = {Gauss, Noether, Faltings, Euclid, Jordan}

56 2 A mathematical model of handwriting

as objects and the attributes

M = {WAS BORN AFTER 1000 CE, IS MALE, IS GERMAN,

HAS A FIELDS MEDAL, HAS A THEOREM NAMED AFTER THEM}.

2.1 Mathematical fundamentals 57

Then the table (with shortened attribute names)

1000 CE MALE GERMAN FIELDS THEOREM

Gauss x x x x
Noether x x x
Faltings x x x x x
Euclid x x
Jordan x x x

represents a context (G, M, I). 4

After defining a structure in mathematics, the obvious follow-up question
is, how the sub-structures look like. For any context we can easily define sub-
contexts by subsets of the object set or the attribute set. But this just means
looking at sub-tables and it is neither handy nor interesting. We get the proper
sub-structures by formalising how sets of objects and attributes relate to each
other.

Definition 2.1.15: Let (G, M, I) be a context and define the two maps

′ : P(G)→ P(M), A 7→ {m ∈ M | ∀g ∈ A : gIm}

and
′ : P(M)→ P(G), B 7→ {g ∈ G | ∀m ∈ B : gIm}

They are called derivations. 4

They describe the attributes a set of objects have in common and, dually, the
objects in which a set of attributes appears together. The most important prop-
erty of these maps for us is the following.

Proposition 2.1.16: The maps ′′ : P(G) → P(G) and ′′ : P(M) → P(M),
obtained from concatenating the derivations above, are hull (or closure) operators. I.e.,
they fulfil the following properties for all X, Y ⊆ G or X, Y ⊆ M.

— Extensiveness: X ⊆ X′′.

— Idempotence: X′′′′ = X′′.

58 2 A mathematical model of handwriting

— Monotonicity: X ⊆ Y =⇒ X′′ ⊆ Y′′.

Now, the back-and-forth between objects and attributes via the derivations
gives us the desired sub-structures.

Definition 2.1.17: Let (G, M, I) be a context and A ⊆ G and B ⊆ M. Then the
pair (A, B) is called a concept of the context if A′ = B and B′ = A. In this case,
A is called the extent and B the intent of this concept. The set of all concepts
of the context (G, M, I) is denoted by B(G, M, I). For single objects g ∈ G and
attributes m ∈ M we write g′ and m′ instead of {g}′ and {m}′, respectively, and
we call g′ an object intent and m′ an attribute extent. 4

This means, (A, B) is a concept if the objects in A have exactly the attributes
in B in common and the attributes in B appear together exactly in the objects in
A. I.e., in a concept, the objects uniquely describe the attributes and vice-versa.

There are many properties of concepts. The next proposition lists the most
important and fundamental ones.

Proposition 2.1.18: Let C = (G, M, I) be a context.

— The derivations in C reverse the order of sets. I.e.,

A1 ⊆ A2 =⇒ A′1 ⊇ A′2

for any subsets Ai of either G or M.

— Let (A, B) be a concept of C. Then, A and B are hulls. I.e., A = A′′ and B = B′′.

— When we order concepts of C via

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2,

the set of concepts with this order (B(G, M, I),≤) is a complete lattice. That
means it is a partially ordered set, in which supremum and infimum of arbitrary

2.1 Mathematical fundamentals 59

sets exist. Explicitly, they are

∨
t∈T

(At, Bt) =

((⋃
t∈T

At

)′′
,
⋂
t∈T

Bt

)

and ∧
t∈T

(At, Bt) =

(⋂
t∈T

At,

(⋃
t∈T

Bt

)′′)
,

respectively.

Example 2.1.19: Looking back at our context of mathematicians from Example
2.1.14

1000 CE MALE GERMAN FIELDS THEOREM

Gauss x x x x
Noether x x x
Faltings x x x x x
Euclid x x
Jordan x x x

we can consider the objects A = {Gauss, Noether}. Then,

A′ = {1000 CE, GERMAN, THEOREM},

as these are the attributes Gauss and Noether have in common.
Moreover,

A′′ = {Gauss, Noether, Faltings}.

This means, that not only Gauss and Noether are German mathematicians, born
in the last millennium with a theorem named after them, but Faltings is one, too.
These three properties describe exactly these three mathematicians; at least here
in this context. So,

({Gauss, Noether, Faltings}, {1000 CE, GERMAN, THEOREM})

is a concept of this context. 4

When applying FCA to actual data one rarely has attributes that fall under a

60 2 A mathematical model of handwriting

dichotomy of ’present’ and ’not present’. Often there are real-valued quantit-
ies to consider like price, weight or volume or attributes with several different
types like colours or names of suppliers. In order to get ordinary contexts as
we introduced them above, one has to make a few additional definitions.

Definition 2.1.20: A multi-valued context is a quadruple (G, M, W, I) with ob-
jects G, attributes M, a value set W and an incidence relation I ⊂ G×M×W,
such that for all g ∈ G and m ∈ M the implication

(g, m, w1) ∈ I ∧ (g, m, w2) ∈ I =⇒ w1 = w2

holds. 4

This condition seems a bit technical at first. It is a lot easier to view the at-
tributes in a multi-valued context as functions G → W and then this condition
just means that these functions are well-defined. And with this functional view
in mind we often write m(g) = w instead of (g, m, w) ∈ I. Unsurprisingly,
multi-valued contexts are once again displayed as tables.

Example 2.1.21: Considering the objects/books

G = {Lord Of The Rings, Atlas Shrugged},

the attributes
M = {PRICE, PAGES, AUTHOR},

and the values
W = {Tolkien, Rand} ∪ R,

the following table represents a multi-valued context (G, M, W, I):

PRICE PAGES AUTHOR

Lord Of The Rings 19.98 1134 Tolkien
Atlas Shrugged 7.89 1069 Rand

4

2.1 Mathematical fundamentals 61

Such a multi-valued context can and will be transformed into an ordinary
one via a process called scaling. It is one of the most important steps in mod-
elling a useful context from actual data.

Definition 2.1.22: Given a multi-valued context (G, M, W, I), a scale for an at-
tribute m ∈ M is a context Sm = (Gm, Mm, Im) with m(G) ⊆ Gm. 4

What this means is, that the values (or ranges of values) of W get turned into
new attributes. However, instead of explaining this process in general, we will
consider two illustrative examples.

Example 2.1.23: Consider the following multi-valued context that models cars
and some of their properties.

PRICE NUMBER OF SEATS MANUFACTURER

Skyline 20500 4 Nissan
Ford GT 300000 2 Ford
Fiesta 13000 4 Ford

Now we consider every value that can occur for the price, the number of seats
and the manufacturer as a new attribute. For the (more or less continuous) val-
ues which describe the price, we use adequate bins/intervals for the attributes.
So, instead of saying that the PRICE value of a Skyline is 20500 we say that the
object Skyline has the attribute PRICE BETWEEN 10000 AND 100000.

After reformulating the NUMBER OF SEATS and the MANUFACTURER in a sim-
ilar way, we might get:

PRICE / 1,000 SEATS MANUFACTURER

0–10 10–100 >100 1 2 3 4 5 NISSAN BMW FORD

Skyline x x x
Ford GT x x x
Fiesta x x x

Note that we could drop the third manufacturer BMW since no car has it as
an attribute. We did include it in the first place to illustrate that scaling might
introduce values that were not present before.

62 2 A mathematical model of handwriting

In subsequent analyses we might ask questions like

Can three people sit in the car?

But in the last context, there is no connection between the different attributes
encoding the number of seats. In reality, three people can sit in any car that has
three or more seats. That means that there is an internal order for the number of
seats: If a car has four seats, it also has three seats. In order to account for this,
we use an ordinal scale to describe this attribute. That means that

— if we have a value range in the multi-valued context that is linearly ordered
and

— if an object in the scaled context has an attribute m,

then it also shall have all attributes that are smaller than m; or larger, depending
on what they model. We can do this for the number of seats and, of course, for
the price, too. Against prevalent belief, car manufacturers cannot be ordered, so
for these attributes, we do not use an ordinal scale.

PRICE / 1,000 SEATS MANUFACTURER

0–10 10–100 >100 1 2 3 4 5 NISSAN BMW FORD

Skyline x x x x x x x
Ford GT x x x x x x
Fiesta x x x x x x x

A different scale we can use is the dichotomic scale. It encodes yes-no rela-
tions and can be applied to every context. For multi-valued context like the one
above this means to compress each range of values into two bins. E.g. whether
the price is below or above 50,000 or whether the manufacturer is Nissan or not.

However, we can apply a dichotomic scale even to regular (single-valued)
contexts. Consider the simple (and unspecified) example below.

m1 m2 m3

g1 x x
g2 x x x
g3 x

2.1 Mathematical fundamentals 63

For every attribute mi we introduce the complementary attribute mi which
shall be present in an object if and only if mi is not. This results in:

m1 m1 m2 m2 m3 m3

g1 x x x
g2 x x x
g3 x x x

There are many more ways to scale a (multi-valued) context, see [15], but these
two are the ones we will use in this thesis. 4

With these constructions, we can model internal relations between attributes
that might have gotten lost during the transition from multi-valued to ordinary
contexts. The idea that certain attributes imply the presence of other attributes
can be formalised and generalised. We do this now in a very abbreviated way
which is sufficient for the use in this thesis. For a thorough explanation we
refer to [15] and [14] again.

Definition 2.1.24: Let C = (G, M, I) be a context and A, B ⊂ M be sets of at-
tributes. The pair (A, B) is called an implication and is denoted by A → B. We
say an implication holds in a context if every object that has all attributes in A
also has all attributes in B. I.e., if A′ ⊆ B′. We call A the premise and B the
conclusion. 4

These implications obey the same rules implications introduced in logic do.
E.g. B̄ → Ā holds if A → B holds, and A → C holds if A → B and B → C do.
In particular, given a set of implications that hold in a context, we can find and
build other implications that hold, too.

A main result in Formal Concept Analysis is that, for a context with a finite
attribute set M, we can describe and explicitly construct a minimal generating
set of implications. I.e., a set of implications that hold in a context, from which
we can deduce every other implication, and which cannot be smaller. This
Duquenne-Guigues basis, named after the discoverers of this object (see [19]),
can be found via an algorithm called attribute exploration.

If applied to a given context, it simply produces this particular set of im-
plications. In practice it has a much bigger significance: most contexts are a

64 2 A mathematical model of handwriting

small snapshot of all possible objects. So, attribute exploration might find im-
plications that hold for these examples, but not in general. The implications
are found in a specific order which allows a user/supervisor to check every
implication for universality and add objects as counterexamples if necessary.

For example, we might want to analyse certain vertebrates. If we start with
a context containing wolves, bears and gorillas, attribute exploration might
propose the fact that all vertebrate are mammals and have hair. Then we can
add animals that are vertebrates but are not mammals or do not have hair to
complete the picture of vertebrates.4

In handwriting recognition this might look like the following: we build a con-
text from many samples of handwritten strokes for which we compute certain
geometric properties. Due to sampling anomalies, all 3’s we recorded might
have a loop in the middle and that all 8’s have their start point at the very top.
However, there are of course ways to write a 3 without a loop and some people
start writing an 8 in the middle near the intersection. Adding them allows us
to refine the context before an extensive analysis.5

There is a lot to say about how implications in contexts work and what can
be done with them. But we will be content with the basic Definition 2.1.24.

In [14] Ganter and Kuznetsov introduce the notion the hypotheses for con-
texts. These are special implications and we will introduce them in Section 4.2
and describe their use in ALICE:HWR.

4By definition, all mammals have hair. So not all combinations of these attributes and their
negations can be added.

5Later we discuss how it might be beneficial to introduce separate categories for these different
writing styles.

2.2 A base model for strokes 65

2.2 A base model for strokes

In Section 1.3 we introduced the general HWR problem in a relatively informal
way. Here we want to model this problem mathematically stringently. As
already mentioned at the beginning of this chapter, the subsequent discussion
might not necessarily be transferable to praxis. We start our considerations of
“theoretical” handwriting recognition by giving a very broad definition of the
terms strokes and features. Afterwards, we present how these ideas form the
basis for ALICE:HWR.

2.2.1 Strokes

The central objects used in (feature-based) HWR are strokes. Ideally they would
be curves, i.e., continuous (or even smooth) functions [0, 1] → R2. This ap-
proach is used in praxis, for example by Frenkel and Basri in [12].

In this thesis, strokes will be finite sequences of points; discretising the con-
tinuous finger movement the user makes on a touch screen.6 What constitutes
a point here is up to debate and is determined by what information is recor-
ded. On the basic level, a point consists of x- and y-coordinates, but additional
things like timestamps, pressure and the azimuth of a pen/stylus can be added.

Definition 2.2.1: Given an integer d ≥ 2, a point is an element of Rd. For an

integer n ≥ 3, a stroke is an element of
(

Rd
)n

. 4

The number d determines how many different parameters of a point are
recorded. For the scope of this thesis, we assume that it is equal to 2 — so
we assume that we only record x- and y-coordinates. The number n, called
the sampling rate of the stroke, determines by how many points a curve is
sampled. In practice, it usually ranges between 20 and 100. For us, it is crucial
that it is “large enough”. I.e., when specific terms do not make sense (e.g. a
denominator becomes zero) when n ≤ 3, we can ignore it, as we will usually

6The reason we consider the discrete case is that we want to apply our results directly. Con-
tinuous models might be good in theory, but they must be adapted to finite point sets if
they should be used in praxis.

66 2 A mathematical model of handwriting

not consider strokes sampled by only three points or less.7 But for any practical
purposes, imagine it to be around 32.

When writing strokes we will alternate between various different represent-
ations. First, at the base level given by the definition, a stroke s is of the form

s = (Pi)
n
i=1

with every point Pi being a point with coordinates (xi, yi). We can write this in
the form

ssep := (x1, x2, · · · , xn, y1, y2, · · · , yn)
T,

listing all x-coordinates of all points first and then all y-coordinates.8

We might use homogeneous coordinates for points and indicate this
with a hat-symbol. I.e. points P̂i =

(xi
yi
1

)
, strokes ŝ =

(
P̂i
)n

i=1 and

Ŝ =
{(

P̂i
)n

i=1 ∈
(
RP2)n

∣∣∣ P̂i finite
}

. In these cases we always assume that
the points are given in standard embedding; i.e. with last coordinate equal to
1. And we will simply view the sets S and Ŝ as identical.

Moreover, if not stated otherwise, when we talk about strokes s and t, we
will always assume that their points are named Pi and Qi, respectively. Also,
we always assume that a point Pi in a stroke has coordinates (xi, yi). This is
handy, as we sometimes need the whole stroke s and sometimes the explicit x-
and y-coordinates of its points.

Now, we will call the set of all strokes we consider — and which we want to
use for handwriting recognition — the stroke space and we will denote it by
S. For the major part of this thesis, we will concern ourselves only with one
particular stroke space; namely S =

(
R2)n. This will be our standard stroke

space and whenever we write S, we will mean this set by default.

Before we continue, we will briefly present two smaller stroke spaces which
represent normalised strokes. The reason to consider them is that strokes loc-
ated at different positions of the touch screen or, in theory, in the whole draw-
ing plane R2 might represent similar things and so it is handy to bring them to

7ALICE:HWR actively prevents such fringe cases by ensuring that every stroke is sampled
with at least four points.

8The index ’sep’ here stand for ’separated’.

2.2 A base model for strokes 67

the same place to make comparisons easier and more straightforward.
First, we might assume that the start and end point of strokes are fixed.

Second, we can normalise the bounding box of the strokes. It is the smallest
axes-parallel rectangle enclosing (the points of) the stroke. It is a common ob-
ject in HWR (cf. [11]), and we can normalise strokes by demanding that the
bounding box has edge length 1 and that its centre sits at the origin.

Definition 2.2.2:

1. For any two different S, E ∈ R2 we define the set of nailed strokes by

NS,E :=
{
(Pi)

n
i=1 ∈

(
R2
)n ∣∣∣ P1 = S ∧ Pn = E

}
2. For a stroke s ∈ S set the points

min(s) :=
(

min
i=1,...,n

xi, min
i=1,...,n

yi

)
and max(s) :=

(
max

i=1,...,n
xi, max

i=1,...,n
yi

)
in R2. Then define the bounding box B(s) of s as the axes-parallel rectangle
spanned by the points min(s) and max(s).

Define the set of centred strokes Q as

Q :=
{

s ∈ S

∣∣∣∣ min(s) =
(
−1

2
,−1

2

)
and max(s) =

(
1
2

,
1
2

)}
. 4

In order to model the bounding box correctly, we would need to add the
condition that on every edge of the square spanned by

(
−1

2 ,−1
2

)
and

(
1
2 , 1

2

)
lies a point of the stroke. However, this then excludes the case of perfectly
vertical and horizontal lines for which the bounding box has width and height
0, respectively.

Normalising a stroke such that it lies in one of the above sets N or Q can
be realised by applying affine transformations, respectively, to the elements in(
R2)n. We will talk about them more when we apply projective transforma-

tions to strokes in Section 3.1.

Apart from that, there are many other additional conditions we might de-

68 2 A mathematical model of handwriting

mand: In praxis we often have ε < ‖Pi+1 − Pi‖2 < δ for suitable 0 < ε < δ,
due to the fact that we do not want consecutive points to coincide and that we
use a touchscreen of finite size. Alternatively, we might only consider strokes
for which the distance between consecutive points is constant. We could also
model all strokes as discretised Bézier curves, which are polynomial splines
commonly used in computer graphics.

And even if we are content with using all sequences of n points as the stroke
space, using

(
R2)n means that we sample every line recorded from the touch-

screen by the same number of n points. For large screens and/or a big variance
in the length of the lines it might be better to consider

⋃N
i=n
(
R2)i for reasonable

choices of n and N. However, because of the application in ALICE:HWR and
the general focus on letter- and number-like icons, we use a fixed sample rate.
In a more general stroke and symbol recognition algorithm, it is reasonable
to sort the recorded stroke into coarse categories depending on their length.
Re-sampling the strokes in one such category with a specified sampling rate
reduces every subsequent analysis to the situation presented here in this thesis.

The stroke space S in and of itself does not tell us anything about the strokes
we want to identify. It is an obvious idea to consider a subset T ⊂ S of all
strokes that represent the symbols we want to recognise. And in practice, we
will do that. However, we will come to this from a particular angle.

The main problem in HWR is, as was stated in Chapter 1, the many differ-
ent strokes that may represent the same abstract line. These differences can
come from inherently distinct ways to write a specific stroke — e.g. a 3 with or
without a loop — and user-specific writing styles — e.g. whether the “bulges”
of a 3 are rather round or pointy. Both of these variations and others can be
seen in Figure 2.7.

In order to model this, we assume that there is a likelihood for every stroke
to represent a specific stroke type. Here and in the rest of the thesis, stroke
type will stand for the abstract thing a user wants to draw on a touch sur-
face — whereas strokes are then the discretised data recorded.

Definition 2.2.3: Let A be a finite set which we call the alphabet. It represents

2.2 A base model for strokes 69

Figure 2.7: Various ways to write 3.

the abstract lines or stroke types drawn on a touch surface. Then, a sample
dispersal for A on S is a set D = DA,S of fuzzy subsets of S indexed by A.
I.e.,

D = {ml : S→ [0, 1] | l ∈ A} .

4

Following the general idea of fuzzy sets, we will informally call a stroke
s ∈ S a good sample for the stroke type l ∈ A if the value ml(s) is high and,
conversely, a bad sample if this value is low. Take for example the two strokes
in Figure 2.8.

Figure 2.8: Strokes with a different likelihoods to be a 3.

Here we see that the left one is clearly a 3, so its fuzzy value might be
m3(sleft) = 0.9. The right one might be confused with a]-bracket by an al-
gorithm and in any way it is at least a very sloppy 3. So, we might have
m3(sright) = 0.2. But this depends of course on the underlying alphabet. If the
only lines we want to recognise are 3 and V, then the value m3(sright) should

70 2 A mathematical model of handwriting

probably be much higher.

Definition 2.2.4: For an alphabet A and a sample dispersal D for A on S call a
function T : A → P(S) a collection of good samples if for all l ∈ A we have
ml(T(l)) ∈ [λl, 1] for some predetermined thresholds λl ∈ [0, 1]. Moreover,
denote the set T(l) by Tl. 4

Since we do not know the concrete sample dispersal when we want to ana-
lyse strokes, we will only work with collections of good samples from now on.
I.e., whenever we have such collection we assume that the strokes in the sets
Tl represent the type l well. Nevertheless, we to keep in mind that there is an
underlying assessment of which strokes represent which types to which degree.

An important point for the practical application here is that two (or more)
elements of the alphabet might stand for the same type. Looking at the different
3’s in Figure 2.7 again, and depending on the particular classification method,
it might be handy to see the first row as representative of one specific type 3a,
the first in the second line as a representative of a type 3b and the very last
one as 3c. Only at the very end of the recognition process we then collapse all
these cases into the type 3.

However, it might also be the other way around: for certain analyses and
classification steps, it might be handy to merge several different symbols into
one. For example, we will soon see that recognising strokes which repres-
ent straight lines or closed loops is quite easy. So, when looking at the
Arabic numerals 0,...,9 we can model them in a first step via the alphabet
A1 = {straight,loop,other} and then sub-classifying the loop-like sym-
bols based on the alphabet Aloop = {0,8}.

2.2.2 Features

Now, the main problem in handwriting recognition is, of course, that we do not
know which strokes are good representatives for any type we are interested in.
If we had the actual membership functions at our disposal for all types, we
could check which line has the highest likelihood to fit the recorded stroke.

2.2 A base model for strokes 71

The best we can do is to approximate these likelihoods by considering certain
measurements.

Definition 2.2.5: A feature f is a fuzzy set f : S → [0, 1] on S. We say that
a stroke has feature f if f (s) = 1 and that a stroke does not have feature f if
f (s) = 0. 4

So, features are the same objects as the elements of a sample dispersal: func-
tions into [0, 1]. The difference is the point of view: For any given line a user
wants to write on a touch surface they have a respective set of good examples in
mind — the super-level set {s ∈ S | ml(s) ≥ λl} from Definition 2.2.4 — and
then they try to produce one of these good examples on the touchscreen. So,
the hand of the user, which can be seen as a random variable, follows loosely
the distribution indicated by the sample dispersal. Features, in contrast, are
values that get computed for a recorded stroke and from which we want to
infer which line it supposedly represents.

If we have a set of features f1, ..., fm we sometimes consider it just as a collec-
tion; sometimes we consider the function

F =


f1
...

fm

 : S→ [0, 1]m.

The latter we call a feature vector.
Note that both features and feature vectors introduced here are used in the

same way as in general Machine Learning. However, we want to think of fea-
ture not just as any function from the abstract object space S into the numerical
space [0, 1], but as concrete geometrical properties of strokes. To illustrate this,
we give such a feature concretely, and it will serve as the go-to example for the
rest of this thesis.

72 2 A mathematical model of handwriting

Example 2.2.6: Define functions LENGTH : S→ R as

LENGTH(s) :=
n−1

∑
i=1
‖Pi+1 − Pi‖2

and STRAIGHTNESS : S→ [0, 1] as

STRAIGHTNESS(s) :=
‖P1 − Pn‖2
LENGTH(s)

.

The latter one only takes values in the interval [0, 1], due to the triangle inequal-
ity. On a more descriptive level: The numerator is the distance between start and
end point of the stroke — a quantity describing the extensiveness of the stroke —
and the denominator is the length of the stroke — describing the complexity of
the stroke. And this makes it also graphically clear that the image of L lies in
the interval [0, 1]. Furthermore, we have STRAIGTHNESS(s) = 1 if and only if
s is a straight line and STRAIGTHNESS(s) = 0 if and only if s is a closed loop;
i.e. when start and end point coincide. Because of that, we call this feature the
straightness of a stroke.

In general, the connection between different feature values can be very,
very complicated. But straight lines are unique up to similarity maps. So,
for many practical cases, we can deduce all feature values from the fact that
STRAIGTHNESS(s) = 1; or often even when it is close to 1.

Conversely, if STRAIGTHNESS(s) = 0 or at least very small, we might have
to analyse the stroke separately. Again using similarity maps, we often norm-
alise strokes by fixing their start, and end point at certain positions — briefly
discussed above after introducing stroke spaces — which often leads to degen-
erate cases when they coincide or are close to each other. 4

The above description of features as fuzzy sets is enough to describe any
feature-based handwriting recognition algorithm adequately: The real-valued
functions that are used to compute geometric properties of strokes are often
naturally bounded; especially when strokes are normalised into Q. Hence, any
such function can be normalised to map into [0, 1]. There are, however, two
reservations to this.

2.2 A base model for strokes 73

First, the largest function value we obtain might not be the guarantee for the
presence of the geometric property we want, and the lowest value might not
indicate its absence. Thus, simply rescaling the image range [a, b] to [0, 1] via
x 7→ x−a

b−a might collide with the standard interpretation of fuzzy sets. Second,
there might be more than one feature value describing the desired property.
We introduce the following notion to allow for a little bit more flexibility in
handling these cases and to retain more information from the primal computa-
tions.

Definition 2.2.7: We call a function f : S → [−1, 1] a proto-feature. Any such
proto-feature induces a feature on S in two canonical ways. First, the shifted
feature f/ : S→ [0, 1] given by

f/(s) :=
1
2
· f (s) +

1
2

and the folded feature f∨ : S→ [0, 1] given by

f∨(s) := | f (s)| .

4

The indices of these induced maps visualise the graphs of the transforma-
tions maps x 7→ 1

2 x + 1
2 and x 7→ |x|, respectively. The reason we introduce this

additional term is that in practice many functional terms for geometric proper-
ties emerge such that the image will be [−1, 1] as we will see in Section 2.3.3.
Furthermore, this allows for a more nuanced interpretation of these functional
values. We will see this in the next example. Before that, we present the gen-
eral idea: Note that both induced features take on the value 1 if the original
proto-feature takes value 1. So, the interpretation for a proto-feature taking the
value 1 will be the same as with ordinary features: that the stroke in question
“has” the geometric property the proto-feature measures. The difference is in
strokes s with f (s) = −1.

When we shift a proto-feature f we interpret f (s) = −1 as the stroke not
having the property in question. I.e., we want f/(s) = 0. When we fold a
proto-feature we see this property as taking shape in two different polar oppos-

74 2 A mathematical model of handwriting

ite ways indicated by f (s) = 1 and f (s) = −1, respectively. The value f (s) = 0
is then the one representing the absence of the property, since f∨(s) = 0.

Example 2.2.8: For any stroke s ∈
(
R2)n such that STRAIGHTNESS(s) < 1 con-

sider the function

f : s 7→ ∑n−1
i=2 [P̂1, P̂i, P̂n]

∑n−1
i=2

∣∣[P̂1, P̂i, P̂n]
∣∣ .

As mentioned in Lemma 2.1.5, the determinants above are, up to a factor of 1
2 ,

the areas of the triangles P1PiPn. The condition STRAIGHTNESS(s) < 1 makes
sure that not all points Pi lie on the start-end line P1 ∨ Pn. I.e., the denominator
is not zero.9

With the triangle areas in mind, it is easy to see that f takes only values
between −1 and 1 which makes it a proto-feature. Moreover, f (s) = 1 if and
only if all points of s lie on the right-hand side of the line P1 ∨ Pn (when oriented
from start to end point) and f (s) = −1 if all points lie on the left. This means
that the shifted feature f/ describes the geometric property

All points lie on the right-hand side of the start-end line

whereas the folded feature f∨ describes

All points lie on one side of the start-end line.

4

We can transform proto-features into ordinary features in many different
ways. Most reasonable ones are, however, variations of the shift and fold intro-
duced in Definition 2.2.7. E.g., we can consider

f+(s) := max(0, f (s))

instead of f/ and
f2(s) := f (s)2

instead of f∨. The first, f+, simply cuts off negative values and equates to the
linear rectifier used as an activation function in neural network design. The

9In praxis, it is advisable to demand Straightness(s) < 1− ε for a suitable threshold ε > 0
to guarantee numerical stability.

2.2 A base model for strokes 75

second, f2, is a smooth alternative to f∨ that, however, overemphasises val-
ues near 0. Choosing one way or another to modulate proto-feature depends,
of course, on the actual geometric properties in question. But as a general
heuristic, we will use shifting and folding as they create minimal disparities
between proto-features and features.

Finally, any machine learning application needs some training data. Our goal
for this thesis, as was mentioned already in Chapter 1, is to have a small set of
such data.

Definition 2.2.9: Let A be an alphabet, T a collection of good samples for
A and f1, ..., fm a set of features. Then we define the training context T of
(A,T, { f1, ..., fm}) to be the multi-valued context

T =

(⋃
l∈A

Tl, A∪ { f1, ..., fm}, [0, 1], I

)
.

The object set is the union of all sets of good samples for all stroke types in the
alphabet and the attribute set is the union of the alphabet and the feature set.
We then build the incidence relation I in the following way:

— For all strokes s ∈ ⋃k∈A Tk and all stroke types l ∈ A we add (s, l, 1) to I if
s ∈ Tl and we add (s, l, 0) if s /∈ Tl.

— For all strokes s ∈ ⋃k∈A Tk and all features fi we add (s, fi, fi(s)) to I.

4

So, we simply note for every sample stroke which type it represents and
which feature values it has and write this information into a table.

To examine how much features of strokes are affected by transforming
the strokes, we apply a straightforward, well-known statistical method: the
Kolmogorov-Smirnov test. We will use it as a multi-purpose tool for certain
applications, but any other reasonable statistical test can be used. In particular,
if there is additional information on the distributions involved.

76 2 A mathematical model of handwriting

In general, the Kolmogorov-Smirnov checks whether a random variable has
a given distribution or whether two random variables have the same distribu-
tion. Also, this is determined based on finitely many samples from the random
variables. For us this means the following: We can consider features as random
variables and compare their values for a given set of strokes before and after
we apply a geometric transformation. Before we get into the application of this
to strokes and feature we give the general statement.

Proposition 2.2.10: Let X and Y be two random variables and x1, ..., xA be samples for
X and y1, ..., yB be samples for Y. Then let FX,A and FY,B be the empirical distribution
functions of X and Y, respectively. I.e.,

FX,A : R→ [0, 1], x 7→ 1
A

A

∑
i=1

1xi≤x

and analogously for FY,B. Here, 1 describes the indicator function of subsets of R. Then
we consider the null hypothesis:

X and Y are equal in distribution.

Given a level of significance α, the null hypothesis is rejected if

DA,B := sup
x∈R

|FX,A(x)− FY,B(x)| >

√
−1

2
· A + B

AB
· ln(α).

Intuitively this makes sense: Given two “good” approximations for the cu-
mulative distribution function of X and Y, like the empirical distribution func-
tions are, the random variables cannot have the same distributions if their ap-
proximations differ too much.

When using this to analyse features and strokes, we equip both S =
(
R2)n

and [0, 1] with the Borel σ-algebra such that they become measurable spaces.
And since most features we work with are continuous, they are therefore dir-
ectly measurable function. Then we usually consider one of two cases:

— Two finite sets S, T ⊂ S and a feature f with which we then compare f (S)
and f (T) as the samples in the Kolmogorov-Smirnov test. This allows us

2.2 A base model for strokes 77

to see whether samples for different stroke types behave differently with
respect to a certain feature.

— One set S ⊂ S and two features f1, f2 in order to compare f1(S) and f2(S).
With this we can analyse whether two different features behave differently
for one or several stroke types.

The second part is particularly handy to compare different function terms for
the same geometric property. For example, consider

Straightness : S→ [0, 1], s 7→ ‖Pn − P1‖2

∑n−1
i=1 ‖Pi+1 − Pi‖2

again. The essential insight is that this feature takes the value 1 if and only
if the stroke in question is a straight line segment. But this can be computed
differently. With the determinant notation from Section 2.1.1 and using Lemma
2.1.5, we can also consider

s 7→ 1− 1
n− 2

n−1

∑
i=2

[
P̂1, P̂i, P̂n

]2 .

This then only makes sense if we define this feature on a normalised space
such as Q in order to assure that the triangle areas represented by

[
P̂1, P̂i, P̂n

]
are bound from above by 1.

The interpretation of the feature value 1 is here the same as with the fraction
of distances introduced before: the stroke has to be a straight line segment. But
due to the writing/recording process, we almost always have to work with val-
ues less than 1. The Kolmogorov-Smirnov test allows us the see any significant
differences in two such function terms with respect to the training data.

As stated above, we use this test in examples and applications to get indica-
tions how sets of feature values might or might not be connected.

To illustrate how all the definitions in the section work together, we now
give an overview of the handwriting recognition algorithm used in the ALICE
iBook.

78 2 A mathematical model of handwriting

2.3 An overview of ALICE:HWR

This section here serves as an overview of the base ideas of ALICE:HWR. Some
things will be clearer after Chapters 3 and 4, so we will return to a discussion
of ALICE:HWR in Chapter 6.

2.3.1 The base structure

ALICE:HWR works with the stroke types

A = {1a, 1b, 2, 3, 4a,

4b, 5a, 5b, 6, 7,

8a, 8ar, 8b, 9a, 9b,

0a, 0ar, 0b, -}.

Written nicely, they are supposed to look like the strokes seen in Figure 2.9. The
difference between 8a and 8ar, and 0a and 0ar is that the r-version is written
backwards. Checking whether a stroke was written backwards is relatively
simple and was done in ALICE:HWR, see Appendix B, but for these two types
it turned out to more effective to hard-code the reversed stroke types.

Figure 2.9: (Examples for) Stroke types used in ALICE:HWR.

Moreover, we use a list of 25 features which are listed in Section 2.3.3 below.

2.3 An overview of ALICE:HWR 79

Based on them, the handwriting algorithm is set up and trained in the follow-
ing way:

1. A small set of model strokes — i.e., good samples — is used to represent
each stroke type.

2. Based on various feature values, certain rules are determined when a
recorded stroke does not represent one of the types. Formal Concept
Analysis is used to compute these rules, and this step is explained in
Section 4.2.

3. The number of samples is increased using the geometric transforma-
tions presented in Chapter 3.

4. An idealised feature vector for every stroke type is calculated based on
the feature vectors of the multiplied samples.

Afterwards, when a stroke r is recorded it gets classified using the following
steps; illustrated in Figure 2.10:

1. Using the decision rules established beforehand, the strokes types that
r cannot represent are excluded from A.

2. The feature vector of r is compared to the idealised stroke type feature
vectors from before via 1-nearest neighbour classification. The method
to compare these feature vectors is explained in Section 4.3.

All recorded strokes — both during the training and the classification phase —
are pre-processed using the methods shown in Section 2.3.2. Many of these
steps are based on the notions and results of the subsequent chapters. Because
of that, we will revisit this algorithm in Chapter 6 again after explaining them.

One point we do want to emphasise here already: The features used in
ALICE:HWR are theoretical-based and constructive. That means, they are chosen
such that they should work in theory and do work for many examples in

80 2 A mathematical model of handwriting

not 3 not 8a not - Feature vector F(r)

Exclusion from A

Ranking of remaining types in A

Best match

Figure 2.10: Classification in ALICE:HWR.

praxis.10 So, implementing them basically means that the developer tells the
algorithm what to look for. The decision rules found via Formal Concept
Analysis are then produced automatically though; and they describe expli-
citly which geometric properties do — or rather do not — characterise the stroke
types in question. Because of the small sample size used, however, they have to
be adjust manually to work in practice. This results in rules like the following:

A stroke cannot represent the type 1a if its start and end point are too close together
or it contains too many left turns.

10See [11] for more information.

2.3 An overview of ALICE:HWR 81

Finding this kind of classification rules is the motivation of each chapter in this
thesis. However, most statements will focus on individual parts and the con-
nexion to this goal might not always be clear. Again, we refer to Chapter 6 in
which we look back at ALICE:HWR as a whole.

The rest of this section will present the central ideas of the pre-processing
step and all features used in ALICE:HWR.

2.3.2 Pre-processing

Here we will present some aspects of how strokes were recorded and pre-
processed before the actual analysis.

The actual recording from the touchscreen depends foremost on the sample
rate of the device. In ALICE we used iPads — to be precise the models iPad 5

and iPad Air 2 — and Apple’s iOS Device Compatibility Reference (see [1]) tells
us that their sample rate is 60Hz. There is a difference between the sample rate
and the delivery rate though: The former is the number of times the operating
system processes the touchscreen data; the latter is the number of times the
operating system provides these data to other programs. As the delivery rate
is 60Hz for all Apple devices, we assume that it is equal to the sample rate. So,
with this sample rate, we can record 60 points per second.11

As we mentioned in the context of stroke spaces in Section 2.2, it is desirable
to have a minimal distance between points. At various points in the HWR pro-
cess we might divide by the distance between consecutive points and to assure
that this computation is numerically stable (or at least stable enough) it is ad-
visable to guarantee a lower bound for these distances. In particular, ALICE
uses CindyJS which performs up to 1000 ticks per second.12 This means that
up to 16 consecutive points end up with the same coordinates. To avert this,
we introduce an ε > 0 and do the following.

11Modern Apple devices allow for much higher precision using so-called coalesced touches. This
function allows the software to use up to 240 touch events. For the purposes in ALICE — for
handwriting recognition or otherwise — the standard of 60Hz is more than enough.

12The actual number fluctuates a lot depending on the device used and the total number and
complexity of operations executed.

82 2 A mathematical model of handwriting

1 if ‖(lastpoint)− (f ingerposition)‖2 > ε then
2 Record (f ingerposition) as a new point.

This now assures that consecutive points are not too close together and it also
limits the number of points necessary to store.

The next step is usually to take these raw data points and to smooth out
errors and noise. These often emerge via the technical limitations of both the
touch surface itself and the computer system used and also via the “jittery”
finger movement of a user — especially when writing slowly.

The most straightforward way to reduce these errors is to apply a Gaussian
filter to every stroke. This a standard tool in graphics processing and we will
analyse it in the next chapter. As we will show in Theorem 3.1.18, applying a
Gaussian filter over and over again will eventually erase “everything” from a
stroke until only a straight line remains. Applying it just a few times, however,
eliminates noise and errors. This can be observed in Widget A.4 in the com-
panion iBook.

The last step in the recording process is the re-sampling of the stroke. We
assume that, after smoothing, all the recorded points lie on the continuous
curve the user wanted to draw. Re-sampling now finds other/more points on
this curve that are, in one way or another, better.

The first goal of this is to reduce the number of points to discard unnecessary
information immediately. The coordinates of consecutive points on a stroke are
correlated, as the speed at which a user moves their finger/stylus while writ-
ing is not only bounded but also relatively low (with respect to the sampling
frequency).

The second goal is to generate equidistant points along the stroke. This is
desirable as many features are curvature-sensitive. The definition of curvature
for smooth curves γ : [0, 1] → R2 makes only sense if they are parametrised
with respect to the arc length — i.e., if ‖γ′‖2 = 1. The discrete analogue for a
stroke (Pi)

n
i=1 is that ‖Pi+1 − Pi‖2 is constant for all i.

A popular method to re-sample strokes is to use cubic splines: We can look
at two points B, C ∈ R2 and connect them with a cubic curve. I.e., we want

2.3 An overview of ALICE:HWR 83

a function p : [0, 1] → R2 with p(0) = B and p(1) = C and we want p to be
a polynomial function (with coefficients in R2) of degree 3. Similar to Bézier
splines, we introduce auxiliary points A and D to guide the shape of the curve.
When we demand that the tangent at the start should point from A to C and at
the end from B to D, we get a special cubic Hermite spline.13

Lemma 2.3.1: Let A, B, C, D be four points in R2 and let α ∈ [0, 1] be a form para-
meter. Consider a cubic polynomial curve pα : [0, 1]→ R2 such that

pα(0) = B,

pα(1) = C,

p′α(0) = α · (C− A),

p′α(1) = α · (D− B).

Then, pα is explicitly given by

pα(t) =
(

A B C D
)
·


0 −α 2α −α

1 0 α− 3 2− α

0 α 3− 2α α− 2
0 0 −α α

 ·


1
t
t2

t3

 .

Idea of proof. pα has to be of the form

pα(t) = Λ3t3 + Λ2t2 + Λ1t + Λ0

with Λ3, Λ2, Λ1, Λ0 ∈ R2. The four equations describing pα are linear in the Λi,
so it is a linear system which ends in the given result.

In order to re-sample a stroke, we look at consecutive points
Pi, Pi+1, Pi+2, Pi+3 and interpolate between Pi+1 and Pi+2 with Pi and Pi+3 being
the auxiliary points. In order to interpolate between the first and last pair of
points, we extrapolate the stroke by the “best guess”: We simply add the vector

13General Hermite splines are represented by specifying the tangents at start and end. Here
we have a special case as the tangents are given by specific control points.

84 2 A mathematical model of handwriting

P1− P2 to the start point P1 to get an additional auxiliary point P0; and analog-
ously another auxiliary point Pn+1 at the end of the stroke. At the end of the
process, they are discarded again.

The final consideration is that we want an equidistant sampling of the res-
ulting cubic spline. We do not want to compute the actual length of it though.
As the original stroke will have its points very close to each other, we use the
piecewise linear curve through them as a proxy and estimate the length of the
spline via the Length function introduced in Example 2.2.6, which adds up the
distances of consecutive point pairs. With that in mind, we get the following
re-sampling algorithm.

Algorithm 2.3.1: Re-sampling

Input : A stroke s ∈
(
R2)m, a form parameter α = [0, 1] and a sample

rate n ≥ 2.
Output: A stroke s̃ ∈

(
R2)n.

1 Set P0 = 2 · P1 − P2 and Pm+1 = 2 · Pm − Pm−1.
2 Start with the stroke s̃← (P1).
3 for i = 2, ..., n− 1 do
4 Find the integer 1 < j < m− 1 such that

Length((P1,...,Pj−1))
Length(s) ≤ i−1

n−1 <
Length((P1,...,Pj))

Length(s) .

5 Set t←
(

i−1
n−1 −

Length((P1,...,Pj−1))
Length(s)

)
· Length(s)
‖Pj−Pj−1‖2

6 Take the cubic curve pα from Lemma 2.3.1 between the points
Pj−1, Pj, Pj+1, Pj+2 and compute the new point Qi ← pα (t).

7 Set s̃← s̃ + Qi

8 Return s̃ + Pm.

In ALICE:HWR the form parameter α = 1
2 is chosen and leads to Catmull-

Rom splines. They were introduced differently in [6], but as explained in
[64] they can be represented as an Hermite spline as introduced in Lemma
2.3.1 above if α = 1

2 . Note that these splines are uniform Catmull-Rom splines
and therefore not necessarily optimal for interpolation. The better alternative is
given by centripetal Catmull-Rom splines as explained in [72]. But as the points
on the originally recorded strokes are close together, we do not run the risk of

2.3 An overview of ALICE:HWR 85

creating cusps and loops with this interpolation. Moreover, we use this method
to reduce the number of sampling points instead of rendering the whole spline
(which would mean to increase the number of sampling points drastically). So,
seeing small loops created in the process is unlikely.

Figure 2.11: Equidistant re-sampling of a stroke via Catmull-Rom splines.

As we sample the continuous curve which runs through the points of the
original stroke, we have to make sure that these points lie on a “nice” curve.
I.e. if they zig-zag too much, so will the resulting stroke — at least when n is
very large. So, we use this re-sampling only after applying a Gaussian filter to
smooth the original stroke.

The above steps — error reduction and re-sampling — are relevant in any ap-
plication of data analysis in one way or another; even though our methods are
built explicitly for strokes. There is, however, one particular problem that only
emerges in HWR in this form: hooks.14. They are minuscule line fragments
at the start and end of strokes, and they appear during “ordinary” writing on
paper, too. They arise from the pen tip touching the surface too early and
leaving it too late. Hence they point towards the direction the pen tip moves
before/after the stroke.

The problem is that many features used to describe strokes get distorted by
these hooks — most notably orientation features describing the position and
direction the first and last parts of a stroke and also features processing local
curvatures. To remove these hooks, many different authors came up with many
different solutions. A popular one can be found in [69]. Most of them use the
fact that hooks can be characterised by, first, their position and, second, their

14Sometimes called hooklets.

86 2 A mathematical model of handwriting

Figure 2.12: A hook at the end of a stroke.

sudden change in (local) curvature or, in other words, by the angles between
consecutive sampling points. This change is then often processed into a single
scalar value, i.e., a feature h. If this value turns out to be larger than a certain
bound, the points at the end of the stroke get cut off or smoothed out in a
certain way.

This idea is undeniably sensible, but it depends on the design of the feature
h, the threshold it has to overshoot and the subsequent alteration of the points.
Here we will propose an alternative which does not check whether hooks are
present and still eliminates them.

The basic idea will be that

the “relevant” information/shape of a stroke is located in the middle.

With this, we justify that we can just cut off both ends of a stroke without losing
any information. The actual algorithm will be a little bit more intricate, but first,
we want to see how reasonable this is. In Figure 2.13 we see 18 different strokes
(without hooks) sampled by 16 points each. Then we cut off the first and last
two points; i.e., 25% of the stroke in total. We can see that most of them are
still readable.

The main problem is observable in the third row: When the ends are part of
a loop — either both as in the 8 and 0 or just one of them as in the 9— this loop
gets “cut open”. This might make the stroke unreadable or turns it into another
stroke. (0 into U in the figure.) But overall, many strokes stay recognisable.

If there is a hook in the last, say, 10% of a stroke and we cut off these points,
the hook will be removed. Or in other words: we define a hook to be something
that happens in the first (or last) 10% of a stroke. But as illustrated in Figure
2.13, we cannot assume that all strokes keep their recognisable shape by this
process. So, we add points back to the stroke (in order to preserve this shape)
such that they do not form a hook.

2.3 An overview of ALICE:HWR 87

Figure 2.13: Cutting off the ends of strokes.

Let A, B, C be the last three points of a stroke. We want to extrapolate the
stroke by taking the angle of the stroke at B and recreate it at C. Denote the
vectors v := B − A and w := C − A and let α := 1

2](v, w) seen as a signed
angle. We use half of the actual angle at B in order to simulate a fade-out
motion by the user; assuming they write “nicely”. Let R be the rotation by α

and let D be the extrapolated next point on the stroke. Then we set

D = C + Rw.

In ALICE:HWR, the strokes are (almost) equidistantly re-sampled, but in gen-
eral this might not be the case. For the extrapolation of strokes based on angles
this means that we have to re-scale the step we make based on the progression

88 2 A mathematical model of handwriting

form A to B to C. I.e., we set

D = C +
‖w‖2
‖v‖2

· Rw.

A

B

C

D

v
w

Rw

2α

α

Figure 2.14: How to extrapolate the end of a stroke.

How this turns out is visualised in Figure 2.15. There, the stroke is extrapol-
ated twice via the given method above. Note, that when this is done multiple
times, the result of the previous extrapolations is used in the subsequent one.
As we take half the previous angle at every step, the extrapolation becomes
flatter. However, if the points of the initial stroke are not equidistant, the extra-
polation points might move much farther away than intended.

Figure 2.15: Extrapolating the end of a stroke.

For hook removal, we now have the two steps of cutting off the ends of
strokes and then recreating them based on the angle between the remaining
pieces. So far, this process is systematic and effective — it will definitely elim-
inate any hooks that might have been present. However, as seen in Figure

2.3 An overview of ALICE:HWR 89

2.13, closed loops at the ends of strokes — e.g., in 8, 9 and 0— are affected a
lot by the cutting-off step and might end up looking like another stroke type.
These strokes depend a lot on the arch of the stroke to form these loops —
extrapolating them with a smaller angle as done above will not re-build the
loop.

To take this into account, we compute a convex combination of the initial
stroke and the altered one and the make the coefficients dependent on the
Start Loop of the stroke. It is equal to feature f18 from Section 2.3.3 below.
It measures how close a point along the stroke comes to the start point. This
describes whether there is a loop at the beginning of the stroke. It can be
thought of as a local variant of the Straightness of a stroke.

Using this particular feature is a heuristic choice — any other fuzzy function
that gives the likelihood that cutting-off the ends of a stroke destroys an im-
portant loop can be used, too. Therefore, we do not give the precise definition
of Start Loop here and refer to Section 2.3.3 for that.

We will modulate it by a function µc : [0, 1] → [0, 1] with c ∈ R+ which is
given by

x 7→ c · x
(c− 1) · x + 1

.

It allows for a controlled way to increase values in the interval [0, 1] by the
factor c without leaving the interval. To see this, first observe that it fulfils the
functional equation

1− µc(1− x) = µ 1
c
(x) (2.1)

for all x. Additionally, it has slopes

d
dx

µc

∣∣∣∣
x=0

= c and
d

dx
µc

∣∣∣∣
x=1

=
1
c

.

The first one can be interpreted as if the the function µc takes values close to
zero and multiplies them with c. But it is not clear how something similar
should work for values close to 1: When we interpreting the elements of [0, 1]
as probabilities or fuzzy values, how should values close to 1 be multiplied by
a number like 5? E.g., saying that one event is 5 times as likely as another if the
second one occurs with probability 90% does not make sense straight away.

90 2 A mathematical model of handwriting

But the slope of µc at 1 together with the functional equation (2.1) means that
for values x close to 1 the complement 1− x gets multiplied by 1

c . Of course
this is not the definitive way to do it, but we can say:

Multiplying large fuzzy values x by c is the same as multiplying 1− x by 1
c .

This interpretation, for example, means that quintupling a probability of 90%
should give 98%. And µc models this. It is a smooth bijection that respects this
interpretation both for small and large values.

c = 5 c = 2

c = 1

c = 1
3

0 1
0

1

Figure 2.16: Graphs of µc for various parameters c.

This modulation function is used at various places in ALICE:HWR to in-
crease or decrease fuzzy values. Here will we now us it to quintuple the feature
value Start Loop(s) for a recorded stroke s. We get the following algorithm
for hook removal (at the start of a stroke).

2.3 An overview of ALICE:HWR 91

Algorithm 2.3.2: Hook Removal

Input : A stroke s ∈
(
R2)n.

Output: A stroke s̃ ∈
(
R2)n without a hook at the start.

1 Cut off the first b0.1 · ne points at the start of s, to get a new stroke c.
2 Extrapolate b0.1 · ne times at the start of c to get a new stroke e

consisting of n points.
3 Compute the convex combination

s̃ = µ5 (Start Loop(s)) · s + (1− µ5 (Start Loop(s))) · e.

Of course, this algorithm should be applied to the end of the stroke, too,
using End Loop instead of Start Loop. We do not claim that this algorithm is
the best for removing hooks. But Figure 2.17 shows its viability.

Remark 2.3.2: We can, in fact, easily prove that Algorithm 2.3.2 works correctly.
To do so, however, we need a formal definition of what a hook is. And if we
make the reasonable assumptions that

1. a hook is something that happens in the first 10% of a stroke and

2. a hook is characterised by both large angles and high a variance among the
angles of the line segments which comprise the stroke,

then the proof becomes trivial: As we cut off the first 10% of the stroke, any hook
that was present will be removed. And since we use half of the last angle in the
extrapolating step, the new part we attach will be flat and not form a hook.

To evaluate the last step of building a convex combination in Algorithm 2.3.2,
however, we probably need something that encodes the ’size’ of a hook and to
use a more purposeful feature than START LOOP.

But as stated in the beginning, any such considerations hinge on the definition
of the term ’hook’. 4

92 2 A mathematical model of handwriting

Figure 2.17: Algorithm 2.3.2 applied to a selection of strokes. The first column are
the original strokes. In the second column start and end parts have been
cut off. In column three, they were extrapolated again. And the fourth
column is a convex combination of the first and third.

Combining all ideas for pre-processing presented above leads to Algorithm
2.3.3 below. In it, we use negative point indices. For a stroke (or general
list or array) r = (Pi)

n
i=1 of length n we define its (−k)-th point/element as

P−k := Pn−k+1. In particular, the last point is the (−1)-st.

2.3 An overview of ALICE:HWR 93

Algorithm 2.3.3: Pre-processing in ALICE:HWR

Input : A stroke r = (Pi)
n
i=0 ∈

(
R2)n+1 (for some indeterminate

n ∈N+).
Output: A stroke r′ ∈

(
R2)24.

1 Set r ← (P1, ..., Pn).
2 if n < 4 then
3 Set r ← (P1, 3

4 P1 +
1
4 P2, 3

4 P−1 +
1
4 P−2, Pn) and n← 4.

4 for i=1, ..., n do
5 Get uniformly distributed random numbers ε, δ ∈ [0, 0.001].
6 Set Pi ← Pi + (ε, δ).

7 Re-sample r with 24 points using Algorithm 2.3.1.
8 Set r ← G2

A0.02
(r).

9 Apply the Hook Removal Algorithm 2.3.2.

For the most part, this algorithm is just a concatenation of the algorithms
presented before. Points worth mentioning, though, are: In line 1 we cut off
the first point of the recorded stroke regardless of any concerns we talked about
above in the context of hook removal. The reason is that strokes in the ALICE
iBook are intended to be written with the finger of the user; not a stylus. And
then it turned out that the very first point of the stroke has so much variance in
its relation to the rest of the stroke, that it is much simpler and more effective
to exclude it every time.

Lines 2 to 4 guarantee that the stroke has at least four points which is neces-
sary for the other algorithms to work properly. And lines 5 and 6 introduce a
little bit of noise into the stroke as a precaution, since Algorithm 2.3.1 does not
perform well on straight line segments.

Lastly, we smooth out the stroke in line 8 via a Gaussian filter. But as already
said, this will be explained and illustrated in the next chapter.

The pre-processing steps and techniques presented are primarily used to
make the features in the next section more stable and meaningful. In particular,
the features are designed with a regular point distribution along the strokes in
mind.

94 2 A mathematical model of handwriting

2.3.3 A list of all ALICE:HWR features

Below we give a list of all 25 features used in ALICE:HWR. We give them in
the order they were implemented. As mentioned already above in Section 1.3.2,
many of these features are taken from [11] and they are marked as such.

Recall how strokes look after the pre-processing phase: They have been
equidistantly re-sampled with n = 24 points and then were smoothed using
a Gaussian filter (see Section 3.1.4 for more information on that). In particular,
the resulting strokes are not exactly equidistantly sampled anymore. Lastly, the
hook removal algorithm is utilised such that the start and end parts are almost
straight.

Afterwards, the stroke is normalised such that its bounding box is the square
[−1, 1]2 — so here we work in 2Q. This is done by moving the stroke such that
the centre of its bounding box is the origin and then the x-coordinates of the
stroke are divided by the width of the bounding box and the y-coordinates by
the height. When the width or the height is below a certain threshold, it is set
to an “arbitrary large” default value in order to, firstly, not divide by (almost)
zero and, secondly, preserve horizontal and vertical straight lines as straight
lines.15

P1

Pn

Figure 2.18: The test stroke for illustrating the features.

15In ALICE:HWR, this “large” value is 10.

2.3 An overview of ALICE:HWR 95

When we now compute specific geometric properties, they often emerge as
values in the interval [−1, 1]— i.e., as proto-features — but not always. Here
we will state just the function term/heuristic used to compute each feature. As
explained above, all proto-features are shifted in ALICE:HWR and we assume
that this re-scaling is done implicitly whenever necessary. As a reminder, we
use the notation that any stroke s consists of points P1, ..., Pn and that any point
Pi has the coordinates (xi, yi).

Additionally to the function term, we will give a short description of its geo-
metric meaning and, sometimes, the reason why a particular feature was ad-
ded. Moreover, every feature is illustrated qualitatively in an image; using the
stroke shown in Figure 2.18. It is written from top to bottom and it is sampled
with 10 points. This is much less than the 24 points used in ALICE:HWR, how-
ever, this makes it easier to visualise and see how the features are built.

Start and End Direction: This is the direction of the first and last part
of the stroke — basically the discretised derivation of the stroke. We use the
vector from the first to the third point (at each end). This makes it numerically
more stable than going from the first to the second point, but is only sensible
when the sampling rate n is large enough. Figure 2.19 depicts the “correct”
conception using the first and second point.

f1(s) :=
x3 − x1

‖P3 − P1‖2
,

f2(s) :=
y3 − y1

‖P3 − P1‖2
,

f3(s) :=
xn − xn−2

‖Pn − Pn−2‖2
,

f4(s) :=
yn − yn−2

‖Pn − Pn−2‖2
.

Stroke Return: This feature describes whether the start and end part of the
stroke point towards the same direction, as in a 3, or not, as in a 2. So, it is
the scalar product of Start and End Direction. In particular, it uses the third
point instead of the second one, too.

f5(s) :=
(P3 − P1) · (Pn−2 − Pn)

‖P3 − P1‖2 · ‖Pn−2 − Pn‖2
.

96 2 A mathematical model of handwriting

Figure 2.19: Portrayal of: Start Direction (f1, f2)
T (left), End Direction

(f3, f4)
T (centre) and Straightness f6 (right).

Straightness ([11]): How much the stroke is a straight line. This was used
as an example above already. It compares the distance between start and end
point and the length of the stroke. Hence it is 1 if and only if the stroke is a
straight line.

f6(s) :=
‖Pn − P1‖2

∑n−1
i=1 ‖Pi+1 − Pi‖2

.

Loopyness ([11]): The fuzzy complement of Straightness — equalling 1
when the stroke is a loop, i.e., when start and end point coincide.

f7(s) := 1− f6(s).

Left and Right Curvature: This computes the relative amount of points at
which the local curvature is positive and negative. The curvature at any point
Pi will be approximated by the signed distance from Pi to the line Pi−2Pi+2 for
all i = 3, ..., n− 2. (It is set positive if and only if Pi is to the left of the line.)
Denote this distance as di and set

D := {i ∈ {3, ..., n− 2} | |di| > 0.03}.

Here we ignore “curvatures” that are too small as they are most-likely errors
or fluctuations in an actual straight part of the stroke. Then we set

L := {i ∈ D | di < 0} and R := {i ∈ D | di > 0}

2.3 An overview of ALICE:HWR 97

to get

f8(s) :=
|L|
|D| ,

f9(s) :=
|R|
|D| .

If D is empty, set f8(s) = f9(s) = 1
2 .

See Chapter 5 for more on how to measure the curvature of strokes. As illus-
trated in Figure 2.20, we would like to compute this using the distance from Pi

to Pi−1Pi+1. The version presented above gave higher numerical stability and
better results in praxis. Since the sampling rate in ALICE:HWR is relatively
high, there is no qualitative difference between using i± 2 and i± 1.

Left and Right of Start-End Line: This features computes the relative
amount of points that lie on the left- and right-hand side of the start-end line.
Its computation is basically identical to features 8 and 9 above. For all i =

2, ..., n− 1 let di be the signed distance of Pi to the line P1Pn. Then set

D := {i ∈ {2, ..., n− 1} | |di| > 0.1}

and
L := {i ∈ D | di > 0} and R := {i ∈ D | di < 0}

to obtain

f10(s) :=
|L|
|D| ,

f11(s) :=
|R|
|D| .

If D is empty, set f10(s) = f11(s) = 1
2 , again.

General Directions: These features describe whether the stroke is aligned
from from top right to bottom left or from top left to bottom right. It takes the
normalised vector form start to end point and projects it onto the two directions

98 2 A mathematical model of handwriting

Figure 2.20: Portrayal of: Left and Right Curvature, f8 and f9 (the two images
on the left), and Left and Right of Start-End Line, f10 and f11 (both
two images on the right).

we are interested in.

f12(s) :=

(Pn − P1) ·
(

1
−1

)
√

2 · ‖Pn − P1‖2
,

f13(s) :=

(Pn − P1) ·
(
−1
1

)
√

2 · ‖Pn − P1‖2
.

We could store the vector Pn−P1
‖Pn−P1‖2

directly, but we are interested in the given
directions specifically. For a more general set-up to analyse such directional
vectors, see Section 4.1.

Start and End Point: These are simply the coordinates of the start and end
point.

f14(s) := x1,

f15(s) := y1,

f16(s) := xn,

f17(s) := yn.

Start and End Loop: These are two very heuristic features. They detect
loops at the start and end of the stroke — i.e. if a point in the middle of the

2.3 An overview of ALICE:HWR 99

Figure 2.21: Portrayal of: General Direction (f12, f13)
T (left), Start Point

(f14, f15) and End Point (f16, f17) (right).

stroke coincides with the start and end point, these features evaluate to 1. But
in contrast to most other features, the values less than 1 do not have a concrete
geometric interpretation. In particular, finding thresholds for these features
to decide when these properties are identified as present in strokes can only
be done by looking at samples. These two features are incredibly helpful to
recognise the numbers 6 and 9, but they also come in handy with 8 and 0—
especially when the ends of the stroke do not connect properly, as illustrated
in Figure 2.22 below.

Figure 2.22: Strokes that represent 6 and 9, respectively, but whose ends do not prop-
erly form a loop.

We compute these feature in the following way: Firstly, let di,j =
∥∥Pj − Pi

∥∥
2

be the Euclidean distance between the points Pi and Pj for any i, j = 1, ..., n.
Secondly, set

as := max
{

j ∈ {2, ..., n} | d1,2 ≤ d1,3 ≤ · · · ≤ d1,j
}

100 2 A mathematical model of handwriting

and, analogously,

ae := min
{

j ∈ {1, ..., n− 1} | dn,j ≥ · · · ≥ dn,n−2 ≥ dn,n−1
}

.

They describe how far along the stroke one can walk away from the start (or
end) point before turning back towards the start (or end). As an example, for
the stroke in Figure 2.23 these values are as = 5 and ae = 6. I.e., starting from
P1 we can walk up to P5 before turning back towards P1. Starting from P10,
however, we can walk up to P6 without turning ever back towards P10.

Figure 2.23: Portrayal of: as and Start Loop f18 (the two images on the left), and ae
and End Loop f19 (the two images on the right).

To detect a loop at the start and end of the stroke, we then check how close
the stroke comes back to the start and end points; outside of the parts that
initially move away from them. So, we get the features

f18(s) := 1−
min

{
d1,j | j > as

}
max

{
di,j | i, j = 1, ..., n

} ,

f19(s) := 1−
min

{
dn,j | j < ae

}
max

{
di,j | i, j = 1, ..., n

} .

Center Traversal: This features describes whether the stroke runs through
the center of the bounding box. Its primarily benefit is to distinguish 8 from
0. They can, in theory, be held apart by Left and Right Curvature, but in

2.3 An overview of ALICE:HWR 101

practise those two features are often inconclusive.

f20(s) := 1− min {‖Pi‖2 | i = 1, ..., n}√
2

.

We use half the length of the diagonal of the square [−1, 1]2 as the normal-
isation factor instead of the maximum over all ‖Pi‖2, since it works better in
practise.

Convex Hull ([11]): Considering the stroke as a set of n points, we can
compute the convex hull of these points. Its area relative to the area of the
bounding box (which is 4 here) is a measure of the complexity of the stroke.
Let {Q1, ..., Qk} ⊆ {P1, ..., Pn} be the this convex hull.16 In particular, these
points Qi are ordered counter-clockwise and Qk = Q1. With the well-known
formula for the area of (convex) polygons given by a such specified order of its
vertices, we get

f21(s) :=
1
4
· 1

2
·

k−1

∑
i=1

det(Qi, Qi+1).

Inflexions ([11]): Here we measure the signed distance from the midpoint
between start and end point to the point in the middle of the stroke. This is a
coarse measure for the symmetry and complexity of the stroke. As our strokes
are (almost) equidistantly sampled, we simply use the index

⌊n
2
⌉

for the point,
that halves the length of the stroke. This leads to

f22(s) := xb n
2e −

1
2
· (x1 + xn),

f23(s) := yb n
2e −

1
2
· (y1 + yn).

Deviations ([11]): This computes the average distance of the points on the
stroke to their center of mass, which we denote by c = 1

n ∑n
i=1 Pi. It is equal to

1 if and only if the points lie on a circle.

f24(s) :=
1
n ∑n

i=1 ‖Pi − c‖2
max {‖Pi − c‖2 | i = 1, ..., n} .

16There are many algorithm to compute the convex hull — we use Graham scan, see [17]

102 2 A mathematical model of handwriting

Figure 2.24: Portrayal of: Center Traversal f20 (left), Convex Hull f21 (centre)
and Inflexions (f22, f23) (right).

Bulges: The last feature counts the number of bulges on the right-hand side
of the stroke. Basically, it is the number of local maxima of the x-coordinates.
It was added to distinguish 3 from 7 and 1 and also to help differentiate 8 and
0. We compute it in the following way. Set

B := {i ∈ {2, ..., n− 1} | xi−1 < xi + 0.001 ∧ xi+1 < xi + 0.001}

and then

f25(s) :=

1, if |B| ≥ 2,

0, else.

Figure 2.25: Portrayal of: Deviations f24 (left) and Bulges f25 (right).

These 25 features describe concrete geometric properties and most values
have an explicit interpretation. For example, f10(s) = 1

2 means that half of the

2.3 An overview of ALICE:HWR 103

points on the stroke s are left of the start-end line and the other half is right
of it — which is a characteristic of stroke types like 2. Despite the fact that
many feature values can be re-translated into geometry, we want to focus on
values close to 1 and 0 in the analysis. To emphasise these values we re-scale
every feature by an S-shaped function. It is built by the modulation function µc

introduced in Section 2.3.2. Its precise definition is given by

ρc,λ : [0, 1]→ [0, 1], x 7→

λ · µ 1
c

(x
λ

)
, if x ≤ λ,

λ + (1− λ) · µc

(
x−λ
1−λ

)
, if x > λ.

ρ3,0.7

0 10.7

0.7

0

1

Figure 2.26: Graph of ρ3,0.7.

In ALICE:HWR we use ρ3,0.7. I.e., values larger than 0.7 are multiplied by 3
and value below 0.7 are divided by 3. The graph of this particular re-scaling
function can be seen in Figure 2.26. The asymmetry of the break point λ =

0.7 allows for the use of features like f10 and f11 that are complementary by
design and to measure slightly different things. E.g., f7 + f6 ≡ 1, which we can
interpret as

a stroke is as much a straight line as it is not a closed loop and vice versa.

104 2 A mathematical model of handwriting

However, ρ3,0.7 ◦ f6 overestimates how straight an almost straight stroke is; and
ρ3,0.7 ◦ f7 overestimates how closed an almost closed loop is.

The ideas and statements in the next three chapters will be independent
from these concrete features. But we want to keep as intuitive examples in
mind when we talk about geometric properties that might describe strokes.

3 Geometric transformations of

strokes

As a tool, it defines what it can do, and, more importantly, what people will
expect to do with it. If you buy a sports car, you’re likely to get speeding
tickets. If you have a hammer, everything looks like a nail.

— Steve Swink, Game Feel

One of the primary concerns of this thesis is to understand what strokes are by
examining how they can be deformed. This allows us to generate new strokes
in a way that preserves their overall form and meaning. We mainly use this to
create more samples from small training sets — something motivated in Section
1.3 for ALICE:HWR. Moreover, this can be used in any form of handwriting
synthesis to induce variance in computer-generated strokes.

This chapter deals with classes of transformations which are all, to some de-
gree, motivated by practical considerations. We do not claim that these are all
reasonable ways to deform strokes. However, as we will see in the end, they
are sufficient to generate a wide variety of alterations and describe equivalence
between them. Additionally, most of them preserve the shape of strokes as we
will discuss in Chapter 5.

Beforehand, a point to pay attention to: When we talk about and show certain
transformations, we will always apply them as they are. In practice, we get
much better results when we re-sample the resulting strokes equidistantly. This
can be tried out, however, in some of the widgets in the companion iBook [67].

106 3 Geometric transformations of strokes

3.1 Four classes of geometric transformations

One central characteristic of handwriting is that strokes which might look rad-
ically different can represent the same symbol. Take for example all the differ-
ent ways to write the number 3 in Figure 1.6 below.

Figure 3.1: Various different ways to write 3.

Some notable differences are

— whether there is a loop or a tip in the middle,

— whether the line is built from circular arcs or straight lines and

— whether the upper end of the line points more up or down.

Recognising these individual parts is relatively easy. Also, as they are more or
less independent from each other, they can be freely combined. Having both
these points in mind, it is an obvious idea to build a database with all different
kinds of 3’s and to describe/recognise them by these different properties. It is,
however, more interesting to find out whether there are universal underlying
geometric properties which make a stroke a 3. E.g., the loop in the middle of
the line is neither a sufficient nor a necessary condition for a stroke to be a 3.
Apart from being an intriguing question in itself, this has a powerful, practical
consequence: When a classification software — based for example on a neural
network — is trained with hundreds or even thousands of strokes representing
a 3 and when all of them have a loop in the middle, it is likely that this software
cannot recognise a 3 written without a loop.1 When the symbol 3 is radically

1Of course, this depends heavily on the classification method, the implementation of it and
the underlying problem.

3.1 Four classes of geometric transformations 107

different from all other symbols the software shall classify, minor deviations
in the strokes have a smaller impact on the performance. Nevertheless, it is
a tremendous advantage if computer programs can automatically observe and
respect this difference.

One can also consider the inverse problem: Given a sample set of strokes
representing a 3, how can further examples for this symbol be generated which

1. look different than the existing samples, but

2. still look similar to them.

This allows us to synthesise handwriting nicely: we can give a computer a
handwriting sample, and it produces text with the characteristics of this hand-
writing without the cookie-cutter aesthetics of normal computer fonts and
typefaces.

These different thoughts lead to a mutual question: How can a stroke be
deformed? In this chapter, we will look at various ways to do this and how it
affects the shape of the strokes.

3.1.1 Projective transformations

When thinking about geometric transformations, the first things that come to
mind are rotations, translations and reflections. The most basic class of these
are Euclidean transformations. Building up from that, we get more and more
complex transformations that change more and more geometric quantities like
angles, aspect ratios, areas, and others. A very general class encompassing all
these are projective transformations.2

In the context of HWR, they can be thought of as maps that change the ori-
entation of strokes, but leave the shape intact. That is illustrated by Figure
3.2. This makes projective transformations essential objects to examine because
every HWR algorithm should be able to handle at least small rotations, trans-
lations and shearings as they happen naturally while writing.

2The most general transformations are arbitrary bijections R2 → R2, but they are not partic-
ularly useful when doing geometry.

108 3 Geometric transformations of strokes

Figure 3.2: Various transformations of a stroke: rotation, shearing and a general pro-
jective transformation.

On a technical level, applying projective transformations to stroke is almost
trivial: For any M ∈ GL3(R) and ŝ ∈ Ŝ we set

Mŝ :=
(

MP̂i
)n

i=1 .

The only problem herein is that the image points MP̂i have to be manually
dehomogenised, since, in general, the last coordinate will not be equal to 1.
But if we assume that this is done implicitly, this process is just a matrix-vector
multiplication. What makes this interesting to consider is that we can interpret
it in three slightly different ways.

The first was already mentioned in the last paragraph: Variations of stroke
arise during writing and they can be often modelled as rotations and shearings.
E.g., finding a suitable shearing parallel to the writing direction is an essential
part of analysing longhand to straighten up the written letter. See, for example,
[66]. In Chapter 5 we will define the shape of a stroke and see that projective
transformations do not change it. In other words, this will mean that all ele-
ments in the orbit GL3(R)s of any stroke s will be identified when considering
their shape.

The second way projective transformations are interesting is simply the fact
that they encompass all affine transformations of the drawing plane R2: Let
A ∈ GL2(R) and b ∈ R2. Then,(

x
y

)
7→ A

(
x
y

)
+ b

is an affine transformation of R2. And on the finite points of RP2 in standard

3.1 Four classes of geometric transformations 109

embedding we get the same map viax
y
1

 7→
(

A b
0T 1

)x
y
1

 .

Reversely, every projective transformation that is, up to a scalar multiple, of the
form ∗ ∗ ∗∗ ∗ ∗

0 0 1


represents an affine transformation. But that means that all maps we use to nor-
malise strokes — translations, rotations, dilations — can be written as simple
matrix multiplications. That makes it easier to implement them and, sub-
sequently, to work with centred and nailed strokes.

The last point that makes projective transformations interesting is that they
can be used the create new samples for stroke types. In Example 3.2.2 we do
this with other transformations, too. These other ones are explicitly motiv-
ated by what strokes are qualitatively. Projective transformation, however, are
applied to individual points. In particular, any point on a stroke might get
mapped to the line at infinity. And even if that is not the case, issues might
emerge when rendering projectively transformed strokes on screen, since this
is done via the line segments between consecutive points on the strokes.

It is a bit tricky to define line segments in projective space. However, we can
use the cross-ratio of four collinear points to do so. The cross-ratio is one of the
most fundamental and ubiquitous tools from projective geometry. It describes
the ratio of ratios of lengths and is the simplest projectively invariant function.
Among other things, it allows to continuously parametrise any line by R∪ {∞}
in a canonical way. Using it, a line segment can be represented as an interval
in this parametrisation.3

Now, consider the four (finite) points A, B, C, D and the very simple stroke
they represent at the top of Figure 3.3.

3Please see [56] and [55] for more on that.

110 3 Geometric transformations of strokes

A

B C

D

A′

B′C′

D′
A′

B′C′

D′

Figure 3.3: A transformed stroke with ambiguous rendering.

As no three of them lie on a line, we can find a projective transformation
that fixes A and D and interchanges B and C. It is, however, not clear how a
computer should render the associated stroke on a screen. We could decide that
every image point A′, B′, C′, D′ gets connected to its successor (or predecessor)
via the direct straight line between them. This is the bottom left version in the
figure. We could also map every point on the line segments of the original
stroke A, B, C, D via the projective transformation; leading to the bottom right
version in which some line segments pass through infinity.4

Consequently, when we use projective transformation as a graphics tool — to
generate strokes that “look” the same — we demand that no line segment of
the stroke should intersect the line at infinity after a projective transformation
is applied. We do not know where a line segment of an arbitrary stroke might
lie though. Thus, we demand two things when distorting strokes graphically:

— We apply general projective transformations only to centred strokes.

— We want them to fix the origin.

— No point in the interior of the normalised bounding box spanned by(
−1

2 ,−1
2

)
and

(
1
2 , 1

2

)
should get mapped to the line at infinity.

The first two conditions are no real constraint, since normalising into the set
of centred stroke Q and back out of it is achieved by conjugation with a

4From a purely geometric point of view, without the context of handwritten/-drawn symbols
or any other practical application, this second version is the canonical one for mapping line
segments.

3.1 Four classes of geometric transformations 111

translation-cum-dilation; and this is a projective transformation again. This
means that we can always assume that we have a representative for such a
transformation of the form

M =

a d 0
b e 0
c f 1

 .

The third condition is equivalent to saying that the pre-image of the line at in-
finity should not intersect the bounding box. As the transformation M operates
on lines via l 7→

(
M−1)T l, the pre-image of the line at infinity is

MTl∞ = MT

0
0
1

 =

c
f
1

 .

As a line in R2, it has the normal vector (c, f). And a point (x, y) lies in
the half space bounded by the line and into which the normal vector points
if cx + f y + 1 < 0. We can insert the coordinates of the four corners of the
normalised bounding box to get the four inequalities

1
2

c +
1
2

f + 1 > 0,

−1
2

c +
1
2

f + 1 > 0,

1
2

c− 1
2

f + 1 > 0 and

−1
2

c− 1
2

f + 1 > 0,

because these vertices should not lie in those half spaces. After multiplying
with −2 they can be summarised to |c|+ | f | < 2. And because the bounding
box is convex, it is enough to find conditions for the corners.

112 3 Geometric transformations of strokes

Definition 3.1.1: A projective transformation M is compliant if it is of the form

M =

a d 0
b e 0
c f 1

 ,

it fulfils
|c|+ | f | < 2.

4

To summarise: When we use projective transformations as a mathematical
tool for normalisation, we can simply apply them pointwise to strokes. But
using them to distort strokes seen as images, we have to restrict ourselves to
compliant projective transformations.

3.1.2 Convex combinations

The basic stroke space we use, S =
(
R2)n, is an affine space. In particular, we

can compute affine combinations of strokes and get a new stroke as a result.
We could consider arbitrary linear combinations of strokes, too, but in practise
this is less descriptive: Let s1, ..., sm be strokes, λ1, ..., λm be real coefficients and
set r := ∑m

i=1 λisi. After we set Λ = ∑m
i=1 λi we can rewrite r as

r = Λ ·
m

∑
i=1

λi
Λ

si.

That means that r emerges as an affine combination of the si which then get
scaled by the factor L. This scaling has its centre at the origin of the drawing
plane R2. When we now translate every point of every stroke si by the vector
t =∈ R2, the linear combination r gets translated by Lt. So, arbitrary linear
combinations of strokes are not nonsensical per se, but a little bit impractical.

When we confine ourselves to affine combinations of strokes, there is the
particularly interesting subclass of convex combinations. When two strokes
represent the same symbol, and their writing styles are close enough, then
every convex combination of them will also represent this symbol. This is

3.1 Four classes of geometric transformations 113

illustrated in Figure 3.4.

Figure 3.4: Several convex combinations “between” two different strokes representing
a 3.

It is nigh impossible to formalise this in a way that is useful for theoretical
considerations. The main reason is that the semantics of a stroke are ambigu-
ous. For example, in Figure 3.4 we can simply define that the far-left and
far-right strokes represent something different.

With the sample dispersals we introduced in Definition 2.2.3 we could intro-
duce the following additional property: A sample dispersal D on S is high-
concave if for all fuzzy sets m ∈ D there exists a λm ≤ 1 such that all the
super-level sets

{s ∈ S | m(s) ≥ λm}

are convex.
This would mean that convex combinations of “good” representations of

a certain symbol are again “good”. We will not use this in any strict sense
though — but we want to keep it in mind as a general model assumption.

Note that this heavily depends on the aforementioned ’style’ in which the
strokes are written. In Figure 3.5 we see two ways of writing a 3 for which con-
vex combinations do not necessarily result in new 3’s. So, if both initial strokes
are part of the training data for an HWR algorithm, they should probably be
associated with different stroke types.

When we consider affine combinations that are explicitly not convex we can
adapt our interpretation. Consider two strokes s, t and an affine combination
r = λs + (1− λ)t. The closer λ is to 1 the more the stroke r will look like s.
When λ approaches 1 from below, every “geometric property” that makes a
stroke look like t will vanish, and every property present in s will be brought

114 3 Geometric transformations of strokes

Figure 3.5: Convex combinations “between” two representative of 3, which are incom-
patible. I.e., they form non-3 strokes.

out. When λ now is larger than 1 we can think of these s-properties being
exaggerated relative to t. This is illustrated in Figure 3.6 with t representing an
S and s representing a 3. The bottom half of these strokes are, more or less,
the same while the upper half gets mirrored in-between and blown-up once λ

is larger than 1. (Increasing λ is depicted by going to the right in the figure.)

Figure 3.6: Affine combinations exaggerating a 3 (centre) relative to an S (left).

We can look at this in a slightly different way: Let s be any stroke and let u
be the straight line segment between the start and end point of s such that all
its points are uniformly distributed along this segment. We will see this object
much more in the next section. For now, we do interpret it as being featureless:

In Example 2.2.6 we have seen that the Straightness of a stroke is a feature
that detects such line segments. As we try to work with equidistantly sampled
strokes in praxis, a Straightness value of 1 uniquely characterises such strokes
u. Moreover, with the exact positions of points on u known, we can compute
any other feature we might be interested in. So, a single specific value of a
single specific feature determines all other feature values. In this sense, straight
line segments are featureless: other features have no degree of freedom left.5

5Some features might still be sensitive to different point distributions along the straight line
segment. But recall that we usually work with (almost) equidistantly sampled strokes. So,
in practice, other feature values are most often fixed once Straightness(s) = 1.

3.1 Four classes of geometric transformations 115

If we now consider affine combinations r = λs + (1− λ)u, we can imagine
that the geometric properties of s diminish the closer λ gets to 0 and that they
get exaggerated when λ is larger than 1. In Figure 3.7 this is shown for a stroke
representing a 3.

Figure 3.7: Affine combinations exaggerating a 3 (centre) relative to a “featureless”
stroke (left).

When we see these affine combinations as functions in s, they form a group.
To be precise:

Lemma 3.1.2: For any stroke s ∈ S let u be the straight line segment between P1 and
Pn given by a uniform point distribution. For any λ ∈ R define the affine pull function

Cλ : S→ S, s 7→ λs + (1− λ)u.

Then, {Cλ | λ ∈ R×} forms a group under concatenation with Cλ ◦ Cµ = Cλµ.

The computations to show this are straight foreward and so we skip them.

There are many more ways in which convex and affine combinations of
strokes make sense; one of which we will see in the next section. But even
without any further applications, it is clear that the underlying affine structure
of our basic stroke space S will be useful.

As a final note on convex combinations: when we see them as a graphic-
al/artistic way to morph between strokes, there are numerous ways to do this.
One that is popular in animations to transition between keyframes uses cubic
splines; in particular, Catmull-Rom splines as we introduced them in Section

116 3 Geometric transformations of strokes

2.3.2. However, convex combinations provide a more direct way, literally and
figuratively, that is more useful for data analysis.

3.1.3 Accelerations

Another way to transform strokes comes from actually writing them by hand:
we can ask the question what happens if a stroke gets written faster. The main
problem therein is to define what “faster” means and in extension what the
“writing speed” is. The geometric effect we want to emulate is the one shown
in Figure 3.8.

Figure 3.8: Writing a stroke “faster”.

When a 3 is drawn with a loop in the middle and we write it “faster”, we
can expect the loop turn into a cusp and then into a smooth bulge. We model
this process for general strokes via the following heuristic rule:

When writing a stroke, the user tries to get from start to end point as fast as possible.
Any deviation from the straight start-end line must be an essential part of the stroke.

It directly suggests establishing a local coordinate system for every stroke in
which one direction points from start to end point and the other one is per-
pendicular to it. In other words, we normalise each stroke via a similarity map
such that the start point lies at the origin and, for convenience, that the end-
point lies at (1, 0). In Section 2.2.1 we introduced the notion of nailed strokes.
With it we can write the set of all strokes with the start and end point as just
described by N := N(0,0),(1,0). In particular, the “writing-faster” process will
only affect the x-coordinates in this set-up.

3.1 Four classes of geometric transformations 117

In order to understand this faster writing, we will assume that the points on
a stroke are produced uniformly in time: point Pi is “written” after i− 1 time
units. That means that the difference between x-coordinates of consecutive can
be interpreted as the speed between them in the start-end direction. Writing
faster in start-end direction then would mean to add a constant ∆v ∈ R to each
of them.6 So, we want to replace

xi+1 − xi

by
(xi+1 − xi) + ∆v.

To achieve this, we map
xi 7→ xi + (i− 1) · ∆v

for all i. But to get back a stroke from N again we have to compress it in x-
direction. The new end point has position 1 + (n− 1) · ∆v and hence we have
to divide each x-coordinate by 1 + (n− 1) · ∆v.

In total, we get a map A∆v : N → N that depends on the parameter ∆v ∈ R

and which maps



x1

x2

x3
...

xn


7−→ 1

1 + (n− 1) · ∆v



x1

x2

x3
...

xn


+

∆v
1 + (n− 1) · ∆v



0
1
2
...

n− 2
n− 1


and which leaves the y-coordinates unchanged.

Definition 3.1.3: We call a function on N of the above form an acceleration by
∆v. 4

6We get the interpretation we want with ∆v > 0, but we can formulate everything with
negative ∆v, too. The interpretation then changes to “writing slower”.

118 3 Geometric transformations of strokes

Figure 3.9: Accelerating a stroke. Note that the stroke has to be normalised to N for
the above definition to work. In other words, the x-axis in this figure runs
from start through end point of the stroke.

Next, we look at is how iterated accelerations change strokes.

Theorem 3.1.4: Let A : N→ N be an acceleration by ∆v > 0 and let s ∈ N.

(1.) The sequence
(

Ak(s)
)∞

k=1
converges towards a stroke A∞(s) whose x-coordinates

are uniformly distributed along the unit interval [0, 1]. I.e., the i-th x-coordinate of
A∞(s) is i−1

n−1 .

(2.) The limit stroke A∞(s) has no loops.

Proof. (1.) When we look at the second summand in the definition of accelera-
tions, we can rewrite it as

∆v
1 + (n− 1) · ∆v



0
1
2
...

n− 2
n− 1


=

(n− 1) · ∆v
1 + (n− 1) · ∆v



0
n−1

1
n−1

1
n−1

...
n−2
n−1
n−1
n−1


.

The vector on the right gives the uniform distribution of x-coordinates.
Moreover, we see that an acceleration is just a convex combination on x-
coordinates of the original stroke and this uniform distribution. As the
latter one is fixed and has the same start and end point as the stroke we
apply the acceleration to, we can write this map as an affine pull7 Cλ with

7This is not entirely correct, because accelerations only operate on x-coordinates. But since
affine pulls operate on x- and y-coordinates separately, we can disregard this and use the
group structure of affine pulls for accelerations.

3.1 Four classes of geometric transformations 119

λ = 1
1+(n−1)∆v < 1 as defined in Lemma 3.1.2. In particular,

Ck
λ(s) = Cλk(s)→ C0(s) for k→ ∞

and C0(s) is the uniform distribution of x-coordinates.

(2.) For a loop to form in a stroke we need to have indices i < j with xi > xj.
But this is impossible for A∞(s), due to part (1.).

Looking at Figure 3.9 and Theorem 3.1.4 we see that accelerations do embody
the desired effect shown in Figure 3.8. In particular, they eliminate any loop if
applied often enough. For a 3 this is desirable, but for other strokes like 6 or
ϕ this becomes problematic as their loops are essential to their form and their
recognisability.

Even worse, strokes which are closed curves — i.e. when start and end point
are very close to each other — get deformed very quickly. Both these problems
with essential loops can be observed in Figure 3.10 below.

Figure 3.10: Accelerating strokes with essential loops.

120 3 Geometric transformations of strokes

In the proof of Theorem 3.1.4 we saw that accelerations are just special con-
vex combinations of strokes that operate only on x-coordinates. In particular,
they inherit the group structure from affine pull functions. But as we want to
apply accelerations in the form defined here, we state their multiplication and
inversion formulae explicitly to understand how the parameter ∆v effects this
operations.

Lemma 3.1.5: The set {A∆v | ∆v ∈ R} forms a group under concatenation. In
particular, A0 = idS is the neutral element,

A∆v ◦ A∆w = A(n−1)(∆v+∆w+(n−1)∆v∆w) and

A−1
∆v = A− ∆v

1+(n−1)∆v
.

3.1.4 Gaussian filters

Gaussian filters are a common tool in Signal Processing and are used to reduce
noise and details in signals. In the realm of computer graphics they are often
known as Gaussian blur, and this is where we draw our motivation from. See-
ing a picture as a function that maps every point to a grey value — represented
for example by numbers in the interval [0, 1]— a Gaussian filter replaces this
function by a convolution with a kernel that, in the one-dimensional case, looks
like this:

x 7→
√

a
π
· e−ax2

To represent pictures on a computer, they are usually modelled by pixels: Small
squares in a grid coloured in a single grey value. In this discretisation, the
integral in the convolution becomes a sum and the weights obtained from the
Gaussian kernel have to adapt to this finite case. See for example [59] for this
graphical application.

What we take away from this is the rule

Replace every point by a weighted sum of the surrounding points.

And we will apply this, of course, to strokes. We will use this in the two
different ways already mentioned above: To reduce noise and to reduce detail.

A Gaussian filter, applied once or twice, leaves a stroke unchanged except

3.1 Four classes of geometric transformations 121

Figure 3.11: Gaussian blur applied to the TUM logo in the program Krita.

for cleaning it from little errors. They often come from the “trembling” hand of
the user, especially when writing/drawing slowly, and the imperfect recording
process. The resulting stroke is much smoother, and the computation of fea-
tures is more precise and stable. Applied over and over again a Gaussian filter
will eliminate all distinct properties. For computer graphics, this means that in
the limit the image will be filled by a single grey values. Our strokes will turn
into a straight line segment as we will see.

The reason why this is relevant for handwriting recognition is that after ap-
plying a Gaussian filter often but not too often a stroke will have lost all ir-
relevant geometric properties but still will have retained all significant ones.
So, one can say that Gaussian filters (with some minor assumptions) alter the
local shape of strokes, but preserve the global shape and orientation. In this
sense, they complement projective transformations which preserve the spatial
relations between the individual points but alter the overall orientation. We
will see this interplay between Gaussian filters and projective transformations
in Examples 3.2.2 and 3.2.3.

The next pages will define Gaussian filters and how their iterated application
changes strokes. To make computation a little bit easier we will restrict our
considerations to a subset of our stroke space S =

(
R2)n.

Fix two distinct points S, E ∈ R2. Recall that we call a stroke (Pi)
n
i=1 ∈ S

nailed if P1 = S and Pn = E and that the set of nailed strokes is denoted by
NS,E = N. Later, we will also need the following: We define the set N′ of
truncated nailed strokes by forgetting the first and last point of each stroke, as
they are always S and E. So, as a set, it is given by

(
R2)2(n−2). To emphasise

the roles in truncated strokes, we index their points from 2 to n− 1 instead of
from 1 to n− 2.

In the rest of this section we define Gaussian filters as maps on S, but for

122 3 Geometric transformations of strokes

the analysis of these, we will confine ourselves to N. In the end, this will be
resolved in Theorem 3.1.18 in which we will let S and E vary. But for now,
consider these two points explicitly given.

Figure 3.12: A stroke under iterated application of a Gaussian filter.

The most general definition of a Gaussian filter is the one given below. How-
ever, we will soon assume additional properties in order to have both a useful
geometric interpretation and enough structure to deduce results.

Definition 3.1.6: A Gaussian filter is a map

G : S→ S, s = (Pi)
n
i=1 7→ Gs =

(
n

∑
j=1

aijPj

)n

i=1

with real-valued coefficients aij such that

n

∑
j=1

aij = 1 for all i = 1, ..., n.

Writing the coefficients aij into a matrix A ∈ Rn×n, we will write GA for the
associated Gaussian filter and call A the coefficient matrix of the Gaussian filter.
By abuse of notation we write GPi for the i-th point of Gs; i.e., for ∑n

j=1 aijPj. 4

A Gaussian filter replaces every point by an affine combination of its neigh-
bours. Non-affine linear combinations would lead to the points on the stroke
to drift towards infinity.

When we write strokes s by separating their x- and y-coordinates into ssep,
we observe that GA(ssep) =

(
A 0
0 A
)
ssep. So, on whole strokes Gaussian filters are

just linear functions. The crucial additional properties of Gaussian filters are

3.1 Four classes of geometric transformations 123

the following.

Definition 3.1.7: We call a Gaussian filter GA nailed if it fixes start and end point
of a stroke. I.e. when a1j = δ1j and anj = δnj for all j = 1, ..., n. We call a Gaussian
filter GA strict if all coefficients aij are in the interval [0, 1]. 4

First, we want Gaussian filters to be nailed as otherwise the start and end
point might converge to the same point.

Second, using arbitrary affine combinations might blow up the stroke, and
this contradicts the interpretation of Gaussian filters as smoothing functions.
The strictness is the most obvious assumption to get a contraction-like beha-
viour.

Definition 3.1.8: Let GA be a Gaussian filter. We call it elastic8 if for
all i = 2, ..., n− 1 there exist 1 ≤ j− < i < j+ ≤ n with both aj− 6= 0 and
aj+ 6= 0. 4

That means that every point Pi of a stroke s (that is not the start or end)
gets replaced by a linear combination in which points both to the left and to
the right of Pi occur. Iterating an elastic and strict Gaussian filter leads to a
contraction towards the start and end points of the stroke as if rubber bands
connected adjacent points. (Therefore the name ’elastic’.) This leads to the
converging behaviour we want.

In practice, this is a natural assumption, because a Gaussian filter shall
smooth/simplify a stroke by averaging over the points. And this only makes
sense when points both to the left and to the right are accounted for.

8This term here has nothing to do with elastic curves or any other concepts with the same
name.

124 3 Geometric transformations of strokes

Example 3.1.9: The most simple example of an elastic, nailed and strict Gaus-
sian filter is the one which only takes direct left and right neighbours into ac-
count and assigning them the same weight. It is given by the matrix

Aα :=



1 0 0 0 · · · 0
α 1− 2α α 0 · · · 0
0 α 1− 2α α · · · 0

.

0 · · · 0 α 1− 2α α

0 · · · 0 0 0 1


∈ Rn×n

with α ∈
(

0; 1
2

]
and we call Gaussian filters of this form minimal. Please think

of them as the main representative of elastic, nailed and strict Gaussian filters.
Moreover, these are the ones used throughout ALICE:HWR.

Note that we want α 6= 0, since A0 = In and GA0 = idS. 4

Up until now, all assumptions regarding Gaussian filters were natural and
motivated by applications in handwriting recognition: They should be nailed,
in order to keep the strokes normalised to the same start and end point and
to keep them comparable. The strictness and elasticity both guarantee that the
stroke contracts under the Gaussian filter.

Proposition 3.1.10: Let GA be an elastic, nailed and strict Gaussian filter. Then any
fixed stroke of GA is a straight line segment — i.e. a stroke in which every point lies on
line spanned by start and end point.

Proof. Consider a stroke, that is pointwise fixed by GA. I.e., for all i = 2, ..., n− 1
we have

GAPi =
n

∑
j=1

aijPj = Pi.

The right-hand equality can be re-written to get

Pi =
1

1− aii
∑

j=1,...,n
j 6=i

aijPj. (3.1)

3.1 Four classes of geometric transformations 125

Note that aii 6= 1 by the assumption of GA being elastic. As ∑n
j=1 aij = 1, the

sum

∑
j=1,...,n

j 6=i

aij

equals 1− aii. Thus, Equation (3.1) for Pi means that this point lies in the convex
hull of all other points of the stroke. And as i was arbitrary, this is true for every
single point. From this we can easily deduce, that all points must lie on the line
from P1 to Pn: Assume that the convex hull of all points on the stroke as more
than two vertices. If we look at one particular vertex Pi of this convex set, the
equation above tells us that it can be written as a convex combinations of other
points in the convex set. But then it cannot be a vertex by definition.

Remark 3.1.11: To put the last proposition into perspective, we will look at the
following inversion: Given a line segment s, i.e. a stroke s in which every point
Pi lies between P1 and Pn. Then there exists an elastic, nailed and strict Gaussian
filter GAs with s as its fixed stroke and we can write it down it explicitly: For
points Pi on a line segment we can write Pi = λiP1 + (1− λi)Pn for a suitable
λi ∈ (0, 1). Setting

A :=



1 0 · · · 0 0
λ2 0 · · · 0 1− λ2
...

...
...

...
λn−1 0 · · · 0 1− λn−1

0 0 · · · 0 1


,

it is easy to check the the associated Gaussian filter GA is elastic, nailed and strict
and has the fixed stroke s. 4

Remark 3.1.12: Another interesting question is how the fixed strokes of an
elastic, nailed and strict Gaussian filter GA look like. After all, there are many
different ways points can lie on a line and Proposition 3.1.10 does not tell
whether they even exists.

When all points of a stroke lie on a line, we can write every point Pi as
Pi = λiP1 + (1− λi)Pn, for a λ ∈ R. Then the condition for every point being

126 3 Geometric transformations of strokes

fixed by GA,
n

∑
i=1

aijPj = Pi ∀i,

can be re-written as(
n

∑
i=1

aijλj

)
· P1 +

(
n

∑
i=1

aij(1− λj)

)
· Pn = λiP1 + (1− λi)Pn ∀i.

Now, when we set Λ := (λ1, ..., λn)T, the last equation can be rewritten as

AΛ = Λ and A(1−Λ) = (1−Λ). (3.2)

By the definition of Gaussian filters, A is a (right-)stochastic matrix, i.e. A1 = 1,
and thus the second equation in (3.2) is actually identical to the first. And this
of course means that the fixed strokes of GA correspond to the eigenvectors of A
to the eigenvalues 1. 4

Before we analyse how Gaussian filters operate on arbitrary strokes, we give
an example to illustrate the last three statements.

Example 3.1.13: Consider a minimal Gaussian filter GAα
with

Aα =



1 0 0 0 · · · 0
α 1− 2α α 0 · · · 0
0 α 1− 2α α · · · 0

.

0 · · · 0 α 1− 2α α

0 · · · 0 0 0 1


.

As stated in Example 3.1.9, this Gaussian filter is elastic, nailed and strict. We
can define a vector

Λ = (0, 1, ..., n− 1)T.

Independent of α, the i-th entry of AαΛ, for i = 2, ..., n− 1, is

(AαΛ)i = α(i− 2) + (1− 2α)(i− 1) + αi = i− 1.

3.1 Four classes of geometric transformations 127

Accordingly, AαΛ = Λ and every multiple of Λ represents a fixed stroke. If we
scale it by 1

n−1 we get a stroke with

Pi =
i− 1
n− 1

· P1 +

(
1− i− 1

n− 1

)
· Pn.

It is now an easy calculation to see that the distance between subsequent points
Pi and Pi+1 is exactly ‖P1−Pn‖2

n−1 and this implies that the uniforms distribution of
points along the line segment from P1 to Pn is a fixed stroke. 4

To analyse how Gaussian filters change strokes we use the representation in-
troduced in Section 2.2.1 in which we list first all x-coordinates of the points on
the stroke and then all y-coordinates.

Definition 3.1.14: Given a matrix A = (aij)
n
i,j=1 ∈ Rn×n, we define the matrix

A′ by
A′ := (aij)

n−1
i,j=2 ∈ R(n−2)×(n−2).

Furthermore, we set the matrix

A′ :=

(
A′ 0
0 A′

)
∈ R2(n−2)×2(n−2)

4

I.e., A′ emerges from A by truncating the first and last row and column. To
emphasize the original roles of the entries of A′ we let its indices run from 2 to
n− 1, instead of from 1 to n− 2.

Lemma 3.1.15: Let GA be an elastic, nailed and strict Gaussian filter. It acts on N′ via
s′sep 7→ A′s′sep + B for a suitable B ∈ R2(n−2).

Proof. In order to see why this holds, we start by giving a function putting N′

and S in relation. We define

Ξ : N′ → S,

(x2, ..., xn−1, y2, ..., yn−1)
T 7→ (Sx, x2, ..., xn−1, Ex, Sy, y2, ..., yn−1, Ey)

T.

128 3 Geometric transformations of strokes

I.e., we just add the fixed start and end points back to our truncated list of
points and keep track of the order of x- and y-coordinates. It is clear that Ξ is a
bijection between N′ and N. In particular we can invert it on N. And since GA

is nailed, it operates on N′ via

s′sep 7→ Ξ−1
(
GA(Ξ(s′sep))

)
.

We know how GA acts on the element Ξ(s′sep): First, the entries Sx, Ex, Sy, Ey

stay the same, as GA is nailed. Second, an x-coordinate xi gets changed into

ai,1Sx +
n−1

∑
j=2

aijxj + ai,nEx (3.3)

and an y-coordinate yi into

ai,1Sy +
n−1

∑
j=2

aijyj + ai,nEy. (3.4)

Applying Ξ−1 then truncates the coordinates of S, E again, resulting in an ele-
ment of N′. When we set

bx
i := ai,1Sx + ai,nEx,

by
i := ai,1Sy + ai,nEy

and, consequently,
B := (bx

2 , ..., bx
n−1, by

2, ..., by
n−1)

T,

the above formulae (3.3) and (3.4) for the entries of Ξ−1
(
GA(Ξ(s′sep))

)
can be

merged to the single term A′s′sep + B, which is what we wanted to show.

Now we only need a few more steps to understand this operation.

Lemma 3.1.16: Given an elastic, nailed and strict Gaussian filter GA. Operating on
N′, it is a contraction with respect to the Euclidean norm on N′ = R2(n−2).

Proof. Due to A being elastic, the first and last row of A′ have a row-sum smal-
ler than 1. To be precise, the second line of A has to have a non-zero entry at

3.1 Four classes of geometric transformations 129

the first position and the (n− 1)-st at the last entry. And they get cut off in the
transition from A to A′.

Because of that, we can apply Perron-Frobenius Theory (to be precise, The-
orem 1.1 and Corollary 1 in [58]) to get that the largest eigenvalue of A′ is
strictly smaller than 1. This then clearly holds for A′, too.

Finally, the Spectral Theorem implies that the operator norm of the map
s′sep 7→ A′s′sep is equal to this largest eigenvalue and is, hence, also smaller than
1. This directly implies that s′sep 7→ A′s′sep is a contraction. Concatenating this
linear map with any translation will produce an affine map s′sep 7→ A′s′sep + B
which is still a contraction. As Lemma 3.1.15 states, GA operating on N′ is
exactly of this form.

Corollary 3.1.17: An elastic, nailed and strict Gaussian filter GA is also a contraction
on N.

This leads to the final result of this section.

Theorem 3.1.18: Let GA be an elastic, nailed and strict Gaussian filter and s ∈ S be
any stroke. Then the iterated application of GA to s converges towards a straight line
segment u on the line connecting the start and end points P1, Pn of s.

Proof. This follows simply from Banach’s Fixed-Point Theorem: Corollary
3.1.17 tells us that GA is is a contraction on NP1,Pn . Therefore, a unique fixed

stroke of GA exists and the series
(
Gk

A(s)
)∞

k=1
converges to it. We then con-

clude using Proposition 3.1.10 which assures that his fixed stroke is a line seg-
ment.

In the beginning of this section we mentioned that iterating Gaussian blur
on a grey-value picture will result in an image that consists of a single grey
value. It is plausible to call such an image “featureless”. If we transfer this
interpretation to strokes, Theorem 3.1.18 implies that straight line segments are
featureless strokes. This matches Section 3.1.2 in which we argued that straight
lines are featureless as they eliminate all degrees of freedom of any feature.

Finally, we want to briefly mention the invertibility of Gaussian filters:

130 3 Geometric transformations of strokes

Whenever a Gaussian filter GA is invertible, the inverse is given by A−1, and
it is automatically a Gaussian filter, too. This holds, because A1 = 1 directly
implies 1 = A−11.

The problem is that the inverse of a strict Gaussian filter is only strict again
when it is a permutation matrix — which is a well-known fact from the theory
of stochastic matrices. This can be observed geometrically, too, when we apply
a similar argument as in the proof of Proposition 3.1.10: The points of the image
stroke under a Gaussian filter always lie inside the convex hull of the original
stroke points. So, applying the inverse means that the image points will lie
outside the convex hull of the initial stroke. So, applying an inverse Gaussian
filter will blow up any stroke. This can be used to exaggerate properties of
strokes — similar to affine combinations of strokes — but one has to be careful
as the divergence rate is quite high.

3.1.5 Many more...

Of course, there are many, many other transformations that are “geometric” in
the sense that they change the shape of strokes in a meaningful and predictable
way. The four classes presented above can be described mathematically in great
detail — other transformations are much more heuristic in nature. To illustrate
this, we give two quick examples.

First, we can cut off the first/last part of any stroke. We already encountered
this as the essential part of Algorithm 2.3.2 for hook removal and we will see
this in Example 3.2.3. Here, we can drop the first and last b0.1 · ne points and
then re-sample the remaining stroke to get back to the sample rate of n.

Second, we can add random noise to every stroke. I.e., we replace a point Pi

by Pi + ε · (cos(α), sin(α)) with both α ∈ [0, 2π] and ε > 0 arbitrary. We will use
this later in Chapter 5.

A final note on stroke deformations in general: We can easily define a metric
on the stroke space N via

d(s, t) := max
i=1,...,n

‖Pi −Qi‖2 .

3.1 Four classes of geometric transformations 131

Figure 3.13: Adding noise to every point of a stroke.

Then we could define any bijective map T : N → N to be a reasonable trans-
formation as long as d(s, T(s)) < ε for an appropriate ε > 0 and all s ∈ N.
However, two strokes with a relatively large distance, with respect to the metric
above, might still look quite similar; especially if they represent a well-known
character. E.g., in Figures 3.2, 3.4, 3.7, 3.12 and 3.9 we see that individual points
Pi move far away from their original position even though the overall semantic
of the stroke does not get lost.

With this in mind, it seems to be more sensible to not use arbitrary perturb-
ations but structured deformations like the ones presented in this chapter.

132 3 Geometric transformations of strokes

3.2 Applications

The transformations introduced above usually have a direct practical use. For
example,

— Gaussian filters are used for noise reduction as we alluded to already
several times,

— projective transformations describe perspective distortion which should
not affect HWR algorithms and

— convex combinations are the most direct way to morph strokes into one
another.

If they are combined, however, more areas of applications emerge. First, we can
combine Gaussian filters and convex combinations to create a smoothing map
that, in contrast to Gaussian filters alone, does not converge towards a straight
line segment but stays close in shape to the original stroke.

Second, we can create more training data by simply applying a select set of
transformations to an existing data set several.

Third, when we want to computer-generate a text that looks like written by
hand, we can use these transformations to create natural-looking variance. This
can be applied, for example, in chat programs: a user gives a small handwriting
sample, and the program then generates screen output that looks as if hand-
written by the user.9

We will now illustrate these applications in short examples.

Example 3.2.1: Let G be a minimal Gaussian filter. And for any stroke s let u be
straight line segment connecting P1 and Pn of s and which is fixed by G. From
Theorem 3.1.18 we know that

(
Gk(s)

)∞

k=0
converges towards u. So, sooner or

later, the stroke Gk(s) will not be recognisable as s anymore. However, it will
get smoother and smoother. In order to keep the transformed stroke as close
to s as possible but still get a similar smoothing effect, there is an obvious idea:

9Of course, for this thesis we ignore all safety concerns and whether something like this is
welcomed.

3.2 Applications 133

apply G only a few times. Here we propose another approach which does not
degenerate the stroke and still achieves “maximal smoothness”.

Let α be the parameter of the Gaussian filter, i.e., G = GAα
, and let ρ ∈ (0, 1)

be another constant. Define

s0 := s,

sk := ρ · G
(

sk−1
)
+ (1− ρ) · s k ≥ 1.

That means that we contract and smooth the stroke via the Gaussian filter G, but
then we push the resulting stroke back towards the original one. For ρ = 1 we
get the familiar sequence which converges. But for ρ < 1 there exists a limit,
too. This, again, follows from Banach’s Fixed Point Theorem and the proof from
Lemma 3.1.15 can directly be adapted to show the contraction property. We will
sketch this here briefly:

Denote the map t 7→ ρ · G(t) + (1− ρ) · s by Eα,ρ,s. I.e., we see the stroke s as
a parameter of this map. It acts on truncated strokes N′ via t′sep 7→ ρA′t′sep + B̃
for a suitable B̃ ∈ R2(n−2). Just as in the lemma we compute Eα,ρ,s(Ξ(t′sep)). Its
x- and y-coordinates, respectively, are

ρ ·
(

ai,1Sx +
n−1

∑
j=2

aijxj + ai,nEx

)
+ (1− ρ) · ci,x and

ρ ·
(

ai,1Sy +
n−1

∑
j=2

aijyj + ai,nEy

)
+ (1− ρ) · ci,y,

where we denoted the coordinates of s by ci,x and ci,y to emphasise that they are
constants here. We set

b̃x
i := ρ · (ai,1Sx + ai,nEx) + (1− ρ) · ci,x,

b̃y
i := ρ ·

(
ai,1Sy + ai,nEy

)
+ (1− ρ) · ci,y

and
B̃ = (b̃x

2 , ..., b̃x
n−1, b̃y

2, ..., b̃y
n−1)

T.

Then we can write Eα,ρ,s as an affine map t′sep 7→ ρA′t′sep + B̃. And since |ρ| ≤ 1

134 3 Geometric transformations of strokes

the eigenvalues of ρA′ are also smaller than 1. So, Eα,ρ,s is a contraction.

Knowing this, the sequence
(

sk
)∞

k=0
does converge, but the limit stroke will

depend on the initial s. The larger ρ, the closer this limit stroke will be to the
straight line segment; and the smaller ρ, the closer the limit is to the original s.
When we combine a relatively small ρ with a large α, the limit will both look
very similar to the initial stroke and be very smooth.

For example, we can set ρ = 0.85 and α = 0.3. The limits for a few different
highly irregular starting strokes s under E0.3,0.85,s are illustrated in Figure 3.14.
And Widget A.5 can be used to produce more examples.

Figure 3.14: The limit of sk for k → ∞ approximated by s1000 with ρ = 0.85 and
α = 0.3.

As we can see, most local irregularities are removed, but the overall appear-
ance is preserved. Comparing this effect with regular Gaussian filters, via Wid-
gets A.4 and A.5, reveals that the same transformed strokes appear in both cases.
The difference, however, is that they are just one of many intermediate results
when applying Gaussian filters alone. Combining them with affine pulls creates
the strokes shown in the figure as the end result.

3.2 Applications 135

Still, the deformation might be relatively strong depending on the initial
stroke. In general, ρ and α have to be balanced to produce a reasonable res-
ult. Also, the choice for both parameters depends on the sample rate n.

We get a variation of this if we push the intermediate result even further away
from the straight line segment. We set

s0 := s,

sk := ρ · G(sk−1) + (1− ρ) · (2s− u) ∀k ≥ 1.

So, the second summand of the convex combination is given by an affine com-
bination of s and u. Here, concretely, 2s − u. With the interpretation of the
straight line segment u being featureless, 2s− u can be seen as the stroke whose
features are twice as pronounced as the ones of s. (Recall Section 3.1.2.) And as
G eliminates features, the hope is that this construction has a limit that matches
s qualitatively much more. 4

Example 3.2.2: Consider the set S of thirty strokes representing a 3 in Figure
3.15. We can multiply them by applying any combination of any number of
transformations introduced in this chapter. We can do this is in two similar, but
slightly different ways.

Let F be a feature vector that, hopefully, describes the strokes we are interested
in well. Here, in this example, we take

F : Q→ [0, 1]3, s 7→

 f6(s)
f14(s)
f5(s)


from Section 2.3.3. They are the STRAIGHTNESS, the x-coordinate of the START

POINT and STROKE RETURN. Moreover, let T be a transformation of strokes that
we want to use. Here we will take T = G5 ◦ R as the concatenation of a rotation
R by 2π

360 to the right and of a minimal Gaussian filter G = GA 1
20

that maps

Pi 7→
1

20
Pi−1 +

18
20

Pi +
1

20
Pi+1.

136 3 Geometric transformations of strokes

Figure 3.15: “Raw” data depicting variants of 3.

Note that the STRAIGHTNESS and STROKE RETURN are invariant under rota-
tions, but not under Gaussian filters; and that the START POINT is invariant
under (nailed) Gaussian filters, but not under rotations. Since STRAIGHTNESS

and STROKE RETURN describe the form of the stroke and the START POINT its
position, this fits the qualitative interpretation of Gaussian filters and projective
transformations.

With a chosen confidence level α = 0.1 we can perform a Kolmogorov-
Smirnov test for each feature fi comparing fi(S) and fi

(
Tk(S)

)
for integers

k > 1. I.e., we want to find out how often the transformation T can be applied to
our sample data until the distribution of the feature values changes significantly.
We define ki to be the largest integer k such that fi(T(S)), ..., fi

(
Tk(S)

)
are still

3.2 Applications 137

distributed the same way as fi(S).
For the concrete strokes, features and transformation above we get the follow-

ing values:

k6 = 7

k14 = 8

k5 = 14

To preserve the innate 3-ness of the strokes under T we cannot apply it more
than 7 times — at least if we assume that the given features describe this 3-ness
properly. Applying T now 7 times to S results in thirty new strokes. We see that
all of them clearly still represent a 3; at least as much the strokes in Figure 3.15
do.

To “thicken” the set of 3-samples even more, we can compute arbitrarily
many convex combinations of these now sixty strokes. Say, we only compute the
“mid-strokes”, i.e., 1

2s + 1
2 t for s, t being either an original stroke or one that was

transformed seven times. This results in a total of 60 +

(
60
2

)
= 1830 samples

for the character 3. This method, especially if convex combinations are included,
creates many new strokes. In general, we can get from |S| to

2 · |S|+
(

2 · |S|
2

)
= 2 · |S|2 + |S|

strokes if we use only a single transformation and the one form of convex com-
binations given. And the additional stroke are very close to the original ones.

Alternatively, we can perform the same basic steps, but use it in a much more
exploratory way: Again, we consider iterations of the transformation T applied
to the samples in S, compare their feature values via the Kolmogorov-Smirnov
test and compute the values ki. However, instead of the minimal value, we
take the maximum value plus one: 15. This number means that T15 completely
changes the inherent 3-ness of the strokes — again based on the assumption that
the given features describe it well.

Now, a human user can compare the strokes in T15(S) to the ones in S and

138 3 Geometric transformations of strokes

Figure 3.16: Samples for 3 transformed by T7.

judge whether they can still be considered a, in this case, 3. If so, we can replace
S by S ∪ T15(S) and start over again. This allows for a systematic exploration
of the stroke space to find more good samples. However, in contrast to the first
method, here the new strokes have significance difference to the originals.

When we look at the elements of T15(S) depicted in Figure 3.17, we see that
most are still recognisable as 3’s. But some are already borderline cases; espe-
cially the stroke in the fifth row, fourth column. So, it might be justifiable to
include all these new samples in a training data set, but it is definitely not as
obvious as with T7(S).

Moreover, since looking at T15(S) can take a person very long for large sample
sets S, one can instead only present a relatively small subset S′ ⊂ T15(S) to the
user. Then, adding S′ to S is reliable, but slow. Adding T15(S) entirely, even

3.2 Applications 139

Figure 3.17: Samples of 3 transformed by T15.

though only S′ was checked, is fast, but unreliable. Moreover, it needs stochastic
analyses to be justified.

A final note: To allow for more nuance in both methods, one can consider the
second smallest (or m-th smallest) k-value in the first one and the second largest
(or m-th largest) in the second one (for heuristically or systematically defined
m).

See Chapter 6 for how this sample multiplication process is employed in
ALICE:HWR. 4

140 3 Geometric transformations of strokes

Example 3.2.3: Imagine a chat program for smart phones that allows the user
to type some text which then gets converted into strokes that imitate the hand-
writing of the user. This combines the speed of typing with the personality of
handwritten words. Ideally, the conversion process introduces variations into
the strokes such that not all characters look the same. However, the overall style
and appearance of the strokes should not change.

Here in this example we want to illustrate that this can be achieved with the
transformations presented above. We use a very short text and transform every
stroke the same way.10 Moreover, we want to use signatures as this short text,
because they usually carry more “personality” than normal text. In particular,
we consider longhand here explicitly as a possible input.

To be a bit more flexible than in the theoretical considerations so far, we
sample every stroke s with

⌈
LENGTH(s)

C

⌉
points for a fixed constant C.

Below, we will use three different types of transformations: a simplification
map given by a combination of Gaussian filters and accelerations, cutting off
portions of start and end of each stroke and a distortion given by a projective
transformation. They imitate the process of

— writing faster with less details,

— putting the finger/pen down too late and lifting it up to early and

— writing at a different angle with a different hand position.

Concretely:

— Let G = GA 1
20

be the minimal Gaussian filter with parameter 1
20 .

— Let A = A0.001 be the acceleration by 0.001.

— Let CS and CE be the transformations that cut off the first and last point of
a stroke, respectively, and then re-samples the remaining stroke to have n
points again.

10To make a longer text look both consistent and varied one has to put in more work than just
transforming every stroke the same way.

3.2 Applications 141

— Let M be the projective transformation given by

M =


cos

(
−1

8π
)
− sin

(
−1

8π
)

0

sin
(
−1

8π
)

cos
(
−1

8π
)

0

0 0 1

 · 6√
31

 1 1
12 0

−1
3

5
6 0

5 2
3 1

 ·
1 3

10 0
0 1 0
0 0 1

 .

This projective transformation combines a shearing parallel to the x-axis
to the right with a “complicated” transformation containing a perspective
distortion and a rotation to the right. The pre-factor 6√

31
is used to factor

out the determinant of the transformation in the middle. This has the effect
that M does not change the size of the strokes.

Now, given any recorded stroke r, we build the transformed stroke t by

t = 0.375 ·
(

1
2
G5(r) +

1
2

A5(r)
)
+ 0.529 ·

(
1
2

CS(r) +
1
2

CE(r)
)
+ 0.096 ·M(r).

All transformations are added up via a convex combination. This allows for
continuous mixing of all effects, which can be tested in Widget A.6. The concrete
weights here are chosen heuristically and give a nice looking result.

Two peculiarities to notice: Firstly, applying a minimal Gaussian filter or an
acceleration k times has a qualitatively similar effect as multiplying their respect-
ive parameters by k. The fact that we apply them here five times in an artefact
from searching for an appealing combination of transformations. Secondly, tak-
ing the average of CSr and CEr is, of course, different from cutting off both ends
at once and leads to a more “interesting” effect.

The result of this whole duplication process can be seen in Figure 3.18, where
the process is iterated three times in total. We see that — even without analysing
the shape of the stroke and making inferences on how to preserve the concrete
shapes — we can create variations of human handwriting that look convincing.

As already mentioned in the beginning of this example, applying the same
transformations the same number of times to each stroke is probably not the
best method. But Figure 3.18 and Widget A.6 illustrate that this is already a
good and simple way to preserve characteristics of handwriting while changing
the actual strokes.

142 3 Geometric transformations of strokes

Figure 3.18: Duplicating a signature with variations.

And there are, of course, many more possibilities to alter strokes such that the
typeface does not change too much. In particular, when more samples of the
same characters and words are available. 4

The examples above illustrate how deforming strokes can be useful both for
HWR directly and for other applications. Moreover, we saw that the transform-
ations we defined all preserve the overall shape of strokes. We will makes this
more stringent in Chapter 5. For now we are content with the fact that we can
create new samples for stroke types from old ones; which we used to build and
judge classification steps for ALICE:HWR.

4 Aspects of stroke classification

Ten percent of nothin’ is... let me do the math here... nothin’ into nothin’...
carry the nothin’...

— Jayne Cobb, Firefly

In this chapter, we will present and discuss particular points in the classification
process used in ALICE:HWR. The results in this chapter are formulated in a
theoretical setting with certain assumptions. However, we will also show how
these results manifest in practical examples.

As the early builds of ALICE:HWR were the motivation to explore the topics
of this chapter, the version used in the ALICE iBook does not fully accord with
the way they are presented. We talk about this in Chapter 5.

144 4 Aspects of stroke classification

4.1 Directional vectors

The core classification step in ALICE:HWR is to sort every stroke into a few
large categories. Some of them are given by features 1, 2, 3, 4, 12, 13, 22 and
23 as given in Section 2.3.3. They describe the direction of certain parts of the
stroke. We compute them by considering normalised vectors between points on
a stroke and projecting them onto directions we are interested in. Afterwards,
types that match the recorded stroke the least with respect to these directional
vectors are excluded.1

For example, consider the alphabet A = {S,2,3} and compare the Start

Direction. If written from top to bottom, strokes representing 2 and 3 start
with a pen/finger move towards the right while S starts towards the left. So,
when a recorded stroke r starts towards the right we can classify it as not-S.
Afterwards, the classifier would do something else to decide whether r is a 2

or 3.
Here we want to explain why and how good this exclusion step works. We

formulate the results in terms of general directional vectors — i.e., points on
the unit circle. The prime example will be the Start Direction, but much
more unintuitive computations are possible as well — e.g., the normalised vec-
tor from the top left corner of the bounding box to the point on the stroke with
the lowest y-coordinate.

For the statements below, we denote the error function by erf. I.e.,

erf(x) :=
2√
π

∫ x

0
e−t2

dt.

Theorem 4.1.1: Let A be an alphabet and for any stroke s ∈ S let vs be a point on the
unit circle. Assume that the position of vs for a stroke s representing l ∈ A is given by
the truncated normal distribution TrN(Cl, dl)

— centred at a point Cl on the unit circle with standard deviation dl and

— truncated at the point opposite Cl.

1For more general exclusion rules given by arbitrary features see Section 4.2.

4.1 Directional vectors 145

Moreover, assume that none of the intervals along the unit circle with centre Cl and
width 2dl overlap. Both these assumptions are illustrated in Figure 4.1. Denote

M := max
l∈A

dl and m := min
l∈A

dl.

Let r be a recorded stroke and E an integer between 1 and |A|. Furthermore let
E ⊂ A be the set of E stroke types which are farthest away from vr, and let l0 ∈ A be
the type r actually represents. Then, the probability that l0 ∈ E, i.e., that Cl0 is one of
the E far-away centres from vr, is bounded from above by

P (l0 ∈ E | r represents l0) ≤ 1−
erf
(
(2|A|−2E+1)·m−M

2
√

2·M

)
erf
(

π√
2·m

) .

Cl

dl

Figure 4.1: Several non-overlapping intervals along the unit circle with centres Cl
and widths 2dl (left) and a qualitative depiction of the truncated normal
distribution associated to one of them (right).

Corollary 4.1.2: In the situation of Theorem 4.1.1, assume that all dl are equal to the
same value d. Then the upper bound becomes

1−
erf
(
|A|−E√

2

)
erf
(

π√
2·d

) .

We will prove the theorem, but the corollary is what we want to have in
mind when using the statement in praxis: When we exclude certain stroke

146 4 Aspects of stroke classification

types based on directional vectors associated to the samples, we might exclude
the type the recorded stroke represents. The probability that this happens is
bounded by the given term. Also, we see directly that this bound is higher the
more types we want to exclude and lower the more the samples are clustered.

Proof. The cumulative distribution function F of a normal distribution with
mean µ and standard deviation σ that is truncated outside the interval [a, b] is
given by

F(x) =
erf
(

x−µ√
2·σ

)
− erf

(
a−µ√

2·σ

)
erf
(

b−µ√
2·σ

)
− erf

(
a−µ√

2·σ

) .

When we parametrise the unit circle by the interval [−π, π] such that Cl0 sits at
0 we get µ = 0 and so, for our case, we obtain

F(x) =
erf
(

x√
2·dl0

)
− erf

(
−π√
2·dl0

)
erf
(

π√
2·dl0

)
− erf

(
−π√
2·dl0

) .

Using the antisymmetry of the error function, this simplifies to

F(x) =
erf
(

x√
2·dl0

)
+ erf

(
π√
2·dl0

)
2 · erf

(
π√
2·dl0

) =
1
2
+

1
2
·

erf
(

x√
2·dl0

)
erf
(

π√
2·dl0

) .

The probability that dcirc(vr, Cl0) is equal or larger than a positive value x is
then

P
(
dcirc(vr, Cl0) ≥ x

∣∣ r represents l0
)
= F(−x) + (1− F(x))

= 2 · F(−x)

= 1−
erf
(

x√
2·dl0

)
erf
(

π√
2·dl0

)

≤ 1−
erf
(

x√
2·M

)
erf
(

π√
2·m

) ,

4.1 Directional vectors 147

where the first equality holds due to the symmetry of F. What is left to do is
bound this distance x from below in the case that Cl0 is among the E centres
farthest ways from vr.

vr

Cl0 Cl1

Figure 4.2: The minimal distance of from Cl0 to Cl1 along the unit circle. (Intervals
associated to lines in E are red, all others are blue.)

As we are only interested in the minimal distance x between vr and Cl0 ,
we can assume that all the intervals touch. There is, w.l.o.g., a closest centre
among {Cl | l ∈ E} to vr. We assume that this is Cl0 , again because we want to
minimise dcirc(vr, Cl0). Let Cl1 be the the farthest centre away from vr such that
l1 6∈ E and Cl1 lies on the other side than Cl0 . See Figure 4.2 for an illustration of
this situation. Then the distance y from Cl0 to Cl1 along the arc which contains
vr is

y = dl0 + ∑
l∈A\E

2dl − dl1

≥ min
l∈E

dl + (|A| − E) · min
l∈A\E

2dl − max
l∈A\E

dl

≥ (2 |A| − 2E + 1) ·min
l∈A

dl −max
l∈A

dl

= (2 |A| − 2E + 1) ·m−M.

This total distance y is split in two (in general unequal) parts by vr. In order for
Cl0 to be farther away from vr than Cl1 , the minimal distance x we search has

148 4 Aspects of stroke classification

to be bigger than both of the these two parts. As the bigger part will always be
at least half of the total, we end up with

dcirc(vr, Cl0) ≥ x ≥ 1
2

y ≥ 1
2
((2 |A| − 2E + 1) ·m−M) .

With the formula for the probability computed above, we finally get

P (l0 ∈ E | r represents l0)

≤ P
(

dcirc(vr, Cl0) ≥
1
2
((2 |A| − 2E + 1) ·m−M)

∣∣∣∣ r represents l0

)

≤ 1−
erf
(
(2|A|−2E+1)·m−M

2
√

2·M

)
erf
(

π√
2·m

) .

Example 4.1.3: Assume we have an alphabet with four stroke types

A = {blue, orange, green, violet}

and a collection of good samples T. For all these strokes s we look at their start
directions vs = P3−P1

‖P3−P1‖2
and mark them on the unit circle. More concretely,

imagine

— blue encodes strokes representing 2 and 3,

— orange encodes δ and g,

— green encodes 6, and

— violet encodes the brackets) and }.

Then, reasonably well-written samples for these stroke types have the start dir-
ections shown by Figure 4.3.

If the sets {vs | s ∈ Tl} of start directions look similar as in the figure, we
can assign each stroke type to a quadrant on the circle depending on where the
good samples for this line lie. We mark each midpoint of the quadrants as the
centre associated to a line and can then classify a recorded stroke r via its start
direction vr.

4.1 Directional vectors 149

Figure 4.3: Start directions of good samples of four lines aggregating in four quadrants
(left).

The simplest way to do this would be to assume that r represents the type l
if the centre Cl is closest do vr. However, because of fluctuations in the writing
process, this might be too strong a statement. Instead, we look at the centre l0
which is farthest from vr and exclude l0 form A for any subsequent analysis.
The probability that we make a mistake — i.e., that Cl0 being far away from vr

despite r actually representing l0 — is exactly the probability considered in The-
orem 4.1.1 for E = 1. So, we can bound this error probability from above to
estimate the reliability of this exclusion step.

We can use a statistical test that checks samples for normal distribution; but
for such small sample sizes as shown here in Figure 4.3 it is hard arguing against
the supposed normal distribution.

So, we assume that we can apply Theorem 4.1.1, possibly after a statistical
analysis of the collection of good samples. Then we have to find the actual val-
ues dl to evaluate the given formula for the upper bound on the error probability.
For the sake of simplicity, we assume that they are all equal to the same value d,
so that we can use Corollary 4.1.2.

If this d is maximal (see Figure 4.4, left), it is d = 2π
2·|A| =

π
4 . Then the probab-

ility that we make a mistake, i.e., that we exclude the actual line r represents, is
less than

1−
erf
(
|A|−1√

2

)
erf
(

π√
2· 18 ·2π

) = 1−
erf
(

3√
2

)
erf
(

4√
2

) ≈ 0.00026366.

150 4 Aspects of stroke classification

Cblue

Corange

Cgreen

Cviolet

Cblue

Corange

Cgreen

Cviolet

Figure 4.4: Maximal (left) and relatively small (right) associated intervals/standard
deviation.

If we instead assume a d that is much smaller and approximately half the
range the samples of each line lie in (see Figure 4.4, right), we get d = 2π

32 = π
16

and an error probability of

1−
erf
(

3√
2

)
erf
(

16√
2

) ≈ 0.00026998.

In both cases the probability is less than 0.03% so we can safely assume that
excluding the line whose centre is farthest way from the recorded vr does not
accidentally excludes the correct line. Moreover, we see that the exact value of d
only makes a minor difference.

Now consider the same situation with eight different stroke types whose start
directions point into eight different octants — for example the “shafts” of the
arrows ↑↗→↘↓↙←↖. Then the standard deviations dl of the samples can be
assumed to be equal due to the symmetry of the symbol sets. Again assuming
they are maximal, we get d = 2π

2·|A| =
π
8 , which leads to an error probability of

at most

1−
erf
(

7√
2

)
erf
(

8√
2

) ≈ 2.558 · 10−12.

Unsurprisingly, when we have a “large” number of types we want to analyse,
and when they can be distinguished solely by their start direction, excluding the
line which fits the recorded data the worst gives a wrong result with a very low

4.1 Directional vectors 151

probability.

We can make the same computations with a larger E, say, E := |A|
2 . I.e., we

bisect the set of potential stroke types into two halves: the |A|2 best matches to
the recorded stroke with respect to the start direction and the |A|2 worst matches.
And we assume, again, that the standard deviations are equal and maximal.

In the first example with A = {blue, orange, green, violet}, this
means we exclude the worst two matches and make a mistake in doing so with
a probability less than

1−
erf
(

2√
2

)
erf
(

4√
2

) ≈ 0.0454.

In the second example with A = {↑,↗,→,↘, ↓,↙,←,↖}, this means we ex-
clude the worst 4 matches and make a mistake in doing so with a probability
less than

1−
erf
(

4√
2

)
erf
(

8√
2

) ≈ 0.0000633.

So, excluding the worse half and continuing with the better half might be a mis-
take every 25th if we only have four stroke types. But with eight types it is
already viable.

If we directly classify by taking the single best match — i.e., when we exclude
E = |A| − 1 stroke types — the error rate might be as high as

1−
erf
(

1√
2

)
erf
(

4√
2

) ≈ 1−
erf
(

1√
2

)
erf
(

8√
2

) ≈ 0.317.

So, this cannot be expected to work in general. 4

This example illustrates that if we find directional vectors that describe sub-
sets of the characters we want to recognise well, we can use them reliably as a
(first) classification step.

When they are well chosen, we can cut the possible symbols the recorded
stroke represents in half. Moreover, excluding the worst match is almost always

152 4 Aspects of stroke classification

a very reliable heuristic; especially for large |A|.

4.2 Exclusion rules via FCA hypotheses 153

4.2 Exclusion rules via FCA hypotheses

In Section 4.1 we looked at exclusion rules built from features that describe
some form of orientation of strokes. It can help a lot in restricting the potential
stroke types a recorded stroke might represent. In general, however, we might
not have enough of such orientation features that cluster as well as we want
to. Therefore, we present a more general method, based on Formal Concept
Analysis, to find exclusion rules that is applicable for all features.

For this section let A be an alphabet, T a collection of good samples for A

and f1, ..., fm a set of features. Consider the (multi-valued) training context

T =

(⋃
l∈A

Tl, A∪ { f1, ..., fm}, [0, 1], I

)

as defined in Section 2.2.2 and build the (ordinary) context TF from it by

1. deleting all columns associated to the stroke type l ∈ A — i.e., forgetting
which type a sample stroke represents — and

2. scaling it ordinally: the attributes obtained from the feature values shall
be parametrised by (fi, y) for a feature fi and a value y ∈ [0, 1] such that a
stroke/object s has attribute (fi, y) if and only if fi(s) ≥ y.

In particular, if a stroke/object s has attribute (fi, y0) it also has all attributes
(fi, y) with y ≤ y0. And the largest value y for which a stroke/object has at-
tribute (fi, y) is y = fi(s).

Remark 4.2.1: Note that we use a scale that leads to a context with an infinite
attribute set. For the theoretical considerations here this will be no problem. In
practice, we subdivide the interval [0, 1] into disjoint bins into which we sort the
feature values. See Example 2.1.23. 4

154 4 Aspects of stroke classification

Lemma 4.2.2:

1. The intents of TF, except for { f1, ..., fm} × [0, 1], are of the form{
(fi, y)

∣∣∣∣∣ 0 ≤ y ≤ yi s.t. ∃si ∈
⋃

l∈A

Tl : fi(si) = yi

}
.

2. They are parametrised by the set{
(f1(s1), ..., fm(sm))

T

∣∣∣∣∣ s1, ..., sm ∈
⋃

l∈A

Tl

}
.

f1

f2

0
0

1

1

Figure 4.5: The object intents of TF and their intersections.

Note that if we consider the feature vector

F : S→ [0, 1]m, s 7→ (f1(s), ..., fm(s))T,

these sets describe (the context-ified version of) sub-cuboids×m
i=1[0, yi] of the

codomain of f . See Figure 4.5.

Proof.

4.2 Exclusion rules via FCA hypotheses 155

1. By the construction of TF, its object intents are given by the axes-parallel
sub-cuboids of [0, 1]m with 0 as one corner and F(s) as the opposite corner
for a stroke/object s ∈ ⋃l∈A Tl. The intents of a context are intersections
of object intents — which, in our case, are thus represented by the intersec-
tion of these sub-cuboids. As all of them have the zero vector as a corner,
it is also part of every intent. The opposite corner of such an intersec-
tion has to lie on the border of the object intents used. These borders are
hyper-planes in [0, 1]m ⊂ Rm given by the equation

xi = fi(si) or xi = 0.

Here, xi denotes the i-th coordinate of a general point in [0, 1]m and si

is a suitable stroke in
⋃

l∈A Tl. As visualised by Figure 4.5, the right-
hand hyperplane equation is never relevant unless fi(si) = 0, but then the
equations coincide.

2. The opposite corner of the zero vector in such a sub-cuboid is of the form
(f1(s1), ..., fm(sm))T and it characterises it uniquely.

All these considerations can be done for all intents except the whole attribute
set. It is { f1, ..., fm} × [0, 1] and is represented by the whole hypercube [0, 1]m it
self. Unless there exists a stroke/object s with F(s) = 1, its extent is empty.

Definition 4.2.3: Let C = (G, M, I) be a context. Assume that we have a sub-
set of objects A ⊂ G we want to recognise by some attributes. We think of A
as positive examples for a virtual/unknown attribute and of G\A as negative
examples. Let

C+ := (A, M, I+) with I+ := I ∩ (A×M) and

C− := (G\A, M, I−) with I− := I ∩ ((G\A)×M).

I.e., they are sub-contexts emerging form C by restricting to the relevant rows.
Denote their derivation operator by (.)+ and (.)−, respectively.

156 4 Aspects of stroke classification

A (+)-hypothesis2 for A is an intent of C+ that is not present in any negative
example. I.e., it is a set h ⊂ M such tha

h++ = h and h′ ∩ (G\A) = ∅.

4

Proposition 4.2.4: Given a set of strokes/objects S ⊂ ⋃l∈A Tl, let (f1(s1), ..., fm(sm))T

be the tuple uniquely describing S′ for adequate s1, ..., sm ∈ S. Then the following hold:

1. A (+)-hypothesis for S exists if and only if for all s ∈ (
⋃

l∈A Tl) \S there exists an
i ∈ {1, ..., m} with fi(s) < fi(si).

2. The (practical) decision rule derived from this (+)-hypothesis is given by the (axes-
parallel) sub-cuboid spanned by (f1(s1), ..., fm(sm))T and the one vector 1. I.e., we
decide that a recorded stroke r fits the sample set S if F(r) lies in this sub-cuboid.
And this sub-cuboid is the minimal sub-cuboid which

— has the one vector 1 as a corner and

— contains F(S).

Proof.

1. By definition, a (+)-hypothesis is an intent of T +
F that is not contained in

any object intent of strokes/objects in (
⋃

l∈A Tl) \S. We get the smallest
intent S′ of T +

F by intersecting all object intents for strokes/objects in S.
With the interpretation from Lemma 4.2.2, this means we intersect all sub-
cuboids of [0, 1]m that are spanned by 0 and a F(s) for s ∈ S. Again by
Lemma 4.2.2 it is given by its corner (f1(s1), ..., fm(sm))T opposite 0; with
si ∈ S for all i.

Now let t ∈ (
⋃

l∈A Tl) \S. Its intent contains S′ if and only if

F(t) ≥


f1(s1)

...
fm(sm)


2pronounced “positive hypothesis”

4.2 Exclusion rules via FCA hypotheses 157

f1

f2

0
0

1

1 f1

f2

0
0

1

1

Figure 4.6: A (+)-hypothesis (left) and its associated decision rule (right); with F(S)
being given by the four dots in the top right corner.

component-wise. So, its intent does not contain S′ if one of these inequal-
ities are violated.

2. The decision rule associated to a (+)-hypothesis is that a recorded
stroke/object F(r) belongs to S if its intent contains the (+)-hypothesis.
With the same argument from part 1, this means that

F(r) ≥


f1(s1)

...
fm(sm)

 .

And the set of all points in [0, 1]m that fulfil this is exactly the sub-cuboid
spanned by (f1(s1), ..., fm(sm)) and 1.

The situation of Proposition 4.2.4 is illustrated in Figure 4.6. (+)-hypotheses
are sub-cuboids at the “bottom left” of the [0, 1]m cube. But strokes/objects
whose intents contain them have to have feature vectors “in the upper right” of
them. So, the classification area is just the complementary sub-cuboid.

Note that in part 2 of the proposition we built only one decision rule, and
we used the (unique) minimal (+)-hypothesis for it. Any other (+)-hypothesis

158 4 Aspects of stroke classification

contains it and, thus, the “decision cuboid” at the “top right” becomes smaller.

The practical summary of the last two statements is the following: If we scale
the training context such that high feature values imply low feature values, hy-
potheses gained from formal concept analysis describe when all feature values
are large enough to classify an unknown stroke/object. We can use Proposition
4.2.4 directly for some classification. However, it becomes more versatile when
we remember how to build complements of fuzzy sets and how to use different
scales.3

Example 4.2.5: Consider the alphabet

A = {blue, orange, green, violet, red}.

As in Section 4.1, we want to build exclusion rules. I.e., we want to decide when
a recorded stroke r does not fit some of these stroke types instead of deciding
when it does.

Assume that we have a collection of good samples, and two features f1, f2

such that the feature vectors of these samples are the following:

blue

(
6.0
1.1

)
,

(
7.2
1.5

)

orange

(
1.5
7.5

)
,

(
3.0
8.9

)

green

(
1.0
3.6

)
,

(
1.1
1.4

)
,

(
2.3
2.5

)
,

(
3.2
1.9

)

violet

(
6.9
8.5

)
,

(
8.0
8.0

)
,

(
8.7
9.2

)
,

(
9.3
9.8

)

red

(
4.1
6.5

)
,

(
4.7
2.3

)
They are depicted in Figure 4.7. Apart from the appropriate colours, blue
points are squares, orange points are diamonds, green points are triangles,
violet points are upside-down triangles and red points are circles. Now we

3For our application here, these two things are the same.

4.2 Exclusion rules via FCA hypotheses 159

want to find decision rules for when recorded feature vectors do not match red

ones which “cluster” in the centre of [0, 1]2.

f1

f2

0
0

1

1 f1

f2

0
0

1

1

Figure 4.7: Four decision rules for not-red based on single stroke types (left) and a
decision rule based on several types (right).

In terms of hypotheses, this means we consider the goal attribute NOT-RED.
So, we label all sample strokes of the type red as RED and all sample strokes of
the other four types as NOT-RED. If we scale the training context TF as described
at the beginning of this section — larger feature values imply low feature val-
ues — we can apply Proposition 4.2.4 with the set S = Tviolet being all samples

of type violet. The (+)-hypothesis S′ has top-right corner

(
6.9
8.0

)
. That means

that

a recorded stroke r is NOT-RED if f1(r) ≥ 6.9 and f2(r) ≥ 8.0.

Now we can scale T differently. We replace all values f1(s) in T by 1− f1(s).
I.e., we consider the fuzzy set that describes the complementary property to
whatever f1 describes. When we then scale T ordinally again as in the begin-
ning, large 1 − f1 values will imply low ones. In other words, low f1 values
imply large ones. We could have achieved this directly by scaling the attributes
of T in exactly this way.

160 4 Aspects of stroke classification

When we now apply Lemma 4.2.2 and Proposition 4.2.4, the (+)-hypotheses
for NOT-RED are located at the bottom right and the decision rules at the top left.
So, it is reasonable to apply them to S = Torange. Then, the concrete decision
rule is:

A recorded stroke r is NOT-RED if f1(r) ≤ 3.0 and f2(r) ≥ 7.5.

When we scale T such that for both features low values imply high ones we
can take S = Tgreen. And when we scale it such that high f1-values imply
low ones, but low f2-values imply high ones, S = Tblue is a good choice. The
decision rules derived from these choices are:

A recorded stroke r is NOT-RED if f1(r) ≤ 3.2 and f2(r) ≤ 3.6.

A recorded stroke r is NOT-RED if f1(r) ≥ 6.0 and f2(r) ≤ 1.5.

The four rules we found for the different scalings of T and the different choices
of S can be seen on the left of Figure 4.7.

The choice to choose exactly the strokes of a single type as S was, of course,
arbitrary. We could very well take, for example, S = Tgreen ∪ Torange. When
we then scale T such that high f1-values imply low ones and that low f2-values
imply high ones, we get the rule that

a recorded stroke r is NOT-RED if f1(r) ≤ 3.2 and f2(r) ≥ 1.4.

It can be seen at the right of Figure 4.7.
Whether a particular choice for S — and also for the particular scaling — is

reasonable or not, depends, of course, on the data. Here, in this case, this new
decision rule might not be well-suited to distinguish between RED and NOT-
RED strokes. Looking at the decision area on the right of Figure 4.7, we see that
it covers the cluster of RED feature values in the f2 directions. That means that
the f2 values are practically irrelevant. Moreover, its right border is very close
to the RED cluster, so the f1 value might not be good guidance. 4

The introduction of (+)-hypotheses we gave above was ad-hoc to fit our pur-
poses. To understand and appreciate it more, one has to talk about general

4.2 Exclusion rules via FCA hypotheses 161

implications as we defined them in Definition 2.1.24. Applying the idea of min-
imal generating sets for implications to hypotheses leads to the notion of gener-
atives. These are subsets of (+)-hypotheses and therefore classify a broader set
of potential objects having the goal attribute. ALICE:HWR uses a mix of both
generatives and hypotheses, and combines them via heuristic considerations
for each case. However, we will not go into details how to find/compute these
generatives — see [14] and [15] for information on that.

With the ideas presented in this section, and the last one, we can exclude bad
matches for a recorded stroke quite well. When we have restricted the set of
potential stroke types, we need to decide which is the best match though. This
is the topic of the last section of this chapter.

162 4 Aspects of stroke classification

4.3 Fuzzy matching of feature vectors

After using exclusion rules to limit the potential matches for a recorded stroke,
we compare feature vectors directly by an algorithm that is basically a 1-nearest
neighbour algorithm: mapping the objects we are interested in into a metric
space. Then compare the images of recorded data with the images of samples
for the objects in question via the given metric. Then, the sample with the
smallest distance to the recorded data is deemed the best match.

In our case of HWR, we have a feature vector F : S → [0, 1]m and we in-
terpret the images as fuzzy values. Because of that, we do not want to choose
any metric on [0, 1]m, but build a binary function that captures and respects
this fuzziness. In particular, we want this comparison function to be a fuzzy
set again; instead of a metric.

If we compare two strokes s and r by a single feature f : S→ [0, 1] we would
like to say that both strokes agree (with respect to f) if both have this feature.
So, in our standard interpretation, if

f (s) = 1 = f (r).

Because of the fuzziness of the recording and measuring process, however, we
also interpret value smaller but close to 1 as a sign for the presence of the
property in question. Moreover, we can encode the fact that both strokes have
the feature via a suitable t-norm �. Hence, we would say that both strokes
agree if f (s)� f (t) is large. I.e., we would use the function

α = α� : [0, 1]× [0, 1]→ [0, 1], (x, y)→ x� y

as a fuzzy set indicating how well the strokes agree by computing α(f (s), f (r)).
The problem here, when we want to use this for classification, is that this func-
tion only gives high values if a property is present in both strokes. However,
the absence of a property is in itself a feature, too. I.e., if both feature values
f (s) and f (r) are very small, we would also say that the strokes agree. To get

4.3 Fuzzy matching of feature vectors 163

an affirmative measure that encapsulates both, we have to modify α to

α′ : [0, 1]× [0, 1]→ [0, 1], (x, y)→ max {x� y, (1− x)� (1− y)} .

This definition is a bit unwieldy because there is a distinction by cases: It is
easy to check (using the monotonicity of t-norms) that x� y is the larger of the
two values if and only if x + y > 1. This makes sense in our interpretation that
for large feature values f (s) and f (r) their product is a measure for how well
the strokes fit together.

A small caveat of this definition, however, is the following: For other t-norms
than the minimum we usually have

1
2
� 1

2
<

1
2

.

So, when the geometric property in question is present with a likelihood of
50%, it is much less likely that the strokes agree with respect to this property.
At least when using α′. When we do not know whether a property is present —
the case the fuzzy value 1

2 describes — we want to be equally unsure whether s
and r are a match.

This is not particularly problematic when using α′ for classifying strokes. But
instead of progressing from here, we want to introduce an alternative that will
turn out to be smooth and more symmetric, but shows the same qualitative be-
haviour as α′ at the same time. We achieve this by using proto-features instead
of ordinary features.

Definition 4.3.1: Let� be a t-norm. Then define the (single-)matching function

σ = σ� : [0, 1]× [0, 1]→ [−1, 1], (x, y) 7→ sgn(x) · sgn(y) · (|x| � |y|) .

4

That means, in particular, that when we use ordinary multiplication as the
t-norm, we get

σ(x, y) = xy.

And this case is the original motivation to make this transition to proto-

164 4 Aspects of stroke classification

features: the distinction of cases is now integrated in the sign and we can
simply multiply these signed fuzzy-values.

Moreover, the interpretation of this matching function is the same as above
if we shift the proto-feature: Two strokes agree in having a property if
σ(f (s), f (r)) is close to 1 and they agree in not having said property if
σ(f (s), f (r)) is close to −1. And while σ is defined via absolute values sug-
gesting the use of folded features, it behaves like as if we use shifted features.
This illustrated by the minima and maxima in Figure 4.8.

Additionally, when x = 0 = y, we have σ(x, y) = 0. So, σ is more anchored
in the centre of its codomain. Another advantage of σ over α is its symmetry:
for any x, y ∈ [−1, 1] we have

σ(−x, y) = −σ(x, y) = σ(x,−y).

That means that the measure for how well two strokes agree when both have or
do not have a feature is the same for how much they disagree when on stroke
has the feature and the other does not.

α σ

0
1

0

1

0

1

x

y −1 0 1
−1

0
1

−1

0

1

x

y

Figure 4.8: Graphs of α and σ with multiplication as the t-norm.

With such a matching function for a single feature it is now straightforward
to define a matching function for feature vectors.

4.3 Fuzzy matching of feature vectors 165

Definition 4.3.2: Let� be a t-norm. Then define the (multi-)matching function

Σ = Σ� : [−1, 1]m × [−1, 1]m → R, (u, v) 7→
m

∑
i=1

σ�(ui, vi).

4

Every summand is either positive or negative, so, each entry contributes
either a reward or a penalty to the overall score computed via Σ. And for the
special case of � being the ordinary multiplication we get the particularly nice
formula

Σ(u, v) = uTv.

Next, we want to use this function Σ as a measure of how well the features
of a recorded stroke r match idealised proto-features of a given stroke type. To
do so, we slightly adjust the definition of Σ. First of all, we normalise into the
interval [−1, 1] by dividing by m. Then we can directly interpret it as proto-
feature telling us how well a recorded stroke represents a certain type. Second,
we only consider multiplication as the t-norm, since that is what we used in
ALICE:HWR. See Section 6.2 for more on that. By abuse of notation, we will
use the same symbol. So, we will work with

Σ : [−1, 1]× [−1, 1]→ [−1, 1], (u, v) 7→ uTv
m

.

The classification step we would do now is the following: Given an alphabet
A, a feature vector F : S → [−1, 1]m, an idealised proto-feature vector Fl for
each l ∈ A and a recorded stroke r ∈ S. Sort the alphabet A via the rule

l ≤ l′ :⇐⇒ Σ(Fl, F(r)) ≤ Σ(Fl′ , F(r)).

Then we choose the largest type l as the best match for r. Or, depending on
what any subsequent analysis might look like, we take the five largest stroke
types. Alternatively, we take all l for which Σ(Fl, F(r)) is larger than a certain
threshold.

Now we want to look at the behaviour of this matching function when F(r)
moves between two idealised proto-feature vectors. To do so, we make the

166 4 Aspects of stroke classification

general assumption that these

idealised proto-feature vectors only have −1 or 1 as their entries.

I.e., the proto-features we consider are built in such a way that they describe
properties of perfectly drawn strokes with 100% certainty.

This assumption is motivated by the following practical consideration: When
we compare two stroke types via their proto-feature vectors, an entry close to 0
means that it is not clear whether this particular feature is relevant or (a-)typical
for the type in question. So, we cannot make a fair judgement whether it should
be included in the comparison with another stroke type or not. Moreover, if
the entry in both idealised vectors is close to zero, the impact of their product
on the total matching score is minuscule.

So, let Fl = v0 and Fl′ = v1 be two corners of the hypercube [−1, 1]m repres-
enting two stroke types l and l′. Next we assume that they differ in k entries
and that k

m ≤
1
2 . If they differ too much, we assume we have excluded one of

the types anyway in the classification process before — using the method from
Sections 4.1 or 4.2, or any other.

With these assumptions, we can look at a recorded proto-feature vector
F(r) = vλ = (1− λ)v0 + λv1, with λ ∈ [0, 1] that moves from v0 to v1 with
increasing λ. W.l.o.g., the vectors v0, v1 and vλ are fo the form

v0 =



1
1
...
1
∗
∗
...
∗


, v1 =



−1
−1

...
−1
∗
∗
...
∗


, vλ =



1− 2λ

1− 2λ
...

1− 2λ

∗
∗
...
∗


.

Assume that the recorded stroke r actually represents l. Then,

λ 7→ Σ(v0, vλ)

4.3 Fuzzy matching of feature vectors 167

describes how well r matches l when F(r) lies closer and closer to a different
idealised feature vector. It is explicitly given by

Σ(v0, vλ) = 1− 2
k
m
· λ =: Σ(λ).

Note that it only depends on k
m and not the individual values of k and m. Its

graph for various ratios k
m can be seen in Figure 4.9.

λ

k
m = 1

4
k
m = 1

3

k
m = 1

2

0 1
0

1

Figure 4.9: Graphs of Σ(λ) for various k
m

We see that Σ(1) is only then 0 when k
m = 1

2 . For all other values k
m , it is

larger. That serves our purpose well to use Σ as a way to differentiate between
stroke types: The closer F(r) lies to Fl′ = v1, the smaller Σ(Fl, F(r)) becomes.
But if the idealised proto-feature vectors only differ by a relatively small num-
ber of entries, the relatively large value Σ(Fl, F(r)) tells us that deciding for l′

instead of l is not necessarily a safe bet; even if F(r) coincides with Fl′ .

The classification step just presented was used in a previous version of
ALICE:HWR, with small alterations, and it works well enough in practice. But
here we want to give an alternative to Σ that improves on two aspects. Both
are motivated by the fact that the derivative ∂

∂λ Σ is constant. This means that,
first, small changes in feature vectors which are close to Fl are equally severe
as when F(r) is close to Fl′ . And since Σ(λ) measures how good a match r and
l are, we want this influence to be non-constant. More precise, we want small

168 4 Aspects of stroke classification

changes in F(r) to matter little when F(r) is close to Fl in order to have more
stability in the classification process.

Second, as mentioned already above, we might not want to merely sort the
stroke types l ∈ A. Instead, we might want to select those for which Σ(Fl, F(r))
is larger than a certain threshold. Then, we want to have larger fuzzy values
than Σ provides — to lessen the chance of accidentally excluding the correct
stroke type. Moreover, finding a suitable threshold becomes easier and more
reliable if Σ(λ) is flat for λ close to 0, and then is steeper at one point when λ

increases.
With these ideas in mind we want to find a function

Π : [−1, 1]× [−1, 1]→ [−1, 1]

that fulfils the following properties:

1. For all λ ∈ [0, 1] we have Π(v0, vλ) ≥ Σ(v0, vλ).

2. Π(v0, v1) = Σ(v0, v1).

3. It is differentiable.

4. ∂
∂λ Π(v0, vλ)

∣∣∣
0
= 0.

5. The function λ→ Π(v0, vλ) shall only depend on k
m ; not on k or m individu-

ally.

Point 2 guarantees that Π and Σ show the same behaviour for large λ. This is
also emphasised by point 5. And points 1, 2 and 3 together imply that there is a
point in the interval (−1, 1) at which

∣∣∣ ∂
∂λ Π(v0, vλ)

∣∣∣ is larger than
∣∣∣ ∂

∂λ Σ(v0, vλ)
∣∣∣.

Next, we show that the angle between the feature vectors provides such a func-
tion.

Lemma 4.3.3: Define the function

Π : [−1, 1]× [−1, 1]→ [−1, 1], (u, v) 7→ uTv
‖u‖2 ‖v‖2

.

Then, this function Π has all five properties listed above.

4.3 Fuzzy matching of feature vectors 169

λΣ
Π

0 1
0

1

Figure 4.10: Graphs of Σ(λ) and Π(λ) in the case k
m = 1

2 .

Proof. Abbreviate Π(λ) := Π(v0, vλ). Using the definitions of v0 and vλ, we
can compute a function term of Π(λ) explicitly. It is

Π(λ) =
m− 2k · λ

√
m ·
√

m + 4k · (λ2 − λ)
=

1− 2 k
m · λ√

1 + 4 k
m · (λ2 − λ)

.

This immediately proves property 5. (Note that the assumption k
m ≤

1
2 ensures

that the term under the square root is non-negative.) Property 2 is equally
simple as Π(1) = 1− 2 k

m = Σ(1). And we can prove properties 3 and 4 by
computing

∂

∂λ
Π(λ) = − 4k(m− k) · λ

√
m ·
√

m + 4k · (λ2 − λ)
3

and
∂

∂λ
Π(λ)

∣∣∣∣
0
= 0.

What is left is property 1. Looking at the denominator of Π we see that
λ2 − λ ≤ 0 for all λ. Hence, the denominator is always smaller or equal to
1. And the numerator is simply Σ(λ). So, the quotient will be not smaller than
Σ(λ).

Two last properties of the function Π in the context of comparing proto-
feature vectors: First, comparing the angle between feature vectors means that
they can be scaled by positive scalars without changing the result of Π. So,

170 4 Aspects of stroke classification

they work almost like homogeneous coordinates in the the projective space
RPm−1. However, the sign of proto-feature vectors plays a role in evaluating
Π. Luckily, we usually apply Π only when the vectors we want to compare are
close anyway.

Second, we usually want every proto-feature vector to have at least one entry
1 and one entry −1; So we can be sure that there is a property that is definitely
present and one that is definitely not. That means when we look at at a recor-
ded proto-feature vector F(r) and classify it using Π, we implicitly assume we
normalised it to

F(r)
F(r)

maxi=1,...,m | fi(r)|
.

So, the largest proto-feature value gets rounded to ±1. But all other entries
of F(r) get scaled accordingly. This contrasts Formal Concept Analysis: if we
would round entries of F(r) in accordance with some implications found in the
training context, each entry would be rounded individually.

Whether or not Π is a better way to sort/rank strokes types than Σ depends
on the actual features and samples involved. In particular, one might be more
beneficial than the other when more idealised feature-vectors per type are used
to perform k-nearest neighbour classification.

The use of σ instead of α′ is a promising ansatz, however, that incorporates
“negative fuzzy values” (in the form of proto-features) in a sensible way. As
can be seen in Section 2.3.3, these negative values often appear quite naturally
in practice. And even if certain features are computed as values in [0, 1], their
interpretation is often more elegant as proto-features. Take, for example, Left

Curvature which equals 1 if the stroke makes a left turn at every point; 0 if
the stroke makes only right turns; and 1

2 if the stroke makes no turns at all.
Moreover, in the next chapter we will see functions which describe the shape
of strokes in a coherent way and which take values in [−1, 1] by default.

So, basing the classification around values in the interval [−1, 1] might be a
better idea than using [0, 1], even though “negative fuzzy values” have not the
same interpretation as normal fuzzy values.

5 Characterising strokes via

determinants

It has long been an axiom of mine that the little things are infinitely the
most important.

— Sherlock Holmes, A Case of Identity, by Arthur Conan Doyle

In Chapter 2 we introduced the most basic model for handwritten strokes. In
particular, we defined the stroke space S and also specific subsets like Q and
N to normalise strokes. S itself is an affine space which is used in the context
of convex combinations in Section 3.1.2 and at a few other points throughout
this thesis. Apart from that, there is no meaningful structure on S itself that
encodes what strokes are or how they behave. That means that sequences of
points like the one in Figure 5.1 are in S. However, it is evident that it probably
does not represent any real letter, digit or character in most symbol sets.

Figure 5.1: A sequence of points that is an element of S, but does not represent a
“real-world” stroke.

We mentioned that we could fix this by demanding a maximal distance
between neighbouring points along a line. The way we approached this prob-
lem in this thesis was by introducing the notion of sample dispersals to encode
the likelihood that an element of S represents something. Now, one design goal
for choosing features we could demand is that they should form a decomposi-
tion of the sample dispersal maps. I.e., if ml : S→ [0, 1] models the likelihood

172 5 Characterising strokes via determinants

that strokes represent a type l ∈ A, a good feature set f1, ..., fm : S→ [0, 1] for
this type l should (here in this scenario) fulfil

ml = f1 � · · · � fm

for an appropriate t-norm �. With the interpretation of t-norms as the inter-
section operator on fuzzy sets this property would mean that

a stroke represents the type l if it has all properties f1, ..., fm.

If we demanded this property in building features, we could not assume that
they model any concrete geometric property. So, we did not mention sample
dispersals explicitly anymore after introducing them.

Then, in Chapter 3, we looked at how various transformations act on S.
We argued and showed in examples why these transformations are reasonable
and how they can be used in practice. However, the focus of that chapter was
on the practical applications: smoothing strokes without collapsing them into a
line segment, creating new samples from old ones and duplicating handwritten
words preserving their characteristics. Now we want to use them to analyse
the general structure of strokes a bit more.

Concretely, we will, firstly, argue that looking at the curvature of a stroke
helps to understand its shape. Secondly, we will describe this shape via certain
determinant vectors. Lastly, we show that the transformations we know oper-
ate nicely on these vectors.

The ideas in this chapter were developed as a consequence of the results of
the previous chapters and of the insights gained from the practical implement-
ations in ALICE:HWR. Because of that, they are not yet present in any form of
HWR algorithm and are indented as a starting point for further inquiries.

5.1 Curvature 173

5.1 Curvature

In Section 4.1 we saw that classifying strokes via directional vectors works very
well. In particular, these vectors include the Start Direction

P3−P1
‖P3−P1‖2

, the End

Direction
Pn−Pn−2
‖Pn−Pn−2‖2

and the General Direction
Pn−P1
‖Pn−P1‖2

which all found
their way into ALICE:HWR in some way. Features like these — either given by
their coordinates or their position on the unit circle — can be seen as orientation
features. That means that they allow differentiating between rotated strokes or
parts of strokes that are rotated. E.g., the can help to distinguish V form Λ or
∩ from ∪ or − from |.

This leaves the question what the difference between strokes with the same
orientation feature values are. Compare, for example, the letters U, V and W

and the symbol ∪. Strokes representing these four characters have the same
Start and End Directions and even their start and end points are at the same
place.1 The property that they do not have in common is their shape.

Definition 5.1.1: A (proto-)feature f on S is called a shape (proto-)feature if it
is invariant under translations and rotations. I.e., for any such transformation
T : S→ S and any s ∈ S we demand f (T(s)) = f (s). 4

In the rest of this chapter, we want to, firstly, argue that the (discretised)
curvature of strokes is a shape feature that is actually relevant for the shape of
a stroke. Secondly, we want to show that a set of certain determinants is an
adequate representation of this shape.

Here we want to argue and illustrate that the curvature and the shape of a
stroke have a strong interrelation and, especially, are closer related than the
shape of a stroke and the actual position of its points.. For smooth curves in
the plane — i.e., C∞ maps γ : [0, 1] → R2 — the curvature is simply defined as
the absolute value of the second derivative — while the second derivative itself
can be thought of as the acceleration a particle experiences that travels along

1Start and End point are also orientation features. They allow for a similarly good classific-
ation as directional vectors. But as there are no obvious assumptions to their distribution in
general, we did not analyse them separately.

174 5 Characterising strokes via determinants

the curve.2 The discrete version of the derivative is given by the map

dn :
(

R2
)n
→
(

R2
)n−1

, (Pi)
n
i=1 7→ (Pi+1 − Pi)

n−1
i=1 .

If we now compute the second discrete derivative (dn−1 ◦ dn)(s) of a stroke
explicitly, its (i− 1)-st entry will be

κi := (Pi+1 − Pi)− (Pi − Pi−1) = Pi−1 − 2Pi + Pi+1

for i = 2, ..., n− 1. We index it this way instead of by 1, ..., n− 2 because of the
following geometric interpretation: κi is the discrete acceleration at point Pi. If
we attach κi as a vector to Pi, it is the diagonal of the parallelogram spanned
by Pi−1, Pi and Pi+1. This elementary geometric fact is illustrated in Figure 5.2.
Now, taking the absolute value of κi gives a measure of the discrete curvature
of the stroke.

Pi−1 Pi

Pi+1

κi

Figure 5.2: Discrete acceleration/curvature at point Pi.

The mathematical definition of the curvature of a stroke only makes sense
if it is parametrised with respect to arc length — i.e., ‖γ′‖2 = 1. The discrete
version of this given by ‖Pi+1 − Pi‖2 being constant for all i = 1, ..., n− 1. We
will use this later when we interpret the values ‖κi‖2 a bit differently.

2We do not make a formal distinction between the acceleration as a vector and the curvature
as its length. In particular, we will call both objects “curvature” in order to not confuse
anything with the transformations we called accelerations.

5.1 Curvature 175

Now we want to see how the curvature of a stroke affects its appearance. As
the meaning of a stroke is ambiguous, we explore this on examples. To do so,
we will randomly change the coordinates of a stroke, its first and its second
derivative and compare the results qualitatively.

Consider a stroke s and add to any point Pj on it a vector rje
iϕj with the

ϕj being uniformly chosen from the interval [0, 2π) and the rj from [0, ε] for a
fixed upper bound ε > 0. Here, i is the imaginary unit; not an index. Denote
this operation

(
R2)n →

(
R2)n by Ωn,ε.

Adding random noise in this fashion can be tested interactively in Widget
A.7. The result for one stroke representing a 3 can be seen in Figure 5.3. The
top left stroke is the original, and the first column to the right of it is the result
of applying Ωn,ε three different times. Here, the upper bound is chosen to be
0.01.

Then, we do the same thing for the first and second derivative: we apply
Ωn−1,ε ◦ dn and Ωn−2,ε ◦ dn−1 ◦ dn to a stroke s. But as these are element of(
R2)n−1 and

(
R2)n−2, respectively, we have to integrate them first to get back

an element of S. We define the discrete integral as a function
∫ n−1

S with a point
S ∈ R2 by

∫ n−1

S
:
(

R2
)n−1

→
(

R2
)n

, (vi)
n−1
i=1 7→

(
S +

i−1

∑
j=0

vj

)n

i=1

with v0 := 0. This allows us to compare a stroke s with

Ωn,ε(s),(∫ n−1

P1

◦Ωn−1,ε ◦ dn

)
(s) and(∫ n−1

P1

◦
∫ n−2

P2−P1

◦Ωn−2,ε ◦ dn−1 ◦ dn

)
(s).

Again, this is implemented in Widget A.7 and can be seen in Figure 5.3. Where
the first column shows random noise on the points of a stroke themselves,
the second column shows how noise affects the first derivative and the third

176 5 Characterising strokes via determinants

column shows it for the second derivative.

Figure 5.3: Adding random noise to the points of a stroke (second column), its first
derivative (third column) and second derivative (fourth column). Three
different times.

The examples chosen here for the results on the second derivative are among
the most extreme one that can be found with Widget A.7. However, it is telling
that the difference between noise on a stroke and its first derivative compared
to the original is much smaller than between noise on the second derivative
and the original.

A problem here to consider is that the effect of random dispositions
gets amplified through the application of the discrete integrals. The end
point of Ωn,ε(s) is at most ε away from Pn. However, the end point of(∫ n−1

P1
◦Ωn−1,ε ◦ dn

)
(s) can be up to (n − 1) · ε away from Pn. So, the effect

of perturbing the k-th derivative of a stroke will be visually larger the higher
k is. To judge the effect on the actual shape of strokes better, we normalise

5.1 Curvature 177

the resulting strokes such that they have the same start and end point as the
original one. The results can be seen in Figure 5.4. We see that the visual dif-
ference to the original stroke is still much higher once the second derivative is
affected; at least in these examples.

Figure 5.4: Adding random noise to the points of a stroke (second column), its first
derivative (third column) and second derivative (fourth column). Normal-
ising the results to the same start and end point.

None of this is a real surprise though. A back-of-the-envelope calculation
shows that the distance the endpoint moves has a variance proportional to n if
noise is added to the first derivative, and a variance proportional to n3 if the
noise is added to the second derivative. However, as we argued before we focus
on comparing strokes with similar Length in practise. So, the sample rate n
is a constant in our considerations. Hence, we will only focus on the jump in
visual change to prompt the more structured observations in the next section.

178 5 Characterising strokes via determinants

5.2 Determinants

The above section serves as a motivation to why looking at the curvature of
a stroke might be interesting. Here we want to formulate this idea in a more
mathematically sound way. First, we want to consider a different term than the
actual curvature that describes something similar.

We looked at the second discrete derivative of a stroke given by

κi = Pi−1 − 2Pi + Pi+1.

The curvature itself is then |κi| and it is equal to the length of the diagonal
of Pi in the parallelogram spanned by Pi−1, Pi and Pi+1. Now, assume3 that
the neighbouring points along a stroke have constant distance d. Then, the
three points Pi−1, Pi, Pi+2 form an isosceles triangle. Its height in the point Pi is
hi := 1

2 |κi| and, subsequently, its area is

Ai := hi ·
√

d2 − h2
i =

1
4
·
(
|κi| ·

√
4d2 − |κi|

)
.

As d is a constant here, the area is uniquely determined by the curvature of the
stroke. But as we have seen in Section 2.1.1, the area of this triangle can also be
computed via the determinant Ai =

1
2 [P̂i−1, P̂i, P̂i+1].

We use this fact to use the determinant as a substitute for the curvature even
if the points along the stroke do not have constant distance d. It is handy be-
cause of its algebraic and geometric properties. Moreover, it can be negative,
so it even captures the sign of the curvature directly.

However, the mapping |κi| 7→ 1
2 [P̂i−1, P̂i, P̂i+1] we get is not one-to-one:

the triangle area becomes zero both for |κi| = 0 and 2d (and maximal for
|κi| = 1

2

√
2d when the triangle is equilateral). In order to obtain a reconstruction

method similar to the discrete integration
∫ n

S we have to measure additional
information. We will look at other determinants, namely [P̂1, P̂i, P̂n]. Whereas
[P̂i−1, P̂i, P̂i+1] describes the local curvature directly at the point Pi, this new de-

3As already mentioned, this is an assumption one has to make in the continuous case to even
define the curvature properly.

5.2 Determinants 179

terminant can be thought of a global-scale curvature comparing the position of
Pi with the start and end point.

Below we first show how looking at both kinds of determinants at the same
time allows us to reconstruct strokes. Afterwards, we show that they form a
more natural moduli space of strokes than

(
R2)n in the sense that the geometric

transformations from Chapter 3 operate on them in a very simple manner.

Definition 5.2.1: We call li(s) := [P̂i−1, P̂i, P̂i+1] for i = 2, ..., n− 1 a local determ-
inant of s and gi(s) := [P̂1, P̂i, P̂n] for i = 1, ..., n a global determinant of s.

Furthermore, define the local shape vector of s by

l(s) = (l2(s), ..., ln−1(s))T ∈ Rn−2,

the global shape vector of s by

g(s) = (g2(s), ..., gn−1(s))T ∈ Rn−2

and the (full) shape vector of s by

∆(s) = (l2(s), ..., ln−1(s), g2(s), ..., gn−1(s))T ∈ R2(n−2),

4

Note that
g1(s) = [P̂1, P̂1, P̂n] = 0 = [P̂1, P̂n, P̂n] = gn(s)

holds for all strokes s. We see them as part of the global shape data of s, but we
do not actively track them in g(s) or ∆(s). Also, if we normalise strokes to lie
in Q, the values of both local and global determinants lies in the interval [−1, 1]
and so they are proto-feature. As they describe triangle areas, it is evident that
they are shape proto-features.

Definition 5.2.2: We say a stroke s is in general position if no line Pi ∨ Pi+1 is
parallel to P1 ∨ Pn, for all i = 1, ..., n− 1. 4

Note that strokes which are in general position form a dense subset of S. In
particular, we can approximate any recorded stroke arbitrarily well by a stroke

180 5 Characterising strokes via determinants

in general position.

Definition 5.2.3: For a stroke s define the vector

bs
i :=

 li(s)
gi(s)

1


and the matrices As

i by the equation

As
i P̂i = bs

i

for all i = 3, ..., n. The matrices are explicitly given by

As
i =


(

P̂i−2 × P̂i−1
)T(

P̂n × P̂1
)T

0 0 1

 .

4

Proof. The explicit formula follows from the equation [X, Y, Z] = (X × Y)TZ
for arbitrary vectors X, Y, Z ∈ R3. Using it we can see that the first two entries
of As

i P̂i are exactly the local and global determinant in bs
i .

Theorem 5.2.4: Let s = (Pi)
n
i=1 be a stroke in general position and let A, B, C ∈ R2

be three points which are not collinear. Build a stroke t = (Qi)
n
i=1 recursively via the

following rule:

1. Set
Q1 = A Q2 = B, Qn = C.

2. Set
Qi =

(
At

i
)−1 bs

i

for all i = 3, ..., n− 1.

Note that we use the matrix At
i , but the vector bs

i . So, this definition constructs a new
stroke t from A, B, C and the previously built points on t using the local and global
determinants of s. Then the following are equivalent:

5.2 Determinants 181

(1.) [Â, B̂, Ĉ] = g2(s).

(2.) ∆(s) = ∆(t).

(3.) There exists an affine transformation M with determinant 1 such that s = Mt.

Proof. (3.) ⇒ (2.): Matrices of determinant 1 do not change any determinant
values.

(2.) ⇒ (1.): If all local and global determinants are equal, then, in particular,
the second global one is.

(1.) ⇒ (3.): If an affine transformation exists that maps t to s it has to be the
one that maps A, B, C to P1, P2, Pn, respectively. Assume, w.l.o.g., that P1 is the
origin, that Pn lies on the positive x-axis and that P2 lies above the x-axis. Then
there exits an Euclidean transformation that maps A to the origin and C to the
positive x-axis. As

[Â, B̂, Ĉ] = g2(s)
def
= [P̂1, P̂2, P̂n],

the point B has to be in the same half-space with respect to A ∨ C as P2 is with
respect to P1 ∨ Pn. I.e., it also lies above the x-axis. Then we apply a scaling of
the form 

1
d

d
1


for an appropriate d > 0 such that C lands on Pn. It leaves triangle areas in-
variant and thus the image of B must have the same y-coordinate as P2. Finally,
a shearing parallel to the x-axis maps B to P2. All these three intermediate
transformations have determinant 1, thus their concatenation M has so, too.

What is left to show is that building t after this realignment leads to t = s
and that building t from the original A, B, C and then applying M leads to the
same result. The former can be done by induction: P1, P2 and Pn already coin-
cide with Q1, Q2 and Qn, respectively. So now assume that P1, ..., Pi−1 and Pn

coincide with Q1, ..., Qi−1 and Qn, respectively. As s is in general position, the
lines P1 ∨ Pn and Pi−2 ∨ Pi−1 are not parallel which implies that As

i is invert-
ible. Because s and t are already equal up to the (i− 1)-st point, we know that

182 5 Characterising strokes via determinants

As
i = At

i . So,
Qi =

(
At

i
)−1 bs

i = (As
i)
−1 bs

i = Pi.

We can reformulate this geometrically: Up to a factor of 2, the determinant
[X, Y, Z] is the signed area of the triangle X, Y, Z. If we now fix two of these
points, say X, Y, as the base of the triangle, the determinant is proportional
to the corresponding altitude of the triangle or, in other words, to the signed
distance of Z to the line X ∨Y.

So, when we want a point Qi with [P̂i−2, P̂i−1, Q̂i] = [P̂i−2, P̂i−1, P̂i] and with
[P̂1, Q̂i, P̂n] = [P̂1, P̂i, P̂n], it has to have the specific distance given by

[P̂i−2, P̂i−1, P̂i]

2 ‖Pi−2 − Pi−1‖2

to the line Pi−2 ∨ Pi−1 and the distance

[P̂1, P̂i, P̂n]

2 ‖Pn − P1‖2

to P1∨ Pn. This point is unique as long as P1∨ Pn and Pi−2∨ Pi−1 are not parallel
and Pi is one such point; so Qi = Pi.

This last argument shows that this construction is compatible with the affine
transformation M: It leaves determinants and, hence, triangle areas invariant.
Tt also does not change the (non-)parallelity of lines, since it is an affine trans-
formation. That means the points Qi we construct in the original setting have
to coincide with M−1Pi for all i.

Corollary 5.2.5: Let s and t be two strokes with the same start and end points S and E.
If ∆(t) = d · ∆(s) for some d ∈ R×, then s and t differ by a shearing parallel to S ∨ E
and a scaling perpendicular to S ∨ E by the factor d.

Proof. W.l.o.g., assume that S is the origin and that E is on the positive x-axis.
Shearing parallel to the x-axis then does not change any determinants, so we
can also assume that the point P2 on s and Q2 on t have the same x-coordinate.

5.2 Determinants 183

What is left to show is that Dŝ = t̂ for

D =

1
d

1

 .

We know that ∆(Dŝ) = d · ∆(s), since scaling in one direction by d scales (tri-
angle) areas by the same amount. Furthermore, D(P2) and Q2 have to be equal.
Then, Theorem 5.2.4 implies that Ds = t.

The reconstruction process from Theorem 5.2.4 can be tested in Widget A.8.
In particular, The stroke t can be built regardless of whether the points A, B and
C are in the correct spatial relation. But the last point

(
At

n
)−1 bs

n we can con-
struct with the given rule coincides with C if and only if the triangles A, B, C
and P1P2Pn have the same area. Moreover, moving one of the points A, B, C
parallel to the line through the other two does not change the triangle area
which visualises Corollary 5.2.5.

These two statements tell us that if we keep track of basic position and ori-
entation information of a stroke — the first, second and last point on it — we
can reconstruct it from the shape vector up to shearing parallel to the start-end
line. Seeing strokes that only differ by such a shearing as equivalent is reason-
able as this is a common alteration in typography and chirography. However,
as we argued in Section 3.1.1, strokes that emerge from arbitrary projective
transformation should have the same form as the original stroke, too. In that
section, we introduced the notion of compliant projective transformations to
deal with certain rendering and display problems. For the theoretical consider-
ations here we will ignore these concerns and assume that we can freely apply
any projective transformation to strokes. The determinant multiplication rule
implies that ∆(M(s)) = det(M) · ∆(s) for a projective transformation M. And
since we want to see s and M(s) as equivalent, it suggests itself identifying
scalar multiples of shape vectors.

Let S∼ be the set of all strokes s ∈ S that are not straight line segments. I.e.,
those strokes s for which not all points P1, ..., Pn on it are collinear. Consider

184 5 Characterising strokes via determinants

the function
Γ : S∼ → RP2n−5, s 7→ [∆(s)].

Practically, it is indistinguishable from ∆. But we want to emphasise that we
now consider shape vectors only up to scalar multiples.

Note that since the zero vector does not represent any object in projective
space, we have to exclude all strokes s from the domain of Γ with ∆(s). And
these are precisely the straight line segments. However, as we have seen, these
particular strokes can very easily be recognised by their Straightness and
classified solely by their orientation. So, it is no problem to exclude them here.

Theorem 5.2.6: Let T be either an affine pull Cλ with λ ∈ R× or an acceleration A∆v

by ∆v ∈ R. (See Sections 3.1.2 and 3.1.3.) It operates on im(Γ) by

T(Γ(s)) := Γ(T(s))

and this action is given by a projective transformation on RP2n−5. I.e., it operates
linearly on the elements of RP2n−5.

Proof. The functions in question form groups as shown in Lemmata 3.1.2 and
3.1.5. So, it is clear that the operation defined above forms a proper group
action. To show the second part of the statement, we compute local and global
determinants of transformed strokes and will see that the results are linear
combinations of determinants of the initial stroke. Thus, we can write the
action on RP2n−5 by matrix multiplication. That this matrix is invertible then
follows simply from the fact that the functions we work with here are invertible.

To make the subsequent computations easier, we restrict ourselves to nailed
strokes N ∩S∼. In particular, this means gi(s) = −yi. We can do this, since
Euclidean transformations operate trivially on im(∆). Also, recall that we de-
note the i-th point of u by ui.

Affine pulls: Let λ ∈ R× and s ∈ N ∩S∼. In this case, u is explicitly given
by ((

i− 1
n− 1

, 0
))n

i=1
.

With this, an the fact that s and u have the same start and end points, we

5.2 Determinants 185

directly get the global determinant

gi(Cλ(s)) = [λP̂1 + (1− λ)û1︸ ︷︷ ︸
=P̂1=û1

, λP̂i + (1− λ)ûi, λP̂n + (1− λ)ûn︸ ︷︷ ︸
=P̂n=ûn

]

= λ · [P̂1, P̂i, P̂n] + (1− λ) · [û1, ûi, ûn]︸ ︷︷ ︸
=0

= λgi(s)

for every i = 1, ..., n. The local determinant li(Cλ(s)), for i = 2, ..., n− 1, we can
transform to

li(Cλ(s)) =[λP̂i−1 + (1− λ)ûi−1, λP̂i + (1− λ)ûi, λP̂i+1 + (1− λ)ûi+1]

=λ3[P̂i−1, P̂i, P̂i+1]

+ λ2(1− λ)
(
[P̂i−1, P̂i, ûi+1] + [P̂i−1, ûi, P̂i+1] + [ûi−1, P̂i, P̂i+1]

)
(a)

+ λ(1− λ)2 ([ûi−1, ûi, P̂i+1] + [ûi−1, P̂i, ûi+1] + [P̂i−1, ûi, ûi+1]
)

(b)

+ (1− λ)3[ûi−1, ûi, ûi+1]

using the multi-linearity of the determinant. Furthermore, we compute

[P̂i−1, ûi, P̂i+1] =

∣∣∣∣∣∣∣
xi−1

i−1
n−1 xi+1

yi−1 0 yi+1

1 1 1

∣∣∣∣∣∣∣ = −[Pi−1, Pi+1] +
i− 1
n− 1

(yi+1 − yi−1)

and similarly

[P̂i−1, P̂i, ûi+1] = [Pi−1, Pi]−
i

n− 1
(yi − yi−1)

and
[ûi−1, P̂i, P̂i+1] = [Pi, Pi+1]−

i− 2
n− 1

(yi+1 − yi).

Note that on the right-hand sides we have 2× 2-matrices. With this we can
write the right-hand factor in term (a) above as

[Pi−1, Pi]− [Pi−1, Pi+1] + [Pi, Pi+1]

− i
n− 1

(yi − yi−1) +
i− 1
n− 1

(yi+1 − yi−1)−
i− 2
n− 1

(yi+1 − yi).

186 5 Characterising strokes via determinants

The first three summands here are, after a sign flip in the second one, twice the
area of the triangle Pi−1PiPi+1, which is equal to li(s). And the second three
summands can simply be added up. Moreover, we replace the y-coordinates
by negative global determinants. The last factor in (a) is then

li(s)−
1

n− 1
(gi−1(s)− 2gi(s) + gi+1(s)) . (a’)

Next, we compute

[ûi−1, P̂i, ûi+1] =

∣∣∣∣∣∣∣
i−2
n−1 xi

i
n−1

0 yi 0
1 1 1

∣∣∣∣∣∣∣ = −
2

n− 1
yi

and similarly

[ûi−1, ûi, P̂i+1] =
1

n− 1
yi+1

and
[P̂i−1, ûi, ûi+1] =

1
n− 1

yi−1.

This allows us to re-write the last factor in term (b) to

− 1
n− 1

(gi−1(s)− 2gi(s) + gi+1(s)) . (b’)

When we now replace the right-hand factors in (a) and (b) by (a’) and (b’) in
our initial computations of li(Cλ(s)) we get

li(Cλ(s)) =λ3 [P̂i−1, P̂i, P̂i+1]︸ ︷︷ ︸
=li(s)

+ λ2(1− λ)

(
li(s)−

1
n− 1

(gi−1(s)− 2gi(s) + gi+1(s))
)

− λ(1− λ)2
(

1
n− 1

(gi−1(s)− 2gi(s) + gi+1(s))
)

+ (1− λ)3 · [ûi−1, ûi, ûi+1]︸ ︷︷ ︸
=0

=λ2 · li(s)− λ(1− λ) · 1
n− 1

· (gi−1(s)− 2gi(s) + gi+1(s)) .

5.2 Determinants 187

Acceleration: Let ∆v ∈ R and abbreviate the normalising factor in the defin-
ition of accelerations (see Definition 3.1.3) by

N = 1 + (n− 1) · ∆v.

First observe that global determinants stay invariant under A∆v, since acceler-
ations only affect x-coordinates of strokes (in N) and leave the y-coordinates
invariant. And for local determinants we get

li(A∆vs) =

∣∣∣∣∣∣∣
1
N (xi−1 + ∆v(i− 2)) 1

N (xi + ∆v(i− 1)) 1
N (xi+1 + ∆vi)

yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣∣
=

1
N


∣∣∣∣∣∣∣
xi−1 xi xi+1

yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣∣+ ∆v ·

∣∣∣∣∣∣∣
i− 2 i− 1 i
yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣∣


=
1
N

(li(s) + ∆v (yi−1 − 2yi + yi+1))

=
1
N

(li(s)− ∆v (gi−1(s)− 2gi(s) + gi+1(s))) .

The above proof did not only demonstrate that affine pulls and accelerations
operate linearly on determinants. It also shows that the local determinants
get altered by a multiple of gi−1(s) − 2gi(s) + gi+1(s) in both cases. It is the
negative of the y-coordinate of the second derivative κi of s at point Pi. That
means that affine pulls and accelerations change one kind of curvature meas-
ure — local determinants — by a different kind of curvature measure.

This last theorem illustrates that the two ideas of this chapter — considering
the curvature of strokes at all and representing it via determinants — and the
geometric transformations from Chapter 3 complement one another. In particu-
lar, projective transformations and convex combinations were motivated mostly
by graphical/visual considerations and accelerations by kinematic ones. Now,
however, we see that they affect the shape of stroke in a simple and controlled
way.

188 5 Characterising strokes via determinants

When we take this as reason enough to believe that Γ(S∼) ⊂ RP2n−5 is a
good moduli space for non-straight-strokes, the next step would be to ana-
lyse and classify sample sets in this space. In our pursuit to find classifiers
based on concrete geometric properties, it is now a straightforward idea to use
multi-homogeneous bracket polynomials. They are polynomials built from de-
terminants of points such that every point appears the same number of time in
every monomial. That makes these polynomials, in particular, invariant under
projective transformations: if it is 0 for a specific point set, it is also zero for the
transformed point set.

In the context of strokes this means the following: If we have a set of good
samples for a stroke type and look at the images under Γ we can try to find
an algebraic variety in RP2n−5 that is given by multi-homogeneous bracket
polynomials that interpolates the sample set (as good as possible). Then, there
exists a concrete geometric property that describes the sample set (as good as
possible). The problem herein is that the translation from bracket polynomi-
als back to explicit geometric statements is tricky and non-obvious. See, for
example, Neil White’s work [68] on Cayley factorisation.

It would go beyond the scope of this thesis to discuss this idea. Instead, we
want to close by giving three short examples of how polynomials in local and
global determinants relate to geometric properties of strokes.

Example 5.2.7: Let s ∈ S∼ be a non-straight stroke. Then, the geometric prop-
erty that

the first quarter part of s is straight

is equivalent to s being a solution to the following linear system on determin-
ants4:

l2(s) = l3(s) = ... = l n
4
(s) = 0.

This property is present in strokes that represent 7, L or �. Next, we make the

4We took the liberty to simply write the index n
4 . Depending on n we would use b n

4 c or b n
4 c− 1

to get the proper first fourth of points. Similar simplifications are applied throughout the
example.

5.2 Determinants 189

equations slightly more complicated. The linear system

l2(s)− l3(s) = l3(s)− l4(s) = ... = l n
2−1(s)− l n

2
(s)

encodes that the curvature is constant for the first half of the stroke. So, it de-
scribes the property that

the first half of the stroke forms a circular arc.

Note that this tells us nothing about the angle of the arc. So, this describes
strokes representing S as well as 9.

Next, we can look at the single polynomial

n−1

∑
i=2

li(s).

When the curvature value at every point average out — i.e., when this polyno-
mial evaluates to zero — we can say that

the stroke has to have as many (local) left turns as right turns.

This describes, for examples, strokes types like 2, S and 8; but also straight lines
for which every summand is zero. Moreover, the zero set of this polynomial
separates the space RP2n−5 into two parts. The larger the absolute value of

∑n−1
i=2 li(s) for a concrete stroke s, the more lopsided the curvature distribution

is — at least when we only look at strokes s ∈ Q ∩S∼ such that all summands
are bounded. However, that means that not only points Γ(s) on the surface
given by the polynomial can represent stroke types, but also points in each half-
space. E.g., good samples of 7 and L do not lie on the hyper-surface but are
separated by it. 4

The example above illustrates how determinants in local and global determ-
inants can model geometric properties. In particular, the last polynomial is a
continuous variant of the features Left and Right Curvature we defined in
Section 2.3.3 via counting functions. Moreover, we saw in the introduction of
the Kolmogorov-Smirnov test a variant of the Straightness of a stroke given
by ∑n−1

i=2 gi(s); even though we described it there a bit differently.

190 5 Characterising strokes via determinants

So, not only do vectors with local and global determinants as their entries
serve as an elegant way to describe the shape of a stroke that is stable under
transformations. Also, polynomials in these determinants have the potential to
describe specific geometric properties of this shape.

Looking back at the primary source of ALICE:HWR, the article [11] by Delaye
and Anquetil, we can see that some of the features listed there have very con-
voluted definitions; especially the Proportion of downstrokes trajectory.
So, searching for (multi-homogeneous) polynomials in determinants may serve
as a way to find simple features that still convey a lot of geometric meaning of
the original strokes.

6 Looking back at ALICE:HWR

“Where is the library?”
“Turn right, proceed thirty-four paces, turn right again, twelve paces, then
through door on the right, thirty-five paces, through archway on right an-
other eleven paces, turn right one last time, fifteen paces, enter the door on
the right.”
Mappo stared at Iskaral Pust. The High Priest shifted nervously.
“Or,” the Trell said, eyes narrowed, “turn left, nineteen paces.”
“Aye,” Iskaral muttered.

— Deadhouse Gates, by Steven Erikson

Some of the ideas presented in the last three chapters can be implemented
directly. For example, measured values often have to be bounded to be useful.
So, normalising them to get (proto-)feature suggests itself. Here in this chapter
we talk about some of the nuances and describe how the ideas from the last
chapters found their way into ALICE:HWR.

To start, we state the whole training and classification process of
ALICE:HWR — similar to how we did it in Section 2.3.1. Afterwards we
will talk about certain points in more detail. We will describe version 4 of
ALICE:HWR which is the one found currently (as of January 2019) in the
ALICE iBook and which was used in the second study, at Mittelschulen in 2017.
We will compare it qualitatively to version 3 which was used in the first study,
at Gymnasien in 2016. Version 4 can be found in the companion iBook [67] as
Widget A.9.

192 6 Looking back at ALICE:HWR

Figure 6.1: Stroke types used in ALICE:HWR

Recall the alphabet used in ALICE:HWR

A = {1a, 1b, 2, 3, 4a,

4b, 5a, 5b, 6, 7,

8a, 8ar, 8b, 9a, 9b,

0a, 0ar, 0b, -}.

and its “ideal” realisations seen in Figure 6.1 we introduced already in Section
2.3.1. In Sections 1.2.2 and 1.3.2 we argued that we want to recognise num-
bers based on how these strokes were written — i.e., how the finger/pen of the
user moved along the touchscreen — and the image that was produced. In par-
ticular, we assume that every stroke is written in the “proper” way taught in
elementary school.

For practical reasons we enabled the possibility to write any stroke back-
wards. It is implemented by changing the order of a recorded stroke and then
classifying the original and the reversed stroke separately. Whichever gives the
better result is viewed as the intended user input. This is necessary for ho-
rizontal lines (used in 5’s and (German) 7’s) as left-handed and right-handed
person write them with different orientation. For all other strokes this is mostly
a luxury feature. We will not list this as an essential part of the classification
process below. Note, however, that for the closed-loop strokes that represent a
0 or 8 we encoded the reversely written versions as separate stroke types. This
produces more reliable results.

193

In Sections 1.2.2 and 1.3.2 we also mentioned that the HWR algorithm should
be as simple as possible in the sense that we want a small set of training data
and an uncomplicated classification process. Below we will discuss how this
was achieved based on the theoretical consideration of the previous chapters.

194 6 Looking back at ALICE:HWR

6.1 Training

In Section 2.3.1 we already sketched the general idea of the classifier: we want
concrete rules for when a stroke type is definitely not a match for a recorded
stroke, and a fuzzy distance function that thereupon ranks the remaining types
based on idealised feature vectors. The training process to find these rules and
feature vectors looks like this:

1. Five sample strokes were recorded for every type in A and pre-
processed by Algorithm 2.3.4.

2. The 25 different features from Section 2.3.3 were computed for all these
strokes.

3. They were scaled with the function ρ3,0.7 (defined in Section 2.3.3) to
make values larger than 0.7 even larger; and smaller values smaller.

4. We built the training context T and scaled it in two different ways.
First, such that low feature values always imply high values. And the
other time, such that high values imply low ones.

5. The program Concept Explorer (see [71]) was used to find exclusion rules
for each stroke type and for each scaling of T . All decision areas that
exclude a stroke type were joined to form a single, large decision area.

6. The sample strokes were multiplied using the Gaussian filter GA0.02

and the projective transformation M from Example 3.2.2. Similar as
described in the example, they are applied 9 times each, based on a
Kolmogorov-Smirnov test to determine how much the feature values
change.

7. The feature vectors for all transformed and untransformed strokes are
computed and the average of all feature vectors associated to a stroke
type is computed. This serves as an idealised feature vector for each
stroke type.

6.1 Training 195

Some noteworthy facts here are the following: First, the number of samples
used to train the algorithm is very small. Five per stroke type, so, 95 in total.
They were all produced by a single person who is left-handed.

Second, features were modulated with ρ3,0.7, as explained in Section 2.3.3,
since they describe very concrete geometric properties. And perfect represent-
atives of stroke types are expected to either have them or not have them with
100% certainty. This is not true for all features, but for many. Features for
which values around 1

2 have significance1 are usually also represented by their
complement. (E.g., Left and Right Curvature.) So, the bias introduced by
ρ3,0.7 is balanced out.

Third, out of the 225 ≈ 3.6 · 107 possibilities to scale the training context, only
two were used. Moreover, only a small number of exclusion rules was chosen.

The basic idea how these rules can be found was stated in Section 4.2. But
for ALICE:HWR we did not use hypotheses as explained there, but generat-
ives. See [14] for a definition. Generatives are subsets of hypotheses and give,
consequently, larger decision rule areas. So, they are more lenient in deciding
when a stroke type has to be ruled out.

Additionally to this generalisation, the decision rules were made even larger
by heuristic choices based on the idea of attribute exploration: The process
by which an implication basis for finite contexts can be found is based on an
order of the premises. Furthermore, the implications are computed following
this order. Then, a human user can supervise this process and interrupt it at
any point. If they disagree with a particular implication, they can provide a
counterexample that will be included in the context and taken into account in
the computations of the following implications. And the order of the premisses
just mentioned guarantees that the implications found up to this point are still
valid.

In the training of ALICE:HWR this veto process was executed by manually
changing the found decision rules. Adding concrete counterexamples would
have prolonged the run time of the attribute exploration via Concept Explorer.

1i.e., features that are better implemented as proto-features

196 6 Looking back at ALICE:HWR

Concretely, if an exclusion rule indicated that a certain feature fi should have
a value larger than 0.9 but a counter-example was known, this condition in
the exclusion rule ways simply dropped. Similarly, all conditions demanding
that features f j should be larger than 0.1 were left out, too: First, this condition
holds for many strokes anyway, because 0.1 is quite small. Second, because of
the small sample size used, this bound becomes even more unreliable.

The equivalent steps were made for the opposite scaling of the training con-
text and the resulting decision rules. In the end, there were between two and
eight conditions left for different features in each exclusion rule.

Fourth, multiplying the sample strokes via geometric transformations, as ex-
plained in Example 3.2.2, was done to factor in more variations when comput-
ing the idealised feature vectors of each stroke type. The Kolmogorov-Smirnov
test was not used as a factual assessment of the behaviour of the measured fea-
tures, but as a tool for exploration. In particular, the number of times we can
apply the transformations in question was found by the following heuristic:

It is the smallest number k for which 10% of all feature values of a stroke
type change. I.e., applying the transformation T in question to all samples Tl

of a type l ∈ A multiple times leads to fi(Tl) and fi

(
Tk(Tl)

)
being differently

distributed according to the Kolmogorov-Smirnov test for some features fi. The
value k = 9 is the smallest such that this happens for three of the 25 features.
This was deemed a reasonable threshold to say that the transformed samples
do not exactly depict the same thing as the original ones. That the value is the
same for both the Gaussian filter and the acceleration is coincidental.

Fifth, in previous iterations of ALICE:HWR, the exclusion rules were heur-
istically determined. The method using Formal Concept Analysis shown here
is, in contrast, more automatic.

6.2 Classification 197

6.2 Classification

The actual classification process is as described in Section 2.3.1. First, stroke
types were excluded via rules found with Formal Concept Analysis. Second,
the remaining types were ranked to find the best match using a function

Φ : [0, 1]m × [0, 1]m → [0, 1].

Concretely:

Algorithm 6.2.1: Stroke classification by ALICE:HWR
Input : An alphabet A, an exclusion rule El for each l ∈ A, a fuzzy

vector Fl ∈ [0, 1]m for each l ∈ A and a stroke r ∈ ⋃∞
d=1

(
R2)d.

Output: A stroke type l ∈ A and a fuzzy value v ∈ [0, 1] describing it
likelihood to match r.

1 Pre-process r via Algorithm 2.3.4 and replace r by the result.
2 Using the 25 features from Section 2.3.3, compute the feature vector

F ← (ρ3,0.7(f1(r)), ..., ρ3,0.7(f25(r))).
3 Initiate c← A.
4 for l ∈ A do
5 if F ∈ El then
6 c← c\{l}.

7 Sort c by l ≤ l′ iff Φ(F(r), Fl) ≤ Φ(F(r), Fl′).
8 Return the last entry l in c and the fuzzy value v = Φ(r, vl).

In version 3 of ALICE:HWR, which was used in the 2016 study, the compar-
ison function Φ was basically the multi-matching function Σ from Section 4.3.
I.e., the entries of a vector in [0, 1]m were seen as the shifted feature values of
proto-features.2 So the entries were mapped into the interval [−1, 1] via the
map x 7→ 2x− 1. Then, the un-shifted vector F(r), Fl ∈ [−1, 1]m were sorted by
the values Σ(F(r), Fl) = F(r)TFl.

In constrast to the general procedure presented in Section 4.3, however, the
summands in the scalar product were weighted: a diagonal n × n-matrix W

2As seen in Section 2.3.3, many features used in ALICE:HWR have natural definition and
interpretation as proto-features.

198 6 Looking back at ALICE:HWR

not 3 not 8a not - Feature vector F(r)

Exclusion from A

Ranking of remaining types in A

Best match

Figure 6.2: Classification in ALICE:HWR.

was built such that it has non-negative diagonal elements and trace 1. Then,
the modified function Σ′(u, v) := uTWv was used.3

This is an artefact of using all 25 features for finding exclusion rules as well as
this ranking step. Individual features, which were included to separate certain
stroke types in the exclusion step, might not be beneficial in the ranking step
together with all other features.

Another characteristic of version 3 is that it used the best two matches l, l′

3This description of Σ′ lends itself directly for generalisation via other matrices W. Then,
however, the interpretations from Chapter 4 are not directly applicable anymore.

6.2 Classification 199

with respect to Φ. Then, these two candidates were analysed using a features
specific for this pair; but only if the fuzzy values Φ(F(r), Fl) and Φ(F(r), Fl′)

were close to each other.

In version 4 of ALICE:HWR, the function Φ was a variation of Π from Section
4.3. So, it was defined as

Φ(u, v) =
uTv

‖u‖2 ‖v‖2
.

The difference to Π is that Φ is defined on [0, 1]m instead of [−1, 1]m. This
was done as it gave better results during testing; in certain border cases when
strokes were written sloppy. As in the case with Σ above, this can be (at least
partially) explained by the fact that not all features were created equal. In
particular, many entries of the idealised proto-fuzzy vectors, representing the
stroke types, were not close to the end of the interval [−1, 1]. This mostly oc-
curred at entries of proto-features which were not relevant for that particular
type.

Finally, note that Algorithm 6.2.1 always returns a stroke type l as the best
match, independent of how high Φ(F(r), Fl) is. So, ALICE:HWR will always
produce a number and never say unrecognisable.

200 6 Looking back at ALICE:HWR

6.3 Parsing

The last part of the classification process in ALICE:HWR is parsing: Finding
out which digits and numbers were written, when several strokes were used.
In ALICE:HWR this was implemented in a very simple way: Using the stroke
types as given at the beginning of this chapter, there are only three digits that
are composed of several strokes. They are

— The digit 4 built from 4a and 1b.

— The digit 5 built from 5a and -.

— The digit 7 built from 7 and -.

There are two things to notice here: First, all these compound symbols consist
of exactly two strokes. Second, there is at least one stroke in each digit that
does not represent a digit alone. Concretely, these are 4a, 5a and -. So, having
a list of recorded strokes (r1, ..., rR) with R ≥ 2, it is very easy to parse them
into a number:

1. For all i = 1, ..., R find a stroke type li for ri that matches it best; using
Algorithm 6.2.1.

2. If li ∈ {4a,5a,-}, find the closest stroke rj next to ri such that there is
no other stroke in between and such that they form either a 4, 5 or 7.
Label the set {ri, rj} with the appropriate digit.

3. Parse the remaining strokes into the digit they represent (alone).

When we search for the closest strokes in step 2, we simply compute the center
of mass of each stroke and then use its x-coordinate. If all digits are written
horizontally and with a small gap between them, this algorithm will always
work. This is due to the aforementioned properties of the compound digits.

Note that the algorithm would parse the strokes shown in Figure 6.3 to the
number 45. The reason is, of course, that we use only the horizontal distance
of the strokes and only use their relative distance. So, the fact that 1b is too
far left and that the - is too far below, is ignored. Parsing strokes in this is

6.3 Parsing 201

justified, however, as we assume that the user actually wants to write a number
and also wants it to be recognised.4

Figure 6.3: A collection of strokes that will be recognised as the number 45.

Moreover, ALICE:HWR uses some additional ways to build these digits: For
examples, 1a and - will also be parsed as a 7, and 5a and - will be parsed
as a 5. The first is reasonable as stroke representing 1a and 7 are basically
indistinguishable. The second is handy in practice, because children often add
additional strokes to correct their written characters.5 So, they might write a
stroke that is recognised as a 5a; but for them it looks like a 5b. So, they add
a - to fix it. For a complete list of such additional building rules see Appendix
B.

As explained in the last section, version 3 of ALICE:HWR uses the best two
matches found in Algorithm 6.2.1. Both of them were incorporated during
parsing: When a stroke type l was only the second best but allowed for one of
the possible combinations, it was usually preferred over the best match.

4There are, of course, almost arbitrarily many ways to create false positives in any pattern
recognition process.

5See Chapter 1 and [44].

202 6 Looking back at ALICE:HWR

6.4 Performance

The versions of ALICE:HWR used in the studies conducted in 2016 and 2017,
did not directly test their solution rate. There are two reasons for that: First,
the studies were intended to test the explanations and exercises about fractions.
So, adding feedback questions whether the written numbers were recognised
would have distracted from the main goal. Second, saving the written strokes
for a later analysis was impossible since the memory in the iBook was limited
and needed for other things.

There are, however, two assessments of how good ALICE:HWR performs:
Interviews with the teachers after each study and an informal test with em-
ployees of the TUM.

The feedback to ALICE:HWR by teachers and pupils who participated in the
ALICE studies was positive overall. Some children complained that it does not
work. In all (reported) cases except one, this was fixed after the teacher told
them to write the numbers properly.6

The test with TUM employees gave the following results: 11 employees of the
Department of Mathematics and the School of Education were asked to write
numbers onto an iPad. The numbers were randomly selected as integers in the
interval [1, 99]. The interface to do so was identical to Widget A.9. Moreover,
they were requested to write both nicely and quickly at the same time. When
they were dissatisfied with their input, they were free to delete it before press-
ing the record button. This decision was left to the participants themselves.
Moreover, they were stopped after approximately five minutes of writing, in-
dependent of how much they have written. The individual solution rates of the
participants are:

14
16

,
45
45

,
41
42

,
51
55

,
37
42

,
36
40

,
47
47

,
62
65

,
38
49

,
31
35

,
90
95

The minimum is 38
49 ≈ 77.6% while the maximum is 100%. And the total solu-

6I.e., how it was taught in elementary school.

6.4 Performance 203

tion rate is
492
531
≈ 92.7%.

The results were much higher when the Apple Pencil was used. In particular,
hook removal was almost never necessary when this special stylus was used.
But the algorithm was built for the user with a finger, so we did not test the
solution rates for the Apple Pencil explicitly.

This solution rate is still far from sufficient. But considering the essential
parts of the training and classification process, it is already satisfactory. It illus-
trates that the general design choices made for ALICE:HWR were reasonable —
in particular, the combination of exclusion rules and and a fuzzy ranking step.
Moreover, we were able to achieve this with only a very small set of training
data.

The most heuristic and speculative part in the design of ALICE:HWR was
the choice of the features. To augment the presented HWR algorithm, this step
should be less speculative. Other points of inquiry that can and should be
investigated will form the next and final chapter.

204 6 Looking back at ALICE:HWR

7 Looking ahead

The impediment to action advances action. What stands in the way becomes
the way.

— Marcus Aurelius, Meditations V.20

Here in this last chapter we want to list a few question that should be explored
based on the considerations made in this thesis.

Question 7.1 (Parsing): How can symbols that are built from many strokes be parsed
and recognised? In particular, what is a universal mathematical model to describe the
spatial relations between the strokes? And can this description unveil some of the struc-
ture of compound symbols?

When working with symbols that are built from many stroke types, we want
to know whether the recorded strokes are in the right position to actually form
these symbols. We can model this, for example, by listing their positions, their
sizes, their distances and how relevant the exact spatial relation between two
strokes is. Fuzzy Logic has to be used in a similar fashion as for strokes.
Consider, for example, the term ax and the various ways to potentially write it
seen in Figure 7.1.

Figure 7.1: Several ambiguous ways to write ax or ax.

206 7 Looking ahead

Any recognition algorithm will have to incorporate the distance between base
and exponent and their relative sizes to distinguish it from, say, ax.

Using all of the available data with a reasonable machine learning algorithm
will certainly lead to an adequate classification process. But the question is
whether this can be achieved with descriptive classification steps similar to
the exclusion rules from ALICE:HWR? This is desirable, since it could lead to
guided feedback the software may provide the user.

Question 7.2 (Text context): Is there a universal and structured way to incorpor-
ate information of the context in which strokes and symbols are produced? I.e., if the
application is known, how can the recognition process be improved?

There are many examples of how recognising a single character can be af-
fected by the context it was written in. One example we already mentioned in
Section 1.3: The word te5t is not a word in colloquial English. So, the third
character in it should probably be an s. Another very basic example comes
from ALICE itself: the iBook uses randomised integers for the numerators and
denominators in every exercise. They are usually bounded from above by 20
to focus the effort on the actual task and not complicated multiplication. So,
when a pupil writes a two digit number and the HWR algorithm cannot decide
whether the first digit is a 1 or a 7, it is probably a good idea to opt for 1.

The question is, how such considerations can be embedded into a more uni-
versal approach; without manually implementing individual rules like the last
one presented. In particular, can Formal Concept Analysis provide concrete
rules to make such decisions? And can Fuzzy Logic describe how likelihoods
change: I.e., if we know that 1 is generally more likely than a 7 as the first digit
of a number1, how exactly have the likelihoods to adapt to account for that?

1by the Newcomb-Benford Law or an other analysis

207

Question 7.3 (More applications): Can the ideas and methods presented here be
applied directly to other applications? In particular, is it possible

1. to recognise sketches of geometric shapes like points, lines, circles and polytopes,

2. to recognise curves or gestures in 3D space?

And, at which point does it become necessary to use additional information of the writing
process like the pressure and speed of the finger/pen on the touchscreen?

Throughout this thesis, we never explicitly restricted ourselves to a certain
set of symbols or characters. So, it stands to reason, that the ideas presented
can be useful in any other application as long as the features are chosen well.2

If we look at two specific applications, however, certain problems emerge.
First, the symbols in question might be much more dependent on their actual

appearance; as is the case with geometric shapes. E.g., distinguishing between
a circle and a polygon depends a lot on how regular the recorded stroke
is. For these two forms, in particular, it is a good idea to use time and speed
information: While strokes depicting a circle might be jaggy and irregular,
they are often drawn with constant speed. In contrast, many users make a little
pause at each vertex when drawing a polygon. So, using time steps as an
additional parameter is probably a good idea.

On the other hand, as the variance in geometric shapes is usually much less
as in abstract characters, they are maybe recognisable with less information.
A first point to analyse is to see whether strokes depicting geometric shapes
cluster more in S and whether their shape vectors cluster more in R2(n−2).

Instead of considering more planar shapes and symbols, we might consider
curves in R3. These might represent, for example, control gestures in a vir-
tual reality program. All basic ideas should be transferable directly. A problem
here, however, is that most planar symbols are built from well-known shapes —
mostly straight lines and circular arcs — in a very specific way. However, there
are not many abstract icons and pictograms built from proper curves in 3D
space. And the few that exist are not universally present in the mind of poten-
tial users.

2And [11] indicates that they are.

208 7 Looking ahead

Question 7.4 (Negative fuzziness): Is there a structure on the set of functions into
[−1, 1] that is compatible with, but generalises the notion of fuzzy sets?

In Section 4.3 we saw that

α′(x, y) = max{x� y, (1− x)� (1− y)}

for values x, y ∈ [0, 1] has a qualitatively similar behaviour as

σ(x, y) = sgn(x) · sgn(y) · (|x| � |y|)

for values x, y ∈ [−1, 1]. But, the latter has more symmetries and, at least for �
being the standard multiplication, it results in a differentiable function and is
structurally much simpler. Concretely, σ(x, y) = xy; whereas the same function
for normal fuzzy values would be

(x, y) 7→ 1
2
· (2x− 1)(2y− 1) +

1
2

= 2xy− x− y +
1
2

,

if we shift fuzzy values from [0, 1] to [−1, 1] and the result back to [0, 1]. The
question is: Is this an inherent property of a structure on [−1, 1]? A structure
that mimics the way fuzzy values in [0, 1] work?

Question 7.5 (Automatic learning): Is there a way to fully automatise the training
process of ALICE:HWR? In particular, is it possible for an algorithm to generate strokes
from feature values and use this to perform its own attribute exploration? Moreover,
what is the best way to make Algorithm 6.2.1 adapt itself to the user with minimal
re-training?

The training process of ALICE:HWR has two essential steps: Finding ex-
clusion rules and computing idealised feature vectors for every stroke type.
Ideally, the process to find both of them is fully automatic. Then, a user can
train the algorithm themselves; and that with arbitrary strokes and stroke types.

To automate the search for exclusion rules, we need two components. First,
a way to judge which (+)-hypotheses (and by extension which generatives) to
use and how to decide whether one is more crucial during the classification

209

process than another. Second, an idealised automatic algorithm would be able
to perform attribute exploration to facilitate the search for exclusion rules. I.e.,
the program should, in this case, be able to produce a stroke with a given
feature vector. Or, at least, with some entries of its feature vector given. Then,
when the user input a few samples for a, say, 3, the algorithm could ask

Is this here also a 3?

and present the self-synthesised stroke. With the answer from the user, the
algorithm could then proceed to decide which feature combinations constitute
a 3 and which do not. The challenge here is that it is not obvious how to find
elements in the fibres of a features.3

To automate the computation of idealised feature vectors, we need a way to
systematically duplicate samples. In particular, we need a statistical test that is
better tailored to this task and to the concrete features than the Kolmogorov-
Smirnov test. Then the algorithm can reliably judge when new samples are in
line with old samples.

Closely related to the question how to automatise the whole training process
is how the algorithm can adapt to a user; if so desired. Both points made
above have to be considered again if new samples are provided during use.
In particular, as the software currently does not store the original samples, it
should not store the new samples either: Ideally, it can process them directly
to update both the exclusion rules and idealised feature vectors with the need
to run through the initial training process in its entirety.

3There are several approaches to solve this problem of approximating a pseudo-inverse of
S → [0, 1]m via neural networks. Here, however, we ask whether this can be done in an
constructive way.

210 7 Looking ahead

Appendix A

The Manual for the companion

iBook

The interactive widgets to accompany this thesis [67] are direct applications of
the statements made and allow to interact with many of the examples presen-
ted. They are designed for use on tablet computers or with graphic tablets.
Using them with track pads is possible if strokes are written slowly. The use of
a computer mouse is discouraged.

The basic layout for every widget is the same:

— A rectangle with a thick, black border is the area one can write in; usually
only a single stroke.

— The green ’Apply’-button then triggers the desired effect. If this effect can
be iterated it, it will be with about 1 iteration per millisecond. Usually, the
exact speed can be adjusted.

— If an effect is applied iteratively, another click on ’Apply’ stops it. If an
effect is applied only once, another click on ’Apply’ triggers it another
time.

— The drawn strokes are rendered in a style that imitates ink. In particular,
only the line segments between the recorded points are drawn. The pre-
processed strokes are drawn in blue, any alterations in orange; just as in
the images throughout this thesis.

212 Appendix A The Manual for the companion iBook

Widget A.1 (Hook removal): This widget applies the Hook Removal Algorithm
2.3.2 to a recorded stroke on both ends. Both ends of the stroke get cut off and
then extrapolated again (with a flatter angle). The user can adjust the following
parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

cut-off: The relative number γ of points that are cut off and extrapolated again
at each end of the stroke. The absolute number of points is obtained by
simple rounding: bγne.

flatness: A value f that determines how much the angle α at the last point of the
stroke should get factored in when attaching the new point. The new angle
created will be α

2 f .

loop sensitivity: The weight λ determining how much the algorithm should look
for a loop at start and end. The extrapolated new stroke gets weighted with
1− µλ(START LOOP(s)); and the original stroke s by µλ(START LOOP(s)).
In particular, a value of λ = 0 means that only the basic cut-off and extra-
polation steps are performed.

Figure A.1: The interface of the hook-removal widget.

213

Widget A.2 (Convex combinations): This widget computes convex combina-
tions of two recorded strokes. These strokes are depicted in blue at the left and
right end of the result area. The convex combinations of them is in orange and
can be manually moved from one stroke to the other. The closer the orange
stroke is to one of the blue ones, the higher that blue one is weighted in the
convex combination. The user can adjust the following parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

re-sample: Whether or not the resulting strokes should be re-sampled. I.e., if
this is set to 1, every stroke that was transformed in some way will be re-
sampled.

Figure A.2: The interface of the convex-combination widget.

214 Appendix A The Manual for the companion iBook

Widget A.3 (Accelerations): This widget iteratively applies an acceleration A∆v

to a recorded stroke as defined in Definition 3.1.3. (This acceleration will be con-
jugated with a translation rotation and dilation such that the recorded strokes
does not have to be normalised.) The user can adjust the following parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

delta v: The parameter ∆v of the accelerations. In the local coordinate system
of the stroke with x-axis from start to end point and y-coordinate perpen-
dicular to it, the x-coordinate of a point Pi gets mapped to xi+(i−1)∆v

1+(n−1)∆v . The
larger ∆v, the stronger the effect. In particular, ∆v = 0 would result in the
identity.

speed: How often the acceleration is applied per time step. One time step is
approximately one millisecond.

re-sample: Whether or not the resulting strokes should be re-sampled. I.e., if
this is set to 1, every stroke that was transformed in some way will be re-
sampled. This should only be used with a speed of 1 to keep the frame rate
of the animation high.

Figure A.3: The interface of the acceleration widget.

215

Widget A.4 (Gaussian filters): This widget iteratively applies a minimal Gaus-
sian filter GAα

to a recorded stroke as defined in Example 3.1.9. The user can
adjust the following parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

alpha: The parameter α of the Gaussian filter. I.e., a point Pi on the stroke will
get mapped to αPi−1 + (1− 2α)Pi + αPi+1. The larger α, the stronger the
effect. In particular, α = 0 would result in the identity; and α = 1

2 gives the
strongest possible contraction.

speed: How often the Gaussian filter is applied per time step. One time step is
approximately one millisecond.

re-sample: Whether or not the resulting strokes should be re-sampled. I.e., if
this is set to 1, every stroke that was transformed in some way will be re-
sampled. This should only be used with a speed of 1 to keep the frame rate
of the animation high.

Figure A.4: The interface of the Gaussian-filter widget.

216 Appendix A The Manual for the companion iBook

Widget A.5 (Smoothing): This widget iteratively applies the smoothing func-
tion Eα,ρ,s to a recorded stroke s as defined in Example 3.2.1. It builds a convex
combination of GAα

(s), a stroke smoothed by a Gaussian filter, and the original
stroke s. The user can adjust the following parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

alpha: The parameter α of the minimal Gaussian filter GAα
involved. I.e., a point

Pi on the stroke will get mapped to αPi−1 + (1− 2α)Pi + αPi+1. The larger
α, the stronger the effect.

rho: The parameter ρ that weighs the image of s under the Gaussian filters com-
pared to the original. I.e., the end result is ρGAα

(s) + (1− ρ)s. The smaller
ρ, the more the intermediate result GAα

(s) gets pushed back towards s.

Overshoot: Whether Eα,ρ,s is applied or Eα,ρ,2s−u. I.e., if this parameter
is set to 1, the convex combinations that is computed at the end is
ρGAα

(s) + (1− ρ)(2s− u); where u is the straight line segment between
the start and end point of s with uniformly distributed points.

Figure A.5: The interface of the smoothing widget.

217

Widget A.6 (Handwriting duplications): The user can write their signature or
any other similar collection of strokes into the black-bordered area. This widget
then applies the geometric transformations described in Example 3.2.3 to alter
this signature without changing its global appearance. The user can adjust the
weights by which the three transformations are multiplied to achieve different
effects.

simpler: This is the average 1
2G5 + 1

2 A5 of applying a Gaussian filter and an ac-
celeration to reduce the details of the stroke.

cut-off: This is the average 1
2CS +

1
2CE of cutting off both ends of the stroke.

projective: This is the projective transformation M that combines shearing par-
allel to the x-axis to the right with a “random” transformation containing
a projective tilt and a rotation to the right.

(Please see the example for a precise definition of each transformations.) In the
widget, the point B in the black-bordered triangle can be moved. The weights
of the transformations are the barycentric coordinates of B with respect to the
corners of the triangle. I.e., the closer B is to a corner the more emphasis is on
that particular transformation.

Figure A.6: The interface of the duplication widget.

218 Appendix A The Manual for the companion iBook

Widget A.7 (Noise on curvature): This widget applies random noise to the
points of a stroke as well as its first and second derivative; as described in Sec-
tion 5.1. The results can be seen in this order from left to right. The user can
adjust the following parameters:

sample rate: The number of points n used to re-sample the recorded stroke.

epsilon: The maximal distance ε a point on the stroke is allowed to move away.
Note that only the distance but not the direction is controllable.

normalise: Whether the resulting strokes get normalised. I.e., when this is set to
1, the resulting strokes will be scaled and rotated such that their start and
end position are in the same spatial relation than the start and end point of
the recorded stroke.

Figure A.7: The interface of the noise-on-curvature widget.

219

Widget A.8 (Reconstructing strokes from determinants): This widget takes
a recorded stoke s (blue) and builds another stroke t (orange) from the shape
vector ∆(s) via the method given in Theorem 5.2.4. The last point of t that is seen
is
(

At
n
)−1 bs

n instead of C. As mentioned after the theorem, if the points A, B, C
are at the right position indicated by the theorem,

(
At

n
)−1 bs

n will coincide with
C. The user can reposition the points A, B, C freely, and additionally adjust the
following parameter:

scale: The number by which ∆(s) is multiplied before starting the construction
of t. I.e., if this is set to 1, the widget illustrates Theorem 5.2.4, and if it is
set to 2, the widget illustrates Corollary 5.2.5. In that case, the area of the
triangle ABC has to be twice as large as g1(s) in order for

(
At

n
)−1 bs

n and C
to coincide.

Figure A.8: The interface of the reconstruction widget.

220 Appendix A The Manual for the companion iBook

Widget A.9 (ALICE:HWR): In this widget, version 4 of ALICE:HWR can be
tested — the version that was used in the second study in autumn of 2017. Any
numbers built from Arabic numerals written into the black-bordered rectangle
will be tried to recognised. In particular, if strokes are written that obviously
do not form numbers, the algorithm will still give the best guess possible. If
something is unintelligible for the algorithm, the output will be three question
marks.

Note that all parameters in the algorithms used by ALICE:HWR are designed
around a certain size of the written strokes. That means that the recognition will
usually be worse, the smaller the input strokes are. For optimal results, please
aim for a height of approximately 60% to 90% of the height of the input area.

Figure A.9: The interface of the ALICE:HWR widget.

Appendix B

The code of ALICE:HWR

Here is a full transcript of the code used for for ALICE:HWR version 4 that
was used in the 2017 ALICE study and can be tested in Widget A.9. The
documentation of the individual structures and methods was left out to makes
this appendix not longer than it already is. The full code can be downloaded
on the same website as the companion iBook [67].

Note that there are several inconsistencies between what we presented in this
thesis and the code below. This is due to the fact that the code reuses many part
from previous iterations of ALICE:HWR that were not adjusted to the models
and set-ups of this thesis. An example is the use of the feature Start Size

which is simply 1− Start Loop. So, it does not measure the likelihood that
the start points is part of a loop, but the unlikelihood of it.

All peculiarities in the code stem from practical observations and aim to
improve the effectiveness of the algorithm. But none of them deviate far from
the general layout presented in this thesis.

1 eps = 0.1;

2 n = 24;

3 preTrunc = 2;

4 intense = 3;

5 lambda = 0.7;

6 alpha = 0.02;

7 mass = 0.65;

8 timeStep = 0.5;

9 minGaussMatrix = apply(1..n, i, apply(1..n, j,

10 if((i == 1) % (i == n),

11 if(j == i,

12 1;

13 , // else //

222 Appendix B The code of ALICE:HWR

14 0;

15);

16 , // else //

17 if(abs(j - i) == 1,

18 alpha;

19 ,if(j == i,

20 1 - 2 * alpha;

21 , // else //

22 0;

23));

24);

25));

26 crMatrix = [[0, 1, 0, 0], [-0.5, 0, 0.5, 0], [1, -2.5, 2, -0.5], [-0.5, 1.5, -1.5,

0.5]];

27
28 allStrokes = ["1a", "1b", "2", "3", "4a", "4b", "5a", "5b", "6", "7", "8a", "8ar", "

8b", "9a", "9b", "0a", "0ar", "0b", "-"];

29 nof = 25;

30
31 highContraRules = [

32 dict(values -> [1, 1, 1, 1, 1, 1, 0.9, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

33 label -> "1a",

34 conf -> 100),

35
36 dict(values -> [0.95, 0.2, 0.9, 0.2, 1, 1, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.2, 1,

1, 1, 1, 1, 1, 1, 1],

37 label -> "1b",

38 conf -> 100),

39
40 dict(values -> [1, 1, 1, 1, 1, 1, 0.7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

41 label -> "2",

42 conf -> 100),

43
44 dict(values -> [1, 1, 1, 1, 1, 0.9, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0.8, 0.9, 1],

45 label -> "3",

46 conf -> 100),

47
48 dict(values -> [1, 1, 1, 1, 1, 1, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

49 label -> "4a",

50 conf -> 100),

51
52 dict(values -> [1, 1, 1, 1, 1, 0.8, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.84, 1, 1,

1, 1, 1, 1, 1],

53 label -> "4b",

54 conf -> 100),

55
56 dict(values -> [0.9, 1, 0.5, 1, 1, 0.7, 0.9, 1, 1, 1, 1, 1, 1, 0.95, 1, 1, 1, 0.8,

223

1, 1, 1, 1, 1, 1, 1],

57 label -> "5a",

58 conf -> 100),

59
60 dict(values -> [0.8, 1, 1, 0.9, 1, 0.8, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.87,

1, 1, 1, 1, 1, 1, 1],

61 label -> "5b",

62 conf -> 100),

63
64 dict(values -> [0.8, 1, 1, 1, 1, 0.8, 0 .9, 1, 0.5, 1, 1, 1, 1, 1, 1, 1, 1, 0.8,

1, 1, 1, 1, 1, 1, 1],

65 label -> "6",

66 conf -> 100),

67
68 dict(values -> [1, 1, 1, 1, 1, 1, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

69 label -> "7",

70 conf -> 100),

71
72 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

73 label -> "8a",

74 conf -> 100),

75
76 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

77 label -> "8ar",

78 conf -> 100),

79
80 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

81 label -> "8b",

82 conf -> 100),

83
84 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1,

1, 1, 1, 1],

85 label -> "9a",

86 conf -> 100),

87
88 dict(values -> [1, 1, 1, 1, 1, 0.8, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1,

1, 1, 1, 1, 1],

89 label -> "9b",

90 conf -> 100),

91
92 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0.5],

93 label -> "0a",

94 conf -> 100),

95
96 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0.5],

224 Appendix B The code of ALICE:HWR

97 label -> "0ar",

98 conf -> 100),

99
100 dict(values -> [1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

101 label -> "0b",

102 conf -> 100),

103
104 dict(values -> [1, 1, 1, 1, 1, 1, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

105 label -> "-",

106 conf -> 100)

107];

108
109 lowContraRules = [

110 dict(values -> [0, 0.6, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0],

111 label -> "1a",

112 conf -> 100),

113
114 dict(values -> [0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0],

115 label -> "1b",

116 conf -> 100),

117
118 dict(values -> [0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0],

119 label -> "2",

120 conf -> 100),

121
122 dict(values -> [0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0,

0.2, 0.2, 0.2, 0.2, 0.5],

123 label -> "3",

124 conf -> 100),

125
126 dict(values -> [0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0.8, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0],

127 label -> "4a",

128 conf -> 100),

129
130 dict(values -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0],

131 label -> "4b",

132 conf -> 100),

133
134 dict(values -> [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0],

135 label -> "5a",

136 conf -> 100),

137
138 dict(values -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 0, 0, 0, 0, 0, 0,

225

0, 0, 0, 0],

139 label -> "5b",

140 conf -> 100),

141
142 dict(values -> [0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0.6, 0, 0, 0, 0.5, 0,

0, 0, 0, 0, 0],

143 label -> "6",

144 conf -> 100),

145
146 dict(values -> [0.8, 0.4, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0, 0.6, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0],

147 label -> "7",

148 conf -> 100),

149
150 dict(values -> [0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6,

0, 0, 0, 0, 0.5],

151 label -> "8a",

152 conf -> 100),

153
154 dict(values -> [0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6,

0, 0, 0, 0, 0.5],

155 label -> "8ar",

156 conf -> 100),

157
158 dict(values -> [0, 0, 0, 0, 0.3, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6,

0, 0, 0, 0, 0],

159 label -> "8b",

160 conf -> 100),

161
162 dict(values -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 0, 0, 0,

0, 0, 0, 0],

163 label -> "9a",

164 conf -> 100),

165
166 dict(values -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 0, 0, 0,

0, 0, 0, 0],

167 label -> "9b",

168 conf -> 100),

169
170 dict(values -> [0, 0, 0, 0, 0, 0, 0.85, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0],

171 label -> "0a",

172 conf -> 100),

173
174 dict(values -> [0, 0, 0, 0, 0, 0, 0.85, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0],

175 label -> "0ar",

176 conf -> 100),

177
178 dict(values -> [0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0, 0,

0, 0, 0, 0],

226 Appendix B The code of ALICE:HWR

179 label -> "0b",

180 conf -> 100),

181
182 dict(values -> [0.5, 0, 0.8, 0, 0, 0.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0],

183 label -> "-",

184 conf -> 100)

185];

186
187 fuzzyContext = [

188 dict(label -> "1a",

189 feats -> [1, 0.8, -0.2, -1, 0.8, 0.2, -0.2, -1, 1, 1, -1, 1, -1, -1, -0.2,

0.8, -1, -0.8, -0.8, 0, 0.2, 0.8, 0.8, 0.4, 0]),

190 dict(label -> "1b",

191 feats -> [0, -1, 0, -1, -1, 1, -1, 0, 0, 0, 0, 0.5, 0.5, 0, 1, 0, -1, -1, -1,

1, -0.8, -0.5, -0.5, -0.2, 0]),

192 dict(label -> "2",

193 feats -> [1, 0.4, 1, -0.4, -1, 0.2, -0.2, -0.6, 0.6, 0, 0, 1, -1, -1, 0.8, 1,

-1, -0.4, 0.6, 0.8, 0.6, 0.2, -0.2, 0.4, -1]),

194 dict(label -> "3",

195 feats -> [1, -0.2, -1, -0.6, 1, 0, 0, -0.8, 0.8, 1, -1, 0.8, 0.4, -1, 1, -1,

-1, -0.2, -0.2, 0.8, 0.6, 0.8, 0.2, 0, 1]),

196 dict(label -> "4a",

197 feats -> [-0.6, -1, 1, 0.2, 0.8, 0, 0, 1, -1, -1, 1, 1, -0.6, -0.6, 1, 1, -1,

-0.8, -0.8, 0.2, 0.2, -0.8, -0.8, 0.4, -1]),

198 dict(label -> "4b",

199 feats -> [-1, -0.4, -0.2, -1, -0.4, -0.6, 0.6, -1, 1, -1, 1, -1, 1, 1, -0.8,

-0.8, -1, 0.4, 0.2, 0.8, 0.2, -0.8, 0.8, 0.2, -1]),

200 dict(label -> "5a",

201 feats -> [0, -0.8, -1, -0.8, -0.8, 0.3, -0.3, -0.6, 0.6, 0.6, -0.6, 0.5, 0.5,

-0.5, 1, -1, -1, 0.6, -0.5, 1, 0.6, 0.8, 0, 0.2, -1]),

202 dict(label -> "5b",

203 feats -> [-1, 0, -1, -0.4, -1, 0.2, -0.2, -0.2, 0.2, -0.2, 0.2, -0.8, 1, 1,

1, -1, -1, -1, 0.2, 1, 0.4, 0, 0.2, 0.2, -1]),

204 dict(label -> "6",

205 feats -> [-1, -0.6, -1, 0.2, -0.8, -0.4, 0.4, 1, -1, 0, 0, -0.8, 1, 1, 1, -1,

-1, -0.4, 1, 0.8, 0.2, -0.8, -0.8, 0, -1]),

206 dict(label -> "7",

207 feats -> [1, 0.2, -0.6, -1, 0.8, 0.2, -0.2, -0.2, 0.2, 1, -1, 1, -0.6, -1, 1,

-0.8, -1, -0.8, -0.8, 0.5, 0.2, 0.8, 0.6, 0.4, -1]),

208 dict(label -> "8a",

209 feats -> [-1, -0.6, -1, 0.6, -0.8, -1, 1, -0.1, 0.1, 0, 0, 0.4, -1, -0.8, 1,

-0.4, 1, 1, 1, 1, 0.8, -0.2, -1, 0.4, 1]),

210 dict(label -> "8ar",

211 feats -> [1, -0.6, 1, 0.6, -0.8, -1, 1, 0.1, -0.1, 0, 0, -1, 0.4, -0.8, 1,

-0.4, 1, 1, 1, 1, 0.8, -0.2, -1, 0.4, 1]),

212 dict(label -> "8b",

213 feats -> [-0.5, -0.1, 0.5, 0.7, 0.9, -1, 1, -0.1, 0.1, -1, 1, 0.4, -1, -0.8,

1, -0.4, 1, 1, 1, 1, 0.8, -0.2, -1, 0.4, -1]),

214 dict(label -> "9a",

215 feats -> [-1, -0.6, -1, -0.8, -1, 0.6, -0.6, -0.2, 0.2, 0.4, -0.4, -0.2, 1,

227

0.4, 1, -1, -1, 1, -0.2, 0.8, 0.6, 0.6, 0.2, 0, -1]),

216 dict(label -> "9b",

217 feats -> [-1, -0.6, -0.8, -1, -1, -0.4, 0.4, -1, 1, -0.6, 0.6, -0.6, 1, 0.4,

0, -1, -1, 1, -0.4, 0.8, 0.6, 0.6, 0.8, 0, -1]),

218 dict(label -> "0a",

219 feats -> [-1, -0.5, -1, 0.6, -0.8, -1, 1, 1, -1, 0, 0, -0.4, 0, -0.6, 1,

-0.8, 0.8, 1, 1, -0.2, 0.8, 0, -1, 0.8, -1]),

220 dict(label -> "0ar",

221 feats -> [1, -0.5, 1, 0.6, -0.8, -1, 1, -1, 1, 0, 0, -0.4, 0, -0.6, 1, -0.8,

0.8, 1, 1, -0.2, 0.8, 0, -1, 0.8, -1]),

222 dict(label -> "0b",

223 feats -> [-1, -0.8, 1, 0.2, 1, -0.8, 0.8, 0.8, -0.8, -1, 1, 0.6, -1, -0.8, 1,

1, 1, 1, 1, -0.6, 0.8, -0.4, -1, 0.8, -1]),

224 dict(label -> "-",

225 feats -> [1, 0, 1, 0.2, -1, 1, -1, 0, 0, 0, 0, 0.6, -1, -1, -0.4, 1, 0.4, -1,

-1, 1, -0.8, 0.2, 0, -0.2, -1])

226];

227
228 scoreContext = apply(1..length(allStrokes),

229 dict(label -> allStrokes_#, feats -> 0.5 * round(get(fuzzyContext_#, "feats")) +

(1 - 0.5) * get(fuzzyContext_#, "feats"));

230);

231
232 crystalPool = [

233 dict(label -> "1", strokes -> ["1a"]),

234 dict(label -> "1", strokes -> ["1b"]),

235 dict(label -> "2", strokes -> ["2"]),

236 dict(label -> "3", strokes -> ["3"]),

237 dict(label -> "4", strokes -> ["4a", "1b"]),

238 dict(label -> "4", strokes -> ["4b"]),

239 dict(label -> "5", strokes -> ["5a", "-"]),

240 dict(label -> "5", strokes -> ["5b"]),

241 dict(label -> "5", strokes -> ["5b", "-"]),

242 dict(label -> "5", strokes -> ["9a", "-"]),

243 dict(label -> "5", strokes -> ["3", "-"]),

244 dict(label -> "6", strokes -> ["6"]),

245 dict(label -> "7", strokes -> ["7"]),

246 dict(label -> "7", strokes -> ["1a", "-"]),

247 dict(label -> "7", strokes -> ["7", "-"]),

248 dict(label -> "8", strokes -> ["8a"]),

249 dict(label -> "8", strokes -> ["8ar"]),

250 dict(label -> "8", strokes -> ["8b"]),

251 dict(label -> "9", strokes -> ["9a"]),

252 dict(label -> "9", strokes -> ["9b"]),

253 dict(label -> "0", strokes -> ["0a"]),

254 dict(label -> "0", strokes -> ["0ar"]),

255 dict(label -> "0", strokes -> ["0b"])

256];

257
258 between(a, c, d) := (a >= c) & (a <= d);

259

228 Appendix B The code of ALICE:HWR

260 binom(m, k) := (

261 if((m < 0) % (k < 0) % (k > m),

262 err("binom: wrong numbers")

263 , // else //

264 faculty(m) / faculty(k) / faculty(m - k)

265);

266);

267
268 bite(list, i) := list_((i + 1)..length(list));

269 bite(list) := bite(list, 1);

270
271 box(list) := (

272 regional(bl, diag);

273
274 bl = min(list);

275 diag = max(list) - bl;

276 expandrect(bl, diag.x, diag.y);

277);

278
279 computeangle(p, q, r) := (

280 regional(x, y, s, w);

281
282 x = p - q;

283 y = r - q;

284 s = (x * y) / (abs(x) * abs(y));

285 s = if(s < -1, -1, if(s > 1, 1, s));

286 w = arccos(s) + 0;

287
288 if(perp(x) * y >= 0, w, 2*pi - w);

289);

290
291 consectriples(list) := (

292 regional(res);

293
294 res = [];

295 if(length(list) <= 2,

296 res = [];

297 , // else //

298 forall(1..(length(list) - 2),

299 res = res :> list_[#, # + 1, # + 2];

300);

301);

302);

303
304 const(m, x) := if(m == 0, [], apply(1..m, x));

305
306 expandrect(pos, c, w, h) := (

307 regional(d, e, shift);

308
309 d = 0.5 * [w, h];

310 e = (d_1, -d_2);

229

311 shift = compass()_c;

312 shift = (0.5 * w * shift.x, 0.5 * h * shift.y);

313 apply([-d, e, d, -e], pos + # + shift);

314);

315 expandrect(pos, w, h) := expandrect(pos, 1, w, h);

316 compass() := apply(directproduct([1, 0, -1], [1, 0, -1]), reverse(#));

317
318 faculty(m) := if(m <= 0, 1, m * faculty(m - 1));

319
320 findin(list, x) := (

321 regional(occs);

322
323 occs = select(1..length(list), list_# == x);

324 if(length(occs) == 0, 0, occs_1);

325);

326
327 frequency(list, x) := length(select(list, # == x));

328
329 intersect(a, b) := (

330 area(a_1, a_2, b_1) * area(a_1, a_2, b_2) < 0

331 & area(b_1, b_2, a_1) * area(b_1, b_2, a_2) < 0

332);

333
334 isconst(list) := (

335 list == const(length(list), list_1);

336);

337 isconst(list, x) := (

338 list == const(length(list), x);

339);

340
341 findperm(list1, list2) := (

342 apply(list2, e, select(1..length(list1), list1_# == e)_1);

343);

344
345 pop(list) := list_(1..(length(list) - 1));

346 pop(list, i) := list_(1..(length(list) - i));

347
348 randchoose(list) := list_(randomint(length(list)) + 1);

349
350 randomindex(n) := (

351 regional(start, res, r);

352
353 start = 1..n;

354 res = [];

355 forall(1..n,

356 r = randomint(n - # + 1) + 1;

357 res = res :> start_r;

358 start = start -- res;

359);

360 res;

361);

230 Appendix B The code of ALICE:HWR

362
363 randsort(list) := list_(randomindex(length(list)));

364
365 triangleheight(a, b, x) := if(a ~= b, dist(x, a), 2 * det(a :> 1, b :> 1, x :> 1) /

dist(a, b));

366
367 zip(x, y) := transpose([x, y]);

368
369
370 catmullRomPiece(p0, p1, p2, p3, t) := (

371 [1, t, t^2, t^3] * crMatrix * [p0, p1, p2, p3]

372);

373
374 circ(a, b, c) := (

375 regional(m1, m2, p1, p2, mid, dist);

376
377 m1 = (a + b) / 2;

378 m2 = (b + c) / 2;

379 p1 = perp(join(a, b), m1);

380 p2 = perp(join(b, c), m2);

381 mid = meet(p1, p2);

382 dist = if(mid.homog_3 == 0, 10000000, |mid.xy, a.xy|);

383 (mid, dist);

384);

385
386 continuestrokeOLD(list, mode, steps) := (

387 regional(indices, current);

388
389 indices = if(mode == "start",

390 1

391 , // else //

392 if(mode == "end",

393 -1

394 , // else //

395 err("continuestroke: wrong mode");

396 0

397);

398) * reverse(1..steps);

399 current = list_indices;

400 sum(apply(1..steps, k, (-1)^(steps - k) * binom(steps, k - 1) * current_k));

401);

402
403 continuestroke(list, mode) := (

404 regional(v, w, alpha, res);

405
406 if(mode == "end",

407 reverse(continuestroke(reverse(list), "start"));

408 , // else //

409 v = list_(-2) - list_(-3);

410 w = list_(-1) - list_(-2);

411 alpha = 0.5 * if(det(list_(-3), list_(-2), list_(-1)) > 0, 1, -1) * arccos(v * w

231

/ abs(v) / abs(w));

412
413 res = list_(-1) + [[cos(alpha), -sin(alpha)], [sin(alpha), cos(alpha)]] * w *

abs(w) / abs(v);

414
415 list :> res;

416);

417);

418
419 continuestroke(list, mode, its) := (

420 if(its == 1,

421 continuestroke(list, mode);

422 , // else //

423 continuestroke(continuestroke(list, mode), mode, its - 1);

424);

425);

426
427 matPats(list, eps) := (

428 regional(flag, counter);

429
430 flag = false;

431 counter = 0;

432 forall(2..(length(list) - 1),

433 if((list_(# - 1)).x < (list_#).x + eps & (list_(# + 1)).x < (list_#).x + eps

,

434 if(!flag, counter = counter + 1);

435 flag = true;

436 , // else //

437 flag = false;

438);

439);

440
441 counter;

442);

443 matPats(list) := matPats(list, 0.001);

444
445 derive(list) := apply(consecutive(list), #_2 - #_1);

446
447 diameter(list) := max(apply(pairs(list), dist(#_1, #_2)));

448
449 dimensions(list) := max(list) - min(list);

450
451 direction(list) := (list_(-1) - list_1) / dist(list_1, list_(-1));

452
453 equidist(list, nop) := (

454 regional(dists, traj, before, after, cutTimes, piece, res);

455
456 dists = apply(derive(list), abs(#));

457 traj = sum(dists);

458 before = 2 * list_1 - list_2;

459 after = 2 * list_(-1) - list_(-2);

232 Appendix B The code of ALICE:HWR

460 cutTimes = 0 <: apply(1..(length(dists) - 1), sum(dists_(1..#))) / traj;

461
462 res = apply(0..(nop - 1), i,

463 piece = select(1..(length(list) - 1), cutTimes_# * (nop - 1) <= i)_(-1);

464
465 if(piece == 1,

466 catmullRomPiece(before, list_1, list_2, list_3, i / (nop - 1) * traj / dists_1

);

467 ,if(piece == length(list) - 1,

468 catmullRomPiece(list_(-3), list_(-2), list_(-1), after, (i / (nop - 1) -

cutTimes_(-1)) * traj / dists_(-1));

469 , // else //

470 catmullRomPiece(list_(piece - 1), list_(piece), list_(piece + 1), list_(piece

+ 2), (i / (nop - 1) - cutTimes_piece) * traj / dists_piece);

471));

472);

473);

474
475 resizesymbol(list) := (

476 regional(bbox, scale, center);

477
478 bbox = box(flatten(list));

479 if(dist(bbox_1, bbox_4) > 0.2,

480 scale = 10 / dist(bbox_1, bbox_4);

481 center = 0.5 * (bbox_1 + bbox_3);

482 list = apply(list, s, apply(s, # - center));

483 apply(list, s, apply(s, center + scale * #));

484 , // else //

485 list;

486);

487);

488
489 trajectory(list) := sum(apply(derive(list), abs(#)));

490
491 gauss(list, matrix) := (

492 apply(1..length(list), i,

493 sum(apply(1..length(list), j,

494 matrix_i_j * list_j;

495));

496);

497);

498 gauss(list, matrix, iterations) := (

499 regional(res);

500
501 res = list;

502 repeat(iterations,

503 res = gauss(res, matrix);

504);

505);

506
507 startDir(list) := (

233

508 regional(dir);

509
510 dir = list_3 - list_1;

511 dir / abs(dir);

512);

513 endDir(list) := (

514 regional(dir);

515
516 dir = list_(-1) - list_(-3);

517 dir / abs(dir);

518);

519 genDir(list) := (

520 regional(dir);

521
522 dir = list_(-1) - list_1;

523 dir / abs(dir);

524);

525
526 lineness(list) := dist(list_1, list_(-1)) / trajectory(list);

527
528 offOfSE(list) := (

529 regional(res);

530 res = apply(list, triangleheight(list_1, list_(-1), #));

531
532 res = select(res, abs(#) > 0.1);

533 if(length(res) == 0,

534 [0.5, 0.5];

535 , // else //

536 [length(select(res, # > 0)), length(select(res, # < 0))] / length(res);

537);

538);

539
540 curvature(list) := (

541 regional(r, dir1, dir2, res, steps);

542
543 steps = 2;

544
545 res = apply((1 + steps)..(length(list) - steps),

546 triangleheight(list_(# - steps), list_(# + steps), list_#);

547);

548
549 res = select(res, abs(#) > 0.03);

550 if(length(res) == 0,

551 [0.5, 0.5];

552 , // else //

553 [length(select(res, # > 0.03)), length(select(res, # < - 0.03))] / length(res)

;

554);

555);

556
557 awayfromstart(list) := (

234 Appendix B The code of ALICE:HWR

558 regional(sortedlist, ended, counter);

559
560 sortedlist = sort(list, dist(list_1, #));

561
562 ended = false;

563 counter = 0;

564 forall(1..length(list),

565 if(!ended & (list_# == sortedlist_#),

566 counter = counter + 1;

567 , // else //

568 ended = true;

569);

570);

571 counter;

572);

573
574 startsize(list) := (

575 regional(close);

576
577 close = sort(max(awayfromstart(list), 3)..length(list), dist(list_1, list_#));

578 close = close_1;

579
580 dist(list_1, list_close) / diameter(list);

581);

582 endsize(list) := startsize(reverse(list));

583
584 relativestart(list) := (

585 regional(dims, pointer);

586
587 dims = 0.5 * dimensions(list);

588 dims = apply(dims, if(# ~= 0, 10, #));

589 pointer = list_1 - 0.5 * (max(list) + min(list));

590 [pointer_1 / dims_1, pointer_2 / dims_2];

591);

592 relativeend(list) := (

593 regional(dims, pointer);

594
595 dims = 0.5 * dimensions(list);

596 dims = apply(dims, if(# ~= 0, 1000, #));

597 pointer = list_(-1) - 0.5 * (max(list) + min(list));

598 [pointer_1 / dims_1, pointer_2 / dims_2];

599);

600
601 scaleTo01(x) := 0.5 * x + 0.5;

602 cutOffNeg(x) := if(x < 0, 0, x);

603
604 rescale(c, l, x) := (

605 if(x <= l,

606 l * x / ((1 - c) * x + c * l);

607 , // else //

608 ((x - l) * (c - l) + l - l^2) / ((c - 1) * (x - l) + 1 - l);

235

609);

610);

611
612
613 modProb(x, c) := c * x / ((c - 1) * x + 1);

614
615 truncateStart(list, relSize) := equidist(bite(list, floor(relSize * n)), n);

616 truncateEnd(list, relSize) := equidist(pop(list, floor(relSize * n)), n);

617
618 preprocessing(list) := (

619 regional(gaussed, new, s, e, core);

620
621 list = bite(list);

622
623 if(length(list) < 4,

624 list = [list_1, 0.75 * list_1 + 0.25 * list_2, 0.25 * list_(-2) + 0.75 * list_

(-1), list_(-1)];

625);

626
627 list = apply(list, # + 0.01 * eps * [random(), random()]);

628 list = equidist(list, n);

629
630 // Noise reduction

631 gaussed = gauss(list, minGaussMatrix, 2);

632
633 // Hook removal

634 core = gaussed_((1 + preTrunc)..(n - preTrunc));

635 new = continuestroke(continuestroke(core, "start", preTrunc), "end", preTrunc);

636
637 // Merging

638 s = modProb(startsize(gaussed), 5);

639 e = modProb(endsize(gaussed), 5);

640
641 res = s * new_(1..preTrunc) + (1 - s) * gaussed_(1..preTrunc) ++ core ++ e * new_

((-preTrunc)..(-1)) + (1 - e) * gaussed_((-preTrunc)..(-1));

642);

643
644 cross(o, a, b) := (

645 (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x)

646);

647 convexHull(points) := (

648 regional(ordered, upper, lower);

649
650 ordered = set(sort(points));

651 if(length(ordered) <= 3,

652 ordered;

653 , // else //

654 lower = [];

655 forall(ordered,

656 while((length(lower) > 1) & (cross(lower_(-2), lower_(-1), #) <= 0),

657 lower = pop(lower);

236 Appendix B The code of ALICE:HWR

658);

659 lower = lower :> #;

660);

661 upper = [];

662 forall(reverse(ordered),

663 while((length(upper) > 1) & (cross(upper_(-2), upper_(-1), #) <= 0),

664 upper = pop(upper);

665);

666 upper = upper :> #;

667);

668
669 pop(lower) ++ pop(upper);

670);

671);

672 areaOfPolygon(points) := (

673 0.5 * abs(sum(apply(1..(length(points) - 1),

674 (points_#).x * (points_(# + 1)).y - (points_(# + 1)).x * (points_#).y;

675)));

676);

677
678 analyzeStroke(list) := (

679 regional(dir1, dir2, dir3, dir4, dir5, curv, hull, middle, traj, cog, distsA,

distsB, center);

680
681 dim = dimensions(list);

682 center = 0.25 * sum(box(list));

683 dir1 = startDir(list);

684 dir2 = endDir(list);

685 dir3 = genDir(list);

686 dir4 = relativestart(list);

687 dir5 = relativeend(list);

688 curv = curvature(list);

689 hull = convexHull(list);

690 traj = trajectory(list);

691 middle = list_(select(2..length(list), 2 * trajectory(list_(1..#)) >= traj)_1);

692 cog = sum(list) / n;

693 distsA = apply(list, dist(#, cog));

694 distsB = apply(list, dist(#, center));

695
696 apply([

697 scaleTo01(dir1.x),

698 scaleTo01(dir1.y),

699 scaleTo01(dir2.x),

700 scaleTo01(dir2.y),

701
702 scaleTo01(-dir1 * dir2),

703
704 lineness(list),

705 1 - lineness(list),

706
707 if(curv_2 < 0.2, 0, curv_2),

237

708 if(curv_1 < 0.2, 0, curv_1),

709
710 offOfSE(list)_1,

711 offOfSE(list)_2,

712
713 cutOffNeg(dir3 * (1,-1) / sqrt(2)),

714 cutOffNeg(dir3 * (-1,-1) / sqrt(2)),

715
716 scaleTo01(dir4.x),

717 scaleTo01(dir4.y),

718 scaleTo01(dir5.x),

719 scaleTo01(dir5.y),

720
721 1 - startsize(list),

722 1 - endsize(list),

723
724 1 - min(distsB) / abs(0.5 * dim),

725
726 areaOfPolygon(hull :> hull_1) / (dim.x * dim.y),

727
728 scaleTo01((middle.x - 0.5 * ((list_1).x + (list_(-1)).x)) / dim.x),

729 scaleTo01((middle.y - 0.5 * ((list_1).y + (list_(-1)).y)) / dim.y),

730
731 sum(distsA) / n / max(distsA),

732
733 if(matPats(list) >= 2, 1, 0)

734],

735 rescale(intense, lambda, #);

736);

737);

738
739 classify(recFeatlist) := (

740 regional(proMet, contraMetH, contraMetL, contraResH, contraResL, allLeftovers,

scores);

741
742 proMet = [];

743
744 if(length(proMet) == 1,

745 [get(proMet_1, "label"), 1000];

746 , // else //

747 if(length(proMet) > 1,

748 scores = apply(recFeatlist, totalScore(apply(proMet, get(#, "label")), #));

749 sort(collectScores(scores), #_2)_(-1);

750 , // else //

751 contraMetH = highContraRulesMet(recFeatlist_1);

752 contraMetL = lowContraRulesMet(recFeatlist_1);

753
754 contraMetH = apply(contraMetH, get(#, "label"));

755 contraMetL = apply(contraMetL, get(#, "label"));

756
757 contraResH = allStrokes;

238 Appendix B The code of ALICE:HWR

758 forall(reverse(contraMetH),

759 if((contraResH -- [#]) != [],

760 contraResH = contraResH -- [#];

761);

762);

763 contraResL = allStrokes;

764 forall(reverse(contraMetL),

765 if((contraResL -- [#]) != [],

766 contraResL = contraResL -- [#];

767);

768);

769 allLeftovers = (contraResH ~~ contraResL);

770
771 if(length(allLeftovers) >= 1,

772 if(length(allLeftovers) == 1,

773 [(allLeftovers)_1, 1000];

774 , // else //

775 scores = apply(recFeatlist, totalScore(allLeftovers, #));

776 sort(collectScores(scores), #_2)_(-1);

777);

778 , // else //

779 if(length(contraResH ++ contraResL) >= 1,

780 scores = apply(recFeatlist, totalScore(contraResH ++ contraResL, #));

781 sort(collectScores(scores), #_2)_(-1);

782 , // else //

783 scores = apply(recFeatlist, totalScore(allStrokes, #));

784 sort(collectScores(scores), #_2)_(-1);

785);

786);

787);

788);

789);

790 highContraRulesMet(recFeat) := (

791 select(highContraRules, r,

792 length(select(1..nof, recFeat_# > get(r, "values")_#)) > 0;

793);

794);

795 lowContraRulesMet(recFeat) := (

796 select(lowContraRules, r,

797 length(select(1..nof, recFeat_# < get(r, "values")_#)) > 0;

798);

799);

800 collectScores(list) := (

801 regional(labels);

802
803 list = flatten(list);

804 labels = set(apply(list, #_1));

805
806 apply(labels, l, [l, sum(apply(select(list, #_1 == l), p, p_2))]);

807);

808 totalScore(pool, score) := (

239

809 sort(angleScore(pool, score), #_1);

810);

811 angleScore(pool, recFeat) := (

812 regional(scores, res, singles, base);

813 pool = select(scoreContext, contains(pool, get(#, "label")));

814 scores = apply(pool,

815 base = apply(get(#, "feats"), f, scaleTo01(f));

816 [get(#, "label"), abs(base * recFeat / abs(base) / abs(recFeat))]

817);

818
819 scores;

820);

821
822 orienting(list) := (

823 regional(forwards, backwards, iterates);

824
825 forwards = analyzeStroke(list);

826 backwards = analyzeStroke(reverse(list));

827
828 if(sort(totalScore(allStrokes, forwards), #_2)_(-1)_2 >= sort(totalScore(

allStrokes, backwards), #_2)_(-1)_2 - 0.1,

829 [0.01 * round(100 * forwards)];

830 , // else //

831 [0.01 * round(100 * backwards)];

832);

833);

834
835 parse(atoms, crysPool) := (

836 regional(halves, potPart, pairCrystals, defPart, pairs, singles, c);

837
838 atoms = sort(atoms, (#_1).x);

839 atoms = apply(1..length(atoms), # <: atoms_#);

840 halves = select(atoms, contains(["4a", "5a", "-"], #_3));

841
842 pairCrystals = apply(crysPool, sort(get(#, "strokes")));

843 pairCrystals = select(pairCrystals, length(#) == 2);

844
845 potPart = apply(halves, h,

846 select([h_1 - 1, h_1 + 1], i,

847 contains(pairCrystals, sort([h_3, atoms_i_3]))

848);

849);

850
851 if(contains(potPart, []),

852 [[0, "???"]];

853 , // else //

854 defPart = apply(1..length(halves), i,

855 sort(potPart_i, dist((halves_i_2).x, (atoms_#_2).x))_1;

856);

857
858 if(length(set(defPart)) != length(halves),

240 Appendix B The code of ALICE:HWR

859 [[0, "???"]];

860 , // else //

861 pairs = set(apply(1..length(halves), i,

862 c = select(crysPool, sort(get(#, "strokes")) == sort([halves_i_3, atoms_(

defPart_i)_3]))_1;

863 [sort([halves_i_1, defPart_i]), get(c, "label")];

864));

865
866 singles = (1..length(atoms)) -- flatten(apply(pairs, #_1));

867 singles = apply(singles, s,

868 c = select(crysPool, get(#, "strokes") == [atoms_s_3])_1;

869 [[s], get(c, "label")]);

870
871 sort(singles ++ pairs, #_1_1);

872);

873);

874);

875
876 processdata(list) := (

877 regional(classStrokes, foundCrys, res);

878
879 list = apply(list, if(length(#) <= 1, 42, #)) -- [42];

880 list = apply(list, preprocessing(#));

881
882 classStrokes = apply(list,

883 res = classify(orienting(#));

884 [sum(#) / n, res_1, res_2];

885);

886
887 foundCrys = parse(classStrokes, crystalPool);

888
889 sum(apply(foundCrys, text(#_2)));

890
891
892);

893
894 addToRecord(list) := (

895 if(dist(mouse().xy, list_(-1)_(-1)) > eps,

896 if(length(list_(-1)) < 2,

897 list_(-1) = list_(-1) :> mouse().xy;

898 , // else //

899 list_(-1) = list_(-1) :> (0.5 * (mouse().xy - list_(-1)_(-1)) / mass *

timeStep^2

900 + (list_(-1)_(-1) - list_(-1)_(-2)) * timeStep

901 + list_(-1)_(-1));

902);

903);

904 list;

905);

Bibliography

[1] Apple. iOS Device Compatibility Reference. url: https://developer.
apple.com/library/archive/documentation/DeviceInformation/

Reference / iOSDeviceCompatibility / Displays / Displays .

html.

[2] Nur Sukinah Aziz, Mohd Nizam Saad, Abd. Hadi Abd. Razak and Az-
man Yasin. ‘Redesigning the User Interface of Handwriting Recognition
System for Preschool Children’. In: Proceedings of the 2nd International Con-
ference on Education Technology and Computer. 2010, pp. 393–404.

[3] Drew H. Bailey, Mary K. Hoard, Lara Nugent and David C. Geary. ‘Com-
petence with fractions predicts gains in mathematics achievement’. In:
Journal of Experimental Child Psychology 113.3 (2012), pp. 447–455.

[4] John Perry Barlow. ‘A Declaration of the Independence of Cyberspace’.
In: Electronic Frontier Foundation (1996).

[5] Roy F. Baumeister, Ellen Bratslavsky, Mark Muraven and Dianne M. Tice.
‘Ego depletion: Is the active self a limited resource?’ In: Journal of Person-
ality and Social Psychology 74 (1998), pp. 1252–1265.

[6] Edwin Catmull and Raphael Rom. ‘A Class of Local Interpolating
Splines’. In: Computer Aided Geometric Design. Academic Press, 1974.

[7] Zheru Chi, Hong Yan and Tuan Pham. Fuzzy Algorithms: With Applications
to Image Processing and Pattern Recognition. World Scientific, 1996.

[8] Dan C. Cireşan, Ueli Meier and Jürgen Schmidhuber. ‘Multi-column
Deep Neural Networks for Image Classification’. In: CoRR abs/1202.2745

(2012).

[9] Andy Clark. ‘An embodied cognitive science?’ In: Trends in Cognitive Sci-
ences 3.9 (1999), pp. 345–351.

https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html

242 Bibliography

[10] Mihály Csíkszentmihályi. Flow: The Psychology of Optimal Experience.
Harper & Row, 1990.

[11] Adrien Delaye and Eric Anquetil. ‘HBF49 feature set: A first unified
baseline for online symbol recognition’. In: Pattern Recognition 46 (2013),
pp. 117–130.

[12] Max Frenkel and Ronen Basri. ‘Curve Matching Using the Fast Marching
Method’. In: EMMCVPR 2003, LNCS 2683. Springer, 2003, pp. 35–51.

[13] Martin von Gagern, Ulrich Kortenkamp, Jürgen Richter-Gebert and Mi-
chael Strobel. ‘CindyJS’. In: Mathematical Software – ICMS 2016, Proceed-
ings of the 5th International Conference. https://github.com/cindyjs. Berlin,
Germany: Springer, 2016, pp. 319–326.

[14] Bernhard Ganter and Sergei Kuznetsov. ‘Formalizing Hypotheses with
Concepts’. In: Proceedings of 8th International Conference on Conceptual
Structures. Darmstadt, Germany: Springer, 2000, pp. 342–356.

[15] Bernhard Ganter and Rudolf Wille. Formale Begriffsanalyse. German.
Springer, 1996.

[16] Qin Gao, Bin Zhu, Pei-Luen Patrick Rau, Shilpa Vyas, Cuiling Chen and
Hui Li. ‘User Experience with Chinese Handwriting Input on Touch-
Screen Mobile Phones’. In: Cross-Cultural Design. Methods, Practice, and
Case Studies. Ed. by P. L. Patrick Rau. Springer, 2013, pp. 384–392.

[17] R. L. Graham. ‘An efficient algorithm for determining the convex hull of
a finite planar set’. In: Information Processing Letters 1 (1972), pp. 132–133.

[18] Beki Grinter. What is Interactive Computing? url: https://beki70.
wordpress . com / 2011 / 01 / 27 / what - is - interactive -

computing/.

[19] J.-L. Guigues and Vincent Duquenne. ‘Familles minimales d’implications
informatives resultant d’un tableau de donnees binaires’. French. In:
Math. Sei. Humaines 95 (1986), pp. 5–18.

[20] John Hattie, ed. Visible Learning. A Synthesis of over 800 Meta-Analyses re-
lating to Achievement. Routledge, 2009.

https://beki70.wordpress.com/2011/01/27/what-is-interactive-computing/
https://beki70.wordpress.com/2011/01/27/what-is-interactive-computing/
https://beki70.wordpress.com/2011/01/27/what-is-interactive-computing/

Bibliography 243

[21] Delia Hillmayr, Lisa Ziernwald, Frank Reinhold, Sarah I. Hofer and
Kristina Reiss. ‘The Effectiveness of Learning Mathematics and Sci-
ences with Digital Media in Secondary Schools: A Comprehensive Meta-
Analysis’. In: (2018). manuscript submitted for publication.

[22] Stefan Hoch. ‘Prozessdaten aus digitalen Schulbüchern (working title)’.
German. PhD thesis. Technische Universität München, planned for 2019.

[23] Stefan Hoch, Frank Reinhold, Bernhard Werner, Kristina Reiss and Jür-
gen Richter-Gebert. ‘Interactive Textbooks: The Case of Fractions’. In: II
International Conference on Mathematics Textbooks Research and Development
(ICMT2 2017). Rio de Janeiro, 2017.

[24] Stefan Hoch, Frank Reinhold, Bernhard Werner, Kristina Reiss and Jür-
gen Richter-Gebert. ‘Prozessdatenanalysen: Darstellung von Brüchen’. In:
Beiträge zum Mathematikunterricht 2017. Ed. by Ulrich Kortenkamp and
A. Kuzle. Münster: WTM-Verlag, 2017, pp. 424–428. doi: 10.17877/
DE290R-18527.

[25] Stefan Hoch, Frank Reinhold, Bernhard Werner, Kristina Reiss and Jür-
gen Richter-Gebert. Bruchrechnen. Bruchzahlen & Bruchteile greifen & begre-
ifen. Deutsche Apple iBooks Version. München: Technische Universität
München, 2018. url: http://go.tum.de/623496.

[26] Stefan Hoch, Frank Reinhold, Bernhard Werner, Kristina Reiss and Jürgen
Richter-Gebert. Bruchrechnen. Bruchzahlen & Bruchteile greifen & begreifen.
Deutsche Version. München: Technische Universität München, 2018. doi:
10.14459/2018md1436808.

[27] Stefan Hoch, Frank Reinhold, Bernhard Werner, Kristina Reiss and Jürgen
Richter-Gebert. Fractions. Getting in Touch with Rational Numbers. English
Apple iBooks Version. Munich, Germany: Technical University of Mu-
nich, 2018. url: http://go.tum.de/423758.

[28] Stefan Hoch, Frank Reinhold, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘Design and research potential of interactive text-
books: the case of fractions’. In: ZDM Mathematics Education 50.5 (2018),
pp. 839–848. doi: 10.1007/s11858-018-0971-z.

https://doi.org/10.17877/DE290R-18527
https://doi.org/10.17877/DE290R-18527
http://go.tum.de/623496
https://doi.org/10.14459/2018md1436808
http://go.tum.de/423758
https://doi.org/10.1007/s11858-018-0971-z

244 Bibliography

[29] Stefan Hoch, Frank Reinhold, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘Geschlechtsunterschiede beim Umgang mit dem in-
teraktiven Schulbuch ALICE:Bruchrechnen – eine Analyse von Prozess-
daten’. In: Beiträge zum Mathematikunterricht 2018. Ed. by Fachgruppe
Didaktik der Mathematik der Universität Paderborn. Vol. 4. Münster:
WTM-Verlag, 2018, pp. 2075–2076.

[30] Stefan Hoch, Frank Reinhold, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘How do students visualize fractions? A finger track-
ing study’. In: Proceedings of the 42nd Conference of the International Group
for the Psychology of Mathematics Education. Ed. by Ewa Bergqvist, Mag-
nus Österholm, Carina Granberg and Lovisa Sumpter. Vol. 5. Umeå,
Schweden: PME, 2018, p. 64. url: https://www.researchgate.
net/publication/326122839_How_do_students_visualize_

fractions.

[31] Stefan Hoch, Frank Reinhold, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. Interaktive Lehrbücher im Bruchrechenunterricht der
Sekundarstufe I. 6. Tagung der Gesellschaft für Empirische Bildungs-
forschung (GEBF). Basel, 2018.

[32] Daniel Kirsch. ‘Detexify: Erkennung handgemalter LaTeX-Symbole’. Ger-
man. Diploma thesis. Westfälische Wilhelms-Universität Münster, 2010.
url: http://detexify.kirelabs.org/classify.html.

[33] Erich Peter Klement, Radko Mesiar and Endre Pap. Triangular Norms.
Springer, 2000.

[34] Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold Vermeeren and
Joke Kort. ‘Understanding, scoping and defining user experience: A sur-
vey approach’. In: Proceedings of the 27th International Conference on Human
Factors in Computing. 2009, pp. 719–728.

[35] Yann LeCun, Corinna Cortes and Christopher J.C. Burges. The MNIST
database of handwritten digits. 1998. url: http://yann.lecun.com/
exdb/mnist/.

[36] Scott McCloud. Understandind Comics – The Invisible Art. HarperCollins
Publishers, 1993.

https://www.researchgate.net/publication/326122839_How_do_students_visualize_fractions
https://www.researchgate.net/publication/326122839_How_do_students_visualize_fractions
https://www.researchgate.net/publication/326122839_How_do_students_visualize_fractions
http://detexify.kirelabs.org/classify.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography 245

[37] Hiroyuki Miki. ‘Reconsidering the Notion of User Experience for Human-
Centered Design’. In: Human Interface and the Management of Information –
Proceedings of the 15th International Conference on Human–Computer Interac-
tion. 2013, pp. 329–337.

[38] Gordon E. Moore. ‘Cramming more components onto integrated circuits’.
In: Electronics 38.9 (1965).

[39] Mohd Nizam Bin Saad, Hadi Razak and Azman Yasin. ‘The Adaptation
of Handwriting Recognition System User Interface in Preschool Literacy
Learning Courseware’. In: International Journal of Information and Education
Technology (2012), pp. 61–67.

[40] Friedhelm Padberg and Sebastian Wartha. Didaktik der Bruchrechnung.
Springer, 2017.

[41] Marc Prensky. ‘Digital Natives, Digital Immigrants’. In: On the Horizon
9.5 (2001), pp. 1–6.

[42] Janet C. Read, Stuart MacFarlane and Chris Casey. ‘Measuring the Usab-
ility of Text Input Methods for Children’. In: People and Computers XV –
Interaction without Frontiers. Springer, 2001, pp. 559–572.

[43] Janet C. Read, Stuart MacFarlane and Peggy Gregory. ‘Requirements for
the design of a handwriting recognition based writing interface for chil-
dren’. In: Proceedings of the 2004 conference on Interaction design and children:
building a community. 2004, pp. 81–87.

[44] Janet C. Read, Stuart MacFarlane and Matthew Horton. ‘The Usability
of Handwriting Recognition for Writing in the Primary Classroom’. In:
People and Computers XVIII — Design for Life. 2004, pp. 135–150.

[45] Frank Reinhold. ‘Mathematikdidaktische und psychologische Perspekt-
iven zur Wirksamkeit von Tablet-PCs bei der Entwicklung des Bruchzahl-
begriffs – Eine empirische Studie in Jahrgangsstufe 6’. German. PhD
thesis. Technische Universität München, 2018.

[46] Frank Reinhold, Stefan Hoch, Bernhard Werner, Kristina Reiss and Jür-
gen Richter-Gebert. Tablet-PCs im Mathematikunterricht der Klasse 6. Ergebn-
isse des Forschungsprojektes ALICE:Bruchrechnen. Münster: Waxmann, 2018.
url: https://www.waxmann.com/buch3857.

https://www.waxmann.com/buch3857

246 Bibliography

[47] Frank Reinhold, Stefan Hoch, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘iPads in Grade 6 Classrooms: Effects on Students’
Choice of Strategy for Comparing Fractions’. In: Proceedings of the 41st
Conference of the International Group for the Psychology of Mathematics Edu-
cation. Ed. by Berinderjeet Kaur, Weng Kin Ho, Tin Lam Toh and Ban
Heng Choy. Vol. 2. Singapur: PME, 2017, p. 74. url: https://www.
researchgate.net/publication/318504245.

[48] Frank Reinhold, Stefan Hoch, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘Manipulating Fractions: Effects of iPad-assisted In-
struction in Grade 6 Classrooms’. In: Proceedings of the 41st Conference of the
International Group for the Psychology of Mathematics Education. Ed. by Ber-
inderjeet Kaur, Weng Kin Ho, Tin Lam Toh and Ban Heng Choy. Vol. 4.
Singapur: PME, 2017, pp. 97–104. url: https://www.researchgate.
net/publication/318504242.

[49] Frank Reinhold, Stefan Hoch, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. ‘Konzeptuelles Verständnis von Brüchen mit Visual-
isierungen auf iPads fördern: Eine empirische Studie’. In: Beiträge zum
Mathematikunterricht 2018. Ed. by Fachgruppe Didaktik der Mathematik
der Universität Paderborn. Vol. 3. Münster: WTM-Verlag, 2018, pp. 1475–
1478.

[50] Frank Reinhold, Stefan Hoch, Bernhard Werner, Jürgen Richter-Gebert
and Kristina Reiss. Tablet-PCs im Mathematikunterricht der sechsten Jahr-
gangsstufe: Das interaktive Schulbuch ALICE:Bruchrechnen. 109. Bundeskon-
gress des Deutschen Vereins zur Förderung des mathematischen und
naturwissenschaftlichen Unterrichts (MNU). München-Garching, 2018.

[51] Frank Reinhold, Sarah Hofer, Stefan Hoch, Bernhard Werner, Jürgen
Richter-Gebert and Kristina Reiss. Schulartspezifische Unterschiede des
Einsatzes von iPads im Mathematikunterricht der sechsten Jahrgangsstufe.
Ergebnisse einer empirischen Studie und weiterführende Fragestellungen.
Wissenschaftlichen Jahrestagung von LERN 2018 „Digitalisierung und
Bildung: Potenziale und Herausforderungen aus der Perspektive der
Bildungsforschung“. Tübingen, 2018.

https://www.researchgate.net/publication/318504245
https://www.researchgate.net/publication/318504245
https://www.researchgate.net/publication/318504242
https://www.researchgate.net/publication/318504242

Bibliography 247

[52] Frank Reinhold, Kristina Reiss, Stefan Hoch, Bernhard Werner and Jürgen
Richter-Gebert. Comparing Fractions: The Enactive Way. Supporting Students’
Choice of Appropriate Strategies with iPad-Assisted Instruction. 2018 annual
meeting of the American Educational Research Association (AERA). New
York, 2018. doi: 10.302/1303114.

[53] Frank Reinhold, Kristina Reiss, Andreas Obersteiner, Stefan Hoch,
Bernhard Werner and Jürgen Richter-Gebert. Drawing on Children’s In-
tuitive Knowledge to Enhance Fraction Concepts: An Intervention Study with
Tablet-PCs. Fifth meeting of the network „Developing competencies in
learners: from ascertaining to intervening“. Leuven, Belgien, 2018.

[54] Kristina Reiss, Stefan Hoch, Frank Reinhold, Jürgen Richter-Gebert
and Bernhard Werner. ‘Tabletklassen: Die Zukunft des Unterrichts?’ In:
Bildung im digitalen Zeitalter – Bilanz und Perspektiven. Ed. by Heinz Nix-
dorf MuseumsForum. Paderborn: Heinz Nixdorf MuseumsForum, 2017,
pp. 92–107.

[55] Jürgen Richter-Gebert. Perspectives on Projective Geometry. Springer, 2011.

[56] Jürgen Richter-Gebert and Thorsten Orendt. Geometriekalküle. German.
Springer, 2009.

[57] Barbara Schmidt-Thieme and Hans-Georg Weigand. ‘Medien’. In: Hand-
buch der Mathematikdidaktik. Springer, 2015, pp. 461–490.

[58] Eugene Seneta. Non-negative Matrices and Markov Chains. Springer, 1981.

[59] Linda G. Shapiro and George C. Stockman. Computer Vision. Prentice Hall,
2001.

[60] Kenneth O. Stanley and Risto Miikkulainen. ‘Evolving Neural Net-
works Through Augmenting Topologies’. In: Evolutionary Computation
10.2 (2002), pp. 99–127.

[61] Julie Steele and Noah Iliinsky, eds. Beautiful Visualisation. O’Reilly, 2010.

[62] John Sweller. ‘Cognitive Load During Problem Solving: Effects on Learn-
ing’. In: Cognitive Science 12.2 (1988), pp. 257–285.

[63] John Sweller, Paul Ayres and Slava Kalyuga. Cognitive Load Theory.
Springer, 2011.

https://doi.org/10.302/1303114

248 Bibliography

[64] Jen Hong Tan and U Rajendra Acharya. ‘Active spline model: A shape
based model - Interactive segmentation’. In: Digital Signal Processing 35

(2014).

[65] Robert T. Taylor, ed. The computer in school: Tutor, tool, tutee. Teachers Col-
lege Press, 1980.

[66] Alessandro Vinciarelli and Juergen Luettin. ‘A new normalization tech-
nique for cursive handwritten words’. In: Pattern Recognition Letters 22.9
(2001), pp. 1043–1050.

[67] Bernhard Werner. Interactive Widgets. url: https://geo.ma.tum.de/
de/personen/bernhard-werner/interaktive-widgets.html.

[68] Neil L. White. ‘Multilinear Cayley Factorization’. In: International Journal
of Information and Education Technology 11.5–6 (1991), pp. 421–438.

[69] Jin Xiangyu, Liu Wenyin, Sun Jianyong and Zhengxing Sun. ‘On-line
Graphics Recognition’. In: Computer Graphics and Applications – Proceed-
ings of 10th Pacific Conference. IEEE Computer Society, 2002, pp. 256–264.

[70] Kimihiko Yamagishi. ‘When a 12.86% mortality is more dangerous than
24.14%: implications for risk communication’. In: Applied Cognitive Psy-
chology 11 (1997), pp. 495–506.

[71] Serhiy Yevtushenko. Concept Explorer. url: http : / / conexp .

sourceforge.net/.

[72] Cem Yuksel, Scott Schaefer and John Keyser. ‘On the Parameterization of
Catmull-Rom Curves’. In: 2009 SIAM/ACM Joint Conference on Geometric
and Physical Modeling. San Francisco, California: ACM, 2009, pp. 47–53.

[73] Poonam Zham, Dinesh K. Kumar, Peter Dabnichki, Sridhar Poosapadi Ar-
junan and Sanjay Raghav. ‘Distinguishing Different Stages of Parkinson’s
Disease Using Composite Index of Speed and Pen-Pressure of Sketching
a Spiral’. In: Frontiers in Neurology 8 (2017).

https://geo.ma.tum.de/de/personen/bernhard-werner/interaktive-widgets.html
https://geo.ma.tum.de/de/personen/bernhard-werner/interaktive-widgets.html
http://conexp.sourceforge.net/
http://conexp.sourceforge.net/

	Writing on touchscreens in technology, education & mathematics
	Handwriting recognition in technology
	The ALICE project
	The problem of handwriting recognition
	Structure & notation

	A mathematical model of handwriting
	Mathematical fundamentals
	A base model for strokes
	An overview of ALICE:HWR

	Geometric transformations of strokes
	Four classes of geometric transformations
	Applications

	Aspects of stroke classification
	Directional vectors
	Exclusion rules via FCA hypotheses
	Fuzzy matching of feature vectors

	Characterising strokes via determinants
	Curvature
	Determinants

	Looking back at ALICE:HWR
	Training
	Classification
	Parsing
	Performance

	Looking ahead
	Appendix The Manual for the companion iBook
	Appendix The code of ALICE:HWR
	Bibliography

