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Abstract

As a bone disease, osteoporosis is characterized by low bone mass and deteriora-
tion of bone microstructure. It is a common condition for a majority of people as a
result of aging. Osteoporotic fractures, as a direct result of untreated osteoporosis,
lead to pain, immobility and possibly even fatality for patients, causing a huge cost
of medical care, lost of workforce and thus heavy society burden. In most cases,
osteoporosis is often only diagnosed when the first fracture occurs.

Computed tomography (CT), as an in-vivo, fast and high-quality medical imaging
modality, is particularly well-suited for bone imaging and has the potential to offer
osteoporosis screening. However, due to the substantial radiation exposure applied
to the patient, Quantitative CT (QCT) for bone mineral density (BMD) has not seen
as a standard for osteoporosis screening and monitoring.

This thesis project investigated the potential of low dose and ultra-low dose CT
in the context of musculoskeletal CT imaging with novel data acquisition and image
reconstruction schemes. In-vivo human subjects (in control and osteoporosis
groups) examined with a conventional medical CT were retrospectively collected.
An advanced model-based statistical iterative reconstruction (SIR) algorithm was
implemented. Low dose scanning protocols were realized by simulating lower
X-ray tube current and sparse sampling. BMD and trabecular microstructure
were investigated. While the accuracy of identifying healthy and osteoporosis
patients depends on the radiation dose, our results showed that the quantification
of BMD with sparse sampling was much more reliable compared to lowering X-
ray tube current. The results also suggested that the examinations of trabecular
microstructure, with both sparse sampling and lowering tube current, were very
sensitive to the level of radiation exposure.

In addition, potentials of advanced multi-energy CT for quantitative bone imaging
were studied. This research topic was divided into two main aspects: material
quantification and decomposition. Both ex-vivo vertebral specimens and in-vivo
patient subjects were scanned with a clinical dual-layer CT system. In the first part,




Abstract

an algorithm was implemented to deliver BMD, by comparing the monoenergetic
CT images generated by the scanner with corresponding referencing images of
quantitative phantoms. The results showed an excellent correlation with conven-
tionally delivered BMD using QCT. In the second part, a decomposition algorithm
was investigated to measure the calcium hydroxyapatite (HA), water and fat fraction
within the bone. Comparing to corresponding magnetic resonance (MRI) images,
the results suggested that multi-energy CT has the potential over conventional CT
to identify acute and chronic fractures through estimating the water and fat bone
compositions.

In conclusion, this thesis investigates (1) ultra-low-dose CT for musculoskeletal
imaging with novel data acquisition and image reconstruction schemes for osteo-
porosis screening and (2) clinical applications of advance multi-energy CT: BMD
quantification and bone composition estimation.
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Zusammenfassung

Osteoporose ist eine haufige Knochenerkrankung, die durch geringe Knochen-
masse und Verschlechterung der Knochenmikrostruktur gekennzeichnet ist. Typis-
cherweise wird Osteoporose oft erst mit dem Auftreten einer Fraktur diagnostiziert.
Osteoporotische Frakturen flhren zu Schmerzen, Immobilitdt und bendtigen daher
auch eine aufwendige medizinische Versorgung. Diese Frakturen, die oftmals mit
pharmakologischer Therapie vermeidbar sind, stellen jedoch schwere Belastungen,
sowohl fur die Patienten als auch fir die Gesellschaft dar.

Die Computertomographie (CT) ist eine schnelle und zuverlassige Bildgebungsmodal-
itdt im klinischen Alltag. Sie eignet sich besonders gut fir die Bildgebung der
Knochen und bietet daher groBes Potenzial zur Friherkennung von Osteoporose.
Aufgrund der erheblichen Strahlenbelastung wird die quantitative CT (QCT) fur
die Messung der Knochendichte jedoch nicht allgemein zur Friherkennung und
Nachsorge von Osteoporose durchgefiihrt.

Die Vorliegende Arbeit befasst sich mit der Anwendung von strahlenreduzierter
CT zur Beurteilung des Knochenbruchrisikos. Im Wesentlichen wurden neuartige
Akquisitionschemata und Rekonstruktionsalgorithmen entwickelt. Patienten (in
Kontroll- und Osteoporosegruppen), die mit einem konventionellen medizinischen
CT untersucht worden sind, wurden retrospektiv in die Studien eingeschlossen.
Strahlenreduzierte Scanprotokolle wurden durch eine Reduzierung des Rohren-
stroms der Réntgenquelle oder durch spérliche Abtastung realisiert. Ein fortschrit-
tlicher Rekonstruktionsalgorithmus (modellbasierte statistische iterative Rekon-
struktion, SIR) wurde implementiert um die Bildqualitét der strahlenreduzierten
Daten zu verbessern. Fur die Evaluierung wurde die Dichte und die trabekulare
Mikrostruktur der Knochen untersucht. Die Ergebnisse zeigen, dass mithilfe solcher
Verfahren Osteoporose bei Patienten/-innen, selbst unter der Verwendung niedriger
Strahlendosis, diagnostiziert werden kann. Des Weiteren wurde gezeigt, dass
die Quantifizierung der Knochendichte mit spérlicher Abtastung im Vergleich zur
Verringerung des Réhrenstroms zuverlassiger ist. Die Beurteilung der trabekularen
Mikrostruktur wurde sowohl bei sparlicher Abtastung als auch bei reduzierter
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Zusammenfassung

Stromstarke sehr empfindlich von der Strahlendosis beeinflusst.

Zusatzlich wurde das Potenzial der Multi-Energie CT fiir die Knochenbildgebung
untersucht. Dieses Forschungsthema wurde in zwei Aspekte unterteilt: Materi-
alquantifizierung und -zerlegung. Die Studien wurden an ex-vivo Wirbelkérper
und in-vivo Patienten durchgefiihrt, die mit einem klinischen Dual-Energy-CT ges-
cannt wurden. Ein Algorithmus wurde implementiert, um die Knochendichte zu
bestimmen. Hierbei werden die vom Scanner erzeugten monoenergetischen Bilder
mit den entsprechenden Referenzbildern quantitativer BMD-Phantome verglichen.
Es wurde eine hervorragende Korrelation mit konventionellen Messungen der
Knochendichte festgestellt. Im zweiten Teil wurde ein Algorithmus zur Materialz-
erlegung untersucht, um den Calciumhydroxylapatit-, Wasser- und Fettanteil im
Knochen zu messen. Ein Vergleich mit entsprechenden Bildern der Magnetres-
onanztomographie zeigte, dass Multi-Energie CT das Potenzial hat, akute und
chronische Frakturen durch eine Schatzung der Wasser- und Fettzusammenset-
zung im Knochen zu identifizieren.

Zusammenfassend untersucht diese Arbeit (1) strahlenreduzierte CT Bildgebung
mit neuartigen Akquisitions- und Rekonstruktionsschemata zur Friiherkennung von
Osteoporose und (2) klinische Anwendungen der Dual-Energy-CT: BMD Quan-
tifizierung und Bestimmung der Knochenzusammensetzung.
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Research Summary







1. Introduction

1.1. Clinical background and motivation

Osteoporosis is a disease characterized by low bone mass and deterioration of
bone micro-architectural tissue. It disturbs the balance of the spine, changes body
posture and is associated with an 8-fold increase in mortality [1] [2]. Commonly,
osteoporosis has no typical symptoms until an actual fracture occurs. Osteoporotic
fractures cause an increasing burden both to the patient and the society [3] [4],
despite the fact that osteoporosis is considered as treatable and the fractures are
preventable by early initiation of pharmacological therapy. As nowadays people
have a longer life expectancy, osteoporosis receives a growing amount of attention.
However, in the European Union only 10-15% of patients are treated adequately

(1.

The under-diagnosed and under-treated situation of osteoporosis is aggravated
by the limited accuracy of standard diagnosis tools. Dual-energy X-ray absorp-
tiometry (DXA), as the only standard clinical method for quantitative imaging of
osteoporosis proposed by World Health Organization since the late 1980s, enables
the measurement of areal bone mineral density (aBMD, g/cm?), which is most
commonly applied at the lumbar spine and/or proximal femur. However, aBMD is a
projection-based measurement which is influenced by the size of the body and the
surrounding conditions of tissues, such as calcification in blood vessels or organs.
In addition, recent studies have shown that DXA is partly insufficient to identify
subjects at high risk of osteoporotic fractures: over half of none vertebral fractures
occurred in patients with non-pathological aBMD values, [5] [6], which indicates
that trabecular bone microstructure analysis may also be necessary for assessing
fracture risk.

As one of the most important medical imaging technique today, computed
tomography (CT) is particularly good at bone imaging in the clinical routine, be-
cause human bone is dense and absorbs a substantial amount of X-rays, creating
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high contrast for diagnosis. By providing the 3D image volumes of the patient’s
body, quantitative CT (QCT) can measure volumetric bone mineral density (vBMD,
mg/cm?®) free from the influences of surrounding soft tissue and blood calcification
near the lumbar spine. Moreover, CT can access detail information of in-vivo
bone microstructure. It is shown that high-resolution CT improves the prediction of
bio-mechanical bone strength and fracture risk beyond aBMD-based DXA, [7] [8]
[9]. However, current CT/QCT examination is subject to a high radiation dose and
is clinically not acceptable for longitudinal assessment of fracture risk and therapy
monitoring [10].

While most of the current CT protocols focus on infrequent abdominal examina-
tions where dose is comparatively of lesser concern, osteoporosis-screening-based
CT/QCT examinations are more frequently performed per patient and their radi-
ation dose must be reduced. New scanning protocols and corresponding new
acquisition and reconstruction schemes would be very attractive to musculoskeletal
CT imaging. In this thesis, sparse-sampling is investigated, a method where the
CT switches on and off the X-ray source during the gantry rotation to cut down
radiation exposure. In order to mitigate the effects of inadequate data acquired, an
advanced reconstruction algorithm, for example, model-based statistical iterative
reconstruction (SIR), was used. The study was performed on in-vivo patients (0s-
teoporotic and healthy groups) retrospectively collected. Both BMD and trabecular
bone microstructure were analyzed.

Additionally, novel techniques in CT, such as spectral and multi-energy CT, have
transferred from academic/manufacturer’s prototypes to actual clinical applications.
For osteoporosis screening or general musculoskeletal CT imaging, dual-energy
CT (DECT) acts as a much more advanced alternative to DXA and conventional
QCT. As CT is a much more frequently used imaging modality, DECT has the po-
tential of acting as an opportunistic osteoporosis screening method because it can
recognize and quantify specific materials, such as in-vivo bone mineral. This thesis
project investigated the performance of a dual-layer based DECT, discussing the
studies of material quantification and decomposition in musculoskeletal CT imag-
ing. DECT applications for clinical applications, such as osteoporosis diagnosis
without conventional phantoms, distinguishing yellow and red bone marrows and
determining their fractions within vertebrae, were evaluated with ex-vivo specimens
and/or retrospectively on patient data.
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1.2. Study subject in this thesis

This thesis focuses on the CT musculoskeletal imaging. The types of bones studied
are briefly introduced in this section.

Human bones are not uniformly solid; the majority of bones have a hard and
compact outer layer (cortical bone) and a spongy internal area (cancelous or
trabecular bone). Trabecular bone has a higher surface-area-to-volume ratio and
provides spaces for metabolic activities as well as structural support. It contains
bone marrow, which can be divided into yellow and red marrow depending on their
portions of fat cells (adipose-dominated) and blood component (mostly water). The
fraction of adipose tissue inside the bone increases as the person ages, which is
believed to contribute also to fracture risk. For a bone with fracture, the composition
of adipose and water in the bone marrow can indicate the age of the fracture: a
fresh fracture often contains excess fluid, which is referred to as a bone marrow
edema.

Bone mineral density (BMD) is one of the most important referencing attributes
when diagnosing osteoporosis. By definition, BMD describes the amount of bone
mineral in bone tissue (mg/cm®). Bone mineral is formed by calcium hydroxyapatite
(HA). In clinical practice, BMD measured in QCT is technically the translated value
from the X-ray attenuation intensity (Hounsfield Units, HU) within the areas of
trabecular bone by comparing the reference scans of phantoms containing actual
concentrations of HA. This translation is commonly referred to as calibration.

In this thesis, trabecular bone microstructure refers to the characteristic appear-
ance of the trabeculae within the bone marrow. This appearance is represented by
descriptive parameters: bone fraction (bone volume over total volume), trabecular
separation (average distances between trabeculae), trabecular number (average
number of trabeculae per millimeter) and trabecular thickness.

The most mentioned study subject in this thesis is the human spine. It consists
of 33 individual bones stacked one on top of each other. They are called vertebrae
and can be numbered and categorized according to their locations, Figure 1.1.

Vertebrae connecting the skull, located around the neck, are cervical vertebrae
and numbered from C1 to C7. C1 and C2 have special shape compared to the
other vertebrae, offering the nodding and shaking motion of the head.




1. Introduction

Figure 1.1.: Human spine.

The human spine has 7 cervical vertebrae (C1-C7), 12 thoracic vertebrae (T1-T12) and
5 lumbar vertebrae (L1-L5).
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femur head

femur neck

Figure 1.2.: Human femur.

In the middle are thoracic vertebrae numbered from T1 to T12. They are
connected to the ribs and hold the rib cage, protecting the heart and the lungs.

Following are the lumbar vertebrae, which are usually the main interest in
osteoporosis for one of their crucial functions is to bear the weight of the upper
body. They are numbered from L1 to L5. Most QCT examinations involve the
lumbar spine.

The rest of the human vertebrae (sacrum and coccyx) are fused and not movable.
They are not the focus in this thesis.

The other bone site mentioned in this thesis is the human femur, which is the
only bone located in the human thigh, connecting the hip and the knee, Figure 1.2.
By most measurements, the femur is the strongest bone in the body and of great
clinical significance. Associated with osteoporosis, a hip fracture may involve the
fracture of the femur head, femur neck and/or the shaft of the femur. Hip fracture is
a common osteoporotic fracture causing mobility problems for elderly people.
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1.3. Thesis structure

In Part | of this thesis, Chapter 2 briefly introduces the physics of CT and its
reconstruction algorithms. Sparse-sampling CT as a dose reduction technique
and its application in osteoporosis screening is discussed in Chapter 3. Chapter
4 provides information on multi-energy CT in musculoskeletal imaging. In Part Il,
journal publications are summarized.




2. Computed tomography
This chapter briefly introduces the CT data acquisition and image reconstruction.

2.1. Data acquisition

In a common medical CT system, the X-ray light source generates X-rays towards
the patient, which pass through and are attenuated by the patient’s body, arriving in
the end at the detector and being converted to an electronic signal, Figure 2.1. The
physics of X-ray attenuation from the patient will be discussed in Chapter 4.1. By
comparing the attenuated signals captured at the detectors to the non-attenuated
X-ray, information of the objects that the X-ray penetrates through can be recovered,
thus revealing anatomical structure inside the human body.

X-ray source

op

patient

,
."ll-- llll““

detector

Figure 2.1.: Computed tomography.
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In a sequential CT scan, the gantry (X-ray source and detector units) rotates
360° and after that, the patient table moves forward. In an helical scan, the gantry
rotates while the patient table moves simultaneously into the rotating gantry.

In most cases, the detector plane is considered as a cylindrical plane, Figure
2.2, consisting of a matrix of small detector units. We defined that the X-ray source
is positioned at S, the rotation center is at O and the central light starts from S,
passes O and arrives to the detector at D. Normally, the center of a cylindrical
curve is the X-ray source point S, thus the distance from the source to detector is
equal to the radius of the cylinder. The opening angle is noted as .

"

Figure 2.2.: X-ray source and curved detector.

lI

N

The X-ray source is located at S and emits a cone beam to a cylindrical detector x., y.

It is mathematically less efficient to handle computations with a cylindrical detec-
tor because a curve is a quadratic function. In this thesis, the curved detector is
converted to a flat detector, Figure 2.3. For any point (z., y.) at the curved detector,
there is a unique point (z,yy) on a flat plane, which is the projection of (z., y.),
such that S, (z., y.) and (z¢, ys) are on the same line. The location of (z,ys) can
be computed with:

Ty =dtan,
Y = Ye/ cosp, (2.1)

where ¢ = z./d. d is the distance between the source and the detector. This
conversion allows us to treat curved detector CT as if its detector is flat, making
the subsequent implementation computationally simpler.

The X-ray emitted from the source is attenuated by the patient’s body, following

10
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(csy) T D (x7, y1)
(%, o)

N S

Figure 2.3.: Conversion from curve to flat detector.

For any point at the curved detector (zc, y.), a conversion to a flat detector is made by
projecting this point to a flat plane (x ¢, yy).

by Beer-Lambert’s law, Equation 2.2:

I=1 eXp(—/u(a:,y)dx), (2.2)

where u(x,y) is the linear attenuation coefficient, i.e. the patient (image), Ip and I
are the intensities of the X-ray beam before and after passing through the patient,
x are pixels along the ray path. This can also be represented in logarithm form:

g= 111]7O = /u(m, y)dx. (2.3)

From the above equation, we observe that the signal g recorded at the detector
can be seen as a discrete summation of intensities of the image (attenuation
profile). If we assume a ray parallel to the x-axis with distance R to the origin,
which can be written as y = R, the signal g(R) at the detector located at R, is the
integral of the intensities of all the pixels along the line in the image u(z,y), Figure
2.4:

o(R) = / / (2, 9)3(y — R)drdy. (2.4)

Similarly, an X-ray beam with 6 between y-axis and distance R to the origin O
can be represented with:

xcosf 4+ ysinf = R, (2.5)

11
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ux.y) 8B
Figure 2.4.: Forward projection of u(z,y) forray y = R.

Pixel intensities along the ray in u(x,y) sums up to the signal at the detector position R.

yielding a projection (Figure 2.5):

g(R,0) = // w(z,y)d(zcosf + ysinf — R)dzdy. (2.6)
@,y

By definition, a collection of g(R, #) is called sinogram. Equation 2.6 is called
Radon transformation [11], which we note as the forward projection from the image
domain to sinogram domain. The inverse operation of this procedure,

flz,y) = // g(R,0)6(xcosf + ysind — R)dRdO, (2.7)
R,0

is referred to as back-projection. Of note, the result of back-projection, f(x,y),
is not the forward projected image n(z,y). To produce the correct image, image
reconstruction algorithms (inverse Radon transformation) are needed, which are
discussed in the following sections in this chapter.

In a more realistic situation where the X-ray source is considered as a point
source, the scanner geometry is referred to as fan-beam geometry, Figure 2.6.
Fan-beam geometry requires the source-to-center distance d’ and the source-to-
detector distance d. Any ray emitted from the X-ray source while at 6 with an
opening angle v to the detector center, can be represented as:

xcos(f + ) + ysin(f + ) = d sinp. (2.8)

12
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P u(x,y) (R 0)

Figure 2.5.: Forward projection of p(x, y) for a ray with 6.

In a 2D parallel beam case, forward projection of the ray (x cos 6 + ysinf = R) sums
up the pixel intensities, yielding the projection g(R, ).

And the forward projection g(R, 0) is:
o(R0) = [[ (e n)d(acos(0+0) + ysin(0 +v) ~ d sinv)dady,  (29)
z,y

where ¢ = arctan(R/d).

2.2. Analytical reconstruction algorithm

In mathematics, it requires the central slice theorem [12] to compute u(x, y) from
sinogram g(R,#). The central slice theorem states: the 1D Fourier transform
(1D-FT, FT.) of a projection g(R, 8) with respect to R is the 2D Fourier transform
(2D-FT, FT2) of u(z,y) evaluated at angle 6.

13



2. Computed tomography

Figure 2.6.: Forward projection of u(z, y) at 6 in fan-beam geometry.

In 2D fan-beam geometry, rays can be represented analogously with Equation 2.8 and
the corresponding forward projection with Equation 2.9.

The 1D-FT of ¢g(R, ), from Equation 2.6 with respect to R is:
Go(p) = FT1{ge(R)}

= ///p(:c,y)é(m cos + ysin@ — R) exp(—i2w R)dzdydR
= // w(z, y) exp(—i2mp(z cos @ + y sin 0))dxdy

= // p(x,y) exp(—i2mw(p cos Oz + psin Oy))dxdy. (2.10)

And the 2D FT of u(x, y) is:
M (u,v) = FT2{p(z,y)}

= // w(z,y) exp(—i2w (ux + vy))dzdy. (2.11)
The above two equations 2.10 and 2.11 are equal, if we write (u, v) in polar

coordinates (pcos 8, psin 6). uw and v are axes from the frequency domain while z
and y axes are from image domain.

M(u,v) = // f(z,y) exp(—i27(p cos bz + psin Oy))dzdy

= Golp). (2.12)

14
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Figure 2.7.: Polar grid and Cartesian grid.
The sample points in polar coordinate (left) are to be interpolated into Cartesian coordi-

nate (right).

Thus, a reconstruction of u(z,y) from g(R, §) can be made by:

u(z,y) = FT;H{FT1{go(R)}}. (2.13)

FT, ' denotes the operation of inverse 2D-FT. Before this, the 1D-FT results of
g(R) at different angular positions of 6, as vectors, need to be sliced through origin,
re-sampled from polar coordinate (R, #) to Cartesian coordinate for the inverse
2D-FT, Figure 2.7.

However, because of the computational complexity and memory consumption of
inverse 2D-FT, central slice theorem is rarely in practical use. In current modern
CT system, filtered back-projection (FBP) is the most used algorithm in clinical
routine because of its simplicity and efficiency.

FBP modifies the order of the steps in central slice theorem [13]. It includes the
following procedures:

1. Apply a 1D-FT on the projection data to convert to the frequency domain.

Go(p) =FT1{gs(R)}}. (2.14)

2. Apply the signal in frequency domain with a high-pass filter, for example,

15
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Ram-Lak filter |p| [14] to reduce low frequency signal.

Go(0) = |p|Go(p)- (2.15)

3. Apply an inverse 1D-FT on the filtered data back to the spatial domain.
go(R) = FT{{Gy(p)}. (2.16)

4. Superimpose the filtered projections back to the pixels along its ray paths,
which is simply back-projecting, Figure 2.8.

w(z,y) = // g'(R,0)8(z cos 0 + ysind — R)dRd0. (2.17)

Figure 2.8.: Back-projection and filtered back-projection

Top row: direct back-projection of unfiltered projections. Lower row: back-projection of
filtered projections. Back-projection without filtering creates blurred object boundaries,
while filtering applies convolution to remove blurring. Filtered back-projection is the
primary method in CT image reconstruction.

In practice, several modifications and improvements are made in FBP with
respect to real clinical situations. Image denoising is used on the sinogram before
and/or after the filtering. The high-pass filter is altered to suppress high frequency
signal as it is usually dominated by noise. After the back-projection, various image

16
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improvement techniques, such as edge sharpening and conditional blurring, can
be applied to enhance the image contrast or readability with respect to different
diagnostic purposes.

Although for helical reconstructions the algorithm is mainly the same, some
additional considerations need to be taken [15]. When back-projecting, for each
pixel in the image, it required X-rays passing this pixel evenly from all directions.
Because the patient table is moving and the X-ray light source has the shape of
a cone, some areas of the patient may have redundant X-rays at some spatial
directions passing through and some areas far away from the rotation center may
lack some X-rays at some specific directions. In this thesis, weighting is added to
reduce spatial redundancy and interpolation is implemented for missing directions
by taking information from adjacent regions. As a result of this interpolation, the
field of view in helical scans is limited by the distance of the table movement during
one gantry rotation.

2.3. Model-based iterative reconstruction algorithm

Model-based statistical iterative reconstruction (SIR) is an algorithm which con-
siders the actual projection model and detector statistic. It repeats forward and
back projection multiple times in order to compute the image. Historically, it was
proposed as early as the analytical reconstruction [16] [17] but was limited to low
resolution applications as it requires long computation time and extensive memory
capacity. With the current computational power, especially the development of
highly parallel computing units such as graphic cards, iterative reconstructions
become possible for academic and sometimes clinical applications [18] [19]. Nev-
ertheless, the computation time is still significantly longer than the time for FBP
based algorithms. The general scheme of iterative reconstruction is depicted in
Figure 2.9.

The steps of Separable Paraboloid Surrogate (SPS) [20], one of the SIR algo-
rithms, is generalized as follows:

1. Initialize an image of attenuation profile, which can be the FBP image or an
empty image filled with zeros.

uo(x,y) =0. (2.18)
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Initialize image (zeros)
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Figure 2.9.: Model-based iterative reconstruction

Model-based iterative reconstruction iterates between the image p. and its projected
errors in the sinogram space, compared to the measurement. Each iteration involves a
forward projection and a back-projection.

2. Forward-project the current image to projection domain.

g(R,0) = // 19 (z,9)8(x cos 0 + ysin O — R)dxdy. (2.19)

3. Compute the difference between the current projection against the measure-
ment (sinogram recorded in scanner). Here the measurement y, refers to
the intensity of the detected X-ray beam.

Ag(R,0) = Ipexp(—g'" (R, 0)) — yo(R, 0). (2.20)

4. Back-project the difference in projection domain to the image domain.

Ap/(z,y) = / Ag(R,0)6(xcosd + ysinf — R)dRd0. (2.21)

5. Normalize the back-projected difference by

_ Al

Ap = e

(2.22)
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2.3. Model-based iterative reconstruction algorithm

dP°(x,y) is pre-computed curvature. Pre-computed curvature is constant
and calculated before the iteration:

a(R,0) = // d(zcosf + ysinf — R)dxdy, (2.23)

AP (z,y) = // a-yo-6(xcosf+ysind — R)dRd6. (2.24)

6. Update the current image using the difference in image domain.

D = O 4 Ap (2.25)

7. Go back to the step 2 until convergence, i.e. the image p does not change.

In practice, there are several optimizations for actual implementation:

First of all, the forward- and back-projection are not computed at all angles 6, be-
cause it brings extreme heavy computation and also slows down the convergence.
Instead of using all angles, only a subset of the angles are visited in each iteration.
According to previous experience, if there are 2400 projected angles in one full
gantry rotation, this thesis uses 100 angles as a subset (roughly about 1/24) per
iteration: during one iteration, 100 angles out of the total 2400 possible angles are
randomly selected and performed in Step 2 and 4. For the next iterations, another
different 100 angles are chosen. In the end, after a defined number of iterations,
all 2400 angles are used evenly during the whole reconstruction process.

In addition, iterative reconstruction is a mathematically ill-posed problem. To
improve the convergence of an ill-posed problem and thus to enhance the ap-
pearance of the reconstructed image, SIR applies a regularization term [21]. This
regularization modifies the update in the image domain such that fewer iterations
are needed and that the reconstructed image has reduced noise. To compute the
regularization term, an edge preserving function is used, for example, Lange’s
function [22],

Wb(t) = 8°[[t/8] — log(1 + [t/4])], (2.26)
or Huber penalty [23][15],
/2, ] <6,
vie) = {6|t| —82/2, |t| >4, (2.27)
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2. Computed tomography

where t is the intensity difference of the pixel and its neighboring pixels. § is a
threshold indicating the minimal intensity difference between two distinguishable
objects.

In summary, considering regularization, each update step for the image can be
summarized in Equation 2.28 [24]:
@) |0 4 BP'[Iy exp(=FP'[1"]) — yo] ~ Bk Wikt (x; — Xi) -
max(dPe + B3 wikth(x; — Xk), €)

1 (2.28)

In this equation, FP’[-] and BP'[-] indicate forward- and back-projection (Equation
2.6and 2.7)inasubset of all 6. ¥ and u(“+1) are the images at step i and i +1. yo
is the measured sinogram. I is the X-ray beam intensity. d?¢ is the pre-computed
curvature.

B controls the strength of the regularization term R,

R=> with(x; — xx). (2.29)
K

¥(-) is the penalty function (Equation 2.26 or 2.27). ¢)(-) and ¢(-) are its first and
second derivatives. x; is one of the neighboring pixels of x; in the neighborhood
K. K is a 8-pixel neighborhood in a 2D image or 26-pixel in 3D image. w is the
inverse of the distance between x; and x, (1, 1/v/2 or 1//3).

e is a very small constant ensuring the numerical stability of the iteration. []*
means truncation process of negative numbers.

Pseudo code for SIR can be summarized as follows:
/*Statistical Iterative Reconstruction®/
a <+ FP[1]
: d°¢ = BP[a - yo]
: p < initial reconstruction
: for i = 1 to max iteration, n;, do
for m = 1 to number of subsets, m ., do
l + FP[y]
h <+ Ipexp(—1) —yo
L + BP[h]
compute R and R
L-BR +
max{dPC + AR, ¢}

© ® N a R N

-
=4

-
-

n— |p+
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2.3. Model-based iterative reconstruction algorithm

12:  end for
13: end for

Of note, because the algorithm iterates multiple times between the image- and
projection domain, it is required that the whole field of view is covered to ensure
that no information is lost between the projections. This may cause problems
in practice when the X-ray cone-beam does not fully cover the patient body due
to relatively large patient size or the detector is not wide enough to record the
complete fan angle. Nevertheless, the image y.‘ should include everything between
the source and detector, which limits the resolution of the reconstructed image
because for smaller pixels the image matrix is extremely large. For numerical
accuracy, the voxel size in the image space should be also comparable to the pixel
size at the detector, thus there is no extra data loss when performing forward and
back-projections.
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3. Sparse sampling computed tomography

Combined with iterative reconstruction, sparse sampling is a promising technique
to further reduce radiation dose in clinical CT examinations.

In the first section, the general idea of sparse sampling CT is introduced. The
second section summarizes the clinical research and application regarding osteo-
porosis screening with sparse sampling. Ongoing and unpublished work is briefly
described in the third section.

3.1. Motivation of sparse sampling computed tomography

The main purpose of sparse sampling is saving radiation dose applied to the
patient. This chapter starts by explaining the meaning of dose in CT. Although how
much X-rays are actually absorbed by patient largely depends on the size of the
body and what organs are being examined, the manageable radiation exposure is
controlled by manipulating the generation of X-ray and the rotation of the gantry,
namely the definition of the scanning protocol. The most important parameters
related to the generation of X-rays are tube potential and tube current. The rotation
of the gantry is described mainly by rotation speed and table speed (or spiral pitch
factor).

Tube potential, also known as peak kilo voltage (kVp), determines the energy
and intensity of electrons hitting the anode [25] at the X-ray tube and defines the
maximum energy of the generated X-ray photons. Analogical to visible light, tube
potential determines both the color and intensity of the X-ray. The generated X-ray
beam is not a monochromatic beam. If tube potential is 120 kVp, a range of up to
120 keV X-ray photons can be released. Kilo electron volt, keV, is unit of energy
equal to 1.6 x 107" joules. Higher energy X-ray is easier to be scattered, and low
energy X-ray is easier to be absorbed. Thus, tube potential is not the primary factor
controlling radiation dose. All energy photons contribute to the dose applied to the
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3. Sparse sampling computed tomography

patient.

Tube current, measured in milliampere (mA), determines the intensity of the
X-ray beam or the number of X-ray photons emitted from the X-ray tube. It is the
main attribute influencing the trade-off between radiation dose and image quality.
Attenuated by the object, X-ray photons are either absorbed or scattered. After that
the remaining X-ray photons are converted into visible light photons and hence
electronic signals at the detector unit. A certain level of electronic noise occurs
during this conversion. When the tube current is high, enough X-ray photons reach
the detector, the portion of electronic noise is dismissible and the image quality is
better.

The rotation speed is described with the rotation time (in seconds) used during
the CT rotating one full round. Clinical CT systems, for example, Philips iCT
(Philips Healthcare, Best, the Netherlands), has 2400 sampling projection points
per rotation in most clinical protocols. The reduction of rotation speed is commonly
restricted by the the read-out speed of the detector.

In helical scans, spiral pitch factor, or pitch, is a parameter that reflects how
fast the patient’s table is moving towards the gantry. It is by definition, the table
movement per rotation (mm) over the total collimation width (mm), which can
also be understood as the percentage movement of the detector plane after one
complete gantry rotation. A smaller pitch means that the patient’s body is more
repeatedly radiated with X-ray. A large pitch means the table moves very fast and
also a lower radiation dose. Pitch has an influence to the field of view, large pitch
means smaller field of view, because the X-ray beam being a cone-shape beam
and cannot cover certain area of the patient far from the rotation center, leading to
failing image reconstruction in outer areas.

In a sequential scan, the exposure time of one axial slice is the rotation time
per one gantry rotation. In helical scans, the exposure time of one axial slice is
by definition the rotation time per one gantry rotation over the spiral pitch factor.
This is due to the fact that in cone beam helical scans, part of the information
gathered in one axial slice can be used in subsequent axial slices. Thus for each
axial slice, the exposure time is the averaged time needed when X-ray is applied to
the patient.

Finally, the radiation dose, exposure of one axial image of the patient, is defined
as the product of tube current and exposure time. It has the unit of mAs. This value
can be converted to more physiological meaningful values such as gray (Gy) or
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Figure 3.1.: Sparse sampling CT

Left: full sampling CT. Middle: 50% sparse sampling. Right: 25% sparse sampling. In
25% sparse sampling CT, X-ray only emits at 1/4 of the angular positions.

sievert (Sv). The unit gray is defined by how much joule energy is absorbed per
kilogram water. CT manufacturers use a water phantom to automatically produce
volumetric dose value (mGy) from mAs in the dose report after each scan. The
unit sievert is defined by how much joule energy is absorbed by biological tissue.
Sievert can only be estimated and is object-specific, considering which different
biological organ has different absorption behavior to X-ray. In the following of this
thesis, milliampere-second product (mAs) is mostly used to describe radiation
dose.

In conventional medical CT, the X-ray source is always on and continuously
emitting X-ray to the patient. The exposure has a direct effect to the CT image
quality because it is determined only by the tube current, which is the X-ray beam
intensity.

On the other hand, sparse sampling CT aims at cutting down the exposure time.
Sparse sampling refers to a technique where the X-ray source is switching on and
off during the gantry rotation, pulsing the X-ray light source specifically during some
positions in the gantry rotation. Compared to conventional CT, sparse sampling CT
shoots X-rays at one sampling point after a few angular positions, Figure 3.1. In
this thesis, 50% (or 2-times) sparse sampling means the CT takes every second
projection a sampling point, compared to full sampling CT. 25% sparse sampling
takes every 4th projection as a sampling point. By taking fewer sampling points
during the gantry rotation, the exposure time and thus the total radiation exposure
is reduced, Table 3.1.

It has certain benefit to reduce sampling points in low-dose CT examinations.
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Table 3.1.: Sparse sampling CT lowers radiation exposure.

continuous  2-times sparse  4-times sparse

Exposure time per rotation 1s 05s 0.25s
X-ray tube current (mA) 200 200 200
Exposure (mAs) 200 100 50

Sparse sampling can lower the total effective dose while keeping the tube current high.

By making 1/2 sparse sampling CT, we can shoot twice as strong intensity X-ray
in each sampling point, while in the end the radiation dose is the same as the
conventional CT, Table 3.2. The signal obtained in each sampling is of high quality
and has significantly less electronic noise compared to the sampling points of
conventional full-sampling CT.

Table 3.2.: Sparse sampling CT provides X-rays with high tube current.

continuous  2-times sparse  4-times sparse

Exposure time per rotation 1s 05s 0.25s
X-ray tube current (mA) 200 400 800
Exposure (mAs) 200 200 200

Sparse sampling allows high intensity X-ray beam while keeping the total effective
radiation dose the same.

Certain artefacts in the reconstructed image will appear if sparse sampling is
applied. The most prominent artefacts in the image are aliasing stripes, Figure 3.2.
While commonly used reconstruction algorithm in clinical CT (FBP) cannot handle
these artefacts, SIR shows great potential because it performs multiple times the
forward and back-projection procedure. In addition, stronger regularization can
smooth out such aliasing artefacts [26].

The following section discusses related research of sparse sampling CT. This
thesis focuses on the SIR implementation and performance on sparse sampling
CT, in the context of musculoskeletal imaging. Actual medical problems will be
discussed in the subsequent sections, regarding trabecular bone microstructure
and actual spine fractures.
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3.1. Motivation of sparse sampling computed tomography

Figure 3.2.: Sparse sampling CT with half dose (50%)

Left: the correct image of a Catphan phantom. Middle: FBP reconstructed Catphan
phantom with 1/5 sparse sampling. Right: SIR reconstructed with 1/5 sparse sampling.
Note that the regularization in SIR mitigates the aliasing artefact. These images are
referenced from J-1
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3. Sparse sampling computed tomography

3.2. Related work with sparse sampling computed
tomography

Sparse sampling is not possible for current medical CT system because there is no
extra unit to switch off the X-ray generator during the gantry rotation. However, the
possibility of adding such unit is investigated and the implementation is arguably
not impossible [27]. Current existing vascular CT using gridding technique has
comparable speed to suppress the X-ray generation [28] [29]. In a prototype of an
X-ray generator used in multi-source CT [30], an extraction grid is used on top of
the cathode that enables ultra-fast modulation in microsecond range, which will be
capable of generating short-enough pulses for sparse sampling CT.

How sparsely the sampling in CT can go was investigated [31]. The number
of sampling points mathematically sufficient for reconstruction depends on the
scanned subject and the collimation width of the detector. For SIR reconstruction
combining proper regularization, simulation studies indicated that as low as 64-
views yield accurate appearing images [32] [33]. However, the reconstruction
algorithms need to be highly optimized and dedicated [26] [34]. Meaningfulness
of this trade-off between radiation dose and image quality largely depends on the
actual clinical application.

Different sparse sampling schemes have been studied [35] [36], including (1)
regularly sampling of one projection after every few angles; (2) regularly sampling
of a bundle of projections after every few angles and (3) sampling in different rows
or columns in every projection angles (without switching off the X-ray tube). These
studies used micro-CT data taken from a water phantom and mouse heads. The
result showed that regularly sampling of one projection after every few angles (1)
is the best sparse sampling scheme.

Sparse sampling has seen in actual laboratory set-ups of small flat-panel-
detector cone beam CT system [37] [38] [39]. In these applications, task-driven
reconstruction algorithms were specifically implemented based on SIR [40] [41].

An actual implementation on medical CT using interrupted beam was imple-
mented and investigated [42] [43] [44]. These studies sampled X-ray in different
rows of the detector plane (3), by stopping or splitting the X-ray before it reached
the patient by using a multi-slit collimator at the source.
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3.3. Sparse sampling in musculoskeletal imaging

3.3. Sparse sampling in musculoskeletal imaging

The application of iterative reconstruction for sparse-sampling CT in musculoskele-
tal imaging was investigated with several clinical topics in this thesis.

Ex-vivo vertebral specimens were examined and its iteratively reconstructed
images were evaluated prior to the start of this project (journal publication J-1).
During this preliminary study, the implemented SIR was tested on normal and
high-dose CT scans. Trabecular microstructure within the vertebrae was inspected
and compared to the maximum fracture load of the bio-mechanical test of the
same specimens. The settings of the SIR (both low and high regularization) were
investigated. The ratio of bone volume over total volume in the SIR image correlate
well with the actual fracture load in low dose scan, indicating the feasibility of SIR
in low dose musculoskeletal CT imaging.

In the following of this section, studies on in-vivo experiments are discussed.
The first part is focusing on the human spine (vertebrae). The second part focuses
on the femur. Spine and femur are both of great importance for radiologists not
only because of the frequent fractures but also because fractures that occur on
these sites can substantially effect the life quality of patients.

3.3.1. Trabecular structure and bone strength evaluation in
vertebrae

The first study was performed regarding the trabecular microstructure reconstructed
with SIR for sparse sampling ultra low dose CT (journal paper J-I).

In this project, 24 low-dose patient scans were retrospectively collected. These
patients underwent routine thoracic and abdominal CT scans (Philips iCT, Philips
Healthcare, Best, the Netherlands). Among them, 12 subjects contained osteo-
porotic fractures and the other 12 control patients had no fractures or metabolic
bone changes were selected and paired with the same gender and age (50%
female, average age: 73.4 + 10.8, min 55, max 89). Their raw projection CT data
were exported from the scanner and processed on a reconstruction server.

The patient data were then reconstructed with 50%, 25% and 10% sparse
sampling CT, compared against simulated 50%, 25% and 10% of the original used
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3. Sparse sampling computed tomography

Table 3.3.: Radation dose, SNR and CNR of the image under different dose.
Exposure CTDI SNR CNR

Original 109 7.5 328 137
50% SpS 55 3.8 215 87
25% SpS 27 1.9 16.2 6.3
10% SpS 11 0.8 142 56
50% TC 55 3.8 186 7.2
25% TC 27 1.9 9.5 3.8

10% TC 11 0.8 2.9 1.1

SpS indicates sparse sampling. TC indicates tube current (reduction). Exposure is
the mean exposure (mAs) of all subjects. CTDI is the mean volumetric CT dose index
(mGy) for all subjects. This table was published in J-I.

tube current. Sparse sampling scheme is regularly sampling every 2, 4 and 10
projection data. A simulation tool was used to generate lower tube current scans.
The simulation algorithm was based on respective raw projection data [45]. System
parameters of the scanner, for example detector gain, were considered in order to
account for electronic noise. Therefore, the result was accurate especially under
ultra-low tube current conditions [46].

Average of the original dose was 100 mAs (about 7.5 mGy) and the original
scans were already relatively low-dose scans. Consequently 50%, 25% and 10%
of sparse sampling or tube current simulations were 55, 27 and 11 mAs and can
be considered as ultra-low dose in clinical routine, Table 3.3.

Because this study is focused on the trabecular microstructure inside the ver-
tebrae, the image slices were reconstructed with very high resolutions, as 1152
by 1152 pixels with a field of view of 450 by 450 mm?. SIR stopped at a manually
given number of iterations. Original dose SIR reconstructed images are shown in
Figure 3.3. Reduced dose images are shown in Figure 3.4 and 3.5.

Bone mineral density (BMD) at the spine of each patient was evaluated in-
side non-fractured thoracic and lumbar vertebrae, and calibrated with a reference
phantom (Mindways Osteoporosis Phantom, Austin TX, USA). The phantom con-
sisted of five rods of basic materials with known equivalent water and dipotassium
phosphate (K-HPO,) concentrations. Calibrating coefficients were calculated in a
least-squares manner with all five rods and for each subject independently [47]. A
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3.3. Sparse sampling in musculoskeletal imaging

(a) original dose, patient (b) original dose, control

Figure 3.3.: SIR image of subjects with (left) and without (right) osteoporotic fracture,
original dose.

Patient with osteoporotic fractures has significantly less trabecular structures inside the
vertebra compared to the vertebra from (healthy) control subjects. These images were
published in J-1

conversion equation was used to empirically eliminate the effect of contrast agent
[48].

Trabecular bone microstructure was analyzed [49] [50]. Voxels inside the central
vertebra were binarized to be either bone or marrow, with a threshold chosen as
200 mg/cm® which was optimized visually for the microstructure analysis. Four
morphometric parameters were delivered: bone fraction (BF), trabecular number
(TbN, mm—1), trabecular separation (TbSp, mm) and trabecular thickness (TbTh,
mm). Parameters were apparent values because the actual CT has limited reso-
lution for these parameters. One texture parameter, fractal dimension (FD), was
estimated using a box counting algorithm [51].

To evaluate the extracted parameters, statistical analysis was performed. Paired
t-test was used for all tests and a two-sided 0.05 level was considered significant.

No significant change in BMD was observed when analyzing the reduced pro-
jections even at 10% sampling rate (p > 0.05), whereas lowering tube current to
10% resulted in average 38% higher BMD values, Figure 3.7. For all trabecular
parameters, both sparse sampling and lowering tube current affected the mea-
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3. Sparse sampling computed tomography

(c) 25% SpS, patient (d) 25% SpS, control

(e) 10% SpS, patient (f) 10% SpS, control

Figure 3.4.: SIR image of subjects with (left, patient) and without (right, control) osteo-
porotic fracture, 50%, 25% and 10% sparse sampling (SpS).

SpS refers to sparse sampling. Sparse sampling deteriorates general image quality as
the sampling rate is reduced.
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3.3. Sparse sampling in musculoskeletal imaging

(c) 25% TC, patient (d) 25% TC, control

(e) 10% TC, patient (f) 10% TC, control

Figure 3.5.: SIR image of subjects with (left, patient) and without (right, control) osteo-
porotic fracture, 50%, 25% and 10% tube current simulation.

TC represents (reduced) tube current. Reducing tube current creates significant streak-
ing artifacts as the dose is reduced.
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3. Sparse sampling computed tomography

surements in various degrees. BF, TbN, FD tended to increase when dose was
lowered, while TbSp and TbTh decreased. TbN and TbSp were most sensitive to
the dose reduction (p < 0.001), around changes of 20% to 40%, Figure 3.9 3.10.
All the parameters are illustrated in Figure 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12.

For BMD, BF and TbTh, subjects without osteoporotic fractures still had greater
values as compared to the matched subjects with osteoporotic fractures in both
dose reducing approaches. The two groups could still be differentiated, as dif-
ferences were statistically significant (p < 0.05) even at 10% of the original dose
level. For TbSp and FD, the differences between the two groups were significant
only when the original dose was used, but was neither significant when data was
sparsely sampled nor when tube current was reduced (p > 0.05). The difference of
TbN between the two groups was not significant at any dose level.

Additional studies were made using the same reconstruction scheme but focused
on bone strength based on finite element (FE) analysis (journal publication J-2
and J-8).

When lowering tube current, FE-predicted failure load of the standard dose did
not significantly differ from the 50% (p = 0.718 and p = 0.670) and 25% doses
(p = 0.606 and p = 0.592); however, it significantly differed from the 10% dose
(p = 0.00198 and p = 0.0354). In evaluating the differences at each dose, the
failure load differed significantly between fracture and control groups at original
(p = 0.0373), 50% (p = 0.0305), and 25% doses (p = .0233) but not at 10% dose
(p = 0.458).

While with the original dose it was possible to differentiate patients with and
without fractures (AUC = 0.675, p = 0.0266), as well as with 50% dose (AUC
= 0.686, p = 0.0188) and 25% dose (AUC = 0.691, p = 0.0137), however, with
10% dose it was not possible to differentiate between the two patient groups (AUC
= 0.562, p = 0.461). In the pairwise comparison of ROC curves, there were no
significant differences between areas of the 50% and 25% doses, compared to the
full dose.

As a brief conclusion, ultra-low-dose assessment of osteoporosis related bone
attributes (BMD, trabecular microstructure and failure load) may be feasible. Sparse
sampling showed great advantage as the BMD did not change when the total
effective dose was reduced. The result of apparent trabecular attributes in ultra-
low-dose circumstances were less reliable compared to BMD because they were
very sensitive to the effective dose, considering both sparse sampling and reducing
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Figure 3.6.: BMD and trabecular parameters extracted with different dose levels.

SpS stands for sparse sampling, TC stands for tube current (reduction). Some of these
images were published in J-I.
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Figure 3.7.: BMD at ultra-low dose compared against original dose.

Top: sparse sampling. Lower: tube current reduction. These images were published in
J-1.
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Top: sparse sampling. Lower: tube current reduction. These images were submitted as
supplemented material for J-I.
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Figure 3.10.: Apparent trabecular separation (App. TbSp) at ultra-low dose compared
agains original dose.

Top: sparse sampling. Lower: tube current reduction. These images were submitted as
supplemented material for J-I.
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Figure 3.11.: Apparent trabecular thickness (App. TbTh) at ultra-low dose compared
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Top: sparse sampling. Lower: tube current reduction. These images were submitted as
supplemented material for J-I.
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41



3. Sparse sampling computed tomography

tube current.

3.3.2. Fracture identification on the spine

A second study was performed to investigate if the radiologist can perceive the
fractured site on the spine under ultra-low dose CT with the help of sparse sampling
(journal publication J-12).

35 subjects were retrospectively included (80% female with average age: 70.6 +
14.2). 23 subjects (65.7%) had at least one vertebral fracture (patient group) and
the other 12 patients showed no vertebral fracture (control group). All included
subjects diagnosed with vertebral fractures also underwent MRI scans before or
after CT. The original dose information is listed in Table 3.4. These fractures in
the patient group affected the cervical spine in 10.0%, the thoracic spine in 40.0%,
and the lumbar spine in 50.0%. Based on original CT and MRI scanning, fractures
were diagnosed as acute in 58.3% and old in 41.7%.

Table 3.4.: Dose and protocols of the spine fracture patient.

Name Parameters

Rotation time 1 s (62.9% of subjects), 0.75 s (37.1% of subjects)
Pitch 0.608 (62.9% of subjects), 0.953 (37.1% of subjects)
Tube voltage 120 kV

Tube current 143.4 £ 76.0 mA (49.2 — 326.6 mA)
Exposure 180.4 + 87.7 mAs (68.0 — 459.0 mAs)

CTDI 11.7 £ 5.7 mGy (4.4 — 29.7 mGy)

This table was published in J-12.

The sparse sampling and tube current reduction simulation schemes were the
same as described in previous section at 50%, 25% and 10% of the original dose.
SIR was performed with voxel spacing of 0.39 x 0.39 x 0.30 mm? in three dimensions
(axial slices field of view 200 mm).

A survey was made with two radiologists (6 and 8 years of experience in radiol-
ogy), who evaluated all imaging data (total 245 datasets) under a clinical diagnosis
environment (IntelliSpace Portal version 9.0, Philips Healthcare, Best, the Nether-
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Table 3.5.: Diagnostic confidence

Original dose  50% tube current  50% sparse sampling  p-value

Reader 1 1.02+£0.14 1.17 £ 0.38 1.13+£0.39 0.48
Reader 2 1.02 £0.14 1.15+0.36 1.10 £ 0.31 0.41
25% tube current  25% sparse sampling  p-value
Reader 1 1.83+£0.79 1.34 £ 0.48 < 0.001
Reader 2 1.80£0.79 1.29 £ 0.46 < 0.001
10% tube current  10% sparse sampling  p-value
Reader 1 2.55+0.69 1.87 £ 0.58 < 0.001
Reader 2 245+ 0.71 1.80 + 0.51 < 0.001

1 - High confidence, 2 - Medium confidence, 3 - Low confidence.
This table was published in J-12.

lands), provided with axial and sagittal slices with standard bone window (width:
2500 HU, center: 500 HU) and soft-tissue window (width: 360 HU, center: 60
HU). During the evaluation, the number of fractures per subject was determined.
Readers also scored the image quality and provided a confidence number of their
diagnosis.

Both readers correctly identified all patients of the control group without any
assignments of vertebral fractures. For the patients of the fracture group, a total of
48 vertebral fractures were observed with 100% dose and projections, Table. 3.6.

Both virtual tube current reduction and sparse sampling led to decreased over-
all image quality, increased overall artifacts, and reduced contrast of vertebrae
according to the evaluation of both readers. When comparing virtually lowered
tube current to sparsely sampled data-sets for overall image quality, sparse sam-
pling resulted in significantly better confidence according to each reader for all
comparisons, Table 3.5.

Virtual tube current reduction with 50% of the original current allowed for correct
detection of all vertebral fractures (Reader 1) and 95.8% (Reader 2) of vertebral
fractures when compared to original dose images. Further lowering to 10% resulted
to correct detection of 79.2% (Reader 1) and 87.5% (Reader 2) of vertebral
fractures. 50% sparse sampling images allowed for the correct detection of all

43



3. Sparse sampling computed tomography

Table 3.6.: Reported number of fractures

Original dose  50% tube current

50% sparse sampling

Reader 1 48 48 48
Reader 2 48 46 48

25% tube current  25% sparse sampling
Reader 1 47 47
Reader 2 45 45

10% tube current  10% sparse sampling
Reader 1 38 46
Reader 2 42 44

This table was published in J-12.

Table 3.7.: Status of fracture (acute/unclear/old)

Original dose  50% tube current  50% sparse sampling

K

Reader 1 28/0/20 27/2/19 27/1/20 0.84
Reader 2 28/0/20 27/3/16 26/1/21 0.79
25% tube current  25% sparse sampling K
Reader 1 18/20/9 26/2/19 0.42
Reader 2 18/22/7 25/3/17 0.35
10% tube current  10% sparse sampling K
Reader 1 4/30/4 16/24/6 0.24
Reader 2 4/34/4 15/24/5 0.13

This table was published in J-12.
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vertebral fractures by both readers. Further decreasing the number of projections
down to 10% of the original data allowed for correct detection of 95.8% (Reader 1)
and 91.7% (Reader 2) of vertebral fractures (Table 3.6).

Concerning the age of reported fractures, sparse sampling also showed better
results regarding the differentiation between acute, old, and unclear fracture ages,
Table 3.7. For 25% sparse sampling images, the fracture age was determined as
unclear in 4.3% (Reader 1) and 6.7% (Reader 2) of detected vertebral fractures.

As a summary, the assessment of bone fractures with ultra-low-dose scans
is feasible. The scheme of combining sparse sampling and SIR showed better
accuracy than reducing the tube current.

3.3.3. Bone mineral density on the femur site

Human femur is also one important site regarding the diagnosis of osteoporosis.
It is where DXA is applied to evaluate the bone mineral density. A study was
performed on the femoral site (journal publication J-11).

41 subjects (34% female with average age: 69.3 £ 10.1) were included. The field
of view of the scans covered the proximal femur of both sides down to the minor
trochanter in all subjects. Similar to the previous studies, the simulation algorithm
generated lower tube current reconstructions based on raw projection data at 50%,
25% and 10% of the original tube current and sparse sampling was applied at
levels of 50%, 25% and 10%. Both FBP and SIR reconstructions were used in this
study.

FBP and SIR based-mean BMD values derived from original dose are 849
mg/cm? for FBP and 864 mg/cm?® for SIR. Lowering the tube current down to 10%
changed the BMD up to 1125 mg/cm?® for 10% dose FBP and 1130 mg/cm?® for
SIR, which are roughly 32.5% increase. With sparse sampling, BMD measurement
remained comparatively stable, with 853 mg/cm? for FBP and 860 mg/cm?® for SIR.
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3.4. Discussion

This chapter investigated sparse sampling and model-based statistical iterative
reconstruction as novel data acquisition and reconstruction scheme to perform ultra-
low-dose musculoskeletal CT imaging. It showed that fracture risk assessment is
feasible.

The main limitation of this method is that sparse sampling CT is not available
for current clinical CT because extra units need to be added to the X-ray source
generator. This thesis only discusses the possible outcome of the images but
whether or not these extra units are fast enough to switch on and off the X-ray
source without introducing other problems must be further evaluated and tested.

SIR used in this thesis is developed for academic purposes and needs large
memory and heavy computation to generate patient images. The long computation
time is clinically unacceptable for routine CT examinations but can be reduced if
the parallel computing hardware and algorithms are further optimized. In addition,
optimized reconstruction parameters in SIR are also essential for specific CT
protocols and patient size. This specific parameterization including the strength
of regularization, number of iterations, etc. could be difficult to evaluate in real
situations and needs to be further investigated and evaluated.
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Multi-energy CT offers some of the most advanced clinical applications in modern
CT. This chapter summarizes the research during this PhD project involving dual-
layer based multi-energy CT.

The first section briefly introduces the physics’ background of multi-energy CT.
The second and third section summarize two major research topics of multi-energy
CT: material quantification and material decomposition.

4.1. Physics of multi-energy computed tomography

In an ideal case of a narrow X-ray beam of monoenergetic photons in the range
of clinical CT (F < 150 keV), the attenuation of objects can be attributed to three
main physical interaction mechanisms: photoelectric absorption [52], incoherent
(Compton) scattering [53] and coherent (Rayleigh) scattering [54].

Photoelectric absorption occurs when a X-ray photon hits an electron in the inner
shell, the photon is absorbed and the electron is released. Compton scattering
refers to the incident where a photon interacts with an electron in an outer shell,
the photon gives a part of its energy to the electron and changes its traveling
direction. Rayleigh scattering is a process in which the photon is scattered by
an electron and the atom is neither ionized nor excited. The chances of the
occurrences of photoelectric absorption or Compton scattering are random but
energy dependent. Because Rayleigh scattering mostly happens at low energies
and for dense materials, it is often neglected when discussing the attenuation of
X-rays for body tissues in medical CT.

If written in an equation, the mass attenuation coefficient of X-rays for an object
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following Beer-Lambert’s law (Equation 2.2) can be represented by:

HE) L o 1.(E) + acfo(B), (4.1)

where 1(E)/p is the mass attenuation coefficient (cm™), a,, and a. are characteris-
tic parameters of photoelectric absorption and Compton scattering of the material,
fp and f. are the energy dependencies of photoelectric absorption and Compton
scattering.

The photoelectric absorption part can be approximated as:

ap fp =~ Pecpﬁv (4.2)
where p. is the absolute electron density (e/cm?®), C,, is constant and equals to
9.8x10%* [55], Z is the effective atomic number, the energy of X-ray beam E is
measured with the unit keV. For a numerical fit of the experimental data, m is

between 3 and 4, and n between 3 and 3.5. This thesis uses m = 3.8, n = 3.2 [56].

Compton scattering can be approximated with electron density and the total
Klein-Nishina cross-section [57]:

Ae = Pe, (4.3)
B 1+v[201+9) 1 1 143y
e = {2 A2 - 22|+ goma o - g2
(4.4)
where
E
7T 510.875 keV’ (4.5)
Co = 27rr§. (4.6)

The X-ray energy E has the unit of keV. rq is the classical electron radius, which is
a constant and equals to 2.818x107'% cm.

After summarizing all these equations, we can obtain:

WE) z"
— ~ p.C— efe(E). 4.7
= peCop + pefo(E) (4.7)
Because of Z™/E™, photoelectric absorption is very prominent and becomes
very substantial if the scanned object has a high effective atomic number Z (such
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Figure 4.1.: X-ray spectrum

Tungsten anode X-ray spectrum is simulated with 120 kV peak tube voltage [59] [60].
The generated spectrum has mean energy of 51.52 keV. This data is online available

[61].

as metals and medical implants) and the X-ray energy E is low. Compared to
photoelectric absorption, Compton scattering is less varying with Z and E. As a
result, dense materials appear much brighter and the contrast is much higher in
lower energy CT images, compared to CT scans using higher energy X-ray.

In a conventional medical CT, the X-ray is a broad spectrum light (polychromatic
beam), Figure 4.1 [58]. The signal g received at the detector can be seen as a sum-
mation of monochromatic X-ray beams, represented by the integral of attenuation
occurrences in all energies:

g=1In /Omax S(E)exp (f@) dE, (4.8)

where S(E) stands for the X-ray intensity at energy E emitted at the source.

Multi-energy CT stands for techniques which can selectively capture X-ray signal
in specific and separate ranges. For example, a dual-source based CT has two
X-ray sources and can thus scan the object with X-rays of two different spectra.
One source can have high peak kilovoltage power while the other source has low
peak kilovoltage. A dual-layer based CT is equipped with a special detector. The

49



4. Multi-energy computed tomography

X-ray source #1

X-ray source

[}

X-ray source #2
=

patient patient

-

|

a

a

|

: >
]

:

N

detector #2

\ 2 g, 29
pLL R g pl L S
detector #1 dual-layer detector

(a) Dual-source CT (b) Dual-layer CT
Figure 4.2.: Dual-energy CT Systems.

4.2a: In dual-source based system, there are two X-ray sources and two detectors
perpendicular to each other. 4.2b: In dual-layer based system, a special detector is
used to record high and low energy photons separately.

detector’s first layer primarily records X-ray photons with lower energy and the
other layer higher energy photons, Figure 4.2.

In such dual-energy systems, the scanner obtains two signals:

[ e
gr =1In . SL(E)exp ( p ) dE, (4.9)
gy =1In " Su(E)exp (-M) dE, (4.10)
H, P

where L, and L. are the spectrum boundaries of the low energy X-ray and H; and
H> the higher energy X-ray.

By combining these two signals, virtual monoenergetic images can be synthe-
sized [62]. A virtual monoenergetic image represents the attenuation as if the X-ray
beam has a single particular energy (monochromatic beam) and the energy does
not change during the X-ray and atom interaction. Thus, the information contained
in a virtual monoenergetic image at energy E is then regarded as the summation
of photoelectric absorption and Compton scattering only at £.

HE) z™

g(E):T:peCPﬁ+pefc(E) (411)
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4.2. Material quantification

Of note, virtual monoenergetic images are not real monoenergetic images, while
monoenergetic images can only be generated with monochromatic X-ray beam,
such as synchrotron X-rays, and cannot neglect the photon energy changes during
the Compton scattering. In the rest of this thesis, monoenergetic images are
referred to virtual monoenergetic images.

Journal publication J-lll discussed one of the clinical applications of virtual
monoenergetic images, determining relative electron density of the human body,
which is an important procedure during radiation therapy planning. In that paper,
two methods of measuring relative electron density with virtual monoenergetic
images (the theoretical model using equation 4.7 and an empirical calibrating
method [63] [64])) were studied with Gammex phantom (467-TOMO, Gammex RMI,
Middleton WI, USA) and Catphan phantom (Catphan 504, the Phantom Laboratory,
Salem NY, USA). The average error of determining electron densities in dual-layer
CT is between 0.87% and 1.53%.

The following sections discuss more applications of monoenergetic images (ma-
terials quantification and decomposition) based on specific clinical musculoskeletal
interests.

4.2. Material quantification

In monoenergetic images at lower energies, contrast is much higher due to a higher
contribution of photoelectric absorption. By quantifying the differences between
high and low energy monoenergetic images, it is possible to make quantitative
measurements of dense material in the multi-energy CT scan, such as to determine
bone mineral density (BMD).

4.2.1. Calcium quantification for ex-vivo specimens

A pilot study on quantifying BMD for ex-vivo human vertebral specimens was
performed and published in detail in journal publication J-Il. If the composition
of a material is known, for example, a mixture of calcium and water/water-like
substances, the fraction of calcium (or any denser substance with a varying X-ray
absorption depending on the energy of the photons) can be estimated with two
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4. Multi-energy computed tomography

monoenergetic images with two distinguishable keV.

Assuming volume conservation and that the subject is a mixture containing
calcium and non-calcium components (hydrogen, oxygen, carbon, etc.). The
attenuation coefficients of the mixture at 50 and 200 keV monoenergetic CT
images can be summarized in the following equations:

@ _ fca,quu,,SO +fnun750, (412)
P PCa Pn

H200 _ fou HCa,200 4 ,Un,2007 (4.13)
p pCa Pn

where us0/p is the mass attenuation coefficient of the mixture at 50 keV, fc. is the
fraction of calcium component, ucq,50/pca is the mass attenuation coefficient of
calcium component. f, and un, 50/ pn the corresponding non-calcium component.

Because X-ray attenuation of the mixture linearly increases with the calcium
concentration, the Hounsfield unit (HU) of the mixture in both 50 keV and 200
keV images should proportionally increase as the calcium fraction increases. This
phenomenon is depicted with a solid line in Figure 4.3. The four point clouds
represent four calcium hydroxyapatite (HA) phantom with 100, 209, 405 and 809
mg/cm® concentration. The black solid regression line from these points represents
the behavior of calcium in 50 and 200 keV monoenergetic images. It is different to
the diagonal dashed line and tilts to the 50 keV axis, because at 50 keV calcium
attenuates X-rays much more than at 200 keV.

Derived from Equation 4.12, this regression line can be represented as:

200 Hn,200 HCa,200 , 150 Hn,50
(H20 _ f, 200y _ PO0200 (0 _ g Hns0) (4.14)
P Pn HCa,50 14 Pn

The slope of this line w200/ 150 is @ known constant and can be computed by values
looked up from database, for example, the United States National Institute of Stan-
dards and Technology (NIST) X-Ray Mass Attenuation Coefficients Database. This
slope is free from the influences of radiation dose and the calcium concentration.

In cases that the non-calcium component is pure water or if we can ignore the
difference of the amount of X-ray absorbed from the non-calcium component at
both 50 and 200 keV, u..,50 equals to u, 200. The fraction of calcium can be simply
estimated by:

foq = PCo . M50~ M2 (4.15)

14 HCa,50 — UCa,200
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Figure 4.3.: Hydroxyapatite phantoms in monoenergetic 50 and 200 keV.

Monoenergetic Hounsfield units at 50 (x-axis) and 200 (y-axis) keV of four hydroxyapatite
phantoms with known concentrations (100, 209, 405 and 809 mg/ml). The black solid
line is the regression line of these points. The dashed line is the diagonal line indicating
HU in 50 keV equals in 200 keV. This image was published in J-II.

In order to determine the slope of Equation 4.14, four cylindrical phantoms
mentioned above were scanned at high radiation dose (120 kVp, 1000 mAs)
in a dual-layer CT (iQon, Philips Healthcare, Best, the Netherlands), where an
anthropomorphic phantom (QRM, Méhrendorf, Germany ) was used to simulate an
actual human body, Figure 4.4.

Two monoenergetic images were generated at 50 and 200 keV with Intellispace
Portal (Philips Healthcare, Best, the Netherlands). The intensities (in HU) of the

53



4. Multi-energy computed tomography

(a) 50 keV (b) 200 keV (c) conventional image
Figure 4.4.: Hydroxyapatite phantoms in dual-energy CT

Left: monoenergetic CT image at 50 keV. Center: monoenergetic CT image at 200 keV.
Right: conventional CT image. HA has higher intensity in monoenergetic images with
low ke. These images were published in J-II.

phantoms were measured in regions of interest (ROI), which were cylinders with
diameter of 5 mm and height of 33 mm located in the center of the four phantoms.

A line function depicting the relationship with two monoenergetic HA HUs can
then be fitted to mimic Equation 4.14:

HUp =a-HUg + 0. (4.16)

HU. and HUy are HUs of HA phantoms measured in monoenergetic 50 and 200
keV images respectively. a is a fitting parameter specific for HA (calcium). b is a
fitting parameter adjusting for water. In this set-up, pixels in the ROls only contain
HA and water, therefore pixels in the ROIls (pairs of HU;, and HUy for HA) are
always located along or close to the line described by this equation. A higher
distance of the points on the line to the origin reflects a higher HA concentration.

At the same time, HU, (and also HU i) is proportional to the exact concentration
(mg/cm?®) of HA (BMD):
HUL = u-BMD + v. (4.17)
Fitting parameters u and v are obtained from known BMD values of the four HA
phantoms and the corresponding measured HU, in the monoenergetic image at
50 keV derived from the calibration scan. u is related by the mass attenuation
coefficient of HA at monoenergetic 50 keV. v is related to the CT number determined
by water. a, b, u and v are scanner specific variables and can be computed prior to
specimen scans.
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4.2. Material quantification

(a) 50 keV (b) 200 keV (c) conventional image

Figure 4.5.: Vertebral specimen in dual-energy CT

Left: monoenergetic CT image at 50 keV. Center: monoenergetic CT image at 200 keV.
Right: conventional CT image. Regions of interest are placed inside the vertebrae and
the QCT phantom in order to compute BMD. These images were published in J-1I.

Next, the calibration lines from Equation 4.16 and 4.17 can be used to identify
and quantify BMD values in multi-energy CT images. 13 mid-vertebral specimens
harvested from human donors without history of pathological bone changes other
than osteoporosis were examined in this study. Specimens consisted of mid-
vertebral, 10-mm-thick axial slices of thoracic vertebrae between T5 and T12.
Specimens were preserved in formalin, after complete removal of surrounding
soft tissue. Before the scan, specimens were immersed in a water bath and air
inside the trabecular bone was eliminated using a vacuum machine. Specimens
were then placed in the same anthropomorphic abdomen phantom analogous
to their physiologic orientation in the human body, Figure 4.5. Successively, two
extension rings simulating fat were placed around the phantom, with the smaller
one increasing the diameter to 350 x 250 mm, and the larger one to 400 x 300 mm,
simulating patients with waist circumferences 98.5 cm and 114.3 cm, respectively.

Scans were made with 500, 250, 125, 50 and 38 mAs. 250 mAs was considered
as standard clinical CT dose. ROIs were placed manually in the center of vertebral
specimens. ROIs were 2D circles with diameter of 5.9 mm or 7.8 mm, depending
on the vertebra size, and were placed on three slices in the middle of the verte-
brae. Measurements of two CT numbers (HU;, HU’) at 50 and 200 keV were
extracted from the corresponding monoenergetic images. The distance d from this
measurement (HU’;, HU’) to the line specified by Equation 4.16 was computed,
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Figure 4.6:
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Figure 4.6.: Computing BMD with two monoenergetic HUs.

Measurements (HU', , HU"; ) are converted to (HU’, , HU";) for an estimation of BMD
using Equation 4.19. A point far away from the line (outside of the gray area) is
considered as 'not bone’ and is omitted.

A threshold d was applied to identify HA. A measurement was considered bone
if it was close to the regression line (d was less than 20 HU). If d was greater
than 20 HU, the measurement was likely to represent non-HA material, such as
water or soft tissue. For each measurement of (HU’,, HU;) that was considered
to represent bone, its BMD value was estimated. In order to minimize possible
measurement errors, each measurement was projected to the regression line. For
this, the closest point on the line (HU ., HUy) to the actual measurement (HU’,,
HU;) was determined with the following equation:

HU? + aHU%; — ab

HU, =
E a?+1

(4.19)
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4.2. Material quantification

Of note, HUy can also be determined but is not necessary for generating BMD.

This HU;, was finally converted to a BMD value with the calibrated Equation 4.17.
This procedure was performed pixel-by-pixel in a given ROI, and resulting BMDs
were averaged.

For comparison purpose, BMD was also calculated with the conventional quan-
titative CT (QCT Pro Bone Mineral Densitometry Software, Phantom Module.
Version 4.0, Mindways, TX, USA). For these scans, a QCT calibration phantom
(Mindways) was placed beneath the anthropomorphic phantom. This QCT phantom
contains five rods with known density equivalents for phosphate and water.

For each scan, mean values of the five rods in the QCT phantom were measured
in the conventional images generated by the dual-layer spectral CT scanner. The
ROI selection was similar to the one described in the previous section. Conversion
functions for the scanner were computed in a least square manner with MATLAB
(MathWorks, Inc. Natick, MA, USA).

The quantification of BMD values with monoenergetic images for known HA
phantoms gives satisfactory results. When the radiation exposure was equal or
above 250 mAs, absolute BMD difference was less than 5 mg/cm® and the relative
error was below 3%. At 125 mAs, which is the closest radiation dose level to most
clinical low dose CT examinations, the error was smaller than 5% (less than 15
mg/cm®). However, the accuracy dropped significantly when the dose level was
further reduced. At 50 mAs, the relative error was over 14%.

For the vertebral specimen scans, results computed from spectral images were
generally lower than the results obtained from conventional QCT, Figure 4.7 and
4.8. The decrease was 6.7 + 5.7 mg/cm?® at 500 mAs scans and 8.6 + 7.6 mg/cm?®
at 125 mAs. Patient size also affects the BMD quantified from monoenergetic
images. In relatively lower radiation dose level, multi-energy CT showed higher
and more varying BMD values for patients with thicker abdomen size. At 125 mAs,
the mean measured BMD for all specimens was 136.2 + 38.1 mg/cm?® with larger
extension ring (thick torso) and 133.7 + 32.2 mg/cm?® with smaller extension ring
(thin torso).

BMD result computed from monoenergetic images were compared to the result
from QCT approaches. The specimens with higher BMD in QCT consistently
showed higher BMD in monoenergetic images. The correlation between the two
approaches was strong for all scans with doses above 50 mAs. (r > 0.97). Paired-t
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Figure 4.7.: Correlation of BMD values measured in multi-energy CT against QCT (500
and 250 mAs)

These images were published in J-1I.
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These images were published in J-II.
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Figure 4.9.: Bland-Altman plot of BMD values measured in DECT and QCT (500 and
250 mAs).

These images were published in J-1I.
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These images were published in J-II.
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testand Wilcoxon signed rank test both showed that mid-vertebral specimens were
differentiable at all dose levels above 10 mAs. (p < 0.01)

In addition, agreement of BMD results between multi-energy CT and QCT was
assessed with Bland-Altman plot, Figure 4.9, 4.10. At 50 mAs and above, most
differences were between + 1.96 standard deviation for most cases, indicating a
good agreement between both measurements.

4.2.2. Bone mineral density in in-vivo subjects

The study involving in-vivo HA specific BMD measurements was published in jour-
nal publication J-14. 79 clinical routine scans were collected where patients were
undergoing dual-layer CT scans (52% female with average age 66 + 18). Among
them, there were 38% fracture-positive and considered as suffering osteoporosis
with low BMD. Similar to the ex-vivo experiment discussed above, in-vivo BMD
values obtained from the monoenergetic image method were compared with values
from conventional QCT-based measurements.

In the first part of the study with a collection of 33 patients (45% osteoporosis),
BMD values derived from monoenergetic images and from QCT were highly cor-
related (r = 0.987, p < 0.001). The corresponding Bland-Altman plot shows an
excellent agreement between the methods. Area under the ROC curve (AUC) was
0.889 (95% confidence interval [Cl]: 0.782-0.996) for QCT-based BMD measure-
ments and 0.878 (95% Cl: 0.764-0.991) for monoenergetic images.

In all of the 79 patients (38% osteoporosis) , the AUC of monoenergetic-image-
based BMD was 0.858 (95% Cl: 0.773-0.943). At maximum value of Youden’s
index (J = 0.616), sensitivity and specificity were found to be 0.800 and 0.816,
respectively. In both, monoenergetic-image- and QCT-based measurements, pa-
tients with vertebral fractures had significantly lower BMD than patients without
osteoporotic fractures (monoenergetic-image-based: median difference, 56.39
mg/cm?®, p < 0.001 and QCT-based: 58.16 mg/cm?®, p < 0.001).
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4.3. Material decomposition

4.3. Material decomposition

X-ray attenuation represented in the CT image can be regarded as a summation of
materials with the product of their volume fractions and mass attenuation coefficient:

wE) _ s g 1 E) (4.20)
p pi
where f; is the volume fraction of the material 7, whose mass attenuation coefficient
is represented as p;(E)/p; at the X-ray energy E. Mass attenuation coefficient
can generally be obtained from NIST-database. p(E)/p is the linear coefficient
represented in the CT image, which has the following conversion with HU:

p(E) _ mo(E) HU(E)
o pw 1000

+1), (4.21)

where 1., (E)/pw is a constant representing the mass attenuation coefficient of
water at the X-ray energy E, HU(FE) is the HU in the monoenergetic image E.

In a dual-energy based multi-energy CT system, provided there are two image
signals obtained, the solution of solving volume fractions, f4 and fg, is mathemati-
cally defined, provided these two materials are known.

WEr) _ o m(En) | o pa(Bn) (4.22)
P P1 P2

W) _ o m(Er) | o pa(BL) (4.23)
p p1 P2

where Ex and E;, represent two energies at low and high keV.

This two-material decomposition application was investigated and the result was
published in journal publication J-15, where the fraction of gadolinium solution is
decomposed from water in laboratory-made phantoms and from blood fraction in
an animal experiment. In this study, gadolinium contrast agent (Dotarem, Guerbet
AG, Zirich, Switzerland) solution was prepared in concentration of 20, 15, 10, 5,
2,1 mg/ml (in laboratory-prepared centrifuge tubes) and scanned in dual-layered
based CT. Repetitive scans were made with 120 kVp at high X-ray radiation dose
(1000 mAs) and low dose (100 mAs). Compared against known concentrations, a
high correlation coefficient (r > 0.999) was found with decomposed concentration.
No significant difference was found between repeated scans (p > 0.05). The accu-
racy of decomposed gadolinium stayed below 0.17 mg/ml for all measurements.
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Experiments performed in a pig with gadolinium injection also proved the feasibility
of the decomposition in in-vivo CT scans.

In addition, three-material decomposition was studied with the assumption of
volume conservation, where all volume fractions sum up to 1:

wEnu) _ A i (En) p2(En) ps(En)

= + f2 + f3 ; (4.24)
P P1 P2 P3
E FE E FE
w(EL) :flm( L) +f2u2( L) +f3“3( L)7 (4.25)
p p1 p2 ps
with the condition that
fitfat+fa=1 (4.26)

This three-material decomposition was evaluated and published in journal pub-
lication J-10, where the fractions of calcium (HA), lipid (representing yellow bone
marrow) and water (representing red bone marrow) were decomposed in CT scans
of in-vivo human spine (in total of 27 patients with and without conditions affecting
bone or fat metabolism). Because of the complexity of the actual bone components,
only the dominating fractions (yellow or red bone marrow, i.e. fat or water fractions)
inside patients’ vertebrae were determined, instead of investigating the numerical
accuracy. The dominating bone marrows were compared to MRI images of the
corresponding patients, as a standard of reference, Figure 4.11. The sensitivity
(0.93-0.95) and specificity (0.89) of three-material decomposed images were sub-
stantially higher than conventional CT (0.73—-0.76 and 0.78—0.83, respectively), in
the context of diagnosing bone edema and fresh/acute vertebral fractures.

4.4. Discussion

This chapter evaluates multi-energy CT in musculoskeletal imaging, specifically
dual-layer CT, which provides novel assessments of bone status compared to
conventional CT. These clinical applications can also be applied to other dual-
energy techniques such as dual-source, split beam and kVP switch systems.

Material quantification and decomposition described in this chapter are sensitive
to radiation dose, patient size and image noise. As the result in Section 4.2.1
reports, a dose below 50 mAs leads to less reliable results. This can be a very
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(a) Conventional CT

(c) Water fraction (d) Fat fraction

Figure 4.11.: Material decomposition in dual-energy CT

Top left: conventional CT with two fracture site (T8, T9). Top right: MRI of the fractures
showing T8 is an aged fracture and T9 is a fresh fracture with edema. Bottom left: water
fraction decomposed from DECT. Bottom right: fat fraction decomposed from DECT.
The fresh fracture has an increased water fraction. These fraction images provide
information of the fracture age similar to MRI. These images were published in J-10.
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challenging point for further studies in ultra-low-dose CT. Novel techniques, such
as sparse sampling discussed in previous chapters, may be helpful.

BMD estimation in dual-energy CT as an opportunistic osteoporosis-screening
method is limited to the application of contrast agents. Certain scanning proto-
cols are operated with oral or intravenous contrast agent. Contrast agents have
the same range or higher density compared to human bone thus making the
quantification inaccurate.

Material decomposition is very attractive in clinical research however, it has the
main weakness that the composition of materials must be known. Because human
bone is a very complicated organ and differs individually, a correct in-vivo de-
composition may be unlikely possible, especially for three material decomposition.
Moreover, like quantification, decomposition in multi-energy CT is very susceptible
to image noise and very difficult in low dose conditions.
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J-I: Is multidetector CT-based bone mineral
density and quantitative bone microstructure
assessment at the spine still feasible using
ultra-low tube current and sparse sampling?

The publication entitled /s multidetector CT-based bone mineral density and quan-
titative bone microstructure assessment at the spine still feasible using ultra-low
tube current and sparse sampling? was published in European Radiology (ISSN:
0938-7994). The manuscript was authored by Kai Mei, Felix K. Kopp, Rolf Bippus,
Thomas Kdhler, Benedikt J. Schwaiger, Alexandra S. Gersing, Alexander Fehringer,
Andreas Sauter, Daniela Pfeiffer, Franz Pfeiffer, Ernst J. Rummeny, Jan S. Kirschke,
Peter B. Noél and Thomas Baum.

Abstract

Purpose

Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively
high radiation exposure. We investigated the effect of simulated ultra-low-dose
protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone
assessment.

Methods

Institutional review board approval was obtained. Twelve subjects with osteoporotic
vertebral fractures and 12 age- and gender-matched controls undergoing routine
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thoracic and abdominal MDCT were included (average effective dose: 10 mSv).
Ultra-low radiation examinations were achieved by simulating lower tube currents
and sparse samplings at 50%, 25% and 10% of the original dose. BMD and
trabecular bone parameters were extracted in T10-L5.

Results

Except for BMD measurements in sparse sampling data, absolute values of all
parameters derived from ultra-low-dose data were significantly different from those
derived from original dose images (p < 0.05). BMD, apparent bone fraction and
trabecular thickness were still consistently lower in subjects with than in those
without fractures (p < 0.05).

Conclusion

In ultra-low-dose scans, BMD and microstructure parameters were able to dif-
ferentiate subjects with and without vertebral fractures, suggesting osteoporosis
diagnosis is feasible. However, absolute values differed from original values. BMD
from sparse sampling appeared to be more robust. This dose-dependency of
parameters should be considered for future clinical use.
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J-ll: Bone mineral density measurements in
vertebral specimens and phantoms using
dual-layer spectral computed tomography

The publication entitled BMD measurements in vertebral specimens and phan-
toms using dual-layer spectral computed tomography was published in Scientific
reports (ISSN: 2045-2322). The manuscript was authored by Kai Mei, Benedikt J.
Schwaiger, Felix K. Kopp, Sebastian Ehn, Alexandra S. Gersing, Jan S. Kirschke,
Daniela. Muenzel, Alexander A. Fingerle, Ernst J. Rummeny, Franz Pfeiffer,
Thomas Baum, Peter B. Noel.

Abstract

Purpose

To assess whether phantomless calcium-hydroxyapatite (HA) specific bone mineral
density (BMD) measurements with dual-layer spectral computed tomography are
accurate in phantoms and vertebral specimens.

Methods

Ex-vivo human vertebrae (n = 13) and a phantom containing different known
HA concentrations were placed in a semi-anthropomorphic abdomen phantom
with different extension rings simulating different degrees of obesity. Phantomless
dual-layer spectral CT was performed at different tube current settings (500, 250,
125 and 50 mAs). HA-specific BMD was derived from spectral-based virtual
monoenergetic images at 50 keV and 200 keV. Values were compared to the HA
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concentrations of the phantoms and conventional gCT measurements using a
reference phantom, respectively.

Results

Above 125 mAs, errors for phantom measurements ranged between -1.3% to 4.8%,
based on spectral information. In vertebral specimens, high correlations were
found between BMD values assessed with spectral CT and conventional qCT (r
ranging between 0.96 and 0.99; p < 0.001 for all) with different extension rings, and
a high agreement was found in Bland Altman plots. Different degrees of obesity
did not have a significant influence on measurements (p > 0.05 for all).

Conclusion

These results suggest a high validity of HA-specific BMD measurements based
on dual-layer spectral CT examinations in setups simulating different degrees
of obesity without the need for a reference phantom, thus demonstrating their
feasibility in clinical routine.
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J-lll: Dual-layer spectral computed
tomography: measuring relative electron
density

The publication entitled Dual-layer spectral computed tomography: measuring
relative electron density was published in European Radiology Experimental (ISSN:
2509-9280). The manuscript was authored by Kai Mei, Sebastian Ehn, Markus
Oechsner, Felix K. Kopp, Daniela Pfeiffer, Alexander A. Fingerle, Franz Pfeiffer,
Stepahnie E. Combs, Jan J. Wilkens, Ernst J. Rummeny, Peter B. Noél.

Abstract

Purpose

X-ray and particle radiation therapy planning requires accurate estimation of local
electron density within the patient body to calculate dose delivery to tumour regions.
We evaluate the feasibility and accuracy of electron density measurement using
dual-layer computed tomography (DLCT), a recently introduced dual-energy CT
technique.

Methods

Two calibration phantoms were scanned with DLCT and virtual monoenergetic
images (VMIs) at 50 keV and 200 keV were generated. We investigated two
approaches to obtain relative electron densities from these VMIs: to fit an analytic
interaction cross-sectional model and to empirically calibrate a conversion function
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with one of the phantoms. Knowledge of the emitted x-ray spectrum was not
required for the presented work.

Results

The results from both methods were highly correlated to the nominal values (R >
0.999). Except for the water and lung inserts, the error was within 1.79% (average
1.53%) for the cross-sectional model and 1.61% (average 0.87%,) for the calibrated
conversion. Different radiation doses did not have a significant influence on the
measurement (p = 0.348, 0.167), suggesting that the methods are reproducible.
Further, we applied these methods to routine clinical data.

Conclusions

Our study shows a high validity of electron density estimation based on DLCT,
which has potential to improve the procedure and accuracy of measuring electron
density in clinical practice.
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Publications as co-author

J-1: Effect of low-dose and iterative reconstruction on
trabecular bone microstructure assessment

We investigated the effects of low-dose multi detector computed tomography
(MDCT) in combination with statistical iterative reconstruction algorithms on trabec-
ular bone microstructure parameters.

Twelve donated vertebrae were scanned with the routine radiation exposure
used in our department (standard-dose) and a low-dose protocol. Reconstructions
were performed with filtered backprojection (FBP) and maximum-likelihood based
statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters
were assessed and statistically compared for each reconstruction. Moreover,
fracture loads of the vertebrae were biomechanically determined and correlated to
the assessed microstructure parameters.

Trabecular bone microstructure parameters based on low-dose MDCT and SIR
significantly correlated with vertebral bone strength. There was no significant
difference between microstructure parameters calculated on low-dose SIR and
standard-dose FBP images. However, the results revealed a strong dependency
on the regularization strength applied during SIR. It was observed that stronger
regularization might corrupt the microstructure analysis, because the trabecular
structure is a very small detail that might get lost during the regularization process.

As a consequence, the introduction of SIR for trabecular bone microstructure
analysis requires a specific optimization of the regularization parameters. Moreover,
in comparison to other approaches, superior noise-resolution trade-offs can be
found with the proposed methods.
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J-2: Effects of dose reduction on bone strength prediction
using finite element analysis

This study aimed to evaluate the effect of dose reduction, by means of tube
exposure reduction, on bone strength prediction from finite-element (FE) analysis.

Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-
detector computed tomography (MDCT), at different intensities of X-ray tube expo-
sures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated
from the mid-slice of each specimen from MDCT images. Differences in image qual-
ity and geometry of each specimen were measured. FE analysis was performed
on all specimens to predict fracture load. Paired t-tests were used to compare the
results obtained, using the highest CT dose (500 mAs) as reference.

Dose reduction had no significant impact on FE-predicted fracture loads, with
significant correlations obtained with reference to 500 mAs, for 80 mAs (R? = 0.997,
p < 0.001), 150 mAs (R? = 0.998, p < 0.001) and 220 mAs (R? = 0.987, p < 0.001).
There were no significant differences in volume quantification between the different
doses examined. CT imaging radiation dose could be reduced substantially to 64%
with no impact on strength estimates obtained from FE analysis.

Reduced CT dose will enable early diagnosis and advanced monitoring of
osteoporosis and associated fracture risk.
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J-3: A post-processing algorithm for spectral CT material
selective images using learned dictionaries

In spectral computed tomography (spectral CT), the additional information about
the energy dependence of the linear attenuation coefficients can be exploited to
produce material selective images. These images have proven to be useful for vari-
ous applications such as quantitative imaging or clinical diagnosis. However, noise
amplification on material decomposed images remains a fundamental problem
which limits the utility of basis material images.

In this work, we present a new post-processing algorithm for material selective
images which is based on dictionary denoising and specifically tailored to take the
properties of the basis material images into account. Dictionary denoising is a
powerful noise reduction technique which separates image features from noise by
modeling small image patches as a sparse linear combination of dictionary atoms.
These dictionary atoms are learned from training images prior to the denoising
process. We have adapted the dictionary denoising algorithm to make use of the
structural correlation as well as the anti-correlated noise which is typically present
in material selective images.

Dictionary denoising is first applied to the virtual monochromatic image for
which the anti-correlated noise maximally cancels out (minimum noise image) in
order to identify the structures and edges of the material selective images. In
a second step, the basis material images are compiled by finding local linear
transformations between the minimum noise image and the basis material images.
Numerical simulations as well as an experimental measurement show that our
algorithm achieves improved image quality compared to two other post-processing
methods, namely conventional dictionary denoising and bilateral filtering. As a post-
processing method, it can be combined with image-based as well as projection-
based material decomposition techniques.

Our algorithm therefore has the potential to improve the usability of basis material
images for various tasks such as artifact reduction, quantitative imaging and clinical
diagnosis.
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J-4: Assessment of quantification accuracy and image quality
of a full-body dual-layer spectral CT system

The performance of a recently introduced spectral computed tomography system
based on a dual-layer detector has been investigated.

A semi-anthropomorphic abdomen phantom for CT performance evaluation was
imaged on the dual-layer spectral CT at different radiation exposure levels (CTDIvol
of 10 mGy, 20 mGy and 30 mGy). The phantom was equipped with specific
low-contrast and tissue-equivalent inserts including water-, adipose-, muscle-,
liver-, bone-like materials and a variation in iodine concentrations. Additionally, the
phantom size was varied using different extension rings to simulate different patient
sizes. Contrast-to-noise (CNR) ratio over the range of available virtual mono-
energetic images (VMI) and the quantitative accuracy of VMI Hounsfield Units
(HU), effective-Z maps and iodine concentrations have been evaluated. Central
and peripheral locations in the field-of-view have been examined.

For all evaluated imaging tasks the results are within the calculated theoretical
range of the tissue-equivalent inserts. Especially at low energies, the CNR in
VMIs could be boosted by up to 330% with respect to conventional images using
iDose/spectral reconstructions at level 0. The mean bias found in effective-Z
maps and iodine concentrations averaged over all exposure levels and phantom
sizes was 1.9% (eff. Z) and 3.4% (iodine). Only small variations were observed
with increasing phantom size (+3%) while the bias was nearly independent of the
exposure level (£0.2%).

Therefore, dual-layer detector based CT offers high quantitative accuracy of
spectral images over the complete field-of-view without any compromise in radiation
dose or diagnostic image quality.
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J-5: Feasibility of opportunistic osteoporosis screening in
routine contrast-enhanced multi detector computed
tomography (MDCT) using texture analysis

This study investigated the feasibility of opportunistic osteoporosis screening in rou-
tine contrast-enhanced MDCT exams using texture analysis. The results showed
an acceptable reproducibility of texture features, and these features could discrimi-
nate healthy/osteoporotic fracture cohort with an accuracy of 83%.

This aim of this study is to investigate the feasibility of opportunistic osteoporosis
screening in routine contrast-enhanced MDCT exams using texture analysis.

We performed texture analysis at the spine in routine MDCT exams and investi-
gated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness
(n = 7), the long-term reproducibility (n = 9), and the ability to differentiate
healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight
texture features were extracted using gray level co-occurrence matrix (GLCM). The
independent sample t test was used to rank the features of healthy/fracture cohort
and classification was performed using support vector machine (SVM).

The results revealed significant correlations between texture parameters derived
from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm
versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance
of the SVM classifier was evaluated using 10-fold cross-validation and revealed an
average classification accuracy of 83%.

Opportunistic osteoporosis screening at the spine using specific texture param-
eters (energy, entropy, and homogeneity) and SVM can be performed in routine
contrast-enhanced MDCT exams.
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J-6: Effect of radiation dose reduction on texture measures of
trabecular bone microstructure: an in-vitro study

Osteoporosis is characterized by bone loss and degradation of bone microstructure
leading to fracture particularly in elderly people. Osteoporotic bone degeneration
and fracture risk can be assessed by bone mineral density and trabecular bone
score from 2D projection dual-energy X-ray absorptiometry images. However,
multidetector computed tomography image based quantification of trabecular bone
microstructure showed significant improvement in prediction of fracture risk beyond
that from bone mineral density and trabecular bone score; however, high radiation
exposure limits its use in routine clinical in vivo examinations. Hence, this study
investigated reduction of radiation dose and its effects on image quality of thoracic
midvertebral specimens.

Twenty-four texture features were extracted to quantify the image quality from
multidetector computed tomography images of 11 thoracic midvertebral specimens,
by means of statistical moments, the gray-level co-occurrence matrix, and the
gray-level run-length matrix, and were analyzed by an independent sample t-test
to observe differences in image texture with respect to radiation doses of 80, 150,
220, and 500 mAs.

The results showed that three features-namely, global variance, energy, and run
percentage, were not statistically significant (p > 0.05) for low doses with respect
to 500 mAs.

Hence, it is evident that these three dose-independent features can be used for
disease monitoring with a low-dose imaging protocol.
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J-7: Multidetector computed tomography imaging: effect of
sparse sampling and iterative reconstruction on trabecular
bone microstructure

Multidetector computed tomography-based trabecular bone microstructure analy-
sis ensures promising results in fracture risk prediction caused by osteoporosis.
Because multidetector computed tomography is associated with high radiation
exposure, its clinical routine use is limited.

Hence, in this study, we investigated in 11 thoracic midvertebral specimens
whether trabecular texture parameters are comparable derived from (1) images
reconstructed using statistical iterative reconstruction (SIR) and filtered back projec-
tion as criterion standard at different exposures (80, 150, 220, and 500 mAs) and
(2) from SIR-based sparse sampling projections (12.5%, 25%, 50%, and 100%)
and equivalent exposures as criterion standard. Twenty-four texture features were
computed, and those that showed similar values between (1) filtered back projec-
tion and SIR at the different exposure levels and (2) sparse sampling and equivalent
exposures and reconstructed with SIR were identified. These parameters can be
of equal value in determining trabecular bone microstructure with lower radiation
exposure using sparse sampling and SIR.
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J-8: MDCT-based finite element analysis of vertebral fracture
risk: what dose is needed?

The aim of this study was to compare vertebral failure loads, predicted from finite
element (FE) analysis of patients with and without osteoporotic vertebral fractures
(OVF) at virtually reduced dose levels, compared to standard-dose exposure from
multidetector computed tomography (MDCT) imaging and evaluate whether ultra-
low dose derived FE analysis can still differentiate patient groups.

An institutional review board (IRB) approval was obtained for this retrospective
study. A total of 16 patients were evaluated at standard-dose MDCT; eight with
and eight without OVF. Images were reconstructed at virtually reduced dose levels
(i.e. half, quarter and tenth of the standard dose). Failure load was determined at
L1-3 from FE analysis and compared between standard, half, quarter, and tenth
doses and used to differentiate between fracture and control groups.

Failure load derived at standard dose (3254 + 909 N and 3794 + 984 N) did not
significantly differ from half (3390 + 890 N and 3860 + 1063 N) and quarter dose
(3375 £ 915 N and 3925 £ 990 N) but was significantly higher for one tenth dose
(4513 £ 1762 N and 4766 + 1628 N) for fracture and control groups, respectively.
Failure load differed significantly between the two groups at standard, half and
quarter doses, but not at tenth dose. Receiver operating characteristic (ROC) curve
analysis also demonstrated that standard, half, and quarter doses can significantly
differentiate the fracture from the control group.

The use of MDCT enables a dose reduction of at least 75% compared to
standard-dose for an adequate prediction of vertebral failure load based on non-
invasive FE analysis.
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J-9: Effect of statistically iterative image reconstruction on
vertebral bone strength prediction using bone mineral density
and finite element modeling - a preliminary study

Statistical iterative reconstruction (SIR) using multidetector computed tomogra-
phy (MDCT) is a promising alternative to standard filtered back projection (FBP),
because of lower noise generation while maintaining image quality. Hence, we
investigated the feasibility of SIR in predicting MDCT-based bone mineral density
(BMD) and vertebral bone strength from finite element (FE) analysis.

The BMD and FE-predicted bone strength derived from MDCT images recon-
structed using standard FBP (FFBP) and SIR with (FSIR) and without regularization
(FSIRBO) were validated against experimental failure loads (Fexp).

Statistical iterative reconstruction produced the best quality images with regard to
noise, signal-to-noise ratio, and contrast-to-noise ratio. Fexp significantly correlated
with FFBP, FSIR, and FSIRBO0. FFBP had a significant correlation with FSIRBO and
FSIR. The BMD derived from FBP, SIRBO, and SIR were significantly correlated.
Effects of regularization should be further investigated with FE and BMD analysis
to allow for an optimal iterative reconstruction algorithm to be implemented in an
in-vivo scenario.
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J-10: Three-material decomposition with dual-layer spectral
CT compared to MRI for the detection of bone marrow edema
in patients with acute vertebral fractures

To assess whether bone marrow edema in patients with acute vertebral fractures
can be accurately diagnosed based on three-material decomposition with dual-layer
spectral CT (DLCT).

Acute (n = 41) and chronic (n = 18) osteoporotic thoracolumbar vertebral
fractures as diagnosed by MRI (hyperintense signal in STIR sequences) in 27
subjects (72 £ 11 years; 17 women) were assessed with DLCT. Spectral data were
decomposed into hydroxyapatite, edema-equivalent, and fat-equivalent density
maps using an in-house-developed algorithm. Two radiologists, blinded to clinical
and MR findings, assessed DLCT and conventional CT independently, using a
Likert scale (1 = no edema; 2 = likely no edema; 3 = likely edema; 4 = edema).
For DLCT and conventional CT, accuracy, sensitivity, and specificity for identifying
acute fractures (Likert scale, 3 and 4) were analyzed separately using MRI as
standard of reference.

For the identification of acute fractures, conventional CT showed a sensitivity
of 0.73-0.76 and specificity of 0.78-0.83, whereas the sensitivity (0.93-0.95) and
specificity (0.89) of decomposed DLCT images were substantially higher. Accuracy
increased from 0.76 for conventional CT to 0.92-0.93 using DLCT. Interreader
agreement for fracture assessment was high in conventional CT (weighted « [95%
confidence interval]; 0.81 [0.70; 0.92]) and DLCT (0.96 [0.92; 1.00]).

Material decomposition of DLCT data substantially improved accuracy for the
diagnosis of acute vertebral fractures, with a high interreader agreement. This
may spare patients additional examinations and facilitate the diagnosis of vertebral
fractures.
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J-11: Effects of virtual tube current reduction and sparse
sampling on MDCT-based femoral BMD measurements

This study investigates the impact of tube current reduction and sparse sampling
on femoral bone mineral density (BMD) measurements derived from multi-detector
computed tomography (MDCT). The application of sparse sampling led to robust
and clinically acceptable BMD measurements. In contrast, BMD measurements
derived from MDCT with virtually reduced tube currents showed a considerable
increase when compared to original data.

The study aims to evaluate the effects of radiation dose reduction by using
virtual reduction of tube current or sparse sampling combined with standard filtered
back projection (FBP) and statistical iterative reconstruction (SIR) on femoral
bone mineral density (BMD) measurements derived from multi-detector computed
tomography (MDCT).

In routine MDCT scans of 41 subjects (65.9% men; age 69.3 + 10.1 years),
reduced radiation doses were simulated by lowering tube currents and applying
sparse sampling (50, 25, and 10% of the original tube current and projections,
respectively). Images were reconstructed using FBP and SIR. BMD values were
assessed in the femoral neck and compared between the different dose levels,
numbers of projections, and image reconstruction approaches.

Compared to full-dose MDCT, virtual lowering of the tube current by applying
our simulation algorithm resulted in increases in BMD values for both FBP (up to a
relative change of 32.5%) and SIR (up to a relative change of 32.3%). In contrast,
the application of sparse sampling with a reduction down to 10% of projections
showed robust BMD values, with clinically acceptable relative changes of up to
0.5% (FBP) and 0.7% (SIR).

Our simulations, which still require clinical validation, indicate that reductions
down to ultra-low tube currents have a significant impact on MDCT-based femoral
BMD measurements. In contrast, the application of sparse-sampled MDCT seems
a promising future clinical option that may enable a significant reduction of the
radiation dose without considerable changes of BMD values.
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J-12: Multi-detector CT imaging: impact of virtual tube
current reduction and sparse sampling on detection of
vertebral fractures

To systematically evaluate the effects of virtual tube current reduction and sparse
sampling on image quality and vertebral fracture diagnostics in multi-detector
computed tomography (MDCT).

In routine MDCT scans of 35 patients (80.0% females, 70.6 + 14.2 years, 65.7%
showing vertebral fractures), reduced radiation doses were retrospectively simu-
lated by virtually lowering tube currents and applying sparse sampling, considering
50%, 25%, and 10% of the original tube current and projections, respectively.
Two readers evaluated items of image quality and presence of vertebral fractures.
Readout between the evaluations in the original images and those with virtually
lowered tube currents or sparse sampling were compared.

A significant difference was revealed between the evaluations of image quality
between MDCT with virtually lowered tube current and sparse-sampled MDCT
(p < 0.001). Sparse-sampled data with only 25% of original projections still showed
good to very good overall image quality and contrast of vertebrae as well as
minimal artifacts. There were no missed fractures in sparse-sampled MDCT with
50% reduction of projections, and clinically acceptable determination of fracture
age was possible in MDCT with 75% reduction of projections, in contrast to MDCT
with 50% or 75% virtual tube current reduction, respectively.

Sparse-sampled MDCT provides adequate image quality and diagnostic accu-
racy for vertebral fracture detection with 50% of original projections in contrast
to corresponding MDCT with lowered tube current. Thus, sparse sampling is a
promising technique for dose reductions in MDCT that could be introduced in future
generations of scanners.
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J-13: Tube current reduction in computed tomography
angiography - how low can we go in patients with suspected
acute stroke?

To systematically evaluate image quality, detectability of large vessel occlusion
(LVO) or dissection, and diagnostic confidence in computed tomography angiog-
raphy (CTA) with virtually lowered tube current and iterative reconstruction (IR) in
patients with suspected acute stroke.

Thirty patients (50% with LVO or dissection) underwent CTA of the supraaortal
up to the intracranial arterial vessels. CTA scans were simulated as if they were
made at 50% (D50), 25% (D25), and 10% (D10) of the original tube current.
Image reconstruction was achieved with two levels of IR (A: similar to clinical
reconstructions, B: two times stronger regularization). Two readers performed
qualitative image evaluation considering overall image quality, artifacts, vessel
contrast, detection of vessel pathology, and diagnostic confidence.

Level B of IR was favorable regarding overall image quality and artifacts for D10,
while level A was favorable for D100 and D50. CTA scans with D25 and both levels
of IR still showed good vessel contrast, with even peripheral arterial branches of
the anterior, middle, and posterior cerebral artery being clearly detectable. Further,
CTA scans with D25 using level A of IR showed an adequate level of diagnostic
confidence without any missed LVO or dissection according to evaluations of both
readers.

CTA using IR and tube currents lowered down to 25% of original imaging is fea-
sible without drawbacks regarding vessel contrast or detection of vessel pathology
in patients with suspected acute stroke. Thus, our approach enables significant
reductions in radiation exposure for patients undergoing head and neck CTA.
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J-14: Bone mineral density measurements derived from
dual-layer spectral CT enable opportunistic screening for
osteoporosis

To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite
(HA)-specific bone mineral density (BMD) measurements based on dual-layer CT
(DLCT).

A spine phantom containing three artificial vertebral bodies with known HA
densities was measured to obtain spectral data using DLCT and quantitative CT
(QCT), simulating different patient positions and grades of obesity. BMD was
calculated from virtual monoenergetic images at 50 and 200 keV. HA-specific
BMD values of 174 vertebrae in 33 patients (66 + 18 years; 33% women) were
determined in non-contrast routine DLCT and compared with corresponding QCT-
based BMD values.

Examining the phantom, HA-specific BMD measurements were on a par with
QCT measurements. In vivo measurements revealed strong correlations between
DLCT and QCT (r = 0.987 [95% confidence interval, 0.963 - 1.000]; p < 0.001)
and substantial agreement in a Bland—Altman plot.

DLCT-based HA-specific BMD measurements were comparable with QCT mea-
surements in in vivo analyses. This suggests that opportunistic DLCT-based BMD
measurements are an alternative to QCT, without requiring phantoms and specific
protocols.
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J-15: Perfusion-ventilation CT via three-material
differentiation in dual-layer CT: a feasibility study

Dual-Energy Computed Tomography is of significant clinical interest due to the
possibility of material differentiation and quantification. In current clinical routine,
primarily two materials are differentiated, e.g., iodine and soft-tissue. A ventilation-
perfusion-examination acquired within a single CT scan requires two contrast
agents, e.g., xenon and gadolinium, and a three-material differentiation. In the
current study, we have developed a solution for three-material differentiation for a
ventilation-perfusion-examination.

A landrace pig was examined using a dual-layer CT, and three scans were per-
formed: 1) native; 2) xenon ventilation only; 3) xenon ventilation and gadolinium per-
fusion. An in-house developed algorithm was used to obtain xenon- and gadolinium-
density maps. Firstly, lung tissue was segmented from other tissue. Consequently,
a two-material decomposition was performed for lung tissue (xenon/soft-tissue)
and for remaining tissue (gadolinium/soft-tissue).

Results reveal that it was possible to differentiate xenon and gadolinium in a
ventilation/perfusion scan of a pig, resulting in xenon and gadolinium density maps.
By summation of both density maps, a three-material differentiation (xenon/gadolin-
ium/soft tissue) can be performed and thus, xenon ventilation and gadolinium
perfusion can be visualized in a single CT scan. In an additionally performed
phantom study, xenon and gadolinium quantification showed very accurate results
(r > 0.999 between measured and known concentrations).

89



C-1: Effect of low-dose and iterative reconstruction on
trabecular bone microstructure assessment

The trabecular bone microstructure is an important factor in the development
of osteoporosis. It is well known that its deterioration is one effect when osteo-
porosis occurs. Previous research showed that the analysis of trabecular bone
microstructure enables more precise diagnoses of osteoporosis compared to a
sole measurement of the mineral density. Microstructure parameters are assessed
on volumetric images of the bone acquired either with high-resolution magnetic
resonance imaging, high-resolution peripheral quantitative computed tomography
or high-resolution computed tomography (CT), with only CT being applicable to the
spine, which is one of clinically most relevant fracture sites. However, due to the
high radiation exposure for imaging the whole spine these measurements are not
applicable in current clinical routine.

In this work, twelve vertebrae from three different donors were scanned with
standard and low radiation dose. Trabecular bone microstructure parameters were
assessed for CT images reconstructed with statistical iterative reconstruction (SIR)
and analytical filtered backprojection (FBP).

The resulting structure parameters were correlated to the biomechanically de-
termined fracture load of each vertebra. Microstructure parameters assessed for
low-dose data reconstructed with SIR significantly correlated with fracture loads as
well as parameters assessed for standard-dose data reconstructed with FBP. Ideal
results were achieved with low to zero regularization strength yielding microstruc-
ture parameters not significantly different from those assessed for standard-dose
FPB data. Moreover, in comparison to other approaches, superior noise-resolution
trade-offs can be found with the proposed methods.
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C-2: Dictionary-based image denoising for dual energy
computer tomography

Compared to conventional computed tomography (CT), dual energy CT allows
for improved material decomposition by conducting measurements at two distinct
energy spectra. Since radiation exposure is a major concern in clinical CT, there is
a need for tools to reduce the noise level in images while preserving diagnostic
information. One way to achieve this goal is the application of image-based
denoising algorithms after an analytical reconstruction has been performed.

We have developed a modified dictionary denoising algorithm for dual energy CT
aimed at exploiting the high spatial correlation between between images obtained
from different energy spectra. Both the low-and high energy image are partitioned
into small patches which are subsequently normalized. Combined patches with
improved signal-to-noise ratio are formed by a weighted addition of corresponding
normalized patches from both images. Assuming that corresponding low-and high
energy image patches are related by a linear transformation, the signal in both
patches is added coherently while noise is neglected. Conventional dictionary
denoising is then performed on the combined patches.

Compared to conventional dictionary denoising and bilateral filtering, our algo-
rithm achieved superior performance in terms of qualitative and quantitative image
quality measures.

We demonstrate, in simulation studies, that this approach can produce 2d-
histograms of the high- and low-energy reconstruction which are characterized by
significantly improved material features and separation. Moreover, in comparison to
other approaches that attempt denoising without simultaneously using both energy
signals, superior similarity to the ground truth can be found with our proposed
algorithm.
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C-3: Effects of sparse sampling in combination with iterative
reconstruction on quantitative bone microstructure
assessment

The trabecular bone microstructure is a key to the early diagnosis and advanced
therapy monitoring of osteoporosis. Regularly measuring bone microstructure with
conventional multi-detector computer tomography (MDCT) would expose patients
with a relatively high radiation dose.

One possible solution to reduce exposure to patients is sampling fewer projection
angles. This approach can be supported by advanced reconstruction algorithms,
with their ability to achieve better image quality under reduced projection angles or
high levels of noise.

In this work, we investigated the performance of iterative reconstruction from
sparse sampled projection data on trabecular bone microstructure in in-vivo MDCT
scans of human spines. The computed MDCT images were evaluated by calculat-
ing bone microstructure parameters.

We demonstrated that bone microstructure parameters were still computationally
distinguishable when half or less of the radiation dose was employed.

92



C-4: Calcium decomposition and phantomless bone mineral
density measurements using dual-layer-based spectral
computed tomography

Dual-layer spectral computed tomography (CT) provides a novel clinically avail-
able concept for material decomposition (calcium hydroxyapatite, HA) and thus to
estimate the bone mineral density (BMD) based on non-dedicated clinical exami-
nations. In this study, we assessed whether HA specific BMD measurements with
dual-layer spectral CT are accurate in phantoms and vertebral specimens.

Dual-layer spectral CT was performed at different tube current settings (500,
250, 125 and 50 mAs) with a tube voltage of 120 kVp. Ex-vivo human vertebrae
(n = 13) and a phantom containing different known HA concentrations were placed
in a semi-anthropomorphic abdomen phantom. BMD was derived with an in-house
developed algorithm from spectral-based virtual monoenergetic images at 50 keV
and 200 keV. Values were compared to the HA concentrations of the phantoms and
conventional quantitative CT (QCT) measurements using a reference phantom,
respectively.

Above 125 mAs, which is the radiation exposure level of clinical examinations,
errors for phantom measurements based on spectral information were less than
5%, compared to known concentrations. In vertebral specimens, high correlations
were found between BMD values assessed with spectral CT and conventional QCT
(correlation coefficients > 0.96; p < 0.001 for all).

These results suggest a high accuracy of quantitate HA-specific BMD mea-
surements based on dual-layer spectral CT examinations without the need for a
reference phantom, thus demonstrating their feasibility in clinical routine.
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C-5: Advancements in computed tomography for
musculoskeletal imaging

Recent advancements in the field of computed tomography (CT) showed promising
results for the application in musculoskeletal (MSK) imaging. lterative reconstruc-
tion techniques and the resulting capability of dose reduction proofed to be eligible
for osteoporosis diagnosis and (therapy) monitoring in clinical routine. Spectral CT
allows for phantomless assessment of BMD and advanced tissue decomposition,
predicting fracture risk in non-dedicated routine examinations or recognizing acute
from old vertebral fractures. The potential introduction of new sparse sampling
acquisition schemes could even enhance the quality of the mentioned techniques
for low dose MSK imaging. In this work, we present an overview of our recent
CT developments for MSK imaging and provide an outlook over promising future
technologies.
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