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Lehrstuhl für Mensch-Maschine-Kommunikation

Application of Deep Learning Methods in
Computational Paralinguistics

Raymond Christian Brückner
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Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Björn W. Schuller

2. Prof. Dr. rer. nat. Jakob Macke

Die Dissertation wurde am 11.04.2019 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 20.01.2020
angenommen.





Zusammenfassung

In dieser Arbeit wird das Potenzial aktueller Deep Learning-Methoden zur Lösung
anspruchsvoller Aufgaben in der Computerlinguistik (CL) untersucht, u.a. die
Extraktion und Prädiktion von Sprecherzuständen aus dem akustischen Sprachsig-
nal. Anhand von vier verschiedenen paralinguistischen Problemstellungen werden
verschiedene Ansätze exemplarisch behandelt, wobei eine Reihe unterschiedlicher
Architekturen tiefer neuronaler Netzwerke verwendet wird und deren Wirksamkeit
nachgewiesen wird. Die vorstellten Ansätze erzielen Ergebnisse nach dem neuesten
Stand der Technik und übertreffen diese teilweise. Zunächst wird die erste bekannte
Anwendung tiefer neuronaler Netzwerke auf das Problem der Sympathieerkennung
in Sprache vorgestellt, wobei flache Feed-Forward-Netzwerken und unüberwachtes
RBM-Vortraining angewandt werden. Danach wird das Problem der Detektion
sozialer Signale in Sprache durch die Kombination konventioneller Feed-Forward-
Netzwerke mit rekurrenten Netzwerkvarianten behandelt. Desweiteren wird ein
neuer und hocheffektiver Ansatz zur Glättung der a-posteriori Wahrscheinlichkeiten
durch Verwendung von tiefen, gestapelten Netzwerken eingeführt und auf mono- und
crosslingualen Aufgaben evaluiert. Zusätzlich wird ein erster Vergleich ressourcen-
schonender rekurrenter Modelle mit konventionellen rekurrenten Modellen präsentiert.
Im Anschluss wird die Detektion von Konflikten in spontansprachlicher Unterhaltung
zwischen mehreren Teilnehmern untersucht. Es wird ein neuartiges Verfahren zur
Prädiktion eines hochinformativen Merkmals für dieses Problem vorgeschlagen. Kom-
biniert mit einem prosodischen Merkmalssatz übertrifft man damit alle Ergebnisse der
Beiträge, die zu diesem Teilproblem der Interspeech 2013 Computational Paralinguis-
tics Challenge eingereicht wurden. Zuletzt wird ein rekurrentes Faltungsnetzwerk zur
Prädiktion von Emotion in menschlicher Spontansprache eingeführt, welches Ende-
zu-Ende direkt auf Sprachsignalen trainiert wird und zeitkontinuierliche Vorhersagen
über das Niveau von Erregung und Wertigkeit trifft. Weiterhin wird vorgeschlagen, die
Optimierung direkt mittels des Konkordanz-Korrelations-Koeffizienten durchzuführen.
Es wird gezeigt, dass die resultierenden Modelle Zellen enthalten, deren Aktivierungen
stark mit bekannten prosodischen Merkmalen korreliert sind.
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Abstract

This thesis investigates the potential of deep learning methods for the challenging
task of computational paralinguistics (CP), i. e. the extraction and prediction of
speaker states and traits from acoustic manifestations of speech. On the basis of
four different paralinguistic tasks various approaches are exemplified, leveraging
numerous deep neural network architectures and demonstrating their effectiveness
applied to acoustic-based CP. The presented approaches are demonstrated to achieve
or even outperform several existing state-of-the-art results. To start with, the first
known application of deep neural networks to the problem of likability classification
from speech is presented, using shallow feed-forward networks and unsupervised
RBM pre-training. Second, the problem of detecting social signals from speech is
addressed by combining conventional feed-forward with recurrent neural network
variants. Further, a novel and highly effective posterior smoothing technique via deep,
stacked networks is introduced and evaluated on mono-lingual and cross-lingual tasks.
Finally, a first comparison of resource-efficient recurrent models to conventional
recurrent models is presented. Next, conflict detection in spontaneous, multi-party
conversations is investigated. In particular, a novel technique to predict a highly
informative feature for this problem is presented, which, when combined with a
conversational-prosodic feature set, outperforms all contributions to the Interspeech
2013 Computational Paralinguistics Challenge on this task. Finally, for the task of
predicting emotion in human spontaneous speech a convolutional, recurrent neural
network model is introduced, trained in a fully end-to-end fashion on unprocessed,
raw speech signals. This model predicts the level of arousal and valence in a time-
continuous manner. Further, the direct optimization of the proposed system on the
concordance correlation coefficient (CCC) is suggested. It is found that the resulting
models contain cells whose activations are highly correlated with well-known prosodic
features.
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Preface

This thesis is based on selected pre-publications made during my time as a PhD
student in the Machine Intelligence & Signal Processing Group, Institute for Human-
Machine Communication (MMK), Technische Universität München (TUM) in Munich,
Germany. The selection is based on scientific relevance, covering a range of applica-
tions of deep learning methods to the field of computational paralinguistics. The
first aim of this thesis is to make these pre-publications more accessible to the gener-
ally knowledgeable reader, who should be familiar with the basics of digital signal
processing, neural networks, and machine learning. The second aim is to provide a
broader view on the concepts of deep learning in computational paralinguistics than
is present in the pre-publications. For this purpose, the pre-publications have been
restructured into methodology and results, cast into a general research framework,
and augmented by an introductory chapter and concluding remarks. Furthermore,
the chapters on the mathematical background and methodology have been extended
to provide a better understanding of the complexity of the problems and the provided
solutions. Hopefully, this results in a publication that is informative and enjoyable
to read. The interested reader can find references to the pre-publications and related
literature throughout this thesis.

Munich,
Spring 2019 Raymond C. Brückner
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• Ronald Römer and Raymond Brueckner, Vergleichende Untersuchungen zur
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Chapter 1

Introduction

Imagination is the beginning of creation.
You imagine what you desire,

you will what you imagine
and at last you create what you will.

George Bernard Shaw

1.1 Motivation

The last decade has experienced a transformation in the way technology pervades
each individual’s life and society. This transformation has been caused in large part
by the advancement of machine learning in general and deep learning in particular.
Many technological areas have witnessed a paradigm shift from working solutions
that had been developed over decades by skilled engineers and researchers to systems
which are able to learn (at least part of) a problem in an automated fashion purely
from data. This change has occurred ubiquitously, for example in automatic speech
recognition (ASR), which until the advent of deep learning used to work with Hidden
Markov Models (HMM), or object recognition, which employed carefully hand-crafted
features to detect and extract, e. g. faces from pictures. Many of these previous
approaches have now been superseded by modern machine learning algorithms, which
learn the underlying structure from data. This paradigm shift has led to an explosion
of ideas and approaches published in the research literature and it is foreseen that
this trend will continue.

With the recent advancements of machine learning, many related applications
have become realizable and have penetrated large markets in various industries, such
as security, marketing, healthcare, automotive, law, retail, agriculture, and manufac-
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1. Introduction

turing. Furthermore, machine learning underlies the success of industry giants, such
as Google, Apple, Facebook, and Amazon, and many emerging start-up companies.
With the permeation of society by these technologies the public perception has also
changed considerably, leading to a hype around and even a fear for artificial intelli-
gence (AI). This term is exceptionally wide in scope and according to Moore [230] can
be defined as ”... the science and engineering of making computers behave in ways
that, until recently, we thought required human intelligence.” This concept of general
AI is expected to solve generic problems and make judgments under uncertainty. It
is further supposed to reason, plan, learn, and to even be innovative and creative.
However, this is in stark contrast to narrow or weak AI, which leverages the power of
machine learning algorithms in rather limited, well-defined, technical areas. Machine
learning currently can be seen as a branch of the latter, i. e. weak AI, and it relies on
working with (ideally large) datasets, examining the data in order to find common
underlying patterns. Deep learning in turn is a sub-branch of machine learning,
mostly adopting deep neural network structures.

In recent years, deep learning has lead to unprecedented developments in ASR,
Natural Language Understanding (NLU), and dialog user interfaces, and these im-
provements have resulted amongst other in an increasingly widespread dissemination
of conversational virtual agents (VA), both consumer-level (e. g. Google Assistant,
Apple Siri, or Amazon Echo) and industry-level (e. g. call center and automotive
business sectors). And despite the fact that these solutions cover an increasing
number of domains, they still lack many aspects of natural human-to-human com-
munication. One major deficiency of these systems currently is that they fail to
cope with non-verbal communication appropriately – a characteristic humans instead
handle with ease and the subject of the study of paralinguistics. In a sense, virtual
agents today are able to understand what is said, but not how things are said. The
way semantics are embedded in humans speech, however, often carries important
information: it may modify or reinforce the meaning of a sentence and hence lead to
misinterpretations of ambiguous expressions. Moreover, paralingustic embeddings
convey a multitude of information about the speaker to a potential listener (be it
human or a machine), e. g. his/her emotional state, health condition, or biological
traits, such as age, gender, or personality. Finally, social signal, e. g. laughters or
fillers, mediate the semantic transmission in human communication. Therefore, if the
proliferation and acceptance of intelligent virtual assistants and similar technology is
to be enhanced in the future, the paralinguistic facets of automated machinery must
be strengthened and reinforced, which is exactly what Computational Paralinguistics
is concerned with.

Paralinguistic events manifest in human speech in two modalities, lexical and
acoustic. The former overlaps with semantics to some degree, i. e. it is based on
what a speaker says. This is usually handled by ASR and NLU systems, but in
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1.2. Contributions

the context of paralinguistics the semantics (i. e. content) of speech is used to
infer some underlying characteristic or state of the speaker. On the other hand,
the acoustic modality captures all auditory elements of speech, such as prosodic,
spectral, voice quality, etc. To give an example a frustrated user might say: ”Stupid
system!” - the acoustic component hopefully gives some indication of the user’s
state of frustration in terms of, for example, the energy level of the acoustic signal.
Additionally, however, the lexical content by all means indicates the speaker’s discon-
tent about the systems (non-)performance. In this thesis, the lexical constituent is
ignored and instead all focus is directed towards the purely acoustic aspects of speech.

While working on this study, research on deep learning has enormously gained
impetus and has spawned an increasing interest in applying this technology to aspects
of computational paralinguistics. The great number of paralinguistic phenomena
and the particular constraints they entail require dedicated investigations for each
of the manifold paralinguistic tasks. As will be expounded in Chapter 2, these
tasks strongly differ in both their subjectiveness of perception and their temporal
localization. This might necessitate to adapt the employed feature set, network
architecture, training algorithm, evaluation measure, etc., to the problem at hand.
Hence, it is a central concern of this thesis to shed light on some of the yet unsolved
issues in applying deep learning methods to computational paralinguistic prediction
problems.

1.2 Contributions

To address the challenges listed above, this thesis contributes in the following aspects:

1. For the likability classification of speech recordings, a comparison of feed-
forward neural networks is presented on the Speaker Likability Database
(SLD), which is the official dataset of the Likability Sub-Challenge of the
Interspeech 2012 Speaker Trait Challenge [291]. Furthermore, unsupervised
Restricted Boltzmann Machine pre-training is proposed and demonstrated to
yield substantial gains over the challenge baseline performance. The suggested
approaches are the first known application of deep neural networks to this task.

2. Several effective methods for detecting social signals (i. e. ’laughter’ and ’filler’)
in speech signals are introduced and evaluated on the SSPNet Vocalisation Cor-
pus, the official dataset of the Social Signals Sub-Challenge of the Interspeech
2013 Computational Paralinguistics Challenge [292]. Unsupervised pre-training
via a stacked autoencoder approach is proposed to significantly improve the
performance of feed-forward neural network architectures. Moreover, a novel
posterior smoothing technique by stacking multiple networks is introduced,
which effectively smoothes the highly variable posterior trajectories of a base
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1. Introduction

network. This approach is extended to recurrent, BLSTM and hierarchical
DNN-BLSTM network topologies and achieves state-of-the-art results on the
SSPNet Vocalization Corpus. These findings are verified and extended to
obtain the first results on the recent SEWA database [191] in the literature, for
both mono-lingual and cross-lingual scenarios. Eventually, this study shares
a first comparison of resource-efficient models to more conventional recurrent
neural models on this task and demonstrates that the proposed models and
approaches are highly effective.

3. For the paralinguistic task of conflict detection in spontaneous, multi-party con-
versations, several different feature sets are investigated using deep feed-forward
DNNs. Classification and regression experiments are evaluated on the SSPNet
Conflict Corpus, which was used in the Conflict Sub-Challenge of the Inter-
speech 2013 Computational Paralinguistics Challenge [292]. The application of
pre-training is once more shown to be highly beneficial in a paralinguistic task.
Moreover, a method for predicting the overlap ratio via a BLSTM is proposed
and its performance is demonstrated to yield substantial gains. Finally, it is
shown that a combination of this feature with a conversational-prosodic feature
set outperforms the challenge baseline and the best challenge contributions on
both the classification task and the regression task.

4. On the task of predicting spontaneous emotion in human speech a convolutional,
recurrent neural network model (CNN-BLSTM) trained on unprocessed, raw
speech signals in a fully end-to-end approach is proposed. This approach
automatically learns intermediate representations that are utilized to predict
the level of arousal and valence in a time-continuous manner on the audio
part of the RECOLA database. The study shows that the proposed method
achieves significantly higher performance compared to two baseline systems,
evaluated on two paralinguistic frame-level feature sets, commonly used in
paralinguistic tasks. Further, the direct optimization of the proposed system
on the concordance correlation coefficient (CCC) is introduced, contrary to
the commonly adopted MSE criterion, which leads to further performance
improvements. As a final contribution, internal activations of the recurrent
output BLSTM network are compared to acoustic-prosodic features, which
are known to affect arousal and which are commonly used in computational
paralinguistic tasks. It is found that certain cell activations are highly correlated
with those prosodic features.

1.3 Thesis Outline

This thesis is structured as follows. Part II gives an extensive overview over the
methodology and theoretical background underlying the experiments performed in
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this work. Chapter 2 provides a structural definition of paralinguistics and discusses
aspects of annotating and rating paralinguistic phenomena. Subsequently, Chapter 3
describes the mathematical background and practical aspects of common acoustic
features used in paralinguistic studies. Chapter 4 expounds the theory and methods
required for objectively evaluating the proposed algorithms. In particular, it covers
evaluation metrics for classification and regression problems, touches upon some
aspects of cross-validation and testing, and defines some common significance tests.
Chapter 5 attempts to give a broad overview of the wide field of deep neural networks.
After a short background on their biological origins and a brief taxonomy, the basic
structure of neural networks is described, as well as more recent, advanced neural
network models. Finally, it touches upon important aspects of training such models,
both in a supervised and unsupervised fashion. Part III then presents a number
of selected applications of deep neural networks to the problem of predicting and
classifying paralinguistic events. It starts with the classification of likability in
Chapter 6, a difficult task, given its subjective nature, and continues with Chapter 7,
which presents a number of novel approaches and results regarding the detection
of social signals embedded in the speech signal. In Chapter 8 the detection and
prediction of conflict in speech is addressed, whereas Chapter 9 completes the series
of experimental applications by presenting results of some first attempts of full end-to-
end learning in computational paralinguistics. The thesis concludes with a summary
of achievements and an outlook for promising research directions towards further
improving the applicability and performance of deep learning in the paralinguistic
cosmos.
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Chapter 2

Computational Paralinguistics

The most important thing in communication is hearing what isn’t said.

Peter F. Drucker

This thesis focuses on the application of deep learning methods to the realm of
computational paralinguistics and while the following chapters will focus on how to
build, learn, and evaluate such methods, this chapter will outline what the term
computational paralinguistics actually refers to. It will present a short definition of
the term paralanguage, as relevant for this dissertation, and sketch a brief taxonomy
regarding the structure and types of paralinguistic manifestations. Furthermore, it
will address the computational aspect of paralinguistics and its applications. Finally,
the chapter concludes with thoughts and solutions to the problems of annotation and
rating, i. e. creating the ”reference” for objective evaluation required in the following
chapters.

2.1 Paralinguistics - A Structural Definition

Paralanguage connotes ”alongside language” (from the Greek preposition παρα) [303]
and generally describes the non-verbal elements of human communication, i. e. it
comprises all meta-information which accompanies and complements language. The
paralinguistic properties of speech often play a very important role, since they can
modify the meaning of what is being communicated, how that is perceived by others,
and transmit many other characteristics of the speaker, such as gender, age, mood,
etc. Loosely speaking, the study of paralanguage, called paralinguistic, is rather
concerned about how something is said, instead of what is said.
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2. Computational Paralinguistics

The terms ”paralanguage” and ”paralinguistics” first appeared in works by
Hill [143] and Trager [345] and were later extended by Crystal [62, 63]. In a broad
sense [131], paralanguage comprises all non-verbal manifestations in conversation,
including facial expressions, gestures, body posture. In a narrow sense, as argued by
Crystal [64], the term paralinguistics excludes the visual components of non-verbal
communication such as kinesics, proxemics, and haptics, and instead restricts the
scope of the term to ”vocal factors involved in paralanguage” [293]. Yet, even in
this narrow sense there are two components of paralanguage: one is concerned with
linguistic aspects of speech, including the structure and grammar of language, the
phonetics, and the semantics of speech. The other evolves around the acoustic
signal and the involved phenomena. This thesis will exclusively focus on the latter,
acoustic-based aspect of paralinguistics. Furthermore, it will only treat aspects of
analysis and detection and ignore paralinguistic synthesis, since the latter requires a
completely different approach to the problem than the former.

The paralinguistic realm can be structured in several different ways, as described
by Schuller and Batliner [293]. One common way to classify paralinguistic events
is according to their time-scale: long-term events are often referred to as traits,
also defined as a ”distinguishing quality or a genetically determined characteristic,
typically one belonging to a person” [293], whereas short-term events usually are
termed states, which describe ”a particular condition that someone is in at a specific
time” [327]. Schuller and colleagues [303] further make a distinction between long-
term, medium-term, and short-term events as follows:

• Long term traits include biological trait primitives (e. g. height, weight, age,
or gender) or personality traits (likability, personality).

• Medium term events, between traits and states, embrace structural signals,
such as non-verbal social signals or positive/negative attitude, and self-induced
states, e. g. sleepiness, intoxication, mood, or health state.

• Short term states instead comprise emotions, emotion-related states (e. g.
stress, interest, uncertainty, deception, politeness, or frustration), and mode
(speaking style, voice quality).

Often correlations co-exist between speaker traits and states. Byrd [44], for example,
showed that a speaker’s pronunciation is affected by both his/her gender and dialect
region. Furthermore, all non-binary traits and states can exhibit different intensity
levels. These temporal characteristics affect the computational approaches to a
particular problem. As pointed out by Zhang [380], other taxonomic dimensions
such as the labeling scheme (objectivity vs. subjectivity) have an immediate impact
on data annotation, feature extraction, and statistical modeling. These character-
istics can be visualized in a two-dimensional time-label space, as depicted in Figure 2.1.
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Figure 2.1: Two-dimensional paralinguistic trait/state space based on the Computa-
tional Paralinguistics Challenge tasks from 2009–2017. [380]

From the figure one can observe that, for example, social signals (in the upper-left
corner), such as laughters and fillers (cf. Chapter 7), are short-term paralinguistic
events which often occur in fractions of a second, and hence require frame-wise
annotation and localization. Gender on the other hand is a (usually) persistent,
biological attribute, which can objectively be labeled. To the right one can find
increasingly subjective characteristics, ranging from short-term states, e. g. emotions,
to long-term traits, such as likability. All these tasks depend on subjective, individual
judgments [380].

Based on this taxonomic characterization the study of computational paralin-
guistics deals with the computer-based or computer-assisted analysis (and synthesis)
of the paralinguistic types described above [293]. While the first endeavors in this
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direction date back to the early works by Picard on affect recognition [248], compu-
tational paralinguistics has become a very active field of research especially in recent
years. This progress has been substantially fostered by the series of Interspeech
challenges held since 2009 [291, 292, 294, 295, 296, 297, 298, 300, 304, 305, 306],
with the intention to support research in the many aspects of paralanguage and
to improve human-machine communication. This interaction allows for a plethora
of possible applications and today an increasing number of deployments integrate
automatic paralinguistic approaches. These include, but are not limited to, the areas
of healthcare, assistive robotics, surveillance, gaming, call center quality assurance,
or target-group specific advertising [303]. Further paralinguistic cues can be used to
support ASR systems or to detect frustrated users in automated call centers. From
this almost endless pool of use cases, this thesis selects and describes four different
domains, namely the detection and classification of likability, conflict, social signals,
and emotion/affect, as prototypical examples of trait-based and state-based tasks
and to demonstrate the feasibility of deep learning methods in these areas.

2.2 Annotation and Rating

In order to train models (in a supervised fashion) and evaluate their performance
paralinguistic data must obviously be annotated or rated. In this respect one needs
to differentiate between the ground truth, which is defined to be the ’actual truth’ of
a paralinguistic phenomenon and which can validated in an objective manner, and
the gold standard, which is the result of the annotation process [289]. Ideally the
gold standard is identical to the ground truth, but in reality it might be (slightly) er-
roneous. This is highly task-dependent: While in certain situations the ground truth
is easy to infer, e. g. the gender or age of the speakers, it can be highly subjective
in other cases, for example when annotating personality or emotions. Erroneous or
noisy labels, however, lead to error-prone models and possible misinterpretations of
the test results. A common way to mitigate these negative effects is to have several
annotators to rate or label a paralinguistic instance (e. g. an audio recording).

In this respect it is important to reflect and decide about the label space, i. e.
how the labels, and hence the outputs to be predicted by a model, shall be repre-
sented. Biological trait primitives, such as age or gender, are typically categorical
or even binary. In certain other domains, such as likability, personality, or emotion
research, the target labels can either be categorical, e. g.’likable’ vs. ’non-likable’ or
’angry’ vs. ’neutral’, or they can be represented in a continuous space. In emotion
recognition, for example, it is very common to represent the different emotions in
the two-dimensional valence-arousal plane, as shown in Figure 2.2, sometimes even
complemented by dominance as a third dimension. Furthermore, the annotation can
occur on different time-resolutions and time-scales: Audio recordings can be marked

14



2.2. Annotation and Rating

Arousal

Valence

Excited

Happy

Pleased

Content

Relaxed

Calm

Sad

Bored

Tired

Annoyed

Angry

Nervous

(high)

(low)

(positive)(negative)

Figure 2.2: Two-dimensional valence-arousal plane for emotion-related paralinguistic
states.

on an utterance-level (one label per recording), on a segment-level (e. g. one label
every second), on a frame-level (as common in social signals research), or generally
in a continuous manner (marking the start and end of certain paralinguistic events).

When annotations are provided by multiple raters the natural question arises how
to obtain the gold standard from them. If the labels are of continuous nature often
correlation or mean linear/absolute error measures among labeled are used [289].
In the categorical case, the simplest approach one can follow is to use majority
voting to obtain a single value, i. e. to use the value on which most annotators agree.
However, this is often problematic, since first, there might not be any agreement
at all, and second, majority voting does not take into account any inter-rater and
intra-rater agreement, which captures the difference between the raters (e. g. how
emotions are perceived) or any variation over time (e. g. due to fatigue during the
annotation process). In order to obtain a more consistent gold standard Grimm and
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Kroschel [118] proposed the evaluator weighted estimator (EWE) as follows [289]:

yn,EWE =
1∑K
k=1 rk

K∑
k=1

rk yn,k, (2.1)

where k = 1, . . . , K denotes the rater, yn,k is the annotation given by rater k to
instance n, and rk is the weight corresponding to the ’reliability’ of rater k:

rk =

∑N
n=1

(
yn,k − 1

N

∑N
n′=1 yn′,k

)(
yn − 1

N

∑N
n′=1 yn′

)
√∑N

n=1

(
yn,k − 1

N

∑N
n′=1 yn′,k

)2

·
√∑N

n=1

(
yn − 1

N

∑N
n′=1 yn′

)2
, (2.2)

where yn is the mean over the ratings of all evaluators:

yn =
1

K

K∑
k=1

yn,k. (2.3)

Equation (2.2) defines rk as the cross-correlation between the estimations yn,k and the
mean ratings of all evaluators. The first term in the numerator takes any intra-rater
variations into account, which might occur during the evaluation session of rater
k. Similarly, the second term in the numerator measures the average deviation
of all evaluators from the overall mean for instance n. From this follows that the
inter-evaluator agreement can be described by the correlation coefficients rk using
equation 2.2 and the standard deviations σn of the assessments [293],

σn =

√√√√ 1

K − 1

K∑
k=1

(yn,k − yn,EWE)2, (2.4)

which indicates how similarly a paralinguistic instance is perceived by the annotator
in terms of the target problem.
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Chapter 3

Acoustic Features

Colors, like features, follow the changes of the emotions.

Pablo Picasso

In machine learning and pattern recognition, a feature is defined to be an individual,
measurable property or characteristic of a phenomenon being observed [26]. The
underlying data, from which features are extracted, manifest the manifold modalities
which represent the reality surrounding us: pictures and videos are visual repre-
sentations, heart rate or skin conductance measurements reflect manifestations of
physiological and physical conditions, while audio recordings retain the information
of human and non-human sounds. This latter modality is the sole focus of interest
in this thesis.

The audio wave form is the starting point of our considerations and since most
machine learning algorithms require a numerical representation as input one seeks
to extract a set of features from the sound signal, normally in the form of an D-
dimensional feature vector x ∈ RD. Audio analysis and signal processing have a
long history and there exist many different fields of audio-based research [289]. As a
consequence, many different types of feature vectors have been devised over time.
Historically, audio features have been inspired by psychoacoustics [391], usually
mimicking the auditory processing steps of the human ear (up to the auditory cortex).
And while there exist a number of physiological models, which attempt to model the
auditory processes on a very detailed level, in the machine learning community it is
more common to find phenomenological models, i. e. models which mathematically
describe empirical relationships of the operations performed by the auditory system.

Over the last decades a lot of effort has been spent on designing good acoustic
features, leveraging expert domain knowledge from many different areas of research –
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an approach often termed feature engineering. And for a long time these features
were often strongly influenced by their successful adoption in areas such as speech
recognition or speaker recognition, one prominent example being the use of Mel-
frequency cepstral coefficients [147, 151]. However, since the advent of deep learning
in the last decade or so, researchers have attempted to learn internal representations
which are informative for a particular task at hand automatically from the underlying
audio signal. This process termed feature learning, in contrast to feature engineering,
reduces or even eliminates the need for expert domain knowledge and enables machine
learning algorithms to not only make use of features for learning, but also to learn
the required features themselves.

The following sections provide a general description of the extraction of acoustic
features from the audio signal. The most important frame-based, low-level descriptors
(LLD) will be shortly discussed, followed by a delineation of higher-level features, i. e.
feature statistics derived from these LLDs. Subsequently, a short account of feature
normalization is given, which is relevant for successful training of neural network
models based on these features.

3.1 Feature Extraction

An illustration of the general feature extraction processing chain is given in Figure 3.1.
The starting point is the audio database, which contains the digitized waveforms
of the speech recordings. For the purpose of the work presented in this thesis it is
assumed that these recordings have undergone some preprocessing, such as resam-
pling, noise reduction, or energy normalization, wherever necessary. Further it is
presumed that the recordings contain speech segments suitable for the task under
consideration; this could be one utterance of an individual speaker per audio file,
e. g. in the case of likability classification (cf. Chapter 6), or segments of overlapping
and non-overlapping speech (cf. Chapter 8).

As indicated above, the traditional feature engineering approach to extracting
features from each instance in the audio database is to perform a sequence of
processing steps, where each step is a manually constructed component with no or a
few parameters, which allow to modify the exact effect the component has on its
input. Given a predictor function ŷ and a model h, which generates predictions
based on some input features, the complete processing chain can be defined as [361]

ŷ = h ◦ gK ◦ . . . ◦ g1(x) (3.1)

where gk denotes the k-th feature extraction step and x is the input signal. The model
h is either a classification or regression model and typically is trained on the output
of gK to minimize the prediction error of ŷ. The goal of feature engineering is to find
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Figure 3.1: Illustration of the general feature extraction processing chain.

a set of feature extraction steps g1, . . . , gK so that the model h can unfold its full
potential. Finding a suitable set of gk can actually be viewed as a learning problem
itself and the model h can attempt to subsume parts of the feature extraction steps
gk, . . . , gK , reformulating (3.1) to yield

ŷ = h′ ◦ gk−1 ◦ . . . ◦ g1(x) (3.2)

where h′ represents the new predictor model. In the extreme case, all feature extrac-
tion steps gk can be merged into h′, an approach often called end-to-end learning.
The underlying idea is that h′ can automatically find the relevant relationships be-
tween the task of interest and the input features by learning a non-linear, optimized
mapping that short-cuts the processing steps gK ◦ . . . ◦ gk. Feature learning is an
active field of research and some important work indicates that it is at least partially
responsible for the power and success of deep learning models [22, 227].

The following two sections give a brief overview of frame-based LLDs and higher-
level supra-segmental features derived from them. Furthermore, the ComParE
acoustic feature set will be described, since it serves as the standard feature set for
many paralinguistic tasks in the literature [85] and in this thesis. Its development
and availability has been fundamental for the objective evaluation and comparison
of many different algorithms in the area of paralinguistic research [301]. Describing
every single feature is well beyond the scope of this thesis and the interested reader
is referred to the detailed literature on the openSMILE toolkit [84, 85], which was
used to extract all features in this thesis, unless noted otherwise.
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3.1.1 Low-Level Descriptors

As stated before, low-level descriptors (LLD) are frame-level features, extracted
directly from the (pre-processed) audio waveform. The ComParE acoustic feature
set contains 65 low-level descriptors [301], which are listed in Table 3.1.

Table 3.1: ComParE acoustic feature set: 65 low-level descriptors (LLD) [301].

4 Energy-related LLD Group

Sum of Auditory Spectrum (Loudness) Prosodic

Sum of RASTA-Style Filtered Auditory Spectrum Prosodic

RMS Energy Prosodic

Zero-Crossing Rate Prosodic

55 Spectral/Cepstral LLD Group

RASTA-Style Auditory Spectrum, Bands 1-26 (0–8kHz) Spectral

MFCC 1–14 Cepstral

Spectral Energy 250–650Hz, 1kHz–4kHz Spectral

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 Spectral

Spectral Flux, Centroid, Entropy, Slope, Harmonicity Spectral

Spectral Psychoacoustic Sharpness Spectral

Spectral Variance, Skewness, Kurtosis Spectral

6 Voicing-related LLD Group

F0 (SHS & Viterbi smoothing) Prosodic

Probability of Voicing Sound Quality

Logarithmic HNR, Jitter (Local, Delta), Shimmer (Local) Sound Quality

The LLDs can be divided into four different feature groups: spectral, cepstral,
prosodic, and voice/sound quality features. Each of these feature sets are described
briefly in the following.

Spectral Features

First, the audio signal is sub-divided into overlapping windows1 of fixed size N ,
i. e. x(n) with n = 0, 1, . . . , N − 1. In the ComParE feature set a window size of
20 ms and a frame shift of 10 ms is used. However, this truncation of the original
time-signal also alters its frequency characteristics, leading to an effect called spectral
leakage [210]. This effect essentially leads to a smeared version of the spectrum

1The terms window and frame will be used interchangeably in this thesis.
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derived from the original signal with potentially negative side-effects for further
processing. In order to combat spectral leakage a tapered window function w is
applied2 to each audio frame x

x(w)(n) = x(n) · w(n) for n = 0, . . . , N − 1 (3.3)

i. e. the frame x(n) undergoes a sample-wise weighting of its values. There are
numerous window functions and each one of them attempts to control the trade-off
between the width of the main lobe and the level of the side lobes of the spectral
leakage pattern in a different way [10]. For the spectral ComParE LLDs a Hamming
window [132] is employed:

w(n) = a0 − (1− a0) · cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1, (3.4)

with a0 = 25/46 ≈ 0.54. Each individual windowed frame is then transformed into
the spectral domain by the Discrete Fourier Transform (DFT) [314], denoted by F ,

X(k) = F{x(w)(n)} (3.5a)

=
N−1∑
n=0

x(w)(n) · e−
j·2πkn
N , k = 0, 1, . . . , N − 1 (3.5b)

=
N−1∑
n=0

x(w)(n) ·
[
cos

(
2π/N

kn

)
− j sin

(
2π/N

kn

)]
, (3.5c)

where (3.5c) follows from (3.5b) by Euler’s identity [6]. X(k) ∈ CN is the (complex)
spectrum of x(w) at the discrete frequency k and its phase is commonly neglected in
paralinguistic applications. Hence, only the magnitude spectrum |X(k)| ∈ RM

+ or
the power spectrum |X(k)|2 ∈ RM

+ is kept, with M = bN/2 + 1c frequency samples.
This is due to the fact that the audio samples x(n) are real-valued and therefore
the DFT symmetryX(N−k) = X∗(k) holds, whereX∗ is the complex conjugate ofX.

To account for the non-linear properties of human perception, two non-linear
warping mechanisms are commonly applied to the spectrum. One addresses the
non-linear perception of frequencies by warping the linear frequency scale (in Hz) to
an approximately logarithmic scale, such as the Mel scale [326], which is given by

m(f) = 2595 · log10

(
1 +

f

700

)
(3.6)

where f denotes the frequency in Hz and m is the corresponding Mel frequency.
One proceeds to select M bins equidistantly distributed over the Mel scale and

2Interestingly, the division into frames itself is equivalent to windowing with a rectangular or
Dirichlet window function.
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then to filter the DFT magnitude (or power) spectrum by applying a filter bank
of overlapping triangular filters. One thus obtains an M -dimensional vector per
time step, which in analogy to the standard frequency spectrum is called critical
band spectrum [83]. A desirable side effect of the application of the filter bank is
the reduction of the numbers of bands, M < k, which effectively serves as a feature
reduction mechanism.

In early studies it was found that the human perception of loudness approximately
follows a logarithmic scale [391] and for this reason a logarithmic mapping |X(k)| 7→
log(|X(k)|) is often applied to the magnitude spectrum. Alternatively, a cubic root
amplitude compression, as proposed by Hermansky [141], can be applied to the
magnitude spectrum to obtain the auditory spectrum as

Xaud(d) = 3
√
X(d) (3.7)

where d are the individual filter values of the filter bank.

All of the spectral LLD features shown in Table 3.1 are directly or indirectly
derived from the spectra described above and are specified in the MPEG-7 multimedia
content description standard [215]. Details on the RASTA-style auditory spectrum
can be found in [83].

Cepstral Features

The derivation of cepstral coefficients is based on the idea of separating the filter from
the excitation signal in the speech source-filter model [129] by using a homomorphic
transformation, e. g. the cepstrum c(n), which is defined as [257]

c(n) = F−1{log |F{x(n)}|}, (3.8)

i. e. it is the inverse Fourier transform of the log-magnitude3 Fourier spectrum (3.5a)4.
Cepstral analysis shows that for the time-domain convolution of the excitation or
source signal xs(n) and the filter xf (n) (representing the vocal tract) the following
conditions hold:

x(n) = xs(n) ∗ xf (n)⇔ X(k) = Xs(k) ·Xf (k) (3.9)

log(X(k)) = log(Xs(k)) + log(Xf (k)) (3.10)

c(n) = cs(n) + cf (n) (3.11)

3Sometimes the power spectrum |F{x}|2 is used instead of the magnitude spectrum |F{x}|.
4For notational simplicity the superscript ’(w)’ from (3.3) is dropped in (3.8), but all derivations

apply to the windowed time signal.
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Hence, the convolved time-domain signals are additive in the cepstral domain. If the
logarithm is taken on the mel-frequency spectrum Xmel, as described in the previous
paragraph on spectral features, the Mel-Frequency Cepstral Coefficients (MFCC) [67]
are obtained. The inverse Fourier transform F−1 is usually replaced by the (type-II)
discrete cosine transform (DCT):

Xmfcc(k) =
M−1∑
m=0

Xmel(m) · cos

(
πk

M
(m+ 0.5)

)
, k = 0, 1, . . . ,M ′ − 1 (3.12)

where Xmfcc(k) is the k-th MFCC, M ′ is the total number of MFCCs, and Xmel is
the Mel-frequency critical band spectrum. The DCT approximately decorrelates
the MFCCs and by choosing the number of MFCCs to be smaller than the number
of critical bands, M ′ < M , one obtains some sort of feature reduction. In fact,
for the ComParE LLD feature subset, M ′ = 14. This is common, since most of
the information is contained in the lower-order coefficients. For example, Xmfcc(0),
which accounts for the distribution of high vs. low-frequency components in the
Mel-frequency spectrum Xmel, is highly informative for the prediction of arousal in a
number of audio applications [359]. As a final step the ComParE cepstral coefficients
Xmfcc(k) are filtered in order to emphasize low-order coefficients, a process referred
to as liftering:

X ′mfcc(k) = Xmfcc(k)

(
1 +

L

2
sin

πk

L

)
(3.13)

with L being the liftering coefficient5. The MFCCs listed in Table 3.1 correspond to
X ′mfcc.

Prosodic Features

Prosody refers to linguistic characteristics such as intonation, rhythm, stress, or tone,
and hence to the elements of speech not being individual phonetic segments, but
rather properties of larger units of speech [180, 238]. Similar to the spectral features
the prosodic features are extracted from a windowed audio frame. For determining
the fundamental frequency F0, often also loosely called pitch, a 60-ms Gaussian
window is applied to each audio frame:

w(n) = e
−1

2

(
n−(N−1)/2
σ(N−1)/2

)2

(3.14)

with σ = 0.4. The choice of the Gaussian windows offers the advantage of not
distorting the subharmonic structure, while the larger windows size, compared to the

5A typical value for the liftering coefficient is L = 22
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3. Acoustic Features

spectral features, avoids distorting low, male pitch frequencies down to approximately
50 Hz. Based on the magnitude spectrum |X(k)| the SHS algorithm is used to extract
an estimate of F0 [83]. The resulting F0 contour is smoothed by a Viterbi-based
algorithm, in order to eliminate artifacts such as spurious pitch detections and
halving/doubling errors [208].

Besides the F0 contour, another prosodic LLD is the sum over the auditory
spectrum (cf. (3.7)),

D−1∑
d=0

Xaud(d). (3.15)

It is a perceptual measure of loudness, approximating the Zwicker loudness [392]. This
feature is complemented by the sum of the RASTA-style filtered auditory spectrum.
RASTA-style filtering is a temporal filtering in analogy to temporal properties of
the human auditory system, in particular the fact that speech is primarily composed
of modulations around 4 Hz [141, 393]. The specific design and use of the RASTA
bandpass filters is described in [83].

Further prosodic features included in the ComParE LLD feature subset are the
zero-crossing rate (ZCR), which is the number of sign changes per second in the
audio signal x(n), and the root-mean square (RMS) energy of the audio signal:

ERMS =

√√√√ 1

N

N−1∑
n=0

x2(n) (3.16)

Sound Quality Features

In contrast to the prosodic features described in the previous paragraph, sound
or voice quality features are referred to as micro-prosodic descriptors [289]. Jitter
describes the variability of the length of the fundamental period, T0 = 1/F0, over
time. The ComParE LLDs contain both the local jitter Jpp defined as

Jpp(n) = T0(n)− T0(n− 1) (3.17)

as well as the cycle or delta jitter, given by

Jp(n) = T0(n)− T 0 (3.18)

where T 0 is the average of T0 over a short-time frame. Analogously, shimmer describes
amplitude variations over consecutive voice signal periods [83], expressed as

Spp(n) = |A(n)− A(n− 1)| (3.19)
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3.1. Feature Extraction

where A(n) = max(x(n))−min(x(n)) is the peak-to-peak amplitude.

The harmonic-to-noise ratio (HNR) is computed as the ratio of the energies of
harmonic and noise-like components in a speech signal [260] and therefore can be
used as a measure to describe how harmonic or noise-like it is. Further, since defined
as a ratio of energies, it is preferably expressed on a logarithmic scale. The HNR
can be computed, for example, in the time-domain via the auto-correlation function
(ACF):

HNR = 10 · log
ACF (T0)

ACF (0)− ACF (T0)
(3.20)

where ACF (0) is the value of the ACF at the origin and ACF (T0) is the ACF peak
at the fundamental period T0. Similarly, the probability of voicing pv is estimated as

pv =
ACFmax
ACF (0)

. (3.21)

Here ACFmax is the maximum value in the range T0,min, . . . , T0,max, where this range
corresponds to the range of expected F0 values [83].

3.1.2 Supra-Segmental Features

Contrary to ASR, which is usually based on short-term speech units such as phonemes,
the problems dealt with in this thesis often require to consider longer time spans.
The emotional state of a person, for example, might require several seconds of speech
to be modeled effectively. Hence, either the model class itself must be able to handle
temporal dependencies over long ranges, as e. g. achieved by the adoption of recurrent
neural networks (cf. section 5.5), or one must construct features which incorporate
relevant information over longer time spans6. One approach to do so, and one which
is adopted in the ComParE feature set, is to apply a number of functionals to a
window of stacked LLDs, where the window can be chosen to include all LLD vectors
into a single super-vector. The resulting features are called supra-segmental features.
This latter approach has the pleasant effect of reducing the variable-length audio
recordings into a fixed-length representation, which is very helpful for models which
are unable to handle time-information, e. g. Support Vector Machines (SVM) or
Random Forests (RF). A functional F represents a mapping of a series of values
x(n) to a single value per functional XF [289]:

x(n)
F−→ XF (3.22)

Examples of functionals are the minimum, maximum, mean, standard deviation,
or higher-order moments such as skew and kurtosis. Further, percentiles, temporal

6The necessary length, however, depends on the problem under consideration.
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3. Acoustic Features

centroids, regression coefficients, peaks and valleys are commonly used. For a detailed
description the interested reader is referred to [83]. Different functionals are applied
to different features or feature groups. The used functionals in the ComParE acoustic
feature set are listed in Table 3.2. In total the ComParE feature set consists of 6.373
features.

3.2 Normalization

The value range of features can vary quite drastically, depending on the type of
feature or recording environment as well as the speaker subject. For example, the
fundamental frequency F0 can be expected to vary approximately between 50-300
Hz, while the probability of voicing will be between 0 and 1, since it is a proba-
bility estimate. In many machine learning algorithms features with a-priori larger
value ranges might be given a higher importance and hence dominate and skew the
training process. In particular, for neural networks it is very important to properly
normalize the input features, because when using saturating activation functions
(cf. section 5.3.2) care must be taken to avoid ending up in the saturating tails of
the activation functions. Failing to do so will lead to near-zero gradients and hence
to slowed-down or even non-convergent training [318]. Therefore, one of the two
following methods are commonly applied to normalize the input features.

Min-max normalization scales the feature vectors so that their values end up in
the predefined interval [a, b]. Let X be the feature matrix, defined by the sequence
of N D-dimensional feature vectors, i. e. x(n) ∈ RD for i = 1, 2, . . . , N . Further,
let x be the mean over all un-normalized feature vectors and xmin and xmax be the
vectors containing the minimum and maximum values for each feature dimension
over the complete matrix X. Then the min-max normalized vector x′ is given by

x′i =
xi − xi

xmaxi − xmini

· (b− a) + a, i = 1, 2, . . . , D (3.23)

i. e. each feature dimension i is scaled individually so that x′i ∈ [a, b]. The most
common values for the interval endpoints are [0, 1] and [−1,+1]. Eyben [83] pointed
out that min-max normalization is vulnerable to single outliers and hence its use-
fulness in real conditions is limited. As an alternative, standardization or z-score
normalization is commonly used. It is defined as

x′i =
xi − xi
σi

, i = 1, 2, . . . , D (3.24)

where σ is the standard deviation computed over X. The normalized values x′i are
zero-mean and unit-variance variables and as was shown by Zhang [381] they are
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3.2. Normalization

more robust to outliers than min-max normalized features.

As explained in section 4.2 the available data is usually split into a training set
Xtrain and a test set Xtest (plus optionally a development set Xvalid). In this context
it is important to remember that all statistics must only be computed on the training
set and need to be kept fixed and applied to each data sub-set separately. Therefore,
it would be an error to perform feature normalization before performing the data
split.
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3. Acoustic Features

Table 3.2: ComParE acoustic feature set: Functionals are applied to the LLDs
defined in Table 3.1 [301].

Mean Values

Arithmetic MeanA
!∆,B , Arithmetic Mean of Positive ValuesA

∆,B

Root-Quadratic Mean, Flatness

Moments: Standard Deviation, Skewness, Kurtosis

Temporal CentroidA
!∆,B

Percentiles

Quartiles 1–3, Inter-Quartile Ranges 1–2, 2–3, 1–3

1%-tile, 99%-tile, Range 1–99%

Extrema

Relative Position of Maximum and Minimum, FullRange (Maximum–Minimum)

Peaks and ValleysA

Mean of Peak Amplitudes

Difference of Mean of Peak Amplitudes to Arithmetic Mean

Mean of Peak Amplitudes Relative to Arithmetic Mean

Peak to Peak Distances: Mean and Standard Deviation

Peak Range Relative to Arithmetic Mean

Range of Peak Amplitude Values

Range of Valley Amplitude Values Relative to Arithmetic Mean

Valley-Peak (Rising) Slopes: Mean and Standard Deviation

Peak-Valley (Falling) Slopes: Mean and Standard Deviation

Up-Level Times: 25%, 50%, 75%, 90%

Rise and Curvature Time

Relative Time in which Signal is Rising

Relative Time in which Signal has Left Curvature

Segment LengthsA

Mean, Standard Deviation ,Minimum, Maximum

RegressionA
!∆,B

Linear Regression: Slope, Offset, Quadratic Error

Quadratic Regression: Coefficients a and b, Offset c, Quadratic Error

Linear Prediction

LP Analysis Gain (Amplitude Error), LP Coefficients 1–5
A Functionals applied only to energy-related and spectral LLDs (group A)
B Functionals applied only to voicing-related LLDs (group B)
∆ Functionals applied only to LLDs
!∆ Functionals not applied to LLDs
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Chapter 4

Measures of Success

Success is simple. Do what’s right, the right way, at the right time.

Arnold H. Glasgow

As can be seen throughout this thesis a multitude of steps is required to success-
fully construct a machine learning model: data needs to be selected and conditioned,
features must be designed or selected, the model is required to be constructed and
trained, etc. Eventually, in order to assess the quality and effectiveness of a model
one needs to evaluate it in an objective manner. To this end science resorts to
evaluation metrics, which play an important role in machine learning, because they
are not only used to compare different learning algorithms, but often also as goals
to be optimized during learning the models. Hence, they represent the quality of a
model or algorithm evaluated on some data set, preferably as a single value, which
simplifies ranking and comparison.

The first part of this chapter describes some of the established objective metrics
for binary (also termed binomial) and multinomial classification, i. e. problems with
more than two output classes. Classification refers to the problem of identifying to
which of a set of categories or classes an observation belongs. This is in contrast to
regression, which is the task of predicting a continuous value. This situation arises,
for example, when estimating the level of arousal or valence (cf. Chapter 2), and
evaluation metrics will also be discussed for this case. This first part is followed by
a characterization of general guidelines and procedures for making adequate use of
the available data during the training and test phases of model development and
selection. This chapter concludes with a short digression on significance testing as
relevant for the work covered in this thesis.
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4. Measures of Success

4.1 Evaluation Metrics

As mentioned above, evaluation metrics play a very important role in machine
learning mainly for two reasons: First, they are used as optimization criteria during
the training phase, usually by minimizing some form of loss function. Second, in
supervised and semi-supervised training, models are commonly evaluated on cross-
validation data during the training process, e. g. in order to detect convergence, and
on test data once training has completed. Moreover, evaluation metrics also serve as
the basis for comparing and selecting learning algorithms.

Different performance metrics are used to evaluate different machine learning
problems and there exists a plethora of proposed measures for assessing the perfor-
mance of models and algorithms, each with its advantages and disadvantages. In the
following, the underlying concepts and metrics relevant for the work presented in
this thesis are introduced and described.

4.1.1 Evaluation of Classifiers

Given a sequence of M -dimensional data elements, x1, ...,xN , and their associated
discrete class labels, y1, ..., yN , then D = {xi, yi}N1 defines a data set with xi ∈ RM

and yi ∈ {0, ..., C− 1}, where C is the number of classes. Further, let ŷi be a discrete
estimate or prediction of the true label yi:

ŷi = f(xi) (4.1)

In machine learning the function f(xi) is usually represented by a model trained on
some training set and this model ideally produces a small number of errors, ŷi 6= yi,
on unseen test data, i. e. it possesses good generalization properties. To this end,
evaluating a classifier consists in finding a measure that represents the classification
(or misclassification) performance on some specific data set and hence the quality of
the model or algorithm under consideration.

The simplest case, binary classification, can be viewed as a detection problem,
with one class being the class of interest, or positive class (yi = 1), and the other
class the one to discriminate against, the negative class (yi = 0). One can then count
the frequency of correct and incorrect predictions ŷi and compute

True positives (TP): yi = 1 ∧ δ(ŷi, yi) = 1

True negatives (TN): yi = 0 ∧ δ(ŷi, yi) = 1

False positives (FP): yi = 0 ∧ δ(ŷi, yi) = 0

False negatives (FN): yi = 1 ∧ δ(ŷi, yi) = 0
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4.1. Evaluation Metrics

where δ is the Kronecker delta.

Let NTP be the number of true positives, NTN the number of true negatives,
NFP the number of false positives, and NFN the number of true negatives. Then
these frequency counts can be arranged into a 2x2 contingency table [317], as shown
in Table 4.1, where columns correspond to the truth value, yi, and rows correspond
to the classification result, ŷi: Based on the Table 4.1 a number of measures can be

Truth (y)

True False

Classification (ŷ)
True NTP NFP

False NFN NTN

Table 4.1: Contingency table for binary classification

defined. One important example is precision, defined as

Precision =
NTP

NTP +NFP

(4.2)

measuring the number of correct positive instances divided by the number positive
instances predicted by the classifier, and recall, given by

Recall =
NTP

NTP +NFN

(4.3)

which is the fraction of correct positive results over the number of all relevant samples,
i. e. all instances that should have been identified as positive [342]. While precision
and recall are metrics inherently suited for binary classification, problems with more
than two classes can be reduced to a one-versus-all problem by selecting one class to
be the positive class and merging the other classes into the negative class [7, 221].
Thus, multi-class situations can be approached by computing the unweighted average
recall (UAR), defined as

UAR =
1

C

C∑
c=1

Recall(c) (4.4)

Recall(c) =

∑
i:y=c δ(yi, ŷi)

Nc

(4.5)

where Recall(c) is the recall specific of class c and Nc = |{i : yi = c}| is the number
of instances belonging to class c. Note that the UAR is sometimes also referred to as
unweighted accuracy (UA) [293].
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4. Measures of Success

Arguably the most intuitive and straightforward objective measure of a classifier’s
performance is the probability of correct classification or accuracy (Acc):

Acc =
NTP +NTN

NTP +NFP +NTN +NFN

=

∑N
i=1 δ(ŷi, yi)

N
(4.6)

Accuracy is defined as the number of correct classifications divided by the total num-
ber of all test instances, N , and it is a good measure when the distribution of class
labels is approximately uniform. However, if this distribution is highly non-uniform,
i. e. in problems exhibiting high class imbalance, accuracy is less appropriate [94],
since deciding for the class having the highest prior Nc/N can result in high accuracy,
while leading to chance level UAR.

At evaluation time, one can often define one or more free parameters, e. g. a
threshold, which can be used to tune the classifier’s sensitivity towards one class or
the other. This selected value (or set of values) is then referred to as an operating
point. For a specific classifier, changing this operating point can result in increasing
the precision, while decreasing recall, and vice versa. However, having two conflicting
measures in order to evaluate or optimize a classifier is cumbersome. For this reason,
precision and recall are often commonly combined into a single evaluation metric,
e. g. via the harmonic mean of both values, which results in the F1 score defined as

F1 = 2 · 1
1

Precision
+

1

Recall

= 2 · Precision ·Recall
Precision+Recall

. (4.7)

The F1 score gives equal weight to both measures and F1 ∈ [0; 1], as many of the
evaluation metrics defined above. The use of the harmonic mean instead of the
arithmetic mean has the advantage that it punishes extreme values. For example,
a classifier with a precision of 1.0 and a recall of 0.0 has a F1 score of 0, but an
arithmetic mean of 0.5 [342].

The ROC curve and AUC
For binary classification, the receiver operating characteristic (ROC) graph is a
technique for visualizing, organizing and selecting classifiers based on their perfor-
mance [88, 255]. Originating from radar signal detection in World War II, they have
long been used to depict the tradeoff between hit rates and false alarm rates of
classifiers [80], especially in psychology and medical diagnostics [335]. ROC curves
have been used in machine learning for almost three decades [223], but in recent years
have been increasingly adopted, because researchers realized that the classification
accuracy (4.6) often is a poor metric for performance measurements [258].

An ROC curve is a two-dimensional representation which graphically depicts two
values deducible from Table 4.1: The true positive rate (TPR), which is identical to
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System A (AUC = 0.50)

System B (AUC = 0.76)
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Figure 4.1: ROC curves and respective AUC values for random guessing (System A),
medium performance (System B), and high performance (System C).

recall (4.3) of the positive class, and the false positive rate (FPR) (also called false
alarm rate), which is defined as

FPR =
NFP

NFP +NTN

= 1−Recall(0). (4.8)

As mentioned above, one can change the operating point by defining a threshold value
0 ≤ θ ≤ 1 and sweeping θ through this range. Assigning all instances i with ŷi ≥ θ
to the positive class, TPR and FPR result as a function of θ. The ROC curve thus
results from interpolating different (TPF, FPR) points in the area [0, 1]× [0, 1] [380]
and depicts the relative tradeoff between benefits (true positives) and costs (false
positives) [88]. Figure 4.1 shows an example of three different ROC graphs.

The diagonal line between (0, 0) and (1, 1) (System A) represents random guessing,
also termed chance level, and classifiers should result in curves above this line to be
of any value. The closer the ROC curve gets to the upper left corner (0, 1) the higher
its ratio of TPR/FPR, and hence the better the classifier’s performance. Therefore,
system C (blue curve) shows better classification performance than system B (red
curve). To reduce the ROC performance to a single scalar value, one can numerically
integrate over the ROC curve on the interval [0; 1] and compute the area under the
curve (AUC) [34, 128]. The AUC reveals some interesting properties, which can
easily be deduced from Figure 4.1: First, its value will always be between 0 and 1, i. e.
0 ≤ AUC ≤ 1, since it is a portion of the area of the unit square. Second, random
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4. Measures of Success

guessing results in a value of AUC = 0.5. Finally, higher AUC values reflect better
classification performance independent of any threshold parameter; hence the AUC
is a preferred measure for situations where positive instances are rare, e. g. social
signal detection and other related paralinguistic tasks.

One can generalize the AUC measure to the multi-class scenario by creating a
one-versus-all binary classification setup for each class c ∈ [0, ..., C − 1], compute the
class-wise AUC(c), and eventually average over all these individual AUCs, resulting
in the unweighted average area under the curve (UAAUC) [127]:

UAAUC =
1

C

C∑
c=1

AUC(c) (4.9)

The DET curve
While the AUC is of great value for comparing classifiers, the underlying ROC
plot does not make good use of its graphical real estate, since for reasonably good
classifiers the curves tend to end up in upper left corner, leaving empty most of the
unit square. As in improved graphical representation the detection error tradeoff
(DET) curve is sometimes used in the research community [218]. The DET curve
plots the false rejection rate (FRR)

FRR =
NFN

NFN +NTP

= 1−Recall(1) (4.10)

versus the false positive rate (4.8), which in the context of DET is often termed false
acceptance rate (FAR). The DET curve commonly adopts a non-linear scaling of
the x- and y-axes in order to yield approximately linear trade-off curves. Hence, it
uses most of the image area to highlight the differences of importance in the critical
operating region, in particular around the the equal error rate (EER), which is
defined as the point where FPR = FRR. Figure 4.2 shows DET curves for System
B and System C from Figure 4.1.

4.1.2 Evaluation of Regression Problems

Contrary to classification, in regression problems the target yi is not categorical,
but some scalar, continuous value. Hence, the prediction ŷi is also continuous. A
canonical evaluation of regressors can be achieved by measuring the mean error,
which is given in its generic form by

ψ

√√√√ 1

N

N∑
i=1

|ŷi − yi|ψ (4.11)
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Figure 4.2: Detection error trade-off curves for systems B (red, medium performance)
and C (blue, high performance) from Figure 4.1.

A commonly used value is ψ = 1, which yields the mean absolute error (MAE):

MAE(ŷ, y) =
1

N

N∑
i=1

|ŷi − yi| (4.12)

A more widespread choice is ψ = 2, however, which results in the root mean squared
error (RMSE). When comparing regressors the square root is often omitted, since
it is a monotonic function unnecessary for comparison, and the resulting metric is
known as the mean squared error (MSE):

MSE(ŷ, y) =
1

N

N∑
i=1

|ŷi − yi|2 (4.13)

Other standard measures for the evaluation of regressors are (non-parametric) corre-
lation coefficients. Of particular interest is Pearson’s ρ, which for a data sample is
defined as:

ρ(ŷ, y) =

∑N
i=1(ŷi − µŷ)(yi − µy)√∑N

i=1(ŷi − µŷ)2
∑N

i=1(yi − µy)2

, (4.14)

with µŷ denoting the mean over all predictions and µy the mean over the truth
target values. It can be shown that ρ ∈ [−1; +1] [202]. Spearman’s rank correlation
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coefficient or Spearman’s ρs instead is a measure of rank correlation, i. e. it assesses
the statistical dependence between the rankings of two variables. It is computed by
first ranking the predictions ŷi and truth targets yi by their value and then computing
Pearson’s ρ (4.14) on the ranks. Since Spearman’s ρs is robust to the underlying data
distribution, it is sometime preferred over Pearson’s ρ, particularly in the presence
of outliers [75].

In the field of computational paralinguistics the gold standard targets are usually
obtained by manual annotation of human raters. Notwithstanding careful design
procedures to eliminate as many subjective differences as possible, these annotations
are always prone to a certain degree of variation across different raters. In order
to quantify the inter-rater agreement and to obtain a single target value, e. g. for
training and evaluation, the concordance correlation coefficient (CCC), ρc, is often
relied upon in the research community [198, 224, 324, 346], defined as

ρc(v1, v2) =
2ρ(v1, v2)σv1σv2

σ2
v1

+ σ2
v2

+ (µv1 − µv2)2
, (4.15)

where v1, v2 are arbitrary variables (e. g. labels), µv1 and µv2 are the means over all
instances of v1 and v2, respectively, and σv1 and σv2 are the corresponding standard
deviations.

4.2 Crossvalidation and Testing Considerations

The paramount goal of any machine learning approach is to create a model which
generalizes well to unseen test data. While methods and models might perform well
on the data they are trained on, this is meaningless both from an academic and
practical standpoint. It is well known that, given a specific training data set, neural
networks (and many other models of machine learning) with a sufficient number
of learnable parameters can approximate a target function, e. g. the distribution
of training targets given the input, arbitrarily close. In other words, such a model
can learn the training data distribution by heart, but fail to extract the underlying
structure, thus eliminating irrelevant variation and noise from the inherent, relevant
information, which is necessary to perform well on unseen data. In other words, for
a reliable and objective evaluation of any classifier, regressor, or learning algorithm,
it is necessary to obtain an unbiased estimate of the accuracy of a learned model.

For this purpose, available data should be divided into three disjunct data sets:
the training set, used to learn the model parameters and any other related parameters
helping to derive the underlying structure of the data distribution; a development or
validation set, which can be regarded as an independent test set during the training
phase, e. g. to determine when to stop training or to perform model selection; and
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finally the test set, which should be completely held out during training and only be
used for final evaluation and reporting. If the test data influences the learned model
in any way, accuracy estimates will be biased. This might also imply that speakers
in the test or CV sets should not be included in the training set, if possible, so that
the model cannot learn specific characteristics of the test speakers.

Data sets in the area of computational paralinguistics are often relatively small,
e. g. compared to the thousands of hours of available training data in the area of
automatic speech recognition. This is mainly due to the necessity of manual annota-
tion by multiple human raters, which typically is a time-consuming and expensive
process. However, if there isn’t enough data to create sufficiently large training
and test sets, a trade-off must be found to divide the available data into those data
splits and the following dilemma arises: the larger the test and validation sets the
lower the variance estimate of accuracy will be. On the other hand, a larger training
set will generally allow for larger and more powerful models to be trained. One
commonly adopted approach to alleviate this situation is to resample a common data
set into train, validation, and test splits in a round-robin fashion, an approach which
is called k-fold cross-validation (CV): A certain percentage of the data is held out
for testing (or validation) and the rest is used for training. Then a model is trained
on the training set and evaluated on the validation and/or test sets. The evaluation
scores are stored and the trained model is discarded. This process then proceeds by
selecting a different (and ideally disjunct) data split until all data instances have been
used once for testing. In the end of k-fold CV all results are merged. A typical value
for k is k = 10, but smaller values are used when training is resource-intensive [11].

There exist a number of aspects one might want to consider when setting up
and performing k-fold cross-validation. One is stratification when partitioning the
data, which means that in each of the training, validation, and test sets one strives
for approximately the same percentage of speakers of the same age range, gender,
cultural background, dialect region, etc., depending on the task at hand. A related
idea to stratification is balancing the class label distributions [293]. The goal here
is to achieve an approximately uniform distribution of label classes of the same
paralinguistic content, for example emotion classes, in each of the data splits.

Yet another way to structure k-fold cross-validation is by the amount of left-out
data for testing. One extreme case is leave-one-out CV, where only one data instance
is used for testing, while the remaining data is used for training. An alternative, less
extreme approach is called leave-one-speaker-out (LOSO), where in each of the folds
one speaker is split off for testing. A modification of this idea is leave-one-speaker-
group-out (LOSGO), where a set of speakers is reserved for testing, while all other
speakers are used during training [189]. These are just a few examples of commonly
adopted approaches in setting up and running k-fold experiments.
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4.3 Significance Tests

As alluded to in the introduction of this chapter it is of paramount interest to
compare the performance of different systems, be if for the purpose of model selection
or algorithm evaluation. In this regard it is necessary to determine whether observed
performance differences are caused by structural differences or if they are just due
to random fluctuations. This can be accomplished by applying significance tests,
which represent a formal process to evaluate the reliability of the evaluation. The
quality of a test is typically judged on Type I error (how often the test indicates a
difference when it should not) and Type II error (how often it indicates no difference
when it should). The subsequent section gives a brief summary of some methods of
significance testing relevant for the work in this thesis.

4.3.1 Comparison of Two Classification Accuracies

The McNemar test [73, 102, 220] is a statistical test for paired nominal data and
hence can be used to test if the classification accuracies of two systems A and B are
significantly different. It is assumed that both systems have been trained on the
same training set Dtrain and are tested on the same test set Dtest. Then one can
count and record the number of misclassifications of both systems in a contingency
table as follows:

n00: Number of examples misclassified
by both A and B

n01: Number of examples misclassified
by A but not by B

n10: Number of examples misclassified
by B but not by A

n11: Number of examples misclassified
by neither A nor B

Table 4.2: Contingency table for McNemar error counts.

It follows that n = n00 + n01 + n10 + n11 equals the total number of examples in
the test set, |Dtest|. As laid out in [73], under the null hypothesis H0, systems A and
B have the same probability of error, i. e.

H0 : pn01 = pn10 (4.16)

H1 : pn01 6= pn10 (4.17)

where H1 is the alternative hypothesis, and pn01 and pn10 are the probability of the
respective error counts from Table 4.2. The McNemar test statistic is defined as a
chi-square random variable:

X2 =
(|n01 − n10| − 1)2

n01 + n10

(4.18)
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where the ”−1” in the numerator is a continuity correction term as suggested by [79],
which accounts for the fact that the test statistic is discrete while the χ2 distribution
is continuous. Under the null hypothesis H0 and with a sufficiently large number
of counts n01 and n10, X

2 has an approximately chi-squared distribution with 1
degree of freedom and therefore it is possible to perform a χ2 goodness-of-fit test
to determine whether observed sample frequencies differ significantly from expected
frequencies specified in the null hypothesis. First, one computes the p-value, which
corresponds to the probability of wrongly rejecting H0, i. e. assuming a significance
difference when none is given:

p = P (X2 ≥ χ2
1;1−α) (4.19)

for a specific significance level α. A typical value for the significance level is α = 0.05
and this value is used in this thesis unless stated otherwise. The criterion for rejecting
H0 is defined as

H0 : p ≥ α (4.20)

H1 : p < α (4.21)

and therefore there is evidence to reject H0, if

X2 > χ2
1;0.95 ≈ 3.841459 (4.22)

Previous work has indicated that X2 is not well approximated by the χ2 distribu-
tion, if (n01 +n10) / 25, as this leads to a unreliable p-values [5]. In this case an exact
binomial test has been suggested, which considers the imbalance in the discordants
n01 and n10. The interested reader is referred to [293] for a detailed explanation.
However, in [87] it was also found that the exact test is overly conservative, leading
to unnecessarily large p-values and poor power, and the authors propose the mid-p
test instead.

As can be seen from the derivation above the McNemar test requires the availabil-
ity of the contingency table (cf. Table 4.2), which is a disadvantage when only the
accuracies are known. An easily computable alternative is the z-test as described by
Dietterich [73]. Given a specific test set Dtest, let pA and pB denote the probabilities
of correct classification of two systems A and B, i. e. the respective accuracies
evaluated on this data set. Without loss of generality we assume that pB > pA.
One can formulate the null hypothesis H0 that the observed performance differences
originate from random fluctuations of the probability of correct classification by
either system, pAB = (pA + pB)/2. Then, one rejects H0 at a chosen significance level
α. Assuming statistical independence of the prediction errors, one can formulate
the null hypothesis that the number of correct classifications Nc on Dtest follows a
binomial distribution with success probability pAB as

H0 : Nc ∼ B(N, pAB) (4.23)
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where N = |Dtest| is the number of instances in the test set. The probability of
observing the improved accuracy of B is then computed as

P (Nc > pB ·N) = 1− P (Nc ≤ pB ·N) (4.24)

If N is large enough (N ' 20), then the binomial distribution is well approximated
by the normal distribution

N (N · pAB, N · pAB(1− pAB)), (4.25)

and the z-statistic z∗c,B becomes

z∗c,B =
pB − pAB√
pAB(1− pAB)

√
N (4.26)

Following (4.20) and (4.21), H0 can be rejected with significance level α, if

p = 1− ΦN (z∗c,B) < α, (4.27)

where ΦN is the cumulative distribution function of the standard normal distribution.
The assumption of independence of errors made in the derivation of the z-test is
violated in some cases, e. g. when processing time series by recurrent neural networks,
where there is an interdependence between predictions based on successive frames.
While the McNemar test was found to have acceptable low Type I error, the z-test
tends to underestimate p-values, i. e. it tends to have a high probability of Type I
error [73]. Nonetheless, since it only requires the knowledge of the accuracies of both
systems and the size of the test set, it is one of the most widely used statistical tests
in the area of machine learning.

4.3.2 Significance Tests for Regression Problems

Analogously to the derivation of the z-test, let A and B be two regressors generating
predictions on a common test set D, and without loss of generality assume that
MAEB < MAEA, with MAE being defined by the mean absolute error (4.12). One
can then formulate the null hypothesis

H0 : MAEA −MAEB = 0, (4.28)

stating that any differences are only due to random fluctuations and compute the
sample difference ∆n of the absolute errors made by systems A and B on instance n:

∆n = |ŷA,n − yn| − |ŷB,n − yn| (4.29)

µ∆ =
1

N

N∑
n=1

∆n (4.30)
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σ∆ =
1

N − 1

N∑
n=1

(∆n − µ∆)2 (4.31)

where µ∆ is the sample mean of ∆, σ∆ the respective sample standard deviation, and
N = |∆| the sample size. The significance test is a so-called t-test, which tests if µ∆

is significantly different from zero. It is based on Student’s t-distribution, which only
depends on the sample moments and size and is equivalent to the Normal distribution
N for large sample sizes N . The t-statistic is given by

t =
µ∆

σ∆

√
N (4.32)

and bears resemblance to the z-statistic (4.26). Similar to (4.27) one rejects the null
hypothesis (4.28) with significance level α, if

p = 1− FN
t (t) < α (4.33)

where is the cumulative distribution function of Student’s t-distribution with N
degrees of freedom [293].

4.3.3 Performance Comparison Across Different
Partitionings

Up to this point, derivations and statistical significance tests were based on a fixed
(held-out) test set Dtest and a corresponding training set Dtrain. This approach has
the shortcoming that it does not directly measure any variability due to the choice of
Dtrain and Dtest. In order to tackle this problem, one can divide a given data set D
into K partitionings, as done in K-fold cross-validation, and then train and evaluate
two systems A and B on each partitioning k separately to obtain the evaluation
measures M

(1)
A , . . . ,M

(K)
A ,M

(1)
B , . . . ,M

(K)
B . M can be any evaluation measure for

classification or regression discussed in this chapter. Further, it was found in [73]
and confirmed in [30] that partitioning D into disjoint sets of approximately equal
size leads to more stable significance tests than random resampling, since the latter
leads to undesirable dependencies of the M (k) due to overlap in the trials. In each
trial k one computes the performance differences as

M
(k)
D = M

(k)
A −M

(k)
B (4.34)

and tests whether this difference is significantly different from zero, and performs a
t-test with the t-statistic similar to (4.32):

t′ =
µMD

σMD

√
K (4.35)
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µMD
=

1

K

K∑
k=1

M
(k)
D (4.36)

σMD
=

1

K − 1

K∑
k=1

(M
(k)
D − µMD

)2 (4.37)

Analogously to (4.33), one rejects the null hypothesis, which states that there is no
significant difference between systems A and B, if

p = 1− FK
t (t′) < α (4.38)

with significance level α.
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Chapter 5

Deep Neural Networks

In theory, there is no difference between theory and practice.
But, in practice, there is.

Jan L. A. van de Snepscheut

This chapter lays the theoretical and practical foundation for the experiments
described in Part III of this thesis. It starts by giving a brief description of the
biological morphology and information transmission principles which inspired many
of the neural network models used nowadays. The subsequent section establishes a
brief taxonomy of concepts found in current research of machine learning and deep
neural networks (DNN) to allow a distinction and classification of the approaches and
models adopted in this thesis from the manifold of proposed ideas in the literature.
Section 5.3 introduces the most basic components, the neurons, of the mathematical
models adopted in this thesis. As common in current research in computational
paralinguistics only phenomenological models (cf. Section 5.2) are considered, i. e.
the level of detail that physiological models offer is neglected. Thereafter, a number
of sections describe different types of neural network models, which are used as
building blocks for deep neural networks, e. g. by stacking or layering those blocks.
This chapter then concludes with some important aspects of training these models,
both supervised and unsupervised, in order to obtain good performance.

5.1 Biological Background

Scientists have long been intrigued by how the human brain makes sense of the
world and over the past century biologists have accumulated an enormous amount
of detailed knowledge about the structure and function of the brain [100]. Within
the mammalian brain the cerebral cortex occupies the largest region and plays a
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fundamental role in perception, attention, awareness, and consciousness, forming the
basis for human communication and language. The human cortex contains a huge
number of cell bodies, mainly of two types [207]:

Neuronal cells, or in short neurons, serve as the elementary processing units in the
central nervous system and are connected to other neuronal (and non-neuronal) cells
via synapses, which basically are electro-chemical information interfaces. Neurons
thus form interconnected circuits with diverse, discrete functions – some to sense and
extract features of the environment and to transmit this information to the brain,
others for processing and storing this information. Recent research shows that the
human brain contains approximately 86 · 109 neurons, only 19% of which are located
in the cerebral cortex [14, 140], while the number of neocortical synapses amounts to
approximately 1.0-1.6 · 1014 [237], i. e. on average one cerebral neuron is connected
to other neurons via approximately 1000 synapses. Individual neurons can even form
synapses with up to 10.000 other neurons [207].

Glia cells, on the other hand, were historically considered to be mainly ”sup-
porter” cells, which supply nutrients and oxygen and give structural stabilization and
protection to the neurons. Further they maintain homeostasis, destroy and remove
pathogens and dead neurons from the brain. However, it is now recognized that glia
cells also play an active role in brain function [207]. Recent research has shown that
the number of glia cells in the human brain is approximately equal to the amount of
neurons [14], contrary to prior belief that these cells outnumber cortical neurons by
orders of magnitude.

Although there exist several different neuronal and glia cell types with distinct
characteristics and properties, functional specialization of different brain regions
primarily emerges from differences in circuit connectivity rather than from differences
in the constituent cell types [207].

Neuronal Morphology and Information Transmission

Once fully differentiated, neurons take many different forms, but in general they all
share a number of common key features: The rounded soma or cell body contains
the nucleus and branches into tree-like projections termed dendrites, which are the
components where signals are received from other neurons via the synapses. However,
it is also possible that incoming synapses form directly on the soma. Particularly in
the brain these dendrites can grow extremely long, which allows neurons to intercon-
nect with up to thousands of other neurons. On the other side of the soma neuronal
cells form a long, extended arm called the axon, which essentially functions as a
transmission channel. It has been found that in humans, axons can grow to more
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Figure 5.1: Typical morphology of a cortical neuron. Branched dendrites receive
information from connected neurons. Small voltage changes in the dendrites, which
are integrated over in the soma, can result in an action potential, generated in the
axon hillock. The axon transmits the action potential to the synapses located at the
axon termini, which connect with other neurons.

than a meter long [207]. Branch-like protrusions at the end of the axon (opposite
the soma) are called axon termini. These structures are connected to the dendrites
of other neurons via junctions called synapses. An axon terminus of a pre-synaptic
cell contains synaptic vesicles, each of which is filled with a single type of neuro-
transmitter molecules. Once an electrical pulse or so-called action potential arrives
at the synapse, it triggers the release of of a certain amount of neurotransmitter
molecules. On the receiving side of the synapse, i. e. at the post-synaptic dendrite,
these molecules cause a voltage change from negative to positive termed depolariza-
tion. It is in the soma of a neuron that the depolarizations from all its dendrites
are integrated. If the resulting voltage in the soma exceeds a certain threshold an
action potential is triggered, an electrical spike originating in the axon hillock. Hence,
the neuronal integration of depolarizing and hyper-polarizing signals determines
the likelihood of an action potential. Action potentials move along the axon to its
termini at speeds of up to 100 meters per second. Moreover, neurons are able to
fire repeatedly after a brief recovery period, usually in the order of milliseconds.
In fact neuronal signals usually consist of a sequence of spikes termed spike trains [99].

It is important to note that action potentials – notwithstanding their analog
nature on an electro-chemical level – effectively are binary, i. e. they are ”all or
none”. This implies that the information processing happening inside a population
of neurons is not based on the intensity of the action potentials, but rather on
their relative timing and their frequency or rate. In fact, while peripheral neural
circuits mainly convey information about what they sense in a rate code, circuits
located close to or in the cortex increasingly code information via a time-dependent
representation [226, 276, 325]. The synaptic connection between any two neurons
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can either be excitatory, i. e. facilitating the transmission of the input signal by
supporting the generation of a post-synaptic action potential, or inhibitory, i. e. by
hindering transmission. Moreover, neurons receive slower neuro-modulatory inputs
via regulating hormones which changes the threshold for excitation or inhibition [46].

Even though the typical morphology of a cortical neuron, as depicted in Figure 5.1,
clearly indicates the unidirectional flow of information, a great number of recurrences
exist in the brain by efferent connections, i. e. connections from neurons higher up in
the cortical hierarchy to lower regions or even within the same brain region. In fact,
this recurrence is necessary to enable time-dependence in sequence processing [76].
The complex networks formed by individual neurons and glia cells are not fixed, but
instead their inter-connectivity changes through a process called synaptic plasticity,
during which both the number of synaptic connections and their strength is modified,
based on experience. This fundamental learning process is imitated by the training
algorithms deployed everywhere nowadays in modern artificial neural networks.

5.2 Taxonomy

As alluded to in Section 5.1 neurons serve as the elementary processing units in the
central nervous system and for this reason they form the biological substrate whose
function one tries to replicate with more or less detailed mathematical models. There
exists a plethora of models in the literature, but all share two commonalities.

First, there are at least two main objectives for modeling neurons or neural
networks: On the one hand scientist strive to gain a better understanding of the
underlying phenomena and how neurons function, and apart from laborious in-vivo
cell experiments they use computer models to derive deeper knowledge. On the other
hand researchers and engineers leverage powerful neural network models to perform
inference and prediction on many in-lab as well as real-world tasks up to levels of
performance previously deemed unreachable.

Second, all approaches are oriented towards ”replicating”, i. e. modeling, at least
the basic functions a neuron performs. As discussed in Section 5.1 this includes (but
is not limited to):

• Weighting the individual input signals: This step models the process at the
transition axon terminus → synapse → dendrites and may include modeling
the amount of neurotransmitters in the synapses w. r. t. the strength of the
input signal, positive (excitatory) and negative (inhibitory) weighting, and
constant potential offsets (often represented as bias in mathematical models,
cf. Section 5.3.1).
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• Integration or summation over the weighted signals: Collecting input from many
connected neurons, this key feature of biological neurons enables the emergence
of neural circuits and thus a higher-level, more powerful functionality. Be it
based on rate coding or temporal coding, this phenomenon brings individual
sources of information into a common context.

• Transforming the intermediate result in a sense models all neuronal processes
that lead to the formation of action potentials. Again, this could reflect
the frequency of action potentials (rate coding) or their temporal sequence
(temporal coding), but could also include non-linear, molecular intra-cell effects.
In mathematical models, as discussed in this thesis, this transformation operator
often is chosen for reasons of mathematical commodity or algorithmic stability,
rather than biological requirements.

Taking into account these two factors one can attempt to derive descriptors of
model classes which may help to differentiate between different modeling approaches.
Without claiming to be exhaustive, the following list indicates some criteria helpful
to differentiate between different model types.

Rate coding vs. temporal coding
It has been mentioned above that both ways of representing information in spike
trains exist in biological neurons and hence it only seems plausible to create respective
models for both. While the idea of modeling rate coding – i. e. taking the frequency
of spikes in a certain time interval as the basic ”unit” of information – is adopted
in the majority of current neural network models, modeling temporal coding via
spike trains requires one to follow a completely different paradigm adopting Spiking
Neural Networks (SNN) [267]. Although it is possible to compute SNN models on
today’s typically deployed serial Von-Neumann computer architectures, the latter
are ill-suited for the inherently event-driven temporal, biological phenomena. SNNs
are an emerging area of active research [28, 212] and beyond the scope of this thesis.
Models based on rate coding instead perform static computation, usually executed
at pre-determined intervals1.

Computational complexity vs. level of detail
Even when restricting oneself to rate coding models the level of detail of neuronal
models determines the computational complexity and hence the amount of compute
power and memory one has to dedicate in order to perform simulations on these
models. While a greater level of detail might reveal certain desirable characteristics
and higher modeling power, this is not always the case. Thus, one must strike a
balance between these two opposing characteristics. Most often researchers choose

1A typical value in the realm of voice signal analysis is e. g. 10 ms.
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the minimum amount of detail necessary for a specific task at hand and try to
minimize computational complexity, especially when large-scale experimentation is
required. Apart from pragmatic reasons, such as limiting the time needed to train
a model or to limit the amount of required computer resources, this is also helpful
when training data is limited in order to avoid overfitting and numerical instabilities.

Biological models vs. phenomenological models
Research on biological neuron models has a long history and one of the earliest models
described in the literature dates back to 1907, when the French neuroscientist Louis
Lapicque described a first version of the Integrate-and-Fire model [2, 197]. Since
then a plethora of studies has been published (e. g. see [106, 144, 157, 168, 231])
and in simplified terms biological models attempt to describe intra-neuronal and
inter-neuronal physiological and bio-chemical processes to a greater level of detail
than other models. And while research in this field is of great importance to the
general understanding of how biological neurons process information, the use of
such detailed models in medium- to large-scale experiments is limited due to their
computational complexity, notwithstanding the ever-growing capabilities of today’s
computers. For this reason, researchers have turned towards phenomenological
models as scientific models which attempt to describe the empirical relationship
of phenomena between each other without modeling the exact mechanisms [90].
These models try to incorporate the principles and laws of the underlying biological
phenomena, yet abstracting sufficiently enough to be computationally efficient. Most
of the models described in this thesis fall into this latter category of models.

Categories of learning
In addition to the above-mentioned categorical classification, neural network models
can be grouped into categories depending on the fundamental principle they are
learned or trained with. These categories differ by the nature of the training data
and by the manner and specific order in which training and test data are queried and
provided to the learning process. Most learning schemes in current neural network
research can be grouped into three fundamental types of learning [278]:

• In supervised learning a training set consist of N input-output pairs

(x1, y1), (x2, y2), . . . , (xN , yN),

where each target (or label) yi is assumed to be generated by an unknown
function y = f(x), a function of the observations or features x. The goal of
the learning algorithm is to find a hypothesis ŷ which approximates the true
function y, i. e. a function that maps input to output minimizing the error
between ŷ and y [278]. Note that the error to be minimized can take on various
different forms and that the final goal usually is not to merely perform well
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(i. e. obtain low error) on the training set, but on unseen examples (x′, y′). If
the learned hypothesis H performs well on unseen data points, it is said to
generalize.

Supervised learning is the most common learning type in current neural network
research, since it has proven to be extremely effective on a broad range of
tasks. However, it requires the targets y to be available and generating these
labels often proves to be an expensive, manual, and laborious task. In the field
of computational paralinguistics this fact is particularly exacerbated by the
fact that the true emotions as perceived by humans are highly subjective, and
hence more than one annotator is needed to determine the targets [293].

Supervised learning can be broadly classified into classification and regres-
sion tasks. The learning problem is termed classification, when the output y is
an element of a discrete set of categories, such as ’anger’, ’fear’, ’sadness’, etc.
In the particular case of only two categories (e. g. ’True’ and ’False’), it is called
binary classification. Regression, on the other hand, deals with the problem
of estimating or predicting a continuous quantity, as occurs, for example, in
predicting emotions in the arousal/valence space (cf. Figure 2.2).

• Unsupervised learning
In many modern large-scale learning scenarios the amount of unlabeled data
available by far exceeds that of labeled data. For model training it is usually
beneficial to have more transcribed data, but as outlined above, the cost of
labeling if often prohibitive, since it typically requires human effort to do so.
Unsupervised algorithms attempt to resolve this problem by learning some
hidden structure from unlabeled data. Obviously, since no target labels are
available, calculating typical ”success” measures, such as accuracy, is impossible
in this case.

There exists a great variety of unsupervised learning approaches, such as
clustering algorithms (e. g. k-means), principal component analysis (PCA),
independent component analysis (ICA), non-negative matrix factorization
(NMF), or singular value decomposition (SVD), just to name a few [33, 78, 134].
Another central class of unsupervised learning algorithms is based on generative
modeling, which is the statistical task of estimating a probability distribution
that describes the process which generated the training data [146]. A good
generative model is able to generate new data that resemble the training data
in some sense. Especially in the field of neural network research this type
of learning algorithm has gained wide-spread attention and is an active field
of research. Common approaches belonging to this group are, for example,
autoencoders, deep belief networks, generative adversarial networks (GAN),
self-organizing maps (SOM), and hebbian learning.
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• Reinforcement learning (RL) is an area of machine learning where a software
agent needs to learn to take actions in an environment through maximizing
some type of cumulative reward, which usually is not available right away, but
often is presented to the agent with some delay [334]. It differs from supervised
learning in that the observation/target pairs (xi, yi) are typically unavailable.
Further, sub-optimal actions are often not corrected explicitly. Reinforcement
learning commonly involves finding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge) [176].

Besides these three main learning categories there are various generalizations or
hybrids of the aforementioned learning types [228], for example:

• Semi-supervised learning [49, 386] Semi-supervised learning is a hybrid
approach falling between supervised learning and unsupervised learning. As
mentioned above, obtaining larger amounts of labeled data is usually unfeasible
due to the cost associated with the labeling process, whereas acquisition of
unlabeled data nowadays is often relatively cheap and simple. Semi-supervised
learning leverages this situation by training on a large amount of unlabeled data
in an unsupervised fashion, supported by supervised learning (or other types,
such as reinforcement learning) on a small amount of labeled data. A number
of researchers found that this approach produces considerable improvements in
performance [69, 74, 382, 383, 384].

• Active learning [133] is a special form of semi-supervised learning in which
the learning algorithm interactively queries an information source, e. g. the
labeler or user, to obtain the required output (i. e. label or target value) at a
new data point [311]. The most important question in this context is how to
select the subset of data to be labeled [274], and there exist a wide variety of
algorithms for this purpose, such as uncertainty sampling, query by committee,
expected model change, etc. [239].

• Transductive inference was introduced by V. Vapnik [93] and is a form of
reasoning from observed, specific, and labeled training data points to specific,
unlabeled test data points. In this sense, it is similar to semi-supervised
learning. However, the objective of transductive inference is to predict labels
only for these particular test points [61, 228]. Transductive inference can
yield predictions where induction fails, since the latter requires solving a more
general problem before solving a more specific problem, i. e. reasoning from
observed training cases to general rules, which are then applied to the test
cases [49, 93].

• On-line learning refers to a machine learning approach in which the model is
updated sequentially as new training data is available [29]. This is in contrast
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to so-called batch training, where the model is trained on the full training set
at once (as e. g. in second-order stochastic learning methods). Online learning
is widely used in many areas of current machine learning research, for reasons
which will be discussed in Section 5.7, but also because it allows training on
very large data sets, which do not fit into computer memory all at once. In
fact, a variant of online learning using mini-batches (i. e. a small number
of observations or feature vectors) combined with backpropagation leads to
Stochastic Gradient Descent (SGD), which currently is the most common
training method for artificial neural networks.

It should be noted that the terms ”model” and ”learning” often are used loosely
and interchangeably; for example, an unsupervised model basically refers to a model
being trained in an unsupervised fashion, while the same model could possibly be
trained in a supervised manner as well. This wide-spread use of terminology merely
puts the model under consideration into a certain context.

5.3 Fundamental Neural Network Structure

Neural networks can be deployed as generative or discriminative models and can
basically always be viewed as predictors or generators of values. The fundamental
difficulty of leveraging neural networks is to find a topology (structure) and an
appropriate training method to learn the model parameters, such that the predictions
made by the model best match the underlying statistical distribution from which the
values originate. The Kolmogorov theorem [190] in combination with the Universal
Approximation theorem [65] essentially state that a feed-forward network with
a single hidden layer containing a finite number of neurons can approximate an
arbitrary continuous function on compact subsets of RN , under mild assumptions
on the activation function. However, it does not tell one how to determine the
relevant parameters [82]. This section lays the foundation for the more complex
model topologies described later in this chapter, by giving a mathematical definition
of the term neuron, the atomic component of almost any current neural network
model. It describes its parts and function and how it is used to form larger networks.

5.3.1 The Artificial Neuron

A single artificial neuron is commonly defined as a unit that performs the following
computation [26]:

φ(a) = φ

(
D∑
i=1

wizi + b

)
= φ (wᵀz + b), (5.1)
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Figure 5.2: Schematic illustration of an artificial neuron.

i. e. the activation a of the neuron is obtained by forming a weighted linear (affine)
combination of the D input values zi with the weights wi and adding the bias value b.
The output of the neuron is then computed by feeding a to the activation function φ.
There exists a multitude of activation functions, both linear or non-linear, and the
most common ones will be discussed in Section 5.3.2. The number D of inputs zi to
a particular neuron is also referred to as fan-in. This term is commonly used when
deriving appropriate weight initialization schemes (cf. Section 5.7.4). An example of
an artificial neuron (5.1) is visualized in Figure 5.2.

When comparing this mathematical definition to biological neurons one can
observe the analogy of the weighted linear transformation wᵀz to the dendrite-
synapse counterpart (cf. Section 5.1): Dendrites are the projections of neurons that
serve to propagate the electrical stimulation received from other neural cells to its cell
body (soma). These electrical signals are transmitted through an electro-chemical
process from a large number of connected neurons to the dendrites via synapses,
which are located at various points throughout the dendritic tree. Simply stated,
each dendrite performs a multiplication by that dendrite’s weight value, as modeled
by wi in (5.1), which is realized by adapting the amount of neurotransmitters in
the synapses w. r. t. the strength of the input signal. Negative weights wi can be
used to model inhibition effects inside the synapses. Last but not least, the bias b
can be justified from a biological point of view, representing the potential offset, or
just as a mathematical commodity, in order to obtain beneficial mathematical and
algorithmic properties. In physiological neurons the axon effectively samples the
electrical potential resulting from the summation inside the soma and once reaching
a certain potential, it will transmit a signal pulse down its length - it is said that it
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fires. This temporal aspect of information processing and more detailed modeling of
the processes inside a biological neuron will lead to the completely different paradigm
termed Spiking Neural Networks [28, 212, 267]. Nonetheless, several non-linear
processes can be observed in biological neurons, whose effects are attempted to be
approximated by the non-linearity of the activation function φ [272].

5.3.2 The Activation Function

As seen in (5.1) the activation function φ takes the affine transformation of the
neuron’s input and applies a specific function on it, thus defining the output behavior
of each node. While linear activation functions are used in certain circumstances,
most of the time one desires to introduce non-linear properties to the neuron as a
computational unit. This allows neural networks to learn a much wider range of
complex, non-linear mappings between its in- and outputs and to become much more
powerful function approximators. Many activation functions map the input to a
limited output range, effectively compressing the activations, which is desirable in
many cases, since it keeps the dynamic range of values under control. In order to
allow backpropagation (cf. Section 5.7.1) to work, activation functions should satisfy
two constraints: They should be continuously differentiable, i. e. their derivative
should exist (ideally in closed form) everywhere, and they should be monotonic
functions. In the following a number of common activation functions are defined and
briefly described, to the extent needed for the work discussed in this thesis.

Linear (Identity)
The simplest activation function is the linear, or identity, function φlinear(z) defined
as:

φlinear(z) = z (5.2)

φ′linear(z) = 1 (5.3)

with φ′linear(z) being its derivative. φlinear(z) is depicted in Figure 5.4a. As (5.3)
shows, the derivative of the linear activation function is constant, which means that
the gradient has no relationship to its input z. As will be shown in Section 5.7.1 any
parameter update will therefore be constant, which is often undesirable. Further, as
alluded to above, the lack of non-linearity leads to a severe limitation in the capacity
of the neuron to approximate more complex, interesting functions.

Sigmoid
One of the most widely known and adopted activation functions is the sigmoid, or
logistic, function σ(z)

φsigmoid(z) = σ(z) =
1

1 + e−z
(5.4)
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φ′sigmoid(z) = σ′(z) = σ(z)(1− σ(z)) (5.5)

where φ′sigmoid(z) denotes the derivative. φsigmoid(z) is depicted in Figure 5.3a and
as one can see, its output values are limited to the range [0, 1]. Further, it saturates
towards the tails of the function, i. e. big input values z are compressed. This
saturation characteristic, however, can give rise to the so-called vanishing gradient
problem during training (cf. Section 5.7.1): If the input values z to φsigmoid(z) are
too big, e. g. due to inappropriate weight initialization, the output values are either
close to 0 or 1 and the gradients become close to zero. In consequence, this leads
to the training to be drastically slow or even stop. If one manages to control this
situation, however, the gradient is very easy and fast to compute, since it uses the
value σ(z) of the activation itself, as can be seen from (5.5).

Hyperbolic Tangent
An alternative to the sigmoid activation function is the hyperbolic tangent (tanh),
given by

φtanh(z) = tanh(z) =
ez − e−z

ez + e−z

= 2 · σ(2z)− 1

(5.6)

φ′tanh(z) = tanh′(z) = 1− tanh2(z) (5.7)

again with φ′tanh(z) representing the derivative of φtanh(z). It’s graph is shown in
Figure 5.3b. As can be observed from (5.6) there exists a simple relationship to
the sigmoid function (5.4). In fact the hyperbolic tangent has the same s-shape,
but φtanh(z) ∈ [−1,+1] and it is symmetric around (0, 0). This symmetry and the
fact that φtanh(z) can take on negative values have been found to be advantageous
in some neural network topologies, e. g. for parts of Long Short-Term Memory
networks (cf. Section 5.5.2), because it allows the gradients to flow backwards [104].
Nonetheless, the hyperbolic tangent potentially may also suffer from the vanishing
gradient problem.

Softsign
The softsign activation function was initially proposed by Bergstra and colleagues [23]
as a refined descriptive model of the visual area V1 of the human cortex and a
replacement of the affine-sigmoidal function (5.4). In particular it offers a gentler
non-linearity towards the tails than sigmoid or tanh functions, as can be seen from
Figure 5.3c. It approaches its asymptotes much more slowly by design, since its tails
are quadratic polynomials rather than exponentials. Since the detailed formulation
is rather involved, an approximation was proposed as

φsoftsign(z) =
z

1 + |z|
(5.8)
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Figure 5.3: Common non-linear activation functions.

φ′softsign(z) =
1

(1 + |z|)2
(5.9)

Thus, φsoftsign(z) is similar to the hyperbolic tangent, but due to its smoother
asymptotes potentially behaves differently regarding saturation.

Rectified Linear Unit (ReLU)
Even though the Rectified Linear Unit (ReLU) was first published by Hahnloser and
colleagues [124, 125], it wasn’t until the publication by Nair and Hinton [232] that it
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Figure 5.4: Linear and piecewise-linear activation functions.

was intensively studied in many different machine learning areas, leading to a number
of improvements, e. g. in image recognition [105] or speech recognition [211, 344]. It
currently is the most widely used activation function in deep neural networks [201].
The ReLU is defined as

φrelu(z) =

{
0 for z < 0

z for z ≥ 0
(5.10)
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φ′relu(z) =

{
0 for z < 0

1 for z > 0
(5.11)

and its graph is depicted in Figure 5.4b. It is essentially a half-wave rectified version
of the linear function (5.2) and offers a number of desirable properties: It reduces
the vanishing gradient problem w. r. t. the sigmoid and tanh activation functions,
because it saturates only for z ≤ 0. Furthermore, it is computed very efficiently,
which allows for fast and effective training, even on very large data sets. In addi-
tion, the ReLU shows sparse activation, both for randomly initialized as well as for
pre-trained networks: If the weights w in (5.1) of a specific neuron are updated in a
way such that the affine transform wᵀz + b ≤ 0, then the activation of that neuron
will always be zero, i. e. φrelu(z) = 0, and hence the neuron will remain in-active
and not contribute to any subsequent network computation. With an appropriate
implementation this can lead to large computational savings using ReLU networks.

However, it is exactly this characteristic which also poses the biggest potential
problem, leading to what is referred to as the dying ReLU problem: If the activation of
a ReLU neuron is always zero, then no gradients flow backwards through the neuron
during backpropagation and hence no parameter updates will occur on the weights
and biases of this neuron. This effectively is another flavor of the already encountered
vanishing gradient problem. While this sparsity can lead to computational savings it
also effectively decreases the model capacity, i. e. the ability of the neuron or network
to approximate certain functions. Another critique the ReLU sometimes suffers is its
non-differentiability at zero, see (5.11); in practice, however, this is easily solved by
arbitrarily assigning either 0 or 1 at z = 0. Finally, the ReLU is unbounded for z > 0,
which can occasionally lead to problems during training, for example excessively
large gradients. This situation can, however, be resolved by gradient clipping or
similar counter-measures.

Parametric Rectified Linear Unit (PReLU)
In an attempt to mitigate the dying ReLU problem the Leaky ReLU [211] was
proposed and later generalized by He and colleagues [136] to the Parametric Rectified
Linear Unit (PReLU), which is defined as

φprelu(α, z) =

{
αz for z < 0

z for z ≥ 0
(5.12)

φ′prelu(α, z) =

{
α for z < 0

1 for z ≥ 0
(5.13)

where α > 0 accounts for a small positive slope for z < 0. The graph of the PReLU
is shown in Figure 5.4c for α = 0.1, a rather large value just chosen for graphical
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clarity. The Leaky ReLU is obtained for α = 0.01. The PReLU is an interesting
extension to the ReLU, showing some improvements on image classification tasks
at almost no computational cost [136]. Yet there is an ongoing debate about its
usefulness due to inconsistent improvements on other tasks.

Sigmoid-Weighted Linear Unit (Swish)
As an alternative improvement of the ReLU, researchers from the Google Brain team
proposed a new activation function called Swish [264], defined by

φswish(z) = z · σ(z) (5.14)

φ′swish(z) = φswish + σ(z)(1− φswish). (5.15)

They demonstrated that by simply replacing all ReLU activation functions with
Swish units they managed to improve the state-of-the-art results on a number of
challenging image recognition tasks. Figure 5.3d shows the activation function around
the origin. Contrary to other activation functions, it is a smooth, non-monotonic
function and it is conjectured that precisely this non-monotonicity is responsible for
the improved behavior. One can view (5.14) as a self-gating mechanism, where the
input value z is gated by the sigmoid σ(z).

Maxout
One particular, less often used, activation function is the maxout function [110],
which is defined as

φmaxout(z) = max
i

zi (5.16)

∂φmaxout
∂zj

=

1 for j = argmax
i

zi

0 for j 6= argmax
i

zi
(5.17)

Hence, φmaxout(z) returns the maximum of its input values. The basic idea of max-
out is to learn a piece-wise linear function, which is linear everywhere, except for
J − 1 points, where J is the number of inputs of the maxout. According to the
Stone-Weierstrass theorem such a function can approximate any continuous function
and Goodfellow and colleagues [110] proof that any continuous function can be
approximated arbitrarily well by a maxout network with two maxout units, since
the maxout selects the maximum from k models (via its inputs). Maxout activation
functions are often found in conjunction with convolutional neural networks, which
are explained in Section 5.4.
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Softmax
All previous activation functions result in exactly one output value, which in most
cases serves as input to other neurons. However, one of the most widespread and
useful activation functions for classification is the multinomial softmax function,
given by

φ
(i)
softmax(z) =

ezi∑C
j=1 e

zj
for i = 1, ..., C (5.18)

∂φ
(i)
softmax

∂zj
= φ

(i)
softmax(z)(δij − φ(j)

softmax(z)) (5.19)

where ∂φ
(i)
softmax/∂zj denotes the partial derivative of the the ith output value w. r. t.

input zj. The most important property of the softmax function is that it takes an

un-normalized vector z and normalizes it so that each output element φ
(i)
softmax(z) is

in the interval [0, 1] and the sum of all output values sum up to one, i. e.

φ
(i)
softmax(z) ∈ [0, 1] ∀ i (5.20)

C∑
i=1

φ
(i)
softmax(z) = 1 (5.21)

These properties allow the outputs to be interpreted as probabilities [26], and there-
fore the softmax is often used as the last layer in neural network-based classifiers to
map un-normalized intermediate values to a probability distribution over predicted
output classes.

For the case of two classes, i. e. C = 2, there exists the following interesting
equivalence between the softmax and the the sigmoid activation function:

φ
(1)
softmax(z1, z2) =

ezi

ez1 + ez2

=
1

1 + e−(z1+z2)

= φ
(1)
sigmoid(z1 − z2)

(5.22)

φ
(2)
softmax(z1, z2) = φ

(2)
sigmoid(z2 − z1) (5.23)

This means that for binary classification both softmax or sigmoid activation functions
can be used equivalently. One advantage of the sigmoid over the softmax, however, is
that using the former with a threshold allows for tuning the decision of the winning
class by selecting a threshold different from 0.5.
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5.3.3 Feed-Forward Neural Network

By composing multiple neuronal units, each of which computes (5.1), much more
powerful function approximators can be built than what could be achieved by a
single neuron alone. Building a neural network on the one hand is accomplished by
duplicating a neuron and connecting the copies to the same inputs (or a subset of
them), but with separate weights and biases - this collection of computational units
is commonly referred to as a layer. On the other hand the neuronal outputs can be
used as inputs to other neurons2, forming a series of functional transformations. The
organization of neurons into layers and stacking these layers into networks constitutes
a basic design principle for many neural network topologies in use today and in the
following a number of them will be explained in detail.

The simplest possible network consists of an input layer, to which the input
values xi (e. g. feature vectors) are fed, and an output layer, which generates some
prediction ŷi. More powerful networks add one or more so-called hidden layers
in-between, which increases the capacity and the predictive power of the network.
Figure 5.5 shows an illustration of a feed-forward network with two hidden layers.
In such a network there are no interconnections between neurons of the same layer
and the information flow is uni-directional from input to output. Again, the reader
is referred to later sections for more elaborate extensions of this type of network.

Extending the formulation of a single neuron (5.1) to the general case, let

a
(l)
j =

D∑
i=0

w
(l)
ji z

(l)
i (5.24)

be the activation of neuron j in layer l for D input values z
(l)
i . Here we have absorbed

the bias b
(l)
j = w

(l)
j0 into the weight vector by defining an additional input variable z0

whose value is clamped at z0 = 1. Each of the activations a
(l)
j is then transformed

using the activation function φ(·) to obtain z
(l+1)
j = φ(l)(a

(l)
j ). Note that the activation

functions do not need to be identical for all neurons in the network. As pointed
out before the outputs z

(l+1)
j often serve as the input for the next layer l + 1 in the

network. The weights (and biases) w
(l)
ji can be subsumed in the weight matrix W(l)

and the same can be done for the inputs, activations, and outputs of any layer. This
results in the shortened notation:

z(l+1) = φ(l)(W(l)z(l)) (5.25)

2The number of neurons a particular neuron is connected to is referred to as fan-out. This will
be of importance for weight initialization schemes discussed in Section 5.7.4.
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Figure 5.5: Illustration of a feed-forward neural network with two hidden layers.

where φ(l)(·) is applied element-wise. In the following the superscript l, indicating
the layer, will be dropped where confusion is unlikely. Combining the various layer
computations, an L-layer feed-forward neural network computes the function ŷ(x)

ŷ = φ(L)(W(L)φ(L−1)(W(L−1) . . . φ(1)(W(1)x))) (5.26)

The layers with indices l = 1, . . . , L − 1 are the hidden layers and one generally
refers to a network as a deep neural network (DNN) if it has at least two hidden
layers. For historic reasons, networks with one hidden layer are also called multi-layer
perceptrons (MLP) [273].

5.4 Convolutional Neural Networks

In this section, a special class of DNN called convolutional neural network (CNN)
will be described, which have played a very important role in the history of deep
learning. They were one of the first effective deep neural network models, long
before the advent of modern deep learning, and were also successfully used in early
commercial applications [200]. CNNs are exceptional representatives of biologically
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inspired artificial intelligence, with its history dating back to the Nobel prize winning
work by the neurophysiologists Hubel and Wiesel describing how the mammalian
vision system works in the primary visual cortex (V1) [161, 162, 163]. CNNs are
designed to roughly capture the following aspects of their findings [109]:

• V1 is organized as a two-dimensional spatial map mirroring the structure of
the image in the retina. CNNs accordingly arrange their features in terms of
2-D maps.

• V1 contains a great amount of so-called simple cells, which can be approximately
modeled by a linear function of the image in small and localized neighborhoods,
termed receptive fields. Neurons tuned to a particular receptive field exhibit
strong activation, while not responding to other stimuli; hence its name. The
kernels of CNNs, as described below, emulate these properties.

• Besides these simple cells, V1 also contains complex cells, which respond to
more complex patterns in the input image and in particular exhibit some
invariance to its position, scale, and rotation. This characteristic inspired the
use of pooling, which will be described later in this section.

The repetition of subsequent alternations of detection via kernels and pooling is
conjectured to exist as one moves deeper through multiple anatomical areas of
the cortex, eventually leading to individual cells which respond very specifically to
particular concepts and which are invariant to strong transformations of the input.
These cells, for example, have been shown to exists in the medial temporal lobe of
the human brain [261].

Fukushima [91, 92] proposed a hierarchical, multilayered neural network, called
the neocognitron, which is capable to learn robust visual pattern recognition and
which incorporates most of the design elements of CNNs. However, it used an unsu-
pervised, layer-wise clustering learning algorithms. About the same time Lang and
Hinton [195] introduced supervised training via backpropagation to train time-delay
neural networks (TDNN), which essentially can be viewed as one-dimensional CNNs
applied to time series. Based on the success of this work LeCun and colleagues [200]
developed and proposed the basic CNN structure and trained it on image objects
via 2-D convolutions. Historically, the evolution of CNNs was strongly motivated
and influenced by image recognition problems, but recently has also gained strong
popularity in other fields, such as ASR [3, 4, 101, 188, 279] or computational par-
alinguistics [302, 305, 336, 346, 385].

Before describing the components of a CNN model in detail, it is helpful to
observe some fundamental characteristics of convolutional networks and differences
to conventional feed-forward networks. Due to the full connectivity of the latter
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and the large number of free parameters this entails, they often suffer from the
curse of dimensionality, which either requires very large amounts of data or quickly
leads to overfitting on smaller data sets. As will be become apparent below, due
to weight sharing this is much less of a problem in CNNs. Further, FF-DNN treat
input features which are far apart (both in time and frequency) in the same way
as features which are close to each other. In contrast, CNNs take into account the
spatial structure of data, enforcing a local connectivity pattern between neurons of
adjacent layers, i. e. each neuron is connected to only a small, coherent region of
the previous layer [121]. This characteristic is important when selecting the type of
input features, as for a CNN to work well the features should be locally correlated
(e. g. as a spectrogram or log-mel features). Decorrelated features, such as MFCC,
instead are less suited and often lead to sub-optimal results [165].

5.4.1 The Convolution Operation

As the name convolutional neural network implies, the central mechanism of a CNN
is constituted by the operation of convolution, which in general is defined as∫

i(u) k(v − u) du, (5.27)

with i(·), k(·) ∈ C. In the discrete domain, if k(·) has finite support in {−M, ...+M},
the (discrete) convolution can be re-written as

(i ∗ k)(n) =
M∑

m=−M

i(m) k(n−m). (5.28)

In practice, however, the convolution is commonly replaced by cross-correlation,
given by

o(n) = (i ∗ k)(n) =
M∑

m=−M

i(m) k(n+m). (5.29)

For the scope of this thesis, and of most of current research described in the literature,
i(·), k(·) ∈ R and hence (5.28) and (5.29) only differ in the fact that the latter inverts
the order of its coefficients. However, since k(·) is to be learned from data and
therefore the ordering is irrelevant, cross-correlation can safely be used instead of
convolution without affecting the results. In the common terminology of convolutional
networks, i(m) is referred as the input of the CNN and k(n) as the kernel. The
resulting output o(n) = (i ∗ k)(n) is usually called a feature map. In general, the
inputs, kernels, and outputs are represented by multidimensional arrays (tensors)
and the kernel (weights) are the free parameters to be learned from data. Specifically,
in audio applications one often performs convolution (correlation) over mini-batches
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Figure 5.6: Illustration of the convolution operation performed by kernel K over
the input I. For illustration purposes the input and kernel values are chosen to be
binary.

of two-dimensional inputs; for example, a spectrogram or a sequence of mel-filterbank
vectors form the input ”image” I and the shape of the resulting input tensor is
(mini-batch size, number of timesteps, number of frequency bands). The resulting
2-D cross-correlation operation over each item in a mini-batch is then given by

O(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n) ·K(m,n), (5.30)

where use of the commutative property is made and the fact is exploited that the
input is assumed to be real. This formulation in fact reflects the most common
implementation of convolution3 in many deep learning frameworks, where the kernel
K is sliding across the input I to compute the output feature map O. An illustration
of this mechanism is given in Figure 5.6.

In summary, a convolutional layer computes its output as follows: A kernel (also
called filter) K computes the dot product between the kernel weights and the input
values to obtain the activation, which is stored in a feature map, at the current
location. The area the kernel covers is referred to as the receptive field, in analogy
to the biological archetype explained above. Then the kernel proceeds to the next
location, which is determined by the stride S, the step size the kernel moves each
time. A stride of one means that the kernel slides from one feature or time step to the
next, while S > 1 results in sliding over the input in larger intervals, which leads to
less overlap between the feature map outputs. Note that there can be separate strides
for the two directions of the input. In order to capture different characteristics of the
input each CNN layer usually computes several different feature maps using different
kernels. These feature maps are then combined into the output tensor of the CNN for

3This thesis follows the convention of many deep learning libraries of implementing cross-
correlation while calling it convolution.
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further processing. In order to render the output non-linear, an activation function
is applied to each element of this feature map tensor. Furthermore, padding might be
added to the inputs I: the size of the feature maps is always smaller than the size of
the inputs which leads to a continuous shrinking if one stacks several convolutional
layers on top of each other. By padding the input with 0’s (or some other appropriate
values) one can compensate for this loss. Further, one can leverage padding to ensure
that kernel sizes and strides match the input. Eventually, by introducing zeros
between the kernel elements, called dilation, the size of the convolutional layer’s
receptive field can be increased and cover more relevant information [374]. This can
be important for tasks which require more context to make a prediction. The main
hyperparameters to chose, when defining a CNN model topology, are therefore the
number of feature maps, also called the depth of the convolutional layer, the size of
the kernel K, the stride S, the padding applied to the input I, and the dilation factor
D. Based on these hyper-parameters the size of the feature maps for a particular
convolutional layer can be computed as

O =

⌊
I −K + 2 · P

S

⌋
+ 1, (5.31)

where O is the size of the (output) feature map, I the corresponding size of input I,
K the size of the kernel K, P the the number of padding elements, and S the stride,
for one dimension. Typically, these values are chosen to be identical for the two (or
all) dimensions of the input, but this need not be so.

As Goodfellow and colleagues [109] point out, the convolution component of
CNNs leverages three important aspects that presumably help to improve a machine
learning system and possibly are the reason for the success of convolutional neural
networks:

• Sparse connectivity is achieved by designing the kernel K to be smaller than the
input I. This reduces the number of free, learnable parameters and hence leads
to higher statistical efficiency of the network, e. g. smaller risk of overfitting.
Further, the general network size becomes smaller, which is of interest for
practical applications. Besides, this fact also implies that computing the
outputs requires fewer operations: For m inputs and n outputs, feed-forward
networks require computations on the order of O(m× n) per example, while
their CNN counterparts require only O(k×n), where k is the number of kernel
parameters. Since k is usually much smaller than m this leads to substantial
computational savings.

• Parameter sharing refers to re-using the same (kernel) parameters for many
computations in a model. This has the favorable implication that only one set
of parameters needs to be learned for every location in the input feature map,
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Figure 5.7: Illustration of 2× 2 max pooling.

instead of many separate sets as done in conventional feed-forward networks.
This dramatically can reduce the memory requirements of a CNN model w. r. t.
dense neural networks in the order of magnitudes.

• Equivariance emerges from the parameter sharing of CNNs and describes the
translation invariance caused by the convolution operation. It denotes the
property that the output changes in the same way as the input, which is highly
useful when one wants to detect certain structures, e. g. edges in a spectrogram
due to harmonic structure, which appear many times in the input at different
time and frequency locations.

5.4.2 Pooling

Pooling in a very important concept of convolutional neural networks and is a
type of non-linear down-sampling of its input. Pooling typically is implemented by
partitioning the input feature map into non-overlapping areas and computing a single
output for each such sub-region. A pooling layer hence progressively reduces the
extent of the feature map representation, which reduces the number of parameters
and therefore the computational and memory requirements of the network. This
further enhances the above-mentioned translation invariance and generally helps
in controlling overfitting. Therefore, in many current CNN models a pooling layer
is inserted after a convolutional layer. The most common pooling function is max
pooling [31], which outputs the maximum of its inputs, and which is illustrated in
Figure 5.7. Max pooling is essentially identical to the maxout activation function,
defined by (5.16). However, many other pooling functions have been defined in the
literature, for example average pooling, Lp-norm pooling, stochastic pooling, spatial
pyramid pooling, etc. [119].
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Figure 5.8: Example of full CNN model.

5.4.3 Model Structure

As alluded to above, a convolution layer is commonly followed by a pooling layer, to
the degree that such a layer pair is often seen as a single CNN layer. Terminology
in this regard varies in the literature. However, at the output of the last layer one
or more fully-connected (FC) layers are usually appended, which are standard feed-
forward layers. All (pooled) feature maps are flattened into a column vector, which
is fed into the (first) FC layer. The FC layer component operates on the high-level
features extracted by the initial layers of the CNN and tries to learn non-linear
combinations of these features. Therefore, the FC layers represent the classification
or regression stage performing high-level reasoning of the inputs. Further, they have
full access to all feature maps which allows them to perform the non-local processing,
which was intentionally hidden in the lower convolutional/pooling layers, but on
higher-level features. Alternating convolutional and pooling layers, followed by dense
fully-connected (or RNN) output layers, many different CNN architectures can be
created. Figure 5.8 shows an example of such a network. In fact, a large number of
models based on or incorporating CNNs have been proposed in the research literature
in recent years, many of which were competition- and challenge-winning designs.
Among the most prominent ones are AlexNet [194], ZF Net [378], GoogLeNet or
Inception network [338], and VGGNet [313], just to name a few. A comprehensive
review of recent advances in the research of CNNs can be found in [119].

5.5 Recurrent Neural Networks

The network structure described in the previous sections do not contain any recurrent
cycles and therefore can be represented by a directed acyclic graph (DAG). If one
instead allows cyclical connections as well, one obtains a class of models called
recurrent neural networks (RNN). RNNs essentially form a directed graph along a
temporal sequence and one of their main characteristics is that they show temporally
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Figure 5.9: Illustration of the unfolding principle in a recurrent neural network.

dynamic behavior [244]. This makes them especially suitable for processing sequential
data. While regular feed-forward networks only map input to output vectors, RNNs
can leverage their internal state, which serves as a memory of the history of previous
inputs and states, to predict the output. As pointed out by Graves [112] the equiva-
lent result to the universal approximation theory for feed-forward networks is that
an RNN with a sufficient number of hidden units can approximate any measurable
sequence-to-sequence mapping to arbitrary accuracy [126]. A large variety of RNNs
have been proposed in the research literature, including Jordan networks [173], Elman
networks [81], Hopfield networks [213], Time-Delay Neural Networks [196] and Echo
State Networks [169]. One commonality of all these networks is that they share the
weights across multiple time steps.

Computing the forward pass in an RNN is analogous to that of a feed-forward
network with a single hidden layer. The only exception is that the hidden layer state
information from the previous timestep is added to the (external) input. Let xi(t) be
the value of the i-th of I input units at time step t = 1, . . . , T . Further, let J be the
number of hidden units in the recurrent network layer. Then, the output of hidden
unit k at each time step t is given by

hk(t) = φ

(
I∑
i=1

wki · xi(t) +
J∑
j=1

wkj · hj(t− 1)

)
. (5.32)

This formulation differs from Equations (5.24) and (5.25) in the feed-forward network
case only in additionally considering the input from the hidden layer outputs of the
previous time step (apart from the slightly changed notation). The full sequence
of hidden states is computed by starting at t = 1 and recursively applying (5.32),
incrementing t at each time step. At t = 1 the hidden states hk(0) need to be
initialized properly before performing any computations. Often this is done by
setting hk(0) = 0 for all hidden states, but it has also been found that the stability
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and performance can sometimes be improved by using nonzero initial values [388].

It is instructive to visualize RNNs by unfolding the update graph along the
temporal input sequence. Figure 5.9 shows the idea behind it for a small neighborhood
around the current time step t. The unfolded graph does not contain any cycles and
this helps to generalize to networks with more complex update dependencies.

5.5.1 Bidirectional Recurrent Neural Networks

As shown in the previous section RNNs can theoretically access and make use of
all past information presented to the network. However, in certain circumstances
it is helpful to also have access to future input. This idea leads to Bidirectional
Recurrent Neural Networks (BRNN), introduced by Schuster and Paliwal [308]. The
basic idea behind them is to process the full input sequence in two separate recurrent
layers: one layer in the conventional way (forward direction) for t = 1, . . . , T , and one
operating on the time-inverted sequence (backward direction), i. e. for t = T, . . . , 1.
After processing both directions both outputs are connected to the same output
layer, as illustrated in Figure 5.10. This approach provides the complete past and
future context of the input sequence to the output layer.

While this approach has shown to result in significant improvements over uni-
directional RNNs in several domains, it suffers the problem of non-causality, which
renders bidirectional algorithms unfeasible for many real-time algorithms and ap-
plications which require minimal delay. However, there also exist many problems,
where the violation of causality is not an issue, for example if the input sequences
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are of spatial nature or in situations where off-line processing of data is feasible.
BRNNs have proven to be highly competitive in many research areas, such as text
processing [266], clinical situations [252], speech recognition [114], and computational
paralinguistics [37].

As an intermediate solution to the problem of non-causality and the induced delay,
it is also possible to either process sub-segments of a longer sequence, e. g. segments
between pauses in a speech utterance, or to leverage a limited temporal look-ahead
of a certain duration, which is acceptable for a specific real-time application. This
look-ahead (and its involved delay) represents the future context used on the forward
and backward passes of the BRNN computations.

5.5.2 Long Short-Term Memory Neural Networks

As discussed in the previous sections, RNNs have the ability to leverage temporal
context information in mapping input sequences to output sequences and theoreti-
cally they can keep track of arbitrarily long dependencies in the input. However, in
practice the range of context that standard RNNs can make use of is fairly limited.
Hochreiter [153, 155] found that the reason for this problem lies in the vanishing
gradient problem: In backpropagation training (cf. Section 5.7.1) the update of each
parameter in a neural network is proportional to the partial derivative of the loss
function w. r. t. the parameter. Following the unfolding principle shown in Figure 5.9,
each additional time step in the computation of the RNN is equivalent to adding
another layer in a corresponding feed-forward network. However, this means that
the impact of the input at a particular time step diminishes the further away the
loss function is computed. Accordingly, the respective gradient of the loss w. r. t. to
this input becomes vanishingly small, hence preventing the parameter from changing
its value. Similarly the exploding gradient problem [20, 242] describes an excessive
increase of the norm of the gradient due to the explosion of the long term components,
which can grow exponentially more than short term ones, leading to unstable or
divergent training [243].

Hochreiter and Schmidhuber [154] proposed the Long Short-Term Memory
(LSTM) network in an attempt to partially solve the vanishing gradient problem by
adding memory cells, self-loops, and input and output control gates which produce
paths through which the gradients can flow over long durations. Later Gers and
colleagues [98] introduced the forget gate, enabling the LSTM to reset its own state
and to erase previously stored information. Finally, Gers and Schmidhuber [97]
added so-called peephole connections, which are connections from the cell to the
gates, which facilitates learning precise timings. Today, LSTM networks are the
fundamental components of many of the most successful deep learning systems, both
in the research community and industry. For a detailed description of several LSTM
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element-wise multiplication.

variants, their historical evolution, and a summarization of their general performance
the interested reader is directed to [115].

As already mentioned before, there exist several variants of LSTM networks,
and since it is most relevant for the work in this thesis, an LSTM architecture with
peephole connections will be described in the following. It consists of a number of
recurrently connected memory blocks. Each such block contains one or more cells
and three gates, the input, output, and forget gate, which control the read, write,
and reset operations of the cells. Figure 5.11 presents a schematic illustration of an
LSTM block with a single memory cell. An LSTM layer composed of these blocks is
formally defined as follows [115]: Let x(t) be the input vector at time t, D be the
dimensionality of the input vectors, and N be the number of blocks in an LSTM
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layer. Then the parameters of this layer are defined as:

• Input weights: Wz,Wi,Wf ,Wo ∈ RN×D

• Recurrent weights: Rz,Ri,Rf ,Ro ∈ RN×N

• Biases: bz,bi,bf ,bo ∈ RN

• Peephole weights: pi,pf ,po ∈ RN

Given these parameters the formula of an LSTM layer forward pass are given by

z(t) = φ(Wzx(t) + Rzh(t− 1) + bz) block input (5.33)

i(t) = σ(Wix(t) + Rih(t− 1) + pi � c(t− 1) + bi) input gate (5.34)

f(t) = σ(Wfx(t) + Rfh(t− 1) + pf � c(t− 1) + bf ) forget gate (5.35)

c(t) = i(t)� z(t) + f(t)� c(t− 1) cell state (5.36)

o(t) = σ(Wox(t) + Roh(t− 1) + po � c(t) + bo) output gate (5.37)

h(t) = o(t)� φ(c(t)) block output (5.38)

where φ and σ are activation functions and � denotes element-wise multiplication.
The outputs h(t) are the inputs to any subsequent, higher layer, and simultaneously
represent the state of the current hidden layer, which is fed into all LSTM blocks
at the next time step t+ 1. From this formulation the number of parameters in a
LSTM layer, ΠLSTM , can be deduced as

ΠLSTM = N · (4 · (N +D + 1) + 3), (5.39)

where N is the number of (LSTM) units, D is the input dimensionality, the additional
1 accounts for the biases, and the 3 reflect the peephole connections.

The cell lies in the heart of an LSTM block and keeps track of the dependencies
between the elements in the input. It is able to store and access information over
long periods of time, thereby mitigating the vanishing gradient problem [112]. The
input gate instead controls the information flow into the cell, while the output gate
determines to which extent the cell state contributes to the output of the LSTM
block. Finally, the forget gate controls the keep/forget characteristics of the cell. For
example, if the input gate is closed, i(t) = 0, no input arrives at the cell and hence
c(t) remains uninfluenced by the input. The forget gate can reduce the current cell
state value, by multiplying it with a value less then 1 or keeping it unchanged by
setting f(t) = 1. Eventually, if o(t) = 0, no output is generated from the LSTM block.

All gates operate as a kind of information throttle and hence should output a
value between 0 and 1, which multiplicatively controls the information flow through
the LSTM block. For this reason the activation function typically adopted for
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this purposed is the sigmoid function (5.4), as shown in Equations (5.34), (5.35),
and (5.37). On the other hand, the activation function φ, which operates on the
block input, should be of a type whose second derivative can sustain for a long range
before going to zero, in order to overcome the vanishing gradient problem. The tanh
activation function (5.6) is therefore commonly used.

5.5.3 Gated Recurrent Units

Based on the wide-spread use and the success of LSTM architectures, researchers
have sought to identify the elements of LSTM which are really necessary and those
which might be simplified or even eliminated, for example in order to reduce the
number of parameters to fight overfitting or to reduce the computation time both
during inference and training. One such alternative is the Gated Recurrent Unit
(GRU) [53, 55, 56], which is defined as

u(t) = σ(Wzx(t) + Rzh(t− 1) + bz) update gate (5.40)

r(t) = σ(Wrx(t) + Rrh(t− 1) + br) reset gate (5.41)

h̃(t) = φ(Whx(t) + Rh(r(t)� h(t− 1)) + bh) candidate activation (5.42)

h(t) = (1− u(t))� h(t− 1) + u(t)� h̃(t) activation (5.43)

Similar to the LSTM unit, a GRU possesses gates which modulate the information
flow inside the unit, but it does not have separate memory cells. Equation (5.43)
states that the activation at time step t, h(t), is a linear interpolation between
activation at the previous time step and the candidate activation h̃(t). The update
gate u(t) decides how much the unit updates its activation (cf. (5.40)). While the
computation of a linear sum between the existing state and the newly computed
state is similar to the LSTM unit, there is no control mechanism in the GRU for
the amount of exposition of the internal state. Instead a GRU exposes its internal
state each time [55]. The reset gate defined by (5.41) enables the GRU to forget
its previously computed state, if r(t) ≈ 0. As noted in [55] is is unclear a-priori, if
LSTM or GRU networks perform better on a particular task. One possible advantage
of the GRU over the LSTM, however, is the smaller number of parameters in the
GRU architecture, ΠGRU , which is given by

ΠGRU = 3 ·N · (N +D + 1), (5.44)

where as previously N is the number of (GRU) units, D is the input dimensionality,
and the additional 1 accounts for the biases. For completeness it is mentioned here
that there exists a great number of variants to the described GRU formulation; the
interested reader is referred to [71, 139] for more details.
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5.6 Residual Networks

Many of the successful deep learning algorithms and models used nowadays have
originated from the research field of visual object recognition and the depth of
neural networks was often found to be of crucial importance [313, 338]. However,
stacking more layers does not automatically lead to better network performance, a
phenomenon also observed in computational paralinguistics, e. g. by the author and
his colleague [35]. Instead adding more layers to a suitably deep model can lead to
higher training error, as shown in [137], and hence this degradation is not due to
overfitting. It was found that gradients vanished from bottom to top layers, which
leads to worse performance. In order to solve this problem the authors proposed a
solution by adding (identity) skip connections or shortcuts to the network, effectively
bypassing some layers. The resulting deep residual networks (ResNet) consist of
repeatedly stacked building blocks called residual units. Each such unit can be
expressed as

a(l) = F(z(l);W(l)) + S(z(l)) (5.45)

z(l+1) = φ(l+1)(a(l)) (5.46)

where z(l) represents the input to the l-th residual unit, W(l) = {W(l,k)|1 ≤ k ≤ K}
the set of the units weights and biases, and K the number of layers composing
the residual unit. The residual function is denoted by F and the function φ(l+1) is
the output activation function after element-wise addition of the residual and the
input. In the original formulation in [137] the shortcut function S is the identity
mapping, i. e. S(z(l)) = z(l), except for cases where the dimension of z(l) is changed
by F . In these cases S is needed to match the dimensions and set to be a linear
transformation, i. e. S(z(l)) = Wsz

(l). An example of a residual unit with K = 2 is
shown in Figure 5.12. Commonly the number of layers K per residual unit is small,
i. e. K ∈ [2, 3], in order to avoid the vanishing gradient problem mentioned above,
but there is no strict limit to this.

A similar approach, inspired by Long Short-Term Memory recurrent neural
networks, was introduced by Srivastava and his colleagues [322, 323]. The proposed
Highway Networks borrow the idea of an adaptive gating mechanism from LSTM
networks to allow for computation paths along which information can flow across
many layers without attenuation, the so-called information highways. This enables
training of very deep networks even with conventional gradient-based methods. Let
the computation of a normal feed-forward network be formulated as

z(l+1) = H(z(l),W
(l)
H ), (5.47)

which is a generalization of (5.25). A Highway Network additionally defines two non-

linear transforms, the transform gate T (z(l),W
(l)
T ) and the carry gate C(z(l),W

(l)
C ),
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Figure 5.12: Residual unit for K = 2 layers with associated weight layers W(l,1)

and W(l,2), where the biases are subsumed in the matrices (cf. Section 5.3.3). Note
that the internal activation function φ′ do not need to be identical to the output
activation function φ(l+1).

such that [323]

z(l+1) = H(z(l),W
(l)
H ) · T (z(l),W

(l)
T ) + zl · C(z(l),W

(l)
C ). (5.48)

Commonly, the carry gate is set as C = 1− T , which yields the common definition

z(l+1) = H(z(l),W
(l)
H ) · T (z(l),W

(l)
T ) + zl · (1− T (z(l),W

(l)
T )). (5.49)

For the Jacobian of the layer transform,

dz(l+1)

dz(l)
=

{
I, if T (z(l),W

(l)
T ) = 0

H ′(z(l),W
(l)
H ), if T (z(l),W

(l)
T ) = 1

(5.50)

which states that depending on the output of the transform gate, a highway layer
can smoothly vary its behavior between that of a normal layer and that of a layer
which simply passes through its inputs [323]. Note that the transform gates T and
the carry gates C should output values in the range [0, 1] to appropriately fulfill
their gating functionality. Hence, commonly the sigmoid activation function (5.4) is
chosen for both. A very detailed, recent study by He and colleagues [138] expounds
the impact of the identity mapping or short-cut path in ResNets, investigating many
different connection schemes.
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Figure 5.13: Illustration of the DenseNet architecture [160].

Some very interesting studies have recently been performed regarding the impli-
cations of ResNet architectures and their connection to other network types: First,
Greff and colleagues [116] found that randomly dropping layers in a ResNet has little
impact on the output representation and the performance of very deep networks,
defying a popular view of deep learning that higher layers learn a increasingly abstract
representation of lower layers. Instead they argue that successive layers iteratively
refine their estimates of the same features instead of computing an entirely new
representation. This finding was confirmed by Huang et al. [159]. Second, Liao and
Poggio [204] show that a shallow RNN is exactly equivalent to a very deep ResNet
with weight sharing among the layers and that such a RNN leads to a performance
similar to the corresponding ResNet, although is has orders of magnitude fewer
parameters. Further, they conjecture that a class of moderately deep RNNs is a
biologically-plausible model of the ventral stream in visual cortex. Third, besides
feed-forward networks the idea of creating information highways has also been ex-
tended to LSTM networks by introducing Recurrent Highway Networks [387]. These
networks allow to train multi-layer state transitions in recurrent neural networks.
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ResNets and Highway Networks share a key characteristic: they create shortcut
connections between lower and higher layers. The insights gained from the study
on these approaches led to an extended architecture called DenseNet. To ensure
maximum information flow between the layers in the network, all layers (with
matching feature map sizes) are connected directly to each other, i. e. each layer
obtains additional inputs from all preceding layers and passes on its own feature maps
to all subsequent layers [160]. An illustration of this network is given in Figure 5.13.
Contrary to ResNets and Highway Networks, the feature streams are combined by
concatenation, not summation, before they are passed on to the next layer. Usually,
DenseNet layers are rather narrow containing a relatively small number of filters
per layer. Hence, given the dense connection scheme each layer adds only a small
amount to the ”collective knowledge” [160] of the network. This is feasible since
the final classification layer(s) are connected to all feature maps in the network and
can leverage this distributed information. This also leads to an improved flow of
information through the network, especially regarding gradients, which is helpful in
training. Since each layer has direct access to the gradients from the loss function and
to the original input signal, this implicitly constitutes deep supervision [204]. The
authors of [160] also observed a regularizing effect caused by the dense connections,
which reduces overfitting on tasks with smaller training set sizes. Additionally, given
the particular connection scheme and the relatively fewer feature maps per layer,
DenseNets require fewer parameters than conventional CNNs.

5.7 Supervised Network Training

Besides choosing an appropriate model topology for a given task at hand, training
encompasses many equally important aspects of generating a network that generalizes
well to unseen test data. Selecting the right training algorithm and its associated
hyper-parameters often makes the difference between a model which excels and one
that fails. Generally, the model parameters {W,b} in a DNN are unknown a-priori

and need to be estimated from a set of training examples D
(sup)
train = {xi,yi}N1 , where

xi is the i-th input, yi the corresponding vector of targets (or labels), and N the total
number of training examples. This situation, where the targets yi are available is
called supervised training (cf. Section 5.2), since the targets guide the training process
to learn a desired mapping function from inputs to outputs. On the other hand,
for unsupervised training, where no targets are available, the training set reduces to
D

(unsup)
train = {xi}N1 . The process of learning the model parameters is usually called

the parameter estimation process or training process and is determined by a learning
algorithm and a loss function, as will be described in the following.
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5.7.1 Parameter Estimation via Error Backpropagation

Supervised training is normally carried out by minimizing some error or cost func-
tion, commonly also called loss function L(θ), where θ represents the free model
parameters to be learned from the training data. As a short-hand notation, L(θ)
is often referred to as just the loss. This loss reflects the ability of the network to
accurately model the function which maps the inputs x to the corresponding outputs
y; i. e. the better the model predicts the true targets y, the smaller the loss. For
the training algorithms described in this thesis, as applies for most current research,
the loss function is defined to be a scalar value and ideally it should match the
evaluation metric used for a certain problem. However, this is not always the case:
for example, the AUC often used in paralinguistic settings is non-differentiable and
thus unsuited for the gradient-based learning methods described in the following. In
general, however, the loss function should be easy to evaluate and highly correlated
to the final evaluation metric of the task so that any improvements on the cost
function directly lead to improvements in the final evaluation score.

Formalizing this intuition, the model parameters need to be modified in a way so
that they minimize the expected loss

L(θ) = Ex,y(L(θ; x,y)) =
1

N

N∑
i=1

L(θ; xi,yi), (5.51)

where L(θ; xi,yi) is the per-example loss for the i-th input-output pair (xi,yi), i. e.
the global loss is assumed to be the average of the per-example losses. For regression
problems a very popular loss functions is the mean squared error (MSE)

LMSE(θ; xi,yi) =
1

2
‖yi − ŷi‖2 =

1

2
(yi − ŷi)

T (yi − ŷi), (5.52)

where ŷ denotes the network output, i. e. the prediction of the true target y. For
classification problems the loss function is often chosen to be the cross-entropy (CE)

LCE(θ; xi,yi) = −
C∑
c=1

y
(c)
i · log ŷ

(c)
i , (5.53)

where C denotes the number of discrete target classes. It has been shown that
minimizing the CE loss is equivalent to minimizing the Kullback-Leibler divergence
(KLD) between the empirical probability distribution and the probability distribution
estimated from the DNN [373]. The final goal is to find a set of model parameters
θ∗ which minimizes the global loss

θ∗ = arg min
θ
L(θ), (5.54)
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where θ∗ is also referred to as the global optimum. A common way to minimize the
loss is compute its gradient w. r. t. to the model parameters,

∇θL(θ) =
1

N

N∑
i=1

∇θL(θ; xi,yi), (5.55)

and to adjust the model parameters θ accordingly. However, except for very simple
cases, minimizing L(θ) is usually a non-convex problem, since it shows highly
nonlinear dependencies on the model parameters. Often, there exist multiple local
minima in the loss function where the gradient vanishes, i. e. ∇θL(θ) = 0. Therefore,
one usually resorts to iterative numerical procedures, such as gradient descent, which
updates the current set of model parameters θτ by following the estimated gradient
downhill to obtain a new set of parameters

θτ+1 = θτ − λ · ∇θL(θτ ). (5.56)

Here λ, called the learning rate, is the step size determining how far to change the
model parameters in the negative direction of the gradient. Starting by computing
the gradient of the error function at the output of a neural network and using the
chain rule to iteratively compute the gradients for each layer down through the
network leads to the well-known backpropagation algorithm [199, 272].

Gradient descent has been criticized for being unreliable and slow and for this
reason stochastic gradient descent (SGD) was proposed as a stochastic approximation
of gradient descent. Instead of computing the gradient over the full training data
set, SGD computes gradients over parts of the data, so-called mini-batches:

∇θL(θ) =
1

B

B∑
i=1

∇θL(θ; xi,yi), (5.57)

where B is the size of the mini-batch. Hence, the model parameter updates are
performed after each mini-batch, leading to many more parameter updates per epoch4

than with standard gradient descent. Although the trajectory of parameter updates
in SGD is ”noisier” than in regular gradient descent, SGD has shown to be very
robust and superior in many applications [29, 186, 199, 277, 331].

For recurrent neural networks a particular variant of backpropagation is commonly
adopted, called backpropagation through time (BPTT) [362]. As for all recurrent
neural networks the training data is an ordered sequence of K input-output pairs,
(xi,yi)

K
1 . Here, K can be the length of an audio clip or just some shorter segment;

however, it must contain consecutive features of the same context, since recurrent

4An epoch is defined as processing the full training data once.

79



5. Deep Neural Networks

ai
xi

f xi+1 g yi+1

unfolding through time

ai
xi

f1

ai+1

xi+1
f2

ai+2

xi+2
f3 xi+3 g yi+3

Figure 5.14: Illustration of unfolding through time in the BPTT algorithm for three
time steps.

networks try to learn the underlying, time-dependent structure. Further, it is
necessary to specify some initial value h0 to the hidden state of the recurrent network
units. Often a vector of zeros is used for this purpose, but it is also possible to
keep the final state from a previous BPTT step as the initial value for the next one,
or to randomly initialize it to some other appropriate value. BPTT essentially is
equivalent to unfolding the recurrent network in time and can thus be viewed as a
feed-forward network with K layers, i. e. one layer per time step, but with all layers
sharing the same model parameters and feeding the input xi to the i-th layer. This
procedure is depicted in Figure 5.14. The BPTT algorithm computes the gradient of
the loss function w. r. t. all the network parameters, and hence, the model parameter
updates is the average over all gradients in the BPTT data chunk.

5.7.2 Learning Rates and Momentum

One of the main hyperparameters for the successful training of neural networks is
the (initial) learning rate λ of gradient descent, as shown in (5.56). It determines
the magnitude of the weight updates in the search to minimize the loss functions
and needs to be chosen appropriately: if it is set too small, only very small updates
will be made to the network weights, and hence training will progress very slowly.
Further, training can also get stuck in a local minimum and fail to explore the loss
landscape. If, on the other hand, the learning rate is set too large the weight updates
will be too large as well, which can lead to an explosion of the loss and to divergence
of training. The optimal learning rate depends on the shape of the loss landscape,
which in turn depends on both the chosen model topology and the dataset used for
training.

A commonly employed approach, known as learning rate annealing, is to start
with a relatively high λ and then reduce it over time following some schedule. The
main intuition behind this approach is that with a high initial learning rate the
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training process searches more globally in the loss landscape for good, low-loss regions,
while the annealing process allows to narrow down the search to the exact minimum
in a more fine-grained fashion. One of the most popular annealing schedules is the
linear or step decay

λτ+1 = cλ · λτ , 0 < cλ < 1, (5.58)

where cλ is the decay rate. Other commonly used annealing schedules are the
exponential decay, defined as

λτ+1 = λτ · e−cλp cλ > 0 (5.59)

and the 1/t decay, given by

λτ+1 =
λτ

1 + cλp
cλ > 0 (5.60)

where cλ is a decay parameter and p some counter. It is pointed out that the event
triggering a learning rate decay can be of differing nature: It can, for example,
be based on time, so that annealing is triggered after each epoch or after having
processed a certain number of mini-batches. Alternatively, it could be based on a
performance evaluation on the development data, triggering a learning rate decay
whenever the validation error stops to improve or falls below a certain threshold. In
addition to lowering the learning rate more elaborate techniques for finding a suitable
λ have been suggested: Smith [315], for example, proposes a cyclical learning rate
schedule which varies between two bound values.

A classical technique for improving the convergence rate of DNN training is the
momentum method. It is strongly motivated by the following analogy: if the loss
is visualized as the location in a hilly terrain, then the set of model parameters θ
at a certain optimization step bears analogy to a particle rolling in this landscape.
This particle can be assigned a location, velocity, and momentum at any given
time. The accumulation of a velocity matrix in directions of persistent reduction
in the objective is equivalent to the accumulation of velocity in directions of low
curvature that persist across multiple iterations, leading to accelerated progress in
such directions compared to gradient descent [250, 331]. Formalizing this intuition
leads to the following pair of equations for the (standard) momentum:

vτ = mτ vτ−1 − λ∇Lθ(θτ−1) (5.61)

θτ = θτ−1 + vτ (5.62)

where mτ ∈ [0, 1] is the momentum constant, λ > 0 the learning rate, ∇Lθ(θτ ) an
unbiased estimate of the loss gradient at θτ defined by (5.55), and vτ the velocity
matrix. The momentum constant mτ is used to control the decay of vτ , where larger
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values lead to higher velocities, since the gradient information persists across more
update cycles. A typical choice of the momentum constant is between 0.5 and 0.9.

An improved variant of standard momentum, which recently has gained popularity,
is Nesterov’s accelerated gradient (NAG). It is an iterative algorithm that was
originally derived for non-stochastic gradients [331] and is shown to enjoy stronger
theoretical converge guarantees for convex functions [21]. Nesterov momentum is
defined as [333]:

vτ = mτ−1 vτ−1 − λ∇Lθ(θτ−1 +mτ−1vt−1) (5.63)

θτ = θτ−1 + vτ (5.64)

where the momentum constant should be chosen to be mτ ≈ 1 − 3/(5 + τ) [235].
Ignoring this momentum schedule, the key difference between momentum and Nes-
terov’s accelerated gradient is that momentum computes the gradient before applying
the velocity, while Nesterov’s accelerated gradient computes the gradient after doing
so [331]. In practice, this seems to lead to a stabler behavior.

5.7.3 Adaptive Learning Rates

Given the importance of the learning rates and the difficulty of finding appropriate
initial values a number of algorithms with adaptive learning rates have been proposed.
Most of these algorithms adapt individual learning rates for each specific trainable
model parameter during the course of training.

AdaGrad
One representative of this group is the AdaGrad algorithm. The update rule for the
i-th model parameter at update step τ , θτ+1,i, is given as

θτ+1,i = θτ,i −
λ√
gτ,i
· gτ,i (5.65)

gτ,i = ∇θiLτ (θi) (5.66)

gτ,i =
τ−1∑
t=1

(gt,i)
2 (5.67)

where (5.66) defines a shorthand notation for the gradient of the loss at update
step τ for the i-th model parameter. Equation (5.67) states that gτ,i is the sum of
the squares of the gradients w. r. t. θi up to step τ . Obviously, AdaGrad individu-
ally adapts the learning rates for each model parameter individually by scaling it
inversely proportional to the square root of the sum of all of its previous squared
values [77]. This means that it performs smaller updates to parameters associated
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with frequently occurring features and larger updates to parameters associated with
infrequent ones. The main advantage of the AdaGrad algorithm is that there is no
need to manually anneal the learning rate. However, due to the accumulation of the
squared gradients during training the effective learning rate shrinks excessively fast,
eventually becoming infinitesimally small.

In order to reduce this negative side-effect, the AdaDelta algorithm was proposed
by Zeiler [377]. Instead of accumulating all previous gradients, it accumulates the
squares of previous gradients only over a sliding window of fixed size, recursively
defined as a decaying average.

RMSprop
Another adaptive learning rate optimization algorithm which tries to eliminate Ada-
Grad’s diminishing learning rate is the RMSprop algorithm, proposed by Tieleman
and Hinton [341]. Similar to AdaDelta, it modifies the AdaGrad gradient accumula-
tion into an exponentially weighted moving average to discard the gradient history
from the far past as

gτ,i = λ · gτ−1,i + (1− λ) · (gτ,i)2 (5.68)

θτ+1,i = θτ,i −
λ√
gτ,i
· gτ,i (5.69)

The use of the moving average introduces a new hyperparameter, which controls the
window size of the moving average. Empirically, RMSprop has been shown to be an
effective and practical optimization algorithm for deep neural networks, including
recurrent neural network models [331].

Adam
Adaptive Moment Estimation (Adam) [184] is yet another method that computes
adaptive learning rates for each parameter. In addition to storing an exponentially
decaying average of past squared gradients g2

τ,i like AdaDelta and RMSprop, Adam
also keeps an exponentially decaying average of past gradients gτ,i. Similar to
momentum, which can be visualized as a ball running downhill, Adam behaves like a
heavy ball with friction, which prefers flat minima in the error surface [142]. Adam
starts by computing estimates of the mean (first moment), mτ,i, and the (uncentered)
variance (second moment), vτ,i of the gradients per model parameter, gτ,i:

mτ,i = β1mτ−1,i + (1− β1) gτ,i (5.70)

vτ,i = β2 vτ−1,i + (1− β2) g2
τ,i (5.71)

The authors in [184] point out that the moment estimates are biased towards zero,
especially during the initial timesteps, since the moving averages are initialized as
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0’s. This especially happens when the decay rates are small (i. e. the βs are close to
1) and they propose to correct this initialization bias by

m̂τ,i =
mτ,i

1− βτ1
(5.72)

v̂τ,i =
vτ,i

1− βτ2
(5.73)

followed by the parameter update as in (5.68) to yield the Adam update rule:

θτ+1,i = θτ,i −
λ√
v̂τ,i
· m̂τ,i (5.74)

The suggested default values are β1 = 0.9 and β2 = 0.999. As noted in [331], Adam
is generally regarded as being fairly robust to the choice of hyperparameters and
compares favorably to other adaptive learning methods.

5.7.4 Weight Initialization

In most current neural network model topologies and learning algorithms the network
weights W and the associated biases b are the most relevant learnable parameters.
It has been well known for a long time [104, 236, 368] that proper initialization is
essential for good convergence of training and for the final performance of the trained
model. To start with, setting all initial weights to zero will lead to a useless model,
because all neurons in the network will compute the same output and hence all
gradients computed during backpropagation will lead to the exact same parameter
updates and therefore to identical weights across the network.

In order to break this symmetry problem the most obvious solution is to initialize
the weights with small random numbers sampled from a uniform distribution or,
alternatively, a normal distribution (commonly with zero mean and unit variance).
Randomness guarantees that all neurons in a network compute unique values and
thus obtain distinct updates. The initial values should be small enough to start in
the linear regime of the adopted activation function of the neurons (cf. Section 5.3.2),
which ensures that the problem of vanishing gradients caused by saturating non-
linearities of the activation function is minimized. At the same time the initial values
should not be too small, since very small weights lead to very small gradients, which
diminishes the gradient flow during backpropagation and slows down training.

In principle, when initializing a deep neural network it is advantageous to strive
for a constant variance of the inputs to each layer in order to avoid exploding
or vanishing gradients [109]. In almost all situations the weights of a model are
initialized to values drawn randomly from either a uniform or a Gaussian distribution.
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Even though no exhaustive studies exist, the preference of one over the other does
not seem to have a particular effect. What seems to matter most is the scale of the
initial distribution and it is important to remember that the variance of the output
distribution of randomly initialized neurons grows with the number of the neurons’
inputs. In order to keep the scale of the gradients approximately the same in all
layers Glorot and Bengio [104] proposed the normalized initialization, often referred
to as the Glorot or Xavier initialization. If a uniform distribution is desired the
initial weight values should be drawn from

W ∼ U

[√
6

Nin +Nout

,

√
6

Nin +Nout

]
, (5.75)

where Nin is the number of input units (fan-in) and Nout the number of output units
(fan-out). If a Gaussian distribution is chosen then the weights should be initialized
according to

W ∼ N
(

0,
2

Nin +Nout

)
. (5.76)

A detailed analytical description of initialization-dependent phenomena can be found
in [285]. An slightly modified initialization scheme specifically tailored to (P)ReLU
networks instead was proposed in [136], given as:

W ∼ N
(

0,
2

Nin

)
. (5.77)

Less care has to be taken to initialize the layer biases and in most situations they
can be set to zero, since the symmetry breaking characteristic is achieved by the
random weight initialization. However, for ReLU-type networks the biases sometimes
are set to a small positive constant, e. g. 0.01, so that all ReLU neurons start in the
positive, linear regime and thus the initial gradients are non-vanishing. Furthermore,
for LSTM networks Jozefowicz and his colleagues [174] advised to initialize the forget
gate to a large value, such as 1 or 2, leading to an initial forget value close to 1 and
thus enabling gradient flow at the beginning of training.

5.7.5 Regularization

In machine learning one generally trains a model on a finite set of training data
and at least in the case of supervised training the neural networks, which are the
working substrate of this thesis, essentially learn a mapping from the input value to
the output values. It has been shown by Hornik and his colleagues [158] that neural
networks are universal function approximators, given they possess the necessary
capacity, which among other factors is determined by their topology and size. If the
network is chosen too small then the model cannot adequately capture the underlying
structure of the (training) data and underfitting occurs. On the other hand, if the
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network is chosen to large, it will be able to model the training data extremely well
and might ”memorize” the individual training data points. This effect is referred to
as overfitting. The problem with the latter is that an overfitted model will work very
well on the training data, but usually very poorly on unseen test data, incurring a
large generalization error. In general, one strives for a network which generalizes well
to new data, but often one tends towards using larger networks to avoid underfitting.

One way to combat overfitting, even with larger networks, is to employ regu-
larization. This generally involves imposing some sort of smoothness constraint on
the learned model [103]. This section discusses some of the common regularization
methods used in this thesis. In general, regularization can be formalized by adding a
cost to the loss function from (5.51).

L̃(θ; X,Y) = L(θ; X,Y) + αΩ(θ) (5.78)

where α ∈ [0,∞) is the regularization coefficient, which controls the relative contri-
bution of the regularization cost Ω(θ) to the overall loss function L̃(θ; X,Y). Setting
α = 0 results in no regularization and reduces to the previously used loss L(θ; X,Y).
Are more detailed theoretical background on regularization can be found in [135].

Parameter-Norm Regularization
The most common parameter norm regularizer is the L2 regularization, also known
as weight decay or Tikhonov regularization, which is given by:

Ω(θ) =
1

2
‖W‖2

2 =
1

2

∑
i,j

|wi,j|2. (5.79)

It can be shown that this leads to a multiplicative shrinking of the weight matrix W
by a constant factor at each parameter update step and that L2 regularization causes
the learning algorithm to ”perceive” the input X as having higher variance, which
makes it shrink the weights on features whose covariance with the output target
Y is low compared to this added variance [109]. Alternatively, one can employ L1

regularization, defined as

Ω(θ) = ‖W‖1 =
∑
i,j

|wi,j| (5.80)

i. e. as the sum of absolute values of the individual model parameters. Goodfellow
and colleagues [109] note that the effect of L1 regularization is quite different from
that of L2 regularization, as its contribution to the gradient no longer scales linearly
with each individual parameter, but instead is a constant factor with a sign equal to
sgn(wi,j). Further, L1 regularization results in sparser solutions than L2 regulariza-
tion, which by some researchers has been used as a feature selection mechanism [340].
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Figure 5.15: An example of reducing a neural network with two hidden layers by
applying dropout. Crossed units have been dropped.

It should be noted that parameter-norm regularization is typically applied only tp
the network weights, excluding the biases. As pointed out in [109], each weight wi,j in
a network specifies the interaction of two variables and adapting wi,j hence requires
to observe those variables in a variety of conditions. On the other hand, each bias
controls only a single variable and therefore requires less data to be fit. Furthermore,
at times a different regularization coefficient α is employed for each network layer, in
order to be more selective when regularizing the network weights. As a concluding
remark it should be noted that in addition to improving the generalization error,
regularization of the network weights was found to also speed up the convergence of
training [206].

Dropout
Dropout is a stochastic regularization technique minimizing an expected loss function
under a noise distribution. During the training phase, a random fraction 1− p of
the nodes of a layer or network is removed for each training example, together with
its corresponding incoming and outgoing edges [321]. This leaves a reduced network
as illustrated in Figure 5.15. Since the random selection of nodes happens in a
different manner for each training example, dropout can be regarded as a form of
model averaging. During the testing phase all nodes and activations are used, but
the weights must be reduced by a factor of p in order to account for the reduced
activation inputs during training.

Dropout is a very efficient way of performing model averaging and has achieved
remarkable improvements in research areas such as image classification [194] and
speech recognition [66]. Further, it was shown by Srivastava and his colleagues [321]
that dropout is more effective than other standard, computationally inexpensive
regularizers, such as weight decay or sparse activity regularization. Nonetheless, it
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can be combined with other forms of regularization to yield a further improvement. A
big advantage of dropout is that it can be used with many different types of networks
and training algorithms. Besides feed-forward neural networks, it has shown to
also perform well on probabilistic models, such as RBMs [321] and recurrent neural
networks [18, 247, 310, 376].

Additive Noise
Apart from the more theoretical regularization methods described above there exist a
number of very simple, heuristic approaches to improve generalization. One way is to
add (random) noise to the input features at the start of each epoch. This enforces the
constraint that the model should learn the underlying structure contained in the input
necessary to predict the output, which should be invariant to small variations of the
input features. Besides applying additive noise to the input features some researchers
have also suggested to add noise to the neural unit activation functions [120] or the
gradients of the loss function [233]. A comparison study [9] on the application of
additive noise to the network inputs, outputs, weight connections, and weight changes
found that input noise and weight noise encourage the neural-network output to be
a smooth function of the input or its weights, respectively. In the weak-noise limit,
noise added to the output of the neural networks only changes the objective function
by a constant. Hence, it cannot improve generalization. Input noise introduces
penalty terms in the objective function that are related to, but distinct from those
found in the regularization approaches. However, weight noise is found to be effective
in improving the generalization performance only for the classification problem.
Other forms of noise have practically no effect on generalization.

Training Set Randomization
Shuffling of randomizing the input features, be it individual feature frames, mini-
batches, or data chunks for recurrent neural networks (where the order of frames
in the training chunk must be kept contiguous), prevents the same examples from
always appearing in the same order. This is especially beneficial for the most widely
used SGD-based optimization algorithms (cf. Section 5.7.1), since in this case the
update steps depending on the respective mini-batch gradients are randomized, too.
This reduces the susceptibility to local minima in the loss function.

Early Stopping
One of the most commonly used forms of regularization in deep learning is early
stopping [371], due to its simplicity and effectiveness: given a training set, Dtrain, and
a validation set, Dvalid, training is executed as normal and after a pre-defined period
(e. g. after each epoch or after a certain number of iterations) the validation set error
is computed. If this error improves, a copy of the model parameters is stored. The
algorithm terminates once the validation set error has not improved over the best one
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for some number of steps and the best model parameters are returned as the final
model parameters. This way the error on the validation set represents a proxy for the
generalization error, i. e. one assumes that the validation set error is a good indicator
for the error obtained on an unseen test set [256]. Alternatively, one can resort to
cross-validation as described in Section 4.2, where multiple partitions of the data
into Dtrain and Dvalid are created. However, even this simple procedure in practice
is complicated by the fact that the validation error may fluctuate during training,
producing multiple local minima. This complication has led to the creation of many
ad-hoc rules for deciding when overfitting has truly begun [256]. The interested
reader is referred to [109] for an interesting and detailed treatise of how early stopping
actually acts as a regularizer.

5.7.6 Parameter Normalization Techniques

Batch Normalization
One of the most popular recent advances in optimizing DNNs is batch normalization,
which was introduced by Ioffe and Szegedy in 2015 [167] in order to mitigate the
difficulty of training very deep models. In these models the input to each layer is
determined by the parameters of all preceding layers. During training the parameter
updates are determined by the respective gradients, which are computed under the
assumption that the parameters of the preceding layers remain unchanged. However,
in practice all updates are performed simultaneously leading to unexpected effects.
Due to the changes of the parameters in a DNN the respective distributions of its
nodes change as well and require them to continuously adapt to the new distributions.
This leads to an effect coined internal covariate shift [167] and batch normalization
was invented to mitigate this effect.

The basic idea is to normalize the inputs of each layer to have zero mean activation
and a standard deviation of one, similar to z-score normalization applied to the input
features (cf. Section 3.2). In fact the output of one layer is the input to the next
layer in the network, just as the input features are the input to the first hidden layer
in a DNN. As the name suggests, batch normalization performs the normalization
on each training mini-batch. Further, it is important to note that the normalization
occurs before applying the activation function. The batch normalization algorithm
performs the operations defined in Algorithm 1.

Batch normalization offers a number of advantages for training deep neural
networks: First, it allows for much higher learning rates and thus faster convergence
during training. This stems from the fact that the affine, linear transformation
Wᵀz + b (cf. Equation (5.1)) might drive its outputs into the non-linear, saturated
regime of the activation function (ReLU being an exception), which leads to vanishing
gradients and slow training, especially for large values in W. By normalizing the

89



5. Deep Neural Networks

Algorithm 1 Batch normalization transform

Input: Values of z over a mini-batch: B = {z1, z2, . . . , zB};
Parameters to be learned: γ, β

Output: {z′i = BNγ,β(zi)}

µB ←
1

B

B∑
i=1

zi // mini-batch mean

σ2
B ←

1

B

B∑
i=1

(zi − µB)2 // mini-batch variance

ẑi ←
zi − µB√
σ2
B + ε

// normalization

z′i ← γẑi + β ≡ BNγ,β(zi) // scale & shift

values of W this effect is reduced. Second, with batch normalization one has to pay
less attention to correct initialization of the network parameters, which was shown
to be highly important in Section 5.7.4. And finally it provides some regularization,
since it adds some form of noise to the network, which reduces or even eliminates
the need for dropout in many cases. It was shown in [166] that the effectiveness
of batch normalization diminishes when the minibatch size is small or when the
minibatches do not consist of independent samples, due to differences between the
training and inference stages of batch normalization. In these cases the authors
propose a modified variant called batch renormalization.

Layer Normalization
The effect of batch normalization is dependent on the mini-batch size and it is not
straight-forward to apply to RNNs. Ba and colleagues [15] proposed a modification
called layer normalization, suggesting to compute the mean and variance used in
normalization on a single training case instead of on a mini-batch. This means
that, unlike batch normalization, layer normalization performs exactly the same
computation at training and test time. Further the dependence on the mini-batch
size is eliminated and in the context of recurrent neural networks the normalization
statistics can be computed separately at each time step. In [15] it is shown that layer
normalization stabilizes the hidden state dynamics in RNNs very effectively.

Weight Normalization
Another modification to batch normalization, which can also be applied to recurrent
neural networks, is called weight normalization and was proposed by Salimans and
Kingma [284]. This method constitutes a reparameterization of the model’s weight
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vectors w by decoupling the length of w from its direction. Contrary to batch nor-
malization it is a deterministic variant which does not add any noise to the gradients.
This characteristic lends the method to be useful in noise-sensitive applications such
as generative models, for which batch normalization is less appropriate. In addition,
the authors show that the computational overhead added by weight normalization is
lower than that in batch normalization. Similar to all parameter normalization meth-
ods discussed above weight normalization speeds up the convergence of optimization
algorithms, such as stochastic gradient descent.

5.7.7 Software Frameworks

For running machine learning experiments researchers nowadays heavily rely on
a number of different software frameworks. Since the advent of deep learning in
the last decade the research community has welcome and strongly relied on the
appearance and development of these frameworks. Required characteristics of any
such framework to be beneficial are reliability, speed of execution, easy extensibility,
public availability, and a broad developer and user base, in order to maintain the code
and eradicate any errors (bugs) as soon as possible. Current frameworks offer a wide
variety of functionality and differ in the trade-off between the above criteria. Some
of the most widely known frameworks are Theano [24], Caffe [172], PyTorch [179],
the Microsoft Cognitive Toolkit (formerly known as CNTK) [309], MXNet [51],
Chainer [343], TensorFlow [1], and Keras [54], just to name a few.

One of the cornerstones of the more recent frameworks is the presence of automatic
differentiation, i. e. the automatic numerical evaluation of derivatives of functions of a
model [17, 263]. This is achieved by applying the chain rule repeatedly on elementary
arithmetic operations, such as addition, subtraction, multiplication, and division,
and on elementary functions, e. g. exp, log, tanh, etc., for which the derivatives are
known either in closed form or for which efficient algorithmic implementations exist.

Due to the rapid development of algorithms and, hence, frameworks in the field
of deep learning, a couple of different tools were used in the experiments described in
this thesis. The first is CURRENT, a C++–based toolkit developed at the Technical
University Munich by Weninger and colleagues [360]. While it offers fast execution,
it is limited in the model topologies and optimization algorithms it supports and
was superseded by Theano, which was one of the first publicly available frameworks
offering a wide variety of model types and automatic differentiation. However, since
the appearance of Tensorflow (and other toolkits) it has suffered a strong decrease
of its user base and in consequence its development and maintenance was ceased in
2017. Therefore, all recent experiments presented in this thesis were conducted with
Tensorflow.
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5.8 Unsupervised Network Training

It was mentioned in Section 5.2 that the amount of unlabeled data often by far exceeds
the amount of labeled data. This is especially true in the field of paralinguistics,
where the available data sets are fairly small caused by the significant effort and cost
required for data annotation. While supervised training is essential to obtain good
results, unsupervised training can support and often improve the performance of the
former by learning some underlying structure inherent in the data. A typical use
case of unsupervised training is pre-training a network on unlabeled data to initialize
the network parameters to a set of values which represent a better starting point
for subsequent supervised training than random initialization. In this chapter two
common categories of unsupervised neural network training will be expounded, the
first based on Restricted Boltzmann Machines (RBM) and the other on Autoencoder
(AE) variants.

5.8.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines are a variant of Boltzmann Machines [150, 282] and
are a class of undirected graphical models forming a bipartite graph: one part consists
of a layer of observed or visible variables, the other part of latent or hidden variables.
Each visible unit is connected to each hidden unit and vice versa, but there are no
connections between nodes within a group. An schematized example of a RBM graph
is shown in Figure 5.16. RBMs were initially proposed by Smolensky [316] under the
name of Harmonium, but only became popular when Hinton and colleagues used
them to pre-train deep learning algorithms [145, 149]. As described in [89, 145] an
RBM assigns an energy to every joint configuration, (v,h), of visible and hidden
state vectors, represented by v and h, respectively. For binary visible units, an RBM
with V visible and H hidden units is described by the following energy function:

E(v,h) = −
V∑
i=1

H∑
j=1

vihjwij −
V∑
i=1

vib
(v)
i −

H∑
j=1

hjb
(h)
j (5.81)

where vi and hj are the binary states of visible unit i and hidden unit j, b
(v)
i and b

(h)
j

are the respective biases, and wij is the weight between them. Under this energy
function, the conditional probabilities for each visible and hidden unit given the
others are

p(hj = 1|v) = σ

(∑
i

viwij + b
(h)
j

)
(5.82)

p(vi = 1|h) = σ

(∑
j

hjwij + b
(v)
j

)
(5.83)
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Figure 5.16: Schematized RBM graph.

where

σ(x) =
1

1 + e−x
(5.84)

is the logistic or sigmoid function. The network assigns a probability to every possible
joint configuration (v,h) via the energy function as

p(v,h) =
e−E(v,h)

Z
=

e−E(v,h)∑
u,g

e−E(u,g)
(5.85)

where Z is called the partition function. The marginal distribution of the visible
units is obtained by summing over all possible hidden states as

p(v) =
∑
h

p(v,h) (5.86)

and the gradient of the log probability of a training vector with respect to a weight
is simply

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model (5.87)

where the angle brackets are used to denote expectations under the distribution
specified by the subscript. This formulation leads to a very simple update rule
adopting stochastic steepest ascent in the log probability of the training data:

∆wij = ε · (〈vihj〉data − 〈vihj〉model), (5.88)

where ε is the learning rate controlling the size of the update steps. It is easy to get
an unbiased sample of 〈vihj〉data using the sample data v, because there are neither
connections between the visible nodes nor between the hidden nodes. However, it
is very difficult to obtain an unbiased sample of 〈vihj〉model, since its computation
involves the normalization constant Z, which cannot generally be computed efficiently
(being a sum of an exponential number of terms), as explained in [145]. To avoid
the difficulty in computing the log-likelihood gradient, Hinton [148] proposed the
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v0 v1 v2 vk vk+1

h0 h1 h2 hk

Figure 5.17: Illustration of k-step alternating Gibbs sampling.

Contrastive Divergence (CD) algorithm which approximately follows the gradient of
the difference of two divergences [47]:

∂ log p(v)

∂wij
≈ 〈vihj〉data − 〈vihj〉recon (5.89)

The algorithm starts by initializing the states of the visible units v with a training
vector. All binary states of the hidden units are subsequently computed in paral-
lel using Equation (5.82). After sampling the hidden states a ”reconstruction” is
generated by setting each vi = 1 with a probability specified by Equation (5.83).
This procedure called alternating Gibbs sampling is then repeated for k steps, before
collecting the statistics to compute 〈vihj〉recon. Alternating Gibbs sampling is illus-
trated in Figure 5.17. Although RBMs typically learn better models if more steps of
alternating Gibbs sampling are used, i. e. k > 1, in most situations one-step (k = 1)
Gibbs sampling is sufficient [332].

To deal with real-valued instead of binary input data, one can resort to an
RBM with Gaussian visible units and binary hidden units, called Gaussian-Bernoulli
Restricted Boltzmann Machine (GBRBM). For the GBRBM the energy function
needs to be modified, for example as proposed by Cho [52]:

E(v,h) =
V∑
i=1

(vi − b(v)
i )2

2σ2
i

−
V∑
i=1

H∑
j=1

vi
σ2
i

hjwij −
H∑
j=1

hjb
(h)
j (5.90)

Under this modified energy function, the conditional probabilities for each visible
and hidden unit given the others are

p(vi = v|h) = N

(
v
∣∣∣ (
∑
j

hjwij + b
(v)
i ), σ2

i

)
(5.91)

p(hj = 1|v) = φ

(∑
i

vi
σ2
i

wij + b
(h)
j

)
(5.92)
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where N ( · | µ, σ2) denotes the Gaussian probability density function with mean
µ and variance σ. Note that the variance parameter σ2

i is a learnable one in this
formulation, but it is not necessarily equivalent to the variance of the input data.

5.8.2 Autoencoders

An autoencoder (AE) is a type of neural network which attempts to learn a compressed
representation of its input. The basic idea behind it is rather simple: in a general
formulation the AE consists of an encoder ξ : X → R, which maps an input feature
vector x ∈ X to a latent representation r ∈ R, also called the code. The decoder
ψ : R → X ′ takes this representation r and maps it to a reconstruction x′ of the
same shape of x. This operation can be formally written as

x′ = (ψ ◦ ξ)(x) (5.93)

r = ξ(x) (5.94)

Ideally, the reconstruction equals the input, x′ = x, and hence training the AE
network consists in minimizing the MSE loss

L(x,x′) = ||x− x′||2 (5.95)

which leads to the encoder/decoder solution:

ξ∗, ψ∗ = argmin
ξ,ψ

||Xtrain − (ψ ◦ ξ)(Xtrain)||2, (5.96)

i. e. the optimum encoder (ξ∗) and decoder (ψ∗) parameter sets are determined on
a training set Xtrain in an unsupervised manner by setting the output equal to the
input. In general, the parameters represented by ξ and ψ differ from each other, but
could also be chosen to be shared, especially the network weights.

In order to successfully train an autoencoder network (and to obtain a compressed
representation of the input) the latent representation r must be smaller than the
input layer x, i. e. the encoder should exhibit a bottleneck architecture. Otherwise the
AE network will essentially learn the identity function, which is the trivial solution to
the optimization problem (5.96). However, using one of the variants described below
this constraint can be avoided [19]. An illustration of an autoencoder structure is
presented in Figure 5.18.

As pointed out earlier [36], the main motivation for adopting autoencoder net-
works is to pre-train - possibly deep - neural networks in an unsupervised manner.
To this end, the autoencoder, as depicted in Figure 5.18, is trained to convergence
and the encoder, including the code layer, is used as (part of) the network, while the
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Input

Code

Output

Encoder Decoder

Figure 5.18: Illustration of the autoencoder architecture with the bottleneck code
layer.

decoder part is discarded. This pre-training moves the network parameters close to
an optimum and thus gives a good initialization to a subsequent fine-tuning step,
e. g. by running Stochastic Gradient Descent (SGD). Moreover, it is possible to stack
the resulting, pre-trained autoencoders to form a deep stacked autoencoder to get
a good initialization for a deep network, which can subsequently be fine-tuned. As
shown in the previous section an alternative approach to autoencoder pre-training
is to utilize Restricted Boltzmann Machines (RBM). It is unclear whether RBMs
or AEs lead to better performance and in practice both seem to give comparable
results on many tasks. However, AEs are usually simpler and faster to train than
RBMs and have become very popular in the literature in recent years.

An number of variants to the basic AE approach have been proposed in the
literature, in an attempt to learn a richer and more robust representation and to
improve the ability to capture important information contained in the input:

Denoising autoencoders corrupt the input, for example by adding a certain amount
of random noise, but try to recover the original, undistorted input signal. Thus, the
loss function can be written as

L(x̃,x′) = ||x− (ψ ◦ ξ)(x̃)||2, (5.97)

where x̃ is the corrupted input. This simple concept was used with great success
for different neural architectures [219, 349, 350] and was shown to lead to robust
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representations.

Sparse autoencoders instead sparsify the elements of the code layer r, i. e. they
take measures to reduce the average activity of the code layer’s elements. This can
be formalized by adding a sparsity penalty (L0-norm), ||r||0, to the loss function L
as follows:

L(x,x′) = ||x− x′||2 + λs||r||0, (5.98)

where ||r||0 counts the non-zero elements of r and λs ≥ 0 controls the sparsity. There
are multiple ways to accomplish this, but a simple approach is k-sparse autoencoders,
proposed by Makhzani and Frey [214]. This algorithms finds the k highest activa-
tions in the code layer activations and sets all other elements to zero. Note that
the error signal is backpropagated only through the k active nodes during training.
Sparsification eventually leads to a further compression of the latent representation
r, but not in a fixed way, because over time different elements of r can be zeroed out.

Variational autoencoders (VAE) [185], instead of mapping the input x to a fixed
vector r, learn a latent variable model and map x onto a probability distribution.
The bottleneck latent representation is replaced by two vectors, a vector representing
the mean of the distribution and one which represents the standard deviation. One
then samples from this distribution to generate inputs for the decoder, which tries
to reconstruct the original input data x. In order for VAE to be trainable, the loss
function needs to extended by the Kullback-Leibler divergence DKL between the
true and the approximate posterior as [41]

log pψ(x|r) = DKL(q(r|x) || p(r)) + L(ξ, ψ; x, r). (5.99)

Since backpropagation cannot be applied to a sampling operator the so-called
”reparameterization trick” is applied. This trick consists in parameterizing each
random variable ri ∼ qξ(ri|x) = N (µi|σi) as a differentiable transformation of a noise
variable ε ∼ N (0, 1) as [41]

ri = µi + σi ε. (5.100)

Contractive autoencoders (CAE) [268] instead use the Frobenius norm of the
Jacobian matrix, in order to learn a representation which is less sensitive to small
variation in the input. In this case the loss function is given by

L(x,x′) = ||x− x′||2 + λc||Jr(x)||2F (5.101)

||Jr(x)||2F =
∑
ij

(
∂rj(x)

∂xi

)
(5.102)
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In a CAE the encoder mapping exhibits the property of locality, i. e. small changes
in x lead to small changes of r.
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Chapter 6

Likability Classification

This is the Law of Likability: The real you is the best you.

Michelle T. Lederman

With respect to other paralinguistic phenomena, such as age, gender, emotion, or
social signals, the prediction and classification of likability is a rarely addressed topic
and hence a rather limited number of publications can be found in the research
literature. This might be due to the fact that likability is a highly subjective and
complex phenomenon, which depends on many facets of inter-human communication.
The Likability Sub-Challenge of the Interspeech 2012 Speaker Trait Challenge [291]
was one of the first attempts to establish a basis for comparable research on this topic
by supplying an accessible research database and some reference baseline results for
future research. Based on this dataset this chapter examines the classification of the
likability of human voices by employing deep neural networks and presents results
exceeding the baseline results by a fair margin. This research work results from the
participation in the Interspeech 2012 Speaker Trait Challenge and was previously
presented in [35].

6.1 The Likability of Voices

The concept of the likability of a speaker’s voice is a fascinating topic, but its
definition is an indistinct and intricate topic. As deduced from Table 2.1, likability
is a highly subjective measure and hence it is difficult to objectively determine
what makes a voice agreeable. There is a substantial body of research from the
psychological realm that attributes this paralinguistic phenomenon to a number of
different elements [299]: Some studies link likability to sexual attraction and recipro-
cal liking [12, 60, 156]. In a professional environment likability has been shown to be
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related to competence [234]. Furthermore, Zuckerman and colleagues [390] found that
attractive voices can be associated with the presence of confidence, lack of tension,
and favorable ratings of personality. Besides the interest in the analysis of likability
these and related findings are also interesting for text-to-speech (TTS) synthesis of
pleasant voices. For example, Syrdal et al. [337] found gender-specific differences and
a positive correlation of likability to features related to spectral tilt and the power of
unvoiced speech segments. In the context of commercial advertisement it was found
that low pitch and faster than normal syllable speed was preferred by listeners [50].
Several studies on the relevant features for the attractiveness and pleasantness of
voices have observed that prosodic features, in particular fundamental frequency
(F0), are highly correlated [192, 203]. For example, male voices are judged as being
more attractive if they have low mean F0 and closely spaced, low-frequency harmon-
ics [60, 156]. Moreover, voice quality features, such as the normalized amplitude
ratio and the related breathiness, have been reported to impact the attractiveness of
voices [45]. Furthermore, Strangert and Gustafson [328] confirmed the importance of
fundamental frequency, but also concluded that temporal features were not related
to the overall rating of a speaker.

Related work
Some of the earliest attempts to study the classification of likability was made by
Burkhardt and colleagues [43]. They collected a database which laid the foundation
for the Likability Sub-Challenge of the Interspeech 2012 Speaker Trait Challenge [291],
described in the next section. Further, based on a large, supra-segmental feature
set, which is smaller than, but similar to the one used in this study, they used a
decision/regression tree to tackle the problem. Another study [358] found that all
sentences from the same speaker were rated similarly but the agreement between
different listeners for the same speaker was low. They also observed that the most
significant results were mostly dependent on the gender of the speaker. Pinto-Coelho
et al. [58, 249] instead combined a Support Vector Machine (SVM) with a Gaussian
Mixture Model (GMM)/Naive Bayes classifier using a late fusion scheme using a
limited set of input features. They reported that using only 6 features they obtained
best performance on their Portuguese data set.

As mentioned above the Interspeech 2012 Speaker Trait Challenge provided the
first reasonably sized, accessible database for likability classification, which allows to
compare results across different proposed approaches. Based on this dataset Gonzalez
and Anguera [108] extracted and evaluated a set of perceptually inspired features
and obtained an absolute improvement of 3.2% with respect to the baseline results
using a linear SVM classifier and only 7 of the official baseline features. Another
approach was followed by Montacié and Caraty [229]: they experimented with 4
large supra-segmental feature sets with sizes between 8,348 and 10,342 features and
a SVM classifier. They obtained a UAR of 64.1% with one of these feature sets and
a UAR of 65.8% with a fusion of their 4 submission systems.
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Table 6.1: Distribution of age and gender groups in the Speaker Likability
Database [43]. Numbers denote the absolute number of speakers, while the val-
ues in parentheses the age range of the respective groups.

Young (15-24) Adult (25-54) Senior (55-80) Σ

Male Female Male Female Male Female Male Female

112 121 129 135 156 147 397 403

233 264 303 800

6.2 Speech Database

The experimental results reported in this chapter are based on the Speaker Likability
Database (SLD), which was introduced by Burkhardt and colleagues [43] and later
used in the Likability Sub-Challenge of the Interspeech 2012 Speaker Trait Chal-
lenge [291]. It is a subset of the German aGender database [42], which was originally
collected to study the recognition of age and gender of individuals. The audio signals
were recorded at a sampling rate of 8 kHz over fixed and mobile telephone lines and
each utterance is an instance of one of 18 different utterance types sampled from
a list described in [42]. Among other, this list contains command words, embed-
ded commands, commands relative to time and date, names, numbers, and yes/no
commands. From the aGender database 800 adult speakers were selected in an age
and gender balanced manner. In the attempt to minimize the effort required for
annotation by multiple raters the longest sentence per speaker was selected, based on
the number of words, and the annotation w. r. t. likability was used for all utterances
of the respective speaker. Table 6.1 shows the distribution of the speakers w. r. t. age
and gender for the three age groups ”young” (age 15-24), ”adult” (age 25-54), and
”senior” (age 55-80).

The likability ratings of the data were determined in the following way [291]:
Each audio file was assigned to one of six blocks according to its age-gender group in
order to control any effect of gender and age on the likability ratings. The six groups
are identical to the ones shown in Table 6.1. Then the recordings were presented to
32 raters (17 male, 15 female, age 20-42), where each rater rated only three out of the
six blocks in order to minimize any effects of boredom or fatigue which might arise
during the rating process. Further, both the order of the blocks as well as the order
of audio files within each block was randomized. The raters were instructed to rate
each stimulus according to its likability on a seven point Likert scale [205], trying to
ignore the content of speech or the transmission quality of the recording. In order to
form a general agreement from the individual likability ratings (16 per stimulus), the
evaluator weighted estimator (EWE) (2.1) was adopted. The EWE weight for rater k,
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Table 6.2: Partitioning of the Speaker Likability Database into training, development
and test sub-splits (L: likable / NL: non-likable).

Train Devel Test Σ

L 189 92 119 400

NL 205 86 109 400

Σ 394 178 228 800

rk (cf. Equation (2.2)), obviously was only computed on the recordings belonging to
this rater’s block. It was found [291] that the raters reliability was 0.057 ≤ rk ≤ 0.697.

For the classification task of the Interspeech 2012 Speaker Trait Challenge the
EWE ratings were discretized into the classes likable (L) and non-likable (NL), based
on the median EWE rating of all recordings in the database. Finally, the data was
partitioned into training, development, and test sub-splits as shown in Table 6.2.

6.3 Experiments and Results

6.3.1 Experimental Setup

The feature set used in this experiment is the supra-segmental feature set described in
the baseline paper of the Interspeech 2012 Speaker Trait Challenge [291]. It contains
6125 features derived from applying functionals to the underlying LLDs, very similar
to the ones described in Chapter 3.1.2. This feature set is a predecessor to the
supra-segmental feature set shown in Table 3.2. It differs from the latter in two
aspects: first the number of LLDs is 64 instead of 65, because the spectral centroid
is not included. Second, fewer functionals are applied to the LLDs. The computed
features are normalized via z-score normalization (3.24), where the moments are
computed on the training sub-set. Interestingly, the normalized feature set turns out
be approximately Gaussian distributed, which is beneficial when pre-training the em-
ployed neural networks with the Gaussian-Bernoulli RBM method (cf. Section 5.8.1),
which by design is matched to inputs with a Gaussian distribution.

Given that the utterance-level, supra-segmental features are relatively few in
number and hence the risk of overfitting is imminent, each of the examined neural
networks is pre-trained via GBRBM for 50 epochs using contrastive divergence (5.89)
with one Gibbs step per mini-batch. For the pre-training, the learning rate λ is
set to 10−3 for the weights and biases and 10−6 for the variance parameter σ of
the GBRBM. Informal experiments show that momentum is not helpful, instead
L2-regularization (5.79) is applied. Additionally, it is helpful to enforce a moderate
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amount of weight sparsification to the first layer of the RBM. This is achieved by
setting all weights below a certain sparsity threshold to zero after each epoch. In
these experiments the optimal sparsity threshold is found to be 0.08 by preliminary
experiments. Given the Gaussian distribution of the normalized input features
GBRBM training is used to pre-train the first layer of the neural network, while all
subsequent layers are pre-trained via the regular RBM approach.

As common in RBM training each layer is trained until convergence in an un-
supervised fashion on shuffled input features using a batch size of 20. Then, the
layer parameters are frozen and the next layer is stacked on top of the lower layers.
Subsequently, the RBM training is repeated, adapting only the top layer parameters.
For the binary classification task of the Likability Sub-Challenge the output layer is
chosen to be a logistic regression layer with one output node.

Finally, the full network is fine-tuned using mini-batch stochastic gradient descent
using the cross-entropy loss function. Interestingly, preliminary experiments show
that a very small batch size of 2 proves to give optimum results. Fine-tuning is run
until the loss does not improve on the development set for 10 epochs. Further, the
optimal results are obtained with a learning rate of λ = 0.05, an L2-regularization
coefficient of 10−4, and no weight sparsification during the fine-tuning stage.

6.3.2 Results

The evaluation measure in the Interspeech 2012 Speaker Trait Challenge was un-
weighted accuracy (UA), which is identical to the unweighted average recall (UAR),
defined in Equation (4.4). Since the classes are reasonably balanced, i. e. the number
of utterances with labels ’L’ and ’NL’ are approximately equally distributed for all
data sub-splits (cf. Table 6.2), the UAR should be approximately similar to the accu-
racy. It is noted that the results, which were made available in a pre-publication by
Brueckner and Schuller [35], are reported for the experiments that were submitted to
the Challenge site and which were returned by the Challenge organizers. Participants
were allowed to submit only five uploads of their predictions on unlabeled test data.
Therefore, a number of preliminary experiments were conducted to find a reasonably
optimal starting point for the final evaluations. Table 6.3 shows the results of the
Challenge baseline, a one-layer feed-forward DNN without unsupervised pre-training
and pre-trained networks varying the number of layers. Each layer is composed
of 2048 nodes, which proves to be the optimum number of units per layer on the
development set.

A number of interesting conclusions can be drawn from the table: first, the 1-layer
network without pre-training performs worse on the development set, but exceeds
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Table 6.3: Results for the classification task (’L’ vs. ’NL’) of the Likability Sub-
Challenge. All FF-DNN layers contained 2048 nodes. ’no pre-train.’ denotes a
network which was not pre-trained via RBMs. Test results are reported for the
experiments that were submitted to the Challenge site and which were returned by
the Challenge organizers. Participants were allowed to submit only five uploads of
their predictions on unlabeled test data.

Test UAR [%] Devel UAR [%]

Baseline (random forests) [291] 59.0 57.6

FF-DNN (1 layer, no pre-train.) 60.9 56.4

FF-DNN (1 layer) 64.0 57.2

FF-DNN (2 layers) 62.9 56.2

FF-DNN (3 layers) 62.2 56.0

FF-DNN (4 layers) – 54.1

the baseline test results. Second, unsupervised pre-training outperforms both the
baseline and network without pre-training on both the test and the development
set. Finally, adding additional layers on top of the first layer does not improved
performance. Instead performance decreases with each additional layer. This might
indicate the occurrence of overfitting given the small dataset using utterance-level,
supra-segmental features of large size. The best model topology, a 1-layer FF-DNN
pre-trained with GBRBM, significantly (at a significance level of α = 0.05) improves
the baseline results of 59.0 % UAR to 64.0 % UAR, which constitutes a relative
8.5 % improvement.

Instead of stacking multiple layers with a large number of nodes, the number of
subsequent layers can be gradually reduced to obtain a pyramidal neural network
structure, similar to a bottleneck structure. Such models were successfully applied
in previous challenges, e. g. in the Interspeech 2010 Paralinguistic Challenge [363].
However, in the current experiments no expansion of layers after the bottleneck layer
is carried out. As before all networks are pre-trained with RBM and fine-tuned
afterwards. The results obtained by different pyramidal topologies are depicted in Ta-
ble 6.4. It can be observed that this approach does not lead to further improvements
over the 1-layer network with pre-training. While the first two networks actually
beat the baseline performance they all are inferior to the best network from Table 6.3.

Given the huge amount of parameters in most of the described networks and the
limited amount of training data in relation it should be conjectured that the main
reason for the limited performance of the deeper networks is overfitting. However,
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Table 6.4: Results for the classification task of the Likability Sub-Challenge for
pyramidal network topologies. The number is parentheses denote the number of
nodes per layer. Test results are reported for the experiments that were submitted to
the Challenge site and which were returned by the Challenge organizers. Participants
were allowed to submit only five uploads of their predictions on unlabeled test data.

Test UAR [%] Devel UAR [%]

Baseline (random forests) [291] 59.0 57.6

FF-DNN (6125-2048-1024-256) 60.2 60.3

FF-DNN (6125-2048-1024-256-32) – 59.1

FF-DNN (6125-1024-256-32) – 53.6

FF-DNN (6125-1024-256-32-8) – 56.2

informal, previous experiments exploring the topology space showed that smaller net-
works did not perform better or even worse. Further is was verified that the the UAR
evaluated on the training data was not much better than on the development data,
which confirms that overfitting is not the root cause for the described observations.

6.4 Conclusions

In this chapter the application of deep feed-forward neural networks to the task
of classifying the likability of voices was expounded, a difficult paralinguistic task
given its highly subjective nature. The experiments were trained and evaluated
on the Speaker Likability Database, which was the official dataset in the Likability
Sub-Challenge of the Interspeech 2012 Speaker Trait Challenge, using the large
supra-segmental, utterance-level, ComParE challenge feature set. In contrast to
the other paralinguistic tasks described in the following chapters, increasing the
neural network depth did not lead to improved performance with respect to a (1-
layer) MLP. Instead, unsupervised pre-training of the network via a regularized
Gaussian-Bernoulli Restricted Boltzmann Machine (GBRBM) gave significantly
higher performance over the corresponding network without pre-training. This shows
that unsupervised pre-training can be particularly important in situations where the
dimension of features is large and the amount of training data relatively limited. With
this approach the best performing network topology, a one-layer network composed
of 2048 nodes, improved the challenge baseline result of 59.0 % UAR to 64.0 % UAR
which constitutes a relative improvement of 8.5 %.
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Chapter 7

Social Signal Detection

Nonverbal communication forms a social language
that is in many ways richer and more fundamental than our words.

Leonard Mlodinow

Contrary to the utterance level prediction problem in the previous chapter, the
research objective in this study, which was presented by the author and his colleague
in [36, 37, 39], is the problem of detecting social signals on a frame level resolution.
This is first addressed by investigating the use of feed-forward DNNs and the effect
of pre-training via stacked autoencoders. It is further demonstrated how higher-order
posterior networks improve the performance by effectively smoothing the posterior
trajectories. Then, the non-linear characteristics of recurrent neural networks, in
particular stacked BLSTMs, are exploited to improve upon the previous approach.
Moreover, it is proposed to adopt a hierarchical DNN-BLSTM network topology to
obtain state-of-the-art results on the Interspeech 2013 Computational Paralinguistics
Challenge. Finally, it is shown how a real-time and resource-efficient approach using
LSTMs and GRUs can be achieved, and a details study demonstrates its effectiveness
in both mono-lingual and cross-lingual scenarios.

7.1 Social Signal Detection in Speech

As alluded to in Chapter 2 nonverbal communication is an essential component of
human interaction, complementing verbal communication, i. e. the semantics and
content of speech. This nonverbal communication is not limited to the acoustic
modality and includes facial expressions, gesture, posture, etc. It plays a fundamental
role in human communication, because nonverbal cues are one of the main carriers
of social signals, which have been defined to be ”acts or structures that influence the
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behavior or internal state of other individuals” [222], ”actions whose function is to
bring about some reaction or to engage in some process” [40], or ”communicative or
informative signals which [...] provide information about social facts” [251].

In the context of paralanguage, i. e. the nonverbal communication based on vocal
cues, laughter and filler are two of the most important social signals that can be
observed in social interactions: they carry information about a speaker’s emotional
state [352], personality, or other speaker-related traits [293]. Laughter is commonly
associated with spontaneous or contrived affective expressions, such as happiness,
amusement, but also embarrassment or discomfort [16, 275, 339, 348]. Fillers on
the other hand are vocalizations, such as ”ah”, ”eh”, or ”uhm”, and are often used
in human conversations to hold the floor in situations of uncertainty or hesitations [57].

Humans effortlessly elaborate nonverbal cues [354]. In order to build socially
intelligent technologies, such as virtual assistants, it is hence important to auto-
matically detect, analyze, and even generate such social signals. This could help to
provide a more natural and successful dialog. Since both laughter and fillers can
occur basically at any point in the audio stream, using an expert model to detect
the begin and end of these events can be beneficial in many use cases [37].

Related work
As pointed out by the author and his colleague [37], one of the earliest attempts to
detect social signals was presented by Kennedy and Hauptmann [177] who trained
Hidden Markov Models (HMMs) to recognize non-word sounds in television broad-
casts, dedicating a small number of HMM parameters to these sound events. Schuller
et al. [290] later investigated different strategies for the discrimination between
four types of non-verbal vocalizations: laughter, breathing, hesitation, and consent.
They adopted HMMs, Support Vector Machines, and Hidden Conditional Random
Fields using a broad selection of diverse acoustic low-level descriptors and statistical
functionals. They found that HMMs outperform other classifiers. Wagner et al. [356]
instead applied a SVM classifier to phonetic patterns extracted from raw speech
transcriptions, using a sliding-window scheme computing histograms of phoneme
occurrences including some temporal context. Janicki [171] also resorted to a SVM
classifier, but on a mixed set of differential and absolute log-likelihood scores of a
GMM model with a high number of Gaussians and a relatively long context window.
Finally, Gupta et al. [122] used linear low-pass filtering and masking techniques
followed by a stacked generalization framework in order to smooth the fluctuant
posterior time trajectories of their approach.

First attempts of applying neural networks for detecting non-verbal vocalizations
from speech, and especially laughter, appeared already a decade ago [187], but only
used a single-layer feed-forward (FF) neural network. Schuller and colleagues [290]
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applied several different approaches based on dynamic modeling and Hidden Markov
Models (HMM), Conditional Random Fields (CRF), and Support Vector Machines
(SVM), or Non-Negative Matrix Factorization (NMF) on this problem. The So-
cial Signals Sub-Challenge of the Interspeech 2013 Computational Paralinguistics
Challenge (ComParE) [292] then finally laid a basis to objectively compare research
research efforts on laughter and filler detection [8, 193]. More recently the research
community has seen work on this problem employing genetic algorithms [111] and
context-aware probabilistic decisions [123].

7.2 Databases

The experiments in this chapter are executed on two different databases. The first
one is the SSPNet Vocalisation Corpus (SVC), which was used in the Social Signals
Sub-Challenge of the Interspeech 2013 Computational Paralinguistics Challenge
(ComParE) [292] and is described in the next section. The second corpus is the
recent Automatic Sentiment in the Wild (SEWA) database1, which will be described
in Section 7.2.2.

7.2.1 SSPNet Vocalisation Corpus

The SSPNet Vocalisation Corpus [283] consists of 2763 audio clips, each 11 seconds
long, which are annotated in terms of laughter and fillers. This corpus was extracted
from the SSPNet-Mobile Corpus [253] involving 120 subjects (63 females and 57
males), which were engaged in phone calls, where the subjects were asked to address
the Winter Survival Exercise [283, 355], a scenario often used in behavioral experi-
ments. The conversations were recorded on the phones (model Nokia N900) of each
participant of the call and sum up to a total duration of 8 hours and 25 minutes.
Since the clips were extracted from the microphone recordings, each audio instance
only contains the voice of one individual speaker. It was ensured that each clip
contains at least one instance of laughter or filler of length 1.5s ≤ t ≤ 9.5s. Further
it was guaranteed that clips from the same speaker never overlap, while clips from
two speakers of the same conversation might overlap; this can happen e. g. in the
case of simultaneous laughter. Altogether, the SVC corpus contains approximately
3.0k filler events and 1.2k laughter events. Further, both types of vocalization can
be considered fully spontaneous [292].

The task of the Social Signals Sub-Challenge is to perform a frame-wise classifica-
tion of the three vocalization classes laughter, filler, and garbage, which comprises all
other vocalizations, such as speech, but also including silence. In all experiments the

1http://sewaproject.eu
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Table 7.1: Partitioning of the SSPNet Vocalisation Corpus into train, development,
and test sets. Values denote the absolute number of utterances, vocalization segments,
and frames. [292]

Train Devel Test Σ

Utterances

Σ 1,583 500 680 2,763

Segments

Laughter 649 225 284 1,158

Filler 1,710 556 722 2,988

Frames

Laughter 59,294 25,750 23,994 109,038

Filler 85,034 29,432 35,459 149,925

Garbage 1,591,442 492,607 684,937 2,768,986

Σ 1,735,770 547,789 744,390 3,027,949

same data division is applied as in the Challenge: All data are divided into speaker
disjoint subsets for training (70 speakers, calls 1-35), development (20 speakers, calls
36-45), and testing (30 speakers, calls 46-60), and are manually segmented into
’garbage’ (∼2.8 million frames), ’laughter’ (∼109,000 frames), and ’filler’ segments
(∼150,000 frames). The resulting partitioning is shown in Table 7.1.

7.2.2 SEWA Corpus

The Automatic Sentiment in the Wild (SEWA) database [191] is a recent audio-visual
database collected from 398 subjects (201 male, 197 female) from 6 different cultural
backgrounds: British, German, Hungarian, Greek, Serbian, and Chinese. It further
exhibits a broad distribution in gender and age. All recordings were made ‘in the
wild’, i. e. not under laboratory settings but on arbitrary desktop PCs or notebooks
with standard webcams and microphones, and hence exhibit spontaneous and natural
behavior. The SEWA data collection was conducted using a website specifically built
for this task, which allowed the participants to be recorded in truly unconstrained
in-the-wild environments. All subjects participated in pairs, staying in different
rooms, either at their home or in an office. Each subject had to watch 4 different
commercials, while being recorded. The spots had been chosen with the intent to
evoke various emotions, such as compassion, joy, or boredom. After watching the
last spot of 90 s duration the subjects were asked to discuss about this last clip in a
video chat. There were no restrictions on the aspects to discuss; the maximum length
of the conversation was 3 minutes, but participants were allowed to finish at any
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Table 7.2: Distribution statistics for the SEWA database for British English and
German [39].

British German

Number of subjects 66 64

Total duration (min) 90 89

Number of frames 546,233 533,470

- Laughter 10,843 (2.0 %) 16,700 (3.1 %)

- Filler 3,2701 (6.0 %) 32,017 (6.0 %)

time earlier. It was required that both subjects know their partner (either relatives,
friends, or colleagues), to ensure that an unreserved discussion could develop. The
pairs were balanced w. r. t. gender (female-female, female-male, male-male). Different
age ranges (18+) are represented in the database; however, about half of the subjects
are between 18 and 30 years old. The complete SEWA database was manually
transcribed, including the nonverbal vocalizations ’laughter’ and ’filler’. Given the
fact that most of these events occur during the video chat sessions and not during
the sessions of subjects watching advertisements, the experiments are restricted to
the video chats only. Since this thesis focuses on acoustic-based approaches of deep
learning only the audio part of the recordings was taken into account. Further, since
at the time of running these experiments not all languages were supplied with robust
labels of the relevant vocalization classes only British and German recordings were
considered. [39] Table 7.2 shows the distribution statistics computed on the SEWA
database for British English and German.

7.3 Acoustic Feature Sets

Since the objective of the task in this chapter is the frame-wise detection and
localization of social signals, the supra-segmental, utterance-level features often used
in paralinguistic tasks are disused. Instead only a relatively small set of frame-wise
descriptors is used in this study. For the experiments using the SSPNet Vocalisation
Corpus, the LLD features from the Social Signals Sub-Challenge of the Interspeech
2013 Computational Paralinguistics Challenge (ComParE) [292] are used. Using the
TUM openSMILE open-source feature extractor [84], frame-wise low-level descriptors
(LLDs) and functionals are extracted every 10 ms adopting a frame size of 25
ms. In particular, MFCCs 1–12 and logarithmic energy are computed along with
their first and second order delta regression coefficients. These are augmented by
voicing probability, HNR, F0 and zero-crossing rate, as well as their first order delta
coefficients. Then, for each frame-wise LLD the arithmetic mean and standard
deviation across the frame itself and eight of its neighboring frames (four before and
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four after) are calculated. This results in 47× 3 = 141 descriptors per frame. For
the experiments on the SEWA database, however, a slightly different feature set is
adopted. Again, the openSMILE toolkit is used to extract frame-based LLD vectors
every 10 ms, but this time the LLDs from Chapter 3.1.1, as shown in Table 3.1, are
used. All feature sets are subsequently z-score normalized, i. e. they are transformed
to have zero mean and unit variance, where the respective first-order moments are
computed on the corresponding training data set.

7.4 Experiments and Results

7.4.1 Regular Posterior Baseline System

7.4.1.1 Experimental Setup

As a baseline reference, feed-forward DNNs are trained on the frame-level class
targets on the full training set of the SSPNet Vocalisation Corpus. In the following,
the predicted network outputs without any additional smoothing are referred to
as regular posteriors, in order to distinguish them from the smoothed, higher-order
extension, as will be explained below. The input to all networks are the frame-wise
features described in the previous section. Further, context windows of n subsequent
feature frames, with 1 ≤ n ≤ 15, are built as follows: A sliding window from
t− (n− 1)/2 to t+ (n− 1)/2 is applied to merge n successive D-dimensional feature
vectors x(t) ∈ RD to an (n ·D)-dimensional extended feature vector x′(t), i. e.

x′(t) =

[
x

(
t− n− 1

2

)
, . . . ,x(t), . . . ,x

(
t+

n− 1

2

)]
for

n− 1

2
< t ≤ T − n− 1

2
.

(7.1)

Given the default frame duration of 20 ms and a frame shift of 10 ms this amount to
a maximum temporal context of approximately 160 ms per context window, which is
known to be in the range of average phone durations of human speech [389].

The networks are trained via Stochastic Gradient Descent (SGD) using Nesterov
momentum and L2-regularization on the layer weights. The training process is
stopped once the cross-entropy (CE) loss of the development set has not improved
for at least 10 consecutive epochs. Then the model which has achieved the lowest
CE error is used during inference. Informal tests have shown that this is a reliable
indicator for the final UAAUC performance on this imbalanced data set. Further,
all meta-parameters used in training the neural networks, such as the number and
size of the hidden layers, learning rate, momentum, batch size, etc., are chosen to be
the ones that give the highest unweighted average area-under-the-curve (UAAUC)
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Table 7.3: Regular posteriors: Comparison of a single-hidden layer MLP and a
two-hidden layer SAE for different hidden layer sizes on the development set.

UAAUC [%] Number of hidden units per layer

64 128 256 512 1024

MLP 92.5 92.8 93.0 92.8 92.7

2-layer SAE 93.1 93.4 93.7 93.4 93.3

Table 7.4: Regular posteriors: Effect of the number of hidden layers in a deep SAE
on the UAAUC (development set). Each layer consists of 256 hidden units.

UAAUC [%] Number of hidden layers

1 2 3 4 5

Deep SAE 93.0 93.7 93.4 93.2 93.0

(cf. Equation (4.9)) value on the development set. As explained in Chapter 4.1.1 the
UAAUC is a suitable classification measure in multi-category scenarios and was also
the official target measure in the Interspeech 2013 Computational Paralinguistics
Challenge (ComParE) [292]. This type of training approach is followed for all
subsequent experiments in this chapter, unless otherwise noted.

7.4.1.2 Results

Two different network setups are investigated: a single-layer FF-DNN without pre-
training and a deep DNN, pre-trained with the stacked auto-encoder (SAE) approach.
Contrary to the results in the likability task (cf. Chapter 6) pre-training the single-
layer FF-DNN does not improve performance. Further, initial tuning shows that
a context of 11 frames (5 left + center + 5 right) consistently gives best results.
Table 7.3 shows the comparison of the UAAUC for a single-hidden layer MLP and
a two-hidden layer SAE for different layer sizes. For both networks the use of 256
hidden units per layer give best results and one can observe that the 2-layer DNN
with SAE pre-training outperforms the one-layer network.

Fixing the number of hidden units to 256 the number of layers is varied, where
each layer is again pre-trained with the stacked auto-encoder method. The results,
reported in Table 7.4, show that 2 layers indeed are optimal for the given number of
hidden units. Stacking additional layers on top leads to a continuous degradation of
performance.
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7.4.2 Enhanced Posteriors and Posterior Smoothing

7.4.2.1 Experimental Setup

In frame-wise detection problems, in particular the current problem of detecting
laughter and fillers, quite often spurious drops or spikes in the trajectories of the
posterior probabilities (network outputs) can be observed. One way to reduce these
artifacts is to a apply a sliding window smoothing filter, e. g. an ARMA filter [330].
Another way to improve upon the performance of posterior-based systems is to
build a second network on top of the first one, thus building a hierarchical neural
network. This approach has been shown to to improve results in the realm of ASR
systems [178]. In the following, let the model which contains all layers from the
input to the first softmax be called the feature model. This model processes the input
features and generates posteriors at its (softmax) output. These posteriors will be
referred to as regular or first-order posteriors. Any subsequent network, which takes
the regular posteriors as input will be called posterior model, and the smoothed,
modified posteriors shall be termed enhanced or higher-order posteriors.

Higher-order posteriors are formed the same way as stacked input features: The
regular posteriors, i. e. the outputs of the feature model, are stacked into a posterior
context window as in (7.1) and are fed into the posterior model, which now has
the ability to learn long-term inter- and intra-dependencies between class evidences
(posteriors) in the training data and to transform the regular posteriors into enhanced
posteriors. Figure 7.1 shows a schematic example of this process. The long term
dependencies captured by the posterior model leads to an enhancement of the quality
of the overall class posteriors. As conjectured by [178], the rationale is that at the
output of every neural network, the information stream gets simpler (converging to
a sequence of binary posterior vectors), and can thus be further processed (using a
simpler classifier) by looking at a larger temporal window.

A graphical representation of the posterior trajectories over time is referred to as
a posteriorgram [107]. Figure 7.2 depicts a typical example of a posteriorgram for
both regular and enhanced posteriors of one of the utterances in the SSPNet Vocal-
ization database. Evidently, the enhanced posterior trajectories are much smoother
than their regular counterparts, which usually leads to fewer false detections. A
disadvantage of this smoothing is that the transitions at the class boundaries are
also washed out to some degree. It should hence be expected that there will be more
errors in these transition areas.

For training the second-order enhanced posterior networks n consecutive frames
of the three-dimensional regular posteriors (”laughter”, ”filler”, and ”garbage”) are
stacked with 3 ≤ n ≤ 201, which amounts to a maximum temporal context of
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Figure 7.1: Hierarchical network to generate enhanced posteriors: The feature model
transforms stacked (acoustic) features into regular posteriors. A temporal context of
those posterior vectors is created by frame stacking. The posterior model processes
the temporal context of regular posteriors and learns long term dependencies to
estimate enhanced posteriors.
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Figure 7.2: Example of posteriorgrams showing the posterior trajectories over time
for one utterance. The plot on the top shows the posteriorgram of the regular
posteriors for the two classes garbage (solid blue line) and laughter (dotted red line).
The plot on the bottom shows the posteriorgram of the enhanced posteriors for the
same classes and utterance.

approximately 2 seconds. As previously the set of meta-parameters is chosen to be
the one which yields the highest UAAUC value on the development set. Notice that
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Table 7.5: Enhanced posteriors: Comparison of the effect of the temporal context of
stacked regular posteriors for a MLP with 256 hidden units on the development set.

Nr. of context frames 51 75 101 151 175 201

UAAUC [%] 96.6 96.9 97.1 97.3 97.2 97.1

Table 7.6: Enhanced posteriors: Comparison of the effect of the number of hidden
units for a MLP using an input context of 151 frames on the development set.

Nr. hidden units 64 128 256 512 1024 2048

UAAUC [%] 96.8 97.1 97.3 97.2 97.2 97.1

the enhanced posterior network is trained of fixed inputs, i. e. first the input network
is trained to convergence and then its parameters are frozen. The enhanced posterior
network is then added and trained, without fine-tuning the input network.

7.4.2.2 Results

Taking the 2-layer SAE network with 256 hidden units per layer as the feature
model, as found in the previous section, a single-layer neural network (MLP) of
size 256 is stacked on top to learn the relationships between neighboring posterior
values and to generate enhanced posteriors. Table 7.5 shows the impact of varying
the context size of the stacked regular posteriors. Best results are obtained for a
context of 151 frames, which accumulates evidence across approximately 1.5 seconds.
At first glance, this seems to be a fairly large context. However, presumably the
feature model, which produces the regular posteriors, uses a much smaller window
of approximately 160 ms to predict the presence of social signals with a finer time
resolution, while the smoothing posterior model collects this evidence to smooth
out outliers and improve the robustness of the final prediction. Nonetheless, it is
reassuring to observe, that the performance is not overly sensitive to the context size.
Thus, one could reduce the context size, for example to reduce delay in real-time
systems. Tuning the number of hidden units in the posterior model shows that 256
is actually a good size, as shown in Table 7.6. Again, the decrease in performance is
rather small as one deviates from the optimum number of hidden units.

7.4.3 Higher-Order Posteriors and Comparison

7.4.3.1 Experimental Setup

Extending the idea of enhanced posteriors from the previous chapter, the resulting
second-order posteriors can again be fed into another neural network to create
so-called higher-order posteriors. The performance of third-order posteriors is also
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Table 7.7: Third-order posteriors: Results obtained for a 2nd-order MLP on the
development set. The first row shows the number of frames of regular posteriors
(output from the feature model) used to build the input of the posterior model
(MLP). The second row shows the number of frames of enhanced posteriors (output
from the posterior model) used to build the input to the third MLP.

Nr. of context frames (regular) 51 151

Nr. of context frames (enhanced) 51 151 51 151

UAAUC [%] 96.8 96.9 97.1 96.8

examined in this study. Training is executed as described above for the other networks.
In particular, the final, higher-order posterior network is trained on fixed inputs, as
described in Section 7.4.2.1.

7.4.3.2 Results

Table 7.7 depicts the results for higher-order posteriors for two different context
window sizes, 51 and 151, respectively. Comparing these results to those shown in
Table 7.5 one can observe that for shorter, sub-optimal context lengths (51 is this
case) higher-order posteriors actually give rise to a slight improvement. However, for
the optimum context length of 151 frames the performance decreases minimally. Is is
presumed that this is due to the effect of overly smoothing the posterior trajectories,
especially at the transition boundaries between classes. One can summarize that for
the task at hand going beyond second-order posteriors does not lead to performance
improvements.

A synopsis of the best results obtained with the described approaches on the
SSPNet Vocalization database can be found in Table 7.8, together with detailed
results for the social signal classes ’laughter’ and ’filler’. The table also contains
the results from the Challenge baseline. Leveraging enhanced posteriors a UAAUC
of 97.3% is achieved on the development set and 92.4% on the test set, which sig-
nificantly outperforms the Challenge baseline results by 9.7% and 9.1% UAAUC
absolute, respectively, at a significance level of α = 0.001. Further, it also significantly
(α = 0.001) excels the performance of the winner of the Challenge [122] by 2.4%
and 0.9% UAAUC absolute. Note that for the results of the baseline on the test set
the respective models were retrained on the union of the training and development
sub-sets. Retraining the posterior networks on the combined sub-sets, the results
slightly worsen, so the results on the test set are based on networks that are trained
on the training set only.
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Table 7.8: Summary of best results on the SSPNet Vocalization database. Depicted
are results on the development (’dev’) and the test set using models trained on the
full training set. Note that the test results for the baseline are obtained training on
the combination of training and development set.

Dev set Test set

AUC [Laughter] 86.2 82.9

Baseline AUC [Filler] 89.0 83.6

UAAUC [%] 87.6 83.3

Regular
posteriors

AUC [Laughter] 92.8 90.5

AUC [Filler] 94.5 88.0

UAAUC [%] 93.7 89.2

Enhanced
posteriors

AUC [Laughter] 98.1 94.9

AUC [Filler] 96.5 89.9

UAAUC [%] 97.3 92.4

7.4.4 BLSTM Networks

7.4.4.1 Experimental Setup

Since BLSTM networks have shown excellent performance on frame-wise tasks in
recent years on several tasks [114, 364], it is of interest to explore if they can also
compete in the social signals domain. Therefore, firstly, experiments are carried out
in the regular posterior setup by replacing the FF-DNN by a single BLSTM layer
(i. e. one layer per input direction), where each BLSTM memory block contains one
single memory cell. After determining the optimum number of BLSTM memory
blocks of this feature model, a BLSTM network is stacked on the outputs of the
first network, operating on the regular posteriors to compute enhanced posteriors,
but in a recurrent way. This essentially forms a bottleneck architecture, where the
bottleneck layer consists of the (regular) posteriors after the softmax operation. This
novel approach of creating a deep BLSTM, which uses a self-learned context to
model the time trajectories of the posteriors, is shown to be highly competitive w. r. t.
previous approaches.

7.4.4.2 Results

Table 7.9 shows the results of varying the number of memory blocks in the BSLTM
network. Best results are obtained when using 50 blocks. Comparing the results
to the ones obtained by FF-DNNs (shown in Table 7.8) one can conclude that the
single-network BLSTM outperforms the regular posterior networks significantly on
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Table 7.9: Regular posteriors (BLSTM): Comparison of the number of memory
blocks.

BLSTM UAAUC [%]

network topology Devel Test

141-30-3 96.3 91.5

141-40-3 96.6 92.1

141-50-3 97.0 93.0

141-60-3 96.3 91.8

141-80-3 96.3 91.5

both the development and test sets. In fact, it even excels the test set results of the
enhance posterior network from 92.4% to 93.0%, an 8% relative improvement, even
though it performs slightly worse on the development set.

As shown in Table 7.10, adding another BLSTM on top of the regular posteriors
increases the performance on the test set by an additional 0.4% to 93.4%, while not
showing any gain on the development set. The relatively small gain compared to
the gain achieved in the FF-DNN case clearly shows that the first BLSTM network
already learns much of the temporal structure necessary to predict smooth posteriors
for the task, presumably extending the effective context beyond the context seen by
the FF-DNN sliding windows. Yet, the gain achieved by the posterior network is
significant on the test set, which indicates that there is still valuable information
contained in the temporal structure of the class posteriors generated by the first
network that can be exploited by the higher-layer network. As a control experiment
a ’regular’ deep BLSTM without the intermediate output layer (of size 3) is con-
structed and evaluated. The number of memory blocks in each layer is optimized
on the development set and the result of the best-performing topology is shown
on the bottom line of Table 7.10. Evidently, the deep bottleneck network offers
superior performance over the deep, regular BLSTM. The reasons for this behavior
is unclear, but it is possible that the bottleneck layer functions as a strong regularizer.

A remaining question is the fact that the UAAUC on the development set does not
improve in the same way as the UAAUC on the test set. One possible reason could be
that the CE loss on the development set, which is used as an early stopping criterion,
ignores the data imbalance of the data set and hence is not directly correlated to the
absolute value of the UAAUC. However, within each experimental group the dev set
UAAUC is a good indicator for the performance on the test set.
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Table 7.10: Enhanced posteriors: Comparison of the number of memory blocks in
the second layer BLSTM.

Stacked BLSTM UAAUC [%]

network topology Devel Test

141-50-3-10-3 96.8 93.2

141-50-3-20-3 96.9 93.4

141-50-3-30-3 96.7 93.1

141-50-3-40-3 96.6 92.9

141-50-3-50-3 96.7 93.0

141-50-20-3 96.6 91.7

7.4.5 Hierarchical DNN-BLSTM Networks

7.4.5.1 Experimental Setup

In a final experiment, the feature model BLSTM network of the hierarchical bot-
tleneck architecture is replaced by the network that produced the best results from
Section 7.4.2, while the posterior model network remains a BLSTM. This effectively
forms a hierarchical, deep DNN-BLSTM network. The DNN in this study consists of
two hidden layers of size 256, pre-trained as a stacked autoencoder and subsequently
fine-tuned using stochastic gradient descent.

7.4.5.2 Results

The results of the combined DNN-BLSTM hierarchical network are given in Ta-
ble 7.11. A deep DNN-BLSTM network, which consists of two hidden layers with
256 units each in the feature model and a posterior model BLSTM network with
20 memory blocks, achieves a UAAUC of 94.0% on the test set and 97.2% on the
development set. To the author’s knowledge this represents the best results on the
SSPNet Vocalization dataset published so far. Interestingly, the DNN performs
better than a BLSTM when used as the first network module. It seems to capture
structure of the feature set that is not conveyed by its temporal characteristics, but
some other form of inherent information.

Table 7.12 summarizes the key results obtained in this study and compares it
to the baseline results of the Social Signals Sub-Challenge of the Interspeech 2013
Computational Paralinguistics Challenge (ComParE) [292]. Further, the performance
obtained with (one-directional) LSTMs is shown for comparison. Evidently, BLSTMs
manage to exploit future time context in each utterance, which boosts its performance
and shows the modeling power inherent in BLSTMs w. r. t. to LSTM models.
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Table 7.11: Deep DNN-BLSTM: Comparison of the number of memory blocks in the
second layer BLSTM.

Effective UAAUC [%]

network topology Devel Test

141-256-256-3-16-3 96.7 92.2

141-256-256-3-20-3 97.2 94.0

141-256-256-3-24-3 96.8 93.0

141-256-256-3-30-3 96.9 93.3

141-256-256-3-50-3 96.7 92.5

Table 7.12: Summary of results obtained in this study on the the SSPNet Vocalization
database.

UAAUC [%]

Model architecture Network topology Devel Test

Baseline [292] – 87.6 83.3

Regular posterior 141-256-256-3 93.7 89.2

Enhanced posterior 141-256-256-3 97.3 92.4

LSTM 141-50-3 95.3 90.9

BLSTM 141-50-3 97.0 93.0

LSTM-LSTM 141-50-3-20-3 95.1 90.7

BLSTM-BLSTM 141-50-3-20-3 96.9 93.4

DNN-LSTM 141-256-256-3-20-3 95.2 90.3

DNN-BLSTM 141-256-256-3-20-3 97.2 94.0

7.4.6 Mono- and Cross-Lingual Social Signals ’in the Wild’

7.4.6.1 Experimental Setup

The research objectives in this study, which was presented by the author and his
colleague in [39], are three-fold: To start with, it gives a first evaluation of the
detection of social signals on the recent SEWA database. In addition, it presents the
first mono-lingual and cross-lingual results on the detection of laughter and fillers
in conversational and spontaneous speech collected ’in the wild’. The final goal
is to give an extensive comparison of BLSTM, LSTM, and resource-efficient GRU
networks on this task. This is particularly important for applications which cannot
afford long time delays or have limited compute constraints.
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The experiments are carried out for British English and German, and for each lan-
guage the set of utterances is divided into a training (17/18 speaker pairs), validation
(7 pairs), and test (8 pairs) subset. Care is taken to ensure gender-pair balancing,
i. e. that the proportions of female-female, male-male, and male-female pairs are
approximately constant across the subsets. All examined models are trained on the
respective training set using the Adam optimizer and CE loss, until the the early
stopping criterion is met; i. e. training is stopped once there is no improvement of the
UAAUC on the validation set for more than 5 epochs. After early stopping the model
that achieves the highest UAAUC value on the validation set is used for inference.
This approach was found to be robust in previous studies [36, 37]. The parameters
for the Adam optimizer are β1 = 0.9 and β2 = 0.999. The initial learning rate is
varied between 10e−4 ≤ λ ≤ 10e−2, and since ADAM is an adaptive learning-rate
algorithm, not explicit learning rate annealing is applied. Further, the (recurrent)
models are trained based on data chunks of size 32, i. e. the forward pass is computed
on the model for 32 consecutive frames before the error is backpropagated via BPTT
and the model parameters are updated. At the start of each chunk the hidden states
of the recurrent models are initialized to 0. This means that no history context is
carried over from one chunk to the next, which allows the randomization of chunks
and which is known to speed up convergence and to improve generalization. For the
frames within each chunk no context expansion is applied, i. e. the input at each
time frame is one single feature frame, as described in Section 7.3.

In the mono-lingual study each language is examined separately, in order to
gain some understanding of the performance of the different model architectures
and to find a suitable topology that works well on the SEWA database. Further,
the results serve as a reference for the cross-lingual experiments. The use of the
training, validation, and test splits follow this subdivision. In the cross-lingual study
instead, for each language, the combination of the training and validation sets of that
language are used for training (in order to increase the amount of training data) and
the test set of that language as the validation set (e. g. for early stopping). Then,
the evaluation is carried out on the other language’s full data set.

7.4.6.2 Results

Starting with the mono-lingual case it is necessary to find a suitable model topology
that works well on the SEWA database. To this end, a grid search is executed over
the number of cells Ncell in each layer with Ncell ∈ [4, 512] and over the number of
layers Nlayers ∈ [1, 2, 3]. Table 7.13 shows the top-3 model topologies for all three
different model types (BLSTM, LSTM, and GRU) for both languages. Stunningly,
for both languages and all three model types a two-layer, inverse pyramidal topology
with 32 cells in the first layer and 16 cells in the second layer works best. The
results compare very favorably against the previously reported numbers on the
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Table 7.13: UAAUC [%] for mono-lingual training and testing without posterior
smoothing for three different model types and three different topologies per type.

Model Topology
British German

Valid Test Valid Test

130-32-3 79.7 82.7 82.7 83.8

BLSTM 130-32-16-3 84.7 87.0 83.0 86.3

130-32-32-32-3 83.4 85.0 83.0 86.1

130-32-3 79.9 80.2 81.1 82.9

LSTM 130-32-16-3 80.4 81.6 81.6 83.1

130-32-32-32-3 80.7 81.6 78.6 77.6

130-32-3 77.4 78.9 81.6 84.3

GRU 130-32-16-3 80.0 84.0 83.3 85.9

130-32-32-32-3 80.7 81.6 82.8 85.6

SSPNet Vocalisation Corpus from the previous sections, given the more difficult
recording conditions of the SEWA database. Further, the performance for both
languages is very similar. Even though one can expect some cultural differences
in the expression of social signals, the chosen approaches exhibit robustness and
language-independence. While it is to be expected that BLSTM models outperform
LSTM networks, due to their access to future context information, it is surprising
that GRUs compare very favorably to the BLSTM models. One reason that GRUs
perform significantly better than LSTM models might be due to their lower complex-
ity, i. e. the fewer number of parameters, which could lead to improved generalization.

In the previous sections it was shown that smoothing the posteriors at the output
of the feature model is highly beneficial to the overall performance. This idea is
also followed in this study by taking the models with the best model topology
(130-32-26-3) as the feature model and stacking another (posterior) model on top of
it to generate enhanced posteriors. Contrary to the previous approach, however, in
this case the inputs to the posterior model are the outputs of the feature model before
applying the softmax nonlinearity, i. e. the so-called logits. In this experiment, the
posterior model is trained while keeping the parameters of the feature model fixed.
Further, the feature model and posterior model are always of matching type, i. e. for
a BLSTM feature model a BLSTM posterior model is used, etc. A preliminary grid
search performed over the number of cells Ncell ∈ [1; 64] showed that the optimal
number of cell in the posterior network is around Nposterior

cell = 8, which is used in the
remaining experiments. Table 7.14 shows the effect of combining the best feature
model topology from Table 7.13 with the posterior model, resulting in a full network
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Table 7.14: UAAUC [%] for mono-lingual training and testing with posterior smooth-
ing for the optimal topology 130-32-16-3-8-3.

Model

British German

Posterior smoothing Posterior smoothing

no yes no yes

BLSTM 87.0 87.5 86.3 86.7

LSTM 81.6 82.7 83.1 83.9

GRU 84.0 84.3 85.9 86.1

topology of 130-32-16-3-8-3. The overall gain due to posterior smoothing on the test
set lies between 0.2 % and 1.1 % UAAUC. It should be noted that this gain depends
on the amount of ’laughter’ and ’filler’ events found in the data, since it also includes
the dominant class ’garbage’.

Finally, a cross-lingual experiment is carried out, to check for language indepen-
dence of social signal detection. For both language combinations (British-German
and German-British) all model types are studied, both with and without posterior
smoothing, and again performing a grid search over the number of layers and the
number of memory blocks inside each layer, as previously. Similar to the mono-
lingual case the best performing network topology for all model types turns out
to be 130-32-16-3 for the feature model, and 16 for BLSTM or 8 for LSTM/GRU,
respectively, for the posterior model. Table 7.15 depicts the results for the best
respective setups. As in the mono-lingual case, the BLSTM models outperforms the
LSTM and GRU models, but the difference is relatively small. Also, GRUs again beat
the LSTM models, and in the German-British setup it is only approximately 2.0%
worse than the BLSTM results. This finding is of high importance, since it shows
that for on-line or low-resource applications resorting to GRU models constitutes a
viable approach and the expected decrease in performance is very limited. Finally,
posterior smoothing is again found to consistently and significantly improve the
unsmoothed results in all experiments. Interestingly, the gains are smallest for the
GRU models and largest for the LSTM models.

7.5 Conclusions

In this chapter several effective methods for detecting social signals in speech signals
have been introduced. Results on the SSPNet Vocalisation Corpus have demonstrated
that a single-layer MLP network already outperforms the baseline results from the
Social Signals Sub-Challenge of the Interspeech 2013 Computational Paralinguistics
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Table 7.15: UAAUC [%] for cross-lingual setups British (train & validation) – German (test) and German-British
for various deep neural architectures, all with topology 130-32-16-3 (no posterior smoothing) and 130-32-16-3-
16(blstm)/8(lstm,gru)-3 (with posterior smoothing). For a detailed description refer to the text.

Train/Validation – Test British-German German-British

Model BLSTM LSTM GRU BLSTM LSTM GRU

Smoothing no yes no yes no yes no yes no yes no yes

Approx. # parameters 48k 51k 24k 25k 18k 18k 48k 51k 24k 25k 18k 18k

Valid 85.6 87.6 82.4 85.0 86.9 86.8 88.0 88.7 86.6 77.9 86.6 86.8

Test 83.7 84.4 78.4 79.6 81.1 81.3 85.0 85.6 80.6 82.4 83.7 83.8
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Challenge, the performance of which can significantly be improved by unsupervised
pretraining using a stacked autoencoder approach. Furthermore, a novel posterior
smoothing technique was introduced, which intelligently and effectively smoothes the
highly variable posterior trajectories resulting from the investigated neural networks
by stacking additional neural networks which operate on the posteriors output by
the underlying network. It has been shown that this process can be repeated to
obtain an even higher degree of context smoothing. Leveraging the temporal learning
capabilities of recurrent neural networks, this approach was extended to BLSTM
networks and hierarchical DNN-BLSTM networks, which raises the performance to
a new level. The proposed approaches were demonstrated to achieve state-of-the-art
results on the SSPNet Vocalization Corpus. Finally, the findings were verified and
extended on the recent SEWA database, which is a collection of recordings under
realistic conditions, exhibiting spontaneous and natural behavior of the participants.
The presented study constitutes the first evaluation of the detection of social signals
on this database. In addition, it presents the first mono-lingual and cross-lingual
results on the detection of laughter and fillers in conversational and spontaneous
speech collected ’in the wild’. Eventually, it shares a first comparison of efficient,
resource-efficient models to more conventional recurrent neural models on this task
and demonstrates that the proposed models and approaches are highly effective.
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Chapter 8

Conflict Detection

The aim of argument and of discussion should not be victory, but progress.

Joseph Joubert

Motivated by the fact that human speech contains valuable information about the
valence and level of conflict, this chapter expounds the application of deep neural
networks to the problem of automatic detection of conflict in speech. The experi-
ments are conducted on the Conflict Sub-Challenge data set of the Interspeech 2013
Computational Paralinguistics Challenge (ComParE) [292] and the results show that
the proposed approach surpasses the baseline results by a consistent margin, as
was shown in a study by the author and his colleague in [38]. In fact, at the time
this work was published the results were the best reported so far in the literature
on both the classification and the regression task. This shows the feasibility and
appropriateness of the described methods for this problem.

After describing the database, three different feature sets are presented, which are
used in the experiments for the actual prediction of conflict as well as for predicting
the overlap ratio, an auxiliary feature, which helps to improve the overall performance.
Then, a BLSTM model is proposed to reliably estimate the overlap ratio from real
speech signals and the different feature sets and methods are evaluated and compared
to the Challenge baseline results. Parts of this work were presented earlier by the
author and his colleague in [38].

8.1 Detection of Conflict in Speech

Although there does not seem to be a universally accepted definition of conflict,
it undoubtedly is an intrinsic component of human relations, inevitably arising in
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inter-human communication, manifested in incompatibility, disagreement, or differ-
ence within or between social entities (individuals, groups, organizations, etc.) [262].
Traditionally, conflict has been defined as opposing interests involving scarce re-
sources and goal divergence and frustration [254] or incompatible activities, where
one person’s actions interfere, obstruct, or in some way get in the way of another
person’s action [59, 70]. In any case, one key element of conflict is that it is a dynamic
process that does not appear suddenly, but takes time to evolve, and passes through
several stages [320]. Further, it usually is the process resulting from the tension in
interpersonal interactions because of real or perceived differences [68, 357].

Reliably detecting conflict is of high interest for many application scenarios, rang-
ing from safety- and security-critical situations, such as air traffic control or public
and private surveillance, over customer centers and the increasingly wide-spread
artificial intelligence agents, to general data mining use cases. In all these situations
both real-time, on-line deployments and off-line situations are abundant, and all focus
on detecting and extracting conflictual segments as a basis for further processing and
action. Since speech is a predominant carrier of information about level of conflict,
this chapter focuses on the detection of conflict from audio-based signals.

Related work
Early works on the automatic detection of conflicting situations in multi-party
conversations date back almost two decades [366], where the authors examined,
if involvement could be reliably judged by human listeners. They concluded that
human raters demonstrated significant agreement in discriminating involved from
non-involved speech, despite the subjective nature of the problem. It was also found
that the temporal trajectories of fundamental frequency (F0) and speech energy
represent reliable acoustic cues of involvement. A survey of audio-visual cues of
agreement and disagreement was presented by Bousmalis and colleagues [32]. In this
study visual cues, such as head gestures, facial and hand actions, were found to be
more relevant than auditory information, for example throat clearing and sighing.
Nonetheless, pauses in speech, delays, interruptions, and utterance length also play
an important role. Pesarin et al. [245] proposed a semi-automatic approach, using a
generative statistical technique based on Markov chains, for detecting conflict in con-
versational dialogues. This way they were able to identify structural patterns linking
the organization of speaker turns to the presence of conflict. Feature selection was
the basis for the work by Kim et al. [182]: The authors successfully adopted different
kinds of regression models for automatic and manual diarization, applying Support
Vector Regression, Gaussian Process models, and Bayesian Linear Regression. In
an extension to this work they added the detection of conflict escalation in political
debates [181, 183].
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As in many other paralinguistic areas, all this work on conflict detection suffered
from reduced comparability of results due to the different data sets underlying the
research. In order to remedy this situation the Conflict Sub-Challenge of the Inter-
speech 2013 Computational Paralinguistics Challenge [291] introduced a benchmark
dataset to allow for the objective comparison of approaches on the detection of
conflict and the prediction of conflict level. Based on this data set, one of the
challenge participants, Grèzes et al. [117], found that the ratio between overlapping
and non-overlapping speech, the so-called overlap ratio, represents the single best
feature for predicting the conflict level.

Given the importance of overlapping speech, a number of studies have presented
approaches on how to robustly estimate overlapping speech segments in multi-party
conversations. Support Vector Machines and Support Vector Regression using
microphone arrays were used by Yamamoto et al. [369] to estimate the number of
sound sources. Discriminant Capability Analysis was adopted by Boakye et al. [27]
as a feature analysis method achieving almost oracle performance on the underlying
database. In [379] Zelenák and his colleagues complemented short-term spectral
features with long-term, prosody-based features, followed by a feature selection stage
based on the minimal-redundancy-maximal-relevance (mRMR) criterion. Geiger et
al. [96] instead used a conventional HMM system based on a feature set extracted via
convolutive non-negative sparse coding. By improving the overlap detection rate they
managed to reduce the overall diarization error rate. In a later study the authors
added Long Short-Term Memory (LSTM) recurrent neural networks to their baseline
model to improve upon their earlier results [95]. A similar idea was also used by
Yella and Bourlard [372] for speaker diarization in meeting room conversations.

8.2 Speech Database

The SSPNet Conflict Corpus (SC2) [182] is a subset of the Canal 9 Corpus [351],
which is a publicly available collection of 45 broadcasted Swiss political debates in
French language, and was also used in the Conflict Sub-Challenge of the Interspeech
2013 Computational Paralinguistics Challenge [292]. The data set has a total du-
ration of 11.9 hours and the debates were segmented into 30-second long, uniform,
non-overlapping clips, involving at least two speakers or more and assuming that the
levels of conflict are stationary within the time period. It includes 110 subjects in
total, 18 females (1 moderator and 17 participants) and 92 males (1 moderator and
91 participants).

The SC2 corpus includes a rich set of socially relevant annotations, such as
turn-taking (who speaks when and how much), agreement and disagreement between
participants, and the role played by the people involved. Each debate includes one
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Table 8.1: Partitioning of the SSPNet Conflict Corpus into train, validation, and
test sets for binary classification (’Low’ ≡ [−10, 0[, ’High’ ≡ [0,+10]).

# Train Valid Test Σ

Low 471 127 226 824

High 322 113 171 606

Σ 793 240 397 1.430

moderator and two coalitions opposing each other on the issues of the day. Each clip
was annotated using a questionnaire including physical (objective observation) and
inferential (subjective interpretation) questions about the occurrence of conflict [353].
Annotations were conducted by 551 assessors via the Amazon Mechanical Turk online
system, each clip being rated in terms of their conflict level by 10 assessors in two
ways: First, a continuous conflict score in the range [-10, +10] was assigned to each
clip, which allows to perform a straightforward regression task (score). Second, based
in these score labels each clip was classified to be either of high conflict or low conflict,
depending if the score value assigned to it is ≥ 0 or < 0, respectively, thus giving
rise to a classification task (class) [38, 380].

As several subjects occur in debates with different moderators, a truly speaker-
independent partitioning of the data is not possible. Since all participants (apart from
the moderators) do not occur more than a couple of times (most of them only once),
the following strategy was followed to reduce speaker dependence to a minimum: All
broadcasts with the female moderator (speaker no. 50) were assigned to the training
set. The validation set consists of all broadcasts moderated by the (male) speaker no.
153 and the test set comprises the rest of the broadcasts, containing all remaining
male moderators. This further ensures that the validation and test sets are similar,
in case the gender of the moderator should have an influence. This data split leads
to the training set comprising approximately 55% of the data, the validation set 17%,
and the test set 28%, with a strict speaker-disjoint partition not being feasible. The
resulting distribution of the data is shown in Table 8.1 along with the respective
binary class labels. Histograms of the continuous score ratings over the partitions
are depicted in Figure 8.1.

8.3 Acoustic Feature Sets

To assess the relevance of different acoustic features three different feature sets are
examined in the following experiments: Feature set I is the baseline feature set used
in the ComParE Conflict Sub-Challenge [292] and consists in the supra-segmental
feature set (cf. Section 3.1.2) listed in Table 3.2. In the experiments expounded in
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Figure 8.1: Histograms for the level of conflict (∈ [−10,+10]) for the Challenge
partitions of the SSPNet Conflict Corpus.

this chapter one segment per utterance is used. Hence, after extracting the LLDs (cf.
Table 3.1) as described in Section 3.1.1 a series of functionals are applied to extract
higher level statistics over the full utterance, resulting in 6,373 features.

For time-recursive neural networks such as LSTMs supra-segmental features,
especially if computed on a per-utterance basis, are an unsuitable choice, since
they hinder the networks to exploit the information distributed across time. But
even for regular feed-forward networks it might be beneficial to learn intermediate
representations on smaller context windows of the input signal. For this reason
a frame-based feature set II is constructed as follows: the speech waveform is
split into segments of 20 ms length, shifting the segments by half their size, i. e.
with a frame shift of 10 ms. For each such segment the logarithmic energy and the
Mel-frequency cepstral coefficients (MFCC) 1-12 together with their first and second
order delta (∆) regression coefficients are computed. This bears resemblance to the
features commonly used in automatic speech recognition. In addition, these features
are augmented by the probability of voicing, the harmonic-to-noise ratio (HNR),
the fundamental frequency F0, and the zero-crossing rate (ZCR), as well as their
respective first order ∆. Based on these LLDs the arithmetic mean and the standard
deviation across a context window of size n = 9 (central frame + four to the left +
four to the right) are computed and appended to the LLD features. Overall, this
results in 47× 3 = 141 descriptors per frame. The reason for selecting this particular
set of features is that it limits the number of features to a relatively small number
and that it was used with great success in the ComParE Vocalization Sub-Challenge
in previous work [36, 37].

A completely different approach is used in constructing feature set III, which
is a modification of the feature set proposed by Kim et al. [182]. It is composed of
two parts, a conversational and a prosodic one. The conversational part consists
of statistics about speaker turn information extracted from the speech signal: it
includes turn duration statistics, namely the mean, median, minimum, maximum,
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and variance of speaker turn durations, as well as the number of speaker turns.
Additionally, it is complemented by the mean, median, minimum, maximum, and
variance of the total speaking time for individual speakers in each recording, as
well as the number of speakers present. Eventually, the overlap ratio and the turn
keeping/turn stealing ratio are added; the latter defines the ratio between the number
of times a speaker change happens and the number of times a speaker change does
not happen after an overlap.

The conversational part of feature set III is complemented by prosodic features
based on per-utterance statistics: mean, median, standard deviation, minimum,
maximum, and quantiles (0.01, 0.25, 0.75 and 0.99) of pitch and intensity statistics
obtained from the entire audio recording. The pitch and intensity features are
identical to the ones in feature set I. These general prosodic features are augmented
by the mean, median, and standard deviation of pitch and intensity computed from
individual speaker turns. Overall, feature set III contains 38 features. It is important
to notice that the statistics described above are estimated on single-talker segments,
as well as overlapping speech segments.

8.4 Overlap Prediction Generator Network

It was found by Grèzes et al. [117] that the overlap ratio, i. e. the proportion
between overlapping and non-overlapping speech represents the best isolated feature
for predicting the level of conflict in audio signals. Geiger et al. [95] used LSTM
networks to robustly estimate this feature and the author and his colleague [38]
extended this idea to BLSTM models to generate frame-wise overlap predictions. Let

X = x(1), . . . ,x(T ) (8.1)

be the sequence of T feature vectors x(t) extracted from an audio signal. For overlap
prediction this sequence is fed into a neural network with a single sigmoidal output
node to obtain ŷ(t), which represents an estimate of the the presence of speaker
overlap in the audio signal for each time step t. Since a BLSTM is used in these
experiments, ŷ(t) depends on both past and future input, up to and including time
step t in both directions (cf. Section 5.5.1):

ŷ(t) = gf
(
x(1), . . . ,x(t)

)
+ gb

(
x(T ), . . . ,x(t)

)
, (8.2)

where gf and gb denote the functions computed by the forward and backward pass
of the BLSTM, respectively. The labels for training the network are given by

y(t) =

{
1, if x(t) ∈ overlap

0, else
(8.3)

134



8.5. Experiments and Results

i. e. the task is treated as a binary classification problem. Therefore, the output ŷ(t)
of the trained network can be used for predicting overlap at each time step t:

o(t; θ) =

{
1, if ŷ(t) ≥ θ

0, if ŷ(t) < θ
(8.4)

where o(t; θ) is the classification result based on the decision threshold θ, which can
be varied to select a specific operating point, in order to achieve a desired trade-off
between precision and recall and hence to optimize overall performance. In the
experiments described in this chapter the activation function at the output node
was chosen to be the sigmoid (5.4) and the threshold was set to its canonical value
θ = 0.5. Eventually, the overlap ratio for a speech segment or full utterance is given
as

ro(θ) =

∑T
t=1 o(t; θ)

T
, (8.5)

i. e. the ratio between the number of frames characterized by two or more speakers
simultaneously talking over the number of total frames in the audio segment.

8.5 Experiments and Results

For the conflict detection task the ComParE Conflict Sub-Challenge [292] baseline
results will serve as a reference, as they show very good performance on the binary
classification and real-valued regression tasks. Results are reported for two scenarios:
First, the classification task, in which each audio recording is classified to be either
conflictual (high in Table 8.1) or non-conflictual (low). For this problem the evaluation
measure was chosen to be the unweighted average recall (UAR) as defined by (4.4),
since it accounts well for the class imbalance in the SC2 corpus. Second, the
regression task, in which the scores predicted by the networks are evaluated against
the rater’s reference score values in the range [−10,+10]. For this problem the
Pearson correlation coefficient ρ (4.14), denoted by CC in [292], is used as the
evaluation criterion. The Challenge’s baseline results were computed adopting a
linear kernel Support Vector Machine (SVM) trained using Sequential Minimal
Optimization (SMO) [26]. The SVM complexity parameter C ∈ {10−3, 10−2, 10−1, 1}
which achieved the best UAR on the development set was chosen for the reference
results and logistic models were fit to the SVM hyperplane distance based on the
training set to obtain (pseudo) class posteriors. The best baseline results are depicted
in Table 8.2.
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Table 8.2: Challenge baseline results. C: Complexity parameter in SVM training
(tuned on development set). devel: Result on development set by training on training
set. test: Result on test set by training on the training and development sets.

Task [%] C Devel Test

Classification UAR 0.1 79.1 80.8

Regression ρ (CC) 0.001 81.6 82.6

8.5.1 Supra-Segmental Features

8.5.1.1 Experimental Setup

As a baseline experiment, the supra-segmental feature set I as described in 8.3 is
used as a static, utterance-level input to a neural network. All feature vectors
are normalized via z-score normalization as defined by (3.24), where the statistical
moments are computed on the training set. A favorable side-effect of this normal-
ization is that the resulting normalized features approximately follow a Gaussian
distribution, which is beneficial for the unsupervised pre-training using Gaussian-
Bernoulli Restricted Boltzmann Machines (cf. Chapter 5.8.1) examined in this section.

In a first step the normalized features are used to train a one-layer neural network,
i. e. MLP, in order to investigate the effect of the activation function in the hidden
layer units on the results. For this purpose, the commonly used sigmoidal activation
function (5.4) is evaluated against the piece-wise linear ReLU function (5.10). Fur-
thermore, both variants are trained with either randomly initialized or pre-trained
weights. As explained in Section 5.8 pre-training can help to combat overfitting,
which is often encountered for larger networks in the paralinguistics research field,
due to the relatively small data sets available. In this experiment GBRBMs are used
to pre-train the respective networks. After this initial experiment, several DNNs are
trained varying the number of hidden layers, in order to investigate the impact of
depth on the performance.

For all experiments, prior to training, all weights are initialized with the uniform
Glorot initialization scheme (5.75), also those that undergo pre-training. All networks
are trained on the training set using standard SGD with momentum as described in
Section 5.7.2, using the cross entropy (CE) loss function (5.53) in the classification
task and the mean squared error (4.13) for the regression task. Early stopping,
determined on the development set, is adopted, i. e. as soon as the loss function
starts to rise on the development set the training is stopped. Finally, it is found
that dropout regularization helps when using the ReLU activation function in these
experiments, while this is not the case for the sigmoid units. All hyperparameters
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are tuned on the development set of the SC2 corpus and the reported results reflect
the optimal settings.

8.5.1.2 Results
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Figure 8.2: Regression task: test set results based on the baseline feature set I for
a one-hidden layer MLP for varying hidden layer sizes. Shown are the graphs for
networks trained with ReLUs + dropout vs. sigmoid hidden units and with vs.
without pre-training the networks.

Figure 8.2 shows the best test set results obtained on the regression task for
different sizes of the hidden layer in the MLP. For hidden layer sizes L ≤ 256 the
sigmoidal networks prove to be slightly better than the ReLU counterparts. On the
other hand, for larger layer sizes L ≥ 512 the ReLU networks’ performance excels. In
all configurations pre-training improves the randomly initialized networks by a small,
but consistent gain. Interestingly, in the experiments the sigmoid networks seem to
profit more from pre-training than the ReLU networks, which is probably due to
the regularization effect of dropout, only used with the ReLU activation functions.
Furthermore, pre-training has a bigger impact on larger hidden layers, presumably
because larger networks with their higher number of parameters benefit more from
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Table 8.3: Results on the classification and regression tasks for pre-trained ReLU
networks trained on feature set I for different model topologies. Shown are the best
results obtained on the development set (devel) and on the test set (test). Values
represent UAR for the classification task and Pearson’s ρ for the regression task,
denoted as percentages.

Task Classification Regression

Data sub-set Devel Test Devel Test

ComParE baseline [292] 79.1 80.8 81.6 82.6

MLP (6373-2048-1) 78.3 79.8 80.9 81.5

DNN (6373-1024-1024-1) 79.7 80.9 81.5 82.1

DNN (6373-1024-1024-1024-1) 78.9 80.2 81.1 81.8

its regularization effect than smaller networks.

Nonetheless, even though the performance of the best MLP reaches ρmlp = 81.5%,
indicating the usefulness of simple MLP networks, it still remains below the baseline
system’s performance of ρbaseline = 82.6%. For this reason the depth of the ReLU
networks is increased by adding additional hidden layers and examining the impact
of the number of hidden layers on the performance. Pre-training using GBRBM
is applied as before and a wide range of DNN model topologies are trained. The
best results are reported in Table 8.3 for both the classification and the regression
task. Again the values denote UAR for the former and Pearson’s ρ for the latter, all
denoted as percentages for easy comparison. As can be seen, for the supra-segmental,
utterance-level features set the best results are obtained with a 2-layer DNN with
1024 hidden units per layer. For the classification task the neural network approach
shows slightly better performance than the ComParE Conflict Sub-Challenge baseline
results, while for the regression task the results are slightly worse.

8.5.2 Overlap Ratio

8.5.2.1 Experimental Setup

As alluded to above, the frequency and duration of overlap in speech provides valuable
information for predicting the level of conflict in discourse. The SC2 corpus provides
manually labeled meta-data containing speaker-turn information as well as annota-
tions of overlapping speech segments. From this information the relative percentage
of overlap with respect to the length of the audio recording is computed for each
utterance. Since it is based on the reference annotation this value is termed oracle
overlap ratio. Note that this feature is a scalar, supra-segmental, utterance-level
feature. In order to assess the predictive power of the oracle overlap ratio, it is used
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as a sole feature to feed-forward neural networks of varying depth, i. e. 1–3 hidden
layers, and width, changing the number of hidden ReLU units from 2 to 128. As in
the previous experiments the neural networks are trained on the training set using
SGD, aborting training once the performance on the development set start to saturate.

In a second experiment the oracle overlap ratio is added to feature set I, in order
to assess whether it contains complementary information w. r. t. the baseline features.
For this large feature set the number of hidden units per layer is varied from 64 to
4096 and again, the number of layers change from 1–3, as before.

In realistic scenarios it is of course important to extract the overlap ratio au-
tomatically from speech. To this end, a BLSTM classifier is trained on the the
oracle overlap ratio to output overlap ratio estimates, as described in Section 8.4.
As a recurrent network architecture, the BLSTM requires frame-level features and
therefore the 141-dimensional feature set II is used to train the network. Since
both the input as well as the (single) output are of small dimension, a single-layer
BLSTM network is sufficient to accurately predict overlap vs. non-overlap. Informal
experiments suggest that a single-layer network consisting of 50 BLSTM memory
cells is a good choice. The initial weights are initialized with values drawn from a
uniform distribution in the range [−0.1,+0.1]. In order to increase the robustness
of the network predictions, the input features are distorted with additive noise
sampled from a zero-mean Gaussian distribution with σ = 0.1, which acts as a
form of regularization and enhances generalization. Each network is trained via the
Backpropagation Through Time (BPTT) algorithm (cf. Section 5.7.1) with a learning
rate of 10−5 and a standard momentum of 0.9, until the loss function does not show
any improvement on the development set for 10 epochs. For the classification task
cross-entropy is used as a loss function, while for the regression task the MSE loss is
used. After stopping the training the model which shows best performance on the
development set is used for inference. From the frame-level predictions of overlap
being present or absent the utterance-level overlap ratio is computed as defined
in (8.5) for the full audio clip. The predicted overlap ratio is then used either as a
single input feature or as a complementary feature to feature set I, analogous to the
remarks for the oracle overlap ratio.

8.5.2.2 Results

Table 8.4 shows the best results obtained for the oracle overlap ratio as a single
feature (top) and as a complementary feature to feature set I (bottom), for different
numbers of hidden layers. Interestingly, even when used as a single input feature
the oracle overlap ratio yields very good performance on both classification and
regression tasks. A network with two hidden layers with 32 nodes each proved to
be optimal, with smaller and larger networks being slightly less effective. As a
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Table 8.4: Results for the oracle overlap ratio as a single feature (top) and as a
complementary feature to feature set I (bottom) for different numbers of hidden layers
on the classification and the regression task. Shown are the best results obtained on
the development set (devel) and on the test set (test). The values reported denote
UAR for the classification task and CC for the regression task, both as percentages.

Feature(s)
Task Classification Regression

Data sub-set Devel Test Devel Test

MLP (1-32-1) 75.5 76.7 78.6 79.1

Overlap ratio DNN (1-32-32-1) 76.4 77.2 79.2 79.6

DNN (1-32-32-32-1) 75.4 76.7 78.9 79.2

Overlap ratio MLP (6374-2048-1) 80.6 81.8 81.3 81.8

+ DNN (6374-1024-1024-1) 81.4 82.5 81.9 82.5

Feature set I DNN (6374-1024-1024-1024-1) 80.5 81.9 81.3 81.7

complementary feature to feature set I results strongly improve to surpass the results
from the previous section.

The results for the experiments based on the predicted overlap ratio are depicted
in Table 8.5. Again, a feed-forward network with two hidden layers with 32 nodes
each gives best results for the predicted overlap ratio as a single feature. Interestingly,
the performance of the predicted overlap ratio proves to be significantly better than
the oracle overlap ratio (α < 0.05, according to a z-test for classification and a
t-statistic for regression, respectively), increasing the UAR on the test set of the
classification task from 77.2% to 82.9%, and improving the results of the test set
on the regression task from 79.6% to 82.7%. As in the case for the oracle overlap
ratio, adding the predicted overlap ratio to the feature set I improves the results
further, yielding optimal performance for a feed-forward DNN with two hidden layers
with 1024 nodes each, as before. Once more, the predicted overlap ratio seems to
be advantageous over the oracle overlap ratio. The reason for this behavior remains
unclear and merits further investigation.

8.5.3 Conversational-Prosodic Features

8.5.3.1 Experimental Setup

Inspired by the improvements obtained by leveraging the overlap ratio, this feature
is also added to feature set III, which is a mixture of conversational and prosodic
features and which was successfully used by Kim and his colleagues [182]. In order to
facilitate the experiments the speaker-turn features are computed from the manual

140



8.5. Experiments and Results

Table 8.5: Results for the predicted overlap ratio as a single feature (top) and as a
complementary feature to feature set I (bottom) for different numbers of hidden layers
on the classification and the regression task. Shown are the best results obtained on
the development set (devel) and on the test set (test). The values reported denote
UAR for the classification task and CC for the regression task, both as percentages.

Feature(s)
task Classification Regression

Data sub-set Devel Test Devel Test

MLP (1-32-1) 80.5 82.3 81.3 82.1

Overlap ratio DNN (1-32-32-1) 80.8 82.9 81.9 82.7

DNN (1-32-32-32-1) 80.5 82.5 81.2 81.9

Overlap ratio MLP (6374-2048-1) 82.0 83.2 82.0 82.6

+ DNN (6374-1024-1024-1) 82.3 83.7 82.5 83.2

Feature set I DNN (6374-1024-1024-1024-1) 82.0 83.1 82.1 82.6

annotations provided by the data set. However, as it gives better results, the
predicted overlap ratio is used instead of the oracle overlap ratio, as described in
Section 8.5.2. As in the preceding experiments, the neural network topologies are
chosen to be feed-forward DNNs with 1–3 hidden layers, each composed of a number
of ReLU hidden units, where the optimal number are experimentally identified on
the development set. As before the networks are trained via SGD with momentum
and dropout, using early stopping. All parameters and loss functions are as described
above.

8.5.3.2 Results

The results for the optimal network configurations are shown in Table 8.6. First, the
results show that the conversational-prosodic feature set III further improves upon
the previously optimal results, when using a DNN with two hidden layers with 512
ReLU nodes each, both for the classification and the regression task. As in the above
experiments, two hidden layers give better performance than one or three hidden
layers. However, the number of hidden nodes per layer needs to be smaller than
before, presumably since the number of features in feature set III is much smaller
than the number of features in feature set I.

On the classification task the best network achieves a test set UAR = 84.3%,
which exceeds the baseline result by 3.5% and the best result in the Conflict Sub-
Challenge reported by Räsäsen et al. [265] by 0.4% absolute. On the regression
task the improvements are slightly smaller, yet still raising the benchmark of the
Challenge correlation coefficient from 82.6% to 83.8% on the test set.
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Table 8.6: Results for feature set III varying the number of hidden layers on the
classification and regression task. Shown are the best results obtained on the
development set (devel) and on the test set (test). The percentages reported denote
UAR for the classification task and CC for the regression task. For comparison
the baseline results and the highest published competition results of the Conflict
Sub-Challenge are shown as well.

Task Classification Regression

Data sub-set Devel Test Devel Test

MLP (38-512-1) 82.5 83.8 82.2 83.2

DNN (38-512-512-1) 83.1 84.3 83.0 83.8

DNN (38-512-512-512-1) 82.6 84.0 82.7 83.4

Challenge baseline [291] 79.1 80.8 81.6 82.6

Räsänen et al. [265] — 83.9 — —

Grèzes et al. [117] — 83.1 — —

8.6 Conclusions

In this chapter an approach was presented how to successfully apply feed-forward
DNNs to the problem of automatically detecting conflict in spontaneous, multi-party
conversations. The experiments were performed on the SSPNet Conflict Corpus,
which was also used in the Conflict Sub-Challenge of the Interspeech 2013 Computa-
tional Paralinguistics Challenge. Different utterance-level feature sets were evaluated
on two separate tasks, namely classification and regression. As a first result, it was
proven that replacing the traditionally used sigmoid hidden units with ReLU units
and pre-training the networks using a variant of the RBM algorithm – combined
with dropout as an advanced regularization method – improves performance and
yields a baseline performance on-par with the challenge baseline performance. Next,
it was shown that the oracle overlap ratio, i. e. the ratio of overlapping speech
to non-overlapping speech obtained from manual segmentation, by itself as well as
a complementary feature to the baseline feature set improves upon the baseline results.

In order to make the use of overlap prediction feasible for real-life applications,
a new method was proposed for predicting the ratio of overlapping speech using a
BLSTM network, which operates on a frame-level basis, and which was shown to be
highly effective. In the light of the research objectives of this thesis, it is interesting
to observe that the performance gain brought about by the predicted overlap ratio
excels that of the oracle overlap ratio.
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Finally, it was demonstrated that combining this predicted overlap ratio feature
to a previously suggested conversational-prosodic feature set and using a moderately
sized feed-forward DNN with two hidden layers and 512 ReLU units each, outperforms
the Conflict Sub-Challenge baseline and the best challenge contributions on both
the classification task and the regression task. For the classification task the model
achieves a UAR = 84.3% on the test set, which improves the baseline result by 3.5%,
and the best result reported for the Conflict Sub-Challenge by Räsäsen et al. [265]
by 0.4%. For the regression task the relative improvements are smaller, still raising
the benchmark of the Challenge correlation coefficient of 82.6% to 83.8%, measured
on the test set. It should further be noted that while the baseline results for the
classification and regression tasks were obtained by SVM with different complexity
parameters C, the topologies of the adopted DNNs in the experiments were the same,
although the respective networks were trained separately for each task (and with
different objective functions).

Future work should focus on further automating the feature extraction process
by automatic speaker turn detection and diarization, since the used features partially
rely on manual speaker-turn annotations provided by the data base. Further, directly
learning an optimal feature set in an end-to-end fashion could turn out be a very
promising research directive.
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Chapter 9

End-to-End Emotion Recognition

When dealing with people, remember
you are not dealing with creatures of logic,

but with creatures of emotion.

Dale Carnegie

With the ground-breaking improvements achieved with deep neural networks in the
last decade in research areas such as object, speech, or speaker recognition, the
field of computational paralinguistics has made the paradigm shift to deep learning
as well. In particular, emotion and affect recognition is an area of high interest,
because besides academic curiosity it is also highly relevant for commercial applica-
tions. In this vein, a large number of new neural network architectures have been
proposed, such as autoencoder networks, convolutional neural networks (CNN), or
memory enhanced neural network models such as Long Short-Term Memory (LSTM)
models [288], and have shown their favorable property to model inherent structure
contained in the speech signal [147]. Some recent studies have started to look into
end-to-end optimization utilizing as little human a-priori knowledge as possible [113].
Yet, the majority of these works make use of commonly hand-engineered input
features, such as Mel-Frequency Cepstral Coefficients (MFCC), Perceptual Linear
Prediction (PLP) coefficients, and supra-segmental features (used in the series of
ComParE [292] and AVEC challenges [271]), all of which build upon knowledge
gained in decades of auditory research and have shown to be robust for many speech
domains. A new trend in the general machine learning community has emerged
attempting to learn intermediate representations of the underlying signal directly
from the speech waveform. The motivation behind this end-to-end learning is that
without any specific manual constraints a model can learn interesting and relevant
characteristics for the task at hand in a more specific, tailored manner, which could
lead to improved final performance. This study, which was published earlier by the
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9. End-to-End Emotion Recognition

author and his colleagues [346], proposes a new model and approach to effectively
and successfully train an emotion recognition system in such an end-to-end fashion.

Related work
One of the first investigations that studied learning higher-level representations
directly from the raw speech waveform was carried out by Jaitly and Hinton [170].
They used Restricted Boltzmann Machines in the context of a phoneme recognition
system and learned filters which exhibited the bandpass behavior of the inner ear
in the human auditory system. On the TIMIT phoneme recognition task they
achieved state-of-the-art results at that time. Bhargava and Rose [25] investigated
acoustic models for ASR using deep neural networks directly taking windowed speech
waveforms as input. They found that the DNNs automatically acquired internal
representations similar to Mel-filter banks with any predefined information and
obtained results which were only marginally worse than MFCC features evaluated
on the same architectures. Sainath et al. proposed a stacked architecture of CNN
layers, LSTM layers, and fully connected layers, which they called CLDNN, which
they trained on 2,000 hours of speech data and matched the performance of a large-
vocabulary speech recognition system based on log-Mel filterbank features [280, 281].
They observed that the time convolution layer helps reducing temporal variations, the
frequency convolution layer for preserving locality and reducing frequency variations,
whereas the LSTM layers assist in temporal modeling of the acoustic signal. Palaz et
al. [240, 241] attempted to estimate phoneme class conditional probabilities employing
CNNs directly trained on the speech waveforms and found that the features which
were learned between the first two convolution layers of the CNN tend to model
the spectral envelope of sub-segmental speech signals, leading to an improved noise-
robustness with respect to MFCC features. In the context of music information
retrieval [72] and polyphonic music transcription [312] deep end-to-end learning
was successfully applied. In the area of computational paralinguistics, some studies
have been conducted utilizing CNNs in the context of feature learning, for example
by Milde and Biemann [225] or Mao et al. [216]. Yet, all investigations rest on
low-dimensional Mel filterbank features and lack the full end-to-end training aspect,
which is investigated and presented in this study.

9.1 Speech Database

The REmote COLlaborative and Affective interactions Corpus (RECOLA) [269] is
a multimodal (audio, video, ECG, and EDA) corpus of spontaneous collaborative
and affective interactions in French. The recordings were made from 46 participants
(27 females, 19 males, mean age: 22 years, standard deviation: 3 years) during a
video conference while completing a task requiring collaboration, where the mood of
participants was manipulated and balanced in dyads. The audio signals used in this
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Table 9.1: 26 eGeMAPS low-level descriptors (LLD); 1computed on voiced and
unvoiced frames, respectively; 2computed on voiced, unvoiced and all frames, respec-
tively. [271]

1 Energy-related LLD Group

Sum of Auditory Spectrum (Loudness) Prosodic

9 Spectral/Cepstral LLD Group

α Ratio (50-1000 Hz, 1-5 kHz)1 Spectral

Spectral Slope (0-500 Hz, 0.5-1.5 kHz)1 Spectral

Hammarberg Index1 Spectral

MFCC 1–42 Cepstral

Spectral Flux2 Spectral

16 Voicing-related LLD Group

F0 (Linear, Log) Prosodic

Formants 1, 2, 3 (Frequency, Bandwidth, Amplitude) Voice Quality

Harmonic Ratios H1-H2, H1-A3 Voice Quality

Logarithmic HNR, Jitter (Local), Shimmer (Local) Voice Quality

study were recorded with unidirectional headset microphones (AKG C520L) at a
sampling rate of 44.1 kHz (16 bit) and resampled to 16 kHz. For each audio recording
only the first 5 minutes were annotated in continuous-time and continuous-valued
scale for arousal and valence. In order to guarantee consistency in the annotations,
all sequences were annotated by all 6 French-speaking annotators. Furthermore,
zero-mean normalization was applied to the annotations, to remove an eventual bias
in the annotation values, followed by synchronization, in order to tackle the problem
of having different time reactions between the annotators. The ground truth of
a sequence was then estimated by mean filtering the annotations provided by all
annotators. The analysis of the annotations shows a good inter-annotator agreement
rate for the affective dimensions [269]. In this study all annotated audio recordings
are used and are split into three partitions, training (16 subjects), validation (15
subjects), and test (15 subjects), by stratifying the age and gender of the speakers.

9.2 Acoustic Feature Sets

Two different feature sets are used in this study to compare the proposed signal-based
approach against. First, the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [86] is used. The acoustic low-level descriptors (LLD) cover spectral,
cepstral, prosodic, and voice quality information, as shown in Table 9.1, and are

147



9. End-to-End Emotion Recognition

extracted with the openSMILE toolkit [85]. All LLDs are smoothed over time with a
symmetric moving average filter of length 3, and the arithmetic mean and coefficient
of variation (standard deviation normalized by the arithmetic mean) are applied
as functionals. In addition, the following functionals are applied to loudness and
pitch: percentiles 20, 50 and 80, the range of percentiles 20 – 80 and the mean
and standard deviation of the slope of rising/falling signal parts. Furthermore, the
average RMS energy and 6 temporal features are included, which are: the rate of
loudness peaks per second, mean length and standard deviation of continuous voiced
and unvoiced segments and the rate of voiced segments per second, approximating
the pseudo syllable rate [271]. Note that some functionals are applied only in voiced
or unvoiced regions, depending on the type of the LLD (cf. Table 9.1). The interested
reader is referred to [83] for the exact details on how the features are computed.
Altogether, the eGeMAPS feature set contains 88 features per time frame. Each
frame is computed on overlapping fixed length audio segments of 3 s length with a
frame shift of 40 ms.

The second feature set investigated this study is based on the ComParE LLDs
listed in Table 3.1. On these 65 LLDs the functionals max, min, mean, range, and
standard-deviation [270] are applied with the same window length and frame shift as
for the eGeMAPS feature set.

9.3 Experiments and Results

9.3.1 Model Design

As expounded in Chapter 3 feature engineering has dominated basically all fields
of pattern recognition for decades, i. e. features used in classification, regression,
or detection tasks were carefully designed incorporating human knowledge, drawn
from a long research history in many research areas. In speech recognition, for
example, the still most common features are the Mel-frequency cepstral coefficients
(MFCC), which loosely replicate some central aspects of the human auditory system.
In most computational paralinguistic tasks, features are first extracted and then
passed to a machine learning algorithm as well. In contrast, this study aims at
learning the feature extractor jointly with the subsequent predictor (regressor) in a
true end-to-end fashion.

To make training feasible, the raw input speech waveforms are first conditioned
to have zero mean and unit variance (z-score normalization, cf. Equation (3.24)).
This accounts for any bias and loudness differences in the recordings. Thereafter,
the waveforms are segmented into sequences each 6 s long. Since the sampling
rate fs = 16 kHz, each segment contains 96,000 samples grouped into one vector.
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Figure 9.1: Illustration of the proposed one-dimensional convolutional neural network
(1-D CNN) operating on the raw speech waveform.

Conventional approaches to feature extraction often include some form filtering via
finite impulse response (FIR) or infinite impulse response (IIR) filters to achieve
a time-frequency decomposition, which has shown to mitigate the negative effects
of background noise [152]. Inspired by research of the auditory system of animals
and humans, more complicated, engineered kernels, such as gammatone filters [287]
or gammachirp filters [259] have been proposed. In this study, a one-dimensional
(1-D) temporal CNN, as described in Section 5.4, is used to extract an intermediate
representation directly from the segments of (normalized) raw speech. Based on
preliminary experiments K = 40 FIR filters are used on 5 ms windows, in order to
extract localized, spectral information from the high sampling rate acoustic signal.
As will be shown in the results, the learned filters resemble auditory filter banks and
hence are suitable to perform a time-frequency decomposition, reminiscent of the
DFT conventionally used in feature extraction. The output of this first temporal
convolution layer is passed through a half-wave rectifier, z′ = max(0, z), mimicking
the cochlear transduction step in the human ear, and subsequently downsampled
to 8 kHz by applying a max pooling operation of size 2. In order to extract more
long-term characteristics of the underlying speech signal (e. g. roughness), another
1-D temporal convolution layer using M = 40 FIR filters operating on windows of
length 500 ms is applied. This layer again is followed by another max pooling layer;
however, this time the pooling is applied across channels, with a pool size of 20.
This operation reduces the dimensionality of the representation while preserving
the necessary statistics of the underlying speech signal. This processing chain is
exemplified in Figure 9.1. The sequences of this intermediate representation, which
are approximately 6 s long (depending on padding etc.), are segmented into smaller
sub-sequences to match the time resolution (40 ms) of the gold standard annotation.
Each sub-sequence is then fed into a recurrent BLSTM network composed of two
bidirectional LSTM layers with 128 memory blocks each.

149
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9.3.2 Loss Function

Ringeval et al. [270, 271] proposed to utilize the concordance correlation coefficient
(CCC), ρc (cf. Equation (4.15)), to evaluate the agreement level between the predic-
tions of the network and the gold-standard derived from the annotations. Yet, for
training the networks the mean-squared error was used as a loss function. Presum-
ably, this leads to sub-optimal results. Hence, in this study, the neural networks are
directly optimized by integrating the CCC into the loss function Lc as follows:

Lc = 1− ρc = 1−
2σ2

xy

σ2
x + σ2

y + (µx − µy)2
(9.1)

= 1− 2σ2
xyψ

−1 (9.2)

where ψ = σ2
x + σ2

y + (µx − µy)2 is used as a shorthand notation, µx = E(x) and
µy = E(y) are the expectations over the inputs x and gold standard variables y,
σ2
x and σ2

y the respective variances, and σ2
xy the covariance of x and y. In order to

maximize the CCC, one preferably minimizes Lc by backpropagating the gradient of
the last layer weights with respect to Lc as

∂Lc
∂x
∝ 2

σ2
xy(x− µy)

ψ
+
µy − y
ψ

(9.3)

9.3.3 Experimental Setup

To compare the results obtained with the proposed approach a standard baseline
machine learning algorithm is evaluated. A Support Vector Regression (SVR) model
with a linear kernel is trained on the RECOLA dataset using the LIBSVM library [48].
The linear kernel provides superior results w. r. t. the polynomial and radial basis
function (RBF) kernels and hence is chosen to provide a strong baseline. The complex-
ity parameter is optimized via a logarithmic grid search in the range C ∈ [10e−6, 1].

For a second baseline result, a BLSTM network composed of three hidden layers
with 64 units per layer is used, adhering to the architecture proposed by [270, 271].
Noise sampled from a Gaussian distribution according to N (0, 0.1) is added to the
input features as a form of regularization. The network is trained via SGD with
a batch size of 5 sequences, until the performance on the validation set does not
improved for 5 consecutive epochs (early stopping). Furthermore, the learning rate
λ is optimized on the validation set for emotional dimension (arousal, valence) and
objective function (MSE, CCC) separately, where ρc from (4.15) is used to measure
the performance during evaluations. In accordance with approach defined in the AV+

EC 2015 challenge [271], ρc is computed on the gold standard and the predictions
concatenated over all recordings.
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Both parts of the model (CNN and BLSTM) are trained jointly using the loss
function from (9.1), on mini-batches of 50 samples, and using the ADAM optimizer,
with an initial learning rate of 2 · 10−3. In addition, dropout is used with p = 0.5 for
all non-recurrent layers. This strong regularization is important to prevent overfit-
ting, given the large number of parameters (≈ 1.5 million). Again, early stopping is
adopted, i. e. training is stopped once the performance on the validation set does
not increase for 5 consecutive epochs.

As alluded to in Chapter 2, continuous-valued problems, especially those involving
subjective ratings, such as emotion recognition, pose some particular challenges, due
to the variation in the annotation process or caused by the delay between the physical
evidence leading to the perception of an emotion and the actual perception itself.
In order to partially compensate for these influences, a number of postprocessing
steps are examined on the validation set predictions, for both the baseline and the
proposed methods:

1. Median filtering is applied using a window size between 0.4s and 20s, effectively
smoothing the predictions and hence improving the quality of noisy predic-
tions [271]. This removes potential outliers and also takes into account the
continuity of the annotation process.

2. Centering, by removing the bias between the gold standard annotation and the
prediction [175], in order to account for any systematic offset. The reference
mean is computed on the full training set.

3. Scaling follows the same argumentation as centering [175]. It either uses a
min-max normalization, where the reference extrema are computed on the
training set, or it uses the ratio between the standard deviation of the gold
standard and that of the predictions as a scaling factor.

4. Time-shifting the labels (or predictions) usually turns out to be highly beneficial
in continuously evaluated emotion tasks, since it compensates for the reaction
lag of the evaluators [217]. In this study the predictions are shifted forwards in
time with values ranging from 40 ms to 10 s.

If the respective post-processing step leads to an improvement of ρc on the validation
set, the step is kept for all further evaluation (both validation and test), else it is
discarded.

9.3.4 Results

The results are shown in Table 9.2 in terms of ρc. First of all, the prediction of
arousal is much better than that for valence, for any loss function and any approach.
This observation confirms previous findings that it is easier to predict arousal than
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Table 9.2: Results (in terms of ρc) for different classifiers and loss functions on
the RECOLA database for prediction of arousal and valence. The values denote
performance on the test set, the values in parenthesis the performance on the
validation set. a) models were optimized w. r. t. MSE. b) models were optimized
w. r. t. CCC. [346]

Predictor Features Arousal Valence

a) MSE loss

SVR eGeMAPS .318 (.489) .169 (.210)

SVR ComParE .366 (.491) .180 (.178)

BLSTM eGeMAPS .300 (.404) .192 (.187)

BLSTM ComParE .132 (.221) .117 (.152)

End-to-end Raw signal .684 (.728) .249 (.312)

b) CCC loss

BLSTM eGeMAPS .316 (.445) .195 (.190)

BLSTM ComParE .382 (.478) .187 (.246)

End-to-end Raw signal .686 (.741) .261 (.325)

valence from speech signals [270, 347]. Second, using the MSE loss, the SVR baseline
is consistently better than the BLSTM system for arousal. Interestingly, the BLSTM
performs much worse using the ComParE feature set than any other feature-system
combination when trained on the MSE loss, for both arousal and valence. The reason
for this is unclear. However, this artifact disappears when training on the CCC
loss function. Overall, utilizing the CCC loss leads to significant improvements over
the MSE loss for arousal and valence. Most importantly, however, the proposed
end-to-end model outperforms the baseline systems by a large margin, irrespective
of the chosen loss function. Best results are obtained when using the CCC loss for
training the end-to-end model on the raw audio signals.

There is general agreement in the paralinguistic research community that certain
acoustic and prosodic cues, such as the fundamental frequency F0, pitch range,
mean speech intensity, or loudness are most relevant for predicting the affective
state of human speakers [13, 286]. It is thus to be expected that some of these
characteristics are captured by the proposed end-to-end model, which is directly
trained on the audio waveforms. Yet, relatively little research has been conducted in
this direction of visualization. In order to gain a better understanding of what the
proposed model learns, the statistics of the gate activations, i. e. the values of the
hidden-to-output connections, of several different cells in the BLSTM network are
examined and compared to a selection of acoustic-prosodic features known to affect
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Figure 9.2: Visualization of three different gate activations w. r. t. different prosodic
features known to affect arousal. From top to bottom: range of RMS energy
(ρ = 0.81), loudness (ρ = 0.73), and mean of fundamental frequency F0 (ρ = 0.72).

arousal. Figure 9.2 presents a visualization of three selected gate activations with
respect to RMS energy (Pearson correlation ρ = 0.81), loudness (ρ = 0.73), and the
mean of the fundamental frequency F0 (ρ = 0.72). It shows that certain cells of the
model indeed learn to respond to particular characteristics in the speech signal in a
way to closely resemble certain acoustic-prosodic features.

9.4 Conclusions

In this chapter a fully end-to-end approach to the prediction of spontaneous emotion in
human speech was proposed. To this end, a convolutional, recurrent neural network
model (CNN-BLSTM) was introduced, which automatically learns intermediate
representations directly from the unprocessed, raw speech signal. This intermediate
representation was then utilized to predict the level of arousal and valence in a
time-continuous manner on the audio part of the REmote COLlaborative and
Affective interactions Corpus (RECOLA), a multimodal corpus of spontaneous
collaborative and affective interactions. It was shown that the proposed method
achieves significantly higher performance compared to two baseline systems, a Support
Vector Regressor and a deep BLSTM neural network, evaluated on two common
paralinguistic frame-level feature sets, the eGeMAPS and the ComParE low-level
descriptors. This shows that learning the intermediate representations directly from
the speech signal can be a highly effective method to adapt these representations
to the task at hand. Furthermore, this study introduced the direct optimization of
the proposed system on the concordance correlation coefficient (CCC) instead of the
commonly adopted MSE. The former is often used to evaluate the agreement between
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the reference gold standard and the model predictions, but not for optimization of
the network parameters. This study demonstrates that is highly beneficial to do so,
leading to further gains in performance. As a final contribution, internal activations
of the recurrent output BLSTM network were compared to acoustic-prosodic features,
which are known to affect arousal and which are commonly used in computational
paralinguistic tasks. It was found that certain cell activations are highly correlated
with those prosodic features.
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Chapter 10

Concluding Remarks

Science never solves a problem without creating ten more.

George Bernard Shaw

10.1 Summary

One of the main pillars of computational paralinguistics is the study of the automated
analysis of non-verbal communication. To robustly detect, predict, and classify the
events which are the carriers of the manifold human paralinguistic characteristics is of
paramount importance in order to improve human-machine interaction. The research
presented in this thesis is an attempt to advance the knowledge about how to leverage
the new research area of deep learning in the realm of computational paralinguistics.
Given the breadth of the latter, with its many different paralinguistic tasks, and the
rapidly evolving and intensifying research of the former, this work can only exemplar-
ily address a selection of previously unexplored avenues, laying the base for further
research. This section summarizes the main achievements of this thesis in this respect.

After a an introduction to the general motivation and the contributions of this
work in Chapter 1, an overview over some general aspects of computational par-
alinguistics is given in Chapter 2, followed by a description of commonly employed
features in this field in Chapter 3. Chapter 4 then expounds the mathematical
background necessary for the evaluation of the proposed approaches and is succeeded
by an extensive account of the basic principles, architectures, and training aspects
of deep neural networks. Based on these principles Part III describes the findings
and results obtained by applying deep neural networks to a selection of four different
tasks of computational paralinguistics:
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First, in Chapter 6 feed-forward neural networks, the cornerstone of deep neural
networks, are applied to the classification of likability of human voices, a difficult
paralinguistic task given its highly subjective nature. This contribution is a result
from the participation in the Likability Sub-Challenge of the Interspeech 2012 Speaker
Trait Challenge [291]. It is based on the challenge’s supra-segmental, utterance-level,
feature set and is demonstrated to be superior to the challenge baseline results,
achieving state-of-the-art results. Yet, it is shown that on this task a wide, but shal-
low one-layer neural network excels all deeper network architectures, if pre-trained
via a regularized Gaussian-Bernoulli Restricted Boltzmann Machine approach in an
unsupervised manner.

Second, for the task of detecting social signals (”laughter” and ”filler”) from
human speech a number of effective neural network architectures and methods are
proposed in Chapter 7. Evaluated on the dataset of the Social Signals Sub-Challenge
of the Interspeech 2013 Computational Paralinguistics Challenge [292], unsupervised
pretraining via a stacked autoencoder network is shown to yield significant gains in
performance. Furthermore, a novel, deep posterior smoothing method is proposed
and shown to be highly effective. This approach is extended to recurrent and hierar-
chical networks leading to state-of-the-art results. These findings are verified to the
recent SEWA database, presenting the first mono-lingual and cross-lingual results
and a first comparison of resource-efficient recurrent models on this database.

Third, in Chapter 8 feed-forward neural networks are successfully applied to the
problem of automatically detecting conflict in spontaneous, multi-party conversations.
Based on the SSPNet Conflict Corpus, used in the Conflict Sub-Challenge of the
Interspeech 2013 Computational Paralinguistics Challenge [292], several different
supra-segmental feature sets are investigated on classification and regression tasks
and some architectural and training improvements are proposed. Furthermore, an en-
hanced method for predicting the ratio of overlapping speech using a BLSTM network
is introduced and it is shown that this feature, combined with a conversational-
prosodic feature set, leads to state-of-the-art results significantly outperforming the
challenge baseline.

Finally, a novel, fully end-to-end approach to the prediction of spontaneous
emotion in human speech is presented in Chapter 9. In this approach a convolutional,
recurrent neural network model (CNN-BLSTM) is directly trained on the raw speech
signal and learns an intermediate feature representation which leads to significant
improvements in the prediction of the level of arousal and valence from speech in a
time-continuous fashion. Evaluated on the recent RECOLA database, the proposed
method surpasses two strong baseline systems, each one trained on two common
paralinguistic frame-level feature sets. An additional gain in performance is achieved
by optimizing the proposed system on the concordance correlation coefficient instead
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of the commonly adopted mean-squared error. As a final contribution, it is shown
that certain internal, recurrent cell activations from the learned network are highly
correlated with particular prosodic features known to affect arousal and commonly
used in computational paralinguistic tasks.

In summary, all experiments presented in this thesis demonstrate that deep learn-
ing approaches have the potential to be highly effective in a range of paralinguistic
problems. A number of improvements and novel methods have be introduced, and
in order to facilitate comparison with other approaches in the literature, they are
evaluated on commonly accessible databases, most of which provided to the research
community under the umbrella of the Interspeech paralinguistic challenges in recent
years.

10.2 Outlook

As the introductory quote in this chapter states, any progress made in a scientific
area opens new avenues and creates new ideas for further research. And as alluded
to earlier the many different facets of computational paralinguistics and the rapidly
evolving field of deep learning offers multifarious opportunities to continue to explore
open questions in both fields of research. Based on the work and the results presented
in this thesis, a short list of potentially beneficial topics is briefly addressed in order
to guide further research.

Novel deep learning architectures It has been alluded to several times in this
thesis that the field of deep learning in general has increased in dynamics during
recent years, which has led to a large body of literature proposing and describing new
deep learning architectures. Sometimes these proposals rely on novel combinations
of established network topologies, sometimes completely new network types are
proposed. Many of the novel ideas originate in the research areas of object, speech,
or speaker recognition, and hence many of these approaches need yet to be explored
in computational paralinguistics. An example of a highly interesting topic is given
by the recent (self-)attention mechanism [370]. This idea could be especially helpful
for approaches which make predictions of paralinguistic events on a segment level,
but where annotations are available only on a coarser time-resolution, e. g. on an
utterance level. For this to work, all segment predictions must somehow be merged
into one final prediction, which is to be compared against the gold standard. This is
often performed by simple average-pooling, but self-attention implicitly learns the
weights reflecting the importance of the respective segment contributions w. r. t. the
final annotation label. Of course, there is no guarantee that a working approach in
one particular field also means success in computational paralinguistics, given the
constraints and peculiarities of this domain.
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Tackling the data scarcity problem Due to the high annotation cost paralin-
guistic databases are usually fairly small compared to the large datasets found in
areas such as speech recognition, where training data can amount up to thousands of
hours. This scarcity of training data typically leads to overfitting with larger neural
network models and can only partially be resolved by regularization methods, such
as L2-regularization or dropout. Another way to improve upon this situation is to
better leverage the limited amount of training data by pre-training neural network
models in an unsupervised fashion. As pointed out earlier, nowadays often there is
an abundance of unlabeled data which can be exploited for this purpose. As has
been shown in many experiments in this study, many approaches even benefit from
unsupervised pre-training on the same training data used for supervised training,
obviously leveraging additional information inherent in the data, which cannot be
fully utilized by supervision. Either way, this combination of unsupervised and su-
pervised training gives rise to the concept of semi-supervised training (cf. Chapter 5.2).

In addition, similar concepts like Dynamic Active Learning [380] or Coopera-
tive Learning [130] were recently proposed for semi-supervised labeling, exploiting
confidence-based information from a prediction network or from the evaluation of
the interrater agreement to decide which audio recordings need to be annotated by
human raters and if so, by how many. These approaches can dramatically reduce
the effort and cost of annotation and thus allow for larger annotated datasets. Often
in these techniques, a large part of the data can be automatically annotated by an
existing predictor. This process can be continued iteratively in order to improve
system performance and to continuously increase the amount of training data.

Towards holistic paralinguistics Instead of devising and building single-task
systems for each paralinguistic problem separately, a different line of thought, called
holistic paralinguistics [380] attempts to exploit the relations between certain tasks
and build a single multi-task framework, potentially even for multiple modalities at
once. This can, for example, be achieved by sharing parts of the model parameters
across several different tasks. One advantage of this approach is that the aggregate
of the composing datasets can be used to train all shared parameters, hence reducing
overfitting and related negative effects. Beyond that, hidden synergies might be
exploited by cross-domain transfer learning.

End-to-end learning The results of Chapter 9 confirm the potential of end-to-end
training, already demonstrated in several different research areas [72, 113, 312, 319,
347], and prove that this approach is not merely able to match, but also to surpass
previous state-of-the-art results. Intuitively, true end-to-end learning possesses the
ability to closely adapt to a model’s input, completely remediating the hand-crafted
feature extraction step. Of course, by doing so one abandons the robustness of
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proven features, which often are the result of decades of feature engineering and trial
and error. Some of the current shortcomings of signal-based end-to-end approaches
could be due to normalization issues leading to undesirable artifacts in the internal
representations. Yet, large-scale, unsupervised training of the early steps of such
models, which are to replace the conventional feature extraction, might lead to
additional gains and remove the need for hand-crafted or even task-specific feature
extraction.

Spiking neural networks Finally, a more forward-looking bet into the future
concerns the fundamental structure of current neural network architectures: As
mentioned in Chapter 5.2 most current phenomenological models follow the rate
coding paradigm by modeling the firing rate of biological neurons. While this has
shown to be effective and well matched to the typical Von-Neumann architectures
and derivates (CPU, GPU, TPU), modeling time codes with spiking neural networks
(SNN) might exhibit a number of advantages: First, neurons based on temporal codes
- except for peripheral neurons shown to approximately operate on a rate code - are
highly memory-efficient, requiring magnitudes less energy than current hardware [246].
Second, it has been shown that the precise time-relations across spike populations
allow to encode significantly more information in an energy-efficient manner than
rate coding [212, 267]. There has been some increase in interest in the application of
SNNs recently [164, 365, 367, 375], yet much research needs to be conducted to make
them competitive to current deep learning architectures. Furthermore, a paradigm
shift to event-driven, neuromorphic hardware might be required to achieve this [329]:
Research has shown that the communication mechanism must be taken into account
in hardware design [307] in order to allow for efficient SNN implementations including
regular and irregular spike events [209].
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D . . . . . . . . . . . . . . . . . . . . Dimensionality of input vectors

λ . . . . . . . . . . . . . . . . . . . . Learning rate

n . . . . . . . . . . . . . . . . . . . . Number of subsequent frames stacked into an extended,
stacked feature vector
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List of Symbols

Ncell . . . . . . . . . . . . . . . . . Number of cells

Nlayers . . . . . . . . . . . . . . . Number of layers

t . . . . . . . . . . . . . . . . . . . . . Time step

T . . . . . . . . . . . . . . . . . . . . Maximum time step

x . . . . . . . . . . . . . . . . . . . . Input feature vector

x′ . . . . . . . . . . . . . . . . . . . . Extended, stacked feature vector

Conflict Detection

C . . . . . . . . . . . . . . . . . . . . SVM complexity parameter

gb . . . . . . . . . . . . . . . . . . . . Backward function of BLSTM forward pass

gf . . . . . . . . . . . . . . . . . . . Output function of BLSTM forward pass

L . . . . . . . . . . . . . . . . . . . . Layer size := number of neurons per layer

o . . . . . . . . . . . . . . . . . . . . Overlap

p . . . . . . . . . . . . . . . . . . . . p-value for significance tests

ρ . . . . . . . . . . . . . . . . . . . . Pearson’s correlation coefficient

ro . . . . . . . . . . . . . . . . . . . . Overlap ratio

θ . . . . . . . . . . . . . . . . . . . . Decision threshold for overlap prediction classification

x(t) . . . . . . . . . . . . . . . . . Feature vector at time step t

y(t) . . . . . . . . . . . . . . . . . . Binary target label at time step t

ŷ(t) . . . . . . . . . . . . . . . . . . Target prediction at time step t

End-to-End Emotion Recognition

E . . . . . . . . . . . . . . . . . . . . Expectation operatior

F0 . . . . . . . . . . . . . . . . . . . Fundamental frequency

K . . . . . . . . . . . . . . . . . . . Number of FIR filters (5 ms)

Lc . . . . . . . . . . . . . . . . . . . CCC-based loss function

M . . . . . . . . . . . . . . . . . . . Number of FIR filters (500 ms)

µ . . . . . . . . . . . . . . . . . . . . Mean
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ψ . . . . . . . . . . . . . . . . . . . . Denominator in CCC loss function

ρc . . . . . . . . . . . . . . . . . . . . Concordance correlation coefficient

σ . . . . . . . . . . . . . . . . . . . . Standard deviation
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