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Introduction 
Tire plays an important role on the NVH analysis. In the 
vehicle-road dynamic response analysis, uncertainty stems 
from two aspects: the uncertainty of the system itself and the 
randomness of the action load. Considering the complicated 
production process of tires which is inevitable to cause 
uncertainty of the tire structure, the dispersion of material 
and structural parameters will result in uncertainty of the 
system responses. However, it is not easy to accurately 
describe the dynamic response of tires because of its 
complex structure and the nonlinear mechanic properties. In 
the literature, tires have been modeled as a ring on elastic 
foundation (REF) because of the completeness and 
simplicity of ring theory without sacrificing result accuracy. 
In previous studies, most of the ring models only focused on 
the in-plane vibration[1-4]. In this paper, the ring model 
which can describe the three-dimensional deformation of 
tires was introduced to describe tire vibration [5]. In addition, 
orthogonal expansion method is based on the homogeneous 
chaos theory proposed by Wiener[6]. In the field of 
structural dynamics, Ghanem[7] firstly introduced Hermite 
chaos in the spectrum method for solving stochastic 
mechanical problems by combining the finite element 
method. Xiu[8] developed the generalized polynomial chaos 
(gPC) expansion method in which a group of the chaotic 
functions with optimal convergence rate were adopted 
according to different distribution. The effect of the input 
uncertainty on the dynamic responses also can be analyzed 
by probabilistic collocation method[9]. The purpose of this 
paper is to analyze the three-dimensional stochastic free 
vibration of tires using gPC expansion method. 

Ring Model of Tire Free Vibration 
A method of transforming a pneumatic tire into a ring model 
holds a significant position in vehicle dynamics analysis. 
The tread of a tire is modeled as a three-dimensional 
deformable ring. The sidewall is treated as an elastic 
foundation. The elastic properties of the foundation are 
modeled by distributed springs in the radial, circumferential 
and axial directions (ku, kv and kw). Figure 1 shows a ring 
with a rectangular cross section on an elastic foundation. 

In this paper, the deformations of ring include radial, 
circumferential and axial displacements and the torsional 
angle. The torsional angle  that represents the rotational 
angle around the axis of the ring is shown in Figure 2. 
However, considering the Euler-Bernoulli beam theory, the 
plain section assumption was still applied. In Table 1 some 

parameters of the REF model of an actual tire structure 
385/65R22.5 are given [5]. 

 

Figure 1: Schematic of the three-dimensional ring model.
 

 
Figure 2: Torsional angle of the ring. 

 
Table 1: Geometrical and structural parameters of a 

385/65R22.5 radial tire 

Parameter type Unit Value 
Ring width b m 0.273 

Ring thickness h m 0.0375 
Effective density  kg/m3 1.77 103

Mean radius r m 0.53 
Line density of tread band ρA kg/m 18.12 

 

The Hamilton principle is used to derive the governing 
equations. Here we use the solutions as stated in [5]. The in-
plane natural frequency can be expressed as follows, 
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0  is the initial stress, A is the ring section, ρ is the density, 
b is the belt effective width and p0 is the internal pressure. 
EIz is the in-plane bending stiffness, EA is the membrane 
stiffness. Similarly, the expressions of out-of-plane natural 
frequency are shown. 
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where bop is the nominal width of tire. EIr is the out-of-plane 
bending stiffness, GIp is the torsional stiffness, ρIp is the 
torsional inertia. 

Generalized Polynomial Chaos Expansion 
In order to analyze the influence of many uncertain factors 
on the manufacture process of the tires, the generalized 
polynomial chaos (gPC) method will be applied in the 
uncertainty analysis of the natural frequency prediction. The 
first step is to use gPC expansion to represent the input and 
the output variables. With the polynomial chaos expansion, 
each random field or variable of interest can be expressed as, 
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where 0x and 
1 2 ...i ix are deterministic coefficients. i ξ is a 

set of orthogonal polynomials with respect to the vector 
consisting of the input variables 1 2 3, , ...ξ . The type 
of the polynomials is determined by the distribution of 
random variables. For notational simplicity, equation (5) is 
usually truncated by finite terms, and it can be rewritten as 
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Usually the distribution types of the input parameters are 
known. Considering the property of the inner product and 
the orthogonality of polynomials, the Galerkin projection 
method can be used to calculate the coefficients of the 
truncated gPC representation ix .  
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However, the probability distributions of the output variables 
are unknown. The gPC coefficients cannot be obtained by 
directly calculating the inner product. Intrusive Polynomial 
Chaos Expansion (IPCE) and Probabilistic Collocation 
Method (PCM) are two kinds of method to determinate the 
unknown coefficients. Here we choose the PCM, which is 
capable of easily dealing with complex nonlinear equations. 

Probabilistic Collocation Method 
Implementation of Probabilistic Collocation Method
Based on the regression method, Probabilistic Collocation 
Method, which is the extension of Response Surface Method
in probability space, is also known as Stochastic Response 
Surface Method (SRSM) [9]. Generally, Nc available sets of 
sample points are selected. In order to obtain an accurate 
result of the unknown coefficients, oversampling technique 
is adopted. It should be noted that the sample points
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form the standard random space (ξ space). To obtain the 
corresponding output responses, ξs should be transformed 
into random space (Χ space) and then substitute each set of 
the sample point into the deterministic equation ( )g x . The 
PCM forces the residual error to be deterministically zero at 
those sample points. It is given by 
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equation (8) can be expressed in a matrix form. 

Ax = G   (9) 

In which x is the vector of the gPC coefficients; A is the 
polynomial information matrix with dimension ( 1)cN N ; 
G is the vector of the corresponding output responses. The 
coefficients can be calculated by least squares regression. 

-1Τ Tx = Α A A G   
(10) 

Once obtaining the gPC coefficients, the statistical properties 
of the output response can be easily estimated by applying 
the Monte Carlo Simulation (MCS) on the gPC model. In 
short words, the PCM provides a surrogate model. It should 
be noted that the sample points applied to MCS should be 
generated according to the probability density function of ξ. 

Selection of the Collocation Points 
One key point in the probabilistic collocation method is how 
to select the appropriate collocation points. Generally, if the 
order of a PCE approximation is given, the collocation 
points should be selected from the roots of the next order 
orthogonal polynomial. This method will obtain more 
accurate results than just using some randomly selected 
points. For a p-order gPC expansion involving d dimensional
random vector ξ, the number of the unknown coefficients
(N+1) can be calculated by equation (11). 
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However, the combination of the (p+1) order roots can 
generate some sample points. If the origin is added as a root 
of the even order polynomial, the total number of the 
available points Nc can be calculated as follow, 

( 1) ,        
( 2) ,        
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With the increase of the p value, the number of the sample 
points Nc is much larger than (N+1). Therefore, it is possible 
to select only N sets from the Nc combinations of the roots 
[10]. Considering the unique-solution condition of the linear 
equations, the coefficient matrix A in equation (12) should 
have a full rank. Another consideration for selecting 
collocation points is that keeping as many points as possible 
in the area with a high probability density. Thus the Nc 
sample points firstly should be sorted in an order of 
decreasing probability density. Then, calculate the 
coefficients vector corresponding to the (i + 1)th collocation 
point. The (i + 1)th row of matrix A must be linearly 
independent with the previous i rows. Otherwise, the point 
with the next highest probability density should be tested. 
Fortunately, the required linearly independent collocation 
points can be selected once and used directly for next 
calculation. The feasibility of this method is illustrated with 
the natural frequency of the tire in-plane free vibration. 

In-plane Free Vibration 
As in the case study, three parameters of a tire, membrane 
stiffness EA, in-plane bending stiffness EIz, and internal 
pressure p0 are considered as random parameters. The mean 
and the distribution of those parameters are listed in Table 2. 

Table 2: Mean and distribution of the input variables for 
in-plane vibration analysis 

Parameter Distribution Type Mean 
p0 ( 105 Pa) U (7.47, 9.13) 8.3 
EIz (N m2) N (7.401, 0.85) 7.401 

EA (N) N (4.603 107, 5 105) 4.603 107 
 

In this section, four methods are used to analyze how the 
proposed random parameters exert an influence over the in-
plane free vibration of the tire. Firstly, the random variables 
expanded by equation (6), are directly substituted into the 
analytical expression of the natural frequency. Then the 
traditional PCM and the linear-independent-based PCM 
which do not need to expand input parameters are applied. 
The output responses are approximated by using 3rd-order 
gPC expansion. Figure 3 shows the similar result using 
10000 MCSs to verify the effectiveness of the gPC methods. 
The error of different methods is shown in Table 3. Even if 
125 collocation points are selected in the traditional PCM, 
the accuracy of the calculations has not been improved. 
When 76 collocation points are tested based on the criteria as 
discussed previously, the matrix A has a full rank of 20 
equaling the number of unknown coefficients in the gPC 

expansion. The linear-independent PCM are much more 
efficient than the traditional PCM. 

 
(a) 1st-order radial mode 

 
(b) 10th-order radial mode 

 
(c) 0th-order circumferential mode (breathing mode)

Figure 3: Distribution of in-plane natural frequency. 
Table 3: Comparison between the different collocation 

point methods and MCS 

Analysis Method 
10th order Radial Mode 

Sample Number (Hz) Error 
MCS 10000 255.18 0.001% 

NIPCE 125 254.86 0.126% 
NIPCE-INDEP 20 255.08 0.039% 

 

Furthermore, the effect of the level of uncertainty on the in-
plane natural frequency is investigated. The variances of all 
the three input random parameters are verified from 5% to 
20%. The results are plotted in Figure 4. It is observed that 
as the uncertainty level is increased, the quantities of the
frequency are more dispersed. 

 
Figure 4: Distribution of 1st-order radial natural frequency 
under different variances of input parameters. 
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(a) 0th-order circumferential mode (breathing mode) 

 
(b) 10th-order radial mode 

Figure 5: Effect of individual parameter on the in-plane 
natural frequency. 

Considering uncertainty in only one parameter, meanwhile 
the other input variables are keeping deterministic, the 
distributions are calculated. In Figure 5, it can note that the 
membrane stiffness EA has more influence on breathing 
mode. However, the dispersion of high-order radial modes 
caused by the internal pressure p0 is greater than the other 
two variables. 

Out-Of-Plane Free Vibration 
To analyze the influence of the model parameters, torsional 
inertia ρIp, torsional rigidity GIp and out-of-plane bending 
stiffness EIr, on the out-of-plane frequency, a similar 
analysis method was applied.  

Table 4: Mean and distribution of the input variables for 
out-of-plane vibration analysis 

Parameter Distribution Type Mean 
ρIp (kg/m) U (0.23, 0.29) 0.26 
GIp (N m2) N (1.61 103, 1.61 102) 1.61 103 
EIr (N m2) N (1.06 105, 1.06 104) 1.06 105 

 
Figure 6: Distribution of 1st-order lateral natural frequency 

under different variances of input parameters. 

Conclusion 
In this paper, considering uncertainty in the structural 
parameters, the three-dimensional free vibration of the tire 

based on REF model was investigated. The gPC expansion 
was applied to describe the input and output parameters. The 
traditional PCM and another procedure for the selection 
collocation points were used to obtain the probability
distribution of the natural frequency. The results were 
compared with the results calculated by 10000 MCS. It 
shows that the effectiveness of the selection method which
can improve the computational efficiency without reducing 
the accuracy. Furthermore, the effect of each individual
parameter and the distributions of the in-plane and out-of-
plane natural frequency under different variances of input
parameters are studied. It is observed that as the uncertainty 
level is increased, the quantities of the frequency are more 
dispersed. For different orders, the factors affecting the 
dispersion degree of the natural frequencies are different. 

Acknowledgments 
The authors acknowledge the support from the China
Scholarship Council (CSC). 

Reference 
[1] Clark, S. K. The rolling tire under load. SAE Technical 

Paper No. 650493, (1965). 

[2] Pacejka, H. B. Tire as a vehicle component. 4. tire in-
plane dynamics. in: S.K. Clark, Ed., Mechanics of 
Pneumatic Tyres, National Bureau of Standards 
Monograph 122, Washington D.C. 20234, (1971): 695-
756. 

[3] Huang S.C., Su C.K., In-plane dynamics of tyres on the 
road based on an experimentally verified rolling ring 
model, Vehicle System Dynamics 21(1992) 247-267. 

[4] Wei Y.T., Nasdala L., Rothert H., Analysis of forced 
transient response for rotating tires using REF models, 
Journal of Sound and Vibration 320(2009) 145-162. 

[5] Liu, Z, et al. Three-dimensional vibration of a ring with 
a noncircular cross-section on an elastic foundation. 
Proceedings of the Institution of Mechanical Engineers, 
Part C: Journal of Mechanical Engineering Science 
232.13 (2018): 2381-2393. 

[6] Wiener N. The homogeneous chaos. Am J Math 
1938;60(4):897–936.  

[7] Ghanem, Roger, and Pol Dimitrios Spanos. A stochastic 
Galerkin expansion for nonlinear random vibration 
analysis. Probabilistic Engineering Mechanics 8.3-4 
(1993): 255-264. 

[8] Xiu, D.B., Karniadakis G.E. Modeling uncertainty in 
steady state diffusion problems via generalized 
polynomial chaos. Computer methods in applied 
mechanics and engineering 191.43 (2002): 4927-4948. 

[9] Isukapalli S.S. An uncertainty analysis of transport 
transformation models. Ph.D. Thesis, New Brunswick, 
New Jersey: The State University of New Jersey; 1999. 

[10] Li, W.X., Lu Z.M, and Zhang D.X. Stochastic analysis 
of unsaturated flow with probabilistic collocation 
method. Water Resources Research 45.8 (2009). 

DAGA 2019 Rostock

124




