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ABSTRACT ARTICLE HISTORY

Urban mobility has complex patterns and principles. Data of Received 12 May 2018
moving entities on the underlying transportation infrastruc- Accepted 22 February 2019
ture can help understanding those complex patterns and KEYWORDS

principles. Therefore, we need static infrastructural informa- Urban transportation; spatial

tion and knowledge on spatio-temporal movement patterns analysis; mobility patterns;
of public transport services and of various vehicle fleets. We boro taxis; vehicle fleets;
focus on inspecting data partitions of individual taxi move- transportation infrastructure
ment acquisitions in New York City (NYC), together with

OpenStreetMap (OSM) data extracts, for gaining more knowl-

edge about the complex daily mobility patterns in NYC. We

select trip information of tracked boro taxi drivers, who are

restricted to pick up customers at the airports and the south-

ern part of Manhattan. By computing with taxi customer drop-

off positions, we define drop-off clusters as the customer

destination hotspots of selected Saturdays in June 2015.

These hotspots are then related to the OSM road network, in

particular to its derivatives: complicated crossings. By compar-

ing with a previous assumption of detecting ‘fast leaving’

behaviour within the restricted zone, we receive characteristic

matching results: only few destination hotspots appear at

complicated crossings. Nearly all the matching intersections

have nearby situated pedestrian zones and many are asso-

ciated with previous construction measures. Finally, we reason

on the usefulness of the proposed method.

1. Introduction

Installed in-vehicle sensors can record the movement of individual vehicles of a taxi
fleet. These are often components of an established taxi dispatcher service with the
intention to monitor operating taxis in one selected area. In urban environments,
the taxi service is an important mode of transportation (Tang et al. 2015). In general,
taxi movement records are available as listed time-stamped vehicle locations, which
are represented as a number of individual movement trajectories. These taxi
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trajectories are useful for deriving urban dynamics. The types of urban dynamics are
manifold and find applications in different domains: reaching from taxi trip dis-
tribution modelling (Tang et al. 2018b) over inferring driving trajectories (Tang et al.
2018a), we can predict taxi trip destinations based on historical data (Zong et al.
2019). Depending on the availability of recorded attributes, which consist, in case of
the Floating Car Data (FCD) technique, of tracked geographical positions, and, of
measurements from on-board electronics for every time stamp. The latter might
have a consistent sampling interval or follow sampling based on selected distance
measures (Jun, Guensler, and Ogle 2006). One special attribute is, in the case of
tracked taxis, the operational status of the vehicle, if it is vacant or with a customer
(Krisp et al. 2012).

Extracted positions of taxi trajectories, where customers enter or leave the
vehicle are useful information for a big variety of applications (Castro et al.
2013). These points imply semantic information that is useful for different
analytical tasks and services in different domains. Extracts of taxi trajectory
positions are, for example, useful for assessing the taxi service quality (Zhang,
Peng, and Sun 2014), or for analysing taxi driver behaviour (Li et al. 2011).
Examples of taxi driver behaviour include hunting or waiting for customers,
which are different operational strategies. By finding numerous similar posi-
tions of taxi customer pick-ups and drop-offs, it is possible to assign selected
parts of the investigation area as service hotspots. In general, there are many
possibilities for detecting taxi pick-up and drop-off hotspots (Krisp et al. 2012;
Pan et al. 2013; Li et al. 2011). These possibilities include different types of
point clustering techniques, as well as point density estimations. The detected
hotspots often correlate with functional parts of the transportation infrastruc-
ture, as, for example, the taxi waiting zones near airports (Ding, Yang, and
Meng 2015). The specific patterns of taxi pick-up and drop-off hotspots are
classifiable by spatial and temporal components. In many cases, operational
spatio-temporal taxi patterns correlate with typical or periodical mobility
patterns of the whole city, or of connected urban environments. The spatio-
temporal distribution of taxi pick-up and drop-off points also depends on the
influences from seasonal social events at selected locations or on traffic events
at periodical rush hours on the inspected road network.

1.1. Definition and representation of taxi trip destination hotspots

Specific positions of complete vehicle trip trajectories may indicate the change
of operational mode. Keler (2018) shows that origins and destinations of
different taxi fleets can appear at the same time in a close spatial range, as
for the example of yellow taxis and boro taxis in NYC. Nevertheless, due to the
fact of having anonymous taxi customers, it is impossible to prove any transit
behaviour with these two data extracts. In general, origin and destination
points are easy to extract from taxi trajectories, since the collected attribute
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values for operational statuses originate from on-board sensor acquisitions.
These points are the changing points of the operational taxi status: occupied
and non-occupied.

There are also data extracts from operating taxi service vehicles that do not
include the operational status of the taxi. One option for an alternative taxi trip
origin and destination extraction may base on deriving stopping and parking
positions. In general, critical issues for all acquired vehicle trajectories from GNSS
positioning are connected with data quality, since positioning accuracy may vary
with different positioning devices and built infrastructure that influences the
spatial accuracies. Nevertheless, GNSS positioning in urban environments enables
detecting manifold causes of travel time variations (Tang, Yang, and Qi 2018).

When extracted taxi pick-up and drop-off points are massive, since coming
from thousands of tracked taxi trajectories, it is possible to assign generalised
pick-up and drop-off hotspots for specific times of the day. For the definition
of a taxi pick-up and drop-off hotspot, there are many different possibilities.
Krisp et al. (2012), for example, use k-means clustering on both types of points
for defining hour-wise time windows of the day. Despite its high efficiency for
clustering massive location data, k-means clustering needs a-priori knowledge
about the number of clusters and the expectancy of having convex shaped
clusters in Euclidean space (Yue et al. 2009). By the visual representation of the
k-means clusters within a space-time cube, it is possible to inspect changes of
spatial distribution of the hotspots over time.

Besides partitioning clustering of points, Pan et al. (2013) use the DBSCAN
clustering algorithm, which was firstly defined by the Kriegel group, LMU Munich,
in 1996 (Ester et al. 1996). DBSCAN and its related algorithms like OPTICS (Ankerst
et al. 1999) are possibly the most frequently used techniques for defining taxi drop-
off hotspots. The reason is their general ability of adapting clustering parameters
based on various specific data sets. OPTICS can, for example, be applied for
estimating optimal density-based clusters, given by search distances and number
of points.

One other option for clustering taxi trajectory data might be the usage of
trajectory clustering, favourably by distinguishing between occupied and non-
occupied trajectory segments.

OPTICS, or Ordering Points To Identify the Clustering Structure, is useful,
when nothing is known about the data distribution, as the missing knowledge
on density-based connections between the points. OPTICS delivers useful
insights in distinguishing between reasonable drop-off clusters and outliers,
by the option of inspecting the search distance (Epsilon) histogram.

For Pan et al. (2013), the further interpretation of pick-up and drop-off
hotspots is the conveying. Those cues have a relation to the social functions
of regions (Pan et al. 2013).

One focus of this work is on extracting taxi drop-off positions and subsequent
point generalization into hotspots. We believe that agglomeration of drop-off
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positions may help representing the interests of individual customers. In parti-
cular, we focus on data extracts from Saturdays, when we expect many taxi
customers following social interaction in connection with recreational activities.

In general, we can say that in the 2010s the taxi customer pick-up densities in
Manhattan are significantly higher than in the outer boroughs of NYC (Qian and
Ukkusuri 2015). Sayarshad and Chow (2016) inspect NYC taxi data extracts at
different temporal scales showing, especially in the central part of NYC, specific
variations between the distributions of trip origin points and trip destination
points for selected time windows. The visual inspection of taxi trip origins and
destinations from temporal partitions is a first indication technique for finding
spatial patterns for further inspections as in the approach of Ferreira et al. (2013).

Alfeo et al. (2018) propose a stigmergy-based process of NYC taxi hotspot
discovery. The discovered hotspots are similar to those found by other meth-
ods as by Keler and Krisp (2016b). Definite operational taxi hotspots on week-
days, for both yellow and boro taxis, are situated in northern Manhattan.
Besides operational hotspots, it is feasible to model demand and supply of
taxi trips at it is proposed by Yang (2015) with a data-driven modelling
approach. Specific taxi trips can reveal more detailed information than in
their aggregated form. Due to the various information and the massive data
collection, Douriez et al. (2016) point out that the identification of specific taxi
drivers with their daily income is inferable. Besides this fact, it is even possible
to associate the origins of customers with properties of the payment itself.

The difference to other studies using the NYC taxi data sets consists of relating
dynamic taxi trip information with static infrastructural information from OSM.
We believe that specific road network designs and every composition of design
elements, together with buildings and various other infrastructural elements,
influence daily mobility patterns, especially in complex urban environments.
Furthermore, we believe that taxi travel behaviour has not only connections to
dynamic aspects of traffic quality and varying traffic states. There are also con-
nections between taxi travel behaviour and level of infrastructural complexity,
which might occur in specific spatio-temporal patterns. One contribution of this
work is the attempt of comparing the static complexity of road intersections with
dynamic taxi service hotspots without implying routing applications.

1.2. The complexity of road intersections

Transportation infrastructure elements are important elements in urban envir-
onments and often local knowledge is decisive for the properties of selected
road elements. Even when not perceived superficially, selected parts of the
transport infrastructure might imply danger for vehicle drivers as locations of
traffic bottlenecks.

One typical type of locations in many different transportation infrastructures is
the road intersection. People perceive some of these elements as complicated,
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depending on the group of people and their selected mode of travel. Krisp and
Keler (2015) propose a data-driven method for estimating the level of complexity
of a perceived complicated crossing. The case study bases on questionnaires,
where driving beginners in driving schools in Munich evaluated their perceived
complicated elements within traffic participation. The road network of Munich
was input information for testing the method. Resulting from the method appli-
cation, numerous perceived complicated crossings are extractable and show
reasonable results, when comparing to local knowledge.

Perceived complexity of transportation infrastructure is not only dependent
on the spatial configuration of road network segments. There are manifold
dynamic components that can influence the perception of complexity.
Nevertheless, the road design can be seen as one non-dynamic component
in estimating the complexity of road intersections. Therefore, we try to intro-
duce regularities that express that intersection consisting of curvy densely
ordered segments of different road types are more complex and weighted
higher in perceived complexity. One advantage of this estimation is that no
local knowledge of the investigation area is needed.

In contrast to specific points of interests with functional attributes as air-
ports and stations, we want to inspect taxi drop-off hotspots at complicated
crossings. The idea is to find out any connection to perceived complicated
crossings. This is based on an extension of the data-driven method proposed
by Krisp and Keler (2015), which was already tested for Munich’s road network
with reasonable results. The extension consists of excluding road segments of
specific road types while adapting perceived complexity in the investigation
area. Within this procedure, we want to test the exclusion of pedestrian
influence, which results in the absence of interaction points between vehicles
and pedestrians on infrastructural level.

Additionally, it is to say that there are numerous possibilities for defining the
complexity of road intersections. Sladewski, Keler, and Divanis (2017) propose
a technique that respects the number of connected roads and of turning
options, resulting in very differing test results when comparing with the
technique by Krisp and Keler (2015). The numerous turning options on the
magic roundabout in Swindon (UK) have, for example, the degree of two to
three in the method by Sladewski, Keler, and Divanis (2017). This does not
show a high complexity at any part of the magic roundabout, whereas the
high density of extracted nodes of this roundabout indicates a high complexity
in the method by Krisp and Keler (2015). Sladewski, Keler, and Divanis (2017)
use a vehicle network of Le Havre without information on bicycle and pedes-
trian road segments.

This work applies a technique variation of Krisp and Keler (2015) on a road
network extract from OSM of NYC with all available road types. The parameters for
the method are adjusted based on observations of the present transportation
infrastructure of the investigation area. Compared to previously conducted
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studies on NYC taxi data sets, we include the static component of the road
network design together with the linkage to transport infrastructure of other
modes of transport into the analysis of dynamic information. Exclusion of speci-
fically classified road segments might influence assigning the complexity of
selected road intersections.

2. Description of the case study and the test data sets

This work focus on testing a data analysis technique for extracting local knowl-
edge. The input data consists of dynamic and static information for one selected
investigation area.

In this work, we test taxi data sets of a taxi fleet with operational restrictions: the
boro taxi service. The underlying data allow extractions of every boro taxi trip
destination in June 2015, which equal the points where passengers leave the taxi.
The second type of data are extracts from the road network of the OSM project for
the administrative area of New York City (NYQ). It is the base for estimating the
complexity of crossings or the local transport infrastructure in general.

2.1. Boro taxi data

Boro taxis operate in NYC since 2013 and were introduced for coping the taxi
passenger demand in the boroughs outside of Manhattan, namely Brooklyn,
Queens, the Bronx and Staten Island. The reason for introducing this service results
from previous analyses of spatial distribution of yellow taxi GPS data." In particular,
passenger pick-up positions of yellow taxis are a matter of investigation. Around
95% of the pick-ups occurred within Manhattan and the rest in the outer boroughs.

Having a cheaper taxi license fee, boro taxi drivers are not allowed to pick
up any customers at the two airports or in Manhattan (below East 96th and
West 110th Streets). The boro taxi data sets consist of 20 attributes, and every
record represents one trip. We select boro taxi data from all trips of the four
Saturdays in June 2015, coming from the NYC Taxi & Limousine Commission
(TLC).? Keler and Krisp (2016b) show that it is possible to represent typical
destinations of boro taxi users by density-based clusters. These users come in
large part from the outer borrows of NYC, outside of Manhattan. Most of the
trips appear in the evening, one indicator that social events attract people to
come to Manhattan. From the data partition, we extract start and destination
points and focus on the latter for inferring customer drop-off points.
Additionally, there is a possibility to associate boro taxi drop-off hotspots
with road segments (as, for example, from the OpenStreetMap project) or,
based on the previous, complicated crossings (Keler and Krisp 2016b).

After inspecting the selected four Saturdays in June 2015, we state that there are
in general more drop-offs on weekends than on working days, especially in south-
ern Manhattan (yellow zone). The drop-off hotspots on Saturdays have less period-
ical spatio-temporal distribution than those on working days.
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Figure 1. Number of boro taxi drop-off points for time of the day in NYC on the four
Saturdays in June 2015.

Many drop-off hotspots can be associated with social events. Therefore,
Figure 1 shows four curves for the selected Saturdays in June 2015. Whereas
the first part of the Saturdays has a very similar distribution, evening hours
have a high variation. Each variation can result from specific social events and
have specific differences in spatial distributions. Weather events are besides
social event information important components that can influence numerous
taxi drivers in NYC (Camerer et al. 1997).

2.2. OSM road network of NYC

Road segments can have manifold representations. We can represent road net-
works as a number of non-connected line or polyline features or we can assure an
accurate connectivity between the different road segments, which respect and
describe the driving directions. Another option has far more applications: con-
nected and directed network graphs. As in most routing applications, for pedes-
trians and vehicle drivers, the 1D network space is used for computing the path
between two points. In its simplest case, the shortest path algorithm by Dijkstra
(1959) is applied. In many cases of freely available road network data, connectivity
of arcs and nodes, together with direction is not necessarily included. As in case of
ATKIS (Harbeck 2001), and sometimes OSM, the data has more focus on higher
visual representation quality of occupied space than the accurate connections
(arcs) between the nodes, which can be road intersections of road networks.
Nevertheless, many routing applications make use of OSM road network infor-
mation, which is a matter of testing for its practical use. One often needed step is
conversion into 1-D network space, which sometimes comes along with problems
in connectivity and has to be modified for practical routing applications. Within the
project, there are differences in the mapping quality, especially concerning the road
network information. In previous examples, where vehicle routing applications are
designed (Karrais, Keler, and Timpf 2014; Keler and Mazimpaka 2016; Sladewski,
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Keler, and Divanis 2017) significant differences are detectable between OSM road
network and the network from Google Maps. Additionally, there are possibilities of
abstracting road networks, mainly by applying line generalization methods.
Abstracted road networks may imply less spatial (position and size) and semantical
(driving directions, restrictions, lane number and connectivity) information than
usual OSM road networks, as for the case of the GraphStream network of Le Havre
(Sladewski, Keler, and Divanis 2017). Compared to these examples, the OSM road
network is relatively accurate and rich on additional information on the number of
lanes, road type and speed limits (Keler and Krisp 2016a).

OSM road networks are for Stanica, Fiore, and Malandrino (2013) one of the
most accurate, which are freely available. NYC has a very detailed and relatively
consistent OSM road network, of which an extract is pictured in Figure 2.

3. Relating complicated crossing with frequently visited locations

Based on the previous findings, we want to introduce a simple and computa-
tionally efficient method for defining and extracting boro taxi drop off point
hotspots and relate them to detected complicated crossings. The idea is to
make use of the density connectivity of daily boro taxi drop off points by using
the OPTICS algorithm (Ankerst et al. 1999). We use for our approach the
method by Keler and Krisp (2016b) for extracting boro taxi drop-off hotspots.
The two main components of this technique are applying OPTICS (Ankerst
et al. 1999) for the density cluster generation, and subsequently using the gift
wrapping algorithm (Jarvis 1973) for convex hull generations. The selection of
useful input parameters bases on previous inspection of drop-off point reach-
ability and on appearances of the local transportation infrastructure. One
example for the latter is the selection of search distance Epsilon based on
the maximum street width in Time Square of 102 feet. A diagram in Figure 3
shows this technique (in beige box), together with the OSM-based detection of
complicated crossings (upper left blue box).

4. Results

By applying the method for detecting frequently visited locations as pictured
in Figure 3, we receive a number of intersecting polygons for each of the four
Saturdays in June 2015. The outcomes of detecting complicated crossings via
OSM road network data and of defining and extracting boro taxi customer
drop-off polygons are a matter of respective visual inspections.

4.1. Complicated crossings in NYC

The technique by Krisp and Keler (2015) consists of at least three different
forms of data representation. Figure 4 shows the workflow of the technique for
defining complicated crossings in NYC. Compared to Munich, NYC has longer
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Figure 2. Inspected OSM road network data extract from NYC.
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Figure 3. Workflow of the method for detecting frequently visited locations at complicated
crossings.

and wider road segments with less curvature. Depending on the input road
information from OSM (Figure 4(a)), different densities appear in its extracted
nodes (Figure 4(b)). As in Krisp and Keler (2015) we can use an average
diameter, as, for example, 60 m for the case of Munich, which can base on
roundabouts within the respective investigation areas for selecting a threshold
for creating obstacle polygons.
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[ OSM road network ]

Node extraction

J

[ OSM road network nodes }

Selection by threshold and
obstacle generation

}

[ Complicated crossings }@

Figure 4. Technique for defining complicated crossings, with (a) node extraction, (b) selection
by threshold and (c) extraction of polygons.

In general, NYC has lower node densities than Munich. The resulting compli-
cated crossings in Figure 4(c) do not only depend on node densities but as well on
intersection points between different road segments. In case the intersecting
roads are from different types, the resulting intersection points gain a higher
weight, which likely indicates a complicated crossing. Therefore, Figure 4(c) shows
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Figure 5. Complicated crossings in the central part of NYC with the inclusion of pedestrian
pathways in the input information (orange polygons) and with its exclusion (red polygons).

unreasonable results of complicated crossings in the Central Park and in other
parks in NYC, because road segments are intersecting bicycle lanes and pedes-
trian pathways. Other reasons for this misclassification at all parks in NYC are the
highly curvy pathways with intersections to other road types. High curvature of
pathways comes together with high node densities.

One additional step for immediately improving the results might be to exclude
pedestrian pathways from the input information for detecting complicated cross-
ings. After this improvement step, many complicated crossings disappear espe-
cially in the area of the Central Park. Figure 5 shows the difference between
detected complicated crossings with pedestrian pathways as input information
(orange polygons) and those without this road type (red polygons).

Due to the disappearance of many prominent crossings in NYC, especially
those with pedestrian crossings, when excluding pedestrian pathways, we use
the orange polygons in Figure 5 for the further matching with boro taxi drop-
off hotspot polygons.

To our knowledge, the technique of Krisp and Keler (2015) implies all available
road infrastructure information and introduces a static weighting scheme
throughout the whole procedure. One novelty of this paper is the exclusion of
the pedestrian influence on estimating the complexity of road intersections by
subtracting one road type from the complete road segment data set. Whereas
this is not reasonable when estimating the complexity or road intersections, since
vulnerable road users (VRUs) are an important component, in reality, this shows
that it has a direct influence on the complexity classification outcomes.
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4.2. Boro taxi drop-off hotspot polygons

By applying the density-based technique OPTICS for boro taxi drop-off points of
the four Saturdays in June 2015, we receive more than 4,000 clusters per day. After
applying the gift wrapping algorithm on every cluster for a better visual repre-
sentation, the respective convex hulls are the outcomes. The resulting drop-off
hotspot polygons are pictured in Figure 6, with the selection of day wise polygons
for every of the four Saturdays. These polygons result from specific adjusting of
parameters values of OPTICS. After previous tests with subsequent visual inspec-
tion, we provide the drop-off hotspot detection for all four data partitions with the
search distance (Epsilon) of 31.0896 meters, which equals the maximum Street
width in Time Square (102 feet).

In parallel, we have to define taxi drop-off point clusters by using the
OPTICS algorithm. In the case of this algorithm, we have to define a search
distance (Epsilon) and a minimum number of points (MinPts) for estimating the
density. Our minimum number of taxi drop-off points will be 2 (MinPts = 2).
With those two parameters, we define our density connection between the
drop-off points. The resulting clusters are then transformed by the gift wrap-
ping algorithm (Jarvis 1973) into polygons.

4.3. Hotspots at complicated crossings

The final step of the method is to connect drop-off hotspots with complicated
crossings. The idea is to provide a spatial overlay of each of the four hotspot
polygon sets with detected complicated crossings in NYC. For the matching of
two polygon layers, there are numerous possibilities, especially when following the

Figure 6. Boro taxi drop-off hotspot polygons for the four Saturdays in June 2015 in NYC.
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Figure 7. Six detected boro taxi drop-off hotspots at complicated crossings in southern
Manhattan.

idea of representing the relations of the spatial matching, in terms of its spatial
configuration. Numerous methods can handle a series of polygons. One option is to
extract the intersection areas of matching polygons. Another option is to extract the
information of how polygons are intersecting. One possibility for doing so is using
the 9-intersection model as in Keler (2018). Each of the polygons matchings might
be represented as an Egenhofer matrix with nine fields. We select the option of
extracting the areas of spatial overlay, in case hotspot polygons and complicated
crossings are matching. The idea behind this is to show only areas associated with
both polygon types, without spatial tolerance areas.

In the last step of defining frequently visited locations, we match the compli-
cated crossings with taxi drop-off point polygons in NYC. Figure 7 shows a cut-out
of the defined frequently visited locations in NYC every Saturday in June 2015,
which will be the base for our further inspections.

Figure 7 shows a selection of six detected boro taxi drop-off hotspots at
complicated crossings in southern Manhattan. Additionally, every outcome of
the polygon intersection step is pictured by Google StreetView images from the
same location, showing the spatial configuration of roads at road intersections.

5. Conclusions

This work proposes a method for detecting taxi drop-off hotspots at complicated
crossings. We are using drop-off points of a taxi fleet with specific mobility
patterns: boro taxis. For the selected Saturdays, most of the boro taxi drop-off
hotspots take place at the border to the restricted yellow zone. There are high
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Table 1. Numbers of drop-off hotspots and those intersecting with complicated crossings.

Inspected Saturday in NYC 06.06.2015 13.06.2015 20.06.2015 27.06.2015

Total number of drop-off hotspots 5006 4919 4769 5233

Number of drop-off hotspots intersecting complicated 168 169 137 148
crossings

Percentage of drop-off hotspots at complicated crossings  3.356% 3.436% 2.872% 2.582%
from total number

numbers of hotspots in northern Manhattan and at Williamsburg Bridge. This
shows the general trend of boro taxi drivers to avoid driving in the restricted
yellow zone. The assumption that boro taxi drivers avoid dropping-off customers
at complicated crossings has a decisive proof: a relatively small number of taxi
drop-off hotspots appear at complicated crossings. In total, the boro taxi drop-off
hotspots on the four Saturdays in June 2015 overlap to only 2% to 4% with
complicated crossings. Table 1 shows the numbers of hotspots and those inter-
secting with complicated crossings.

Around 130 complicated crossings in NYC, mostly situated in southern
Manhattan, always intersect with daily drop-off hotspots. Surprisingly, all mod-
ifled complicated crossings in NYC fall into this category. Six of these are pictured
in Figure 7. The modification of at least one road segment into a pedestrian zone
makes it also reasonable to drop-off customers at these intersections. The
different initiatives of the Department of Transportation in NYC, include, besides
other types of street re-engineering, the approach type ‘choose quality over
quantity’ for simplifying complex intersections (NYCDOT 2013). The complex
intersections definition by NYCDOT (2013) includes the existence of odd angles
between the streets, as intersections with five or more roads. The re-engineering
strategy is to divert or to remove selected road segments from the intersection
and to create new plaza space for pedestrians, which might serve as good
locations for taxi customer drop-offs (NYCDOT 2013).

The technique for detecting complicated crossings by Krisp and Keler (2015)
delivers reasonable results for the OSM road network of Munich. The results after
applying the same technique for the OSM road network of NYC are less reason-
able: many detected complicated crossings appear at park areas. The reason for
this appearance results from the high number of intersections with different road
types as pathways and minor roads. Additionally, NYC has a smaller density of
complicated crossings, especially in southern Manhattan. This is connected with
the generally wider and straighter street segments in NYC than in Munich. For
delivering comparable results, input parameters and parts of the method itself
need modifications. One key point of this assumption is that the inferred road
network node density does not necessarily indicate the complexity. Therefore,
exclusion of specific road types as bicycle lanes or pedestrian paths, as an exten-
sion of the technique, can show the direct influence on variations in number,
shapes and sizes of classified road intersections.
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The proposed method provides a connection between daily mobility and
transportation infrastructure. This type of approach is extendable in many
ways. The NYC boro taxi records are useful data for deriving information of
appearing public events. The variations in drop-off numbers, travel times, and
drop-off locations can be associated with events (changes in periodical pat-
terns, outliers).

The contribution of the presented approach consists of providing the
potential spatial analyst a number of indicators resulting from unusual rela-
tionships of static and dynamic urban data. Relating operational mobility hot-
spots from specific services with the used underlying transport infrastructure is
not new. Nevertheless, qualitative data on various perceptions of urban space
can provide even further revisions and approval to specific spatio-temporal
patterns. Here, it is important not only to focus on the statically built infra-
structure, since temporal variations are possible and in many urban areas of
the world present, but imply differently varying temporal scales.

Additionally, we can say that manifold reasons can imply avoidance of custo-
mer pick-ups or drop-offs as, for example, traffic situations, events or the per-
ceived complexity due to the number of signals of specific traffic control
elements. Extracted polygons of the presented procedure might serve as indica-
tors for present traffic bottlenecks, higher traffic volumes at specific time of
the day or even specific traffic light signalling.

One application value of the presented technique for intelligent transporta-
tion systems might benefit concepts on autonomous vehicles or taxis. Due to
the higher complexities of selected road intersections, autonomous vehicles
might avoid the polygons that are extracted in this paper and route around
them. Since those polygons are hotspot areas of other taxi fleets, have com-
plex road infrastructure and imply numerous different traffic participants,
interaction and communication of autonomous taxis with its environment
might be expensive and time-consuming. The presented method by Krisp
and Keler (2015) for estimating complexities of road networks might then be
adapted to the requirements of autonomous vehicles. Estimating complexities
for autonomous vehicles might imply sensor-specific properties that are diffi-
cult to model and possibly not visible for pedestrians. The simplest path for
autonomous vehicles is possibly the one with the lowest interaction with other
traffic participants, which indicates that just data on static infrastructure might
not be enough. On the other hand, static information can serve for extracting
conflict points and less intersecting road lanes may indicate less expected
interactions. Taking this into account, we can say that our approach might
be one option to guarantee traffic safety.

Another idea comes from achieving optimal operational quality by avoiding
typical operational hotspots of other taxi fleets and mobility services. This idea
comes with a paradox, since these mobility hotspots also indicate a higher activity
of transit. On the other hand, autonomous vehicles can navigate on areas with



16 (&) A.KELER AND J. M. KRISP

a lower activity of change of transport mode, since less pedestrians are expected
that switch vehicles. This strategy might contribute to higher traffic safety at
specific urban locations in the future.

6. Outlook

Further steps motivated from our approach consist of reasoning about an
automatic extraction of local knowledge. Therefore, the inclusion of social
media data as geocoded Tweets might serve as a useful addition or a matter
for result evaluations.

This might be useful for associating social events with varying drop-off
numbers in selected parts of the city at selected times.

Another useful addition to the method is the inclusion of traffic flow informa-
tion. The idea is to connect road segment complexity with road capacities.
Understanding urban traffic with specific flow patterns on the transportation
infrastructure is important for further analyses. Therefore, there is a need for
differentiating between road types and road segments for analyzing mobility
and road usage patterns.

One possible addition, when using OSM data, is enriching classified areas (as
complicated crossings) with intersecting and nearby situated features (static and
dynamic) that might consist of POlIs or static technical devices as traffic lights.

One future direction of attempting comparing perceived static complexity
with dynamic information might consist of testing the OSM-based complexity
in a VR bicycle simulator application that evaluates only the used OSM infor-
mation and not the present photorealistic depiction of a selected road inter-
section (Keler et al. 2018). This might reflect differences between the perceived
complexities of the real world and the (geo-) data world.

Notes

1. Background on the Boro Taxi program. NYC Taxi & Limousine Commission. URL:
http://www.nyc.gov/html/tlc/html/passenger/shl_passenger_background.shtml;
Retrieved 18 December 2013.

2. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
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