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I 

 

Preface 
 

This dissertation aims to contribute to the development of efficient and effective monitoring of reed 

beds by analysing remote sensing (RS) data. Considering the problem of declining aquatic reed 

consisting of Phragmites australis, data collected with Unmanned Aerial Vehicles (UAV) and airborne 

Green-LiDAR (Light Detection and Ranging) was analysed in order to extract biometric parameters. 

Quantitative variables are essential to evaluate a reed bed stock, to assess the vegetation status, and to 

develop conservation or restoration measures. The present dissertation starts with a description of 

aquatic reed beds and their importance for the lake ecosystem, as well as documented factors causing 

their decline. The introduction also illustrates the already used monitoring methods and the new 

opportunities offered by UAV and LiDAR technologies for describing this type of vegetation. Following 

the introduction, three detailed thematic studies dealing with the extraction, and measuring of biometric 

reed parameters in RS data are presented. Each specific topic has been published (Chapter 2, 3, and 4) 

as autonomous research papers in a slightly modified form (according to the specific journal 

requirements). The dissertation provides a general discussion on the suitability of UAV and Green-

LiDAR in delivering relevant information for characterizing aquatic reed beds and the advantages, and 

potential constraints, when implementing this system in reed bed monitoring projects. The feature 

extraction, classification and mapping as well as the conclusions drawn from the results suggest that 

the proposed approach may be useful for other application areas such as agriculture or forestry. 
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Abstract 

 

Aquatic reed beds are of essential importance for freshwater lake ecosystems. They protect the shores 

from erosion, constitute a habitat for several species, and provide an important structural element in 

the lake landscape. Their population decline has been observed in long-term monitoring projects. 

Discussed causes triggering aquatic reed decrease are of mechanical, hydrological, climatic, 

anthropogenic and biological origin. For instance, high frequency of extreme droughts, floods, strong 

winds and thunderstorms in addition to the more frequent boat traffic and recreational activities at 

Bavarian lakes increase the pressure on aquatic reed populations. Monitoring the status of the aquatic 

reed bed at intervals shorter than the three years, recommended by the authorities, appears to be 

necessary. Terrestrial mapping and visual interpretation of aerial images followed by manual 

delineation has been commonly used to assess and quantify the development aquatic reed beds. The 

difficulties in the implementation and execution make these methods ineffective. Modern remote 

sensing technologies, in support of terrestrial inventories, are expected to reduce monitoring time and 

costs, and allow a higher update frequency with increased accuracy.  

 

This dissertation deals with the task of extracting quantitative and essential biometric information of 

aquatic reed beds health and distribution. For this purpose, based on data gathered by Unmanned 

Aerial Vehicles (UAVs) and airborne Green Light Detection and Ranging (Green-LiDAR), two new 

classification strategies are developed based on data points defined by a given coordinate system (point 

clouds). These classification strategies were derived based on mapping structural parameters and 

vegetation status for aquatic reed beds consisting of Phragmites australis.   

 

The investigations presented in this dissertation were published as three detailed thematic studies. The 

first study presents an efficient and empirical approach for determining the required parameters for 

image alignment and feature extraction for point cloud calculation of sparse aquatic reed beds, with the 

lowest Root Mean Square (RMS) reprojection error. Aimed at finding differences in biometric features 

extracted on data collected by Rotary- (RW) and Fixed-Wing (FW) UAVs, images were recorded with 

the same sensor system mounted on both aerial vehicles. Image processing and feature extraction were 

executed in a Structure from Motion (SfM) environment and based on bundle adjustment.  

 

The determined point clouds from the first study were used in the second study, which presents the 

classification method developed for determining frontline, extent, density and status of aquatic reed 

beds. The extent was validated by comparing it against cross sections measured in the field. Density 

and vegetation status was assessed against independent aerial imagery in addition to field data. The 

Root Mean Square Error and an Error Matrix were applied for this task.  

 

The third study presents the combination and adaption of UAV developed classification rules to Green-

LIDAR data for extracting the same fundamental parameters (height, density, and extent) of aquatic 

reeds. A rule-based algorithm was developed for the automatic classification of Green-LiDAR point 

clouds. Green-LiDAR data allowed for the delimitation of the aquatic reed frontline and shoreline 

therefore providing an accurate quantification of extents. Digital Surface Models (DSM), calculated from 

point clouds, similarly showed a high level of agreement in the derived heights of flat surfaces and in 

the complex surface of aquatic reed heights. 

 

The results of the studies proved the suitability of UAVs and Green-LiDAR on mapping diagnostic 

structural parameters of aquatic reed beds by examining point clouds. Independently of the type of 

system used the height of aquatic red beds were extracted. This was achieved through Green-LiDAR 

point cloud analysis or photogrammetry, which are procedures with high potential for automatic 
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feature extraction. The results showed that height and density (sparse and dense) could be evaluated 

by analysing height variations. Lakeward expansion front (frontline) of aquatic reed beds was allocated 

using UAV and LiDAR data. Green-LiDAR data also demonstrated its suitability in identifying the 

shoreline. Spectral information in UAV point clouds contributed to the status assessment of aquatic 

reed. The three spectral bands (red, green, blue) of each point offered opportunities for calculation of 

vegetation indexes (e.g. NDVI). Secondary biometric parameters such as the amount of leaves or flowers 

could potentially be assessed using the laser beam amplitude (intensity) in combination with point 

geometry, however this is still to be determined. Vegetation mapping with both remote sensing systems 

appeared to be more practicable than onsite measurements and delivered, in some cases, more accurate 

quantitative information (height, density, extent) with no disturbance of the habitat. The research shows 

that complex transitional zones (water-vegetation-land) can be assessed using these remote sensing 

technologies. Analysing remotely collected monitoring data with the presented classification procedure 

improved the efficiency, reproducibility, and accuracy of the quantification of aquatic reed beds status. 

Based on the objectivity, comparability and repeatability, it is clearly recommended that UAV or LiDAR 

based data collection methods are used for monitoring aquatic reed beds. 
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To my father and mother: 

Long is the way through teaching, short and effective through the example.  
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1. Introduction 

 

1.1. Reed beds as a study object and their importance for lake ecosystems 

 

Common reed is a grass type plant with a special adaptability. It occurs in shallow shores of 

standing or slowly flowing waters, and swamps (Dittrich 2014). The high genetic variability allows the 

growing not only in nutrient-poor lake shores, but also in brackish water locations (Grosser et al. 1997). 

Although reproduction happens occasionally with seeds, reed proliferates almost exclusively through 

rhizome sprouts. Shoots can grow up to 4.5 cm/day and stems can reach heights of 4 meters (Dittrich 

2014; Ostendorp 1993b). The high productivity allows the reed to reach its maximum height within 4-5 

months (Ostendorp 1991; Grosser et al. 1997). However, the growth rate varies according to the different 

ecological zones. Along a horizontal gradient, from lakeside towards the bank, reed stocks are classified 

into three different ecological zones, which occur either in land, transitional, and aquatic zones (Figure 

1.1). Land reed beds are located in areas above water level, comprise an onshore/shoreward stock of not 

only reeds but multiple plant species, and usually grow in meadows. Transitional reed stands are not 

permanently flooded, correspond to the landside, are pure stands of Phragmites australis, and 

characterized for its increment in stem density, length, and fertility. Aquatic reed beds grow in locations 

flooded throughout the year. They are also pure stands of Phragmites australis, which correspond to 

lakeside stocks that grow directly in sediment and are characterized for their low culm density and 

longer sparse fertility (Grosser et al. 1997). The aquatic reed at the expansion front of a stand is 

considered the most sensitive zone. In spring, aquatic reeds have a faster development since it needs to 

emerge from water for breathing and perform photosynthesis. At the middle of summer, aquatic reeds 

reach 85% of its maximal length, whilst the uniform development of transitional and land reed grow 

only 80% by the time (Grosser et al. 1997). Between the middle of summer to mid-autumn the flowering 

phase takes place, and aquatic reed stocks often carry no panicles (Grosser et al. 1997).  

 

 
Figure 1.1 Vertical and horizontal classification of reed beds depending on water level, and reasons for 

decline. I) Stem tips and panicles area, II) emerged stem and leaves, III) submerged stem, IV) sediment 

and rhizome zone. A) Land reed: the water level is lower than the ground surface, B) Transitional reed: 

not constantly flooded, C) Aquatic Reed: flooded throughout the year. HWL) High water level, MWL) 

middle water level, LWL) low water level. Adapted from (Ostendorp 1993b) 
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Many investigations have shown the ecological impact of reeds in lakeshore ecosystems. On a landscape 

level reed beds contribute to the species conservation, shore protection, and pollution control 

(Ostendorp 1993a). “They are ecotones between land and water, which attract many kinds of wildlife, economic, 

cultural and recreational uses and human settlement” (Schmieder 2004). For specialized fauna, reed stands 

constitute a structural element and food source. Reed beds establish the habitat for fish, birds, and 

mammals, and its high productivity is the food basis for many primary consumers, parasites and 

secondary decomposers (Ostendorp 1989). The oxygen entry in combination with the length of the root 

system make the ideal habitat for different species of fungus and bacteria. Reed beds are also natural 

structures that protect against sediment movement and bank erosion. The allocation of reed stems 

reduces the wind and wave energy, therefore stabilizing the shorelines of lakes, rivers, reservoirs, and 

channels (Grosser et al. 1997). The nutrient retention capacity contributes to the self-purification 

potential of contaminated lakes or rivers. Reed beds contribute to the cleaning of runoff from 

agricultural fields or tributaries (Grosser et al. 1997). The ability of reeds to release oxygen in water and 

soil promotes the microbial decomposition of organic matter by oxygen-specialized bacteria, which 

settles in large quantities of capillaries on the reed roots (Dittrich 2014). The significance of reeds varies 

according to the ecological zones. Land and transitional reeds are stabile zones and their stem density 

and height allow ideal habitat for birds and small mammals. The growing organisms in aquatic reed 

beds offer instead adequate ecological conditions for molluscs and diatoms. Fish, reptiles, and 

amphibians avoid transitional zones and remain in undisturbed areas for spawning (Grosser et al. 1997). 

In addition, reed beds have also an aesthetic significance. Reed beds are a dominating element of the 

landscape at most of the European lakes. Located at the shore of lakes, they are associated with near-

natural landscape images, which is considered as an important aspect for recreation (Holsten et al. 2013). 

The mentioned ecosystem services and functions give the reed belts on lakeshores also a fundamental 

economic significance. For instance, conservation of fish species contributes to the livelihoods of local 

anglers on which they partially depend on. Environmental protection measurements for enhancing 

water quality and erosion control are reduced, since respectively the nutrient load of surface runoff 

from used agricultural areas as well as the wave and wind energy are diminished. The biodiversity in 

reed belts are the perfect wildlife reserves that attract tourists (Ostendorp 1989). 

 

1.2. Factors causing reed decline 

 

Reed beds have experienced a recession during the past decades (Ostendorp 1989; van der Putten 1997; 

Brix 1999; Fogli et al. 2002; Vermaat et al. 2016). Diminishing of reed beds had already been documented 

in some Swiss lakes since the middle of the past century, in which almost only aquatic reeds were 

affected (Grosser et al. 1997). The identified stressing factors can be grouped as mechanical, hydrological, 

climatic, anthropogenic, and biological causes. Mechanical damage of reed culms is produced by wind, 

frequent strong waves produced by sailing or boot traffic, and transported materials by water currents. 

Recreational activities such as bathing, surfing or paddling have also been documented of causing 

mechanical damage to the reeds through cutting or stepping. In the same way, similar disturbances 

have been recognized but provoked by browsing animals (e.g. Goose, muskrat) below the water line 

(Dittrich 2014; Grosser et al. 1997; Sukopp and Markstein 1989; Stark and Dienst 1989). Flooding is the 

main factor documented as a hydrological cause. Flooding of reed stems produces early yellowing and 

hinders the accumulation of nutrients for the next vegetation period. In addition, the inundation of 

broken reed culms hinders the provision of oxygen to the rhizome through the aerenchym (Grosser et 



Introduction Remote sensing methods used in the monitoring of aquatic reed beds 

3 

 

al. 1997; Stark and Dienst 1989; Ostendorp 1991; Rea 1996; Rücker et al. 1999). Water level fluctuations 

lead to the freezing or washing out of rhizomes (Dittrich 2014). Long-term climate changes have also a 

modifying effect on reed development. The exposure time to sunlight and temperature variability 

shorten the growing season affecting the growth and spread of reeds (Rücker et al. 1999). As 

anthropogenic causes have been identified based on the changes in land use. For instance, land 

reclamation, wetland draining, the construction of houses, beaches, and landing sites for boats, are some 

anthropogenic changes that have a negative impact to the reed stocks (Ostendorp 1989; Sukopp and 

Markstein 1989). Shades caused by constructions or tree plantations is a side effect which influences the 

normal development of reeds (Dittrich 2014). High nutrient content (eutrophication) facilitates the 

generation of algal mats, which are driven by wind or waves to reed belts causing culm breaking, and 

poisoning the rhizome through the decomposition products (Dittrich 2014; Stark and Dienst 1989). 

Eutrophication also causes the accumulation of detritus in littoral zones and the high generation of H2S 

damages the rhizome and is considered as a cause of reed die-back (Grosser et al. 1997). Although a 

stimulus for growth may possibly be the increment of nutrients, the excessive intensification of nutrients 

in highly eutrophic waters may cause physiological stress (Den Hartog et al. 1989). Genetic variations 

in reeds have been recognized as biological cause. Specific genotypes die through changes in 

environmental conditions, but are replaced with new adapted forms. However, on a long term this 

process causes a genetic loss since the reproduction is mainly vegetative (Grosser et al. 1997). 

Consequently, loss of genetic diversity within a reed population may lead to a lack of adaptability of 

the reed to environmental changes (Dittrich 2014). 

 

1.3. Remote sensing methods used in the monitoring of aquatic reed beds 

 

Global, regional or local, remote sensing technologies provide data for different degrees of detail. 

Available information from satellite constellations with multispectral and hyperspectral sensors have 

been applied in the global research of reed beds. Phragmites australis has been ecologically assessed using 

multi-season SPOT-5 scenes (Poulin et al. 2010; Davranche et al. 2010), as well as the conservation status 

with data from Geoeye and Worldview 2 (Villa et al. 2013). Large-scale management of common reed 

for paper production has been also supported Landsat ETM, TM and ASTER imagery (Brix et al. 2014). 

The effectiveness in large-scale mapping of lakeshore habitat has also been assessed with the new 

European satellite Sentinel 2 (Stratoulias et al. 2015a). Interpretation of aerial photographs has normally 

been focused more on regional and local scale analysis of reed development, extent, structure, or health. 

It has been used to map reed decline in large lakes (Krumscheid et al. 1989), to define possible decline 

causes through analysis of historical imagery (Rücker et al. 1999), to investigate the development of reed 

and consequently to create conservation plans (Melzer et al. 2001), or to outline the effects of extreme 

floods on spatial dynamics and stand structure of reed belts (Schmieder et al. 2002). Implementation of 

aerial imagery with an additional band in the infrared wavelength of the electromagnetic spectrum 

contributed not only in mapping vitality of reed beds. The spectral differences measureable in the 

infrared wavelength have been used to delimitate proportions of stands with dead stems and thus the 

degree of damage of a reed cut can be estimated (Schmieder et al. 2002; Ostendorp et al. 2003; Schmieder 

et al. 2004; Dienst et al. 2004). 

 

These remote sensing data have contributed in the analysis of large-scale reed beds. Interpretation of 

aerial and satellite imagery with spatial resolutions from approximately 1 to 30 m has achieved good 

results in mapping healthy and large reed stands. Healthy land reed beds are characterized for the slow 

replacement of sedge or woodland communities or by unfertilized grasslands. On the other hand, 
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healthy aquatic reed beds are homogeneous, dense and with a regular lake frontline without lanes or 

gaps, shaping a uniform fringe, decreasing gradually in stems length, but all stalks of one stand of 

similar height (Ostendorp 1989; Hoffmann and Zimmermann 2000). Die-back or unhealthy aquatic reed 

beds are characterized instead by: 

- sparse and parallel stripes along the reed bed edge (due to either floods, wind storms, or 

driftwood accumulation),  

- a lane/aisle perpendicular to the shore (for docks, boot traffic, bathing, fish traps),  

- the disintegration of reed beds though decreasing stem density, frayed, ripped, not zoned reed 

edge and in single clumps (through erosion or flood), and seaward stubble fields of past reed 

beds (Hoffmann and Zimmermann 2000).  

 

In order to detect stress in aquatic reed beds, these characteristics are fundamental for image 

interpretation and it is here where the limitations of aerial and satellite imagery are noticeable. Spatial 

resolution and mixed spectral signature in each pixel (e.g. water and vegetation) hinders the accurate 

allocation of lakeside frontline, and even in aerial imagery, this cannot be distinguished (Hoffmann and 

Zimmermann 2000). It is crucial to detect degradation of aquatic reed beds during succession in land-

water ecotones by monitoring for the following typical indicators: deep water retreat, gradual thinning, 

clumped growth patterns, die-back in brackish water, and the natural degeneration of reed (van der 

Putten 1997). State-of-the-art remote sensing methods (UAV and Green-LiDAR) may contribute in the 

assessment of structure (height, density, extent) and vitality by combining three dimensional (3D) 

information and spectral signature or light intensity. 

 

1.4. Unmanned Aerial Vehicles (UAV) and airborne Green Light Detection and Ranging (Green-LiDAR) 

 

The advances in remote sensing technologies may offer new opportunities in the monitoring of sparse 

aquatic reed beds. Height information of reed beds would potentially solve the problems faced with the 

detection and quantification of sparse reed beds. Considering the height differences of water surface 

and reed stems, lakeside frontline could be accurately defined and consequently the total vegetal 

coverage calculated. Collection of points defined by a given coordinate system (point clouds) that 

represent a 3D (three-dimensional) shape or feature can be obtained from Light Detection and Ranging 

(LiDAR) sensors or through photogrammetric measurements applied in optical imagery recorded for 

instance by imaging sensors mounted on Unmanned Aerial Vehicles (UAV). Airborne LiDAR generate 

positions (coordinates) for points on the Earth’s surface out of three sources: laser sensor, Inertial 

Measurement Unit (IMU) of the aircraft, and Global Positioning System (GPS) (Large and Heritage 2009). 

These three instruments are necessary for corrections and accurate measurement of coordinate points 

(Figure 1.2) which, as a whole, are called point clouds. LiDAR systems measures the time-of-flight (TOF) 

of green or infrared light from emission to reception. Green light, in contrast to infrared, penetrates in 

water by reflecting off the bottom surface, or in medium content materials (Mandlburger et al. 2013). In 

addition, green light not only propagates in water but can also reflect off land surfaces. These 

characteristics make the Green-LiDAR scanner suitable in mapping bathymetry (Costa et al. 2009), 

bottom structures (Wedding et al. 2008; Tulldahl and Wikström 2012), or even for topo-bathymetric 

applications (Mandlburger et al. 2015; Yamamoto et al. 2012). Extents are important in the monitoring 

of aquatic reed beds where the mapping of the shoreline and the frontline are crucial. The technological 

benefits of a Green-LiDAR scanner could contribute to the accurate mapping of reed bed boundaries. 

The frontline is scanned from reed stems and leaves above the water surface, thanks to light propagation. 
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Since Green-LiDAR propagates in water, additional elements such as lake bottom, water surface, and 

shoreline can also be obtained. 

 

 

 
 

Figure 1.2 Brief explanation of LiDAR functionality. Coordinate of objects on the earth surface are 

determined using the measured laser beam range and coordinates of the point of origin (aeroplane), 

which are obtained through GPS and IMU systems 

 

Regarding UAV data, point clouds are generated after photogrammetrically processing optical data 

(Figure 1.3). Photogrammetric measurements have been applied to imagery obtained from platforms 

deployed in outer space, air, land and even in aquatic environments (Stratoulias et al. 2015b; Fernandes 

et al. 2013; Villa et al. 2015; Davranche et al. 2010; Dienst et al. 2004). Recent developments of low flying 

aerial systems provide a comparatively convenient alternative to using close-range aerial imagery. 

Bundle triangulation represents “the most powerful and accurate method of image orientation and point 

determination in photogrammetry” (Luhmann et al. 2014). In order to reconstruct an object in 3D, this 

method merges single images into an overall model by using tie points. With a series of overlapping 

images, objects can be matched and the geometric accuracy is improved while the probability of 

occlusions (shadowed or invisible areas in an image) is reduced. Therefore, the generating of image-

based point clouds requires images with a high-spatial resolution and a multi-image overlap (White et 

al. 2013). Since close-range aerial imagery has a very high spatial resolution and spectral information in 

three bands (red, green and blue), generated clouds have a high point density and every point has a 

spectral information stored. The fusion of 3D and spectral information is declared as “state of the art” 

for characterizing ecosystem vegetation and improves the understanding of vegetation status compared 

to the application of only the structure or the spectral reflectance (Dandois et al. 2017). The 

implementation of spectral and geometrical information could also contribute in the characterization of 

reed beds structure, as well as vitality. 
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Figure 1.3 Gathering of imagery for photogrammetric processing using Unmanned Aerial Vehicles from 

Fixed and Rotary-Wings platforms 

  

1.5. Objectives 

 

Previous research identified the continuous decrease of aquatic reed beds and in order to successfully 

conserve the remaining stands, the implementation of appropriate and accurate monitoring methods is 

crucial. Aquatic reed beds consisting of Phragmites australis are of particular interest because it is a well-

known ecotone that attracts many kinds of wildlife, contribute to water purification, provide habitat for 

many species, and protect against sediment movement and bank erosion. Traditionally, research 

focused in the assessment of aquatic reed stands was performed by means of field work and 

complemented with interpretation of optical imagery. However, the success of these processes 

diminished when implemented separately and as stand-alone monitoring strategies. To increase the 

knowledge about methods for aquatic reed bed monitoring which are accurate, operational, easy to 

implement, and without habitat disturbance, the overall objective of this work concentrates on 

extracting quantitative and essential biometric information of aquatic reed beds in point clouds derived 

from Unmanned Aerial Vehicles (UAVs) and airborne Green Light Detection and Ranging (Green-

LiDAR) data.  

 

The primary objectives of this thesis were: 

 

i. Extract heights of aquatic reed beds using photogrammetry in close-range aerial imagery. 

 

With a focus on extent quantification and characterization of aquatic reed beds, the first 

objective focuses firstly on the question of whether close-range aerial photogrammetry is 

capable of extracting heights of sparse aquatic reed beds. The parameters for image alignment 

set in a Structure from Motion (SfM) environment were determined by measuring the lowest 

Root Mean Square (RMS) reprojection error. Aiming at differencing extracted biometric features 

in data collected by Rotary- (RW) and Fixed-Wing (FW) UAVs, imagery was recorded with the 

same sensor system mounted on both aerial vehicles. 
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ii. Mapping vegetation coverage, height, density and derive its status by analysing UAV point 

clouds.  

 

In terms of mapping products, the second objective faced the challenge of developing an 

approach, which is consistent with the official monitoring method. This study assessed the 

classification of aquatic reed beds using high-resolution imagery and point clouds extracted 

from close-range aerial imagery. Geometry and spectral information in UAV point clouds were 

assessed for mapping extent, density and vegetation status. 

 

iii. Evaluating of Green-LiDAR for mapping extent, density, and height of aquatic reed beds 

 

The third objective was to evaluate the applicability of Green-LiDAR technology in aquatic reed 

monitoring. A rule-based algorithm was developed for the automatic classification of Green-

LiDAR point clouds. The same fundamental parameters (height, density, and extent) of aquatic 

reeds were also considered for this goal. 
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2. Extracting Heights of Sparse Aquatic Reed (Phragmites Australis) Using Structure from Motion 

Point Clouds derived from Rotary- and Fixed-Wing Unmanned Aerial Vehicle (UAV) Data 

 

A similar version of this chapter was published: Meneses, Nicolás Corti; Baier, Simon; Reidelstürz, 

Patrick; Geist, Juergen; Schneider, Thomas (2018): Modelling heights of sparse aquatic reed (Phragmites 

australis) using Structure from Motion point clouds derived from Rotary- and Fixed-Wing Unmanned 

Aerial Vehicle (UAV) data. In Limnologica 72, pp. 10–21. DOI: 10.1016/j.limno.2018.07.001. 

 

2.1. Abstract 

 

Aquatic reed beds consisting of Phragmites australis play an important role in lake ecosystems. Digital 

Elevation Models (DEM) provide essential information in identifying and quantifying these stocks. This 

study modelled sparse aquatic reed beds with aerial images collected from Rotary- (RW) and Fixed-

Wing (FW) Unmanned Aerial Vehicles (UAV) by the same imaging system. Image processing was 

executed in a Structure from Motion (SfM) environment and based on bundle adjustment. The DEMs 

were referenced with Ground Control Points (GCPs) and validated with independent Reference Points 

(RPs) of heights from reed and flat surfaces. Root Mean Squared (RMS) reprojection error showed that 

imagery taken with FW could be better aligned than the RW dataset. Quality assessment proved that 

RW gathers sharper data and lowers image blur resulting in slightly more accurate DEM, while FW 

showed better area coverage. The results from both configurations proved the efficiency of the 

methodology in deriving diagnostic relevant features for monitoring sparse aquatic reed beds. 

 

2.2. Introduction 

 

Aquatic reed beds consisting of Phragmites australis play an important role in lake ecosystems. They 

contribute to water purification, provide habitat for many species and protect against sediment 

movement and bank erosion (Ostendorp 1993a, 1993b, 1989). However, aquatic reed beds are threatened 

and their decline has already been documented (Hotes et al. 2005; Rücker et al. 1999; Grosser et al. 1997; 

van der Putten 1997; Krumscheid et al. 1989; Ostendorp 1989). Changes in water level, temperature 

alterations, overpopulation of water birds, leisure and tourism pressures, shore erosion, lake and river 

driftwood or solid waste, are some examples of stressors which are suspected of causing reed decline 

(Grosser et al. 1997). Standard procedures for monitoring the status of aquatic reed beds typically rely 

on physical field mapping, supported by visual interpretation of either orthophoto or stereo pairs of 

aerial photographs (Dienst et al. 2004; Schmieder et al. 2004; Ostendorp et al. 2003; Schmieder et al. 2002; 

Krumscheid et al. 1989). Based on these methodologies, dense reed beds can be routinely identified and 

quantified, but sparse aquatic reed stocks represent a challenge for these methodologies. A study at 

Lake Chiemsee in Germany revealed that spatial resolution of aerial imagery (spatial resolution lower 

than 20 cm) constrained the accurate identification and quantification of sparse aquatic reed stocks 

(Hoffmann and Zimmermann 2000). This study was based on official aerial photographs provided by 

the Bavarian State Survey (Landesamt für Digitalisierung, Breitband und Vermessung – LDBV). Survey 

objectives and logistic constraints do not allow data to be gathered all at once and within short 

timeframes. Therefore, any kind of vegetation is recorded in different phenological stages. Likewise, 

illumination conditions cause spectral differences of the same object to be recorded in different images. 

The extent of quantification and status assessment of aquatic reeds becomes inaccurate when using 

these official data sources and therefore this mapping methodology was supported with field work. 



Chapter 2 Introduction 

9 

 

However, onsite inspection and manual imagery interpretation involve high personnel, time and 

financial efforts (Schmieder and Woithon 2004b) and depend on the experience of the interpreter. In this 

way, the frequency and quality of environmental monitoring is reduced by the accuracy of the results, 

and economic and time constraints. 

 

The advances in Remote Sensing technologies may offer new opportunities in the monitoring of sparse 

aquatic reed beds. Photogrammetric measurements are applied to imagery obtained from platforms 

deployed in outer space, air, land and even in aquatic environments (Stratoulias et al. 2015b; Fernandes 

et al. 2013; Villa et al. 2015; Davranche et al. 2010; Dienst et al. 2004). Recent developments of low flying 

aerial systems provide a comparatively convenient alternative using close-range aerial imagery. 

Software performance, availability, and computing capacity of electronic devices has led to an 

incremental progress in remote sensing applications with Unmanned Aerial Vehicles (UAV) (Colomina 

and Molina 2014). Fixed Wing (FW) and Rotary Wing (RW) platforms are nowadays mostly deployed 

in close-range aerial photogrammetry (Colomina and Molina 2014). 

 

Weaknesses and strengths of UAVs configured as FW and RW are commonly analysed in close-range 

aerial photogrammetry. Although both platforms can perform the same tasks, when executing missions 

the differences between them are remarkable. Fixed Wings are not as manoeuvrable as RW, but are 

more efficient since they only need energy to move forward and not to hold themselves up in the air. 

This results in longer flight times, and consequently in larger areal coverage (Long et al. 2016; Chen et 

al. 2015; Zarco-Tejada et al. 2014). Flight time endurance of RW is still a drawback and for bigger areas 

(>150 hectares) several flight missions have to be deployed (Tonkin et al. 2014; Neugirg et al. 2016). 

However, RW is more suitable when flying at lower altitudes, and it can better stabilize imaging systems 

and during the same flight can take photographs at different angles such as NADIR, high oblique, 

and/or low oblique (Clapuyt et al. 2016; Jaud et al. 2016).  

 

One important factor in digital surface modelling is to have imagery of the same object taken at different 

angles. This contributes to more accurate feature extraction in a Structure from Motion (SfM) 

environment (Jensen and Mathews 2016). Stabilizing systems (gimbal) in RW allow camera angles to be 

readjusted when flying. Regarding FW, which are commonly built without gimbals, several missions in 

autopilot mode, but with different camera angles may have to be deployed. In close-range aerial 

photogrammetry missions, UAVs are deployed in autopilot mode. It requires less expertise and flight 

experience than manually controlling (Chen et al. 2015; Wiseman and Van Sluijs 2015; Harvey et al. 2016; 

Kršák et al. 2016), therefore is a common applied strategy for amateur operators. However, in 

monitoring aquatic reed beds the laborious and time-consuming tasks of landing, changing the camera 

angle, and launching the FW again poses a serious limitation to the operability. In order to make the 

recording of data more efficient and operable, UAVs deployed in manual mode could be an effective 

solution in aquatic reed feature extraction. Manual control of UAVs records imagery by default from 

different points of view and within the same flight, and good overlap is achieved by making several 

passes over the same area. However, this faces the question whether the quality of imagery collected by 

flying in manual mode is good enough for extracting heights of sparse aquatic reed beds.  

 

The type of imaging sensor or camera system is essential in close-range UAVs missions. The quantity 

of picture elements (pixels), number of bits per pixel (colour depth), photon recording technology, and 

resolving power are some elements to be considered in the planning phase. Sharpness is also discussed 
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in the branch of close-range aerial photogrammetry. Sharpness not only depends on the number of 

effective pixels available, but also on the stabilizing technology, sensor resolving power and filtering, 

as well as demosaicing processes in camera sensors. For instance, sensors with a high quantity of small 

pixels deliver data at a higher resolution, but this compromises the colour depth. Sensors with very high 

resolutions are normally used in bigger cameras (e.g., Canon EOS 5DS, Nikon D810, Sony SLT Alpha 

99 II). On the other hand, compact cameras (weight lower than 200 grams) are easier for use in FW 

(Jensen and Mathews 2016; Puliti et al. 2015; Cunliffe et al. 2016; Chen et al. 2015). Resolutions between 

12 and 18 Megapixels (MP) are most commonly applied in close-range aerial photogrammetry. The 

recent development of mirrorless or system cameras with sensor such as APS-C, Four Thirds, Foveon 

X3 have been seen as the best trade-off between quality and weight (Zarco-Tejada et al. 2014; Uysal et 

al. 2015; Pérez-Ortiz et al. 2016).  

 

Regarding the processing of recorded imagery, several methods have been applied for image alignment 

and their photogrammetric reconstruction. Bundle triangulation represents ‘the most powerful and 

accurate method of image orientation and point determination in photogrammetry’ (Luhmann et al. 2014). In 

order to reconstruct an object in three dimensions, this method merges single images into an overall 

model by using tie points. The alignment process is executed by matching algorithms available in 

commercial and open source software. Agisoft Photoscan is one of the most applied computer programs 

for feature extraction by using SfM algorithms. Agisoft Photoscan is preferred mainly due to its ability 

to automatically generate data points in a specific coordinate system to represent the external surface of 

an object (point clouds) with a high degree of accuracy (Santoso et al. 2016), to calculate DEM and 

orthophoto in a specific coordinate system (Uysal et al. 2015), to better allocate resources (i.e., higher 

computational efficiency) (Cunliffe et al. 2016), its greater suitability to UAV image processing (Long et 

al. 2016), and for being user-friendly (Reshetyuk and Mårtensson 2016). The software offers several 

parameters for controlling image alignment. However, the information about suitable settings for 

alignment is limited and is normally derived by either trial and error approaches (Puliti et al. 2015), 

leaving the default values, or applying Agisoft Photoscan tutorials recommendations (Jaud et al. 2016).  

Finally, assessing the quality of the features extracted in form of a DEM process is of major importance 

within the photogrammetric modelling chain. There are several statistical approaches to assess the 

quality of derived models. In this context, standard deviation, linear regression, or root mean square 

error (RMSE) of residuals are examples of the most widely applied statistical tests or indicators. The 

RMSE is the square root of the arithmetic mean of the squares of a set of differences between the 

measured and expected observations (Luhmann et al. 2014). Comparisons of either DGPS/total station 

point surveying and generated DEM (Uysal et al. 2015; Cunliffe et al. 2016; Zarco-Tejada et al. 2014; 

Chen et al. 2015), LIDAR data and DEM (Tonkin et al. 2016; Clapuyt et al. 2016), total station, Point 

cloud and DEM (Wiseman and Van Sluijs 2015), or Terrestrial Laser Scanning (TLS) and DEM 

(Reshetyuk and Mårtensson 2016), are some examples how accuracies have been evaluated. 

 

2.2.1. Objectives 

 

Digital Elevation Models (DEM) derived from UAV imagery have been applied in different fields like 

geothermal monitoring (Harvey et al. 2016), erosion quantification (Neugirg et al. 2016), weed mapping 

for precision agriculture (Pérez-Ortiz et al. 2016), glaciers degradation (Tonkin et al. 2016), or open-pit 

mining features characterization (Chen et al. 2015). In the same way, UAVs have already been deployed 

for monitoring phenology changes based on spectral response and vegetation indexes (Venturi et al. 
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2016). Nevertheless, the implementation of UAVs for height extraction of sparse aquatic reed and its 

potential for extent quantification is still unknown. 

 

In the monitoring aquatic reed beds, the quantification of extent is the most important variable to be 

considered. Its area of surface is obtained by calculating the vegetation coverage from shoreline to the 

expansion front seawards. The official shoreline determines the aquatic reed boundaries on the land 

side. Frontline is however harder to delimitate when analysing long-range optical imagery (Satellite or 

Aeroplane). Considering the change in elevation that occur in the frontline, heights obtained from DEMs 

may contribute to the delimitation of the break line between water surfaces and emerged vegetation 

(aquatic reed).  

 

For a future extent quantification and characterization of sparse aquatic reed beds, the presented study 

focuses firstly on the question of whether close-range photogrammetry (imaging distance less than 300 

m (Luhmann et al. 2014)) is capable of extraction height of sparse aquatic reed beds. The geometry of 

objects plays an important role in photogrammetry. For instance, a house with flat surfaces (roof and 

walls) would be easier to model in comparison to a bush (uneven structures). In addition, the geometry 

also changes if the object moves while is imaged. In this sense, the extraction of sparse aquatic reed beds 

faces the following challenges. First, Phragmites australis has an uneven geometry and is not a static 

object. Second, the problematic of reconstructing a RGB (Red, Green, Blue) image by imaging sensors 

when recording data from aquatic surfaces (e.g. sunglint). Third, the need of recording imagery rapidly 

and at different view angles. Fourth, there is little knowledge about the adequate parameters used for 

an accurate image alignment. Considering this, the core research questions addressed in this study are: 

 Which parameters for image alignment allow point cloud calculation of sparse aquatic reed 

beds with the lowest Root Mean Square (RMS) reprojection error? 

 How accurate is the estimated height in DEM of sparse aquatic reed beds, interpolated from 

point clouds photogrammetrically, and modelled with imagery collected with Fixed Wing (FW) 

and Rotary Wing (RW) UAVs? 

 

2.3. Material and Methods 

 

2.3.1. Study Area 

 

Lake Chiemsee is located approximately 80 km southeast of Munich at an altitude of 518 meters above 

sea level (masl). Compared to much greater declines in other Bavarian lakes, reed beds at Lake Chiemsee 

have declined by approximately 50% within half a century (Grosser et al. 1997), which allows for the 

comparison of a wide range of stock densities with different spatial extent. Aquatic reed beds were 

defined as vegetation growing in permanently flooded areas (Ostendorp 1993b). First, reed stocks were 

identified in the field based on their extent and spatial distribution. According to the last reed inventory 

from 2000, the most representative stocks of aquatic reed beds can be found on the north-west side of 

Lake Chiemsee and at Herreninsel (Hoffmann and Zimmermann 2000). Second, field observations were 

further needed for selecting potential Areas of Interest (AOI). The description of sparse aquatic reeds 

defined in the last survey (Hoffmann and Zimmermann 2000) was the main criterion used for the 

random selection of AOIs. Sparse aquatic reed beds are characterized by sparse and parallel stripes 

along the reed bed edge (due to either floods, wind storms, or driftwood accumulation), a lane/aisle 

perpendicular to the shore (for docks, boot traffic, bathing, fish traps), the dissolution of reed beds 
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though decreasing stem density, frayed, ripped, not zoned reed edge and in single clumps (through 

erosion or flood), and seaward stubble fields of past reed beds (Hoffmann and Zimmermann 2000). 

Using the same methodology for photogrammetric reconstruction, imagery collected with the same 

imaging system mounted in two different close-range aircraft and deployed in manual flight mode 

contributed in reaching the goals of this study. 

 

 
Figure 2.1 Location of study area in Germany and distribution of AOIs at Lake Chiemsee. AOI-3 and 

AOI-4 represent aquatic sparse reed beds. Background is an orthorectified aerial photograph in false 

colour (4,2,1) of the LDBV, 2015. Coordinate System is DHDN Gauss Krüger Zone 4 (EPSG 31468) 

 

Seven AOI with a mean surface of 3000 m² (100 m long and 10-40 m width) each solely comprising 

Phragmites australis were selected. AOI-1 and -2 are located at Kailbacher Bucht, AOI-3 and -4 on the 

shores of town Breitbrunn, and AOI-5, -6, -7 at Herreninsel. Three of the AOIs were flown over with 

RW (AOI-2, -3, -7) and four with FW (AOI-1, -4, -5, -6) while testing different imaging strategies. In the 

following sections, the accuracies resulting from photogrammetric analysis of the two UAV systems are 

compared on behalf of AOI-3 (RW) and AOI-4 (FW) (Figure 2.1) in this study. Imagery from this two 

AOIs were registered with a short time difference under the same flight strategy and mostly similar 

illumination conditions. 

 

2.3.2. UAVs configuration and data acquisition 

 

For RW a hexacopter Tarot FY680 was used (Figure 2.2a). The power unit consisted of 6 brushless 

motors configured with 6 serial Lithium-Polymer (6S-LiPo) batteries (22.2 V, 10000 – 15000 mAh, 25C) 

enabled a flight time of up to 30 min, a maximum speed over 65 km/h, a climbing altitude over 400 m 

height and a payload up to 6.6 kg, while the ‘Jeti Duplex’ wireless allowed range of up to 1.5 km. With 

the integrated ‘DJI Naza’ flight controller, functions such as Altitude-Hold, Position-Hold, and Return-
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to-Launch (RTL) were implemented. As a failsafe, the RTL and Landing were integrated in case of signal 

loss. Foldable landing skids were optimized for camera circumspection. 

    
Figure 2.2 UAVs configuration deployed for the measurements campaigns. Tarot FY680 hexacopter (a) 

and a strongly modified Hype Trainer 70 (b) 

 

The second platform was a strongly modified ‘Hype Trainer 70’ configured as FW (Figure 2.2b). 

Originally it was a classical wood constructed RC-Trainer with a wingspan of 1.9 m designated for a 70 

cubic-inch methanol engine with take-off weight about 3.4 kg. It was modified to increase the payload 

up to 1.5 kg as well as to be able to fly in rough and wet conditions. The fuselage under the wings was 

heightened to allow integration of larger sensors (e.g., multispectral camera Mini MCA 6). Flaps were 

also integrated to ensure increased lift for short starts and landings with steep approaches as well as 

slow flight capabilities. A brushless outrunner engine in slow speed configuration (420 rpv) in 

combination with a high-end electric speed control was installed and the parameters RPM, voltage, 

amps, and temperature were retrieved in real time through telemetry. The drive was configured with 

LiPo batteries with a 6S configuration and 8000 mAh capacity, allowing for a flight time of over 40 

minutes with an integrated payload of up to 1 kg. Additionally, two air scoops were installed to cool 

down the ESC without compromising its waterproof capability. The FW was manually controlled 

through a Jeti Duplex radio control system with a programmed fail-safe function in case of signal loss. 

Air control regulations in Upper Bavaria (Germany) in 2015 limited the weight of UAVs to five 

kilograms. Under this ordinance, the company Geodatenflug GmbH set up the UAVs and obtained the 

required flying permits. 

 

A digital single lens Mirrorles (DSLM) camera was chosen for this study. The system camera CANON 

EOS-M is equipped with a Canon APS-C Sensor (18 MP – 4.3 µ pixel size – colour depth 22.1 bits). A 

small and lightweight ‘Pancake’ 22 mm (f1/2.0) lens was used (Canon EF-M Bayonet lock). With the 

given adapter, any Canon lens with EF/EF-S bayonet catch can be mounted (e.g., Canon 50 mm – f 1/1.8). 

However, all test flights confirmed that the 22mm ‘Pancake’ lens had the perfect angle of view for the 

given flight configurations and flight strategy, especially considering that it is equivalent to former 

analogue image format of the given APS-C Sensor with a 1:1.6 crop factor. 

 

For the RW configuration, the DSLM camera was mounted on a two axis (pitch and roll) brushless 

gimbal to reduce image blur. This could not be implemented for the FW, due to the aircraft’s closeness 

to the water surface. Integrating the camera into the fuselage and designing a flap which was able to 

open and close resolved this problem. Exposure time was chosen to 1/2000 and flight height (102 m) 

was calculated for a minimum mapping unit of 2 cm/pixel. All flights were manually controlled and 

directly piloted from the boat. The mean flying altitude was 48 and 146 meters for RW and FW UAVs 
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respectively. The flight strategy was chosen by considering the physical characteristics of sparse aquatic 

reed beds, the surrounding vegetation, and weather conditions. It was executed based on the view angle, 

and the resulting image blur by given airspeed, considering flight height, focal length, shutter speed, 

aperture and ISO parameters. In order to ensure strong overlap (greater than 80%), the AOIs were flown 

over several times (3 to 6 flights) and therefore multiple images were taken. The photographic camera 

was triggered by a PWM-IR (Pulse Width Modulation – InfraRed) adapter. Platforms were deployed 

under windless conditions and clear sky for avoiding exaggerated moving of reeds and adequate 

illumination during recording. 

 

2.3.3. Verification Data Collection 

 

The reference data was collected along cross sections and within square sample plots. First, a one-

hundred meter line parallel to the shore was established. Every ten meters along this line, a measuring 

tape was placed perpendicular to it (cross sections). Measurements were recorded from water to shore 

line (i.e. where water and land have the same height). At every meter along the measuring tape, water 

depth and reed-stem height were measured to the nearest centimetre and decimetre, respectively 

(Figure 2.3). Since extraction of heights is based on images which have recorded stems in natural status 

(curved), the stem heights were measured with a 2 m long meter stick from lake bottom to highest point 

(e.g. curved stem or florescence). The obtained value was the average of stems within a square meter. 

Additionally, one square meter sample plots in dense and sparse reed beds were placed. The parameters 

measured were density (stems/m²), stem diameter, number of stems with and without shoots, as well 

as the number of green and dried (brown) stems.  

 
Figure 2.3 Reference Points (RP) and Ground Control Points (GCP) in AOI-5 a). Targets are coloured in 

fluorescent orange for georeferencing b). Measurement of cross-transects with a DGPS Trimble GTX 
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and an antenna Hurricane L1 c). Background is an orthorectified aerial photograph in true colour of the 

LDBV, 2015. Coordinate System is DHDN Gauss Krüger Zone 4 (EPSG 31468) 

 

2.3.4. Photogrammetric Processing Chain 

 

The photogrammetric process was performed with Agisoft Photoscan Professional - Version 1.2.6  

(Agisoft LLC 2017). The 110 and 83 images of RW and FW respectively were loaded into Agisoft, and 

with the available tools, image quality was assessed and camera parameters were defined. In this study, 

settings parameters for image alignment were not chosen according to default values or trial and error 

procedures. Contrarily, the most suitable settings were obtained through several alignment tests based 

on a quality assessment according to the number of images aligned and RMS reprojection error. The 

maximum number of points Photoscan will extract from each photo (Key Point Limit – KPL) and the 

limit at which tie-points with the lower number of projections will be removed (Tie Point Limit – TPL) 

were then determined. The defined values for KPL and TPL, which led to a low RMS reprojection error 

and a higher number of aligned images, were then used for the final feature detection and image 

matching (i.e. build sparse point cloud). Outliers were removed based on the parameters offered in 

Photoscan; reprojection error (RE), reconstruction uncertainty (RU), and projection accuracy (PA). 

Consequently, the resulting sparse point cloud was georeferenced and finally the dense point cloud was 

reconstructed. After removing the outliers by manual editing, a dense point cloud was exported and 

the DEM and orthomosaics were generated (Figure 2.4). 

 

 
Figure 2.4 Photogrammetric processing chain applied for extracting of aquatic reed beds. Strategy 1 and 

2 were applied to define Key and Tie Point Limits for image alignment with the lowest RMS reprojection 

error 

 

Due to the requirements of 3D photogrammetric reconstruction, high quality images were selected. 

Photoscan supports a tool (Estimate Image Quality) to assess image quality. The closer to 1 the 

calculated coefficient value is, the sharper the image. Camera calibration parameters were extracted 

from EXIF (Exchangeable Image File) data (camera type, pixel size and focal length). Auto calibration 

was selected and fix calibration and GPS/INS Offset were disabled, since missions were executed in 

manual mode. The camera interior parameters were then estimated based on the focal length and pixel 



Chapter 2 Material and Methods 

16 

 

size information. Camera positions were derived after first image alignment and according to the 

projections of every tie point. 

 

To optimize reconstruction, general (accuracy and pair selection) and advanced (KPL, TPL, and 

adaptive camera model fitting) matching parameters were set. Highest accuracy was selected and pair 

selection was set to ‘Generic’ because flight was executed in manual mode. The exact settings were 

chosen for RW and FW imagery. Activation of ‘Adaptive Camera Model Fitting’ allowed the automatic 

calculation of interior parameters. This enables the automatic selection of camera parameters to be 

included in adjustments based on their reliability estimates. 

 

The definition of values for KPL and TPL was accomplished by applying two strategies to FW and RW 

datasets. In Strategy-1 (S1), several alignments were executed, while always maintaining a TPL of 0 and 

progressively incrementing the value for KPL. In Strategy-2 (S2), the alignments were executed with a 

different TPL and a fixed KPL of 0. The first alignment executed in every dataset was always performed 

with a value of 0 for KPL and TPL. Consequently, at every alignment either the KPL (S1) or TPL (S2) 

were progressively incremented by a defined value. The changes in the values obtained for RMS 

reprojection error and the number of aligned images were used to define the threshold value that KPL 

or TPL should be incremented to before an alignment. When the RMS reprojection error did not change 

after several alignments, the tests were terminated. This point was inferred as the lowest RMS 

reprojection which can be obtained for a specific dataset. The set with the most number of images 

aligned and with the lowest RMS reprojection error were used to define the most appropriate KPL and 

TPL. 

 

The next step in the photogrammetric processing chain was the removal of outliers in the sparse point 

cloud. Three criteria available in Agisoft were implemented to automatically select and remove outliers. 

First, Reprojection Error (RE) was selected and the threshold value was defined according to the 

obtained RMS reprojection error of the sparse point cloud for a FW or RW dataset. Second, 

Reconstruction Uncertainty (RU) was implemented to detect points reconstructed from nearby photos 

with a small baseline (high RU values). Third, projection accuracy (PA) was used to find the error of 

projection of a key point, which is directly proportional to the key point size. Points with RU and PA 

values greater than the 75% limit were removed. Detailed information about these criteria can be found 

in Photoscan’s user manual (Agisoft LLC 2017). 

 

GCPs collected before UAVs deployment were used for georeferencing point clouds. Physical 

characteristics (water and reeds) of AOIs hindered the placement of scale bars. Since the mean vertical 

accuracy of GCP in centimeters is 48.3 for AOI-3 and 36.4 for AOI-4, a value of 40 and 30 centimeters 

was set in the marker accuracy of the reference settings in Photoscan. As with the RP and GCP, the 

coordinate system used was DHDN Gauss Krüger Zone 4 (EPSG 31468). A dense point cloud was then 

computed using the highest quality available, ‘Ultra High’, and with a depth filtering of ‘Mild’ (Agisoft 

LLC 2017). More features of aquatic reed beds can be modelled when selecting the highest quality. 

Depth filtering contributed to obtaining points where reed stems are sparse, without removing either 

important points or generating a large number of outliers. Evident points outside the reconstructed 

aquatic reed beds (outliers higher than 4 meters and lower than -0.5 meters) were then manually 

removed (manual editing option offered by Agisoft). Finally, a DEM and orthophotos were generated.  
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2.3.5. Assessment of vertical accuracy 

 

Vertical accuracy assessment of the resulting DEM was undertaken based on two analyses. First, the 

onsite measured height values from a flat surface (dock) were compared to the modelled ones. Second, 

the height values corresponding to reed stems were compared with those of the RP collected at each 

AOI (Section 2.3.3). These two analysis were implemented to define any displacement in the Z axis 

(height). If residuals were normally distributed and most of the outliers were removed, three separate 

quantitative analyses were implemented (Table 2.1). Through these statistics, the closeness agreement 

between the independently observed and expected measurements from the extracted point cloud and 

DEM were evaluated. In order to know if the residuals were normally distributed, sample skewness 

and its significance was calculated. 

 

Table 2.1 Accuracy measures for DEMs presenting normal distribution of errors 

Mean Error 
𝜇 =  

1

𝑛
∑ ∆ℎ𝑖

𝑛

𝑖=1
 

 

(Höhle and Höhle 2009) 

 

Standard Deviation 𝜎 =  √
1

(𝑛 − 1)
∑ (∆ℎ𝑖 −  𝜇)2

𝑛

𝑖=1
 

 

(Höhle and Höhle 2009) 

 

Root Mean Square Error RMSE = √
1

𝑛
∑ ∆ℎ𝑖

2
𝑛

𝑖=1
 

(Höhle and Höhle 2009; 

Luhmann et al. 2014) 

 

𝑛 is the number of tested points in the sample (sample size) and ∆ℎ𝑖 represents the difference between 

RP and DEM for a point 𝑖.  

 

The relative stem height (RSH) of the reed was used to assess vertical accuracy. The absolute height of 

aquatic reed beds was defined as the measured length from top (reed flower) to bottom (ground). RSH 

was calculated by subtracting stem height (absolute height) minus water depth at every RP measured. 

The absolute altitude of the water surface on the day of measurement was obtained from the water level 

gauge Stock-Prien in the Chiemsee. The absolute height of the water surface during imaging was 517.19 

meters above sea level. This value was used to obtain the RSH from the calculated DEM. 

 

2.4. Results 

 

2.4.1. Alignments of RW and FW imagery 

 

Alignments were executed for imagery with coefficient values greater than 0.82 (RW) and 0.7 (FW) 

resulting in 110 (AOI-3) and 83 (AOI-4) images, respectively. After analysing processing times and 

reprojection errors in units of tie point scale for this selection of imagery, the most suitable value 

determined for alignment test was 10000 for KPL in S1 and 2000 for TPL in S2. Using these settings, a 

total of 54 alignments for RW and 99 for FW were conducted until the lowest reprojection error was 

obtained. It was identified that even in extreme cases where only reed beds were recorded by the 

imaging system, the implemented matching algorithm in Agisoft was able to define tie points. With 

respect to the amount of images aligned, the KPL allowed a greater image match. For RW imagery, a 
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KPL higher than 100000 aligned all the possible iamges (105) as well as a KPL higher than 510000 for 

FW imagery (78 images aligned) (Figure 2.5). 

 

  
Figure 2.5 Aligned cameras (images) results from the alignment tests of imagery obtained with RW (left) 

and FW (right) UAV. Black points represent to S1-KPL and grey points to S2-TPL 

 

The RMS reprojection errors in the sparse point cloud from RW and FW decreased similarly when 

incrementing the KPL and TPL. Regarding RW, RMS reprojection error slightly increased with higher 

KPL and decreased with higher TPL, from 0.19 RMS at 10000 KPL and 0.25 RMS at 2000 TPL to 0.19 

RMS at 220000 KPL and 0.19 RMS at 60000 TPL (Figure 2.6). Although the deviation at a lower KPL and 

TPL was not as high as with RW imagery, the same occurred when using data collected with FW. RMS 

reprojection error decreased with higher KPL and TPL, from 0.16 RMS at 10000 KPL and 0.20 RMS at 

2000 TPL to 0.16 RMS at 670000 KPL and 0.16 RMS at 60000 TPL. The RMS reprojection error reached a 

minimum point from which no matter how high KPL or TPL was, the matching algorithm could not 

reduce the error by finding more key and tie points. This point was at 160000 KPL and 46000 TPL for 

RW and 540000 KPL and 46000 TPL for FW. The lowest RMS reprojection error for RW was obtained at 

KPL 170000 and 58000 TPL and at 310000 KPL and 34000 TPL for FW (Table 2.2). 

 

  
Figure 2.6 RMS reprojection error results from the alignment tests of imagery obtained with RW (left) 

and FW (right) UAV. Black points represent to S1-KPL and grey points to S2-TPL 

 

Effective overlap showed the average number of projections for each of the used and unused tie points 

in the sparse cloud. Considering that KPL is the maximum number of points that the algorithm extracts 

from each photo, and that TPL sets the limit at which tie-points with the lower number of projection 

will be removed, the effective overlap in FW and RW imagery was augmented when KPL increased and 

decreased with a higher TPL. As with the RMS reprojection error, effective overlap neither decreased 

nor increased from an equilibrium point. This was found at 100000 KPL and 38000 TPL for RW data 

(effective overlap 3.39), and at 590000 KPL and 30000 TPL for FW data (effective overlap 2.68) (Figure 

2.7). 
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Figure 2.7 Effective overlap results from the alignment tests of imagery obtained with RW (left) and FW 

(right) UAV. Black points represent to S1-KPL and grey points to S2-TPL 

 

RW imagery with the lowest RMS reprojection error was aligned with a KPL of 170000 and TPL of 58000. 

Small deviations were also obtained in the final alignment of imagery taken with the RW platform. Out 

of 110 photos, 105 were aligned and a lower RMS reprojection error was obtained (0.19). The average 

number of projections for each used and unused tie point in the sparse cloud (effective overlap) 

remained at approximately three for every alignment (Table 2.2). Gradual selection and manual removal 

of outliers contributed to the decline of RMS reprojection error in the sparse point cloud (0.10 RW and 

0.08 FW). After outlier removal, the final sparse clouds had 328377 and 97842 points for RW and FW 

alignments, respectively. The imagery obtained from the FW was best aligned with combination values 

of 310000 and 34000 for KPL and TPL, respectively. With the selected KPL, a total of 78 out of 83 images 

were aligned. Compared to the number of points obtained from the best clouds computed with S1 and 

S2, the deviation of the statistic measurements of the final sparse point cloud was small (Table 2.2). The 

KPL and TPL combination contributed in the same way to a lower RMS reprojection error. Mean key 

point size and effective overlap were also examined and similarly, no big deviations were found. The 

processing time for the final photo alignment increased to approximately 1.6 minutes. 

 

Table 2.2 Description values for bests alignments obtained in Strategy 1, Strategy 2 and final photo 

alignment. RMS reprojection error is given in units of tie point scale 

 Best alignments in S1 Best alignments in S2 Final photo alignment 

 RW FW RW FW RW FW 

Key Point Limit 170000 310000 0 0 170000 310000 

Tie Point Limit 0 0 58000 34000 58000 34000 

Aligned Cameras 105 of 110 78 of 83 105 of 110 78 of 83 105 of 110 78 of 83 

Points 568381 158592 568360 245158 568209 157968 

RMS reprojection error 0.19 0.15 0.19 0.16 0.19 0.15 

Effective overlap 3.38 2.56 3.38 2.67 3.38 2.56 

Processing Time [min] 53.3 49.85 52.9 107.65 53.15 51.45 

 

In addition to point cloud statistical measurements, photo alignments also revealed differences in the 

adjusted imaging sensor characteristics. Although the same imaging system was implemented in both 

UAVs, the derived interior parameters were not the same when the adaptive camera model fitting was 

applied. Strong deviations were found in the principal point coordinates and radial distortions in the 

final photo alignment. For principal point coordinates Cx and Cy respectively, 11.21 and -27.59 was 
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adjusted for the camera mounted on the RW and 6.46 and -3.91 for FW. For k1, k2, k3, k4, the obtained 

radial distortion coefficients of the RW-camera were -0.007, 0.02, -0.06, 0, and -9.41e-05, -0.0004, 0, 0 for 

the FW-camera, respectively. Differences in the tangential distortions coefficients were not significant. 

 

2.4.2. Vertical Accuracy of DEMs 

 

Digital Surface Models were created by means of interpolation of dense point clouds, which for RW and 

FW consisted of a total of 18471606 and 12580569 points, respectively. A higher resolution of 2.10 cm/pxl 

was obtained with RW data and 2.86 cm/pxl for FW. With a mean absolute height of 519.19 meters, the 

height of the selected flat surface was accurately estimated with a RMSE of 0.04, mean error of 0.04 and 

a standard deviation of 0.007 meters. Sample skewness proved that residuals of both DEMs were 

normally distributed. Residuals of RW were lowly (-0.02) and of FW moderately skewed (-0.66). The 

distributions were not significantly skewed, since two times the standard error of the skewness (𝑆𝐸𝑆 =

√6/𝑛 ) is 0.53 (RW) and 0.44 (FW). Residuals showed that in sparse aquatic reed beds, they are of a 

higher magnitude (greater than 54 and 88 cm for RW and FW, respectively). The statistical analysis 

showed that the RW-DEM was more accurate than the FW-DEM. A total of 85 independent RPs were 

used to assess the accuracy of RW-DEM and 120 for the FW-DEM. RPs were distributed along transects 

as seen in Figure 2.3. The generated RW-DEM had a mean error of 0.76 m and a RMSE of 1.05 m. The 

FW imagery produced the less accurate results, with a mean error of 1.01 m and a RMSE of 1.42 m. The 

analysis of heights obtained from the derivation of DEMs revealed that sparse aquatic reed beds and 

the seaward frontline can be delimited. Height of reeds and the variation of height per unit of surface 

would contribute to the determination of the areas corresponding to reeds with a dense or a sparse 

status (Figure 2.8). 
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Figure 2.8 Spatial distribution of residuals in DEMs for AOI-3 (top) and AOI-4 (bottom). Example of 

two cross sections obtained from DEM derived from RW and FW imagery. The “Y” axis represents the 

absolute height in meters 
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2.5. Discussion 

 

The results of this study suggest that close-range aerial photogrammetry is a powerful method for extent 

quantification of aquatic reed beds, especially in sparse populations. The proposed technical solution is 

in line with previous research focused on the study of wetlands or specific plant populations by means 

of remote sensing methods (Bourgeau-Chavez et al. 2015; Villa et al. 2013; Venturi et al. 2016; Marcaccio 

et al. 2015). By constructing and validating two DEMs derived from imagery recorded by two different 

UAVs but with the same imaging system, we assessed the accuracy of the UAV-SfM (Structure from 

Motion) workflow aimed at extracting heights of sparse aquatic reed beds. Fundamental for future 

monitoring projects, in this study we were able to determine adequate parameter settings for feature 

extraction with the lowest RMS reprojection error and with the highest number of images aligned, to 

model sparse aquatic reed beds with UAVs deployed in manual flight mode. 

 

2.5.1. Alignments of RW and FW oblique imagery 

 

Regarding of sparse aquatic reed beds, Structure from Motion procedures were able to align imagery 

independent of the flight strategy and camera angle. Compared to photogrammetric missions executed 

in autopilot mode and in NADIR (Jensen and Mathews 2016; Clapuyt et al. 2016; Wiseman and Van 

Sluijs 2015; Neugirg et al. 2016; Chen et al. 2015; Pérez-Ortiz et al. 2016), matching algorithms also 

allowed the feature extraction in oblique imagery collected manual mode. The availability of large 

features (e.g. houses, streets, docks) were seen as the key factor for detecting key points. The higher the 

altitude at which a UAV is deployed, the lower the spatial resolution, but the higher the availability of 

features for image alignment. This finding was supported by the RMS reprojection error calculated in 

Photoscan. Available information on the internal computing and matching algorithms applied by 

Agisoft Photoscan is very rare (Remondino et al. 2014; Santise et al. 2014). For matching and point 

extraction, it seems that a stereo SGM-like (Semi Global Matching) method is implemented as an image-

matching algorithm (Remondino et al. 2014). Furthermore, it is mentioned that a SIFT-like (Scale 

Invariant Feature Transform) algorithm is applied, which solves for interior and exterior orientation 

parameters ‘using a greedy algorithm followed by a more traditional bundle adjustment refinement’ (Santise et 

al. 2014). The photo alignment achieved with data from the RW aircraft had a higher RMS reprojection 

error (0.19) than the one obtained with FW data (0.15). In relation to the aligned images, RMS 

reprojection error, and effective overlap, the results obtained from the alignment test indicated that 

definition of KPL and TPL is crucial. In a world of images taken from a non-fixed and non-geometric 

object (aquatic reed beds) with variation in flight heights and camera angles, it is very important to limit 

the amount of valid and invalid matching points through the selection of KPL and TPL. Additionally, 

image alignment also revealed that photogrammetrically it is not strictly necessary to deploy UAVs in 

autopilot mode for collecting imagery. This result proves that imaging with UAVs can be deployed 

onsite regardless an automatic flight plan to support terrestrial monitoring without compromising the 

accuracy of the results. 

 

2.5.2. Validation of heights estimated from DEM 

 

The photogrammetric processing chain proved to be suitable in the digital surface modelling of sparse 

aquatic reed beds. Deviations in modelled vegetation heights are of a high magnitude compared to the 

ones calculated for flat surfaces, which can be explained mainly by three reasons. First, the physical 
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characteristics of the study object may have influenced the photogrammetric reconstruction. Phragmites 

australis moves easily even when small breezes occur or if the surf changes. This effect is greater in 

stocks where reeds are sparse. Error in the parallax caused by stem movements during data collection 

was observed as the source for the observed local disturbance of the bundle adjustment. Second, water 

surfaces have also been an obstacle in the photogrammetric reconstruction of aquatic reeds. Bright 

surfaces, random sunglint effects, and the constant surf cause wrong projections and therefore errors in 

the extraction of features. To avoid error during the photogrammetry process, (Long et al. 2016) it is 

proposed to mask these surfaces. However, this solution cannot be applied for sparse aquatic reed beds 

because there is the need to detect single stems growing sparsely in the lacustrine environment. This 

can be seen in the analysis of residuals and its spatial distribution (Figure 2.8). Third, the automatic 

removal of outliers could have eliminated points corresponding to aquatic reeds and consequently 

cause deviations in the heights represented in the DEM. Nevertheless, it is important to mention that 

matching algorithms and depth maps were sensitive enough to extract most of these features in sparse 

aquatic reed beds. 

 

Flat, stable, and geometrical surfaces showed high agreement with the ones measured onsite (RMSE = 

0.04 meters). In the same way, other studies have shown very low RMSE when validating flat surfaces 

(Uysal et al. 2015) and even with the same DGPS (Clapuyt et al. 2016, p. 6). When validating DEMs 

based on vegetation heights, a study where olive trees ranging in height from 1.16 to 4.38 meters (similar 

to aquatic reed heights) obtained high deviations as well (Zarco-Tejada et al. 2014). The estimation error 

of 0.35 meters (RMSE) was attributed to the method in which quantification was based on relative 

heights (Zarco-Tejada et al. 2014). Since height deviations in geometrical structures are of a lower 

magnitude than vegetation ones, assumptions about the limited accuracy of DGPS can be rejected. This 

suggests that it is not advisable to validate DEMs based on modelled vegetation heights.  

  

2.5.3. Performance of UAV and camera systems 

 

The quality to weight ratio of the mirrorless and interchangeable lens camera used in this study 

contributed to flight efficiency and photogrammetric modelling. Shot-to-shot cycle times in the Canon 

EOS M’s in single-shot mode appeared to be slow for this study’s purposes. For large/fine JPEGs, the 

cycle time was 1.94 seconds, 2.02 seconds for RAW mode, and 2.33 seconds for RAW + L/F JPEGs. This 

restriction affected data collection with FW more than with RW. Both UAVs were operated at the lowest 

possible flying speed to compensate for the slow cycle time. Increasing the flying altitude could have 

also contributed, but this would have compromised the spatial resolution. Since a spatial resolution of 

2 cm/pixel was the minimum accepted value for mapping sparse aquatic reed beds, a higher altitude 

for compensating shutter sequence was not an option. Therefore, data acquisition with higher image 

overlaps would not be a problem for FW as long as the shot-to-shot cycle time is fast enough.  

 

Within the bundle adjustment, the oblique images help the estimation of interior and exterior 

parameters (Cunliffe et al. 2016). It seemed that an accurate estimation of such parameters would 

depend on features to be extracted. The extraction of geometrical features (houses, docks, cars) gave a 

more precise estimate of interior parameters than irregular features (vegetation). Adjusted interior 

parameters obtained in this study after aligning RW and FW data confirmed this fact, but also spoke to 

the importance of image sharpness. Derivation of camera interior parameters by means of bundle 

triangulation is apparently possible with very high quality imagery and clear features for tie point 
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extraction. Among others, data with variable image blur, pixel resolution, low radiometric quality, 

shadows, and shiny or textured objects interfere in the accurate derivation of principal point coordinates, 

radial and tangential distortions. These factors are known to contribute to a noisy point cloud and 

difficulties in feature extraction (Remondino et al. 2014). Although the quality of RW imagery was good 

enough to approximate to the real camera interior parameters, calibration by capturing aquatic reed 

according to the obtained results is not recommended. 

 

The presented study exhibited greater accuracy in height determination of RW and to FW for 

monitoring sparse aquatic reed beds. A RW in the form of a hexacopter delivered sharper imagery and 

consequently more accurate DEMs. It was more manoeuvrable and appropriate to areas where aquatic 

reeds are surrounded by tall vegetation (trees). Although not needed in this study, the greater payload 

allows for carrying of heavier imaging systems. The only detected disadvantage in the platform 

developed was the inability to land on water. On the other hand, FW allowed for coverage of much 

larger areas. This might be a decisive factor with regard to an operational application because delivering 

more stable results with regard to illumination conditions and at a better cost/area ratio are very 

important criteria for system selection. Close-range aerial photogrammetry offers new alternatives for 

small offices oriented in ecological mapping. Whether regular monitoring of small areas is requested 

and where entering the study area is not possible or can disturb the sensitive ecological zones, the 

presented methodology proved to be accurate and effective. 

 

2.5.4. UAV and alternative data for height extraction of sparse aquatic reed beds 

 

Structure from Motion algorithms have proved to be efficient in the extraction of features. 

Photogrammetry applied in UAV or satellite imagery, as well as Light Detection and Raging (LiDAR) 

are both valuable methods for 3D modelling. Point clouds produced out of these sources have different 

characteristics, since the recording method and output data differ. In vegetation stands, data along 

vertical structure can be obtained by LiDAR scanners (Corti Meneses et al. 2017; Zlinszky et al. 2014). 

Pulses of light emitted by LiDAR sensors pass through vegetation stands allowing the scanning of 

features. Differently, Structure from Motion (SfM) point clouds from either UAV or satellite imagery 

are derived by photogrammetric methods and only the recorded features on imagery are extracted 

(Mohan et al. 2017; Forsmoo et al. 2018; Chen et al. 2017). The detection and mapping of sparse aquatic 

reed beds strongly depends on the spatial resolution of data. The number of points per unit of surface 

gives the spatial resolution of point clouds. In the case of LiDAR scanners, the higher is the laser 

repetition rate, the more the features (points) for one scan are. In order to increase the number of points, 

a common practice with LiDAR systems is to execute several scans. Point density of SfM clouds is given 

by the pixel size of the optical imagery used for extracting features. Since more objects can be seen in 

very high spatial resolution images, higher number of matching points are detected and therefore more 

features can be extracted (points). Taking into account that reed stems and leaves have a mean diameter 

of 2 cm, single individuals distributed in shallow waters possibly cannot be extracted in imagery with 

spatial resolutions smaller than 0.5 m. This could also be case for airborne LiDAR, which a single stem 

cannot be scanned if the sensor is located around 400 m above ground and scanning with footprints of 

approximately 0.5 m (depending of laser beam divergence). As proven in this research, close-range 

aerial photogrammetry, which provides high density point clouds (e.g. 2260 points/m² in this study) 

from imagery with pixel resolutions higher than 3 cm is a suitable methodology for mapping sparse 
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aquatic reed beds. Besides its 3D-modelling effectivity, this is also a low-cost tool (Westoby et al. 2012), 

making it accessible for small companies working in vegetation mapping or environmental monitoring. 

  

2.6. Conclusions 

 

The presented methodology allowed for accurate and efficient feature extraction of aquatic reed beds; 

an advantage compared to previously applied methods. Based on data taken with the same imaging 

system, efficiency of Rotary Wing (RW) and Fixed Wing (FW) platforms in capturing high quality data 

for extraction heights of sparse aquatic reed beds was evident. Image alignment tests were essential in 

the extracting of sparse aquatic reed beds. Recording imagery in manual flight mode was not an obstacle 

in the feature extraction for bundle adjustment algorithms. The determined values for image alignment 

with the lowest RMS reprojection error were KPL 170000 and TPL 58000, and KPL 310000 and TPL 34000 

for RW and FW, respectively. Accuracy assessments revealed the agreement of calculated DEM (RMSE 

= 0.04 m). Both UAVs proved principal applicability for monitoring purposes. FW flew over larger areas 

and its adaptation for starting and landing on water surfaces was a comparative advantage. DEM 

derived from RW imagery was more accurate when validating reed heights (RMSE = 1.05 m) due to 

sharper and higher spatial resolution imagery. Not considering the type of platform, sparse aquatic red 

beds were detected and accurate extraction was possible using photogrammetric methods. Results 

proved that sparse and dense aquatic reed beds, as well as frontline can be identified by analysing 

heights variations. However, density classification and surface quantification was beyond the scope of 

this study. The employed system camera proved to be a good compromise between image quality and 

weight. These results advance the knowledge of the application of UAVs for height extraction and 

therefore delivering more information for a more adequate and accurate aquatic reed monitoring 
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3. Quantification of Extent, Density and Status of Aquatic Reed Beds Using Point Clouds derived 

from UAV-RGB Imagery 

 

A similar version of this chapter was published: Meneses, Nicolás Corti; Brunner, Flo; Baier, Simon; 

Geist, Juergen; Schneider, Thomas (2018): Quantification of Extent, Density and Status of Aquatic Reed 

Beds Using Point Clouds derived from UAV-RGB Imagery. In Remote Sensing 10 (12), p. 1869. DOI: 

10.3390/rs10121869. 

  

 

3.1. Abstract 

 

Quantification of reed coverage and vegetation status is fundamental for monitoring and developing 

lake conservation strategies. The applicability of Unmanned Aerial Vehicles (UAV) three-dimensional 

data (point clouds) for status evaluation was investigated. This study focused on mapping extent, 

density, and vegetation status of aquatic reed beds. Point clouds were calculated with Structure from 

Motion (SfM) algorithms in aerial imagery recorded with Rotary Wing (RW) and Fixed Wing (FW) UAV. 

Extent was quantified by measuring the surface between frontline and shoreline. Density classification 

was based on point geometry (height and height variance) in point clouds. Spectral information per 

point was used for calculating a vegetation index, used as indicator for vegetation vitality. Status was 

achieved by combining data on density, vitality and frontline shape outputs. Field observations in areas 

of interest (AOI) and optical imagery were used for reference and validation purposes. A root mean 

square error (RMSE) of 1.58 m to 3.62 m for cross sections from field measurements and classification 

was achieved for extent map.  The overall accuracy (OA) acquired for density classification was 88.6 % 

(Kappa = 0.8). The OA for status classification of 83.3 % (Kappa = 0.7) was reached by comparison with 

field measurements complemented by secondary RGB data visual assessments. The research shows that 

complex transitional zones (water-vegetation-land) can be assessed and support the suitability of the 

applied method providing new strategies for monitoring aquatic reed bed using low-cost UAV imagery. 

 

3.2. Introduction 

 

The Reed beds located in freshwater lakes around shores can be categorized in three ecological zones. 

Land, transitional and aquatic reeds have been mapped according to the lake’s water level. Land reed 

grows in rarely flooded areas, has a lower stem density and height compared to the transitional reed, 

and is a stand mixed with other species (e.g. Thypa, Scripus, Carex). Transitional reed is flooded 

periodically and has the highest stem density and height. Between aquatic and transitional reed a 

significant break in height can often be noticed. Aquatic reed stands in water throughout the year and 

forms the reed expansion front, representing the boundary to the lakeside. It is the most sensitive area 

in a reed stock and under favourable conditions, it is able to develop further rhizomes and spread 

seaward. Aquatic reed is characterized by a lower stem density and a lower height. Aquatic reed, as 

well as transitional reed, are normally pure stands consisting of Phragmites australis (Grosser et al. 1997). 

 

Aquatic reed beds play an important role in lake systems that can be linked to ecosystem services. They 

stabilize and protect the shores from erosion reducing waves energy with its dense root system and 

stems distribution (Rolletschek 1999). They support in the assimilation of nutrients, which is 

fundamental for the balance of nitrogen, phosphorus and silicon (Struyf et al. 2007; Mitsch et al. 2012). 
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Reed beds also function as habitat and nurture supply. The reed is decomposed by fungi and bacteria 

and constitutes nutrients for detritus and grazers, which are eaten by insects, toad bugs and omnivore 

water birds. The undisturbed aquatic reed and the reduced wave energy makes it a preferred site for 

the spawning of fish, reptiles and amphibians. Regarding of cultural ecosystem services, reed beds 

belong to the dominating elements of a pictorial landscape (Grosser et al. 1997). Growing at lakes shores, 

they are associated with near-natural landscape, which is considered as an important aspect for 

recreation (Holsten et al. 2013).  

 

Decline of aquatic reed beds in central Europe during the last decades has already been documented 

(Dienst et al. 2004; Ostendorp 1989; Nechwatal et al. 2008). Suggested reasons for decline include direct 

destruction by land expansion, recreational traffic and summer mowing, mechanical destruction by 

waves, rubbish or driftwood. Further identified potential decline causes are the grazing by waterfowl 

and other animals (e.g. gray goose, swans, black coot, muskrat, nutria and grass carp) and domestic 

animals (e.g. cows and horses), and the degradation of the water and sediment quality caused by 

eutrophication (Ostendorp 1989). An increment in the frequency and severity of extreme events such as 

floods and drought is predicted (Erwin 2009; Vincent 2009). Changes in water regimes producing very 

low to extreme high water levels are also suspected to decline aquatic reed populations.  

 

In order to monitor and develop adequate protection and conservation strategies, quantification of 

aquatic reed coverage and its status is fundamental. Aquatic reed extent is calculated by measuring the 

area between the shore and frontline. The shoreline is the boundary where water surface and land have 

the same height. The frontline is the limit at which the aquatic reed expansion front finishes seaward 

and its sinuosity can also be used as indicator for assessing status. Different approaches to describe a 

reed bed condition are available. Data collected in field such as stem density (number of stems per m²), 

the percentage of panicle bearing shoots, or stem height are indicators of vitality (Ostendorp 1993a; 

Poulin et al. 2010). The collection of plant morphologic and phenotypical traits on field represents a 

traditional method for characterizing a reed stock. This type of collected data might deliver precise 

information but it is time and personnel consuming. Additionally, it causes a habitat disturbance and it 

is often not possible to access the high dense stocks (Schmieder and Woithon 2004a). Field observations 

have been supported by remote sensing methods, in which aquatic reed was conventionally mapped 

by manual visual interpretation and manual delineation of images recorded from satellite or airplanes 

(Dienst et al. 2004; Schmieder and Woithon 2004a; Samiappan et al. 2016). This is also truth for historical 

monitoring at lake Chiemsee in which aquatic reed beds were quantified through the analysis of aerial 

imagery provided by the state office for surveying “Landesamt für Digitalisierung, Breitband und 

Vermessung”. Accurate allocation of the frontline and density quantification was however restricted by 

spatial resolution and variation in spectral information due to different collecting times (Hoffmann and 

Zimmermann 2000). 

 

Emerging remote sensing technologies such as hyperspectral sensors, light detection and ranging 

(LiDAR), and Unmanned Aerial Vehicles (UAV) offer new possibilities in the monitoring of aquatic 

reed beds. Most common in vegetation analysis are optical systems registering the spectral reflectance 

of surfaces (Onojeghuo and Blackburn 2011; Poulin et al. 2010; Schmieder and Woithon 2004a; Villa et 

al. 2013). However, the reflectance is only recorded from the upper surface of objects missing valuable 

information from lower structures (e.g. under storey) in a vegetation stand. LiDAR data delivers 

information in three dimensions (point clouds), which supports a better characterization of vegetation 
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structure and also without habitat disturbance (Corti Meneses et al. 2017; Zlinszky et al. 2012; 

Onojeghuo and Blackburn 2011). Although the intensity of laser can be used for classification purposes, 

LiDAR lacks of spectral information characteristic of optical data. An alternative to produce 3D data 

with spectral information is by close-range aerial photogrammetry. Technological advances improve 

the performance of UAVs, being capable of flying longer, auto piloted, and carrying heavier loads. A 

wide range of instruments have already been tested on UAVs such as visible band, near-infrared, or 

multispectral cameras, as well as thermal cameras and laser scanners (Colomina and Molina 2014). For 

instance, UAVs equipped with VNIR and thermal sensors record data at decimetre or centimetre spatial 

resolutions for more accurate monitoring and stress characterization, which represents “a capacity 

unavailable from satellite based systems” (McCabe et al. 2016). 

 

Optical imagery collected with UAV can be photogrammetrically processed for the generation of 3D 

information. The development of automated computer vision technique structure from motion (SfM) 

facilitates the remote sensing of structural and spectral characteristics of vegetation with UAVs 

(Dandois et al. 2017). It enables a high-resolution three-dimensional observation of the vegetation 

canopy structure by matching overlapped images and generating three-dimensional models (Westoby 

et al. 2012). Three-dimensional coordinates of an object can be extracted if it is imaged from two different 

perspectives and without the need of camera positional information (Tonkin et al. 2014). With series of 

overlapping images, objects can be matched, the geometric accuracy is improved and the probability of 

occlusions (shadowed or invisible areas in an image) is reduced. For the goal addressed in this study, 

the generating of image-based point clouds requires images with a high-spatial resolution and a multi-

image overlap (White et al. 2013). Spectral information available in optical imagery collected with UAVs 

allows calculation of vegetation indexes. For instance, in agricultural applications, spectral data has 

been used to assess vegetation health and nutrient supply, where the high resolution enabled the 

separation of single plants from the ground (Ren et al. 2017). Implementing multispectral sensors to 

calculate the normalized different vegetation index (NDVI) have also been used to describe the status 

of crops and applied thermal spectral sensors to assess the water supply via the crop water stress index 

(CWSI) (Katsigiannis et al. 2016). The temporal flexibility of UAVs has been also tested  in forestry to 

create time series of multispectral imagery with five narrow bands (red, green, blue, red edge, NIR) to 

detect appearing stress in crowns of Pinus radiate (Dash et al. 2017). Spectral signatures of reed can be 

also used as an indicator for vegetation status. Vital leafs of reed show a high reflectance in the green 

and infrared colour and a high absorption in the red wavelength (Gitelson et al. 2003). Reduced vitality 

is accompanied by degradation and shrinking cells resulting in higher red and lower NIR reflectance. 

 

Analysis of point clouds in combination with the available spectral information are expected to allow a 

better characterization of vegetation stocks. Crop damage has already been estimated by analysing the 

relations between vegetation canopy height and NDVI values (Stanton et al. 2017). Discrimination of 

vegetation types can also be achieved with close-range aerial photogrammetry (Weiss and Baret 2017). 

In terms of mapping products, the present study faced the challenge of developing an approach, which 

is consistent with the official monitoring method in terms of extent, density and status determination. 

High-resolution imagery and three-dimensional information derived from close-range aerial imagery 

may be suitable in assessment of vegetation. UAVs in combination with SfM could also contribute in 

the coverage quantification, categorization of vegetation density and status assessment for aquatic reed 

beds. This study assessed the classification of aquatic reed bed using close-range aerial photogrammetry. 

The UAV platform and imaging system were chosen from the consumer sector and affordable for small 
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companies specialized in UAV mapping for environmental applications. The core objectives addressed 

were to determine the accuracy of 1) the determination of aquatic reed bed frontline and extent, 2) the 

classification of aquatic reed density, and 3) the status classification of aquatic reed. 

 

3.3. Material and Methods 

 

3.3.1. Study Area 

 

The study area is located approximately 80 km South-Eastern of Munich city in Bavaria (Germany). 

Lake Chiemsee is one of the last intact inland waters in central Europe (Hoffmann and Zimmermann 

2000). Although a significant decline of reed bed has occurred also at the Chiemsee, essential aquatic 

reed populations are still present. The populations of Phragmites australis are not older than 

approximately 100 years. Visual interpretations of aerial images have revealed that the development of 

aquatic reed had reached its maximum expansion in 1937 (Grosser et al. 1997). Along the following 20 

years reed population remained stable and before the end of 1957, a starting decrease was documented. 

Until 1973, 14 % of the reed bed declined in terms of biomass and special extent and reduced further 31 

% in the following years. In 1982 the reed population slowly stabilized (decreasing 7 %) (Grosser et al. 

1997). Further monitoring projects revealed a population increase of 4,5 % in between 1991 and 1998 

(Hoffmann and Zimmermann 2000). 

 

3.3.2. Description of UAV Point Clouds 

 

Point clouds were photogrammetrically calculated based on aerial imagery collected by UAVs in two 

different areas of interest (AOI). Surveying missions were deployed on September 21st in 2015 with 

Rotary-Wing (RW) and Fixed-Wing (FW) UAVs for AOI-1 and AOI-2 (Figure 3.1), respectively. Selected 

AOIs differentiate regarding the structure and represent different characteristics of aquatic reed bed 

types. AOI-1 and AOI-2 are located at the north-west shore at the border of the community Breitbrunn. 

From the water to the landside AOI-1 is characterized by a gradually increase in stem height. Expansion 

front is frayed causing small vegetation inlets. In AOI-2 reeds grow in groups with increasing height. 
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Figure 3.1 Lake Chiemsee at country level and location of Areas of Interest (AOI). Background is an 

orthorectified aerial image of the LDBV. Coordinate System is DHDN Gauss Krüger Zone 4 (EPSG 31468)  

 

Point clouds were generated through the implementation of structure from motion (SfM) algorithms. 

The mean flying altitude for RW and FW survey was 46 m and 146 m, respectively. As an effect of the 

different flying altitude, the point clouds differed in the point density. RW imagery (AOI-1) allowed 

clouds with point density of 2260 points/m², and 1230 points/m² for the FW imagery (AOI-2). Point 

clouds were georeferenced with ten Ground Control Points (GCP) in case of AOI-1 and eight GCPs for 

AOI-2. The coordinate reference system used was DHDN Gauss-Krüger Zone 4. Each single point in 

clouds has geographic coordinates (x, y, z) and a value for each colour channel (Red, Green, Blue). 

Detailed explanation of point cloud calculation can be found in (Meneses et al. 2018). 

 

3.3.3. Reference and Validation Data 

 

Field measurements, orthomosaics from RW and FW UAVs, and aerial imagery were used for reference 

and validating classifications. Field data were generated thorugh field measurements from September 

15th in 2015 based on the protocols (Meneses et al. 2018; Corti Meneses et al. 2017). They consisted on 

shoreline perpendicular cross-sections, square sample plots, and shoreline and frontline boundaries. 

The data available for every cross-section was the stem height and for square sample plots the number 

of stems per square meter, number of green and dry stems with and without panicles, and diameter of 

stems. Square measurements were taken along each cross section in sparse and in dense reed beds 

(Figure 3.2). Since measurements took place from water to land side, the frontline corresponds to the 

first occurring reed stem. The water level on the day of the field measurements was at 517.96 m.a.s.l. 

(Bayerisches Landesamt für Umwelt 2017a). As well as GCPs, transect points were recorded by a 

differential GPS (Trimble Geo XT). 
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Figure 3.2 Validation data for AOI-1. Observations were measured every meter along cross-sections. 

Along transects square sample plots were placed. Background is an optical image collected during the 

LiDAR survey by the company AHM 

 

Orthomosaics were created from RW and FW UAVs datasets after running SfM algorithms. Using the 

same sensor (Canon EOS-M) with 22 mm optics the spatial resolution is controlled by flying height. 

AOI-1 achieved a spatial resolution of 2.1 cm/pix and 2.86 cm/pix for AOI-2. In the same way, 

orthoimagery was referenced in DHDN Gauss-Krüger Zone 4. Additionally, a set of aerial imagery (10 

cm spatial resolution) was recorded on the same day of UAV surveys (21st of September 2015) but by a 

different sensor (Hasselblad H3DII-39 camera, 39 MP) mounted in an aircraft (Airborne Hydro Mapping 

- AHM) and used as additional verification source. 

 

3.3.4. Classification of Reed Extent and Density in UAV point clouds 

  

The software OPALS 2.2.0 (Orientation and Processing of Airborne Laser Scanning data) developed by 

the Vienna University of Technology, was used for the analysis of the point clouds. OPALS is a software 

based on modules (processing tools), which use information about points stored as attributes (Pfeifer et 

al. 2014). The developed classification script was applied for both AOIs. The classification of aquatic 

reed beds for extent quantification was implemented considering the differences in point heights (z 

value of a point). The first step was the classification of points in the classes “Water” and “No Water”. 

The height of water surface provided by the water management office was used as reference to 

discriminate points corresponding to water/lake-bottom and aquatic reed. Once points corresponding 

to land and water were identified, categorization of “Aquatic Reed” points was achieved. 

 

Consistent with the instructions of the last official reed survey at the Chiemsee, the density classes for 

this study were also assigned to “Dense” and “Sparse” aquatic reed beds (Hoffmann and Zimmermann 
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2000). The visual examination of cross-sections along AOIs revealed that density classification can be 

obtained based on the geometric distribution of points in height (Z axis). Within the class “Aquatic 

Reed”, absolute height and variation of points in height are suitable attributes for threshold definition 

and then classification (Figure 3.3). These attributes were calculated with the module PointStats. It 

calculates statistics by selecting a group of points within a specific volume (searchMode) and measuring 

them from a specific reference point (refModel). Since the analysis was based on distribution of points in 

the Z axis, a cylinder was used for point selection. Its radius (searchRadius) was defined to 0.5 m with 

the purpose of being consistent and match the measurements on field (stems/m²). A plane passing 

through the origin (zeroPlane) was employed as reference for point measurements. The statistics used 

for classification were the mean height (Zmean) and the variance of point height (ZVariance).  

 

The statistic Zmean is calculated considering all the points within the cylinder with reference to the 

zeroPlane. The advantage of using the mean height instead of the absolute height is that differences are 

avoided resulting in heights that are more homogeneous across the cloud. The statistic ZVariance gives 

a value of height variations for a group of points with reference to the zeroPlane. The smaller the 

variation, the more points have the same height. Contrarily to dense stocks, additional features are 

imaged in areas of sparse aquatic reed beds. Points of leaves, stems, or ground can be found in the cloud, 

which increases the height variation value (Figure 3.3). Furthermore, the variance shows abrupt changes 

in the reed bed, such as ripped areas of the reed front. ZVariance was calculated with the same settings 

as the Zmean. The closer is the value to 0, the lower the variance and consequently the higher the stand 

density. 

 
 

Figure 3.3 Statistics calculated for point clouds derived from optical imagery after applying structure 

from motion algorithms. Red and blue lines represent the distances measured from reference plane 

(ZeroPlane) to the selected points within a cylinder 

 

3.3.5. Estimation of vegetation status 

 

The status of aquatic reed was calculated on basis of a colour index and frontline sinuosity. Band 

intensity based indices are less sensitive to brightness fluctuations and are therefore more useful than 

applying only a single colour channel (Meyer and Neto 2008). Woebbecke’s excess green (ExG) 

(Woebbecke et al. 1995) minus the excess red (ExR) (George E. Meyer 1999) was found to be most 

effective in separating these classes as well as reed from the ground of the lake, because the index 
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illustrates clear differences in its values. Other studies (Meyer and Neto 2008; Lameski et al. 2017) have 

also tested the ExG-ExR as a useful vegetation index. ExG-ExR index is calculated as:  

 

ExG =  2 ∗ g –  r –  b, ExR =  1.4 ∗  r–  g 

Where r, g, and b were the chromatic coordinates 

𝑟 =
𝑅∗

𝑅∗+𝐺∗+𝐵∗  ,  𝑔 =
𝐺∗

𝑅∗+𝐺∗+𝐵∗   ,  𝑏 =
𝐵∗

𝑅∗+𝐺∗+𝐵∗   

 

And, R*, G* and B* were the normalized RGB values (0–1) defined 

𝑅∗ =
𝑅

𝑅𝑚
,  𝐺∗ =

𝐺

𝐺𝑚
,   𝐵∗ =

𝐵

𝐵𝑚
 

 

R, G and B are the actual values for each colour channel of one point. The Rm, Gm and Bm are the 

maximum tonal values of each colour (Meyer and Neto 2008). The maximum values per channel in the 

UAV point cloud were 65280, which approximately corresponds to a 16bit colour depth. That 

information was obtained by using the module OpalsInfo. The mean value was calculated for the ExG-

ExR with the using same searchMode, searchRadius, and refModel used for the mean height or the height 

variance (Figure 3.4). 

 

 
Figure 3.4 Colour index Mean ExG-ExR calculated for AOI-1. Orthomosaic in the background was 

created using the same imagery implement for point cloud calculation 

 

The frontline sinuosity is another element to analyse whether aquatic reed beds are facing stressing 

factors. The frontline sinuosity is the ratio of the length along the frontline (curvilinear length) and the 

straight distance between two points (Euclidean distance). Frayed, ripped, or not zoned aquatic reed 

beds can be allocated by measuring the frontline sinuosity. Frontline sinuosity is calculated as: 

 

𝐹𝑟𝑜𝑛𝑡𝑙𝑖𝑛𝑒 𝑆𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 =
𝐹𝑟𝑜𝑛𝑡𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ [𝑚]

𝐹𝑟𝑜𝑛𝑡𝑙𝑖𝑛𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑚]
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if the sinuosity index of a reach is 1.3 or greater, the reach is considered as meandering, a straight reach 

has a sinuosity index of 1 and reaches which is having sinuosity indices between 1.05 and 1.3 are defined 

as sinuous (Sapkale et al. 2016). Sinuosity index was calculated every 10 meters sections (Total of 18) 

and the mean value was used for determined if the frontline in the AOIs is low or high sinuous. 

 

Based on the spectral reflectance of reed bed components obtained with ExG-ExR index, areas with a 

majority of reeds with green leaves and stems (Vital) were discriminated from dried/dying reeds (less 

vital). Finally, density and vitality classifications were then combined with frontline sinuosity ratio to 

derive the status. The classes “Stressed” and “Unstressed” were employed for the status classification. 

The lower the density and vitality, the more stressed a stand is. Contrarily, unstressed stocks consist of 

a dense and green vegetation coverage. 

 

3.3.6. Validation of classification results 

 

3.3.6.1. Reed Bed Extent Quantification and Frontline Assessment 

 

Extent of aquatic reed beds were obtained by measuring the area between shoreline and frontline. Since 

with photogrammetric methods and optical imagery the allocation of shoreline is not possible, the 

shoreline measured on site was used to calculate the coverage. Regarding the frontline, its accuracy was 

assessed using the DGPS points defined as frontline. For both AOIs, 20 transect measurements were 

checked about conformity. Length differences between cross sections measured on field and on 

modelled data was assessed using the Root Mean Square Error (RMSE).  

 

3.3.6.2. Accuracy Assessment of Density and Vegetation Status Classification 

 

Accuracy of aquatic reed bed density and vegetation status was assessed by means of an error matrix. 

It is an effective method since every single class is evaluated individually. Producer’s Accuracy (PA), 

User’s Accuracy (UA), and Kappa coefficient are the indicators obtained to evaluate the match between 

field and estimated measurements. PA reveals how well samples for this class are assigned. UA 

indicates the probability that a classified sample represents the assigned class in real (Lillesand et al. 

2015). Kappa coefficient is an indicator to which percentage correct values of an error matrix are “true” 

agreement (value 1) versus “chance” agreement (value 0) (Congalton and Green 2009). A third class 

which represents water, was added to fill empty areas. Thereby, the differentiation of reed and water 

was also evaluated. 

 

Data collected from 33 squared sample plots and 682 randomly stratified (classes) sample points were 

used to assess density map. The true agreement of each sample point was then verified. Regarding the 

status map, the same strategy was chosen but instead of square sample plots, 384 observations at 1 m 

distance along transects were used. Measurements reported without reed above the water surface were 

assigned as “Water”, whilst the remaining observations to either “Stressed” or “Unstressed” reed. This 

grouping was implemented in order to be consistent with the classified categories. The allocation of 

unstressed reed was completed by verifying the status, using the reference image provided by Airborne 

Hydro Mapping (AHM) Company according to the interpretation key (Table 3.1). 
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Table 3.1 Description of categories for aquatic reed bed status according to (Grosser et al. 1997) 

(Hoffmann and Zimmermann 2000) 

Category General Description 

Stressed 

Reed 

Sparse and parallel stripes along the reed bed edge (due to either floods, wind storms, 

or driftwood accumulation), a lane/aisle perpendicular to the shore (for docks, boat 

traffic, bathing, fish traps), the dissolution of reed beds though decreasing stem 

density, frayed, ripped, not zoned reed edge and in single clumps (through erosion 

or flood), and seaward stubble fields of past reed beds. 

Unstressed 

Reed 

Characterized by a closed and evenly growing stock. Their seaward stock limit is 

evenly curved and uninterrupted. There is a gradual decline in crop density and the 

middle stem height instead. The reed is stock-forming over large areas and without 

gaps in the interior. 

 

3.4. Results 

 

3.4.1. Point Cloud Classification 

 

Aquatic reed bed extent, density, and status were obtained with the implementation of the developed 

decision tree (Figure 3.5). Knowledge from field observations, visual inspections of point clouds, and 

additional independent aerial imagery were fundamental in the categorization process. Calculation of 

statistical parameters provided variables for more accurate and unbiased classifications. Considering 

statistical parameters for every point cloud, several classes were categorized. Aquatic reed was 

identified by allocating the land-water line with the water surface level for the day of flight. Density of 

aquatic reed beds was achieved by considering the mean height (ZMean) and height variance 

(ZVariance). The threshold for the mean height parameter was set to 519.5 m, which is 1.45 m with 

reference to the water surface level (518.05 m). The classification threshold for variance was defined to 

0.1 for points with heights smaller than 1.45 m and variance greater than 0.1 were assigned as “Sparse”, 

whilst points with opposite values as “Dense”. ExG-ExR index was calculated to determine areas with 

dominance of vital stems. The threshold for the classification based on the index was determined to -

0.105 and assigned classes were “Vital” and “Less Vital”. The threshold assigned for frontline sinuosity 

was assigned to 0.5. A reed bed with values smaller than 0.5 were classified as “high sinuosity”. The 

combination of density results and colour index contributed in the achievement of classification or reed 

status. Status was assigned to the classes “Stressed” and “Unstressed” aquatic reed. 
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Figure 3.5 Decision tree implemented for classification of aquatic reed status. Ellipse represent to input 

data. Classification thresholds are written inside parallelograms. Dashed boxes are intermediate classes. 

 

3.4.2. Extent Quantification and Frontline Assessment 

 

The extents for AOI-1 and AOI-2 were 656 m² and 986 m², respectively. In both cases the classified areas 

were smaller than the measured area (760 m² and 1179 m² for AOI-1 and AOI-2 respectively). The 

RMSEs of cross sections confirmed that the classified extent of AOI-2 had a higher agreement. The RMSE 

of AOI-1 was 3.62 m and 1.58 m for AOI-2. Frontline sinuosity index for AOI-1 was µ 2.9 ± α 1.8 and µ 

3.02 ± α 1.8 for AOI-2. Since sinuosity index for both AOIs is greater than 1.3, frontlines were categorized 

as high sinuous. The evaluation of the classified reed frontlines resulted in a true agreement only 63.6 

% of the all the measurements for AOI-2. Seven out of eleven points of the measured extent showed an 

alignment. For AOI-1, seven out of nine points were correctly identified, which resulted in 77.8 % 

agreement. The overall agreement of the reed fronts for both AOIs amounts was 70 %.  
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Figure 3.6 Extent quantification for AOI-1 and AOI-2. Blacked outline polygons represent areas derived 

from UAV point clouds. Coloured lines represent the calculated sinuosity index in 10 meter sections. 

Background is an orthorectified image of the LDBV 

 

3.4.3. Accuracy Assessments of Density and Status of Aquatic Reeds 

 

The accuracy assessment based on the 33 square measurements resulted in an overall accuracy (OA) of 

81.82 %. Since there were no square measurements in water areas, the Kappa statistic was computed as 

0. The user’s and producer’s accuracy of the class “Sparse” was equal (88.46 %). Out of 26 samples, 23 

were classified correctly as “Sparse” and three samples were in areas classified as “Water”. Four sample 

points lying in “Dense” reed bed were correctly assigned (User’s accuracy = 100 %), and the remaining 

three to “Sparse”, giving a total of seven samples. This explains why the Producer’s accuracy is only 

57.14 %. The visual accuracy assessment reveals an OA of 88.56 % and a Kappa statistic of 0.8. Out of 

682 sample points, 604 points were classified correctly against RGB imagery. The gained experience in 

field when measuring and describing status classes (Table 3.1) were fundamental for this assessment. 

Water has the highest User’s accuracy with 89.58 %. Producer’s accuracy for the class dense reed 

obtained a value of 68.33 % resulted from 19 points, which were assigned as dense reed, but are rather 

sparse reed. The lowest but not bad user’s accuracy of dense reed (82 %) was assessed because 9 out of 

50 points were classified as sparse reed. 

 

The status classification achieved an OA of 82.9 % and Kappa statistics of 0.691. The User’s accuracies 

laid in close value ranged from 81 % (water) to 90 % (unstressed reed). Only two points out of 20 dense 

reed sample points were wrongly assigned to “Stressed” reed. Regarding of the Producer’s accuracy, 

the water category has the highest value with 92.51 %, resulting in only 14 miss-assigned samples. The 



Chapter 3 Discussion 

38 

 

“Unstressed” category has the lowest value (69.23 %), because 8 samples were wrong assigned since 

they are “Stressed” reed. 

 

 
 

Figure 3.7 Status classification for AOI-2 achieved with the combination of density map, vitality and 

shape of the frontline (sinuosity) maps obtained with height and variance values, and colour index ExG-

ExR, respectively 

 

3.5. Discussion 
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The results of this study suggest that statistical measurements in point clouds are powerful method for 

aquatic reed bed assessment and represent an accurate alternative to commonly applied methodologies. 

Evaluation of point clouds estimated with Structure from Motion (SfM) algorithms in close-range aerial 

imagery is suitable for frontline allocation, extent quantification, density classification, and status 

determination of aquatic reed beds. The proposed decision tree for point cloud classification is easily 

reproducible, consistent and objective, since it is not influenced by criteria of the operator and based on 

thresholds. The suggested point cloud processing chain enabled new possibilities for aquatic reed bed 

monitoring in short frequencies. Particularly in dynamic ecosystems, like wetlands, repeated and 

continuous recordings are substantial for ecologists (Marcaccio et al. 2015). Allocation of frontline was 

achieved with the modelled height of reed. Spatial distribution of points was fundamental in the 

analysis of stock density. Spectral signature stored in every point was crucial to determine the status of 

aquatic reed beds. 

 

3.5.1. Frontline allocation and extent quantification 

 

Allocation of frontline was accurately achieved with the modelled heights of aquatic reed beds. Point 

cloud geometry (height) contributed to bypass sunglint effects, shadowed areas and spatial resolution, 

which are common issues when imagery is interpreted only spectrally (Hoffmann and Zimmermann 

2000). In terms of accuracy and habitat disturbance, the presented method proved to be more suitable 

than monitoring in the field. Data collected along transects every 10 meters delivered points where reed 

emerged from water, but no exact allocation of the frontline boundaries. A frontline mapped onsite 

could be improved by shortening the distances between each transect or with GPS tracking, but this 

would increase the effort and make the monitoring less operational. In addition, this would represent a 

higher disturbance to the habitat due to mechanical damage. Although frontline was accurate allocated, 

the analysed data type did not allow the mapping of the shoreline. Since SfM algorithms are only 

capable of extracting the features recorded in optical imagery, structures bellow canopy surface cannot 

be considered. This represents a disadvantage in comparison to other technologies, such as LiDAR data 

in which light pulses are able to penetrate the vegetation canopy (Zlinszky et al. 2012; Alexander et al. 

2015; White et al. 2013). For this study purposes, the shoreline allocated during field observations was 

used for extent quantification. The shoreline provided by the official water authorities could also be 

used in case no field observations are available. Additionally, point clouds derived from optical close-

range imagery are also of a higher density. Point density in clouds obtained with LiDAR in the same 

study area where 200 points/m² (Corti Meneses et al. 2017), whilst UAV data produced clouds with 2260 

points/m². Higher point density from SfM, relates to the small ground sampling distance and high image 

overlap (White et al. 2013). A higher point cloud density enables a better detection of reeds growing 

especially in highly sparse populations. Therefore, more stems can be modelled, which leads to an 

accurate allocation of the frontline. 

 

3.5.2. Density and status assessment of aquatic reed beds 

 

Density and status classifications showed a high level of consistency compared to the observations 

onsite. The applied software facilitated the calculation of statistical parameters implementing neighbour 

points in a defined space and proved to be applicable for the classification of UAV point clouds. 

Photogrammetric methods provided two valuable attributes to describe reed bed density. Besides 

height (Ostendorp 1989; Zlinszky et al. 2012; Grosser et al. 1997; Poulin et al. 2010; Luo et al. 2017), the 
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variance proved to be an additional parameter for reed bed characterization. The spatial distribution of 

points in combination with the mean height facilitated the characterization of aquatic reed bed density. 

Furthermore, the point clouds allowed the classification of aquatic reed bed status involving the 

structural and spectral information (RGB values). The fusion of three dimensional structures and 

spectral information is declared as “state of the art” for characterizing ecosystem vegetation and 

improves the understanding of vegetation status compared to the application of only the structure or 

the spectral reflectance (Dandois et al. 2017). The overall accuracy of 83.33 % (Kappa = 0.691) confirmed 

the efficiency of the RGB-based ExG-ExR to for status classification of aquatic reed. This result is similar 

to a LiDAR study, which categorized wetland vegetation using LiDAR data into four types and 

achieved accuracies from 62.5 % to 84.6 % (Zlinszky et al. 2012). Vegetation indices, based on RGB 

channels have been successfully used to describe the vegetation status (Kefauver et al. 2015; Du and 

Noguchi 2017; Casadesús et al. 2007) and also as a component to define above ground biomass (Li et al. 

2016). Thereby, they can be approached for imagery that is recorded by cost-effective consumer cameras. 

Nevertheless, the development of smaller multispectral cameras had increased their approach in context 

with UAVs and vegetation status (Michez et al. 2016; Candiago et al. 2015; Dash et al. 2017; Ren et al. 

2017; Colomina and Molina 2014; Katsigiannis et al. 2016) where NDVI is preferred in the most cases. 

In general, plant health deterioration leads to reflectance decrease in the NIR and a reflectance increase 

in the visible colour range due to the chlorophyll content in leaves. Therefore, UAVs with a 

multispectral camera with similar spatial resolution could improve the classification result. Compared 

to a consumer camera, such a sensor would currently result in higher cost and heavier weight. More 

weight would decrease the flight time and thus area recorded by the sensor becomes smaller. 

Furthermore, the equipment for this study was chosen as low cost and consumer graded, to represent 

a monitoring method that is widely applicable, e.g. for small common environmental planning offices. 

 

3.6. Conclusion 

 

Suitability of three-dimensional data (3D) derived from close-range aerial imagery for monitoring 

aquatic reed beds was assessed. Point clouds calculated with Structure from Motion (SfM) algorithms 

in imagery collected with two low cost and consumer graded UAVs were used for classification 

purposes.  The implementation of the statistically calculated parameters “mean height” and “height 

variance” were suitable to reproduce aquatic reed bed density and frontline sinuosity. In combination 

with spectral information per point in the cloud, status of aquatics reed beds was mapped. This 

qualitative component was used to support the density classification for assessing the status of aquatic 

reed bed. In context of aquatic reed bed monitoring, this study demonstrated a new strategy based on 

data from low-cost UAVs for assessing and detecting changes. The developed strategy represents a 

constant classification method, which is easily reproducible for other stands of common reed possibly 

even for other plants and purposes. The implementation of short time series for change detection 

analysis, can improve the understanding of the complex aquatic reed decline causes, which is essential 

to design conservation strategies. The presented methodology fits environmental requirements in 

governmental policies. This low cost method can be implemented making it flexible and appropriate 

for supporting terrestrial mapping activities executed specially by small offices dealing with 

environmental issues.
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4. Evaluation of Green-Lidar Data for Mapping Extent, Density and Height of Aquatic Reed Beds 

at Lake Chiemsee 

 

A similar version of this chapter was published: Corti Meneses, Nicolás; Baier, Simon; Geist, Juergen; 

Schneider, Thomas (2017): Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height 

of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany. In Remote Sensing 9 (12), p. 1308. DOI: 

10.3390/rs9121308. 

 

4.1. Abstract 

 

Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is 

essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data 

for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study 

focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data 

provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of 

interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic 

reed, which were used for validation purposes. For the automatic classification of aquatic reed bed 

spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the 

delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification 

of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m). The overall accuracy 

measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 

96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5) compared to field measurements. Digital 

Surface Models (DSM), calculated from point clouds, similarly showed a high level of agreement in 

derived heights of flat surfaces (RMSE = 0.1 m) and showed an adequate agreement of aquatic reed 

heights with evenly distributed errors (RMSE = 0.8 m). Compared to field measurements, aerial laser 

scanning delivered valuable information with no disturbance of the habitat. Analysing data with our 

classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and 

monitoring of aquatic reed beds. 

 

4.2. Introduction 

 

Reed beds provide important structural elements of lake ecosystems. Along a horizontal gradient that 

runs from the lake towards the bank, reed stocks are classified into three different ecological zones that 

occur either in water, transition, or in land zones (Ostendorp 1993b). The water reed at the expansion 

front of a reed stock is considered the most sensitive zone of a reed bed (Grosser et al. 1997). According 

to their definition, land reed beds are located in areas above water level, comprising an 

onshore/shoreward stock of multiple species, and usually growing in meadows (Grosser et al. 1997). 

Aquatic reed beds grow in locations that were flooded throughout the year. Lakewards stocks are pure 

stands of Phragmites australis, and are characterized by their low stem density (stems/m2) and longer 

sparse fertility (Grosser et al. 1997). Stocks of this macrophyte act as a buffer between land and water. 

They provide a key habitat for several endangered species (Ostendorp 1993b), they physically protect 

banks from erosion, and they provide a food resource for various arthropods, birds, and mammals 

(Ostendorp et al. 2003). Aquatic reed beds are threatened, mainly due to mechanical, hydrological, 

anthropogenic, biological, and climatic causes (Ostendorp et al. 2003; Crisman et al. 2014; Nechwatal et 

al. 2008; Schmieder et al. 2004; Schmieder et al. 2002; Ostendorp et al. 2001; Ostendorp 1989). Global 
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warming influences, such as an increase in water temperature, extreme drought, and heavy rain events 

could additionally affect the growth and status of aquatic reed populations of freshwater lakes (Gigante 

et al. 2011; Tóth 2016).  

 

Changes in the abundance and density of reed beds can be quantified through the implementation of 

field measurements and remote sensing methodologies. Although on-site evaluations deliver highly 

accurate results, they are associated with high personnel, time, and financial expenses, as well as 

ecological disturbance of protected habitats (Schmieder and Woithon 2004a). Visual interpretation of 

multispectral aerial imagery has been the standard method to bypass this problem (Schmieder et al. 

2002; Krumscheid et al. 1989; Kristiansen and Petersen 2000; Dienst et al. 2004). In the same way, analysis 

of satellite imagery has also been implemented (Davranche et al. 2010; Villa et al. 2013; Brix et al. 2014; 

Bourgeau-Chavez et al. 2015). These methodologies have contributed to the global monitoring of reed 

beds in wetlands and large lakes, where tens of hectares are covered by this type of vegetation. In the 

monitoring of small lakes with a limited presence of aquatic reed beds, spatial resolutions provided by 

satellite constellations are still too coarse for identifying stocks that are sparsely distributed or only 

comprise single reed individuals. This difficulty poses a serious limitation to monitoring spatial 

occurrence.  

 

The accurate identification of aquatic reed beds by analysis of optical imagery is affected by sun 

illumination, plant phenology, and spatial resolution. The position of the leaves’ and the stems’ 

incidence angle towards the sun causes differences in the spectral response and therefore, causes 

variances in the extent of quantification of sparse aquatic reed beds (Schmieder et al. 2002). The imagery 

of official surveys is recorded normally for updating cadaster data and topographic maps, and not 

usually in the growth season (i.e., August to mid-September) when aquatic reed beds have their peak 

growth and maximum vitality. Accurate assessment is additionally hindered by shades, light reflection 

on the water surface, or vegetation reflectance. Although spatial resolution is sufficient for other 

purposes, sparse aquatic reeds cannot be identified in imagery with spatial resolutions lower than 20 

cm per pixel (Melzer et al. 2001; Hoffmann and Zimmermann 2000). 

 

Technological advancements in remote sensing science offer new possibilities in the characterisation of 

reed beds based on 3D data analysis. Very high spatial resolution multispectral imagery recorded with 

unmanned aerial vehicles and close range aerial photogrammetry have already supported the accurate 

mapping of land and aquatic reed beds (Venturi et al. 2016). In the same way, the biomass of wetland 

Phragmites australis (Luo et al. 2017), of wetland vegetation mapping (Zlinszky et al. 2012; Onojeghuo 

and Blackburn 2011; Gilmore et al. 2008), and characterisation of the land reed bed habitat quality 

(Onojeghuo et al. 2010) have all been achieved by applying Light Detection and Ranging (LiDAR) 

technologies alone or in combination with other data types (e.g., hyperspectral data). Nevertheless, the 

level of agreement at which height of, extent of, and density of aquatic reed beds can be mapped with 

LiDAR data remains unknown.  

 

The new LiDAR system configured to function in the green wavelength of the electromagnetic spectrum 

offers new possibilities in the research of aquatic reed beds. Green light, the opposite of infrared, 

propagates in water by reflecting off the bottom surface, or in medium content materials (Mandlburger 

et al. 2013). In addition, green light not only propagates in water but can also reflect off land surfaces. 

These characteristics make the Green-LiDAR scanner suitable in mapping bathymetry (Costa et al. 2009), 
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bottom structures (Wedding et al. 2008; Tulldahl and Wikström 2012), or even for topo-bathymetric 

applications (Mandlburger et al. 2015; Yamamoto et al. 2012). Extents are important in the monitoring 

of aquatic reed beds, in which the mapping of the shoreline and the frontline are crucial. The 

technological benefits of a Green-LiDAR scanner could contribute to the accurate mapping of red bed 

boundaries. The frontline is scanned from reed stems and leaves above the water surface and thanks to 

green light propagation, the shoreline can be obtained independent of the water surface level during 

surveying. 

 

Aquatic reed is an important indicator for the ecological assessment of freshwater lakes listed by the 

European Water Framework Directive (EU-WFD). As in other European countries, German federal state 

environmental agencies have to regularly report on the ecological status of freshwater lakes which 

involves a substantial monitoring effort. The core objective of the present study was to evaluate the 

applicability of Green-LiDAR technology in aquatic reed monitoring. We addressed the following 

research questions by focusing on the accuracy of diagnostic determination: 

 How accurate is the estimation of aquatic reed extent in LiDAR point clouds? 

 How accurate is the estimation of aquatic reed density in LiDAR point clouds? 

 How accurately can aquatic reed bed DSMs be calculated from LiDAR point clouds? 

 

4.3. Material and Methods 

 

4.3.1. Study Area 

 

The Chiemsee is the largest lake in Bavaria (80 km2) with a maximum depth of 73 m and a volume of 

2048 hm³ (Bayerisches Landesamt für Umwelt 2017b). It is located approximately 80 km southeast of 

Munich at an approximate altitude of 518 meters above sea level (masl). During the last five decades, 

the spatial extent of the reed population has declined by about 50% at the Chiemsee (Grosser et al. 1997). 

Substantial reed beds at the Chiemsee are still existent and their decrease has been well documented 

which was why this lake was selected for our study. On the northwest side of the Chiemsee and at the 

Herreninsel, the most representative stocks of aquatic reed are still present (Hoffmann and 

Zimmermann 2000). Through an analysis of previous surveyed data, field observations, distribution 

stocks, and of water depth, the areas of interest (AOI) were selected for gathering validation data. The 

actual density of reed stems obtained from field observation was also considered. A total number of 14 

AOIs with the occurrence of Phragmites australis at a mean area of 1694 m² (100 m in length at varying 

width) were selected for this study. AOIs were delimited at Aiterbacher Winkel (AOI-1), at the shores 

of Holzen (AOI-2,) at Keilbacher Eck (AOI-3), in Kailbacher Winkel (AOI-4 and -5), at Scheren (AOI-6), 

at the shores of town Mühln (AOI-7 and -8), and at Herreninsel (AOI-9, -10, -11, -12, -13, -14). In order 

to consider the variability of vegetation status, AOIs were selected in areas of different levels of 

protection: (a) protected all year long, (b) protected only during the avian breeding season, and (c) in 

areas without any form of environmental protection (Figure 4.1).  
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Figure 4.1 Location of the study area at country (a) and local level (b) and c) Distribution of Areas of 

Interest (AOIs) at the Chiemsee. Coordinate System is Deutsches Hauptdreiecksnetz (DHDN) Gauss 

Krüger Zone 4 (European Petroleum Survey Group (EPSG) 31468) 

 

4.3.2. Airborne Laser Scanning Processing Chain 

 

The analysis and classification of Airborne Laser Scanning (ALS) datasets was performed with the 

modular program system OPALS 2.2.0.0 (Pfeifer et al. 2014). The software provides modules for a 

complete processing chain of ALS data. Pre-processed LiDAR point clouds were imported into the 

OPALS data manager and the quality was assessed according to strip adjustment and outliers (noise). 

According to the information obtained from the quality control, no further calibration (e.g., strip 

adjustment, geometry calibration) was needed. Point cloud classification was then performed, and 

raster and vector file results were compared to field data and aerial imagery (Figure 4.2). 

 

 
Figure 4.2 Airborne Laser Scanning (ALS) processing and decision chain applied for extracting heights 

of aquatic reed beds 

c) 
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The topo-bathymetric data collection took place on September 21, 2015, between 15h00 and 16h30 (UTC) 

during sunny weather conditions using the hydrographic laser scanner VQ-880G (Riegl LMS, Horn, 

Österreich). This device is a progressive palmer scanner with a laser beam in the green wavelength (532 

nm) of the electromagnetic spectrum. The laser pulse repetition rate was set to 550 kHz and the laser 

beam divergence was set to 1 mrad. The mission was executed at an altitude of approximately 400 m 

above ground. The scan width was about 400 m and the footprint was 40 cm (diameter). A total of 58 

strips was collected for the study area (29 back and forward scans). Point clouds were registered with 

the information obtained by a Position and Orientation System (POS) mounted on-board, and were 

improved by correction measurements sent by a Differential Global Positioning System (DGPS) base 

station on land. Orientation data was also recorded by the Inertial Measurement Unit (IMU) during 

flight. Aerial photographs with a 0.1 m spatial resolution were additionally recorded during the same 

flight for validation purposes. 

 

Data pre-processing was executed by the data provider (AHM Airborne Hydro Mapping GmbH) using 

the software RiProcess. Strip adjustment was the first step in the pre-processing chain. The acquired 

accuracy was 10 cm (Standard Deviation). Secondly, based on the laser data, well distributed Ground 

Control Points (GCP) from roof corners and streets lane markers were defined across the study area. 

The 48 GCPs were measured by the research team with a tachymeter Leica TCRP 1201 R300 for fine 

registration. Absolute registration achieved an accuracy of 8 cm, and the point density of the raw data 

was approximately 200 points/m2 (which included outliers). Finally, outliers were filtered and the point 

clouds from the specific AOIs were exported in Log ASCII Standard (LAS) 1.4 format.  

 

Quality control was performed before processing the ALS data sets. Point clouds were firstly visually 

inspected. Attributes stored in the OPALS Data Manager (ODM) were examined in a 3D environment 

(opalsView) to identify potential errors in the already pre-processed product. Special attention was paid 

to the point geometry and the outlier filtering in water-land transition areas. An absence of points from 

water surfaces was identified in shallow water areas. Planar water surfaces cause specular reflections 

and therefore surface echo dropouts (Mandlburger et al. 2015). The overall low amount of noise in the 

point clouds delivered from the provider revealed that additional filtering was not needed. The package 

opalsQuality was then used for the quantification of point cloud quality. Cloud density and strip 

differences were analysed by means of density maps and statistical measurement.  

 

Since light propagates differently in water than in air, the points under the water surface appeared to 

have shifted and therefore had to be corrected. The module implemented for the refraction correction 

was opalsSnellius (Mandlburger et al. 2013). This correction was computed with the refractive index, 

coordinates of origin, incidence angle, and specification of the water lever. First, to calculate the 

refractive index, the sine of the angle of incidence was divided by the sine of the angle of refraction 

(Smith et al. 2012). Refractive index varies depending on properties of transmission media (e.g., 

temperature, pH) and wavelength of incoming radiation. For variable temperature and salinity 

conditions, and for a green laser (532 nm wavelength), the refractive index is n = 1.33538 (Smith et al. 

2012). Second, the coordinates of the laser origin and the incidence angle were obtained from the 

trajectory information recorded by IMU and POS. Third, the Air–Water Interface (AWI) was modelled 

in Quantum Geographic Information System (QGIS) by creating a raster in which all pixels values 

corresponded to the height of the water surface according to the daily measurements of the master data 
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gauge at Stock, Chiemsee (Bayerisches Landesamt für Umwelt 2017a). The water level used (517.93 

m.a.s.l.) for the water surface definition was the measurement taken when the scanning flight took place. 

The laser penetration depth in the water body was about 10 m, which was approximately 8 m after 

correcting for light refraction. 

 

4.3.2.1. Classification of Green-LiDAR Data 

 

Statistical parameters for LiDAR point clouds were calculated for describing point attributes with the 

module opalsPointStats. OPALS calculates statistical features by first selecting points and then relating 

them to a reference model. The selection of points was based on an infinite vertical cylinder (searchMode 

= d2); the reference model was a “horizontalPlane”. Since the laser footprint at ground level was around 

0.4 m in diameter, the cylinder radius (searchRadius) was set to 0.2 m for the majority of calculations. 

In the model “horizontalPlane”, the samples were reduced in relation to a plane passing through the 

feature point. Calculated statistics for identifying patterns in point clouds were ranked (rank) and point 

density (pdens). Rank statistic was calculated as the relative position (0 = local minimum and 100 = local 

maximum) of the feature point within its vertical neighbourhood. The feature pdens is the number of 

points in relation to the area/volume of the search cylinder. Since the usual measurement units for point 

density is points/m2, a cylinder searchMode with a searchRadius of 0.5 m was selected as the most 

proximate value to a square meter (Figure 4.3). Filtering was crucial for the classification, since it 

allowed for points to be defined when a new attribute had to be calculated (processing filtering) in 

relation to the local neighbourhood (neighbourhood filtering). The classification was performed with 

the module opalsAddInfo. In order to define the threshold values, point clouds were inspected through 

cross-sections every metre with the module opalsSection. Special attention was placed on spatial 

distribution, density, and intensity of points. Cross-sections revealed that height and vertical 

distribution of points are important factors to differentiate dense and sparse reed beds.  

 

 
Figure 4.3 Graphical representation of methods and statistics used for classifying aquatic reeds in point 

clouds obtained from Green-Light Detection and Ranging (LiDAR) 
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4.3.2.2. Validation Data 

 

Field data were collected by means of cross-sections and square sample plots. The measurements started 

by defining a one hundred-metre line parallel to the shore. A measuring tape was placed 

perpendicularly to this line every ten metres. Measurement started from the waterside and finished on 

the shoreline (i.e., the point at which water and land have the same height). At every metre along the 

cross-sections, water depth and reed stem height were measured to the nearest centimetre and 

decimetre, respectively. The frontline was then surveyed as the location in the cross-section where the 

first reed stem occurs. Plotting the coordinates of shorelines and frontlines in every cross-section in 

QGIS allowed the aquatic reed extents to be calculated. Based on expert knowledge, one or two square 

sample plots of 1 square metre each were placed where differences in stem density were identified. The 

parameter’s density (stems/m2), stem diameter, number of stems with and without shoots, and the 

number of green and dried (brown) stems were additionally recorded (Figure 4.4). Data collected from 

the square sample plots were used to verify the classification of point clouds. In addition, data from 

cross-sections (i.e., the height of reed stems) were used as independent data to validate the derived 

Digital Surface Models (DSM). Trimble Geo XT was the DGPS system implemented for measuring 

reference points. Post-processing was executed with the software Trimble GPS Pathfinder Office. The 

base station SOPAC Wettzell Daily with L2 and the Global Navigation Satellite System (GLONASS) 

capability was selected for differential correction. The coordinate reference system implemented was 

the Deutsches Hauptdreiecksnetz (DHDN) Gauss–Krüger Zone 4.  

 

 
Figure 4.4 Collection of Reference Points (RPs) as an example of AOI-3 a). Background is an 

orthorectified aerial photograph in true colour of the Landesamt für Digitalisierung, Breitband und 

Vermessung (LDBV), 2015. Differential Global Positioning System (DGPS) b). Transect perpendicular 

to shoreline c). Transects every 10 meters intervals 
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4.3.2.3. Assessment of Aquatic Reed Extents and Classification Accuracy 

 

Extents of aquatic reed beds were evaluated based on two criteria. First, the extents derived from LiDAR 

data for every AOI were compared with the ones obtained from field measurements, by means of 

correlation analysis. Since measured and derived surfaces can have the same extents but different 

shapes, the correlation analysis of the extents was complemented by an assessment of geometrical 

similarity. As a second criterion, the separation distance of two geometrical objects (polygons) in a 

metric space was measured (Hausdorff Distance Pairwise). The smaller the resulting value, the more 

similar the geometrical shapes are (QGIS Development Team 2017). In addition and to support this last 

metric, the Root Mean Squared Error (RMSE) of the lengths of cross-sections measured on the field in 

relation to the lengths obtained from LiDAR data was assessed.  

 

The assessment of classification accuracy was achieved by a confusion or error matrix. The classification 

result was compared with independent validation data. Two approaches were implemented for the 

accuracy assessment of aquatic reed classification. First, the classification was compared with on-field 

collected data. A total of 249 square sample plots of 1 m² each were collected on-field and used for 

validation, out of which 127 and 152 were measured in dense and sparse aquatic reed beds, respectively. 

Second, RGB imagery with a resolution of 0.1 m/pxl, collected at the same time as the ALS survey took 

place, was used for visual interpretative validation. Samples were collected randomly and stratified (i.e., 

classes). Since the map has less than 12 classes and the study area is less than 1 million acres (4046.9 

km2), a minimum of 50 points should be collected for every single class (Congalton and Green 2009). A 

total of 150 points were generated and proportionally distributed (Table 4.1) across the total extent of 

each class.  

 

Table 4.1 Sample distribution according to extent of classes 

Class Area [m²] Area [ha] Number of Samples 

Sparse Aquatic Reed 4843 0.4843 50 

Dense Aquatic Reed 9037 0.9037 100 

 

The error matrix shows a percentage of pixels from each class labelled correctly as well as the 

proportions of pixels erroneously labelled into a different class (Richards and Jia 2006). These 

percentages are expressed as the overall accuracy (OA), producer´s accuracy (PA) and user´s accuracy 

(UA). Additionally, the chance of agreement was also calculated with the Kappa coefficient (Lillesand 

et al. 2015).  

 

4.3.2.4. Accuracy Assessment of DSM 

 

Two assessments were accomplished in order to validate the accuracy of estimated DSM. First, the 

height of a flat surface (i.e., quay, dock) in DSM was compared to the respective one acquired with an 

onsite survey. Second, the derived aquatic reed heights were assessed on their elevation values in 

comparison with those measured at each AOI. Distribution type of the height residuals was calculated 

with the sample skewness and its significance. For a normal distribution, the Mean Error (ME), Standard 

Deviation (SD), and the Root Mean Square Error (RMSE) were obtained for evaluating the closeness 

agreement between the observed and the modelled height of reeds (Table 4.2). The rasterisation of the 
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point clouds was performed using a moving (tilted) plane interpolator (movingPlanes) in OPALS 

software. Detailed information about this interpolator can be found in (Pfeifer et al. 2014).  

 

 

 

 

Table 4.2 Accuracy measures for Digital Surface Models (DSMs) presenting normal distribution of 

residuals 

Mean Error 
μ =

1

n
∑ ∆hi

n

i=1

 
(Höhle and Höhle 2009) 

Standard Deviation 

σ = √
1

(n − 1)
∑(∆hi − μ)2

n

i=1

 

(Höhle and Höhle 2009) 

Root Mean Square Error 

RMSE = √
1

n
∑ ∆hi

2

n

i=1

 

(Höhle and Höhle 2009; 

Luhmann et al. 2014) 

 

n is the number of tested points in the sample (sample size) and ∆hi represents the difference between 

RP and Digital Service Models (DSMs) for a point i. The assessment of vertical accuracy was performed 

considering the Air–Water Interface (AWI) as the zero point. The relative stem height (RSH) was 

obtained by subtracting the absolute height (length from flower to sediment) minus the water depth. 

The same absolute height of the water surface used for modelling AWI was used for obtaining the RSH.  

 

4.4. Results 

 

4.4.1. Point Cloud Classification 

 

The classification was performed at point level and by means of a decision tree. Development of the 

rule-based algorithm was based on combining previous knowledge from fieldwork and visual 

inspections of AOIs point clouds. By means of statistical parameters for every point cloud, several 

classes were categorised in every point cloud (Figure 4.5). Dense and Sparse Aquatic Reed beds were 

classified in consideration of the statistical parameters of height and density. With the obtained classes, 

quantification of extents, as well as the expansion of frontline and shoreline was possible. The 

classification procedures were executed after quality control. The absolute registration accuracy was 8 

cm and strip differences averaged 0.022 m, SD 0.039 m, and RMSE 0.045 m. Registration accuracy and 

low strip differences were accepted as suitable for the study objectives and no further calibration was 

performed. 
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Figure 4.5 Classification scheme used in OPALS for density classification of aquatic reed beds. Dashed 

line boxes are intermediate classes and coloured boxes represent final classes. Point statistics and 

attributes used for classification thresholds are described 

 

The structural characteristics obtained from cross-sections extracted in one-metre intervals through all 

point clouds were equally important. Spatial distribution of points and their height in relation to the 

AWI were key factors for density classification. The height of sparse aquatic reed beds for all AOIs 

varied between 1.80 and 2.40 m. A height of 2 m was found to be the most suitable value for an accurate 

automatic classification of all point clouds (Figure 4.6). The density of points was the second parameter 

considered for classification. Dense aquatic reed beds are characterised by tall reeds with a height 

greater than 2 m (520 masl), a large number of leaves in the upper canopy level, and bare thick stems in 

the lower canopy level. Regarding the LiDAR data, points were equally distributed in sparse stocks and 

accumulated in the upper canopy for dense stocks. This break in the spatial distribution was easily 

identifiable in the points between the AWI and the 1.5 m relative height (519.5 m). Once the density was 

calculated for all values under this height, the maximum frequent value in every AOI was always 

selected for classification thresholds. For clouds with 2–3 strips, this threshold value was 80 points/m2. 

According to this definition, Sparse Aquatic Reed beds were classified and the remaining points without 

classification were assigned to Dense Aquatic Reed beds. 
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Figure 4.6 Classification of Sparse Aquatic Reed beds according to stem height below 2 m (rank), density 

of points under a height of 1.50 m (pdens), and in combination with processing and neighbourhood 

filtering. Grey colours represent to unclassified points, and black and red to areas of sparse and dense 

aquatic reeds, respectively 

 

4.4.2. Assessment of Aquatic Reed Bed Extents 

 

The result of the classification showed that a total of 1.388 ha (100%) were aquatic reed beds. More than 

half of the reed beds were identified as Sparse Aquatic Reed (65%—0.9037 ha) and the remaining 35% 

were identified as Dense Aquatic Reed (0.4843 ha). The correlation analysis between onsite and LiDAR 
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derived extents showed a highly positive correlation (R2 = 0.75). However, similar extents do not mean 

similar border shapes and therefore correlation was complemented by a symmetrical assessment of 

polygon shapes and cross-section lengths (Figure 4.7). The methodology implemented for the aquatic 

reed front and shoreline delimitation showed a high similarity with the derived LiDAR results from the 

AOIs, especially in parallel frontlines and shorelines (e.g., AOI-1). Hausdorff distances ranged from 5.74 

m (AOI-1) to 12.69 m (AOI-8). Similar results were obtained from the analysis of cross-sections lengths. 

The RMSE values ranged from 0.69 m (AOI-1) to 4.86 m (AOI-8).  

 

 
Figure 4.7 Examples of shape similarity measured onsite (grey fill) and derived from LiDAR data (black 

outline) 

 

4.4.3. Assessment of Aquatic Reed Bed Densities 

 

The first assessment of the vegetation density map revealed an overall accuracy (OA) of 72.7% for the 

validation compared to field data. The reference points (RP) used for this assessment obtained a 0.46 m 

horizontal and 0.54 m vertical precision after differential correction. The mean Horizontal and Vertical 

Dilution of Precision at which all the measurements (RPs) took place was 1.3 and 2.1, respectively. A 

mean of 17 measurements was recorded for every RP. The Producer’s Accuracy (PA) showed that 85.6% 

of the sparse areas were correctly identified, but according to the User’s Accuracy (UA) for the same 

class, this was true only 68.2% of the time (Table 4.3). Contrarily, 59.7% (PA) of dense areas were 

identified as such, with 80.4% (UA) of the classification truly corresponding to that category. The Kappa 

coefficient for this assessment suggests that the observed classification is 50% better than that which 

resulted by chance. 
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Table 4.3 Confusion matrix for classification assessed against field data (left) and aerial imagery (right) 

Reference Data Reference Data 

Classified 

Data 

Dense Sparse Total User’s 

Accuracy (%) 

Classified 

Data 

Dense Sparse Total User’s 

Accuracy (%) 

Dense 74 18 92 80.4 Dense 47 3 50 94 

Sparse 50 1.07 157 68.2 Sparse 3 97 100 97 

Total 124 125 249  Total 50 100 50  

Producer`s 

Accuracy (%) 

59.7 85.6   Producer`s 

Accuracy (%) 

94 97 150  

Overall Accuracy (%) = 72.7; Kappa = 0.5 Overall Accuracy (%) = 96; Kappa = 0.91 

 

Results differed for the second accuracy assessment of classified density. Very high-resolution aerial 

imagery (0.1 m/pxl) taken at the same time and during the same flight as the ALS was implemented for 

this task. An OA of 96% with the Kappa coefficient of 0.91 was obtained from the evaluation (Table 3). 

High classification accuracy was explained by the unbiased visual interpretative validation applied by 

the same operator (reed expert) and for all the AOIs represented on RGB data. Both classes (Dense and 

Sparse) showed a high level of UA and PA, for which the values were 94% and 97% for sparse and dense 

classes, respectively. An area on the ground will actually be what the classification reveals 94% and 97% 

of the time. In the same way, the proximity to one of the values from the Kappa coefficient indicates a 

“true” agreement with the classification (Figure 4.8). 

 

 
Figure 4.8 Classification of dense and sparse aquatic reed (AOI-6) 
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4.4.4. Accuracy Assessment for Calculated DSM of Aquatic Reed Beds 

 

The moving tilted plane interpolator (movingPlanes) in combination with a defined number of 

neighbours (16) allowed for the creation of raster files with a minimum grid size of 10 centimetres. After 

evaluating observations against modelled height, an accuracy assessment for flat structures showed a 

total RMSE of 0.1 m, while for vegetation height, it showed a RMSE of 0.8 m. The distribution of the 

residuals in both assessments was not significantly skewed, since the skewness factors for all 14 AOIs 

were lower than two times the standard error of the skewness (SES = √6 n⁄ ). In relation to the vegetation 

height assessment, a perfect normal distribution resulted in residuals from AOI-7 and -12. Meanwhile, 

the lowest and greatest asymmetries found were in AOI-5 (skewness = 0.52) and AOI-11 (skewness = 

−0.47). Overall, 1279 independent observations were used to assess the vertical accuracy of vegetation 

heights in DSM. The correlation analysis between the observed and predicted relative stem height (RSH) 

revealed a low positive correlation (R2 = 0.42). 

 

4.5. Discussion 

 

This study suggests that ALS provides a highly accurate alternative to the currently applied field-based 

methodologies for aquatic reed bed monitoring. In contrast to classical monitoring, ALS involves no 

direct entry of the habitat and no disturbance of the species living there, and therefore, only samples of 

the study area are needed for field control. In addition, ALS can be carried out in a standardised way 

that will help increase accuracy at a reduced cost. In line with studies focused on reed bed or wetland 

habitat mapping (Luo et al. 2017; Onojeghuo and Blackburn 2011; Onojeghuo et al. 2010), ALS is an 

innovative technical solution compared to classical approaches based on analysis of satellite imagery or 

of airborne optical data sources (Schmieder et al. 2004; Stratoulias et al. 2015a; Fernandes et al. 2014). 

Compared to optical sensors in which recorded information on every image is only of top structures 

observable to an imaging sensor, ALS delivered valuable information in the horizontal as well as the 

vertical gradient. This technology allowed for characterisation of structural parameters in vegetation 

stands, and the usage of a Green-LiDAR provided relevant information about the water column and 

lake bottom in the areas of shallow waters, which was relevant to mapping the shoreline independent 

of the water surface level. In order to develop environmental protection measures, the material and 

methodologies implemented for monitoring aquatic reed beds should deliver reliable information on 

vegetation extents and status. LiDAR data, in combination with a decision tree algorithm, was 

developed to estimate the reproducibility of an ALS processing chain. The suitability of the applied 

system was assessed based on 1) an accurate estimation of aquatic reed extents; 2) density; 3) the 

accuracy of DSMs derived from LiDAR data. 

 

4.5.1. Mapping On-Field Concept and Extent Quantification 

 

The obtained quantification revealed that the ALS recorded data for an accurate delimitation of aquatic 

reed beds. Proposed field mapping of aquatic reed beds contributed to determining, not only structure 

parameters within the stand, but also to the delimitation of aquatic reed on the frontline, shoreline, and 

consequently led to the quantification of extent. Onsite measurements are invasive, and for shoreline, 

frontline, and extent, they are not nearly as accurate as ALS. High agreement of calculated extents from 

both datasets was seen in areas where the expansion of the frontline is parallel to the shoreline. With 

the methodology implemented, we observed that the greater the irregularity of the shoreline, the lower 
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the similarity of polygon shapes. A specific and different method for mapping the frontline and the 

shoreline could be implemented in such situations. For instance, real-time tracking of DGPS coordinates 

along aquatic reed fronts would deliver more accurate results, and at the same time, be more 

environmentally friendly than the executed onsite measures in 10-metre intervals. The same approach, 

however, cannot be recommended if the primary objective is mapping of the shoreline. It would cause 

ecological disturbance and damage to the reed population and would require more time and human 

resource efforts for mapping the entire lake. Additionally, it would compromise the gathering of other 

data types such as density and stem heights.  

 

In the specific case of the Chiemsee, the official shoreline could have been used in combination with the 

exemplified frontline mapped with DGPS real-time tracking to calculate extents. It had been created 

based on aerial photographs from 1991 and it served as a separation between land and aquatic reed. 

The shoreline had been assumed to be the line of the mean water level (Hoffmann and Zimmermann 

2000); however, the fact that water level under the canopy of aquatic reed beds cannot be recorded by 

optical imaging sensors, questions the reliability of the 1991 shoreline data. This is supported by the fact 

that the value for the mean water level was not reported and that the shoreline was delimited based on 

the spectral response of reeds. Even with modern photogrammetric technology, an accurate modelling 

of water levels below the canopy is unrealistic. Analysis of recorded vegetation spectra in Colour Infra-

Red (CIR) imagery was therefore, a practical but not an accurate approach to the problem of shoreline 

delimitation. The LiDAR capability of detecting structures in the vertical gradient contributed to the 

extent quantification of aquatic reed stocks, based on the definition of the frontline and shoreline. 

Precise derivation of water levels under the reed beds canopy contributes to the characterisation of 

relevant ecological zones such as land, transition, and aquatic reed beds. Extent and heights derived 

from LiDAR data could also support volume calculations, such as the biomass above ground (Luo et al. 

2017). Since LiDAR delivers not only data for accurate extent measurement but also data for the 

vegetation vertical structure, as well as not being an invasive method, it is comparatively and 

competitively more convenient than other measures in the field. 

 

4.5.2. Classification of Aquatic Reed Bed Density 

 

LiDAR data also allowed for an accurate classification of aquatic reed density. Without considering the 

nutrient supply of waters, density and height of aquatic reed beds are important indicators in 

determining whether a stand is spreading or declining (Grosser et al. 1997). A diminishing or sparse 

reed population can be seen in most cases by sparse and parallel strips at the reed bed edge (due to 

either floods, wind storms, or driftwood accumulation), a lane/aisle perpendicular to the shore (through 

docks, boot traffic, bathing, fish traps), diminishing reed beds with decreasing stem density, a frayed, 

ripped, or non-zoned reed edge, and growth in single clumps (through erosion or flood), and seaward 

stubble fields of previous reed beds (Grosser et al. 1997; Hoffmann and Zimmermann 2000). LiDAR 

data was suitable for deriving most of these parameters, and although not investigated in this study, 

cross-sections suggested that stubble fields of previous reed beds located underneath the water surface 

could also be mapped. The OA of 96% with a Kappa coefficient of 0.91 demonstrated the high level of 

agreement of maps derived from point clouds. Assessment of accuracy by using field measurement 

revealed the lack of consistency when data was gathered. While LiDAR data allows for a classification 

of the entire lake, field measurements vary according to phenology and growth rate. In addition, field 

data is typically collected by several workers and consequently, the selection of sparse stock can contain 
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a personal bias. This inconsistency was demonstrated in the accuracy assessment results (OA of 77.7% 

and a Kappa of 0.5), again suggesting the greater efficiency of LiDAR data. The few classification errors 

were a result of absent generalisation procedures. Vegetation phenology and anisotropy effects that 

were expected to influence the laser intensity values were not identified as a constraint for vegetation 

structure mapping. In the same way, surface echo dropouts caused by specular reflection also did not 

represent an obstacle, since the water level is the same for the entire lake, and the AWI was modelled 

with the official and freely available data from the water authority (Bayerisches Landesamt für Umwelt 

2017a).  

 

4.5.3. Reed Heights Measured on DSM 

 

Deviations in the RMSE for aquatic reed and flat surfaces suggest that it is not advisable to validate a 

DSM based on vegetation heights. In the case of aquatic reed beds, structural characteristics of the study 

object may have influenced the laser scanning and derivation of point clouds. Reed beds, like any other 

grass-like plant, change position with wind action. In addition, aquatic reed beds are influenced by 

waves or surf changes. These effects caused apparent different stem heights when compared to the on-

site field measurements. Since points corresponding to the upper canopy (reed crone) differ from strip 

to strip, some of these points may have been identified as outliers by filtering algorithms, and 

consequently, they could be removed from the point cloud in the pre-processing step. The interpolation 

method may have also influenced the generalisation of canopy heights. 

 

4.5.4. LiDAR Processing Chain and ALS Data Collection 

 

In addition to the type of data implemented, the classification methodology is also crucial in the analysis 

of LiDAR data. The implementation of a decision tree algorithm was consistently applied. Inspections 

of point clouds contributed to determining the parameters for classification thresholds. Thus, the 

presented methodology is objective and easily reproducible without the subjective influence of 

operators. For monitoring purposes, this also allows a more reliable comparison of results when 

datasets from different dates are compared. The uncertainty in the multi-temporal analysis is reduced 

since the resulting classification maps are obtained with the same thresholds and classification 

methodology.  

 

Our results also confirmed the efficiency of ALS in terms of data collected per unit of time. ALS gathers 

information within a couple of hours, under the same water level, phenological and climatic conditions. 

With the proposed transect aquatic reed bed mapping protocol, a team comprising three researchers 

collecting biometric parameters in cross-sections every 10-m interval for 100 m needed approximately 

3 h of work. The length of the Chiemsee (including the two islands) shoreline is 82.811 km. Thus, 

mapping the entire lakeshore would take approximately 10 months if a team were to work 8 h per day 

and 7 days per week. Due to the fast monthly growth rate of Phragmites australis and the fact that new 

stems are produced until late summer (Grosser et al. 1997), a considerable number of inconsistencies in 

data collection would be acquired, based on such field monitoring. Recording data within a short time 

period not only reduces the uncertainty of the measurements but also of the classification procedures. 

For instance, all AOIs were classified in the LiDAR data collections at once and the thresholds were 

suitable for all kind of Phragmites australis structures at the Chiemsee. However, during field work, 

every AOI was treated independently and classified according to the vegetation structures present on 
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each AOI. Thus, a classification developed for all objects cannot lead to the same result when every 

sample is independently categorised.  

 

4.6. Conclusions 

 

The presented methodology has demonstrated the suitability and the advantage of using LiDAR data 

for monitoring aquatic reed beds. The available information obtained from ALS allowed an accurate 

interpretation and mapping of vegetation structure. Points of the vegetation crown, upper and lower 

canopy, and ground all contributed to an improved characterisation of aquatic reed beds. The 

developed decision tree algorithm allowed for an automated classification of reed beds and of 

vegetation structure (extent, height, and density). With an overall accuracy of 96% and a Kappa 

coefficient of 0.91, aquatic reed beds could even be subclassified into sparse and dense stocks. Moreover, 

LiDAR-derived rasters and vector data allowed for the delimitation of the actual shoreline, aquatic reed 

front, and of sparse aquatic reed beds. ALS revealed several advantages compared to onsite-field 

monitoring methodology, including the absence of habitat and biological disturbance. The vertical 

accuracy of the derived DSMs similarly showed a high level of agreement in derived heights of flat 

surfaces (RMSE = 0.1 m) and an adequate agreement of aquatic reed heights with evenly distributed 

errors (RMSE = 0.8 m). 
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5. General Discussion 

 

This study provides novel information on the detectability and quantification of aquatic reed beds using 

state of the art remote sensing methods. From all of the structural standard parameters recommended 

by official guidelines for measuring in situ and future monitoring, height, density, and extent were 

determined as essential and quantitative biometric parameters of aquatic reed beds that can accurately 

be measured in point clouds derived from UAVs and airborne Green-LiDAR data. In line with the study 

objectives, heights of aquatic reed beds were extracted using photogrammetry in close-range aerial 

imagery. These features can operationally and effectively be implemented for mapping density, extent, 

as well vegetation status when geometric is combined with spectral information. Furthermore, the thesis 

showed that Green-LIDAR is an additional technology, which contributes to the accurately monitoring 

of aquatic reeds especially when extent, density and height have to be measured. According to the new 

findings, this study for aquatic reeds adds to the previous studies that used remote sensing data for 

monitoring reed, and questions the quantification of aquatic reed beds for Lake Chiemsee based on 

official shoreline and standard colour infrared imagery provided by surveying authorities. 

 

5.1. Extent quantification  

 

The area measured between shoreline (land side) and frontline (lake side) is how the extent of aquatic 

reed beds is quantified. Data gathered with both systems (UAV and Green-LiDAR) in combination with 

an adequate processing method proved to be accurate in the allocation of the frontline. The break line 

between water surface and first reed stems (expansion front) was identifiable in point clouds obtained 

from either UAVs or Green-LiDAR. The abrupt change in height from almost flat surfaces (water surface) 

to vegetation (reed stems) determines the frontline. Sparsely distributed stems were detected and 

extracted thanks to the very high spatial resolution (< 3cm/pixel) of UAV optical imagery and a laser 

footprint of 40 cm. Low stem density in stands at the expansion front in combination with sun glint 

effects, sun illumination conditions and reed phenological stage did not represent a hindrance for the 

tested system in delimiting the frontline, as it was identified in official aerial photographs (Hoffmann 

and Zimmermann 2000; Melzer et al. 2001).  

 

Regarding the shoreline, Green-LiDAR data demonstrated it could efficiently and accurately determine 

the boundary between land and aquatic reed beds. The scanning principle of Green-LiDAR helped to 

deliver information of vegetation features along the vertical structure (canopy to ground) in the 

vegetation stand. Precise derivation of water levels under the reed beds canopy contributed to the 

characterization of relevant ecological zones such as land, transition and aquatic reed beds (Figure 1.1). 

Additionally, LiDAR operating in the green wavelength of the electromagnetic spectrum provided 

relevant information about the water column and lake bottom in shallow waters, which was relevant to 

mapping the shoreline independently of the water surface level, on the day of recording. Results 

obtained in chapters 2 and 3 showed that it is not possible to allocate a shoreline with point clouds 

derived from UAVs. These results led to questioning the reliability of the official shoreline, which has 

been created by Bavarian governmental offices through visual interpretation of aerial imagery in 1991. 

This official shoreline could be used as reference for mapping reed density to have a standard that is 

necessary to compare reed areas of different years. However, in order to keep consistency in the research 

analysis, the shoreline allocated during field measurements was used for separating land reed and 

aquatic reed. The official shoreline at lake Chiemsee was implemented in 1973 for surface comparison 

of reed and it is still being used in 2015 (Epple 2016; Hoffmann and Zimmermann 2000). Since water 
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level under the canopy of aquatic reed beds cannot be recorded by optical imaging sensors, the value 

used for the mean water level was not reported, and the shoreline was delimited based on the spectral 

response of reeds, the absolute consistency of the 1991 shoreline is questionable. 

 

Green-LiDAR data also proved to be suitable for allocating frontline and the calculation of vegetation 

extent. Very high spatial resolution of UAV imagery contributed as well to extracting dense point clouds, 

in which frontline was identifiable. However, UAV data had to be supported with secondary 

information sources (onsite measured shoreline) in order to quantify the extent. Spectral differences and 

georeferencing problems in imagery from transitional areas from water to land may cause difficulties 

in the allocation of frontline, which hinders the discrimination of expansion fronts in aerial photographs 

(Hoffmann and Zimmermann 2000). The positional error of the digital geometry data produced was a 

maximum of 0.25 m in aerial photographs with a high proportion of land. For images with large areas 

of reed bed the error was reported to 0.50 m (Schmieder et al. 2002). The error rates for the evaluation 

of areas above 0.06 ha averaged 2% and for areas <0.06 ha the error rate was up to 40%. However, the 

proportion of areas under 0.06 ha was low, resulting in an overall error of + 5%. (Rücker et al. 1999). 

Therefore, the presented results suggest, if aerial imagery is implemented for monitoring purposes,  the 

analysis should be supported by additional datasets (DSM and shoreline) in order to quantify aquatic 

reed bed coverage.  

 

5.2. Extraction of height and density parameters 

 

Close-range aerial photogrammetry and Green-LiDAR proved to be suitable methods for delivering 

valuable information about stem height. Height extraction of sparse stocks (Chapter 2) and evaluation 

of height measurements (Chapter 4), suggest that it is not advisable to validate DSMs based on modelled 

vegetation elevations but on fixed structures (e.g. dock). Modelled flat, fixed and geometrical surfaces 

with UAV and Green-LiDAR data showed high agreement with the onsite measurements. The 

challenge of identifying sparse stocks in optical imagery was overcome through the feature extraction 

in very high spatial resolution close-range aerial data. Error in the parallax caused by stem movements 

during data collection was observed as the source for the observed local disturbance in the bundle 

adjustment. Phragmites australis moves easily in small breezes or surf changes and this movement effect 

increases in stocks where reeds are sparse. In Green-LiDAR data these effects caused apparent different 

stem heights when compared to the on-site field measurements. The analysis of point clouds suggests 

that points corresponding to the upper canopy (reed crone) may have been identified as outliers by 

filtering algorithms, which consequently could have been removed from the point cloud in the pre-

processing step. Since elevation models in raster format were used for height assessments, an additional 

explanation for the identified variations may also be the applied interpolation methods.   

 

Green-LiDAR and UAV data also allowed for an accurate classification of aquatic reed density. Without 

considering the nutrient supply of waters, the density and height of aquatic reed beds are important 

indicators in determining whether a stand is spreading or declining (Grosser et al. 1997). A diminishing 

or sparse reed population can be seen in most cases by sparse and parallel strips at the reed bed edge 

(due to either floods, wind storms, or driftwood accumulation), a lane/aisle perpendicular to the shore 

(through docks, boot traffic, bathing, fish traps), diminishing reed beds with decreasing stem density, a 

frayed, ripped, or non-zoned reed edge, and growth in single clumps (through erosion or flood), and 

seaward stubble fields of previous reed beds (Grosser et al. 1997; Hoffmann and Zimmermann 2000). 

As seen in chapter 4, Green-LiDAR point clouds were suitable for deriving most of these parameters. 
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Cross-sections suggested that stubble fields of previous reed beds located at lake bottom could 

potentially also be mapped, although not investigated in this study. Assessment of accuracy by using 

field measurements revealed the lack of consistency when data was gathered. While Green-LiDAR data 

allows for a classification of the entire lake, field measurements vary according to phenology and 

growth rate. In addition, field data is typically collected by several workers and the selection of sparse 

stock can contain a personal bias. In chapter 2, UAV point clouds showed a high level of agreement 

compared to the observations onsite. Although photogrammetric methods modelled only the recorded 

features, it provided two valuable attributes to describe reed bed density. Besides height (Ostendorp 

1989; Grosser et al. 1997; Poulin et al. 2010; Zlinszky et al. 2012; Luo et al. 2017), the variance proved to 

be an additional parameter for reed bed characterization. The spatial distribution of points in 

combination with the mean height facilitated the characterization of aquatic reed bed density. 

 

As mentioned above, emitted light pulses in LiDAR scanners travel through canopy and bounce on 

different vegetation elements and the reflections (returns) are recorded. This principle allows a 

characterization along the vertical structure of a stand. The 40 cm laser footprint delivered up to 5 

returns per pulse after pre-processing, which decreases the amount of points per unit of surface. UAV 

data with spatial resolutions of 3 cm or less are more likely to detect single individuals of Phragmites 

australis. Point density in clouds obtained with UAV data produced clouds with 2260 points/m²  

(Chapter 2), while LiDAR in the same study area where 200 points/m² (Chapter 4). Higher point density 

obtained from SfM, relates to the small ground sampling distance and high image overlap (White et al. 

2013). Low flying altitude decreases the recording area per survey, but a higher point cloud density 

enables a better extraction of especially sparse aquatic reed bed areas.   

   

5.3. Mapping vitality 

 

Point clouds derived from UAV imagery allowed the classification of aquatic reed bed status involving 

the structural and spectral information (Chapter 2). Vegetation mapping is commonly based on the 

interpretation of multi- or hyperspectral imagery (Onojeghuo and Blackburn 2011; Poulin et al. 2010; 

Schmieder and Woithon 2004a; Villa et al. 2015). Clouds with spectral information in each point 

contribute to the classification of a vegetation stock not only according its geometry but also the spectral 

reflectance of the different plant elements. The fusion of three dimensional structures and spectral 

information is declared as “state of the art” for characterizing ecosystem vegetation and improves the 

understanding of vegetation status compared to the application of only geometric or spectral 

information (Dandois et al. 2017). Vegetation indices, based on RGB channels have been successfully 

used to describe the vegetation status (Kefauver et al. 2015; Du and Noguchi 2017; Casadesús et al. 2007) 

and as a component to define aboveground biomass (Li et al. 2016). Thereby, they can be approached 

for imagery that is recorded by cost effective consumer cameras. Plant health deterioration leads to 

reflectance decrease in the NIR and a reflectance increase in the visible colour range due to the 

chlorophyll content in leaves. Therefore, UAVs with a multispectral camera could improve the 

classification result, however, compared to a consumer camera such a sensor would represent higher 

costs and heavier weights diminishing in this way the flight time and thus only small areas can be 

overflown. 
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5.4. Implications for monitoring 

 

The unbiased measurement of aquatic reed diagnostic parameters presented in this dissertation 

overcomes the subjective expert knowledge based approach of the official mapping instructions. An 

important element to evaluate the usability of remote sensing technologies is based on the capability of 

the employed systems to deliver diagnostic relevant biometric data. Chapters 2 and 4 have shown that 

elemental features for a status assessment are height, density, and extent. These parameters are 

considered as stable variables, since they can be quantitative calculated and therefore comparable over 

time. The vitality of a stock was seen as an additional elemental feature for diagnostic assessments. 

However, the dependency on qualitative definitions and data variability when recorded by different 

remote sensing systems make it an unstable variable. Both systems delivered valuable data for 

measuring height and density. A competitive advantage of Green-LiDAR is the capability of scanning 

the stock from canopy to ground. Ground height information is fundamental for extracting surfaces and 

therefore, shoreline can be allocated, and areas with low amount of reeds in stock (gaps) and leaf-off 

stems can also be distinguished (Chapter 4). The photogrammetric clouds extracted from the RGB 

system mounted on UAV were also accurate in mapping diagnostic parameters (Chapter 3). Spectral 

information available in UAV data contributed to estimate of vitality through the calculation of 

vegetation indexes, which in combination with density and height the status was described and 

consequently monitoring performed 

 

UAV and Green-LiDAR systems provide point clouds differing in resolution and total data recorded 

per unit of ground surface. UAV data has a higher number of points per unit of surface compared to 

LiDAR point clouds (Section 5.2). Recording and processing technologies explain the differences in 

point cloud density. Whilst photogrammetry is needed in feature extraction in UAV data, the time of 

flight of light pulses is fundamental in generating LiDAR point clouds. Photogrammetric extracted 

clouds with a dense number of points allows accurate calculation of Digital Elevation Models (DEM) 

(Section 2.4). In addition to DEMs, available information of the vertical structure in LiDAR data allows 

the measurement from base to top (Digital Height Models). In terms of area overflown per unit of time, 

aerial laser scanning overcomes UAVs. Airborne LiDAR provides data over large areas within a short 

period of time. The time required for UAV systems is on a different scale. Due to the low flying altitudes, 

a very low area coverage is achieved. Additional time must be taken into account for the logistics since 

the operations are executed from ground. When there is the need for monitoring specific areas of interest 

(AOI) of aquatic reed beds, UAVs are the convenient alternative in terms of cost. Considering the total 

area mapped of aquatic reed beds in this study with the most accurate system (1.388 ha), the cost per 

area (AOI) is € 8466 and € 18012 for UAV and LiDAR, respectively. Small companies working in the 

area of environmental planning benefit from the flexibility in deploying UAV missions, which the level 

of operability is difficult to overcome by other remote sensing systems. Extensive airborne LiDAR 

surveys have to be planned a long time in advance, extensive flight planning is required, aircraft 

availability have to be constantly checked, and a larger team of experts is needed.  

 

The classification strategy implemented in this study proved that automatic classification of aquatic 

reed beds is possible. Derivation of diagnostic parameters of aquatic reed beds using either UAV or 

Green-LiDAR point clouds can be operationalized. UAV platforms satisfy the requirements of small 

companies focused in environmental management demand. In the same way Green-LiDAR has shown 

the actual technical possibilities for a detailed structural monitoring, independently of reed growing in 

aquatic or land environments. The proposed methods suggested are more cost effective, unbiased and 

offered improved information than previously performed on-site or remote sensing procedures. The 
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method could be transferable to other lakes, vegetation types, and the results can be used for change 

detection or monitoring. The above mentioned factors are fundamental to evaluate the suitability of 

remote sensing systems for aquatic reed monitoring. The selection of a specific platform will always 

depend on the objectives of the study. Both systems have fulfilled a specific mapping niche were they 

perform at their best. The preferred system will depend on the framework conditions of the monitoring 

campaign.   

 

5.5. Outlook 

 

Based on the analysis of point clouds generated by LiDAR or Structure-from-Motion algorithms applied 

in close-range aerial imagery, the quantification and mapping of height, density, extent and status of 

aquatic reed beds raised new unknowns in which future research should contemplate. The following 

scenarios can be proposed: 

 

i. The study of further aquatic reed stands or similar vegetation types. 

 

In this study, the extraction of fundamental biometric parameters and classification strategies 

were established. The implementation of the presented approaches in different lakes at different 

latitudes, would contribute in complementing the knowledge of aquatic reeds and validating 

the methods as well the performance of airborne LiDAR and close-close range aerial 

photogrammetry under different flight conditions. Further validating the suitability of the 

presented approaches could be tested when its implementation is transferred to the monitoring 

or mapping of other grass-like plants in agriculture and forestry. 

 

 

ii. The modelling of aquatic reeds. 

 

Beyond the photogrammetric extraction of height, future directions of aquatic reed research 

using close-range aerial imagery can be in the detailed modelling of reeds. The very high spatial 

and spectral resolution, which multispectral or hyperspectral sensors mounted on UAVs offer, 

could potentially contribute in extracting not only heights of aquatic reeds but also point 

coordinates from leaves, stems or panicles. Therefore, additional biometric parameters could be 

measured such as number of leaves per stem, number of panicles pro square meter, or even 

diameter of reed stems. Such quantitative variables would support the derivation of reed health 

models. In addition, the implementation of feature extraction in very high spatial resolution 

imagery (<5mm/pixel), would extract also different plant species growing in the same stand. 

This data could be used for analysis of vegetation stress or plan competition for resources.   

 

 

iii. Analysis of Green-LiDAR amplitude and lake-bottom returns. 

 

The successful evaluation of Green-LiDAR data presented in this study was based on the 

geometric distribution of points in the cloud. An additional analysis in the variation of light 

amplitude in LiDAR sensors may support the evaluation of growth efficiency in reed stocks. 

For instance, the classification of points based on the amplitude could deliver information about 
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presence of leaves (dry or green), stems or panicles. These data in combination with the 

structure information presented in this study could be used for calculating productivity or 

biomass. Furthermore, stubble fields of previous reed beds located underneath the water 

surface could also be mapped with Green-LiDAR data. In this way, quantification and location 

of past stands of aquatic reeds in shallow waters can be mapped. This would allow more 

accurate measuring of decline (change detection), as well as defining areas where aquatic reeds 

could potentially be planted or regrowth if the adequate protection measures are carried out. 
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6. Conclusion 

 

This dissertation set out to explore the possibilities of extracting quantitative and qualitative biometric 

variables for classifying the actual state of aquatic reeds. The findings of this research strengthen the 

idea that operational and effective monitoring can be achieved using state of the art remote sensing 

technologies. An important finding was that structural parameters (height, area, density) are 

particularly suitable for reed monitoring via UAV and LIDAR data. Qualitative criteria such as stress 

level could be determined through the classification of spectral information in point clouds. Based on 

the available studies, an automated and unbiased reed monitoring is possible. Through the 

implementation of remote sensing technologies and data, the proposed cost-efficient method delivers 

an improved information quality in comparison to previously performed on-site procedures, that cause 

habitat disturbance.  
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