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I. MOTIVATION

Safety is undoubtedly the most important factor for the
success of autonomous vehicles [[13]]. However, ensuring their
safety is a challenging task since they operate in highly un-
certain environments with multiple dynamic obstacles whose
future motions are unknown [25| [24]. Even when trying to
accurately predict and consider the most likely trajectory
of obstacles, planned motions might become unsafe when
obstacles deviate from the prediction, which regularly happens
in real traffic. As a result of the arising uncertainties, most
motion planning methods cannot exclude the possibility that
the autonomous vehicle causes a collision. For instance, a
residual risk of 0.1% per journey can imply one collision in
1,000 journeys. In order to solve safe motion planning, novel
approaches need to be developed which 1) provably guarantee
safety even if obstacles suddenly deviate from the predicted
behavior and 2) are able to cope with any new occurring traffic
situation and measurement uncertainties on the fly.

II. RELATED WORK

Many planning approaches compute trajectories which are
collision-free against the predicted most likely trajectories of
obstacles within the planning horizon of typically 5s to 12s
[26, 27, [10]]. In safety-critical situations, the approaches in
[} 6] plan evasive trajectories while accounting for likely col-
lisions with obstacles. However, when only predicting single
behaviors, the safety of planned trajectories only holds if all
obstacles do not deviate from this behavior.

One way to guarantee the safety of the autonomous vehi-
cle is logical reasoning. Here, planned motions are checked
whether they comply with certain rules and axioms, e.g.,
formulated using higher-order logic [8]]. For instance, the
safety of planned lane-change maneuvers is assessed in [12]
and the safety of vehicle following in [[16]. Although logical
reasoning guarantees safety, logical expressions used for the
verification often become highly complex and must be adapted
to new, previously unmodeled traffic scenarios.

Yet in other approaches [23) |17, 2], planned motions are
only executed if they do not contain inevitable collision states
(ICSs). ICSs are states from which the autonomous vehicle
eventually collides, no matter what trajectory it executes. The
less-restrictive concept of passive safety demands that the
vehicle is at a standstill at the time of collision, ensured by
evaluating pre-computed braking trajectories [[7]]. Both ICS and
passive safety are computationally expensive, and most works

are only online capable when considering a small number of
predicted trajectories of obstacles.

Reachability analysis, in contrast, accounts for any feasible
future motion of dynamic obstacles [18 [11} [3]. The reachable
set of obstacles is the set of states reachable from an initial set
of states considering all feasible trajectories. Future collisions
are identified by checking the computed reachable sets for
intersections with the occupancy of the autonomous vehicle
in the position domain [9, 4]. However, set-based techniques
have the disadvantage that unsafe regions may grow rapidly for
long planning horizons, eventually blocking the whole drivable
area of the autonomous vehicle. Thus, many long-term plans
are rejected as being potentially unsafe.

III. PROPOSED APPROACH

While one cannot exclude that autonomous vehicles may be
part of an accident, one can eliminate self-inflicted collisions
[25]. Therefore, we propose to verify the safety of each
planned motion of the autonomous vehicle on the fly before
execution assuming that obstacles obey traffic rules with
reasonable care. Thus, if a collision occurs, the autonomous
vehicle is not responsible. In every planning step, we verify
planned intended motions with the following two steps.

Using reachability analysis, we first compute possibly oc-
cupied regions in the environment by considering all feasible
trajectories and measurement uncertainties of obstacles. Our
obtained occupancy sets are over-approximative and thus cap-
ture all feasible legal behaviors of obstacles [14, [15]. In order
to obtain tight over-approximations, we assume that obstacles
adhere to traffic rules, e.g., respecting a certain speed limit.
However, we can remove these constraints individually at any
time, e. g., at latest when obstacles violate traffic rules.

In a second step, we compute fail-safe trajectories. These
trajectories branch off at the intended motion of the au-
tonomous vehicle, denoted as ego vehicle in the following,
and are constrained to not intersect with any of the occupancy
sets (cf. Fig. 1)) and to end in a safe state. The combination of
intended motion plans with fail-safe trajectories considers all
possible behaviors of obstacles and thus ensures the safety
of the ego vehicle. For instance, if obstacles deviate from
their predicted most likely motion, the ego vehicle has two
options to remain safe along its intended motion: (1) execute
the previously computed fail-safe trajectory (cf. Fig. [Ta)), or
(2) find a new combination of an intended motion and a fail-
safe trajectory (cf. Fig. [Ib). The previously computed fail-safe
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Figure 1. Combining intended motion plans with fail-safe trajectories to
guarantee safety. (a) Fail-safe trajectories are collision-free with respect to
any feasible behavior of obstacles. (b) While the ego vehicle moves along its
intended motion, new fail-safe trajectories are computed. If no valid new fail-
safe trajectory is found, the ego vehicle must execute the previously computed
fail-safe trajectory.

trajectory must be executed at the latest if the ego vehicle
is located at the start of the fail-safe trajectory and no new
fail-safe trajectory has been found after this point. Note that
even though the ego vehicle had to start executing a fail-
safe trajectory, it can recover and return to its comfort driving
mode by verifying a new intended motion if the safety-critical
situation resolves.

IV. PRELIMINARY RESULTS

We have already solved several challenges on the way to
using our online verification approach in autonomous vehicles
[22]. Our open-source tool SPOT predicts all feasible legal
behaviors of obstacles in a rigorous and over-approximative
way [14]. In order to obtain fail-safe trajectories, we first
determine the point of no return, i.e., the last state along the
intended motion for which a fail-safe trajectory still exists [21]].
Secondly, we compute the fail-safe trajectory itself by solving
convex trajectory optimization problems which consider the
lateral and longitudinal dynamics of the vehicle separately
[20]. Furthermore, we integrate safe states as desired goal
states within the optimization to keep the ego vehicle safe
for an infinite time horizon, i.e., never entering ICSs [19].

We have already validated our approach in simulation using
a variety of recorded traffic scenarios [5]. Our approach
verifies planned motions of the ego vehicle in less than 20 ms
on average on a computer with an Intel i5 1.4GHz processor
and 8 GB of DDR3 1600 MHz memory. Fig. 2] shows an urban
T-junction scenario with three obstacles b;, i € {1, 2, 3}. Since
the ego vehicle has the right of way, it plans a collision-free
intended motion considering the most likely trajectories of all
obstacles b; (cf. Fig. . However, if obstacle b, overlooks
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Figure 2. Urban T-junction scenario (CommonRoad-ID: DEU_Ffb-2_2_S-
1:2018b) in which vehicle by violates the right of way rule of the ego vehicle.
The predicted occupancies are only shown for ¢ = 6s for clarity. The ego
vehicle can avoid a collision by executing the computed fail-safe trajectory,
which lets the ego vehicle turn right and come to a stop behind the occupancy
set of obstacle b3.

the ego vehicle and as a result disrespects its right of way, the
intended motion ends in a collision. Based on the available
free space, our approach ensures safety by computing a fail-
safe trajectory (time horizon of 6s) which lets the ego vehicle
turn right and come to a stop behind the occupancy set of
bs. This fail-safe trajectory starts at the last possible point in
time along the intended motion (note that a braking maneuver
without turning right needs to be executed earlier). Up until
this point in time, the ego vehicle can already start to verify
the newly planned intended motion while accounting for new
sensor measurements.

V. CONCLUSIONS AND FUTURE WORK

Our proposed online verification approach guarantees the
safety of autonomous vehicles on the fly. In every planning
cycle, we verify intended motions by predicting all feasible le-
gal behaviors of obstacles and computing fail-safe trajectories.
In contrast to existing works, our approach is computationally
efficient and enables fail-safe operation, since a safe plan exists
at any given point in time—even if a newly planned intended
motion of the vehicle is rejected as potentially unsafe.

Currently, we are testing our approach on real test vehicles
to validate the safety benefits and to investigate the inter-
vention rate of our safety layer in various traffic situations.
Moreover, we are planning to further benchmark our approach
in simulated safety-critical scenarios.
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