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Abstract

Introduction

Appropriate mechanical ventilation and prevention of alveolar collaps is mainly dependent

on transpulmonary pressure TPP. TPP is assessed by measurement of esophageal pres-

sure EP, largely influenced by pleural and intraabdominal pressure IAP. Consecutively,

TPP-guided ventilation might be particularly useful in patients with high IAP.

This study investigates the impact of large volume paracentesis LVP on TPP, EP, IAP as well

as on hemodynamic and respiratory function in patients with liver cirrhosis and tense ascites.

Material and methods

We analysed 23 LVP-procedures in 11 cirrhotic patients ventilated with the AVEA Viasys

respirator (CareFusion, USA) which is capable to measure EP via an esophageal tube.

Results

LVP of a mean volume of 4826±1276 mL of ascites resulted in marked increases in inspira-

tory (17.9±8.9 vs. 5.4±13.3 cmH2O; p<0.001) as well as expiratory TPP (-3.0±4.7 vs. -15.9

±10.9 cmH2O; p<0.001; primary endpoint). In parallel, the inspiratory (2.4±8.7 vs. 14.1±14.5

cmH2O; p<0.001) and expiratory EP (12.4±6.0 vs. 24.9±11.3 cmH2O; p<0.001) significantly

decreased. The effects were most pronounced for the release of the first 500 mL of ascites.

LVP evoked substantial decreases in IAP and central venous pressure CVP. By contrast,

mean arterial pressure, cardiac index, global end-diastolic volume index, extravascular lung

water index and systemic vascular resistance index did not change.

Among the respiratory parameters we observed an increase in paO2/FiO2 (247.7±60.9

vs. 208.3±46.8 mmHg; p<0.001) and a decrease in Oxygenation Index OI (4.8±2.0 vs. 5.8

±3.1 cmH2O/mmHg; p = 0.002). Tidal volume (510±100 vs. 452±113 mL; p = 0.008) and
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dynamic respiratory system compliance Cdyn (46.8±15.9 vs. 35.1±14.6 mL/cmH20;

p<0.001) increased, whereas paCO2 (47.3±10.7 vs. 51.2±12.3mmHg; p = 0.046) and the

respiratory rate decreased (17.1±7.3 vs. 19.6±7.8 min-1; p = 0.010).

Conclusions

In mechanically ventilated patients with decompensated cirrhosis, intraabdominal hypertension

resulted in a substantially decreased TPP despite PEEP-setting according to the ARDSNet.

In these patients LVP markedly increased TPP and improved respiratory function in par-

allel with a decline of EP. Furthermore, LVP induced a decrease in IAP and CVP, while

other hemodynamic parameters did not change.

Introduction

Mechanical ventilation (MV) in acute respiratory distress syndrome (ARDS) is guided by a

number of standard recommendations for key parameters such as positive end-expiratory

pressure (PEEP) and tidal volume (TV) [1, 2]. In addition to these general recommendations

modern strategies try to optimize the ventilator setting for the individual patient. Due to com-

plex interactions of MV with extrapulmonary organ functions, personalized ventilator setting

should also consider the underlying disease. To account for the individual pulmonary (patho)

physiology, modern respirators have become diagnostic tools in addition to their therapeutic

purpose. An increasing number of volumes, pressures and flows are routinely and continu-

ously provided by advanced respirators [3, 4]. Until recently this ventilator-monitoring was

mainly based on the measurement of intrapulmonary airway pressures and volumes. However,

sufficient ventilation depends not only on intrapulmonary pressures, but to a great extent on

the extrapulmonary pressure level. The latter largely varies in critically ill patients, and it is

highly dependent on both pleural and intraabdominal pressures [5, 6]. “Extrapulmonary” or

pleural pressure usually is estimated by measurement of the esophageal pressure (EP) using

esophageal catheters [7, 8] which allows monitoring of transpulmonary pressure (TPP). TPP is

defined as the difference between the airway pressure (PAW) and EP. TPP is crucial for lung-

distending and overcoming chest wall elastance [9]. Consequently, modern ventilator strate-

gies aim at optimization of TPP to avoid recurring alveolar collapse as well as over-distension

[10]. In patients with ARDS, a strategy adjusting PEEP according to TPP improved outcome

compared to current guideline-based treatment [11].

Ventilator setting in patients with liver cirrhosis is particularly challenging due to several

reasons: Previous studies demonstrated that the need for mechanical ventilation is indepen-

dently associated with the ICU mortality of patients with decompensated liver cirrhosis [12–

14]. The accumulation of ascites is a typical complication of end-stage liver disease. Ascites

impairs lung function due to an increase of intraabdominal pressure (IAP) [6, 15–17].

Therefore, TPP-guided ventilator setting might be of particular importance in patients with

tense ascites and increased IAP. A number of studies in ventilated patients with cirrhosis suggest

that large volume paracentesis LVP [18–20] improves lung compliance and oxygenation [21–24].

Furthermore, one of these studies using trans-pulmonary thermodilution (TPTD) technique dem-

onstrated hemodynamic stability in addition to markedly improved respiratory function [25].

Despite their unquestioned merits none of these studies investigated the impact of LVP on

TPP. Therefore, our study aimed to investigate the effect of LVP on inspiratory and expiratory

TPP (primary endpoint), IAP and hemodynamics in patients with decompensated liver cirrho-

sis equipped with monitoring of EP as well as with TPTD.
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Materials and methods

Study design

This prospective observational study was approved by the institutional review board (Ethik-

kommission Technische Universität München; Fakultät für Medizin; Project number 5384/

12). Informed consent was obtained by all patients or their legal representatives.

Between January 2012 and July 2014 all patients of an eight-bed university hospital general

ICU with decompensated liver cirrhosis under mechanical ventilation were screened for the

feasibility of EP measurements, if LVP had to be performed irrespective of the study and based

on the indication made by the treating ICU physician. EP-analysis was considered to be feasi-

ble in patients without high-grade esophageal varices (grad III or IV and/or risk signs like

cherry red spots or “varix on varix phenomenon”) and without a history of gastrointestinal

bleeding within last 6 months.

Finally, a total of 23 LVP-procedures in 11 patients with decompensated cirrhosis and tense

ascites were analyzed.

Techniques

Ventilation. In general, eligible patients were transferred from the routine ventilator

device EVITA XL of our ICU (Dräger, Lübeck, Germany) to the AVEA Viasys ventilator (Car-

eFusion, San Diego; USA). Key ventilation parameters were set according to ARDSNet recom-

mendations for PEEP and low tidal volume [1, 2]. This ventilator setting—based on medical

assessment by the treating ICU physician irrespective of the study—was not changed after the

transfer to the AVEA device and initiation of EP measurement with an AVEA esophageal tube

(SmartCath Nasogastric Pressure Monitoring Tube Set, 16 FR). This tube provides EP mea-

surement via an air-inflatable ballon and can be placed identically to a conventional nasogas-

tric tube, hereby also allowing for enteral nutrition. The AVEA ventilator continuously

analyzed levels of airway pressure PAW, EP and the resulting TPP.

Routine parameters of ventilator setting such as PEEP, tidal volume TV, mean airway pressure,

dynamic respiratory system compliance Cdyn and fraction of inspired oxygen FiO2 were recorded

at baseline, during and at the end of paracentesis. PaO2 and paCO2 were measured using a fully-

automatic blood gas analysis device (Rapid Point 400, Siemens Healthcare Diagnostic GmbH,

Eschborn, Germany). Blood gas analysis and ventilatory parameters were used for calculation of

PaO2/FiO2 as well as Oxygenation Index (OI = FiO2
�mean airway pressure�100/PaO2) [26].

LVP and measurement of IAP. LVP was performed in supine position and guided by

ultrasound [27]. Two techniques of IAP-monitoring were used in parallel: IAP was determined

by intra-peritoneal measurement (IAP_P) connecting the puncture needle with a pressure

transducer and in addition by measurement of the intra-vesical (IAP-V) pressure [28, 29]. Sub-

stitution of albumin was performed after LVP according to the current guidelines [30].

Hemodynamic monitoring. All patients were under hemodynamic monitoring with the

PiCCO-2-device (Pulsion Medical Systems SE, Feldkirchen, Germany) irrespective of the

study. Hemodynamic monitoring using TPTD was performed as previously described [31,

32]: A 5 Fr thermistor-tipped arterial line (Pulsiocath, Pulsion Medical Systems SE, Feld-

kirchen Germany) inserted through a femoral artery and a hemodynamic monitor (PiCCO-2,

Pulsion Medical Systems SE, Feldkirchen Germany) were used to derive and analyze the ther-

modilution curve after injection of a cold indicator bolus (15ml of saline) through a central

venous catheter. Measurements were done in triplicate, averaged and automatically indexed

according to the manufacturer´s recommendation. Central venous pressure (CVP) was mea-

sured via the central venous catheter at end-expiration.
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Data collection

Clinical and laboratory parameters for the calculation of APACHE II-, SOFA-, MELD- and Child-

Pugh-scores were recorded on the day of paracentesis. Ventilatory parameters including TPP and

EP as well as IAP were documented immediately before as well as after the release of 500, 1000,

1500, 3000, 4500 and up to a maximum volume of 6000 mL ascites. Parameters of hemodynamic

and respiratory function were documented immediately before and after paracentesis.

Statistical analysis, power calculation

Primary endpoint and statistics. For primary outcome analysis we investigated expira-

tory TPP at the end of LVP compared to baseline. Assuming a decrease in at least 80% of 20

LVPs resulted in a statistical power of at least 80% with a p-value < 0.05 (two-tail-test).

All analyses were performed using IPM SPSS Statistics 23 (IMB Corp.; Armonk; NY);

graphs were generated using GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA, USA).

Correlations were calculated using Spearman‘s correlation coefficient. Continuous variables

are expressed as mean±standard deviation. Categorical variables are expressed as percentages.

To compare continuous variables we used Wilcoxon-test for paired samples. Significance was

assumed at a p-value < 0.05.

Results

Patients´ characteristics

Patients´ baseline characteristics are presented in Table 1.

23 LVP-procedures in 11 patients (6 female, 5 male) with decompensated liver cirrhosis

and tense ascites were performed. The etiology of cirrhosis was predominantly alcoholic.

APACHE, SOFA, MELD and Child-Pugh scores were in line with critical illness and advanced

hepatic impairment. Patients were mechanically ventilated due to respiratory insufficiency

(n = 8) or hepatic encephalopathy (n = 3). Ventilation was performed as pressure-controlled

(n = 3 patients; 7 datasets) or pressure-supported ventilation (n = 8 patients; 16 datasets).

Mean PEEP-level was 7.7±2.0 (6–14) cmH20 and mean FiO2 42.0±11.1 (30–70) %. Both

parameters were maintained constant during LVP.

For all patients the PEEP was set according to the ARDSNet recommendations for the indi-

vidual FiO2 according to the local standard: As shown in Table 1, minimum, mean and maxi-

mum values of PEEP and FiO2 were in line with combinations of both parameters suggested

by the ARDSNet.

Large volume paracentesis, transpulmonary, esophageal and

intraabdominal pressures

23 LVP-procedures with a mean volume of 4826±1276 mL removed ascites (�3000 mL in all

23 LVPs, 4500 mL in 17 LVPs, 6000 mL in 11 LVPs) were analyzed. LVP resulted in a marked

increase of mean TPP: At the end of LVP, inspiratory TPP increased from 5.4±13.3 to 17.9±8.9

cmH2O (p<0.001; Fig 1). Expiratory TPP increased from -15.9±10.9 to -3.0±4.7 cmH20

(p<0.001; Fig 2). Despite these increases, mean expiratory TPP remained in the negative

range, when patients were ventilated with the preset PEEP-level according to the ARDSNet

recommendations.

Conversely, EP significantly decreased: Inspiratory EP was reduced from 14.1±14.5 to 2.4

±8.7 cmH2O (p<0.001; Fig 3). Expiratory EP diminished from 24.9±11.3 to 12.4±6.0 cmH2O

(p<0.001; Fig 4).
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The changes of TPP (ΔTPP) and EP (ΔEP) were highest after the release of the first 500 mL

ascites volume: The course of these changes in pressure levels during stepwise paracentesis

from 500 mL to a maximum of 6000 mL ascites is illustrated in Table 2. Due to the different

numbers of patients reaching the different volumes of removed ascites no statistical compari-

sons were performed, and the data shown in Table 2 are predominantly descriptive.

Furthermore, LVP resulted in a marked decrease of IAP: At the end of paracentesis, levels

of IAP_P had lowered from 11.7±2.0 to 5.2±2.3 mmHg (p<0.001; Fig 5). IAP_V had decreased

from 16.2±6.0 to 8.1±2.3 mmHg (p = 0.001; Fig 6). The differences between IAP_P and IAP_V

are in line with previous findings of a slight overestimation of intraabdominal pressure by

bladder pressure measurement [33]. However, the decreases in IAP_V and IAP_P induced by

complete LVP (after LVP vs. before LVP) were not significantly different for both techniques

to measure IAP (p = 0.508).

Similarly to changes in TPP and EP, changes in intraabdominal pressures ΔIAP_P and

ΔIAP_V were most pronounced for the removal of the first 500 mL volume during stepwise

paracentesis (Table 3). Due to the different numbers of patients reaching the different volumes

of removed ascites no statistical comparisons were performed, and the data shown in Table 3

are predominantly descriptive.

Hemodynamic parameters

LVP reduced central venous pressure CVP from 21.4±9.4 to 15.0±9.7 mmHg (p<0.001). The

substantial decrease in CVP by about 30% was in contrast to unchanged values for all

Table 1. Patients´ baseline characteristics.

Patients´ baseline characteristics

Male sex, n/total (%) 5/11 (45%)

Age, years 51±15

Body weight, kg 77±21

Body height, cm 173±9

APACHE II 24±8 (13–36)

SOFA 14±4 (7–20)

MELD 27±10(19–40)

Child-Pugh 10.4±2.4 (8–13)

Child C, n/total (%) 10/11 (91%)

Etiology of cirrhosis, n/total (%) Alcoholic 7/11 (64%)

Viral 2/11 (18%)

Cryptogenic 2/11 (18%)

Mode of ventilation, n/total (%) Pressure-controlled 3/11 (27%)

Pressure-supported 8/11 (73%)

Indication for ventilation, n/total (%) Pneumonia, Sepsis 8/11 (73%)

Hepatic encephalopathy 3/11 (27%)

Baseline PEEP-level, cmH2O 7.7±2.0 (6–14)

Baseline FiO2, % 42.0±1.1 (30–70)

APACHE: Acute physiology and chronic health evaluation

SOFA: Sequential organ failure assessment

MELD: Model of end-stage liver disease

PEEP: Positive end-expiratory pressure

FiO2: Fraction of inspired oxygen

https://doi.org/10.1371/journal.pone.0193654.t001
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hemodynamic parameters assessed by TPTD or pulse contour analysis: Mean arterial pressure

MAP (81.0±8.6 vs 78.6±8.4 mmHg, p = 0.193), cardiac Index CI (5.3±1.5 vs 5.6±1.2 L/min/m2,

p = 0.211), global end-diastolic volume index GEDVI (771.4±103.6 vs 770.9±87.2 mL/m2,

p = 0.990), extravascular lung water index EVLWI (10.5±4.2 vs 10.8±3.9 mL/kg, p = 0.652) and

systemic vascular resistance index SVRI (1013.0±419.8 vs 960.5±369.7 dyn�s�cm-5�m-2,

p = 0.397) did not change significantly (Table 4).

Respiratory parameters

All parameters and indicators of respiratory function significantly improved during LVP with-

out changes of the ventilator setting: We registered an improvement of paO2/FiO2 from 208.3

±46.8 to 247.7±60.9 mmHg (p<0.001) as well as of Oxygenation index OI from 5.8±3.1 to 4.8

±2.0 cmH2O/mmHg (p = 0.002).

PaO2/FiO2 before all LVP procedures was in line with ARDS according to the Berlin-criteria

[34]. After LVP, paO2/FiO2 had substantially improved in four measurements to values above

300mmHg, which is outside the range defining ARDS (see Table 5).

Fig 1. Inspiratory transpulmonary pressure TPP in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g001
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Furthermore, LVP induced an increase of tidal volume TV from 452±113 to 510±100 mL

(p = 0.008) and of compliance Cdyn from 35.1±14.6 to 46.8±15.9 mL/cmH20 (p<0.001). LVP

also induced a decrease in paCO2 from 51.3±12.2 to 47.3±10.7 (p = 0.046). Based on the high

ratio of patients with pressure-supported ventilation in this analysis, we also found a decrease

of the respiratory rate from 19.6±7.8 to 17.1±7.3 min-1 (p = 0.010). Improvement of respiratory

function is outlined in Table 6.

Discussion

In this study LVP induced an immediate improvement of several parameters of lung function

in patients with decompensated liver cirrhosis, tense ascites and high intraabdominal pressure

IAP. According to our data this respiratory enhancement is largely referable to changes in

transpulmonary pressure TPP.

Optimization of TPP seems to play a key role in critically ill patients with elevated IAP.

Adapted levels of TPP improve oxygenation and limit alveolar damage [5, 10]. TPP-guided

Fig 2. Expiratory transpulmonary pressure TPP in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g002
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ventilation has been investigated with promising results in patients with acute lung injury and

ARDS [11, 35]. In the present study we used a baseline ventilator setting in line with the cur-

rent Acute Respiratory Distress Syndrome Network (ARDSNet) recommendations [1, 36].

Under these conditions we noticed overall negative expiratory levels for TPP, indicating

repeated alveolar collapse and lung atelectasis [37]. LVP provoked a significant increase of

TPP with respiratory improvement together with inverse decreases of esophageal pressure EP

and IAP.

These findings are supported by previous data underlining the impact of LVP on oxygen-

ation. The benefit of LVP is particularly due to decreases in IAP and consecutive improvement

of respiratory mechanics [24, 38, 39]. Additionally, several studies suggest that LVP increases

alveolar recruitment and gas exchange in mechanically ventilated patients by enhancing the

end-expiratory lung volume as well as Cdyn [24, 25]. Our study confirmed this beneficial effect

of LVP on respiratory key parameters: The release of ascites resulted in significant increases of

Fig 3. Inspiratory esophageal pressure EP in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g003
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paO2/FiO2, Cdyn and tidal volume. Moreover, the Oxygenation index OI improved after LVP.

OI combines mean airway pressure level with paO2/FiO2 in a single and easily provided param-

eter. In several studies OI better predicted outcome of ARDS-patients compared to ARDS defi-

nitions predominantly based on paO2/FiO2 [40–42]. With regard to the substantial changes of

pressure levels during LVP, OI seems to be particularly useful to reflect respiratory function in

case of decompensated cirrhosis.

Furthermore, LVP induced a substantial decrease of IAP in our study. Elevations of IAP are

common in decompensated liver cirrhosis [6, 15]. Increased IAP is a risk factor for mortality

“per se” in critically ill patients. Intraabdominal hypertension decreases abdominal perfusion

and frequently results in impairment of renal, cardiovascular and respiratory organ function

[16, 17, 43–45]. The evacuation of intraabdominal fluid collections and ascites is one of the

few non-surgical options in the management of elevated IAP [46]. In line with this, we found a

rapid and significant reduction of markedly elevated baseline IAP with the most pronounced

Fig 4. Expiratory esophageal pressure EP in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g004
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Table 2. Changes in TPP (ΔTPP) and EP (ΔEP) during paracentesis compared to the previous measurement.

ΔTPP and ΔEP during stepwise release of ascites (cmH2O)

Removed volume, mL n ΔTPPinsp ΔTPPexp ΔEPinsp ΔEPexp

500 mL 23 +3.05±2.33 +3.47±3.76 -3.31±3.20 -3.42±3.73

1000 mL 23 +2.11±1.49. +1.32±1.52 -1.88±2.16 -1.71±2.34

1500 mL 23 +1.23±2.84 +1.30±1.36 -0.93±2.15 -1.75±2.64

3000 mL 23 +2.47±2.78 +3.41±5.03 -2.63±3.60 -2.75±4.43

4500 mL 17 +2.66±8.7 +3.26±3.5 -2.50±8.2 -1.95±4.2

6000 mL 11 +2.72±0.4 +0.55±1.2 -1.23±0.8 -1.38±1.0

ΔTPPinsp: Changes in inspiratory transpulmonary pressure

ΔTPPexp: Changes in expiratory transpulmonary pressure

ΔEPinsp: Changes in inspiratory esophageal pressure

ΔEPexp: Changes in expiratory esophageal pressure

https://doi.org/10.1371/journal.pone.0193654.t002

Fig 5. Intraabdominal pressure derived from intra-peritoneal measurement (IAP_P) in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g005
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decrease after the first 500 mL of evacuated volume. This observation is supported by previous

findings that in case of high baseline IAP even a low-volume paracentesis might considerably

decrease the pressure level [28].

In contrast to the beneficial effects on TPP, respiratory function and IAP, there were no

changes in hemodynamic function after LVP. Previous studies yielded contradictory state-

ments regarding cardiocirculatory parameters: Some of them described mechanisms of para-

centesis-induced circulatory dysfunction [47–49], while other data did not find an impairment

of the hemodynamic system [50, 51]. Our hemodynamic analyses by transpulmonary thermo-

dilution TPTD and pulse contour analysis revealed steady parameters of hemodynamic func-

tion. This favorable result is in tune with a recent trial illustrating that LVP did not restrain the

hemodynamic profile assessed by TPTD [25]. Nevertheless, we registered a significant decrease

of CVP after paracentesis. Previous studies characterized CVP as an unreliable parameter

regarding blood volume, cardiac preload and fluid management, since CVP is considerably

Fig 6. Intraabdominal pressure derived from intra-vesical measurement (IAP_V) in the course of stepwise release of ascites.

https://doi.org/10.1371/journal.pone.0193654.g006
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depending on extravascular factors such as patient positioning, ventilator setting, intra-tho-

racic as well as extra-thoracic pressure level [32, 52–54]. Therefore, our data with decreases of

both IAP and CVP in parallel with paracentesis—again—question CVP as a marker of preload

in mechanically ventilated patients with high IAP.

Altogether, the study emphasizes the importance of individualized and optimized ventilator

setting in certain patient populations. We used a baseline ventilator setting in accordance with

the current Acute Respiratory Distress Syndrome Network (ARDSNet) recommendations [1,

36]. Parameters were adjusted by the treating ICU physician irrespective of the present study.

The baseline setting was not changed after the transfer to the AVEA device with initiation of

EP and TPP measurement. The overall negative values for expiratory TPP carry the risk of

cyclic alveolar collapse. Accordingly, our data show that tense ascites markedly restraines

TPP- Consequently, PEEP-setting exclusively based on ARDSNet-recommendations might be

unfavorable in case of intraabdominal hypertension. Patients with decompensated cirrhosis or

Table 3. Changes in intraabdominal pressures (ΔIAP_P and ΔIAP_V) during stepwise paracentesis compared to

the previous measurement.

Changes in intraabdominal pressures ΔIAP_P and

ΔIAP_V during stepwise paracentesis (mmHg)

Removed volume, mL n ΔIAP_P Δ IAP_V

500 mL 23 -1.65±0.94 -2.64±4.67

1000 mL 23 -0.99±0.70 -1.59±1.36

1500 mL 23 -0.90±0.53 -1.32±1.15

3000 mL 23 -1.39±0.59 -1.32±0.64

4500 mL 17 -0.60±0.5 +0.12±1.0

6000 mL 11 -1.13±0.9 -0.64±1.3

ΔIAP_P: Changes in intraabdominal pressure (intra-peritoneal measurement)

ΔIAP_V: Changes in intraabdominal pressure (intra-vesical measurement)

https://doi.org/10.1371/journal.pone.0193654.t003

Table 4. Hemodynamic parameters assessed by TPTD and CVP-measurement before and after paracentesis.

Hemodynamic parameters assessed by TPTD and CVP-measurement

Before paracentesis After paracentesis p-value

Mean ± SD

Std. Deviation

Mean ± SD

MAP, mmHg 81.0±8.6 78.6±8.4 0.193

CI, L/min/m2 5.3±1.5 5.6±1.2 0.211

GEDVI, mL/m2 771.4±103.6 770.9±87.2 0.990

EVLWI, mL/kg 10.5±4.2 10.8±3.9 0.652

SVRI,

dyn�s�cm-5�m-2
1013.0±419.8 960.5±369.7 0.397

CVP, mmHg 21.4±9.4 15.0±9.7 < 0.001

TPTD: Transpulmonary thermodilution

MAP: Mean arterial pressure

CI: Cardiac index

GEDVI: Global end-diastolic volume index

EVLWI: Extravascular lung water index

SVRI: Systemic vascular resistance index

CVP: Central venous pressure

https://doi.org/10.1371/journal.pone.0193654.t004
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ARDS might benefit from PEEP-setting at a higher level to maintain positive TPP and to coun-

teract IAP. However, any increase of airway and intrathoracic pressure level by higher PEEP

necessarily aggravates intraabdominal hypertension [55, 56]. Further increases in IAP might

be harmful especially in patients with decompensated cirrhosis [43–45]. By contrast, paracent-

esis improves both IAP and TPP without the need to further increase the airway pressure level.

Nevertheless, a ventilator setting restricted exclusively to optimized TPP might be difficult to

guide in case of high-grade esophageal varices which preclude the measurement of esophageal

pressure. Since high-grade varices are frequent in end-stage liver disease, other strategies includ-

ing continuous or repeated measurements of IAP should be considered in these patients.

Strengths and limitations

To the best of our knowledge this is the first study analyzing the effects of LVP on TPP, respi-

ratory and ventilatory parameters as well as advanced hemodynamic monitoring data in cir-

rhotic patients with tense ascites.

Although our results are conclusive with high levels of statistical significance, this is a single

centre study with a limited number of patients and datasets.

Conclusion

In mechanically ventilated patients with decompensated cirrhosis, tense ascites with increased

IAP resulted in a substantially decreased TPP despite PEEP-setting according to the ARDSNet.

LVP induced a substantial improvement of TPP, paO2/FiO2, paCO2, OI, TV and Cdyn. CVP

decreased in parallel with IAP, while all other hemodynamic parameters remained unchanged

by LVP.

Table 5. Classification of paO2/FiO2 according to the Berlin-definition before and after paracentesis.

ARDS according to Berlin definition

Before LVP After LVP

No 0/23 (0%) 4/23 (17%)

Mild 16/23 (70%) 16/23 (70%)

Moderate 7/23 (30%) 3/23 (13%)

Severe 0/23 (0%) 0/23 (0%)

https://doi.org/10.1371/journal.pone.0193654.t005

Table 6. Respiratory and ventilatory parameters before and after paracentesis.

Respiratory and ventilatory parameters

before paracentesis after paracentesis p-value

mean (Std. Deviation)

Std. Deviation

mean (Std. Deviation)

paO2/FiO2 208.3±46.8 247.7±60.9 < 0.001

OI, cmH2O/mmHg 5.8±3.1 4.8±2.0 0.002

paCO2, mmHg 51.2±12.3 47.3.±10.7 0.046

TV, mL 452±113 510±100 0.008

Cdyn, mL/cmH2O 35.1±14.6 46.8±15.9 < 0.001

Respiratory rate, min-1 19.6±7.8 17.1±7.3 0.010

OI: Oxygenation Index

TV: Tidal volume

Cdyn: Dynamic compliance

paCO2: Arterial partial pressure of carbon dioxide

https://doi.org/10.1371/journal.pone.0193654.t006
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