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Abstract

The top quark is a centerpiece of the Standard Model (SM) of Particle Physics. It
interacts across all sectors and with all gauge fields, and has been successfully used as a
portal to precision measurements of the SM parameters. Top quarks are also indirectly
related to other SM sectors, for example to Higgs boson production processes which
are induced predominantly by top-quark loops at the Large Hadron Collider (LHC).
During Runs I and II of the LHC, a large number of top-quark pair (tt̄) and single-top
events were recorded. They allow to reduce the experimental uncertainty on top-quark
properties, like the top-quark mass, spin correlations and W -boson polarization in tt̄
events, the Wtb coupling, or flavor-changing neutral currents. In the case of the top-
quark mass, the experimental uncertainties of the latest ATLAS and CMS combinations
are now competing with theoretical uncertainties: approximations that were previously
thought to be appropriate must be reevaluated.

In particular, the narrow-width approximation (NWA) for top-quark pair processes
assumes the production of an on-shell top and anti-top quark, and is used in Monte-Carlo
(MC) predictions for most experimental measurements. Since the actual final-state is
composed of the top-quark pair decay products, a more accurate description of the signal
should consider W+W−bb̄ final-states instead. The full final-state includes contributions
that cannot be factorized in both top-quark decay legs, or that do not contain a top-quark
pair to begin with. These diagrams are called non-factorizing, respectively non-doubly
resonant. In cases where measurements rely on phase-space regions sensitive to these
contributions, the extracted top-quark mass will be biased.

In this work, the ATLAS top-quark mass analysis in the eµ dilepton channel is taken
as an example. The analysis uses simulated template distributions to extract the MC
top-quark mass via an unbinned likelihood fit. In a setup similar to the experimental
analysis, the extracted top-quark mass is compared at parton level in different theoretical
descriptions of the tt̄ final-state at next-to-leading order (NLO) in production. MC
events are produced for different descriptions of the top-quark decay in the NWA, as
well as for the full W+W−bb̄ process at NLO QCD in production. The top-quark mass
mMC
t extracted by the template fit method is compared for each of these theoretical

descriptions, and important offsets of up to ∆mMC
t ∼ 1 GeV are underlined. A more

realistic assessment is presented, where these predictions are folded to detector level.
As mentioned, the top-quark mass also plays an important role in other sectors of the

SM. In di-Higgs production with non-SM values of the Higgs couplings, it is shown that
the mt-dependence of QCD NLO corrections introduces sizable differences with respect
to predictions where the top-quark degrees of freedom are integrated out. A full-fledged
MC event generator is introduced with the possibility of varying the Higgs self-coupling
and the top-Higgs Yukawa coupling.
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Zusammenfassung

Im Standard-Modell (SM) der Teilchenphysik spielt das Top-Quark eine zentrale Rolle.
Es wechselwirkt mit Teilchen aller Sektoren sowie mit allen quantentheoretischen Eich-
feldern, und wurde in verschiedenen Zusammenhängen als Grundpfeiler für Präzisions-
messungen des SM verwendet. Top-Quarks sind auch indirekt mit anderen Sektoren
des SM eng verbunden: Higgs-Bosonen zum Beispiel werden am Large Hadron Col-
lider (LHC) überwiegend durch Top-Quark-Schleifen erzeugt. Während Run I und II
des LHC wurde eine große Anzahl an Top-Quark-Paaren (tt̄) und Einzel-Top-Events
ermittelt. Diese ermöglichen es, Messungen von Top-Quark-Eigenschaften bedeutend zu
verbessern, beispielsweise die der Top-Quark-Masse. In diesem Fall sind die von ATLAS
und CMS angegebenen experimentellen Unsicherheiten zu dem Punkt gekommen, wo sie
mit den aktuellen theoretischen Unsicherheiten konkurrieren: das heisst insbesondere,
dass früher verwendete Näherungen neu evaluiert werden müssen.

Die sogenannte Schmal-Breite-Näherung (NWA), bei der ein Top-Quark-Paar on-shell
produziert wird, wird üblicherweise in den meisten Monte-Carlo (MC) Generatoren ver-
wendet. Weil der gemessene tt̄-Endzustand aber von den Top-Zerfallsprodukten gebildet
wird, sollte eine konsistente Beschreibung des Signals eher auf dem intermediären
W+W−bb̄ Zustand beruhen. Letzerer beinhaltet Feynman-Diagramme, die entweder
nicht in zwei Top-Zerfall-Kanäle faktorisieren, oder überhaupt keine zwei Top-Propa-
gatoren aufweisen. Diese Diagramme heissen nicht-faktorisierend, bzw. nicht-doppelt-
resonant. Wenn Messungen durchgeführt werden, welche sensitiv auf solche Beiträge
sind, kann es zu einer Verzerrung der extrahierten Top-Quark-Masse kommen.

Die ATLAS Top-Quark-Massenanalyse im eµ-Dileptonkanal, welche simulierte Tem-
plates zur Bestimmung der Top-Quark-Masse verwendet, wird als Beispiel genommen.
In einem ähnlichen Setup wird die extrahierte Top-Masse verglichen, wo unterschiedliche
tt̄- Endzustandsbeschreibungen in nächstführender Ordnung der Störungstheorie (NLO)
in der Produktion verwendet werden. Genauer werden für drei verschiedene Beschrei-
bungen des Top-Quark-Zerfalls, sowie für die volle NLO W+W−bb̄-Rechnung, Verteilun-
gen erzeugt. Die mithilfe der Template-Fit-Methode extrahierte Top-Quark-Masse mMC

t

zeigt erhebliche Unterschiede bis zu ∆mMC
t ∼ 1 GeV. Eine realistischere Studie wird

eingeführt, in welcher Particle-Level-Vorhersagen auf Detektor-Level gefaltet werden.
Außerdem wirken Top-Quark-Effekte auch im Higgs-Sektor. Anhand des Beispiels

von Higgs-Paar-Produktion (hh) beim LHC wird gezeigt, dass die mt-Abhängigkeit von
hh-Produktion auf NLO QCD zu Unterschieden in differentiellen Verteilungen führt
im Vergleich zu Vorhersagen, wo die Top-Quark-Freiheitsgrade ausintegriert werden.
Ein vollständiges MC-Programm zur Erzeugung von Higgs-Paar-Events, wo die trilin-
eare Higgs-Selbstkopplung sowie die Higgs-Top-Yukawakopplung variiert werden können,
wird präsentiert.
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1 Introduction

The Standard Model (SM) of Particle Physics is one of the most successful physical
theories to date. While it still raises some unanswered questions that are outlined in
Chapter 2, the precision to which its predictions were tested by high-energy colliders, but
also in low-energy experiments or larger-scale universe phenomena, is extremely convinc-
ing. In particular, the SM bases on mathematical concepts that allow for a significant
predictive power. Considering that physicists tend to prefer a theory with the least
amount of free parameters and a maximal predictive power, the SM fares rather well:
it contains only 19 parameters, namely the angles of the Cabibbo-Kobayashi-Maskawa
mixing matrix and its CP-violating phase (3 + 1), the gauge couplings corresponding
to the model’s underlying symmetries (3), the lepton and quark masses (9), the QCD
vacuum angle (1), and the Higgs mass and vacuum expectation value (2). Since most
of these parameters have been measured to an excellent precision, efforts have largely
concentrated on the more elusive parameters, one of these being the top-quark mass.

Because the top quark is the heaviest known elementary particle, with a mass from
the world combination measured at mt = 173.0 ± 0.4 GeV [1], physicists had to wait
until 1995 for its observation by the CDF [2] and DØ [3] experiments at Fermilab, 23
years after it was predicted. Only then did the last missing piece of the three quark
generations fall into place. Nowadays, abundant production of top quarks with the
Large Hadron Collider (LHC) at CERN allows for a variety of accurate measurements
of its properties. Of particular interest, the precise determination of its mass is a key
to a deeper understanding of modern quantum-field theory (QFT). Most notably, the
top-quark mass enters global electroweak fits which are important for consistency testing
of the SM; it also strongly affects corrections to the Higgs quartic coupling, thus having
a large impact on the stability of the SM vacuum. Finally, being the only quark with a
lifetime surpassing the hadronization scale, it is the only bare colored particle produced
in SM processes. In general, one has to choose an appropriate mass definition, be it a
QFT-consistent definition like the pole mass (on-shell renormalized) and the MS mass
(renormalized after the short-distance MS scheme), or the so-called Monte-Carlo (MC)
mass.

Recently, the ATLAS and CMS experiments, using innovative approaches and analysis
techniques, have been able to reduce the uncertainty of the measured MC top-quark
mass to about ∆mt ≈ 0.5 GeV in their respective combinations [5, 6] (see Fig. 1.1 for
measurements at the LHC). Achieving a more precise determination of mt constitutes
a significant challenge for both the experimental and theoretical communities. While
on the one hand, experimentalists have to find new ideas to drive down the mostly
systematics-dominated uncertainties, theorists need to improve precision calculations by
going to higher-order predictions and beyond formerly accepted approximations. The

1
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√
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top-quark mass mt. Figure taken from Ref. [4].

computation of higher-order corrections for on-shell top-quark pair (tt̄) production has
been a major success during the LHC era. The production of a pair of on-shell top
quarks is referred to as the narrow-width approximation (NWA). Because the corrections
to NWA calculations are expected to be small, of order O(Γt/mt) < 1% for inclusive
cross-sections, most fixed-order predictions aim at computing higher-order QCD and
EW corrections to top-quark pair production in this approximation.

The experimentalists, though, reconstruct the top-quark pair from their decay prod-
ucts, either from the dilepton, lepton+jets or allhadronic final-states, depending on the
decay channel of the top and anti-top quarks. The fixed-order prediction of a fully-
decayed tt̄ final-state is computationally demanding: instead of a 2 → 2 process, the
final-state phase-space becomes that of a 2→ 4 (for pp→W+W−bb̄) or a 2→ 6 process
(including W -boson decay products). The full final-state prediction at next-to-leading
order (NLO) comprises Feynman diagrams that are not present in the NWA: some do
not contain doubly-resonant top quarks, and others include internal lines between the
top-quark decay legs, which means the latter do not factorize. In fact, the additional in-
terference terms can be of importance to distributions that are sensitive to higher-order
and off-shell effects, for example in phase-space regions populated first at higher-order
in QCD. The qualitative differences between NWA and full W+W−bb̄ predictions shall
be investigated later on.
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Another issue concerns the theoretical definition of the top-quark mass in different
renormalization schemes. Indeed, relations between schemes are known at 4-loop or-
der [7]. This relation suffers from an infrared (IR) so-called renormalon singularity,
which is associated with an intrinsically non-perturbative ambiguity in the definition of
the top-quark pole mass. This inherent uncertainty was estimated to be of the order
O(250 MeV) [8–11]. Moreover, analyses that rely on simulated distributions (like the
template fit method studied in the next chapters) measure the MC top-quark mass, not
the pole mass. Although the discussion on the exact relation of the MC mass to the
top-quark pole mass is still ongoing, the difference between both values is expected to
be of the order O(300− 500 MeV) [12, 13].

In this work, the foundations of the SM are briefly presented, including the Higgs
mechanism and the relation between the Higgs sector and the top quark, in Chapter 2. In
Chapter 3, the basics of higher-order calculations are summarized: the appearance of UV
and IR divergences in loop corrections and the way to deal with them, the perturbative
expansion for QCD at high energies from the running of the strong coupling αs, and the
factorization theorem for hadron-hadron collisions are laid out in some detail. Finally,
the focus point is set on MC event generators in Chapter 4, and the ingredients needed
for particle-level event generation are explained. Switching to the experimental side, the
LHC and in particular the ATLAS detector are presented in Chapter 5. After having
sketched out these fundaments, the different theoretical descriptions of top-quark pair
production are discussed in Chapter 6. With the example of top-quark pair predictions
in the eµ dilepton channel, it is shown how higher-order and off-shell effects can have a
sizable impact on an experimental MC top-quark mass extraction in Chapter 7. There,
four different theoretical descriptions are compared with respect to an experimentally
realistic top-quark mass extraction for pp → W+(→ e+νe)W

−(→ µ−ν̄µ)bb̄. In the
NWA, top-quark pair production is described at NLO QCD, and the top-quark decay is
calculated at different accuracies: LO, respectively NLO QCD, as well as operated by
a parton-shower. The NWA results are compared to a full W+W−bb̄ computation at
NLO QCD. Taking into account detector reconstruction efficiencies and bin migration
effects, which are the subject of Chapter 8, the shift in the extracted top-quark mass is
quantified in an exact ATLAS framework in Chapter 9, where distributions are folded
up to detector level.

Looking at another sector entirely, top quarks also play an important role in cal-
culations for the production of Higgs bosons at the LHC. Because the top quark is
the heaviest SM particle and since the Higgs boson’s coupling to fermions is propor-
tional to their mass, higher-order corrections to Higgs processes mainly happen through
top-quark loops. For instance, single Higgs production at the LHC is dominated by
gluon fusion with a top-quark loop intermediate state (so-called loop-induced produc-
tion). Higher-order corrections to gg → h thus start to contribute at two-loop level
already. The same holds for the production of a pair of Higgs bosons: this process is
of particular interest, since di-Higgs production is the main channel for probing the tri-
linear Higgs self-coupling. Although the Higgs couplings to heavy fermions and gauge
bosons are currently reasonably constrained, as shown in Fig. 1.2, the best limit set
on the Higgs self-coupling’s ratio κλ to the SM-predicted value is given by ATLAS at
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Figure 1.2: Fit values of the Higgs coupling modifiers with respect to the SM-predicted coupling
strength (in the κ−framework).

−5.0 ≤ κλ ≤ 12.1 [16]. In general, the Higgs sector is one of the more poorly explored ex-
perimentally, and it is important to have precise (at best model-independent) theoretical
predictions for the case where the Higgs couplings are not SM-like. It is shown, within a
non-linear Effective Field Theory (EFT) framework allowing to vary the Higgs couplings,
that the full mt-dependence of di-Higgs production at NLO QCD has important effects,
especially on differential cross-section predictions. In Chapter 10, the EFT framework
is introduced in the form of the Electroweak Chiral Lagrangian (EWChL). The results
for di-Higgs cross-sections at NLO QCD and differential distributions with variations
of the Higgs couplings are presented at a center-of-mass energy of 14 TeV for several
benchmark points. Finally, the implementation of the full mt-dependent NLO correc-
tions for di-Higgs production into the Powheg-BOX-V2 [17–19] event generator is the
subject of Chapter 11. In this package, variations of the trilinear Higgs self-coupling
and the top-Higgs Yukawa coupling are now possible. Studies comparing differential
distributions for fixed-order NLO to parton-shower matched predictions are presented.
Parton-shower related uncertainties are also discussed. Finally, the current state of the
SM is summarized and future, potentially interesting developments in both top-quark
and Higgs physics are outlined.
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2 The Standard Model

The SM was developed and supplemented over five decades, and describes all elementary
particles and their interactions via three of the four fundamental forces in a quantum-field
theoretical framework: the electromagnetic, weak and strong interactions. Although it
is known that the SM suffers from some theoretical shortfalls that are briefly described
at the end of this chapter (like non-zero neutrino mass measurements [20]), there is, to
date, no experimental evidence that directly contradicts it.

At the core, the discovery by Glashow, Salam and Weinberg [21–23] that the electro-
magnetic and weak interactions could be embedded in a unified theory constitutes the
first stone of the SM edifice. What if all known forces and particles could be described by
the same, unique theory? Later, the quantum chromodynamics (QCD) sector, describing
the strong interaction, was correctly theorized to rely on a non-Abelian gauge symmetry
group by Wilczek, Gross and Politzer [24, 25]. This group structure leads to the asymp-
totic freedom of color-charged particles. The addition of the Higgs mechanism, which
generates mass terms for the fermions and gauge bosons, culminated in what is known
today as the SM Lagrangian. The SM is one of the most successful theories up-to-date,
and has been extensively tested against experimental data. A comprehensive compari-
son of computed cross-sections for SM processes to values measured by ATLAS, shown
in Fig. 2.1, makes for a compelling argument in favor of the SM’s predictive power.

2.1 Matter content and gauge interactions

The SM is a quantum-field gauge theory: the known elementary particles are interpreted
as the excitations of quantized fields, and their interactions are described by the exchange
of gauge bosons. Both matter and gauge fields obey certain rules under the corresponding
gauge transformations: that is, they transform according to different representations of
the underlying gauge group. The SM builds on the

SU(3)C × SU(2)L × U(1)Y

gauge group. It is the product group of the QCD group SU(3)C , and its corresponding
color quantum number C, and the electroweak group SU(2)L×U(1)Y , that distinguishes
left- from right-handed particles as doublets, respectively singlets under the group trans-
formation. The U(1)Y group’s quantum number is the hypercharge Y . The fermionic
matter fields are classified into left-handed leptons and quarks, both transforming as
doublets under the SU(2)L group, and their singlet right-handed counterparts. There
are furthermore three distinct copies, called generations, or families:

7



2 The Standard Model

∫
L dt

[fb−1]
Reference

WWZ σ = 0.49 ± 0.14 + 0.14 − 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 STDM-2017-22

WWW σ = 0.68 + 0.16 − 0.15 + 0.16 − 0.15 pb (data)
Sherpa 2.2.2 (theory) 79.8 STDM-2017-22

tZj σ = 620 ± 170 ± 160 fb (data)
NLO+NLL (theory) 36.1 PLB 780 (2018) 557

t̄tZ σ = 176 + 52 − 48 ± 24 fb (data)
HELAC-NLO (theory) 20.3 JHEP 11, 172 (2015)

σ = 950 ± 80 ± 100 fb (data)
Madgraph5 + aMCNLO (theory) 36.1 arXiv:1901.03584

t̄tW σ = 369 + 86 − 79 ± 44 fb (data)
MCFM (theory) 20.3 JHEP 11, 172 (2015)

σ = 870 ± 130 ± 140 fb (data)
Madgraph5 + aMCNLO (theory) 36.1 arXiv:1901.03584

ts−chan
σ = 4.8 ± 0.8 + 1.6 − 1.3 pb (data)

NLO+NNL (theory) 20.3 PLB 756, 228-246 (2016)

ZZ
σ = 6.7 ± 0.7 + 0.5 − 0.4 pb (data)

NNLO (theory) 4.6 JHEP 03, 128 (2013)
PLB 735 (2014) 311

σ = 7.3 ± 0.4 + 0.4 − 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

σ = 17.3 ± 0.6 ± 0.8 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 PRD 97 (2018) 032005

WZ
σ = 19 + 1.4 − 1.3 ± 1 pb (data)

MATRIX (NNLO) (theory) 4.6 EPJC 72, 2173 (2012)
PLB 761 (2016) 179

σ = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

PLB 761 (2016) 179

σ = 51 ± 0.8 ± 2.3 pb (data)
MATRIX (NNLO) (theory) 36.1 arXiv: 1902.05759 [hep-ex]

PLB 761 (2016) 179

Wt
σ = 16.8 ± 2.9 ± 3.9 pb (data)

NLO+NLL (theory) 2.0 PLB 716, 142-159 (2012)

σ = 23 ± 1.3 + 3.4 − 3.7 pb (data)
NLO+NLL (theory) 20.3 JHEP 01, 064 (2016)

σ = 94 ± 10 + 28 − 23 pb (data)
NLO+NNLL (theory) 3.2 JHEP 01 (2018) 63

H
σ = 22.1 + 6.7 − 5.3 + 3.3 − 2.7 pb (data)

LHC-HXSWG YR4 (theory) 4.5 EPJC 76, 6 (2016)

σ = 27.7 ± 3 + 2.3 − 1.9 pb (data)
LHC-HXSWG YR4 (theory) 20.3 EPJC 76, 6 (2016)

σ = 57 + 6 − 5.9 + 4 − 3.3 pb (data)
LHC-HXSWG YR4 (theory) 36.1 ATLAS-CONF-2017-047

WW
σ = 51.9 ± 2 ± 4.4 pb (data)

NNLO (theory) 4.6 PRD 87, 112001 (2013)
PRL 113, 212001 (2014)

σ = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

σ = 142 ± 5 ± 13 pb (data)
NNLO (theory) 3.2 PLB 773 (2017) 354

tt−chan
σ = 68 ± 2 ± 8 pb (data)

NLO+NLL (theory) 4.6 PRD 90, 112006 (2014)

σ = 89.6 ± 1.7 + 7.2 − 6.4 pb (data)
NLO+NLL (theory) 20.3 EPJC 77 (2017) 531

σ = 247 ± 6 ± 46 pb (data)
NLO+NLL (theory) 3.2 JHEP 04 (2017) 086

t̄t
σ = 182.9 ± 3.1 ± 6.4 pb (data)

top++ NNLO+NNLL (theory) 4.6 EPJC 74: 3109 (2014)

σ = 242.9 ± 1.7 ± 8.6 pb (data)
top++ NNLO+NNLL (theory) 20.2 EPJC 74: 3109 (2014)

σ = 818 ± 8 ± 35 pb (data)
top++ NNLO+NLL (theory) 3.2 PLB 761 (2016) 136

Z
σ = 29.53 ± 0.03 ± 0.77 nb (data)

DYNNLO+CT14 NNLO (theory) 4.6 JHEP 02 (2017) 117

σ = 34.24 ± 0.03 ± 0.92 nb (data)
DYNNLO+CT14 NNLO (theory) 20.2 JHEP 02 (2017) 117

σ = 58.43 ± 0.03 ± 1.66 nb (data)
DYNNLO+CT14 NNLO (theory) 3.2 JHEP 02 (2017) 117

W σ = 98.71 ± 0.028 ± 2.191 nb (data)
DYNNLO + CT14NNLO (theory) 4.6 EPJC 77 (2017) 367

σ = 190.1 ± 0.2 ± 6.4 nb (data)
DYNNLO + CT14NNLO (theory) 0.081 PLB 759 (2016) 601

pp
σ = 95.35 ± 0.38 ± 1.3 mb (data)

COMPETE HPR1R2 (theory) 8×10−8 Nucl. Phys. B, 486-548 (2014)

σ = 96.07 ± 0.18 ± 0.91 mb (data)
COMPETE HPR1R2 (theory) 50×10−8 PLB 761 (2016) 158
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Standard Model Total Production Cross Section Measurements

Figure 2.1: The predicted cross-sections (in gray, where bands represent the theoretical un-
certainty) for SM production processes at LHC center-of-mass energies of

√
s =

7, 8, 13 TeV are compared to their measured values at the ATLAS experiment (in
color) [26]. The ratio of data to theory is shown to be compatible with 1.

(
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)
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µ−

)
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,

(
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s′

)
L

,

(
ντ
τ−

)
L

,

(
t
b′

)
L

,

e−R, uR, d′R, µ−R, cR, s′R, τ−R , tR, b′R,

and their corresponding anti-particles. Here, e, µ, τ are the three lepton (`) generations
and their corresponding neutrinos ν`. The particles u, c, t, and d′, s′, b′ are the up-
type, respectively down-type quark weak eigenstates. The down-type eigenstates mix
via the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix to give the physical mass
eigenstates d, s, b: d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 .
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2.1 Matter content and gauge interactions

The quarks are the only matter fields carrying color charge, and live in the triplet (3),
respectively anti-triplet (3̄) representations of the SU(3)C group. The color quantum
numbers are defined as red, blue and green, respectively anti-red, anti-blue and anti-
green. That is, for the up- and down-quark:

urub
ug

 ,

drdb
dg

 ∈ SU(3)C .

Governing the interactions, the gauge bosons corresponding to each subgroup couple
with a separate strength to the matter fields. There are:

• three W a
µ , a = (1, 2, 3), bosons belonging to SU(2)L, coupling with strength ∝ g,

• one Bµ boson belonging to U(1)Y , coupling with strength ∝ g′,

• eight gluon fields Gaµ, a = (1, ..., 8), belonging to SU(3)C , with coupling ∝ gs.

By the principle of gauge covariance, the interaction terms between gauge bosons and
the rest of the particle fields are given by promoting the 4-derivatives in the kinetic terms
of the corresponding sector to covariant derivatives:

∂µ → Dµ =

[
∂µ + ig

σa
2
W a
µ + ig′

Y

2
Bµ

]
(EW) , (2.1)

∂µ → Dµ =
[
∂µ + igsTaG

a
µ

]
(QCD) , (2.2)

where σa are the three Pauli matrices (the generators of the Lie algebra of SU(2)L),
and Ta are the eight generators of the Lie algebra of SU(3)C . The covariant derivative
also induces gauge boson self-coupling interactions.

Finally, analogously to the quarks, the electroweak gauge bosons mix to give rise to
the physical charged- and neutral-current interaction bosons:

W± =
1√
2

(
W 1 ∓ iW 2

)
, (2.3)

(
γ
Z

)
=

(
cos(θW ) sin(θW )
−sin(θW ) cos(θW )

)(
B
W 3

)
, (2.4)

where θW is the Weinberg angle.
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2 The Standard Model

2.2 The Higgs mechanism

If one writes down the most general, renormalizable Lagrangian for the model above,
two problems appear:

• the usual Dirac mass terms one can introduce in the fermionic sector are not
invariant under SU(2)L,

• mass terms for the W±, Z bosons are not gauge-invariant.

So, in order to generate masses for the aforementioned particles, an external contrap-
tion is needed. The Brout-Englert-Higgs [27–29] mechanism proposed in 1964 introduces
a new spin-0 fundamental SU(2)L doublet, called the Higgs field:

φ(x) =

(
φ+(x)
φ0(x)

)
. (2.5)

It is colorless, and is charged under the electroweak U(1)Y symmetry. The SU(3)C ×
SU(2)L × U(1)Y Lagrangian gets completed by a (gauged) Higgs sector, where the
covariant derivative Dµ is given by Eq. (2.1):

Lh = (Dµφ)† (Dµφ) + V (φ) (2.6)

= (Dµφ)† (Dµφ) + µ2φ†φ− λ
(
φ†φ
)2
, λ > 0 . (2.7)

Similarly to the case of superconductivity [30], the underlying SU(2)L × U(1)Y sym-
metry can be spontaneously broken if the Higgs potential V (φ) has a non-zero ground
state. This is the case for the Mexican-hat potential given above, which is pictured in
Fig. 2.2. When the Higgs field assumes one of the degenerate ground states with a vac-
uum expectation value at the minimum of the potential around v = µ/

√
λ ∼ 246 GeV,

it spontaneously breaks the SU(2)L × U(1)Y symmetry of the Lagrangian.

Expanding the Higgs field from Eq. (2.5) around the vacuum and taking the EW
covariant derivative from Eq. (2.1),

φ(x) =
1√
2

(
0

v + h(x)

)
, (2.8)

Dµφ(x) =
1√
2

( ig
2

(
W 1
µ − iW 2

µ

)
(v + h(x))

∂µh(x) + i
2

(
g′Bµ − gW 3

µ

)
(v + h(x))

)
, (2.9)

the Higgs field naturally couples to the gauge bosons. Then, the squared gauged kine-
matic term of the spontaneously broken Higgs field from Eq. (2.7) cane be computed
(once the gauge fields are replaced with their physical rotated states from Eqs. (2.3), (2.4))
and gives:

10



2.2 The Higgs mechanism

Figure 2.2: The SU(2) × U(1) symmetric Higgs Mexican-hat potential has a degenerate non-

zero ground state at v2 = 〈φ†0φ0〉 ∼ (246 GeV)2.

L ⊃ 1

2
(∂µh)(∂µh) +

g2v2

4︸ ︷︷ ︸
m2
W

W+
µ W

−µ +
1

2

(
(g2 + g′2)v2

4

)
︸ ︷︷ ︸

m2
Z

ZµZ
µ

+
1

2
(2λv2)︸ ︷︷ ︸
m2
h

h2 + λvh3 +
λ

8
h4 .

(2.10)

The dynamic EW spontaneous symmetry breaking (EWSB) of the Higgs potential
generates masses for the W±, Z gauge bosons and identifying the mass terms in the
Lagrangian leads to the following leading-order boson mass relations1:

mH =
√

2λv ,

mW =
gv

2
,

mZ =

√
g2 + g′2v

2
,

mγ = 0 ,

cos(θW ) =
g√

g2 + g′2
,

sin(θW ) =
g′√

g2 + g′2
.

The W± and Z boson masses are related (at tree-level):

mW = mZcos(θW ) ,

with the experimentally measured values mW = 80.385 GeV, mZ = 91.1876 GeV and
the Weinberg angle given by sin2(θW ) = 0.2223. Finally, considering the last two terms
in Eq. (2.10), the Higgs couples to itself to produce the Feynman diagrams shown in
Fig. 2.3.

1The introduction of the Higgs mechanism also allows for a fermionic gauge-invariant mass term, e.g.

by the Yukawa coupling of fermions to the Higgs boson L ⊃ mf

2v
ψ̄fψfh

(h→v)−−−−→ 1
2
mf ψ̄fψf .
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2 The Standard Model

= −3iλv

h

h

h

(a) Higgs trilinear self-
coupling

= −3iλ

h

hh

h

(b) Quartic coupling

Figure 2.3: The physical Higgs field couples to itself after EWSB. The Feynman rules are given
for (a) the triple vertex and (b) the quartic vertex.

As a side note, expressing Eq. (2.5) with all available degrees of freedom would give,
in polar coordinates,

φ(x) =
1√
2
e
i
v
χa(x)σa

(
0

v + h(x)

)
, (2.11)

where the three real fields χa are the massless Goldstone bosons associated with the
EWSB of SU(2) × U(1). Because they will anyhow disappear from the theory (their
respective degrees of freedom are sacrificed to the W - and Z-boson longitudinal polar-
izations), they are not explicitly considered in the following. Combining the matter and
gauge terms with the Higgs sector yields the final form of the SM Lagrangian:

LSM = −1

2
〈GµνGµν〉 −

1

2
〈WµνW

µν〉 − 1

4
BµνB

µν

+
∑

ψ=qL,`L,qR,`R

ψ̄i 6Dψ + h.c.

+ ¯̀
LY``Rφ+ q̄LYddRφ+ q̄LYuuRφ+ h.c.

+ (Dµφ)† (Dµφ) + µ2φ†φ− λ
(
φ†φ
)2

, (2.12)

where 〈·〉 represents the trace and /D = γµ∂µ. The first line contains the field-strength
tensors of the corresponding gauge bosons, i.e. for a gauge group with structure functions
fabc defined by the generators [Ta, Tb] =: ifabcTc of the corresponding Lie algebra, and
general coupling strength g̃:

F aµν = ∂µA
a
ν − ∂νAaµ + g̃fabcAbµA

c
ν .
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2.3 Top-Higgs interactions

For the three SM subgroups:

• SU(3)C

• SU(2)L

• U(1)Y

· Aaµ := Gaµ the gluon fields in the adjoint representation,

· g̃ := gs the strong coupling constant,

· [Ta, Tb] =: ifabcTc with the generators given in Eq. (2.2).

· Aaµ := W a
µ the gauge fields defined in Eq. (2.1),

· g̃ := g the SU(2)L coupling constant,

· [σa, σb] =: 2iεabcσc with the Pauli matrices σi and the Levi-
Civita symbol εabc.

· Aaµ := Bµ the last gauge field appearing in Eq. (2.1),

· g̃ := g′ the U(1)Y coupling constant,

· fabc = 0 since the group is Abelian.

The second line of the SM Lagrangian in Eq. (2.12) contains the kinetic and interaction
terms for the fermion fields. The third line contains the Yukawa interaction of all fermions
with the Higgs boson for mass generation, and the last line is the unbroken SM Higgs
boson sector.

The addition of just one Higgs doublet to the SM, like in Eq. (2.5), is a minimal
choice. One could legitimately introduce further Higgs fields, as in the two-Higgs doublet
model (2HDM) [31] or the Minimal Supersymmetric SM (MSSM) [32], which predict
five physical scalar Higgs particles and which can assimilate the discovered Higgs boson
at mh = 125 GeV. These extensions of the SM predict in general different coupling
strengths of the Higgs boson(s) to other particles and to itself. Precise experimental
measurements of these couplings (and of the Higgs decay branching ratios) are needed
in order to differentiate between models.

2.3 Top-Higgs interactions

Intrinsically, the top quark is tightly linked to the Higgs boson properties and has gener-
ally strong phenomenological implications for the Higgs sector. Because it is the heaviest
SM elementary particle, and since the Yukawa coupling of the Higgs boson to fermions
is proportional to their masses, the Higgs couples strongest to the top quark. It is
especially important for Higgs production at the LHC: the predominant production
mechanism is gluon fusion via a triangle top-quark loop. The theoretical cross-sections
for single Higgs production are shown in Fig. 2.4. In comparison, other associated pro-
duction modes have cross-sections that are more than one order of magnitude smaller.
Representative Feynman diagrams for the main production channels at LHC are also
depicted in Fig. 2.5.
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Figure 2.4: Theory prediction for pp → h + X production cross-sections as a function of the
center-of-mass energy

√
s. Single Higgs production at the LHC is dominated by

gluon fusion mediated by a top-quark loop. Figure taken from Ref. [33].
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Figure 2.5: Leading-order diagrams for Higgs production by (a) gluon fusion, (b) vector-boson
fusion, (c) associated vector production and (d) associated tt̄ production.
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2.3 Top-Higgs interactions

In relation to both the measurement of the Higgs triple self-coupling and the im-
portance of top-quark mass effects in Higgs production, the reader is referred to the
extensive discussion laid out in Chapter 10. Not only do top quarks influence Higgs pro-
cess cross-sections at collider experiments, but they also have a deeper connection to the
Higgs potential. Indeed, the β-function of the Higgs quartic coupling (which governs the
evolution of the coupling’s value at different resolution scales, see Chapter 3) is sensitive
to renormalization counterterms stemming from top-quark loops.

Eq. (2.13) gives the one-loop β-function for the Higgs quartic coupling [34]:

µ2 dλ

dµ2
= βλ(λ, yt, gs, . . . ) =

1

16π2

(
12λ2 + 6λy2

t − 3y4
t

)
, yt =

√
2
mt

v
∼ 1 , (2.13)

where yt is the top-Yukawa coupling and is proportional to the top-quark mass mt.
Because the top-Yukawa coupling is of order O(1), small variations in the value of

the top-quark mass modify the evolution of the Higgs quartic coupling λ in a non-
trivial way. If λ(µ) was to become negative at scales much below the Planck scale,
MP ∼ 1018−1019 GeV (see Fig. 2.6a), the Higgs field could tunnel from the current false
vacuum state to the true, absolutely stable vacuum ground state. Current measurements
seem to support the fact that the SM is in a metastable state, as shown in Fig. 2.6b. For
the existentially anxious reader, a state-of-the art calculation of the EW vacuum decay
rate can be found in Ref. [35].

(a) Running of λ(µ)
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(b) Stability of the EW vacuum

Figure 2.6: (a) The evolution of the Higgs quartic coupling λ can lead to negative values at high
energy scales (below the Planck scale MP ). This in turn makes the EW vacuum
potentially unstable. The running is highly dependent on the top-quark mass and
αs(MZ) values [36]. (b) The SM point, in red, is plotted in the (mh,mt) phase-
space with 1-,2- and 3σ uncertainties. The pink dotted lines indicate contours
where λ(µ) = 0 for the indicated values of µ, and the parabolic curves where the
beta-function βλ(µ) = 0 for chosen values of µ. The measured Higgs and top-quark
masses point to a SM universe close to the metastable region [37].
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2 The Standard Model

2.4 Outstanding issues with the Standard Model

For all its successes, the SM is known to have some theoretical flaws. Below is a list of
familiar shortcomings:

• Massless neutrinos: In the SM, neutrinos are naturally massless. Experi-
ments [20] have shown that neutrinos can oscillate between the different families,
and this requires a mixing of flavor states into mass eigenstates, similarly to the
CKM mixing. Different mechanisms [38–40] were introduced to generate neutrino
masses: a right-handed (so-called sterile) neutrino could exist, and would not inter-
act with matter (since no right-handed neutrino was ever observed), or neutrinos
could acquire a Majorana mass. Some R-parity violating supersymmetric (SUSY)
models also produce neutrino masses [41, 42].

• Gravity: General relativity has yet to be quantized and incorporated into the SM
under its current form, and a unified theory of all four interactions is still missing.
As a first attempt, an exchange gravitational gauge boson can be introduced under
the form of a spin-2 particle, called the graviton. The addition of corresponding
terms to the SM Lagrangian spawns the apparition of UV divergences that cannot
be handled by a finite number of counterterms [43–45], though, and the theory is
not perturbatively renormalizable.

• Dark matter: The presence of dark matter in the Universe has been suggested
from multiple cosmological observations [46–50]. Yet, the SM does not contain a
good dark matter candidate particle. Some extensions of the SM, in particular
SUSY, provide a heavy non-decaying particle (the lightest in the SUSY spectrum,
called lightest supersymmetric particle) that turns out to be a good candidate.

• Baryon asymmetry: The SM predicts that matter and anti-matter should have
been produced almost symmetrically at the Big Bang. Yet baryons are observed to
be in overwhelming excess over anti-baryons in the visible part of the Universe [51,
52].

• Hierarchy problem: There is a manifest imbalance between the three unified
forces of the SM and gravity, or between their respective mass scales. In particular,
it is not clear why the Higgs boson mass is so small with respect to the Planck scale:
basically, radiative corrections to the Higgs self-energy should blow up its mass, and
the observed value of mh = 125 GeV requires an incredible amount of fine-tuning to
cancel radiative corrections. Again, SUSY models solve this problem by requiring
every SM particle to have a supersymmetric partner which has the opposite spin-
statistics: their contributions to the Higgs mass then cancel naturally [53].

Although all model extensions of the SM have respective advantages over the current
theory, none of the particles predicted by them has been observed at the LHC or any
other experiment yet.
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3 Higher-order perturbative calculations in
hadron-hadron collisions

The SM Lagrangian presented in the last chapter provides the Feynman rules to compute
theoretical cross-sections. As will be explained in Section 3.1.3, the scattering amplitudes
(at high-energies, for QCD) can be expanded to a perturbative series in the coupling
constant: the interactions are represented by Feynman diagrams, and higher-order cor-
rections generate loop diagrams that are most of the time divergent. Since the first
successes of QFT in predicting basic energy spectrum properties and leading-order (LO)
scattering amplitudes, there has always been a need for a more consistent framework in
which higher-order corrections could be worked out. In this chapter, the important in-
gredients used in most theoretical computations nowadays are summarized, in particular
in the context of high-energy hadron-hadron collisions. Most of the standard textbook
content presented here is adapted from Refs. [54–58].

3.1 Divergences in Quantum-Field Theory

Going beyond Feynman tree diagrams in the computation of scattering matrix-elements,
one encounters two classes of divergences. Consider a one-loop scalar massless two-point
function, where the internal loop-momentum is integrated over:

k

p

p + k

I2(p2; 0, 0) =

∫ ∞
−∞

d4k

(2π)4

1

(k2 + iδ)((p+ k)2 + iδ)
. (3.1)

In the limit |k| → ∞, the integral behaves as I ∝
∫ d|k| |k|3
|k|2·|k|2 =

∫ d|k|
|k| which is logarith-

mically divergent. This is called an ultraviolet (UV) divergence. A divergence occuring
when taking the small-momentum limit |k| → 0 is called an infrared (IR) divergence.

As a solution to the infinities conundrum, the above integral has to be treated by
the introduction of a UV regulator of some kind − this is a method called regulariza-
tion. Then, the regularized infinities can be absorbed in a consistent way through the
renormalization of the bare couplings and masses in the Lagrangian.
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3 Higher-order perturbative calculations in hadron-hadron collisions

3.1.1 Regularization

A first attempt at controlling UV divergences consists in the introduction of a high-
momentum regulator |k|2 < Λ2. Then, the loop integral given in Eq. (3.1) behaves
as

I2(p2; 0, 0) ∝
∫ Λ

ε

d|k|
|k| ∼ log(Λ) , (3.2)

and diverges logarithmically with the cutoff Λ. This is typical of renormalizable theo-
ries. Obviously, any physical observable should not depend on the value of the arbitrary
cutoff, and in practice it does not.1 As a theoretical downside, the introduction of the
cutoff breaks gauge invariance. It also breaks translational invariance.

A possible gauge-invariant regularization method is the so-called Pauli-Villars regu-
larization: a much more massive particle is introduced and its contribution subtracted
from the ordinary propagator, that is:∫

d4k

(2π)4

1

k2 + iδ
→
∫

d4k

(2π)4

(
1

k2 + iδ
− 1

k2 −M2 + iδ

)
. (3.3)

The Pauli-Villars technique cannot be applied to QCD because it is not gauge-covariant,
though. On the same stance, it introduces an unphysical field that violates the spin-
statistics theorem (it amounts to a spurious scalar field with Fermi statistics). One of the
preferred regularization methods nowadays is dimensional regularization. It was worked
out by ’t Hooft and Veltman [60] to regularize any integral, is gauge-invariant and works
for non-Abelian theories as well. The governing idea is that quantum-field theories in
a smaller number of dimensions have a lower degree of divergence in the UV. The four
dimensions of space-time are therefore analytically continued to d = 4− 2ε dimensions,
and the integral in Eq. (3.1) can be cast into the following form:

I2(p2; 0, 0) = µ2ε

∫
ddk

(2π)d
1

(k2 + iδ)((p+ k)2 + iδ)
, (3.4)

where the renormalization scale µ is a dimensionful parameter introduced to keep the
integral dimensionless. Then the integral can be worked out by introducing Feynman
parameters and Wick-rotating to give the analytical result

I2(p2; 0, 0) =
1

ε
+ ln

µ2

−p2 − iδ + 2 +O(ε) . (3.5)

The UV divergences now appear as (at most single, at one-loop level) poles in the
dimensional regulator ε. A general dimensionally-regularized one-loop scalar integral
with n external legs has the form:

1For a fun exercise of trying out different forms of cutoff (Gaussian, Dirac-delta,...), see Ref. [54] for
the case of the vacuum polarization in the Casimir effect [59].
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3.1 Divergences in Quantum-Field Theory

p1

p2 pnq1

q2

qn

... ...

I = µn−d/2
∫

ddk

(2π)d

n∏
j=1

1

(q2
j −m2

j + iδ)
, (3.6)

where the internal momenta qj = k +
∑j

i=1 pi are expressed as a linear combination
of the loop momentum k and the external momenta pi. Feynman parameters can be
introduced for the integral above, and generally it can be recast into the form

I = Γ(n− d/2)

n∏
i=1

∫
0≤xi≤1

dxiδ

1−
n∑
j=1

xj

 Un−d(~x)

Fn−d/2(~x, pi · pj ,m2
i )
. (3.7)

The x1, . . . , xn are the Feynman parameters, and U , F are the first, respectively
second Symanzik polynomials.2 Then, one needs only perform the integration over the
Feynman parameters. For tensor integrals where the numerator of Eq. (3.6) contains
Lorentz indices, there exist methods for their reduction to a set of scalar integrals, like
the systematic Passarino-Veltman method [61] which uses a form factor expansion to
factorize the indices. Most importantly, all one-loop integrals can be reduced to a linear
combination of a set of master integrals that are at most box-diagrams, which are all
known analytically and implemented in integral libraries. For the interested reader,
Refs. [62–67] supply a comprehensive examination of various techniques for reducing
and evaluating Feynman integrals.

Dimensional regularization has lots of benefits, and the algebra is quite straightfor-
ward. Its major disadvantage is that the Dirac algebra for fermions has to be analytically
extended to d = 4 − 2ε space-time dimensions as well, which is not trivial. The Dirac
matrices can be made to obey an analytically continued Clifford algebra

{γµ, γν} = 2gµν , (3.8)

with a d-dimensional metric, gµνgµν = d, where it is unclear what happens to the
Dirac matrix γ5 = iγ0γ1γ2γ3. The different ways of treating γ5 and the helicities of
external and internal particle fields lead to different regularization schemes. Note that
physical observables do not depend on the chosen scheme. In the dimensional reduction
scheme (DRED) which is used for the predictions given in Chapters 6−11, the Dirac
algebra is left to d = 4 dimensions, and the same holds for all external momenta and
helicities. Only the internal momenta are analytically continued to d dimensions.

2Eq. (3.7) can also be generalized to a Feynman integral for l loops and n external momenta.
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3 Higher-order perturbative calculations in hadron-hadron collisions

3.1.2 Renormalization

As a way to treat the infinities arising from the UV region of integration, the bare
parameters of the Lagrangian are redefined to absorb the divergent contributions. Al-
though this seems mathematically ill-defined, it is remarkable that the redefinition of a
finite number of parameters allows for the treatment of divergences order-by-order and
for all Feynman diagrams contributing to the amplitude of a renormalizable theory. In
practice, renormalization of the Lagrangian is achieved by rewriting the bare masses and
couplings m0 and g0 as a physical (measurable) parameter and a counterterm, as well
as the fields themselves ψ0, as

m0 = Zmm = m+ δm ,

g0 = Zgg = g + δg , (3.9)

ψ0 =
√
Zψ .

The only requirement is that diagrams corresponding to the counterterms should can-
cel UV divergences stemming from the bare Lagrangian. In principle, the procedure does
not define how to handle the finite terms accompanying these diagrams: depending on
the additional criteria, several renormalization schemes can be chosen (on-shell, MS, MS,
or others). Here as well, the physical observables should be independent of the choice
of scheme (the top-quark mass is a fringe example and will be discussed summarily in
Chapter 6).

The physical parameters entering the Lagrangian, e.g. the masses and couplings m, g,
have to be determined by experiment. By definition, they are measured at a given energy
scale. Colloquially, a renormalization starting point is chosen: the couplings/masses can
then be evolved to a different scale in a well-defined way. Notably, the parameters of the
renormalized field theory run according to the Callan-Symanzik [68–70] equation, which

governs the dependence of the n-point correlation functions G
(n)
0 (x1, ..., xn;m0, g0) on

the model’s parameters:(
m

∂

∂m
+ β(g)

∂

∂g
+ nγ

)
G(n)(x1, ..., xn;m, g) = 0 , (3.10)

where the β-function of the theory is defined as β(g) = m
δmδg, and the anomalous

dimension is given by γ = m
δm

δ
√
Z√
Z

. Eq. (3.10) is an example of a broad class of evolution

equations called renormalization group equations (RGE).

3.1.3 Perturbative expansion of Quantum Chromodynamics

From the running of the strong coupling constant given by the QCD β-function,

µ2
R

∂αs
∂µ2

R

= β(αs) = −
(
b0α

2
s + b1α

3
s + . . .

)
, (3.11)
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3.1 Divergences in Quantum-Field Theory

one sees that because of the negative sign in Eq. (3.11), the strong coupling αs(µ
2
R)

becomes smaller at higher scales µ2
R. This running is manifest in Fig. 3.1, which shows

measurements of the strong coupling αs at different energy scales Q, in agreement with
the QCD theory prediction. Thus, with the measured value of the strong coupling at
intermediate scales αs(MZ) ≈ 0.118, the interactions at high-energy hadron colliders can
be treated perturbatively in αs. For any partonic cross-section σab→X , where a, b, and X
are freely propagating initial-, respectively final-states, one can expand the cross-section
in a Taylor series,

σ̂ab→X = αks(µ
2
R)
(
σ̂LO(pi, pf ;µ2

R) + αs(µ
2
R)σ̂NLO(pi, pf ;µ2

R) +O(α2
s(µ

2
R))
)
. (3.12)

At each order in the strong coupling αs, the cross-section can be computed and will
depend on the choice of the renormalization scale. In general, it is chosen close to the
expected momentum exchange Q2. The systematic uncertainty related to the arbitrary
choice of the scale is then usually estimated by varying the renormalization scale by
factors of 1

2 and 2.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)

0.1

0.2

0.3

αs(Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

(NLO

pp –> tt (NNLO)

)
(–)

Figure 3.1: Various measurements of the strong coupling αs(Q
2) at different energy scales Q

show the running behavior typical of QCD, with a coupling strength that becomes
smaller at higher energies, and a Landau pole at the hadronization scale Q = Λ ∼
1 GeV. Figure taken from Ref. [1].

The accuracy of a computation is given by the truncation order of the perturbative
series in Eq. (3.12). In certain regions of phase-space, though, large prefactors can be
introduced at all orders, when two far-away scales Q and q are involved. This usually
spawns the appearance of large logarithms of the form lnn(Q2/q2), which have to be
resummed to a given logarithmic accuracy across all orders. Some details will be given
in Section 4.2.
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3 Higher-order perturbative calculations in hadron-hadron collisions

3.2 Infrared divergences

Starting from an example, let us consider the case of QED higher-order corrections to
e+e− → µ+µ− annihilation, where me = mµ = 0. Feynman diagrams contributing up
to O(α3) at cross-section level are shown in Fig. 3.2.

e−

e+

µ−

µ+

γ

q2

(a) Leading-order diagram

e−

e+

µ−

µ+

(b)

e−

e+

µ−

µ+

(c)

e−

e+

µ−

µ+

(d)

e−

e+

µ−

µ+

(e)

e−

e+

µ−

µ+

γ

γ

(f)

Figure 3.2: Feynman diagrams for e+e− → µ+µ−. (a) The only leading-order diagram, with a
photon in the s-channel, (b-e) virtual one-loop corrections and (f) a real-emission
diagram.

At leading-order, the cross-section is given by

σLO =

∫
Φ

dΦ|M0|2 =
4πα2

3q2
, (3.13)

where the squared amplitude |M0|2 has to be integrated over the phase-space Φ, and
q2 is the momentum carried by the exchanged photon. Let us assume the UV divergences
have been handled by the introduction of appropriate counterterms.3 Computing the
amplitude, one realizes there is also an IR divergence coming from the massless photon
propagator in the loops, and from the soft photon radiation.

First, the IR divergence needs regularizing. The simplest way to do that is to give
the photon a small, non-zero mass, mγ > 0, and to take the limit mγ → 0 at the end of

3The Ward identity [71, 72] in QED relates the renormalization terms together and ensures the cancel-
lation of UV divergences at all orders.
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3.3 The factorization theorem

the calculation. In this way, the nature of the IR pole is made explicit. Computing the

virtual contribution, σV ∝
(
M†VM0 + h.c.

)
, one arrives at the result

σV =
2

3
π2α

3

q2

(
π2

5
− 7

2
− ln2

(
m2
γ

q2

)
− 3ln

(
m2
γ

q2

))
. (3.14)

The IR divergence is still present but it is explicit in ln(mγ).4 For the perturbative
expansion to be consistent, real-emission diagrams contributing to O(α3) at cross-section
level have to be included, that is diagrams of the sort pictured in Fig. 3.2f, where a photon
is radiated either from the initial- or the final-state. Doing so, one gets a contribution
of the form σR ∝ |MR|2:

σR =
2

3
π2α

3

q2

(
−π

2

5
+ 5 + ln2

(
m2
γ

q2

)
+ 3ln

(
m2
γ

q2

))
. (3.15)

Combining the different contributions to the cross-section, the IR divergences can-
cel between the virtual one-loop and the real-emission matrix-elements to give a finite
correction to the leading-order cross-section:

σNLO = σLO + σV + σR = σLO

(
1 +

3

4π
α

)
. (3.16)

This behavior is symptomatic of IR divergences and falls under the purview of the
Kinoshita–Lee–Nauenberg (KLN) theorem, which states that sufficiently inclusive ob-
servables are always IR-finite.

Although the cancellation of IR divergences is ensured by the KLN theorem, it is
non-trivial to realize it numerically (for example in the context of a Monte-Carlo event
generator). Section 4.1.2 will briefly develop this point.

3.3 The factorization theorem

The collision of composite states like the protons used at LHC implies interactions of
highly non-perturbative objects. It is not clear at first how to handle these theoretically:
color confinement does not allow for free quarks or gluons to be observed, thus the initial-
state in hadron colliders cannot a priori be defined perturbatively. At high energy,
though, the interaction with the highest momentum exchange takes place over time
scales that are far smaller than the typical time scale at which the proton’s constituents
interact among themselves. The description of such a collision can therefore be factorized
in long- and short-distance (or short- and long-time scale) physics: a hard collision of
two freely propagating partons, and non-perturbative interactions within hadrons.

4The divergent terms are called Sudakov double logarithms and are systemic of collinear/soft emission
(see Chapter 4).
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Figure 3.3: The MSTW 2008 NLO proton PDFs [73] as a function of the parent proton’s
momentum fraction x at resolution scales Q2 = 10 GeV2 (left), Q2 = 104 GeV2

(right).

Mathematically, the cross-section σpp→X for the production of a state X from the
collision of two protons can be written in this approach as

σpp→X =
∑
ab

∫
dxafa/p(xa, µ

2
F )

∫
dxbfb/p(xb, µ

2
F ) · σ̂ab→X(xap1, xbp2;µ2

F ) , (3.17)

where a and b are possible constituents of the parent protons (sea or valence quarks and
gluons), fa/p, fb/p are encoding the non-perturbative origin of the partons in the parent
protons, and σ̂ab→X is the cross-section for the production of the final-state X from
the collision of the free partons a and b, which can now be computed perturbatively in
QCD. Eq. (3.17) is called the QCD factorization theorem, and sets the basis for all cross-
section predictions at LHC. The functions fa/p, fb/p, which are called parton distribution
functions (PDF), depend on the momentum fraction xa, xb carried away by the parton
from the parent proton, and on the resolution scale Q2. Crudely said, the partonic
content of the protons depends on the scale at which they are resolved.5 The PDFs
by definition cannot be computed perturbatively in QCD, but they can be measured
from experimental data. As a matter of fact, a precise measurement of the proton’s
PDF is crucial, and constitutes one of the main sources of uncertainty in theoretical
predictions at the LHC. Fig. 3.3 depicts the measurement of the proton PDFs by the
MSTW collaboration from a global fit of hard-scattering data [73].

5The PDFs also obey an evolution equation similar to the RGE called DGLAP equation: this evolution
runs from a central scale choice, namely the factorization scale µF .
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4 Monte-Carlo (MC) event generators

To be able to compare a theory prediction for hadron colliders to an experimental mea-
surement released by e.g. the ATLAS experiment, theorists and experimentalists meet
on a common ground: the cross-section σ. The cross-section can be inclusive, and rep-
resents the total number of events for a given process after applying cuts and correcting
for the detector acceptance, or it can be a differential cross-section dσ/dO with respect
to some kinematic variable, where O is any event observable. On one side, the theorists
need to compute a cross-section from a QFT starting point, namely from the Lagrangian.
At the most basic level, this means implementing Fermi’s golden rule:

σ =
1

4EaEbv

∫ ∏
f

(
d3pf
(2π)3

1

2Ef

)
|Mfi|2 (2π)4δ4(pa + pb −

∑
f

pf ) , (4.1)

where Ea and Eb are the energies of the incoming particles a and b, the constant
v = |~va − ~vb| is given by the relative 3-velocities of the particles in the beam and pf , Ef
are the 3-momenta and energies of all final-states. As a matter of fact, the infinitesimal
volume element above is relativistically invariant. Ultimately, the relativistic matrix-
element squared |Mfi|2 has to be integrated over the whole phase-space while enforcing
4-momentum conservation. On the other side, experimentalists have to count events and
correct for detector acceptance and resolution:

σ =
Nevents

ε · Lint
, (4.2)

Here, the cross-section is equal to the event count Nevents, corrected for phase-space
acceptance, detector resolution (represented here by an overall factor ε) and normal-
ized by the integrated luminosity Lint. For the case of differential distributions, the
formula becomes more complicated, as binned events migrate depending on the detector
resolution. The discussion of this case is postponed to Chapter 8.

There are two issues with the picture at hand. First, the matrix-element for a given
process can typically be computed only up to O(few) external legs. Because the mul-
tiplicity of final-state particles in a collider experiment like the LHC is of the order
O(102 − 103), it is in practice impossible to calculate such amplitudes. Second, the
perturbative expansion and the factorization presented in Chapter 3 break down when
colored particles are produced with small energies. In particular, around energy scales
where free final-state partons fall in the realm of non-perturbative interactions, they
hadronize to form the observable colorless bound states demanded by color confinement.
Therefore, the structure of the whole collision has to be broken down into pieces across
the several scales involved, and the theoretical treatment of each piece is valid only in

25



4 Monte-Carlo (MC) event generators

these subdomains and subjected to different levels of approximation. The theory com-
munity developed the necessary ingredients to improve the description of each stage
and assembled them into mostly-automated programs called Monte-Carlo (MC) event
generators.

MC event generators basically simulate the particle collisions as they would happen
at the interaction points of an experiment like ATLAS or CMS. The MC program has to
match multi-scale physics to simulate a collision, taking into account non-perturbative
(PDF and quark fragmentation, hadron decay, underlying event, proton beam remnants)
as well as perturbative (matrix-element and parton-shower matching) phenomena, as
shown in Fig. 4.1.

PDF

Hard ME

Parton-shower

Hadronization

Hadron decays

Figure 4.1: A typical MC event. Figure adapted from Ref. [74].

Under the hood of any Monte-Carlo program, the ingredients are essentially the same:

• Monte-Carlo integrator: The phase-space is sampled, usually with the help of
an adaptive Monte-Carlo integration algorithm, to numerically perform the integral
given in Eq. (4.1). As a notable example, the Cuba library [75] implements four
multi-dimensional integration algorithms: Vegas [76], Divonne [77], Suave [75, 78]
and Cuhre [79] (although Cuhre is deterministic and not properly a MC integrator).

• PDFs: There is an extensive amount of PDF measurements varying in the used
datasets, theoretical precision, combination strategy, handling of αs, or flavor
thresholds. The LHAPDF6 package [80] interpolates PDF values from discrete mea-
surement points in the (x,Q2) phase-space and can be interfaced to the MC gen-
erator.
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4.1 Matrix-element providers

• Hard matrix-element (ME): The core of the calculation is the computation of
the matrix-elementMfi. It determines the theoretical accuracy of the prediction to
a given order in the corresponding couplings. More details are given in Section 4.1.

• Parton-shower: As stated above, the high-multiplicity final-state is evolved from
the few-parton hard matrix-element through subsequent radiative emission by a
parton-shower algorithm. These routines are based on first-principles QCD (and
QED), but contain inherent approximations and parametric degrees of freedom
that generate an uncertainty associated with the choice of algorithm. Section 4.2
will expand on the topic.

• Hadronization and hadron decay: Once the shower evolution is brought down
to energies of the order of the hadronization scale (of order O(1 GeV)), the free
partons bind to form colorless states. This is handled by a model on the only
assumption that it should describe data to the best possible extent. Commonly,
these models have a certain number of free parameters that are tuned to data. In
Section 4.3, the Lund string and the cluster model are briefly detailed.

• Multiple partonic interaction and underlying event: Especially at small
momentum fractions, it is possible that more than one parton from the same
parent proton contributes to the interaction. The description of this phenomenon
is also mostly based on MC modeling and has to be tuned to experimental data.

4.1 Matrix-element providers

The first programs for generating the matrix-elementMfi needed in Eq. (4.1) were highly
specialized. They would handle one specific process and would be mostly analytically
hard-coded. At some point, authors from the theory community started to make their
code available and the corresponding libraries would be assembled into multi-process
packages. This is the example of the MCFM [81], VBFNLO [82–84] and BlackHat [85]
packages. Nowadays, after a paradigm shift, the computation of the hard process matrix-
element is decidedly automated at one-loop level: general programs like MadLoop [86–
89], OpenLoops [90, 91], GoSam [92, 93], Recola [94, 95] and HELAC-NLO [96] can be
interfaced directly to most MC generators and provide the amplitude given any phase-
space point. Other programs focus on specific processes, as for example NJet [97], which
calculates multijet amplitudes at NLO in massless QCD, VBFNLO for vector-boson fusion
in a number of processes, or HJets++ [98] for Higgs boson production in association
with one or more jets in the high-energy limit. The program GoSam-2.0 is used in
all subsequent NLO computations, thus its mode of operation is detailed in the next
section.
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4 Monte-Carlo (MC) event generators

4.1.1 GoSam: MC interfacing of one-loop amplitudes

GoSam is a general-purpose package that computes one-loop amplitudes automatically
and interfaces to any MC generator, provided it supports the Binoth-Les Houches Accord
(BLHA1 [99] or BLHA2 [100]) format. The workflow of GoSam is shown in Fig. 4.2.

GoSam

Diagram & Code generation
Python — QGraf — FORM — haggies

Integral reduction
Ninja — Golem95C — Samurai

Integral evaluation
OneLOop — Golem95 — QCDLoop

Virtual one-loop amplitude
|M|2

MC Event Generator OLE order.lh

OLE order.olc

Figure 4.2: GoSam relies on external packages to compute virtual one-loop amplitudes. Feyn-
man diagrams are generated by QGraf, and fortran code containing the terms
relevant to each diagram is automatically written out by FORM. The various integral
families are then reduced and the basis integrals evaluated using external libraries.

Any process can be defined in the GoSam input card, where only incoming and
outgoing particles as well as the desired order in α, αs have to be given for the generation
of the Feynman diagrams. The Python executable gosam.py is then called and a
series of external packages handle the different steps of the computation: QGraf [101]
generates the Feynman diagrams, and filters for vertices or propagators can be applied,
as well as manual removal of diagrams. Then, FORM [102] code containing the relevant
expressions is generated automatically for all diagrams and helicities. Integral reduction
is operated by any of three programs, namely Ninja [103], Golem95C [104, 105] or
Samurai [106]. Finally, the evaluation of the set of basis integrals is performed using one
of the three external integral libraries QCDLoop [107], OneLOop [108] or Golem95C.

On a higher level, in compliance with the BLHA format, the MC generator produces
an order file OLE order.lh containing the subprocesses to be computed by GoSam.
The latter is called and generates routines for all subprocesses. After checking the or-
der file, GoSam validates the order and returns a contract file OLE order.olc. The
generated libraries for all helicities are linked, and common functions are written in a
matrix.f90 file to be called by the MC generator. The physics parameters, like par-
ticle masses and couplings, can be set by an external call to the OLP Option function.
Then, for a set of 4-momenta (pi)i=1,...,n, the matrix-element is provided by calling the
OLP EvalSubProcess({pi}) function, which returns the full one-loop amplitude coeffi-
cients c(−2), c(−1) and c0 (double, single pole and finite terms) as given in the Laurent
series:
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4.1 Matrix-element providers

Re{M†VM0} = gn1
1 . . . g

nq
q
αs
2π

(4π)ε

Γ(1− ε)
(c(−2)

ε2
+
c(−1)

ε
+ c0 +O(ε)

)
, (4.3)

where gnii are the coupling constants appearing in the tree-level matrix-element. GoSam
is a very flexible package, and allows high-level control over the various subtleties of
higher-order computations (e.g. choice of regularization scheme, renormalization coun-
terterms, and so on). A rescue system for phase-space points that are numerically badly
behaved can be activated, and the amplitude for these is recomputed either in quadruple
precision or with a different method.

4.1.2 Infrared divergence cancellation

Having acquired the virtual contribution to the amplitude, one has to combine the Born,
virtual and real-emission contributions together. As was shown in Section 3.2, the sin-
gularities appearing in both virtual loop calculations and in soft/collinear configurations
of real emissions should combine to give finite quantities for any IR-safe observable.1

Although this is analytically true, in the case of MC computations, the different contri-
butions are first sampled over different phase-spaces, and only then combined. Symbol-
ically, for the NLO cross-section σNLO:

σNLO =

∫
Φm

dσB +

∫
Φm

dσV +

∫
Φm+1

dσR, (4.4)

where dσB, dσV and dσR are the Born, virtual and real contributions. Note that the
singularities in virtual and real contributions only cancel after integration. Numerically,
the cancellation of IR divergences is thus non-trivial. At NLO, there are two kinds of
algorithms to implement IR divergence cancellation: phase-space slicing and subtraction
methods. The Catani-Seymour (CS) [109] and Frixione-Kunzst-Signer (FKS) [110, 111]
automated subtraction algorithms of IR divergences are mostly used nowadays in NLO
MC generators. The CS algorithm is outlined below and is used in all calculations
present in Chapters 6−10, while the Powheg framework in Chapter 11 uses the FKS
scheme.

Consider the addition of a subtraction term dσS which approximates the (d = 4− 2ε
regularized) real contribution and reproduces its IR singularity pattern in d dimensions:

dσV + dσR = dσV + dσS +
(
dσR − dσS

)
. (4.5)

The (d = 4)-dimension limit can be taken directly for the integration of the real-
emission and the local counterterm cancels the divergence in the phase-space integrand.
The total NLO cross-section then takes the form:

σNLO =

∫
Φm

dσB +

∫
Φm

(
dσV +

∫
Φ1

dσS

)
ε=0

+

∫
Φm+1

(
dσR

∣∣
ε=0
− dσS

∣∣
ε=0

)
, (4.6)

1Generally, at NLO, regularized poles appear either as double poles (soft and collinear), or single poles
(soft, collinear, or UV).
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4 Monte-Carlo (MC) event generators

where all integrals are now separately finite. The CS dipole formalism is a factorization
framework that permits the automatic generation of the subtraction term dσS. Universal
dipole factors are introduced for any process, and setting the subtraction term to

dσS =
∑

dipoles

dσB ⊗ dVdip, (4.7)∫
Φm+1

dσS =
∑

dipoles

∫
Φm

dσB ⊗
∫

Φ1

dVdip =:

∫
Φm

dσB ⊗ I (4.8)

allows one to compute the cross-section σNLO of any process:

∫
Φm

dσB+

∫
Φm

(
dσV + dσB ⊗ I

)
ε=0

+

∫
Φm+1

dσR
∣∣
ε=0
−
∑

dipoles

dσB ⊗ dVdip|ε=0

 (4.9)

with I the integrated CS insertion operator. The universal dipole factors are obtained
by considering the soft/collinear limits of a one-emission matrix-element with respect to
the Born configuration:

|Mm+1|2 =
∑
k 6=i,j

Dij,k(p1, . . . , pm+1) + (regular in pi · pj → 0) (4.10)

=−
∑
k 6=i,j

1

2pi · pj
M†m(i, j → ĩj̃, k̃)

(
Tk ·Tij

T2
ij

Vij,k

)
Mm(i, j → ĩj̃, k̃)

+ (regular in pi · pj → 0) (4.11)

where the singular terms are collected in the dipoles Dij,k. The Ti are the generators of
the color algebra and Mm is a general matrix-element corresponding to an m-particle
final-state, Mm = |1, . . . ,m〉. Then, Eq. (4.11) states that the matrix-element corre-
sponding to an (m+ 1)-particle final-state factorizes into dipole factors Vij,k convoluted
with an underlying Born configuration where partons i and j are assembled into one
parton (̃ij̃) (the so-called emitter), and parton k̃ (the spectator) absorbs the residual
4-momentum. The formulae for the universal dipoles Vij,k are very closely related to
the Altarelli-Parisi splitting functions, see Section 4.2.

In the case of the presence of initial-state hadrons like at the LHC, Eq. (4.11) is
modified and an additional dipole term has to be added in Eq. (4.8), dVdip → dVdip +
dV ′dip. Eq. (4.8) then becomes∫

Φm+1

dσS =

∫
Φm

dσB ⊗ I +

∫ 1

0
dx

∫
Φm

dσB(xp)⊗ (P + K) (x) , (4.12)

where xp is the proton momentum fraction carried away by the parton, and P, K are
insertion operators appearing from the convolution with the PDF.
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4.2 Parton-shower models

4.2.1 The Altarelli-Parisi splitting functions

Parts of the following section are adapted from Ref. [112]. Inherently, the few-parton,
high-energy final-state generated by the hard process matrix-element further produces
QCD and QED radiation. The parton-shower algorithm evolves partons from the colli-
sion scale Q2 via further radiation to a cutoff scale Q2

min that is set around the hadroniza-
tion scale. At that point, the shower terminates and the final-state is passed on to the
hadronization model. Schematically, the simplest shower algorithms are based on the so-
called Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) kernels [113–115] for 1→ 2
collinear particle splitting Pa→bc, as given in Fig. 4.3.

q

g

q

(a) q → qg

g

g

g

(b) g → gg

g

q

q̄

(c) g → qq̄

Figure 4.3: The QCD vertices for 1 → 2 splittings allow to calculate the leading-order kernels
appearing in the DGLAP evolution equation.

The (unregularized) LO kernels can be computed from the QCD interaction vertices
as:

Pq→qg(z) = CF
1 + z2

1− z , (4.13)

Pg→gg(z) = 2CA

(
1− z
z

+ z(1− z) +
z

1− z

)
, (4.14)

Pg→qq̄(z) = TR(1− 2z(1− z)) , (4.15)

with 0 ≤ z ≤ 1, the longitudinal momentum fraction of the parent parton a. Note
the undefined behavior of Pq→qg and Pg→gg for z → 1. The splitting functions can be
regularized from general constraints to:

Pq→qg(z) = CF

(
1 + z2

(1− z)+
+

3

2
δ(z − 1)

)
, (4.16)

Pg→gg(z) = 2CA

(
1− z
z

+ z(1− z) +
z

(1− z)+
+

(
11

12
− 1

3

TR
CA

)
δ(z − 1)

)
, (4.17)

Pg→qq̄(z) = TR(1− 2z(1− z)) . (4.18)

The factor (1−z)−1 is regularized in being interpreted as a plus-distribution (1−z)−1
+

such that for any test function f(z) sufficiently regular at z = 0, z = 1,

31



4 Monte-Carlo (MC) event generators

∫ 1

0

dz f(z)

(1− z)+
=

∫ 1

0

f(z)− f(1)

1− z . (4.19)

The master equation governing the evolution of the collinear splitting of a parton a
from a scale q2 to a scale q2 + dq2 is then given by

dP a→bc =
dq2

q2

αs
2π
Pa→bc(z) dz , (4.20)

where q2 is an arbitrary strong-ordered evolution variable. For example, one can
choose the azimuthal angle of emission E2

aθ
2, or the particle’s virtuality m2, or an appro-

priate definition of the transverse momentum p2
T . Different shower algorithms implement

different choices of the evolution variable. This will be of importance when considering
parton-shower related uncertainties, see Chapters 7 and 11.

4.2.2 The Sudakov form factor

Going from the one-emission to the multiple-emission case, and using broad assump-
tions2, the probability of no-emission between scales Q2 and Q2

max is given by the Sudakov
form factor :

dP a→bc (z) =
dq2

q2

αs
2π
Pa→bc(z) dz × exp

−∑
b′,c′

∫ Q2
max

Q2

dq′2

q′2

∫
αs
2π
Pa→b′c′(z

′) dz′

 .

(4.21)

As explained in Section 3.1.3, the perturbative expansion of the cross-section in αs
can suffer from large enhancements in the soft/collinear regions of phase-space. In
general, double logarithms of the form αns log2n(Q2/q2) appear when a soft particle is
emitted, or when it becomes collinear to one of the incoming partons. Here, q2 is the
scale describing the soft/collinear emission, and Q2 is the global scale of the process.
Generally, this tower of large logarithms can be analytically resummed to all orders in
αs. Instead, the parton-shower algorithm offers the possibility of resumming soft and
collinear contributions within the Monte-Carlo framework. Nowadays, most parton-
showers only guarantee leading-logarithmic (LL) accuracy, although recent studies [116]
have found differences at LL (subleading number of colors NC), and NLL (leading-NC)
between parton-showers and analytic resummations.

4.2.3 Parton-shower matching

The shower algorithm should respect the theoretical accuracy of the hard matrix-element,
and at the same time conserve the logarithmic accuracy of the parton-shower resumma-
tion in their respective limits. In particular, the cross-section after showering should be

2Namely that the time between emissions can be sliced, and unitarity as well as multiplicativity (mean-
ing the shower has no memory of past emissions) hold.
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(a) QQ̄g phase-space
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Figure 4.4: (a) Phase-space for a heavy-quark pair emitting a gluon, depicted as a function of
the Dalitz plot variables (xQ, xQ̄). Figure adapted from Ref. [120]. (b) The trans-

verse momentum phhT of the Higgs pair system in di-Higgs production is compared
for the fixed-order NLO prediction to a parton-shower matched calculation.

identical to the fixed-order cross-section. Kinematic configurations that belong simul-
taneously to the hard matrix-element and the parton-shower final-states should not be
double-counted. These requirements form part of a procedure which is called matching.

At NLO, the matching of the parton-shower algorithm to the fixed-order matrix-
element handles both these issues. Roughly said, it interpolates between the two kine-
matic regions where the hard matrix-element, respectively the parton-shower, generate
their dominant contributions. As an example, the phase-space for the production of two
heavy quarks and one gluon-emission QQ̄g is given in Fig. 4.4a. The soft/collinear emis-
sion regions (where xQ → 1 or xQ̄ → 1, with xj = 2p ·qj/p2, and p is the initial center-of-
mass 4-momentum) can be covered by the parton-shower while the dead region (shaded)
describes a hard gluon-emission. In a correct matching, these regions should not overlap.
An illustration of this fact is shown in Fig. 4.4b for the case of gg → hh production,
where a fixed-order NLO calculation is matched to the Herwig7 [117] parton-shower.
There, the parton-shower correctly reproduces the NLO computation at high-transverse
momentum and softens the low-momentum region (Sudakov suppression). Among the
various matching procedures that keep in line with the above criteria, the subtractive
MC@NLO [118] and the multiplicative Powheg [119] schemes are among the most used
ones.

As examples of available parton-shower algorithms mostly used by the physics commu-
nity, the Pythia8 [121, 122] and Herwig7 codes implement a pT -ordering, respectively
an angular-ordering in the choice of the evolution variable. Herwig also uses a dipole
shower as an alternative algorithm (which is based on a Catani-Seymour dipole formula-
tion of 2→ 3 splitting kernels). The Sherpa [123] generator implements two alternative
parton-shower algorithms based on variations of the CS dipoles.
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4 Monte-Carlo (MC) event generators

4.3 Hadronization

Once particles have been showered down to the hadronization scale, the hadronization
model takes over. By far, the two most used hadronization models are the Lund string
model and the cluster model.

4.3.1 The Lund hadronization string model

The Lund string model [124] is based on the principle of quark color confinement. When
two quarks are separated by a distance r, the potential takes the form:

U(r) = −4

3

αs
r

+ κr , (4.22)

and the linear confinement contribution dominates for larger distances, with κ ∼
1 GeV/fm. In analogy to a classical elastic potential, the field lines build up a stretched
string. When the distance between a quark-pair increases, the string tension grows
until the string breaks: the freed energy creates another quark-antiquark pair appearing
from the vacuum. The creation of the quark-pair happens with a Gaussian probability
(similarly to quantum tunneling) in the quark transverse mass m2

T = m2 + p2
T . From

Lorentz invariance, causality and left-right symmetry, the fragmentation function f(z)
can be constrained and fixes the longitudinal momentum fraction z carried away by the
created hadron:

P ∝ exp

(
−σm

2
T

κ

)
, f(z) ∝ (1− z)a

z
exp

(
−bm

2
T

z

)
. (4.23)

The Lund string model is implemented in the Pythia8 generator and the main pa-
rameters a, b, σ are determined by tuning to data. For the more complex case of baryons,
the three quarks can be pictured in a quark-diquark frame. Finally, the gluons appear
as kinks on strings. For more details and improvements to the model, see the Pythia
manual [125].

4.3.2 The cluster hadronization model

Instead of building on color confinement, the cluster model [126, 127] makes the as-
sumption that gluons can be viewed as carrying color and anti-color and behaving as
a qq̄ pair. Color singlets usually obey a mass spectrum that peaks at low mass due to
the property of preconfinement of the parton-shower [128], i.e. they are closer to one
another in phase-space. The model then clusters these color singlets together and splits
them per the following procedure: if a cluster of mass M , with parton constituents of
masses m1, m2, satisfies

MCpow > C
Cpow
max + (m1 +m2)Cpow , (4.24)

the algorithm splits it and the masses get redistributed. To split a cluster, the model
pops a qq̄ pair from the vacuum and forms two new clusters with one original parton
each, and masses distributed according to
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(a) Lund string model (b) Cluster model

Figure 4.5: A pictorial representation of both hadronization models. (a) In the Lund model,
the potential energy from the color field between two quarks increases linearly with
the distance, like in a string. When a string breaks, a new quark-antiquark pair
is created. (b) The cluster model groups color-connected partons together into
clusters and lets them decay isotropically.

M1,2 = m1,2 + (M −m1,2 −mq)RPsplit

1,2 , (4.25)

with R1,2 ∈ [0, 1] two random numbers. Again, the parameters Cpow, Cmax and Psplit

have to be tuned to data.
Notice that the cluster model does not propagate any spin information: the hadronized

clusters therefore decay isotropically. Historically, the cluster model was implemented
in the Herwig event generator. Fig. 4.5 summarizes the conceptual differences between
the Lund string and the cluster model.

As a concluding remark, the MC event generators represent the basis of a large frac-
tion of experimental measurements. They are quite complex systems whose constituents
are all intercorrelated: the different pieces interact and the matching between all ap-
pearing physical scales is not always explicit at the end of the simulation. Typically,
the parton-shower output influences the hadronization tune, and it is in general difficult
to disentangle their respective contributions. As such, variations in the MC setup are
linked to large uncertainties which should, in principle, be taken into account with their
full correlations.
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5 The LHC and the ATLAS detector

The Large Hadron Collider (LHC) is currently the most powerful particle accelerator
worldwide and is located at the Centre Européen pour la Recherche Nucléaire (CERN)
on the French-Swiss border, near Geneva. Historically, it replaced the Large Electron-
Positron (LEP) collider after it was decommissioned in 2000, and is being housed in the
same tunnel. In this chapter, the main working parts of the accelerator complex are
briefly reviewed, and the structure of the ATLAS detector is presented in more detail. A
short overview of the trigger and data acquisition system, as well as the MC simulation
in ATLAS, will close the subject.

5.1 The Large Hadron Collider

The LHC’s main collider ring [129–131] is installed in a circular tunnel of ∼ 27 km
circumference and a depth varying between 45 m and 170 m under ground level. It is
designed to accelerate protons up to an energy of 7 TeV, reaching a design center-of-
mass energy of 14 TeV at a peak luminosity of 1034 cm−2 s−1. As a side note, the LHC
can also accelerate heavy ions, and in the past a few runs of lead-lead, proton-lead and
xenon-xenon collisions have also given interesting complementary physics results.
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Figure 5.1: The LHC accelerator complex [132].
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To accelerate protons to these high energies, a sequence of pre-accelerators boosts
the proton beams before injecting them into the next link. A schematic of the full
accelerator complex is presented in Fig. 5.1. Upon being produced and pre-collimated,
the protons are accelerated to 50 MeV in the Linac2, then to 1.4 GeV in the Proton
Synchrotron (PS) Booster, and to 26 GeV in the PS. Within the PS, the protons are
collimated into 25 ns-spaced (7.5 m) bunches of around 1.15 · 1011 protons per bunch.
From there, the Super Proton Synchrotron (SPS) ramps up the energy to 450 GeV, and
injects both beams in opposite directions into the LHC itself. After approximately 20
minutes of acceleration in the main LHC beampipe by 16 radiofrequency cavities, the
proton bunches achieve the current energy of 6.5 TeV per beam.

Equipped with 1232 superconducting main dipole magnets, the LHC operates with
magnetic fields of ∼ 8.3 T to keep the proton bunches on their circular trajectory. The
main dipole magnets are supplemented by higher-multipole magnets to correct for edge
imperfections in the dipole field. Along the LHC beam path, 392 main quadrupole
magnets are used to re-focus the proton beams.

Once at the nominal energy, the two circulating proton beams are brought to collision
at four different interaction points, corresponding to the four largest LHC experiments:
ATLAS, CMS, ALICE and LHCb. Out of these, ATLAS and CMS are general-purpose
detectors designed to discover higher-mass particles like the Higgs boson or possible su-
persymmetric resonances, as well as to produce high-precision measurements of particles
like the top quark. On the other hand, ALICE is dedicated to studies of heavy-ion
collisions and focuses on high-density QCD bound states, while LHCb is optimized to
investigate heavy-flavor physics. From the start of Run II in 2015 until the Long Shut-
down of December 2018, the LHC delivered a total integrated luminosity of 147 fb−1 at
a maximal center-of-mass energy of 13 TeV and a peak luminosity of 2.1 ·1034 cm−2 s−1,
even surpassing the design value. The next section concentrates on the ATLAS detector
substructure.

5.2 The ATLAS detector

A Toroidal LHC ApparatuS (ATLAS) [133] aims for high-energy precision measurements
of the SM in all possible sectors: with the help of the enormous amount of data produced
at LHC and the precision of the tracking detectors and calorimeters, it allows for mea-
surements of particle masses, SM couplings or cross-section measurements, but also the
observation of rare SM processes (like tt̄h production [134], light-by-light scattering [135]
or B0

s → µ+µ− decays [136]). These high-precision tests of the SM are intrinsically linked
to searches for Beyond the SM (BSM) physics: higher-scale BSM particles participating
in loop corrections to the SM can have an impact on the cross-sections or kinematic
observables, and any observed deviation from the SM predictions would hint at New
Physics at higher scales. In general, though, direct searches are employed to look for
potential high-mass resonances.

The ATLAS detector, situated at the LHC beam interaction point 1 near Meyrin,
Switzerland, has an onion-shell structure comprised of particle trackers, electromagnetic
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and hadronic calorimeters, and a muon detector: from inner to outer radii, the pro-
duced particles encounter the Inner Detector (ID), the Liquid Argon (LAr) and the Tile
Calorimeter (TileCal), and finally the Muon Spectrometer (MS). The detector itself is
44 m long and has a diameter of 25 m, and weighs more than 7000 tons. Fig. 5.2 shows
a sketch of the ATLAS detector. To bend the charged-particle tracks for momentum
measurement, ATLAS relies on four magnets: a 2 T central solenoid [137] close to the
interaction point, an 8-coil barrel toroid [138] that is cylindrically placed around the de-
tector generating a peak magnetic field of 4 T, and two other 8-coil toroid magnets at the
detector endcaps [139] which provide a peak magnetic field of 4 T on the superconductor
(0.2− 3.5 T in the bore). The geometry of the magnet coils is shown in Fig. 5.3.

Figure 5.2: A cut-away view of the ATLAS detector. Figure from Ref. [133].

The ATLAS coordinate system is defined as right-handed and centered at the inter-
action point, with the beam axis chosen as the z-axis, the x-axis pointing towards the
center of the LHC ring, and the y-axis pointing upwards.

5.2.1 The Inner Detector

Being the detector closest to the beampipe, the Inner Detector (ID) [140, 141] must
fulfill several criteria for the reconstruction of charged-particles 4-momenta, as well as
for the identification of secondary vertices due to the decay of bottom-flavored hadrons
or τ leptons, and for the measurement of the impact parameter. The ID is further
divided into a silicon Pixel Detector [142], a Semiconductor Tracker (SCT) [143] and a
Transition Radiation Tracker (TRT) [144, 145]. In Fig. 5.4, the structure of the ID is
presented in a cut view along the beampipe.

The Pixel Detector has a total of 8.6 · 107 channels and is the device closest to the
interaction point. Four concentric layers of silicon pixel detectors are laid out around the
beam axis in so-called barrel layers. The innermost layer is called the insertable B-layer
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Figure 5.3: The geometry of the coils used to produce the magnetic field in the ATLAS de-
tector. A solenoid magnet (2 T) is installed cylindrically around the beampipe,
surrounded by a toroid magnet (4 T) and two endcap toroid magnets (4 T). Figure
from Ref. [133].

(IBL) [146, 147] and was installed during the first Long Shutdown. It is only 3.3 cm away
from the nominal interaction region and improves measurements of (secondary) vertex
positions. It was designed to work in a high-radiation environment. Three other layers
are disposed concentrically around the beampipe, and additionally three pixel disks
are mounted on each endcap. The Pixel Detector reaches a resolution of ∼ 10µm ×
75µm [148, 149] in the transverse and longitudinal (R · φ, z) directions.

At intermediate radius, the SCT is a silicon microstrip tracker and provides, using
6.2 · 106 readout channels, a measurement of the (R,φ, z) track points. Four SCT barrel
layers are disposed at radii between 299 mm and 514 mm away from the beampipe,
while 18 more planar discs are placed at the endcaps. The strips are placed back-to-
back and rotated with a stereo angle of 40 mrad with respect to each other, so as to
deliver tracking information also in the longitudinal direction. The barrel modules have
a resolution of 17µm× 570µm [143, 150].

Finally, at the outer layer, the TRT is made of thin-walled straw tubes and gives
information for distinguishing electrons from pions, as well as contributes to the trans-
verse position measurement for a total of 3.5 · 105 readout channels. A straw tube is a 4
mm-diameter cylinder filled with gaseous xenon and a gold-plated tungsten wire strung
through the center. The inner tube wall serves as cathode and the wire as an anode. A
high voltage of 1.5 kV is applied, and charged particles passing through ionize the gas.
The freed electrons then drift to the wire, and the drift time can be used to determine
the distance of the particle from the anode. Moreover, electron identification succeeds
by transition-radiation photons created between the straws and converted in the xenon
gas. The probability of transition radiation is proportional to the relativistic γ-factor,
which is usually highest for electrons and positrons. The TRT determines the transverse
position at a resolution of ∼ 110− 130µm [151].
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Figure 5.4: Cross-sectional view of the Inner Detector (ID). The ID particle tracker is made of
the Pixel Detector, the microstrip Semiconductor Tracker (SCT), and the Transition
Radiation Tracker (TRT). Figure from Ref. [133].

5.2.2 Calorimeters

The primary goal of calorimeters is to measure the energy deposited by the particles,
but they also contribute to position measurements and particle identification as well as
to the measurement of the missing transverse energy. ATLAS uses so-called sampling
calorimeters with a sandwich structure. These detectors are made from alternating layers
of high-density passive absorbers (Pb, Fe, Cu, . . . ) and active material (scintillating
plastic, liquid argon, Si, . . . ) producing a detectable signal. The energy measurement is a
destructive process: the incoming particle initiates secondary showers, and all produced
particles deposit energy and radiate further until the total initial energy is absorbed.
These energetic showers have different topologies depending on the type of incoming
particle, namely whether they are leptonic (and photonic) or hadronic.

A passing electron/positron or a photon produces an electromagnetic (EM) shower in
the absorber mainly through bremsstrahlung and electron-positron pair creation. EM
showers are characterized by a rapid energy loss. A given detector material is described
by the radiation length X0, which is the distance after which the incoming particle has
deposited 1/e of its total energy.

In comparison, charged and neutral hadrons generate further hadronic activity by
inelastic nuclear reactions through spallation and excitation. The secondary neutral
mesons also generate additional EM shower activity. Furthermore, hadronic showers
are generally wider than EM ones, and hadronic calorimeters are correspondingly much
bulkier. They are characterized by the nuclear absorption length λa, for which 95% of
the total energy is absorbed in a cylinder of radius λa. In ATLAS, both the EM and the
hadronic calorimeters are found between the ID and the Muon Spectrometer.
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5.2.2.1 The Liquid Argon (LAr) Calorimeter

Fig. 5.5 depicts the Liquid Argon (LAr) calorimeters [152] in yellow, which are closest
to the ID and enveloped by the Tile Calorimeter. The LAr calorimeters contain both
EM and hadronic detectors. The LAr calorimeters function as a system of alternating
lead/stainless steel absorbers and electrodes measuring the signal drift-time, with the
whole system immersed in liquid argon which plays the role of active medium.

The electromagnetic barrel (EMB, |η| < 1.475) and endcap (EMEC, 1.375 < |η| <
3.2) calorimeters use the same absorber material and geometry. In the forward region
(FCal) at rapidities 3.1 < |η| < 4.9, a copper-based absorber covers EM activity while a
tungsten module provides measurement of hadronic energy deposition. A hadronic LAr
calorimeter is also placed at the endcaps (HEC) and complements readings from the Tile
Calorimeter. The EM calorimeters have an energy resolution of σE/E = 10%/

√
E +

0.7%, while the FCAL subdetector fares more poorly with a resolution of σE/E =
100%/

√
E + 10%. Finally, the hadronic HEC subdetector reaches an energy resolution

of σE/E = 50%/
√
E + 3% [153].

5.2.2.2 The Tile Calorimeter (TileCal)

Figure 5.5: The ATLAS calorimetry system is composed of the inner Liquid Argon calorimeter
(yellow) and the outer Tile Calorimeter (gray). Figure from Ref. [133].

The central and two extended barrel regions are covered by the TileCal [154], which
is cylindrically disposed around the beampipe (see Fig. 5.5) and is made of iron plate
absorbers and plastic scintillators as the active medium. The scintillating light created
by hadronic energy deposition is wavelength-shifted and led to photomultiplier tubes that
amplify the signal. The TileCal has a total energy resolution of σE/E = 50%/

√
E + 3%

for single pions [155].
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5.2 The ATLAS detector

5.2.3 The Muon Spectrometer (MS)

At the outermost layer of the ATLAS detector, the MS [156] is designed to deliver high-
precision measurements of the muon transverse momenta. It uses four different tech-
niques to trigger and detect the produced muons: resistive-plate chambers (RPC) [157],
cathode strip chambers (CSC) [158], monitored drift tubes (MDT) [159] and thin-gap
chambers (TGC) [160], shown in Fig. 5.6. The muon tracks are bent by three air-
core toroid magnets for a rapidity-dependent bending power between 1− 7.5 Tm. This
amounts to a resolution of ∼ 10% in the transverse momentum of high-energy muons at
around 1 TeV. Both the RPCs and the TGCs are used as a first-level trigger on well-
resolved, high-pT muons in the barrel region, respectively the endcaps. On the other
hand, the MDTs which are located in the barrel and endcap regions, and the CSCs in
the forward region, measure the position of the incoming muons in the bending plane.

Figure 5.6: The ATLAS Muon Spectrometer. Figure from Ref. [133].

5.2.4 Trigger and data acquisition

The collision rate at high-energy collider experiments like ATLAS poses enormous com-
puting and storage requirements. At the LHC, the proton-bunch crossing-rate at the
current luminosity towers at a monumental 40 MHz. With a data content of ∼ 1.6 MB
per event, the storage of all events would produce ∼ 60 TB per second. Thus, the event
rate needs to be reduced to an affordable storage and readout rate. The ATLAS trigger
and data acquisition system [161, 162] lowers the stored event rate using certain quality
criteria from the detectors. The trigger system is organized in three sublevels:

• Level 1: The first trigger is implemented at the hardware level already, and uses
both calorimetry information (cluster energy sum / isolation criteria) and data
from the muon trigger chambers to reduce the event rate from 40 MHz to ∼ 75
kHz. It also identifies regions-of-interest (ROI) characterized by specific signatures
deemed physically relevant.
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• Level 2: At the software level, the Level 2 Trigger uses the ROIs identified by
Level 1 and combines information from all subdetectors to focus on the physics
objects. The event rate is then reduced from 75 kHz to ∼ 1 kHz.

• Event Filter: The full events are analyzed offline and the Level 2 selection is
refined by the Event Filter (EF), which can also perform full event reconstruction
at this stage. Accepted events are then stored permanently on disk at a rate of
∼ 200 Hz for an acceptable total storage rate of around 300 MB per second.

Since Run II, the ATLAS software trigger comprises a single high-level trigger (HLT)
farm, instead of the separate Level 2 and EF trigger levels, reducing the Level 1 total
event rate from 100 kHz to 1 − 1.5 kHz. The raw data are then stored first in the
central CERN data center. The LHC Computing Grid is composed of several levels, or
tiers. After the central CERN data center at Tier-0, the data are redistributed to 13
other computer storage and analysis sites forming the Tier-1, which store and process
the raw data into refined formats and distributes them along to Tier-2 computer sites
(university/institute clusters). Tier-3 sites are composed of local computers for analysis
purposes. Mostly, analysers use pre-processed data that simplify the description of
physics objects.

5.2.4.1 Data formats

From the raw data saved on-site to the final format available to analysers, several levels of
data processing and reconstruction are implemented to derive a meaningful identification
of physics objects that can be used in an analysis. Below, the successive file formats and
their content are presented:

• RAW: The raw data from the trigger output are stored as primary information
from the subdetectors: these complete events contain partially redundant informa-
tion and metadata for the final analyses.

• ESD: The detector output present in the RAW events is fed to the reconstruction
algorithm, and all the information needed for particle identification, track fitting,
jet calibration is summarized in so-called Event Summary Data (ESD) files.

• xAOD: More information is pruned away, and only the physics objects (electrons,
muons, jets, MET, . . . ) are summarized in containers and saved as ROOT [163]
files called Analysis Object Data (xAOD).

• DxAOD: The xAOD files are further reduced to analysis-dependent (Top, Higgs,
SUSY . . . ) event subsets, the derived AODs (DxAOD). The goal is to reduce
file size and analysis computing times. Derived AODs are produced by either
removing uninteresting events (so-called skimming), eliminating entire variables
or object collections from all events (slimming), or removing particular objects in
some events (thinning). Analyses handle directly the derived xAOD files as input.
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5.2 The ATLAS detector

5.2.4.2 MC simulation in ATLAS

Common MC event generation was explained in Chapter 4. In the following, a parton
level event is defined as the set of particles (with their well-defined 4-momenta) produced
by the hard-scattering matrix-element or by the parton-shower algorithm applied to
the hard collision, but before hadronization. Both cases will be explicitly discerned
when necessary. Such parton-level events are unphysical since they do not obey color
confinement. The output of a full-fledged MC program after hadronization is a collection
of events at particle level : this is usually the point of comparison between theory and
experiment. Finally, accounting for the further evolution of particles in the magnetic field
of a specific experiment, as well as for geometric acceptance and detection efficiencies,
defines measurable events at detector level. Fig. 5.7 illustrates the event-level definitions.
The full process of producing sets of events at detector level from the theory input will
be referred to as MC simulation.

Particle-level

Parton-level

Detector-level

Figure 5.7: Definition of event levels: parton level after the hard collision (and including parton-
showering), particle level after hadronization and detector level after the evolution
in the ATLAS magnetic field, digitization and reconstruction.

In the ATLAS experiment, this production chain is implemented in the Athena frame-
work, and comprises several steps outlined in Fig. 5.8. The event output at each stage
is identified by a tag. For a given process, the first step consists of basic MC pro-
duction using the programs available on the market (Sherpa [123], Herwig7 [117],
Pythia8 [121, 122], and so on). The AthGeneration subpackage handles the inter-
facing of public MC programs in the ATLAS infrastructure, so as to ensure the use
of common parameters, like particle masses and decay widths, and to facilitate repro-
ducibility. From job option scripts at the user-level, the interface writes the standard
input cards readable by the MC programs, and launches the event generation itself. The
intermediate output at parton level (from the hard ME) is saved as Les Houches Event
(LHE) files [164], and the generation of fully-showered and hadronized particle-level
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events (EVNT/e-tag) is referred to as evgen. Next, the simulation of events from particle
to detector level happens in two phases: simul (s/a-tags) and reco (r-tag). The actual
simulation (the evolution of the particles in the ATLAS magnetic field and the gener-
ation of the detector response) is handled by the Geant4 [165] program: it contains
the detector geometry and reproduces the particle hits in the subdetectors, accounting
for detection efficiency. Because of the enormous computing time needed to produce
hits from the hundreds of particles at play, an alternative is to parametrize the detector
response without running a full event simulation (so-called AtlFast [166] simulation).
The output of the simul step is a HITS file. Then, as happens with the real data in the
reco stage, signals simulated in the subdetectors are digitized, and the physics objects
reconstructed to produce the xAOD format mentioned above. DxAODs derivations can
be constructed for the latter and serve as input to the analyses, like the MC event sets
which will be introduced in Chapter 9.

Athena

LHE
EVNT

e-xxxx

HITS

s/a-xxxx
xAOD
r-xxxx

DxAODMC Event Generator
evgen simul reco deriv

Figure 5.8: The Athena workflow for MC event generation and simulation.
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6 Theoretical predictions for tt̄ final-states

The top-quark pairs created in high-energy particle collisions, e.g. at the LHC, are not
observable per se: the top quark has a short lifetime of ∼ 0.5 · 10−24 s [1]. Thus, the
only directly measurable quantities are the properties of its decay products. The top
quark has a decay branching ratio of 99.8% for t → W+b, t̄ → W−b̄. The tt̄ final-state
contains two b-jets that can be experimentally tagged, and depends only on the decay
mode of the W bosons. In the case of top-quark pair production, both W bosons can
decay either hadronically or leptonically, with branching ratios Γ(W → qq̄′) = 0.67,
Γ(W → `ν`) = 0.33: the final-state is either dileptonic, monoleptonic (lepton+jets) or
allhadronic, and the top-quark properties must then be reconstructed from the measured
final-states. Fig. 6.1 depicts the topology of the three decay channels and Table 6.1 gives
an overview of their respective cross-sections and major features.

b

b̄

¯̀ν̄`

ν`

`

(a) Dilepton

b

b̄

¯̀q

ν`

q̄

(b) Lepton+jets

b

b̄

qq̄

q

q̄

(c) Allhadronic

Figure 6.1: Topologies for tt̄ events are characterized by either (a) dileptonic, (b) monoleptonic
or (c) allhadronic decays.

A precise computation for the top-quark pair production cross-section and differential
observables is paramount for the extraction of top-quark properties. Most theoretical
systematic uncertainties are well under control and have been the subject of various
studies [176–179]. In this chapter, the different theoretical descriptions of tt̄ final-states
are reviewed. The most important issues are summarized, and their potential impact on
the extraction of top-quark properties from data are discussed. To do so in a realistic
and quantitative way, an analysis close to the ATLAS 8 TeV top-quark mass extraction
in the dilepton channel [180] is set up. The dilepton channel is a clean-signature decay
mode, with the possibility of requiring two well-reconstructed, high-momentum leptons
and a minimal threshold for missing transverse energy. It benefits from a small back-
ground (mainly fake leptons, diboson and Z+jets production), but suffers from the small
branching fraction (Γ ∼ 0.048 for e/µ in the final-state) and the impossibility to fully
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6 Theoretical predictions for tt̄ final-states

Final-state X dilepton (w. τ+τ−) `+jets (w. τ + j) allhadronic all channels

Γ(tt̄→ X) [%] 10.89 44.02 44.89 100.0

σNNLO [pb] 27.42 110.82 113.02 251.76+2.54%
−3.44%

Advantages Clean signature Full reconstruction Largest BR

Drawbacks No full reconstruction Jet-scale uncertainties QCD background

References [167–169],[170, 171] [168, 172],[5] [173],[174]

Table 6.1: The inclusive theoretical cross-sections at NNLO+NNLL QCD are computed for
the tt̄ decay channels with the Top++ program [175] for a top-quark mass of mt =
172.5 GeV and the MSTW2008nnlo68cl PDF set [73] in pp collisions at

√
s = 13 TeV.

Advantages and drawbacks of (any) top-quark measurement in said channel are
given. References for ATLAS measurements of the top-quark mass in particular are
also laid out for each subchannel for the top-quark pole mass (in black), and for the
MC mass (in blue) from template fits.

reconstruct the event, due to the two neutrinos escaping the detector. Cross-sections
for all considered theoretical descriptions of tt̄ final-states are given at the end of the
chapter for the fiducial cuts employed in the analysis.

6.1 The narrow-width approximation (NWA)

Considering the intermediate state W+W−bb̄, it makes sense at first to approximate
it and examine only on-shell, doubly-resonant top-quark diagrams: the cross-section
contribution stemming from non-resonant diagrams is expected to be of the order of
O(Γt/mt) ≤ 1%, and usually neglecting other contributions is fine. This description is
called the narrow-width approximation (NWA), and it builds on the limit Γt → 0, where
the top-quark propagator can then be written as

lim
Γt→0

1

(p2 −m2
t ) +m2

tΓ
2
t

=
π

mtΓt
δ(p2 −m2

t ) +O
(

Γt
mt

)
. (6.1)

That is, top-quark production and decay entirely factorize, i.e.:

Mpp→W+W−bb̄ = MNWA
pp→tt̄→W+W−bb̄ +O(Γt/mt)

= Ppp→tt̄ ⊗Dt→W+b ⊗Dt̄→W−b̄ +O(Γt/mt) , (6.2)

where P denotes the tt̄ production and D the top-quark decay dynamics, and the
spin correlations are correctly taken into account as indicated by the symbol ⊗. The
corresponding three LO Feynman diagrams, as well as a few examples of one-loop dia-
grams for gg → tt̄ production, are shown in Fig. 6.2. Nowadays, most of the theoretical
predictions used for the extraction of top-quark properties in experimental analyses rely
on NLO matrix-elements for top-quark pair production only. The top-quark decay and
all subsequent radiation is left to the MC generator, with the approximations it entails:
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6.1 The narrow-width approximation (NWA)

particle decay predictions usually only have LO accuracy, spin correlations (in particu-
lar in the parton-shower) were only recently implemented, and resummation is as good
as the shower algorithm’s accuracy. Even so, there exists a number of more complete
MC implementations for tt̄ production in the NWA: the effects of NLO corrections to
both production and decay were investigated in the Powheg-box-v2 [17–19] framework
called ttb_NLO_dec [181]. The Herwig7.1 MC generator supports a new multijet merg-
ing algorithm adapted to tt̄ production at NLO [182], and finally the Sherpa generator
allows for the matching of the CS shower to production of tt̄ associated with 1-, 2- and
3-jets at NLO [183, 184].

Furthermore, some dedicated calculations have appeared over the years. In particular,
QCD NNLO corrections for tt̄ production have been calculated for differential distribu-
tions [185–187], and combined with NLO EW corrections [188]. For a review of NLO
EW effects, see Refs. [189–191]. Leaving corrections to top-quark pair production aside,
it was later shown that higher-order corrections to the top-quark decay have a measur-
able impact on differential distributions in certain regions of phase-space. NLO radiative
corrections to the top-quark decays were computed [192–194] and completed by NNLO
QCD corrections [195, 196], NNLL resummation and other improvements above higher-
order corrections in αs [197–202]. Within the NWA, the calculation of QCD NNLO
+ NNLL’ (soft-gluon and small-mass resummation) corrections for differential distri-
butions was combined with NLO EW corrections and is the most complete fixed-order
calculation up-to-date [203].

For the results shown in Section 6.5 in the NWA, the top-quark pair production is
described at NLO QCD and factorizes from the top-quark decay. Furthermore, only
the eµ dilepton channel is considered, that is pp → (e+νe)(µ

−ν̄µ)bb̄ production, in the
analysis presented in Chapter 7. The top-quark decay accuracy is handled in three
different ways:

(1) The top-quark decay at LO is realized in the fixed-order Sherpa setup, as in
Ref. [204] (referred to as NLOLOdec

NWA from now on).

(2) The top-quark decay at NLO is computed in Ref. [193], and is shortly described
below (NLONLOdec

NWA ).

(3) The top-quark decay is handled by the parton-shower, namely through the Sherpa
CSS shower (NLOPS).

The NLONLOdec
NWA calculation in the NWA is based on the formula from Ref. [193], where

top-quark pair production and decay factorize. Taking the perturbative expansion of
Eq. (6.2) to NLO gives

MNWA, NLO

ij→tt̄→bb̄2`2ν = PLO
ij→tt̄ ⊗DLO

t→b`+ν ⊗DLO
t̄→b̄`−ν̄ + PδNLO

ij→tt̄ ⊗DLO
t→b`+ν ⊗DLO

t̄→b̄`−ν̄

+ PLO
ij→tt̄ ⊗

(
DδNLO
t→b`+ν ⊗DLO

t̄→b̄`−ν̄ +DLO
t→b`+ν ⊗DδNLO

t̄→b̄`−ν̄

)
, (6.3)

where LO (δNLO) represent the LO (NLO) contributions to the tt̄ production and
top-quark decays, respectively. 1

1The product PδNLO ⊗DδNLO is formally of higher order.
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Figure 6.2: (a-c) Leading-order diagrams for tt̄ production and (d-e) two examples of NLO
QCD one-loop diagrams for gg → tt̄.

As mentioned above, the NWA is expected to be precise enough for most calculations
and yet, NLO and off-shell effects in the top-quark decay can have an important impact
on sensitive regions of phase-space. In practice, experimental analyses do account for
part of the non-doubly-resonant contributions: they usually include single-top quark
production in the signal, since it contributes to the same final-state at NLO, or they
subtract it consistently as background. Taking care of the interference between tt̄ and
single-top diagrams is generally accomplished with the help of a diagram subtraction
(DS) or diagram removal (DR) scheme [205]. This procedure is not entirely free of
quirks and violates gauge invariance. To get an entirely consistent theoretical prediction,
it is therefore preferable to produce the full intermediate state pp → W+W−bb̄, which
contains the complete set of Feynman diagrams at NLO.

6.2 W+W−bb̄ production: review of existing calculations

The full calculation of W+W−bb̄ at NLO in QCD contains all doubly-resonant top-quark
diagrams, but also non-doubly resonant as well as non-factorizing contributions. Fig. 6.3
illustrates some of the additional Feynman diagrams.

At LO, the full W+W−bb̄ final-state including the non-resonant diagrams has been
computed in Refs. [204, 206–208]. In general, the calculation of NLO corrections poses
some technical problems because of the existence of b-quarks in both initial- and final-
state. In the 5-flavor scheme (5FNS), where b-quarks are treated as massless, collinear
g → bb̄ splittings contribute to the final-state and the corresponding IR divergence has
to be handled. Considering massive b-quarks (4FNS) has the advantage of allowing
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6.3 W+W−bb̄ calculation setup at NLO QCD
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Figure 6.3: One-loop diagrams for pp → W+W−bb̄ production contain (a) NLO corrections
to standard NWA tt̄ production, but also (b) diagrams with one or no top-quark
propagators and (c) resonant diagrams with non-factorizing legs.

any phase space restrictions on the b-quarks without endangering infrared safety. It is
therefore possible to consider exclusive 0-, 1- and 2-jet bins for pp → (e+νe)(µ

−ν̄µ)bb̄
in the same setup. On the other hand, massive b-quarks are accompanied by an addi-
tional mass scale to the one-loop integrals and thus renders the integral evaluation less
straightforward. In Refs. [209, 210], NLO calculations in the 4FNS have been performed.

Often, the W+W−bb̄ prediction differs from the NWA in phase-space regions accessible
only at NLO or sensitive to the top-quark decay kinematics. In Ref. [204], particular
emphasis has been put on the impact of the non-factorizing contributions on the top-
quark mass measurements in the dilepton channel. Recently the calculation of the NLO
QCD corrections to W+W−bb̄ production with full off-shell effects has also been achieved
in the lepton+jets channel [211].

6.3 W+W−bb̄ calculation setup at NLO QCD

Inclusive and differential cross-sections (along with results for top-quark mass determi-
nations) were published in Ref. [212]. The calculation is analogous to the one described
in Ref. [204]. The NLO QCD corrections to the pp → W+W−bb̄ → (e+νe)(µ

−ν̄µ)bb̄
process are computed, i.e. up to O(α2

sα
2), in the 5FNS. This means that interference

from (massless) b-quarks in the initial-state is taken into account. Top-quark finite width
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effects are fully included. The complex mass scheme is used to incorporate the width in
a gauge-invariant way, where the top-quark mass is replaced by a complex number µt:

µ2
t = m2

t − imtΓt . (6.4)

The W and intermediate Z bosons also acquire a complex mass. Note that only
resonant W -boson diagrams are taken into account: non-resonant contributions and
finite-W -width effects were found to be small compared to top-quark effects [213]. The
calculation is realized at parton level within the Sherpa v2.2.3 framework [123],2 where
tree-level and real amplitudes are computed by the Sherpa matrix-element generators
Comix [215–217] and Amegic [218]. The one-loop amplitudes are compiled by GoSam
and linked to Sherpa via the BLHA2 interface. Finally, the IR divergences are sub-
tracted with the help of the Catani-Seymour dipole formalism as automated in Sherpa.

There are 334 diagrams contributing to the qq̄ →W+W−bb̄ virtual corrections, where
q are the light quarks (u, d, s, c), and 1068 diagrams contributing to gg → W+W−bb̄.
Additionally, because of the b-quarks present in the initial-state, 668 one-loop diagrams
contribute to bb̄→W+W−bb̄.

In the results presented in Chapters 7 and 8, the full pp→W+W−bb̄→ (e+νe)(µ
−ν̄µ)bb̄

QCD NLO prediction is compared with various tt̄ predictions in the NWA. One of the
goals of this study is to disentangle the effects from production and decay corrections,
as well as from extra radiation in a parton-shower resummed approximation. The four
theoretical descriptions considered in the next chapter are summarized again for com-
pleteness:

NLOfull: full NLO corrections to pp→W+W−bb̄ with leptonic W -decays,

NLONLOdec
NWA : NLO tt̄ production ⊗ NLO decay,

NLOLOdec
NWA : NLO tt̄ production ⊗ LO decay,

NLOPS: NLO tt̄ production+shower ⊗ decay via parton-showering.

Note that the three first theoretical descriptions are not matched to a parton-shower.
The PDF4LHC15 nlo 30 pdfas sets [219] are interfaced to Sherpa via LHAPDF6 and
events are produced at a center-of-mass energy of

√
s = 13 TeV. The central top-quark

mass was set to mt = 172.5 GeV and the Gµ−electroweak scheme was used with the
following numerical values:

Gµ = 1.16637 ·10−5 GeV−2, MW = 80.385 GeV, MZ = 91.1876 GeV, (6.5)

ΓLO
t = 1.4806 GeV, ΓNLO

t = 1.3535 GeV,

ΓLO
W = 2.0454 GeV, ΓNLO

W = 2.1155 GeV, (6.6)

ΓZ = 2.4952 GeV,

where the LO (NLO) widths were used for the LO (NLO) decays, respectively.

2A patched version [214] was used for the CSS shower, with the correct eikonal expressions for radiating
off massive top quarks (relevant only for the NLOPS description).

54



6.4 Event requirements

6.4 Event requirements

To study the differences between these predictions and their impact on the top-quark
mass determination, an analysis similar to the ATLAS top-quark mass measurement at
8 TeV in the dilepton channel [180] is performed. In the following, the trigger cuts on
leptons and jets are adapted to the ATLAS 13 TeV standards. For details of the analysis,
the reader is referred to Chapter 7. The following event requirements are applied:

• The number of b-jets nb,jets = 2 with pjet
T > 25 GeV and |ηjet| < 2.5. Jets are

clustered with the anti-kT algorithm [220] as implemented in FastJet [221, 222]
using a jet distance parameter of R = 0.4. In the analysis, a jet is considered a
b-jet if it contains a B-hadron (or its decay products).

• Exactly two oppositely charged leptons are required with pµT > 28 GeV, |ηµ| < 2.5
for muons and peT > 28 GeV, |ηe| < 2.47. For electrons, the crack region 1.37 <
|ηe| < 1.52 between barrel and endcap EM calorimeters is excluded. For charged
leptons a separation of ∆R(`, jet) > 0.4 to any jet is required: otherwise, the event
is vetoed entirely.

• p`bT > 120 GeV. Using the same lepton-b-jet assignments as for m`b, the value of
p`bT is defined as the average transverse momentum of both lepton-b-jet systems.

For the MC calculation, the central renormalization and factorization scales are set
to µR = µF = mt. The scale variation bands are obtained by varying µR,F = cR,F ·mt,
with (cR, cF ) ∈ {(0.5, 0.5), (2, 2)}.3

In the NWA parton-showered results, the central scale was also compared to a dynamic
scale called µtt̄. The latter is a “color-flow inspired” QCD scale suggested in Ref. [223].
For the Mandelstam invariants s, t and u, the dynamic scale is given by

µ2
tt̄(qq̄ → tt̄) = 2 pqpt = m2

t − t , (6.7)

µ2
tt̄(q̄q → tt̄) = 2 pqpt = m2

t − u , (6.8)

µ2
tt̄(gg → tt̄) =


m2
t − t w1 ∝

u−m2
t

t−m2
t

+
m2
t

m2
t−t

{
4 t

t−m2
t

+
m2
t
s

}
with weight

m2
t − u w2 ∝

t−m2
t

u−m2
t

+
m2
t

m2
t−u

{
4u

u−m2
t

+
m2
t
s

}
,

(6.9)

the value of µtt̄ being chosen with a probability proportional to the two weights w1, w2

for the gg channel.

3Also, 7-point variations were considered but the simultaneous variations are identical to their envelope.
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6.5 Total cross-section results

The fiducial cross-sections after applying the aforementioned cuts are given in Table 6.2
for all considered predictions, where production at LO accuracy is also added for com-
pleteness. The renormalization and factorization scale uncertainties are given in percent.

X=LO [fb] X=NLO [fb]

Xfull (739.5± 0.3)+31.5%
−22.4% (914± 3)+2.1%

−7.6%

XLOdec
NWA (727.3± 0.2)+31.4%

−22.3% (1029± 1)+10.4%
−11.5%

XNLOdec
NWA - (905± 1)+2.3%

−7.7%

XPS, µ = mt (637.7± 0.9)+29.7%
−21.0% (886± 1)+8.5%

−9.3%

XPS, µ = µtt̄ (499.7± 0.7)+27.6%
−19.3% (805.2± 0.9)+12.3%

−10.9%

Table 6.2: Cross-sections for all predictions at LO, respectively NLO in production, where the
top-quark mass mt = 172.5 GeV. The uncertainty stemming from MC integration
is given in parentheses, and scale variation uncertainties are shown in percent.

While the cross-sections for NLOfull and NLONLOdec
NWA agree with each other within

uncertainties, the NLOLOdec
NWA cross-section is about 13% higher than the latter. The

NLOPS cross-section, in comparison, is smaller because of the softening of b-jets in
the parton-shower which leads to a higher rejection rate when taking jet requirements
into account. The µtt̄ scale is larger than the central scale mt, thus the even smaller
cross-section for this scale choice. Notice also the reduction in the renormalization
and factorization scale uncertainties when including NLO corrections to the top-quark
decay. Usually, rather than total inclusive cross-sections, the most sensitive top-quark
mass measurements rely on differential distributions, where mostly the distributions
for tt̄ final-states are MC-generated and fitted to extract the top-quark mass (see the
full explanation of the method in Chapter 7). One caveat of considering differential
distributions is that the measured top-quark mass is rather represented by the MC
input top-quark mass parameter mMC

t , instead of the top-quark pole mass determined
in inclusive tt̄ measurements.

Leaving the difference between heavy-quark mass schemes aside, the exact procedure
used in current ATLAS analyses for measuring the MC top-quark mass is explained
in the next chapter, along with quantitative comparisons of the theoretical predictions
outlined above.
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7 NWA versus W+W−bb̄: Top-quark mass
uncertainties at parton level

This chapter shall investigate quantitatively the effect of using the different theoretical
predictions presented above in a top-quark mass extraction. The measurement method
is based on the ATLAS 8 TeV analysis in the dilepton channel [180], where the ATLAS
cuts are adapted to the 13 TeV center-of-mass energy. This chapter first introduces
the template fit method that was used in the experimental measurement. After a short
discussion of important features of the considered observables, the results for the fit of
the top-quark mass and its dependence on the different theoretical descriptions of the
tt̄ dilepton final-state are laid out.

7.1 The template fit method

In the dilepton channel, the top-quark momenta cannot be fully reconstructed in the
experiment because of the two-particle spectrum spread given by the neutrinos from both
W decays. One successful method is to use a differential distribution that is sensitive
to the top-quark mass instead, and which can be defined without having to properly
reconstruct the top-quark intermediate states. The procedure is the following:

• Choose a distribution that is sensitive to the theoretical top-quark mass: for ex-
ample, the average invariant mass of the lepton-b-jet system m`b (which consists
of the visible top-quark decay products) is chosen as a function of the top-quark
mass set in the MC event generator.

• Generate distributions for different input top-quark masses min
t . These are called

template distributions.

• Individually fit the template distributions simulated for the input masses min
t with

an appropriate function. Considering the simple example of a Gaussian fit, this
gives:

G(A,µ, σ;min
t ) = A(min

t )exp

(
−
(
µ(min

t )−min
t

)2
2σ2(min

t )

)
, (7.1)

where the parameters A, µ, σ are fitted to the distributions generated for each
input mass.
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7 NWA versus W+W−bb̄: Top-quark mass uncertainties at parton level

(a) Fit of the m`b template to ATLAS data (b) Log-likelihood for mt

Figure 7.1: (a) The ATLAS 8 TeV analysis generates parametrized template distributions for
m`b for different input top-quark masses. The parametrized function is then fitted
to data. (b) The likelihood function for mt is maximized in an fit to the measured
m`b distribution to extract the top-quark mass. Figures from Ref. [180].

This step is called calibration in the following paragraphs, and the functions for each
of the input top-quark masses are called calibration functions. The dependence of the
parameters on min

t is assumed to be linear, a fact that is checked against the MC
prediction. Once it is confirmed, the linear dependence is imposed (in this example,
A(min

t ) = a + b · min
t with a and b fixed, and analogously for µ(min

t ), σ(min
t )). The

underlying linear parameters are then kept constant, and the only free parameter is the
top-quark mass mt = mout

t to be measured. This function can then be used directly in
an unbinned likelihood fit to the distribution measured in experimental data, as shown
in Fig. 7.1 as an illustration from the ATLAS 8 TeV measurement.

For a satisfying modeling of the m`b distribution, the sum of a Gaussian and a Landau
distribution is used in the analysis. In practice, the overall normalization factor is fixed
to the measured data. In the rest of this chapter, the extraction is repeated from a
custom analysis implemented in Rivet [224] similar to the one performed by ATLAS.
Predictions from the four different theoretical setups presented in Chapter 6 are used at
parton level (after parton-showering for the NLOPS results). Different observables are
also compared in addition to m`b.

7.2 Definition of the observables

The results presented in the rest of this chapter were published in Ref. [212]. The reader
is referred to the latter for details that are omitted in the following. A list of observables
is studied that should in principle be maximally sensitive to the top-quark mass while
minimally sensitive to theoretical systematic uncertainties (that is, including differences
between NWA and full W+W−bb̄ predictions):
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7.2 Definition of the observables

• m`b – the invariant mass of the two lepton- and b-jet systems

m2
`b = (p` + pb)

2 . (7.2)

Since both top quarks decay leptonically and there is no possibility to determine
the charge of the b-jets experimentally, there is an ambiguity in the assignment of
the lepton and b-jet to the two top quarks. Here, the same criterion is used as in
the ATLAS analysis: the two possible pairs for the lepton-b-jet system (`+b1, `

−b2)
are tried out, and the pairing that minimizes the sum of the two m`b values per
event is chosen. The final value is set to the average of both m`b values.

• mT2 – following Refs. [225, 226] in the case of the final-state (e+νe)(µ
−ν̄µ)bb̄, the

definition of this variable is given by

m2
T2 = min

p
ν1
T +p

ν2
T =pmiss

T

[
max

{
m2
T

(
p

(`+b1)
T , pν1

T

)
,m2

T

(
p

(`−b2)
T , pν2

T

)}]
. (7.3)

The same pairing as for m`b is chosen for the lepton and b-jet systems, and the
transverse mass is defined as

m2
T

(
p

(`bi)
T , pνiT

)
= m2

(`bi)
+ 2

(
E

(`bi)
T EνiT − p

(`bi)
T pνiT

)
, (7.4)

with ET =
√
|pT |2 +m2 and mνi = 0.

• E∆R
T – the lepton transverse energy weighted by the angular distance to the cor-

responding b-jet

E∆R
T =

1

2

(
E`

+

T ∆R(`+, b1) + E`
−
T ∆R(`−, b2)

)
, (7.5)

where again the above m`b criterion is used.

• m`` – the invariant mass of the two-lepton system.

For the NLOLOdec
NWA , NLONLOdec

NWA and NLOfull calculations, only the parton level is con-
sidered, including the decay products from the W bosons. The b-jets are identified with
the b-quarks in that case. For the NLOPS prediction, the cuts and observables are defined
on the parton-level output of the shower algorithm, before any hadronization but with
the full-particle final-state. Sets of MC samples were produced for the input top-quark
masses

mt ∈ {165.0, 172.5, 180.0} [ GeV] . (7.6)

The dependence on the input top-quark mass mt is shown for all four observables in
Fig. 7.2. Whereas m`b and mT2 are the most sensitive to the input mt with a ratio to
the central choice of the order O(2−3), the dependence of the E∆R

T and m`` observables
on the top-quark mass is rather weak.
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7 NWA versus W+W−bb̄: Top-quark mass uncertainties at parton level
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Figure 7.2: Differential observables are shown for three different top-quark mass points cho-
sen symmetrically around mt = 172.5 GeV for the full W+W−bb̄ NLO prediction.
While the (a) m`b and the (b) mT2 observables show the highest top-mass de-
pendence, the observables (c) E∆R

T and (d) m`` are not sensitive enough to be
considered for the template fit. Figures from Ref. [212].

7.3 Comparison of the different theoretical descriptions

The normalized differential cross-section for the m`b observable is outlined in Fig. 7.3
for the four theoretical predictions presented in Chapter 6. The ratio to the complete
W+W−bb̄ NLOfull calculation is shown, where the latter’s scale uncertainties are rep-
resented by gray bands in the plot. Note that the m`b distribution has a sharp kine-

matic edge at medge
`b =

√
m2
t −m2

W ∼ 153 GeV. Beyond the kinematic edge, the bins

are only populated by wrong lepton-b-jet pairing, additional radiation from the initial-
state clustered along the lepton-b-jet system, and non-resonant contributions. The LO
cross-section for tt̄ production vanishes in this phase-space region. Thus, because NLO
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7.3 Comparison of the different theoretical descriptions

corrections represent the first non-trivial order contributing to this region, differences
between the theoretical descriptions considered here are expected to be sizable around
and above this kinematic edge. On the other hand, as seen in Fig. 7.2, this region also
displays the highest sensitivity to the top-quark mass.

In Fig. 7.3, all predictions for m`b agree within a few percent in the bulk of the
distribution, 40 GeV ≤ m`b ≤ 140 GeV, except for NLOLOdec

NWA . The latter introduces a
positive slope around and above the peak with differences of O(−10%) at small masses
up to +20% at ∼ 140 GeV, effectively shifting the peak to higher values of m`b. This
translates into an artificially higher extracted mass for the top quark when using LO
decay predictions. In contrast, NLONLOdec

NWA is found within 4% of the NLOfull prediction
for the bulk of the distribution, starting to differ above the kinematic edge and stagnating
at −50% of the full prediction in the tail, as expected. Finally, for the NLOPS case, the
tail at high m`b-values is populated by the additional radiation from the parton-shower,
and is driven closer to NLOfull while it mostly lies between NLOLOdec

NWA and NLONLOdec
NWA

in the rest of the distribution.

NLOfull

NLONLOdec
NWA

NLOLOdec
NWA

NLOPS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1
/

σ
d

σ
/

d
m

lb
[1

/
4

G
eV

]

40 60 80 100 120 140 160 180 200
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

mlb [GeV]

R
a

ti
o

Figure 7.3: The normalized differential lepton-b-jet system invariant mass m`b is shown for all
four theoretical predictions considered at 13 TeV, with their ratio to the NLOfull

prediction. The gray band represents the latter’s scale variation uncertainty. Figure
from Ref. [212].
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7 NWA versus W+W−bb̄: Top-quark mass uncertainties at parton level

Similar features can be observed for the normalized distribution of mT2 in Fig. 7.4
on a larger range up to the kinematic edge at medge

T2 = mt. In Figs. 7.5a and 7.5b, the
normalized E∆R

T and m`` distributions show smaller differences between the theoretical
predictions, with maximal deviations of O(10 − 12%) in the regions of lowest cross-
section. Since they are much less sensitive to the top-quark mass, though, they are not
considered for the template fitting procedure in the results below.
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Figure 7.4: The normalized mT2 distribution is depicted for the four theoretical predictions,
and shows a behavior similar to m`b. Figure from Ref. [212].

It is also enlightening to look at the scale dependence of the four theoretical descrip-
tions for LO and NLO production. In Fig. 7.6a, the ratio of the W+W−bb̄ prediction
NLOfull to LOfull is shown for the m`b observable. Although large corrections are ex-
pected above the kinematic edge when going from LO to NLO in production, one finds
unexpectedly important corrections in the low-mass region as well, where differences be-
tween both orders of accuracy in production are not covered by the scale uncertainties.
In the NWA case shown in Fig. 7.6b, the NLO corrections to the top-quark decay also
push the prediction out of the NLOLOdec

NWA scale uncertainties. The differences between
the NLOLOdec

NWA and NLONLOdec
NWA , respectively NLOPS are also not covered around the

kinematic edge. In general, scale uncertainties for tt̄ production in the NWA are shown
to be misguidedly small in the tails of the m`b and mT2 distributions. The behavior of
scale-varied predictions is depicted for mT2, E∆R

T and m`` in Figs. 7.7−7.9.
Taking into account the mass sensitivity (Fig. 7.2a) and the systematic differences be-

tween predictions (Fig. 7.6a), the template fit strategy should be optimized to maximize
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Figure 7.5: The normalized differential cross-sections for the (a) E∆R
T and (b) m`` distributions

with all four theoretical predictions. Figures from Ref. [212].
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Figure 7.6: Results including scale variation bands for mlb, for (a) the LOfull and NLOfull

calculations, (b) the calculations based on the NWA. The ratios with respect to (a)
LOfull and (b) NLOLOdec

NWA are also shown. Figures from Ref. [212].

the top-quark mass sensitivity while keeping the systematic uncertainty associated to
the theoretical predictions to a minimum. The fit range is chosen to be

40 GeV ≤ m`b ≤ 160 GeV , (7.7)

80 GeV ≤ mT2 ≤ 180 GeV .

The exact dependence on the fit range was investigated, where the results were repro-
duced with a restricted range of m`b ≤ 140 GeV, and numerical values were found to be
stable.
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Figure 7.7: Results including scale variation bands for mT2, for (a) the LOfull and NLOfull

calculations, and (b) the calculations based on the NWA. The ratios are defined as
in Fig. 7.6. Figures from Ref. [212].
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Figure 7.8: Results including scale variation bands for E∆R
T for (a) the LOfull and NLOfull

calculations, and (b) the calculations based on the NWA. The ratios are defined as
in Fig. 7.6. Figures from Ref. [212].
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Figure 7.9: Results including scale variation bands for m``, for (a) the LOfull and NLOfull

calculations, and (b) the calculations based on the NWA. The ratios are defined as
in Fig. 7.6. Figures from Ref. [212].

7.4 Template fit results

After the qualitative discussion of differential distributions in the last section, results
from the template fitting procedure are shown and numerical values compared for the
extracted top-quark mass from the different theoretical descriptions. To this effect, since
no data were available to compare to, the procedure outlined in Section 7.1 is adapted
and the following approach is applied to produce plots like the one displayed in Fig. 7.10:

• Simulation : The distributions for m`b and mT2 are produced at parton level
with the three input top-quark masses min

t for all theoretical descriptions.

• Template calibration: The template distributions produced in the first step
are individually fitted to the sum of a Gaussian and a Landau function. The
theoretical description used as a basis for the distribution is called the calibration
set. In the example of Fig. 7.10a, the two calibration sets are described by the
red/blue reference points in the legend.

• Pseudo-data: From the different theoretical descriptions, a subset of events is
drawn and labeled as pseudo-data. This sample corresponds to a luminosity of
50 fb−1. In Fig. 7.10a, the theoretical description used for producing pseudo-data
is given at the top of the plot. In general, the pseudo-data set is drawn from
the more complete of the two predictions, which should be closer to real data.
For a given theory prediction, pseudo-experiments are performed by repeating the
random drawing of the pseudo-data 1000 times from the subset of all events.

• mt extraction: For each of the input top-quark masses min
t , an unbinned likeli-

hood fit is applied to the pseudo-data, using the corresponding calibration set, to
determine the extracted value of the top-quark mass mout

t .
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7 NWA versus W+W−bb̄: Top-quark mass uncertainties at parton level

The normalization of the histograms is chosen to reproduce the pseudo-data cross-
section in the fit range, so that the result of template fits depends only on differences
in the distribution shape. Taking again Fig. 7.10a as reference, the red/blue points
indicate the offset of the extracted top-quark mass with respect to the MC input mass
∆mMC

t = mout
t −min

t . When considering the calibration function generated from the same
theoretical prediction as used to produce the pseudo-data, the offset ∆mt should be close
to zero and serves as a cross-check that no systematic bias exists in the fitting procedure.
The error bars indicate the statistical uncertainty associated with the finite size of the
pseudo-data sample. The numerical offset ∆mt given in the legend is calculated as the
average of the offsets from the three mass points. Finally, the systematic uncertainty
bands are provided by fitting the calibration set to the scale-varied pseudo-data.
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Figure 7.10: Pseudo-data are drawn from the (a) NLOLOdec
NWA and (b) NLONLOdec

NWA samples, and
the difference between the input mass and the fit output is shown for each mass
point. The calibration set from the same prediction (red) is used to show the ab-
sence of systematic bias in the template fit. The calibration set from (a) LOLOdec

NWA

and (b) NLOLOdec
NWA yields an offset (blue) in the top-quark mass extracted from

the theoretically more complete respective pseudo-data. Figures from Ref. [212].

The predictions are considered in order of increasing complexity. Fig. 7.10a shows
the offset between extracted and input top-quark masses when generating pseudo-data
according to the NLOLOdec

NWA prediction, and using the calibration function fitted from
LOLOdec

NWA MC templates in blue. The offset in mt produced by going from LO to NLO
in tt̄ production amounts to 0.51 GeV. For comparison, Fig. 7.10b gives the offset from
fitting the NLONLOdec

NWA pseudo-data with the NLOLOdec
NWA calibration function: higher-order

corrections solely in the top-quark decay lead to an offset of −1.80 GeV. Moreover, the
NLO decay corrections in Fig. 7.10b lead to larger uncertainty bands, because the scale
variations produce non-uniform shape differences. These results already highlight the
importance of higher-order corrections to the top-quark decay in mass measurements
based on m`b.
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7.4 Template fit results

Considering higher-order corrections in both production and decay simultaneously, the
offsets in the extracted top-quark masses are given in Fig. 7.11a for the NWA case, and
in Fig. 7.11b for the full W+W−bb̄ case. The factorization of production and decay in
the NWA approximation yields an offset of −1.38 GeV, corresponding to the sum of the
offsets in NLO production and in NLO decay separately shown in Fig. 7.10a, respectively
Fig. 7.10b. This serves as a check of the factorization properties in the NWA.
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Figure 7.11: From fitting the m`b distribution, the offset for the extracted top-quark mass
based on (a) NLONLOdec

NWA and (b) NLOfull pseudo-data underlines the effect of
taking NLO contributions for production and decay into account. Figures from
Ref. [212].

After these basic considerations, the top-quark mass offsets stemming from the most
complete predictions are discussed. The offset in mt produced when fitting the NLOfull

pseudo-data set with the calibration from the NLONLOdec
NWA prediction is shown in Fig. 7.12a.

Although it still yields a sizable offset of 0.83 GeV with respect to the more complete
W+W−bb̄ prediction, the uncertainty bands now overlap. The fit of the calibration func-
tion from NLOPS to the NLOfull pseudo-data is displayed in Fig. 7.12b. In this case,
the offset is compatible with zero within statistical uncertainties. Although the NLOPS

prediction does not describe the top-quark decay at NLO accuracy beyond the soft limit,
it still largely reproduces the full W+W−bb̄ description for the most part of the m`b fit
range (as can be seen in Fig. 7.3). Further studies were performed to understand if the
discrepancy between NLONLOdec

NWA and NLOPS originates in the genuine NLO-accurate de-
scription of the decay. More details are given in Appendix A, where the parton-shower
number of emissions in both production and decay is gradually restricted, and offsets
in mt are compared to the NLONLOdec

NWA prediction. Reducing the number of emissions
to one in the production and decay showers moves the NLOPS fitted mt-value close to
the NLONLOdec

NWA prediction. This suggests that it is the general softening of m`b around
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7 NWA versus W+W−bb̄: Top-quark mass uncertainties at parton level

the kinematic edge, originating in the successive emissions from the parton-shower, that
drives the top-quark mass fitted from the NLOPS prediction towards the NLOfull value.
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Figure 7.12: Top-quark mass offsets from m`b for pseudo-data generated from the NLOfull

prediction are reduced when considering the case of (a) NLONLOdec
NWA and (b) NLOPS

calibration functions. Figures from Ref. [212].

Similar results are shown for the mT2 distribution in Appendix A. The numerical
offsets for all comparisons are summarized in Table 7.1, together with a combined χ2

computed from both m`b and mT2 offsets for the same theoretical predictions. The value
of χ2 is defined as χ2 = (o1 − o2)2/(u2

1 + u2
2), with i = 1, 2 = m`b,mT2 and oi ± ui are

the corresponding offsets and their (uncorrelated) uncertainties. While almost all χ2

values are consistent with zero, the comparison between NLONLOdec
NWA and NLOPS differs

significantly: therefore, the mT2 estimator for the top-quark mass is concluded to be less
sensitive to differences between the two latter predictions.

In conclusion, this study shows that higher-order corrections to the top-quark decay
are at least as important as corrections to tt̄ production, considering a top-quark mass
extraction based on the m`b distribution. Moreover, the theoretical scale uncertainties in
the NWA with LO top-quark decay seem to be underestimated. Yet, even the inclusion
of the NLO corrections to the top-quark decay falls short of describing the full final-state.
The comparisons presented above suffer from a few shortcomings: in particular, further
showering and hadronization effects, as well as detector resolution, are expected to partly
wash out the differences observed in the extracted top-quark mass at detector level. This
is the subject of Chapter 9, which treats the topic in a more realistic experimental setup
with the help of a folding procedure in the ATLAS framework.
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7.4 Template fit results

Offset [GeV] Figure
Pseudo-data Calibration m`b mT2 m`b mT2 χ2

NLOLOdec
NWA LOLOdec

NWA +0.51± 0.06 +0.48± 0.04 7.10a A.4a 0.17
NLONLOdec

NWA NLOLOdec
NWA −1.80± 0.06 −1.67± 0.04 7.10b A.4b 3.25

NLONLOdec
NWA LOLOdec

NWA −1.38± 0.07 −1.24± 0.05 7.11a A.4c 2.65
NLOfull LOfull −1.52± 0.07 −1.62± 0.05 7.11b A.4d 1.35
NLOfull NLONLOdec

NWA +0.83± 0.07 +0.60± 0.06 7.12a A.4e 6.22
NLOfull NLOPS −0.09± 0.07 −0.07± 0.06 7.12b A.4f 0.05
NLOPS NLOLOdec

NWA −0.92± 0.07 −1.17± 0.05 A.3a A.4g 8.45
NLOPS NLONLOdec

NWA +0.96± 0.07 +0.68± 0.05 A.3b A.4h 10.59
NLOPS NLOPS (µtt̄) −0.03± 0.07 +0.02± 0.05 A.5b A.5d 0.34

Table 7.1: The offsets from the top-quark mass extraction are given in GeV for pairs of the
considered theoretical descriptions, from which the pseudo-data are generated, re-
spectively the calibration function produced. The results are given for both the m`b

and mT2 distributions, along with the corresponding plot references (see also Ap-
pendix A). A χ2-value is computed between the offsets procured from fits of m`b and
mT2. Table from Ref. [212].
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8 Folding of predictions to detector level

In the following chapter, the results outlined in Chapter 7 are reproduced with full
particle-level predictions and the NLOfull calculation is compared to tt̄ results in the
ATLAS framework at detector level. To study the extracted values of the top-quark
mass from reconstructed events in a fast-simulation style, all distributions are folded
from particle level to detector level in a custom implementation. Top-quark mass deter-
minations focus entirely on the dilepton channel in this chapter, but the folding setup
can be used in any decay channel.

8.1 Inverse problems

Usually, when performing a measurement, background contributions are first subtracted
from data, and the corresponding signal distributions are unfolded to particle level [227]
so that available measurements can be compared to predictions. The unfolding procedure
is a particular example of so-called inverse problems: having a true distribution f(x)
for some observable Ω, x ∈ [Ωmin,Ωmax], the measured distribution g(y) is given by the
Fredholm integral equation [228]:

g(y) =

∫ Ωmax

Ωmin

K(x, y)f(x)dx , (8.1)

where the kernel K(x, y) is a continuous function. For binned results, discretizing
Eq. (8.1) gives a linear equation for x, y the n-, respectively m-bin histograms corre-
sponding to the true, respectively the measured distribution:

yj =
n∑
i=1

Aijxi, j ∈ {1, . . . ,m} , (8.2)

where A is the bin migration matrix. The problem of inverting Eq. (8.2), that is to
uncover the true distribution x of an observable Ω from the measured signal distribution
y, is the foundation of unfolding procedures. Because noise in the measured function
can lead to instabilities in the inversion of the response matrix A, the procedure has
to be regularized. There are two distinct unfolding methods: direct unfolding proce-
dures, which usually implement some regularization parameter for a smooth inversion
of Eq. (8.2), and iterative methods. For a short review of unfolding methods in particle
physics, see Refs. [229, 230].
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8 Folding of predictions to detector level

Conversely, instead of unfolding the data to particle level, the chosen strategy for the
13 TeV ATLAS top-quark mass analysis is to produce the distribution templates and
perform the likelihood fit only at detector level. To do so, all samples are simulated
up to detector level. This procedure avoids the complications of the unfolding problem.
In contrast, the main disadvantage of the direct method lies in the computing time:
all MC samples (systematics-varied samples and background) have to be simulated up
to detector level. Here, a complementary approach is employed with the use of direct
folding, as in Eq. (8.2), to provide distributions at detector level from the samples
generated at particle level. Thus, the costly ATLAS simulation is performed only once
and one can quickly quantify effects of theoretical uncertainties, on e.g. the extracted
top-quark mass.

8.2 Folding setup in the ATLAS framework

Considering the results of Chapter 7, the primary goal is to use the folding setup within
the ATLAS standard analysis package to quantify the uncertainty in using the incomplete
tt̄ prediction instead of a full parton-showered W+W−bb̄ event set. It is clear that
simulating all MC samples from particle to detector level is time-consuming: with one
theoretical central prediction (for example Powheg+Pythia8) and one parameter for
the template fit (e.g. the top-quark mass mt), one already has to produce and simulate
samples for a number of top-quark mass points.

evgen simul+reco

AnalysisTop

AnalysisTop::EventSaver

Cuts

PP8 mt = 171.0 GeV

PP8 mt = 172.0 GeV

PP8 mt = 172.5 GeV

PP8 mt = 173.0 GeV

PP8 mt = 174.0 GeV

PP8 mt = 171.0 GeV

PP8 mt = 172.0 GeV

PP8 mt = 172.5 GeV

PP8 mt = 173.0 GeV

PP8 mt = 174.0 GeV

Template
parametrization

Figure 8.1: The workflow for a template fit of the central prediction Powheg+Pythia8 (PP8)
and five top-quark mass points.

Fig. 8.1 illustrates the current analysis workflow for five top-quark mass points. Each
of the samples is produced at particle level first (evgen in blue on the far left) and is
then simulated and reconstructed (simul+reco in red). In the ATLAS 13 TeV analysis,
all samples entering the template fit parametrization are fast-simulated with the Atl-
Fast [166] package. A custom software package applies the analysis cuts outlined later
in Section 8.5. Histograms of the m`b distribution for all individual mass points are then
fed to the template parametrization.
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8.2 Folding setup in the ATLAS framework

To estimate systematic uncertainties, MC variation samples currently go through the
same routine. For example, MC samples with variations of radiative parameters (e.g.
hdamp in Powheg, or a variation of the shower and hadronization algorithm) are also
simulated and parametrized, and the result of the template fit is taken as a systematic
uncertainty on the central sample for the extracted top-quark mass. In the following,
for a swifter evaluation of the associated systematics, histograms of varied samples are
directly folded from particle to detector level, and the output in the template fit is used
to estimate the systematic uncertainty on the extracted top-quark mass.

A simple version of Eq. (8.2) is introduced, where pure bin migrations are implemented
by a right stochastic matrix A, and the detector efficiencies are represented by two bin-
by-bin probability vectors εeff and facc:

Ri =
1

facc
i

Aij ×
(
Pj εeff

j

)
, (8.3)

where Ri is the number of events at detector level in bin i (for an arbitrary differential
distribution), and Pj is the number of events at particle level in bin j. The migration
matrix entry Aij is the probability for an event in bin j at particle level to be recon-
structed in bin i at detector level. The efficiency εeff

j is the probability for an event in bin
j at particle level to be reconstructed at detector level. The factor 1/facc

i is the proba-
bility of an event in bin i at detector level to stem from a fake signal (i.e. its counterpart
at particle level does not pass the fiducial cuts).1 The migration matrices and detector
efficiencies shall encode the experimental resolution simulated by AtlFast.

The migration matrices and efficiencies can be expressed in terms of the usual defini-
tions of acceptance Ai, purity Pi and stability Si [229]:

Ai =
Ri
Pi
, Pi =

PiAiiεeff
i

Ri
, Si = PiAii . (8.4)

The folding procedure is depicted in Fig. 8.2. The central Powheg+Pythia8 (PP8)
sample is simulated once: histograms at both detector level (in red) and particle level
(in blue) are fed to the custom folding package (green nodes). From the distributions
at both levels, a script produces the migration matrices and detector efficiencies defined
above. In principle, for a given top-quark mass, pure theoretical uncertainties can then
be estimated by applying the migration matrices and efficiencies from the central sample
to variation samples, since detector effects do not depend on the MC theory variations
themselves. The folding framework implements Eq. (8.3) and generates folded detector-
level histograms from the particle-level MC-varied samples. They are also saved for
subsequent use in the template fit. Moreover, consistency and statistical cross-checks are
performed. In principle, this procedure can be applied to all theoretical uncertainties.
Thus, in addition to the usual systematic variations, an estimate is computed for the
uncertainty stemming from the non-resonant and non-factorizing diagrams in the full
W+W−bb̄ calculation.

1This ansatz is similar to the one used in other ATLAS analyses, see e.g. the unfolding procedure in
Ref. [231].
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8 Folding of predictions to detector level

evgen/simul+reco

AnalysisTop

AnalysisTop::EventSaver

Cuts

PP8 mt = 172.5 GeV

PP8 mt = 172.5 GeV
hdamp var

PH7 mt = 172.5 GeV
shower var

bb4l mt = 172.5 GeV
W+W−bb̄

build.py upfold.py tests.py

⊗

⊗

⊗

PP8 mt = 172.5 GeV
hdamp var

PH7 mt = 172.5 GeV
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bb4l mt = 172.5 GeV
W+W−bb̄

Figure 8.2: The folding package builds migration matrices and bin-by-bin efficiencies from the
simulated detector and particle levels of a central sample, for example Powheg +
Pythia8 with mt = 172.5 GeV. They are used to fold particle-level histograms
from MC-varied samples to detector level.

8.3 Theoretical descriptions of the signal

The MC derivation samples (DxAOD) used for all subsequent studies were produced
officially by ATLAS during the MC16a campaign (optimized to describe the 2015/2016
data) and are summarized in Appendix B. The nominal samples for NLO tt̄ in the NWA
are generated by Powheg (for the matrix-element) and parton-showered with Pythia8
for five different mass points.2 These samples are simulated up to detector level with
the AtlFast algorithm, but a cross-check is done with respect to the full Geant4
simulation for one mass point. For a fairer comparison of the full W+W−bb̄ prediction
to the tt̄ NWA description, the single-top Wt channel (with diagram removal) is added
to the tt̄ sample. In order to generate the W+W−bb̄ predictions at particle level, the
following setup is used:

• Parton-level production: The full dilepton final-state (e+νe)(µ
−ν̄µ)bb̄ events

are produced at parton level with a local installation of the bb4l generator [232] in
Powheg-BOX-RES [233]. They are generated outside of the ATLAS framework
since the implementation of the bb4l program has not been validated yet. The
matrix-element is computed by OpenLoops [90, 91], and LHE files are written out
by Powheg for subsequent showering.

• Particle-level production: The Pythia8 parton-shower is applied in the AT-
LAS framework to the parton-level events produced with bb4l. Hadronization is
also handled in Pythia8 by the Lund string model.

2Samples with nine top-quark mass points were officially produced, but only the same mass points as
for W+W−bb̄ samples are used in this study.
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8.4 Object definition

• Analysis pre-step: The MC simulation step in ATLAS produces a so-called event
(EVNT) file containing the particle information and kinematics. To be able to run
the AnalysisTop routine on the sample, one needs to transform it to a DxAOD
derivation format. The truth information is propagated to the derivation level,
which contains thinned MC truth information.

Altogether, predictions for five mt values are generated for the tt̄ NWA and the
W+W−bb̄ configurations (as well as for single-top Wt samples), with:

mt ∈ {171, 172, 172.5, 173, 174} [ GeV ] . (8.5)

8.4 Object definition

In ATLAS, the measured data and the MC simulation output are fed to reconstruction
algorithms. These algorithms rely on well-defined physics objects at detector level. The
Level-1 trigger identifies well-resolved candidate physics objects, like electrons, photons,
muons and jets. The Level-2 trigger cuts are designed to refine this selection. Without
entering into much detail, trigger and reconstruction algorithms for electrons and pho-
tons [234], muons [235], jets [236], taus [237] and MET [155, 238] mostly use information
from calorimeter energy clusters matched to one or several tracks identified in the Inner
Detector. More about the exact object selection can be found in Ref. [239].

8.4.1 Electrons

Electron reconstruction matches tracks identified in the Inner Detector to energy deposits
in the EM calorimeter within (∆η,∆φ) = (0.05, 0.05). The electron candidates must
satisfy the kinematic requirements pT > 28 GeV and |η| < 2.47, where the transition
region between the barrel and endcap calorimeters 1.37 < |η| < 1.52 is excluded. For
electrons and photons at the Level-1 trigger, a minimal transverse energy requirement
ET,min is used. In order to distinguish possible fake signals, a veto can be applied
on the activity in the hadronic calorimeter behind the identified cluster in the EM
calorimeter. To originate from the primary interaction vertex, electrons have to fulfill
|z0 · sin(θ)| < 0.5 mm and |d0|/σd0 < 5. Here, z0 and d0 are the longitudinal and
transverse impact parameters, θ is the azimuthal angle, and σd0 is the transverse impact
parameter resolution.

A multivariate algorithm [240] is used for calibrating the measured cluster energy.
Then, electrons are identified with a likelihood (LH) discriminant that defines three
working points: Loose, Medium and Tight [241, 242]. In this analysis, electrons have to
satisfy a Tight requirement. Finally, a pT - and η-dependent isolation criterion (described
in Ref. [235]) is applied. To ensure a good separation with other types of activity, an
overlap procedure is defined on the identified objects. Any electron sharing a track
with a muon is removed. Any jet found within ∆R < 0.2 of a reconstructed electron is
discarded. Subsequently, any electron found within ∆R < 0.4 of a jet is also removed.
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8 Folding of predictions to detector level

8.4.2 Muons

Information from the MDT detectors in the Muon Spectrometer is used to fit the track
of the muon candidate. The track is then extrapolated back to the interaction vertex
and combined with tracks identified in the Inner Detector. The muon candidate has to
satisfy pT > 28 GeV and |η| < 2.5. To be assigned to the primary vertex, the muon
tracks need to fulfill |z0 · sin(θ)| < 0.5 mm and |d0|/σd0 < 3.

Muons are reconstructed with a minimal requirement on the transverse momentum.
Depending on the quality and isolation requirements, they are classified in VeryLoose,
Loose, Medium, Tight or High-pT containers [235]. In Chapter 9, Medium muons are
selected. Additionally, an optional isolation criterion for low-pT muons can be applied.
As muons can leave a trace in the calorimeter that might be misidentified as a jet, any
jet with less than three associated tracks found within ∆R < 0.2 of a muon is removed.
Subsequently, any muon found within ∆R < 0.4 of a jet is also discarded.

8.4.3 Jets and b-tagging

The anti-kT jet algorithm [220] is applied (with a distance parameter R = 0.4 for small-
R jets) to topological clusters identified in the calorimeter. These topo-clusters are
reconstructed from the full set of calorimeter clusters. Jets are required to satisfy pT >
25 GeV and |η| < 2.5. The identified jets have to be calibrated, and correction factors
are applied to retrieve their correct 4-momentum and origin vertex. The determination
of jet energy scale (JES) factors and uncertainties comprises several steps, and usually
includes comparisons between MC and data. In the ATLAS jet calibration, a MC-
based comparison is followed by an in situ energy calibration step.3 To reduce pile-up
contributions, a multivariate jet-vertex tagger [243] is used for jets with pT < 60 GeV
and |η| < 2.4, and a pile-up correction factor derived with a jet area method [244, 245] is
applied on all jets. Especially for the case of the ATLAS top-quark mass analysis in the
lepton+jets channel (which is not covered in this work), the jet- and b-jet energy scale
systematics dominate the total measurement uncertainty. For a comprehensive study of
jet reconstruction and associated uncertainties, the reader is referred to Ref. [246].

Finally, jets stemming from b-quarks can be discriminated against light-quark jets.
This feature is crucial in several analyses, including the measurement of the top-quark
mass. Mostly, the identification of a b-jet (so-called b-tagging) relies on the observation
of a displaced vertex from which the jet originates. There exist multiple b-tagging
algorithms: impact-based (IP2D and IP3D [247, 248]), secondary vertex identification
(SV [249]) and decay chain multi-vertex (JetFitter [250]). In ATLAS, the output from
all three procedures are combined in a multivariate likelihood algorithm (MV2 [238]). A
point in the likelihood discriminant can be chosen and defines the tagging efficiency. In
the following chapter, a 70% b-tagging efficiency is chosen, corresponding to a rejection
rate of ∼ 8 for c-jets and ∼ 313 for light jets.

3This type of energy calibration uses events where a well-known reference object recoils against one
measured jet, e.g. Z(→ ``) + j or γ + j.
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8.5 Trigger and event requirements

8.5 Trigger and event requirements

The AnalysisTop package in the ATLAS framework contains all the subpackages that
are necessary for general top-quark measurements. It defines and applies the calibration,
correction factors, scale factors and their systematic variations to MC events and data.
Here, AnalysisTop version 21.2.61 is used. The following requirements are applied on
the events in the eµ dilepton channel:

• At least one primary vertex exists in the event.

• Two oppositely charged leptons with exactly one electron and one muon which
fulfill p`T > 28 GeV, and |η| < 2.47 for electrons, |η| < 2.5 for muons. For electrons,
the crack region 1.37 < |η| < 1.52 is excluded. For reconstructed events, the lepton
requirements from the high-level trigger (HLT) depend on the luminosity and are
different for 2015 and 2016 data. They are set to the following values for 2015,
respectively 2016 data:

Trigger cut Object Min. [GeV] LH Isolation L-1

HLT e24 lhmedium L1EM20VH e± ET > 24 Medium − VH
HLT e60 lhmedium e± ET > 60 Medium − −
HLT e120 lhloose e± ET > 120 Loose − −

HLT mu20 iloose L1MU15 µ± pT > 20 −
∑
ptrack
T /peT < 0.1(R = 0.2) −

HLT mu50 µ± pT > 50 − − −
HLT e26 lhtight nod0 ivarloose e± ET > 26 Tight

∑
ptrack
T /peT < 0.1 /d0

HLT e60 lhmedium nod0 e± ET > 60 Medium − /d0

HLT e140 lhloose nod0 e± ET > 140 Loose − /d0

HLT mu26 ivarmedium µ± pT > 26 −
∑
ptrack
T /pµT < 0.07 −

HLT mu50 µ± pT > 50 − − −

The electrons are designated by their likelihood discriminant (LH). An isolation
cut can be applied, where a maximum is set on the scalar sum of the transverse
momentum in a cone around an object track (with variable size for the 2016 Run).
Finally, an additional Level-1 trigger (L-1) veto can be applied on the hadronic
activity behind the EM clusters (VH). For 2016 data, no impact parameter re-
quirement is set on the electron tracks.

• HT =
∑

i pT,i > 120 GeV, the scalar transverse momentum sum of all particles.

• njets ≥ 2 for the total number of jets with pjet
T > 25 GeV and |η| < 2.5.

• Exactly two b-jets with pjet
T > 25 GeV, |η| < 2.5. For reconstructed events, a 70%

b-tagging working point is chosen for the MV2c10 [247, 251] b-tagging algorithm.
A b-jet is defined within particle-level events using the JET N GHOST criterion (so-
called ghost association [245]), for which a jet is b-tagged if it contains a B-hadron.

• m`` > 15 GeV for the invariant mass of the two-lepton system.
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9 Determination of the top-quark mass at
detector level

The simulated tt̄ and single-top NWA predictions are presented, after applying the object
selection and event requirements laid out in Chapter 8. The template parametrization of
the tt̄+single-top samples is performed. To compare these results to the W+W−bb̄ pre-
diction, a setup is introduced in an ATLAS framework for folding histograms generated
at particle level. Migration matrices derived from the simulated tt̄ samples are plotted.
After some simple cross-checks of the setup, the W+W−bb̄ folded results and template
parametrization are presented, along with numerical comparisons of both theoretical
descriptions for the extraction of the top-quark mass. A preliminary fit to ATLAS data
from tt̄+single-top and W+W−bb̄ templates is performed. The results shown here are
based on an ongoing implementation of the ATLAS 13 TeV analysis [252].

9.1 NWA predictions and template parametrization

The signal contains tt̄ dilepton and single-top Wt events, where the interference terms
contributing to the final-state are taken into account by the diagram removal scheme [205].
The nominal sample is produced in the Powheg-BOX generator [17–19] matched to
Pythia8 [122] (PP8) for parton-showering and hadronization. The matrix-element is
convoluted with the NNPDF3.0 NLO sets [253] and the parton-shower uses parame-
ters from NNPDF2.3 LO. The parton-shower parameters in Pythia8 are set according
to the A14 tune [254]. A central value hdamp = 1.5 · mt is chosen for the hdamp re-
summation parameter in Powheg that was found to improve the description of the tt̄
kinematics [255]. Moreover, the definition of the m`b observable is identical to the one
given in Chapter 7 (see Eq. (7.2)): the lepton-b-jet pairing that minimizes the sum of
both m`b-values per event is chosen, and the m`b observable is defined as their average.
The leptons and b-jets entering the definition are the objects reconstructed using the
prescriptions given in Sections 8.4-8.5.

In Fig. 9.1, distributions of the m`b observable are shown at five different MC top-
quark mass points for the tt̄+single-top predictions. In all plots, the distributions are
normalized to unity since, as in Chapter 7, only normalized distributions are input to
the default ATLAS template fit. The ratio is displayed in the lower panel with respect
to the central top-quark mass, and error bars indicate MC statistical uncertainties. The
predictions are shown at particle level in Fig. 9.1a and at detector level in Fig. 9.1b.
It is observed that the sensitivity to the input top-quark mass decreases visibly when
comparing the particle and detector levels.
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9 Determination of the top-quark mass at detector level
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Figure 9.1: The normalized m`b distribution from the PP8 tt̄+single-top NWA predictions is
shown for five top-quark mass points at (a) particle level and (b) detector level.

The template fit method is now applied to these predictions analogously to Chapter 7.
It is performed in the framework of the ATLAS analysis at 13 TeV, which is currently
under development [252], and is based on the work conducted in Refs. [5, 180, 256, 257].
The m`b template distributions for all five input top-quark masses are parametrized
separately. In this case, a sum of three Gaussian distributions is used for a total of 18
parameters (9 functional parameters × 2 linear parametrizations as a function of mt).
The fit is performed with Minuit [258] within ROOT [163], and the fit range is set to

m`b ∈ [40 GeV, 148 GeV] . (9.1)

Fig. 9.2a shows the m`b distribution from the central MC sample and the fitted func-
tion. The chosen functions satisfactorily describe the distributions. In Fig. 9.2b, the
histograms and fit functions for three mass points are displayed together.

As explained in Section 7.1, the linear dependence of the functional parameters on
the top-quark mass is then fixed. The mass itself is left as the only free parameter.1

This function can now be used in an unbinned likelihood fit to data (or pseudo-data).
The likelihood function L depends only on the top-quark mass mt. For N events with
weights wi, the following function is minimized with respect to mt:

− 2 log(L) = −2
N∑
i=1

wi · log G(m`b,i|mt) , (9.2)

1The linear dependence of the different functional parameters on the input top-quark mass is shown in
Appendix C.
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Figure 9.2: (a) The m`b distribution and the three Gaussian fit functions are shown for mt =
172.5 GeV. The difference between the fit function and the simulated sample is
given below in units of standard deviation. (b) The template histograms and the
fit functions are shown for mt = 171 GeV (blue), mt = 172.5 GeV (gray) and
mt = 174 GeV (red). The ratio with respect to the central top-quark mass is
shown in the lower plot.

where G is the sum of the three Gaussian functions derived from the MC generated
templates. Pseudo-experiments are drawn, and the difference between the MC input
top-quark mass and the mean of the output top-quark mass determined by the fit to
pseudo-data is plotted.2 Because of the limited number of events available in the MC
samples, a correction factor for oversampling is applied [260]. A closure test is realized by
fitting the template fit function derived from the tt̄+single-top sample to pseudo-data
drawn from the same sample in 1000 pseudo-experiments. The result is displayed in
Fig. 9.3. The offsets between the extracted top-quark mass and the input MC mass are
given for each mass point. The average result is an offset of ∆mt = (−0.01± 0.02) GeV
compatible with zero.

For the final result, theoretical and experimental systematic uncertainties are consid-
ered. To estimate the impact of theoretical systematic uncertainties on the top-quark
mass, 100 pseudo-experiments are drawn from the MC-varied samples. Again, the cali-
bration function generated from the nominal tt̄+single-top sample is fitted to the varied
pseudo-data. Experimental uncertainties are estimated from the central sample with a
similar procedure, where event weights are applied according to parameter variations
of the reconstruction algorithm. For one-sided variations, the difference between the

2Pseudo-experiments are especially useful for determining statistical uncertainties and correlations on
the systematic variations [5, 259] and to test the validity of this method.
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Figure 9.3: The fit function determined from the tt̄+single-top predictions is used in an un-
binned likelihood fit to pseudo-data drawn from the same samples in 1000 pseudo-
experiments. The average difference between the MC input top-quark mass and the
value extracted from the fit is plotted. The offset is consistent with zero, indicating
the absence of bias in the fit procedure.

top-quark mass obtained from the nominal and the varied sample is taken as system-
atic uncertainty. For two-sided variations, the systematic uncertainty is set to half the
difference between up- and downwards variations. The different systematic components
are discussed next.

Systematic uncertainties for tt̄ modeling

• MC Signal Generator

The signal MC generator uncertainty is estimated by comparing a MG5 aMC@NLO
v2.6.0 [261] tt̄ event sample parton-showered with Pythia8.230 using the A14
tune to the central Powheg+Pythia8 sample. The sample uses the same PDF
sets as the nominal PP8 generation.

• Parton-shower and hadronization

The parton-shower and hadronization uncertainties are derived by a 2-point vari-
ation of Powheg interfaced to Herwig7 and Pythia8, respectively.

• ISR/FSR

Initial-state QCD radiation uncertainties are estimated by comparing the nominal
PP8 sample to two variation samples: for the upwards variation, the factorization
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9.1 NWA predictions and template parametrization

and renormalization scales µR/µF are multiplied by a factor of 0.5, the Powheg
parameter hdamp is set to 3·mt and the Var3c up variation of the A14 tune is used.
For the downwards variation, µR and µF are varied by a factor of 2, hdamp = 1.5·mt

is left to its nominal value, and the Var3c down variation of A14 is used. Final-
state radiation uncertainties are determined by varying µR by factors of 0.5 and 2
in the running of the strong coupling αFSR

S in the parton-shower splitting kernels.

Experimental uncertainties

• (b)-JES

For jet reconstruction, the experimental jet energy scale (JES) uncertainties are
estimated by varying jet energies within ranges derived from the comparison of
MC simulation and in-situ jet calibration [244]. The JES uncertainties include
27 separate components (stemming from Z+jet, γ+jet, pile-up, single-particle re-
sponse, and others). To take into account the remaining discrepancy between b-jets
and light jets after the JES is applied, an uncorrelated uncertainty component is
assigned additionally to the relative b-to-light-jet energy scale.

• JER

The uncertainty on the jet energy resolution is derived by smearing the energy of
the jets to match the resolution of an in-situ measurement in dijet events to MC
simulation [244, 262]. The uncertainties are given as a function of pT and η and
contain 8 separate components.

• b-tagging

A systematic uncertainty is assigned to the b-tagging efficiency working point: pT -
dependent b-tagging scale factors are derived from measurements of dileptonic tt̄
events [263] and applied to the MC samples per jet. The scale factors are varied
within ±1σ and the template fit is repeated. Altogether, 20 different components
(from b-jets, c-jets, light jets and two extrapolations) contribute to the b-tagging
uncertainty.

The results of the fit to MC-varied pseudo-data are shown in Table 9.1. Note that for
the present work, only the dominant systematic uncertainties are estimated. Considering
the corresponding ATLAS 8 TeV analysis in the dilepton channel [180], other systematic
uncertainties (underlying event, color reconnection, lepton scale factors, . . . ) have been
found to be negligible.

It is noted that the matrix-element MC generator is currently the dominating source of
systematic uncertainty, with ∆mt = 1.28 GeV. Yet, the signal MC generator uncertainty
estimated from the comparison to MG5 aMC@NLO should not be taken at face value:
the generator suffers from tuning issues in the matching to Pythia8 [179]. The total un-
certainty is thus expected to be reduced in the future once the generator tune is improved.
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9 Determination of the top-quark mass at detector level

Systematic uncertainty |∆mt|
Theory

Signal MC Generator 1.28 GeV
Parton-shower and hadronization 0.71 GeV
ISR/FSR 0.26 GeV

Experiment

JES (light jets) 0.72 GeV
b-JES 0.43 GeV
Jet energy resolution 0.45 GeV
b-tagging 0.13 GeV

Total 1.77 GeV

Table 9.1: A partial list of systematic uncertainties for the tt̄+single-top signal is given for the
top-quark mass extraction. Theoretical uncertainties are estimated by fitting the
calibration function generated from the nominal sample to MC-varied pseudo-data.
For experimental uncertainties, weights derived from the experimental calibration
and reconstruction resolution are applied to the simulated events (see text).

The same comment applies to the parton-shower and hadronization uncertainty. The ex-
perimental systematics are dominated by the JES, b-JES and JER uncertainties. In the
ATLAS top-quark mass analysis at 8 TeV, the main experimental uncertainties are the
JES and b-JES uncertainties, with ∆mt(JES) = 0.54 GeV and ∆mt(b-JES) = 0.30 GeV.
There, the JER uncertainty is equal to ∆mt(JER) = 0.09 GeV. The total systematic
uncertainty in the 8 TeV analysis amounts to 0.74 GeV, which is compared to the cur-
rent total systematic uncertainty of 1.75 GeV on the top-quark mass. This discrepancy
reflects the fact that the analysis presented here is not yet at the level of precision of
the 8 TeV result. Note that a cut on the transverse momentum p`bT of the lepton-b-jet
system is applied at 8 TeV, whose value is optimized to minimize the total uncertainty
on the top-quark mass [264].

9.2 Migration matrices and efficiencies from the nominal tt̄
(PP8) sample

As stated in Section 8.2, the W+W−bb̄ predictions are to be folded from particle to
detector level using the tt̄ migration matrices. The migration matrices and detector
efficiencies are reconstructed for the m`b distribution and two other observables. His-
tograms are pictured at particle and detector level for the tt̄ sample at mt = 172.5 GeV.
In Fig. 9.4a, the distribution of the angular separation between the two leptons ∆R`` is
shown. The total number of events corresponds to the full MC sample. The migration
matrix Aij is pictured in Fig. 9.4b. The migration matrix rows are normalized to unity.
They are shown here within a restricted range for better visualization. For distributions
relying on well-reconstructed objects, like ∆R``, the migration matrix diagonal elements
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9.2 Migration matrices and efficiencies from the nominal tt̄ (PP8) sample

are very close to unity. The efficiency εeff and inverse fake rate facc are displayed in
Fig. 9.4c and Fig. 9.4d, respectively. The overall efficiency is low with an average of
∼ 26% due to the reconstruction trigger cuts at detector level, which do not exist at
particle level. This was checked in cutflows for a subset of MC events.
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Figure 9.4: The angular separation between both leptons ∆R`` for the PP8 tt̄ sample at
mt = 172.5 GeV with (a) differential distributions at particle and detector level,
(b) migration matrix Aij , (c) efficiency εeff and (d) inverse fake rate facc as defined
in Eq. (8.3).
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9 Determination of the top-quark mass at detector level

Jets are in general more difficult to reconstruct than charged leptons. Fig. 9.5 gives
histograms, migration matrices and detector efficiencies for the number of jets njets.
Some migration to the next bins (and next-to-next bins for higher jet multiplicities) can
be observed. Bins with njets > 8 have large statistical uncertainties. While for ∆R``
both the efficiency and the fake rate are almost constant (see Fig. 9.4), for njets some
bin dependence of the fake rate is observed, as displayed in Fig. 9.5d.
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Figure 9.5: The number of jets njets for the PP8 tt̄ sample at mt = 172.5 GeV, with (a) dif-
ferential distributions at particle and detector level, (b) migration matrix Aij , (c)
efficiency εeff and (d) inverse fake rate facc as defined in Eq. (8.3).
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9.2 Migration matrices and efficiencies from the nominal tt̄ (PP8) sample

For the m`b distribution, the same quantities are shown in Fig. 9.6. The migration
matrix has larger off-diagonal elements: this is because the b-jets are difficult to re-
construct, and the pairing of the lepton and b-jet systems at the particle and detector
levels might not be identical. The efficiency is highest below the kinematic edge, which
corresponds to well-separated, on-shell top-quark pairs.
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Figure 9.6: The lepton-b-jet invariant mass m`b for the PP8 tt̄ sample at mt = 172.5 GeV with
(a) differential distributions at particle and detector level, (b) migration matrix
Aij , (c) efficiency εeff and (d) inverse fake rate facc as defined in Eq. (8.3). Here,
the migration matrices were rebinned for better visibility.
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9 Determination of the top-quark mass at detector level

9.3 Statistical and systematic cross-checks

Several cross-checks are performed in order to test statistical and systematic biases
that could appear in the folding procedure. To ensure that statistical uncertainties are
propagated correctly, only half of the sample for the tt̄ prediction at mt = 172.5 GeV
is used to derive migration matrices and efficiencies. The folding matrices from this
reduced sample, called symbolically 1

2AS , are then applied to the particle-level sample
SP with full statistics. The m`b distribution obtained at detector level (folded from
the subset sample) is compared to the full simulated distribution at detector level S in
Fig. 9.7a. The differences between both are covered by the statistical uncertainties with
no significant bias. In Fig. 9.7b, the m`b distribution is compared at detector level for
the Geant4 (FullSim) and the AtlFast (AFII) algorithms. Although some structure
in the tail of the distribution seems to indicate a softer spectrum for AtlFast than for
the full simulation, both distributions still agree within statistical uncertainties.
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Figure 9.7: Migration matrices from one sample are used to fold another sample’s particle-level
m`b distribution for statistical and systematic cross-checks. (a) A statistical subset
is used to derive migration matrices 1

2AS and fold the full sample SP . (b) Same for
the Geant4 (SIM) and AtlFast (AFII) simulated samples.

In the final results, migration matrices are consistently chosen to use the same input
top-quark mass as the sample to be folded. Still, it is checked that the input top-
quark mass does not introduce any visible systematic bias in the folded distributions:
in Fig. 9.8a, the migration matrices from the mt = 174 GeV sample are used to fold the
mt = 171 GeV prediction to detector level. The folded and simulated distributions for
mt = 171 GeV agree very well. The same should be true of any theoretical MC variation.
Conventionally, the hdamp parameter in Powheg, which regulates the amount of hard
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9.3 Statistical and systematic cross-checks

radiation, is taken as such a variation. The central value is chosen as hdamp = 1.5mt =:
h1. The variation sample uses hdamp = 3mt := h2. Folding the varied sample at
particle level h2,P with the migration matrices Ah1 from the central sample leads to
good agreement at detector level, as shown in Fig. 9.8b.
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Figure 9.8: (a) Same as Fig. 9.7, where the mt = 174 GeV sample is used to fold the mt =
171 GeV prediction. (b) Same for the central, respectively varied values of the
hdamp parameter.

In another study, a comparison is made between the Pythia8 and Herwig7 parton-
showers, displayed at particle level in Fig. 9.9a. Usage of different parton-shower al-
gorithms leads to significantly dissimilar spectra. Once detector effects are taken into
account, the discrepancy is much less pronounced, although a small slope is still visible,
as shown in Fig. 9.9b.

This feature can be traced back to the difference in simulated predictions for both
parton-showers. The fact that Pythia8 produces harder radiation than Herwig7 is
well-known (see Chapter 11 for the case of Higgs pair production).3 As can be seen with
the example of the transverse momentum of jets and leptons given in Appendix D, the
data are not always well-described by the Pythia8 parton-shower.

This mismodeling in the simulated samples propagates to the derived efficiencies.
Fig. 9.10a gives the efficiency εeff and inverse fake rate facc for the m`b distribution.
Essentially, the efficiency is higher for the simulated Pythia8 sample than for Herwig7.
Furthermore, their ratio is not constant: the Pythia8 sample is more efficient for small
m`b-values, a fact that is reflected in Fig. 9.9b. In contrast, the inverse fake rates
shown in Fig. 9.10b are identical. The migration matrices of both samples are also
consistent within statistical uncertainties. The slope in Fig. 9.9b leads to a bias in the

3The effect on the top-quark mass was investigated in the Powheg-BOX-RES framework recently [265].
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9 Determination of the top-quark mass at detector level
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Figure 9.9: (a) The Pythia8 (PP8) and Herwig7 (PH7) parton-showered samples are com-
pared at particle level for a fixed top-quark mass mt = 172.5 GeV. (b) Same as
Fig. 9.7 for the PP8 and PH7 samples.

top-quark mass; however, the uncertainty is already taken into account by the parton-
shower/hadronization uncertainty. Thus, it is not a folding uncertainty per se, and it
should not be double-counted.
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Figure 9.10: (a) The efficiency εeff for PP8 and PH7. (b) Same for the inverse fake rate facc.
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9.4 Folded W+W−bb̄ results and template parametrization

To test if a residual bias exists, the following procedure is performed: the m`b distri-
bution from the Pythia8 samples at particle level is folded with the migration matrix
and fake rate from Herwig7. The efficiencies, though, are replaced by the ones derived
from Pythia8. The folded histogram then agrees very well with the fully-simulated
Pythia8 distribution. The template functions derived from these histograms are used
to fit the simulated Pythia8 pseudo-data: the offset in the output top-quark mass then
vanishes within statistical uncertainties.

9.4 Folded W+W−bb̄ results and template parametrization

The W+W−bb̄ prediction from the bb4l event generator is folded to detector level using
the migration matrices obtained with PP8. Fig. 9.11a displays the particle-level m`b

distribution for the full W+W−bb̄ prediction at NLO QCD matched to the Pythia8
parton-shower, as a function of the five input top-quark masses. In Fig. 9.11b, the same
comparison is made at detector level with the folded predictions. The distributions are
smoothed out by the folding procedure. Moreover, the relative statistical uncertainties
can decrease in certain bins from particle level to detector level, if the statistical co-
variance matrix has large off-diagonal elements. These cannot be displayed on the plot.
In general, the statistical precision of the W+W−bb̄ samples is limited: the bb4l MC
generator is demanding in terms of resources for both the MC integration and the event
generation. This might be optimized further by adjusting generation parameters.
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Figure 9.11: The normalized m`b distribution for the generated W+W−bb̄ events for the five
different input top-quark masses at (a) particle level and (b) detector level.
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9 Determination of the top-quark mass at detector level

The primary goal is to quantify the shift in the extracted top-quark mass generated by
using the tt̄+single-top, respectively W+W−bb̄ predictions at NLO QCD. In Fig. 9.12,
the normalized m`b distribution is shown for the signal (tt̄ and single-top in the Wt
channel) and the folded W+W−bb̄ predictions at detector level for an input top-quark
mass mt = 172.5 GeV. Note that the single-top contribution starts populating the region
above the kinematic edge medge

`b ∼ 153 GeV. The same samples are then compared to
pseudo-data drawn in a single pseudo-experiment from the tt̄+single-top sample for
comparison. The m`b distribution from the corresponding W+W−bb̄ sample introduces
a bias (in green), which shall be quantified in the top-quark mass extraction. The m`b

distribution from the parton-showered W+W−bb̄ sample is shifted towards higher values.
Thus, the extracted top-quark mass will be lower for W+W−bb̄ than for tt̄+single-top.
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Figure 9.12: The normalizedm`b distribution formt = 172.5 GeV is shown for the tt̄+single-top
sample, as well as for the W+W−bb̄ prediction folded to detector level. Pseudo-
data drawn from the central tt̄+single-top sample in a single pseudo-experiment
are given for a qualitative comparison. The lower plot shows the ratio to pseudo-
data (with statistical uncertainties as hatched error bars).

Similarly to Chapter 7, the calibration functions determined from the W+W−bb̄ pre-
dictions are used to fit pseudo-data drawn from the tt̄+single-top samples with 1000
pseudo-experiments (PE). The template fit to pseudo-data gives an offset in the ex-
tracted top-quark mass, ∆mt = mout

t −min
t . This offset quantifies the difference between

the incomplete tt̄+single-top and the full W+W−bb̄ prediction.

Fig. 9.13 displays the result of the template fit. Again, the use of tt̄+single-top fit
functions yields an offset close to zero (in red), serving as a cross-check that no bias
exists in the fitting procedure. The use of the W+W−bb̄ calibration functions (in blue)
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9.4 Folded W+W−bb̄ results and template parametrization

results in an average value ∆mt = −0.33 ± 0.02 GeV. The second uncertainty is the
statistical uncertainty on the systematic offset ∆mt.
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Figure 9.13: A comparison similar to the ones performed in Chapter 7 is presented at detector
level. The folded W+W−bb̄ prediction is used to fit pseudo-data drawn from
tt̄+single-top samples. This introduces an average offset of ∆mt = −0.330 ±
0.022 GeV in the top-quark mass extraction.

The theoretical systematic uncertainties for the W+W−bb̄ prediction would be esti-
mated in a slightly different way than for tt̄+single-top. Most of them require dedicated
runs, and were not quantified in this study.4 Conceptual definitions are proposed next,
and some preliminary systematic uncertainties are estimated from general considera-
tions. The experimental uncertainties are identical to the tt̄ uncertainties: this was
checked by fitting the W+W−bb̄ calibration function to the tt̄ pseudo-data weighted by
the different experimental uncertainty components.

Systematic uncertainties for W+W−bb̄ modeling

Theoretical uncertainties

• MC Signal Generator

The signal MC generator uncertainty cannot be estimated by a 2-point variation of
the event generator, since bb4l is the only existing full-fledged out-of-the-box gen-
erator to produce a W+W−bb̄ dilepton final-state at NLO QCD, at the moment.5

4Since the generation of W+W−bb̄ events is computing-intensive, the mentioned MC variations were
not yet performed in this work.

5One could use a matrix-element provider (e.g. GoSam) to interface to a suitable MC generator.
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9 Determination of the top-quark mass at detector level

For the full prediction with bb4l, conventional well-defined theoretical uncertain-
ties can be estimated by renormalization and factorization scale variations, as an
alternative representation of the signal MC generator uncertainty. This requires
dedicated samples for a 7-point scale variation and subsequent folding to detector
level. If they are assumed to be of smaller magnitude at detector level than at
parton level, an upper bound would be of the order O(700 MeV), as illustrated
e.g. in Fig. 7.12.

• Parton-shower and hadronization

The parton-shower and hadronization uncertainties would be derived by a 2-point
variation of Powheg interfaced to Herwig7 and Pythia8. Because of the par-
ticularities of the Powheg-BOX-RES generator, parton-shower matching has to
be implemented carefully. A class called ShowerVeto has been introduced in the
default Herwig7 shower to that effect since v.7.1. Once it is implemented and
fully validated in the ATLAS framework, the parton-shower and hadronization un-
certainties could be estimated in the usual way. Studies of the different matching
prescriptions and vetoing possibilities in bb4l [265] point to a difference in the
position of the W -b-jet invariant mass mWbjet

of O(1 GeV) between both show-
ers. This uncertainty is expected to decrease at detector level. Moreover, the
m`b distribution is less sensitive to the input top-quark mass than mWbjet

(which
corresponds to the fully-reconstructed top-quark mass). In the following, a con-
servative uncertainty of 1 GeV for the top-quark mass is taken as a first guess of
the combination of parton-shower and hadronization systematics.

• ISR/FSR The same prescription given for the estimate of ISR/FSR modeling
uncertainties in tt̄ can be implemented for the W+W−bb̄ prediction (variation of
the Pythia8 tune, renormalization and factorization scales and hdamp parameter).
These uncertainties should not be overly sensitive to the non-doubly resonant con-
tributions in the matrix-element. Thus, they are expected to be of the same order
as for the tt̄ prediction.

The preliminary (partially conjectured) list of systematic uncertainties for theW+W−bb̄
prediction at NLO QCD can be found in Table 9.2.

9.5 Numerical results for the top-quark mass in ATLAS data

The calibration functions from the tt̄+single-top andW+W−bb̄ predictions are now fitted
to ATLAS pp collision data at a center-of-mass energy of

√
s = 13 TeV. The data were

recorded in 2015 and 2016 for a total integrated luminosity of 36.2 fb−1. Control plots
can be found in Appendix D for a few observables. It is stressed again that these results
are preliminary. No background is simulated, but the fiducial contribution is expected
to be of O(1%). The full ATLAS analysis, including the latest Run II data recorded in
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9.5 Numerical results for the top-quark mass in ATLAS data

Est. systematic uncertainty |∆mt|
Theory

Signal MC Generator ≤ 0.70 GeV
Parton-shower and hadronization ≤ 1 GeV
ISR/FSR 0.26 GeV

Experiment

JES (light jets) 0.72 GeV
b-JES 0.43 GeV
Jet energy resolution 0.45 GeV
b-tagging 0.13 GeV

Total 1.57 GeV

Table 9.2: A partial list of estimated systematic uncertainties is given for the top-quark mass
extraction, using the W+W−bb̄ prediction at NLO QCD (see the text for details).

2017 and 2018, is expected to yield improved results and lead to a significantly lower
uncertainty.

The template functions from the tt̄+single-top and the full W+W−bb̄ predictions are
used in a direct unbinned likelihood fit to data. In Eq. (9.2), the weights are equal to one.
The data and the fit functions are shown in Fig. 9.14a. The fit describes data best for
an input value of mt = 172.90 GeV for the tt̄+single-top, respectively mt = 172.54 GeV
for the W+W−bb̄ fit functions. Fig. 9.14b displays the log-likelihood as a function of the
top-quark mass mt.

The central offset introduced by the W+W−bb̄ fit function is very close to the value
∆mt = −0.330 GeV found when fitted to the tt̄+single-top pseudo-data. A summary
plot of the results is also given in Fig. 9.15, with the published ATLAS 8 TeV result in
the dilepton channel for comparison. Note that the statistical uncertainties from this
preliminary analysis are greatly reduced in comparison to the 8 TeV result, thanks to
the higher cross-section and integrated luminosity at

√
s = 13 TeV. The values are all

in good agreement. Altogether, the difference between the NWA and the full W+W−bb̄
theoretical predictions is not as large as it was at parton level in Chapter 7. It is distinctly
covered by the systematic uncertainties evaluated per the ATLAS recommendations.
Once the systematic uncertainties are under control (in particular from the MC signal
generator) and the extensive 147 fb−1 of Run II data are analyzed, the total top-quark
mass uncertainty can be expected to shrink further.

Additional studies are still warranted. Since the validation of the analysis framework
is still in progress, a detailed account of the systematic uncertainties is beyond the
scope of this work. Part of the systematics for the central tt̄+single-top prediction
will decrease once generators are better tuned. Moreover, as already mentioned, the
theoretical uncertainties for the W+W−bb̄ prediction were only roughly estimated in this
study. A careful definition and computation of the systematics might reveal somewhat
different values than those presented here. Once a full set of systematic variations is
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Figure 9.14: (a) The best fit generated by the tt̄+single-top and W+W−bb̄ predictions is com-
pared to data recorded by ATLAS, for an integrated luminosity of 36.2 fb−1. (b)
The log-likelihood for the tt̄+single-top (ST) and W+W−bb̄ fit functions, with 1σ
statistical errors.
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Figure 9.15: The outcome of the extraction of the top-quark mass is summarized: results from
the fit of the template functions generated from the tt̄+single-top and W+W−bb̄
folded samples are indicated by red, respectively blue points. The systematic
uncertainties were evaluated only partly (see text). For comparison, the ATLAS
8 TeV result in the dilepton channel is given below.

produced, it will be interesting to place the tt̄+single-top and W+W−bb̄ predictions on
a same footing, and compare their impact on the extracted top-quark mass in the full
analysis (with the inclusion of background processes and the evaluation of all systematic
uncertainties).

Although the central value derived from the W+W−bb̄ prediction does not differ much
from the currently used tt̄+single-top signal, two points are worth mentioning. First,
there is an uncertainty associated to the ill-defined diagram removal/subtraction of in-
terference terms between tt̄ and single-top Wt contributions. When using W+W−bb̄
predictions, this uncertainty is not present. As a matter of fact, the definition of the
top-quark mass itself (at least at the matrix-element level) is perfectly consistent, in
a perturbative sense, for the full prediction only. Secondly, the fit range used in the
analysis ends before the tail of the m`b distribution. Although this choice might improve
systematic uncertainties, some sensitivity to the input top-quark mass is lost. It might
be interesting to optimize the fit range for the W+W−bb̄ prediction, which offers a more
robust description of the region above the kinematic edge for the m`b distribution. The
inclusion of the full W+W−bb̄ process in the ATLAS top-quark mass analysis constitutes
an important step towards higher-precision measurements. Now that the necessary the-
oretical tools are available, efforts for implementing and validating them in ATLAS will
prove useful in the race for more accurate top-quark mass measurements.
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Part III

Top-Quark Mass Effects in Higgs
Pair Production

99





10 Top-quark mass dependence in Higgs
pair production at NLO

The top-quark mass has substantial effects in the Higgs sector. After the discovery of
the Higgs boson by both ATLAS [266] and CMS [267] experiments in 2012, which was
the crowning completion of one of LHC’s foremost goals, the experimental community
set to measure its properties to further test if it was compatible with the SM-predicted
Higgs boson. As of today, some of the Higgs boson properties are very well-measured (as
for the example of its mass, spin, or couplings to heavier fermions and gauge bosons).
Still, because of lower branching ratios and irreducible backgrounds, the measurement
of the Higgs boson couplings to light fermions, as well as the Higgs self-coupling, is
still accompanied by large uncertainties of the order of O(100%) in the case of the
trilinear self-coupling. This leaves room for New Physics to appear. The latest ATLAS
constraint on the Higgs boson self-coupling, in ratio to its predicted value from the
SM chhh = λ/λSM, is −5.0 ≤ chhh ≤ 12.1 [16] at 95% confidence level (CL), from a
combination of three searches for the hh final-states bb̄bb̄, bb̄τ+τ− and bb̄γγ. These limits
assume the other Higgs couplings to be SM-like. In the future, with the accumulation of
data at high-luminosity (HL)-LHC, the experimental bounds are expected to improve.
The measurement of differential distributions (with a small number of total events) is
even conceivable. In the rest of this chapter, the theoretical standpoint of hh production
is reviewed, and the way in which New Physics can affect this process is presented in
the framework of a non-linear EFT.

(a) (b)

(c) (d)

Figure 10.1: (a-d) LO Feynman diagrams for hh production by gluon fusion.
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10 Top-quark mass dependence in Higgs pair production at NLO

10.1 Theoretical descriptions of Higgs pair production

At the LHC, Higgs bosons (and in particular Higgs boson pairs, which are considered
in the next chapters) are produced mainly via a top-quark loop. Fig. 10.1 displays the
LO Feynman diagrams for di-Higgs production in gluon fusion: diagrams that contain
the Higgs self-coupling λ are called triangle-like (as in Fig. 10.1a), and diagrams that
do not box -like (as in Figs 10.1b-10.1d).1 Because gg → hh production is loop-induced,
NLO corrections start at two-loop order already and pose a challenge to compute. The
matrix-element for g(p1, µ, a) + g(p2, ν, b) → h(p3) + h(p4) production decomposes into
two form factors (with pi the 4-momenta, Greek letters for the Lorentz indices and
Roman letters for the color indices):

Mµν
ab =

αs
8πv2

δabεµεν
(
F1(ŝ, t̂,m2

h,m
2
t , d)Tµν1 + F2(ŝ, t̂,m2

h,m
2
t , d)Tµν2

)
, (10.1)

where the Lorentz structure is contained in the tensors T1, T2 and the functions F1,
F2 depend on four physical scales altogether (two kinematic invariants and both particle
mass scales, as well as on the analytically-continued dimension d). Moreover, the first
form factor can be further split into a contribution stemming only from triangle-like
diagrams, respectively only box-like diagrams:

F1 = F4 + F� , (10.2)

and the box diagrams contribute to both F� and F2. Historically, the LO one-loop
total cross-section has been known analytically for some time [268], and the triangular
form factor given in Eq. (10.2), for τ = 4m2

t /ŝ, takes the form

F4 =
6m2

hλŝ

ŝ−m2
h

τ (1 + (1− τ)f(τ)) , (10.3)

f(τ) :=

arcsin2( 1√
τ
) τ ≥ 1

−1
4

(
log
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

)2
τ < 1 .

The triangle diagrams can be reduced to single Higgs production and subsequent
attachment of the triple Higgs vertex, where all the NLO integrals (massive two-loop
up to three-point) have been computed with the full top-mass dependence [269–271].
The two-loop massive four-point integrals to gg → hh are known analytically only
partly [272–274]. Some computations exist with expansions in given kinematic limits
(large top-quark mass [272], top-quark threshold [275], small Higgs transverse momen-
tum [276], and high-energy expansion [277, 278]). In the following, only the heavy-top
limit mt →∞ is considered, without any expansion in 1/m2n

t , as well as several approx-
imations that include part of the full-theory result at NLO QCD.

1At two-loop level, some diagrams do not contain the coupling λ but have triangular topologies, see
e.g. the last diagram in Fig. 10.4.
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10.1 Theoretical descriptions of Higgs pair production

10.1.1 Approximations in the heavy-top limit (mt →∞)

To circumvent the direct computation of the difficult NLO QCD corrections to gg → hh,
one neat approach that was applied successfully in Higgs production (as well as in a whole
collection of other processes) is to collapse one top-quark loop to an effective coupling
between gluons and Higgs bosons within a so-called Effective Field Theory (EFT). This
constitutes the heavy-top limit (HTL). EFTs are usually employed to describe physics
entering at a higher scale than the typical scales of the process at hand. In an agnos-
tic approach, one assumes nothing about new particles and instead computes effective
couplings between known particles, that are only indirectly affected by more massive par-
ticles. Their exact degrees of freedom are thus integrated out of the calculation. This
was for example the basic framework of the Fermi theory before W and Z bosons were
discovered, where one assumes a 4-particle interaction vertex between fermions coupling
with strength GF . In the case of di-Higgs production, the top-quark degrees of freedom
are integrated out and an effective coupling between gluons and Higgs bosons is intro-
duced. There exist different consistent formulations of a theory with effective coupling
vertices between gluons and Higgs bosons: usually, one introduces higher-dimension con-
tact operators into the SM Lagrangian, with an EFT expansion in the New Physics scale
1/Λ.2 Another EFT formulation will be introduced in Section 10.2.

In the next sections, comparisons are shown between predictions for the full theory
at QCD NLO and various approximations based on the heavy-top limit for variations of
the Higgs couplings.3 In order of increasing accuracy, these are:

• Pure HTL: all top-quark loops are shrunk to an effective vertex between gluons
and Higgs bosons. At LO, the form factors given in Eqs. (10.1), (10.3), for τ →∞,
reduce to

F4 →
3m2

hλ

ŝ−m2
h

(
4

3
ŝ

)
, (10.5)

F� → −
4

3
ŝ , (10.6)

F2 → 0 . (10.7)

At NLO, they are at most given by one-loop diagrams.

• Born-improved HTL: the virtual and real contributions are calculated within
the HTL, but reweighted on an event-by-event basis with the ratio of the full-theory
Born to the HTL Born contribution,

dσB.-i.
V,R = dσHTL

V,R

dσFT
B

dσHTL
B

. (10.8)

2Mostly, nowadays, analyses consider only dimension-6 operators, because the only dimension-5 oper-
ator violates lepton number conservation.

3In the SM case, there are already important differences between the considered approximations [279].
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10 Top-quark mass dependence in Higgs pair production at NLO

• FTapprox : the same prescription as given in Eq. (10.8) is applied for the virtual
contribution, but the real-emission matrix-element is computed in the full theory
(these are at most one-loop diagrams).

• Full theory: the real and two-loop virtual contributions are computed with full
mt-dependence.

10.1.2 Two-loop contribution in the SM

The first full computation of NLO QCD corrections to gg → hh production in the SM
was presented in Ref. [279]. All BSM results shown in Sections 10.3 and 11.2 are based
on two-loop amplitudes calculated numerically for the SM.

As a brief description of the calculation, the two-loop contribution to the SM amplitude
was generated by an extended version of GoSam called GoSam-2loop. The reduction
to master integrals was operated with Reduze 2 [280] as far as possible, and the integral
evaluation performed with the help of sector decomposition in SecDec 3 [281–283]. In
particular, the integration itself was implemented within a rank-one lattice quasi-Monte-
Carlo rule (QMC) that is described in more detail in Refs. [284, 285]. The Higgs and
the top-quark mass are fixed, so that the integrals depend only on the two kinematic
invariants ŝ and t̂.4

Examples of the SM two-loop Feynman diagrams are given in the first, third and last
rows of Fig. 10.4. The amplitude was calculated for a pre-sampled set of 5372 phase-space
points in (ŝ, t̂) at 14 TeV and 1343 points at 100 TeV. IR subtraction was performed
within the CS dipole formalism, where for the gg channel, the insertion operator I is
given by

Igg =
αs
2π

(4π)ε

Γ(1− ε)

(
µ2
R

2p1 · p2

)ε
· 2
(
CA
ε2

+
β0

2ε
− CA

π2

3
+
β0

2
+Kg

)
, (10.9)

with β0 = 11
6 CA − 2

3TRNf and Kg =
(

67
18 − π2

6

)
CA − 10

9 TRNf . As a side note, the IR

singular pattern is the same between the SM and the BSM case presented below. When
inserting the CS operator into the Born term, see Eq. (4.8), the poles from the virtual
contribution should cancel. To get the correct finite terms, thus, the Born has to be
expanded up to O(ε2). The explicit cancellation of poles in ε is checked numerically.

10.2 The Electroweak Chiral Lagrangian

Regarding variations of the Higgs couplings, one class of extensions of the SM called the
Electroweak Chiral Lagrangian (EWChL) [287, 288] is considered, which is a non-linear
realization of an EFT. The EWChL, to leading-order, is given as

4The top-quark mass is renormalized on-shell. Dependence of the numerical results on the top-mass
scheme are investigated in Ref. [286].
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L2 = −1

2
〈GµνGµν〉 −

1

2
〈WµνW

µν〉 − 1

4
BµνB

µν +
∑

ψ=qL,lL,uR,dR,eR

ψ̄i 6Dψ

+
v2

4
〈DµU

†DµU〉 (1 + FU (h)) +
1

2
∂µh∂

µh− V (h)

−v
[
q̄L

(
Yu +

∞∑
n=1

Y (n)
u

(
h

v

)n)
UP+qR + q̄L

(
Yd +

∞∑
n=1

Y
(n)
d

(
h

v

)n)
UP−qR

+l̄L

(
Ye +

∞∑
n=1

Y (n)
e

(
h

v

)n)
UP−lR + h.c.

]
, (10.10)

where U = exp (2iφaT a/v) is the Goldstone matrix and contains the electroweak
Goldstone fields φa, and T a are the generators of SU(2)L. Here, P± = 1/2± T3 are the
chiral projection operators, and the Higgs sector is characterized by an order-by-order
expansion in the Higgs EW singlet h, given by the functions

FU (h) =

∞∑
n=1

fU,n

(
h

v

)n
, V (h) = v4

∞∑
n=2

fV,n

(
h

v

)n
. (10.11)

The coefficients fU,n, VU,n and Y
(n)
u,d,e are in principle free parameters and can be of

O(1). The SM case is retrieved when

fU,1 = 2, fU,2 = 1, fV,2 = fV,3 =
m2
h

2v2
, fV,4 =

m2
h

8v2
, Y

(1)
f = Yf . (10.12)

Now, this Lagrangian is structured not in terms of canonical dimensions for the quan-
tum fields and couplings, but rather in terms of chiral dimensions (as in the case of the
chiral EFT of pions in QCD). The chiral dimension assigned to fields, derivatives and
couplings are

dχ(Aµ, ϕ, h) = 0 , dχ(∂, ψ̄ψ, g, y) = 1 , (10.13)

with Aµ being any gauge field, g representing any of the SM gauge couplings, and y
any weak coupling (like the Yukawa couplings). The ordering in the chiral dimension dχ
is equivalent to counting the number of loops L, dχ = 2L + 2. In summary, the NLO
(in αs) QCD corrections to hh production stem from one-loop diagrams in the leading
(in dχ) EWChL L2 and from tree diagrams in the next-to leading part L4. All of these
contributions are of chiral dimension dχ = 4. Then, in the Higgs sector, the effective
Lagrangian reduces to

L ⊃ −mt

(
ct
h

v
+ ctt

h2

v2

)
t̄ t− chhh

m2
h

2v
h3︸ ︷︷ ︸

L2

+
αs
8π

(
cggh

h

v
+ cgghh

h2

v2

)
GaµνG

a,µν︸ ︷︷ ︸
L4

. (10.14)
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10 Top-quark mass dependence in Higgs pair production at NLO

The EWChL introduces five anomalous couplings to the SM and the corresponding
LO Feynman diagrams are given in Fig. 10.2.

Figure 10.2: LO diagrams for the various terms from the EWChL Lagrangian. Both vertices
from L2 (black dots) and local contact terms from L4 (black squares) contribute.

Diagrams that are of higher chiral dimension (or do not belong to O(α4
sα

2)) are sys-
tematically neglected, like the ones given in Fig. 10.3. The full virtual amplitude is then
given by two-loop contributions (Fig. 10.4), one-loop diagrams that contain one effec-
tive coupling from L4 (Fig. 10.5), and one tree-diagram containing exactly two effective
vertices between gluons and Higgs bosons (Fig. 10.6). Note that all two-loop diagrams
with non-SM values of the Higgs couplings can be retrieved from their SM counterparts
by rescaling them at amplitude-level:

MV (41)→MSM
V (41) · ct chhh (1st row in Fig. 10.4)

MV (42)→MSM
V (41) · ŝ−m

2
h

3m2
h

ctt (2nd row in Fig. 10.4)

MV (�)→MSM
V (�) · c2

t (3rd, 4th rows in Fig. 10.4) ,

where MV (41) are the triangle diagrams from the 1st row of Fig. 10.4, MV (42)
from the 2nd row (given by the corresponding diagrams from the 1st row where the s-
channel Higgs propagator is pinched), and MV (�) are the box-diagrams from the 3rd

row. Accordingly, the amplitudes computed in Ref. [279] are used for the pre-sampled
set of phase-space points and are simply rescaled.

Finally, real-emission diagrams contain five-point one-loop diagrams with SM-like
topologies, as well as tree diagrams carrying one effective coupling between gluons and
Higgs bosons from L4 (Fig. 10.7).

10.3 Total cross-sections for BSM benchmark points

All results for total and differential cross-sections presented in this chapter can be found
in Ref. [289]. To summarize, all HTL contributions were computed analytically with
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(a)
(b) (c)

(d)
(e)

Figure 10.3: (a-d) Diagrams that do not scale like α4
s are consistently neglected. (e) The

chromomagnetic operator QttG = ctgst̄LσµνG
µνtR only contributes at two-loop

order at least (dχ = 6).

Figure 10.4: Two-loop diagrams generated by the EWChL at NLO QCD. They can all be
computed by rescaling from the corresponding SM diagrams (see text).

FORM. In FTapprox and in the full theory predictions, the real radiation is provided by
GoSam [92, 93]. A Universal FeynRules Output (UFO) model [290] for the EWChL was
produced with FeynRules [291, 292] and interfaced to GoSam to produce all tree and
one-loop diagrams. The various parts are assembled into a C++ code which performs the
phase-space integration with Vegas [76] as interfaced through the Cuba package [75].

The results shown below are produced at a center-of-mass energy of
√
s = 14 TeV,

where the PDF4LHC15 nlo 100 pdfas set [219] is used and interfaced through LHAPDF6.
The corresponding value of αs(µ), with αs(mZ) = 0.118, is consistently employed
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10 Top-quark mass dependence in Higgs pair production at NLO

Figure 10.5: One-loop virtual contributions at NLO QCD: these diagrams contain exactly one
effective contact coupling from L4.

Figure 10.6: Tree diagram at NLO QCD containing exactly two effective couplings from L4.

Figure 10.7: Real-emission contributions that are either one-loop diagrams without effective
contact coupling, or tree diagrams with exactly one such coupling.

throughout the calculation. The Higgs boson and top-quark masses are set to mh =
125 GeV and mt = 173 GeV, as the two-loop amplitudes were computed with these val-
ues, and both their widths are set to zero. Finally, the renormalization and factorization
scales are set to µR = µF = µ0 = mhh/2 and uncertainties are estimated accord-
ing to 7-point scale variations µR,F = cR,Fµ0 with (cR, cF ) ∈ {0.5, 1, 2} × {0.5, 1, 2} \
{(0.5, 2), (2, 0.5)}.
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10.3 Total cross-sections for BSM benchmark points

To characterize the 5-dimensional BSM space, the set of Higgs coupling variations
used in the following part is based mostly on the definition of benchmark (BM) points
presented in Ref. [293]. There, the BSM space is scanned for different values of the
Higgs anomalous couplings and clustered into blocks that manifest a similar behavior in
differential distributions. The set of BM points is defined in Table 10.1, and the total
cross-sections, K-factors and uncertainties are shown in Table 10.2.

First, looking at Table 10.2, the NLO cross-sections can become quite sizable de-
pending on the BM point considered (of O(100) times the SM cross-section), and some
are even excluded considering recent bounds on hh production from experimental lim-
its. With the ATLAS current limit [16] on the observed non-resonant hh production
cross-section of 220 fb at 95% CL, several BM points would indeed be excluded already.
Second, the full mt-dependent NLO corrections are important, with K-factors between
1.66 and 2.34, and are accompanied by large scale uncertainties of O(15−20%) (similarly
to single Higgs production at NLO QCD [294, 295]). Finally, the K-factors themselves
depend substantially on the considered BM point. This is illustrated in Fig. 10.8, where
only one parameter is varied at a time. In fact, studies realized in the heavy-top limit
suggest the dependence of the K-factors on the different couplings to be quite small [296]
(of O(5%) or less for all considered coupling variations). Once full top-quark loop correc-
tions are taken into account, though, the K-factors for chhh, ctt and ct vary by more than
30% (55% for ctt). Later on, in Section 10.4, it will be shown that this feature is espe-
cially prominent around the top-quark pair 2mt threshold when considering differential
distributions.

BM chhh ct ctt cggh cgghh

1 7.5 1.0 −1.0 0.0 0.0
2 1.0 1.0 0.5 − 1.6

3 −0.2
3 1.0 1.0 −1.5 0.0 0.8

3

4 −3.5 1.5 −3.0 0.0 0.0
5 1.0 1.0 0.0 1.6

3
1.0
3

6 2.4 1.0 0.0 0.4
3

0.2
3

7 5.0 1.0 0.0 0.4
3

0.2
3

8a 1.0 1.0 0.5 0.8
3 0.0

9 1.0 1.0 1.0 −0.4 −0.2
10 10.0 1.5 −1.0 0.0 0.0
11 2.4 1.0 0.0 2.0

3
1.0
3

12 15.0 1.0 1.0 0.0 0.0
SM 1.0 1.0 0.0 0.0 0.0

Table 10.1: Different BM points in the 5-dimensional Higgs coupling space are analyzed below
at inclusive, respectively differential cross-section level.

Furthermore, the ratio of the cross-section to the SM can be parametrized [293, 297]
in terms of the anomalous Higgs couplings: the cross-section ratio is expressed as a poly-
nomial whose coefficients correspond to all squared/interference terms from the various
diagrams. At LO, this gives 15 possible combinations:

109



10 Top-quark mass dependence in Higgs pair production at NLO

BM σNLO [fb] K-factor scale uncertainties [%] stat. uncertainties [%] σNLO
σNLO,SM

B1 194.89 1.88 +19
−15

1.6 5.915

B2 14.55 1.88 +5
−13

0.56 0.4416

B3 1047.37 1.98 +21
−16

0.15 31.79

B4 8922.75 1.98 +19
−16

0.39 270.8

B5 59.325 1.83 +4
−15

0.36 1.801

B6 24.69 1.89 +2
−11

2.1 0.7495

B7 169.41 2.07 +9
−12

2.2 5.142

B8a 41.70 2.34 +6
−9

0.63 1.266

B9 146.00 2.30 +22
−16

0.31 4.431

B10 575.86 2.00 +17
−14

3.2 17.48

B11 174.70 1.92 +24
−8

1.2 5.303

B12 3618.53 2.07 +16
−15

1.2 109.83

SM 32.95 1.66 +14
−13

0.1 1

Table 10.2: The total cross-sections for the considered BM points, with their respective K-
factors, scale and (MC) statistical uncertainties, as well as the ratio to the SM
cross-section σNLO,SM = 32.95 fb.
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ctt
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Figure 10.8: The K-factor is shown as a function of chhh on the top axis, and of the other
couplings on the lower axis.

σ/σSM = A1 c
4
t +A2 c

2
tt +A3 c

2
t c

2
hhh +A4 c

2
gghc

2
hhh +A5 c

2
gghh +A6 cttc

2
t

+A7 c
3
t chhh +A8 cttct chhh +A9 cttcgghchhh +A10 cttcgghh

+A11 c
2
t cgghchhh +A12 c

2
t cgghh +A13 ctc

2
hhhcggh

+A14 ctchhhcgghh +A15 cgghchhhcgghh . (10.15)
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10.3 Total cross-sections for BSM benchmark points

The coefficients A1 to A15 are corrected at NLO, and 8 new coefficients appear from
genuine NLO diagrams:

∆σ/σSM = A16 c
3
t cggh +A17 ctcttcggh +A18 ctc

2
gghchhh +A19 ctcgghcgghh

+A20 c
2
t c

2
ggh +A21 cttc

2
ggh +A22 c

3
gghchhh +A23 c

2
gghcgghh . (10.16)

These coefficients can be determined by dedicated event generation runs for a set of
the 5-dimensional parameter space, and by projecting out a system of equations, or
by a simple fit of the polynomial in Eq. (10.16) to the calculated set of cross-sections.
The results for the NLO coefficients A1 to A23 at

√
s = 14 TeV are given in Table E.1.

Interestingly, once the cross-section coefficients are computed, the parametrization given
in Eqs. (10.15), (10.16) yields the cross-section for any point of the BSM space. This
allows to produce iso-contour plots where curves represent configurations in the BSM
space which lead to the same cross-section, see Figs. 10.9−10.11. In the latter, two
BSM couplings are simultaneously varied (within bounds still approximately allowed by
experimental measurements), and iso-curves for the ratio of the predicted cross-section
to the SM cross-section at LO (red), respectively NLO (black), are shown.

The cross-section iso-curves are given for ctt against cgghh in Fig. 10.9a, respectively
against cggh in Fig. 10.9b. In both cases, the cross-section varies sizably with respect to
the SM value, and is generally more sensitive to changes in ctt. The NLO corrections
to hh production introduce important shifts in the iso-curves (reflected by the large K-
factors). Fig. 10.10 shows iso-contours for variations of chhh versus cggh, respectively ctt.
Again, the curves are much more dependent on chhh than on the Higgs contact coupling,
as exhibited by Fig. 10.10a. In comparison, the dependence of the cross-section on chhh
and ctt is large, with ratios to the SM cross-section going up to a factor O(∼ 100).
Finally, iso-contours are also plotted for simultaneous variations of ct versus ctt and chhh
in Fig. 10.11.
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Figure 10.9: Iso-contours of σ/σSM : (a) cgghh and (b) cggh versus ctt.
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Figure 10.10: Iso-contours of σ/σSM : (a) cggh and (b) ctt versus chhh.
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Figure 10.11: Iso-contours of σ/σSM : (a) ct versus chhh and (b) ct versus ctt.

10.4 Differential cross-sections and HTL approximations

Next, differential cross-sections are compared for the various approximations laid out in
Section 10.1.1. Distributions are shown for the invariant mass of the Higgs boson pair
system mhh and the transverse momentum of one (any) Higgs pT,h, for a subset of the
BM points defined in Table 10.2.

In Fig. 10.12, both distributions are displayed for the BM point 6: the SM distri-
butions are plotted against the the BSM Born-improved, FTapprox and full predictions,
respectively, both at LO and NLO. While the inclusive cross-section for B6 is similar to
the SM value for all considered NLO approximations, the interference pattern between
triangle- and box-like diagrams is very different. The mhh observable in Fig. 10.12a
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manifests a dip around mhh = 370 GeV,5 which would be a characteristic sign of BSM
physics at the differential level. As a matter of fact, the chosen value of chhh = 2.4 cor-
responds to an approximately maximal destructive interference between triangle- and
box-like contributions when the other couplings are kept fixed at their SM values. Sec-
ondly, the differential K-factor shown in the first ratio plot (in red), which is found to
be relatively flat in the usual HTL approximations, varies by more than 70% for the
full mt-dependent NLO prediction. Finally, while both the Born-improved and FTapprox

descriptions show the largest difference to the full NLO calculation around the top-quark
pair threshold (see the purple and green curves in the second ratio plot), they describe
the tail of the mhh distribution rather well. The same considerations apply to the pT,h
distribution plotted in Fig. 10.12b.
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Figure 10.12: (a) Higgs boson pair invariant mass and (b) Higgs transverse momentum for BM
point 6 (chhh = 2.4, ct = 1, ctt = 0, cggh = 2/15, cgghh = 1/15) with all considered
hh production approximations.

The same differential distributions are plotted for the BM point 9 in Fig. 10.13, which
is characterized by SM values for chhh, ct and non-zero values of ctt and gluon-Higgs
couplings cggh, cgghh. In this case, the cross-section is much larger than the SM value.
The anomalous gluon-Higgs coupling values also enhance the tail of both distributions
(the dependence of the cgghh term grows proportionally to the invariant ŝ in the limit
ŝ → ∞). Both NLO approximations fall short of describing the full prediction around
the top-quark pair threshold and in the middle-range region of the mhh distribution.

Renormalization and factorization scale uncertainties are given along the central pre-
diction for the BM point 5 in Fig. 10.14. This BM point is one example where, contrary
to the SM case, the envelope is not given by the two most extreme scale variations
cR,F ∈ {(0.5, 0.5), (2, 2)}, which both give downwards deviations. As for the SM point,
the NLO BM prediction is not covered by the LO scale uncertainties. All BM points not
shown here are given in Appendix E for completeness.

5The LO pure HTL amplitude vanishes at mhh = 429 GeV.
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Figure 10.13: (a) Higgs boson pair invariant mass and (b) Higgs transverse momentum for BM
point 9 (chhh = 1, ct = 1, ctt = 1, cggh = −0.4, cgghh = −0.2).
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Figure 10.14: The (a) mhh and (b) pT,h distributions for BM point 5 (chhh = 1, ct = 1, ctt =
0, cggh = 8/15, cgghh = 1/3), along with µR/µF scale uncertainties.

Note that both BM points 5 and 9 assume values of cggh that are already excluded
by CMS for ct = 1 [298]. Generally, the full mt-dependent NLO prediction introduces
a high dependence of the K-factor on both the anomalous Higgs couplings and at the
differential level in distribution bins. For some BM points, the Born-improved and
FTapprox approximations fare rather poorly and should be replaced by the full theory
prediction when comparing to experimentally measured cross-sections, for maximal ex-
clusion limits on anomalous couplings. In particular, it should help identify updated
BM points in the BSM space of anomalous Higgs couplings. In this prospect, part of the
EWChL setup presented above is incorporated next into a MC event generator available
to experimentalists.
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11 Variations of the triple Higgs coupling
and parton-shower effects

Having considered the extension of the SM through the EWChL and the effects of the
full NLO QCD corrections due to the top-quark loops in hh production, its implementa-
tion in a full-fledged MC event generator is presented. Numerical results and differential
distributions are given in more detail in Ref. [299]. A version of the mt-dependent predic-
tion at NLO was already implemented in the case of the SM in the Powheg-BOX-V2
package UserProcesses-V2/ggHH. It is extended to allow for variations of both the Higgs
boson trilinear self-coupling λ and the top-Higgs Yukawa coupling yt: the result is a pub-
lic MC generator that permits full particle-level production. In particular, Higgs bosons
are allowed to decay, and the fixed-order calculation can be matched to a parton-shower
and hadronization package. In this chapter, the workflow of the Powheg-BOX MC gen-
erator is briefly presented. The interfacing of the two-loop contribution to hh production
(including the aforementioned coupling variations) is explained, and NLO cross-sections
at
√
s = 13, 14, 27 TeV, as well as differential distributions at

√
s = 14 TeV are shown.

Finally, the matching of the fixed-order NLO calculation to a parton-shower is studied
in more depth, and shower-related systematic uncertainties are estimated.

11.1 The Powheg-BOX framework

The Powheg-BOX framework [17–19] is a fortran MC event generator skeleton that
handles MC integration and event production for any arbitrary NLO process, suppos-
ing the user grants the few necessary input ingredients for the calculation, namely a
parametrization of phase-space and the different contributions to the amplitude. The
Powheg-BOX also constitutes a repository of previously calculated processes which are
made publicly available. In the following, the second version of the program Powheg-
BOX-V2 is used. The Powheg formalism is based on the following formula for the
hardest emission:

dσNLO = dΦmB̄(Φm)

(
∆(pT,min, µ

2) +

∫
pT,min

dΦ1∆(pT , µ
2)
R(Φm+1)

B(Φm)
Θ(µ2 − pT )

)
,

(11.1)
where pT,min is the parton-shower IR cutoff, µ2 is the shower starting scale, B andR are

the Born and the real-emission matrix-elements, and B̄ represents the Born underlying
configuration. Note that in general, the transverse momentum could be replaced by
any other shower evolution variable. The function ∆ is the Sudakov form factor (see
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11 Variations of the triple Higgs coupling and parton-shower effects

Section 4.2.2) yielding the probability of no-emission above a given scale. In the Powheg
notation, it is written as:

∆(t0, t) = exp

(
−
∫

dΦ1
R(Φm+1)Θ(t− t0)

B(Φm)

)
. (11.2)

For more details, the reader is referred to Ref. [18]. The workflow is quite simple and
separates into four stages:

• An importance sampling grid for the integration is determined: if run in parallel
mode, Powheg generates importance sampling grids for each seed and subse-
quently combines them into one and stores the result in a pwgxgrid.dat file.

• The integration is performed, and an upper bounding envelope is determined for
the underlying Born kinematics cross-section B̄ and stored into a pwggrid.dat

file.

• The upper bound for the normalization of the radiation function R(Φm+1)/B(Φm)
is found, and stored into a pwgubound.dat file.

• Events can be generated in the LHE format, and run in parallel. Files pwgevents.lhe
are produced and can then be fed to a parton-shower algorithm later on.

11.2 Interfacing two-loop contributions

The grid of the amplitude at pre-sampled PS points used for producing the results of
Chapter 10 is stored and has to be interfaced to Powheg. First, the program has
to be able to call the virtual amplitude at any phase-space point (without having to
recompute the expensive two-loop integrals for any possible kinematics (ŝ, t̂)). In the
SM ggHH program [300], this is handled by setting up a Python interface that interpolates
the 2-dimensional grid: first, the (ŝ, t̂) phase-space is re-parametrized into new variables
(x, cθ) to produce an almost uniform distribution of phase-space points. This is achieved
by choosing

x = f(β(ŝ)), cθ = |cos(θ)| =
∣∣∣∣ ŝ+ 2t̂− 2m2

h

ŝβ(ŝ)

∣∣∣∣ , β =

√
1− 4m2

h

ŝ
(11.3)

with f any monotonic function. In this case, f(β(ŝ)) is chosen to be the cumulative
distribution function of the phase-space points generated in Ref. [279]. A uniform grid in
the (x, cθ) space is generated, and the result at each point is set by linearly interpolating
the amplitude using the neighboring points computed by SecDec. The amplitude at
any phase-space points is then interpolated using the Clough-Tocher scheme [301] in
SciPy [302], which allows for a high numerical stability. For details on the grid perfor-
mance and caveats, the reader is referred to Ref. [299, 300].
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11.3 Total and differential cross-sections at fixed-order

The implementation of variations of the Higgs trilinear self-coupling λ bases on a sim-
ple observation: at all orders (in QCD), the squared amplitude for di-Higgs production
is a second-order polynomial in λ,

Mλ ≡ |Mλ|2 = A+B λ+ C λ2 . (11.4)

Thus knowing the amplitude for three values of λ allows to interpolate the matrix-
element to any other arbitrary value. In this case, grids of the virtual amplitudes are
produced for λ ∈ {−1, 0, 1}. Before starting the Powheg run, the three grids are
combined to a new grid containing the virtual amplitude for the user-given value of the
Higgs self-coupling by simple Lagrange interpolation,

Mλ = Mλ=0 (1− λ2) +
Mλ=1

2
(λ+ λ2) +

Mλ=−1

2
(−λ+ λ2) , (11.5)

where the uncertainties on the three amplitudes are added in quadrature. This grid
is then further propagated to the Clough-Tocher interpolation routine. Note that in the
BSM case, points at 100 TeV are also included in the grid to further improve statistics at
higher center-of-mass energies, and by extension, in the tails of the distributions. On the
other hand, because BSM distributions differ in shape from the SM case (for example,
see Fig. 11.2), phase-space regions that could well be populated for certain values of the
anomalous couplings are not always well-sampled by the SM grid.

11.3 Total and differential cross-sections at fixed-order

The PDF4LHC15 nlo 30 pdfas sets [219] are used and interfaced to Powheg-BOX-V2
through LHAPDF6. Jets are clustered by the anti-kT algorithm [220] as implemented in
FastJet, with a jet distance parameter of R = 0.4 and a minimum transverse momentum
pjet
T,min = 20 GeV. Otherwise, the same setup presented in Section 10.3 is used for the

next results. Note that the nomenclature is different, with respect to Chapter 10, for
variations of the Higgs trilinear coupling and the top-Higgs Yukawa coupling: the Higgs
self-coupling ratio to the SM value, formerly called chhh, is replaced by κλ (in reference
to the widely-used experimental κ framework), and the top-Higgs Yukawa coupling ratio
ct is now named yt.

Total cross-sections for various values of κλ = λ/λSM were computed for
√
s = 13, 14

and 27 TeV and are displayed in Table 11.1. Note again that the cross-section has a
minimum around κλ ∼ 2.4, for which the interference between triangle- and box-like
diagrams is at its most destructive. The K-factor is plotted in Fig. 11.1 as a function of
the Higgs self-coupling, this time ranging over the full, not yet excluded region for κλ.

The distributions of the invariant mass of the Higgs boson pair mhh are shown for the
considered values of κλ in Fig. 11.2 with their respective scale uncertainties. For values
of κλ that lead to a minimal cross-section, the interference pattern is well-recognizable
with a dip around mhh ∼ 350 GeV, near the top-pair threshold. For greater values of
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11 Variations of the triple Higgs coupling and parton-shower effects

λBSM/λSM σNLO@13TeV [fb] σNLO@14TeV [fb] σNLO@27TeV [fb] K-factor@14TeV

-1 116.71+16.4%
−14.3% 136.91+16.4%

−13.9% 504.9 1.86

0 62.51+15.8%
−13.7% 73.64+15.4%

−13.4% 275.29 1.79

1 27.84+11.6%
−12.9% 32.88+13.5%

−12.5% 127.7+11.5%
−10.4% 1.66

2 12.42+13.1%
−12.0% 14.75+12.0%

−11.8% 59.10 1.56

2.4 11.65+13.9%
−12.7% 13.79+13.5%

−12.5% 53.67 1.65

3 16.28+16.2%
−15.3% 19.07+17.1%

−14.1% 69.84 1.90

5 81.74+20.0%
−15.6% 95.22+19.7%

−11.5% 330.61 2.14

Table 11.1: The cross-sections for di-Higgs production at full NLO QCD are given for
√
s =

13, 14 and 27 TeV with scale uncertainties for several values of κλ = λ/λSM.

|κλ|, this dip completely disappears and the enhanced triangle-like contribution tends
to populate the lower mhh-region. A similar behavior is observed for the transverse
momentum of one (any) Higgs boson, as presented in Fig. 11.3, although the effect is
partly washed out.
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Figure 11.1: The full-theory NLO QCD K-factor is plotted as a function of the trilinear Higgs
self-coupling κλ.

Furthermore, variations of the top-Higgs Yukawa coupling yt can be recovered by a
trick: allowing for yt variations changes Eq. (11.4) into

|M|2 = y4
t

[
MBM∗B +

λ

yt
(MBM∗T +MTM∗B) +

λ2

y2
t

MTM∗T
]
, (11.6)

where MB is the box- and MT is the triangle contribution, and only the ratio λ
yt

appears up to an overall factor. So, it suffices to generate events with the value of λ
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11.4 Parton-shower matched predictions at NLO
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Figure 11.2: The Higgs boson pair invariant mass distributions for different values of κλ are
given at

√
s = 14 TeV.
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Figure 11.3: The transverse momentum of one (any) Higgs boson is shown for several values
of κλ at

√
s = 14 TeV.

corresponding to the desired value of the ratio λ
yt

, and finally rescale all results by y4
t .

For example, to produce results for κλ = 1, yt = 0.8, the cross-section is given by

dσNLO (κλ = 1, yt = 0.8) = (0.8)4 · dσNLO

(
yt = 1 , κλ =

1

0.8
= 1.25

)
. (11.7)

Both mhh and phT distributions are displayed for yt-values close to the currently ex-
cluded region in Fig. 11.4.

11.4 Parton-shower matched predictions at NLO

For use by experimentalists in a full simulation, the fixed-order calculation is matched to
a parton-shower (where the final-state can also be hadronized later on) within Powheg.
In the fourth generation stage presented in Sec. 11.1, Powheg generates full parton-
level events and stores them in LHE files. These events can then be used as input to
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Figure 11.4: (a) The invariant mass of the Higgs boson pair system and (b) the transverse
momentum of one Higgs boson are shown for three values of yt. The procedure
for generating yt-varied events is explained in the text.

most modern parton-shower programs. For this purpose, two different parton-shower
programs are employed, namely Pythia 8.235 and Herwig7.1.4. Additionally, both
the angular-ordered (so called q̃) and the dipole shower algorithms present in Herwig
are applied. The interfacing of both programs to Powheg is mostly automated: the
standard UserHooks based on the main31 LHE showering routine from Pythia are used
to set the shower pT definitions and vetoes (see Appendix F). For Herwig7, a process-
independent interface library is present since revision r3591 of the Powheg-BOX-V2
which sets the LHEReader class and handles the Herwig output for the event analysis.
Finally, in both showers, the tunes are left to their default values. Note that the Sudakov
form factor is automatically included by Powheg when producing LHE files. The
Powheg hdamp parameter is kept fixed throughout the next section and set to hdamp =
250 GeV.

In Fig. 11.5a, the transverse momentum of one (any) Higgs boson phT is shown for
the fixed-order NLO prediction, as well as the matched predictions to the three different
shower algorithms: Pythia8 (PP8), and both the angular-ordered q̃ shower (PH7-q̃) and
the dipole shower (PH7-dipole) from Herwig. For variables that are inclusive in the
additional radiation, like phT , all predictions are largely identical. In the case of variables
that are sensitive to real emission, like the angular distance of both Higgs bosons ∆Rhh =√

(η1 − η2)2 + (φ1 − φ2)2 shown in Fig. 11.5b, the showered predictions differ from the
NLO calculation. There, the Sudakov exponent effectively resums radiation around
∆Rhh = π, where the Higgs bosons are close to a back-to-back configuration. In addition,
the parton-shower starts populating the region ∆Rhh < π. Also, differences between the
Pythia and Herwig parton-showers are already visible: while both Herwig showers
produce very similar results, Pythia overshoots their prediction by ∼ 50%.

The differences between both parton-shower programs become more obvious when
considering the transverse momentum of the Higgs boson pair system phhT , displayed in
Fig. 11.6 for two values of the Higgs trilinear coupling κλ = 1, κλ = 2.4. In that case,
both Pythia and Herwig agree at low transverse momentum, until they start to deviate
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10−7

10−6

10−5

10−4

10−3

d
σ
/d
ph T

[p
b
/G

eV
]

ra
ti
o

κλ = 1
LHC 14 TeV
PDF4LHC15
µ = mhh/2
hdamp = 250

1.0

2.0

3.0

0 100 200 300 400 500 600 700

d
σ
/d
ph T

[p
b
/G

eV
]

ra
ti
o

NLO
PP8

PH7-q̃
PH7-dipole

ph
T [GeV]

1.0

2.0

3.0

0 100 200 300 400 500 600 700

(a)

10−5

10−4

10−3

10−2

10−1

100

101

d
σ
/d

∆
R

h
h

[p
b

]
ra

ti
o

κλ = 1
LHC 14 TeV
PDF4LHC15
µ = mhh/2
hdamp = 250

1.0

2.0

3.0

0 1 2 3 4 5 6

d
σ
/d

∆
R

h
h

[p
b

]
ra

ti
o

NLO
PP8

PH7-q̃
PH7-dipole

∆Rhh

1.0

2.0

3.0

0 1 2 3 4 5 6

(b)

Figure 11.5: For the SM case κλ = 1, (a) the transverse momentum of one Higgs boson, and (b)
the angular distance between both Higgs bosons are shown for the fixed-order NLO
case, as well as for the three different parton-shower algorithms. The parton-level
events from Powheg are matched to Pythia8 (PP8), and to both the angular-
ordered q̃-shower (PH7-q̃) and the dipole shower (PH7-dipole) from Herwig7.

at phhT ∼ 100 GeV already. Then, while both Herwig showers correctly reproduce the
hard NLO emission in the high-phhT region, the Pythia parton-shower produces much
harder radiation and its ratio to the fixed-order prediction stagnates at ∼ 2 over the
remaining range. In di-Higgs production, the harder spectrum from Pythia was found
to be due to too hard sub-leading jets produced solely in the shower [303] as compared
to the older Pythia6 parton-shower. In other processes, like tt̄ production, sizable
differences between Pythia and Herwig had also already been observed [304].
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Figure 11.6: The NLO fixed-order prediction is compared to results from the three parton-
shower algorithms with respect to the transverse momentum of the Higgs boson
pair system phhT for (a) κλ = 1 and (b) κλ = 2.4.

As a way to estimate shower-matching uncertainties, the maximal transverse momen-
tum allowed for shower emissions can be set in Herwig by varying the so-called hard
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11 Variations of the triple Higgs coupling and parton-shower effects

scale µQ. The parameter HardScaleFactor is varied to cQ = 0.5, cQ = 2 and ap-
plied on the central hard shower scale separately for the up- and down-variations of the
renormalization and factorization scales µR,F . In Fig. 11.7, the result is presented for
the di-Higgs transverse momentum phhT and the angular separation between the Higgs
bosons ∆Rhh. The shower scale variations add to the renormalization/factorization scale
uncertainties, bringing their common envelope to a corresponding 50% − 100% overall
systematic uncertainty in the far-phhT region of the distribution. The differences between
the central Pythia and Herwig predictions are then partly covered by the hard shower
scale variations.

10−7

10−6

10−5

10−4

10−3

d
σ
/d
ph

h
T

[p
b
/G

eV
]

ra
ti
o

κλ = 1
LHC 14 TeV
PDF4LHC15
µ = mhh/2
hdamp = 250

1.0

2.0

3.0

0 100 200 300 400 500 600 700

d
σ
/d
ph

h
T

[p
b
/G

eV
]

ra
ti
o

PH7 µQ = 1
2
µ0

PH7 µQ = µ0

PH7 µQ = 2µ0

PP8

phh
T [GeV]

1.0

2.0

3.0

0 100 200 300 400 500 600 700

(a)

10−5

10−4

10−3

10−2

10−1

100

d
σ
/d

∆
R

h
h

[p
b

]
ra

ti
o

κλ = 1
LHC 14 TeV
PDF4LHC15
µ = mhh/2
hdamp = 250

1.0

2.0

3.0

0 1 2 3 4 5 6

d
σ
/d

∆
R

h
h

[p
b

]
ra

ti
o

PH7 µQ = 1
2
µ0

PH7 µQ = µ0

PH7 µQ = 2µ0

PP8

∆Rhh

1.0

2.0

3.0

0 1 2 3 4 5 6

(b)

Figure 11.7: (a) The di-Higgs transverse momentum phhT and (b) the angular separation ∆Rhh

between the Higgs bosons are shown for variations of the Herwig hard shower
scale, which regulates the maximal allowed transverse momentum of shower emis-
sions. The hard scale µQ = cQµ0 is varied by cQ ∈ { 1

2 , 2} with respect to the
default scale µ0.

All in all, considering both scale and parton-shower uncertainties, the Higgs pair
production process underlines the necessity of computing higher-order corrections in
both fixed-order and logarithmic accuracy. In the future, it will be informative to
study parton-shower (as well as other non-perturbative, e.g. hadronization) modeling
effects in loop-induced color singlet production and try to reduce the sizable associated
uncertainties.
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12 Conclusion and Outlook

A precise determination of the top-quark mass is important for several reasons. Experi-
mentally, its value is used in global electroweak fits, which are one of the most stringent
tests of the SM. Theoretically, it largely affects the running of the Higgs quartic cou-
pling and thus the stability of the SM vacuum. It also plays a role in many BSM models.
Nowadays, experimental measurements have reduced the top-quark mass uncertainty to
the point where new questions have to be asked. In particular:

• Are the theoretical descriptions of the tt̄ final-state used in MC simulations for
experimental analyses good enough?

• Do the uncertainties correctly cover the unknown higher-order corrections and
other neglected contributions?

• What is the exact nature of the measured MC top-quark mass, and how does it
relate to other mass schemes?

The answer to these questions requires a lot of effort from both the experimental
and theoretical sides. One specific assumption made in most tt̄ analyses relies on the
factorization of top-quark pair production and decay: such a treatment is called the
narrow-width approximation (NWA). In automated particle-level MC event generators,
this description usually contains NLO QCD production of a tt̄ pair and LO decay of the
top quarks. The full parton-level final-state is then handed over to the parton-shower
and hadronization algorithms. It was shown that for certain observables, higher-order
and off-shell effects can lead to important differences. Specifically, NLO QCD corrections
to the top-quark decay can have sizable effects on the kinematics of its decay products.

To reach a quantifiable answer to the first and second questions stated above, the
determination of the top-quark mass in the dilepton channel is taken as an example.
Experimentally, the template fit method provides an extraction of the MC top-quark
mass. Following the same procedure, template distributions for pp → (e+νe)(µ

−ν̄µ)bb̄
are produced at

√
s = 13 TeV using four different theoretical descriptions of the final-

state at parton level. Starting from top-quark pair production at NLO QCD, three
different levels of accuracy for the top-quark decay are investigated: LO, respectively
NLO QCD, as well as decay by a parton-shower. These three NWA predictions are
compared to a W+W−bb̄ calculation at NLO QCD at parton level. The latter contains
Feynman diagrams that are not present in the NWA, namely diagrams with top-quark
legs that do not factorize, and diagrams with zero or one top-quark propagator only.
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12 Conclusion and Outlook

In an implementation similar to the ATLAS analysis, distributions of the lepton and
b-jet invariant mass m`b are parametrized separately for a set of MC input top-quark
masses. Once the parameters are fixed, only the top-quark mass is left as a free quantity
to be determined by a fit to data. To compare the different calculations two-by-two,
the parametrization from one theoretical prediction is used in an unbinned likelihood fit
to pseudo-data drawn from another prediction. The offsets obtained in the extracted
top-quark mass represent the systematic uncertainty accompanying the use of the in-
complete set of diagrams. It is shown that NLO corrections to the top-quark decay
in the NWA have an important effect on the extracted top-quark mass. In fact, the
offset in the top-quark mass is opposite in sign and higher in absolute value than from
NLO corrections to tt̄ production. When comparing the NLO top-quark decay to the full
W+W−bb̄ computation, the offset is reduced to (0.83±0.07) GeV. More importantly, the
offset stemming from renormalization/factorization scale variations now overlap. These
comparisons suggest that the scale uncertainties in tt̄ production with LO top-quark
decay are underestimated. While the NLO corrections to the top-quark decay describe
correctly the emission of a hard jet from the final-state, the parton-shower is formally of
LO accuracy in QCD. Yet, because it produces additional radiation as the parton level
is fully showered down to hadronization scales, it comes close to the top-quark mass
extracted from W+W−bb̄ samples, with an offset of (−0.09± 0.07) GeV.

The studies presented above suffer from two complications: first, they were realized
at parton level, and it is unclear if the bias in the extracted top-quark mass is as im-
portant at detector level. Second, they only compared pure tt̄ predictions to the full
W+W−bb̄ computation, while usually single-top production in the Wt channel is also
included in the signal. As a first attempt at curing both issues, a setup implemented in
the ATLAS framework is presented, where particle-level distributions can be folded up
to detector level. Bin migration matrices and detector efficiencies are derived from simu-
lated tt̄ samples produced at five different top-quark mass points. In parallel, W+W−bb̄
samples are generated using the bb4l MC generator present in the Powheg-BOX-RES
framework, and matched to the Pythia8 parton-shower. This time, the folding matrices
from the tt̄ prediction are used to bring the W+W−bb̄ distribution of m`b to detector
level. The same procedure of template parametrization and fit to pseudo-data is re-
peated at detector level, and the templates from tt̄ and single-top Wt are compared to
the full W+W−bb̄ calculation. This procedure is fast, and avoids the need to simulate all
MC variation samples. The offset in the extracted top-quark mass between W+W−bb̄
and tt̄+single-top predictions amounts to (−0.330 ± 0.022) GeV. A first preliminary
fit to ATLAS data recorded in 2015 and 2016 (amounting to 36.2 fb−1) is performed
for both theoretical descriptions. The extracted top-quark mass from tt̄ and W+W−bb̄
calibration functions is equal to 172.90 ± 0.14 (stat.) ± 1.77 (syst.) GeV, respectively
172.54± 0.13 (stat.)± 1.57 (est. syst.) GeV. The evaluation of systematic uncertainties
is not complete yet, and the total uncertainty is expected to decrease once MC-related
mismodeling is under better control. In relation to the third question given above, the
folding setup might be useful to estimate the top-quark mass IR-dependence on e.g.
the shower cutoff scale Q0 in Herwig: in turn, this would help shed some light on the
controversial relations between different mass definitions.

124



The top-quark mass also has sizable theoretical effects in the computation of Higgs
boson pair production in gluon-gluon fusion at the LHC. This process is important since
it is the golden channel to experimentally constrain the trilinear Higgs self-coupling. At
LO, Higgs pair production takes place via an intermediate top-quark loop. At NLO, the
virtual contributions are thus of two-loop order and the Feynman integrals contain up
to four mass scales. Only part of the master integrals are known analytically at this
point. Nevertheless, these integrals were evaluated numerically with the full top-quark
mass dependence using sector decomposition. To allow for variations of the Higgs boson
couplings to the QCD sector, a non-linear EFT framework is introduced in the form of
the Electroweak Chiral Lagrangian (EWChL). At NLO in QCD, this class of extensions
contains five couplings parametrizing variations from the SM: the top-Higgs Yukawa
coupling ct and the trilinear Higgs self-coupling chhh, as well as effective couplings for
two-top-two-Higgs ctt, gluon-gluon-Higgs cggh and two-gluons-two-Higgs cgghh vertices.

The setup is based on a grid of virtual two-loop amplitudes for pre-sampled phase-
space points in the SM. Cross-section results are then presented for Higgs pair production
at NLO QCD with full top-quark mass dependence in the EWChL framework. Both
inclusive and differential cross-sections are produced at

√
s = 14 TeV for several bench-

mark points characterizing the BSM parameter space. Inclusive cross-sections exhibit
large K-factors up to ∼ 2.34 depending on the considered benchmark point. In par-
ticular, once the full top-quark loops are taken into account, a sizable dependence of
the K-factors on the top-quark couplings ct and ctt is found, as well as on the trilinear
coupling chhh.

Finally, a MC event generator is put forward for use by experimentalists in Higgs pair
searches. Within the Powheg-BOX-V2 framework, the MC generator ggHH for Higgs
pair production in the SM at NLO QCD is extended with the possibility of varying
the trilinear Higgs self-coupling and the top-Higgs Yukawa coupling. In this program,
the hard NLO matrix-element can be matched to both Pythia8 and Herwig7 parton-
showers. Some first studies suggest that there are considerable uncertainties associated
to the parton-shower.

Challenging prospects and developments are still awaiting in top-quark and Higgs-
boson physics. In consideration of the major advances and successes met in the last
years, the question arises whether there is still hope to unveil New Physics at the LHC.
While the LHC started as a discovery machine, it is now, perhaps surprisingly, regarded
as a well-suited instrument for precision measurements. With the advent of the HL-LHC,
the large amount of expected data will drive down statistical uncertainties. Increasingly,
all questions examined in this work will gain in importance. Further approximations
used in theoretical descriptions will need improving, and more fundamental issues need
closer scrutiny − like the heavy-quark mass definition problem. These refinements will
prove of extreme use in the measurement of the properties of the Higgs boson, especially
of the true form of its potential. Precision might be crucial to disentangle BSM Higgs
models, if deviations from the SM were to be discovered. Finally, new generations of
colliders will hopefully see the light sooner or later, and keep the physics community
hard at work for years to come. As Star Trek character Captain Jean-Luc Picard said,
”Our mission is to go forward. [. . . ] There’s still much to do; still so much to learn.”
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[216] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12
(2008) 039 [arXiv:0808.3674].

141

https://arxiv.org/abs/1901.08281
https://doi.org/10.1007/JHEP06(2014)158
https://arxiv.org/abs/1312.6659
https://doi.org/10.1088/1126-6708/2008/07/029
https://arxiv.org/abs/0805.3067
https://doi.org/10.1103/PhysRevLett.106.052001
https://arxiv.org/abs/1012.3975
https://doi.org/10.1007/JHEP10(2012)110
https://doi.org/10.1007/JHEP10(2012)110
https://arxiv.org/abs/1207.5018
https://doi.org/10.1007/JHEP02(2011)083
https://arxiv.org/abs/1012.4230
https://doi.org/10.1103/PhysRevLett.112.082002
https://doi.org/10.1103/PhysRevLett.112.082002
https://arxiv.org/abs/1311.4893
https://doi.org/10.1140/epjc/s10052-014-2783-9
https://arxiv.org/abs/1312.0546
https://doi.org/10.1007/JHEP02(2018)013
https://arxiv.org/abs/1711.10359
https://doi.org/10.1007/JHEP07(2018)129
https://arxiv.org/abs/1709.08615
https://doi.org/10.1007/JHEP10(2012)110
https://doi.org/10.1007/JHEP10(2012)110
https://doi.org/10.1088/1126-6708/2006/08/062
https://arxiv.org/abs/hep-ph/0607057
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
https://arxiv.org/abs/0808.3674


Bibliography
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corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J.
C76 (2016) 411 [arXiv:1603.00385].

[273] R. Bonciani, V. Del Duca, H. Frellesvig et al., Next-to-leading order QCD
corrections to the decay width H Z, JHEP 08 (2015) 108 [arXiv:1505.00567].

[274] T. Gehrmann, S. Guns and D. Kara, The rare decay H → Zγ in perturbative
QCD, JHEP 09 (2015) 038 [arXiv:1505.00561].
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A Further template fit plots

A better understanding of the discrepancy between the NLOfull prediction and the
NLONLOdec

NWA , respectively NLOPS calculations is needed. Compared to the NLOfull pseudo-
data, the NLONLOdec

NWA prediction leads to a rather large offset in the top-quark mass of
(0.83 ± 0.07) GeV. On the other hand, the NLOPS prediction gives an offset to the
W+W−bb̄ pseudo-data of only (−0.09 ± 0.07) GeV. New parton-showered predictions

(nprod
max , ndec

max) are produced where the shower is terminated after a certain number of
emissions nmax in the tt̄ production and decay showers. In Fig. A.1, the pseudo-data
from these predictions are compared to the full parton-shower and the NLONLOdec

NWA cali-
bration function and pseudo-data. For each of the samples, the offset in mt is given as
a colored bar (in blue for the NLONLOdec

NWA calibration function, respectively in red when
using the NLOPS calibration). Then, for only one allowed emission in both production

and decay showers, the top-quark mass offset between NLO
(1,1)
PS and NLONLOdec

NWA is re-
duced to (−0.11± 0.06) GeV. Thus, the additional radiation accounts for the observed
discrepancy in the offsets.
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Figure A.1: (a) The offsets fitted from the m`b distribution are shown for NLO
(nprod

max ,n
dec
max)

PS

restricted-shower pseudo-data samples. (b) The normalized m`b distribution is
plotted for the mentioned predictions at mt = 172.5 GeV.
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Figure A.2: (a-b) Same as A.1 for mT2. (c-d) Same as Fig. A.1, but for the NLOPS and LOPS

cases, as well as for pseudo-data sets generated by predictions where the decay
shower, respectively the production shower are entirely deactivated.
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Figure A.3: Further band plots from m`b fitted pseudo-data sets.
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Figure A.4: Further band plots from mT2 fitted pseudo-data sets.
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Figure A.5: Offsets from NLOPS predictions comparing (a) different prescriptions for evaluat-
ing the shower scale uncertainties and (b) the two different central scale choices
described in the text.
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B MC samples at detector level

Sample DSID Generator (ME + PS/Had) mt [GeV] Simulation tags

NLO tt̄ (NWA)

411053 Powheg+Pythia8 171 e6696 a875 r9364 p3629

411054 Powheg+Pythia8 172 e6696 a875 r9364 p3629

410472 Powheg+Pythia8 172.5 e6348 a875 r9364 p3629

411057 Powheg+Pythia8 173 e6696 a875 r9364 p3629

411058 Powheg+Pythia8 174 e6696 a875 r9364 p3629

NLO W+W−bb̄

999991 bb4l+Pythia8 171 −
999992 bb4l+Pythia8 172 −
999995 bb4l+Pythia8 172.5 −
999993 bb4l+Pythia8 173 −
999994 bb4l+Pythia8 174 −

NLO single-top W−t (DR)

411109 Powheg+Pythia8 171 e6852 a875 r9364 p3629

411111 Powheg+Pythia8 172 e6852 a875 r9364 p3629

410646 Powheg+Pythia8 172.5 e6552 a875 r9364 p3629

411117 Powheg+Pythia8 173 e6852 a875 r9364 p3629

411119 Powheg+Pythia8 174 e6852 a875 r9364 p3629

NLO single-top W+t̄ (DR)

411110 Powheg+Pythia8 171 e6852 a875 r9364 p3629

411112 Powheg+Pythia8 172 e6852 a875 r9364 p3629

410647 Powheg+Pythia8 172.5 e6552 a875 r9364 p3629

411118 Powheg+Pythia8 173 e6852 a875 r9364 p3629

411120 Powheg+Pythia8 174 e6852 a875 r9364 p3629

tt̄ variation samples

410482 Powheg+Pythia8 hup
damp 172.5 e6454 a875 r9364 p3629

410558 Powheg+Herwig7.0.4 172.5 e6366 a875 r9364 p3629

410465 aMC@NLO+Pythia8 172.5 e6762 a875 r9364 p3629

Table B.1: Summary of the MC derivations used as input to the top-quark mass analysis pre-
sented in Chapters 8-9.
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C Template fit parameters at detector level
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Figure C.1: The linear dependence of the four free functional fit parameters on the MC input
top-quark mass, for the tt̄+single-top samples at detector level. From the nine
original parameters from the three Gaussian functions, four are left floating and
five are fixed.
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D Control plots with ATLAS 2015/2016
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Figure D.1: Some control plots are shown for tt̄+single-top. The nominal prediction stems from
Powheg+Pythia8, which is compared to Powheg+Herwig7 and to ATLAS
data in the eµ dilepton channel recorded in 2015 and 2016, for a total integrated
luminosity of 36.2 fb−1.
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E BSM benchmark points in hh production

The coefficients Ai, i = 1, . . . 23 (15) defined for the general expression of the NLO
(LO) cross-section as a function of the anomalous Higgs couplings in Eq. (10.16) are
shown in Table E.1, at 13 TeV at LHC. To compute these, the cross-section was calcu-
lated for different values of the couplings that were replaced in Eq. (10.16), thus giving
a system of equations that one can project out to extract the values of the coefficients
Ai.

The LO and NLO coefficients for
√
s = 13, 14 and 27 TeV are available on the arXiv

e-print of Ref. [289], as well as a Mathematica file explaining how to use them. These
can also be derived differentially for a fixed bin width. The differential coefficients can
be downloaded for the mhh distribution, with the binning shown in the histograms.

Ai ALO
i ∆ALO

i ANLO
i ∆ANLO

i

A1 2.0806 0.0016 2.2339 0.0101

A2 10.2011 0.0081 12.4598 0.0424

A3 0.2781 0.0019 0.3422 0.0154

A4 0.3140 0.0003 0.3468 0.0033

A5 12.2731 0.0101 13.0087 0.0962

A6 −8.4931 0.0089 −9.6455 0.0504

A7 −1.3587 0.0015 −1.5755 0.0136

A8 2.8025 0.0131 3.4385 0.0772

A9 2.4802 0.0128 2.8669 0.0772

A10 14.6908 0.0311 16.6912 0.1785

A11 −1.1592 0.0031 −1.2529 0.0291

A12 −5.5118 0.0131 −5.8122 0.1340

A13 0.5605 0.0034 0.6497 0.0287

A14 2.4798 0.0190 2.8593 0.1930

A15 2.8943 0.0158 3.1448 0.1487

A16 −0.008162 0.000225

A17 0.020865 0.000399

A18 0.016816 0.000783

A19 0.029858 0.000829

A20 −0.027025 0.000702

A21 0.072692 0.001288

A22 0.014523 0.000704

A23 0.123291 0.006506

Table E.1: The coefficients defined in Eqs. (10.15), (10.16) are determined by computing cross-
sections for a subset of parameters, and projecting out equations for the Ai’s. Sta-
tistical uncertainties are propagated from the cross-section level to the coefficient
result, without correlations.
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Figure E.1: The invariant mass of the Higgs boson pair mhh is shown for the different bench-
mark points Bi, i = 1, . . . , 12 defined in Table 10.1 and not already shown in
Chapter 10.
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Figure E.2: The transverse momentum pT,h of one (any) Higgs boson is shown for the different
benchmark points Bi, i = 1, . . . , 12 defined in Table 10.1 and not already shown
in Chapter 10.
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F Hardness definitions in parton-shower
matching

The technical parameters for matching the Pythia8 parton-shower to LHE files pro-
duced by Powheg are defined in a file called main31.cmnd, which bases on the LHE
showering example from Pythia. There, several definitions for the additional radia-
tion have to be set in order for the parton-shower to avoid double-counting regions of
phase-space already covered by Powheg. The following definitions are set:
• The number of final-state particles in the Born process gg → hh.

POWHEG:nFinal = 2

• The parton-shower vetoes emissions that have a transverse momentum higher than
the hardest Powheg emission, and checks the first three. A veto is applied if
pTemt > pThard (see below).

POWHEG:veto = 1

POWHEG:vetoCount = 3

• The pTemt and pThard scale definition is set: pTemt is set to the transverse mo-
mentum of the radiated particle with respect to the emitting parton, and pThard is
set to the SCALUP value read in the LHE event, and set by Powheg. The definition
of the emitted parton is chosen by Pythia for the final-state radiation.

POWHEG:pTemt = 0

POWHEG:pThard = 0

POWHEG:emitted = 0

POWHEG:pTdef = 1

The hardness pTdef is defined by the transverse momentum pT for initial-state
radiation, and with the distance between radiator and emitted partons dij for
final-state radiation corresponding to the Powheg definition given by:

dij =
m2
ijEiEj

(Ei + Ej)2
. (F.1)
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