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Partial-wave analysis is an important tool for analyzing large data sets in hadronic decays of light and
heavy mesons. It commonly relies on the isobar model, which assumes multihadron final states originate
from successive two-body decays of well-known undisturbed intermediate states. Recently, analyses of
heavy-meson decays and diffractively produced states have attempted to overcome the strong model
dependences of the isobar model. These analyses have overlooked that model-independent, or freed-isobar,
partial-wave analysis can introduce mathematical ambiguities in results. We show how these ambiguities
arise and present general techniques for identifying their presence and for correcting for them. We
demonstrate these techniques with specific examples in both heavy-meson decay and pion—proton

scattering.
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I. INTRODUCTION

In hadron spectroscopy, physicists precisely determine
the masses, widths, and other parameters of light mesons
and search for new mesonic states, often in very faint
signals [1]. In analyzing multibody decays of heavy mesons
(for example, B, D, and heavy quarkonia), physicists use
spectroscopic techniques to measure both strong and weak
phases, allowing for measurement of CP asymmetries.

In a fixed-target scattering experiment, interaction with a
target excites an incoming particle into a superposition of
states that decays to a set of final-state mesons. All resonant
states with quantum numbers allowed by the conservation
laws of the initial interaction contribute to the super-
position. In heavy meson decay, there is only one decaying
state—the heavy meson itself. Both light- and heavy-meson
spectroscopy commonly use partial-wave analysis (PWA)—
often referred to as Dalitz-plot analysis—which expands
the amplitude for the production of the final state into a
sum of contributions from partial waves: one for each
possible combination of quantum numbers for all states.
Each contribution factorizes into components whose forms
are dictated by quantum mechanics—spin-dependent ampli-
tudes—and components whose forms are not—dynamic
amplitudes, or so-called mass-dependent line shapes. The
dynamic amplitudes parameterize the dependence of the
partial-wave amplitude on the masses of intermediary states.
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Dynamic amplitudes are commonly decomposed into
sums of contributions from known resonances. For exam-
ple, for two pions in a state of spin, parity, and charge-
conjugation parity1 17~ with total isospin 1, the dynamic
amplitude can be a sum of contributions from p(770) and
p'(1450). Each resonance has its own dynamic amplitude
model—for example the Breit-Wigner line shape—and an
accompanying complex constant parametrizing its admix-
ture into the total dynamic amplitude. This decomposition
is commonly called the isobar model, with the individual
resonances called isobars.

The results of a partial-wave analysis are strongly
dependent on the quality of the analysis model: for
example, on the assumptions of what resonances to include;
how to model their dynamic amplitudes; and what param-
eter values to use in those models. PWA with the isobar
model suffers other problems: Models quickly become very
complicated when we include all possible quantum num-
bers and all known resonances—even for the production of
only three final-state particles. Resonances with identical
quantum numbers that significantly overlap in mass—Ilike
the p(770) and p’(1450)—often lead to unphysical model-
ing. And dynamic amplitude models often ignore the strong
interactions that can occur between resonances and other
particles in the decay.

These assumptions lead to problems increasingly present
in the analyses of the large data sets provided by current and
recent experiments. In Sec. II, we present a method to
determine dynamic amplitudes directly from the data without
models. Several heavy-meson analyses have used this

'"We denote these quantum number throughout in this order.
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technique in recent years [ 1-4] and often refer to it as model-
independent PWA—we call it freed-isobar analysis. We
demonstrate its applicability to scattering analyses. In
Sec. III, we demonstrate there exist potentially fatal math-
ematical ambiguities that have not been pointed out in
previous analyses. And in Sec. IV, we present several ways
to resolve these ambiguities in both heavy-meson and
scattering contexts.

II. MODEL-INDEPENDENT
PARTIAL-WAVE ANALYSIS

We can remove model dependencies of the isobar model
by determining dynamic amplitudes from the data. Instead
of decomposing a dynamic amplitude into contributions
from intermediary resonances—each with its own dynamic
amplitude model—we parametrize it as a complex step
function.

Before detailing the formalism of these freed isobars, we
briefly review the standard PWA formalism using the isobar
model. To make some of the formulas concrete and to
simplify notation, we refer to the example of three-pion
production, from both pion—proton scattering,

ap—nxtap, (1)
and D meson decay,
D —>rxratn. (2)

A fully generic description of the isobar model is available
in Ref. [5].

A. Partial-wave analysis

In partial-wave analysis, we assume events are dis-
tributed according to the square of the sum of the partial-
wave amplitudes—the intensity of the model. Each
amplitude describes a unique transition through interme-
diary states with well-defined quantum numbers to the
final state. We assume the transition proceeds through
two-body decays. In our three-pion examples, the quan-
tum numbers defining a partial wave are the spin (J),
spin projection (M), parity (P), and charge-conjugation
parity (C) of the three-pion system, X; the spin of the
intermediary two-pion system (S); and the angular
momentum (L) between the two-pion system and the
third pion, referred to as the spectator pion.

In general there may be several ways to combine final-
state particles into intermediate resonances; in our exam-
ples, there are two possible combinations of pions to form
the intermediary system. A true partial-wave expansion of
the transition amplitude from the initial system to the final
one is written in terms of only one such combination and
contains a sum over all possible quantum numbers. This
requires an infinite sum over J that mathematically

accounts for intermediate resonances in the other particle
combinations. The isobar model truncates the infinite sum
at a finite J and directly accounts for resonances in all
particle combinations by summing over amplitudes mod-
eling intermediate resonances—so-called isobars—in each
particle combination. When particle combinations differ
only by the swapping of identical particles—as is the case
in our examples—the sum over combinations is commonly
called a Bose symmetrization, with each combination
referred to as a symmetrization.

Each partial-wave amplitude has a spin-dependent
amplitude component, y(ms,,7), which is dependent on
the mass of the initial system, ms,, and the coordinate in
phase space, 7, of the final-state par“ticles.2 This component
is fully specified by the quantum numbers of the wave; but
its exact form is formalism dependent.

Each partial wave also has a dynamic amplitude for the
production of the wave, AP"(ms,), and one for the produc-
tion of the intermediary state, A(m,,). Each depends only
on the mass of the state whose production it parametrizes—
not on any other phase-space coordinates. Commonly, one
also includes angular-momentum barrier factors and form
factors, which are dependent on both ms;, and m,,—we
denote the product of such terms by F(ms,, m,,).

The total amplitude, summing over partial waves, a, and
symmetrizations is

A(ms,, 7T) = zAgr(m37r)l/A/a(m3m 7)

X Fu(mf'vr’ mZn)Aa(ﬁlZH)v (3)

where we denote symmetrization-dependent functions and
variables (and the sum itself) by hats—we use this notation
throughout the paper.

For scattering experiments, data are conventionally
divided into bins of mj;, that are analyzed independently,
so that the dynamic amplitudes for the production of the
three-pion states are learned empirically. In this case,
AY (ms3,) is a set of complex parameters, one for each
three-pion mass bin, b—which we call production ampli-
tudes. We rewrite Eq. (3)—now applying independently for
each three-pion mass bin—as a sum over partial waves,

each with a production amplitude, Aff'):

A®)(7) = ZAE,’”% (@) A, (s, 4)

*For three-particle decay, one needs five independent coor-
dinates to specify 7. For scattering, these are usually two
Gottfried-Jackson angles [6]; two angles, each one between
two final-state momenta; and the invariant mass of one pair of
final-state particles. For heavy-meson decay, these are usually
two invariant masses of pairs of final-state particles; and three
Euler angles describing the overall orientation of the decay plane.
If the heavy meson is spinless, as in our example, the Euler angles
can be omitted since the decay is isotropic in them.
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since within one three-pion mass bin F(ms,, i,,) is
dependent only on the two-pion mass, we absorb it into
A, (m,,). To simplify notation, since it is sufficient to
discuss the formalism within a single three-pion mass bin,
we omit the mass-bin index in the remainder of the paper.

In heavy-meson decay, there is only one initial state—the
heavy meson itself—with a fixed mass, so we can para-
metrize Af (m3,) by a single complex variable and also
use Eq. (4).

B. Model-dependent isobars

There are many ways to formulate dynamic amplitudes,
none of which are dictated by first principles. The most
common way is the isobar model, in which the dynamic
amplitude for the two-pion state is a sum of contributions
from known resonances, &, with the quantum numbers of
the two-pion state in the wave:

Ay(m) = athg(m). (5)
£

Each resonance is parametrized by an individual dynamic
amplitude, A;(m), and a complex admixture variable, al.
There are myriad ways to formulate the resonance dynamic
amplitudes. One of the most common is the relativistic
Breit-Wigner shape:

meI
A?w<m)5 2 26 < ,
mz —m —zm:l}

(6)

which ascribes a mass, m,, and width, I';, to the resonance
particle.’

We can absorb the production amplitude into the @, and
rewrite Eq. (4) as a sum over waves and the resonances
contributing to each wave:

ARG =33 (@Dt in,), (7)
a ¢

where each complex-valued af parametrizes the production

of a resonance and the spectator pion in the total spin
configuration of the wave: for example, a three-pion state
with quantum numbers 0" decaying into fyz™~ in a relative
S wave, where f, is a z~z" resonance with quantum
numbers 01", and an assumed dynamic amplitude model
(and parameter values therein); or a three-pion state with
quantum numbers 2~" decaying into pz~ in a relative P
wave, where the p is a z7z" resonance with quantum
numbers 17~ and an assumed dynamic amplitude model.*

The numerator m¢l"; normalizes the shape so that A; =i at
m = mé.

“States with spin greater than zero should also have a spin
projection specified, which we leave off here for brevity.

The isobar model has been very useful in analysis of
scattering experiments and heavy-meson decays. But it
requires assumptions concerning what resonances are
present and what forms their dynamic amplitudes have.
These assumptions may bias analyses and ignore small
structures not easily modeled, which can distort fit results.
These possible substructures—increasingly more visible in
the larger and larger data sets of modern experiments—may
arise from new resonant states or from final-state
interactions.

C. Model-independent isobars

In freed-isobar PWA, we remove the model dependency
inherent in the isobar model by parametrizing dynamic
amplitudes as complex step functions:

Ag(m) = wgly(m), (8)
s

where the f are disjoint bins of the two-pion mass range;
wp, the complex values of the dynamic amplitude in those
ranges; and 1, the indicator function,

©)

HAME{L if m e p,

0, if mgp.

The division of the mass range into bins is independent for
each wave, but is identical for all symmetrizations of a
wave. With this model-independent dynamic amplitude,
the description of an isobar is freed from assumptions on
both what resonances comprise it and how to formulate the
dynamic amplitudes of those resonances.

Substituting into Eq. (4) and absorbing the production
amplitude into the a);j, we have

AG) =33 (Dt 4. (10)
a

This has a form identical to Eq. (7), with each two-pion
mass bin in each wave appearing as an intermediate state
with an indicator function for a dynamic amplitude. So we
can use the same computational techniques (and software)
used for model-dependent PWA.

The amplitude in Eq. (10) still contains a sum over
symmetrizations. We keep the isobar model’s modeling of
dynamic amplitudes in terms of the particle combinations
comprising intermediate resonances; and the sum over
waves is also finite. The model independence is only in
the description of the dynamic amplitudes. This technique
is commonly referred to as model-independent PWA,
but a fully accurate name is model-independent isobar-
model PWA. Aside from being cumbersome, this name is
potentially confusing; so we prefer to call this technique
freed-isobar PWA.
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III. ZERO MODES IN FREED-ISOBAR PWA

If we allow dynamic amplitudes for isobars to have
abritrary forms, mathematical ambiguities may arise: there

may exist functions, A,, whose combined amplitude
vanishes—

A

a

—no matter what values are taken for parameters of the
functions, including an overall scaling of them. Since the
amplitude is zero, the parameters of these functions are
superfluous degrees of freedom in the total PWA amplitude.
We refer to each set of A, as a zero mode. For such a zero
mode to exist, there must be at least two terms in the sum of
Eq. (11); that is, there must be at least two symmetrizations
or two waves in the sum.

The binned functions of model-independent PWA intro-
duce enough freedom to the dynamic amplitudes that the
sum in Eq. (11) can be approximately zero—we can have
modes that contribute very weakly to the overall amplitude.
These weakly contributing modes can complicate analyses
and obscure underlying results. Since it is these approx-
imately zero modes that show up in model-independent
PWA, we refer to them also simply as zero modes when
there is no possibility of confusion.

We can decompose the wj of Eq. (10) into a contribution

describing nature, a/”, and a contribution from zero modes:
wh = af+ Y 7.2, (12)
4

where each zero mode has complex scaling factor 7, and
values, 2 in the two-pion mass bins that approximate a

A, (m):

A (m) m i1,y z41,(m). (13)
p

Without loss of generality we can define a single zero mode
as a collection of real functions with one common complex
scaling factor—so that the zj are real.

A. A concrete example

Let us demonstrate the presence of a zero mode in our
three-pion examples: The final state particles are all
spinless. Let us also consider a spinless three-pion
state—which is possible in pion—proton scattering and is
always the case in D decay. With the initial-state and
final-state particles all spinless, there is only one spin
quantum number to consider. Since there are no doubly-
charged mesons, we consider only the z#tz~ intermediary
states, of which there are two symmetrizations. We label
waves by the spin of the z7z~ system; and label the pions

as nymyn; and the two ztz~ symmetrizations as 12
and 23.

We will fulfill Eq. (11) with functions in the S and P
waves:

Wi, (DA (myy) + yh, (7) AP (my,)
+ Y55 (7)AS (ma3) + whs(T)AP (my3) = 0. (14)

The S-wave spin-dependent amplitudes are unity. To find
explicit forms for the zero-mode dynamic amplitudes, we
must assume a formalism for the P-wave spin-dependent
amplitudes. We use the Zemach tensor formalism of [7]
because it is simple and common:

ll/fz(?) = |ﬁ1|L|ﬁ3|LPL(i?1 '133)7 (15)

where P; is the Lth-order Legendre polynomial and the
momenta are in the 7z, rest frame. For the P wave,

R 1
Wha() = § (i, 4 2my =, = 3m2); (16)

1//53 is formed by swapping m, and m,;3. If we set Ap(m)
constant, then the P-wave contribution in Eq. (14) has terms
that are either independent of the two-pion masses or
dependent on only one two-pion mass—that is, there are no
terms dependent on both m;, and m,3. We can cancel all
these terms with the S-wave dynamic amplitude. The
explicit zero-mode dynamic amplitudes are

A (m) = 47 (17)
AS(m) = ij(m3, + 3m2 — 3m?). (18)

The zero mode has two degrees of freedom, those of the
arbitrary complex coefficient 7.

In the Appendix, we give a fuller picture of zero modes
in the decay of a spinless particle to three spinless particles
and show an example of a zero mode contained entirely in
one freed amplitude in a spinful decay.

B. Numerically determining zero modes

Most zero modes are not as simple as the example above.
Those for higher-spin decays are particularly more com-
plicated. But we can numerically determine their shapes in
the freed-isobar formulation.

In model-independent PWA, a zero mode satisfies

D Wa(@z15() %0, (19)
ap

where the zj are the values in each two-pion mass bin of

each freed wave such that the sum is very small—they are
real since we have defined a zero mode as real in Eq. (13).
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The standard mathematical tool to solve for the zj that
fulfill Eq. (19) is to look for the eigenvectors of the Gram
matrix of the freed isobars that have vanishingly small
eigenvalues. This matrix is

Iaﬂ,sz = m/ <Z Wz(?)ﬂﬂ(mzno
x (Z 7 (?>115<n%2”)> d7 (20)

where a and b label waves,  and 6 label two-pion-
mass bins in each, respectively, and the sums are over
possible symmetrizations of each wave. The normalization
constants

A 2
N2= [ D i (D)1,0m)| ¢z, (21)

are chosen such that the diagonal elements of the matrix are
unity. They mitigate spurious effects from two-pion mass
bins that hang over an edge of phase space. It is enlight-
ening to connect this mathematical tool back to a physical
interpretation: This is the overlap integral matrix for our
two-pion mass bins. An eigenvector of it with a very small
eigenvalue is a set of dynamic amplitude values in each bin
of each wave that contribute negligibly to the overall
intensity. The set of freed-isobar dynamic amplitudes
forming a zero mode are therefore

Ri(m) =0, cilp(m).  =zN71  (22)
p

where Zj are the elements of the eigenvector.

We use numerical integration techniques to construct the
overlap-integral matrix. It will have dim(Z) eigenvectors.
Those corresponding to zero modes will not only be small,
but will have values that decrease quadratically with the
(average) width of the two-pion-mass bins, owing to the
construction of the Gram matrix.

We demonstrate this technique with the decay
D™ — 7~ a"z~ with the S and P waves freed. We expect
to find the zero mode of Egs. (17) and (18). The top plot in
Fig. 1 shows the eigenvalue spectrum of the integral matrix.
There is one significantly small eigenvalue. The bottom
plot in the figure shows the dependence of this eigenvalue
and the next-largest one on the average bin width. The
smallest eigenvalue quadratically depends on the bin width,
but the next-largest one is constant. Figure 2 shows the zero
mode formed from the eigenvector alongside that of
Egs. (17) and (18)—the two are nearly indistinguishable5

>The shapes of the zero mode also include barrier factors and
form factors. If these are put into an analysis model explicitly, the
shapes of the zero mode change accordingly.
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FIG. 1. Eigenvalue spectrum (top) of the integral matrix for
freed S and P waves in D™ — 7~z z~; and the mass dependence
of the two smallest eigenvalues (bottom).
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FIG. 2. Components of the numerically determined zero mode
for freed S (blue) and P (green) waves in D~ — 7~z 7~ and the
zero mode of Egs. (17) and (18) (black).
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They deviate from each other only in the P-wave high-mass
region: The S-wave analytical zero mode varies most
rapidly at high masses, so the step function is a worse
approximation there than it is at low masses. The P-wave
step function at high mass deviates from the expected form
to compensate for the discrepancy in the S wave. When we
reduce the bin widths, this discrepancy disappears.

IV. RESOLVING ZERO-MODE AMBIGUITIES

When we fit a freed-isobar PWA model to data, zero
modes will contribute to the dynamic amplitudes the fitter
finds—the wj of Eq. (10)—with their complex 7, taking on
arbitrary values as artifacts of the fitting process. We can
correct for their presence using knowledge of their shapes
and some assumption about the true underlying amplitudes
and recover the underlying physical values, the oy, that are
the goal of an analysis. We refer to the fit that determines
the wj as the fit to data and further steps (including
additional fits) that determine the a/‘§ as the zero-mode
correction.

There are many possible assumptions we can make about
the true underlying physical amplitudes; we present three
examples below, which each assumes a model for some part
of the freed isobar amplitudes. This gives us expectations
for the underlying physical values, which we label €.
Equation (12) tells us that the difference between the
underlying value and our expectation is

a-cg=af-d g -ep (29
z

since we can learn the zj using the method described in
Sec. III B, the only unknowns are the #,. We can fit for the
i1, and correct for them, yielding the true underlying values.
We do this by minimizing

=3 (- Sncg—s ) Cabus (o - St -
Z Z

ap,bé
(24)

where a, #, b, and 6 are as defined for Eq. (20) and C 5 is
the matrix of covariances of the wj determined by the fit
to data.

This step is not equivalent to having assumed a model
from the very start: The model-independent approach has
many more degrees of freedom than model-dependent
approaches. The zero-mode correction step only reduces
the number of degrees of freedom in the analysis by the
number of free parameters in Eq. (24), leaving still much
more freedom than in a model-dependent analysis.

A. Zero-mode correction examples

We demonstrate zero-mode correction using simulated
data of three-pion states produced by D-meson decay and
pion—proton scattering. We test three types of assumptions
to correct for the zero mode: a model that predicts a value in
every two-pion mass bin in every freed wave with the 77, the
only free parameters; a model for only a subset of bins, with
the 77, the only free parameters; and a model with additional
free parameters beyond those of the zero mode.

For D - n~n"z~, we generated one million events
according to a model containing f((980)z~ in the S wave
and p(770)z~ in the P wave, with both resonances modeled
by the relativistic Breit-Wigner line shape [8]. For the spin-
dependent amplitudes, we used the Zemach formalism
of [7].

Our D-decay fit model frees both the S and P waves. The
steps in both freed waves are contiguous and cover the full
mass range from 2m,, to mp — m,; they are 20 MeV wide.
With freed S and P waves, as we demonstrated above, there
will be a zero mode with one complex degree of freedom.

For n7p — n~n"x~p, we generated 260,000 events in
the three-pion mass range from 1.50 GeV to 1.54 GeV
according to the model used by the CompASS collaboration
in [1] with the parameters they extracted from data. We
used the helicity formalism of [9—11], to be consistent with
the analysis in [1]. The CoMpPASs model contains 88 partial
waves. Each is a unique combination of quantum numbers
for the three-pion state, a dynamic amplitude model for the
two-pion isobar (denoted by &), and an orbital angular
momentum between the isobar and the spectator pion. The
three-pion quantum numbers are formulated in the reflec-
tivity basis [12], with spin projection M and reflectivity e.
This is all abbreviated as JP*M¢&rL.

Our zp-scattering fit model frees the dynamic amplitudes
in eleven different waves distinguished by the quantum
numbers of the three-pion system; the spin, j, of the two-
pion isobar, which we write [zz];; and the angular
momentum between the isobar and the spectator pion.
These eleven freed waves, listed in Table I, replace fifteen
waves of the CoMPAss model: waves with freed [zz]g
replace those with the broad zz S wave and the f,(980)
[and f;(1500) in the 0~ 70" wave]; waves with freed [z7]p
replace those with the p(770); and the wave with freed
[zz]p replaces one with the f,(1270). The remaining 73
waves are included in their model-dependent formula-
tion. Any combination of model-independent and model-
dependent waves is possible within the freed-isobar
approach; here we have freed the most prominent waves.
The two-pion mass bins in each freed wave are contiguous
and cover the full mass range from 2m,, to ms, — m,; near
the regions of the p(770) and f,(1270), they are 20 MeV
wide; near the f;(980), they are 10 MeV wide; and
elsewhere they are 40 MeV wide.

Using the technique described in Sec. III B, we find the
zero modes of this scattering fit model. They do not connect
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TABLE I. Freed waves in #7p — n~n" 27 p, grouped by three-
pion quantum numbers, with presence of a zero mode indicated in
the last column.

JPCMe [nn);xL

0~*to* [z, [n7|pnP v
170" [za]gxP, [n7]p7S v
11 [n7]p7S

2°Y0"  [zx]gaD,  [zx]paP,  [ax]paF, [zz|paS
27T [n7]pnP,

20T [zz]pzD,

waves with differing initial-state quantum numbers. We
find three zero modes in this model—they are indicated in
Table I; each has one complex degree of freedom.

Figure 3 shows an example result from fitting this model
to simulated data. The fit result is shown in red and the
generating model in gray. The left plot shows the intensity
as a function of two-pion mass; and the right plot shows the
dynamic amplitude in the complex plane. All other plots in
this section are identically structured. The freed-isobar
shown is that of the 271" [zz]|pzD wave, which has no
zero mode. The fit result agrees well with the data-
generation model.

1. Complete-model constraint

With our freed D-decay model, we determine the
complex dynamic amplitude value in each two-pion mass
bin via a fit to simulated data. In Fig. 4, the red points show
the fit results of the freed S and P waves. The grey lines
show the data-generation model. The fit result has peaks
corresponding to those of the generating model, but also
considerable intensity elsewhere that does not match the
generating model.

x10* 2+ 1* [nrlprD wave
4l + ]
; t
o 3| i
z +
(=]
2 +
g o
2ot ]
k)
= +
g }
S 1t i
, + +
I i ++
H ¥
H ot N 4 [} R
O bosecere, ) R B o s ST PP
0.4 0.6 0.8 1.0 1.2
moz[GeV]

FIG. 3.
of the fit to data (red).

To correct for the zero mode, we fit for its complex
parameter, 77, by minimizing the > of Eq. (24). We predict
€4 in all bins of both the S and P waves using a model that
contains both the f((980) and p(770)—that is, our original
data-generation model. However, for our prediction we
change the masses and widths of the resonances: for the
£,(980), we shift the mass from 980 MeV to 1 GeV and the
width from 100 MeV to 110 MeV; for the p(770), we shift
the mass from 770 MeV to 750 MeV and the width from
160 MeV to 180 MeV.

In Fig. 4, the green points show the freed waves with the
zero mode subtracted given the value of 7 found in the
second fit:

ag = wf — 7zj. (25)
This result very closely resembles the generating model.
Though we predicted the e with shifted values for the
masses and widths, our final result recovers the correct
values. This demonstrates that we do not need detailed and
accurate expectations for the zero-mode correction; nor can
we coax a result out of the fit via our expectation. This is in
contrast to model-dependent PWA, which is very sensitive
to the fit model. However, though our expectations for the
zero-mode correction need not be detailed or accurate, they
must still be reasonable: We must predict a feature that the
data in some rough way contains. For example, we cannot
predict € from a model of a resonance for which our data is
far below the threshold to produce since its features will be
very weak in the data.

2. Partial-model constraint

With our freed zp-scattering model, we determine the
complex dynamic amplitude value in each two-pion mass
bin via a fit to simulated data. In Fig. 5, the red points show
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Intensity (left) and dynamic amplitude in the complex plane (right) of the simulated zp-scattering model (grey) and the results
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the fit results of the 0~ 0" [zz]gzS and 0~ 0" 77|, 7P freed
waves. The grey lines show the data-generation model. The
disagreement between the fit result and the generating
model is due to the zero mode.

Again, to correct for the zero mode, we fit for its com-
plex parameter, 7, by minimizing y>. Since the zero modes
in our freed zp-scattering model are contained entirely in
waves with the same initial-state quantum numbers, we
need not assume a model for the entire process—which,
with 84 partial waves, is very complicated—but only for
the waves in which the zero mode arises. We need only
predict e for the relevant waves, and accordingly only sum
over those waves in Eq. (24). In Fig. 5, the blue points show
the freed waves with the zero mode subtracted given the
value of 77 found in the second fit. They agree well with the
generating model.

Since the zero mode links the [zz]qzS wave and the
[z7|p7P wave, it is even enough to fit for 7 in only one of

them. We restrict our prediction of € further to only the
mass bins of the [zz]p7zP wave, and accordingly sum only
over those bins in Eq. (24). In Fig. 5, the green points show
both freed waves with the zero mode subtracted given the
value of 77 found in a fit to only the P wave. The result very
closely resembles the generating model and agrees well
with the zero-mode correction that used both waves. This
demonstrates that one can correct for a zero mode with only
a minimal assumption about a model.

3. Constraints with additional parameters

In both zero-mode corrections above, the only free
parameters were the #. Additional parameters used to
predict the e}}, such as masses and widths of resonances
in our assumed model, were fixed. But a common goal of
PWA is to measure such parameters. It would be super-
fluous and error prone to first correct for the zero mode and
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then fit the zero-mode-corrected results for such parame-
ters. Instead, we should fit for them and the contribution of
the zero mode simultaneously.

We demonstrate this with a zero-mode-correction fit to
the results in the 0~"0" [zz|pzP wave of the zp-scattering
model (as determined, again, from a fit to simulated data).
We fit for both 7 and the mass and width of the p(770) (in a
Breit-Wigner line shape) that is contained in this wave. We
recover a zero-mode corrected result identical to that shown
already in Fig. 5; and we find

m, = (766.7 + 1.8) MeV (26)

T, = (154.6 + 4.0) MeV, (27)

which agree within their uncertainties with the simulated
values 769.0 MeV and 150.9 MeV.

V. CONCLUSION

Freed-isobar partial-wave analysis allows us to over-
come the limits of model-dependent analysis by using
empirical step functions to describe dynamic amplitudes. It
can be useful for light-meson spectroscopy and analysis of
heavy-meson decays and hadronic z-lepton decays. In
particular, for CP-asymmetry measurements, freed-isobar
PWA could be a robust alternative to the common schemes
of measuring asymmetries in bins of phase space. Using the
technique, we could instead determine asymmetries in mass
bins in distinct projections of the isobar quantum numbers.

Several analyses have used freed-isobar PWA in limited
ways, both as a central analysis tool and as a cross check of
model-dependent analyses. But more expanded use of the
technique—to fit with many freed waves, whether initially
or through a bootstrapping procedure—has failed to pro-
duce meaningful results. This is due to the presence of zero
modes and their arbitrary degrees of freedom.
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We have demonstrated how to correct for these zero
modes and remove arbitrary degrees of freedom using
minimal assumptions. And we have provided examples
using simulated data of three-pion production via both
pion—proton scattering and D-meson decay. Our enhanced
freed-isobar PWA techniques may be useful for determin-
ing two-body dynamic amplitudes that are consistent across
a large variety of strong-interaction problems; for example,
one could test models of final-state interaction.
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APPENDIX: EXAMPLE ZERO MODES

The solutions to Eq. (11)—the zero modes—are depen-
dent on the formalism chosen for y, and are not guaranteed
to exist for all scattering or decay processes. The zero
modes are also dependent on the symmetrizations summed
over—the presence (or lack thereof) of identical particles in
the final state.

To demonstrate conditions under which zero modes
appear, we consider, first, decay of a spinless meson to
three spinless mesons, which is important for heavy-meson
decay; and then give an example in decay of a spinful state.

1. Zero modes in decays of spinless mesons

Let us consider the decay

X — hjhyh;s, (A1)
where all particles are spinless. For y,, as in Sec. Il A, we
use the Zemach tensor formalism. We limit our discussion
to the S and P waves. Since the initial state is spinless, the
spin of the resonance is always the same as the total orbital
and spin angular momenta of the wave. Therefore there is
only one wave for each isobar spin. For the decay to an
isobar formed by ij with spin £ and a spectator final-state
particle k (with i, j, and k standing for a cyclic permutation
of hy, h,, and h;), the spin-dependent amplitude is

wii(mx. 7) = |Bil 1Pl Pe(bi - Do) (A2)
where P, is the Zth-order Legendre polynomial and the
momenta are in the ij rest frame.

a. Zero modes purely in S waves

The S-wave spin-dependent amplitude is
Therefore the S-wave component of Eq. (11) is

unity.

(A3)

S S ().

We can compensate a constant complex pedestal in one S
wave by subtracting that same constant complex pedestal
from any other S wave. Therefore, if there is more than one
S wave in the model, there are zero modes that link each
pair of S waves. We can most simply represent this with a
set of zero modes that are constant in each S wave,

A% (m) = B, (A4)

such that

(AS)

where the 3, are complex variables, one per wave, each
with two real degrees of freedom; for Ng independent S
waves, there are (Ng — 1) free arbitrary complex variables.

Such a zero mode arises, for example, in the decay
D~ — K"K~ 7~, in which there are two S waves: in K"K~
and KTz~. In contrast, no such zero mode arises in
D™ - 7 ztn~ since there is only one S wave—in
xtr —with two symmetrizations. This illustrates the
difference between symmetrizations—the swapping of
identical final-state particles in and out of the isobar—
and waves—different groupings of particle species into
isobars. Different waves have independent dynamic ampli-
tude; but different symmetrizations of a single wave share a
single dynamic amplitude form.

b. Zero mode purely in P waves

The P-wave spin-dependent amplitude is

N m? —m?
i) = (= ke = 3 =) ")
ij

If each final-state particle is unique, there is no symmet-
rization necessary and the P-wave component of Eq. (11) is

1 ~ ~
ZZ(Afk(mik) - A})k(mjk»mizj
ijk
2

= (mx — m%) 7251‘)'("%;), (A7)

where the sum is over cyclic permutations of h;h,h; as ijk,
and we have labeled each wave by the two final state
particles forming its P-wave isobar. This amplitude is zero
if all three isobar configurations are allowed and all
dynamic amplitudes are
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7 = exp(i45°).

EE(m) = 7m. (AB)
with one arbitrary complex variable, 7, for all amplitudes.

Such a zero mode arises, for example, in the decay
D% — 77727 2°, in which all P-wave isobars are possible:
ata~, ztx% and 7~ 2% No such zero mode arises in, for
example, D~ — K"K~ 77, if we disallow an isobar in K™z~
because there are no doubly-charged mesons.

If two of the final-state particles are the same species and
charge, as we have in the example decay D™ — 7~z "7,
there is no purely P-wave zero mode.

¢. Zero modes connecting S and P waves

Let us extend the zero mode of Egs. (17) and (18) for the
case of hy, h,, and h; each a unique particle species: The
zero mode is constant in the P waves, but now each
combination of final-state particles has an independent
dynamic amplitude:

Substituting this into Eq. (A7) gives the total P-wave
amplitude:
m? — m?
Z(’?ik - ”jk)m%j - ﬂij(mi — my) #
ijk ij

(A10)

where the sum, as above, is over cyclic permutations of
h;h,h; as ijk. The summand is dependent on only one
mass—the isobar mass. We can perfectly balance each term
in the sum with S-wave dynamic amplitudes
2
2 i J

AS _ ~ ~ 2~ 2 m
7 (m) =T =7 ji)m +77ij(mx_mk)71

(Al1)

and get a total amplitude of zero. Such a zero mode arises if
all S waves and any P wave are freed.

d. All zero modes in the S and P waves

If all S and P waves are freed, then the three different
forms of zero mode demonstrated above are present:

m2 — m?
x 7 ~ ~ ~ l
A (m) = Bi; + (i — i) m* + 7i;;(m% — m3) Tj
(A12)
&5(’”) = 4ij;; + ym?, (A13)

There are seven arbitrary complex constants with one

constraint: Zijﬁi ; = 0. The combined shapes of all zero
modes are complex functions that may contain phase
motion that mimics a resonance. Figure 6 shows such a
situation for the example decay B~ — D°K~z° with an
example set of complex parameters for the zero mode.
Large phase motion manifests in two of the waves—such a
shape, if not corrected for, could lead to a wrong inter-
pretation of an analysis result.

2. Further zero modes

Zero modes are seen in many other combinations of
isobars beyond the above examples of spinless meson
decays. One decay of particular interest is that of a 17" state
into a 17~ isobar and a pseudoscalar meson in a relative P
wave with two symmetrizations (as exists in our example
final state, 7~z z~). We can write the amplitude using the
relativistic tensor formalism of Refs. [13-15] as

Wi @), & €wpari PP (A14)
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note, that this amplitude is a vector, since it describes a
spin-one quantity. Because of the Levi-Civita tensor, €, this
changes sign under exchange of two indices. The sym-
metrized amplitude is therefore proportional to

€/4bp6p11/p/2)p(37(5(m12) _A(m23))' (AIS)

This is equal to zero everywhere if A(m) = A(m’) for all m
and m'—that is, if A(m) is constant. Since A(m) may be
complex, the zero mode has two degrees of freedom
entirely contained in one isobar.
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