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Abstract

Non-Newtonian fluids can develop banded velocity and concentration profiles under strong shear deformations,

which is known as shear banding. Although shear banding is a ubiquitous phenomenon observed in many soft

materials such as polymer solutions and wormlike micelles, the mechanisms that induce it are not always the same.

To study shear banding in semidilute entangled polymer solutions, we have developed a new thermodynamically

consistent two-fluid model using the generalized bracket approach of non-equilibrium thermodynamics.

The two-fluid approach is an appropriate means for describing diffusional processes, such as Fickian diffusion and

stress-induced migration. It is assumed in this framework that the local gradients in concentration and viscoelastic

stress generate a nontrivial difference between the velocities of the constituents of the solution, which allows the

phases to diffuse at different speeds.

The two-fluid system that we used consists of one component of polymeric constituents and a viscous solvent.

Within the model, a Giesekus-type relaxation was added to the conformation tensor equation to describe the

conformational dynamics of the polymers and to obtain an overshoot of the shear stress during the start-up of a

simple shear flow, which triggers the formation of the shear bands. In addition, we included a second nonlinear

relaxation term to capture the upturn of the flow curve of shear stress versus shear rate at high shear rates. This

term is a non-equilibrium thermodynamic reformulation of the term used in the Rolie-Poly model that accounts for

convective constraint release and includes chain stretch. Furthermore, a nonlocal stress-diffusive term was added

to the time evolution equation of the polymer conformation to generate smooth and unique steady-state profiles. The

advantage of our model is that the formulation of boundary conditions such as slip, no-slip, and those arising from

the diffusive derivative terms are straightforward since the differential velocity is a state variable in our model. Due

to the diffusional processes, the profile of the polymer number density is not uniform in our model. Furthermore, the

model predicts the nonlinear rheological behavior without the need for a substantial solvent contribution.

We analyzed the model behavior in a cylindrical Couette flow, a Poiseuille channel flow, a 4:1 contraction flow, and

a die swell flow. We also implemented the wall slip boundary condition in our two-fluid framework using the linear

Navier slip model. The Couette and the Poiseuille flows are solved using a standard Chebyshev pseudospectral

collocation method, and the calculations of the contraction and the die swell flows are done using the OpenFOAM

finite volume package.

The results of the calculations confirm that the stress-induced migration is responsible for the shear band formation
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in our model. We observed that the steady-state solution is unique with respect to the initial conditions, applied

deformation history, and the value of the local diffusivity constant appearing in the time evolution equation for the

differential velocity. However, the smaller the local diffusivity constant is, the longer it takes to reach the steady

state. Interestingly, the value of the nonlocal diffusivity constant does not significantly affect the transient dynamics.

The profile of the total velocity of the Poiseuille flow in the shear banding regime deviates from the typical parabolic

diagram and forms a plug-like pattern, with a low shear rate band near the center and a high shear rate band near

the walls. We observed a spurt in the profile of the flow rate at a critical value of the pressure gradient, which is in

agreement with the experimental data of pressure-driven shear flows of entangled polymer solutions. Our model is

a good candidate for simulations of industrial flows due to its simplicity and the results. For instance, we show how

to control the extrusion instabilities of die swell flows, which depending on the application can be desired or not.
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Zusammenfassung

Nicht-Newtonsche Fluide können unter starken Scherdeformationen bänderartige Geschwindigkeits- und

Konzentrationsprofile ausbilden. Obwohl die Ausbildung von Scherbändern allgemein in vielen weichen

Materialien wie beispielsweise Polymerlösungen und wurmartigen Mizellen auftritt, unterscheiden sich die hierfür

verantwortlichen Mechanismen. Um die Scherbänder in halb-verdünnten, verschlauften Polymerlösungen genauer

zu betrachten wurde ein neues thermodynamisch konsistentes Zwei-Fluid-Model entwickelt, welches auf einem

verallgemeinerten, nicht-gleichgewichtsthermodynamischen Klamemransatz basiert.

Der Zwei-Fluid-Ansatz ist ein probates Mittel, um Diffusionsprozesse wie die Ficksche Diffusion und

spannungsinduzierte Migration zu beschreiben. Bei dieser Theorie wird genommen, dass die lokalen Gradienten

der Konzentration und der viskoelastischen Spannung eine nicht-triviale Differenz zwischen den Geschwindigkeiten

der Lösungsbestandteilen generieren, was den Phasen eine Diffusion mit unterschiedlichen Geschwindigkeiten

ermöglicht.

Das hier verwendete Zwei-Fluid System beinhaltet eine Spezies mit polymeren Bestandteilen und ein viskoses

Lösungsmittel. Innerhalb des Modells wurde der Konformationstensorgleichung eine Giesekus-artige Relaxation

hinzugefügt, um die Konformationsdynamik der Polymere zu beschreiben und eine Übersteigerung der

Scherspannung zu Beginn der einfachen Scherströmung zu erhalten, was die Ausbildung von Scherbändern

bewirkt. Zusätzlich wurde ein zweiter nicht-linearer Relaxationsterm einbezogen, welcher den Aufschwung

der Strömungskurve im Scherspannung-Scherraten-Plot bei hohen Scherraten erfasst. Dieser Term ist eine

nichtgleichgewichtsthermodynamische Reformulierung des im Rolie-Poly Modell benutzten Terms, welcher die

convective-constraint-release und chain-stretch beinhaltet. Weiterhin wurde dem zeitlichen Evolutionsgleichung ein

nicht-lokaler Spannungs-Diffusions-Term hinzugefügt, der ein gleichmäßiges und einzigartiges Gleichgewichtsprofil

generiert. Der Vorteil den dieses Modell bringt, ist die eindeutige Formulierung der Randbedingungen wie slip,

no-slip bzgl. der abgeleiteten Randbedingungen der Diffusionstermen, da hier die differentielle Geschwindigkeit

eine Zustandsgröße ist. Das Profil der Polymeranzahldichte ist nicht uniform in unserem Modell, aufgrund diffusiver

Prozesse. Weiterhin prognostiziert das Modell ein nicht-lineares rheologisches Verhalten ohne der Notwendigkeit

einer wesentlichen Einwirkung des Lösungsmittels.

Wir untersuchten das Modellverhalten in einer zylindrischen Couette-Strömung, einer Poiseuille-Kanalströmung,

einer 4:1 Kontraktionsströmung und einer Die-swell Strömung. Außerdem wurde unter Verwendung des linearen
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Navier slip Modells, eine wall-slip Randbedingung in die zwei-Fluid Modellstruktur implementiert. Die Couette

und Poiseuille-Strömungen wurden mittels einer standard Chebyshev-pseudospectral-Kollocation-Methode gelöst

und die Berechnung der Kontraktion und die-swell-Strömungen in OpenFOAM mit Hilfe des finiten Volumen

Programmpaketes durchgeführt.

Die Ergebnisse der Berechnungen bestätigen, dass die spannungsinduzierte Migration verantwortlich für die

Ausbildung der Scherbänder in unserem Modell ist. Es wurde beobachtet, dass die Gleichgewichtslösung einzigartig

ist unter Berücksichtigung der Anfangsbedingungen, angewandten Deformationsgeschichte und den Wert der

lokalen Diffusivitätskonstanten, welche in der zeitlichen Evolutionsgleichung der differentiellen Geschwindigkeit

vorkommt. Trotzdem zeigt sich, dass, je kleiner die locale Diffusionskonstante ist, desto länger dauert es, einen

Gleichgewichtszustand zu erreichen. Interessanterweise beeinflusst der Wert der nicht-lokalen Diffusionskonstante

die transienten Dynamiken nicht signifikant. Das Profil der Gesamtgeschwindigkeit der Poiseuille Strömung weicht

im Scherbandregime vom typischen parabolischen Diagramm ab und bildet eine pfropfenartige Struktur mit einem

niedrigen Scherratenband in der Nähe des Zentrums und ein hohes Scherratenband nahe der Wände. Wir

beobachteten einen rasenten Anstieg im Profil der Flussrate an einem kritischen Wert des Druckgradienten, welches

in Übereinstimmung mit den experimentellen Daten der druckgetriebenen Scherströmung von verschlauften

Polymerlösungen ist. Unser Modell ist eine gute Wahl für Simulationen von industriell relevanten Strömungen

aufgrund seiner Vereinfachungen und der Resultate. Beispielsweise zeigten wir, wie Extrusionsinstabilitäten in

Die-swell-Strömungen kontrolliert werden, welche anwendungsabhängig gewollt oder ungewollt sein können.
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1 Introduction

Non-Newtonian fluids have non-constant viscosity depending on different variables, which is in contrast to the

Newtonian fluids. The properties of some of the non-Newtonian materials are between solid state and liquid state

as shown in Fig. 1; therefore, they are also called viscoelastic materials, complex fluids, or soft materials. Examples

of these materials are polymer solutions, wormlike micellar solutions, and colloidal-like systems, or specifically, we

can mention paint, shampoo, ketchup, blood, DNA solutions, toothpaste, dough, wet cement, crude oil, cosmetics,

asphalt, and glue. The flow phenomena of viscoelastic materials are assessed under a branch of physics called

rheology.

Figure 1: The deformation response of (a) perfect solid materials (e.g. rubber) described by the Hook’s law σxy = G0γ with
shear stress σxy , modulus of elasticity G0, and strain γ = S/H defined for small deformations as the ratio of the
displacement S to the characteristic height H , (b) viscoelastic materials which are between solid and liquid states,
and (c) Newtonian fluids (e.g. water) characterized by the Newton’s law σxy = ηsγ̇, with the constant viscosity ηs and
shear rate defined as γ̇ = ∂γ/∂t = ∂vx/∂y = V/H .

The viscoelastic properties may change with shear rate, time, pressure, and temperature due to the change in
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the molecular structure of the material. Fig. 2 depicts the classification of materials according to the behavior of

their viscosity with the applied shear rate. Newtonian fluids are characterized by constant viscosity, shear-thinning

materials have viscosity that decreases with shear rate, and shear-thickening is the case in which the viscosity

increases with shear rate.

Figure 2: Different viscosity behaviors with shear rate.

Flow curve is a diagram that shows the relationship between shear stress σxy and shear rate γ̇. This curve for

semidilute polymer solutions, which show shear-thinning behavior, is linear for small and large shear rates, as

shown in Fig. 3. The shear stress increases monotonically with the shear rate, where the slope depends on the

molecular weight and the concentration of the polymer solution. To know the relationship between the shear stress

and the shear rate, we need rheometric data or an equation describing this relationship. Such an equation is called

constitutive model.

Figure 3: Representative flow curve of the shear stress versus the applied shear rate of a semidilute entangled polymer solution.
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A simple shear flow is depicted in Fig. 4, where the lower plate is stationary and the upper one moves with a constant

velocity V . For small and large shear rates (Fig. 4(a)), the velocity increases linearly from zero at the bottom to the

maximum at the top with slope equal to the applied shear rate γ̇. In a flow like Fig. 4(b), the material responds with

two shear rates γ̇1 and γ̇2; therefore, two linear velocity profiles are apparent. This phenomenon is called shear

banding, and the linear velocity profiles are called shear bands. After entering the plateau-like shear-thinning regime

of the flow curve, shear band formation can occur. The proportion of the flow from the higher band increases by

increasing the shear rate until the homogeneous flow again covers the entire flow. In the literature, this type of

shear banding that the bands are separated in the flow gradient direction is called shear/gradient banding or strain

localization. In principal, more than two bands can be formed. This depends on flow geometry and deformation

protocol. When different stresses coexist at an equal shear rate in the vorticity direction, the phenomenon is called

vorticity banding, which is not of our interest in the current study. For more review of shear banding in soft materials,

please refer to the literature (Fielding, 2007; Olmsted, 2008; Dhont and Briels, 2008; Manneville, 2008; Divoux et al.,

2016; Germann, 2019). Shear banding has been observed in many soft materials such as colloidal-like systems,

nematic liquid crystalline systems, wormlike micelles, semidilute entangled polymer solutions, and polymer melts.

However, the mechanisms of shear banding for different materials are not always the same.

Figure 4: Velocity profile of a two-dimensional steady simple shear flow (a) under homogeneous flow conditions, and (b) in the
presence of shear banding, where we note two bands of constant shear rates, with the high shear band located close
to the moving wall.

Polymer solutions with thermodynamically good solvents are categorized in different concentration regimes

suggested by De Gennes (1979) as dilute (c < c∗), semidilute (c∗ < c < c∗∗), and concentrated (c∗∗ < c). Here, the

total concentration c denotes the ratio of the polymer weight to that of the solution. The concentrations c∗ and c∗∗

are respectively the overlap concentration and the crossover concentration from semidilute to concentrated regimes.
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The overlap concentration is the case where the polymer molecules start to contact; i.e., the average distance

between the molecules is in the order of the radius of gyration. These regimes are shown in Fig. 5. By increasing

the concentration of the solutions, more intermolecular interactions occur and consequently the model to realistically

describe the material should include more details. Shear banding occurs in the entangled regime (corresponding

to the semidilute and the concentrated). It must be noted that the semidilute and concentrated regimes in Fig. 5

are assumed to be under shear which is the reason why the molecules are aligned with the flow. Our focus is on

semidilute entangled polymer solutions, which have many applications such as nano-fiber production (Zettl et al.,

2009), 3d printing (Schroeder, 2017), and fluid coating (De Ryck and Quéré, 1998).

Figure 5: Different concentration regimes of polymer solutions. From left to right: dilute, at overlap, semidilute, and concentrated
[modified from Bertola (2013), Fig. 2].

The macroscopic rheometric data are based on the bulk average information and ignore the structural

characteristics; this leads to unreliable results in the presence of inhomogeneities like shear banding. Furthermore,

experimental artifacts like edge fraction or methods to prevent it, alter the data (Li et al., 2013). Therefore,

experiments need in-situ velocimetry techniques with higher resolution such as small angle neutron scattering

(SANS) (Berret et al., 1994; Schmitt et al., 1994), nuclear magnetic resonance (NMR) (Mair and Callaghan, 1996;

Britton and Callaghan, 1997; Callaghan and Gil, 2000), particle tracking velocimetry (PTV) (Hu and Lips, 2005;

Wang et al., 2006), particle image velocimetry (PIV) (Goudoulas et al., 2017, 2018; Goudoulas and Germann,

2018), and optical coherence tomography (OCT) (Harvey and Waigh, 2011; Jaradat et al., 2012). Goudoulas

and coworkers studied semidilute entangled polymer solutions of polyacrylamide (Goudoulas et al., 2017),

DNA (Goudoulas et al., 2018), and polyethylene oxide (Goudoulas and Germann, 2018) using PIV and a setup
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with reduced edge fraction. They observed that shear banding is independent of edge fraction and is a material

property depending on the concentration and the molecular weight of the solution if the applied shear rate is

sufficiently large. Their observation is in agreement with the phase diagram of Jaradat et al. (2012) shown in Fig. 6

obtained using OCT on concentrated solutions of high-molecular weight polyacrylamide solution at steady state.

This phase diagram expresses that polymer solutions exhibit linear, shear banding, or wall slip behavior depending

on their molecular weight and concentration. According to Jaradat et al. (2012), their data are reproducible and

independent of the flow geometry used. However, such two-dimensional flow phases can only qualitatively help

us to understand the impact of polymer concentration and molecular weight since other parameters such as

the applied deformation rate and the geometry of the flow have significant impacts on the boundaries of these

three regimes. Furthermore, Wang and coworkers confirmed that shear banding is a material property by PTV

measurements of polybutadiene (Tapadia et al., 2006; Ravindranath and Wang, 2008b; Ravindranath et al., 2008;

Boukany et al., 2015) and DNA (Boukany and Wang, 2009b). They have also proposed a phase diagram of the

same three regimes, which is the function of shear rate and slip extrapolation length. Wang (2018) believes that the

intermolecular connections of the polymer network starts to yield after a critical value of the deformation rate, which

appears as wall slip.

Figure 6: Phase diagram of concentrated high-molecular weight polyacrylamide solution with three distinct regimes: linear,
shear banding, and wall slip [adopted from Jaradat et al. (2012), Fig. 6].
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The goal of this thesis is to introduce a physically meaningful constitutive model that can describe shear banding in

semidilute entangled polymer solutions. In addition, we numerically test the model in different industrially relevant

flows shown in Fig. 7, namely a cylindrical Couette flow, a pressure-driven channel flow, a 4:1 contraction flow, and

an extrusion flow. The derivation of the new model is explained in Sec. 2. We solve the model for the cylindrical

Couette flow in Sec. 3. The solution of the pressure-driven channel flow is given in Sec. 4. The contraction flow

is presented in Sec. 5. The extrusion flow is described in Sec. 6. And finally, Sec. 7 summarizes this thesis and

discusses some possible improvements.
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Figure 7: Schematic sketches of (a) the cylindrical Couette flow, (b) the rectilinear channel flow, (c) the 4:1 contraction flow, and
(d) the extrusion flow.
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2 Non-equilibrium thermodynamic polymer model

2.1 Background

The first step to model the behavior of the polymer solutions is to know their structure. Fig. 8 helps us to have an idea

about the shape of linear polymer molecules in which we are interested, described by different levels of simplifications

according to the desired features of the molecules. In general, the models should compromise between important

physical properties and computational cost.

Figure 8: Simplification of chain conformation. (a) is the complete structure of the chain, (b) includes only the atoms on
the backbone, (c) shows only the bonds between the atoms, and (d) is a smoothed line of thread representing the
conformation [adopted from Teraoka (2002), Fig. 1.4].

Before introducing our model, it is worth going over the earlier constitutive models, especially those related to our

model. A constitutive equation is needed to predict the relationship between shear stress and shear rate since this

relationship for the shear rates higher than a critical value is not linear and not known for many of the viscoelastic

fluids. The microscopic state of such fluids (polymer chains) does not respond instantaneously to an imposed

deformation, which is a feature shared with purely elastic solids. This is observed as a delayed relaxation of the
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stress. The equation of the momentum balance is as follows:

ρ
∂v

∂t
= −ρv ·∇v −∇p+ ∇ ·σ. (1)

Here, v denotes total velocity vector, ρ total mass density of the polymer solution, p pressure, t time, and σ the total

stress that we need a constitutive equation to describe it. This relationship is the Newton’s law if the material is a

Newtonian (purely viscous) fluid:

σ = 2ηsD, (2)

where D = 1
2 [∇v + (∇v)T ] is the velocity gradient tensor equivalent to the symmetric part of the velocity gradient,

and ηs is the viscosity of the fluid.

The scalar Maxwell model developed by James Clerk Maxwell (Maxwell, 1867) considers that each polymeric chain

in Fig. 5 is a set of a damper and a spring connected in series similar to Fig. 9 to account for viscosity and elasticity,

respectively. The spring represents the elastic polymer, which is denoted by letter p in the following, and the damper

represents the viscous solvent, which is denoted by letter s in the following. We would obtain the Voigt model

if the spring and the damper were connected in parallel. In the series configuration, the total stress equals the

stress on the solvent and the stress on the polymer, and the total strain is the sum of the strains of the solvent

and the polymer. Therefore, we can write σtot = σs = σp = σ and γtot = γs + γp. After derivation with respect

to time and by considering Newton’s law σs = ηsγ̇
s and the Hook’s law σp = Eγp ⇒ σ̇p = Eγ̇p, we derive

γ̇tot = γ̇s + γ̇p = σs/ηs + σ̇p/E ⇒ ηsγ̇
tot = σs + ηs/E σ̇p = σ + τ ′ σ̇. Here, the relaxation time is defined as

τ ′ = ηs/E, and σ̇ denotes the time derivative of the stress. The scalar Maxwell model is given in Eq. (3).

σ + τ ′σ̇ = ηsγ̇
tot. (3)

Figure 9: Schematic of the Maxwell model consisted of a damper with constant viscosity ηs and a spring with modulus of
elasticity E connected in series.
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Upper-convected Maxwell (UCM) model proposed by James Gardner Oldroyd in 1950 is the tensorial formulation of

the Maxwell model. It obeys material objectivity and thus allows for three-dimensional flow analysis. It is considered

in Oldroyd-B model that the total stress σ = σs + σp consists of solvent viscous stress σs, and so-called extra

stress σp which is the viscoelastic contribution of the polymer to the total stress. Furthermore, zero shear viscosity

η0 = ηs+ηp is defined as the sum of the polymer viscosity ηp and the solvent viscosity ηs. The upper-convected time

derivative is defined as Eq. (5) which describes the convected rate of change in time of a contravariant second-order

tensor σp. Eq. (4) gives the constitutive relation of the Oldroyd-B model. The Johnson-Segalman model would be

derived by replacing the upper-convected derivative by the Gordon-Schowalter derivative (Gordon and Schowalter,

1972), which accounts for non-affine motion. The Oldroyd-B model reduces to the UCM model if there is no

contribution from the solvent viscosity to the momentum Eq. (1); i.e. σs = 0. The UCM model is only appropriate for

small shear rates since it cannot predict shear-thinning and stress overshoot phenomena, and second normal stress

difference is zero during start-up. These limitations are overcome by Giesekus model.

σp + τ ′
∇
σp = 2ηpD. (4)

∇
σp =

∂

∂t
σp + v ·∇σp − ((∇v)T ·σp + σp · (∇v)). (5)

The Giesekus model developed by Giesekus (1982) is defined in Eq. (6). Here, α is the mobility (drag) factor

associated with the anisotropic hydrodynamic interactions between the molecules of the polymer in the solvent.

The model is derived from the idea that the tensorial drag coefficient depends on the configuration of the polymer

molecules. The Giesekus model is equivalent to the one mode Leonov model (Leonov, 1976). The Giesekus model

can capture the nonlinear behavior of the viscoelastic materials thanks to the quadratic nonlinearity in the formulation.

This model can predict shear-thinning effects, stress overshoot in start-up single shear flow, and first and second

normal stress differences. For α = 0, the model reduces to the Oldroyd-B model.

σp + τ ′
∇
σp + α

τ ′

ηp
(σp.σp) = 2ηpD. (6)

Rouse linear entangled polymers (Rolie-Poly) model is introduced by Likhtman and Graham (2003), which is derived

from a refined version of the tube model theory (Graham et al., 2003). The tube model is developed by Doi and

Edwards (1988) and is based on the polymer model of De Gennes (1971). This model considers the polymeric
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chains to be confined in a tube as shown in Fig. 10, where the tube is formed by surrounding chains. The mechanism

of relaxation of the polymer chain is reptation, in which the chain crawls along the tube until completely leaves it.

Figure 10: Illustration of tube mechanism [modified from Morrison (2001), Fig. 9.16].

The Rolie-Poly model includes chain stretch, contour length fluctuations, reptation, and convective constraint release

(CCR). This model is given in Eq. (7). The parameters ε′ and q′ control respectively the strength of CCR and the

suppression of CCR with chain stretch (Holroyd et al., 2017). The amount of CCR can completely remove or reduce

the nonmonotonicity of the flow curve. CCR can predict the increase of the stress at higher shear rates as it reduces

the alignment of the neighbor chains as a result of the retraction after the stretching. This model consists of an

orientation relaxation time τ ′ and a Rouse relaxation time τ ′′.

∇
σ
p

− v ·∇σp = − 1

τ ′
(
σp − I

)
−

2
(

1−
√

3/trσp
)

τ ′′

(
σp + ε′

( trσ

3

)q′(
σp − I

))
. (7)

The most intensively studied systems that form shear bands are wormlike micelles, which are flexible cylindrical

self-assemblies of surfactant molecules in a solution. Wormlike micelles are also called living polymers because

they not only relax through the same processes as polymers, including reptation and Rouse-like motion, but also

break and reform reversibly. Shear banding is thought to arise in these systems from the dynamic breakage and

recombination processes of the micellar species (Zhou et al., 2008; Germann et al., 2014). During the past decade,

a few multi-species models taking these continuous processes into account have been developed using arguments

from kinetic theory (Vasquez et al., 2007) and non-equilibrium thermodynamics (Grmela et al., 2010; Germann et al.,

2013). For a constitutive model to predict shear banding in semidilute wormlike micellar solutions, the flow curve

of the shear stress versus the applied shear rate must be nonmonotonic for a steady homogeneous flow. However,

solutions along the decreasing part of this curve are known to be mathematically unstable. The flow, therefore,

separates into zones with different shear rates that coexist at identical values of stress. The experimentally observed

stress plateau in the region of shear banding can be recovered by including stress diffusion in the constitutive
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equation (Zhou et al., 2008, 2010). Stress diffusion also guarantees a unique stress selection and, furthermore,

smooths the transition region between the shear bands (Zhou et al., 2008, 2012).

In contrast, the shear stress of semidilute entangled polymer solutions is typically a monotonically increasing function

of the shear rate. One disadvantage of the early reptation models for entangled polymers, such as the Doi and

Edwards (1988) model, is that they cannot predict a monotonic flow curve in the absence of a large solvent

contribution. This is because the mechanism of CCR of the entanglements due to flow and chain stretch are missing

in the description. A famous differential approximation of the Doi-Edwards model that includes these features is

the Rolie-Poly model. In a numerical study, Adams and Olmsted (2009) showed that the Rolie-Poly model can

predict transient shear banding, provided the slope of the monotonic flow curve is small enough. As steady state is

achieved, the velocity profile eventually smooths out. In addition to this limitation, shear banding is obtained for much

larger entanglement numbers than those found in experiments. Moreover, the high-shear branch cannot be correctly

described without violating certain physical criteria used to define the effect of chain stretch on CCR (Adams et al.,

2011). By performing a linear stability analysis within a highly general framework that encompasses the most widely

used models for the rheology of shear-banding materials, Moorcroft and Fielding (2013) provided a fluid-universal

criterion for the onset of shear banding. The theoretical results were supported by the numerical predictions of the

Rolie-Poly and Giesekus models (Moorcroft and Fielding, 2014). They showed that materials that undergo a stress

overshoot during the start-up of a simple shear flow have a tendency to shear band. Moreover, they found that such

models are not capable of predicting steady-state bands if the flow curve is strictly monotonic. In summary, one-fluid

models fail to describe polymer systems that display shear bands at steady state and, therefore, their applicability

seems to be limited.

Several experimental studies have reported that high-molecular weight polymers can form spatially inhomogeneous

concentration profiles when they are subjected to shear flow (Dill and Zimm, 1979; Metzner et al., 1979; MacDonald

and Muller, 1996). Dill and Zimm (1979) presented a new method for the separation of large DNA molecules from

small ones by radial migration. In their study, they showed that when DNA molecules are sheared in a flow field

between a pair of concentric cylinders or cones, they can effectively be separated. This is because the centripetal

velocity toward the axis of the apparatus is a power-law function of molecular weight. In addition, Metzner et al.

(1979) detected migration effects across streamlines in Poiseuille flows of polymer solutions that fall between the

dilute and semidilute concentration range. Their experimental apparatus consisted of a tube that communicates with

a concentric cavity filled with the same fluid and whose inlets and outlets are connected via a loop for recirculation.
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After the solution was recirculated for a long time, a significant increase of polymer concentration in the stagnant

cavity was found. Finally, MacDonald and Muller (1996) performed long-term shearing measurements on a dilute

polystyrene solution in a cone-and-plate geometry and used a gel permeation chromatography technique to measure

the polymer concentration as a function of the radial position. The large increase in polymer concentration near the

apex of the cone and the depletion of the polymer near the edge was related to the shear-induced migration of the

polymeric constituents.

The concentration inhomogeneities was explained in a theory by Helfand and Fredrickson (1989), which involves

coupling between the concentration fluctuations and the shear stress. The Fickian diffusion reduces the

concentration in the regions with higher stress to keep the momentum balance. However, reform of the polymer

molecules leads to the further concentration increase in the lower stress region. This diffusional process is called

stress-induced migration. The steady state is reached when the Fickian diffusion and the stress-induced migration

are balanced.

The two-fluid approach is an appropriate means for describing diffusion processes in complex fluids. This method

has predominantly been used in the past to study enhanced concentration fluctuations in wormlike micellar

solutions (Fielding and Olmsted, 2003a), polymer solutions (Helfand and Fredrickson, 1989; Milner, 1991; Clarke

and McLeish, 1998; Fielding and Olmsted, 2003a), and polymer melts (Doi and Onuki, 1992) near the critical point

of phase separation, leading to an observed increase in turbidity. This approach assumes that local gradients in

the concentration and - if accounted for - viscoelastic stress generate a nontrivial velocity difference between the

constituents of the mixture, which allows them to diffuse at different speeds. To the best of our knowledge, Goveas

and Fredrickson (1999) were the first researchers to use a two-fluid model to predict shear banding in a polymeric

material. They considered a bidisperse polymer melt and used the UCM model to calculate the viscoelastic stress

of each polymer component. In the 1990s, Beris and Edwards (1994) developed a two-fluid description using the

generalized bracket approach of non-equilibrium thermodynamics. Almost a decade later, Apostolakis et al. (2002)

used this description to investigate shear-induced migration effects in a dilute polymer solution. Unfortunately,

they implemented the two-fluid approach in an ad-hoc manner. In the resulting model, the differential velocity only

appears in the time evolution equation for polymer conformation. To account for diffusion in the concentration

equation, they added second-order gradient terms to this equation. If the differential velocity is assumed to vanish

in the radial direction, the flow problem can be closed by imposing a no-flux condition on the polymer concentration

at the solid walls and a global constraint of total mass conservation.
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Cromer et al. (2013a) hypothesized that shear banding is triggered by diffusion, and for the first time, predicted

steady-state banding with a monotonic constitutive curve for the polymer solutions. Inspired by the kinetic

theory developed by Goveas and Fredrickson (1999), these authors recently developed a two-fluid model for

shear-banding polymer solutions (Cromer et al., 2013b). Their model was obtained by considering only one type

of polymer dissolved in a viscous solvent and replacing the Johnson-Segalman model with the Rolie-Poly model.

Because this model accounts for chain stretch and CCR, the polymer stress can be predicted more reliably under

rapid deformations. In contrast to Apostolakis et al. (2002), they introduced diffusive terms in the time evolution

equation for the polymer concentration in a consistent manner. To ensure that the polymer concentration remains

conserved, they had to impose a no-flux condition at the solid boundaries. The remaining boundary conditions were

constructed so that the differential velocity vanishes at the boundaries (Cromer et al., 2013b, 2014). Their model

can predict important features, such as the independency of the solution from the deformation history and initial

condition, the occurrence of a banded steady state if the flow is ramped quickly enough from rest, the characteristic

long-lived transients of shear-banding fluids, and elastic recoil after fast deformations. By means of a linear stability

analysis, Cromer et al. (2014) showed that in opposition to Fickian diffusion, shear-induced migration can force

polymers to increase their concentration gradients, thereby creating a shear banding instability for a certain range of

parameters. Furthermore, they found that the ratio of the polymer correlation length to the channel width determines

the number of bands in planar shear flow. Subsequently, Cromer et al. (2014) incorporated thermal noise in their

two-fluid framework through a canonical Langevin approach to investigate concentration fluctuations in semidilute

entangled polymer solutions under extensional flow. To prevent divergence in extensional flow, they modified the

Rolie-Poly model with a finitely extensible nonlinear elastic-type chain stretch limitation. For the first time, the

finite-wavelength concentration fluctuation amplification observed experimentally by van Egmond and Fuller (1993)

could be predicted. In summary, these recent studies highlight the importance of accounting for diffusional effects.

They confirm that a reliable time evolution equation for the conformation/extra stress tensor is required in order to

be able to correctly predict phenomena that are related to the coupling between polymer stress and concentration.

Germann et al. (2014) improved the two-fluid framework for viscoelastic fluids developed by Beris and Edwards

(1994) using the generalized bracket approach of non-equilibrium thermodynamics. This new formulation is

advantageous because the total mass is conserved by the time evolution equations themselves. Consequently,

it can easily be applied to viscoelastic systems comprising more than two phases. In addition, it is no longer

necessary to impose a no-flux condition on the polymer concentration in order to prevent the outflow of material

through the system boundaries. As in all other previous approaches, the differential velocity was considered to be
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an intermediate variable, which complicates the specifications of the additional boundary conditions arising from

the higher-order diffusive terms. To overcome this difficulty, the same authors suggested treating the differential

velocity as a state variable (Germann et al., 2016). Consequently, the additional boundary conditions arising

from the derivative diffusive terms can be imposed directly with respect to this new state variable. For instance,

no-slip and no-flux boundary conditions translate into the requirements that the tangential and normal components,

respectively, of the differential velocity must vanish at the boundaries.

We modified the two-fluid approach developed by Germann et al. (2014, 2016) to describe shear banding in

semidilute entangled polymer solutions. In the time evolution equation for the conformation tensor, a nonlinear

Giesekus relaxation is used to capture the overshoot occurring during a rapid start-up of a simple shearing flow,

shear-thinning behavior, and nontrivial first and second normal stress differences. We believe that the Giesekus

relaxation is an appropriate choice, as it was originally derived from dumbbell kinetic theory using hydrodynamic

drag and Brownian motion to account for the interactions between the polymeric constituents in a concentrated

solution or melt. In addition, we included a second nonlinear relaxation term to describe the monotonic growth of

the shear stress at large shear rates. This term is similar to the one used in the Rolie-Poly model accounting for

CCR and chain stretch (Likhtman and Graham, 2003). We also added a nonlocal stress diffusion to have smooth

and unique banded profiles. The new model is based on the hypothesis that the coupling between stress and

concentration of the polymer generates steady-state shear banding.
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2.2 Model derivation

The first step to derive a viscoelastic model by generalized bracket approach (Beris and Edwards, 1994) is to specify

the state variables, which describe the state of the system. The polymer number density np = (ρp/Mp)NA is

defined to represent the number of constitutive particles per unit volume, where ρp is the polymer mass density,

Mp is the polymer molecular weight, and NA is the Avogadro constant. It must be noted that throughout this

thesis, by total concentration c (as defined in Sec. 1) we mean the weight ratio of the polymer to the solution, and

by concentration np we mean the polymer number density. Furthermore, we define conformation density tensor

c, and structural tensorial parameter density C = npc. The conformation is defined as the instantaneous shape

of a polymer molecule, regarding the fact that the polymer constituents change their shape continuously in the

solution (Teraoka, 2002). The elastic strain of the solution is represented by the conformational state of the polymer

molecule. The conformation density tensor is the average second moment of the end-to-end vector of a polymer

chain, which is shown in Fig. 11.

Figure 11: Schematic of the end-to-end vector r̄ of a polymer chain with radius of gyration Rg .

We consider the total system to be close, isothermal, and incompressible. The system consists of one component

of polymeric constituents and one component of viscous solvent. The following variables are defined: polymer mass

density ρp, polymer velocity field vp, polymer momentum density mp = ρpv
p, polymer molecular weightMp, polymer

number density np, and polymer conformation density tensor c. Furthermore, we define solvent mass density ρs,

solvent velocity field vs, solvent molecular weight Ms, solvent number density ns, and solvent momentum density

ms = ρsv
s. The total mass of the polymeric solution is ρ = ρp + ρs.
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Within the bracket formalism of non-equilibrium thermodynamics (Beris and Edwards, 1994), the system dynamics

are described by the master equation

dF

dt
= {[F,H]} = {F,H}+ [F,H] , (8)

where {[F,H]} is the generalized bracket, F is an arbitrary function of the state variables of the system and H is the

Hamiltonian or the total system energy. The Poisson bracket { · , · } and the dissipation bracket [ · , · ] represent the

reversible and irreversible contributions, respectively, to the system dynamics. We consider the total system energy

to be characterized by the kinetic energy Hk and the elastic potential energy He:

H = Hk +He , (9)

defined by

H =

∫
Ω

1

2

(
mp ·mp

ρp
+

ms ·ms

ρs

)
d3x+

∫
Ω

1

2

{
KtrC− npkBT ln det

(
KC

npkBT

)}
d3x. (10)

Here, Ω is the flow domain, K is the Hookean spring constant associated with the polymer, kB is the Boltzmann

constant, and T is the absolute temperature. The first term on the right-hand side of Eq. (10) represents contributions

of the polymeric constituents and the solvent to the kinetic energy and the second term represents the elastic free

energy associated with the Hookean dumbbells of the polymers. For simplicity, we do not consider any dependence

of the total system energy on gradients in the state variables.

Differentiating the Hamiltonian with respect to the momentum densities of the polymer and the solvent yields

δH/δmp = mp/ρp = vp, (11)

and

δH/δms = ms/ρs = vs. (12)
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Differentiation of F = F (ρs, ρp,m
s,mp, c) with respect to time gives:

dF

dt
=
δF

δρp
· δρp
δt

+
δF

δρs
· δρs
δt

+
δF

δmp
· δm

p

δt
+

δF

δms
· δm

s

δt
+
δF

δc
· δc
δt
. (13)

We can write the Poisson bracket for the set of state variables ρp, ρs, mp, ms, and c, according to its definition as

follows (Beris and Edwards, 1994):

{F,H} =−
∫

Ω

{
δF

δρp
∇β

(
δH

δmp
β

ρp

)
− δH

δρp
∇β

(
δF

δmp
β

ρp

)}
d3x

−
∫

Ω

{
δF

δρs
∇β

(
δH

δms
β

ρs

)
− δH

δρs
∇β

(
δF

δms
β

ρs

)}
d3x

−
∫

Ω

{
δF

δmp
γ
∇β

(
δH

δmp
β

mp
γ

)
− δH

δmp
γ
∇β

(
δF

δmp
β

mp
γ

)}
d3x

−
∫

Ω

{
δF

δms
γ

∇β

(
δH

δms
β

ms
γ

)
− δH

δms
γ

∇β

(
δF

δms
β

ms
γ

)}
d3x

−
∫

Ω

{
δF

δCαβ
∇γ
(
δH

δmp
γ
Cαβ

)
− δH

δCαβ
∇γ
(
δF

δmp
γ
Cαβ

)}
d3x

−
∫

Ω

Cαγ

(
δH

δCαβ
∇γ

δF

δmp
β

− δF

δCαβ
∇γ

δH

δmp
β

)
d3x

−
∫

Ω

Cβγ

(
δH

δCαβ
∇γ

δF

δmp
α
− δF

δCαβ
∇γ

δH

δmp
α

)
d3x . (14)

If we substitute Eq. (11)-(13) in Eq. (14), the time evolution equations for the state variables without any dissipation

become

∂ρp
∂t

= −∇α (vpαρp) , (15)

∂ρs
∂t

= −∇α (vsαρs) , (16)

∂

∂t
(ρpv

p
α) = −∇β

(
vpβρpv

p
α

)
−mp

β∇α

(
δH

δmp
β

)
− ρp∇α

(
δH

δρp

)
− Cβγ∇α

(
δH

δCβγ

)
+∇βσpβα , (17)

∂

∂t
(ρsv

s
α) = −∇β

(
vsβρsv

s
α

)
− ρs∇α

(
δH

δρs

)
−ms

β∇α

(
δH

δms
β

)
, (18)

∂Cαβ
∂t

= −∇γ
(
vpγCαβ

)
+ Cγα∇γvpβ + Cγβ∇γvpα , (19)
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where σp denotes the extra stress associated with the polymer, which is defined as

σpαβ ≡ 2Cαγ
δH

δCγβ
= KCαβ − npkBTδαβ . (20)

New set of variables are defined to include the incompressibility constraint corresponding to a constant total mass

density (Beris and Edwards, 1994). Let the mass average velocity be defined as

v ≡ ρp
ρ

vp +
ρs
ρ

vs, (21)

and the differential velocity be defined as

∆v ≡ vp − vs . (22)

Correspondingly, the total momentum density is given as

m ≡mp + ms, (23)

and the differential momentum density is given as

∆m ≡ ρs
ρ

mp − ρp
ρ

ms . (24)

Differentiating the kinetic part of the Hamiltonian provided above yields

δHk/δm = δH/δm = v, (25)

and

δHk/δ(∆m) = δH/δ(∆m) = ∆v. (26)

As in the Newtonian case, the time evolution equation of the total momentum density can be obtained by adding
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those of the individual phase momentum densities. That is, if we add Eqs. (17) and (18) and then use the continuity

Eqs. (15) and (16), we obtain the following time evolution equation for the total momentum density:

ρ
∂vα
∂t

=− ρvβ∇βvα −∇αp+∇βσpβα , (27)

where the thermodynamic pressure is defined as usual as

p =− h+ ρp
δH

δρp
+mp

β

δH

δmp
β

+ ρs
δH

δρs
+ms

β

δH

δms
β

+ Cβγ
δH

δCβγ
. (28)

Here, h represents the total local free energy density, defined as H =
∫

Ω
hd3x. The viscoelasticity that appears in

Eq. (27) is a dissipative contribution in the form of the divergence of the extra stress on the right-hand side. Similarly,

adding the continuity Eqs. (15) and (16) together obtains

∂ρ

∂t
=−∇α (vαρ) . (29)

If we further assume that the total mass density of the polymeric solution remains, like that of most fluids, nearly

constant, this equation simplifies to the well-known divergence-free constraint

∇αvα = 0 . (30)

Consequently, it is no longer necessary to calculate the pressure via Eq. (29). The pressure here is simply a projector

operator of the velocity derivative in divergence-free space. The continuity equation for the incompressible mixture

has the form

∇ ·v = 0 . (31)

The time evolution equation of the total velocity is given by
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ρ
∂v

∂t
= − ρv ·∇v −∇p+ ∇ ·σ . (32)

Eq. (32) is the Cauchy momentum balance, where p represents the pressure and σ the total stress tensor. The total

stress is obtained from Eq. (43), which consists of the Cauchy stress from the solvent and the extra stress associated

with the polymer constituents.

The time evolution equation for the polymer number density has the following form:

∂np
∂t

= −∇ · (vp np) , (33)

where the left-hand side and the term on the right-hand side constitute the material derivative. This equation

accounts for the fact that the number density is allowed to vary locally.

If we subtract Eqs. (17) from (18), multiply the first by ρs/ρp and the second by ρp/ρs, and then make use of the

continuity Eqs. (15) and (16), we obtain a time evolution equation for the differential velocity. By ignoring all inertial

terms that are proportional to the square of the differential velocity, this equation becomes

ρpρs
ρ

∂∆vα
∂t

=− ρpρs
ρ

vβ∇β∆vα +
ρs
ρ

{
−mp

β∇α

(
δH

δmp
β

)
− ρp∇α

(
δH

δρp

)
− Cij∇

(
δH

δCij

)
+ ∇ ·σp

}

− ρp
ρ

{
−ρs∇α

(
δH

δρs

)
−ms

β∇α

(
δH

δms
β

)}
. (34)

In the above equation, the higher-order inertial terms have been ignored to obtain a simplified expression of the

substantial derivative. We believe that the first-order approximation is justified for slow flows. As polymers in

semidilute solutions have low inertia because of their small volume fraction, they follow the motion of the ambient

solvent quickly under the action of large drag forces.

Next, we proceed with the irreversible contributions using the dissipation bracket. A term accounting for the viscous
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drag between the polymer constituents and the viscous solvent must be included in the system dynamics, i.e.,

[F,H] =−
∫

Ω

Zαβ
δF

δ (∆mα)

δH

δ (∆mβ)
d3x , (35)

where the drag coefficient tensor Zαβ is approximated by an isotropic tensor G0/Dδαβ , where G0 = n0
pkBT is

the modulus of elasticity evaluated at the linear viscoelastic limit and D is the scalar diffusivity. In addition, we can

describe the viscous dissipation as follows:

[F,H] =−
∫

Ω

ηs
2

{
∇α

(
δF

δms
β

)
+∇β

(
δF

δms
α

)}{
∇α

(
δH

δms
β

)
+∇β

(
δH

δms
α

)}
d3x , (36)

where ηs denotes the Newtonian solvent viscosity. The final form of the time evolution equation for the differential

velocity is given by

ρpρs
ρ

(
∂

∂t
+ v ·∇

)
(∆v) =

ρs
ρ
{−∇ (npkBT ) + ∇ ·σp} − ρp

ρ
{−∇ (nskBT ) + ηs∇2vs} − G0

D
∆v , (37)

where the local diffusivity constant D controls the diffusion between the solvent and the polymer. At the diffusionless

limit, i.e., if we let D → 0, we obtain ∆v → 0. Fickian diffusion is described by the spatial gradients of the

number densities associated with the polymer and the solvent. The divergence of σp accounts for the stress-induced

migration diffusion. The fact that the differential velocity is a state variable in our model is advantageous since the

boundary conditions can be directly imposed with respect to this variable. For instance, if we assume no slip occurs

along the solid walls, we simply have to force the tangential component of the differential velocity to vanish there.

Furthermore, no material flux is enforced by requiring the normal component of the differential velocity to vanish.

This mathematical treatment is now possible because the Laplacian of the differential velocity implicitly appears on

the right-hand side of Eq. (37). In summary, by considering the differential velocity as state variable, the additional

boundary conditions can be formulated in a mathematically correct and straightforward way. This will be especially

important when considering slip along the walls and flows in more complicated geometries. It must be noted that the

components of the variable ∆v are zero at the steady state.

To reduce numerical errors in the calculation of an inhomogeneous flow, we use c as the unknown variable in the
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final model rather than C. Ignoring the entropy correction terms leads to

[F,Hm] =−
∫

Ω

Λ1
αβγε

δF

δCαβ

δHm

δCγε
d3x−

∫
Ω

Λ2
αβγε

δF

δCαβ

δHm

δCγε
d3x , (38)

where Λ1
αβγε and Λ2

αβγε are general fourth-order relaxation tensors. The first integral on the right-hand side of

Eq. (38) accounts for a nonlinear Giesekus relaxation, where its phenomenological relaxation matrix is given by

Λ1
αβγε =

1

2λ1K
[(1− α)(Cαγδβε + Cβγδαε + Cαεδβγ + Cβεδαγ) + 2α

K

kBT
(cαγCβε + cαεCβγ)] . (39)

Here, λ1 can be identified as the reptation time, and α is the mobility factor, which relates to the anisotropic relaxation

of the polymer chains. At α = 0, we recover the Maxwellian relaxation. As the upturn of the shear stress at high shear

rates can only be described using a nonlinear relaxation term taking the extension of the polymeric constituents into

account, we selected the following phenomenological relaxation matrix:

Λ2
αβγε =

[
tr( K

kBT
c)− 3

]q
2λ2K

(Cαγδβε + Cβγδαε + Cαεδβγ + Cβεδαγ) , (40)

where λ2 is the Rouse relaxation time.

Below a critical value of the shear stress versus shear rate slope, the solution may not be smooth, even if the

flow curve is monotonic. There are several ways to avoid this type of discontinuity. The standard approach is to

add stress diffusion to the time evolution equation of the conformation/extra stress tensor (Fielding and Olmsted,

2003b). Another approach is to include a square-gradient approximation in the mixing free energy to account for

size effects (Cromer et al., 2013b). This type of regularization is weakly nonlocal, i.e., only neighboring points are

notably affected by this modification, and it has made no significant difference in our case. Therefore, we follow the

standard approach and construct a new expression for stress diffusion using the generalized bracket approach of

non-equilibrium thermodynamics. The new expression is based on the one used by Beris and Edwards (1994) to

account for stress diffusion in one-fluid models:

[F,Hm] =−
∫

Ω

Bαβ

(
∇γ
(
Cγλ

δF

δCλα

))(
∇ε
(
Cεκ

δH

δCκβ

))
d3x

−
∫

Ω

Bαβ

(
∇γ
(
Cγλ

δH

δCλα

))(
∇ε
(
Cεκ

δF

δCκβ

))
d3x , (41)
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where Bαβ is a second-order transport coefficient. For simplicity, we only consider isotropic transport coefficients,

which leads to Bαβ = 2Dnonlocδαβ . To obtain an expression that satisfies material objectivity, however, it is

necessary to supplement the expression with the second term on the right-hand side of Eq. (41). We finally obtain

the time evolution equation for the polymer conformation, which is the constitutive equation of the system, as

∂c

∂t
= − vp ·∇c + c ·∇vp + (∇vp)

T · c− 1

λ1

[
(1− α) I + α

K

kBT
c

]
·
(

c− K

kBT
I

)

+
1

λ2

[
tr(

K

kBT
c)− 3

]q (
c− K

kBT
I

)
+Dnonloc

(
c ·∇ (∇ ·σp) + [∇ (∇ ·σp)]T · c

)
. (42)

The partial time derivative on the left-hand side and the first three terms on the right-hand side constitute the

upper-convected time derivative of the conformation tensor. The fourth term involving parameter α accounts for

the Giesekus relaxation. This term takes into account hydrodynamic drag and Brownian motion. Furthermore, it

accounts for shear-thinning behavior and nontrivial first and second normal stress differences. As this relaxation

generates an overshoot during the start-up of a simple shearing flow, shear band formation can be triggered. The

relationship between the mobility tensor and the conformation tensor is linear in this term. The fifth term, involving

prefactor [K/(kBT )trc) − 3]q, is a second nonlinear relaxation term. This term has been added to generate the

upturn of the flow curve at high shear rates. The prefactor depends on the trace of the conformation tensor because

it is a relative measure of polymer stretch. This term vanishes at the linear viscoelastic limit. Note that this term

resembles the term used in the Rolie-Poly model accounting for CCR and chain stretch (Likhtman and Graham,

2003). The Rolie-Poly model was not considered here to describe the conformational dynamics, as the CCR term

of this model cannot be derived within the framework of non-equilibrium thermodynamics. Leygue et al. (2001)

developed an expression for CCR using the generalized bracket approach of non-equilibrium thermodynamics.

However, like the Marrucci-Grego-Ianniruberto model (Leygue et al., 2001), this model does not consider chain

stretching. Moreover, because of the strain measure used, it cannot be easily incorporated in the two-fluid approach

of Germann et al. (2014, 2016). Parameter Dnonloc, appearing in the last term of Eq. (42), controls the smoothness

of the profiles.

The above set of time evolution Eqs. (31)-(33), (37), and (42) is closed by an explicit expression for the total stress
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σ =σp + ηs

[
∇vs + (∇vs)

T
]

= np (Kc− kBT I) + ηs

[
∇vs + (∇vs)

T
]
, (43)

where the first term accounts for the extra stress as the viscoelastic contribution of the polymer and the second term

accounts for the stress associated with the viscous solvent. The phase velocities appearing in the time evolution

equations can be calculated from the total average velocity and the differential velocity as follows:

vp = v +
ρs
ρ

∆v , (44)

vs = v − ρp
ρ

∆v . (45)

In the equilibrium state of rest (v = 0 and ∆v = 0), we can obtain the analytical solution of np = n0
p and c =

(kBT/K) I.
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2.3 Dimensionless model equations

We work with dimensionless quantities. The spatial position is scaled by the characteristic height, x̃ = x/H , time

is scaled by the characteristic relaxation time, t̃ = t/λ1, pressure is scaled by the plateau modulus, p̃ = p/G0,

the total stress is scaled as σ̃ = σ/G0, and the conformation tensor associated with the polymer is scaled as

c̃ = (K/kBT )c. The polymer and solvent number densities are normalized using the values at the equilibrium state

as ñp = np/n
0
p and ñs = ns/n

0
s, respectively. The dimensionless parameters with respect to these scalings are:

the elasticity number E = G0λ
2
1/(ρH

2), which is the reciprocal of the Reynolds number; the ratio of the molecular

weight of the solvent to that of the polymer χ = Ms/Mp; the viscosity ratio β = ηs/η0, where η0 = ηs + ηp = G0λ1

is the zero shear viscosity; and the ratio of the two characteristic relaxation times ε = λ1/λ2. By assuming an

initially uniform polymer number density in the flow field, the total polymer number density can be calculated as

µ = ñ0
p/(ñ

0
p + χñ0

s). The nondimensional diffusion coefficients are defined as D̃ = Dλ1/H
2 and D̃nonloc =

Dnonlocλ1/H
2. The nondimensionalized form of the model Eqs. (31)-(33), (37), (42)-(45) are respectively:

∇̃ · ṽ = 0 , (46)

E−1 ∂ṽ

∂t̃
= −E−1ṽ · ∇̃ṽ − ∇̃p̃+ ∇̃ · σ̃ , (47)

∂ñp

∂t̃
= −∇̃ · (ṽpñp) , (48)

E−1 χñsñp

(ñp + χñs)
2

(
∂

∂t̃
+ ṽ · ∇̃

)(
∆̃v
)

=
χñs

ñp + χñs

{
−∇̃ñp + ∇̃ · σ̃p

}
− ñp
ñp + χñs

{−∇̃ñs + β∇̃2ṽs} − D̃∆̃v , (49)

∂c̃

∂t̃
= −ṽp · ∇̃c̃ + c̃ · ∇̃ṽp + (∇̃ṽp)T · c̃− [(1− α)I + αc̃](c̃− I) + ε(trc̃− 3)q(c̃− I)

+ D̃nonloc

(
c̃ · ∇̃

(
∇̃ · σ̃p

)
+
[
∇̃
(
∇̃ · σ̃p

)]T
· c̃
)
, (50)

σ̃ = σ̃p + β

[
∇̃ṽs +

(
∇̃ṽs

)T]
= ñp(c̃− I) + β

[
∇̃ṽs +

(
∇̃ṽs

)T]
, (51)

ṽp = ṽ +
χñs

ñp + χñs
∆̃v , (52)

ṽs = ṽ − ñp
ñp + χñs

∆̃v. (53)
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2.4 Influence of the model parameters

To determine the values of the model parameters, we first consider the special case of steady homogeneous shear

flow shown in Fig. 12. The gap width of the channel, H, is considered as the characteristic length.

Figure 12: Schematic of a steady homogeneous shear flow.

Homogeneous shear flow can be obtained by assuming the shear rate ˜̇γ = ∂ṽx/∂ỹ across the gap to be constant.

Under this condition, the differential velocity is identically zero; furthermore, the new model reduces to the standard

Giesekus model for ε = 0. As the values of the model parameters are typically determined under homogeneous

flow conditions, this type of flow is of relevance. After eliminating the zero terms, the governing set of algebraic flow

equations for the homogeneous flow in the Cartesian coordinate system becomes as below:

σ̃xx = ñp (c̃xx − 1) , (54)

σ̃yy = ñp (c̃yy − 1) , (55)

σ̃xy = ñpc̃xy + β ˜̇γ, (56)

2c̃xy ˜̇γ = (1− α+ αc̃xx)(c̃xx − 1) + αc̃xy c̃xy + ε (c̃xx + c̃yy + c̃zz − 3)
q

(c̃xx − 1), (57)

2c̃yy ˜̇γ = (1− α+ αc̃yy)(c̃yy − 1) + αc̃xy c̃xy + ε (c̃xx + c̃yy + c̃zz − 3)
q

(c̃yy − 1), (58)

c̃xy ˜̇γ + c̃yy ˜̇γ = (1− α+ αc̃yy)c̃xy + αc̃xy(c̃xx − 1) + ε (c̃xx + c̃yy + c̃zz − 3)
q
c̃xy. (59)

These equations were solved using Newton’s method with lower upper triangular decomposition (Press et al., 1992).

The parameter values of the new model were determined by manually fitting the model to the flow curve obtained

for a 10 wt/wt% (1.6 M) shear-banding polybutadiene solution (Cheng and Wang, 2012). The parameters of the
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new model that have an influence on the shape of the flow curve and thus are determined by the fitting process are

mobility factor α = 0.73, ratio of the characteristic relaxation times ε = 0.0025, power-law parameter q = 1.46, and

viscosity ratio β = 10−5. We compare the flow curves predicted by the new model and its limiting case, i.e. the

Giesekus model, with experimental data (Cheng and Wang, 2012). Fig. 13 displays the absolute value of the shear

stress as a function of the Weissenberg number Wi = ˜̇γ = λ1V/H . The Weissenberg number is the dimensionless

applied deformation rate and expresses the ratio of the elastic to viscous stresses. As the Giesekus relaxation

dominates over the CCR-like term at small and medium shear rates, the predictions of the two models coincide in

this flow regime. Because of the presence of the CCR-like term, our model can capture the upturn of the curve

without the need for a solvent contribution. Additionally, it is worth mentioning that the CCR-like term accounts for

nontrivial normal stress differences at large shear rates. In summary, the results confirm that the CCR-like term,

which incorporates a power-law prefactor accounting for polymer stretch, is a good choice.

Fig. 14 shows the effects of the mobility factor α, ratio of the characteristic relaxation times ε, and the power-law

parameter q on the behavior of the homogeneous flow curve. We find that the slope after the plateau is affected

by the value of α (see Fig. 14(a)). For all values of α used in this study, the flow curve is monotonic. The upward

slope of the plateau is the result of the coupling between the flow and the concentration, and shows that the bands

have different concentrations. Increasing the value of α decreases the slope. Fig. 14(b) illustrates that parameter

ε determines where the upturn of the shear stress occurs. As this parameter, i.e., the relative importance of the

CCR-like term, is increased, the upturn is shifted to smaller shear rates. Fig. 14(c) shows that the slope of the shear

stress is determined by power-law parameter q at large shear rates. Increasing the value of q leads to an increase

in the slope. This parameter determines the influence of chain stretch, as the trace of the conformation tensor is a

relative measure of this quantity.
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Figure 13: Influence of the CCR-like term on the homogeneous flow curve.

Figure 14: Effects of (a) α with q = 1.46 and ε = 0.0025, (b) ε with α = 0.73 and q = 1.46, and (c) q with α = 0.73 and

ε = 0.0025 on the homogeneous flow curve. Parameter β was kept fixed at 10−5.
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3 Benchmark case no. 1: cylindrical Couette flow

3.1 Introduction

In a Couette flow, the material is between two plates which move with a relative velocity. Simple shear flow is a special

case where only one component of the relative velocity vector is nonzero. In the start-up Couette flow, the relative

velocity suddenly jumps from rest to the final value. The start-up flow is useful to study rheological phenomena

since the molecular processes do not have enough time relative to the flow to relax, consequently they undergo

microstructural changes. The dynamics in the molecular scale and inhomogeneities appear as an overshoot in the

stress profile versus time in the start-up flow.

The cylindrical Couette flow also known as Taylor Couette flow is the case in which the material is placed between

two coaxial cylinders rotating with relative angular velocity. The cylindrical Couette flow is a typical benchmark

problem to study the behavior of viscoelastic materials. However, parallel plate configuration of the Couette flow

is more intriguing due to advantages such as no curvature effect or less rod climbing. Callaghan and Gil (2000) is

the only experimental work using cylindrical Couette flow for polymer solutions. They used NMR velocimetry and

observed that semidilute solutions of polyacrylamide in water show shear banding.

3.2 Flow problem and nondimensionalization

In this section, we analyze the behavior of the new model in shear flow. We consider the flow in the annular gap

between two concentric cylinders shown in Fig. 15. The inner cylinder rotates in the counterclockwise direction while

the outer cylinder is kept stationary. The characteristic height is given as H = Ro −Ri, where Ro and Ri represent

the radii of the outer and inner cylinders, respectively. The dimensionless curvature q∗ = (Ro−Ri)/Ri specifies the

relative position of the cylinders. The cylindrical coordinate system was used as the reference frame with r, θ, and

38



z for the radial, azimuthal, and axial coordinates, respectively. Normalized coordinate r̃∗ = (r − Ri)/(Ro − Ri) is

employed to indicate the location in the gap.

Figure 15: Schematic of the cylindrical Couette flow.

The parameters that could not be determined by fitting the steady homogeneous flow curve were estimated for

the inhomogeneous flow calculations as follows. To avoid long running times, a moderate local diffusivity constant

(D̃ = 10−3) was used. A moderate value of D̃nonloc = 10−3 was selected to remove the sharp kink in the banded

profiles. Because inertial effects were not the main focus of this work, we simply setE−1 = 10−5. The dimensionless

curvature was specified as q∗ = 0.04, which is a typical value for cylindrical Couette experiments. To observe

pronounced bands, we used a large value of the molecular weight ratio of χ = 0.1. As in Cheng and Wang (2012),

the total initial concentration corresponded to µ = 0.1.

In the following, we work with dimensionless quantities. The spatial position is scaled by the characteristic height,

r̃ = r/H ; time is scaled by the characteristic relaxation time, t̃ = t/λ1; pressure is scaled by the plateau modulus,

p̃ = p/G0; extra stress is scaled as σ̃ = σ/G0; and the conformation tensor associated with the polymer is

scaled as c̃ = (K/kBT )c. The dimensionless parameters with respect to these scalings are the elasticity number,

E = G0λ
2
1/(ρH

2); the ratio of the molecular weight of the solvent to that of the polymer, χ = Ms/Mp; the viscosity
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ratio, β = ηs/η0, where η0 = G0λ1 is the zero shear viscosity; and the ratio of the two characteristic relaxation times,

ε = λ1/λ2. By assuming an initially uniform polymer concentration in the flow field, the total polymer concentration

can be calculated as µ = ñ0
p/(ñ

0
p + χñ0

s). The nondimensional diffusion coefficients are defined as D̃ = Dλ1/H
2

and D̃nonloc = Dnonlocλ1/H
2. The nondimensionalized form of the model Eqs. (32)-(33), (37), (42)-(45) can be

found in Sec. 2.3.

3.3 Numerical method

The cylindrical coordinate system is more suitable to be used for a cylindrical Couette flow. If we write the model

Eqs. (32)–(33), (37), and (42)–(45) in the cylindrical coordinate system and eliminate the zero terms, we obtain:

The Cauchy momentum balance

E−1 ∂ṽθ

∂t̃
=

2

r̃
σ̃prθ +

∂σ̃prθ
∂r̃

+ β(
∂2ṽsθ
∂r̃2

+
1

r̃

∂ṽsθ
∂r̃
− ṽsθ
r̃2

), (60)

the time evolution equation of the polymer number density

∂ñp

∂t̃
= −ṽpr

∂ñp
∂r̃
− ñp

ṽpr
r̃
− ñp

∂ṽpr
∂r̃

, (61)

the time evolution equations of the differential velocity

E−1 χñsñp

(ñp + χñs)
2

(
∂∆̃vr

∂t̃
− ṽθ

r̃
∆̃vθ

)
=

χñs
ñp + χñs

{
−∂ñp
∂r̃

+
σ̃prr
r̃

+
∂σ̃prr
∂r̃
−
σ̃pθθ
r̃

}
+

ñp
ñp + χñs

{
∂ñs
∂r̃

+ β(
∂2ṽsr
∂r̃2

+
1

r̃

∂ṽsr
∂r̃
− ṽsr
r̃2

)

}
− D̃∆̃vr, (62)

E−1 χñsñp

(ñp + χñs)
2

(
∂∆̃vθ

∂t̃
+

ṽθ
r̃

∆̃vr

)
=

χñs
ñp + χñs

{
2

r̃
σ̃prθ +

∂σ̃prθ
∂r̃

}
+

ñp
ñp + χñs

β(
∂2ṽsθ
∂r̃2

+
1

r̃

∂ṽsθ
∂r̃
− ṽsθ
r̃2

)− D̃∆̃vθ, (63)
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the time evolution equations of the polymer conformation

∂c̃rr

∂t̃
=− ṽpr

∂c̃rr
∂r̃

+ 2c̃rr
∂ṽpr
∂r̃
− (1− α+ αc̃rr)(c̃rr − 1)− αc̃rθ c̃rθ

+ ε (c̃rr + c̃θθ + c̃zz − 3)
q

(c̃rr − 1)− 2D̃nonlocc̃rθ

[
1

r̃

∂σ̃prθ
∂r̃

+
2

r̃2

∂σ̃prθ
∂r̃

]
+ 2D̃nonlocc̃rr

[
∂2σ̃prr
∂r̃2

+
1

r̃

(
∂σ̃prr
∂r̃
−
∂σ̃pθθ
∂r̃

)
− 1

r̃2
(σ̃prr − σ̃

p
θθ)

]
, (64)

∂c̃θθ

∂t̃
=− ṽpr

∂c̃θθ
∂r̃
− 2c̃rθ

ṽpθ
r̃

+ 2c̃rθ
∂ṽpθ
∂r̃

+ 2c̃θθ
ṽpr
r̃
− (1− α+ αc̃θθ)(c̃θθ − 1)− αc̃rθ c̃rθ

+ ε (c̃rr + c̃θθ + c̃zz − 3)
q

(c̃θθ − 1)

+ 2D̃nonlocc̃rθ

[
∂2σ̃prθ
∂r̃2

+
2

r̃

∂σ̃prθ
∂r̃
− 2

r̃2
σ̃prθ

]
+ 2D̃nonlocc̃θθ

[
1

r̃

∂σ̃prr
∂r̃

+
1

r̃2
(σ̃prr − σ̃

p
θθ)

]
, (65)

∂c̃rθ

∂t̃
=− ṽpr

∂c̃rθ
∂r̃
− c̃rr

ṽpθ
r̃

+ c̃rr
∂ṽpθ
∂r̃

+ c̃rθ
ṽpr
r̃

+ c̃rθ
∂ṽpr
∂r̃
− (1− α+ αc̃rr)c̃rθ − αc̃rθ(c̃θθ − 1)

+ ε (c̃rr + c̃θθ + c̃zz − 3)
q

(c̃rθ) + D̃nonlocc̃rr

[
∂2σ̃prθ
∂r̃2

+
2

r̃

∂σ̃prθ
∂r̃
− 2

r̃2
σ̃prθ

]
+ D̃nonlocc̃rθ

[
∂2σ̃prr
∂r̃2

+
1

r̃

(
2
∂σ̃prr
∂r̃
−
∂σ̃pθθ
∂r̃

)]
− D̃nonlocc̃θθ

[
1

r̃

∂σ̃prθ
∂r̃

+
2

r̃2

∂σ̃prθ
∂r̃

]
, (66)

the explicit expressions of the extra stress

σ̃rr = ñp (c̃rr − 1) , (67)

σ̃θθ = ñp (c̃θθ − 1) , (68)

σ̃rθ = ñpc̃rθ + β(
∂ṽsθ
∂r̃
− ṽsθ

r̃
), (69)

and the equations of the phase velocities

ṽpr =
χñs

ñp + χñs
∆̃vr, (70)

ṽpθ =ṽθ +
χñs

ñp + χñs
∆̃vθ, (71)

ṽsr =− ñp
ñp + χñs

∆̃vr, (72)

ṽsθ =ṽθ −
ñp

ñp + χñs
∆̃vθ. (73)
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The boundary conditions are specified as follows. The temporal evolution of the azimuthal velocity at the inner wall

is specified by (Zhou et al., 2008)

ṽθ(r
∗ = 0, t̃) = Wi tanh(ãt̃) , (74)

where ã is the dimensionless ramp rate of the rheometer. To avoid long running times, a fast ramp rate (ã = 100) was

used. Typically, ã lies in the range of O(100–102). Note that the azimuthal velocity at the inner cylinder corresponds

to the apparent shear rate across the gap at steady state (Zhou et al., 2008), i.e., ˜̇γapp = Wi. The outer cylinder

is assumed to be stationary; therefore, we set ṽθ(r∗ = 1) = 0. No flow through the walls is specified by setting the

normal components of the total and differential velocities equal to zero (ṽr = ∆̃vr = 0). To specify no-slip along the

walls, the tangential component of the differential velocity must vanish at the boundaries (∆̃vθ = 0).

The flow problem was solved using the numerical procedure employed in Germann et al. (2011, 2014, 2016). We

used a Chebyshev pseudospectral collocation method (Voigt et al., 1994; Peyret, 2002) with N1 = 200 collocation

points for spatial discretization and a second-order Crank-Nicolson scheme (Richtmyer and Morton, 1967) with an

adaptive time step for temporal discretization. The advantage of this scheme is since both the known and unknown

values are used, the cost and stability are compromised between the explicit and implicit methods. The nonlinear

system of the discretized algebraic equations was iteratively solved at each time step by using an inverse-based

multilevel incomplete lower upper (ILU) preconditioned Newton-Krylov solver (Germann et al., 2011). The Newton

method is used to linearize the coupled equation; the Krylov subspace-based method was applied to solve the

resulting system iteratively. The key feature of the inverse-based multilevel ILU preconditioner is that the magnitude

of the preconditioned coefficient matrix perturbations with respect to the identity matrix can be controlled by adjusting

the magnitude of the inverse triangular factors during the construction of the coefficient matrix. The theoretical details

of this special ILU preconditioner can be found in Bollhöfer and Saad (2006) and Bollhöfer et al. (2008).

To check the convergence of the numerical calculations, we repeated the simulation obtained for Wi = 10 with

N2 = 150 and N3 = 250 collocation points. For each grid of collocation points, the solution was computed at 100

different radial positions that were equally spaced across the cylindrical gap. The error between the state variables

computed on grids N1 = 200 and those computed on grids N2 and N3 was never larger than 8.23 × 10−6. If

the values were larger than unity, the relative error was considered, otherwise, the absolute error was taken into

account (Ascher and Greif, 2011).
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3.4 Results

Figs. 16(a) and (b) display the effect of the Weissenberg number on the steady-state profiles of the total azimuthal

velocity and polymer number density, respectively. The velocity profile shows two distinct shear bands for the range

3 /Wi / 63. Increasing the Weissenberg number moves the kink separating the two bands from the rotating inner

wall to the stationary outer wall. Because of the two-fluid coupling between flow and concentration, the profile of

the polymer number density is also banded. Note that the total mass/number density of the polymeric solution is

assumed to be constant, whereas the individual mass/number densities are allowed to vary. This is in contrast to the

predictions obtained for one-fluid polymer models, which do not take diffusional effects into account. Moreover, we

find that the curvature of the cylindrical Couette geometry justifies the curved profile of the polymer number density.

Figure 16: Profiles of the (a) velocity and (b) polymer number density calculated for different Weissenberg numbers. The

values of the other model parameters used in the calculation are α = 0.73, ε = 2.5 × 10−3, q = 1.46, β = 10−5,

E−1 = 10−5, D̃ = D̃nonloc = 10−3, χ = 0.1, and µ = 0.1.

Steady-state profiles of the nontrivial stress components are shown across the cylindrical gap in Figs. 17(a)-(c)

for different values of the Weissenberg number. The magnitudes of these components are larger for greater

Weissenberg numbers. As required by the relatively small gap and the Cauchy momentum balance in Eq. (32),

the absolute value of the shear stress reduces linearly from the inner rotating wall to the outer stationary wall

(see Fig. 17(a)). The profiles of the rr− and θθ-components of the stress tensor are given in Figs. 17(b) and (c),

43



respectively. As expected, the θθ-component is much larger in magnitude than the rr-component. In the nonlinear

regime, the strong nonlinearities in these two profiles are related to shear banding. Furthermore, we note that

the zz-component is identically zero. Daprà and Scarpi (2015) analytically solved the Giesekus model for steady

cylindrical Couette flow and investigated the spatial behavior of the nontrivial stress components in the gap. In their

work, the value of α was restricted to α < 0.5, as the Giesekus model does not have a real physical solution outside

this range for high Weissenberg numbers (Yoo and Choi, 1989; Schleiniger and Weinacht, 1991). By adding a large

solvent contribution or a second nonlinear relaxation term, this limitation can be overcome.

Figure 17: Profiles of the (a) shear stress, (b) radial stress, and (c) tangential stress across the cylindrical gap calculated for

different values of the Weissenberg number. The other model parameters are the same as those given in the caption

of Fig. 16.
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Fig. 18(a) and (b) display the profiles of the first and second normal stress differences, respectively, across the

gap width for different Weissenberg numbers. As the first normal stress differences is defined as N1 = σ̃θθ − σ̃rr,

Fig. 18(a) is obtained by subtracting the results shown in Fig. 17(b) from those shown in Fig. 17(c). Furthermore, as

the zz-component is identically zero, the results of the second normal stress difference, N2 = σ̃rr − σ̃zz, are exactly

the same as those depicted in Fig. 17(b).

Figure 18: Profiles of the (a) first and (b) second normal stress differences across the cylindrical gap calculated for different

values of the Weissenberg number. The other model parameters are the same as those given in the caption of

Fig. 16.
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Fig. 19 shows the influence of the stress-induced migration on the steady-state profile of the polymer number

density. The calculation was performed with and without the term accounting for stress-induced migration. The

horizontal line indicates that without this term, the polymer number density is nearly constant across the cylindrical

gap. Stress-induced migration is clearly responsible for the formation of the shear bands. As we used homogeneous

initial conditions, standard Fickian diffusion has no significant effect.

Figure 19: Number density of the polymer calculated for the model with and without the term corresponding to stress-induced

migration. The values of the model parameters used in the calculation are α = 0.73, ε = 2.5 × 10−3, q = 1.46,

β = 10−5, E−1 = 10−5, D̃ = D̃nonloc = 10−3, χ = 0.1, µ = 0.1, and Wi = 6.

Fig. 20 displays the effects of the total polymer concentration and ratio of the solvent molecular weight to the polymer

molecular weight on the steady-state profile of the polymer number density. As expected from experiments (Wang

et al., 2011; Jaradat et al., 2012), Fig. 20(a) shows that increasing the total polymer concentration causes the shear

bands to be more pronounced. This is because the polymer concentration appears in the expression for the extra

stress provided in Eq. (43). Consequently, larger polymer concentrations cause a greater extra stress and thus more

shear-induced migration. At this early stage of the work, we did not consider any functional dependencies of the

material parameters. Laboratory experiments will have to be conducted in a future study to work out some of these

scaling laws, such as the effect of the polymer concentration on mobility factor α.
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Fig. 20(b) shows that increasing the molecular weight ratio leads to more pronounced shear bands. However,

experimental data show the opposite trend (Wang et al., 2011; Jaradat et al., 2012). This discrepancy can be

explained by the fact that as the parameters determining the shape of the flow curve are fixed, the results displayed

in Fig. 20(b) only provide information about the impact of the molecular weight ratio on the diffusional processes.

Experimental studies on shear banding have observed values for χ of O(10−5) (Jaradat et al., 2012). To observe

pronounced effects, we decided to continue with the rather large value of χ = 0.1.

Figure 20: Influences of the (a) total polymer concentration and (b) molecular weight ratio on the number density of the polymer.

The other model parameters are the same as those given in the caption of Fig. 19.
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Fig. 21 displays the influence of the local diffusivity constant. The steady-state profile of the polymer number

density (see Fig. 21(a)) was found to be independent of the local diffusivity constant. As opposed to Cromer et

al.’s model (Cromer et al., 2013a), our model predicts a steady-state solution whose smoothness is not affected

by this parameter. In Fig. 21(b), we display the transient evolution of the absolute value of the wall shear stress.

For a sufficiently high ramp rate, the nonlinear Giesekus relaxation generates an overshoot that triggers shear

band formation. A smaller value for the diffusivity constant increases the time to reach steady state. As the flow

curve is monotonic and the shear stress is determined by Cauchy momentum balance Eq. (32), the local diffusivity

constant does not have a significant effect on the shear stress. However, some differences can be observed in the

microstructural quantities (see Figs. 21(c) and (d)). For D̃ = 0.001 shown in Fig. 21(c), up to t̃ = 50, the transient

profiles of the polymer number density intersect at a unique position in the gap where the shear bands separate.

Thereafter, nonlocal stress diffusion pushes the kink toward the outer cylinder.

Figure 21: Effect of the local diffusivity constant on (a) the steady-state profile of the polymer number density, (b) the temporal

behavior of the absolute value of the shear stress at the inner wall, and (c) and (d) the temporal behavior of the

polymer number density profile in the cylindrical gap. The other model parameters are the same as those given in

the caption of Fig. 19.
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Fig. 22 shows the temporal evolution of the radial component of the differential velocity in the cylindrical gap

width. We find that this component increases to a maximum and then decreases to zero as steady state is

achieved. Note that the azimuthal component is of much smaller magnitude and therefore does not have an effect

on the computational results. The profile of the radial component is different to predictions of a two-fluid model for

shear-banding wormlike micelles (Germann et al., 2016). As this model is based on the assumption that the wormlike

micelles form shear bands as a result of their dynamic breakage, the radial velocity develops a local extremum at

the transition region of the shear bands.

Figure 22: Temporal evolution of the radial component of the differential velocity across the gap width calculated with Wi = 10.

The other model parameters are the same as those given in the caption of Fig. 19.
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Fig. 23 shows the effect of the nonlocal diffusivity constant on the velocity profile. The speciality of our two-fluid

model is that the smoothness of the profiles is controlled solely by this parameter. We find that a larger value of

D̃nonloc leads to a smoother steady-state solution. Although the uniqueness of the solution is guaranteed here even

if D̃nonloc = 0, there may well be a parameter space where this may be the case.

Figure 23: Effect of the nonlocal diffusivity constant on the steady-state profile of the velocity. The other model parameters are

the same as those given in the caption of Fig. 19.

Figs. 24(a) and (b) show the impact of the deformation history and initial condition, respectively, on the steady-state

profile of the polymer number density. To investigate the influence of deformation history, we performed some

ramp-up and ramp-down tests. We started the ramp-up test from rest; for the ramp-down test, the steady-state

solution at Wi = 100 was used as the initial condition. The terminal value of Wi was specified to be six. We

find that the steady-state solution displayed in Fig. 24(a) is independent of the deformation history. To examine

the impact of the initial condition, we started the simulation using an initial polymer density perturbed by ñp =

1 + k1cos(πk2y/(Ro −Ri)) with a magnitude of k1 = 10−3 and two wave numbers of k2 = 1 and k2 = 5. Fig. 24(b)

shows that the different initial conditions evolved into a unique steady-state profile. As in the model of Cromer et al.

(2013a) and as observed in experiments (Cheng and Wang, 2012), our model is capable of predicting a unique

banded steady state that is independent of the initial condition and the applied deformation history.
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Figure 24: (a) Steady-state profiles of the polymer number density calculated using different deformation histories where

ramp-up (ṽθ(t̃) = Wi tanh(ãt̃)) and ramp-down (ṽθ(t̃) = 100(1 − tanh(ãt̃)) + Wi tanh(ãt̃)) conditions were

applied. The terminal value of Wi was set to six. (b) Steady-state profiles of the polymer number density calculated

using differently perturbed initial conditions. The model parameters are the same as those given in the caption of

Fig. 19.

3.5 Conclusion

We solved a cylindrical Couette flow to investigate the general behavior of the new model. We found that the

steady-state solution is unique for different initial conditions and independent of the applied deformation history.

Furthermore, the value of the local diffusivity constant has no significant effect on the steady-state solution. In

agreement with the experiments of Callaghan and Gil (2000), velocity and concentration banding is predicted.

Furthermore, we observed that stress-induced migration is responsible for shear band formation.

51



4 Benchmark case no. 2: pressure-driven channel flow

4.1 Introduction

In this section, we analyze the behavior of our model comprising time evolution Eqs. (32)–(33), (37), (42), the explicit

expression of the extra stress tensor provided in Eq. (43), and the explicit expressions of the phase velocities provided

in Eqs. (44)–(45) in a pressure-driven channel flow.

A rectilinear channel has simple geometry, which makes its flow problem a suitable benchmark problem for

constitutive models and newly developed codes. Exact analytical solutions for a fully developed channel flow have

been derived for various well-known differential viscoelastic fluid models, including the linearized and exponential

forms of Phan-Thien-Tanner (PTT) (Oliveira and Pinho, 1999; Alves et al., 2001; Cruz et al., 2005), Giesekus (Yoo

and Choi, 1989; Schleiniger and Weinacht, 1991), and Johnson-Segalman (Van Schaftingen and Crochet, 1985)

models. For instance, Oliveira and Pinho (1999) found that the shear-thinning behavior reduces the wall shear

stress and makes the velocity profiles flatter. Cruz et al. (2005) investigated the effect of a nontrivial Newtonian

solvent viscosity and observed that the spatial variation of the velocity field can be made flatter by increasing the

ratio of the solvent viscosity to the total viscosity. In addition, the UCM and Oldroyd-B models were analytically

solved for a transient pressure-driven channel flow. They are now extensively used for validation purposes (Waters

and King, 1970). Depending on the choice of the model parameters, viscoelastic fluid models can exhibit intense

temporal oscillations. Damped inertio-elastic shear waves travel across the channel and reflect back from the

stationary walls. Duarte et al. (2008) found that the transient response is longer for larger elasticity numbers,

and the frequency of the oscillations is higher. Furthermore, shear-thinning reduced the time required to reach a

steady state. The presence of a large Newtonian solvent contribution leads to a smaller oscillatory frequency of

the response as well as an attenuation of the oscillation peak (Xue et al., 2004; Van Os and Phillips, 2004; Duarte
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et al., 2008). Slip along the channel is important, as it is widely observed under strong deformations of viscoelastic

materials. Meanwhile, Ferrás et al. (2012) analytically solved the Giesekus model and a simplified version of the

PTT model under linear and nonlinear Navier, Hatzikiriakos, and asymptotic slip conditions. They showed that a

unique steady-state solution always exists for the four phenomenological slip models considered for a simplified

PTT model. For the Giesekus model, the existence of the solution can be numerically proven for some cases with

slip if no physical solution exists because of the Weissenberg number restrictions in the no-slip condition.

Shear banding, which is defined as localized bands with different shear rates, is ubiquitously observed in soft

materials. However, its underlying mechanisms are not always the same. While the shear banding instability of

wormlike micelles is caused by a combination of reptation and micellar breakage, that of semidilute polymers is still

an open issue of debate. Shear banding in complex fluids is reviewed in Olmsted (2008), Manneville (2008), Divoux

et al. (2016), and Germann (2019). Several experimental studies focused on the shear banding phenomenon in

Poiseuille flows. PIV experiments performed on wormlike micelles in microchannels (Kim et al., 2016), regular

channels (Marín-Santibáñez et al., 2006), and capillaries (Méndez-Sánchez et al., 2003; Yamamoto et al., 2008)

revealed that a spurt is evident in the rapid increase in the velocity or flow rate at the critical pressure gradient. The

velocity profiles exhibit Newtonian behavior at low shear rates. Some systems form an apparent slip below the onset

of the spurt. Kim et al. (2016) noted that the recorded slip velocity may be an artifact of very thin shear-banding

layers near the walls, which are too thin to be optically resolved. The velocity changes from a parabolic profile to a

plug-like one during the transition to the shear banding regime. Furthermore, the interface between the shear bands

was spatially undulating (Nghe et al., 2010). Experimental evidence also suggests that the velocity profile of colloidal

particles shows a plug-like shape as a result of shear-induced migration (Frank et al., 2003). By performing PIV

in microchannels, Degré et al. (2006) observed that the maximum velocity for shear-thinning, non-shear-banding

polymer solutions superlinearly increases with the applied pressure gradient in the nonlinear viscoelastic regime.

The velocity profile slightly departs from the parabolic profile of the Newtonian fluids and exhibits a depletion layer

in the micrometer range. The flow curve of the polymer melts shows a spurt and hysteresis in pressure-driven

experiments. The wall slip in polymer melts, particularly, is extensively studied because of its potential influence

on extrusion instabilities (Denn, 2001). The extent to which semidilute entangled polymer solutions exhibit the

above-described phenomena is currently unclear because of the lack of experimental data.

McLeish and Ball (1986) conducted the very first numerical study that relates the spurt in a Poiseuille flow to the shear

banding phenomenon. They used an improved version of the Doi-Edwards model, which also incorporates stress
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contributions with shorter relaxation times than the reptation time of a single polymer chain, to capture the rheology

of monodisperse polymer melts. This model exhibits a nonmonotonic steady flow curve under homogeneous flow

conditions. Hence, they were able to capture the hysteresis loops in the profile of the volumetric flow rate plotted

against the applied pressure gradient. Radulescu and Olmsted (2000) also published an early work on shear banding

using nonlocal stress diffusive terms. Two distinct shear bands were found below the critical point of monotonicity

for the Johnson-Segalman model in the case of an inertialess Poiseuille flow. Many years later, Fielding and Wilson

(2010) performed a fully nonlinear stability analysis of the same model in a pressure-driven channel flow. They

applied small perturbations in the flow/flow-gradient plane and flow-gradient/vorticity plane and showed that the

initially flat interface was unstable with respect to the growth of undulations along it. The Vasquez-Cook-McKinley

(VCM) two-species model for wormlike micelles was also examined (Cromer et al., 2011b). The authors showed an

onset of shear and concentration banding above a critical pressure gradient. The interface between the bands initially

forms near the walls, and then moves toward the center. The VCM model predicts a jump in the volumetric flow rate

at the critical pressure drop and hysteresis, as experimentally observed for wormlike micelles. Subsequently, these

authors investigated the linear stability of the VCM model and suggested that the spectrum of the unstable modes is

reduced if the interface between the bands is smoothed by using a larger diffusivity constant or smaller characteristic

channel dimensions (Cromer et al., 2011a). Thus far, shear banding in pressure-driven flows has only been predicted

for one-fluid viscoelastic constitutive models showing a nonmonotonic homogeneous flow curve. Such models are

well-known to be unable to predict steady-state bands if the curve is strictly monotonic. Therefore, a more complex

two-fluid model, such as the one used in the present work, is required to examine the shear banding instability

of semidilute entangled polymer solutions (Moorcroft and Fielding, 2013, 2014). Ianniruberto et al. (1994) solved

Doi and Milners’ two-fluid theory for semidilute entangled polymer solutions for a pressure-driven channel flow. They

found stress-induced migration of the polymers toward the center. However, their predictions were limited to pressure

gradients smaller than the shear banding regime.

4.2 Flow problem and nondimensionalization

In this section, we investigate our model in a rectilinear channel flow driven by a pressure gradient. We consider a

one-dimensional Poiseuille flow through a straight channel. Fig. 25 shows a schematic of the problem, where H and

L denote the height and length of the channel, respectively. The inlet and outlet effects can be neglected because we

assume H � L. Furthermore, any dependence on the z-direction is ignored. The Cartesian coordinate system is

used as the reference frame with origin at the centerline. The walls are kept stationary, whereas a nonzero pressure

54



gradient ∆p is applied in the x-direction.

Figure 25: Two-dimensional rectilinear channel flow driven by a pressure gradient.

We work with dimensionless quantities, hereafter. The location across the gap is scaled by the channel height, ỹ =

y/H . Time is scaled by the characteristic relaxation time, t̃ = t/λ1. The extra stress is scaled as σ̃ = σ/G0, while

the conformation tensor associated with the polymer is scaled as c̃ = (K/kBT )c. The polymer and solvent number

densities are normalized using the values at the equilibrium state as ñp = np/n
0
p and ñs = ns/n

0
p, respectively. The

dimensionless parameters with respect to these scalings are the pressure gradient P̃x = ∆pH/(LG0); elasticity

number, E = G0λ
2
1/(ρH

2); ratio of the molecular weight of the solvent to that of the polymer, χ = Ms/Mp; viscosity

ratio, β = ηs/η0, where η0 = G0λ1 is the zero shear viscosity; boundary layer constant ξ̃ = ηextra/η0; and ratio

of the characteristic relaxation times, ε = λ1/λ2. By assuming an initially uniform polymer concentration in the flow

field, the total polymer concentration corresponds to the initial local polymer concentration, and is, thus, given in

weight percent by µ = ñ0
p/(ñ

0
p + χñ0

s). The dimensionless diffusion coefficients are defined as D̃ = Dλ1/H
2 and

D̃nonloc = Dnonlocλ1/H
2. The dimensionless form of the model equations can be found in Sec. 2.3.

4.3 Numerical method

We used the Cartesian coordinate system to solve the rectilinear channel flow. If we write the model

Eqs. (32)–(33), (37), and (42)–(45) in this system and keep only the nonzero terms, we have:

The Cauchy momentum balance

E−1 ∂ṽx

∂t̃
= −P̃ +

∂σ̃xy
∂ỹ

, (75)
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the time evolution equation of the polymer number density

∂ñp

∂t̃
= −ṽpy

∂ñp
∂ỹ
− ñp

∂ṽpy
∂ỹ

, (76)

the time evolution equations of the differential velocity

E−1 χñsñp

(ñp + χñs)
2

∂∆̃vx

∂t̃
=

χñs
ñp + χñs

∂σ̃pxy
∂ỹ

+ β
ñp

ñp + χñs

∂2ṽsx
∂ỹ2

− D̃∆̃vy, (77)

E−1 χñsñp

(ñp + χñs)
2

∂∆̃vy

∂t̃
=

χñs
ñp + χñs

{
−∂ñp
∂y

+
∂σ̃pyy
∂ỹ

}
+

ñp
ñp + χñs

{
∂ñs
∂y

+ β
∂2ṽsy
∂ỹ2

}
− D̃∆̃vy, (78)

the explicit expressions of the extra stress

σ̃xx = ñp (c̃xx − 1) , (79)

σ̃yy = ñp (c̃yy − 1) , (80)

σ̃xy = ñpc̃xy + β
∂ṽsx
∂ỹ

, (81)

the equations of the phase velocities

ṽpx =ṽx +
χñs

ñp + χñs
∆̃vx, (82)

ṽpy =
χñs

ñp + χñs
∆̃vy, (83)

ṽsx =ṽx −
ñp

ñp + χñs
∆̃vx, (84)

ṽsy =− ñp
ñp + χñs

∆̃vy, (85)
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and the time evolution equations of the polymer conformation

∂c̃xx

∂t̃
=− ṽpy

∂c̃xx
∂ỹ

+ 2c̃xy
∂ṽpx
∂ỹ
− (1− α+ αc̃xx)(c̃xx − 1)− αc̃xy c̃xy

− ε (c̃xx + c̃yy + c̃zz − 3)
q

(c̃xx − 1) + 2D̃nonloc c̃xy
∂2σ̃pyx
∂ỹ2

, (86)

∂c̃yy

∂t̃
=− ṽpy

∂c̃yy
∂ỹ

+ 2c̃yy
∂ṽpy
∂ỹ
− (1− α+ αc̃yy)(c̃yy − 1)− αc̃xy c̃xy

− ε (c̃xx + c̃yy + c̃zz − 3)
q

(c̃yy − 1) + 2D̃nonloc c̃yy
∂2σ̃pyy
∂ỹ2

, (87)

∂c̃xy

∂t̃
=− ṽpy

∂c̃xy
∂ỹ

+ c̃xy
∂ṽpy
∂ỹ

+ c̃yy
∂ṽpx
∂ỹ
− (1− α+ αc̃yy)c̃xy − αc̃xy(c̃xx − 1)

− ε (c̃xx + c̃yy + c̃zz − 3)
q
c̃xy + D̃nonloc

(
c̃yy

∂2σ̃pyx
∂ỹ2

+ c̃xy
∂2σ̃pyy
∂ỹ2

)
. (88)

The flow problem can be solved only for the upper half of the channel to avoid unnecessary computations because

the flow is symmetric with respect to the centerline. The symmetry of the state variables can be guaranteed by using

the following conditions:

∂ṽx

∂ỹ
=
∂∆̃vx

∂ỹ
=
∂∆̃vy

∂ỹ
=
∂c̃xx

∂ỹ
=
∂c̃yy

∂ỹ
=
∂c̃zz
∂ỹ

=
∂ñp
∂ỹ

= 0 at ỹ = 0, (89)

c̃xy = 0 at ỹ = 0. (90)

Symmetry requires the partial derivatives of the total velocity, differential velocity, normal components of the stress

tensor, and polymer number density with respect to the channel position to be zero at the centerline. Furthermore,

the value of the total momentum balance Eq. (32) and the maximum of the total velocity at the centerline require the

shear stress and thus the xy-component of the conformation tensor there to be zero. The normal components of

the total and differential velocities are required to be zero at the wall to guarantee no-flux of the material through the

walls:

ṽy = ∆̃vy = 0 at ỹ = 1/2. (91)
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The tangential components of the total and differential velocities are set to zero at the wall if the wall has a no-slip

condition:

ṽx = ∆̃vx = 0 at ỹ = 1/2. (92)

We also considered the case of slip along the walls. We used the standard linear Navier condition (Ferrás et al.,

2012), which relates the wall shear stress to the wall velocity as follows, to illustrate how to account for the slip in our

two-fluid framework:

ṽpx =− kpσ̃pxy, (93)

ṽsx =− ksσ̃sxy, (94)

where the constants kp and ks control the slip magnitude. These constants must be positive for the coordinate

system placed as shown in Fig. 25. The following expressions for the tangential components of the kinematic state

variables can be obtained if we insert Eqs. (93) and (94) into Eqs. (21) and (22):

∆̃vx = ṽpx − ṽsx = −kpσ̃pxy + ksσ̃
s
xy at ỹ = 1/2, (95)

ṽx =
ρp
ρ

ṽpx +
ρs
ρ

ṽsx = −kp
ρp
ρ
σ̃pxy − ks

ρs
ρ
σ̃sxy at ỹ = 1/2. (96)

As evident from Eqs. (95)–(96), we can easily impose wall slip on each phase by imposing the corresponding

conditions on the total and differential velocities. Note that the higher-order derivatives appearing in the last term of

Eq. (42) require special treatment at the boundaries (Germann et al., 2016). The conformation diffusion should

vanish at the solid boundaries within a distance less than the radius of gyration because of the local surface

effects and because the diffusivity is essentially proportional to the normal thickness of the polymer molecules.

The thickness becomes zero as these become flat to fit next to the surface. A detailed explanation can be found

in Mavrantzas and Beris (1992), where the main reason, namely, the surface acting as a barrier prohibiting many

internal conformations, is mentioned along with an exact analysis for cyy. These researchers showed that this

quantity is proportional to the normal to the wall thickness of the polymer chains and goes to zero at the wall.

Their findings are in excellent quantitative agreement with the Monte Carlo results of Fitzgibbon and McCullough

(1989) and the molecular dynamics simulations of Bitsanis and Hadziioannou (1990). In this manner, the use of

58



any boundary conditions on the conformation tensor, which are arbitrary in our opinion, can be avoided. The best

alternative would be to conduct a microscopic analysis down to the monomer length scale next to the wall, which

would substantially increase the complexity of the model and its numerical solution. We do not make any assumption

here on the shape of Dnonloc and set this parameter equal to zero at the walls and to one elsewhere for simplicity.

This approach works well as long as the gradients of the conformation tensor are not too high.

The flow problem was solved using the numerical procedure implemented for the Couette flow (See Sec. 3). We

used a Chebyshev pseudospectral collocation method (Voigt et al., 1994; Peyret, 2002) with 200 collocation points

for spatial discretization and a second-order Crank-Nicolson scheme (Richtmyer and Morton, 1967) for temporal

discretization. The nonlinear system of discretized algebraic equations was solved at each time step using an

inverse-based ILU preconditioned Newton-Krylov solver (Bollhöfer and Saad, 2006; Bollhöfer et al., 2008).

4.4 Results

First, we start with no slip, where the tangential components of the total and differential velocities are required to be

zero at the wall, as formulated in Eq. (92). The remaining boundary conditions are provided in Eqs. (89)–(91). To

validate the numerical schemes, we solved first the Oldroyd-B model and compared the results with the available

analytical solution of this model. Furthermore, we checked the grid independency of the results of our model by

using three different meshes.

Figure 26: Temporal evolution of the magnitude of the wall shear stress calculated for the Oldroyd-B model with β = 10−5 and
validation with the analytical solution using (a) different values of the pressure gradient with E−1 = 10−5 and (b)
different reciprocal elasticities with P̃x = −10.
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We solved the Oldroyd-B model for the flow problem described in Sec. 4.2 and compared the numerical results with

the transient analytical solution of Waters and King (1970) to validate the numerical code. The Oldroyd-B model is a

limiting case of our model obtained by setting α = ε = D̃ = D̃nonloc = 0. Fig. 26 shows the temporal evolution of the

magnitude of the shear stress at the wall, which is manifested by damped oscillations converging to its steady-state

value. The results are in excellent agreement with the analytical solution, thereby confirming the validity and accuracy

of the numerical code. Furthermore, we observed that a larger pressure gradient leads to an increase in the average

magnitude of the wall shear stress and amplitude of the oscillations (see Fig. 26(a)). Increasing E−1 has no effect

on the steady state. Inertia only decreases the frequency of the oscillations (Fig. 26(b)).

Figure 27: Temporal evolution of the magnitude of the shear stress at the wall calculated for the two-fluid model using different
values of α. The other nontrivial values of the model parameters used in the calculation are E−1 = 10−5, P̃x = −10,
ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and D̃ = D̃nonloc = 10−3.

We also present how the model parameters affect the solution of the two-fluid model presented in Sec. 2.3. The

approximate values of the model parameters were determined in Sec. 2.4 by fitting to the steady-state shear rheology

of a 10 wt./wt.% (1.6M) polybutadiene solution (Cheng and Wang, 2012): α = 0.73, ε = 0.0025, q = 1.46, χ = 10−1,

and β = 10−5. The corresponding constitutive curve for the homogeneous shear flow can be found in Sec. 2.4.

The boundary layers in the no-slip case are less steep. Therefore, smoothening the profiles was not necessary, and

the boundary layer constant was simply set to zero. Fig. 27 shows the temporal evolution of the magnitude of the

wall shear stress for different values of the anisotropy factor α. The most intense oscillation is obtained for α = 0,

as expected from Duarte et al. (2008). Increasing this parameter dampens the oscillations faster. As expected, the
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steady-state value of the wall shear stress is slightly smaller for a larger value of α (i.e., for greater shear-thinning).

We use α = 0.73 for all subsequent calculations.

Fig. 28 shows the influence of the local diffusivity constant on the temporal evolution of the absolute value of the

shear stress and the polymer number density at the wall. Fig. 28(a) shows that neither the transient evolution of

the wall shear stress nor its steady state significantly varied with the value of D̃. Fig. 28(b) shows that the polymer

concentration at the wall needs more time for smaller values of D̃ to reach the steady state, which is independent of

this parameter. Increasing the value of the local diffusivity reveals two undershoots in this curve. The first undershoot

occurs at t̃ ' 0.05, which corresponds to the time at which the oscillations of the shear stress and the x-component

of the total and differential velocities are totally damped. The second undershoot for D̃ ≥ 0.1 corresponds to the fact

that the velocity profile increases to a temporary maximum at t̃ ' 3 (Fig. 29(b)).

Figure 28: Effect of D̃ on (a) the temporal evolution of the magnitude of the wall shear stress and (b) the temporal evolution
of the polymer number density at the wall. The other nontrivial values of the model parameters are E−1 = 10−5,
P̃x = −10, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and D̃nonloc = 10−3.
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Fig. 29 presents the effect of diffusion on the temporal evolution of the total velocity. In Fig. 29(a), we observe

that the local velocity for D̃ = 10−3 monotonically increases at each point in the flow domain to the corresponding

value of the steady state. The velocity at the centerline for D̃ = 10−1 increases to a temporary maximum, and

then decreases to the steady-state profile (Fig. 29(b)). However, we do not expect this phenomenon to be observed

experimentally because the value of D̃ is extremely large in this case.

Figure 29: Temporal evolution of the velocity profile with (a) D̃ = 10−3 and (b) D̃ = 10−1. The other nontrivial values of the
model parameters are E−1 = 10−5, P̃x = −10, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and
D̃nonloc = 10−3.
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Fig. 30 shows how the nonlocal diffusivity influences the solution. The parameter D̃nonloc does not substantially

affect either the transient or the steady-state solution of the wall shear stress (Fig. 30(a)). The profiles of the polymer

number density obtained for different values of D̃nonloc reach the steady state at approximately the same time

(Fig. 30(b)). However, Fig. 30(c) shows that a larger value of D̃nonloc leads to a more uniform concentration profile

in the steady state. The kinks separating the bands in this curve become closer to the centerline as the nonlocal

diffusivity decreases because of the lower stress diffusion. Interestingly, the value of D̃nonloc does not greatly affect

the steady-state velocity across the gap, as shown in Fig. 30(d). We plot the xx− and xy-components of the

conformation tensor in the vicinity of the upper wall to confirm that the selected shape of the nonlocal diffusivity

results in a smooth near-wall dynamics (Fig. 31).

Figure 30: Effect of D̃nonloc on the (a) temporal evolution of the wall shear stress magnitude, (b) temporal evolution of the
polymer number density at the wall, (c) steady-state profile of the polymer number density across the gap, and (d)
steady-state profile of the velocity across the gap. The other nontrivial values of the model parameters are the same
as those given in the caption of Fig. 29(a).
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Figure 31: Near-wall dynamics of the (a) xx- and (b) xy-components of the conformation tensor. The nontrivial values of the
model parameters are the same as those given in the caption of Fig. 29(a). The y = 0 and 0.5 values correspond to
the centerline and the channel wall, respectively.

Figs. 32(a)-(d) show the effect of increasing the absolute value of the pressure gradient on the steady-state profiles

of the velocity, shear stress, first normal stress difference, and polymer number density across the gap, respectively.

The velocity profile decreases from the centerline to the walls with a low shear band near the center and a high

one near the walls. Shear-thinning reduces the wall slip and consequently flattens the typical parabolic velocity

profiles observed in Newtonian fluids (Oliveira and Pinho, 1999). The stress-induced migration moves the polymer

particles toward the center of the channel. The sharp kink separating these bands is considerably smoother than

that predicted by the VCM model (Cromer et al., 2011b) for wormlike micelles. No sharp transition is obtained here

even if D̃nonloc = 0. The velocity profile for Px = −1 is linear. The profile becomes plug-like as the magnitude of

the pressure gradient further increases. Moreover, the maximum value of the velocity decreases. As required by

the total momentum balance, the magnitude of the shear stress linearly increases from zero at the centerline to its

maximum at the wall, where this value is larger for the larger absolute values of the pressure gradient. The first

normal stress difference monotonically increases from the center to a maximum value at the walls, which is larger

for the larger absolute values of the pressure gradient. This profile is different from that predicted by the VCM model,

which exhibits a local maximum at the location of the kink because of the flow-induced breakage of the wormlike

micelles (c.f. Fig. 12 of Cromer et al. (2011b)). The concentration bands shown in Fig. 32(d) are predicted by

the two-fluid model for the same range of pressure gradients, where the velocity profile assumes a plug-like shape.

Increasing the magnitude of the pressure gradient reduces the inhomogeneity of the concentration profile and moves

the transition region toward the centerline. The polymer concentration is higher at the center than at the wall, which
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is in agreement with the predictions by Ianniruberto et al. (1994) for semidilute entangled polymer solutions below

the onset of shear banding. The decrease of the polymer concentration already occurs where the velocity profile is

plug-like.

Figure 32: Influence of the pressure gradient on the steady-state profiles of the (a) velocity, (b) shear stress, (c) first normal
stress difference, and (d) polymer number density across the channel. The other nontrivial values of the model
parameters are the same as those given in the caption of Fig. 29(a).
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The volumetric flow rate is calculated using different values of the pressure gradient with D̃nonloc = 10−3, which

results in a profile with a spurt at a critical value of the pressure gradient P̃x,cr ' −1.5. The agreement of the ramp-up

and ramp-down curves shown in Fig. 33(a) confirms the uniqueness of the solution. The nonuniqueness of the

results indicated by the hysteresis in constitutive models showing a nonmonotonic flow curve under homogeneous

conditions is not observed here. This discrepancy is related to the different underlying mechanisms of the shear

band formation and must be experimentally verified in the future. Next, we examine the influence of the nonlocal

diffusivity constant on the ramp-up test shown in Fig. 33(b). The critical pressure gradient is not affected by this

parameter. Furthermore, the value of the nonlocal diffusivity slightly changes the value of the flow rate in the region

of the spurt (−3 . P̃x . −1.5). The smallest nonlocal diffusivity leads to the largest flow rate in the shear banding

regime, whereas the opposite behavior is observed in the linear viscoelastic regime.

Figure 33: Effect of the pressure gradient on the (a) dimensionless volumetric flow rate with D̃nonloc = 10−3 and (b) the value
of the dimensionless volumetric flow rate in ramp-up tests with different values of D̃nonloc. The other nontrivial values
of the model parameters are the same as those given in the caption of Fig. 29(a).

66



Fig. 34 shows the effect of D̃nonloc on the profile indicating the relation between the pressure gradient and the

location of the kink separating the shear bands. We find that increasing the magnitude of P̃x moves the kink toward

the centerline. The inset of Fig. 34 shows that the value of D̃nonloc only has a minor influence on this profile for

P̃x ≥ −40. As already discussed, in this region and at fixed pressure gradient, the kink is closer to the wall for a

larger nonlocal diffusivity. However, a significant impact is observed for large absolute values of the pressure gradient

(P̃x . −90). This finding is related to the fact that the shear bands fade out at smaller absolute values of P̃x for

larger D̃nonloc.

Figure 34: Effect of the pressure gradient on the location of the kink for different values of D̃nonloc. The other nontrivial values
of the model parameters are the same as those given in the caption of Fig. 29(a).

Finally, we consider the effect of slip using Eqs. (95)–(96). A nontrivial positive value of the boundary layer constant

ξ̃ had to be used to be able to numerically resolve the steep gradients of ∆̃vx. Fig. 35 shows the x-component of

the total velocity (left column) and the differential velocity (right column) across the gap for two different pressure

gradients, namely, P̃x = 10 (top figures) and P̃x = 100 (bottom figures). The steady-state differential velocity in the

y-direction is zero. Therefore, we do not show the profile of this component. Note that all components of the vector

∆̃v in the no-slip case are zero at the steady state. We note that the parameter ks that controls the amount of wall

slip of the solvent has no significant effect if the results of kp = ks = 50 are compared with those of kp = 50 and

ks = 0. However, increasing the value of kp, the polymer slip, results in a vertical downward shift of the whole profile

of ṽx, thereby leading to a larger wall slip velocity. Interestingly, the parameter P̃x has no effect on the shape of the

profiles; it only increases the magnitudes of ṽx and ∆̃vx.
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Figure 35: Effect of the value of the slip constants on the steady-state profiles of the total velocity (left column) and the differential
velocity (right column) in the x-direction with two pressure gradients P̃x = 10 (top row) and P̃x = 100 (bottom row).
The values of the parameters are E−1 = 10−5, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, ξ̃ = 10−3,
and D̃ = D̃nonloc = 10−3.

We examine the influence of this quantity below to demonstrate that the selected value of ξ̃ = 10−3 had no effect on

the results discussed in the preceding paragraph. Figs. 36(a)-(b) show the profiles of the polymer number density

and differential velocity, respectively, in the x-direction across the channel for different ξ̃ values. We observe that

the profiles of ñp are not affected. Up to moderate values (i.e., for ξ̃ 6 10−2), the boundary layer constant has no

influence on the profiles of ∆̃vx in the region inside the channel. However, decreasing the ξ̃ value leads to steeper

gradients near the solid walls.
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Figure 36: Influence of the specific viscosity on (a) the steady-state profile of the polymer number density and (b) the differential
velocity in the x-direction across the gap width with P̃x = 10 and kp = ks = 50. The other model parameters are the
same as those given in the caption of Fig. 35.

4.5 Conclusion

This section examined the behavior of the new two-fluid model for semidilute entangled polymer solutions in a

pressure-driven channel flow. The computational results showed a plug-like profile of the velocity and concentration

bands for the same range of pressure gradients. Increasing the value of the pressure gradient shifted the kink

separating the shear bands to the center. The steady-state profile of the first normal stress difference monotonically

increased from the center of the channel to a maximum value at the walls. The value of the nonlocal diffusivity

constant did not significantly influence the total velocity and the wall shear stress. The polymer concentration showed

the same temporal behavior for different values of the nonlocal diffusivity constant. However, the steady-state solution

was more uniform when we used larger D̃nonloc. The results of the volumetric flow rate calculated using different

values of the pressure gradient in the ramp-up and -down tests agreed, thereby confirming the uniqueness of the

solution. This profile showed a spurt at a critical pressure gradient, as experimentally observed in the pressure-driven

shear flows of polymeric materials. We also studied the effect of wall slip using the linear Navier slip model to illustrate

how to account for slip in our two-fluid framework. We noticed that the slip velocity of the solvent had no significant

effect on the solution, whereas changing the polymer slip vertically shifted the velocity profile.
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5 Benchmark case no. 3: 4:1 contraction flow

5.1 Introduction

Contraction flow is of great importance in many processing operations, such as molding and extrusion of viscoelastic

materials. Furthermore, the 4:1 planar contraction is a suitable benchmark problem for the evaluation of new models

or codes. Different types of vortices, namely, salient and lip vortices, can appear in this geometry. The lip vortex

originates from the re-entrant corner and dominates the flow by vortex enhancement and growth (Boger et al., 1986).

Experimental evidence has revealed that the vortex enhancement is absent for Boger fluids while it is apparent for

shear-thinning fluids (Nigen and Walters, 2002; Walters and Webster, 2002). Comparisons between strain-hardening

low-density polyethylene (LDPE) and strain-softening polystyrene suggest that the size and strength of the vortices

are influenced by both extensional and shear properties (Olson and Fuller, 2000; White and Baird, 1986). With

increasing flow rate, the vortex size increases if the ratio of the extensional to the shear viscosity increases and vice

versa (Aboubacar et al., 2002b).

Numerical simulations of viscoelastic contraction flow use constitutive models according to the material under

investigation. Olsson (1994) observed the lip vortex of a shear-thinning fluid for the first time using the Giesekus

model. In several works, the Oldroyd-B and PTT models were utilized to describe the behavior of Boger and

shear-thinning fluids, respectively. The Oldroyd-B model predicts that the size of the salient vortex decreases,

and the lip vortex appears and further grows with increasing flow rate (Walters and Webster, 2002; Alves et al.,

2003c). The results of Aboubacar et al. (Aboubacar et al., 2002b,a) revealed that by increasing the elasticity, the

Oldroyd-B model and both the linear and exponential versions of the PTT model with a small value of the parameter

simultaneously controlling shear-thinning and strain hardening exhibit vortex reduction. The PTT model reverts to

the Oldroyd-B model if the value of this parameter reduces to zero. However, the size of the vortex increases for the
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PTT model with stronger shear-thinning behavior. Thompson et al. (1999) proposed a new constitutive equation that

can predict the increase in the corner vortex size with strain hardening. The idea of their model was that the stress

tensor is an isotropic function of the strain rate and the relative rotation rate. White and Baird (1988b) used the PTT

model and suggested that extension hardening increases the size and intensity of the vortex, and this proposition

was in agreement with their flow visualization and birefringence data (White and Baird, 1988a). The Pom-pom model

is an appropriate model to describe contraction flows due to shear-thinning and bounded strain hardening-softening

properties. Many works have adopted this model and showed that the size of the vortex increases with the ratio of

the extensional to shear stresses (Bishko et al., 1999; Aguayo et al., 2007; Jahromi and Webster, 2011). Ferrás et al.

(2014) used the PTT model along with slip boundary conditions. Increasing the slip enlarges the lip vortex until it

absorbs the salient vortex. The new single vortex grows in size and intensity with the value of the slip coefficient.

Many features of a planar contraction flow cannot be observed in the 4:1 geometry. Alves et al. (2004) used the

linear PTT model to numerically study the effects of the contraction ratio CR and the Deborah number De. They

illustrated in a map that the lip vortex appears atDe ≈ 1−2, the vortex enhancement starts atDe/CR ≈ 0.5−1, and

the lip vortex becomes completely dominant for De/CR ≥ 1− 2. Their results are in qualitative agreement with the

visualizations of Evans and Walters (1986). The material properties of a fluid also affect the vortex enhancement; for

instance, no lip vortex was experimentally found at CR = 4 for Boger fluids (1.0 wt/wt% polyacrylamide dissolved in

maltose syrup and water) or for 0.3 and 0.5 wt/wt% shear-thinning aqueous polyacrylamide solutions observed

by Evans and Walters (1989). However, a lip vortex was observed for the lower concentration of 0.2 wt/wt%.

This result was numerically confirmed using the finite extensible nonlinear elastic with Peterlin’s closure (FENE-P)

model (Purnode and Crochet, 1996).

Shear banding is a ubiquitous phenomenon observed in soft materials, such as semidilute entangled polymer

solutions. However, limited information is available about its origin and the impact on processing. Germann (2019)

comprehensively reviewed recent theoretical and experimental developments in the area of shear banding entangled

polymer solutions. Hemminger et al. (2010) experimentally studied a 4:1 rounded-corner contraction flow of 75 kbp

DNA solutions with concentrations from 0.1 to 1.0 wt/wt% over a wide range of Deborah numbers (up to 2× 104 for

the most concentrated solution). They observed that the vortex flow dominates for the non-shear-banding solutions

with concentrations of 0.1 and 0.5 wt/wt%. However, shear banding was found for the higher concentrations of 0.7

and 1.0 wt/wt% at the entrance of the contraction with a high flow rate at the centerline and a low flow rate at the

corner. The authors found that in this regime, reduction in slip length, obtained by, for example, increasing the solvent
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viscosity, causes the vortex flow to become dominant again. As the phenomenon of shear banding was studied in

the converging zone before the contraction, the flow velocities were much higher than those examined in the present

article. Hitherto, no two-fluid model for shear banding polymer solutions has been solved for 4:1 planar contraction

flow. The goal of this section is to study the new model in this geometry and to investigate the influence of the shear

bands on the vortices.

5.2 Numerical method

We solved the model Eqs. (31)–(33), and (42)–(45) for a steady, laminar, incompressible, two-dimensional flow

through a 4:1 planar contraction. In addition, we replaced Eq. (49) with Eq. (97)

∆̃v =
1

D̃

[ χñs
ñp + χñs

{
−∇̃ (ñp) + ∇̃ · σ̃

}
+

ñp
ñp + χñs

{∇̃ (ñs) + β∇̃2ṽs}
]
, (97)

as the variation in the polymer concentration is very small here, Eq. (37), or Eq. (49) in the dimensionless form, is

difficult to solve with a lower-order discretization method. Therefore, we neglected the left-hand side and used the

value of the previous iteration for the calculation of the Laplacian term.

A schematic sketch of the flow geometry is given in Fig. 37. The half-width of the downstream channel is denoted

by the characteristic height H . As required by the problem, the half-width of the upstream channel is 4H . Inlet

and outlet effects can be neglected since we assume 100H for both the lengths of the upstream and downstream

channels. The Deborah number is defined as De = λ1Uout/H , where Uout is the mean velocity at the outlet. The

Reynolds number is defined as Re = ρUoutH/η0 = E−1De, with E and η0 being the elasticity number and the zero

shear viscosity, respectively, defined below. The Cartesian coordinate system was used as the reference frame. Any

dependence on the z-direction was ignored for simplicity.

In the following, we work with nondimensional quantities. The location is scaled by the characteristic height, ỹ =

y/H ; the time is scaled by the characteristic relaxation time, t̃ = t/λ1; the extra stress is scaled as σ̃ = σ/G0; and

the conformation tensor associated with the polymer is scaled as C̃ = (K/npkBT )C. The number densities of the

polymer and the solvent are normalized using the values at equilibrium as ñp = np/n
0
p and ñs = ns/n

0
p, respectively.

The dimensionless parameters with respect to these scalings are the elasticity number, E = G0λ
2
1/(ρH

2); the ratio

of the molecular weight of the solvent to that of the polymer, χ = Ms/Mp; the viscosity ratio, β = ηs/η0, with
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η0 = G0λ1 being the zero shear viscosity; and the ratio of the characteristic relaxation times, ε = λ1/λ2. The total

polymer concentration corresponds to the initial uniform polymer concentration and is given in weight percent by

µ = ñ0
p/(ñ

0
p + χñ0

s). The dimensionless diffusion coefficients are D̃ = Dλ1/H
2 and D̃nonloc = Dnonlocλ1/H

2.

Figure 37: Planar 4:1 contraction geometry.

The OpenFOAM v4.0 finite volume package, together with the viscoelastic solver rheoTool v.2.0 (Pimenta and Alves,

2018), was used to solve the flow problem. To add our model to the solver, we implemented the two-fluid description

by using the differential velocity as an intermediate variable, similar to the approach of Guo et al. (2014). In our

simulations, the convection term was discretized using the high-resolution convergent and universally bounded

interpolation scheme for the treatment of advection (CUBISTA) following a component-wise and deferred correction

approach. The diffusion term and the gradients of the velocity and pressure were discretized using the Gauss

linear scheme. The Crank-Nicolson method was employed for time discretization. The discretized flow problem was

iteratively solved using the semi-implicit method for the pressure linked equations-consistent (SIMPLEC) algorithm

with 10 inner iterations per time step. The conjugate gradient method with a diagonal incomplete-Cholesky (DIC)

preconditioner was used for solving the continuity and momentum equations and the biconjugate gradient solver with

an ILU decomposition for the remaining linear equations. The absolute tolerance for the variables was 1.0 × 10−7

for the steady-state test simulations.

At the inlet boundary, a uniform profile of the polymer number density and a uniform velocity field Uin were imposed,

resulting in a zero tensorial value for the stress and unity for the polymer conformation. At the outlet boundary,

we assumed a vanishing pressure field and fully developed flow with Neumann conditions for the total velocity,

the polymer number density and conformation, and the extra stress. At the solid walls, we utilized no-slip and
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no-flux conditions for the total velocity. For the polymer number density, we used the Neumann condition. The

conformation and stress tensors were linearly extrapolated along the walls using the linearExtrapolation boundary

available in rheoTool. The differential velocity must be zero for the conditions specified above. Since no asymmetry

was observed relative to the channel centerline in our preliminary calculations, we solved the flow only for the upper

half of the channel to avoid unnecessary computations, and we correspondingly used symmetry boundary conditions

for the centerline.

The flow was solved using the four meshes reported in Table 1. The coarsest mesh M1 is obtained by considering

the upper half of the mesh M1 utilized by Pimenta and Alves (2017). Their mesh is generated so that the resolution

is higher near the walls and the corners. We doubled and tripled the number of faces of our mesh M1 in both spatial

directions to obtain meshes M2 and M3, respectively. The number of faces of M3 is doubled in both directions to

generate the mesh M4.

Table 1: Mesh characteristics.

Mesh ∆xmin/H = ∆ymin/H Number of Cells

M1 0.0042 6051

M2 0.0021 24,204

M3 0.0014 54,459

M4 0.0007 217,836
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5.3 Results

To validate the numerical scheme, we first checked the consistency of the implemented terms of the new model

by comparison with the numerical solution obtained for steady homogeneous Couette flow presented in Sec. 2.4.

Afterward, we solved the benchmark problem for the Oldroyd-B model and compared our results with those

of Pimenta and Alves (2017). The dimensionless size of the corner vortex, χ̃R, is shown in Fig. 38(a) for Deborah

numbers up to 4, where Re was kept constant at 0.01. As the Deborah number increases, the corner vortex

becomes smaller. We find that the agreement is excellent. The streamlines displayed for De = 4 in Fig. 38(b) also

closely match with those published for the same condition in Pimenta and Alves (2017). After the grid independence

test, subsequent simulations were performed using mesh M3.

Figure 38: Solution of Oldroyd-B model for 4:1 contraction: (a) size of dimensionless corner vortex for different Deborah numbers

and (b) streamlines at De = 4 and Re = 0.01. The results are compared with those of Pimenta and Alves (2017) for

validation.

The planar contraction flow is a combination of a simple shear flow and a uniaxial extension. The predictions of our

model for these flows under homogeneous flow conditions are shown in Fig. 39. The values are the same as those

used in Sec. 2.4. The model parameters were determined by fitting the flow curve of the shear stress against the

shear rate with shear experiments of a 10 wt/wt% (1.6 M) shear-banding polybutadiene solution (Cheng and Wang,

2012). The parameters are the mobility factor α = 0.73, the ratio of the characteristic relaxation times ε = 0.0025,

the power-law factor q = 1.46, the viscosity ratio β = 10−4, and the ratio of the molecular weight of the solvent to that

of the polymer χ = 10−1. A moderate nondimensional nonlocal diffusion coefficient D̃nonloc = 10−3 was selected

to remove the sharp kink in the banded profiles, and a moderate nondimensional local diffusion constant D̃ = 10−3
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was used to avoid long running times since the value of this coefficient does not affect the steady-state solution.

In homogeneous simple shear (Fig. 39(a)), both the shear stress and the first normal stress difference increase

monotonically with the shear rate. In homogeneous uniaxial extension (Fig. 39(b)), the extensional viscosity shows

a plateau followed by mild extension thickening and thinning.

Figure 39: (a) Dimensionless shear stress and first normal stress difference vs dimensionless shear rate in homogeneous

simple shear flow. (b) Dimensionless viscosity vs dimensionless extension rate in homogeneous uniaxial extension.

In Fig. 40, we show the size of the corner vortex, χ̃R, and the maximum value of the vortex intensity, ψ̃R, respectively,

for the Deborah numbers 0.1, 0.5, 1, 1.5, and 2. The corner vortex size increases with De due to shear-thinning as

expected (Aboubacar et al., 2002b; Alves et al., 2003a); however, it decreases as the shear banding starts to occur

at De = 1, which is in agreement with the experimental data (Hemminger et al., 2010). The vortex intensity follows

the trend of the vortex size.
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Figure 40: (a) Corner vortex size normalized by characteristic height H and (b) corner vortex intensity normalized by UoutH

versus Deborah number.

In Fig. 41, we see the profiles of the axial velocity ṽx, the polymer number density ñp, the shear stress σ̃xy, and the

first normal stress difference Ñ1 = σ̃xx − σ̃yy at x̃ = −75. The selected cross-section is so that the effects of the

inlet and the contraction region can be neglected. In these plots, ỹ = 0 and 4 represent the centerline and the wall,

respectively. In Fig. 41(a), the profiles of the axial velocity are shown. Note that the value of De is evaluated at the

outlet; therefore, the Deborah number calculated at the upstream using the inlet velocity and the inlet width is only

1/16 of the written value. This explains why there is no evidence of shear banding for these small values ofDe before

the contraction. The profiles of the polymer number density are shown in Fig. 41(b). The overshoot generated at

larger De is due to the Fickian diffusion, which moves toward the wall as De is increased. In Fig. 41(c), the profiles

of the shear stress are depicted. The value of σ̃xy is zero at the centerline and increases linearly to the maximum

value at the wall, as typically observed for pressure-driven channel flow (see Sec. 4). The absolute wall shear stress

is larger for larger De numbers. In Fig. 41(d), we show the first normal stress difference, which is larger for a flow

with increasing values of De. The value of Ñ1 is zero at the centerline and quadratically increases for larger De as

the wall is approached.
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Figure 41: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

evaluated at x̃ = −75 for different Deborah numbers.

Fig. 42 shows the results of the channel far away from the contraction at x̃ = 75. The velocity profiles shown

in Fig. 42(a) deviate from the typical parabolic profile of channel flow and form plug-like flow for De > 1. This

phenomenon is related to shear banding. The kink separating the bands move toward the center of the channel as

De increases. The profiles of the polymer number density are illustrated in Fig. 42(b). For De > 1, we can see clear

bands where the band near the centerline forms a plateau, and the other band shows a strong decrease near the

wall. The effect of shear banding is much smaller than the effect of recirculation for the De values considered in this

work (Fig. 42(b)). However, at very large De values, the opposite trend may be found. Fig. 42(c) shows that the

profiles of the shear stress increase from zero at the centerline to the extremum at the wall. The overlap of these

profiles in the shear banding regime is expected from the plug-like velocity profiles, where the similar shear rates of

the bands result in similar stress profiles in the plateau regime of the flow curve. The small difference in the bands
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arises from the relatively narrow range of De examined. The profile of the shear stress in the shear banding regime

shows nonlinearity near the wall if the resolution of the mesh is not high enough; therefore, we used the mesh M4 to

obtain Fig. 42(c).

Figure 42: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

evaluated at x̃ = 75 for different Deborah numbers.
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Fig. 43 shows the streamlines and the contours of the flow for De = 0.5. We can see a vortex at the corner in

Fig. 43(a). The contour of the polymer number density is shown in Fig. 43(b). We note a huge increase in ñp as

a result of flow recirculation. At the re-entrant corner, there is a concentrated zone of large absolute shear stress

values (Fig. 43(c)). The first normal stress difference (Fig. 43(d)) becomes negative as a result of a large σ̃yy value.

It must be noted that σ̃zz is nonzero in the channel, although the values are much smaller than the other normal

components of the shear stress. Our viscoelastic flow predictions depicted in Figs. 43-45 qualitatively agree with the

velocity and stress calculations of the Giesekus, PTT, and FENE-P models (Azaiez et al., 1996; Favero et al., 2010).

Figure 43: Contours of (a) stream function, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

for De = 0.5.

Fig. 44 shows the results for the flow De = 0.5 at different vertical cross-sections before and after the contraction.

We see in Fig. 44(a) how the axial velocity profile adapts itself to the narrow channel. The velocity strongly increases

due to the requirement of the mass conservation. However, the shear rate is still not large enough for De = 0.5 to

form a banded plug-like curve. Fig. 44(b) shows the profiles of the polymer number density in the vertical sections.

The strong overshoot of the profile at x̃ = −0.5 corresponds to the recirculation region depicted in Fig. 43(b). In

Fig. 44(c), we can see that the value of the shear stress changes its sign in the recirculation region, while this profile

is linear further away (x̃ = −10 and 5). The profiles of the first normal stress difference are shown in Fig. 44(d).

The negative sign of Ñ1 in the recirculation zone suggests that the σ̃yy-component dominates in this region. The
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large values of the first normal stress difference after the contraction region is due to the larger local De after the

contraction.

Figure 44: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference for

De = 0.5 at vertical cross-sections x̃ = −10, −1.5, −0.5, 1.0, and 5.0.
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Fig. 45 shows the profiles in cross-sections parallel to the centerline. Since the important changes happen in the

contraction region, we only depict the part of the channel in the range −10 6 x̃ 6 10. There is strong shearing

near the walls and significant uniaxial extension along the centerline. As the flow approaches the contraction, the

increasing extension rate increases the velocity for ỹ = 0 and 0.5 (Fig. 45(a)). It is evident from Fig. 45(b) that ñp

increases in the recirculation region at ỹ = 2.5 and overshoots at ỹ = 3.5, which matches with the shape of the

vortex. We can see in Fig. 45(c) that σ̃xy undershoots and overshoots before and after the contraction, respectively.

The maximum of Ñ1 occurs close to the contraction (Fig. 45(d)).

Figure 45: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference for

De = 0.5 at horizontal cross-sections ỹ = 0, 0.5, 1.5, 2.5, and 3.5.
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The streamlines and contours are shown for De = 2 in Fig. 46 and are compared with the information of Fig. 43.

The vortex size is larger, and the accumulation of the polymer particles in the recirculation zone is closer to the wall.

The contours of the shear stress and first normal stress difference are qualitatively similar, but the magnitudes are

larger.

Figure 46: Contours of (a) stream function, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

for De = 2.0.

Fig. 47 shows the profiles for De = 2 at different vertical cross-sections of the channel before and after the

contraction region. The results are compared with those obtained from Fig. 44. In Fig. 47(a), we can see the

transition from parabolic flow to plug-like flow as the fluid flows from small deformation regime at the wide channel

to the shear banding regime at the narrow channel. The increased polymer number density in the contraction region

(Fig. 47(b)) is closer to the wall because of the larger De value. The shear stress profiles (Fig. 47(c)) qualitatively

follow the same trend; however, the values are larger. The sharp profile of Ñ1 (Fig. 47(d)) is due to the shear band

formation.
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Figure 47: Cross-sectional profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress

difference for De = 2.0. The selected x̃-values are the same as in Fig. 44.

Fig. 48 shows how the profiles change near the contraction region in different horizontal cross-sections. There is an

overshoot of the axial velocity, as shown by Kim et al. (2005) for larger De. We see in Fig. 48(c) that σ̃xy undershoots

before the contraction and overshoots after it, as already seen in Fig. 45 for De = 0.5.
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Figure 48: Cross-sectional profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress

difference for De = 2.0. The selected ỹ-values are the same as in Fig. 45.

5.4 Conclusion

The results of the contraction flow reveal that the size and the intensity of the corner vortex increase with the

Deborah number as a result of shear-thinning, but they decrease after the onset of shear banding; these findings

are in agreement with experiments. The axial velocity profile forms a plug-like shape in the shear banding regime

after the contraction, where the local De number is much larger because of the decreased channel height. The

kinks separating the velocity bands move toward the centerline as De increases. For the De values investigated

in this work, the concentration of the polymer in the recirculation region is strongly increased. However, there is an

increased effect of shear banding on ñp at larger De, typically encountered in industrial processing flows.
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6 Benchmark case no. 4: extrusion flow

6.1 Introduction

Entangled polymeric materials exhibit various phenomena when passed through a die. A prominent example is the

extrudate swell, which is characterized by the expansion of the extrudate after leaving the die (Allain et al., 1997;

Karapetsas and Tsamopoulos, 2008). A rapid increase in the volumetric flow rate (Fig. 49) is initially noticed as

the pressure drop is increased (Achilleos et al., 2002a; Hill et al., 1990; Hatzikiriakos and Dealy, 1992; El Kissi

et al., 1997). By further increasing the pressure drop, the extrudate surface demonstrates first periodic distortions

with short wavelengths and small amplitudes, called sharkskin (Denn, 2001; Sornberger et al., 1987). Then, it

temporary switches between sharkskin and smooth flow, named slip-stick, which is followed by unsteady flow with

long-wavelength distortions, and finally, melt fracture. The sharkskin and slip-stick are surface distortions, while the

wavy and gross melt fractures are volume instabilities as they involve the whole extrudate (Koopmans and Molenaar,

1998; Agassant et al., 2006; Vergnes, 2015). Whether these regimes are desired or not depends on the specific

application. For instance, one tries to avoid sharkskin in plastic manufacturing, whereas it is advantageous in the

processing of spaghetti since it helps the tomato sauce sticks to the product.

The origin of the extrusion instabilities is still a controversial topic even though it has been studied for the past

fifty years. These instabilities may originate from the singularity at the die exit, the slip on the surface of the

die, or the constitutive equation. The die exit singularity emerges as the zero velocity at the wall meets the free

surface, which leads to sudden extensional gradients. In numerical computations, the singularity effect is stronger

for a finer mesh since the solution is closer to the location of the stress singularity. The sharp corners are often

rounding to avoid numerical problems (Inn et al., 1998; Arda and Mackley, 2005). In the review by Denn (2001),

wall slip was classified into an adhesive failure of the polymer chains at the wall and a cohesive failure due to the
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shear-induced chain disentanglement, resulting in a low-viscosity region near the wall. However, it is still unclear

whether the wall slip delays (Sornberger et al., 1987; Ramamurthy, 1986; El Kissi et al., 1994; Achilleos et al.,

2002b) or suppresses (Ghanta et al., 1999; Migler et al., 2002) the extrusion instabilities. The constitutive instability

was explained by the existence of multiple steady-state shear rates for the same shear stress at the decreasing

part of the homogeneous flow curve, resulting in different spatial regions with constant shear rates (Cao et al.,

2015). Whether or not the underlying homogeneous flow curve should be described as nonmonotonic remains an

open question. Shear banding can also be successfully predicted by two-fluid models accounting for stress-induced

migration (Germann, 2019).

Figure 49: Instability regions in the flow curve of an extrusion flow [modified from Achilleos et al. (2002b), Fig 1].

A few numerical studies have been conducted to examine the effect of viscoelasticity during extrusion. For instance,

the extrudate swell phenomenon was studied by applying the UCM (Bush et al., 1984; Crochet and Keunings,

1980), Oldroyd-B (Crochet and Keunings, 1982; Clermont and Normandin, 1993; Russo and Phillips, 2011), and

Giesekus (Comminal et al., 2018) models. These studies indicate that the value of the swell ratio slightly decreases

in the low-shear-rate regime compared to the Newtonian case, and it increases as the Deborah number is further

increased. The local minimum is related to both shear thinning and elastic recoil (Comminal et al., 2018). In the

analytical study of Tanner (1970), the swell ratio was expressed in terms of the ratio of the first normal stress

difference to the shear stress. Konaganti et al. (2015) assessed the predictive capability of multimode differential

and integral viscoelastic models by quantitative comparison with experiments. Although all the material functions
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were the same for the differential and integral versions of a given model, the swell predictions greatly differed.

Further research is required to find out the exact reason. Finally, by using a multimode version of the Rolie-Poly

model, Robertson et al. (2017, 2019) conducted finite element simulations to study the effect of chain orientation

and stretch at higher shear rates.

In our model, we associated shear banding with shear-induced migration and not the result of a nonmonotonic flow

curve. This chapter aims to discuss the effect of shear banding, which was comprehensively reviewed by Germann

(2019), on the extrudate swell phenomenon. It would be interesting to investigate which of the various extrusion

phenomena mentioned above could be captured by our model or an improved version of it. However, with our

current numerical solution approach, we cannot go into the non-stationary regime. Hence, we stick to the stationary

laminar regime where we can see the characteristic fast increase in the flow rate upon increasing the pressure drop.

6.2 Numerical method

We solved the model Eqs. (31)–(33), and (42)–(45) for steady, laminar, and incompressible planar flow through a

planar die. In addition, we replaced Eq. (49) with Eq. (97). As the variation in the polymer concentration is very

small here, Eq. (37), or Eq. (49) in the dimensionless form, is difficult to solve with a lower-order discretization

method. Therefore, we neglected the left-hand side and used the value of the previous iteration for the calculation

of the Laplacian term. A schematic diagram of the flow geometry is shown in Fig. 50. The die was long enough to

ensure fully developed flow. The half-width of the die, H , is considered as the characteristic height. The lengths

of the upstream and downstream are denoted by L1 and L2, respectively, where L1 = L2 = 25H . The Cartesian

coordinate system is used as the reference frame with origin at the intersection of the centerline and the die exit.

Figure 50: Geometrical sketch of extrudate flow through planar die.

We will use non-dimensional quantities in the sequel. The location is given by the characteristic height, ỹ = y/H ;
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the time is given by the characteristic relaxation time, t̃ = t/λ1; the extra stress is given by σ̃ = σ/G0; and the

conformation tensor associated with the polymer is defined by C̃ = (K/npkBT )C. The number densities of the

polymer and the solvent are normalized using the values at equilibrium state as ñp = np/n
0
p and ñs = ns/n

0
s,

respectively. The dimensionless parameters regarding these definitions are the ratio of the molecular weight of the

solvent to that of the polymer, χ = Ms/Mp; the viscosity ratio β = ηs/η0, with η0 = G0λ1 being the zero shear

viscosity; and the ratio of the characteristic relaxation times ε = λ1/λ2. For comparison’s sake, we defined the

Deborah number De = 3λ1Uin/H and the Reynolds number Re = ρUinH/η0 = E−1De/3, where Uin denotes the

inlet velocity and E = G0λ
2
1/(ρH

2) denotes the elasticity number. As in Comminal et al. (2018), we did not consider

the surface tension in our simulations. Similarly, the density and the viscosity of the surrounding environment are

given by ρse = 10−2ρ and ηse = 10−6βη0, respectively. The total polymer concentration corresponds to the initial

uniform polymer concentration and is given in weight percent by µ = ñ0
p/(ñ

0
p + χñ0

s). The dimensionless diffusion

coefficients are denoted by D̃ = Dλ1/H
2 and D̃nonloc = Dnonlocλ1/H

2. The non-dimensional form of the model

equations is provided in Sec. 2.3.

The values of the model parameters are the same as those applied in Sec. 2.4. We determined them by fitting the

flow curve of the shear stress against the shear rate with shear experiments of a 10 wt/wt% 1.6 M shear-banding

polybutadiene solution (Cheng and Wang, 2012). The parameters are the mobility factor, α = 0.73, the ratio of the

characteristic relaxation times, ε = 0.0025, the power-law factor, q = 1.46, the viscosity ratio, β = 10−4, and the ratio

of the molecular weight of the solvent to that of the polymer, χ = 10−1. The Reynolds number was set to Re = 0.01.

A moderate non-dimensional nonlocal diffusion coefficient D̃nonloc = 10−3 was utilized to obtain a smooth transition

region between the velocity bands and to guarantee a unique solution. In preliminary tests, the non-dimensional local

diffusion constant did not affect the steady-state solution. Therefore, we used a relatively large value of D̃ = 10−3

to avoid long computing times. Detailed information about the roles of the local and nonlocal diffusion coefficients

in our model can be found in Sec. 3. The predictions of the viscometric functions are provided in Fig. 51. Both

the shear stress and the first normal stress difference increase monotonically with the shear rate (Fig. 51(a)). The

uniaxial extensional viscosity shows a plateau followed by mild extension thickening and thinning (Fig. 51(b)).

89



Figure 51: (a) Dimensionless shear stress and first normal stress difference vs dimensionless shear rate in homogeneous

simple shear flow. (b) Dimensionless viscosity vs dimensionless extension rate in homogeneous uniaxial extension.

Transient simulations were performed by utilizing the OpenFOAM v4.0 finite volume package with the viscoelastic

toolbox RheoTool version 2.0 (Pimenta and Alves, 2018). Based on the volume-of-fluid (VOF) method, we employed

the rheoInterFoam solver to simulate the two-phase flow. By applying the differential velocity as an intermediate

variable similar to the approach of Guo et al. (2014), the two-fluid model was implemented and validated in Sec. 5.

The stress-velocity coupling described in Pimenta and Alves (2017) and available in the Rheotool package v.2.0

was utilized to stabilize the momentum equation. The convective terms were discretized using the high-resolution

convergent and universally bounded interpolation scheme for the treatment of advection (CUBISTA), followed by a

component-wise and deferred correction approach. The diffusion terms and the spatial gradients of the velocity and

pressure fields were discretized using the Gauss linear scheme. We applied the Euler method to discretize time.

The discretized flow problem was iteratively solved by employing the PIMPLE algorithm with ten inner iterations per

time step. We applied the multidimensional universal limiter with explicit solution (MULES) for the indicator variable

of the VOF method, the geometric-algebraic multi-grid solver for the pressure, and the biconjugate gradient solver

with an incomplete lower-upper decomposition for the remaining variables. At each time step, the absolute tolerance

for the variables was 1.0× 10−10.

The MULES solver is used to account for the compressive flux in the interface to minimize diffusion (Deshpande
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et al., 2012). In the VOF method, the distribution of the phases is defined by the color function:

φ(x, t) =


1 for a cell containing only the fluid phase with viscosity η1 and density ρ1,

0 for a cell containing only the surrounding air phase with viscosity η2 and density ρ2.

(98)

The liquid volume fraction Θ represents the volume average of φ(x, t) in each cell of the computational domain:

Θ =
1

VΩ

∫
Ω

φ(x, t)dV , (99)

with VΩ =
∫

Ω
dV being the total volume of the cell Ω. Some of the material properties are averaged using the

arithmetic rule of mixtures, such as:

η = Θη1 + (1−Θ)η2, (100)

ρ = Θρ1 + (1−Θ)ρ2. (101)

The liquid volume fraction is described by a transport equation as the color function is advected with the flow.

The mass is conserved directly by the VOF method since it solves a transport equation of the color function. The

transport equation can be solved by geometric method with a sharp interface, and algebraic method. In the latter

case, the numerical diffusion arising from the discretization of the transport equation smooths the jump of the color

function across the interface. Thus, the position of the interface spreads over a few cells and the interface is not

sharp anymore. However, we can mention some advantages of the algebraic over the geometric method such as

less computational costs, as well as more straightforward implementation on unstructured meshes and extension to

higher dimensional computational domains. The geometric VOF method consists of a reconstruction of the interface

and an advection scheme. It is called geometric since the liquid volume fraction is updated through calculations of

polynomial intersections (Comminal et al., 2018). The algebraic VOF scheme directly solves the transport equation

of the color function

∂φ

∂t
+∇ · (vφ) = 0 . (102)
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This equation states that the algebraic VOF method can be coupled with the set of time evolution equations. In

the MULES solver, the advection part of Eq. (102) is modified so that a multiplied constant is defined to be one at

the interface and zero elsewhere. Consequently, the interfacial compression flux is solved only at the interface and

reduces both the numerical diffusion at the interface and the computational costs (Deshpande et al., 2012).

The die was filled with the resting polymer solution at the initial time. At the inlet boundary, we imposed a constant

polymer number density corresponding to its equilibrium value in the state of test, i.e., ñp = 1.0, and a constant

inlet velocity. Similarly, we utilized a zero tensorial value for the stress and unity for the polymer conformation. The

differential velocity must be zero for these uniforconditions. At the walls, we applied the no-slip and no-flux conditions

for the total and differential velocities. We used the Neumann condition for the polymer number density. Using the

linearExtrapolation boundary condition available in the RheoTool version 2.0, the conformation and stress tensors

were linearly extrapolated along the walls (Pimenta and Alves, 2018). For the outer periphery of the expansion

region, we applied an outlet Neumann boundary condition. At the liquid/air interface, we assumed a zero pressure

and applied the Neumann condition on the other variables. Since no asymmetry was observed relative to the

channel centerline in our preliminary calculations, we only solved the flow for the upper half to avoid unnecessary

computations. Moreover, we used the symmetry boundary condition for all the variables at the centerline.

The meshes M1, M2, M3, and M4 considered in this study comprise 12230, 48920, 195680, and 782720 cells,

respectively. The mesh M1 is available in the DieSwell tutorial of the RheoTool v2.0 (Pimenta and Alves, 2018) while

the meshes M2, M3, and M4 can be generated by successive refinement. Comminal et al. (2018) validated the

solution methodology presented in this tutorial as well as the corresponding mesh.

6.3 Results

We solved our model for Deborah numbers ranging from 0.25 to 6. The extrudate swell ratio is given by Sr =

Dext/H , where Dext denotes the extrudate width. In Fig. 52(a), we plotted the Sr values against the De number,

calculated using our model and the non-shear banding Giesekus model (α = 0.2 and β = 1/9). The agreement with

the numerical data obtained for Rheotool by Comminal et al. (2018) is very good. This is to expect as we utilized

the same mesh and employed the same software package. Nevertheless, as noted by Comminal et al. (2018), there

are significant variations between different numerical schemes, which deserves future research. Convergence was

observed for the meshes M1 and M2, and, a much higher spatial resolution was obtained inside the flow field with the

mesh M3. Although the trend is very similar for M3, numerical artifacts cause slight deviations, especially at De = 2.
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Our model calculations performed with the mesh M3 show non-stationary ripples close to the free surfaces, which

Comminal et al. (2018) also observed in some of their simulations. Nevertheless, because of the higher resolution,

we decided to utilize the mesh M3 in most of our subsequent simulations.

We find that both models predict an initial decrease of Sr. The occurrence of a local minimum was experimentally

verified for various synthetic polymer melts, including melts of monodisperse and bidisperse polystyrenes (Robertson

et al., 2017, 2019) and high-density polyethylene (Behzadfar et al., 2015), and is related to both shear thinning and

elastic recovery. The presence of an undershoot was also reported for various viscoelastic models (Comminal et al.,

2018; Wesson and Papanastasiou, 1988; Chang and Yang, 1994; Phan-Thien, 1988; Robertson et al., 2017, 2019).

However, the decrease of our model is possibly too strong, which we relate to excessive shear thinning and the use

of a single set of long and short relaxation times, λ1 and λ2, respectively. More importantly, the only modest increase

in the shear banding regime needs to be experimentally verified for shear banding polymer solutions. Comminal et al.

(2018) used the Carreau model and showed a drop from Sr = 1.192 to about 0.993 as the shear-thinning parameter

n decreased from 1 to 0.2. The Oldyord-B model only exhibited a tiny decrease below the Newtonian value as this

viscoelastic model does not account for shear thinning. In the same article, the behavior of the Giesekus model

is analyzed for different values of the anisotropy constant α. The minimum of Sr was further decreased to around

1.1 and shifted to a larger De value by increasing α from 0.2 to 0.5, i.e., by enhancing shear-thinning and second

normal stress effects. The value of α utilized in our model calculations was 0.73, i.e., significantly larger than the

two values examined in their paper. Therefore, we have an even stronger decrease. Using a multimode version of

the Giesekus model, Konaganti et al. (2015) observed that the slope of the curve was still smaller at higher shear

rates than expected from experiments. Robertson et al. (2017, 2019) used the Rolie-Poly model with a spectrum of

relaxation times and calculated the swelling ratio for shear rates starting slightly before the occurrence of the local

minimum. The predictions captured the experimental data very well over a broad shear-rate range, including the

minimum extrudate swell ratio of about 1.1. As the structure of our constitutive equation is similar to that of the

Rolie-Poly model, we believe that we can improve our model predictions by using a spectrum of relaxation times.
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Figure 52: (a) Swell ratio, (b) recoverable shear property at wall, and (c) absolute value of shear stress and value of first normal
stress difference at wall plotted against De number. In Fig. 52(a), the results are shown for different meshes to verify
mesh independency and compared with the non-shear banding Giesekus model (α = 0.2 and β = 1/9).

According to Tanner (1980), Sr can be expressed as a function of Rs, defined as the ratio of the magnitude of the

first normal stress difference to the shear stress evaluated at the wall. We can see in Fig. 52(b) that Rs increases

monotonically with De. The rate of the increase decreases at the onset of shear banding. The individual trends of

the first normal stress difference at the wall, Ñ1,w = σ̃yy,w − σ̃xx,w, and the wall shear stress, σ̃xy,w, are depicted

in Fig. 52(c). Here, we can see the shear banding plateau in the shear stress curve and note that the shape of Rs

closely follows the trend of the first normal stress difference. A comparison to the experimental data is needed to

quantitatively assess the effect of shear banding on Rs and Sr. Allain et al. (1997) reported experimental data for

semidilute polymer solutions; however, the concentration of the polymer was too small to be in the shear banding

regime despite the extremely high molecular weight.

In Fig. 53(a)-(d), we see the profiles of the axial velocity, the polymer number density, the shear stress, and the first

normal stress difference, Ñ1 = σ̃xx − σ̃yy, respectively, at x̃ = −15. The cross-section is selected to neglect the

effects of the inlet and the die exit region. In these plots, ỹ = 0 and 1 represent the centerline and the solid wall of

the die, respectively. The velocity profile changes from parabolic in the low-shear rate regime to plug-like at De ≈ 2.
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This change is related to the onset of shear banding. The kink separating the velocity bands moves toward the center

of the channel as De is further increased, which can be explained by the effect of stress-induced migration. Two

bands are also evident in the polymer concentration at De = 2; the polymer concentration assumes a large plateau

value near the centerline and a sharply decreasing band near the wall. The differences observed in the polymer

number density are extremely small. We do not show the polymer concentration for the larger De values considered

in this work since a significantly more refined mesh would be needed to resolve the transition region between the

bands accurately. The results presented in Fig. 53(a)-(b) can be explained by the different types of diffusion. In

the low-shear-rate regime where the Fickian diffusion is the major mechanism, the polymeric constituents diffuse

from the region with more to less concentration; i. e., from the center to the wall. However, the opposite trend

exists in the shear banding regime. Here, the dominant diffusion mechanism is stress-induced migration, pushing

the velocity kink towards the centerline. For pressure-driven channel flow, the value of σ̃xy is zero at the centerline,

and it increases linearly to the maximum value at the wall (see Sec. 4). The absolute wall shear stress is increased

for increasing De values. The overlap of these profiles in the shear banding regime is expected from the plug-like

velocity profiles, where the similar shear rates of the bands result in similar stress profiles in the plateau regime of

the flow curve. The small difference in the bands comes from the relatively narrow examined De range. In the shear

banding regime, the profile of the shear stress indicates nonlinearity near the wall if the resolution of the mesh is not

high enough. Consequently, the mesh M4 was used to obtain Fig. 53(c). Finally, the first normal stress difference

is larger for larger De values. The value of Ñ1 is zero at the centerline, and it increases as the wall is approached.

This increase is especially strong in the shear banding regime.
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Figure 53: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference
evaluated at x̃ = −15 for different values of De number.

Fig. 54 illustrates the results for the case De = 0.25 at different vertical cross-sections before and after the die exit.

As expected for an extrusion flow, Fig. 54(a) shows that the velocity profile changes from the parabolic profile in

the channel to a more uniform pattern after the channel exit. The zero velocity at the die wall suddenly reaches

the free surface, which leads to sharp extensional acceleration. Consequently, the centerline velocity decreases to

satisfy mass conservation (Richardson, 1970; Agassant et al., 2006; Burghelea et al., 2010). Since we are in the

low-shear-rate regime, the velocity profile in the die is parabolic. Fig. 54(b) depicts the profiles of the polymer number

density in different vertical cross-sections. As the polymer reaches the expansion region, a decrease is observed in

the direction of the interface to satisfy the mass conservation in the liquid phase. In addition, this non-uniform profile

can be described using the non-zero value of the component ṽy though it is very small compared to ṽx. As expected

from a fully developed Poiseuille flow, Fig. 54(c) demonstrates that the profile of the shear stress is linear when it is

further away (x̃ = −5). The first normal stress difference increases around the die exit, whereas it decreases as the

material exits the die (Fig. 54(d)). Since the velocity in the free surface region is uniform, the shear and extensional

stresses are zero at x̃ > 5.0.
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Figure 54: Vertical profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference
calculated for De = 0.25.
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Fig. 55 shows the profiles at different vertical cross-sections of the channel before and after the die exit region for

De = 6, which is in the shear banding regime. The velocity profile changes from the plug-like profile in the channel

to the uniform profile after the die exit. The profile of the polymer concentration is also banded; however, the effect

is negligible compared to the large concentration changes which occur as a result of the expansion at x̃ = 5. The

other results are qualitatively similar to those obtained for De = 0.25 (Fig. 54) while the magnitudes of the variables

are larger. As shown in Fig. 58(c)-(d), the decrease of the shear stress slightly before the die exit near the die wall

is consistent with the stress polarization. Since the extensional forces have been already relaxed in the die flow

due to the large De value, the profiles of the first normal stress difference at the fully developed die channel and

immediately before the die exit are similar.

Figure 55: Vertical profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference
calculated for De = 6.
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Fig. 56 illustrates the profiles in a cross-section parallel to the centerline at ỹ = 0.5. Because the important changes

happen in the die exit region, we depict only the part of the channel in the range −10 6 x̃ 6 10. The axial velocity

decreases at the die exit to form the uniform profiles of the free surface flow outside the die (Fig. 56(a)). We can

see in Fig. 56(b) that after the die exit, the concentration of the polymers is larger for larger De along the selected

cross-selection, whereas the trend was vice versa if the cross-section was closer to the centerline. The decrease

of the velocity occurs after an overshoot and an undershoot at larger De, which was also observed by Venet and

Vergnes (2000) for a multimode version of the exponential Phan-Thien and Tanner model. In addition, they detected

the stress peak in the vicinity of the die exit, as shown in Fig. 56(c). The die exit effect appears as an overshoot in

the profile of the first normal stress difference at large De (Fig. 56(d)) where the material leaves the die. In the free

surface flow where the profiles are uniform, the shear and normal stresses are zero.

Figure 56: Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference for
different values of the De number at the horizontal cross-section ỹ = 0.5.
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Fig. 57 depicts the contours of the flow for De = 0.25. We can observe that the results calculated using the mesh

M2 (on the left) agree with those calculated using the mesh M3 (on the right). The slight surface distortions seen

in the contour plots obtained for M2 are related to the surface generation procedure applied by the open-source

postprocessing software ParaView. As already mentioned, the resolution obtained with M3 is higher inside the

extrudate. However, numerical artifacts appear as non-stationary ripples in the interfacial areas. Since the difference

in the polymer number density is extremely small here, we only comment on the major trends. From the discussion of

Fig. 53(b), we know that in the low-shear rate regime, the polymer number density is governed by Fickian diffusion.

Consequently, there are no concentration bands (Fig. 57(a)-(b)). An important effect that we already noticed in

Fig. 54 is the reduction of the polymer number density in the expansion region after the die. The shear stress

increases from zero at the centerline to the maximum at the wall in the die and becomes zero at the die exit

(Fig. 57(c)-(d)). There is a sign change in the shear stress close to where the die meets the free surface (Bush

et al., 1984; Konaganti et al., 2016; Pettas et al., 2015; Venet and Vergnes, 2000). In agreement with the previous

computational predictions (Crochet and Keunings, 1980; Bush et al., 1984; Salipante et al., 2017; Burghelea et al.,

2010; Konaganti et al., 2016), the first normal stress difference is relatively small in the die as the flow is shear flow,

and it becomes maximum at the die exit due to the stretching of the polymer as a consequence of transition from

no-slip to free boundary condition (Fig. 57(e)-(f)). Since the flow has developed uniform velocity profiles, both the

shear stress and the first normal stress difference are zero at the downstream away from the die exit. The negative

values of the latter quantity near the centerline at the die exit are related to the local velocity deceleration.

100



Figure 57: The contours of (a)-(b) polymer number density, (c)-(d) shear stress, and (e)-(f) first normal stress difference
calculated for De = 0.25 using mesh M2 (left) and mesh M3 (right).

The contours shown for De = 3 in Fig. 58 are compared with the results of Fig. 57. For both De values, the polymer

number density is reduced in the expansion region after the die. A fundamental difference to the low-shear rate

case is the reduced polymer number density near the walls inside the channel. This phenomenon also occurs in a

pure channel (as already observed in Sec. 4 and Sec. 5), i.e., in the absence of a free surface and is related to the

presence of two concentration bands (Fig. 58(a)-(b)), as already noticed in Fig. 53(b). The trends of the shear stress

(Fig. 58(c)-(d)) and the first normal stress difference (Fig. 58(e)-(f)) are qualitatively similar to what was observed in

Fig. 57(c)-(f). However, the magnitudes are larger due to the increased De number. As aforementioned, the surface

oscillations for the fine mesh have also been observed in other studies (Comminal et al., 2018, e.g.). These are

numerical artifacts due to the approximations of the two-phase flow with the Eulerian surface-capturing approach.

101



Figure 58: Contours of (a)-(b) polymer number density, (c)-(d) shear stress, and (e)-(f) first normal stress difference calculated
for De = 3 using mesh M2 (left) and mesh M3 (right).

6.4 Conclusion

In this chapter, we studied and discussed shear banding in an extrusion flow using our recently developed two-fluid

model for semidilute entangled polymer solutions. In this model, shear banding is associated with the stress-induced

migration of the polymeric constituents. We observed a local minimum in the profile of the extrudate swell ratio

against the Deborah number immediately after the Newtonian case. The subsequent increase is significantly

reduced, which may be related to both the influence of shear banding and the use of a single set of long and

short relaxation times, λ1 and λ2, respectively. Owing to the change in the boundary conditions from no-slip at the

wall to the free surface condition, both the parabolic velocity profile in the low-shear-rate regime and the plug-like

profile of the shear banding regime developed to uniform profiles at the downstream after the die exit. Consequently,

the stresses demonstrate peaks at the die exit region, whereas they become zero after the die exit region. The

vertical profiles of the polymer number density inside the channel closely follow that of the axial velocity. As a result

of the stress-induced migration, we noticed plateau values followed by a sharp decrease in the polymer number

density as the wall is approached. However, this effect was much smaller than the concentration changes observed

after the die exit, which occurs as a result of the expansion. The results and the simplicity of our model encourage
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us to study further types of mixed flows. To improve the model capabilities, we can extend it to multiple modes and

make the defined parameters to depend on the polymer concentration. Finally, there is a lack of experimental work

of extrusion swell on shear banding polymer solutions.
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7 Summary and outlook

We developed a new two-fluid model for semidilute entangled polymer solutions using the generalized bracket

approach of non-equilibrium thermodynamics to study rheological behaviors such as shear banding. The new

model is based on the hypothesis that diffusional processes like Fickian diffusion and stress-induced migration are

responsible for steady-state shear banding in semidilute entangled polymer solutions. The time evolution equation

for the conformation tensor includes a nonlinear Giesekus relaxation, which accounts for the stress overshoot of a

shear-banding material during the rapid start-up of simple shear flow and hydrodynamic interactions between the

constituents of the solution. To capture the upturn of the flow curve at high shear rates, we developed a nonlinear

relaxation term that resembles the term used in the Rolie-Poly model to account for CCR and chain stretch. Although

stress diffusion is accounted for in this two-fluid approach, an additional stress-diffusive term had to be included to

the conformation tensor equation to control the smoothness of the profiles.

The advantage of this two-fluid approach is that the differential velocity is treated as a state variable. Consequently,

the additional boundary conditions arising from the higher diffusive derivatives in the time evolution equation of the

differential velocity can be directly imposed with respect to this variable. For instance, no-slip and no-flux boundary

conditions translate into the requirement that the tangential and normal components, respectively, of the differential

velocity must be zero at the boundaries. Another advantage is that the total mass is conserved by the model

equations themselves. Therefore, it is no longer necessary to explicitly impose a no-flux condition on the polymer

concentration to prevent outflow material through the system boundaries. Because our model is relatively simple, it

is an ideal candidate for use in more complicated flow simulations. We solved four flows with our model, namely a

cylindrical Couette flow, a pressure-driven channel flow, a 4:1 contraction flow, and an extrusion flow.

We solved a cylindrical Couette flow to investigate the general behavior of the new model. We found that the

steady-state solution is unique for different initial conditions and independent of the applied deformation history.

Furthermore, the value of the local diffusivity constant has no significant effect on the steady-state solution. In

agreement with the experiments of Callaghan and Gil (2000), velocity and concentration banding is predicted.

Furthermore, we observed that stress-induced migration is responsible for shear band formation.

The computational results of the pressure-driven channel flow showed a plug-like profile of the velocity and

concentration bands for the same range of pressure gradients. Increasing the value of the pressure gradient shifted

the kink separating the shear bands to the center of the channel. The steady-state profile of the first normal stress
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difference monotonically increased from the center of the channel to a maximum value at the walls. The value

of the nonlocal diffusivity constant did not significantly influence the total velocity and the wall shear stress. The

polymer concentration showed the same temporal behavior for different values of the nonlocal diffusivity constant.

However, the steady-state solution was more uniform when we used larger nonlocal diffusivity constant. The results

of the volumetric flow rate calculated using different values of the pressure gradient in the ramp-up and -down

tests agreed, thereby confirming the uniqueness of the solution. This profile showed a spurt at a critical pressure

gradient, as experimentally observed in the pressure-driven shear flows of polymeric materials. We also studied the

effect of wall slip using the linear Navier slip model to illustrate how to account for slip in our two-fluid framework. We

noticed that the slip velocity of the solvent had no significant effect on the solution, whereas changing the polymer

slip vertically shifted the velocity profile.

The results of the contraction flow revealed that the size and the intensity of the corner vortex increase with the

Deborah number as a result of shear-thinning, but they decrease after the onset of shear banding; these findings are

in agreement with experiments. The axial velocity profile forms a plug-like shape in the shear banding regime after the

contraction, where the local De number is much larger because of the smaller channel width. The kinks separating

the velocity bands move toward the centerline as De increases. For the De values investigated in this work, the

concentration of the polymer in the recirculation region is strongly increased. However, there is an increased effect

of shear banding on ñp at larger De, typically encountered in industrial processing flows.

The study of the extrusion flow showed a local minimum in the profile of the die swell ratio against the Deborah

number immediately after the Newtonian case, which is followed by a positive slope that is very small as a result of

shear banding. Owing to the change in the boundary conditions from no-slip at the wall to the free surface condition,

both the parabolic velocity profile in the linear viscoelastic regime and the plug-like profile of the shear banding regime

developed to uniform profiles at the downstream after the die exit. Consequently, the stresses demonstrate peaks at

the die exit region, whereas they become zero after the die exit region. The polymers were more concentrated near

the centerline in the linear viscoelastic regime since the dominant diffusional process is Fickian. However, the trend

is more pronounced in the shear banding regime because of the stress-induced migration dominance. Moreover,

this effect was much smaller than the concentration changes observed after the die exit, which occurs as a result of

the expansion.

The results and the simplicity of the new model encourage us to analyze the model behavior in more complicated

types of inhomogeneous flows. To do so, higher-order approaches can be implemented in the model to increase its
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numerical capabilities. The model parameters can be defined to be dependent on the concentration or the molecular

weight of the polymer. Furthermore, the model can have a more realistic spectrum of the relaxation times by for

instance including additional component. To verify the hypotheses of the new model, and to assess the validity of

the results, we need to conduct experiments such as PIV measurements to observe velocity profiles, and SANS and

high-speed videography of labelled polymers to examine microstructural and conformational changes during flow.
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Symbols

α mobility factor

r̄ end-to-end vector of polymer chain

β viscosity ratio

γ strain

Λ1
αβγε general fourth-order reptation relaxation tensor

Λ2
αβγε general fourth-order Rouse relaxation tensor

γ̇ shear rate

σ total stress

σp extra stress associated with the polymer

σs viscose stress

C polymer structural tensorial parameter density

c polymer conformation tensor

D symmetric velocity gradient tensor

I identity tensor

N1 first normal stress difference

χ ratio of the molecular weight of the solvent to that of the polymer

χL size of the lip vortex in the contraction flow

χR size of the corner vortex in the contraction flow

∆p pressure gradient

γ̇1 shear rate of the plateau beginning

γ̇2 shear rate of the plateau end
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ε ratio of the characteristic relaxation times

ε′ Rolie-Poly model parameter controlling the strength of CCR

η dynamic viscosity

η0 zero shear viscosity

ηp polymer viscosity

ηs Newtonian solvent viscosity

λ1 reptation relaxation time

λ2 Rouse relaxation time

∆m differential momentum density

∆v differential velocity

m total momentum density

mp polymer momentum density

ms solvent momentum density

v mass-averaged velocity of the polymer solution

vp polymer velocity field

vs solvent velocity field

wt/wt% Mass fraction

µ initial polymer concentration in the solution

Ω flow domain

φ color function representing the distribution of the phases

ρ total mass density of the polymeric solution

ρp polymer mass density

ρs solvent mass density

τ ′ a relaxation time
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τ ′′ a relaxation time

τxy shear stress

Θ liquid volume fraction

ã dimensionless ramp rate of the rheometer

P̃x dimensionless pressure gradient

Q̃ dimensionless volumetric flow rate

ψ̃R vortex intensity

ξ̃ boundary layer constant

Bαβ second-order transport coefficient

c total polymer concentration in the solution

c∗ overlap concentration

c∗∗ crossover concentration

CR contraction ratio

D local diffusivity constant

Dext extrudate width

Dnonloc nonlocal diffusivity constant

De Deborah number

E elasticity number

F arbitrary functional of the system variables

G0 modulus of elasticity evaluated at the linear viscoelastic limit (plateau modulus)

H Hamiltonian

h total local free energy density

He total elastic potential energy of the system

Hk total kinetic energy of the system
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K Hookean spring

k1 wave magnitude

k2 wave number

kB Boltzmann constant

kp constant controlling the amount of wall slip of the polymer

ks constant controlling the amount of wall slip of the solvent

M1 coarsest mesh

M4 finest mesh

Mp molecular weight of the polymer

Ms molecular weight of the solvent

NA Avogadro constant

np polymer number density

ns solvent number density

q power-law parameter

q′ Rolie-Poly model parameter controlling the suppression of CCR with chain stretch

q∗ dimensionless curvature of the Couette flow

r∗ dimensionless location in the gap of the cylindrical Couette flow

Rg radius of gyration

Ri radius of the inner cylinder in the Couette flow

Ro radius of the outer cylinder in the Couette flow

Rs The recoverable shear property at the wall

Sr die swell ratio

T absolute temperature

Uin inlet mean velocity
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Uout outlet mean velocity

V wall velocity of the simple shear flow

Vθ angular velocity

Wi Weissenberg number

Zαβ drag coefficient tensor

H characteristic height

S displacement
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Glossary

CCR convective constraint release.

CUBISTA convergent and universally bounded interpolation scheme for the treatment of advection.

DIC diagonal incomplete-Cholesky.

FENE-P finite extensible nonlinear elastic with Peterlin’s closure.

ILU incomplete lower upper.

LDPE low-density polyethylene.

MULES Multidimensional Universal Limiter with Explicit Solution.

NMR nuclear magnetic resonance.

OCT optical coherence tomography.

PIV particle image velocimetry.

PTT Phan-Thien-Tanner.

PTV particle tracking velocimetry.

Rolie-Poly Rouse linear entangled polymers.

SANS small angle neutron scattering.

SIMPLEC Semi-Implicit Method for Pressure Linked Equations-Consistent.

UCM Upper-convected Maxwell.

VCM Vasquez-Cook-McKinley.

VOF volume of fluid.
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applied. The terminal value of Wi was set to six. (b) Steady-state profiles of the polymer number density

calculated using differently perturbed initial conditions. The model parameters are the same as those given in the

caption of Fig. 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

114



25 Two-dimensional rectilinear channel flow driven by a pressure gradient. . . . . . . . . . . . . . . . . . . . . . 55

26 Temporal evolution of the magnitude of the wall shear stress calculated for the Oldroyd-B model with β = 10−5

and validation with the analytical solution using (a) different values of the pressure gradient with E−1 = 10−5 and

(b) different reciprocal elasticities with P̃x = −10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

27 Temporal evolution of the magnitude of the shear stress at the wall calculated for the two-fluid model using

different values of α. The other nontrivial values of the model parameters used in the calculation areE−1 = 10−5,

P̃x = −10, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and D̃ = D̃nonloc = 10−3. . . . . . . . . . . . . . . . 60

28 Effect of D̃ on (a) the temporal evolution of the magnitude of the wall shear stress and (b) the temporal evolution

of the polymer number density at the wall. The other nontrivial values of the model parameters are E−1 = 10−5,

P̃x = −10, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and D̃nonloc = 10−3. . . . . . . . . . . . . 61

29 Temporal evolution of the velocity profile with (a) D̃ = 10−3 and (b) D̃ = 10−1. The other nontrivial values of the

model parameters are E−1 = 10−5, P̃x = −10, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5, χ = 10−1, and

D̃nonloc = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

30 Effect of D̃nonloc on the (a) temporal evolution of the wall shear stress magnitude, (b) temporal evolution of the

polymer number density at the wall, (c) steady-state profile of the polymer number density across the gap, and

(d) steady-state profile of the velocity across the gap. The other nontrivial values of the model parameters are the

same as those given in the caption of Fig. 29(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

31 Near-wall dynamics of the (a) xx- and (b) xy-components of the conformation tensor. The nontrivial values of the

model parameters are the same as those given in the caption of Fig. 29(a). The y = 0 and 0.5 values correspond

to the centerline and the channel wall, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

32 Influence of the pressure gradient on the steady-state profiles of the (a) velocity, (b) shear stress, (c) first normal

stress difference, and (d) polymer number density across the channel. The other nontrivial values of the model

parameters are the same as those given in the caption of Fig. 29(a). . . . . . . . . . . . . . . . . . . . . . . 65

33 Effect of the pressure gradient on the (a) dimensionless volumetric flow rate with D̃nonloc = 10−3 and (b) the

value of the dimensionless volumetric flow rate in ramp-up tests with different values of D̃nonloc. The other

nontrivial values of the model parameters are the same as those given in the caption of Fig. 29(a). . . . . . . . 66

34 Effect of the pressure gradient on the location of the kink for different values of D̃nonloc. The other nontrivial

values of the model parameters are the same as those given in the caption of Fig. 29(a). . . . . . . . . . . . . 67

115



35 Effect of the value of the slip constants on the steady-state profiles of the total velocity (left column) and the

differential velocity (right column) in the x-direction with two pressure gradients P̃x = 10 (top row) and P̃x = 100

(bottom row). The values of the parameters are E−1 = 10−5, α = 0.73, ε = 0.0025, q = 1.46, β = 10−5,

χ = 10−1, ξ̃ = 10−3, and D̃ = D̃nonloc = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

36 Influence of the specific viscosity on (a) the steady-state profile of the polymer number density and (b) the

differential velocity in the x-direction across the gap width with P̃x = 10 and kp = ks = 50. The other model

parameters are the same as those given in the caption of Fig. 35. . . . . . . . . . . . . . . . . . . . . . . . . 69

37 Planar 4:1 contraction geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

38 Solution of Oldroyd-B model for 4:1 contraction: (a) size of dimensionless corner vortex for different Deborah

numbers and (b) streamlines at De = 4 and Re = 0.01. The results are compared with those of Pimenta and

Alves (2017) for validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

39 (a) Dimensionless shear stress and first normal stress difference vs dimensionless shear rate in homogeneous

simple shear flow. (b) Dimensionless viscosity vs dimensionless extension rate in homogeneous uniaxial extension. 76

40 (a) Corner vortex size normalized by characteristic height H and (b) corner vortex intensity normalized by UoutH

versus Deborah number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

41 Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

evaluated at x̃ = −75 for different Deborah numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

42 Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

evaluated at x̃ = 75 for different Deborah numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

43 Contours of (a) stream function, (b) polymer number density, (c) shear stress, and (d) first normal stress difference

for De = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

44 Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference for

De = 0.5 at vertical cross-sections x̃ = −10, −1.5, −0.5, 1.0, and 5.0. . . . . . . . . . . . . . . . . . . . . . 81

45 Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal stress difference for
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