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ABSTRACT

Low-cost mobile mixed reality solutions for head tracking, as well
as tracking of interaction targets, can be enhanced by multiple in-
ertial measurement units (IMUs). Since microelectro-mechanical
systems (MEMS) were introduced, IMUs have become smaller, they
need less power and cost less. Yet, as any sensor, IMUs produce
sensor error and mitigate the accuracy of the tracking system. This
is particularly the case for low-cost IMUs. In this article, we inves-
tigate whether the joint use of three IMUs can reduce the overall
error. We present a solution fusing three independently calibrated
low-cost IMUs on a planar and non-planar grid. We show that we
can achieve the tracking quality of a single high-cost IMU this way.
For the comparison, we offer several one Degree of Freedom mea-
surement setups for mechanical rotation and translation movements.
Afterwards, we discuss some concepts towards designing non-planar
arrangements of Multi-IMUs in a Grid that may be suitable for HMD
tracking.

Index Terms: Inertial Tracking—Sensor Fusion—calibration—
Registration—-Error Modelling

1 INTRODUCTION

An IMU is an electronic device that senses the change of kinematic
energy of a moving body. IMUs are often incorporated in navigation
systems. The insensitivity to occlusions and illuminations make
them a good complement for other tracking modalities such as
optical. Apart from navigation purposes, IMUs are also used in
applications including robotics, head-mounted devices (HMD) for
virtual reality, remote gaming controllers, and the balancing system
of Segways.

Typical configurations of an IMU are composed of three ac-
celerometers, three gyroscopes and sometimes also a magnetometer
for the three Cartesian axes. An IMU works by detecting the cur-
rent rate of acceleration, as well as changes in rotational attributes,
including pitch, roll and yaw [5].

The accuracy of an IMU depends on a variety of errors and on
the effectiveness of the updating procedure in reducing these errors.
High quality IMUs provide an onboard calibration and accurate
results. Yet, they cost about the same or more than AR/VR-related
mobile devices and are thus too expensive to be included in Smart-
phones or HMDs. For such AR-related application scenarios, we
are investigating low-cost multi-IMU setups. We expect such cheap
multi-IMU based tracking to be also suitable for tangible gadgets in
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AR and VR applications. Instead, low-cost IMUs with low two digit
prices are used despite their disadvantage of lower quality.

This article focuses on low-cost multi-IMU setups, investigating
whether several low-cost IMUs together can achieve similar perfor-
mance as a single high-cost IMU. To this end, we investigate the
impact of calibration as well as various sensor fusion concepts on
the achievable accuracy. We compare the accuracy of a high-cost
IMU with a number of low-cost variants: a) with a single calibrated
low-cost IMU, b) with multi-registered fused low-cost IMUs and
c) with multi calibrated registered fused low-cost IMUs. We use a
linear slider and a rotation platform as 1-DoF measurement setups
to systematically investigate rotational and translational movements.
These known mechanical movements can be employed as ground
truth and for the definition of a motion model. We apply a root mean
square error (RMSE) comparison analysis to evaluate the accuracy.

Combined use of multiple low-cost IMUs can improve the quality
of mixed reality tracking. Several approaches have been already
been proposed to achieve better performance and high accuracy.
Shahri and Rasoulzadeh have presented a homogenous multi-sensor
fusion technique to evaluate the true angular rate and acceleration
with a combination of four low-cost IMUs based on the Steady
State Kalman Filter [14]. Skog et al. [15] implemented a low-cost
multi inertial measurement unit (MIMU) systems platform. Further,
Bancroft and Lachapelle [3] developed several fusion algorithms to
use multiple IMUs in conjunction with GPS to enhance performance
and increase accuracy. In the work presented in this article, we
have applied two different arrangements, a basic and a planar one.
Furthermore we have calibrated three low-cost IMUs to eliminate the
deterministic errors. In the planar arrangement, we have conducted
a registration process to transform the sensed motion to specific
coordinate systems. We have performed a comparison between
calibrated fused data, raw fused data of multi-IMU and high-cost
IMU. Such calibration in combination with registration and fusion
has not been considered in previous work.

This article proceeds as follows. Section 2 describes the theo-
retical aspects of our algorithm for multi-IMU fusion. Section 3,
explains the implemented hardware setup. The practical experiments
are shown in section 4. The results of the experiments are presented
in section 5, verifying the aim of this research. In section 6 we
discuss the limitations and further research issues of our approach.

2 PIPELINE FOR MULTI-IMU CALIBRATION AND FUSION

The mathematical model for multi-IMU calibration and fusion con-
sists of several steps (see Fig. 1). Starting with the raw data of
several IMUs, we individually calibrate each IMU (section 2.1). We
then describe how to register several IMUs as a joint fixed setup, ar-
ranged either in a plane or in 3D (section 2.2). Finally, we present a
sensor fusion approach based on a federated Kalman filter in section
2.3. A real implementation of the system is presented in section 3.
It is tested in section 4. The results are presented in section 5.



Figure 1: Experimental Process

2.1 Calibration of a Single IMU
The accuracy of an IMU depends on a variety of errors and on the
effectiveness of the updating procedure in reducing these errors.
When integrating linear accelerations and angular rates to calculate
the position and orientation of an object, measurement errors are
accumulated. They cause the so-called drift error, which is a major
disadvantage of IMUs. Thus, it is of essential importance that errors
be kept to a minimum.

The sensor errors of the gyroscopes and the accelerometers can be
divided into a deterministic (constant) part and a stochastic (random)
part. The deterministic part includes a bias (offset), an axis misalign-
ment and a scale factor. These can be determined by calibration and
can therefore be removed from the raw measurements (see Sections
2.1.1 and 2.1.2). The random part includes, for example, bias drift,
and random noise (see Section 2.1.3). These errors need to be sam-
pled during the calibration process such that they can be described
in a stochastic model and included as a filter in the sensor fusion
process (e.g., in the Kalman filter state vector [6]) (see Section 2.3).

There are various methods to calibrate IMUs. In this study, we
used the calibration technique from Tedaldi et al. which does not
require high end equipment such as high precision rate table [16],
using the error models that are described below.

2.1.1 Calibration of an Accelerometer
Due to imprecise construction, the three accelerometers of an IMU
do not constitute a perfect Euclidean coordinate system. They thus
do not measure acceleration in three completely uncorrelated direc-
tions. Rather, the axes are skewed. Furthermore, the measurements
are scaled and they have a bias (offset). In consequence, the accelera-
tion vector defined by the measurements of the three accelerometers
at a fixed IMU pose k, as,k, deviates from the real physical pose
vector, ap,k.

To discount these imprecisions, we define an axis misalignment
matrix, Ma, a scale factor matrix, Sa, and a bias vector vector ba.
We determine these correction parameters during the calibration
process, taking a large set of measurements for each of K different
IMU poses.

Eq. 1 describes the transformation of the kth acceleration mea-
surement as,k back to the unskewed, unscaled and unbiased real
physical vector ap,k.

ap,k = Ma ·Sa · (as,k−ba)

= Ea · (as,k−ba)

= h(as,k,θa)

(1)

with

Ma =

1 −αy,z αz,y
0 1 −αz,x
0 0 1

, Sa =

Sax 0 0
0 Say 0
0 0 Saz

,

Ea = Ma ·Sa =

e0,0 e0,1 e0,2
0 e1,1 e1,2
0 0 e2,2

, and ba =

bax

bay

baz

.

To calibrate the accelerometer, we define the cost function L(θa)
(Eq. 2). For a static (no motion) setup at IMU pose k, it relates the
corrected accelerometer vectors h(as,k,θa) to the gravity vector, g.

L(θa) =
K−1

∑
k=0

(‖g‖2−‖h(as,k,θa)‖2)2 (2)

θa = {e0,0,e0,1,e0,2,e1,1,e1,2,e2,2,bax ,bay ,baz} defines the vector
of nine unknown parameters. ‖g‖ is the magnitude of the local
gravity vector.

The cost function can be optimized by applying the Levenberg-
Marquardt algorithm over K ≥ 9 sets of static (no motion) measure-
ments.

2.1.2 Calibration of a Gyroscope
Similarly, Eq. 3 gives the error model for the gyroscope. Let ωs,k be
the kth angular velocity vector measured by the gyroscope, and ωp,k
the corresponding unskewed, unscaled and unbiased physical vector
of the angular velocity. We define an axis misalignment matrix, Mω ,
a scale factor matrix, Sω , and a bias vector vector bω .

ωp,k = Mω ·Sω · (ωs,k−bω )

= Fω · (ωs,k−bω )
(3)

with

Mω =

 1 −βy,z βz,x
βx,z 1 −βz,x
−βx,y βy,x 1

, Sω =

Sωx 0 0
0 Sωy 0
0 0 Sωz

,

Fω = Mω ·Sω =

 f0,0 f0,1 f0,2
f1,0 f1,1 f1,2
f2,0 f2,1 f2,2

, and bω =

bωx

bωy

bωz

.

The bias vector bω can be calculated by averaging the static
measurements of the gyroscope.

To calibrate the gyroscope, we define the cost function L(θω ) (Eq.
4). It relates the the kth gravity versor, measured by the calibrated
accelerometer in the kth static measurement ua,k, to a versor uω,k
that is given by function Ψ in Eq 5 as described below.

L(θω ) =
K−1

∑
k=1
‖ua,k−uω,k‖2 (4)

uω,k = Ψ(ωs,k,ua,k−1) (5)

Ψ calculates the current versor uω,k by integrating from the previ-
ous k−1th gravity versor (as measured by the calibrated accelerome-
ter ua,k−1) the current versor uω,k based on ωs,k, the angular velocity
sensed during the rotation movements between the k−1th and the
kth static measurements. ωs,k is integrated to get the orientation
(quaternion), which can be multiplied with ua,k−1 to calculate uω,k.

θω = { f0,0, f0,1, f0,2, f1,0, f1,1, f1,2, f2,0, f2,1, f2,2} defines a vec-
tor of nine unknown parameters. These can be determined by mini-
mizing the cost function (see Eq. 4) with the Levenberg-Marquardt
algorithm.

The calibration procedure collects K sets of static measurements
and K-1 sets of rotation measurements between the static measure-
ments.

2.1.3 Allan Variance
The random part of the sensor errors of accelerometers and gy-
roscopes concerns issues such as bias drift, and random noise.
Bias drift, or bias instability, is caused by random flickering of



the electronics to fluctuate unpredictably. Another issue is quan-
tization noise, as well as angle/velocity random walk noise and
rate/acceleration walk noise.

Allan variance (AV) [8] is a method to address these issues. It
is used to characterise various types of noise terms in the inertial
sensor data [4]. It divides a given input signal w(t) into a set of
k ∈ {0 . . .K− 1} local windows (overlapping or not) of width τ ,
calculating the average w̄(t,τ)k for each window k. It then computes
the squared difference (w̄(t,τ)k− w̄(t,τ)k−1)

2 between neighboring
averages and determines the mean squared difference across all win-
dows k ∈ {0 . . .K−1}. This can be expressed for varying window
sizes as a function of τ (see Eq. 6).

σ
2(τ) =

1
K

K−1

∑
k=0

(w̄(t,τ)k− w̄(t,τ)k−1)
2 (6)

σ2(τ) describes the root mean square random drift error as a
function of averaging time τ . It has the expressive power to describe
noise with respect to different frequencies (window sizes). It is a
characteristic curve whose inspection provides systematic character-
isation of various random errors present in the inertial sensor output
data [9, 13, 18]. Fig 2 is a sample log-log plot of σ(τ) versus τ .

Figure 2: Sample Allan variance plot for gyroscope (adapted from [18])

This allows easy identification of various random processes that
exist in the data. They can be determined based on the local slope
of the function, yielding five ranges. Each range is associated with
different physical sensing issues: quantization noise, angle random
walk (velocity random walk, resp.), bias instability, rate random
walk (acceleration random walk, resp.) and rate slope.

σ
2(τ) =



σQ(τ) if 0≤ τ ≤ τ1; slope =−1
σARW (τ) if τ1 ≤ τ ≤ τ2; slope =−1/2
σBI(τ) if τ3 ≤ τ ≤ τ4; slope = 0
σRRW (τ) if τ4 ≤ τ ≤ τ5; slope = 1/2
σRS(τ) if τ5 ≤ τ ≤ τ6; slope = 1

(7)

Subsequently, we concentrate on two random errors which can
be calculated by AV. Those random errors will be used by the sensor
fusion in section 2.3.

Angle random walk (ARW) for gyroscopes and Velocity ran-
dom walk (VRW) for accelerometers, respectively: High frequency
noise terms, that have correlation time much shorter than the sample
time can contribute to the gyro angle (or accelerometer velocity)
random walk. The Allan variance for angle (velocity) random walk
becomes

σ
2(τ) =

Q2

τ
(8)

Q = σARW (τ)×
√

τ (9)

Eq 8 indicates that a log-log plot of σ2(τ) has a slope of -1/2.

Rate random walk(RRW) for gyroscopes and Acceleration
random walk (ARW) for accelerometers, respectively: This noise
is a result of integrating wideband acceleration PSD. This is a ran-
dom process of uncertain origin, possibly a limiting case of an
exponentially correlated noise with a very long correlation time. The
Allan variance of rate random walk is

σRRW
2(τ) = (

K2

3
)× τ (10)

K = σRRW (τ)×
√

3
τ

(11)

This indicates that rate random walk is represented by a slope of
+ 1/2 on a log-log plot σ2(τ) of versus τ .

2.2 Arrangement and Registration of Several IMUs

2.2.1 Spatial Arrangement

With six degrees for freedom (DoF) per IMU, a large number of
potential arrangements exist for aligning the IMUs with respect to
position and/or orientation (18 DoF in total). We intend to investigate
whether partial alignments help obtaining more accurate results or
whether it is better to vary over as many degrees of freedom as
possible.

We begin with the most basic arrangement, placing the three
IMUs in a row with aligned orientations for the x-, y- and z-axes (see
Fig. 3a). Mathematically, the change in positions does not have an
impact on the measurements. Thus, in principle, this arrangement
yields a test situation to fuse identical measurements from 3 IMUs.
The main coordinate system belongs to the middle IMU.

In a second setup, we position the IMUs in a planar arrangement,
keeping the same orientation for the x-axis, but rotating the arrange-
ment by 90° and 180° around the x-axis and thereby shuffling the
orientations of the y- and z-axes. The coordinate system of the IMU
in the front side is choosen as the main coordinate system.



a) Linear placement, aligned orientations of the x-, y- and z-axes

b) Planar placement, aligned orientation~x, rotated orientations for
the y- and z-axes

Figure 3: Two conceptual arrangements of 3 IMUs

2.2.2 Registration

Each IMU sensor measures the motion in its own body coordinate
system. Since the three IMUs are rigidly attached, they exert the
same motion. The acceleration and the angular velocity of the
all IMUs can be transformed to the main coordinate system when
the transformations R|T between the main IMU and the two slave
IMUs are known, i.e., when the coordinate systems are registered
to the main IMU. The translation component cancels out because
acceleration is a vector. Thus, only the rotation transformations need
to be determined.

1. ART Tip Registration

Track ART Target Pose T1

Calculate Translation to Tip

Save 3D Tip Position

Main IMU Registration

Multiply T1 and Tip Position

Tip at IMU Chip Corners

Calculate Center of IMU

Save MainIMU Center Pose

SlaveIMU Registration

Multiply T1 and Tip Position

Tip at IMU Chip Corners

Calculate SlaveIMU Center

Multiply MainIMU with SlaveIMU 

Save Registered Slave Pose

3D Tip Position

6DoF MainIMU
Pose

Figure 4: Registration of slave-IMU to Main-IMU

Figure 4 shows the registration process. For the registration an
outside-in optical tracking system (ART) is used [1]. We begin by
registering the tip of a pointer target in the optical tracking system
[17]. With this pointer we then determine the pose of the main
IMU in the ART tracking coordinate system by tipping on the four
corners of its circuit board. The body coordinate system of each
IMU is in the centre of the circuit board. Similar to the main IMU,
we calculate the pose of the slave IMUs. Each of these poses can
be registered with respect to the main IMU by inverting the pose of
the main IMU and multiplying with the pose of the respective slave
IMU (see Fig. 5 [12].

Figure 5: Spatial relationships between the IMUs and the outside-in
cameras system needed for registration

2.3 Sensor Fusion
2.3.1 Principle of Decentralised Filtering
To fuse the tracking data from three IMUs, we use decentralised
filtering. It is a two-stage data processing technique. In the first



stage, each local processor uses its own data to make a best local
estimate. In the second stage, these estimates are combined across
all local sensors. The local estimates are fused by a master filter to
make a best global estimate of the state vector of the entire system.

Federated Kalman filtering is a decentralised filtering algorithm
with a two-level structure as shown in Fig 6. The difference between
the federated Kalman filter and other decentralised filters is that
the federated Kalman filter contains an information sharing process.
During this process, the total system information is divided among
the local filters based on an information sharing principle. The basic
concepts of information sharing also include that it can perform
local time propagation and measurement update processing (adding
local sensor information) and it can recombine the updated local
information into a new total sum [3, 7, 19].

Figure 6: Federated Kalman filtering architecture (adapted from [19])

The steps involved in the decentralised filtering process will now
be described in detail.

2.3.2 Local Filters
For each local filter i = 1,2,3, we use an Unscented Kalman Filter
(UKF) for the triaxial accelerometer bundles and for the triaxial
gyroscope bundles.

The motion model the accelerometers of IMUi, i = 1,2,3 consists
of 1) the estimated state vector X̂i defined by position pi, velocity vi
and acceleration ai, 2) the observation vector zi defined by measured
acceleration ai, 3) the transition matrix Fi for the prediction step
assuming constant acceleration, 4) the observation model Hi, 5) the
process noise Qi: a 3x3 white noise matrix (VRW), 6) the measure-
ment noise Ri: a 1x1 matrix (RRW) and 7) the state variance matrix
Pi: a 3x3 matrix

with

X̂i =

pi
vi
ai

, zi =
[
ai
]
, Fi =

1 ∆t 0.5∆t2

0 1 ∆t
0 0 1

, Hi =[
0 0 1

]
Similarly, the motion model of the three gyroscopes IMUi i =

1,2,3 consists of 1) the estimated state vector X̂i defined by angle αi
and angular velocity ωi, 2) the observation vector zi defined by mea-
sured angular velocity ωi, 3) the transition matrix Fi for prediction
step, assuming constant angular velocity, 4) the observation model
Hi, 5) the process noise Qi: a 3x3 white noise matrix (ARW), 6) the
measurement noise Ri: a 1x1 matrix (RRW) and 7) the state variance
matrix Pi: a 3x3 matrix

with

X̂i =

[
αi
ωi

]
, zi =

[
ωi
]
, Fi =

[
1 ∆t
0 1

]
, Hi =

[
0 1

]
Each local filter i = 1,2,3 receives as input the observation vector

zi from the local sensor i, consisting of acceleration data ai and
angular velocity ωi. As output, they each provide their updated state
vector X̂i as well as their state variance matrix Pi

2.3.3 Master Filter

The master filter is also an Unscented Kalman Filter (UKF). It re-
ceives the outputs x̂i , Pi from all local filters i = 1,2,3 as input. It
generates as outputs the updated state vector of the overall system
state X̂ f , as well as an overall state variance estimate Pf and a scalar
weight βi . These are fed back to all local filters to serve as additional
inputs, influencing their states and their noise estimates. Further-
more, they constitute the overall system output, made available to
applications using the IMUs as a bundled tracking device.

Internally, the master filter takes the system states and the state
variance matrices of the local filters and performs the following
steps:

1. Time Update: compute a time update of X̂ f , Pf
Xm = F ·X f ,
Pm = F ·Pf ·FT +Q

2. Fusion: compute Pf , X̂ f and βi

P−1
f = P−1

m +
n

∑
i=1

Pi
−1

X̂ f = P−1
m ·Xm +

n

∑
i=1

Pi
−1 · X̂i

let Λi be the eigenvalue of Pi.Pi
T

βi =
tr(Λi)

tr(Λm)+

n

∑
i=1

tr(Λi)

3. Updating local value: update X̂i , Pi according to X̂ f , Pf

X̂i = X̂ f ,

Pi = βi
−1 ·Pf

3 IMPLEMENTATION OF MULTI-IMU SETUPS

One of our assumptions is, that there is a difference in the fusion
quality between rectified and not rectified Multi-IMU Setups. To
verify this hypothesis, we have built a nearly rectified linear IMU
setup on a breadboard (see 7 a) and a not rectified IMU setup, where
the IMUs are attached to three sides of a cube and the coordinate
systems thus have different orientations. The cube-based setup
imitates the conceptional arrangement of Figure 3 b) with a deviation
of 14%, due to the usage of a styrofoam cube. Because of this
deviation, it was necessary to execute the registration step of section
2.2.2 and not use the conceptual rotation matrices between the IMU
coordinate systems for registration purpose.

Our installation is based on an Arduino [2] platform. It is a
low-cost electronic platform that has interchangeable easy-to-use
hardware and software. For both setups, we use an Arduino Mega
2560 as a programmable microcontroller. We use the I2C protocol to
collect the data of three IMU sensors. The three IMUs are connected
via the TCA9548A I2C multiplexer to the microcontroller.

The setup on the breadboard (see Fig 7a) consists of three dif-
ferent IMUs (DFRobot SEN0140, Adafruit BNO55, Waveshare
MPU9255), a multiplexer and a microcontroller. The setup on the
cube (see Fig 7b) consists of three equivalent Adefruit BNO55 IMUs,
a multiplexer and a microcontroller.



a) Arrangement on a breadboard

b) Arrangement on a cube

Figure 7: Realized arrangements of three IMUs.

The hardware is connected via A to B USB cabling to a computer
containing the Arduino 1.8.8 software for uploading data. Data were
processed in the Arduino onboard system and output through serial
connection for analysis and results. Coolterm 1.5.0 was used to save
the serial data.

4 TEST PROCEDURES

Figure 8: Setup Configurations for Physical Stepper Motors. The
linear slider is shown in front and the rotation table in background.

The purpose of the article is to compare the quality of the suggested
fusion against a single high-cost IMU. Therefore, a highly dynamic
setup for the one-dimensional movement was built. This setup
consists of a linear slider and a rotation platform, both driven by
similar stepper motors. The Osmtec Nema 17 stepper motors [11]
have a step angle of 1.8 ° and a torque of 0.43 Nm. The conversion
factor between the rotational movement of the stepper motor and the

toothed belt drove linear movement of the slider was measured with
an ART Tracking System [1] and is shown in Equation 12.

1st≈̂0.0249m (12)

With a Tinkerforge Stepper Brick [10], we are able to control the
driven steps, as well as the velocity, acceleration and deceleration.
Afterwards, we calculate motion models for the linear and angular
motion. These motion models have four phases: constant accelera-
tion, constant velocity, constant deceleration and stop. Each phase
should be at least four times as long as the lowest frequency of the
IMUs to avoid sampling inaccuracies. Furthermore, especially for
the accelerometer, it was necessary to find an acceleration value,
that is higher than the noise band. With this parameters, the motion
model shown in figure Figure 9 was calculated.

Fewer iterations would have produced less statistical meaningful-
ness, more iterations would have provoked heating of the stepper
motor, what would have been a new source of error. All measure-
ments were taken in the evening to avoid system shocks, triggered
by walkers-by in the vicinity. For comparison purpose, the same
measurements were taken with the XSENS MTi-3-8A7G6 as a rep-
resentative of high-cost IMUs.

5 ERROR CALCULATION AND RESULTS

The evaluation of our pipeline bases on a comparison with several
intermediate results, the high-cost IMU and.

a) The accelerometer measurements of the cubical sensor setup.

b) The accelerometer measurements of the planar sensor setup.

Figure 10: Comparision of RMSE for the accelerometer.
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Figure 9: Dynamic evaluation motion model. α is the moved angular on the rotation platform, ω the angular velocity, γ the angular acceleration, s
means the linear way on the slider, v is the linear movement and a the linear acceleration.

a) The gyroscope measurements of the cubical sensor setup.

b) The gyroscope measurements of the planar sensor setup.

Figure 11: Comparision of RMSE for the gyroscope.

5.1 Error Calculation
For our motor, we assume an evenly accelerated movement such that
we can use Equation 13 to calculate the motion model. Since this
simplification was used for all measurements, it should change only
the absolute error values, but not their interrelations.

s = 0.5at2 + vt + s0 (13)

The measured time series were evaluated against the motion model
calculating a root mean square error (RMSE see Equation 14). x

represents the motion model value at time t0 and x̂ is the measured
value at time t0. T is the number of measurements.

ε =
√

∑(x− x̂)2/T (14)

For comparison purpose the following measurements and parameter
combinations were regarded:

1. Raw Calculates the RMSE between the raw sensor data and
the motion model for a single low-cost IMU.

2. Calibrated Calculates the RMSE between a single calibrated
low-cost IMU and the motion model.

3. Fused Raw RMSE of three fused raw low-cost IMU measure-
ments without calibration and the motion model.

4. Fused Calib RMSE of three fused calibrated low-cost IMU
measurements and the motion model.

5. High-Cost RMSE of a single high-cost IMU and the motion
model.

These combinations were evaluated for both motion models
(slider and rotation platform) and both Multi-IMU setups (linear
and cubical setup).

5.2 Results
Table 1 shows the mean RMSE values for each 80 iteration measure-
ment series and the Figures 10 and 11 show box-plots, that shows
the statistical spread of the results. What our results clearly show
is, that three low-cost calibrated and fused IMUs can produce as
accurate results as one high-cost IMU. The calibration step always
increases the precision of the results, while the fusion step produces



some outliers, and so mitigates the precision. Uncalibrated fused
IMUs produce sometimes (see Figure 10 and 11) worse results then
single low-cost uncalibrated IMUs. This effect appears, when one of
the three fused IMUs sends notably worse data than the others. For
example, in the measurements shown in Figure 10, the main IMU
has a Mean Raw Data RMSE of 0.6978m/s2, but the second slave
IMU has a Mean Raw Data RMSE of 2.0958m/s2. The negative
effect disappears when the IMUs were calibrated before fusion. For
now, we can not make a clear statement, whether it is better to use a
plate or a cube setup.

rotation slider

si
ng

le

raw 7.9871
◦

s 0.6978 m
s2

calibrated 7.8708
◦

s 0.4951 m
s2

plate cube plate cube

fu
se

d

raw 4.6392
◦

s 8.6335
◦

s 0.7962 m
s2 0.4603 m

s2

calibrated 4.2951
◦

s 6.5493
◦

s 0.5901 m
s2 0.4559 m

s2

high-cost 6.7723
◦

s 0.6177 m
s2

Table 1: RMSE values for all configurations

6 LIMITATION AND FUTURE WORK

As every physical evaluation method, our dynamic measurement
model does not work ideal. In this chapter, we discuss the most
influential limitations of our measurements and how to overcome
them in future experiments.

6.1 Limitation

6.1.1 Setup assembling limitations

After the cubical setup is built with a styrofoam core, the screws of
the IMUs have a scope and can have changed their position while
the experiments. In follow-up investigations, we plan to use a harder
material like acrylic or 3D printing filaments as the core of our
setups. A second, more important issue is, that we have used three
Adafruit IMUs for the cubical setup, but three not identical IMUs
from different manufacturers for the linear setup. Unfortunately,
in the linear case, the quality differences of the low-cost IMUs
have such an impact, that we can’t verify our hypothesis about
the significantly different results based on different shapes without
regarding this issue. So in our next experiments, identical and not
identical setups have to be regarded separately.

6.1.2 Error in Step-Motor

According to [11], the used Step-Motor has a location error of ±5%.
Actually, we have no possibilities to overcome this mistake. Also,
we have to admit, that it is not physically accurate to assume an
evenly accelerated movement, but as said in Chapter 5, since this
simplification was used for all measurements, it should change only
the absolute error values, but not their interrelations.

6.1.3 Perturbation during the test

IMUs are very prone to shocks. So if somebody acts near to the
setup, the shocks were registered by the IMUs and distort the results.
Our first action against this issue was to measure in the evening when
fewer persons are in the lab. For future measurements, we also intend
to use a remote measurement system in a locked room between 3 and
5 am to avoid distortions triggered by the experimenter or the metro.
Also, especially the linear slider generates vibrations because of
friction, what influences the Acceleration Measurements and can be
one factor, why we only have meaningful results for the gyroscope.

6.2 Future Work
6.2.1 Sensor Data Synchronisation
Imu’s data was collected and fused offline.Therefor an investigation
of the realtime multi-IMU sensor fusion approach is recommended
and will be following. Hardware or software synchronisation is
essential for a realtime sensor fusion.

6.2.2 Visual and Inertial Sensor Fusion
Another interesting study is the fusion of visual and inertial sensors.
We will combine multi-IMU with a target tracked by the visual
sensors in Outside-in scenario. we will also study the impact of
multi-imu combination with visual sensors in Inside-out approach.

6.2.3 Optimal Number of IMUs
Our setups consist of three IMUs. But for now, we have no evidence,
whether this is the optimal amount or not. In the future, it should
be investigated which amount of IMUs promises the highest quality
improvement. If we find a point of inflection in the dependency
between the amount of IMUs and quality improvement, it is possible
to optimize our system.

6.2.4 Orientation of the IMUs
For now, we have tested only one non-linear MultiIMU Setup with
rotations of nearly 90◦ it was not possible for this article to dis-
tinguish the impact of this orientations from the impact of using
identical and different IMUs it could be helpful to analyze a variety
of setups with identical IMUs, but different orientations.

7 CONCLUSION

For prototyping, consumer market products and self-developed re-
search devices in the field of Mixed Reality the usage of low-cost
IMUs provides new interaction and localisation possibilities. Our
fusion pipeline also provides the chance to improve existing setups
by adding new IMUs instead of replacing the existing sensors with
higher-cost IMUs. Especially for a set of three identical low-cost
IMUs, we were able to prove, that our pipeline produces results with
similar or even better results than one high-cost IMU. Furthermore,
we present a dynamic movement measurement system for quality
evaluation, that can be used for multi-IMU as well for combined
sensor setups or visual sensors.
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