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Abstract

Many human diseases are caused by genetic variants. Precision medicine requires un-
derstanding the genetic basis of diseases. With the advances of the next-generation
sequencing techniques, the whole genome can be sequenced at a low cost. Large cohorts
of individuals are now sequenced, and millions of variants have been identified. How-
ever, it remains challenging to interpret most of them. Even though statistical methods
have been developed to associate variants with different phenotypes including diseases,
precisely locating the causal variant is difficult.

On the other hand, tremendous high throughput genomics data are now publicly
available; new assays keep being developed to better probe functions of genetic sequences.
These data systematically covers almost all crucial biological processes, like protein DNA
interaction, protein RNA interaction, splicing, and RNA degradation. They provide
unique opportunities to train machine learning models to predict the functional impact
of variants on specific biological processes and also overall variant pathogenicity.

Here, I developed machine learning models predicting two major gene expression steps
solely from sequences: RNA splicing and degradation. Specifically, this thesis contributes
to variant interpretation in threefold: First, I systematically investigated sequence ele-
ments regulating mRNA stability in the model organism Saccharomyces cerevisiae, for
which we have high-quality genome-wide RNA half-life measured. A model integrating
all sequence elements can explain 59% of mRNA half-life variation across genes. The
analysis quantified the major role of codon usage in determining mRNA stability and
revealed a new destabilizing motif ATATTC. Variants on 3′ UTR motifs and upstream
AUG codon (uAUG) have the largest effect on mRNA stability. Furthermore, the corre-
sponding RNA degradation pathways through which different sequence elements affect
mRNA stability were characterized.

Second, I developed MMSplice, a modular deep learning framework to predict effect
of genetic variants on splicing in human cells. MMSplice outperformed state-of-the-art
models and was the winning model of the 5th Critical Assessment of Genome Inter-
pretation (CAGI) exon-skipping competition. MMSplice consists of modular models
to score splicing-relevant regions. The framework can score variant effect on different
splicing patterns, including exon skipping, alternative splice sites as well as intron reten-
tion. Moreover, MMSplice improved the prediction accuracy of pathogenicity of variants
located near splice sites.

Third, I implemented MMSplice as a python package that can be directly applied to
score variants from a Variant Call Format (VCF) file, enabling it to be easily incorporated
into variant interpreting pipelines along with other tools. Moreover, I helped develop
Kipoi, a platform to deposit and reuse predictive models in genomics.
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In summary, the work in this thesis reveals novel biology about sequence determinants
of mRNA stability, and provides resources and tools to interpret effects of variants on
splicing and RNA degradation.
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1 Introduction

1.1 Overview

Many human diseases are related to genetic disorders, which are often consequences of
genetic mutations. More than a hundred years ago, we realized the central role of heredity
in controlling the physiology of life from Gregor Mendel’s experiment [6]. Although the
initial draft of the human genome was released in 2001 [7], we are far from understanding
and interpreting all instructions encoded in the genome.

The human genome consists of around 3 billion base pairs, among which, only around
1% encode for proteins [7]. Even for protein-coding transcripts, the majority of the
sequences are introns, which means that they do not encode proteins [8]. The rest of
the sequences are responsible for regulating processes e.g. transcription factor binding,
RNA splicing and degradation. Despite decades of research, we still lack a complete
understanding of the protein-coding sequence, and even less for the non-coding part.
Consequently, it remains difficult to interpret common-disease associated variants that
fall mostly into regulatory regions [9]. Similarly, whole exome sequencing is only able
to diagnose 25%-30% cases among large rare disease cohorts [10]. For the majority of
cases, the causal variants are likely located in regulatory regions.

The aim of this thesis is to develop models to interpret variants from these regulatory
regions. Particular, I am interested in interpreting them for their impact on two impor-
tant (post-transcriptional) biological processes: 1) RNA splicing, a post-processing step
to make RNA functionally mature. 2) mRNA degradation, a controlled turnover step
to regulate gene expression level.

1.1.1 Outline

This cumulative dissertation is based on the researches published in my first author
articles. In this thesis, I introduce the general motivation in section 1.1, the biological
background and related work in section 1.2 and machine learning background in Chapter
2. In Chapter 3, I discuss my research in the context of current literature and provide an
outlook for further studies. The full texts of my first-author articles are attached in the
Appendices A-C. A detailed summary is provided in front of each corresponding article.
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1 Introduction

1.2 Biological background

1.2.1 The complex life of RNA

DNA is the central molecule where the genetic information is stored. Eukaryotic DNAs
are densely packed in chromosomes. Humans have 23 pairs of chromosomes, among
which 22 pairs are autosomes, and one pair are sex chromosomes. Genes are fragments
from the DNA molecules that encode function information. Some genes are protein-
coding, which means they can be translated into proteins. Humans have approximately
20,000 protein-coding genes [8]. Life of RNA starts from transcription, which is a pro-
cess that transmits information from the DNA template to precursor RNA molecules
(Figure 1.1). Precursor RNAs need to be further processed to be mature and functional.
These processes include 5′ capping, 3′ polyadenylation, and splicing. After being pro-
cessed, messenger RNA (mRNA), which encode for proteins, are transported from the
nucleus to the cytoplasm. In the cytoplasm, information on mRNA is read by ribosomes
and translated to proteins by assembling amino acids in the order stored in the mRNA
molecule. Translation starts from an AUG codon (start codon) and ends when one of
the UAG, UAA, and UGA stop codons is encountered. The untranslated regions be-
fore the start codon and after the stop codon on the transcripts are referred to as the
5′ UTR and 3′ UTR respectively. RNAs are unstable and are degraded in a controlled
manner. The concentration of mRNA in the cell is determined jointly by the production
(transcription) rate and the degradation rate.

RNA molecules are bound by proteins that regulate their function. These RNA bind-
ing proteins (RBPs) bind to RNA by physically interacting with specific nucleotide
sequences (motifs). RBPs are the key elements regulating RNA dynamics, including
5′ capping, 3′ polyadenylation, RNA editing, splicing, and degradation. Since these reg-
ulations happen after RNA transcription, they are termed as post-transcriptional reg-
ulation. RBPs have binding preferences to specific RNA sequence motifs. Instead of
directly studying the interactions between RBPs and RNAs, which are difficult to be
measured experimentally, RNA sequence elements are often considered. These elements
are referred to as cis-regulatory elements (CREs) or regulatory code in this thesis.

In the next two sections, I will briefly introduce the biological background of splicing
and RNA degradation, which are the focuses of this thesis.

1.2.2 RNA splicing

Eukaryotic genes are discontinuous, with short coding sequences being interrupted by
stretches of long non-coding sequences. The process of cutting out parts of the tran-
scribed transcripts (introns) and concatenate the remaining regions (exons) is termed as
splicing (Figure 1.2). Most genes in higher eukaryotes are spliced [8]. Splicing is a series
of biochemical reactions. The first step is the branchpoint adenosine attack the 5′ splice
site (donor), resulting in an intron lariat. The second step is cutting the 3′ splice site
(acceptor) with mediation from the corresponding 5′ splice site, leading into the removal
of the intron lariat and concatenation of the 5′ and 3′ splice sites [11] (Figure 1.2). The
removed intron lariat is unstable and is quickly degraded.

2
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Nucleus

DNA

Transcription

Splicing

Exon ExonmRNA

Cytoplasm

A A A A A A A

RBP

RBP

Proteins

Translation

A A A A A A A

Ribosome

mRNA

Degradation

Polymerase

Figure 1.1: The central dogma of biology (nuclear-encoded genes). Genetic information
is encoded in the DNA. RNA copies information from DNA through transcription.
Mature RNA is produced from premature RNA by splicing out introns. Both
transcription and splicing take place in the nucleus. Proteins are synthesized in
the cytoplasm with messenger RNA (mRNA) as the template (translation). In the
end, mRNA is degraded in the cytoplasm controlled by RNA degradation pathways
(RNA degradation).

Alternative splicing refers to alternative ways of concatenating between donor splice
sites and acceptor splice sites. As a consequence, different transcripts are created from a
single gene. Proteins produced from these transcripts can show very different biochemi-
cal properties, e.g., solubility, membrane binding preference [12]. Approximately 92-94%
of human genes are alternative spliced [13]. Common alternative splicing patterns in-
clude exon skipping (cassette exon), alternative 5′ splice sites, alternative 3′ splice sites,
mutually exclusive exons, and intron retention (Figure 1.3). The most common type of
alternative splicing pattern is exon skipping.

Alternative splicing adds high complexity on top of the genome [14]. For example,
the Drosophila gene Dscam can produce as many as 38,016 different protein isoforms
[15]. It is generally surprising that humans do not have significantly more protein-coding
genes compared to other species; neither does the genome size is considerably larger. It
is suggested that alternative splicing is one of the mechanisms used to achieve higher
cellular complexity [16].

Given the importance of splicing, it is tightly regulated in different tissues and devel-
opmental stages. Several sequence elements are essential for splicing regulation through
binding with splicing regulatory proteins. First of all, the sequence context around the

3



1 Introduction

Figure 1.2: RNA splicing regulation. Figure panel B is taken from [17]. A). Two-step
procedure of RNA splicing. B). RNA splicing regulatory elements. Exons are shown
as boxes, introns are shown as jagged lines. The majority of (∼ 95.5%) introns are
recognized and spliced by the U2-dependent major spliceosome, while the remaining
ones are by the U12-dependent minor spliceosome [18]. The consensus motifs of
the 5′ and 3′ splice sites for the exon in the middle are shown as sequence logos.
The recognition of the splice sites and branchpoint is a crucial step to initialize
splicing. The recognition is modulated by exonic (ESE, ESS) and intronic (ISS,
ISE) cis-elements. These cis-elements present with specific sequence patterns and
are specifically recognized by their trans-acting partners, which are RNA binding
proteins (SR proteins, hnRNP, etc).

exon-intron boundaries is important for the splicing machinery to recognize the splice
sites correctly. Second, the branchpoint sequence context and position is critical for the
splicing lariat formation. Third, many sequence motifs in the exon as well as in the
intron also play an important roles. Some positively regulate splicing and are therefore
named as exonic splice enhancers (ESE) or intronic splice enhancers (ISE), depending on
their position. Likewise, negative regulators are called as exonic splice silencers (ESS)
or intronic splice silencers (ISS) [19].

Abnormalities on splicing can lead to severe consequences. Abnormally spliced tran-
scripts either encode completely different genetic information or quickly degraded by
RNA quality control mechanisms. Both consequences lead to functional loss of the gene.
Therefore, genetic mutations disrupting splicing can lead to a wide range of human dis-
eases [11]. Typical disease-causing abnormal splicing events include cryptic splice site
creation or activation [20], exon skipping [21] and intron retention [22].

4



1.2 Biological background

Figure 1.3: Common patterns of alternative splicing. Gray boxes represent alternative
exons, black boxes represent constitutive exons.

1.2.3 RNA degradation

The degradation of RNA is an intensively regulated process. Different RNAs have dif-
ferent degradation rates (or half-life), which mainly depends on its sequence. Regulating
RNA degradation rate is important in at least three folds: First, the degradation rate
and the transcription rate of the transcript jointly determine its concentration in the
cell. Second, several RNA quality control mechanisms clear out aberrant transcripts,
which may otherwise be harmful to the cell. Third, the dynamics of RNA degradation
rate enable the cell to adapt to the environmental stimulates quickly.

This thesis focuses on RNA degradation in yeast (Saccharomyces cerevisiae). Gener-
ally, RNA in yeast is degraded from 5′ to 3′ by Xrn1 or from 3′ to 5′ by exosome [23].
Both pathways start with removing the poly(A) tail (deadenylation) (Figure 1.4). Spe-
cialized RNA turnover pathways are triggered when abnormality of RNA is detected.
One important RNA quality control mechanism is the nonsense-mediated decay (NMD)
pathway (Figure 1.4). NMD primarily target transcripts with premature termination
codons (PTC) to prevent the production of abnormal proteins [23]. Transcripts with
PTC can be the result of abnormal splicing, translating from upstream AUG instead of
the canonical AUG start codon or genetic mutations creating/disrupting canonical stop
codons.

1.2.4 RNA half-life measurement with metabolic labeling

RNA half-life, as well as the splicing rate, can be estimated by metabolic labeling the
nascent synthesized RNAs in the living cell [24, 25]. A commonly used labeling chemical
is the 4-thiouracil (4-tU), which is a natural nucleotide analog of uracil. Briefly, 4-tU can
be taken by the cell and incorporated into newly synthesized RNAs when added to the
cell culture medium. In this way, one can measure how many new RNAs are synthesized
in a given short time.
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A A A
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Deadenylation mediated RNA decay
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STOP
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Figure 1.4: mRNA degradation pathways. Typically, mRNA is degraded in the cytoplasm
from 5′ to 3′ by Xrn1 or from 3′ to 5′ by exosome. Both pathways start by removing
the polyA tail with Ccr4-Not protein complex.

Let the synthesis rate of RNA be µ, splicing rate be σ, and the degradation rate be
λ. We can model the amount of precursor RNA and mature RNA at time point t with
the following first order ordinary differential equation (ODE) [26]:

d[precursor RNA]

dt
= µ− σ[precursor RNA]

d[mature RNA]

dt
= σ[precursor RNA]− λ[mature RNA]

(1.1)

The ODE system has the following initial condition at t = 0 when 4-tU labeling starts:

[precursor RNA]labelled|t=0 = 0

[mature RNA]labelled|t=0 = 0

[precursor RNA]unlabelled|t=0 =
µ

σ

[mature RNA]unlabelled|t=0 =
µ

λ

(1.2)

Under a short time scale, we can approximate the analytical solution of the ODE
system with Taylor expansion [26]:

µ =
[precursor RNA]labelled(t)

t

σ =
[precursor RNA]labelled(t)

t[precursor RNA]total

λ =
[precursor RNA]labelled(t)

t[mature RNA]total

(1.3)
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This technique has been recently improved both experimentally (TT-Seq) and com-
putationally [27, 26]. Genome-wide half-life data for human is now available, one can
potentially understand mRNA kinetics less biased with these techniques.

Another commonly used technique for RNA half-life estimation is based on tran-
scriptional arrest [28]. In this protocol, transcription is stopped by inactivating RNA
polymerase II [29]. RNA materials are harvested and quantified after the inactivation
with a time course. A first order ODE model can be fitted to this data to calculate RNA
half-life genome-wide.

1.2.5 Splicing quantification with RNA-Seq

RNA-Seq is a next-generation sequencing technology that sequences the whole transcrip-
tome in high throughput. It can not only quantify the expression level for all transcripts
but also provide rich resources to study RNA splicing, allele-specific expression, and so
on.

Alternative splicing level of exons, which is quantified as percentage spliced-in (Ψ),
can be calculated from RNA-Seq reads. For exon skipping events, Ψ can be calculated
as the number of reads supporting the inclusion divided by the sum of inclusion reads
and skipping reads (Figure 1.5) ([30]). The splicing ratio for alternative 5′ splicing (Ψ3)
for a given junction is calculated by dividing the junction supporting reads by all spliced
reads starting from the same donor position (Figure 1.5). Similarly, the splicing ratio
for alternative 3′ splicing (Ψ5) can be calculated [30].

However, RNA-Seq read counts subject to many biases, for instance, sequence GC
content [31, 32]. Furthermore, counts ratio is less reliable if the number of supporting
reads is small. Several methods have been developed to normalize out the bias and
achieved better Ψ estimation [33, 34, 35, 36, 37]. It is recommendable to use these tools
in practice to estimate the splicing level.

1.2.6 Massively parallel reporter assay

Perturbing genomic sequence in living cells is a critical approach to study its function.
Scientists have designed reporter gene systems to specifically study the functional role of
particular sequences, for instance, promoter [38], splicing [39], and RNA degradation [40]
1.6. Such reporter genes typically are expressed on plasmids, which are small circular
DNA molecules encoding one or few genes. Genes on plasmids can be transcribed in
living cells. The target sequence is first cloned into the plasmid, and then the gene
expression outcome is measured. There are two conventional approaches to measure
gene expression outcomes: directly target the transcripts by PCR or measure the protein
outcome. Techniques such as green fluorescence tagging have been developed to directly
track the protein products in vivo [41].

Previous reporter genes only had low throughput, which means only a few sequence
elements can be studied in one experiment. High throughput assays have been devel-
oped in recent years with the development of the next-generation sequencing technique,
termed as massively parallel reporter assay (MPRA) 1.6. Specifically, instead of testing
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Figure 1.5: RNA splicing quantification with RNA-Seq. The definition of Ψ, Ψ5, Ψ3 and
splicing efficiency followed from [33, 32, 30, 22].

a single sequence construct, thousands of different constructs are cloned into different
plasmids and expressed in living cells at the same time. Each of the sequence con-
structs typically contains also a barcode to uniquely associate the input test sequence
to the gene expression outcome. RNA-Seq is used to measure the gene expression out-
come. MPRA has been successfully applied to identify or validate cis-regulatory elements
[42, 43, 44, 45, 46, 47, 48, 49] or directly used to test the effects of thousands of regulatory
variants [50, 51, 52, 53, 54, 22, 55, 56].

Besides the high throughput, MPRA has other advantages. First, unlike statistical
association studies which might suffer from other confounding factors (e.g., co-evolution
of sequence elements), MPRA applies experimental perturbation and therefore can test
for causal effects. Second, MPRA can not only examine regulatory elements from the
genome but also synthesized sequences that never present in nature.

MPRA also has a few disadvantages. First, one MPRA experiment is typically done
with one tissue, limiting the ability of MPRA to test for tissue-specific effects. Second,
many gene expression activities depend on the native chromatin structure, which MPRA
cannot test. Third, limited by the current nucleotide synthesize technique, which can
only synthesis short (∼ 200 nt) sequences, MPRA cannot test long-range dependent
regulatory effects.

These shortcomings have now been partially overcome with the developing of the
CRSPR/cas9 technique [57, 58]. Large-scale mutagenesis can now be carried natively
on the chromosomes [59, 60].

8
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Figure 1.6: Reporter assays. A). Traditional low-throughput reporter assay. The reporter
gene is expressed on plasmids. The cis-regulatory element (CRE) is inserted to
the corresponding position, either upstream of the reporter gene or in the gene
body. Only one or few sequence constructs are tested in a single experiment. B).
Massively parallel reporter assay. Thousands of different CREs are tested in a single
experiment. Each sequence construct also attached with a unique barcode (BC),
so that the outcome of each CRE can be uniquely mapped.

1.3 Variant interpretation

1.3.1 Genetic variants and human diseases

DNA sequences between individuals are not identical. Every human individual has on
average one variant per thousand base pairs of sequence [61]. Genetic variants are typi-
cally defined as the DNA sequence differences compared to the reference genome released
by the Genome Reference Consortium. The reference genome, however, is neither the
wild-type sequence nor necessarily the consensus among the whole population. Common
types of genetic variants include single nucleotide variants (SNVs), insertions/deletions
(indels) or structure variants like copy number variants (CNVs). In population genet-
ics, common (frequency > 1%) single nucleotide variations among the population are
referred to as single nucleotide polymorphisms (SNPs). While most of those variants
are benign, some are associated with higher disease risks, and some even directly cause
disease with a single mutation.

Understanding genetic variants is crucial for human health. Many population sequenc-
ing initiatives have been launched, for example, the 1000 genome project [61] and the
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UK Biobank project [62]. Millions of variants have been identified from these projects.
It is a long term goal for researchers to interpret their function.

Most of the variants are inherited from the parents, while a small fraction, on average
42 to 75 per human individual, are de novo [63]. These de novo variants arise from DNA
copy errors during the reproduction of an individual. De novo mutations play a major
role in causing severe early-onset genetic diseases such as intellectual disability, autism
spectrum disorder, and other developmental disorders [64].

Most of the known disease-causing genetic variants are missense, which means they
change the encoded protein sequence [65]. However, the current statistics might be
biased due to two reasons: First, it is easier to functionally annotate a variant to be
“missense” since the protein-coding genetic code is well understood. Second, whole ex-
ome sequencing (WES), which is targeted sequencing of the annotated exonic regions
of the genome (including the coding regions), is more common than whole genome se-
quencing (WGS) due to its price advantage. Nevertheless, we anticipate seeing more
WGS with the increasing acknowledgment of its value in diagnostic.

1.3.2 Interpreting regulatory variants

Interpreting regulatory variants is particularly challenging due to the lack of under-
standing of the regulatory sequences. One approach to interpret genetic variants is
through statistical association tests. Two commonly used statistical approaches are: 1)
expression quantitative trait loci (eQTL) [66], and 2) Genome-wide association studies
(GWAS) [67]. Both approaches need a large number of genotyped individuals. The goal
of eQTL is to find genomic loci that are significantly associated with gene expression
level variations across individuals. Similar approaches can be applied to find loci that
are associated with splicing variations (sQTL) [68]. In contrast, GWAS aims to find
variants associated with certain phenotype such as disease.

Such statistical approaches suffer from two major limitations: First, due to the limi-
tation of statistical power, it can only be applied to common variants (allele frequency
>1%) with considerable effect. However, rare variants are the typical cause of rare dis-
eases and maybe even common diseases as well [69]. Moreover, lethal variants may be
even completely absent from the population. Even disease causing common variants can
be overlooked by this approach. Common disease risk often involves a large number
of variants with small effects, which would need an enormous sample size to be identi-
fied as statistically significant after multiple testing correction. Second, the association
test does not imply causality. Frequently all variants in a specific region are significant,
locating the causal variants is challenging.

On the other hand, machine learning methods are frequently used to study regulatory
genomics and therefore to interpret regulatory variants. Genomics is a highly data-
driven discipline where machine learning models are widely applied. The amount of
data produced in genomics is comparable to astronomy, Twitter and YouTube [70]. This
gives a unique chance for deep learning, one of the machine learning method categories
that perform well with lots of data. The rise of modern deep learning methods also
transformed how we study regulatory sequences [71, 72, 73], it is now often the model
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1.3 Variant interpretation

of choice for many genomics applications. In contrast to GWAS, deep learning models
can be applied to score variants irrelevant of its allele frequency and have been shown
to capture disease causing variants in many cases [74, 75].

Therefore, this thesis is primarily focused on developing machine learning models to
interpret regulatory variants. In particular, I focus on predicting the variant effect on
splicing and mRNA degradation. On top of the functional impact prediction, a classifier
to predict variant pathogenicity was trained. The next two subsections are dedicated
to providing background review on computational methods for variant interpretation in
terms of splicing and mRNA degradation. I give a brief introduction to the essential
primers on machine learning for genomics in chapter 2.

1.3.3 Computational methods for variant interpretation

Computational tools for variant interpretation can help to prioritize potential disease-
causing variants, improving patient treatment outcomes and prognosis. For instance,
computational tools have lead to successful diagnose of many rare diseases, which may
otherwise be difficult with experimental methods due to the large test burden; BRCA1
and BRCA2 mutations are known to be associated with treatment outcomes and prog-
nosis [76].

Variants cause disease by changing particular molecular phenotype. Many computa-
tional tools for variant interpretation have been developed. Most of the frequently used
tools are designed to predict missense variants [77]. Training a model to directly pre-
dict disease risk from variants is difficult due to limited annotated data. An alternative
way is to build hierarchical models. Specifically, the first level of models are trained by
leveraging on large scale assay data to predict a specific biological process. For example,
train a model to predict splicing outcomes from a massively parallel reporter assay that
can probe millions of sequences in a single experiment as done by Rosenberg et al [49].
The second level is predicting disease on top of the predicted molecular consequences,
possibly also combine with features like conservation. MutPred Splice is an example of
such a model, it builds on top of models predicting splicing motifs to predict variant
pathogenicity [78].

Here I provide a review of tools predicting the variant effect on splicing and degra-
dation. Tools predicting the variant effect on molecular phenotype and tools directly
predict disease impact are reviewed separately in 1.3.3.1 and 1.3.3.2.

1.3.3.1 Functional impact prediction

Splicing In table 1.1 I summarized non-commercial models predicting variant impact
on splicing. Early models focused on predicting donor and acceptor sites, therefore
also score variants for their effect on creating/disrupting splice sites. These include
GeneSplicer [79], NNSplice [80], NetGene2 [81], MaxEntScan [82] and the model from
Sonnenburg et al [83]. Although neural networks were used, these models were in small
scale and consequently, also have small receptive field. Many of these early tools have
been integrated into the variant effect predictor (VEP) from Ensembl [84].
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Early models do not predict directly splicing quantities probably because there was
no high throughput experiment to measure splicing on a large scale. This situation has
changed since the introduction of the next generation sequencing techniques. RNA-Seq
was used to quantify splicing systematically. Barash et al developed the first successful
model to directly predict splicing quantity and variant effect [85]. Following this study,
a similar model was developed for human (SPANR) [86]. ESRseqs are scores for all 4096
6-mers for their exonic effect on splicing [55]. The scores were derived from a massively
parallel reporter assay (MPRA). The MPRA has a 3-exon reporter gene construct with
a 6-mer random sequence on the middle-exon. Splicing outcomes associated with each of
the random sequences were measured. Likewise, SMS scores were derived from a similar
MPRA experiment, except the test sequences were generated by saturation mutagenesis
[56]. HAL is a model developed by Rosenberg et al [49] to predict directly ∆Ψ. It
is a linear model trained from experimentally tested random k-mers from an MPRA
experiment.

Even though previous methods have demonstrated success in specific applications,
predicting the effect of any given variant on splicing is still challenging. First, the models
scoring splice sites cannot score variants from exonic or intronic regulatory elements.
Second, all three models which were trained from MPRA data, ESRseqs, SMS scores, and
HAL can only score exonic variants, limiting their application cases. The only model that
scores both intronic and exonic variants for human is SPANR. Third, it is challenging to
score indels with all previous models due to the lack of proper implementation support.
Fourth, the performance of all these models can be potentially improved with more data
and better modeling techniques.
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1.3 Variant interpretation

RNA degradation Several high throughput studies have investigated the potential
effect of UTR elements on RNA stability [26, 87, 88, 89, 90, 91, 92]. These studies
either directly associated UTR elements with RNA stability or indirectly through RNA
expression level. Many known regulatory elements of mRNA stability have been identi-
fied, these include 3′ UTR RBP binding motifs (e.g., AU-rich element [91]), microRNA
binding sites [93], secondary structure [89] and translation related sequence elements
(e.g., codon usage [40, 28]).

Despite these studies, we still do not know how far we are from a complete list of
regulatory elements for mRNA stability. Even though models predicting mRNA half-
life exist [94], predicting solely from sequence is an unsolved problem. Consequently, a
model to predict the variant effect on mRNA half-life is lacking. Furthermore, we don’t
completely understand how certain sequence elements affect mRNA stability, namely
the specific pathways employed are unknown.

One potential reason for these limitations is that the techniques to precisely measure
RNA stability genome-wide are under mature. Results measured across experiments
often correlate poorly [24, 1]. It is important to systematically benchmark these RNA
stability data.

1.3.3.2 Disease impact prediction

Splicing Conventionally, variants are annotated in a five-tier terminology system: “pathogenic”,
“likely pathogenic”, “uncertain significance”, “likely benign”, and “benign” [77]. How-
ever, when it comes to the predictions by computational tools, these definitions are irra-
tional. Hence, most tools are trained to distinguish between “pathogenic” and “benign”
variants. In general, conservation scores are good predictors for pathogenicity, although
they are hard to interpret [95]. Accordingly, almost all variant pathogenicity tools use
conservation features. Comparing to the tools predicting splice variant effect, relatively
few tools directly predict pathogenicity from splicing (summarized in 1.2). MutPred
Splice was trained from 16,257 variants, it scores exonic variant for their disease risks
[78]. TraP predicts variant pathogenicity based on whether the variant changes the fi-
nal outcome of the transcript, e.g. exon skipping, cryptic splice site activation, NMD
[96]. It provides pre-computed scores for ∼ 1.3 billion possible single nucleotide variants
from human protein-coding genes. The model was trained from a positive set with 75
synonymous rare-disease causing variants and a negative set with 402 de novo synony-
mous variants from presumably healthy individuals. S-CAP is a recent tool specifically
designed to predict pathogenic splicing-relevant variants. The positive set of S-CAP
training data combined 114,382 pathogenic SNVs from the HGMD [97] and ClinVar [65]
databases, while the negative set was 15,833,389 SNVs curated from gnomAD database.
The model considered three levels of features: the gene level (e.g., pLI [98]), the exon
level (e.g. exon length) and the variant level (e.g., CADD score [95]). To this end, a
gradient boosting tree classifier was trained to predict pathogenicity scores.

Except for S-CAP, which was published in parallel with the work of this thesis, the
other two methods were trained with very few data points. Besides, MutPred Splice
only scores exonic variant. With a better splice-variant effect prediction method, we can
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1.4 Aims and scope of this thesis

likely improve the performance of all pathogenicity classifiers, which are almost always
based on the ensemble of models.

Tools Prediction outcomes Approach

MutPred Splice
(2014)

Predict disease risk from VCF file Random Forest

TraP (2017) Precomputed scores Random Forest
MMSplice (2019) Predict disease risk from VCF file Neural network & logis-

tic regression
S-CAP (2019) Precomputed scores Gradient Boosting Tree

Table 1.2: List of pathogenicity prediction tools with splicing focus. Sorted by publication year.

RNA degradation To my knowledge, due to the lack of predictive model for mRNA
stability, no model so far predict variant pathogenicity from its effect on RNA stability.

1.4 Aims and scope of this thesis

Post-transcriptional regulations are crucial regulatory steps. My PhD work is dedicated
to model the sequence determinants for two of these processes: RNA degradation and
splicing. The corresponding articles are provided in the Appendices.

The key issues regarding the previous models are:
1. Many sequence determinants for mRNA half-life have been previously identified,

however, no model can predict mRNA half-life solely from sequence even for yeast.
As a consequence, it is not possible to quantify the contributions of different sequence
elements to the overall half-life variation, neither do we know how far are we from a
complete list of mRNA stability-regulating sequence elements.

2. Predicting variant effect on splicing is still challenging. Previous models can either
only score certain regions (e.g., exon) or are only applicable to specific alternative splic-
ing patterns. Besides, performances of existing models are unsatisfactory. Moreover,
adequately implemented software is lacking such that indels cannot be easily scored.

Briefly, the major contributions of this thesis include:
1. Systematically investigated the sequence determinants of messenger RNA (mRNA)

stability in yeast. One novel 3′ UTR motif was revealed.
2. From the investigated sequence determinants, a regularized linear model was able

to explain 59% of the half-life variation between genes. Quantifying feature importance
revealed the major role of codon usage in controlling mRNA stability, while mutations
on 3′ UTR motifs and upstream AUG have the largest effect size.

3. Developed a deep learning framework to predict the variant effect on splicing with
state-of-the-art accuracy. The model can score variants, including indels, from both
exons and introns. The improved variant effect prediction model can also improve the
prediction of variant pathogenicity.
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2 Machine Learning background

Machine learning assumes the world appears with certain patterns. The goal of machine
learning is to find computer executable mathematical functions to express these patterns.
However, the true pattern often remains unknown. In recent years, machine learning,
in particular, deep learning has seen tremendous success in many areas such as com-
puter vision, natural language processing, machine translation as well as computational
biology.

Based on the task, machine learning can be categorized into several categories, for
instance, supervised learning, unsupervised learning and reinforcement learning. This
thesis focuses on the applications of supervised learning in studying regulatory genomics.

This section provides the necessary technical background knowledge on machine learn-
ing. For a more thorough introduction to machine learning we recommend the book of
Bishop [99] and Goodfellow et al [100].

2.1 Supervised learning

Many predictive tasks can be formulated as predicting y from some given input X with
a function f : X → y. For instance, predicting house price from given information
(features) e.g. location, size. In regulatory genomics, such tasks typically are predicting
molecular phenotype (e.g. protein binding, splicing, stability) from DNA/RNA sequence.
In most cases, it is difficult to predefine the function f as computer rules. Supervised
learning is aimed to learn a function to perform the X → y mapping from previous
“experiences”. These “experiences” are represented as training data consisting pairs of
inputs mapped with outputs (x, y) ∈ X × y.

2.2 The learning objective

We formally define the learning object. Assume we observed independent and iden-
tically distributed (i.i.d) training data Dtrain : {(x1, y1), ...(xn, yn)} from an unknown
distribution pdata(y|x). We are interested in predicting future data points that are also
drawn from the same distribution. To do so, we approximate the unknown true data
distribution with a known distribution with parameter θ, denote as pmodel(y|x,θ). The
learning task is to find a close approximation of the conditional distribution pdata(y|x) by
tuning θ. We use Kullback-Leibler divergence (KL divergence) to measure the closeness
between the data distribution and the model distribution. We minimize KL divergence
to find the “best” approximation of pdata.
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2 Machine Learning background

θ∗ = arg min
θ

DKL(pdata||pmodel) (2.1)

The KL divergence is given by:

DKL(pdata||pmodel) = Ey|x∼pdata [log pdata(y|x)− log pmodel(y|x;θ)]

= Ey|x∼pdata [log pdata(y|x)]− Ey|x∼pdata [log pmodel(y|x;θ)]
(2.2)

The term on the left Ey|x∼pdata [log pdata(y|x)] = −H(pdata) is the minus entropy of pdata,
which does not depend on the parameter θ. Therefore, minimizing the KL divergence is
equivalent to minimizing the term on the right, which is the cross-entropy between the
two distributions.

θ∗ = arg min
θ

DKL(pdata||pmodel)

= arg min
θ

−Ey|x∼pdata [log pmodel(y|x;θ)]

= arg max
θ

Ey|x∼pdata [log pmodel(y|x;θ)]

(2.3)

However, we don’t know the true data distribution pdata in general. Therefore, in
practice we estimate the expectation with monte carlo from our training data, which are
samples drawn from the true distribution pdata:

Ey|x∼pdata [log pmodel(y|x,θ)] ≈ 1

|Dtrain|

|Dtrain|∑
i=1

log pmodel(yi|xi;θ) (2.4)

In summary, our optimization object becomes:

θ∗ = arg max
θ

1

|Dtrain|

|Dtrain|∑
i=1

log pmodel(yi|xi;θ) (2.5)

This is exactly the log-likelihood function. The above estimation is also known as the
maximum likelihood estimation (MLE).

Another way to interpret the maximum likelihood estimation is through the joint
data likelihood under our model distribution. The data likelihood for Dtrain is defined
as pmodel(y|X,θ). The maximum likelihood estimator for θ is then defined as:

θML = arg max
θ

L(θ)

= arg max
θ

pmodel(y|X;θ)

= arg max
θ

|Dtrain|∏
i=1

pmodel(yi|xi;θ)

(2.6)
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2.3 Regularization

We can factor out the joint distribution because of the iid assumption. The product is
numerically unstable, therefore a logarithm is often taken to transform the product into
a summation. Since the logarithm is a monotonic increasing function, it does not change
the optimum.

θML = arg max
θ

|Dtrain|∑
i=1

log pmodel(yi|xi;θ)

= arg max
θ

1

|Dtrain|

|Dtrain|∑
i=1

log pmodel(yi|xi;θ)

= arg min
θ

− 1

|Dtrain|

|Dtrain|∑
i=1

log pmodel(yi|xi;θ)

(2.7)

Which is the same as equation 2.5. The last term above is also known as the negative
log-likelihood (NLL).

2.3 Regularization

Above we introduced the objective function of the maximum likelihood estimator 2.5.
In machine learning, the objective function is typically referred to as the loss function.
The loss function is used to quantify the error made by our predictive algorithms. MLE
is one of the approaches to derive a loss function. In theory, we should optimize the loss
function so that the model has the best performance on the upcoming unseen samples.
The cost function is the overall error on the entire training data, which is often the mean
of the per-sample loss. We express our learning objective above as the cost function:

J(θ) =
1

|Dtrain|

|Dtrain|∑
i=1

L(f(xi;θ), yi) (2.8)

Where L is the per-sample loss function. L(f(xi,θ), yi) = − log pmodel(yi|xi,θ).
However, since the above cost function (as well as equation 2.5) is an approximation of

equation 2.3 with finite data (in many cases, limited), it might lead to certain undesired
failure. For instance, if the function f with parameters θ̂ can predict every data point in
Dtrain perfectly but fail miserably on the unseen test data Dtest. The parameters θ̂ are
certainly the optimizer of the cost function J(θ), but the model is useless. In machine
learning, such kind of failure in generalization is referred to as overfitting.

To solve the above issue, we impose certain regularization on the cost function:

J(θ) =
1

|Dtrain|

|Dtrain|∑
i=1

L(f(xi;θ), yi) + λR(θ) (2.9)

Where the λ controls the weighting between the loss and the regularization term R(θ).
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Another scenario where regularization is necessary is model selection. For the gener-
alization purpose, simpler models are preferred over complex ones if they have similar
performance on the training data. Depends on the data, the learner might strengthen
more on the loss function or the regularization term by changing λ. The optimum value
of λ (as well as other hyper-parameters) is often determined by cross-validation.

2.4 Regression

In the previous sections I introduced the MLE approach to learn the model parameters.
However, the model function f and the distribution assumption pmodel haven’t been
specified yet. In the following, I show three specific examples in a regression setting.

2.4.1 Linear regression

The first example is the standard linear regression, which assumes gaussian isotropic

noise. Let the feature matrix X ∈ RN×D and X =

x1 x2 · · · xD

. The target

y ∈ RN×1 and y =


y1
y2
...
yN

. Specifically for function f and pmodel, linear model assumes:

pmodel(y|X; w, σ2) = N (f(X; w), σ2I)

f(X; w) = Xw
(2.10)

Here the parameters θ include (w, σ).

In summary:

yi = f(xi; w) + εi

= wTxi + εi
(2.11)

The log-likelihood for the linear model is:

L(w, σ) = − 1

2σ2

N∑
i=1

(f(xi; w)− yi)2 −ND log
√

2π −N log σ (2.12)

where N = |Dtrain| is the number of data points in the training data. D is the number
of features. Only the first term of the log-likelihood function is related to w, which is
the parameter of the function f . Besides, σ2 ≥ 0, we can simplify the MLE objective
function for w as follows:
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wML = arg max
w

L(w)

= arg min
w

1

2

N∑
i=1

(f(xi; w)− yi)2
(2.13)

The above optimizing object is referred as the mean squared error (MSE) loss function.
In the case of linear regression, i.e. f(xi; w) is an affine function in terms of w, the MLE
for w can be derived analytically as:

wML = (XTX)−1XTy (2.14)

However, the function f does not necessarily need to be affine in order for the mean
squared loss to be applied. More complex functions such as neural networks follow the
same principle. In this case, an analytical solution is likely not possible, and one would
need to employ numerical optimization methods to obtain the MLE of the function
parameters. We briefly introduce some of these optimization methods in section 2.6.

The MLE for σ can be done similarly as well.

2.4.2 Beta regression

The above example shows MLE with isotropic gaussian noise. This assumption however
does not hold for certain data. For instance, when y|x ∈ [0, 1], then a beta distribution
(B) which is defined between [0, 1] is more appropriate. Concretely, we assume that:

pmodel(yi|xi; w, φ) = B(f(xi; w), φ) (2.15)

here f is a function that maps the input x to values between [0, 1] with parameters w.

In fact, in generalized linear model (GLM), f(x; w) = g−1(wTx), where g(x) =
ln( x

1−x) is the logit function (g(x) is referred as the link function in GLM) [101]. How-
ever, one can use other functions like neural network as well. We see later that GLM
can be seen as an one-layer neural network and the activation function in the output
layer is g−1.

The beta regression uses an alternative density function for beta distribution proposed
by Ferrari and Cribari-Neto [102]. The density function reparameterize the beta distri-
bution with mean and precision (like the normal distribution) instead of the canonical
B(a, b) format. Specifically:

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1 (2.16)

where µ := f(x; w) is the model predicted y in our case.

The log-likelihood for beta regression model is:
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2 Machine Learning background

L(w, φ) = N log(Γ(φ))−
N∑
i=1

{
−Γ(µiφ)−log Γ(1−µi)φ−(µiφ−1) log yi+((1−µi)φ−1) log(1−yi)

}
(2.17)

where N = |Dtrain| is the number of data points in the training data. MLE for w and
φ do not have analytical solution in this case. The maximum likelihood estimator for w
can be simplified by dropping the terms irrelevant to w as:

wML = arg min
w

N∑
i=1

{
Γ(µiφ) + log Γ(1− µi)φ− µiφ log yi− (1− µi)φ log(1− yi)

}
(2.18)

φ is viewed as a constant in the above estimator for w.
The readers can refer to [102] for more technical details.

2.4.3 Linear mixed model

The above two examples are under the assumption that the data are iid. However,
this assumption often does not hold. For instance, we want to test whether a genetic
variant is associated with certain phenotype, e.g., gene expression level. The individuals
we consider might not be completely independent due to gender, family and ethnic
background, etc.. In other words, pdata(yi|xi) are not independent unless we also control
for other covariations. Consequently, we can no longer factor out the joint distribution
p(y|X) in 2.6 into a product.

Formally, let the feature matrix X ∈ RN×D and X =

x1 x2 · · · xD

, the target

y ∈ RN×1 and y =


y1
y2
...
yN

. Consider our data are drawn from the following hierarchical

model:

u ∼ N (0,K)

y|u ∼ N
(
f(X; w) + u, σ2I

) (2.19)

where K ∈ RN×N is the relatedness matrix, and encodes the covariance structure of the
input data. Elements in K indicate the similarities between inputs xi.

From 2.19 we can derive the marginal distribution of y as:

p
(
y|f(X; w);σ,K

)
=

∫
p(y|u)p(u)du

= N (f(X; w),K + σ2I)

(2.20)
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We see the covariance for the marginal distribution of y is the sum of the covariances of
u and y|u. This can be intuitively interpreted as the randomness from y and y|u are
independent.

For simplicity, we consider again f is a linear function in w: f(X; w) := Xw. The
above model 2.19 can be written as follow:

y = Xw + u + ε (2.21)

where ε is the random noise term ε ∼ N (0, σ2I).
This model is known as the linear mixed model (LMM) [103].
To perform MLE for the LMM, we need to derive the data likelihood under our model

pmodel(y|X,σ,w), which we have done in 2.20. The MLE follows the same logic as
2.6, expect that we can not make the independence assumption but consider the joint
distribution instead (the joint distribution cannot be factored out). Since the joint
distribution is multivariate normal, we can derive the close form solution for w as:

wML = (XTΣ−1X)−1XTΣ−1y (2.22)

where Σ = K + σ2I. The above estimator is also known as the weighted least square.

2.5 Neural networks

Neural networks (NNs) with even a single hidden layer and a sufficient number of hidden
units are universal function approximators [Kurt Hornik 1991]. The activation function
is essential but not limited to the sigmoid function. This theory cannot guarantee,
however, neural networks work universally. One cannot train a NN with an infinite
number of hidden units, for instance.

Deep neural network models (deep learning) have been widely successful in many
fields, including computational biology. Several advantages have led to the success of
deep learning. First, deep learning is scalable. Unlike other machine learning models,
the performance of deep learning does not saturate with more data [104]. Second,
deep learning models can be trained end-to-end. Deep learning does not need human
experts to curate features [105]. It turns the feature engineering process into a trainable
learning process instead. Layers in deep learning represent gradually from low-level
features to high-level features. Features learned by deep learning models can be reused
in related tasks (transfer learning). Such property enables deep learning to be easily
applied to unstructured data like images, text or DNA/RNA sequences. Third, several
deep learning architectures can capture dependencies between spatially distant features,
e.g., LSTM [106], dilated convolution layers [107].

Genomics is a highly data-driven field. Large data consortiums like ENCODE [108],
GTEx [109] and TCGA [110] as well as large scale massively parallel reporter assays pro-
vide enormous data for model training. Deep learning has been widely applied to predict
transcription factor binding [75], RNA binding protein binding [5], splicing [86], DNA
accessibility [74] and DNA methylation [72]. These models enabled de novo prediction
of variant effect and provided powerful toolsets for genetic diagnosis.
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2.5.1 Vanilla Neural Networks

A vanilla fully connected neural network can be expressed as a stack of matrix multi-
plications and element-wise non-linearities. For instance, a simple neural network with
two-layers is f(x,W ) = W2σ(W1x) (Figure 2.1). Rectified linear unit (ReLU), tanh
and the sigmoid functions are the most frequently used activation functions. GLMs can
be viewed as a NN without hidden layers (Figure 2.1). We notice that a NN without
non-linearity collapse to a GLM: W2W1x = wTx.

With a single hidden layer, NN can already represent functions a GLM cannot. We
show with a XOR example (Figure 2.2). Consider the following classification problem
with input X and output y:

X =


0 0
0 1
1 0
1 1

 , y =


0
1
1
0


We know that linear models cannot classify the XOR example correctly. However, a

neural network with one hidden layer and ReLU activation is able to predict y correctly.
An example solution with neural network is f(x) = ReLU(W1x + b1)

TW2 + b2. Where

W1 =

[
1 1
1 1

]
, b1 =

[
0
−1

]
, W2 =

[
1
−2

]
, b2 =

[
0
0

]

Figure 2.1: Neural network. (A) Neural network without a hidden layer is a generalized linear
model (GLM). (B) two-layer neural network with one hidden layer. This model is
able to classify the XOR gate problem.

2.5.2 Convolutional Neural Network

Convolutional neural network (CNN, or ConvNet) uses learnable “filters” to scan the
input space to find matching patterns (Figure 2.3). It is a type of deep learning archi-
tecture used for data with certain spatial patterns, such as images or texts. Applying
convolution layer to DNA/RNA sequence is analog to scanning with motif positional
weight matrix (PWM), which is a primary way to check whether a DNA/RNA motif is

24



2.5 Neural networks

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x1

x2

class
0
1

Figure 2.2: XOR problem.

present in a given sequence [111]. The scanning also implies biological interpretations.
Many proteins, in fact, find the correct binding site by scanning the sequence with an
order, for instance, the ribosome scanning to find the translational start site [112].

The scanning process is in fact doing a dot product (on the flattened array) with a
certain patch of sequence the same size as the filter. Unlike the fully connected layers,
convolution layers use the same filters to multiply with all the scanned patches. It saves
parameters significantly and therefore allows the model to scale up.

The output of the filter scanning is called the activation map. Each entry of the
map corresponds to the result of one dot product (often also subject to a non-linearity
function) (Figure 2.3). Multiple convolution layers are often applied consecutively to
increase the receptive field and build up more complex feature representations gradually.
A pooling operation (taking the max or average locally or globally along the sequence)
is typically followed after several convolution layers (Figure 2.3). A pooling layer can
potentially remove noise, reduce the number of parameters and increase the receptive
field for the following layers.

Finally, a fully connected layer (recent architectures turned to use convolution layers
as well) is applied in the end to transform all the learned features into a final prediction
(class label or regression prediction) (Figure 2.3).

The convolutional neural networks have the advantage of end-to-end learning. They
can be trained end-to-end to make predictions directly from one-hot encoded sequences.
Therefore, they saves the step of hand-craft feature engineering, which is complicated
and not necessarily perform better. Convolutional neural network is a type of machine
learning method called representation learning, which turns feature engineering in to a
learnable process.

Moreover, certain techniques have been developed to interpret CNN models. Early
deep learning models in genomics tried to directly interpret the learned filters as posi-
tional weight matrices [75, 74, 72]. This approach faces the main challenge: CNN often
learns a motif jointly with several filters. Namely, one filter rarely represents one motif.
Other techniques have been developed to analyze contributions on the input space to the
final prediction by perturbing the input [4] or by propagating the activation differences
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2 Machine Learning background

(DeepLIFT) [113]. When applied to genomics, these techniques successfully identified
biological meaningful sequence motifs [114].

Other neural network architectures were also applied to genomics. For example, the
recurrent neural network (RNN) is another popular architecture to model sequence data.
Systematical comparisons between RNN and CNN architectures in genomics is lacking.
However, it seems that CNN is more common in genomics compared to RNN. A potential
reason could be that, filter scanning is similar to PWM scanning, which is intuitive in
biology.

Figure 2.3: Typical convolutional neural network in genomics. Figure taken from [[73], Fig-
ure 2]. The task here is to predict the binding of a transcription factor complex:
TAL1–GATA1. a The input of the convolutional neural network is one-hot en-
coded DNA sequence. b The network architecture starts with a convolution layer
which scans the input sequence with filters. Here we have two filters, one encodes
the PWM of GATA1, and the other encodes the PWM of TAL1. c The scanning
results are gated by the rectified-linear unit (ReLU) activation function, which set
negative values to 0. d A max pooling is applied per region, which only keeps the
maximum value in each region. e A second convolution operation is applied to
search for the co-occurrence of the two motifs. In this way, the network learns the
motif interaction. f A ReLU activation function is applied. g A global max pooling
is applied along the input sequence direction. h A fully connected layer, which is
similar to a generalized linear model applied to the learned features from previous
layers, is used to make the final prediction.
Reprinted by permission from Springer Nature: Nature Reviews Genetics [73], ©
Springer Nature 2019
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2.6 Optimization

In section 2.2 we introduced that supervised learning can be reduced to an optimization
problem once we decided with the learning object (with regularization). Mathematical
optimization problems can be categorized into convex and non-convex optimization de-
pending on the convexity of the object function in terms of the parameters. In machine
learning applications, the object function is typically differentiable, which means we can
apply gradient-based optimization methods.

A commonly used optimization method based on the first order gradient is the gradient
descent algorithm (GD). The gradient of the function ∇f(x) indicates the slope of the
function at x. Gradient descent algorithm follows the negative direction of the gradient
at x with a small step size. The original GD update is as follows:

wk+1 ← wk − α∇f(wk) (2.23)

where w is the parameter to optimize and α is the step size.
Gradient descent can be interpreted with Taylor expansion. Consider the Taylor

expansion of f at wk:

f(wk+1) ≈ f(wk) +∇f(wk)T (wk+1−wk) +
1

2
(wk+1−wk)T∇2f(wk)(wk+1−wk) (2.24)

the expression on the right hand side is the quadratic approximation of the function
f(wk+1) (Figure 2.4).

For the first order method, we assume the Hessian ∇2f(wk) to be a constant 1
α . It is

easy to optimize the right hand side in terms of wk+1:

arg min
wk+1

f(wk) +∇f(wk)T (wk+1 − wk) +
1

2α
||wk+1 − wk||2 (2.25)

The solution of 2.25 gives the gradient descent update rule shown in 2.23.
If we use the full Hessian ∇2f(wk) and optimize the right hand side of 2.24:

arg min
wk+1

f(wk) +∇f(wk)T (wk+1 − wk) +
1

2
(wk+1 − wk)T∇2f(wk)(wk+1 − wk) (2.26)

we get:

wk+1 ← wk − (∇2f(wk))−1∇f(wk) (2.27)

which is in fact the update rule for Newton’s method [115]. As it requires the calculation
of the Hessian matrix, it is a second order optimization method.

In deep learning, as we typically deal with a very large dataset, it is more efficient
to update with small minibatch samples. In practice, optimizing with small batch size
is not only more efficient but also yields better performance in deep learning models.
The gradient descent algorithm that works with small minibatch instead of the whole
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Figure 2.4: Quadratic approximation of the object function with taylor expansion. The solid
line indicates the object function f(x), while the dashed line indicates the one-step
quadratic approximation line from the blue point. The red point indicates the
optimum of the approximated line.

batch of samples is termed as stochastic gradient descent (SGD). Several modifications
of SGD have been shown to improve the performance of SGD. One particularly useful
modification is adding momentum to the current gradient [116]. The momentum is a
decayed moving average of gradients from previous steps (vk+1 = µvk − α∇f(wk)), so
that the algorithm does not stuck at saddle points easily. Adam [117] is a widely used
variation of SGD. Besides momentum, Adam also adapts the learning rate according to
the scale of the gradient for different parameters: parameters seen larger gradient will
have a smaller learning rate than parameters seen the smaller gradient.

In general, the cost functions of deep learning models are non-convex in terms of model
parameters. SDG with momentum can effectively escape from saddle points, but would
likely converge to local minima. Empirically deep learning models can generalize well
even with local minima. Recent theoretical analyses show that local minima are “good”
and global minima often means overfitting [118, 119].

Besides the model parameters, deep learning models are sensitive to hyperparameters.
Important hyperparameters include the learning rate and the regularization strength.
It is common to optimize hyperparameters with random search, Bayesian optimization
approach, or tree-structured parzen estimator approach [120]. Because the learning
rate is multiplied to the gradient (2.23), it has a multiplicative effect on the learning.
Therefore it is common to search the optimal learning rate on a log scale.
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Post-transcriptional regulation is one of the major mechanisms employed by the cell to
regulate gene expression. Most of these regulations involve interactions between RNA
binding proteins and sequence patterns on the RNA. The growing amount of data and
advances in machine learning techniques enabled researchers to build models to predict
quantities of these regulations. These models take genetic sequences as inputs and
predicts certain molecular phenotype from these input sequences. Models of this kind
are extremely helpful in interpreting genetic variants and predicting their pathogenicity.

I present in this thesis models for two important post-transcriptional regulations:
splicing and mRNA degradation. The splicing model, MMSplice, accurately predicts
variant effect on various splicing quantities, including Ψ, Ψ5, Ψ3 and splicing efficiency.
By building better models to predict the functional impact, we can also predict variant
pathogenicity with improved accuracy.

The modular approach of MMSplice is flexible. However, since each module is trained
independently, some long-range dependencies might be overlooked. During the review
of the MMSplice manuscript, another method to predict variant effect on splicing was
published [121]. The tool, SpliceAI, can accurately predict whether a given variant
can create or disrupt a splice site. SpliceAI is a deep learning model with residual
connections and dilated convolutions. It takes very large input sequence length (20k)
to capture long-range dependencies. However, SpliceAI is not able to predict changes
on splicing quantities mentioned above. For instance, if a variant disrupts or creates
a splicing enhancer on an alternative spliced exon, SpliceAI is not able to predict the
corresponding Ψ change. Furthermore, SpliceAI is trained from the reference sequence,
while MMSplice took advantage of several perturbation data. As a consequence, SpliceAI
might suffer more from correlative features result from coevolution. Therefore, it is
recommendable to use SpliceAI along with MMSplice. Nevertheless, SpliceAI is a good
example of end-to-end learning with a deep learning model.

The performance of MMSplice was evaluated with measured variant effects from two
high throughput reporter assays: Vex-seq and MaPSy. Despite similarities, the exons
tested by the two assays are different. Vex-seq used alternatively spliced exons while
MaPSy used constitutive exons. It is to this point unclear whether variant primarily
changes Ψ for alternatively spliced exons while primarily change splicing efficiency for
constitutively spliced exons. One could potentially analyze the raw data from both
assays to answer this question.

Sequence variants affecting mRNA stability have largely been ignored in diagnosis
pipelines, mainly because the lack of corresponding computational tools to predict vari-
ant effect on mRNA stability. This thesis demonstrates one model trained for yeast.
Some of the sequence determinants investigated in this thesis are likely conserved in
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human. One example is the upstream AUG (uAUG) codon, which is frequent in human
transcripts [73]. Variants creating or disrupting uAUG are likely to affect the stabil-
ity of the corresponding transcript. Moreover, similar models can also be trained for
humans. The improved experimental protocols have enabled better estimation of RNA
kinetics in human [27, 122]. An end-to-end model predicting mRNA stability for human
can be trained. Beside RNA kinetics data measured from reference cell lines, massively
parallel reporter assays (MPRA), which was successfully applied in many other contexts
[49, 123, 92], can be applied to study sequence determinants for human mRNA stability
as well. Similar MPRA experiment has been successfully applied in zebrafish to study
3’UTR sequences that regulate mRNA decay [124].

We see from both the assay measurement and MMSplice prediction that, exonic vari-
ants can have a potentially large effects on splicing. Furthermore, changing codon usage
also affect mRNA half-life. This leads to other interpretations of coding variants. Previ-
ously variants in the coding parts are mostly interpreted as missense or nonsynonymous
depending on whether the encoded protein sequence changes. I recommend that fu-
ture variant interpretation pipelines should also consider the effect of exonic variants on
splicing and mRNA stability.

This thesis only considered variant effect on cis-elements, trans effects are ignored.
One can imagine that, a variant disrupting an RBP-coding transcript is likely to affect
many transcripts bound by the RBP. To build such a model, one would need at least
two components. The first component predicts the variant effect on the RBP transcript
(cis), the second component predicts effects on the targeted transcripts of the RBP
(trans). Previously, such kind of effects are studied with expression quantitative trait loci
(eQTL), which is a statistical association method. Depending on whether the effect is on
cis (associations with the transcript harboring the variant) or in trans (associations with
the targets regulated by the transcript harboring the variant), eQTL can be categorized
into cis-eQTL or trans-eQTL. However, similar to GWAS, such statistical method fails
to locate the causal variant. Machine learning models trained from perturbation data
can be a better substitution with the increasing amount of data. For instance, one can
systematically test trans effects by large scale CRISPR experiments. A recent study
has proposed crisprQTL method combining CRISPR techniques with single-cell RNA
sequencing. Instead of associating natural occurring variants across individuals, the
method creates variants with CRISPR and test their effect across cells [125]. So far,
crisprQTL is only used for cis-effects, extending it to study trans-effects should be
possible.

3.1 Outlook

Here I point a few research directions that are interesting for the future work related to
this thesis.
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3.1.1 Functional characterization for the new half-life regulating motif
ATATTC

We identified a new motif down-regulation mRNA half-life in yeast. The motif was
validated for its effect but not its biological function. GO enrichment analysis indicates
its potential function in respiration-related processes. Furthermore, it is interesting to
find out the corresponding protein that binds to this motif. With the trans-regulating
protein being identified, one can study its function by specifically knocking out the
protein.

3.1.2 Tissue-specific splice variant effect prediction

Many exons are differentially alternative spliced across tissues [126]. Therefore, the
same germline mutation may have different effects and consequences in various tissues.
A tissue-specific variant effect prediction model for splicing could be highly relevant. The
SPANR model was able to capture tissue-specific signals, but systematic benchmarking
for tissue-specific prediction is lacking. Moreover, the public available scores computed
with SPANR do not provide tissue-specific predictions, limiting its applications.

Large scale transcriptome profiling data is available [127], from which tissue-specific
splicing models can be trained. One can potentially leverage on existing models like
MMSplice and do transfer learning, or train a model from scratch to capture sequence
determinants for the tissue-specificity.

3.1.3 Gene segmentation model for splice variant prediction

The current MMSplice model still needs annotation of exons to be applied. The model
can be more powerful if we can make predictions without annotations. Here I present
one potential approach for it.

An alternative way to view splicing is, it is a process to segment RNA transcripts in
the cell. As the segmentation is mostly controlled by sequence elements on the RNA,
it should be possible to train a model to approximate the decisions strategy of the cell.
Semantic segmentation is a common task in computer vision, many well-established
models exist and can be adapted to genomics. Such models typically follow an “encoder”
and “decoder” architecture [128]. The “encoder” gradually transforms features into a
more condensed but “deeper‘’ space, and the “decoder” expand the information again
to predict semantic information for every input pixel/character.

Such segmentation model for RNA can be trained by providing the following multi-
class labels from the standard annotation: 5′ UTR, exon, intron, and 3′ UTR. Note
that one nucleotide can be labeled as more than one class. Alternative splicing means
ambiguity in the definition of exon or intron, which the model is trained to predict.
Variants changing splicing patterns can be viewed as changing the “segmentation” of
exon or introns, which is what the model is trained to predict for.

Such approaches have clear advantages: First, it needs annotation when training, but
works annotation-independent when testing. It has the potential to capture cryptic or

31



3 Discussion and Outlook

weak splice sites [20] that most other models ignore. Second, it applies to all splicing
patterns, including exon skipping, intron retention, alternative splice sites, etc.

3.1.4 5′ capping and 3′ polyadenylation prediction

Other post-transcriptional processes can be modeled from the sequence as well. 5′capping
and 3′ polyadenylation are two important post-transcriptional processes, they define
the transcript boundaries. Changing 5′ capping or 3′ polyadenylation sites can lead to
different UTR length, and therefore different molecular consequences.

RNA-Seq data provide rich information about the capping and polyadenylation po-
sitions across tissues. They provide per base pair coverage profiles along the sequence.
One can train a convolutional neural network or a recurrent neural network model to
predict these profiles. The model should capture key tissue-specific signals of these bio-
logical processes, and can be potentially be applied for variant interpretation for these
processes.

A recent MPRA experiment was done for human 3′ polyadenylation process [123],
the model, APARENT can precisely predict polyadenylation sites. One can do transfer
learning from this model to adapt it for different tissues.

3.1.5 Join transcriptional and post-transcriptional signals for variant
interpretation

I show with MMSplice that improved functional impact prediction effectively improved
variant pathogenicity prediction. The long term goal for (regulatory) variant interpreta-
tion should combine variant effect prediction for transcriptional and post-transcriptional
processes. We already see the dual roles of some sequence elements, for instance, codon
usage affects both protein translation and mRNA stability; abnormal transcript created
by splice variants can trigger NMD; exonic variants that change protein coding sequence
can also change splicing. Interpreting variants jointly for its effect on transcription,
5′ capping, 3′ polyadenylation, splicing, and degradation should lead to a more complete
understanding of its impact. One recent progress in this regard is made by Zhou et
al [129]. The study combined transcriptional and splicing signals, and highlighted the
effect of noncoding mutations in autism spectrum disorder. Kipoi is another example of
combining models from different modalities [4]. As a model repository, Kipoi consists
of more than 2,000 models covering many transcriptional and post-transcriptional pro-
cesses. The API of kipoi allows to jointly interpret variants with all models hosted in
kipoi.

3.1.6 Hierarchical models for variant pathogenicity prediction

Training a classifier to predict variant pathogenicity may have the danger to be biased
due to the inherited bias from the training data. Current pathogenic variants are identi-
fied with the help of existing computational tools, therefore, the pathogenic annotations
are biased to the variants that are “easy” for these tools. Classifiers trained with this
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data will likely inherit these biases. Furthermore, new classifiers are often trained by
ensemble of existing classifiers, exaggerating the biases even more.

Instead, more functional models should be encouraged. Models trained from targeted
assay or perturbation data like MPRA are more likely to capture causal signals. Pre-
cisely, we should predict disease risks by building hierarchical from functional models
that predict molecular phenotypes [130]. Instead of two model layers, I propose three:
The first layer of models predicts fundamental DNA/RNA protein interactions, e.g.,
transcriptional factor binding, RBP binding. The second level of models predicts from
these fundamental sequence protein interactions some specific biological process, e.g.,
transcription rate, splicing, RNA degradation. The final layer of models predicts disease
risks by combining predictions from the previous two layers and additional features like
conservation scores.

Such a hierarchical approach has three major advantages: First, it should be much
easier to predict variant disease risks given their functional impact. Second, compared
to variant pathogenicity annotation, functional data are much richer. An MPRA can
simultaneously probe millions of sequences for their functional effects. Third, the model
will suffer from less bias from the existing annotation.

An example of this kind of model is ExPecto [131]. ExPecto first trained a deep con-
volutional neural network to predict 2,002 different histone marks, transcription factor
and DNA accessibility profiles across more than 200 tissues and cell types. Next, tissue-
specific linear models were trained to predict tissue-specific expression levels. Finally,
the model was applied to prioritize disease-causing variants.

In summary, regulatory variant interpretation can be improved from both experimen-
tal and computational sides. On the experimental side, more high throughput pertur-
bation assays are needed to cover more regulatory processes and in more tissues. On
the computational method side, more models are needed to predict from basic protein
DNA/RNA binding to more complex gene expression processes, e.g., transcription, RNA
degradation. Moreover, models are also needed to combine different models to make
joint interpretations of the variant effect and predictions of pathogenicity. I foresee both
sides to be significantly improved in the upcoming years with the rapid development of
experimental techniques and end-to-end modeling frameworks.
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A Appendix

Cis-regulatory elements explain most of the mRNA stability
variation across genes in yeast

Regulating mRNA stability is an important way to regulate cellular mRNA concen-
tration. The steady-state level of mRNA is jointly determined by the transcription rate
and the degradation rate. Furthermore, mRNA stability is directly related to its dy-
namic response to environmental stimulus. Unstable mRNA can rapidly reach a new
steady-state cellular level, while stable mRNA is robust to transcriptional perturbations.
Therefore, mRNA half-life levels can vary as much as one to two orders of magnitude
[132, 26, 27].

Sequence elements on mRNA play a major role in determining mRNA stability. Most
RNA stability studies focused on the model organism Saccharomyces cerevisiae since
the mechanism is conserved among eukaryotes. Previous studies have identified multiple
sequence elements including but not limited to secondary structure, short motifs in 5′and
3′ UTR, start and stop codon context and codon usage [23].

Many sequence determinants of mRNA stability were studied with reporter system,
their genome-wide functions were often unclear. Besides, their overall contributions to
the global half-life variations were obscure. Moreover, with the current list of features,
we are unsure about how comprehensive we are.

In this study, I first evaluated known mRNA half-life determinants genome-wide. Sec-
ond, I show evidence that metabolic labeling technique generates higher quality mRNA
half-life data compared to other methods. Third, I used a linear mixed model to system-
atically discovery 3′ UTR motifs associated with mRNA half-life across genes. Fourth,
I built a linear model with known and novel features to predict mRNA half-life from
the primary mRNA sequence. Finally, to find the corresponding pathways, different
sequence elements use to affect mRNA stability, I investigated 34 knockout strains, each
with one key RNA degradation factor knocked out.

The analysis revealed one novel 3′ UTR motif, ATATTC, that destabilizes mRNA.
Genes harboring the motif are enriched with respiration-related function. The joint
linear model was able to explain 59% of the total half-life variation across genes, and the
median relative prediction error is 30%. Among the features used in the joint model,
codon usage is the most predictive feature and is the primary determinant of mRNA
half-life. Pathway analysis showed that codon usage affects mRNA stability through the
canonical 5′to 3′mRNA degradation pathway mediated by Xrn1, instead of the previously
speculated no-go-decay pathway. Furthermore, single-nucleotide variations (SNVs) on
3′ UTR motifs and upstream AUG have the largest predicted effect on mRNA stability.
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Overall, this study provides a comprehensive analysis of sequence determinants of
mRNA stability and their functional pathways. The predictive model revealed the dom-
inant role of codon usage and also applicable for variant effect prediction.
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ABSTRACT

The stability of mRNA is one of the major determinants of gene expression. Although a wealth of sequence elements regulating
mRNA stability has been described, their quantitative contributions to half-life are unknown. Here, we built a quantitative
model for Saccharomyces cerevisiae based on functional mRNA sequence features that explains 59% of the half-life variation
between genes and predicts half-life at a median relative error of 30%. The model revealed a new destabilizing 3′′′′′ UTR motif,
ATATTC, which we functionally validated. Codon usage proves to be the major determinant of mRNA stability. Nonetheless,
single-nucleotide variations have the largest effect when occurring on 3′′′′′ UTR motifs or upstream AUGs. Analyzing mRNA
half-life data of 34 knockout strains showed that the effect of codon usage not only requires functional decapping and
deadenylation, but also the 5′′′′′-to-3′′′′′ exonuclease Xrn1, the nonsense-mediated decay genes, but not no-go decay. Altogether,
this study quantitatively delineates the contributions of mRNA sequence features on stability in yeast, reveals their functional
dependencies on degradation pathways, and allows accurate prediction of half-life from mRNA sequence.

Keywords: cis-regulatory elements; codon optimality; mRNA half-life

INTRODUCTION

The stability of messenger RNAs is an important aspect of
gene regulation. It influences the overall cellular mRNA con-
centration, as mRNA steady-state levels are the ratio of syn-
thesis and degradation rate. Moreover, low stability confers
high turnover to mRNA and, therefore, the capacity to rapid-
ly reach a new steady-state level in response to a transcrip-
tional trigger (Shalem et al. 2008). Hence, stress genes,
which must rapidly respond to environmental signals, show
low stability (Miller et al. 2011; Zeisel et al. 2011; Marguerat
et al. 2014; Rabani et al. 2014). In contrast, high stability pro-
vides robustness to variations in transcription. Accordingly, a
wide range of mRNA half-lives is observed in eukaryotes,
with typical variations in a given genome spanning one to
two orders of magnitude (Schwanhäusser et al. 2011; Eser
et al. 2016; Schwalb et al. 2016). Also, significant variability
in mRNA half-life among human individuals could be dem-
onstrated for about a quarter of genes in lymphoblastoid cells
and estimated to account for more than a third of the gene
expression variability (Duan et al. 2013).

How mRNA stability is encoded in a gene sequence has
long been a subject of study. Cis-regulatory elements
(CREs) affecting mRNA stability are mainly encoded in the

mRNA itself. Here we use the formal definition of CRE,
i.e., a regulatory element affecting expression of the gene it
belongs to in an allele-specific manner (Rockman and Kru-
glyak 2006; Skelly et al. 2009). CREs affecting mRNA stability
include but are not limited to secondary structure (Rabani
et al. 2008; Geisberg et al. 2014), sequence motifs present
in the 3′ UTR including binding sites of RNA-binding pro-
teins (Olivas and Parker 2000; Duttagupta et al. 2005; Shalgi
et al. 2005; Hogan et al. 2008; Hasan et al. 2014), and, in high-
er eukaryotes, microRNAs (Lee et al. 1993). Moreover, trans-
lation-related features are frequently associated with mRNA
stability. For instance, inserting strong secondary structure
elements in the 5′ UTR or modifying the translation start co-
don context strongly destabilizes the long-lived PGK1mRNA
in S. cerevisiae (Muhlrad et al. 1995; LaGrandeur and Parker
1999). Codon usage, which affects the translation elongation
rate, also regulates mRNA stability (Hoekema et al. 1987; Pre-
snyak et al. 2015; Bazzini et al. 2016; Mishima and Tomari
2016). Further correlations between codon usage and
mRNA stability have been reported in E. coli and S. pombe
(Boël et al. 2016; Harigaya and Parker 2016). Adjacent codon
pairs were also demonstrated to associate with mRNA decay
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in addition to individual codons in S. cerevisiae (Harigaya and
Parker 2017).
Since the RNA degradationmachineries are well conserved

among eukaryotes, the pathways have been extensively stud-
ied using S. cerevisiae as a model organism (Garneau et al.
2007; Parker 2012). The general mRNA degradation pathway
starts with the removal of the poly(A) tail by the Pan2/Pan3
(Brown et al. 1996) and Ccr4/Not complexes (Tucker et al.
2001). Subsequently, mRNA is subjected to decapping car-
ried out by Dcp2 and promoted by several factors, including
Dhh1 and Pat1 (Pilkington and Parker 2008; She et al. 2008).
The decapped and deadenylated mRNA can be rapidly de-
graded in the 3′ to 5′ direction by the exosome (Anderson
and Parker 1998) or in the 5′ to 3′ direction by Xrn1 (Hsu
and Stevens 1993). Further mRNA degradation pathways
are triggered when aberrant translational status is detected,
including nonsense-mediated decay (NMD), no-go decay
(NGD), and nonstop decay (NSD) (Garneau et al. 2007;
Parker 2012).
Despite all this knowledge, prediction of mRNA half-life

from a gene sequence is still not established. Moreover,
most of the mechanistic studies so far were only performed
on individual genes or reporter genes. It is therefore unclear
how the measured effects generalize genome-wide. A recent
study showed that translation-related features can be predic-
tive for mRNA stability (Neymotin et al. 2016). Although this
analysis supported the general correlation between transla-
tion and stability (Lackner et al. 2007),
the model was not based purely on se-
quence-derived features. It also con-
tained measured transcript properties
such as ribosome density and normalized
translation efficiencies. Hence, the ques-
tion of how half-life is genetically encod-
ed in mRNA sequence remains to be
addressed.
Additionally, the dependencies of

sequence features to distinct mRNA deg-
radation pathways have not been sys-
tematically studied. One example of this
is codon-mediated stability control.
Although a causal link from codon usage
to mRNA half-life has been shown for a
wide range of organisms (Hoekema et
al. 1987; Presnyak et al. 2015; Bazzini et
al. 2016; Mishima and Tomari 2016),
the underlying mechanism remains
poorly understood. In S. cerevisiae, re-
porter gene experiments showed that co-
don-mediated stability control depends
on the RNA helicase Dhh1 (Radha-
krishnan et al. 2016). However, it is un-
clear whether this generalizes to all
mRNAs genome-wide. Also, the role of
other closely related degradation path-

ways has not been systematically assessed with genome-
wide half-life data.
Here, we mathematically modeled mRNA half-life as a

function of its sequence. Applied to S. cerevisiae, our model
can explain most of the between-gene half-life variance
from sequence alone. Using a semimechanistic model, we
could interpret individual sequence features in the 5′ UTR,
coding region, and 3′ UTR. Quantification of the respective
contributions revealed that codon usage is the major contrib-
utor to mRNA stability. Applying the modeling approach to
S. pombe supports the generality of these findings. Moreover,
we systematically assessed the dependencies of these sequence
elements onmRNA degradation pathways using half-life data
for 34 knockout strains. This analysis revealed in particular
novel pathways through which codon usage affects half-life.

RESULTS

To study cis-regulatory determinants of mRNA stability in S.
cerevisiae, we chose the data set by Sun et al. (2013), which
provides genome-wide half-life measurements for 4388 ex-
pressed genes of a wild-type laboratory strain and 34 strains
knocked out for RNA degradation pathway genes (Fig. 1;
Supplemental Table S1). When applicable, we also investi-
gated half-life measurements of S. pombe for 3614 expressed
mRNAs in a wild-type laboratory strain from Eser et al.
(2016). We considered sequence features within five

FIGURE 1. Study overview. The goal of this study is to discover and integrate cis-regulatory
mRNA elements affecting mRNA stability and assess their dependence on mRNA degradation
pathways. (Data) We obtained S. cerevisiae genome-wide half-life data from wild-type (WT) as
well as from 34 knockout strains from Sun et al. (2013). Each of the knockout strains has one
gene closely related to mRNA degradation pathways knocked out. (Analysis) We systematically
searched for novel sequence features associating with half-life from 5′ UTR, start codon context,
CDS, stop codon context, and 3′ UTR. Effects of previously reported cis-regulatory elements were
also assessed. Moreover, we assessed the dependencies of different sequence features on degrada-
tion pathways by analyzing their effects on the knockout strains. (Integrative model) We built a
statistical model to predict genome-wide half-life solely from mRNA sequence. This allowed the
quantification of the relative contributions of the sequence features to the overall variation across
genes and assessing the sensitivity of mRNA stability with respect to single-nucleotide variants.
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overlapping regions: the 5′ UTR, the start codon context, the
coding sequence, the stop codon context, and the 3′ UTR.We
assessed their effects in the wild type and in the 34 knockout
strains (Fig. 1). Finally, we fitted a joint model to assess the
contribution of individual sequence features and their sin-
gle-nucleotide effects (Fig. 1). In all analyses, we considered
the logarithm of half-life as the response variable rather
than half-life in the natural scale. The primary motivation
for choosing a logarithmic scale is that measurement noise
for half-life is typically multiplicative. Also, the data did not
provide supportive evidence discriminating between multi-
plicative or additive effects of the cis-regulatory elements on
half-life (Supplemental Information). For simplicity, we
used linear regressions, i.e., due to the logarithmic response,
multiplicative models.

The correlations between sequence lengths, GC contents
and folding energies (Materials and Methods) with half-life
and corresponding P-values are summarized in Supplemen-
tal Table S2 and Supplemental Figures S1–S3. In general, se-
quence lengths correlated negatively with half-life and
folding energies correlated positively with half-life in both
yeast species, whereas correlations of GC content varied
with species and gene regions.

In the following subsections, we describe first the findings
for each of the five gene regions and then a model that inte-
grates all these sequence features.

Upstream AUGs destabilize mRNAs by triggering
nonsense-mediated decay

Occurrence of an upstream AUG (uAUG) associated signifi-
cantly with shorter half-life (median fold-change = 1.37, P <
2 × 10−16). This effect was strengthened for genes with two or
more AUGs (Fig. 2A,B). Among the 34 knock-out strains, the
association between uAUG and shorter half-life was almost
lost only for mutants of the two essential components of
the nonsense-mediated mRNA decay (NMD) UPF2 and
UPF3 (Leeds et al. 1992; Cui et al. 1995), and for the general
5′ to 3′ exonuclease Xrn1 (Fig. 2A; Supplemental Fig. S6). The
dependence on NMD suggested that the association might be
due to the occurrence of a premature stop codon. Consistent
with this hypothesis, the association of uAUG with decreased
half-lives was only found for genes with a premature stop co-
don cognate with the uAUG (Fig. 2C). This held not only for
cognate premature stop codons within the 5′ UTR, leading to
a potential upstream ORF, but also for cognate premature

FIGURE 2. Upstream AUG codons (uAUG) destabilize mRNA. (A) Distribution of mRNA half-lives for mRNAs without uAUG (left) and with at
least one uAUG (right). From left to right: wild type, XRN1, UPF2, and UPF3 knockout S. cerevisiae strains. Median fold-change (Median FC) calcu-
lated by dividing themedian of the groupwithout uAUGwith the groupwith uAUG. A complete view of the effect of uAUG across different knockouts
is provided in Supplemental Figure S6. (B) Distribution of mRNA half-lives for mRNAs with zero (left), one (middle), or more (right) uAUGs in S.
cerevisiae. (C) Distribution of mRNA half-lives for S. cerevisiae mRNAs with, from left to right: no uAUG, with one in-frame uAUG but no cognate
premature termination codon, with one out-of-frame uAUG and one cognate premature termination codon in the CDS, and with one uAUG and one
cognate stop codon in the 5′ UTR (uORF). (D) Same as inC for S. pombemRNAs. All P-values were calculated withWilcoxon rank-sum test. Numbers
in the boxes indicate number of members in the corresponding group. Boxes represent quartiles, whiskers extend to the highest or lowest value within
1.5 times the interquartile range, and horizontal bars in the boxes represent medians. Data points falling further than 1.5-fold the interquartile distance
are considered outliers and are shown as dots.
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stop codons within the ORF, which occurred almost always
for uAUG out-of-frame with the main ORF (Fig. 2C). This
finding likely holds for many other eukaryotes as we found
the same trends in S. pombe (Fig. 2D). These observations
are consistent with a single-gene study demonstrating that
translation of upstream ORFs can lead to RNA degradation
by NMD (Gaba et al. 2005) and that uORFs are enriched in
NMD substrates (Celik et al. 2017). Altogether, these results
show that uAUGs are mRNA destabilizing elements as they
almost surely match with cognate premature stop codons,
which, whether in frame or not with the gene, and within
the UTR or in the coding region, trigger NMD.

Translation initiation sequence features associate
with mRNA stability

Several sequence features in the 5′ UTR including the start
codon context associated with mRNA half-life (Supplemen-
tal Information; Supplemental Figs. S4–S5). This indicates
that 5′ UTR elements may affect mRNA stability by altering
translation initiation. However, none of these sequence
features remained significant in the final joint model. Our
analysis is therefore not conclusive on this point. A detailed
analysis is provided in the Supplemental Information for in-
terested readers.

Codon usage regulates mRNA stability through common
mRNA decay pathways

When using frequency of each codon as an independent co-
variate, codon usage marginally explained 55% of the be-
tween-gene half-life variation in S. cerevisiae on test data
(linear regression, Materials and Methods, Fig. 3A). The spe-
cies-specific tRNA adaptation index (sTAI) (Sabi and Tuller
2014) significantly positively correlated with the coefficients
for codons in this regression [Supplemental Fig. S4E, r =
0.48 with log(sTAI), P = 0.0001, Materials and Methods],

confirming the association between codon optimality and
mRNA stability (Presnyak et al. 2015; Harigaya and Parker
2016). We also performed regression against gene-level
sTAI. However, it yielded to significant yet less accurate pre-
dictions (40% explained variance on test data). We therefore
proceeded with modeling frequency of each codon as an in-
dependent covariate.
Next, we quantified how much variation of mRNA half-

life can be explained by codons in different knockout strains
using the out-of-folds explained variance as a summary
statistic (Supplemental Methods). The effect of codon usage
exclusively depended on the genes from the common dead-
enylation- and decapping-dependent 5′ to 3′ mRNA decay
pathway and the NMD pathway (all FDR < 0.1, Fig. 3B). In
particular, all assessed genes of the Ccr4–Not complex, in-
cluding CCR4, NOT3, CAF40, and POP2, were required for
wild-type level effects of codon usage on mRNA decay.
Among them, CCR4 has the largest effect. This confirmed a
recent study in zebrafish showing that accelerated decay of
nonoptimal codon genes requires deadenylation activities
of Ccr4–Not (Mishima and Tomari 2016). In contrast to
genes of the Ccr4–Not complex, PAN2/3 genes that also en-
code deadenylation enzymes were not found to be essential
for the coupling between codon usage and mRNA decay
(Fig. 3B).
Furthermore, our results not only confirm the dependence

on Dhh1 (Radhakrishnan et al. 2016), but also on its interact-
ing partner Pat1. The difference might come from the fact
that we analyzed genome-wide half-life data, whereas
mRNA half-life measurements from Radhakrishnan and col-
leagues were only performed on reporter genes.
Our systematic analysis revealed two additional novel de-

pendencies: First, on the common 5′ to 3′ exonuclease
Xrn1, and second, onUPF2 andUPF3 genes, which are essen-
tial players of NMD (all FDR < 0.1, Fig. 3B). Consistently,
previous studies have shown that UPF genes are involved in
more than just the degradation of nonsense messages, but

FIGURE 3. Codon usage regulates mRNA stability through common mRNA decay pathways. (A) Predicted mRNA half-life using only codons as
features (linear regression) versus measured mRNA half-life. (B) mRNA half-life explained variance (y-axis, Materials and Methods) in wild-type
(WT) and across all 34 knockout strains (grouped according to their functions). Each blue dot represents one replicate; bar heights indicate means
across replicates. Bars with a red star are significantly different from the wild-type level (FDR < 0.1, Wilcoxon rank-sum test, followed by Benjamini–
Hochberg correction).
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rather target a wide range of mRNAs, including aberrant and
normal ones (He et al. 2003; Hug et al. 2015). In line with this,
substrates of Upf proteins have lower codon optimality (Celik
et al. 2017). Furthermore, we did not observe any change of
effect upon knockout of DOM34 and HBS1 (Fig. 3B), which
are essential genes for the No-Go decay pathway. This implies
that the effect of codon usage is unlikely due to stalled ribo-
somes at nonoptimal codons.

Altogether, our analysis indicates that the so-called “co-
don-mediated decay” (Mishima and Tomari 2016) is not
an mRNA decay pathway itself, but a regulatory mechanism
of the common mRNA decay pathways.

Stop codon context associates with mRNA stability

The first nucleotide 3′ of the stop codon significantly associ-
ated with mRNA stability. This association was observed for
each of the three possible stop codons, and for each codon a
cytosine significantly associated with lower half-life (Supple-
mental Fig. S4, also for P-values and fold-changes). However,
this feature was not significant in the joint model, and anal-
ysis of the knockout strains did not reveal clear pathway
dependencies for it (Supplemental Fig. S6). A detailed de-
scription is provided in the Supplemental Information for in-
terested readers.

Sequence motifs in 3′′′′′ UTR

De novo motif search identified four motifs in the 3′ UTR to
be significantly associated with mRNA stability (Fig. 4A,
Materials and Methods). These include three described mo-
tifs: the Puf3 binding motif TGTAAATA (FDR = 3.2 × 10−5,
median fold-change 1.29) (Gerber et al. 2004; Gupta et al.
2014), the Whi3 binding motif TGCAT (FDR = 7 × 10−4,
median fold-change 1.24) (Colomina et al. 2008; Cai and
Futcher 2013), and a poly(U) motif TTTTTTA (FDR =
0.09, median fold-change 1.20), which can be bound by
Pub1 (Duttagupta et al. 2005), or is part of the long poly(U)
stretch that forms a looping structure with a poly(A) tail
(Geisberg et al. 2014). Moreover, an uncharacterized motif,
ATATTC, was associated with lower mRNA half-life (FDR
= 2 × 10−5, median fold-change 1.24). Genes harboring the
ATATTC motif are significantly enriched for genes involved
in oxidative phosphorylation (Bonferroni corrected P < 0.01,
4.4-fold enrichment, Gene Ontology analysis, Supplemental
Methods; Supplemental Table S3). The motif ATATC prefer-
entially localizes in the vicinity of the poly(A) site (Fig. 4B),
and functionally depends on Ccr4 (FDR < 0.1, Supplemental
Fig. S6), suggesting a potential interaction with deadenyla-
tion factors. Notably, the motif ATATTC was found in
13% of the genes (591 out of 4388) and significantly co-
occurred with the other two destabilizing motifs found in
3′ UTR: Puf3 motif (FDR = 0.01) and Whi3 motif (FDR =
3 × 10−3) binding motifs (Fig. 4F). This 3′ UTR motif had
been computationally identified by conservation analysis

(Kellis et al. 2003), by regression of steady-state expression
levels (Foat et al. 2005), and by enrichment analysis within
gene expression clusters (Elemento et al. 2007). The motif
was suggested to be named as PRSE (positive response to
starvation element), because of its enrichment among genes
that are up-regulated upon starvation (Foat et al. 2005).
However, it was not experimentally validated for controlling
of mRNA stability.
We validated the 3′ UTR motif ATATTC with a reporter

assay on two different genes, SFG1 and NYV1. Given the pre-
dicted small effect of a single motif, we generated constructs
with two instances of the motif and compared them to con-
structs harboring two scrambled motifs at the same locations
(Fig. 4G, Materials and Methods). Both reporter genes
showed decreased expression levels compared to scrambled
controls (P = 0.019 for SFG1, P = 0.00016 for NYV1,
Wilcoxon rank-sum test). Since the 3′ UTR motif ATATTC
is not significantly associated with mRNA synthesis rate (P
= 0.38, Wilcoxon rank-sum test, synthesis rate of genes with-
out motif versus genes with motif), we conclude that this de-
creased expression is due to decreased stability.
Consistent with the role of Puf3 in recruiting deadenyla-

tion factors, Puf3 binding motif localized preferentially close
to the poly(A) site (Fig. 4B). The effect of the Puf3 motifs was
significantly lower in the knockout of PUF3 (FDR < 0.1,
Supplemental Fig. S6). We also found a significant depen-
dence on the deadenylation (CCR4, POP2) and decapping
(DHH1, PAT1) pathways (all FDR < 0.1, Supplemental Fig.
S6), consistent with previous single gene experiments show-
ing that Puf3 binding promotes both deadenylation and
decapping (Olivas and Parker 2000; Goldstrohm et al.
2007). Strikingly, the Puf3 binding motif switched to a stabi-
lization motif in the absence of Puf3 and Ccr4 (all FDR < 0.1,
Supplemental Fig. S6), suggesting that deadenylation of the
Puf3 motif containing mRNAs is not only facilitated by
Puf3 binding, but also depends on it.
Whi3 plays an important role in cell cycle control (Garí

et al. 2001). Binding of Whi3 leads to destabilization of the
CLN3mRNA (Cai and Futcher 2013). A subset of yeast genes
are up-regulated in the Whi3 knockout strain (Cai and
Futcher 2013). However, so far it was unclear whether
Whi3 generally destabilizes mRNAs upon its binding. Our
analysis showed that mRNAs containing the Whi3 binding
motif (TGCAT) have a significantly shorter half-life (FDR
= 6.9 × 10−04, median fold-change 1.24). Surprisingly, this
binding motif is extremely widespread, with 896 out of
4388 (20%) genes that we examined containing the motif
on the 3′ UTR region, which enriched for genes involved in
several processes (Supplemental Table S3). Functionality of
the Whi3 binding motif was found to be dependent on
Ccr4 (FDR < 0.1, Supplemental Fig. S6).
The mRNAs harboring the TTTTTTA motif tended to be

more stable (FDR = 0.086, median fold-change 1.22) and en-
riched for translation (P = 1.34 × 10−3, twofold enrichment;
Supplemental Table S3). No positional preferences were
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FIGURE 4. 3′ UTR half-life determinant motifs in S. cerevisiae. (A) Distribution of half-lives for mRNAs grouped by the number of occurrence(s) of
the motif ATATTC, TGCAT (Whi3), TGTAAATA (Puf3), and TTTTTTA (Pub1), respectively, in their 3′ UTR sequence. Numbers in the boxes rep-
resent the number of members in each box. FDR were reported from the linear mixed effect model (Materials and Methods). (B) Fraction of tran-
scripts containing themotif (y-axis) within a 20-bp window centered at a position (x-axis) with respect to poly(A) site for different motifs (facet titles).
Positional bias was not observed when aligning 3′ UTRmotifs with respect to the stop codon. (C) Prediction of the relative effect on half-life (y-axis)
for single-nucleotide substitution in the motif with respect to the consensus motif (y = 1, horizontal line). The motifs were extended two bases at each
flanking site (positions +1, +2, −1, −2). (D) Nucleotide frequency within motif instances, when allowing for one mismatch compared with the con-
sensus motif. (E) Mean conservation score (phastCons, Materials andMethods) of each base in the consensus motif with two flanking nucleotides (y-
axis). (F) Co-occurrence significance (FDR, Fisher test P-value corrected with Benjamini–Hochberg) between different motifs (left). Number of oc-
currences among the 4388 mRNAs (right). (G) Steady-state expression level of SFG1 and NYV1 (normalized by ACT1 and TUB2 expression,
Supplemental Methods). Bar height represents mean of each group, error bars represent ± one standard error of the mean, each dot represents
one biological replicate (jittered at x-axis to avoid overlapping). P-values were calculated by comparing the normalized expression level of constructs
with two scrambled motifs embedded versus that with two functional ATATTC motifs embedded (Wilcoxon rank-sum test).
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observed for this motif (Fig. 4B). The
effect of this motif depends on genes
from Ccr4–Not complex and Xrn1
(Supplemental Fig. S6).

An additional four lines of evidence
further supported the functionality of
our identified motifs. First, single-nucle-
otide deviations from the motif’s consen-
sus sequence associated with decreased
effects on half-life (Fig. 4C, linear regres-
sion allowing for one mismatch,
Materials and Methods). Moreover, the
flanking nucleotides did not show fur-
ther associations indicating that the
whole lengths of the motifs were recov-
ered (Fig. 4C). Second, when allowing
for one mismatch, the motif still showed
strong preferences (Fig. 4D). Third, the
motif instances were more conserved
than their flanking bases from the 3′

UTR (Fig. 4E). Fourth, all four motifs
show significant effects in the RNA
half-life data set generated by Miller
et al. (2011), which is also based on 4sU
labeling, as well as in the data set of
Presnyak et al. (2015), which is in con-
trast based on transcriptional arrest
(Supplemental Fig. S7).

Fifty-nine percent between-gene
half-life variation can be explained
by sequence features

We next asked how well one could pre-
dict mRNA half-life from these mRNA
sequence features, and what their respec-
tive contributions were when considered
jointly. To this end, we performed a
multivariate linear regression of the loga-
rithm of the half-life against the identified sequence features.
The predictive power of the model on unseen data was as-
sessed using 10-fold cross-validation (Materials and Meth-
ods; a complete list of model features and their P-values is
provided in Supplemental Table S4). To prevent overfitting,
we performed motif discovery on each of the 10 training sets
and observed the same set of motifs across all the folds. Alto-
gether, 59% of S. cerevisiae half-life variance in the logarith-
mic scale can be explained by simple linear combinations of
the above sequence features (Fig. 5A; Supplemental Table
S5). The median out-of-folds relative error across genes is
30%. A median relative error of 30% for half-life is remark-
ably low because it is in the order of magnitude of the expres-
sion variation that is typically physiologically tolerated, and it
is also about the amount of variation observed between rep-
licate experiments (Eser et al. 2016). To make sure that our

findings are not biased to a specific data set, we fitted the
same model to a data set using RATE-seq (Neymotin et al.
2014), a modified version of the protocol used by Sun et al.
(2013). On these data, the model was able to explain 51%
of the variance (Supplemental Fig. S8). Moreover, the same
procedure applied to S. pombe explained 45% of the total
half-life variance, suggesting the generality of this approach.
Because the measures also entail measurement noise, these
numbers are conservative underestimations of the total bio-
logical variance explained by our model.
The uAUG, 5′ UTR length, 5′ UTR GC content, 61 coding

codons, CDS folding energy, all four 3′ UTR motifs, and 3′

UTR length remained significant in the joint model, indicat-
ing that they contributed individually to half-life (Supple-
mental Table S4). Most of them showed decreased effect in
a joint model compared to marginal effects (Fig. 5C), likely

FIGURE 5. Genome-wide prediction of mRNA half-life from sequence features and analysis of
the contributions. (A,B) mRNA half-life predicted (x-axis) versus measured (y-axis) for S. cere-
visiae (A) and S. pombe (B), respectively. (C) Contribution of each sequence feature individually
(Individual), cumulatively when sequentially added into a combinedmodel (Cumulative), and ex-
plained variance drop when each single feature is removed from the full model separately (Drop).
Values reported are the mean of 100 times of cross-validated evaluation (Materials andMethods).
(D) Expected half-life fold-change of single-nucleotide variations on sequence features. For
length and GC, dots represent median half-life fold-change of one nucleotide shorter or one
G/C to A/T transition, respectively. For codon usage, each dot represents median half-life fold-
change of one type of synonymous mutation; all kinds of synonymous mutations are considered.
For uAUG, each dot represents median half-life fold-change of mutating out one uAUG. For mo-
tifs, each dot represents median half-life fold-change of one type of nucleotide transition at one
position on the motif (Materials and Methods). Medians are calculated across all mRNAs.
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because they correlate with each other. In contrast, start co-
don context, stop codon context, 5′ folding energy, the 5′

UTR motif AAACAAA (Supplemental Fig. S5), CDS length,
and 3′ UTR GC content dropped below the significance
when considered in the joint model (Supplemental Table
S4). This loss of statistical significance may be due to lack
of statistical power. Another possibility is that the marginal
association of these sequence features with half-life is a con-
sequence of a correlation with other sequence features.
Among all sequence features, codon usage as a group is the
best predictor both in a univariate model (55.29%) and in
the joint model (44.63 %) (Fig. 5C). This shows that, quan-
titatively, codon usage is the major determinant of mRNA
stability in yeast. This explains why only a small fraction of
mRNA stability variation can be explained by RNA-binding
proteins (Hasan et al. 2014). The variance analysis quantifies
the contribution of each sequence feature to the variation
across genes. Features that vary a lot between genes, such as
UTR length and codon usage, favorably contribute to the var-
iation. However, this does not reflect the effect on a given
gene of elementary sequence variations in these features.
For instance, a single-nucleotide variant can lead to the cre-
ation of an uAUG with a strong effect on half-life, but a sin-
gle-nucleotide variant in the coding sequence may have little
impact on overall codon usage. We used the joint model to
assess the sensitivity of each feature to single-nucleotide mu-
tations as median fold-change across genes, simulating sin-
gle-nucleotide deletions for the length features and single-
nucleotide substitutions for the remaining ones (Materials
and Methods). Single-nucleotide variations typically altered
half-life by <10%. The largest effects were observed in the
3′ UTRmotifs and uAUG (Fig. 5D). Notably, although codon
usage was the major contributor to the variance, synonymous
variation on codons typically affected half-life by <2% (Fig.
5D; Supplemental Fig. S9). For those synonymous variations
that changed half-life by more than 2%, most of them were
variations that involved the most nonoptimized codons
CGA or ATA (Supplemental Fig. S9; Presnyak et al. 2015).
Altogether, our results show that most of yeast mRNA

half-life variation can be predicted from
mRNA sequence alone, with codon usage
being the major contributor. However,
single-nucleotide variation at 3′ UTR
motifs or uAUG had the largest expected
effect on mRNA stability.

DISCUSSION

We systematically searched formRNA se-
quence features associating with mRNA
stability and estimated their effects at
single-nucleotide resolution in a joint
model. Up to GC content and length, all
elements of the joint model are causal.
One of them, the 3′ UTR motif

ATATTC has been validated in this study. Overall, the joint
model showed that 59% of the variance could be predicted
from mRNA sequence alone in S. cerevisiae. This analysis
showed that translation-related features, in particular codon
usage, contributed most to the explained variance. This find-
ing strengthens further the importance of the coupling
between translation and mRNA degradation (Roy and
Jacobson 2013; Huch and Nissan 2014; Radhakrishnan and
Green 2016). Moreover, we assessed the dependencies of
each sequence element on RNA degradation pathways. Re-
markably, we identified that codon-mediated decay is a regu-
latory mechanism of the canonical decay pathways, including
deadenylation- and decapping-dependent 5′ to 3′ decay and
NMD (Figs. 3B, 6).
Predicting various steps of gene expression from sequence

alone has long been a subject of study (Beer and Tavazoie
2004; Vogel et al. 2010; Zur and Tuller 2013; Wang et al.
2016). To this end, two distinct classes of models have been
proposed: the biophysical models on the one hand and the
machine learning models on the other hand (Zur and
Tuller 2016). Biophysical models provide detailed under-
standing of the processes. On the other hand, machine learn-
ing approaches can reach much higher predictive accuracy
but are more difficult to interpret. Also, machine learning ap-
proaches can pick up signals with predictive power that are
correlative but not causal. Here we adopted an intermediate,
semimechanistic modeling approach. We used a simple line-
ar model that is interpretable. Also, all elements are function-
al, up to two covariates: GC content and length.
Our approach was based on the analysis of endogenous se-

quence, which allowed the identification of a novel cis-regula-
tory element. An alternative approach to the modeling of
endogenous sequence is to use large-scale synthetic libraries
(Dvir et al. 2013; Shalem et al. 2015; Wissink et al. 2016).
Although very powerful to dissect known cis-regulatory ele-
ments or to investigate small variations around select genes,
the sequence space is so large that these large-scale perturba-
tion screens cannot uncover all regulatory motifs. It would be
interesting to combine both approaches and design large-

FIGURE 6. Overview and summary of conclusions from this study.
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scale validation experiments guided by insights coming from
modeling of endogenous sequences as we developed here.

Recently, Neymotin et al. (2016) showed that several trans-
lation-related transcript properties associated with half-life.
This study derived a model explaining 50% of the total vari-
ance using many transcript properties including some not
based on sequence (ribosome profiling, expression levels,
etc.). Although non-sequence based predictors can facilitate
prediction, they may do so because they are consequences
rather than causes of half-life. For instance, increased half-
life causes higher expression level. Also, increased cytoplas-
mic half-life, provides a higher ratio of cytoplasmic over nu-
clear RNA, and thus more RNAs available to ribosomes.
Hence both expression level and ribosome density may
help making good predictions of half-life, but not necessarily
because they causally increase half-life. In contrast, we aimed
here to understand howmRNA half-life is encoded in mRNA
sequence and derived a model that is based on functional el-
ements. This avoided using transcript properties that could
be consequences of mRNA stability. Hence, our present anal-
ysis confirms the quantitative importance of translation in
determining mRNA stability that Neymotin and colleagues
quantified, and anchors it into pure sequence elements.

Confounding associations of sequence elements with
mRNA stability could arise because of selection on expression
levels acting at multiple stages of gene expression. For in-
stance, genes that are selected for high protein expression lev-
els may be enriched for elements that enhance translation and
for elements that enhance mRNA stability. Functional valida-
tions are therefore needed to disentangle causality fromco-se-
lection. The sequence elements of our joint model, up to GC
content and length, are all functional. However, we reported
further elements that associate marginally with half-life. One
of the interesting sequence elements that we found associated
with half-life but did not turn out significant in the jointmod-
el is the start codon context. Given its established effect on
translation initiation (Kozak 1986; Dvir et al. 2013), the gen-
eral coupling between translation and mRNA degradation
(Roy and Jacobson 2013; Huch and Nissan 2014; Radha-
krishnan and Green 2016), as well as several observations
directly on mRNA stability for single genes (LaGrandeur
and Parker 1999; Schwartz and Parker 1999), the start codon
context may nonetheless functionally affect mRNA stability.
Consistent with this hypothesis, large-scale experiments
that perturb 5′ sequence secondary structure and start codon
context indeed showed a wide range of mRNA level changes
in the direction that we would predict (Dvir et al. 2013).

We are not aware of previous studies that systematically as-
sessed the effects of cis-regulatory elements in the context of
knockout backgrounds, as we did here. This part of our anal-
ysis turned out to be very insightful. By assessing the depen-
dencies of codon usage mediated mRNA stability control
systematically and comprehensively, we generalized results
from recent studies on the Ccr4–Not complex and Dhh1,
but also identified important novel ones including NMD fac-

tors, Pat1 and Xrn1. With the growing availability of knock-
out or mutant background in model organisms and human
cell lines, we anticipate this approach to become a fruitful
methodology to unravel regulatory mechanisms.

MATERIALS AND METHODS

Data and genomes

Wild-type and knockout genome-wide S. cerevisiae half-life data
were obtained from Sun et al. (2013), whereby all strains are histi-
dine, leucine, methionine, and uracil auxotrophs. A complete list
of knockout strains used in this study is provided in Supplemental
Table S1. S. cerevisiae gene boundaries were taken from the bound-
aries of the most abundant isoform quantified by Pelechano et al.
(2013). Reference genome fasta file and genome annotationwere ob-
tained from the Ensembl database (release 79). UTR regionswere de-
fined by subtracting out gene body (exon and introns from the
Ensembl annotation) from the gene boundaries. Processed S. cerevi-
siae UTR annotation is provided in Supplemental Table S6.

Genome-wide half-life data of S. pombe as well as refined tran-
scription unit annotation were obtained from Eser et al. (2016).
Reference genome version ASM294v2.26 was used to obtain se-
quence information. Half-life outliers of S. pombe (half-life less
than 1 or larger than 250 min) were removed.

For both half-life data sets, onlymRNAs withmapped 5′ UTR and
3′ UTR were considered. mRNAs with 5′ UTR length shorter than 6
nt were further filtered out.

Codon-wise species-specific tRNA adaptation index (sTAI) of
yeasts were obtained from Sabi and Tuller (2014). Gene-wise
sTAIs were calculated as the geometric mean of sTAIs of all its co-
dons (stop codon excluded).

Analysis of knockout strains

The effect level of an individual sequence feature was compared
against the wild-type withWilcoxon rank-sum test followed bymul-
tiple hypothesis testing P-value correction (FDR < 0.1). For details,
see Supplemental Methods.

Motif discovery

Motif discovery was conducted for the 5′ UTR, the CDS and the 3′

UTR regions. A linear mixed effect model was used to assess the ef-
fect of each individual k-mer while controlling the effects of the oth-
ers and for the region length as a covariate as described previously
(Eser et al. 2016). For CDS we also used codons as further covariates.
In contrast to Eser and colleagues, we tested the effects of all possible
k-mers with lengths from 3 to 8. The linear mixed model for motif
discovery was fitted with GEMMA software (Zhou et al. 2013).
P-values were corrected for multiple testing using Benjamini–
Hochberg’s FDR. Motifs were subsequently manually assembled
based on overlapping significant (FDR < 0.1) k-mers.

Folding energy calculation

RNA sequence folding energy was calculated with RNAfold from
ViennaRNA version 2.1.9 (Lorenz et al. 2011), with default
parameters.
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S. cerevisiae conservation analysis

The phastCons (Siepel et al. 2005) conservation track for S. cerevisiae
was downloaded from the UCSC Genome Browser (http://
hgdownload.cse.ucsc.edu/goldenPath/sacCer3/phastCons7way/).
Motif single-nucleotide level conservation scores were computed as
the mean conservation score of each nucleotide (including two ex-
tended nucleotides at each side of themotif) across all motif instanc-
es genome-wide (removing NA values).

Linear regression model for codon usage

Throughout the study, we modeled codon usage in the linear model
with each codon as an independent covariate using its frequency.

log(yg ) = b0 +
∑

c[Codons

bcxc + 1g , (1)

where xc = nc
Lg
, nc is the number of codon c in gene g. Lg is the CDS

length of gene g.

Relation between codon regression coefficient and sTAI

The coefficients of codon frequencies have an analogous interpreta-
tion as species-specific tRNA adaptation index (sTAI). The same ap-
plies also to tAI. The sTAI of a gene is defined as the geometric mean
of the sTAIs of all its coding codons (Sabi and Tuller 2014). For a
gene g with N number of codons, its sTAI is defined as follows:

sTAIg =
∏N

i=1

wi

( ) 1

N= �������������
w1w2 . . .wN

N
√

, (2)

where wi represent the sTAI of the ith codon in the gene.
The logarithm of a gene sTAI with N codons is

log(sTAIg ) = 1

N

∑N

i=1

log(wi)
( )

=
∑

c[Codons

3log(wc) nc
3N

=
∑

c[Codons

3log(wc)xc , (3)

where xc is defined in Equation 1, 3N = Lg is the CDS length, nc is the
number of codon c in gene g, wc is the sTAI of codon c. Hence, in a
linear model the regression coefficient βc of Equation 1 has an anal-
ogous interpretation to the log of sTAI [log(wc)].

Linear model for genome-wide half-life prediction

Multivariate linear regression models were used to predict genome-
wide mRNA half-life on the logarithmic scale from sequence fea-
tures. Only mRNAs that contain all features were used to fit the
models, resulting in 3838 mRNAs for S. cerevisiae and 3360
mRNAs for S. pombe. Out-of-fold predictions were applied with
10-fold cross validation for any prediction task in this study. For
each fold, a linear model was first fitted to the training data with
all sequence features as covariates, then a stepwise model selection
procedure was applied to select the best model with Bayesian
Information Criterion as criteria [step function in R, with k = log

(n)]. L1 or L2 regularization was not necessary, as they did not im-
prove the out-of-fold prediction accuracy (tested with the glmnet R
package [Friedman et al. 2010]). Motif discovery was performed
again at each fold. The same set of motifs was identified within
each training set only. For details, see Supplemental Methods.

Analysis of sequence feature contribution

Linear models were first fitted on the complete data with all se-
quence features as covariates, nonsignificant sequence features
were then removed from the final models, ending up with 69 fea-
tures for the S. cerevisiae model and 76 features for S. pombe (each
single-coding codon was fitted as a single covariate). The contribu-
tion of each sequence feature was analyzed individually as a univar-
iate regression and also jointly in a multivariate regression model.
The contribution of each feature individually was calculated as the
variance explained by a univariate model. Features were then added
in a descending order of their individual explained variance to a
joint model; “cumulative” variances explained were then calculated.
The “drop” quantifies the drop of variance explained as leaving out
one feature separately from the full model. All contribution statistics
were quantified by taking the average of 100 times of 10-fold cross-
validation.

Single-nucleotide variant effect predictions

The same model used in sequence feature contribution analysis was
used for single-nucleotide variant effect prediction. For motifs, ef-
fects of single-nucleotide variants were predicted with the linear
model modified from Eser et al. (2016). When assessing the effect
of a given motif variation, instead of estimating the marginal effect
size, we controlled for the effect of all other sequence features using a
linear model with the other features as covariates. For details, see
Supplemental Methods. For other sequence features, effects of sin-
gle-nucleotide variants were predicted by introducing a single-nu-
cleotide perturbation into the full prediction model for each gene,
and summarizing the effect with the median half-life change across
all genes. For details, see Supplemental Methods.

Construction of SFG1 and NYV1 mutant strains

One hundred base pair primers (IDT) containing the respective 3′

UTRmutations were used to amplify the kanMX cassette from plas-
mid pFA6a-KanMX6 (Euroscarf). PCR products were used for
transformation of strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0, Euroscarf) by homologous recombination, and transform-
ants were selected on G418 plates. Correct clones were confirmed by
sequencing. Details of the reporter assay design are provided in the
Supplemental Methods. Sequences of the constructs are given in
Supplemental Table S7.

Quantitative PCR

Cells were grown to OD600 0.8 in YPD from overnight cultures in-
oculated from single colonies. Cells were centrifuged at 4000 rpm
for 1 min at 30°C and pellets were flash-frozen in liquid nitrogen.
RNA was phenol/chloroform purified. cDNA synthesis was per-
formed with 1.5 µg RNA using the Maxima Reverse Transcriptase
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(Thermo Fisher). qPCR was performed on a qTower 2.2 (Analytik
Jena) using a 2-min denaturing step at 95°C, followed by 39 cycles
of 5 sec at 95°C, 10 sec at 64°C, and 15 sec at 72°C with a final
step at 72°C for 5 min. qPCR was performed using the SensiFAST
SYBR No-ROX Kit (Bioline). Primer efficiencies were determined
by performing standard curves for all primer combinations. All
primer pairs had efficiencies of 95% or higher. Sequence informa-
tion of primer pairs and efficiencies are provided in Supplemental
Table S7. Ct data from nine biological and three technical replicates
were used for analysis. Details of analyzing qPCR data are described
in Supplemental Methods.

DATA DEPOSITION

Analysis scripts are available at https://github.com/gagneurlab/
Manuscript_Cheng_RNA_2017.
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B Appendix

MMSplice: modular modeling improves the predictions of
genetic variant effects on splicing

Genetic variants altering splicing constitute one of the most important classes of ge-
netic determinants of rare and common diseases. Although various sequence-based mod-
els have been developed to predict the effects of genetic variants on splicing, quantitative
prediction of how genetic variants affect splicing is still challenging. Many variant inter-
pretation routines only check variants in close vicinity to splice sites. Therefore, many
splice altering variants were overlooked previously.

In this study, I developed the framework MMSplice (modular modeling of splicing)
with which I built the winning model of the CAGI5 exon-skipping prediction challenge.
The MMSplice modules are neural networks scoring exon, flanking intronic sequence, as
well as donor and acceptor splice sites. This modular approach allowed leveraging rich
datasets including two high-throughput perturbation assays focusing on distinct aspects
of splicing: (i) a massively parallel reporter assay with millions of random short se-
quences in intron and exon sequence (Rosenberg et al., 2015), and (ii) a high-throughput
assay that quantifies the effect of naturally occurring exonic variants on the splicing of
their exon (Adamson et al., 2018). These modules are combined to predict the effects
of variants on exon skipping, splice site choice, splicing efficiency, and pathogenicity.
MMSplice matched or outperformed the state-of-the-art models including Spidex, HAL,
MaxEntScan on predicting the variant effect on various types of alternative splicing. Fur-
thermore, benchmarked on ClinVar data, MMSplice improved distinguishing pathogenic
variants from benign ones compared to previous models. An ensemble model including
of MMSplice together with CADD and phyloP had shown similar performance com-
pared to the ensemble of 5 previous models along with MMSplice, CADD, and phyloP
on predicting ClinVar variant pathogenicity.

Besides single-nucleotide variants, my implementation of MMSplice also handles indels
and automatically consider all possible exons a variant could affect. I provide MMSplice
as a python package. Furthermore, all MMSplice modules and models are shared in the
model repository Kipoi, which should allow other computational biologists to improve
individual modules or to flexibly include modules into their own models. These features
should facilitate the integration of MMSplice into bioinformatics pipelines at use in
genetic diagnostic centers and may help to improve the discovery of pathogenic variants.
I foresee that this modular approach will help the community to coordinate efforts and
continuously and effectively build better variant effect prediction models for splicing.
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MMSplice: modular modeling improves
the predictions of genetic variant effects on
splicing
Jun Cheng1,2, Thi Yen Duong Nguyen1, Kamil J. Cygan3,4, Muhammed Hasan Çelik1,
William G. Fairbrother3,4, Žiga Avsec1,2 and Julien Gagneur1*

Abstract

Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the
framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon
skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites,
trained on distinct large-scale genomics datasets. These modules are combined to predict effects of variants on exon
skipping, splice site choice, splicing efficiency, and pathogenicity, with matched or higher performance than
state-of-the-art. Our models, available in the repository Kipoi, apply to variants including indels directly from VCF files.

Keywords: Splicing, Variant effect, Variant pathogenicity, Deep learning, Modular modeling

Background
Genetic variants altering splicing constitute one of the
most important class of genetic determinants of rare [1]
and common [2] diseases. However, the accurate predic-
tion of variant effects on splicing remains challenging.
Splicing is the outcome of multiple processes. It is a

two-step catalytic process in which a donor site is first
attacked by an intronic adenosine to form a branchpoint.
In a second step, the acceptor site is cleaved and spliced
(i.e., joined) to the 3′ end of the donor site. The sequences
of the donor site, of the acceptor site, and of the intronic
region surrounding the branchpoint, which are recog-
nized during spliceosome assembly, contribute to splicing
regulation [3]. Moreover, many regulatory elements such
as exonic splicing enhancers (ESEs) and silencers (ESSs)
and intronic splicing enhancers (ISEs) and silencers (ISSs)
also play key regulatory roles (reviewed by [4]). In addition
to genetic variants at splice consensus sequence, distal
elements can also affect splicing and cause disease [5].
Hence, predictive models of splicing need to integrate
these various types of sequence elements.

*Correspondence: gagneur@in.tum.de
1Department of Informatics, Technical University of Munich, Boltzmannstraße,
85748 Garching, Germany
Full list of author information is available at the end of the article

Previous human splice variant interpretation methods
can be grouped into two categories.
One category consists of algorithms that score sequence

for being bona fide splice regulatory elements including
splice sites [6, 7], and exonic and intronic enhancers and
silencers [8–13]. Variants can be scored with respect to
these regulatory elements by comparing predictions for
the reference sequence and for the alternative sequence
containing the genetic variant of interest. However,
although methods combining several of these scores have
been proposed, including Human Splicing Finder [14],
MutPred splice [15], and more recently SPiCE [16], the
resulting physical and quantitative effect of these vari-
ants on splicing remains difficult to assess with these
algorithms.
The second category of models aimed at predicting

relative amounts of alternative splicing isoforms quanti-
tatively from sequence [17–19]. In this context, a quan-
titative measure that has retained much attention in the
literature is the percent spliced-in (PSI, also denoted �),
which quantifies exon skipping. � is defined as the frac-
tion of transcripts that contains a given exon [20]. It can
be estimated as the fraction of exon-exon junction reads
from an RNA-seq sample supporting inclusion of an exon
of interest, over the sum of these reads plus those support-
ing the exclusion of this exon [20]. Two early models were

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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fitted to predict direction of � changes between tissues
(exon inclusion, exon skipping, and no change) in mouse
[21, 22] from sequence. State-of-the-art models for pre-
dicting � from sequence are SPANR [17] and HAL [18]
for human, and the model from Jha et al. [23] for mouse.
The related quantity �5 quantifies for a given donor site
the fraction of spliced transcripts with a particular alter-
native 3′ splice site (A3SS). The quantity �3 has been
analogously defined to quantify alternative 5′ splice sites
(A5SS) [24]. It should be noted that �5 is often referred
as � for A3SS, and �3 as � for A5SS (e.g., [25, 26]).
However, throughout this manuscript, we are consistently
using the notations �5 and �3 as defined by Pervouch-
ine et al. [24]. The recently published algorithm COSSMO
[19] predicts �5 from sequence by modeling the compe-
tition between alternative acceptor sites for a given donor
site and analogously for �3. COSSMO has shown supe-
rior performance over MaxEntScan [7] on predicting the
most frequently used splice site among competing ones.
Furthermore, splicing efficiency has been proposed to
quantify the amount of precursor RNA that undergo splic-
ing (exon-skipped or misspliced transcripts are ignored)
at a given splice site by comparing the amount of RNA-
seq reads spanning an exon-intron boundary of interest to
the corresponding exon-exon junction reads [27]. The lat-
est model to predict variant effects on splicing efficiency is
the SMS score, which is based on scores for exonic 7-mers
estimated from a recently published saturation mutage-
nesis assay [28]. However, no model can be applied to
all the abovementioned splicing quantities, although they
are influenced by common regulatory elements. Further-
more, none of these software handle variant calling format
(VCF) files natively, making their integration into genetic
diagnostics pipelines cumbersome. Also, these software

often do not handle indels (insertions and deletions),
although indels are potentially the most deleterious
variants.
Here, we trained building block modules separately for

the exon, the acceptor site, and the donor site and for
intronic sequence close to the donor and close to the
acceptor sites. This modular approach allowed leverag-
ing rich datasets from two high-throughput perturbation
assays focusing on distinct aspects of splicing: (i) a mas-
sively parallel reporter assay (MPRA) with millions of
random short sequences in intron and exon sequence
[18], and (ii) a high-throughput assay that quantifies the
effect of naturally occurring exonic variants on the splic-
ing of their exon [29]. These building block modules could
then be combined into distinct models predicting effects
of variants on � , �5, �3, splicing efficiency, and one
model predicting splice variant pathogenicity trained on
the database ClinVar [30]. We outperform state-of-the-
art models for each task but �3, on which MMSplice and
HAL both are the best. In particular, our model of exon
skipping ranked first at the 5th challenge of the Criti-
cal Assessment of Genome Interpretation group (CAGI5,
https://genomeinterpretation.org/). All our models are
available open source in the model zoo Kipoi [31] and can
be applied for variant effect prediction directly from VCF
files.

Results
Modular modeling strategy
We designed neural networks to score five potentially
overlapping splicing-relevant sequence regions: the donor
site, the acceptor site, the exon, as well as the 5′ end and
the 3′ end of the intron (Fig. 1a). The donor and the accep-
tor models were trained to predict annotated intron-exon

ba

Fig. 1 Individual modules of MMSplice and their combination to predict the effect of genetic variants on various splicing quantities. aMMSplice
consists of six modules scoring sequences from donor, acceptor, exon, and intron sites. Modules were trained with rich genomics dataset probing
the corresponding regulatory regions. bModules from a are combined with a linear model to score variant effects on exon skipping (��),
alternative donor (��3), or alternative acceptor site (��5), splicing efficiency, and they are combined with a logistic regression model to predict
variant pathogenicity. La and Ld stand for the length of intron sequence taken from the acceptor and donor side respectively
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and exon-intron boundaries from GENCODE 24 genome
annotation (see the “Methods” section, Fig. 1a, Additional
file 1: Figure S1). The exon and intronmodels were trained
from a MPRA that probed the effect of millions of ran-
dom sequences altering either the exonic 3′ end and the
intronic 5′ end for alternative 5′ splicing (A5SS, quanti-
fied by �3), or the exonic 5′ end and the intronic 3′ end
for alternative 3′ splicing (A3SS, quantified by �5) (see
the “Methods” section, Fig. 1a, Additional file 1: Figure
S2) [18]. For later use, the modules were defined as the
corresponding neural network models without the last
activation layer. We have two intron modules, the intron

5′ module that scores intron from the donor side and
the intron 3′ module that scores intron from the accep-
tor side. Likewise, we have two exon modules, the exon
5′ module that trained from A3SS and exon 3′ mod-
ule that trained from A5SS (see the “Methods” section,
Additional file 1: Figure S2). To score exonic sequence,
only one of the exonic module is applied depending on
the alternative splicing quantity. Training data and mod-
ule architecture are summarized in Table 1. Next, we
combined these modules to predict how genetic variants
lead to (i) differences in � , (ii) differences in �3, (iii)
differences in �5, (iv) differences in splicing efficiency,

Table 1 Summary of trained modules and models

MMSplice model Training data Architecture Loss function Target value Parameters

Donor module GENCODE 24, positive:
annotated donors, negative:
random sequence (“Methods”
section)

Four layer neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1A

Binary cross entropy Positive vs. negative 18,049

Acceptor module GENCODE 24, positive:
annotated acceptors, negative:
random sequence (“Methods”
section)

Two layer conv. neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1B

Binary cross entropy Positive vs. negative 4833

Exon 5′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 3′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 6145

Exon 3′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 5′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 6145

Intron 5′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 3′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 13,825

Intron 3′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 5′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 13,825

�logit(�) model Vex-seq [29] Linear regression Huber loss �logit(�), Eq. 2 9

Splicing efficiency
model (in vivo)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Splicing efficiency
model (in vitro)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Pathogenicity model
(w/o phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

14

Pathogenicity model
(with phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

18
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and (v) to disease or benign phenotypes according to the
ClinVar database (Fig. 1b). Specifically, we trained one lin-
ear model on top of the modules to predict �� . The
same linear model was applied to predict ��5 and ��3
by modeling the competition of two alternative exons.
Another linear model was trained to predict change of
splicing efficiency and a logistic regression model was
trained to predict variant pathogenicity from the modules
(Fig. 1b).

MMSplice improves the prediction of variant effect on
exon skipping
To assess the performance of MMSplice for predicting
effects of variants on exon skipping, we first considered
the Vex-seq dataset [29]. Vex-seq is a high-throughput
reporter assay that compared � for constructs contain-
ing a reference sequence to � for matching constructs
containing one of 2059 Exome Aggregation Consortium
(ExAC [32]) variants. The difference of � for the variant
allele to the reference allele is denoted �� . These vari-
ants consisted of both single nucleotide variants as well
as indels from exons and introns (20 nt upstream, 50
nt downstream). The data for the HepG2 cell line was
accessed through the Critical Assessment of Genome
Interpretation (CAGI) competition [33]. The 957 variants
from chromosome 1 to chromosome 8 were provided as
training data. The remaining 1054 variants from chromo-
some 9 to 22 and chromosome X were held out for testing
by the CAGI competition organizers and were not avail-
able throughout the development of the model. The test
data consisted of 572 exonic and 526 intronic variants and
included 44 indels.
The Vex-seq experiment is an exon skipping assay,

whereas our exon modules were trained for A5SS (�3)
and A3SS (�5). Because of high redundancy between
these two modules, we used the exon 5′ module as it
was better at predicting exon skipping exonic variants on
Vex-seq training data than the exon 3′ module (R = 0.52 v.s
R = 0.25,P = 0.001, bootstrap,Additional file 1: Figure S3).
We built an MMSplice predictor for �� by train-

ing a linear model to combine the modular predictions
and interaction terms between modules with overlap-
ping scored regions from the Vex-seq training data (see
the “Methods” section, Eq. 2). We compared MMSplice
with three state-of-the-art splicing variant scoring mod-
els: SPANR [17], HAL [18], and MaxEntScan [7] on
the held-out Vex-seq test data (“Methods” section). The
methods HAL [18] and SPANR [17] have been reported
to be the two best performed existing methods on a
recent large-scale perturbation assay probing 27,733 rare
variants [34], while MaxEntScan [7] was considered as
a baseline reference model. SPANR scores exonic and
intronic SNVs up to 300 nt around splice junctions. HAL
scores exonic and donor (6 nt to the intron) variants.

MaxEntScan scores [− 3, + 6] nt around the donor and
[− 20, + 3] nt around the acceptor sites. The Vex-seq data
was processed the same way for these models (“Methods”
section). Unlike the other methods, SPANR does not take
custom input sequences and could therefore score single
nucleotide variants but not for indels. We evaluated the
performance of �� predictions of MMSplice, HAL, and
SPANR using root-mean-square errors (RMSE) on test
data. MaxEntScan scores sequences but does not predict
� . We therefore compared the correlation of differences
of MaxEntScan scores to �� and used Pearson correla-
tion on test data as a common metric to compare all these
methods.
On the Vex-seq data, MMSplice showed a large

improvement over HAL and SPANR. First, MMSplice
could score all 1098 variants of the test set whereas HAL
could only score 572 (52.1%) and SPANR 966 (88%) of
them. Second, the difference in � predicted by MMSplice
correlated better when restricted to the respective vari-
ants scored by the other methods (R = 0.68 for MMSplice
v.s. R = 0.44, 0.26 for HAL and SPANR respectively,
both comparison P = 0.001, bootstrap, Fig. 2b–d). A
higher performance than other models was also obtained
even when we bluntly summed the prediction scores from
the five modules without fitting any parameter to the
Vex-seq training data (R = 0.66 and R = 0.67 when
using the exon 3′ module in place of the exon 5′ module,
Additional file 1: Figure S4). This shows that the superior
performance of our model is primarily due to the mod-
ules not the combination linear model that was trained
from Vex-seq training data. Moreover, MMSplice showed
higher accuracy than HAL and SPANR on these data
when considering root-mean-square errors (RMSE = 0.1
for MMSplice versus 0.28 for HAL and 0.14 for SPANR,
Fig. 2b–d).
We further compared our prediction for donor and

acceptor site variants with the popular model Max-
EntScan [7]. MMSplice performed better both in donor
sequence (R = 0.87 for MMSplice versus 0.66 for Max-
EntSan5, P = 0.001, bootstrap, Additional file 1: Figure
S5) and acceptor sequence (R = 0.81 for MMSplice versus
0.69 for MaxEntSan3, P = 0.001, bootstrap, Additional
file 1: Figure S6), when restricted to the subset of variants
that MaxEntScan3 could score (42 donor variants and 149
acceptor variants). HAL performed better (R = 0.71) than
MaxEntScan5 (R = 0.66) but worse than MMSplice (R =
0.87) on donor variants (P = 0.001 for both comparisons,
bootstrap, Additional file 1: Figure S5).
Altogether, MMSplice outperformed SPANR, HAL, and

MaxEntScan on predicting effects of genetic variants on
exon skipping observed on this large-scale perturbation
data, by covering more variants and also by providing
more accurate predictions. Our model also ranked the
first in the 2018 CAGI Vex-seq competition. A joint
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Fig. 2MMSplice improves the prediction of variant effect on exon skipping. a Schema of the Vex-seq experiment [29]. The effect of 2059 ExAC
variants (red star) from or adjacent to 110 alternative exons were tested with reporter genes by measuring percent splice-in of the reference
sequence (�ref) and of the alternative (�alt) by RNAseq. b–dMeasured (y-axis) versus predicted (x-axis) � differences between alternative and
reference sequence for MMSplice (b), HAL [18] (c), and SPANR [17] (d) on Vex-seq test data. Color scale represents counts in hexagonal bins. The
black line marks the y = x diagonal. Each plot is shown with the subset of variants that the considered model can score. Pearson correlations (R) and
root-mean-square errors (RMSE) were also calculated based on the scored variants. The 95% confidence intervals for these two metrics were
calculated with bootstrap (“Methods” section). (e) Schema of MFASS experiment [34]. Exon skipping effects of 27,733 ExAC SNVs (red star) spanning
or adjacent to 2339 exons were tested by genome integration of designed construct. Splice-disrupting variant (SDV) is defined as a variant that
change an exon with original exon inclusion index� 0.5 by at least 0.5. f Precision-recall curve of MFASS SDV classification based on model
predicted �� . Precision-recall curve for all three models was calculated for the sets of variants they can score. MMSplice (black) scored all 27,733
variants, SPANR (yellow) scored 27,663 variants (1,048 SDVs), and HAL (blue) scored 14,353 variants (489 SDVs)

publication with the organizers and challengers is in the
planning.

MMSplice classifies rare splice disrupting variants with
higher precision and recall
To further compare models on predicting exon skipping
level with independent datasets that no model has been
trained on, we used the splicing functional assay from
Cheung et al. [34]. Cheung et al. found 1050 splice-
disrupting variants (SDVs); the majority are extremely
rare, after examining 27,733 ExAC single-nucleotide
variants (SNV) with Multiplexed Functional Assay of
Splicing using Sort-seq (MFASS) (Fig. 2e). The author
benchmarked several variant effect prediction methods
including conservation-based methods like CADD [35],
phastCons [36], and the state-of-the-art splicing variant
scoring tools HAL and SPANR. Among all, the two splic-
ing variant scoring methods performed much better than
the others, thus MMSplice was compared with those two.
MMSplice model with the final combination linear model
trained from Vex-seq training data was applied to classify
SDVs based on predicted �� solely from sequence. Our
model achieved overall higher Area under the precision-
recall curve (auPR, MMSplice: 0.41, HAL: 0.27, SPANR:
0.26, P = 0.001 for both MMSplice versus HAL and
MMSplice versus SPANR, bootstrap) when all models
considering only their scored variants (Fig. 2f ). In total,

MMSplice scored all variants, SPANR scored 99.7% of all
variants, while HAL scored only 51.8% of them. When
considering exonic variants only, MMSplice (auPR=0.29)
performed similar to HAL (auPR = 0.27) (P = 0.326,
bootstrap, Additional file 1: Figure S7). For intronic vari-
ants, MMSplice had an auPR of 0.55 in comparison to
0.43 for SPANR (P = 0.001, bootstrap, Additional file 1:
Figure S7).
Overall, MMSplice demonstrated a substantital

improvement over SPANR for both intronic and exonic
variants and showed a similar performance to HAL
for classifying exonic SDVs. This result also demon-
strates the power of our model to score the effect of
rare variants, for which association studies often lack of
power.

MMSplice predicts variants associated with competing
splice site selection with high accuracy
The MMSplice modular framework allows modeling
alternative splicing events other than exon skipping. To
demonstrate this and assess the performance ofMMSplice
on other alternative splicing events, we built MMSplice
models to predict association of variants around alter-
native donors on alternative 5′ splicing (A5SS, �3) and
variants around alternative acceptors on alternative 3′
splicing (A3SS) (“Methods” section) in GTEx. �5 and �3
values for homozygous reference variants as well as with



Cheng et al. Genome Biology           (2019) 20:48 Page 6 of 15

heterozygous and homozygous alternative variants were
calculated from RNA-seq data of the GTEx consortium
[37] (“Methods” section). Here too, our MMSplice mod-
els allowed handling indels. One example is the insertion
variant rs11382548 (chr11:61165731:C-CA). It is a splice
site variant that turns a CG acceptor to an AG acceptor. It
showed the largest ��5 among all assessed variants.
We benchmarked MMSplice against MaxEntScan,

HAL, and COSSMO. Overall, MMSplice (R = 0.66) sig-
nificantly outperformed COSSMO (R = 0.5, P = 0.016,
bootstrap) and MaxEntScan (R = 0.46, P = 0.001,
bootstrap) and tied with HAL (R = 0.67, P = 0.558,
bootstrap) on predicting ��3 (Fig. 3a–d). On predicting
��5, MMSplice (R = 0.57) again significantly outper-
formed both COSSMO (R = 0.37) and MaxEntScan (R =
0.44) (all P = 0.001, Fig. 3e–g). This conclusion also
holds when using RMSE as evaluationmetric (Fig. 3). Even
though HAL can predict A5SS donor variants well, the
model has been trained for predicting A5SS and may not
generalize well to other alternative splicing types. It only
showed moderate performance when predicting donor
variants from Vex-seq skipped exons (Additional file 1:
Figure S5). In contrast, MMSplice showed consistent high
performance across different types of alternative splicing
events.
MMSplice outperformed COSSMO for both donor and

acceptor variants even thoughCOSSMOwas trained from

estimated �5 and �3 values from GTEx data. One pos-
sible reason is that COSSMO was trained from reference
sequence to predict �5 and �3, ignoring the genetic vari-
ants of the GTEx dataset. In contrast, MMSplice was
trained to predict �� from genetic perturbation data
(Vex-Seq). Also, COSSMO was trained to predict splice
site usage for an arbitrary number of alternative splice
sites, while we focused here on the cases with only two
alternative splice sites.

Prediction of splicing efficiency
We next used our modular approach to derive a model
that predicts splicing efficiency, i.e., the proportion of
spliced RNAs among spliced and unspliced RNAs [27].
We have done so in the context of a second CAGI5
challenge (Fig. 4a), whose training dataset is based on
a massively parallel splicing assay (MaPSy [27]) and
which is described in the “Methods” section. This MaPSy
dataset consists of splicing efficiencies, 5761 pairs of
matched wild-type and mutated constructs, where each
mutated construct differed from its matched wild-type
by one exonic non-synonymous single-nucleotide variant
(“Methods” section). The assay has been done both with
an in vitro splicing assay and in vivo by transfection into
HEK293 cells (“Methods” section). A test set of 797 con-
struct pairs was held-out during the development of the
model.

a

e

b

f

c

g

d

Fig. 3 Evaluation of models predicting ��5 and ��3 on the GTEx dataset. Associated effects (y-axis) versus predictions (x-axis) for GTEx variants
around alternative spliced donors (3 nt in the exon and 6 nt in the intron) and acceptors (3 nt in the exon and 20 nt in the intron) were considered.
�5 (or �3) of homozygous (black) and heterozygous (blue) alternative variants as well as homozygous reference variants were calculated by taking
the mean �5 (or �3) across individuals with the same genotype (excluding individuals with multiple variants within 300 nt around splice sites) on
brain and skin (not sun exposed) samples. For donor variants, MMSplice (a) was benchmarked against COSSMO (b), HAL (c), and MaxEntScan (d). For
acceptor variants, MMSplice (e) was benchmarked against COSSMO (f) and MaxEntScan (g). The 95% confidence intervals for Pearson correlation (R)
and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section). The dotted line marks the y = x diagonal
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a

b

ed

c

Fig. 4 Splicing efficiency prediction. aMaPSy experiment (“Methods” section). Effect of 5761 published disease-causing exonic mutations on splicing
efficiency is measured both in vivo and in vitro. Changes of splicing efficiency were quantified by allelic log-ratio. b–eMeasured (y-axis) versus
predicted (x-axis) allelic ratio for 797 variants in the test set for MMSplice (b, c) and the SMS score [28] (d, e). The dotted line marks the y = x diagonal.
The 95% confidence intervals for Pearson correlation (R) and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section)

We trained a linear model on top of the modular pre-
dictions with MaPSy training data to predict differential
splicing efficiency reported by theMaPSy data (“Methods”
section). This linear model was trained the same way as
for Vex-seq except that the response was the allelic log-
ratio (Fig. 4a and “Methods” section) instead of�logit(�).
One model was trained for the in vivo data and another
model was trained for the in vitro data. Our MMSplice
model for differential splicing efficiencies predicted the
effect of those non-synonymous mutations on the held-
out test set reasonably well in vitro (R = 0.57, 4a) and well
in vivo (R = 0.37, 4c). Also, our MMSplice model for dif-
ferential splicing efficiencies outperformed the SMS score
algorithm [28] on in vitro data (P = 0.001, bootstrap,
4d) and reached similar performance on the in vivo data
(P = 0.524, bootstrap, 4e). MMSplice significantly out-
performed SMS scores in both conditions when evaluated

with RMSE (0.74 and 0.95 for MMSplice versus 1.01 and
1.12 for SMS scores, P = 0.001 for both comparison,
bootstrap). Several reasons may have led to the worse per-
formance in vivo. One possible reason is that the in vivo
assay may involve RNA degradation factors, which also
regulate level of spliced RNA species by regulating RNA
stability. Another possible reason is that the folding of
RNAs in vivo may be more complex than in vitro, which
in turn affects splicing [38], making the prediction in vitro
more difficult.

MMSplice can contribute to improved predictions of splice
site variant pathogenicity
Predicting variant pathogenicity is a central task of
genetic diagnosis. However, large amount of variants are
annotated as variant of uncertain significance (VUS).
A good splice variant effect prediction model can help
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interpreting VUSs. To evaluate the potential of MMSplice
to contribute in predicting variant pathogenicity, we con-
sidered the ClinVar variants (version 20180429, [30]) that
lie between 40 nt 5′ and 10 nt 3′ of an acceptor site or
10 nt either side of a donor site of a protein coding gene
(Ensembl GRCh37 v75 annotation, “Methods” section) as
potentially affecting splicing. Among these variants, we
aimed at discriminating between the 6310 variants clas-
sified as pathogenic and the 4405 variants classified as
benign. To this end, we built an MMSplice model that
implements a logistic regression on top of the MMSplice
modules (“Methods” section). Variants can potentially
be in the vicinity of multiple exons. MMSplice handles
this many-to-many relationship (Fig. 5a). Conveniently,
MMSplice can be applied to a variant file in the standard
format VCF [39] and a genome annotation file in the stan-
dard GTF format. Moreover, MMSplice is available as a
Variant Effect Predictor Plugin (VEP [40]).

This MMSplice model was benchmarked against
SPANR [17] and the ensemble of three other models:
MaxEntScan [7], HAL [18], and the branch point predic-
tor LaBranchoR [41]. We also compared our MMSplice
model and competing models with phyloP and CADD
scores as additional features (Additional file 1: Supple-
mentary Methods). Model performances were bench-
marked under 10-fold cross-validation (Fig. 5b). Globally
on all the 10,715 considered variants, MMSplice alone
(auROC = 0.940) outperformed SPANR (auROC = 0.821,
P = 0.001, bootstrap) and the ensemble model combin-
ingMaxEntScan, HAL, and LaBranchoR (auROC= 0.928)
(P = 0.001, bootstrap). AddingMMSplice to the ensemble
model further improved the auROC to 0.954 (P = 0.001,
bootstrap). Moreover, MMSplice with phyloP and CADD
features (auROC = 0.973) achieved a performance close
to the best ensemble model kipoiSplice5 that included
MMSplice (auROC = 0.979, P = 0.003, bootstrap, Fig. 5),

a

b

Fig. 5 Predictions on ClinVar variants. a Variants are first mapped to potentially affected exons. Variants in the exon or in the intron, within La nt of
the acceptor site or within Ld nt from the donor site are considered to affect splicing of the exon. Afterwards, reference and alternative sequences
are retrieved and subjected to MMSplice for prediction. MMSplice gives a prediction for each variant-exon pair. bModel comparison on classifying
pathogenicity of ClinVar splice variants. Models were trained and evaluated in 10-fold cross-validation. Error bars indicate one standard deviation
calculated across folds. The six leftmost models (blue) are incrementally added to the ensemble model: “+phyloP+CADD ” uses all five previous
models as well as phyloP and CADD scores. Performance of MMSplice and SPANR alone as well as their performance with phyloP and CADD scores
are on the right (orange)
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indicating that MMSplice alone captured most of the
sequence information captured by all other models.
We were then interested in delineating the added value

of MMSplice per gene region. To this end, we grouped
the variants based on their position yielding to (1) 832
exonic variants from the acceptor site region, (2) 1902
exonic variants from the donor site region, (3) 3575
intronic variants from the donor site region, and (4)
4393 intronic variants from the acceptor site region. On
exonic variants, we further benchmarked against Mut-
Pred Splice [15] which predicts pathogenicity of exonic
variants. Among the models that do not integrate phyloP
and CADD features, MMSplice was the best in the accep-
tor site region (auROC = 0.602 for the exonic variants
and auROC = 0.970 for the intronic variants, Additional
file 1: Figure S8A,D). On the donor site region, MMSplice
and the ensemble of MaxEntScan, HAL, and LaBran-
choR were both the best models (auROC = 0.651 for
the exonic variants and auROC = 0.977 for the intronic
variants, Additional file 1: Figure S8B,C). MMSplice
performed better than MutPred Splice on both exonic
regions (MMSplice: auROC = 0.602, 0.651, MutPred:
auROC = 0.594, 0.642, Additional file 1: Figure S8A,B),
even though MutPred integrates conservation features
[15]. Furthermore, the ensemble model that included
MMSplice with phyloP and CADD features had a simi-
lar performance than the best ensemble model in all four
regions (Additional file 1: Figure S9, auROC = 0.893,
0.917, 0.981, 0.982 versus auROC = 0.894, 0.919, 0.988,
0.985). Notably, phyloP and CADD had good perfor-
mance on exonic variants (auROC = 0.874, 0.869),
but close to random in the evaluated intronic variants
(auROC = 0.505, 0.483). In contrast, all other splicing
models without phyloP and CADD were performing bet-
ter at intronic variants but much worse at exonic variants,
likely because many pathogenic exonic variants do not
affect splicing but have a functional impact on the protein.
Recently, SPiCE [16] has been proposed as a method

to predict the probability of a splice site variant affect-
ing splicing. SPiCE is a logistic regression model trained
from 142 manually collected and experimentally tested
variants.We thus benchmarked against SPiCEwith 12,625
ClinVar variants (2312 indels) that SPiCE was able to score
(it failed to score variants from sex chromosomes, “Methods”
section). MMSplice (auROC = 0.911) outperformed
SPiCE (auROC = 0.756, P = 0.001, bootstrap). More-
over, this higher performance of theMMSplice model also
held when we fine-tuned the logistic regression model of
SPiCE on the ClinVar training dataset (auROC = 0.760,
P = 0.001, bootstrap, Additional file 1: Figure S10).
Altogether, these results show that MMSplice not only

improves the predictions of the effects of variants on bio-
physical splicing quantities, but also helped improving
variant pathogenicity predictions.

Discussion
We have introduced MMSplice, a modular framework to
predict the effects of genetic variants on splicing quan-
tities. We did so by training individual modules scoring
exon, intron, and splice sites. Models built by integrat-
ing these modules showed improved performance against
state-of-the-art models on predicting the effects of genetic
variants on � , �3, �5, splicing efficiency, and pathogenic-
ity. The MMSplice software is open source and can be
directly applied on VCF files and handles single nucleotide
variants and indels. Like other recent models [17–19],
MMSplice score variants beyond the narrow region close
to splice sites that is for now suggested by clinical
guidelines [42]. We also implemented a VEP [40] plu-
gin that wraps the python implementation. These features
should facilitate the integration of MMSplice into bioin-
formatics pipelines at use in genetic diagnostic centers
and may help in improving the discovery of pathogenic
variants.
MMSplice leverages the modularity of neural net-

works and deep learning frameworks. MMSplice is imple-
mented using the deep learning python library Keras [43].
All MMSplice modules and models are shared in the
model repository Kipoi [31], which should allow other
computational biologists to improve individual modules
or to flexibly include modules into their own models.
We hope this modular approach will help the commu-
nity to coordinate efforts and continuously and effec-
tively built better variant effect prediction models for
splicing.
Variations across the reference genome or across nat-

ural genetic variations in the population may be limited
by evolutionary confounding factors, limiting the model’s
ability to make predictions about rare genetic variants.
Experimental perturbation assays are useful because they
circumvent these confounding factors. Here, we have
leveraged a massively parallel reporter assay [18] to build
individual modules. Also, models predicting � and splic-
ing efficiencies were trained on large-scale perturbation
datasets (Vex-seq [29] andMaPSy). We note however that
MMSplice was not entirely fitted on perturbation assays:
The donor site and the acceptor site modules have been
trained on the GENCODE annotation, which is observa-
tional. Our models outperformed models based on the
reference genome and natural variations and was only
matched by models based on perturbation assays (HAL
for ��3 and the SMS score for in vivo splicing efficiency
changes). Nonetheless, one should remain cautious about
how predictive rules learned from specific perturbation
assays generalize to more general contexts. For instance,
the Rosenberg MPRA dataset probed only two 25-nt-
long sequences for a very specific construct. Hence, it
is important to validate models on further independent
perturbation data.
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Our models have some limitations. First, splicing is
known to be tissue-specific [44, 45], while our mod-
els are not. Nevertheless, our models can serve as a
good foundation to train tissue-specific models. Second,
RNA stability also plays a role in determining the ratio
of different isoforms [29]. Models predicting RNA sta-
bility from sequence, as we recently developed for the
Saccharomyces cerevisiae genome [46] could be integrated
as further modules. Third, our exon and intron modules
are developed from minigene studies, and the perfor-
mance evaluation on predicting �� and splicing effi-
ciency changes are also done with minigene experiment
data. However, chromatin states are known to have a
significant role in splicing regulation [47]. Hence, vari-
ant effect prediction for endogenous genes could possibly
benefit frommodels taking chromatin states into account.
Fourth, our exon and intron modules have only one con-
volutional layer, which is not enough to learn complex
interaction effects of splicing regulatory elements [48].
We have explored using multiple convolutional layers, but
the performance on the Vex-seq training data was sim-
ilar (data not shown). We therefore chose the simpler
architecture. The limitation may come from the train-
ing data, as the perturbation assay we are training from
has 2.5 million random sequences of 25 nucleotides. This
library is maybe not deep enough to probe motif inter-
actions, relative distances, and orientations. Non-random
libraries that probe the grammar of discovered motifs
could be designed in the future and help studying motif
interactions. Fifth, MMSplice can technically score vari-
ants arbitrarily deep into introns. However, as the training
data of MMSplice did not cover deep intronic variants,
we suggest to only consider up to 100 nt into introns,
as we did here. Further models, such as SPANR which
is able to score variants up to 300 nt into the intron,
would need to be developed to cover deep intronic vari-
ants.
Like former splicing predictors [17–19, 21–23], the goal

of MMSplice is to predict quantitatively physical mea-
sures of splicing and not variant pathogenicity. Whether
affecting splicing at given locus leads to disease heavily
depends on the function of the gene and of the splice
isoforms. Moreover, existing pathogenicity annotations,
such as from the ClinVar database, are probably biased
toward tools such as MaxEntScan that are popular and
have been in use for a long time. Nonetheless, our results
indicate that MMSplice predictions could be potent
predictive features for pathogenic variant scores such as
S-CAP [49] or CADD [35].

Methods
Donor and acceptor modules
The donor and the acceptor modules were trained
using the same approach. A classifier was trained to

classify positive donor sites (annotated) against neg-
ative ones (random, see below) and the same for
the acceptor sites. The classifiers predicted scores can
be interpreted as predicted strength of the splice
sites.

Donor and acceptormodule training data
For the positive set, we took all annotated splice junc-
tions based on the GENCODE annotation version 24
(GRCh38.p5). For the donor module, a sequence window
with 5 nt in the exon and 13 nt in the intron around the
donor sites was selected. For the acceptor module, the
region around the acceptor sites spanning from 50 nt in
the intron to 3 nt in the exon was selected in order to
cover most branch points. In total, there were 273,661
unique annotated donor sites and 271,405 unique anno-
tated acceptor sites. This set of splice sites was considered
as the positive set. In particular, not only sites with the
canonical splicing dinucleotides GT andAG for donor and
acceptor sites, respectively, were selected, but also sites
with non-canonical splicing dinucleotides were included
as positive splice sites.
The negative set consisted of genomic sequences

selected within the genes that contributed to positive
splice sites, in order to approximately match the sequence
context of the positive set. Negative splice sites were
selected randomly around but not overlapping the positive
splice sites. To increase the robustness of the classifiers,
around 50% of the negative splice sites were selected to
have the canonical splicing dinucleotides. In total, 410,111
negative donor sites and 406,841 negative acceptor sites
were selected. During model training, we split 80% of the
data for training and 20% of the data for validation. The
best performing model on the validation set was used for
variant effect prediction.

Donor and acceptormodule architecture
Neural network models were trained to score splice sites
from one-hot-encoded input sequence. The donor model
was a multilayer perceptron with two hidden layers with
Rectified Linear Unit (ReLU) activations and a sigmoid
output (Additional file 1: Figure S1A). The hidden lay-
ers were trained with a dropout rate [50] of 0.2 and
batch normalization [51]. We chose a multilayer percep-
tron over a convolutional neural network because of the
short input sequence of the donor model. The accep-
tor model was a convolutional neural network with two
consecutive convolution layers, with 32 15 × 1 convo-
lution followed by 32 1 × 1 convolution (Additional
file 1: Figure S1B). The second convolutional layer was
trained with a dropout rate of 0.2 and batch normaliza-
tion. For these models, we found the number of layers and
the number of neurons in each layer by hyperparameter
optimization.
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Exonmodule
Exonmodule training data
The exonic random sequences from the MPRA experi-
ment by Rosenberg et al. [18] were used to train the exon
scoring module. This MPRA experiment contains two
libraries, one for alternative 5′ splicing and one for alter-
native 3′ splicing. The alternative 5′ splicing library has
265,137 random constructs while the alternative 3′ splic-
ing library has 2,211,789. Each random construct has a
25-nt random sequence in the alternative exon and a 25-
nt random sequence in the adjacent intron. �5 and �3 of
different isoforms were quantified by RNA-Seq for each
random construct [18]. Here, 80% of the data was used for
model training and the remaining were used for valida-
tion. The best performing model on the validation set was
used for variant effect prediction.

Exonmodule architecture
Rosenberg et al. [18] showed that the effects of splicing-
related features in alternative exons are strongly correlated
with each other across the two MPRA libraries, reflect-
ing that similar exonic regulatory elements are involved
for both donor and acceptor splicing. We thus decided to
train exon scoring module from the two MPRA libraries
by sharing low-level convolution layers (128 15 × 1 fil-
ters, Additional file 1: Figure S2). The inputs of the
network were one-hot-encoded 25-nt random sequences.
The output labels were �5, respectively �3, for the alter-
native exon. After training, the exon modules for each
library were separated by transferring the correspond-
ing weights to two separated modules with convolution
layer with ReLU non-linearity followed by a global aver-
age pooling and a fully connected layer. We have used
a global pooling after the convolution layer allowing to
take exons of any length as input. This ended up with
two exon scoring modules, one for alternative 5′ end
(exon 5′ module) and one for alternative 3′ end (exon 3′
module).

Intron module
Intron modules were trained in the same way as the
exon modules (Additional file 1: Figure S2) by using
intronic random sequences from the MPRA experiment
as inputs, except that we used 256 15 × 1 convolu-
tion filters, because intronic splicing regulatory elements
from the donor side and the acceptor side are less sim-
ilar [18]. This ended up with a module to score intron
on the donor side (intron 5′ module) and a module
to score intron on the acceptor side (intron 3′ mod-
ule).

Training procedure for the modules
All neural network models for the six modules were
trained with binary cross-entropy loss (Eq. 1) and Adam

optimizer [52]. We implemented and trained these
models with the deep learning python library Keras
[43]. Bayesian optimization implemented in hyperopt
package [53] was used for hyper-parameter optimization
together with the kopt package (github.com/avsecz/kopt).
Every trial, a different hyper-parameter combination
is proposed by the Bayesian optimizer, with which a
model is trained on the training set, its performance
is monitored by the validation loss. The model
that had the smallest validation loss was selected.

Lossi = −(ψi log ψ̂i + (1 − ψi) log(1 − ψ̂i)) (1)

Variant effect prediction models
Variant processing
Variants are considered to affect the splicing of an exon if
it is exonic or if it is intronic and at a distance less than
La from an acceptor site or less than Ld from a donor site.
The distances La and Ld were set to 100 nt in this study
but can be flexibly set for MMSplice. MMSplice provides
code to generate reference and alternative sequences from
a variant-exon pair by substituting variants into the refer-
ence genome. Variant-exon pairs can be directly provided
to MMSplice. This is the case for the perturbation assay
data Vex-seq, MFASS, and MaPSy. MMSplice can also
generate variant-exon pairs from given VCF files (Fig. 5a).
For insertions, and for deletions that are not overlap-
ping a splice site, the alternative sequence is obtained by
inserting or deleting sequence correspondingly. For dele-
tions overlapping a splice site, the alternative sequence is
obtained by deleting the sequence and the new splice site
is defined as the boundaries of the deletion. In all cases,
the returned alternative sequence always have the same
structure as the reference sequence, with an exon of flexi-
ble length flanked by La and Ld intronic nucleotides. Each
variant is processed independently from the other vari-
ants, i.e., eachmutated sequence contains only one variant
(Fig. 5a). If a variant can affect multiple target (i.e., sites or
exons), the MMSplice models return predictions for every
possible target (Fig. 5a).

Variant effect prediction for�
Strand information of all Vex-seq assayed exons were
first determined by overlapping them with Ensembl
GRCh37 annotation release 75. Reference sequences were
extracted by taking the whole exon and 100 nt flanking
intronic sequence. Variant sequences were retrieved as
described in the “Variant processing” in the “Methods”
section, whereby variant-exon pairs were provided by the
experimental design.
We modeled the differential effect on � in the logistic

scale with the following linear model:
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�logit(�) = logit(�alt) − logit(�ref)

= β0 + β1�S3′ intron
+ β2�Sacceptor + β3�Sexon
+ β4�Sdonor + β5�S5′ intron
+ β61(Exon overlap splice site modules)�Sexon
+ β71(5′ intron overlap donor module)�S5′ intron
+ β81(3′ intron overlap acceptor module)�S3′ intron
+ ε (2)

where

�S = Salt − Sref (3)

for all fivemodules,1(·) is the indicator function, ε is the
error term, the suffix alt denotes the alternate allele, and
the suffix ref denotes the reference allele. This model has
nine parameters: one intercept, one coefficient for each of
the five modules, and interaction terms for regions that
were scored by twomodules (Fig. 1). The latter interaction
terms were useful to not double count the effect of vari-
ants scored by multiple modules. These nine parameters
were the only parameters that were trained from the Vex-
seq data. The parameters of the modules stayed fixed. To
fit this linear model, we used Huber loss [54] instead of
ordinary least squares loss to make the fitting more robust
to outliers.
The model predicts �logit� for the variant. We trans-

form this to �� with a given reference � as follows:

�̂alt = σ(�logit� + logit(�ref))

��̂ = �̂alt − �ref
(4)

where

σ(x) = 1
1 + e−x (5)

logit(x) = log
x

1 − x
(6)

To prevent infinite values in cases �ref = 0 or �ref =
1,�ref values were clipped to the interval [ 10−5, 1−10−5].
HAL model is provided by the authors. A scaling fac-

tor required by HAL was trained on the Vex-seq train-
ing data using code provided by the authors [18]. The
SPANR precomputed scores (which are called SPIDEX),
were obtained from http://www.openbioinformatics.org/
annovar/spidex_download_form.php.

Performance on theMFASS dataset
MMSplice was applied the same way as for Vex-seq,
except that module combining weights were learned from
the Vex-seq training data, with MFASS data kept entirely
unseen. SDVs were classified based on the predicted ��

for a variant. Area under the precision-recall curve (auPR)
were calculated with trapz function from R package
pracma.

Variant effect prediction for�3 and�5

The Genotype-Tissue Expression (GTEx) [37] RNAseq
data (V6) was used to extract variant effect on �3 and �5.
Variants [− 3, + 6] nt around alternative donors of alter-
native 5′ splicing events and variants [− 20,+ 3] nt around
alternative acceptors for alternative 5′ splicing events were
considered. The skin (not sun exposed) samples and the
brain samples with matched whole genome sequence data
available were processed. �5 and �3 were calculated with
MISO [20] for each sample. Altogether, 1057 brain sam-
ples and 211 skin samples could be successfully processed
with MISO. �3 and �5 for homozygous reference variant,
heterozygous variants, and homozygous alternative vari-
ants were calculated by taking the average across samples
with the same genotype, excluding samples from individ-
uals with more than one variants within 300 nt around the
competing splice sites.
We predicted differences in �5 as follows. We consid-

ered only donor sites with two alternative acceptor sites.
We extracted the relevant sequences for the correspond-
ing two alternative exons and apply the model of Eq. (2)
which was fitted on Vex-seq training data. This returned
a �logit(�) for each alternative exon, denoted �S1 and
�S2, from which we calculate the predicted alternative�5
as follows:

�5alt = σ
(
�logit(�5) + logit

(
�5ref

))
(7)

where we model the �logit(�5) considering the influence
of variant on both alternative exon as follows (derivations
provided in supplements):

�logit(�5) = �S1 − �S2 (8)

The above computation applies to individual alleles.
To handle heterozygous variants, we assumed expression
from both alleles are equal. This led to the following
predictions for homozygous and heterozygous variants:

��5homo = �5alt − �5ref
��5hetero = (

�5ref + �5alt
)
/2 − �5ref

(9)

Analagous calculations weremade to predict differences
in �3.
Pre-trained COSSMO model [19] was obtained from

the author website (http://cossmo.genes.toronto.edu/).
The predicted ��5 (or ��3) values of COSSMO were
calculated by taking the difference between the pre-
dicted �5 (or �3) from alternative sequence processed by
MMSplice and reference sequence.

Splicing efficiency dataset (MaPSy data)
The splicing efficiency assay was performed for 5,761 dis-
ease causing exonic nonsynonymous variants both in vivo
in HEK293 cells and in vitro in HeLa-S3 nuclear extract
as previously described [27]. Here, the exons were derived
from human exons and were reduced in size to be shorter
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than 100 nt long by small deletions applied to both the
reference and the alternative version of the sequence. This
way, the wild-type and the mutated alleles differed from
each other by a single point mutation and the wild-type
allele differed from a human exon by the small deletions.
The deletions were centered at the midpoint between the
variant and the furthest exon boundary. The sequences
of each substrate are listed in Additional file 2: Table S1
and also described further on the CAGI website (https://
genomeinterpretation.org/content/MaPSy).
Overall, 4964 of the variants were in the training set

and 797 were in the test set. The amount of spliced tran-
scripts and unspliced transcripts for each construct with
reference allele or alternative allele were determined by
RNA-Seq. The effect of mutation on splicing efficiency for
a specific reporter sequence was quantified by the allelic
log-ratio, which is defined as:

log2
(
mo/mi
wo/wi

)
(10)

where mo is the mutant spliced RNA read count, mi is
the mutant input (unspliced) RNA read count, wo is the
wild-type spliced RNA read count, and wi is the wild-type
input RNA read count. Transcripts with exon-skipped or
misspliced are ignored.

Variant effect prediction for splicing efficiency (MaPSy data)
We fitted a model to predict differential splicing efficiency
on the training set with a linear regression with a Huber
loss as defined by Eq. 2, except that the response variable
is the allelic log-ratio (Eq. 10) instead of �logit(�). We
used the exon 5′ module for the splicing efficiency model.
Performance onMaPSy data was reported on the held-out
test set.
SMS scores was applied to wild-type and mutant

sequence by summing up all 7-mer scores as described by
Ke et al. [28]. The predicted allelic log-ratio is the SMS
score difference between mutant and wild-type sequence.

Variant pathogenicity prediction
Processed ClinVar variants (version 20180429 for
GRCh37) around splice sites were obtained from Avsec
et al. [31]. Specifically, single-nucleotide variants [− 40,
10] nt around the splicing acceptor or [− 10, 10] nt
around the splice donor of a protein-coding genes
(Ensembl GRCh37 v75 annotation) were selected. Vari-
ants causing a premature stop codon were discarded.
After the filtering, the 6310 pathogenic variants con-
stituted the positive set and the 4405 benign variants
constituted the negative set. The CADD [35] scores
and the phyloP [55] scores were obtained through VEP
[40]. MMSplice �Score predictions of the five mod-
ules as well as indicator variables of the overlapping
region were assembled with a logistic regression model

to classify pathogenicity. Performance was assessed by
10-fold cross-validation (Additional file 1: Supplementary
Methods).
To compare MMSplice with SPiCE [16], we restricted to

the regions that SPiCE scores, i.e., [− 12, 2] nt around the
acceptor or [− 3, 8] nt around the donor of protein-coding
genes. Variants causing a premature stop codon were dis-
carded. SPiCE was trained to predict the probability of a
variant to affect splicing (manually defined by experimen-
tal observations). To apply it for pathogenicity prediction,
the logistic regression model of SPiCE was refitted with
ClinVar pathogenicity as response variable. MMSplice
model was applied as described above without conserva-
tion features. Models were compared under 10-fold cross-
validation.

Bootstrapping for P value and confidence interval estimation
Significance levels when comparing the performance of
two models were estimated with the basic bootstrap [56].
Denoting t1 the performance metric (Pearson correlation,
auPRC, or auROC) of MMSplice and t2 the performance
metric of a competing model, we considered the differ-
ence d = t1 − t2. We sampled with replacement the test
data B = 999 times and each time i computed the boot-
strapped metric difference d∗

i . The one-sided P value was
approximated as [56].

P = 1 + #{d∗
i ≤ 0; i = 1...B}
B + 1

(11)

We estimated confidence intervals of Pearson correla-
tions and root-mean-square values, using the percentile
bootstrap approach. Specifically, we generated 1000 boot-
strap datasets of the same size by sampling with replace-
ment. Noting the value of either of the statistics of
interest as θ∗, the reported 95% confidence interval is(
θ∗
0.025, θ∗

0.975
)
, where θ∗

0.025 and
(
θ∗
0.975

)
are the 2.5 and the

97.5 percentiles, respectively.

Additional files

Additional file 1: Supplementary methods and figures. (PDF 674 kb)

Additional file 2: Table S1: MaPSy splicing efficiency data. (CSV 3 kb)
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C Appendix

CAGI5 splicing challenge: Improved exon skipping and in-
tron retention predictions with MMSplice

Variants frequently affect splicing by changing exon skipping rate or intron retention
rate. The fifth edition of the Critical Assessment of Genome Interpretation proposed
two splicing prediction challenges based on experimental perturbation assays: Vex-seq,
assessing exon skipping, and MaPSy assessing splicing efficiency. Vex-seq data is mea-
sured with alternatively spliced exons, while MaPSy measured the variant effect on
constitutive splicing. I submitted prediction results from the modular modeling frame-
work (MMSplice). MMSplice performed among the best on both challenges. This article
provides insights into the modeling assumptions of MMSplice and its modules.

From the modular model predictions, a linear model was trained to predict the variant
effect on exon skipping level (∆Ψ), similarly also for the splicing efficiency change.
Additionally, for the MaPSy challenge, a logistic regression classifier was trained to
predict whether a given variant is an exonic splicing mutation. Features for the classifier
include MMSplice predicted variant effect and several properties about the affected exon,
e.g., exon length. MMSplice outperformed other models in both of the challenges.

Additionally, I show empirically that splice variants have an additive effect on the
log odds ratios of Ψ. As a consequence, variants show on average smaller effect size
when the reference Ψ is close to 0 or 1 and the larger effect size when the reference
Ψ is around 0.5. This highlights an important rule to model variant effect on splicing.
Furthermore, in-silico-mutagenesis analysis with MMSplice highlighted known splicing
regulatory elements, such as the splicing donor and acceptor, and the Heterogeneous
Nuclear Ribonucleoprotein A1 (HNRNPA1) binding site.

Reprint Denied: The reprint of this publication was rejected on open-access platforms.
The publication can be found at https://doi.org/10.1002/humu.23788.
Copyright © 2019 John Wiley & Sons, Inc. Reprint denied.
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[4] Avsec, Ž. et al. The Kipoi repository accelerates community exchange and
reuse of predictive models for genomics. Nature Biotechnology 37, 592–
600 (2019). URL https://www.biorxiv.org/content/early/2018/07/24/

375345http://www.ncbi.nlm.nih.gov/pubmed/31138913.
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