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Abstract

Gyrokinetics is a fundamental framework for the study of turbulence in magnetized

fusion plasmas. In this thesis, we first propose a new methodology for the derivation

of gyrokinetic models, based on polynomial transforms instead of Lie transforms.

Moreover, we present novel numerical methods for gyrokinetic simulations, including

a strategy for the solution of hyperbolic-elliptic PDEs on 2D singular domains and its

implementation in a 4D semi-Lagrangian field-aligned drift-kinetic code.

Zusammenfassung

Gyrokinetische Modelle sind ein unverzichtbares Werkzeug für die Untersuchung

von Turbulenz in magnetisierten Fusionsplasmen. In dieser Arbeit untersuchen wir

eine neue Methode zur Herleitung gyrokinetischer Modelle, die auf Polynomtrans-

formationen statt Lie-Transformationen basiert. Außerdem untersuchen wir neue nu-

merische Methoden für gyrokinetische Simulationen, nämlich eine Strategie für die

Lösung hyperbolischer-elliptischer PDGL auf 2D singulären Gebieten und deren Im-

plementierung in einem 4D Semi-Lagrange Feldlinien-angepassten drift-kinetischen

Code.
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Chapter 1

Introduction

In this first introductory chapter we state the main motivations of this thesis, outline

its contents, and give an overview of the overall context of the work, namely the role

of gyrokinetic theory and simulations in the research areas of plasma physics and

nuclear fusion.

1.1 Motivation and outline of the thesis

This Ph.D. thesis is the result of about three years of research work conducted by the

author at the Max Planck Institute for Plasma Physics under the academic supervi-

sion of Prof. Dr. Eric Sonnendrücker and the scientific guidance of Dr. Yaman Güçlü

and Dr. Stefan Possanner. This work has been carried out within the International

Helmholtz Graduate School for Plasma Physics, a thematic graduate center of the

Technical University of Munich.

The ultimate goal of this research work is to contribute to the advancement of the

mathematical and computational tools at disposal of physicists, mathematicians,

computer scientists and engineers working in the research areas of plasma physics

and nuclear fusion, and eventually improve the current understanding of the complex

variety of physical phenomena occurring in experimental nuclear fusion reactors.

Mathematics and computational science provide invaluable tools to build mathemat-
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ical models of such physical phenomena and study their behavior and evolution in

space and time with the help of computer experiments. In particular, this thesis

focuses on the mathematical and computational methods employed for the theoret-

ical derivation of gyrokinetic models and for their numerical solution by means of

computer simulations.

In the first part of this thesis (chapter 2) we propose a new methodology for the

theoretical derivation of gyrokinetic models. Our technique is based on polynomial

phase-space coordinate transformations, which we call polynomial transforms. Our

derivation is conceptually simpler than the standard one based on Lie transforms

and makes gyrokinetic theory easier to access for non-specialists. In the spirit of

asymptotic analysis, we define a rigorous normalization procedure in order to carry

out our derivation in a fully non-dimensional framework. Moreover, our ordering as-

sumptions (maximal ordering) are inspired by realistic physical scenarios relevant for

existing and future fusion experiments, such as, for example, the Tokamaks ASDEX

Upgrade (Max Planck Institute for Plasma Physics) and ITER (ITER Organization).

As a result, we derive a set of gyrokinetic Vlasov-Maxwell equations for ions and

electrons within a unique ordering.

In the second part of this thesis (chapters 3-5) we develop and discuss novel numer-

ical methods for gyrokinetic simulations. In particular, we propose a comprehensive

numerical strategy for the solution of coupled hyperbolic-elliptic partial differential

equations on two-dimensional disk-like domains, obtained from a rectangular uni-

form logical domain through singular coordinate mappings. In particular, we pro-

pose a novel set of coordinates, which we call pseudo-Cartesian coordinates, for

the integration of the characteristic equations for the semi-Lagrangian solution of

hyperbolic equations on such domains, and a finite element method based on glob-

ally C1 smooth splines for the solution of elliptic equations. We also report about the

development of a semi-Lagrangian simulation code based on the field-aligned ap-

proach. This code addresses the numerical solution of a simplified four-dimensional

drift-kinetic electrostatic model. We discuss in detail the field-aligned approach and

show how to integrate the numerical machinery developed for two-dimensional prob-

lems within the four-dimensional code, presenting preliminary verification tests.
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It is our hope that the numerical methods and techniques presented in this thesis,

or their extension and improvement, will be eventually implemented and employed

in state-of-the-art gyrokinetic codes, as well as other simulation codes used in com-

putational plasma physics.

1.2 Plasma physics and nuclear fusion

Plasma physics and nuclear fusion constitute the overall context of this research

work with respect to the physical sciences. The physical system being ultimately

investigated consists of a fusion plasma, that is, an ionized gas of electrons and

ions at extremely high temperatures and densities inside a nuclear fusion reactor.

When nuclei of light atoms, such as hydrogen, collide and fuse together, they pro-

duce nuclei of heavier atoms, such as helium, and release enormous amounts of

energy. This reaction occurs, for example, in the core of the Sun and all other stars

in the universe. The goal of nuclear fusion science is to replicate such reactions in

laboratories and experimental facilities on earth, with the ultimate aim of convert-

ing the energy produced by fusion reactions into electrical energy. Thanks to the

fact that fusion fuels, namely deuterium and tritium, are extensively available and

almost inexhaustible on earth, nuclear fusion represents a possible future source

of large-scale carbon-free energy, that may help address some of the most urgent

challenges facing humanity, namely the energy needs of our species within a safe

preservation of our ecosystem. Several aspects make nuclear fusion an attractive

safe alternative to nuclear fission as a nuclear energy source. To name a few: fu-

sion does not emit carbon dioxide or other greenhouse gases into the atmosphere,

nuclear fusion reactors do not produce long-lived nuclear waste, and there is no risk

of a chain reaction or meltdown. The downside is that what makes nuclear fusion

inherently safe makes it also extraordinarily challenging from a scientific and tech-

nological point of view, as the reaction stops or does not occur at all if any of the

physical conditions necessary for it are disturbed in any way. In order for the reaction

to occur at a reasonable rate, the plasma inside a fusion reactor needs to be heated

at temperatures of about 150 million degrees Celsius, much higher than the Sun’s

core. It is therefore necessary to confine the hot plasma (which has a tendency
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to expand) inside the core of a fusion reactor for a sufficiently long time and pre-

vent it from reaching the outer walls of the machine. Several techniques have been

invented and investigated in the last decades in order to achieve high plasma con-

finement in fusion reactors. The most common one is magnetic confinement, which

makes use of strong external magnetic fields to contain and control the plasma.

The idea of magnetic confinement comes from the simple physical observation that

electrically charged particles (such as electrons and ions inside a plasma) exhibit a

motion of gyration around the field lines of an external magnetic field. As a conse-

quence, a combination of poloidal and toroidal magnetic coils in a donut-like shaped

device can act as a magnetic cage and trap the plasma particles in a well-confined

region inside the reactor’s vessels. The two main existing types of fusion reactors

based on magnetic confinement are the so-called Tokamaks (Artsimovich, 1972)

and Stellarators (Spitzer, 1958). They differ mainly because of the shape and the

spatial symmetry properties of the magnetic coils used to create the external mag-

netic fields. This thesis deals with magnetically confined fusion plasmas in Tokamak

devices, such as, for example, ASDEX Upgrade, DIII-D, JET, TCV (to name just a

few among the more than 200 Tokamak reactors that have been built and operated

since the 1950s) and the future machine ITER (Figure 1.1).

1.3 Gyrokinetic theory and simulations

Fusion plasmas consist typically of an extremely large number of charged particles

interacting between themselves and with external electromagnetic fields. When a

macroscopic physical system consists of a large number of microscopic compo-

nents, it is common to describe it from a statistical point of view, instead of looking

at its individual microscopic degrees of freedom. In the case of a fusion plasma,

we may want to describe its physical dynamics with the tools provided by the kinetic

theory of gases, rather than looking at the individual equations of motion of each

electron and ion in the plasma. The fundamental bit of information in such a kinetic

description is typically the probability of finding a particle at a given position, with a

given velocity and at a given time. The mathematical object that contains such in-

formation is the so-called distribution function of the plasma particles. Such objects
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Figure 1.1: A cutaway of the ITER Tokamak (produced by the ITER Design Office in
January 2013).

are defined, at a given time, on a six-dimensional phase space (three dimensions

are associated to the position of the plasma particles and three to their velocity).

The evolution in time of a particle distribution function is therefore described by a

six-dimensional phase-space dynamics. When the equations describing such dy-

namics need to be solved on a computer, as it is usually the case, the high dimen-

sionality of the phase space becomes a computational limitation, as it results in

long run times and heavy memory footprints of the corresponding numerical simu-

lations. It becomes therefore useful to develop reduced models capable of retaining

a physically meaningful description of the system while at the same time decreas-

ing the computational cost of the model. Gyrokinetic theory is an example of such

reduced models: it is derived from a fully kinetic model by applying standard tech-

niques of perturbation theory and results in a set of dynamical equations defined on

a five-dimensional phase space, thus enabling more efficient numerical simulations

of fusion plasmas.

Several efforts have been made in the last decades in order to develop computer

codes for the numerical simulation of fusion plasmas by means of gyrokinetic mod-
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els. Such codes are typically classified into two different categories, according to

the overall discretization approach on which their numerical methods are based. In

particle-in-cell (PIC) codes the system is observed from macro-particles and only a

computational grid in the three-dimensional configuration space is necessary in or-

der to solve the dynamical equations (more precisely, the equations describing the

dynamics of the electromagnetic fields). Examples of gyrokinetic PIC codes include

GTC (Ethier et al., 2005), GTS (Wang et al., 2006), XGC1 (Ku et al., 2009), ORB5

(Bottino et al., 2010), and ELMFIRE (Heikkinen et al., 2008). In continuum codes,

instead, the dynamical equations are discretized on a five-dimensional phase-space

grid. Such codes are further classified into purely Eulerian codes, based on various

discretization approaches, such as, for example, finite differences, finite volumes,

or discontinuous Galerkin methods, and semi-Lagrangian codes, where the particle

distribution function is discretized on a grid but the grid points are advected along the

characteristic trajectories of the transport equation describing its dynamics. Exam-

ples of gyrokinetic Eulerian codes include GENE (Jenko and Dorland, 2001), CO-

GENT (Dorf et al., 2012), GKEYLL (Shi et al., 2017), GT5D (Idomura et al., 2008);

examples of gyrokinetic semi-Lagrangian codes include GySeLa (Grandgirard et al.,

2006b) and the code described in (Kwon et al., 2015).
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Chapter 2

A new derivation of gyrokinetic

theory

Gyrokinetics is one of the major frameworks used in theoretical and numerical stud-

ies of low-frequency turbulence in magnetized fusion plasmas (Garbet et al., 2010;

Krommes, 2012). Gyrokinetic models are based on a change of phase-space co-

ordinates that separates the fast motion of gyration of the charged plasma particles

around the magnetic field lines from the slower motion of their guiding-centers along

the direction of the magnetic field lines. The idea is to derive a reduced set of dynam-

ical equations that contain all the information necessary to provide a good enough

description of the physical dynamics of the plasma, while at the same time ne-

glecting the dynamics occurring at the fastest time scales, thus reducing the overall

dimensionality of the equations to be solved and enabling more efficient numerical

simulations (by reducing both their run time and their memory footprint).

From the point of view of mathematics, gyrokinetic theory is the asymptotic study

of the Vlasov-Maxwell model in a strong background magnetic field. This requires

a suitable reformulation of the equations such that the formal limit of infinite mag-

netic field strength can be carried out in a meaningful way. The procedure can be

understood in the context of averaging the characteristics (or Lagrangian paths) of

the Vlasov equation, as described first in (Northrop, 1963). Rigorous mathematical

accounts can be found, for example, in (Frénod and Sonnendrücker, 2001; Bostan,
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2010; Chartier et al., 2016). A first attempt to average the Vlasov-Maxwell equa-

tions taking into account the self-consistent interaction between plasma particles

and electromagnetic fields can be found in (Frieman and Chen, 1982). On the other

hand, the works of (Littlejohn, 1979; Dubin, 1983; Hahm, 1988; Brizard, 1989) laid

the foundation of “structure-preserving” gyrokinetic theory. In these works it was

first realized that averaging can be carried out on the level of the variational princi-

ple, by transforming the particle Lagrangian that leads, together with the free-field

electromagnetic Lagrangian, to the Vlasov-Maxwell equations (or, equivalently, by

transforming its corresponding Poisson bracket structure). This strategy has the

advantage of preserving symmetries of the plasma equations of motion during the

process of averaging. More precisely, the averaged equations will exactly conserve

averaged versions of the true constants of the motion, such as, for example, energy

and momentum. Most, if not all, of the numerical codes attempting to solve the gy-

rokinetic equations are currently based on structure-preserving gyrokinetic models

and often show improved stability and accuracy.

The derivation of gyrokinetic models has been discussed and reviewed extensively

in (Brizard and Hahm, 2007; Krommes, 2012), and references therein. The preva-

lent methodology is based on Lie transform perturbation theory, as presented for ex-

ample in (Cary, 1981; Cary and Littlejohn, 1983), and most of the recent derivations

have been carried out in this framework, as in (Tronko et al., 2016; Brizard, 2017;

Tronko et al., 2017a,b; Tronko and Chandre, 2018). The work described in this thesis

suggests a different derivation of the gyrokinetic equations, which we hope will make

gyrokinetic theory easier to access for scientists who are not familiar with it. The idea

is to derive the gyrokinetic equations without relying on methods based on Lie trans-

form perturbation theory. Such methods, despite being mathematically elegant, are

formulated in the language of differential geometry and may thus prevent readers

from focusing on the core of the gyrokinetic reduction. The derivation discussed in

this thesis is inspired by the guiding-center theory of Littlejohn (Littlejohn, 1983) and

a similar approach has been recently suggested in (Parra and Calvo, 2011; Scott,

2017) and worked out in the long-wavelength regime of gyrokinetics in (Possanner,

2018). More precisely, we extend the methodology presented in (Possanner, 2018)

to address the description of turbulence on the microscopic scales of magnetized
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fusion plasmas, such as the ion Larmor radius. As in Lie transform perturbation

theory, our method is based on near-identity phase-space coordinate transforma-

tions. However, we propose to construct such transformations in a different way.

More precisely, our phase-space coordinate transformations are defined as polyno-

mials of finite degree in powers of a given perturbation parameter. The coefficients

of such polynomials are the so-called generating functions (or generators) and rep-

resent the degrees of freedom that allow us to separate fast and slow scales. We

call such phase-space coordinate transformations polynomial transforms, in anal-

ogy with Lie transforms. Our polynomial transforms are conceptually simpler than

Lie transforms, which are asymptotic series (thus not necessarily convergent) con-

structed as products of operator exponentials which feature Lie derivatives along

the generating vector fields.

In the spirit of asymptotic analysis, our derivation of the gyrokinetic equations is car-

ried out in a fully non-dimensional framework. The perturbation parameter used in

our near-identity phase-space coordinate transformations, which we denote by ε, is

identified by a rigorous normalization of the Vlasov-Maxwell model. Our ordering

in powers of ε is then based on assumptions derived from realistic physical sce-

narios relevant for existing and future fusion experiments, such as, for example, the

Tokamaks ASDEX Upgrade and ITER . In this way we clearly separate the physical

assumptions (generally referred to as “ordering” in the gyrokinetic literature) from the

mathematical model reduction (averaging with polynomial transforms). The reduc-

tion procedure via polynomial transforms can then be viewed as a sort of automatic

procedure, which ideally could be carried out by a symbolic computer program, in

order to prevent errors in long analytical calculations. Moreover, our methodology

based on a priori normalization of the physical equations allows us to formulate a

gyrokinetic theory for both ions and electrons within the same physical scenario and

assumptions.

This chapter is organized as follows. Section 2.1 introduces the basic equations of

the Vlasov-Maxwell model for a non-collisional magnetized plasma, including a field-

theoretic Lagrangian formulation. Section 2.2 defines the normalization scheme

used for the purpose of non-dimensionalization and derives an ordering pattern

based on physical considerations. Section 2.3 outlines the main results of this work,
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namely a set of gyrokinetic equations for both ions and electrons in maximal or-

dering with the corresponding sources in Maxwell’s equations. Finally, we end the

chapter with a summary of our contributions.

2.1 The Vlasov-Maxwell model

We consider a non-collisional plasma composed of ions and electrons described in

terms of the distribution functions fspt,x,vq, where the subscript s denotes the par-

ticle species, t P R` denotes the time coordinate, and px,vq P R3 ˆR3 are position

and velocity coordinates in phase space. In this chapter we write all equations in

SI units (Taylor, 2008). The distribution functions fs obey the non-collisional Vlasov

equation
Bfs
Bt
` v ¨∇fs `

qs
ms

pE ` v ˆBq ¨
Bfs
Bv

“ 0 , (2.1)

where qs and ms denote the particle charge and mass, respectively. The electro-

magnetic fields Ept,xq and Bpt,xq satisfy Maxwell’s equations

∇ ¨E “
ρ

ε0

(Coulomb’s law) , (2.2a)

∇ ¨B “ 0 (absence of free magnetic poles) , (2.2b)

∇ˆE “ ´
BB

Bt
(Faraday’s law) , (2.2c)

∇ˆB “ µ0J ` ε0µ0
BE

Bt
(Ampère-Maxwell’s law) , (2.2d)

where ε0 and µ0 denote the vacuum electric permittivity and the vacuum magnetic

permeability, respectively. The sources ρpt,xq and Jpt,xq are defined in terms of

the distribution functions as

ρ :“
ÿ

s

qs

ż

d3v fs , J :“
ÿ

s

qs

ż

d3v v fs . (2.3)

The derivation of the Vlasov-Maxwell system (2.1)-(2.3) from an action principle was

recognized first by (Low, 1958). Denoting by Φpt,xq and Apt,xq the electric scalar

potential and the magnetic vector potential associated to the electric and magnetic

10



fields E and B via

E “ ´∇Φ´
BA

Bt
, B “∇ˆA , (2.4)

Low’s action principle reads

δ

ż t1

t0

dt pLp ` LEMq “ 0 , (2.5)

where δ denotes the Fréchet derivative (as usual in the calculus of variations),

Lp pt,Ψt, dΨt{dt,Φ,Aq denotes the particle Lagrangian

Lp :“
ÿ

s

ż

d3x0 d
3v0 fspt0,x0,v0qLs , (2.6)

and LEM pΦ,A,∇Φ, BA{Bt,∇Aq denotes the electromagnetic free-field Lagrangian

LEM :“
ε0

2

ż

d3x

ˇ

ˇ

ˇ

ˇ

∇Φ`
BA

Bt

ˇ

ˇ

ˇ

ˇ

2

´
1

2µ0

ż

d3x |∇ˆA|2 . (2.7)

In the particle Lagrangian (2.6), Ls pt,Ψt, dΨt{dt,Φ,Aq (sometimes denoted simply

by Ls pΨt, dΨt{dtq, neglecting the dependence on the other variables) denotes the

single-particle Lagrangian for species s, defined on the tangent bundle of the single-

particle phase space. In the phase-space coordinates px,vq, the single-particle

Lagrangian Lspt,x,v,
.
x,
.
vq reads

Ls :“ pmsv ` qsAq ¨
.
x´Hs with Hs :“

ms

2
|v|2 ` qsΦ . (2.8)

We remark that Ls depends implicitly on the potentials Φ and A and describes

therefore the self-consistent interaction between plasma particles and electromag-

netic fields. In general, the single-particle Lagrangian Ls pΨt, dΨt{dtq is evaluated

at the t-family of maps Ψt : R6 Ñ R6, which depend parametrically on time and

denote the flow maps of the characteristics of the Vlasov equation (2.1):

$

&

%

dx

dt
“ v ,

xpt0q “ x0 ,

$

’

&

’

%

dv

dt
“

qs
ms

pE ` v ˆBq ,

vpt0q “ v0 .
(2.9)
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The flow map Ψt transports a particle from the phase-space point z0 :“ px0,v0q

at the initial time t0 to the phase-space point Ψtpz0q at time t and it is a volume-

preserving diffeomorphism. The description of an ensemble of particles via the

particle Lagrangian Lp arises from the single-particle picture as follows. Newton’s

equations of motion for a single particle can be deduced from the variational princi-

ple

δ

ż t1

t0

dt Ls

ˆ

zptq,
dzptq

dt

˙

“ 0 . (2.10)

The extremum defined by (2.10) is denoted by zptq :“ pxptq,vptqq and it is the

solution of the Euler-Lagrange equations (2.9). Hence, zptq “ Ψtpz0q and (2.10)

can be written as

δ

ż t1

t0

dt

ż

d6z1 δ
6
pz1 ´ z0qLs

ˆ

Ψtpz1q,
dΨtpz1q

dt

˙

“ 0 . (2.11)

Formally, the ensemble description is obtained by replacing the Dirac delta function

with the initial particle distribution function fsp0, z1q, which yields

δ

ż t1

t0

dt

ż

d6z1 fspt0, z1qLs

ˆ

Ψtpz1q,
dΨtpz1q

dt

˙

“ 0 . (2.12)

The particle Lagrangian (2.6) is then obtained by taking the sum over the species

and by relabeling the variables of integration z1 as z0. By construction, the variation

(2.12) with respect to Ψt yields the characteristics of the Vlasov equation. From a

more physical point of view, the particle Lagrangian (2.6) is obtained by multiplying

the single-particle Lagrangian Ls by the probability of finding a particle in the phase-

space point z0 at the initial time t0 and by summing over all possible initial phase-

space points. The Vlasov equation enters the picture via the following definition of

the particle distribution function:

fspt, zq :“

ż

d6z0 δ
6
pz ´Ψtpz0qq fspt0, z0q . (2.13)

We remark that z P R6 denotes coordinates here and not a path in phase space.

Hence, (2.13) makes the link between the Lagrangian paths Ψt and the distribution

function fs via fspt, zq “ fspt0, pΨtq
´1pzqq. This implies, in particular, that fs is
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constant along the Lagrangian paths,

fspt,Ψtpz0qq “ fspt0, z0q , (2.14)

which corresponds to the information contained in the Vlasov equation. Let us now

write the characteristic equations in the form

$

&

%

dz

dt
“ F pzq ,

zpt0q “ z0 ,
(2.15)

with F pzq “ F px,vq :“ pv, qs
ms
pE`vˆBqqT . From the definition of the distribution

function it follows that
ż

d6z0 fspt0, z0qLs

ˆ

Ψt,
dΨt

dt

˙

“

ż

d6z fspt, zqLspz,F pzqq . (2.16)

This is easily verified by substituting the definition (2.13) into the right-hand side and

integrating over z. The variational principle (2.5) leads to the characteristics of the

Vlasov equation by computing variations with respect to Ψt, to Coulomb’s law by

computing variations with respect to Φ and to Ampère-Maxwell’s law by computing

variations with respect to A. Variations with respect to the electromagnetic poten-

tials are computed in the Eulerian representation of the particle Lagrangian, namely

from the right-hand side of (2.16). Only the non-homogeneous Maxwell’s equations

(2.2a) and (2.2d) can be derived from the variational principle. With appropriate

initial/boundary conditions, this results in a well-posed system for pfs,Φ,Aq, which

describes the self-consistent interaction between plasma particles and electromag-

netic fields.

An important aspect in gyrokinetic theory is the separation of the electromagnetic

fields into background and fluctuating parts. More precisely, we assume that the

magnetic field consists of dynamic fluctuations added to a static background, while

the electric field consists only of dynamic fluctuations (without a static background):

Bpt,xq “ B0pxq `B1pt,xq , Ept,xq “ E1pt,xq . (2.17)
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Similarly, the electromagnetic potentials are written as

Apt,xq “ A0pxq `A1pt,xq , Φpt,xq “ Φ1pt,xq , (2.18)

so that B0 “∇ˆA0. Therefore, in the variational principle (2.5) variations have to

be computed with respect to Ψt, Φ1 and A1, respectively.

2.2 Normalization and ordering

The formulation of the Vlasov-Maxwell system as a perturbation problem requires

the non-dimensionalization (or scaling) of the physical equations and the subse-

quent application of an ordering scheme that allows for a comparison of terms in

relation to a small perturbation parameter ε ! 1. Since gyrokinetics is ultimately the

theory of low-frequency dynamics in strongly-magnetized plasmas, the perturbation

parameter is typically defined as the ratio between a characteristic ion turbulence

frequency pωi and the ion cyclotron frequency ωci:

ε :“
pωi
ωci

. (2.19)

Gyrokinetic theory can then be considered as the asymptotic analysis of the Vlasov-

Maxwell model in the limit εÑ 0. The procedure of non-dimensionalization and the

introduction of the scaling parameter ε in the equations are fundamental. Therefore,

we give here a detailed description of both steps, which typically are not treated

extensively in the gyrokinetic literature. We first present the methodology by means

of a one-dimensional example and then introduce the generic normalization of the

Low action principle (2.5). Finally, we suggest an ordering scheme that corresponds

to a realistic physical scenario relevant for existing and future fusion experimental

reactors, such as, for example, the Tokamaks ASDEX Upgrade and ITER.

In magnetized fusion plasmas two length scales play a major role, namely the length

scale `0 of the background magnetic field, that can be approximately measured by

looking at the quantity ||∇B0{B0||
´1, and the length scale `1 of the turbulent fluctua-

tions, that can be approximately measured by looking at the quantity ||∇Φ1{Φ1||
´1.
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The length scale `1 is typically of the order of the ion gyro-radius ρi :“ pvi{ωci (Brizard

and Hahm, 2007), where pvi denotes the ion thermal velocity. The ratio of these

length scales determines the importance of the effects related to the curvature of

the background magnetic field in the perturbation analysis. The following three sce-

narios are usually of interest: if the background magnetic field is uniform, we for-

mally have `1{`0 “ 0; if the background magnetic field is slowly-varying, we typically

have `1{`0 “ Opε2q in the limit ε Ñ 0; in the last scenario, which is referred to as

maximal ordering, we have instead `1{`0 “ Opεq in the limit ε Ñ 0. The majority

of gyrokinetic models have been derived in a homogeneous background magnetic

field for the sake of conceptual clarity. However, curvature effects play an important

role in magnetically confined fusion plasmas and many state-of-the-art gyrokinetic

codes address the numerical solution of gyrokinetic models derived in the case of

a slowly-varying background magnetic field. In this thesis, we develop a consistent

gyrokinetic theory in the maximal ordering, by taking into account curvature terms

that appear at the first order of the perturbation theory. As pointed out in (Tronko

and Chandre, 2018), according to recent experimental results for the Tokamak Tore

Supra (Casati et al., 2009) and according to numerical results obtained with the

PIC gyrokinetic code ORB5 for the Tokamaks ITER and DIII-D (Wersal et al., 2012),

the maximal ordering is the most relevant scenario for existing and future fusion

experimental reactors (including Spheromaks, besides conventional Tokamaks and

Stellarators). Uniform or slowly-varying scenarios can be then easily deduced from

our more general results in the maximal ordering, by simply moving curvature terms

to higher orders in the perturbation theory.

When dealing with different length scales of variations, such as `0 and `1, particular

care is required during the process of non-dimensionalization (or scaling) of the

physical equations, because the perturbation parameter ε will appear in the argu-

ment of functions. We explain this by means of a one-dimensional example. Con-

sider the one-dimensional real-valued function

gpxq “ pg sin

ˆ

2π

`
x

˙

. (2.20)

The amplitude pg represents the characteristic size of g and the length scale ` rep-
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resents its scale of variation. In a physical problem, ` is typically expressed in

some physical units (for example, ` “ 1mm), and so is x, in order to have a non-

dimensional argument in the sine function. We then introduce a second function

g1px1q :“ sinp2π x1q , (2.21)

with non-dimensional argument x1. The function g1 is non-dimensional, of orderOp1q

and with variations of order Op1q in the limit `Ñ 0. We call such functions “elemen-

tary functions” and denote them with a prime. The goal of the scaling procedure

is to express all dependent variables of a physical model in terms of elementary

functions. From (2.20) and (2.21) it follows that

gpxq “ pg g1
´x

`

¯

,
Bg

Bx
pxq “

pg

`

Bg1

Bx1

´x

`

¯

. (2.22)

We also introduce the characteristic length scale px in order to scale the independent

variable x via x “ px x1. The length scale px represents a characteristic scale of

observation. From (2.22) we obtain

gpxq “ pg g1
ˆ

px

`
x1
˙

,
Bg

Bx
pxq “

pg

`

Bg1

Bx1

ˆ

px

`
x1
˙

, (2.23)

where g1px1q is differentiated with respect to x1 and then evaluated at what stands in

the parentheses. If we fix a scale of observation px and we introduce a perturbation

parameter ε ! 1, we then distinguish between three types of functions, depending

on the ratio px{`:

• slowly-varying functions with px{` “ Opεq in the limit ε Ñ 0: g “ pg g1 pε x1q

(scale of observation much smaller than the scale of variation);

• standard functions with px{` “ Op1q in the limit ε Ñ 0: g “ pg g1 px1q (scale of

observation comparable to the scale of variation);

• strongly-varying functions with px{` “ Op1{εq in the limit ε Ñ 0: g “ pg g1px1{εq

(scale of observation much larger than the scale of variation).

We will use this notation throughout this chapter, adapted to the multi-dimensional

case as well as for vector-valued functions.
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2.2.1 Normalization of the Vlasov-Maxwell model

In order to write the Vlasov-Maxwell model in non-dimensional form, we introduce

reference scales (denoted, as before, by a hat) for time, length, and ion and electron

velocities:

t “ pt t1 , x “ pxx1 , v “

#

pvi v
1 ions ,

pve v
2 electrons .

(2.24)

The characteristic velocities for ions and electrons, pvi and pve, can be chosen differ-

ently, which means that v1 and v2 are different velocity coordinates. Following the

procedure described in the previous section, we write the background magnetic field

and its corresponding magnetic vector potential as

B0pxq “ pB0B
1
0

ˆ

px

`0

x1
˙

, A0pxq “ pA0A
1
0

ˆ

px

`0

x1
˙

, (2.25)

where `0 denotes the length scale of the background magnetic field. Choosing
pA0 :“ pB0`0, we obtain B1

0 “ ∇1
ˆ A10 in the scaled variables. We remark that

for a uniform background magnetic field the considerations for the vector potential

A0 are still valid (A0 “ pB0 ˆ xq{2 in this case). With regard to the dynamic fields

B1 and E1, we denote their length and time scales by `1 and τ1, respectively. For

the magnetic fluctuations and its corresponding magnetic vector potential we write

B1pt,xq “ pB1B
1
1

˜

pt

τ1

t1,
px

`1

x1

¸

, A1pt,xq “ pA1A
1
1

˜

pt

τ1

t1,
px

`1

x1

¸

. (2.26)

Similarly, for the electric field and its corresponding electric scalar potential we write

E1pt,xq “ pE1E
1
1

˜

pt

τ1

t1,
px

`1

x1

¸

, Φ1pt,xq “ pΦ1 Φ11

˜

pt

τ1

t1,
px

`1

x1

¸

. (2.27)

Choosing pA1 :“ pB1`1 and pΦ1 :“ pE1`1, we obtain

B1
1 “∇1

ˆA11 , E11 “ ´∇1Φ11 ´
pB1`1

pE1τ1

BA11
Bt1

, (2.28)
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in the scaled variables. We remark that the amplitudes pA1 and pΦ1 depend on the

length scale `1 of the fluctuations. This means that, if the sizes of the field fluctua-

tions pB1 and pE1 are fixed, small-scale fluctuations are associated to small potentials,

while large-scale fluctuations are associated to large potentials. The size of the po-

tentials, in turn, plays a role in the ordering of terms in the particle Lagrangian, and

thus in the overall asymptotic expansion.

Regarding the Low action, we normalize the electromagnetic free-field Lagrangian

(2.7) as

LEM “ pni kB pTi px
3 L1EM , (2.29)

where pni denotes a reference ion density, pTi a reference ion temperature, and kB is

the Boltzmann constant. Therefore, we obtain the non-dimensional electromagnetic

free-field Lagrangian

L1EM “
ε0

pE2
1

pni kB pTi

1

2

ż

d3x1
ˇ

ˇ

ˇ

ˇ

∇1φ11 `
pB1`1

pE1τ1

BA11
Bt1

ˇ

ˇ

ˇ

ˇ

2

´
pB2

0

µ0 pni kB pTi

1

2

ż

d3x1
ˇ

ˇ

ˇ

ˇ

∇1
ˆA10 `

pB1

pB0

∇1
ˆA11

ˇ

ˇ

ˇ

ˇ

2

.

(2.30)

In order to normalize the single-particle Lagrangian (2.8), we note that .x repre-

sents three components of an element p .x, .vq P R3 ˆ R3 of the tangent space at

px,vq P R3 ˆ R3. Tangents .x have units of velocity and are therefore normalized as
.
x “ ppx{pt q

.
x1. We then normalize the single-particle Lagrangian (2.8) as

Ls “ ms pv
2
s L

1
s , (2.31)

obtaining the non-dimensional single-particle Lagrangian

L1s “
px

pvs pt

«

v1 `
qs pB0 `0

mspvs

˜

A10 `
pB1`1

pB0`0

A11

¸ff

¨
.
x1 ´

|v1|2

2
´
qs pE1`1

mspv2
s

Φ11 . (2.32)

Finally, we normalize the particle Lagrangian (2.6) of the Low action in the same

way as the electromagnetic free-field Lagrangian, namely as

Lp “ pni kB pTi px
3 L1p , (2.33)

18



thus obtaining the non-dimensional particle Lagrangian

L1p “
ÿ

s

ms pv
5
s
pfs

pni kB pTi

ż

d3x10 d
3v10 f

1
spt
1
0,x

1
0,v

1
0qL

1
s . (2.34)

All dependent variables in the Low action are now expressed in terms of elementary

functions. Therefore, the size of each term is determined only by the size of the

non-dimensional coefficients in front of it. Such coefficients are, in turn, determined

by the physical scenario under consideration, as we discuss in the next section.

2.2.2 Physical scenario and ordering

The process of quantifying the size of the non-dimensional coefficients appearing in

the physical quantities of interest, such as the Low action, is usually referred to as

ordering. Different orderings lead to different perturbation theories and to reduced

models with different physical content. An ordering is thus the mathematical expres-

sion of a specific physical scenario. Two such scenarios for magnetic confinement

fusion experiments are listed in Tables 2.1 and 2.2. We choose as the characteristic

length and time scales of observation the minor radius a and the inverse of the ion

thermal frequency pωi, respectively:

px :“ a , pt :“
1

pωi
“
a

pvi
. (2.35)

The ion thermal frequency pωi, that is, the inverse of the time required for an ion

to travel the distance a, is close to the frequency of micro-turbulence observed in

Tokamaks (Liewer, 1985; Wootton et al., 1990; Krommes, 2012). Moreover, mea-

surements in Tokamaks have shown that fluctuation levels in turbulent plasmas sat-

isfy (Liewer, 1985; Wootton et al., 1990; Brizard and Hahm, 2007)

pB1

pB0

„
pE1

pB0pvi
« 10´3 , (2.36)

which tells that fluctuations are small compared to the corresponding background

quantities and that the E ˆB velocity is small compared to the ion thermal velocity.
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ions electrons

major radius R0 1.6 m

minor radius a 0.8 m

toroidal magnetic field BT 3.9 T

average particle density xnsy 2.0ˆ
1020

m3
2.0ˆ

1020

m3

average thermal energy kBxTsy 8.7 keV 8.7 keV

cyclotron frequency ωcs :“
qs pB0

ms

1.9ˆ 108 Hz 6.9ˆ 1011 Hz

thermal velocity pvs :“

d

kB pTs
ms

6.4ˆ 105 m

s
3.9ˆ 107 m

s

thermal frequency pωs :“
pvs
a

8.0ˆ 105 Hz 4.9ˆ 107 Hz

Larmor radius ρs :“
pvs
ωcs

3.4ˆ 10´3 m 5.7ˆ 10´5 m

Debye length λs :“

d

ε0 kB pTs
q2
s pns

4.9ˆ 10´5 m 4.9ˆ 10´5 m

pωs{ωcs 3.4ˆ 10´3 5.7ˆ 10´5

pv2
s {c

2 4.6ˆ 10´6 1.7ˆ 10´2

λ2
s{a

2 3.7ˆ 10´9 3.7ˆ 10´9

βs :“ µ0 pns kB pTs{ pB
2
0 2.3ˆ 10´2 2.3ˆ 10´2

Table 2.1: Physical scenarios for magnetic confinement fusion experiments: param-
eters for the Tokamak ASDEX Upgrade. Note that we choose pB0 “ BT, pns “ xnsy
and pTs “ xTsy.
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ions electrons

major radius R0 6.2 m

minor radius a 2.0 m

toroidal magnetic field BT 5.3 T

average particle density xnsy 1.0ˆ
1020

m3
1.0ˆ

1020

m3

average thermal energy kBxTsy 8.0 keV 8.8 keV

cyclotron frequency ωcs :“
qs pB0

ms

2.5ˆ 108 Hz 9.3ˆ 1011 Hz

thermal velocity pvs :“

d

kB pTs
ms

6.2ˆ 105 m

s
3.9ˆ 107 m

s

thermal frequency pωs :“
pvs
a

3.1ˆ 105 Hz 2.0ˆ 107 Hz

Larmor radius ρs :“
pvs
ωcs

2.4ˆ 10´3 m 4.2ˆ 10´5 m

Debye length λs :“

d

ε0 kB pTs
q2
s pns

6.7ˆ 10´5 m 7.0ˆ 10´5 m

pωs{ωcs 1.2ˆ 10´3 2.1ˆ 10´5

pv2
s {c

2 4.3ˆ 10´6 1.7ˆ 10´2

λ2
s{a

2 1.1ˆ 10´9 1.2ˆ 10´9

βs :“ µ0 pns kB pTs{ pB
2
0 5.7ˆ 10´3 6.3ˆ 10´3

Table 2.2: Physical scenarios for magnetic confinement fusion experiments: param-
eters for the Tokamak ITER (Sips et al., 2005). Note that we choose pB0 “ BT,
pns “ xnsy and pTs “ xTsy.
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If we consider electrons and deuterium ions, we also have qe{qi “ ´1 and

me

mi

« 2.7ˆ 10´3 . (2.37)

Defining the perturbation parameter as in (2.19), we notice an ordering pattern in

powers of ε « 10´3 in the normalized plasma parameters of Tables 2.1 and 2.2. We

then apply this ordering to the normalized Low action. By choosing

`0 :“ a , `1 :“ ρi , τ1 :“
1

pωi
, (2.38)

we satisfy the maximal ordering `1{`0 “ Opεq in the limit ε Ñ 0. The normalized

background magnetic field (2.25) and its corresponding magnetic vector potential

become standard functions of x1, namely B1
0px

1q and A10px
1q. On the other hand,

since `1{px “ Opεq, the fluctuating electric and magnetic fields and their correspond-

ing potentials become strongly-varying functions of x1, namely depending on x1{ε.

These assumptions reflect the conventional gyrokinetic ordering |kK|ρi “ Op1q and

k}ρi “ Opεq in the limit ε Ñ 0, where k :“ pk},kKq denotes a characteristic wave

vector. Moreover, for the coefficient appearing in (2.28) we have

pB1`1

pE1τ1

“
pB1ρi pωi
pE1

“
pωi
ωci

pB1pvi
pE1

“ ε
pB1

pB0

pB0pvi
pE1

“ Opεq , (2.39)

in the limit εÑ 0, which yields

E11 “ ´∇1Φ11 ´ ε
BA11
Bt1

. (2.40)

The non-dimensional coefficients in the normalized electromagnetic free-field La-

grangian (2.30) have the following size in the limit εÑ 0:

ε0
pE2

1

pnikB pTi
“

pv2
i

c2

pE2
1

pB2
0pv

2
i

pB2
0

µ0pnikB pTi
“ Opε3

q ,
pB2

0

µ0pnikB pTi
“:

1

βi
“ O

ˆ

1

ε

˙

. (2.41)

In the normalized particle Lagrangian (2.34) we set kB pTe “ kB pTi and pv3
s
pfs “ pni to

fix the characteristic size of the distribution function. Therefore, in our ordering the
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normalized ion and electron single-particle Lagrangians (2.32) read

L1i “

ˆ

v1 `
A10
ε
` εA11

˙

¨
.
x1 ´

|v1|2

2
´ εΦ11 , (2.42a)

L1e “

ˆc

me

mi

v1 ´
A10
ε
´ εA11

˙

¨
.
x1 ´

|v1|2

2
` εΦ11 . (2.42b)

The only difference between ions and electrons is given by the square root of the

mass ratio multiplying the term v1 ¨
.
x1 in the symplectic part of the Lagrangian. This

defines an intermediate scale that is not an integer power of ε:

c

me

mi

“ Op
?
εq , (2.43)

in the limit ε Ñ 0. As a result of the ordering procedure, we obtain the normalized

Low action principle

δ

ż t11

t10

dt1 pL1p ` L
1
EMq “ 0 , (2.44)

with the Lagrangians L1p and L1EM given by (omitting the primes for a simpler nota-

tion)

L1p “

ż

d6z0 fipt0, z0q

„ˆ

v `
A0

ε
` εA1

˙

¨
dΨi

t

dt
´
|v|2

2
´ εΦ1



px,vq“Ψi
t

`

ż

d6z0 fept0, z0q

„ˆ

?
εv ´

A0

ε
´ εA1

˙

¨
dΨe

t

dt
´
|v|2

2
` εΦ1



px,vq“Ψe
t

,

L1EM “
ε3

2

ż

d3x

ˇ

ˇ

ˇ

ˇ

∇Φ1 ` ε
BA1

Bt

ˇ

ˇ

ˇ

ˇ

2

´
1

2 ε

ż

d3x |∇ˆA0 ` ε∇ˆA1|
2 .
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Taking variations with respect to Ψi
t, Ψe

t , Φ1 and A1 in (2.44) we obtain the normal-

ized Vlasov-Maxwell equations (again omitting the primes)

Bfi
Bt
` v ¨∇fi `

„

E1 ` v ˆ

ˆ

B0

ε
`B1

˙

¨
Bfi
Bv

“ 0 , (2.46a)

?
ε
Bfe
Bt
` v ¨∇fe ´

„

E1 ` v ˆ
1
?
ε

ˆ

B0

ε
`B1

˙

¨
Bfe
Bv

“ 0 , (2.46b)

ε2 ∇ ¨E1 “ ρ , (2.46c)

∇ˆ

ˆ

B0

ε
`B1

˙

“ J ` ε3 BE1

Bt
, (2.46d)

where the normalized charge and current densities are given by

ρ “

ż

d3v fi ´

ż

d3v fe , J “

ż

d3v v fi ´
1
?
ε

ż

d3v v fe . (2.47)

The factor 1{
?
ε in front of the electron current density comes from the different

choice of scales for the ion and electron thermal velocities. From the two Vlasov

equations (2.46a) and (2.46b) we deduce the charge conservation law

Bρ

Bt
`∇ ¨ J “ 0 , (2.48)

also known as the continuity equation in electrodynamics. This is also a solvability

condition for Maxwell’s equations. Indeed, (2.48) can be derived by taking the diver-

gence of Ampère-Maxwell’s law (2.46d), recalling that E1pt,x{εq is strongly-varying

in space, and then inserting Coulomb’s law (2.46c).

The normalized variational principle (2.44) is a suitable starting point for our pertur-

bation analysis of the Vlasov-Maxwell model, which we discuss in detail in the next

section.
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2.3 Gyrokinetic reduction

The basic idea of gyrokinetic theory is to replace the exact trajectories of the plasma

particles by the trajectories of their gyrocenters, which move on the time scale of the

thermal frequency pωi or slower. The dynamics occurring at scales equal to or faster

than the cyclotron frequency ωci are “averaged out” in the gyrocenter picture. How-

ever, some effects of the fast motion of gyration are still present in form of drifts of the

gyrocenters. In this section we make these concepts more precise by analyzing the

asymptotic limit εÑ 0 in the normalized single-particle Lagrangians (2.42a)-(2.42b).

From the reduced Lagrangians we then derive the gyrokinetic Vlasov equation for

ions and electrons and define gyrocenter charge and current densities with polariza-

tion corrections, thus coupling plasma particles and electromagnetic fields from the

normalized gyrocenter action principle. Primes are omitted from now on, in order to

keep the notation as simple as possible.

Following (Sugama, 2000), we intend to replace the particle Lagrangian Lp in the

Low action principle (2.44) by its gyrocenter representation Lp:

ż

d6z0 rfip0, z0qLi ` fep0, z0qLes «

ż

d6Z0

“

B˚}iFip0,Z0qLi `B˚}eFep0,Z0qLe
‰

,

where d6Z0 :“ d3X0 dP}0 dµ0 dΘ0 denotes the measure in gyrocenter phase space,

Fs denotes the gyrocenter distribution function and Ls is the corresponding gyrocen-

ter single-particle Lagrangian, to be derived below. The gyrocenter coordinates are

the gyrocenter position X P R3, the gyrocenter parallel momentum P} P R, the gy-

rocenter magnetic moment µ P R` and the gyro-angle Θ P R. The single-particle

dynamics in the new coordinates is such that the time evolution of the gyro-angle Θ

is decoupled from the rest of the coordinates, leading to a closed system of equa-

tions for the “slow” variables pX, P}q, where µ is a constant of the motion. The slow

system represents the averaged dynamics.

The phase-space coordinate transformation Z :“ pX, P}, µ,Θq ÞÑ px,vq, with Ja-

cobian determinant denoted by B˚
}
, is the central object of gyrokinetic theory. It

is usually derived in terms of (canonical) Lie transforms of the fundamental one-

form associated to the single-particle Lagrangian Ls (Hahm, 1988; Brizard, 1989;
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Tronko and Chandre, 2018). Despite being an elegant mathematical framework, Lie

transform perturbation theory introduces many formal complications, which seem

not to be strictly necessary for averaging. In this thesis we replace Lie transforms

with polynomials of finite degree in ε, algebraic in the generating functions. We

show that also with this different ansatz for the phase-space near-identity coordinate

transformation it is possible to remove the gyro-angle dependence from the single-

particle Lagrangian up to the desired order in ε, without changing its symplectic

part (and thus the Jacobian B˚
}

of the coordinate transformation). Our polynomial

transforms are well-defined coordinate transformations (locally invertible), in con-

trast to the asymptotic series in Lie transform perturbation theory, where it is difficult

to prove convergence and existence of the transforms. It is our hope that the simpler

derivation based on polynomial transforms will enable more rigorous mathematical

studies of gyrokinetic theory in the future.

2.3.1 Preliminary transformations

The phase-space coordinate transformation Z ÞÑ px,vq is a composition of sev-

eral coordinate changes, which we summarize in Tables 2.3 and 2.4 for ions and

electrons, respectively. The first transformation moves the magnetic vector potential

A1 from the symplectic part of the single-particle Lagrangian to the Hamiltonian, by

defining the “momentum”

p :“

#

v ` εA1 ions ,

v ´
?
εA1 electrons .

(2.49)

This is a near-identity transformation in v in the limit ε Ñ 0, with unit Jacobian

determinant. It resembles the usual transformation to canonical coordinates, but

it does not contain the background magnetic vector potential A0. The new exact
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physical coordinates

px,vq

Hamiltonian picture

px,pq
p :“ v ` εA1

angle coordinates

px, p},µ, θq

p} :“ p ¨ b0

µ :“
1

2B0

|b0 ˆ pˆ b0|
2

θ :“ arctan

ˆ

p ¨ e1

p ¨ e2

˙

guiding-center coordinates
sZ :“ pĎX, sp}, sµ, sθq

x :“ĎX ` ε ρ̄1i ` ε
2ρ̄2i ` ε

3ρ̄3i ` ε
4ρ̄4i

p} :“ sp} ` ε sG
}

1i ` ε
2
sG
}

2i ` ε
3
sG
}

3i

µ :“ sµ ` ε sGµ
1i ` ε

2
sGµ

2i ` ε
3
sGµ

3i

θ :“ sθ ` ε sGΘ
1i ` ε

2
sGΘ

2i ` ε
3
sGΘ

3i

preliminary gyrocenter coordinates

Z :“ pX, P}, pµ,Θq

ĎX :“X ` ε2ρ2i ` ε
3ρ3i ` ε

4ρ4i

sp} :“ P} ` εG
}

1i ` ε
2G

}

2i ` ε
3G

}

3i

sµ :“ pµ ` εGµ
1i ` ε

2Gµ
2i ` ε

3Gµ
3i

sθ :“ Θ ` εGΘ
1i ` ε

2GΘ
2i ` ε

3GΘ
3i

gyrocenter coordinates

Z :“ pX, P}, µ,Θq
µ :“ pµ` ε

@

γΘ
2

D

` ε2
@

γΘ
3

D

Table 2.3: Coordinate changes involved in the phase-space coordinate transforma-
tion pX, P}, µ,Θq ÞÑ px,vq relating physical coordinates and gyrocenter coordinates
for ions.
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physical coordinates
px,vq

Hamiltonian picture
px,pq

p :“ v ´
?
εA1

angle coordinates
px, p},µ, θq

p} :“ p ¨ b0

µ :“
1

2B0

|b0 ˆ pˆ b0|
2

θ :“ arctan

ˆ

p ¨ e1

p ¨ e2

˙

guiding-center coordinates
sZ :“ pĎX, sp}, sµ, sθq

x :“ĎX ` ε ρ̄1e ` ε
2ρ̄2e ` ε

3ρ̄3e ` ε
4ρ̄4e

p} :“ sp} ` ε sG
}

1e ` ε
2
sG
}

2e ` ε
3
sG
}

3e

µ :“ sµ ` ε sGµ
1e ` ε

2
sGµ

2e ` ε
3
sGµ

3e

θ :“ sθ ` ε sGΘ
1e ` ε

2
sGΘ

2e ` ε
3
sGΘ

3e

preliminary gyrocenter coordinates
Z :“ pX, P}, pµ,Θq

ĎX :“X ` ε2ρ2e ` ε
5
2ρ 5

2
e ` ε

3ρ3e ,

sp} :“ P} ` εG
}

1e ` ε2G
}

2e ,

sµ :“ pµ `
?
εGµ

1
2
e
` εGµ

1e ,

sθ :“ Θ `
?
εGΘ

1
2
e
` εGΘ

1e .

gyrocenter coordinates
Z :“ pX, P}, µ,Θq

µ :“ pµ`
?
ε
A

Gµ
1
2
e

E

´ ε
@

γΘ
3

D

Table 2.4: Coordinate changes involved in the phase-space coordinate transforma-
tion pX, P}, µ,Θq ÞÑ px,vq relating physical coordinates and gyrocenter coordinates
for electrons.
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single-particle Lagrangians read

Li “

ˆ

p`
A0

ε

˙

¨
.
x´

ˆ

|p|2

2
` εΨ1 ` ε

2 |A1|
2

2

˙

, (2.50a)

Le “

ˆ

?
εp´

A0

ε

˙

¨
.
x´

ˆ

|p|2

2
´
?
εΨ1 ` ε

|A1|
2

2

˙

, (2.50b)

where the generalized potential Ψ1pt,x,pq is defined as

Ψ1 :“

#

Φ1 ´ p ¨A1 ions ,
?
εΦ1 ´ p ¨A1 electrons .

(2.51)

We remark that the invariance of the single-particle Lagrangians with respect to

gauge transformations of the electric and magnetic potentials is broken by this pre-

liminary phase-space coordinate transformation. We then introduce local cylindrical

coordinates in p-space, namely

p} :“ p ¨ b0 , (2.52a)

µ :“
1

2B0

|b0 ˆ pˆ b0|
2 , (2.52b)

θ :“ arctan

ˆ

p ¨ e1

p ¨ e2

˙

, (2.52c)

where pe1, e2, b0q represents a local static orthonormal basis of R3, given an ar-

bitrary unit vector e1 perpendicular to b0. Denoting by pK :“ b0 ˆ p ˆ b0 the

component of p perpendicular to the local background magnetic field, we have

p “ p}b0 ` pK, with pK “ pp ¨ e1qe1 ` pp ¨ e2qe2. From the definition of θ we

can write pp ¨ e1q “ ´
?

2µB0 sin θ and pp ¨ e2q “ ´
?

2µB0 cos θ and thus define a

second θ-dependent orthonormal basis pa0, b0, c0q, with

a0 :“ `e1 cos θ ´ e2 sin θ , (2.53a)

c0 :“ ´e1 sin θ ´ e2 cos θ . (2.53b)
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We note that the basis vectors a0 and c0 satisfy the properties

Ba0

Bθ
“ c0 ,

Bc0

Bθ
“ ´a0 , (2.54)

which we will use oftentimes in later calculations. The transformation to angle coor-

dinates thus reads

p “ p}b0 `
a

2µB0 c0 , (2.55)

with Jacobian determinant B0. This leads to the exact Lagrangians

Li “

ˆ

p}b0 `
a

2µB0 c0 `
A0

ε

˙

¨
.
x´

˜

p2
}

2
` µB0 ` εΨ1 ` ε

2 |A1|
2

2

¸

, (2.56a)

Le “

ˆ

?
ε p}b0 `

?
ε
a

2µB0 c0 ´
A0

ε

˙

¨
.
x´

˜

p2
}

2
` µB0 ´

?
εΨ1 ` ε

|A1|
2

2

¸

.

(2.56b)

2.3.2 Guiding-center coordinates

The guiding-center phase-space coordinate transformation dates back to the pio-

neering work of (Littlejohn, 1983) and has the purpose of removing the gyro-angle

dependence from those parts of the Lagrangians (2.56a)-(2.56b) that do not de-

pend on the fluctuating potentials Φ1 and A1. For this reason, the gyrokinetic liter-

ature often describes the guiding-center phase-space coordinate transformation as

a transformation acting on a single-particle Lagrangian that involves only quantities

related to the background magnetic field B0 and does not feature any fluctuating

fields. These are said to be added at a later stage, after the guiding-center coordi-

nate transformation has been performed. We believe that this description is slightly

misleading, as it seems to suggest the idea that the single-particle Lagrangian is

modified by adding terms related to the fluctuating fields during the process of trans-

forming the phase-space coordinates. In fact, the fluctuating fields are present in

the single-particle Lagrangian since the beginning of the derivation (as it should be,

once we identify the physical system that we want to describe), but their gyro-angle

dependence is simply treated at a later stage, after the guiding-center coordinate
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transformation has been performed. Following (Possanner, 2018), we define the

guiding-center coordinate transformation as a polynomial transform of the form

x :“ĎX ` ε sρ1s ` ε
2
sρ2s ` ε

3
sρ3s ` ε

4
sρ4s , (2.57a)

p} :“ sp} ` ε sG
}

1s ` ε
2
sG
}

2s ` ε
3
sG
}

3s , (2.57b)

µ :“ sµ ` ε sGµ
1s ` ε

2
sGµ

2s ` ε
3
sGµ

3s , (2.57c)

θ :“ sθ ` ε sGΘ
1s ` ε

2
sGΘ

2s ` ε
3
sGΘ

3s , (2.57d)

where sρns, sG
}
ns, sGµ

ns and sGΘ
ns denote the generators of the coordinate transformation

for the respective particle species. The generators are functions of the guiding-

center coordinates sZ :“ pĎX, sp}, sµ, sθq and may additionally depend on time. The

guiding-center coordinates are the guiding-center position ĎX, the guiding-center

parallel momentum sp}, the guiding-center magnetic moment sµ and the guiding-

center angle variable sθ. The idea is then to substitute the coordinate transformation

(2.57) in the single-particle Lagrangians (2.56a)-(2.56b), by using the transformation

law of vector fields

.
x “

.
ĎX `

4
ÿ

n“1

εn
.
sρns “

.
ĎX `

4
ÿ

n“1

εn
ˆ

Bsρns
B sZ

¨
.
sZ `

Bsρns
Bt

˙

, (2.58)

to obtain the corresponding guiding-center Lagrangians. The work of (Possanner,

2018) showed that the gyro-angle dependence due to the term
?

2µB0 c0 can be in-

deed removed via polynomial transforms in maximal ordering. The resulting guiding-

center single-particle Lagrangians read

Li „

ˆ

sp}b0 `
A0

ε

˙

¨
.
ĎX ` ε sµ

.
sθ

´
“

sH0i ` ε sH1i ` ε
2
sH2i ` sOpε3

q
‰

`Opε4
q ,

(2.59a)

Le „

ˆ

?
ε sp}b0 ´

A0

ε

˙

¨
.
ĎX ´ ε2

sµ
.
sθ

´

”

sH0e `
?
ε sH 1

2
e ` ε

sH1e ` ε
3
2 sH 3

2
e `

sOpε2
q

ı

`Opε4
q .

(2.59b)
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The symbol “„” denotes the equivalence between Lagrangians, namely the fact that

two Lagrangians differ only by the total differential of some scalar function. More-

over, the symbol sOpεpq denotes corrections to the Hamiltonians of order Opεpq that

are independent of the guiding-center angle sθ. The ion and electron guiding-center

Hamiltonians in (2.59a)-(2.59b) read

sH0i :“
sp2
}

2
` sµB0 , sH0e :“

sp2
}

2
` sµB0 , (2.60a)

sH1i :“ Ψ1 ` δH1 , sH 1
2
e :“ p ¨A1 , (2.60b)

sH2i :“
1

2
|A1|

2
` δH2 , sH1e :“ ´Φ1 `

1

2
|A1|

2 , (2.60c)

sH 3
2
e :“ ´δH1 . (2.60d)

We remark the following comments about the guiding-center single-particle La-

grangians (2.59a)-(2.59b):

• the dynamic potentials in the Hamiltonians (2.60) are evaluated at the physical

particle position x{ε:

Φ1

´

t,
x

ε

¯

“ Φ1

ˆ

t,
ĎX

ε
` sρ1s ` ε sρ2s `Opε

2
q

˙

, (2.61a)

A1

´

t,
x

ε

¯

“ A1

ˆ

t,
ĎX

ε
` sρ1s ` ε sρ2s `Opε

2
q

˙

. (2.61b)

The gyro-angle dependence in the generators sρns occurring in the arguments

of the fluctuating potentials will be removed eventually by the phase-space

coordinate transformation from guiding-center to gyrocenter coordinates, as

discussed in detail in the next section;

• due to our assumption of maximal ordering, the guiding-center Hamiltonians

feature geometric terms related to the curvature of the background magnetic

field, in particular

δH1 :“ sµ

„

sp}
2
p∇ˆ b0q ¨ b0 ´ sp} p∇a0 ¨ c0q ¨ b0



, (2.62)

and a cumbersome term δH2, which we do not write explicitly. The two terms
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in (2.62) are usually referred to as Baños drift (Baños, 1967) and gyro-gauge

term, respectively. The curvature terms are less important for the electrons,

where δH1 appears at order Opε
3
2 q, because of the mass ratio between ions

and electrons of order Op
?
εq;

• for electrons, the magnetic perturbations A1 are Op
?
εq larger than the elec-

tric perturbations Φ1. This can be already foreseen in the normalized Vlasov-

Maxwell equations (2.46a)-(2.46c) and is due to the mass ratio between ions

and electrons. Moreover, it shows the importance of electron dynamics in

electromagnetic (rather than electrostatic) gyrokinetic simulations of fusion

plasmas;

• due to the error term sOpε2q in the electron Hamiltonian, the electron guiding-

center single-particle Lagrangian (2.59b) is less accurate than the ion guiding-

center single-particle Lagrangian (2.59a). This is due to the fact that the

guiding-center magnetic moment sµ has been computed with less precision

for electrons than for ions. We could easily improve the accuracy of sµ for elec-

trons, but, as we can see from (2.59b), the dynamic potentials Φ1 andA1 play

a more prominent role than any curvature terms. In the Hamiltonian, the term

p ¨ A1 of Ψ1 appears at order Op
?
εq and the term |A1|

2{2 appears at order

Opεq, whereas the first curvature terms appear at Opε
3
2 q. This is in contrast

to the ions, where the first curvature term δH1 appears already at order Opεq,

which is the same order as Ψ1 and one order lower than the quadratic term

|A1|
2{2. In order to achieve an equally accurate description for the electrons,

we should truncate the electron single-particle Lagrangian at order Opε5q: this

is beyond the scope of the work presented in this thesis, but does not repre-

sent a limitation of the method in general;

• the Jacobian determinants Js of the guiding-center coordinate transformation
sZ ÞÑ px,vq can be computed directly from the symplectic part of the guiding-

center single-particle Lagrangians (2.59a)-(2.59b):

Ji “ B0 ` ε sp} p∇ˆ b0q ¨ b0 , (2.63a)

Je “ B0 ´ ε
3
2
sp} p∇ˆ b0q ¨ b0 . (2.63b)
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Such Jacobian determinants are exact because the symplectic forms in (2.59a)-

(2.59b) remain the same at any order of the guiding-center expansion, as

only the guiding-center Hamiltonian changes with increased order of accu-

racy (see, for example, (Possanner, 2018) for a proof of this statement). The

Jacobian determinants (2.63a) confirm that geometric terms related to the

curvature of the background magnetic field appear at order Opεq for the ions

and at order Opε
3
2 q for the electrons, in accordance with the guiding-center

Hamiltonians (2.60).

2.3.3 Gyrocenter coordinates

The guiding-center single-particle Lagrangians (2.59a)-(2.59b) obtained from the

guiding-center coordinate transformation still carry a dependence on the guiding-

center angle sθ (the fast variable) in the arguments of the dynamic potentials (2.61).

Consequently, the guiding-center magnetic moment sµ is not a constant of the mo-

tion and the dynamics of slow and fast variables are still coupled in the guiding-

center phase space. The purpose of the gyrocenter phase-space coordinate trans-

formation is to remove this residual dependence on the angle variable sθ from the

Lagrangians, in particular from the Hamiltonians given in (2.60). As for the guiding-

center coordinate transformation (2.57), we define the gyrocenter coordinate trans-

formation for the ions as a polynomial transform of the form

ĎX :“X ` ε2ρ2i ` ε
3ρ3i ` ε

4ρ4i , (2.64a)

sp} :“ P} ` εG
}

1i ` ε
2G

}

2i ` ε
3G

}

3i , (2.64b)

sµ :“ pµ ` εGµ
1i ` ε

2Gµ
2i ` ε

3Gµ
3i , (2.64c)

sθ :“ Θ ` εGΘ
1i ` ε

2GΘ
2i ` ε

3GΘ
3i , (2.64d)
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and the gyrocenter coordinate transformation for the electrons as a polynomial trans-

form of the form

ĎX :“X ` ε2ρ2e ` ε
5
2ρ 5

2
e ` ε

3ρ3e , (2.65a)

sp} :“ P} ` εG
}

1e ` ε2G
}

2e , (2.65b)

sµ :“ pµ `
?
εGµ

1
2
e
` εGµ

1e , (2.65c)

sθ :“ Θ `
?
εGΘ

1
2
e
` εGΘ

1e . (2.65d)

Here,Z :“ pX, P}, pµ,Θq denote preliminary gyrocenter coordinates, and ρns, G
}
ns, Gµ

ns

and GΘ
ns (with n integer or half-integer) denote the generators of the coordinate

transformation for the respective particle species. Our preliminary gyrocenter coor-

dinates are the gyrocenter position X, the gyrocenter parallel momentum P}, the

preliminary gyrocenter magnetic moment pµ and the gyrocenter angle variable (also

called simply gyro-angle) Θ. The polynomial transform for the electrons is defined by

polynomials in powers of
?
ε because of the mass ratio between ions and electrons.

Moreover, it consists of fewer terms than the ion coordinate transformation because

of the lower accuracy of the electron guiding-center single-particle Lagrangian. We

also set ρ1s “ 0 a priori: it is, in principle, possible to keep these first-order gen-

erators in the calculations and then find out that they can be set to zero without

loss of generality. We remark the conceptual simplicity of the polynomial transform

Z ÞÑ sZ defined in (2.64)-(2.65) compared to Lie transforms (Brizard and Hahm,

2007): for each coordinate, the transformation is a polynomial of finite degree in ε

(the degree being adapted to the desired accuracy of the transformation) and it is

moreover linear and algebraic in the generators. By substituting (2.64)-(2.65) in the

guiding-center single-particle Lagrangians (2.59a)-(2.59b), the gyrocenter genera-

tors can be chosen in order to eliminate the residual dependence on the gyro-angle

Θ. The method is analogous to the guiding-center transformation and it is discussed

in detail in (Possanner, 2018) for the long-wavelength regime, that is, the case of dy-

namic potentials with spatial variations on the macroscopic length scale px. In this

thesis we apply the same methodology to the short-wavelength (strongly-varying)

regime expressed in (2.61).
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The exact same ideas and computations of the guiding-center transformation can

be applied also for the gyrocenter transformation. In particular, we make use of the

equivalence of Lagrangians under the addition of the total differential
.
S of arbitrary

scalar functions Spt,Zq and write

Li „ Li ` ε
2
.
S2i ` ε

3
.
S3i , (2.66a)

Le „ Le ` ε
5
2

.
S 5

2
e ` ε

3
.
S3e , (2.66b)

where the total differential
.
Sns reads

.
Sns “

1

ε
∇KSns ¨

.
X `∇‖Sns b0 ¨

.
X `

BSns
BP}

.
P} `

BSns
Bpµ

.
pµ`

BSns
BΘ

.
Θ`

BSns
Bt

. (2.67)

Here, ∇‖ :“ b0 ¨∇ and ∇K :“ b0ˆ∇ˆ b0 denote the gradients with respect to the

direction parallel and perpendicular to the background magnetic field, respectively.

We remark that in the derivation of the gyrokinetic Lagrangians, the scalar functions

Sns turn out to be functions of the fluctuating potentials Φ1 and A1 and thus have

strong variations in the perpendicular directions, which has to be expressed in (2.67)

by means of the factor 1{ε in front of ∇K.

Gyrokinetic ion Lagrangian

We summarize our results for ions in the following three propositions. The species

index is omitted for more readability.

Proposition 1. The ion guiding-center single-particle Lagrangian (2.59a), expressed

in the preliminary gyrocenter coordinates pX, P}, pµ,Θq via the polynomial trans-

form (2.64), is equivalent to

Li „

ˆ

P}b0 `
A0

ε

˙

¨
.
X ´H0 `

3
ÿ

n“1

εnLn `Opε
4
q , (2.68)

where H0 :“ P 2
}
{2 ` pµB0 is the lowest-order Hamiltonian and the Lagrangians Ln,
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for n “ 1, 2, 3, read

Ln :“ γX
n ¨
.
X ` γ}n

.
P} ` γ

µ
n

.
pµ` γΘ

n

.
Θ´Hn . (2.69)

The components γX
n , for n “ 1, 2, 3, are given by

γX
1 :“ G

}

1b0 ´ ρ2 ˆB0 `∇KS2 , (2.70a)

γX
2 :“ G

}

2b0 ´ ρ3 ˆB0 `∇KS3 `∇‖S2 b0 ` F K ` δγ
X
2 , (2.70b)

γX
3 :“ G

}

3b0 ´ ρ4 ˆB0 `∇‖S3 b0 ` F}b0 ` δγ
X
3 , (2.70c)

where the terms F K and F} are defined as

F K :“ G
}

1∇Kρ2 ¨ b0 ´
1

2
pρ2 ˆB0q ¨∇Kρ2 `G

µ
1∇KG

Θ
1 , (2.71a)

F} :“ G
}

1∇‖ρ2 ¨ b0 ´
1

2
pρ2 ˆB0q ¨∇‖ρ2 `G

µ
1∇‖G

Θ
1 , (2.71b)

and the terms δγX
n , for n “ 2, 3, contain terms related to the curvature of the back-

ground magnetic field and are given by

δγX
2 :“´ P} ρ2 ˆ p∇ˆ b0q , (2.72a)

δγX
3 :“´ P} ρ3 ˆ p∇ˆ b0q ` P} pρ3 ¨∇qb0

`G
}

1pρ2 ¨∇qb0 `
1

2
pρ2 ¨∇B0q ˆ ρ2 .

(2.72b)

The components γ}n, for n “ 1, 2, 3, are given by

γ
}

1 :“ 0 , (2.73a)

γ
}

2 :“ ´b0 ¨ ρ2 `
BS2

BP}
, (2.73b)

γ
}

3 :“ ´b0 ¨ ρ3 `
BS3

BP}
`

ˆ

G
}

1b0 ´
1

2
ρ2 ˆB0

˙

¨
Bρ2

BP}
`Gµ

1

BGΘ
1

BP}
. (2.73c)

37



The components γµn, for n “ 1, 2, 3, are given by

γµ1 :“ 0 , (2.74a)

γµ2 :“ ´GΘ
1 `

BS2

Bpµ
, (2.74b)

γµ3 :“ ´GΘ
2 `

BS3

Bpµ
`

ˆ

G
}

1b0 ´
1

2
ρ2 ˆB0

˙

¨
Bρ2

Bpµ
`Gµ

1

BGΘ
1

Bpµ
. (2.74c)

The components γΘ
n , for n “ 1, 2, 3, are given by

γΘ
1 :“ pµ , (2.75a)

γΘ
2 :“ Gµ

1 `
BS2

BΘ
, (2.75b)

γΘ
3 :“ Gµ

2 `
BS3

BΘ
`

ˆ

G
}

1b0 ´
1

2
ρ2 ˆB0

˙

¨
Bρ2

BΘ
`Gµ

1

BGΘ
1

BΘ
. (2.75c)

Finally, the Hamiltonians Hn, for n “ 1, 2, 3, are given by

H1 :“Gµ
1B0 ` P}G

}

1 `Ψ1 ` δH1 , (2.76a)

H2 :“Gµ
2B0 ` pµρ2 ¨∇B0 ` P}G

}

2 `
1

2
pG

}

1q
2
`

„

psρ2 ` ρ2q ¨∇

` p sG
}

1 `G
}

1q
d

dP}
` p sGµ

1 `G
µ
1q

d

dpµ
` p sGΘ

1 `G
Θ
1 q

d

dΘ



Ψ1

`

ˆ

G
}

1

d

dP}
`Gµ

1

d

dpµ

˙

δH1 ` δH2 `
1

2
|A1|

2
`
BS2

Bt
,

(2.76b)

H3 :“Gµ
3B0 ` δH3 , (2.76c)

where the generalized potential reads

Ψ1

ˆ

t,
X

ε
` sρ1pZq, P}, pµ,Θ

˙

“ Φ1

ˆ

t,
X

ε
` sρ1pZq

˙

´ P}A1}

ˆ

t,
X

ε
` sρ1pZq

˙

´
a

2pµB0pXq c0pX,Θq ¨A1K

ˆ

t,
X

ε
` sρ1pZq

˙

,

(2.77)
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with A1} :“ A1 ¨ b0 and A1K :“ b0 ˆA1 ˆ b0. Moreover, δH1 is the curvature term

introduced in (2.62), we do not write the explicit expression of δH2, and the explicit

expression of δH3 is not relevant for our order of accuracy.

Proof 1. The result is obtained by substituting the gyrocenter coordinate transforma-

tion (2.64) into the guiding-center single-particle Lagrangian (2.59a) and computing

its Taylor expansion in powers of ε up to order ε3 (starting from 1{ε). We first denote

by Γ the symplectic part of the guiding-center Lagrangian (2.59a):

Γ :“

ˆ

sp}b0 `
A0

ε

˙

¨
.
ĎX ` ε sµ

.
sθ . (2.78)

The coefficients Γn, for n “ ´1, 0, 1, 2, 3, of the Taylor expansion of Γ read

Γ´1 :“ A0 ¨
.
X , (2.79a)

Γ0 :“ P}b0 ¨
.
X , (2.79b)

Γ1 :“G
}

1b0 ¨
.
X ` pρ2 ¨∇qA0 ¨

.
X `A0 ¨

.
ρ2 ` pµ

.
Θ , (2.79c)

Γ2 :“
”

G
}

2 ` P}pρ2 ¨∇q
ı

b0 ¨
.
X ` pρ3 ¨∇qA0 ¨

.
X `A0 ¨

.
ρ3

` P}b0 ¨
.
ρ2 `G

µ
1

.
Θ` pµ

.
GΘ

1 ,

(2.79d)

Γ3 :“
”

G
}

3 ` P}pρ3 ¨∇q `G
}

1pρ2 ¨∇q
ı

b0 ¨
.
X ` pρ4 ¨∇qA0 ¨

.
X

`A0 ¨
.
ρ4 `

1

2
pρ2 ¨∇q2A0 ¨

.
X `

”

G
}

1b0 ` pρ2 ¨∇qA0

ı

¨
.
ρ2

` P}b0 ¨
.
ρ3 `G

µ
2

.
Θ` pµ

.
GΘ

2 `G
µ
1

.
GΘ

1 .

(2.79e)

The results for the symplectic part follow by using the equivalence relations (for
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generic generators ρ and GΘ)

pρ ¨∇qA0 ¨
.
X `A0 ¨

.
ρ „ ´pρˆB0q ¨

.
X , (2.80a)

P}b0 ¨
.
ρ „ ´P}p∇b0 ¨ ρq ¨

.
X ´ pb0 ¨ ρq

.
P} , (2.80b)

pρ ¨∇qA0 ¨
.
ρ`

1

2
pρ ¨∇q2A0 ¨

.
X „ ´

1

2
pρˆB0q ¨

.
ρ

`
1

2
rpρ ¨∇B0q ˆ ρs ¨

.
X ,

(2.80c)

pµ
.
GΘ

„ ´GΘ
.
pµ , (2.80d)

together with the vector identity pρ¨∇qb0´∇b0¨ρ “ ´ρˆp∇ˆb0q, and by adding the

terms corresponding to the total differentials
.
S2 and

.
S3. For the Hamiltonian part, we

note that the fluctuating potential Ψ1 must be first transformed to the guiding-center

coordinates sZ and then to the preliminary gyrocenter coordinates Z. We first recall

that in physical coordinates we have

Ψ1

´

t,
x

ε
, p},µ, θ

¯

“ Φ1

´

t,
x

ε

¯

´ p}A1}

´

t,
x

ε

¯

´
a

2µB0pxq c0px, θq ¨A1K

´

t,
x

ε

¯

.

(2.81)

We shall first substitute the guiding-center coordinate transformation (2.57). Us-

ing that Φ1 and A1 in (2.81) are normalized functions with size and variations of

order Op1q in the limit ε Ñ 0, we can safely expand in a Taylor series around

pĎX{ε` sρ1, sp}, sµ,
sθq and obtain

Ψ1

´

t,
x

ε
, p},µ, θ

¯

“Ψ1

ˆ

t,
ĎX

ε
` sρ1psµ,

sθq, sp}, sµ, sθ

˙

` ε

ˆ

sρ2 ¨∇` sG
}

1

d

dsp}
` sGµ

1

d

dsµ
` sGΘ

1

d

dsθ

˙

Ψ1 `Opε
2
q .

(2.82)

The same reasoning applies when we substitute the gyrocenter coordinate transfor-
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mation (2.64) into (2.82), yielding

Ψ1

´

t,
x

ε
, p},µ, θ

¯

“Ψ1

ˆ

t,
X

ε
` sρ1ppµ,Θq, P}, pµ,Θ

˙

` ε

„

psρ2 ` ρ2q ¨∇` p sG
}

1 `G
}

1q
d

dP}
` p sGµ

1 `G
µ
1q

d

dpµ

` p sGΘ
1 `G

Θ
1 q

d

dΘ



Ψ1 `Opε
2
q .

(2.83)

This explains the second line of the second-order Hamiltonian H2 in (2.76) as well

as the expression for Ψ1 given in (2.77).

Proposition 2. In the ion single-particle Lagrangian (2.68) the generators of the

polynomial transform can be chosen such that

Li „

ˆ

P}b0 `
A0

ε

˙

¨
.
X ` ε

`

pµ` ε
@

γΘ
2

D

` ε2
@

γΘ
3

D˘ .
Θ´H0 `Opε

4
q , (2.84)

where, for a given function gpΘq, xgy denotes its gyro-average and is defined as

xgy :“
1

2π

ż 2π

0

dΘ gpΘq . (2.85)

Proof 2. The components γX
n , for n “ 1, 2, 3, in (2.70) vanish if and only if we set

G
}

1 “ 0 , (2.86a)

G
}

2 “ ´∇‖S2 ´ δγ
X
2} , (2.86b)

G
}

3 “ ´∇‖S3 ´ F} ´ δγ
X
3} , (2.86c)
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as well as

ρ2K “
b0

B0

ˆ∇KS2 , (2.87a)

ρ3K “
b0

B0

ˆ
`

∇KS3 ` F K ` δγ
X
2K

˘

, (2.87b)

ρ4K “
b0

B0

ˆ δγX
3K . (2.87c)

The components γ}n, for n “ 2, 3, in (2.73) vanish if and only if we set

b0 ¨ ρ2 “
BS2

BP}
, (2.88a)

b0 ¨ ρ3 “
BS3

BP}
`

ˆ

G
}

1b0 ´
1

2
ρ2 ˆB0

˙

¨
Bρ2

BP}
`Gµ

1

BGΘ
1

BP}
. (2.88b)

The components γµn, for n “ 2, 3, in (2.74) vanish if and only if we set

GΘ
1 “

BS2

Bpµ
, (2.89a)

GΘ
2 “

BS3

Bpµ
`

ˆ

G
}

1b0 ´
1

2
ρ2 ˆB0

˙

¨
Bρ2

Bpµ
`Gµ

1

BGΘ
1

Bpµ
. (2.89b)

The Hamiltonians Hn, for n “ 1, 2, 3, in (2.76) vanish if and only if we set

Gµ
1 “´

1

B0

´

P}G
}

1 `Ψ1 ` δH1

¯

, (2.90a)

Gµ
2 “´

1

B0

"

pµρ2 ¨∇B0 ` P}G
}

2 `
1

2
pG

}

1q
2
`

„

psρ2 ` ρ2q ¨∇

`p sG
}

1 `G
}

1q
d

dP}
` p sGµ

1 `G
µ
1q

d

dpµ
` p sGΘ

1 `G
Θ
1 q

d

dΘ



Ψ1

`

ˆ

G
}

1

d

dP}
`Gµ

1

d

dpµ

˙

δH1 ` δH2 `
1

2
|A1|

2
`
BS2

Bt

*

,

(2.90b)

Gµ
3 “´

δH3

B0

. (2.90c)

The only degrees of freedom left are the arbitrary scalar functions S2 and S3. Since
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these functions must be 2π-periodic in the gyro-angle Θ, we cannot eliminate γΘ
2

and γΘ
3 , given by (2.75), entirely from the Lagrangian. The reason is that the equa-

tion BSn{BΘ “ g, for a given function g, has 2π-periodic solutions Sn if and only if

xgy “ 0, where xgy denotes the gyro-average of g defined in (2.85). Denoting by rg

the fluctuating part of g (with zero gyro-average),

rg :“ g ´ xgy , (2.91)

the dependence on the gyro-angle Θ can be removed from (2.75) by setting, for

n “ 2, 3,

γΘ
n “

@

γΘ
n

D

, (2.92)

or, equivalently, by requiring that Sn, for n “ 2, 3, satisfy the differential equations

BS2

BΘ
“ ´ĂGµ

1 , (2.93a)

BS3

BΘ
“ ´ĂGµ

2 ´
Č

G
}

1b0 ¨
Bρ2

BΘ
`

Č1

2
ρ2 ˆB0 ¨

Bρ2

BΘ
´

Č

Gµ
1

BGΘ
1

BΘ
. (2.93b)

The solutions of (2.93) read (with arbitrary lower bound Θ0 of integration)

S2pΘq “ S2pΘ0q ´

ż Θ

Θ0

dΘ1
ĂGµ

1 , (2.94a)

S3pΘq “ S3pΘ0q

´

ż Θ

Θ0

dΘ1

˜

ĂGµ
2 `

Č

G
}

1b0 ¨
Bρ2

BΘ
´

Č1

2
ρ2 ˆB0 ¨

Bρ2

BΘ
`

Č

Gµ
1

BGΘ
1

BΘ

¸

.
(2.94b)

Proposition 3. The generalized gyrocenter magnetic moment

µ :“ pµ` ε
@

γΘ
2

D

` ε2
@

γΘ
3

D

(2.95)

is a constant of the motion, accurate up to order Opε2q, with respect to the dynamics

induced by the preliminary gyrocenter single-particle Lagrangian (2.84). Moreover,

there is a one-to-one correspondence µ ÞÑ pµ, which implies that the gyrocenter
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Hamiltonian H is given by

H :“
P 2
}

2
` pµpµqB0 . (2.96)

In other words, the gyrocenter Hamiltonian is obtained from H0 by inverting the

transformation pµ ÞÑ µ defined in (2.95). By expressing (2.84) in terms of the new

gyrocenter coordinates Z :“ pX, P}, µ,Θq, we obtain the ion gyrocenter single-

particle Lagrangian

Li „
ˆ

P}b0 `
A0

ε

˙

¨
.
X ` εµ

.
Θ´H ` sOpε3

q `Opε4
q , (2.97)

where the gyrocenter Hamiltonian is defined as H :“ H0 ` εH1 ` ε2H2, with Hn,

for n “ 0, 1, 2, given by

H0 :“
P 2
}

2
` µB0 , (2.98a)

H1 :“ xΨ1y ` δH1 , (2.98b)

H2 :“
1

2

@

|A1|
2
D

´
1

2B0

d

dµ

A

ĂΨ1

2
E

´
1

2B2
0

B

´

b0 ˆ∇KĂΨ1

¯

¨∇K

ż Θ

dΘ1
ĂΨ1

F

´
1

B0

B

∇‖ĂΨ1

ż Θ

dΘ1
ĂA1}

F

` δG2 ` δH2 .

(2.98c)

Here, we introduced a new term δG2 related to the curvature of the background

magnetic field, besides δH1 and δH2:

δG2 :“ δG2 ´
1

2

C

ĂΨ1

B0

ˆ

b0

B0

ˆ∇KB0

˙

¨∇K

ż Θ

dΘ1
ĂΨ1

B0

G

`
1

2

Bˆ

b0

B3
0

ˆ∇K
ĂΨ1

˙

¨∇KB0

ż Θ

dΘ1
ĂΨ1

F

,

(2.99)

with δG2 defined as

δG2 :“

Bˆ

sρ2 ¨∇` sG
}

1

d

dP}
` sGµ

1

d

dpµ
` sGΘ

1

d

dΘ

˙

Ψ1

F

. (2.100)
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The term δG2 is linear in the fluctuating potential Ψ1 and couples to higher-order

generators of the guiding-center transformation (Parra and Calvo, 2011). Moreover,

the symbol sOpε3q in (2.97) denotes terms of order Opε3q that are independent of the

gyro-angle Θ.

Proof 3. Computing the Euler-Lagrange equation

BLi
BΘ

“
d

dt

BLi

B
.
Θ
, (2.101)

for the preliminary gyrocenter single-particle Lagrangian (2.84), and noting that
sOpε3q is independent of Θ, we obtain

d

dt

`

pµ` ε
@

γΘ
2

D

` ε2
@

γΘ
3

D˘

“ Opε3
q . (2.102)

Hence, the gyrocenter magnetic moment µ defined in (2.95) is conserved with

second-order accuracy in ε. Let us now compute the terms
@

γΘ
2

D

and
@

γΘ
3

D

that

define the transformation pµ ÞÑ µ in (2.95). From (2.75) and (2.90) we have

@

γΘ
2

D

“ xGµ
1y “ ´

xΨ1y

B0

´
δH1

B0

, (2.103)

where we used the result G}1 “ 0 from (2.86) and the fact that the geometric term

δH1 does not depend on the gyro-angle. Moreover, from (2.75) we have

@

γΘ
3

D

“ xGµ
2y ´

1

2

B

Bρ2

BΘ
¨ pρ2 ˆB0q

F

`

B

BGΘ
1

BΘ
Gµ

1

F

. (2.104)

The gyro-average of Gµ
2 can be computed from (2.90), obtaining

xGµ
2y “ ´

1

B0

B

P}G
}

2 `

ˆ

ρ2 ¨∇`Gµ
1

d

dpµ
`GΘ

1

d

dΘ

˙

Ψ1 `
1

2
|A1|

2

F

´
xGµ

1y

B0

d

dpµ
δH1 ´

δH2

B0

´
δG2

B0

,

(2.105)

where we used xρ2y “ 0. In order to compute the second term on the right-hand

side of (2.104), the generator ρ2 is determined by the function S2 via (2.87) and
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(2.88). Omitting the arbitrary lower bound of integration Θ0 in (2.94), we have

S2 “ ´

ż Θ

dΘ1
ĂGµ

1 “

ż Θ

dΘ1
ĂΨ1

B0

, (2.106)

and, recalling the functional form of Ψ1 in (2.81), we obtain

BS2

BP}
“ ´

ż Θ

dΘ1
ĂA1}

B0

. (2.107)

Therefore, the generator ρ2 reads

ρ2 “
b0

B0

ˆ∇K

ż Θ

dΘ1
ĂΨ1

B0

´ b0

ż Θ

dΘ1
ĂA1}

B0

, (2.108)

which leads to

´
1

2

B

Bρ2

BΘ
¨ pρ2 ˆB0q

F

“ ´
1

2

C˜

b0

B0

ˆ∇K

ĂΨ1

B0

¸

¨∇K

ż Θ

dΘ1
ĂΨ1

B0

G

. (2.109)

In order to compute the last term in (2.104), we get from (2.89)

GΘ
1 “

BS2

Bpµ
“

ż Θ

dΘ1 d

dpµ

ĂΨ1

B0

, (2.110)

yielding
B

BGΘ
1

BΘ
Gµ

1

F

“ ´
1

2B2
0

d

dpµ

A

ĂΨ1

2
E

. (2.111)

In order to get an explicit expression for
@

γΘ
3

D

, we need to compute the right-hand

side of (2.105) term by term. Using (2.86) and the fact that xS2y “ 0 and
@

δγX2
D

“ 0
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from (2.72), we find
A

G
}

2

E

“ 0. The second to fourth terms in (2.105) read

´
1

B0

xρ2 ¨∇Ψ1y “

C

ˆ

b0

B2
0

ˆ∇K
ĂΨ1

˙

¨∇K

ż Θ

dΘ1
ĂΨ1

B0

G

`
1

B0

C

∇‖ĂΨ1

ż Θ

dΘ1
ĂA1}

B0

G

,

(2.112a)

´
1

B0

B

Gµ
1

d

dpµ
Ψ1

F

“
1

2B2
0

d

dpµ

@

Ψ2
1

D

`
δH1

B2
0

d

dpµ
xΨ1y , (2.112b)

´
1

B0

B

GΘ
1

d

dΘ
Ψ1

F

“
1

2B2
0

d

dpµ

A

ĂΨ1

2
E

, (2.112c)

where we integrated by parts in order to obtain the last equality. Substitution of

(2.109), (2.111)-(2.112) into (2.104) yields

@

γΘ
3

D

“ ´
1

2B0

@

|A1|
2
D

`
1

2B2
0

d

dpµ

@

Ψ2
1

D

`
1

2

Bˆ

b0

B3
0

ˆ∇K
ĂΨ1

˙

¨∇K

ż Θ

dΘ1
ĂΨ1

F

`
1

B2
0

B

∇‖ĂΨ1

ż Θ

dΘ1
ĂA1}

F

´
δG2

B0

`
1

B2
0

d

dpµ

ˆ

xΨ1y δH1 `
1

2
δH2

1

˙

´
δH2

B0

.

(2.113)

The generalized magnetic moment µ can now be computed explicitly as a function

of the fluctuating potentials from (2.103) and (2.113). It remains to identify the gy-

rocenter Hamiltonian. For this purpose, we need to invert (2.95) and substitute the

result into H0. From

µ “ pµ` ε
@

γΘ
2

D

ppµq ` ε2
@

γΘ
3

D

ppµq , (2.114)
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we obtain

pµ “ µ´ ε
@

γΘ
2

D `

µ´ ε
@

γΘ
2

D

pµq
˘

´ ε2
@

γΘ
3

D

pµq ` sOpε3
q

“ µ´ ε
@

γΘ
2

D

pµq ` ε2
@

γΘ
2

D

pµq
d

dµ

@

γΘ
2

D

pµq ´ ε2
@

γΘ
3

D

pµq ` sOpε3
q .

(2.115)

At order Opε2q we compute the difference

@

γΘ
3

D

´
1

2

d

dµ

@

γΘ
2

D2
“
@

γΘ
3

D

´
1

2B2
0

d

dµ
pxΨ1y ` δH1q

2 , (2.116)

and obtain, using the explicit formulas (2.103) and (2.113) for
@

γΘ
2

D

and
@

γΘ
3

D

,

pµ “ µ`
ε

B0

pxΨ1y ` δH1q `
ε2

B0

˜

1

2

@

|A1|
2
D

´
1

2B0

d

dpµ

A

ĂΨ1

2
E

´
1

2B2
0

B

´

b0 ˆ∇K
ĂΨ1

¯

¨∇K

ż Θ

dΘ1
ĂΨ1

F

´
1

B0

B

∇‖ĂΨ1

ż Θ

dΘ1
ĂA1}

F

` δG2 ` δH2

¸

` sOpε3
q ,

(2.117)

where we used the fact that xgy2 ´ xg2y “ ´ xrg 2y, for a given function gpΘq. Substi-

tuting this into the Hamiltonian H0 completes the proof.

Gyrokinetic electron Lagrangian

We summarize our results for electrons in the following three propositions. The

species index is again omitted for more readability.

Proposition 1. The electron guiding-center single-particle Lagrangian (2.59b), ex-

pressed in the preliminary gyrocenter coordinates pX, P}, pµ,Θq via the polynomial

transform (2.65), is equivalent to

Le „

ˆ

?
εP}b0 ´

A0

ε

˙

¨
.
X ´H0 ´

?
εH 1

2
`

6
ÿ

n“2

ε
n
2Ln

2
`Opε

7
2 q , (2.118)
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whereH0 :“ P 2
}
{2`pµB0 is the lowest-order Hamiltonian, the HamiltonianH 1

2
reads

H 1
2

:“ Gµ
1
2

B0 ` P}A1} `
a

2pµB0 c0 ¨A1K , (2.119)

and the Lagrangians Ln
2
, for n “ 2, . . . , 6, read

Ln
2

:“ γX
n
2
¨
.
X ` γ

}
n
2

.
P} ` γ

µ
n
2

.
pµ` γΘ

n
2

.
Θ´Hn

2
. (2.120)

The components γX
n
2

, for n “ 2, . . . , 6, are given by

γX
1 :“ ρ2 ˆB0 , (2.121a)

γX
3
2

:“ G
}

1b0 ` ρ 5
2
ˆB0 `∇KS 5

2
, (2.121b)

γX
2 :“ ρ3 ˆB0 `∇KS3 ` F 2K , (2.121c)

γX
5
2

:“ G2}b0 `∇‖S 5
2
b0 ` F 5

2
K ` δγ

X
5
2
, (2.121d)

γX
3 :“ ∇‖S3 b0 ` F 3K ` F3} b0 ` δγ

X
3 , (2.121e)

where the terms F n
2
K, for n “ 4, 5, 6, and F3} are defined as

F 2K :“
1

2
pρ2 ˆB0q ¨∇Kρ2 ´G

µ
1
2

∇KG
Θ
1
2
, (2.122a)

F 5
2
K :“ G

}

1∇Kρ2 ¨ b0 ´G
µ
1
2

∇KG
Θ
1 ´G

µ
1∇KG

Θ
1
2

´ pρ2 ¨∇qA0 ¨∇Kρ 5
2
´ pρ 5

2
¨∇qA0 ¨∇Kρ2 ,

(2.122b)

F 3K :“ G
}

1∇Kρ 5
2
¨ b0 `

1

2
pρ 5

2
ˆB0q ¨∇Kρ 5

2
´Gµ

1∇KG
Θ
1

´ pρ2 ¨∇qA0 ¨∇Kρ3 ´ pρ3 ¨∇qA0 ¨∇Kρ2 ,
(2.122c)

F3} :“
1

2
pρ2 ˆB0q ¨∇‖ρ2 ´G

µ
1
2

∇‖G
Θ
1
2
, (2.122d)

and the terms δγX
n
2

, for n “ 5, 6, contain terms related to the curvature of the back-
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ground magnetic field and are given by

δγX
5
2

:“ ´P} ρ2 ˆ p∇ˆ b0q , (2.123a)

δγX
3 :“ ´P} ρ 5

2
ˆ p∇ˆ b0q ´

1

2
pρ2 ¨∇B0q ˆ ρ2 . (2.123b)

The components γ}n
2
, for n “ 2, . . . , 6, are given by

γ
}

1 :“ 0 , (2.124a)

γ
}
3
2

:“ 0 , (2.124b)

γ
}

2 :“ 0 , (2.124c)

γ
}
5
2

:“ ´b0 ¨ ρ2 `
BS 5

2

BP}
, (2.124d)

γ
}

3 :“ ´b0 ¨ ρ 5
2
`
BS3

BP}
`

1

2
pρ2 ˆB0q ¨

Bρ2

BP}
´Gµ

1
2

BGΘ
1
2

BP}
. (2.124e)

The components γµn
2
, for n “ 2, . . . , 6, are given by

γµ1 :“ 0 , (2.125a)

γµ3
2

:“ 0 , (2.125b)

γµ2 :“ 0 , (2.125c)

γµ5
2

:“ GΘ
1
2
`
BS 5

2

Bpµ
, (2.125d)

γµ3 :“ GΘ
1 `

BS3

Bpµ
`

1

2
pρ2 ˆB0q ¨

Bρ2

Bpµ
´Gµ

1
2

BGΘ
1
2

Bpµ
. (2.125e)
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The components γΘ
n
2
, for n “ 2, . . . , 6, are given by

γΘ
1 :“ 0 , (2.126a)

γΘ
3
2

:“ 0 , (2.126b)

γΘ
2 :“ ´pµ , (2.126c)

γΘ
5
2

:“ ´Gµ
1
2

`
BS 5

2

BΘ
, (2.126d)

γΘ
3 :“ ´Gµ

1 `
BS3

BΘ
`

1

2
pρ2 ˆB0q ¨

Bρ2

BΘ
´Gµ

1
2

BGΘ
1
2

BΘ
. (2.126e)

Finally, the Hamiltonian H1 is given by

H1 :“Gµ
1B0 ` P}G

}

1 ´ Φ1 `
1

2
|A1|

2

`

d

B0

2pµ
Gµ

1
2

c0 ¨A1K ´
a

2pµB0G
Θ
1
2
a0 ¨A1K

´

d

2pµ

B0

a0 ¨∇A1 ¨

´

P}b0 `
a

2pµB0c0

¯

`Op
?
εq ,

(2.127)

whereA1K :“ b0ˆA1ˆ b0, as before, and the fluctuating potentials Φ1 andA1 are

evaluated at the position X{ε. We remark that the higher-order Hamiltonians H2

and H3 are not relevant for our order of accuracy.

Proof 1. The result is obtained by substituting the gyrocenter coordinate transforma-

tion (2.65) into the guiding-center single-particle Lagrangian (2.59b) and computing

its Taylor expansion in powers of
?
ε up to order ε3 (starting from 1{ε). We denote

again by Γ the symplectic part of the guiding-center Lagrangian (2.59b),

Γ :“

ˆ

?
ε sp}b0 ´

A0

ε

˙

¨
.
ĎX ´ ε2

sµ
.
sθ . (2.128)
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The coefficients Γn
2
, for n “ ´2, . . . , 6, of the Taylor expansion of Γ read

Γ´1 :“ ´A0 ¨
.
X , (2.129a)

Γ´ 1
2

:“ 0 , (2.129b)

Γ0 :“ 0 , (2.129c)

Γ 1
2

:“ P}b0 ¨
.
X , (2.129d)

Γ1 :“ ´pρ2 ¨∇qA0 ¨
.
X ´A0 ¨

.
ρ2 , (2.129e)

Γ 3
2

:“ G
}

1b0 ¨
.
X ´ pρ 5

2
¨∇qA0 ¨

.
X ´A0 ¨

.
ρ 5

2
, (2.129f)

Γ2 :“ ´pρ3 ¨∇qA0 ¨
.
X ´A0 ¨

.
ρ3 ´ pµ

.
Θ , (2.129g)

Γ 5
2

:“
´

G
}

2 ` P}pρ2 ¨∇q
¯

b0 ¨
.
X ` P}b0 ¨

.
ρ2 ´G

µ
1
2

.
Θ´ pµ

.
GΘ

1
2
, (2.129h)

Γ3 :“ P}pρ 5
2
¨∇qb0 ¨

.
X ´

1

2
pρ2 ¨∇q2A0 ¨

.
X ´ pρ2 ¨∇qA0 ¨

.
ρ2

` P}b0 ¨
.
ρ 5

2
´Gµ

1

.
Θ´ pµ

.
GΘ

1 ´G
µ
1
2

.
GΘ

1
2
.

(2.129i)

The results for the symplectic part follow by using the same equivalence relations

used for ions and by adding the terms corresponding to the total differentials
.
S 5

2
and.

S3. For the Hamiltonian part, we note that, because of the guiding-center generator

sρ1e “ ´
?
ε

c

2sµ

B0

a0 , (2.130)

the fluctuating potentials Φ1 andA1 can be expanded in a Taylor series aroundX{ε,

yielding

Φ1

´

t,
x

ε

¯

“ Φ1

ˆ

t,
ĎX

ε
´
?
ε

c

2sµ

B0

a0pĎX, sθq `Opεq

˙

“ Φ1

ˆ

t,
X

ε

˙

´
?
ε

d

2pµ

B0

a0pX,Θq ¨∇Φ1

ˆ

t,
X

ε

˙

`Opεq ,

(2.131)
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and the same for A1. This explains the particular form of the Hamiltonian (2.127).

Proposition 2. In the electron single-particle Lagrangian (2.118) the generators of

the polynomial transform can be chosen such that

Le „

ˆ

?
εP}b0 ´

A0

ε

˙

¨
.
X ` ε2

`@

γΘ
2

D

` ε
@

γΘ
3

D˘ .
Θ´H0 `Opε

7
2 q , (2.132)

where, for a given function gpΘq, xgy denotes its gyro-average as defined in (2.85).

Proof 2. The components γX
n
2

, for n “ 2, . . . , 6, in (2.121) vanish if and only if we

set

G
}

1 “ 0 , (2.133a)

G
}

2 “ ´∇‖S 5
2
´ δγX5

2
}
´
?
ε
`

∇‖S3 ` F3} ` δγ
X
3}

˘

, (2.133b)

as well as

ρ2K “ 0 , (2.134a)

ρ 5
2
K “ ´

b0

B0

ˆ∇KS 5
2
, (2.134b)

ρ3K “ ´
b0

B0

ˆ

„

∇KS3 ` F 2K

`
?
ε
´

F 5
2
K ` δγ

X
5
2
K

¯

` ε
`

F 3K ` δγ
X
3K

˘



.

(2.134c)

The components γ}n
2
, for n “ 5, 6, in (2.124) vanish if and only if we set

b0 ¨ ρ2 “
BS 5

2

BP}
, (2.135a)

b0 ¨ ρ 5
2
“
BS3

BP}
`

1

2
pρ2 ˆB0q ¨

Bρ2

BP}
´Gµ

1
2

BGΘ
1
2

BP}
. (2.135b)
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The components γµn
2
, for n “ 5, 6, in (2.125) vanish if and only if we set

GΘ
1
2
“ ´

BS 5
2

Bpµ
, (2.136a)

GΘ
1 “ ´

BS3

Bpµ
´

1

2
pρ2 ˆB0q ¨

Bρ2

Bpµ
`Gµ

1
2

BGΘ
1
2

Bpµ
. (2.136b)

The Hamiltonians Hn
2
, for n “ 1, 2, in (2.119) and (2.127) vanish if and only if we

set

Gµ
1
2

“´
1

B0

´

P}A1} `
a

2pµB0 c0 ¨A1K

¯

, (2.137a)

Gµ
1 “´

1

B0

#

P}G
}

1 ´ Φ1 `
1

2
|A1|

2

`

d

B0

2pµ
Gµ

1
2

c0 ¨A1K ´
a

2pµB0G
Θ
1
2
a0 ¨A1K

´

d

2pµ

B0

a0 ¨∇A1 ¨

´

P}b0 `
a

2pµB0c0

¯

`Op
?
εq

+

.

(2.137b)

The only degrees of freedom left are the arbitrary scalar functions S 5
2

and S3. As for

ions, the dependence on the gyro-angle Θ can be removed from (2.126) by setting,

for n “ 5, 6,

γΘ
n
2
“

A

γΘ
n
2

E

, (2.138)

or, equivalently, by requiring that Sn
2
, for n “ 5, 6, satisfy the differential equations

BS 5
2

BΘ
“ ĂGµ

1
2

, (2.139a)

BS3

BΘ
“ ĂGµ

1 ´
Č1

2
pρ2 ˆB0q ¨

Bρ2

BΘ
`

Č

Gµ
1
2

BGΘ
1
2

BΘ
. (2.139b)
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The solutions of (2.139) read (with arbitrary lower bound Θ0 of integration)

S 5
2
pΘq “ S 5

2
pΘ0q `

ż Θ

Θ0

dΘ1
ĂGµ

1
2

, (2.140a)

S3pΘq “ S3pΘ0q `

ż Θ

Θ0

dΘ1

¨

˝

ĂGµ
1 ´

Č1

2
pρ2 ˆB0q ¨

Bρ2

BΘ
`

Č

Gµ
1
2

BGΘ
1
2

BΘ

˛

‚ . (2.140b)

Proposition 3. The generalized gyrocenter magnetic moment

µ :“ pµ`
?
ε
A

Gµ
1
2

E

´ ε
@

γΘ
3

D

(2.141)

is a constant of the motion, accurate up to order Opεq, with respect to the dynamics

induced by the preliminary gyrocenter single-particle Lagrangian (2.132). Moreover,

there is a one-to-one correspondence µ ÞÑ pµ, which implies that the gyrocenter

Hamiltonian H is given by

H :“
P 2
}

2
` pµpµqB0 . (2.142)

In other words, the gyrocenter Hamiltonian is obtained from H0 by inverting the

transformation pµ ÞÑ µ defined in (2.141). By expressing (2.132) in terms of the

new gyrocenter coordinates Z :“ pX, P}, µ,Θq, we obtain the electron gyrocenter

single-particle Lagrangian

Le „
ˆ

?
εP}b0 ´

A0

ε

˙

¨
.
X ´ ε2µ

.
Θ´H ` sOpε

3
2 q `Opε

7
2 q , (2.143)

where the gyrocenter Hamiltonian is defined as H :“ H0 `
?
εH 1

2
` εH1, with Hn

2
,

for n “ 0, 1, 2, given by

H0 :“
P 2
}

2
` µB0 , (2.144a)

H 1
2

:“ P}A1} , (2.144b)

H1 :“ ´ Φ1 `
1

2
A2

1} ` µ p∇ˆA1q ¨ b0 . (2.144c)

As for ions, the symbol sOpε
3
2 q in (2.143) denotes terms of order Opε

3
2 q that are
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independent of the gyro-angle Θ. Moreover, the fluctuating potentials Φ1 and A1

are evaluated at X{ε.

Proof 3. Using that
@

γΘ
2

D

“ ´pµ´
?
ε
A

Gµ
1
2

E

, (2.145)

the Euler-Lagrange equation
BLe
BΘ

“
d

dt

BLe

B
.
Θ
, (2.146)

for the preliminary gyrocenter single-particle Lagrangian (2.132) yields

d

dt

´

pµ`
?
ε
A

Gµ
1
2

E

´ ε
@

γΘ
3

D

¯

“ Opε
3
2 q . (2.147)

Hence, the gyrocenter magnetic moment µ defined in (2.141) is conserved with first-

order accuracy in ε. Let us now compute the terms
A

Gµ
1
2

E

and
@

γΘ
3

D

that define the

transformation pµ ÞÑ µ in (2.141). From (2.137) we have

A

Gµ
1
2

E

“´
1

B0

P}A1} , (2.148a)

xGµ
1y “ ´

1

B0

ˆ

´ Φ1 `
1

2
|A1|

2
´
@

pc0 ¨A1Kq
2
D

´
@

pa0 ¨A1Kq
2
D

´ 2pµ xa0 ¨∇A1 ¨ c0y

˙

` sOp
?
εq .

(2.148b)

Moreover, from (2.136) we have

C

Gµ
1
2

BGΘ
1
2

BΘ

G

“ ´
1

B0

@

pc0 ¨A1Kq
2
D

. (2.149)

By computing the additional terms

@

pa0 ¨A1Kq
2
D

“
1

2

“

pe1 ¨A1Kq
2
` pe2 ¨A1Kq

2
‰

“
1

2
|A1K|

2 , (2.150)
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and

xa0 ¨∇A1 ¨ c0y “
1

2
pe2 ¨∇A1 ¨ e1 ´ e1 ¨∇A1 ¨ e2q

“
1

2
e2 ¨ re1 ˆ p∇ˆA1qs “ ´

1

2
p∇ˆA1q ¨ b0 ,

(2.151)

we finally obtain

@

γΘ
3

D

“
1

B0

„

´Φ1 `
1

2
A2

1} ` pµ p∇ˆA1q ¨ b0



` sOp
?
εq , (2.152)

where we used the results G}1 “ 0 and ρ2K “ 0 from (2.133) and (2.134), respec-

tively. It remains to identify the gyrocenter Hamiltonian. For this purpose, we need

to invert (2.141) and substitute the result into H0. Thanks to (2.148), the inversion

is trivial and yields

pµ “ µ`
?
ε

1

B0

P}A1} ` ε
@

γΘ
3

D

pµq ` sOpε
3
2 q . (2.153)

Substituting this into the Hamiltonian H0 completes the proof.

2.3.4 Gyrokinetic Vlasov-Maxwell model

We first remark that the Jacobian determinants Js of the gyrocenter coordinate

transformation Z ÞÑ px,vq can be computed directly from the symplectic part of

the gyrocenter single-particle Lagrangians (2.97) and (2.143) for ions and electrons,

respectively:

Ji “ B0 ` ε P} p∇ˆ b0q ¨ b0 , (2.154a)

Je “ B0 ´ ε
3
2P} p∇ˆ b0q ¨ b0 . (2.154b)

Such Jacobian determinants are exact because the symplectic forms in (2.97) and

(2.143) remain the same at any order of the gyrocenter expansion, as only the gy-

rocenter Hamiltonians change with increased order of accuracy (as for the guiding-

center coordinate transformation). The Jacobian determinants (2.154) confirm that
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geometric terms related to the curvature of the background magnetic field appear

again at order Opεq for the ions and at order Opε
3
2 q for the electrons. The gyroki-

netic equations of motion for ions derived from the ion gyrocenter single-particle

Lagrangian (2.97) read

.
X “

1

B˚
}

ˆ

ε b0 ˆ∇H ` BH
BP}

B˚

˙

`Opε3
q , (2.155a)

.
P} “ ´

B˚

B˚
}

¨∇H `Opε3
q , (2.155b)

.
µ “ Opε3

q , (2.155c)

.
Θ “

1

ε

BH
Bµ

`Opε2
q , (2.155d)

where the modified magnetic field B˚ is defined as

B˚ :“ B0 ` ε P}∇ˆ b0 , (2.156)

and its parallel component is defined as B˚
}

:“ B˚
¨ b0, which is the ion Jaco-

bian (2.154a). We note that, as expected, the gyro-angle Θ, whose dynamics is

decoupled from the other phase-space variables, is the phase-space coordinate

associated with the fastest scale of the physical particle dynamics. The gyrokinetic

equations of motion for electrons derived from the electron gyrocenter single-particle

Lagrangian (2.143) read

.
X “ ´

1
?
ε

1

B˚
}

ˆ

ε
3
2 b0 ˆ∇H ´ BH

BP}
B˚

˙

`Opεq , (2.157a)

.
P} “ ´

1
?
ε

B˚

B˚
}

¨∇H `Opεq , (2.157b)

.
µ “ Opε

3
2 q , (2.157c)

.
Θ “ ´

1

ε2

BH
Bµ

`Opε´
1
2 q , (2.157d)
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where the modified magnetic field B˚ is defined as

B˚ :“ B0 ´ ε
3
2 P}∇ˆ b0 , (2.158)

and its parallel component is defined again as B˚
}

:“ B˚
¨ b0, which is the elec-

tron Jacobian (2.154b). We note again that, as expected, the gyro-angle Θ, whose

dynamics is decoupled from the other phase-space variables, is the phase-space

coordinate associated with the fastest scale of the physical particle dynamics. The

non-homogeneous gyrokinetic Maxwell’s equations can be derived from the varia-

tional principle by taking variations of the Low Lagrangian with respect to the electro-

magnetic fluctuating potentials Φ1 andA1. The weak form of gyrokinetic Coulomb’s

law is obtained by taking variations with respect to Φ1 and reads

0 “ ε

ż

d6Z0

ˆ

B˚}eFep0,Z0q xδΦ1y ´B
˚
}iFip0,Z0q xδΦ1y

˙

` ε2

ż

d6Z0B
˚
}iFip0,Z0q

˜

1

B0

d

dµ

A

ĂΨ1
ĄδΦ1

E

`
1

2B2
0

B

´

b0 ˆ∇KĄδΦ1

¯

¨

ż Θ

dΘ1∇KĂΨ1

F

`
1

2B2
0

B

´

b0 ˆ∇KĂΨ1

¯

¨

ż Θ

dΘ1∇KĄδΦ1

F

`
1

B0

B

∇}δΦ1

ż Θ

dΘ1
ĂA1}

F

`
δpδG2q

δΦ1

pδΦ1q

¸

,

where δΦ1 denotes an arbitrary test function. Here we neglected all terms of order

higher than Opε2q and Opεq from the ion and electron Hamiltonians, respectively.

The terms of order Opεq and Opε2q represent the gyrocenter charge density and the

gyrocenter polarization density, respectively. The weak form of Ampère-Maxwell’s
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law is obtained by taking variations with respect to A1 and reads

0 “´

ż

d3x

ˆ

∇ˆB0 ` ε∇ˆ p∇ˆA1q

˙

¨ δA1

´
?
ε

ż

d6Z0B
˚
}eFep0,Z0qP} δA1} ` ε

ż

d6Z0

«

B˚}iFip0,Z0q xP ¨ δA1y

´B˚}eFep0,Z0q

ˆ

A1}δA1} ` µ p∇ˆ δA1q ¨ b0

˙

ff

´ ε2

ż

d6Z0B
˚
}iFip0,Z0q

˜

1

B0

d

dµ

A

ĂΨ1P ¨ ĄδA1

E

` xA1 ¨ δA1y

`
1

2B2
0

B

´

b0 ˆ∇KpP ¨ ĄδA1q

¯

¨

ż Θ

dΘ1∇KĂΨ1

F

`
1

2B2
0

B

´

b0 ˆ∇KĂΨ1

¯

¨

ż Θ

dΘ1∇KpP ¨ ĄδA1q

F

`
1

B0

B

∇}pP ¨ δA1q

ż Θ

dΘ1
ĂA1}

F

`
1

B0

B

∇}Ψ1

ż Θ

dΘ1
ĆδA1}

F

`
δpδG2q

δA1

pδA1q

¸

,

where δA1 denotes an arbitrary test function andP :“ P}b0 `
?

2µB0 c0. As before,

we neglected all terms of order higher thanOpε2q andOpεq from the ion and electron

Hamiltonians, respectively.

2.3.5 Discussion of the results

The main results of this work are summarized in Proposition 3 for both ions and

electrons, stating the final ion and electron single-particle gyrocenter Lagrangians

(2.97) and (2.143), obtained by applying our gyrokinetic reduction to the normalized

ion and electron single-particle Lagrangians (2.42a) and (2.42b), in the maximal or-

dering defined in section 2.2. The results obtained in (Tronko and Chandre, 2018)

and in the previous works of (Hahm, 1988) and (Brizard, 1989) for ions are recov-
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ered and augmented by terms related to the assumption of maximal ordering. In

particular, novel terms are the geometric first-order and second-order corrections

δH1, δH2 and δG2, appearing in the first-order and second-order ion gyrocenter

Hamiltonians H1 and H2 in (2.98), respectively. Moreover, the term

´
1

B0

B

∇‖ĂΨ1

ż Θ

dΘ1
ĂA1}

F

, (2.159)

appearing in the second-order ion gyrocenter Hamiltonian H2, is also new. On the

other hand, electrons turn out to be insensitive to the effects related to the curvature

of the background magnetic field up to second order in ε, even in maximal ordering.

However, terms related to the parallel component of the magnetic vector potential

appear in the electron gyrocenter Hamiltonian already at order Op
?
εq.

The gyrokinetic equations of motion (2.155) derived for ions are accurate up to order

Opε3q, including the conservation of the gyrocenter magnetic moment µ (thanks to

the fact that the error terms of order Opε3q in the ion gyrocenter Lagrangian (2.97)

do not depend on the gyro-angle Θ). Similarly, the gyrokinetic equations of motion

(2.157) derived for electrons are accurate up to order Opεq and Opε
3
2 q for the con-

servation of the gyrocenter magnetic moment µ (thanks to the fact that the error

terms of order Opε
3
2 q in the electron gyrocenter Lagrangian (2.143) do not depend

on the gyro-angle Θ).

The gyrokinetic electron Lagrangian, and the corresponding gyrokinetic equations

of motion, have been derived within an ordering consistent with the ions, despite

the order of accuracy of the results being different for the two species (due to the

fact that the gyrocenter magnetic moment µ has been computed with less preci-

sion for electrons than for ions). We conclude that it is possible to derive a set of

gyrokinetic Vlasov-Maxwell equations for ions and electrons within unique ordering

assumptions relevant for realistic fusion scenarios (maximal ordering) by consider-

ing phase-space coordinate transformations based on polynomial transforms. Our

technique is alternative to the use of Lie transforms and, combined with our rig-

orous normalization procedure, can provide useful insights into the derivation of

gyrokinetic models.
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2.4 Summary of the contributions

In this chapter we described a new method for the derivation of gyrokinetic models.

Our technique is based on a rigorous normalization and ordering of the physical

equations of interest and makes use of polynomial transforms, instead of Lie trans-

forms, in order to define the phase-space coordinate transformations involved in the

gyrokinetic reduction. Our main contributions can be summarized as follows:

• Normalization and ordering of the Vlasov-Maxwell model according to physical

scenarios relevant for existing and future fusion experiments, such as ASDEX

Upgrade and ITER;

• Derivation of gyrokinetic equations for both ions and electrons within one com-

mon ordering;

• Use of polynomial transforms as an alternative to Lie transforms for the gy-

rokinetic reduction.

The material presented in this chapter is also described and discussed in a manuscript

written in collaboration with Dr. Stefan Possanner, which is currently in preparation.
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Chapter 3

Towards field-aligned

semi-Lagrangian gyrokinetic

simulations

In this chapter and the following two we present and discuss the results of the re-

search that we conducted on the investigation and development of numerical meth-

ods for gyrokinetic simulations. These simulations are a well-established tool for

the study of plasma turbulence in nuclear fusion devices and it is our hope that the

numerical methods presented in this thesis, or their extension and improvement,

will be eventually employed in state-of-the-art gyrokinetic codes. All the numerical

investigations and computer experiments discussed in this thesis have been con-

ducted within the framework of the software library SeLaLib. The primary aim of

this software library is to provide mathematical and computational tools for kinetic,

drift-kinetic and gyrokinetic simulations based on either semi-Lagrangian or particle-

in-cell methods. In this thesis we focus on the development of numerical methods

and algorithms for gyrokinetic simulations based on the semi-Lagrangian method.

Therefore, our target state-of-the-art gyrokinetic code is the semi-Lagrangian gyroki-

netic code GySeLa (Grandgirard et al., 2006a,b, 2016), developed at the Cadarache

Center of the French Commission for Atomic Energy and Alternative Energies (CEA)

in collaboration with several research partners.
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In this chapter we introduce the basic features of a field-aligned semi-Lagrangian

drift-kinetic electrostatic code that we developed within the SeLaLib library. Our

code addresses the numerical solution of a 4D drift-kinetic electrostatic model that

can be derived from the full gyrokinetic Vlasov-Maxwell equations under specific

assumptions. A more detailed description of the model is given in chapter 5. How-

ever, the numerical features presented here are fairly general and do not depend on

the simplifications behind the model addressed by our code. In particular, the fea-

tures discussed in this chapter apply to any advection equation with characteristic

equations similar to the ones derived for ions and electrons in chapter 2 (equations

(2.155) and (2.157), respectively).

This chapter is organized as follows. Section 3.1 describes briefly the basic features

of our target physical model. Section 3.2 defines the curvilinear coordinate systems

that we will employ in the next chapters. Section 3.3 introduces the field-aligned

approach, which constitutes a major feature of our numerical methods, and de-

fines, in particular, the field-aligned splitting of the advection equation in our model.

Section 3.4 describes our time advancing strategy and how to combine it with the

field-aligned splitting. Section 3.5 reviews briefly the basics of the semi-Lagrangian

method for the numerical solution of advection equations. Section 3.6 describes

the discretization of the continuous problem into a numerical model with a finite

number of degrees of freedom. Section 3.7 reviews briefly the basics of the inter-

polation schemes that we will employ, namely 1D Lagrange interpolation and 1D

and 2D spline interpolation. Sections 3.8 and 3.9 describe two additional meth-

ods that characterize our field-aligned approach, namely field-aligned interpolation

and field-aligned differentiation. Finally, we end the chapter with a summary of our

contributions.

3.1 The physical model

We consider a gyrokinetic Vlasov equation of the form

BF

Bt
`U ¨∇F ` UP}

BF

BP}
“ 0 . (3.1)
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The unknown in (3.1) is the particle distribution function F pt,X, P}q, defined on

the 4D gyrocenter phase space described by the gyrocenter position and parallel

momentum X and P}. The time evolution of F is typically coupled to the time

evolution of some electromagnetic potentials, whose dynamics is described by the

gyrokinetic Maxwell’s equations or some approximations of them. The advection

fields U pt,X, P}q and UP}pt,X, P}q in (3.1) are defined as

U :“
1

B˚
}

ˆ

b0 ˆ∇H `
BH

BP}
B˚

˙

, (3.2a)

UP} :“ ´
B˚

B˚
}

¨∇H , (3.2b)

where the modified magnetic field B˚
pX, P}q is defined as

B˚ :“ B0 ` P}∇ˆ b0 , (3.3)

its parallel component B˚
}
pX, P}q is defined as B˚

}
:“ B˚

¨ b0, and Hpt,X, P}q

denotes the Hamiltonian of the system. The particular form of H is not relevant for

the methods presented in this chapter. The advection fields in (3.2) are as general

as the ones derived for ions in chapter 2 (where H was denoted as H), with the

only difference that the small perturbation parameter ε has been absorbed into the

physical quantities and does not appear explicitly in the equations.

3.2 Coordinate systems

The positions X in (3.1) are Cartesian coordinates in the 3D gyrocenter configu-

ration space. However, depending on the specific geometry of the physical domain

considered, which usually represents an approximation of the geometry of a realistic

physical device, such as a Tokamak, it may be convenient to address the numerical

solution of (3.1) choosing a different system of coordinates, typically a curvilinear

coordinate system. The basics of vector algebra and analysis in curvilinear coor-

dinates are reviewed in Appendix A. In this chapter we denote by pη1, η2, η3q the
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logical coordinates in the configuration space, where the spatial degrees of freedom

of our problem are represented. Moreover, we denote by η4 the logical coordinate

corresponding to the parallel momentum P}. Poloidal planes are spanned by the

coordinates pη1, η2q, where η1 is a non-periodic radial-like coordinate and η2 is a

2π-periodic angle-like coordinate. On the other hand, flux surfaces are spanned

by the coordinates pη2, η3q at a given fixed value of η1. The coordinate η3 is a

2π-periodic angle coordinate, which we call toroidal angle. We assume that the

magnetic field B0 is mostly aligned to the toroidal direction and always satisfies the

condition Bη3

0 ‰ 0, where Bη3

0 is the third contravariant component of B0 with re-

spect to the tangent basis peη1 , eη2 , eη3q of the logical coordinate system. We then

introduce a second system of coordinates, which we denote by pζ1, ζ2, ζ3q, and we

assume that the magnetic fieldB0 is given in terms of its contravariant components

pBζ1

0 , B
ζ2

0 , B
ζ3

0 q with respect to the tangent basis peζ1 , eζ2 , eζ3q of this coordinate

system. As for the logical coordinates, we assume that the magnetic field B0 is

mostly aligned to the direction of the coordinate ζ3 and always satisfies the con-

dition Bζ3

0 ‰ 0. In other words, the coordinates ζ3 and η3 are related by a linear

homogeneous transformation of the form ζ3 “ c η3, for a given constant c, and

poloidal planes are also entirely spanned by the coordinates pζ1, ζ2q.

For example, in a cylindrical geometry, such as the one shown in Figure 3.2 (top),

we choose as logical coordinates the cylindrical coordinates pr, θ, ϕq defined by the

transformation
xpr, θ, ϕq “ r cos θ ,

ypr, θ, ϕq “ r sin θ ,

zpr, θ, ϕq “ R0 ϕ ,

(3.4)

where R0 is related to the length L of the cylinder via L “ 2πR0. Moreover, we

assume that the magnetic fieldB0 is given in terms of its contravariant components

pBx
0 , B

y
0 , B

z
0q with respect to the tangent basis pex, ey, ezq of the coordinate system

defined by the Cartesian coordinates px, y, zq. In a toroidal geometry with circular

poloidal cross sections, such as the one shown in Figure 3.2 (bottom), we choose

as logical coordinates the elementary toroidal coordinates pr, θ, ϕq defined by the
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z

rR0

θ

ϕ

Figure 3.1: Elementary toroidal coordinates pr, θ, ϕq.

transformation
xpr, θ, ϕq “ pR0 ` r cos θq cosϕ ,

ypr, θ, ϕq “ r sin θ ,

zpr, θ, ϕq “ pR0 ` r cos θq sinϕ ,

(3.5)

where R0 denotes the major radius of the torus. Moreover, we assume that the

magnetic field B0, irrespective of the shape of the poloidal cross sections, is given

in terms of its contravariant components pBR
0 , B

Z
0 , B

ϕ
0 q with respect to the tangent

basis peR, eZ , eϕq of the coordinate system defined by the cylindrical coordinates

pR,Z, ϕq. These are defined, in turn, by the transformation

xpR,Z, ϕq “ R cosϕ ,

ypR,Z, ϕq “ Z ,

zpR,Z, ϕq “ R sinϕ .

(3.6)

The elementary toroidal coordinates defined in (3.5) are shown in Figure 3.1.

When dealing with curvilinear coordinates, a mathematical object that contains use-

ful geometric information is the Jacobian matrix of the coordinate system, defined in

(A.9). In cylindrical geometry the Jacobian matrix Jηpr, θ, ϕq of the logical coordinate

system reads

Jηpr, θ, ϕq “

»

—

–

cos θ ´r sin θ 0

sin θ r cos θ 0

0 0 R0

fi

ffi

fl

, (3.7)
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Figure 3.2: Cylindrical and circular toroidal grids.
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with determinant det Jηpr, θ, ϕq “ R0 r, while the Jacobian matrix Jζpx, y, zq of the

coordinate system defined by the coordinates px, y, zq reads simply

Jζpx, y, zq “

»

—

–

1 0 0

0 1 0

0 0 1

fi

ffi

fl

, (3.8)

with determinant det Jζpx, y, zq “ 1. In toroidal geometry with circular poloidal cross

sections the Jacobian matrix Jηpr, θ, ϕq of the logical coordinate system reads

Jηpr, θ, ϕq “

»

—

–

cos θ cosϕ ´r sin θ cosϕ ´pR0 ` r cos θq sinϕ

sin θ r cos θ 0

cos θ sinϕ ´r sin θ sinϕ pR0 ` r cos θq cosϕ

fi

ffi

fl

, (3.9)

with determinant det Jηpr, θ, ϕq “ pR0`r cos θq r, while the Jacobian matrix JζpR,Z, ϕq

of the coordinate system defined by the coordinates pR,Z, ϕq reads

JζpR,Z, ϕq “

»

—

–

cosϕ 0 ´R sinϕ

0 1 0

sinϕ 0 R cosϕ

fi

ffi

fl

, (3.10)

with determinant det JζpR,Z, ϕq “ R.

3.3 Field-aligned splitting

One of the major features of the numerical methods developed in the context of our

semi-Lagrangian drift-kinetic code is what we call the field-aligned approach. The

idea behind this approach, first investigated in (Ottaviani, 2011; Hariri and Ottaviani,

2013) and recently employed in (Latu et al., 2018) in a context similar to the one

discussed in this thesis, is to exploit at the numerical level the anisotropy of the tur-

bulent plasma structures stretched along the direction of the magnetic field. This is

achieved by introducing a field-aligned splitting of the 4D Vlasov equation (3.1) and

by replacing interpolation on the flux surfaces and differentiation along the toroidal
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direction, to which the magnetic field B0 is mostly aligned, with field-aligned inter-

polation and field-aligned differentiation. The idea is to choose any arbitrarily fine

discretization of the poloidal planes and interpolate our solution between adjacent

poloidal planes following the magnetic field lines. We now present the field-aligned

splitting and leave the discussion on field-aligned interpolation and field-aligned dif-

ferentiation to sections 3.8 and 3.9, respectively.

The idea of the field-aligned splitting is to decompose the advection field U in (3.1)

into a 2D component on the poloidal plane and a 1D component aligned with the

direction of the magnetic field B0. This is done by expressing the third vector of the

tangent basis peζ1 , eζ2 , eζ3q in terms of the unit vector b0 :“ B0{B0, with contravari-

ant components pbζ
1

0 , b
ζ2

0 , b
ζ3

0 q, thanks to the assumption bζ
3

0 ‰ 0:

eζ3 “ ´
bζ

1

0

bζ
3

0

eζ1 ´
bζ

2

0

bζ
3

0

eζ2 `
b0

bζ
3

0

. (3.11)

Since the advection field U is typically written in terms of the magnetic field B0,

its curl, and its cross product with the gradient of the Hamiltonian ∇H, it is natural

to assume that U , as B0, is also given in terms of its contravariant components

pU ζ1 , U ζ2 , U ζ3q with respect to the tangent basis peζ1 , eζ2 , eζ3q, provided that the

components of ∇H with respect to the same basis are also available. We then split

U as

U “ Up ` Ubb0 , (3.12)

whereUp, which lies on the poloidal planes spanned by pζ1, ζ2q, and Ub are defined

as

Up :“

˜

U ζ1
´
bζ

1

0

bζ
3

0

U ζ3

¸

eζ1 `

˜

U ζ2
´
bζ

2

0

bζ
3

0

U ζ3

¸

eζ2 , (3.13a)

Ub :“
U ζ3

bζ
3

0

. (3.13b)

Therefore, we split the 4D Vlasov equation (3.1) into the following three separate

lower-dimensional advection problems:
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1. a 2D advection on poloidal planes:

BF

Bt
`Up ¨∇F “ 0 ; (3.14)

2. a 2D field-aligned advection on flux surfaces:

BF

Bt
` Ubb0 ¨∇F “ 0 ; (3.15)

3. a 1D advection in momentum space:

BF

Bt
` UP}

BF

BP}
“ 0 . (3.16)

From (3.11) we can also express derivatives with respect to the toroidal coordinate

ζ3 as derivatives with respect to the coordinates pζ1, ζ2q and parallel derivatives

∇‖ :“ b0 ¨∇:
B

Bζ3
“ ´

bζ
1

0

bζ
3

0

B

Bζ1
´
bζ

2

0

bζ
3

0

B

Bζ2
`

1

bζ
3

0

∇‖ . (3.17)

How the parallel derivatives ∇‖, which we also call field-aligned derivatives, are

computed numerically is discussed in section 3.9. The explicit expressions of the

advection fields Up, Ub and UP} in the coordinate system pζ1, ζ2, ζ3q can be com-

puted from (3.2). The contravariant components U ζi of U , for i “ 1, 2, 3, read

U ζi
“

1

B˚
}

ˆ

εijk

det Jζ
pb0qζj

BH

Bζk
`
BH

BP}
pB˚qζ

i

˙

, (3.18)

where εijk denotes the Levi-Civita symbol, defined in (A.13), the contravariant com-

ponents pB˚qζ
i

read

pB˚qζ
i

“ Bζi

0 ` P}p∇ˆ b0q
ζi , (3.19)

the parallel component B˚
}

reads

B˚} “ B0 ` P}p∇ˆ b0q
ζi
pb0qζi , (3.20)

and we employ the Einstein summation convention. Here, pb0qζi , for i “ 1, 2, 3, de-
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note the covariant components of b0 with respect to the co-tangent basis peζ
1
, eζ

2
, eζ

3
q.

From (3.17) and (3.18) it follows that

U ζ1

p “
1

B˚
}

1

bζ
3

0

«

1

det Jζ

ˆ

´
BH

Bζ2
` pb0qζ2∇‖H

˙

`
BH

BP}
P}

´

bζ
3

0 p∇ˆ b0q
ζ1
´ bζ

1

0 p∇ˆ b0q
ζ3
¯

ff

,

(3.21a)

U ζ2

p “
1

B˚
}

1

bζ
3

0

«

´1

det Jζ

ˆ

´
BH

Bζ1
` pb0qζ1∇‖H

˙

`
BH

BP}
P}

´

bζ
3

0 p∇ˆ b0q
ζ2
´ bζ

2

0 p∇ˆ b0q
ζ3
¯

ff

.

(3.21b)

The advection field Ub for the field-aligned advection on flux surfaces is obtained

directly dividing (3.18), with i “ 3, by bζ
3

0 and reads

Ub “
1

B˚
}

1

bζ
3

0

«

1

det Jζ

ˆ

pb0qζ1
BH

Bζ2
´ pb0qζ2

BH

Bζ1

˙

`
BH

BP}

´

Bζ3

0 ` P}p∇ˆ b0q
ζ3
¯

ff

.

(3.22)

Finally, the advection field UP} for the advection in momentum space reads

UP} “ ´
1

B˚
}

pB˚qζ
i BH

Bζ i
, (3.23)

which, using (3.17), can be written as

UP} “ ´
1

B˚
}

«˜

B0 `
P}

bζ
3

0

p∇ˆ b0q
ζ3

¸

∇‖H

`
P}

bζ
3

0

´

bζ
3

0 p∇ˆ b0q
ζ1
´ bζ

1

0 p∇ˆ b0q
ζ3
¯

BH

Bζ1

`
P}

bζ
3

0

´

bζ
3

0 p∇ˆ b0q
ζ2
´ bζ

2

0 p∇ˆ b0q
ζ3
¯

BH

Bζ2

ff

.

(3.24)
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3.4 Time-advancing strategy

The idea for advancing in time the Vlasov equation (3.1) is to choose, within each

time step, an approximate time-independent Hamiltonian (and the corresponding

approximate time-independent advection fields) and solve the resulting linear ad-

vection equation with the numerical method of choice. More precisely, we employ a

second-order predictor-corrector scheme similar to the one described in (Latu et al.,

2018, section 4.2), that we now review briefly. Let us denote by F ptq and Hptq the

distribution function F and the Hamiltonian H at time t, omitting the dependence

on the other phase-space variables. In the predictor step we advance F ptq for half

the time step with the Hamiltonian Hptq (and the corresponding advection fields)

computed from F ptq, and obtain F pt`∆t{2q. In the corrector step we advance F ptq

for the entire time step with the Hamiltonian Hpt ` ∆t{2q (and the corresponding

advection fields) computed from F pt`∆t{2q, and obtain F pt`∆tq. This scheme is

represented graphically in Figure 3.3. Our time advancing strategy is then combined

|
t

|
t`∆t{2

|
t`∆t

F ptq F pt`∆t{2qHptqpredictor:

F ptq F pt`∆tqHpt`∆t{2qcorrector:

Figure 3.3: Graphical representation of the second-order predictor-corrector
scheme employed to solve the Vlasov equation (3.1).

with the field-aligned splitting as follows. In the predictor step we start from F ptq,

compute Hptq from it, perform the steps

1. solve (3.15) in the time interval rt, t`∆t{2s,

2. solve (3.16) in the time interval rt, t`∆t{2s,

3. solve (3.14) in the time interval rt, t`∆t{2s,

and obtain F pt ` ∆t{2q. This corresponds to a first-order Lie splitting of the 4D

Vlasov equation. In the corrector step we start again from F ptq, computeHpt`∆t{2q
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from F pt`∆t{2q, perform the steps

1. solve (3.15) in the time interval rt, t`∆t{2s,

2. solve (3.16) in the time interval rt, t`∆t{2s,

3. solve (3.14) in the time interval rt, t`∆ts,

4. solve (3.16) in the time interval rt`∆t{2, t`∆ts,

5. solve (3.15) in the time interval rt`∆t{2, t`∆ts,

and obtain F pt`∆tq. This corresponds to a second-order Strang splitting of the 4D

Vlasov equation.

3.5 Semi-Lagrangian method

In both the predictor and the corrector steps, each of the lower-dimensional advec-

tion equations, (3.14), (3.15) and (3.16), is solved with the semi-Lagrangian method,

which we briefly review in this section for a generic 2D advection problem (the corre-

sponding scheme for 1D advection equations is obtained by simply replacing vector

quantities with scalar quantities). The idea of the semi-Lagrangian method is to

combine the Eulerian and the Lagrangian approaches, by keeping the good proper-

ties of both schemes (namely, the fact that Eulerian methods work well on regular

Cartesian meshes and the fact that Lagrangian methods allow for large time steps)

and trying to get rid of their disadvantages (namely, the fact that Eulerian methods

often require restrictive time steps in order to ensure computational stability and

the fact that Lagrangian methods exhibit noise in the case of particle methods and

strong grid deformation in the case of mesh-based methods). The semi-Lagrangian

method was originally developed within the context of numerical weather prediction

(Fjørtoft, 1952, 1955; Wiin-Nielsen, 1959; Krishnamurti, 1962; Sawyer, 1963; Leith,

1964; Purnell, 1976) (see, for example, (Staniforth and Côté, 1991) for a compre-

hensive review). The method was applied later on to Vlasov-like transport equations

and drift-kinetic and gyrokinetic models in the context of plasma physics by (Cheng

and Knorr, 1976; Gagné and Shoucri, 1977; Sonnendrücker et al., 1999; Filbet et al.,
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2001; Besse and Sonnendrücker, 2003; Crouseilles et al., 2010). We now review

how the semi-Lagrangian scheme works for a 2D advection equation of the form

Bg

Bt
` u ¨∇g “ 0 , (3.25)

for a given advection field upt,xq. The characteristics of (3.25) are the solutions of

the dynamical system
dx

dt
“ u , (3.26)

with given initial conditions. The information contained in (3.25) is that its solution

g is conserved along the characteristics obtained by solving (3.26). Typically, when

we solve (3.25) numerically, we have a discrete set of mesh points txijuij and we

are interested in knowing the value of g at a given time t and a given mesh point

xkl. The information we have is the set of values of g at the previous time t ´ ∆t

at each mesh point xij . We then first solve (3.26) backward in time, starting from

the initial condition xkl at time t, and find the origin x˚kl of the characteristic at time

t´∆t. Since g is conserved along the characteristics of (3.25), we have

gpt,xklq “ gpt´∆t,x˚klq . (3.27)

Since we are integrating the characteristics backward in time, the algorithm de-

scribed here is usually referred to as backward semi-Lagrangian method, as op-

posed to forward semi-Lagrangian methods, where the characteristics are integrated

forward in time. Typically, the origin x˚kl of the characteristic does not coincide with

a mesh point and the value gpt ´∆t,x˚klq in (3.27) is not immediately available. In-

stead, it is obtained by interpolating the values of g at the same time t ´ ∆t and

at mesh points in some neighborhood of x˚kl. The number and collocation of such

mesh points with respect to x˚kl depend on the choice of the interpolation scheme.

The semi-Lagrangian method just described is represented graphically in Figure 3.4.

The specific interpolation schemes and numerical methods employed for each of the

lower-dimensional advection equations, (3.14), (3.15) and (3.16), will be discussed

later on in this thesis.
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xkl•x

˚
kl
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|
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|
t´∆t

Figure 3.4: Semi-Lagrangian method: the value of g at a given time t and a given
mesh point xkl is obtained by first finding the origin x˚kl of the characteristic at time
t´∆t and then interpolating the values of g at the same time t´∆t at mesh points
in some neighborhood of x˚kl (empty bullets).

3.6 Discretization

In order to discuss the numerical methods and algorithms that we employ to solve

our target model (3.1), we need to first present how we define the discrete degrees of

freedom corresponding to the continuous degrees of freedom of the model. When

we solve (3.1) numerically with the semi-Lagrangian method, we have a discrete

set of mesh points corresponding to each of the logical phase-space coordinates,

which we denote by tη1
i1
u
n1
i1“1, tη2

i2
u
n2
i2“1, tη3

i3
u
n3
i3“1 and tη4

i4
u
n4
i4“1, respectively. The

logical mesh points corresponding to the poloidal coordinates pη1, η2q and the par-

allel momentum η4 are defined as the interpolation points that we choose for the

reconstruction of relevant quantities in each of these directions. On the other hand,

the logical mesh points corresponding to the toroidal angle η3 are simply defined

from a uniform mesh in the domain of η3.

On the poloidal planes and along the direction of the parallel momentum we inter-

polate using splines. More precisely, we employ 2D tensor-product splines on the

poloidal planes spanned by the coordinates pη1, η2q and 1D splines in the direction

of the parallel momentum η4. In general, we work on a Schönberg space of maxi-

mum regularity. Given a decomposition of a 1D domain into cells, this is the space

of piecewise polynomials of degree p with p ´ 1 continuous derivatives across the
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domain. The B-splines that we are going to define constitute a basis for this space

and have some desirable properties, most notably: positivity, compact support, and

partition of unity. The two types of B-splines that we consider in order to define our

spline bases are clamped (non-periodic) B-splines and periodic B-splines. Given

a domain ra, bs, we decompose it into cells, whose limit points are named break

points. Denoting by n the number of degrees of freedom and by p the degree of the

B-splines, the number nc of cells for clamped and periodic B-splines is defined as

nc :“

#

n´ p clamped ,

n periodic ,
(3.28)

with nb :“ nc ` 1 break points, which we denote by tη̄iun
b

i“1. The domain ra, bs is

thus decomposed as

ra, bs “
nb´1
ď

i“1

rη̄i, η̄i`1s . (3.29)

From the break points tη̄iun
b

i“1 we define a knot sequence of nk :“ nb ` 2p knots

ttiu
nb`p
i“1´p. More precisely, for clamped B-splines we define the open knots

ti :“

$

’

’

&

’

’

%

η̄1 i “ 1´ p, . . . , 0 ,

η̄i i “ 1, . . . , nb ,

η̄nb i “ nb ` 1, . . . , nb ` p ,

(3.30)

whereas for periodic B-splines we define the periodic knots

ti :“

$

’

’

&

’

’

%

η̄nb`i ´ 2π i “ 1´ p, . . . , 0 ,

η̄i i “ 1, . . . , nb ,

η̄i´nb ` 2π i “ nb ` 1, . . . , nb ` p ,

(3.31)

assuming that the B-splines are 2π-periodic. From the knot sequence ttiu
nb`p
i“1´p the

B-splines Bp
i of degree p are defined by the recurrence relations (de Boor, 1980)

Bp
i pηq :“

η ´ ti
ti`p ´ ti

Bp´1
i pηq `

ti`p`1 ´ η

ti`p`1 ´ ti`1

Bp´1
i`1 pηq , (3.32)
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with η P ra, bs and the B-splines B0
i of degree p “ 0 defined as

B0
i pηq :“

#

1 η P rti, ti`1q ,

0 elsewhere .
(3.33)

We then define the interpolation points tηiuni“1 as the Greville averages

ηi :“
1

p

i
ÿ

j“i`1´p

tj . (3.34)

Such points are averages of the knots generally lying near the values corresponding

to the maximum of the basis functions (Gordon and Riesenfeld, 1974; Farin, 1988).

In the case of a periodic domain the Greville averages reduce to either the break

points themselves or the mid-points of each cell, depending on whether the degree

of the B-splines is odd or even, respectively. In formulas, the interpolation points for

periodic B-splines are given by

ηi “

$

&

%

η̄i p odd ,
η̄i ` η̄i`1

2
p even .

(3.35)

On the poloidal planes we then define a 2D tensor-product spline basis of clamped

B-splines of degree p1 in η1 P r0, η1
maxs and 2π-periodic B-splines of degree p2 in

η2 P r0, 2πq:

tBp1p2
i1i2
pη1, η2

q :“ Bp1
i1
pη1
qBp2

i2
pη2
qu
n1,n2

i1,i2“1 . (3.36)

Along the direction of the parallel momentum we define a 1D spline basis of clamped

B-splines of degree p4 in η4 P rη4
min, η

4
maxs (with typically η4

min “ ´η
4
max):

tBp4
i4
pη4
qu
n4
i4“1 . (3.37)

Finally, along the 2π-periodic toroidal direction η3 we define the logical mesh by

decomposing the periodic domain r0, 2πq into nc3 :“ n3 cells with nb3 :“ nc3` 1 break

points tη̄3
i3
u
nb3
i3“1,

r0, 2πq “

nb3´1
ď

i3“1

rη̄3
i3
, η̄3
i3`1q , (3.38)
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and choosing the logical mesh points tη3
i3
u
n3
i3“1 as the break points: η3

i3
:“ η̄3

i3
. Ex-

amples of logical meshes in the directions η1 P r0, 1s, η2 P r0, 2πq, η3 P r0, 2πq and

η4 P r´1, 1s, with n1 “ n2 “ n3 “ n4 “ 8 and p1 “ p2 “ p4 “ 3, are shown in

Figure 3.5.

3.7 Interpolation

Interpolation is one of the main building blocks of the semi-Lagrangian method. In

this section we review briefly the two types of standard interpolation that we employ

in this thesis, namely 1D Lagrange interpolation and 1D and 2D spline interpolation.

For 1D Lagrange interpolation we employ the Neville’s algorithm (Neville, 1934).

Given n data points tpxi, ziquni“1, the value P pxq of the interpolating Lagrange poly-

nomial P of degree n ´ 1 at the point x is given by P pxq “ P0,n´1pxq, where

Pi,j denotes the Lagrange polynomial of degree j ´ i interpolating the data points

tpxk, zkqu
j
k“i and satisfying the recurrence relations

Pi,ipxq “ zi 0 ď i ď n´ 1 , (3.39a)

Pi,jpxq “
px´ xjqPi,j´1pxq ´ px´ xiqPi`1,jpxq

xi ´ xj
0 ď i ă j ď n´ 1 . (3.39b)

For 1D spline interpolation, let us introduce a generic 1D spline basis of B-splines

of degree p:

tBp
i pxqu

n
i“1 . (3.40)

Given n data points tpxi, ziquni“1, corresponding to the values of a given quantity

of interest on the logical mesh defined by the interpolation points, an interpolatory

spline

Spxq :“
n
ÿ

i“1

ciB
p
i pxq (3.41)

satisfies the interpolation conditions Spxiq “ zi, for all i “ 1, . . . , n. These can be
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Figure 3.5: Examples of logical meshes in the directions η1 P r0, 1s, η2 P r0, 2πq,
η3 P r0, 2πq and η4 P r´1, 1s, with n1 “ n2 “ n3 “ n4 “ 8 and p1 “ p2 “ p4 “ 3.
The vertical lines represent the break points (nb1 “ nb4 “ 6 break points in the
directions η1 and η4, and nb2 “ nb3 “ 9 break points in the directions η2 and η3).
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written in the matrix form
»

—

—

–

Bp
1px1q ¨ ¨ ¨ Bp

npx1q

... . . . ...

Bp
1pxnq ¨ ¨ ¨ Bp

npxnq

fi

ffi

ffi

fl

»

—

—

–

c1

...

cn

fi

ffi

ffi

fl

“

»

—

—

–

z1

...

zn

fi

ffi

ffi

fl

, (3.42)

and the resulting linear system can be solved with a method of choice in order

to obtain the coefficients tciuni“1. We remark that, for any given location x in the

domain, only p` 1 B-splines are non-zero at x. Therefore, the linear system (3.42)

is in general sparse (given that n " p typically) and banded.

For 2D spline interpolation, let us introduce a generic 2D tensor-product spline basis

of B-splines of degrees p and q, respectively:

tBpq
ij px, yq :“ Bp

i pxqB
q
j pyqu

n,m
i,j“1 . (3.43)

Given n ˆ m data points tpxi, yj, zijqu
n,m
i,j“1, corresponding to the values of a given

quantity of interest on the 2D logical mesh defined by the interpolation points, an

interpolatory spline

Spx, yq :“
n
ÿ

i“1

m
ÿ

j“1

cijB
p
i pxqB

q
j pyq (3.44)

satisfies the interpolation conditions Spxi, yjq “ zij , for all i “ 1, . . . , n and j “ 1, . . . ,m.

These can be solved by decomposing the problem into two separate 1D interpola-

tion problems. More precisely, for each location yj , with j “ 1, . . . ,m, we first solve

the 1D interpolation problem along x

»

—

—

–

Bp
1px1q ¨ ¨ ¨ Bp

npx1q

... . . . ...

Bp
1pxnq ¨ ¨ ¨ Bp

npxnq

fi

ffi

ffi

fl

»

—

—

–

c̄1j

...

c̄nj

fi

ffi

ffi

fl

“

»

—

—

–

z1j

...

znj

fi

ffi

ffi

fl

, j “ 1, . . . ,m , (3.45)

thus obtaining the intermediate coefficients tc̄iju
n,m
i,j“1. Then, for each location xi,
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with i “ 1, . . . , n, we solve the 1D interpolation problem along y

»

—

—

–

Bq
1py1q ¨ ¨ ¨ Bq

mpy1q

... . . . ...

Bq
1pymq ¨ ¨ ¨ Bq

mpymq

fi

ffi

ffi

fl

»

—

—

–

ci1
...

cim

fi

ffi

ffi

fl

“

»

—

—

–

c̄i1
...

c̄im

fi

ffi

ffi

fl

, i “ 1, . . . , n , (3.46)

thus obtaining the coefficients tciju
n,m
i,j“1.

3.8 Field-aligned interpolation

Interpolation on the flux surfaces (the 2D surfaces spanned by the coordinates

pη2, η3q for a fixed value of η1) is performed as described in (Latu et al., 2018,

section 2.1). The idea of field-aligned interpolation comes from the observation

that standard interpolation based on a centered rectangular stencil of interpolation

points, as shown in Figure 3.6, requires a fine mesh in the toroidal direction η3,

in order to achieve good accuracy. The idea of field-aligned interpolation is in-

stead to define a stencil of interpolation points which is approximately aligned to

the magnetic field lines, as shown in Figure 3.7, thus allowing for a coarser mesh

in the toroidal direction η3 and reducing the memory footprint of the overall numer-

ical scheme. Figures 3.6 and 3.7 show centered and field-aligned stencils that we

would employ in the case of third-order Lagrange interpolation, in order to clarify the

general idea. When using splines, field-aligned interpolation allows us to replace

2D spline interpolation in pη2, η3q with 1D spline interpolation in η2 and Lagrange

interpolation along the magnetic field lines. More precisely, if we want to interpo-

late a function gpη2, η3q at a given point pη2
˚, η

3
˚q on the flux surface (not belonging

to the logical mesh), we first identify a set of adjacent lines at fixed grid values of

η3 in the neighborhood of η3
˚, which we denote by tη3

` u. It is then possible to com-

pute the values of the coordinate η2 corresponding to the intersections between the

magnetic field line passing through the point pη2
˚, η

3
˚q and the lines at η3 “ η3

` . We

denote such values of the coordinate η2 as ξpη2
˚, η

3
˚, `q, following a notation simi-

lar to (Latu et al., 2018, section 2.1). The values of g at these intersection points,

gpξpη2
˚, η

3
˚, `q, η

3
` q, are computed by spline interpolation along the direction η2. The
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Figure 3.6: Standard interpolation on a flux surface, based on a centered rectangu-
lar stencil of interpolation points (empty bullets).

final value at the point pη2
˚, η

3
˚q is then computed by Lagrange interpolation from the

values gpξpη2
˚, η

3
˚, `q, η

3
` q obtained in the previous step. In particular, we typically

employ a centered stencil and Lagrange polynomials of odd degree.

3.9 Field-aligned differentiation

The parallel derivatives ∇‖ :“ b0 ¨∇, which we also call field-aligned derivatives,

are computed in the same way as described in (Latu et al., 2018, section 2.2). For

a given function gpη2, η3q on a flux surface, its parallel derivative at the mesh point

pη2
i2
, η3
i3
q is computed with central finite differences of order 6, yielding

∇‖gpη
2
i2
, η3
i3
q “

bη
3

0

∆η3

3
ÿ

`“´3

w` ḡpξpη
2
i2
, η3
i3
, i3 ` `q, η

3
i3``
q , (3.47)

where bη
3

0 denotes the third contravariant component of b0 with respect to the tan-

gent basis peη1 , eη2 , eη3q, ∆η3 :“ 2π{n3 represents the uniform size of each cell

along the toroidal direction η3, the weights tw`u3`“´3 are defined as

w0 “ 0 , w´1 “ ´w1 “ ´
3

4
, w´2 “ ´w2 “

3

20
, w´3 “ ´w3 “ ´

1

60
,
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Figure 3.7: Field-aligned interpolation on a flux surface, based on a field-aligned
stencil of interpolation points (empty bullets). The blue crosses represent the points
pξpη2

˚, η
3
˚, `q, η

3
` q.

and the values ḡpξpη2
i2
, η3
i3
, i3 ` `q, η

3
i3``
q are computed by spline interpolation along

the direction η2. The algorithm for computing field-aligned derivatives is represented

graphically in Figure 3.8.

3.10 Summary of the contributions

In this chapter we introduced the basic features of the semi-Lagrangian drift-kinetic

code that we developed within the SeLaLib library. Among all the topics described,

our main contributions are:

• the extension of the field-aligned splitting discussed in (Latu et al., 2018) to a

general setting based on curvilinear coordinates;

• the improvement of the capabilities offered by the SeLaLib library with respect

to our spline discretization, which led to the implementation of a small embed-

ded spline library, offering the possibility to define spline bases on periodic or

non-periodic domains, based on uniform or non-uniform meshes, and interpo-

lation tools employing different types of boundary conditions, such as periodic

boundary conditions, interpolation on Greville points, and Hermite boundary
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Figure 3.8: Field-aligned derivative of a function g at the mesh point pη2
i2
, η3
i3
q on

a flux surface. The blue crosses represent the points pξpη2
i2
, η3
i3
, i3 ` `q, η3

i3``
q, for

l “ ´3, . . . , 3.

conditions (which we do not employ, thus neither describe, in this thesis).

The rest of the material presented in this chapter refers to either background mathe-

matical notions or mathematical and computational tools that were already available

before this research started and that may have been only slightly improved within

the scope of this thesis.
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Chapter 4

Coupled hyperbolic-elliptic problems

in 2D complex geometries

The field-aligned splitting strategy discussed in the previous chapter allows us to

split the 4D Vlasov equation of our drift-kinetic electrostatic model into separate

lower-dimensional advection problems. In this chapter we look at the 2D advection

on poloidal planes in more detail, including its coupling with the quasi-neutrality

equation (described in more detail in chapter 5). If we want to consider realistic

geometries, such as, for example, D-shaped Tokamaks, the domains corresponding

to the poloidal planes of such geometries can be described, from a mathematical

point of view, as singular mapped disk-like domains. The term “mapped” refers to the

fact that such domains can be obtained from a rectangular uniform logical domain

by applying a given coordinate mapping and the term “singular” refers to the fact

that one edge of the rectangular logical domain collapses, through the coordinate

mapping, to one point of the physical domain. We refer sometimes to this point as

the pole of the domain. In this chapter we suggest a numerical strategy to solve

coupled hyperbolic-elliptic problems, similar to the 2D poloidal advection equation

coupled to the quasi-neutrality equation of our original 4D model, in such singular

domains.

More precisely, we are interested in solving the hyperbolic part of our problem with

the semi-Lagrangian method and the elliptic part with a finite element method based
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on B-splines. One advantage of the semi-Lagrangian method is to avoid any limi-

tation related to the Courant-Friedrichs-Lewy condition (Courant et al., 1928) in the

region close to the pole, where the mesh cells become smaller and smaller. Since

the method is based on the integration of the characteristics (backward in time),

the choice of coordinates to be used while performing this integration turns out to

be crucial: such coordinates need indeed to be well-defined in the whole domain,

including the pole. The choice of coordinates that we propose fulfills this aim with-

out affecting the robustness, efficiency and accuracy of the numerical scheme. The

same coordinates can be used as well for the integration forward in time of the char-

acteristic trajectories of point charges or point-like vortices. On the other hand, the

elliptic equation is solved with a finite element method based on B-splines. We

require the elliptic solver to return a solution at least C1 smooth everywhere in the

domain. This is difficult to achieve at the pole. Therefore, we follow the approach

recently developed by (Toshniwal et al., 2017) to define a set of globally C1 smooth

spline basis functions on singular mapped disk-like domains. A higher degree of

smoothness, consistent with the spline degree, may be imposed as well, if needed.

This chapter is organized as follows. Section 4.1 introduces the 2D model that

we choose as a test-bed for our numerical methods. Section 4.2 introduces some

basic notation that we employ consistently throughout this chapter. Section 4.3

describes singular mapped disk-like domains in more detail. Section 4.4 presents

our numerical strategy to solve advection problems on disk-like domains, including

numerical tests. Section 4.5 describes our finite element elliptic solver based on

globally C1 smooth splines, including numerical tests. Section 4.6 describes how

to couple the two numerical schemes in order to solve a self-consistent hyperbolic-

elliptic problem and presents the results of different numerical tests in various disk-

like domains. Finally, we end the chapter with a summary of our contributions.
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4.1 The physical model

The 2D model that we choose as a test-bed for the numerical methods presented in

this chapter is the guiding-center model (O’Neil, 1985; Dubin and O’Neil, 1988)

$

’

&

’

%

Bρ

Bt
´ Ey Bρ

Bx
` Ex Bρ

By
“ 0 ,

´∇ ¨∇Φ “ ρ ,
with

$

&

%

ρp0, x, yq “ ρINpx, yq ,

Φpt, x, yq “ 0 on BΩ .
(4.1)

In the context of plasma physics, (4.1) is typically used to describe low-density non-

neutral plasmas (Davidson, 2001; Driscoll et al., 2002; Sengupta and Ganesh, 2014,

2015) in a uniform magnetic field B aligned with the direction perpendicular to the

px, yq plane. The unknowns in (4.1) are the density of the plasma particles ρ and the

electric scalar potential Φ, related to the electric field via E “ pEx, EyqT “ ´∇Φ.

The advection field p´Ey, Exq, responsible for the transport of ρ in (4.1), represents

the E ˆ B drift velocity. This model is also equivalent, from a mathematical point

of view, to the 2D Euler equations for incompressible inviscid fluids, with ´ρ rep-

resenting the vorticity of the fluid and Φ a stream function. Indeed, (4.1) has been

investigated also in the fluid dynamics community for a variety of studies related to

vortex dynamics and turbulence (Schecter and Dubin, 1999; Schecter et al., 1999;

Schecter and Dubin, 2001; Ganesh and Lee, 2002).

4.2 Notation

In this chapter we denote by pΩ :“ r0, 1s ˆ r0, 2πq the logical domain (Figure 4.1)

and by Ω Ă R2 the physical domain, which is the image of pΩ through a given co-

ordinate transformation F : pΩ Ñ R2. In other words, Ω :“ F ppΩq. We denote by

η :“ ps, θq P pΩ and x :“ px, yq P Ω the logical and Cartesian coordinates, respec-

tively. Moreover, all quantities defined on the logical domain pΩ are denoted by

placing a hat over their symbols. On the other hand, the corresponding quanti-

ties defined on the physical domain Ω are denoted by the same symbols without the

hat. For example, denoting by α a scalar quantity of interest, we have pα : pΩ Ñ R

88



0.0 0.2 0.4 0.6 0.8 1.0

s

0

1

2

3

4

5

6

θ

Figure 4.1: Rectangular uniform logical domain pΩ spanned by the logical coordi-
nates ps, θq.

and α : Ω Ñ R, and the two functions are related via pα “ α ˝ F . For time-

dependent quantities, the domain pΩ (respectively, Ω) is replaced by R` ˆ pΩ (re-

spectively, R` ˆ Ω). Moreover, for vector quantities, the codomain R is replaced by

R2.

4.3 Complex geometries

As mentioned above, we consider here logical domains with a singularity at a unique

pole, where the edge s “ 0 of pΩ collapses to the pole px0, y0q of the physical domain

through the mapping F : F p0, θq “ px0, y0q for all θ. We now provide two analytical

examples of such mappings. The first mapping is defined by (Bouzat et al., 2018)

as
xps, θq :“ x0 ` p1´ κqs cos θ ´∆ s2 ,

yps, θq :“ y0 ` p1` κqs sin θ ,
(4.2)
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where κ and ∆ denote the elongation and the Shafranov shift, respectively. For

s “ 0 the mapping collapses to the pole px0, y0q. The Jacobian matrix of the map-

ping, denoted by JF , reads

JF ps, θq “

«

p1´ κq cos θ ´ 2 ∆ s pκ´ 1qs sin θ

p1` κq sin θ p1` κqs cos θ

ff

, (4.3)

with determinant

det JF ps, θq “ sp1` κqrp1´ κq ´ 2 ∆ s cos θs , (4.4)

which vanishes at the pole. The Jacobian matrix of the inverse transformation reads

J´1
F ps, θq “

1

det JF ps, θq

«

p1` κqs cos θ p1´ κqs sin θ

´p1` κq sin θ p1´ κq cos θ ´ 2 ∆ s

ff

, (4.5)

and it is singular at the pole. The second mapping is defined by (Czarny and Huys-

mans, 2008) as

xps, θq :“
1

ε

´

1´
a

1` εpε` 2 s cos θq
¯

,

yps, θq :“ y0 `
e ξ s sin θ

2´
a

1` εpε` 2 s cos θq
“ y0 `

e ξ s sin θ

1` ε xps, θq
,

(4.6)

where ε and e denote the inverse aspect ratio and the ellipticity, respectively, and

ξ :“ 1{
a

1´ ε2{4. For s “ 0 the mapping collapses to the pole p
`

1´
?

1` ε2
˘

{ε, y0q.

The Jacobian matrix of the mapping reads

JF ps, θq “
e ξ

1` ε xps, θq

»

—

—

—

–

´
1` ε xps, θq

1´ ε xps, θq

cos θ

e ξ

1` ε xps, θq

1´ ε xps, θq

s sin θ

e ξ

sin θ `
ε s sin θ cos θ

1´ ε2 x2ps, θq
s cos θ ´

ε s2 sin2 θ

1´ ε2 x2ps, θq

fi

ffi

ffi

ffi

fl

, (4.7)

with determinant

det JF ps, θq “
s

ε xps, θq ´ 1
, (4.8)
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Figure 4.2: Disk-like domains defined by the mappings (4.2) (left) and (4.6) (right).
The lines originating from the pole are isolines at constant θ, while the lines concen-
tric around the pole are isolines at constant s.

which vanishes at the pole. The Jacobian matrix of the inverse transformation reads

J´1
F ps, θq “

1

det JF ps, θq

»

—

—

—

–

s cos θ ´
ε s2 sin2 θ

1´ ε2 x2ps, θq
´

1` ε xps, θq

1´ ε xps, θq

s sin θ

e ξ

´ sin θ ´
ε s sin θ cos θ

1´ ε2 x2ps, θq
´

1` ε xps, θq

1´ ε xps, θq

cos θ

e ξ

fi

ffi

ffi

ffi

fl

, (4.9)

and it is again singular at the pole. In all the numerical tests considered in this thesis,

mapping (4.2) is set up with the parameters

px0, y0q “ p0, 0q , κ “ 0.3 , ∆ “ 0.2 , (4.10)

and mapping (4.6) is set up with the parameters

y0 “ 0 , ε “ 0.3 , e “ 1.4 , (4.11)

which yield x0 « ´0.15 and ξ « 1.0114. Figure 4.2 shows the physical domains

obtained with these mappings.
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In practical applications it may be not possible to have an analytical description

of the mapping that represents the physical domain of interest, as in the examples

discussed above. Moreover, we are going to solve the elliptic equation in (4.1) with a

finite element method based onB-splines. This means that our numerical strategy is

based on a machinery inherently defined at the discrete level. We therefore need to

have a discrete representation of the analytical mappings discussed above. Based

on the 2D spline basis defined in section 3.6, we define a discrete representation of

our analytical mappings as

xps, θq :“
n1
ÿ

i1“1

n2
ÿ

i2“1

cxi1i2
pBs
i1
psq pBθ

i2
pθq “ x0

pBs
1psq `

n1
ÿ

i1“2

n2
ÿ

i2“1

cxi1i2
pBs
i1
psq pBθ

i2
pθq ,

yps, θq :“
n1
ÿ

i1“1

n2
ÿ

i2“1

cyi1i2
pBs
i1
psq pBθ

i2
pθq “ y0

pBs
1psq `

n1
ÿ

i1“2

n2
ÿ

i2“1

cyi1i2
pBs
i1
psq pBθ

i2
pθq .

(4.12)

We remark again a few differences between the notation employed here (and in

the following) and the corresponding notation employed in section 3.6. The logical

coordinates are now denoted as ps, θq instead of pη1, η2q, a hat is placed over the

symbols denoting the basis functions, when they are defined on the logical domain,

and the superscripts indicating the degrees p1 and p2 have been removed in favor of

superscripts indicating the functional dependence of the basis functions (either on s

or on θ).

In all the numerical tests considered in this thesis, the control points tpcxi1i2 , c
y
i1i2
qu
n1,n2

i1,i2“1

are obtained by interpolating a given analytical mapping on the interpolation points

defined in section 3.6. For more general practical applications, they could be given

as an input from any code capable of constructing a mesh conformal to the flux

surfaces of a given equilibrium magnetic field, such as, for example, the software

Tokamesh (Guillard et al., 2018). Finally, we note that all the control points at i1 “ 1

are equal to the pole, pcx1i2 , c
y
1i2
q “ px0, y0q, which is another way of saying that the

edge s “ 0 of the logical domain collapses to the pole of the physical domain.

In order to compute integrals on the logical domain pΩ (in the subsequent sections),

p1`1 Gauss-Legendre quadrature points and weights are introduced in each cell of

the domain r0, 1s along s and p2`1 Gauss-Legendre quadrature points and weights
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are introduced in each cell of the domain r0, 2πq along θ.

4.4 Semi-Lagrangian advection solver

We now focus on the advection equation in (4.1) and write it in terms of a general

advection field U :“ p´Ey, ExqT as

Bρ

Bt
`U ¨∇ρ “ 0 . (4.13)

We now discuss the optimal choice of coordinates for the integration backward in

time of the characteristics of (4.13). We recall that the advection field available at

the discrete level is the advection field pU defined on the logical domain. It is nat-

ural to think of integrating the characteristic equations in either Cartesian or logical

coordinates. However, both choices present some drawbacks. The characteristic

equations in Cartesian coordinates x read

.
x “ pUpt,F´1

pxqq . (4.14)

These equations are well defined everywhere in the domain, but they become com-

putationally expensive if the mapping F is not easy to invert. On the other hand, the

characteristic equations in logical coordinates η read

.
η “ J´1

F
pU pt,ηq . (4.15)

These equations are not defined at the pole s “ 0, because J´1
F is singular there.

We then suggest to introduce the new coordinates X :“ pX, Y q, defined by the

polar transformation
Xps, θq :“ s cos θ ,

Y ps, θq :“ s sin θ ,
(4.16)

93



−1.0 −0.5 0.0 0.5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

X

Y

−1 0 1

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

X

Y

Figure 4.3: Pseudo-Cartesian coordinates: the light-gray grids represent the grids
in the pseudo-Cartesian coordinates pX, Y q for disk-like domains defined by the
mappings (4.2) (left) and (4.6) (right).

which we name pseudo-Cartesian coordinates. We denote by G : pΩ Ñ R2 the new

mapping defined by Gpηq :“X, and by JG its Jacobian, given by

JGps, θq “

«

cos θ ´s sin θ

sin θ s cos θ

ff

. (4.17)

The pseudo-Cartesian coordinates for the domains defined by the mappings (4.2)

and (4.6) are shown in Figure 4.3. In the simplest case of a circular mapping, they

reduce to standard Cartesian coordinates. The characteristic equations in pseudo-

Cartesian coordinates X read

.
X “ pJFJ

´1
G q

´1
pUpt,G´1

pXqq , (4.18)

where JFJ´1
G represents the Jacobian of the composite mapping F ˝G´1 defined

by F ˝G´1
pXq “ x. For a circular mapping, F ˝G´1 reduces to the identity and

(4.18) reduces to (4.14), which works well because F´1 (inverse polar transforma-

tion) is easy to compute. For more complex non-circular mappings, (4.18) is more
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convenient than (4.14) because the mapping G is easier to invert than the original

mapping F . More precisely, the inverse mapping G´1 is analytical and reads

spX, Y q “
?
X2 ` Y 2 ,

θpX, Y q “ atan2pY,Xq ,
(4.19)

where atan2pY,Xq returns the principal value of the argument function applied to

the complex number X ` iY in the range p´π, πs (which then must be shifted ap-

propriately to the domain r0, 2πq). Moreover, the inverse Jacobian matrix pJFJ´1
G q´1

in (4.18) turns out to be well-behaved everywhere in the physical domain, including

the pole. More precisely, the singularity of the inverse Jacobian matrix

J´1
G ps, θq “

»

–

cos θ sin θ

´
1

s
sin θ

1

s
cos θ

fi

fl , (4.20)

in the limit s Ñ 0`, is cancelled by the matrix elements of JF . The product JFJ´1
G

in general reads

JFJ
´1
G ps, θq “

»

—

—

–

Bx

Bs
cos θ ´

1

s

Bx

Bθ
sin θ

Bx

Bs
sin θ `

1

s

Bx

Bθ
cos θ

By

Bs
cos θ ´

1

s

By

Bθ
sin θ

By

Bs
sin θ `

1

s

By

Bθ
cos θ

fi

ffi

ffi

fl

. (4.21)

From an analytical point of view, (4.21) holds for all values of s except at the pole

s “ 0. However, the products
1

s

Bx

Bθ
and

1

s

By

Bθ
are finite and well-defined in the limit

s Ñ 0`. From a numerical point of view, (4.21) holds for all values of s sufficiently

far from the pole, as far as the factor 1{s does not become too large. Therefore,

we assume that (4.21) holds for s ě ε, for a given small ε. More precisely, the

derivatives Bx{Bθ and By{Bθ vanish for s “ 0. Hence, expanding in s around s “ 0,

we have
Bx

Bθ
ps, θq “ s

B2x

Bs Bθ
p0, θq `Ops2

q ,

By

Bθ
ps, θq “ s

B2y

Bs Bθ
p0, θq `Ops2

q ,

(4.22)
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which yields

lim
sÑ0`

1

s

Bx

Bθ
ps, θq “

B2x

Bs Bθ
p0, θq ,

lim
sÑ0`

1

s

By

Bθ
ps, θq “

B2y

Bs Bθ
p0, θq .

(4.23)

Therefore, the product JFJ´1
G at the pole s “ 0 reads

JFJ
´1
G p0, θq “

»

—

—

–

Bx

Bs
p0, θq cos θ ´

B2x

Bs Bθ
p0, θq sin θ

Bx

Bs
p0, θq sin θ `

B2x

Bs Bθ
p0, θq cos θ

By

Bs
p0, θq cos θ ´

B2y

Bs Bθ
p0, θq sin θ

By

Bs
p0, θq sin θ `

B2y

Bs Bθ
p0, θq cos θ

fi

ffi

ffi

fl

.

(4.24)

For example, in the case of mapping (4.2) we get

pJFJ
´1
G q

´1
p0, θq “

»

—

–

1

1´ κ
0

0
1

1` κ

fi

ffi

fl

, (4.25)

and, similarly, in the case of mapping (4.6) we get

pJFJ
´1
G q

´1
p0, θq “

»

—

–

´
?

1` ε2 0

0
2´

?
1` ε2

e ξ

fi

ffi

fl

. (4.26)

In order to connect (4.21) and (4.24) in a smooth way, for 0 ă s ă ε we interpolate

linearly the value at the pole s “ 0 and the value at s “ ε, obtaining

pJFJ
´1
G q

´1
ps, θq “

´

1´
s

ε

¯

pJFJ
´1
G q

´1
p0, θq `

s

ε
pJFJ

´1
G q

´1
pε, θq . (4.27)

We remark that the result obtained in (4.24) needs to be single-valued, and hence

should not depend on the angle-like variable θ. This is true if we consider analytical

mappings such as (4.2) and (4.6), as demonstrated by (4.25) and (4.26), respec-

tively. If we consider, instead, a discrete representation of the above-mentioned

mappings, defined, for example, in terms of splines, we observe a residual depen-

dence of (4.24) on θ. It is possible to measure the discrepancy between the ma-

trix elements of pJFJ´1
G q´1p0, θq, computed by inverting (4.24) (with the derivatives
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Circular mapping Mapping (4.2) Mapping (4.6)

n1 ˆ n2 Error Order Error Order Error Order

16ˆ 32 8.30ˆ 10´6 1.19ˆ 10´5 8.66ˆ 10´6

32ˆ 64 5.17ˆ 10´7 4.01 7.38ˆ 10´7 4.01 5.39ˆ 10´7 4.01

64ˆ 128 3.23ˆ 10´8 4.00 4.61ˆ 10´8 4.00 3.37ˆ 10´8 4.00

128ˆ 256 2.02ˆ 10´9 4.00 2.88ˆ 10´9 4.00 2.94ˆ 10´9 3.52

256ˆ 512 1.26ˆ 10´10 4.00 1.80ˆ 10´10 4.00 3.69ˆ 10´10 3.00

Table 4.1: Convergence of the product pJFJ´1
G q´1 to the θ-independent analytical

values for a circular mapping and for the mappings (4.2) and (4.6).

evaluated from the discrete spline mapping (4.12)), and the corresponding analyt-

ical θ-independent matrix elements. As a measure of the error, we consider the

maximum among all matrix elements and all values of θ for a given interpolation

grid. The results in Table 4.1 show that such errors become asymptotically small as

the computational mesh is refined (that is, as the number of interpolation points is

increased). Such errors do not constitute a problem if they turn out to be smaller

than the overall numerical accuracy of our scheme. However, we suggest to guar-

antee that (4.24) is truly single-valued by taking an average of (4.24) over all values

of θ in the interpolation grid. This may become particularly useful if implicit inte-

gration schemes are used, when the magnitude of the above-mentioned errors may

become comparable to the tolerances chosen for the implicit methods of choice.

We also remark that the parameter ε can be chosen arbitrarily small, as far as it

avoids underflows and overflows in floating point arithmetic. For all the numerical

tests presented in this thesis we set ε “ 10´12.
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4.4.1 Numerical results

We test our advection solver for the stationary rotating advection field

Upx, yq :“ ω

˜

yc ´ y

x´ xc

¸

, (4.28)

with ω “ 2π and pxc, ycq “ p0.25, 0q. The numerical test is performed on map-

ping (4.6) with the parameters in (4.11). The flow field corresponding to the advec-

tion field (4.28) can be computed analytically and reads

xpt`∆tq “ xc ` pxptq ´ xcq cospω∆tq ´ pyptq ´ ycq sinpω∆tq ,

ypt`∆tq “ yc ` pxptq ´ xcq sinpω∆tq ` pyptq ´ ycq cospω∆tq ,
(4.29)

where ∆t denotes the time step. Therefore, the numerical solution can be compared

to the exact one obtained from the analytical flow field by the method of characteris-

tics, ρexpt, xptq, yptqq “ ρp0, xp0q, yp0qq, where the initial positions xp0q and yp0q are

obtained from (4.29) with ∆t “ ´t. The initial condition is set to a superposition of

cosine bells with elliptical cross sections:

ρp0, x, yq :“
1

2
rG pr1px, yqq ` G pr2px, yqqs , (4.30)

where Gprq is defined as

Gprq :“

$

&

%

cos4
´πr

2a

¯

r ă a ,

0 elsewhere ,
(4.31)

with a “ 0.3, and r1px, yq and r2px, yq are defined as

r1px, yq :“
a

px´ x̄q2 ` 8py ´ ȳq2 ,

r2px, yq :“
a

8px´ x̄q2 ` py ´ ȳq2 .
(4.32)

This test case is inspired by one presented in (Güçlü et al., 2014, section 5.2): the

non-Gaussian initial condition allows us to possibly detect any deformation of the ini-
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tial density perturbation while rotating under the action of the advection field (4.28).

Denoting by ∆ρ :“ ρ´ρex the numerical error, that is, the difference between the nu-

merical solution and the exact one, measures of the error of our numerical scheme

are obtained by taking the L8-norm in time of the spatial L2-norm of ∆ρ,

max
t
||∆ρ||L2 :“ max

t

˜
d

ż

Ω

dx dy r∆ρpt, x, yqs2
¸

“ max
t

˜
d

ż

pΩ

ds dθ | det JF ps, θq| r∆pρpt, s, θqs2

¸

,

(4.33)

computed using the Gauss-Legendre quadrature points and weights mentioned in

section 4.3, and the L8-norm in time of the spatial L8-norm of ∆ρ,

max
t
||∆ρ||L8 :“ max

t
max
px,yqPΩ

|∆ρpt, x, yq| “ max
t

max
ps,θqPpΩ

|∆pρpt, s, θq| , (4.34)

computed on the Greville points. We remark that the pole is included when we esti-

mate the spatial L8-norm (4.34). Table 4.2 shows the convergence of our numerical

scheme while decreasing the time step ∆t and correspondingly refining the spatial

mesh by increasing the number of points n1 in the direction s and the number of

points n2 in the direction θ (in order to keep the CFL number constant), using cu-

bic splines and an explicit third-order Runge-Kutta method for the integration of the

characteristics. We note that there are no effects of order reduction due to the sin-

gularity at the pole. Standard tensor-product spline interpolation turns out to work

well in the case of analytical advection fields, provided our choice of coordinates for

the integration of the characteristics.

The time integration algorithm is as follows. Starting from a mesh point ηij :“ psi, θjq

with pseudo-Cartesian coordinates X ij :“ Gpηijq, we compute the first-stage,

99



−1.0 −0.5 0.0 0.5 1.0

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(xc, yc)

ρ(t, x, y) at t = 0.8

−0.002

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.4: Numerical test of the advection solver: contour plot of the density
ρpt, x, yq at time t “ 0.8. The dashed circle represents the trajectory that the initial
density perturbation is expected to follow under the action of the rotating advection
field (4.28).

∆t n1 ˆ n2 maxt ||∆ρ||L2 Order maxt ||∆ρ||L8 Order

0.1 64ˆ 128 3.25ˆ 10´2 3.53ˆ 10´1

0.1{2 128ˆ 256 4.10ˆ 10´3 2.99 4.34ˆ 10´2 3.02

0.1{4 256ˆ 512 5.11ˆ 10´4 3.00 5.09ˆ 10´3 3.09

0.1{8 512ˆ 1024 6.39ˆ 10´5 3.00 6.13ˆ 10´4 3.05

0.1{16 1024ˆ 2048 7.98ˆ 10´6 3.00 7.52ˆ 10´5 3.03

Table 4.2: Third-order convergence of the advection solver using cubic splines and
an explicit third-order Runge-Kutta method for the integration of the characteristics.
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second-stage and third-stage derivatives and solutions

1.
.
X
p1q
ij :“ pJFJ

´1
G q

´1
pηijq pUpηijq

X
p1q
ij :“X ij ´

∆t

2

.
X
p1q
ij (4.35a)

η
p1q
ij :“ G´1

pX
p1q
ij q

2.
.
X
p2q
ij :“ pJFJ

´1
G q

´1
pη
p1q
ij q

pUpη
p1q
ij q

X
p2q
ij :“X ij ´∆t

”

2
.
X
p2q
ij ´

.
X
p1q
ij

ı

(4.35b)

η
p2q
ij :“ G´1

pX
p2q
ij q

3.
.
X
p3q
ij :“ pJFJ

´1
G q

´1
pη
p2q
ij q

pUpη
p2q
ij q

X
p3q
ij :“X ij ´

∆t

6

” .
X
p1q
ij ` 4

.
X
p2q
ij `

.
X
p3q
ij

ı

(4.35c)

η
p3q
ij :“ G´1

pX
p3q
ij q

The logical coordinates ηp3qij obtained represent the origin of the characteristic at

time t´∆t passing through the point ηij at time t.

4.5 Spline finite element elliptic solver

We now focus on the elliptic equation in (4.1) and write it in the more general form

´∇ ¨ pα∇Φq ` β Φ “ ρ , (4.36)

which reduces to Poisson’s equation ´∇ ¨∇Φ “ ρ for α “ 1 and β “ 0. We want

to solve this equation with a finite element method based on B-splines. Following

an isogeometric approach, we use the same spline basis used to construct the dis-

crete spline mappings (4.12) as a basis for our finite element method. Moreover, our

aim is to obtain a potential Φ which is at least C1 smooth everywhere in the phys-

ical domain, including the pole, so that the corresponding advection fields for the

transport of ρ are at least continuous. This is achieved by imposing appropriate C1

smoothness constraints on the spline basis while solving the linear system obtained
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from the weak form of (4.36). A systematic approach to define a set of globally C1

smooth spline basis functions on singular mapped disk-like domains was suggested

in (Toshniwal et al., 2017) and we now recall its basic ideas.

4.5.1 C1 smooth polar splines

The idea is to satisfy the C1 smoothness requirements by imposing appropriate con-

straints on the 2n2 degrees of freedom corresponding to i1 “ 1, 2 for all i2. More

precisely, the 2n2 basis functions corresponding to these degrees of freedom are

replaced by only three new basis functions, defined as linear combinations of the

existing ones. In order to guarantee the properties of partition of unity and positivity,

(Toshniwal et al., 2017) suggests to use barycentric coordinates to construct these

linear combinations. Taking an equilateral triangle enclosing the pole and the first

row of control points pcx2 i2 , c
y
2 i2
q, with vertices

V1 :“ px0 ` τ, y0q , V2 :“

ˆ

x0 ´
τ

2
, y0 `

?
3

2
τ

˙

, V3 :“

ˆ

x0 ´
τ

2
, y0 ´

?
3

2
τ

˙

,

with τ defined as

τ :“ max

„

max
i2
p´2pcx2 i2 ´ x0qq,

max
i2
ppcx2 i2 ´ x0q ´

?
3pcy2 i2 ´ y0qq,

max
i2
ppcx2 i2 ´ x0q `

?
3pcy2 i2 ´ y0qq



,

(4.37)

we denote by pλ1, λ2, λ3q the barycentric coordinates of any point with respect to the

vertices of this triangle:

λ1px, yq :“
1

3
`

2

3

1

τ
px´ x0q , (4.38a)

λ2px, yq :“
1

3
´

1

3

1

τ
px´ x0q `

?
3

3

1

τ
py ´ y0q , (4.38b)

λ3px, yq :“
1

3
´

1

3

1

τ
px´ x0q ´

?
3

3

1

τ
py ´ y0q . (4.38c)
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Then, the three new basis functions are denoted by pBl, for l “ 1, 2, 3, and defined

as

pBlps, θq :“
2
ÿ

i1“1

n2
ÿ

i2“1

λlpc
x
i1i2
, cyi1i2q

pBs
i1
psq pBθ

i2
pθq . (4.39)

It can be shown that these basis functions are positive, pBlps, θq ě 0 @ps, θq and @l,

and that they satisfy the partition of unity property, namely

3
ÿ

l“1

pBlps, θq `
n1
ÿ

i1“3

n2
ÿ

i2“1

pBs
i1
psq pBθ

i2
pθq “ 1 @ps, θq . (4.40)

Moreover, the new basis functions Bl, related to pBl via pBl “ Bl ˝ F , are C1 smooth

everywhere in the physical domain.

4.5.2 Finite element solver

We now consider a more general version of the elliptic equation (4.36) which in-

cludes a finite set of nc point charges, denoted with the label c, of charges qc and

positions pxc, ycq. Denoting by ρSL and ρPIC the semi-Lagrangian density and the

particle density, respectively, we rewrite (4.36) as

´∇ ¨ pα∇Φq ` β Φ “ ρSL ` ρPIC , (4.41)

with the particle density ρPIC defined as

ρPICpx, yq :“
nc
ÿ

c“1

qc δpx´ xcqδpy ´ ycq , (4.42)

and homogeneous Dirichlet boundary conditions Φpx, yq “ 0 on BΩ (omitting the

time dependence of Φ). We impose these boundary conditions by removing the cor-

responding basis functions from both the test space and the trial space. More pre-

cisely, we choose as test and trial spaces the space defined by the tensor-product

spline basis t pBi1i2ps, θq :“ pBs
i1
psq pBθ

i2
pθq un1´1,n2

i1,i2“1 , where we remove the last n2 basis
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functions corresponding to i1 “ n1. Hence, the weak form of (4.41) reads

ż

Ω

dx dy pα∇Φ ¨∇Bi1i2 ` β ΦBi1i2q “

ż

Ω

dx dy ρSLBi1i2 `

nc
ÿ

c“1

qcBi1i2pxc, ycq ,

for all i1 “ 1, . . . , n1´1 and i2 “ 1, . . . , n2. We now expand Φ on the trial space and

ρSL on the full tensor-product space (without removing the last n2 basis functions,

as the space where ρSL is defined is completely independent from the test and trial

spaces):

Φ “
n1´1
ÿ

j1“1

n2
ÿ

j2“1

Φj1j2 Bj1j2 , ρSL “
n1
ÿ

k1“1

n2
ÿ

k2“1

ρk1k2 Bk1k2 . (4.43)

To sum up, the following integer indices are being used:

i1 “ 1, . . . , n1 ´ 1 i2 “ 1, . . . , n2 (test space)

j1 “ 1, . . . , n1 ´ 1 j2 “ 1, . . . , n2 (trial space)

k1 “ 1, . . . , n1 k2 “ 1, . . . , n2 (space of ρSL)

(4.44)

Hence, we obtain

n1´1
ÿ

j1“1

n2
ÿ

j2“1

Φj1j2

ż

Ω

dx dy pα∇Bj1j2 ¨∇Bi1i2 ` β Bj1j2Bi1i2q

“

n1
ÿ

k1“1

n2
ÿ

k2“1

ρk1k2

ż

Ω

dx dy Bk1k2Bi1i2 `

nc
ÿ

c“1

qcBi1i2pxc, ycq ,

(4.45)

for all i1 “ 1, . . . , n1 ´ 1 and i2 “ 1, . . . , n2. We now introduce the tensors

Si1i2j1j2 :“

ż

Ω

dx dy pα∇Bj1j2 ¨∇Bi1i2 ` β Bj1j2Bi1i2q

“

ż

pΩ

ds dθ | det JF |
´

pα p∇ pBj1j2 ¨G
´1
¨ p∇ pBi1i2 `

pβ pBj1j2
pBi1i2

¯

,

(4.46a)

Mi1i2k1k2 :“

ż

Ω

dx dy Bk1k2 Bi1i2 “

ż

pΩ

ds dθ | det JF | pBk1k2
pBi1i2 , (4.46b)
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where p∇ denotes the gradient in the logical domain, defined as p∇pg :“

ˆ

Bpg

Bs
,
Bpg

Bθ

˙T

for any function pg P C1ppΩq, and G´1 denotes the inverse of the metric matrix of the

logical coordinate system (defined by the metric coefficients (A.7)). Such integrals

are computed using the Gauss-Legendre quadrature points and weights mentioned

in section 4.3. We then obtain

n1´1
ÿ

j1“1

n2
ÿ

j2“1

Si1i2j1j2 Φj1j2 “

n1
ÿ

k1“1

n2
ÿ

k2“1

Mi1i2k1k2 ρk1k2 `
nc
ÿ

c“1

qc pBi1i2psc, θcq , (4.47)

for all i1 “ 1, . . . , n1 ´ 1 and i2 “ 1, . . . , n2. Here, the basis functions pBi1i2 in the

last term are evaluated at the positions psc, θcq “ F´1
pxc, ycq of the point charges

in the logical domain. We remark that, when the elliptic equation is coupled to the

advection equation for ρ in the guiding-center model, F´1
pxc, ycq needs only to be

computed at the beginning of a simulation: later on, the particle equations of mo-

tion are integrated using the pseudo-Cartesian coordinates pXc, Ycq and therefore

psc, θcq “ G´1
pXc, Ycq. Equation (4.47) can be written in matrix form as follows.

Defining the new integer indices

i :“ pi1 ´ 1qn2 ` i2 “ 1, . . . , pn1 ´ 1qn2 (test space)

j :“ pj1 ´ 1qn2 ` j2 “ 1, . . . , pn1 ´ 1qn2 (trial space)

k :“ pk1 ´ 1qn2 ` k2 “ 1, . . . , n1n2 (space of ρSL)

(4.48)

we can write (4.47) as

SΦ “MρSL ` ρPIC , (4.49)

where we introduced the matrices S and M with elements pSqij :“ Si1i2j1j2 and

pMqik :“ Mi1i2k1k2 , and the vectors Φ, ρSL and ρPIC with elements pΦqj :“ Φj1j2 ,

pρSLqk :“ ρk1k2 and pρPICqi :“
řnc

c“1 qc
pBi1i2psc, θcq. The C1 smoothness constraint is

imposed by applying to the tensor-product spline basis of the test and trial spaces

the restriction operator (using a notation similar to (Toshniwal et al., 2017, section

3.3))

ET :“

˜

sET 0

0 I

¸

, (4.50)
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where sE contains the barycentric coordinates of the pole and of the first row of con-

trol points. More precisely, sE is a 2n2 ˆ 3 matrix with elements sEil :“ λlpc
x
i1i2
, cyi1i2q

and I is the identity matrix of size rpn1´ 3qn2s ˆ rpn1´ 3qn2s. Hence, the restriction

operator E is a matrix of size rpn1 ´ 1qn2s ˆ r3 ` pn1 ´ 3qn2s. Therefore, (4.49)

becomes
sS sΦ “ ET

pMρSL ` ρPICq , (4.51)

where sS :“ ETSE and the solution vector sΦ is of size r3` pn1 ´ 3qn2s. The matrix
sS is symmetric and positive-definite, hence we can solve the linear system (4.51)

with the conjugate gradient method (Hestenes and Stiefel, 1952; Quarteroni et al.,

2006). The resulting solution is then prolonged back to the trial space via Φ “ E sΦ.

4.5.3 Numerical results

We first test our elliptic solver on Poisson’s equation

´∇ ¨∇Φ “ ρ , (4.52)

with the method of manufactured solutions, looking for an exact solution of the form

pΦexps, θq :“ p1´ s2
q cos p2π xps, θqq sin p2π yps, θqq , (4.53)

on the physical domain defined by mapping (4.2). Denoting by ∆Φ :“ Φ ´ Φex the

numerical error, that is the difference between the numerical solution and the exact

one, measures of the error are obtained by computing the spatial L2-norm of ∆Φ,

||∆Φ||L2 :“

d

ż

Ω

dx dy r∆Φpx, yqs2 “

d

ż

pΩ

ds dθ | det JF ps, θq| r∆pΦps, θqs2 ,

computed using the Gauss-Legendre quadrature points and weights mentioned in

section 4.3, and the spatial L8-norm of ∆Φ,

||∆Φ||L8 :“ max
px,yqPΩ

|∆Φpx, yq| “ max
ps,θqPpΩ

ˇ

ˇ

ˇ
∆pΦps, θq

ˇ

ˇ

ˇ
, (4.54)
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Figure 4.5: Numerical solution of Poisson’s equation on a disk-like domain defined
by mapping (4.2): contour plots of the numerical solution (left) and error (right),
obtained with n1 ˆ n2 “ 128ˆ 256 and cubic splines.

computed on the Greville points. We remark again that the pole is included when

we estimate the spatial L8-norm (4.54). Numerical results are shown in Figure 4.5.

Table 4.3 shows the convergence of the solver while increasing the mesh size using

cubic splines.

We then test our solver on the quasi-neutrality equation

´∇ ¨ pα∇Φq ` βΦ “ ρ , (4.55)

with θ-independent profiles αpsq and βpsq defined as (Figure 4.6)

αpsq :“ exp

„

´ tanh

ˆ

s´ 0.5

0.1

˙

, βpsq :“ exp

„

tanh

ˆ

s´ 0.5

0.2

˙

,

and look again for an exact solution of the form (4.53). Measures of the error are

obtained, as before, by computing the spatial L2-norm and L8-norm of the nu-

merical error, ||∆Φ||L2 and ||∆Φ||L8 . Numerical results are shown in Figure 4.7.

Table 4.4 shows the convergence of the solver while increasing the mesh size using
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n1 ˆ n2 ||∆Φ||L2 Order ||∆Φ||L8 Order

32ˆ 64 7.10ˆ 10´5 4.17ˆ 10´5

64ˆ 128 3.87ˆ 10´6 4.20 2.31ˆ 10´6 4.17

128ˆ 256 2.33ˆ 10´7 4.05 1.41ˆ 10´7 4.03

256ˆ 512 1.44ˆ 10´8 4.02 8.78ˆ 10´9 4.01

512ˆ 1024 8.99ˆ 10´10 4.00 5.48ˆ 10´10 4.00

Table 4.3: Numerical solution of Poisson’s equation on a disk-like domain defined
by mapping (4.2): fourth-order convergence of the elliptic solver using cubic splines.
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Figure 4.6: θ-independent profiles used in the quasi-neutrality equation (4.55).
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Figure 4.7: Numerical solution of the quasi-neutrality equation on a disk-like domain
defined by mapping (4.2): contour plots of the numerical solution (left) and error
(right), obtained with n1 ˆ n2 “ 128ˆ 256 and cubic splines.

cubic splines.

4.5.4 Evaluation of the electric field

The advection fields for the transport of ρ in (4.1) are obtained from the potential Φ

by means of derivatives. Here we suggest a strategy to evaluate the Cartesian com-

ponents of the gradient of Φ while taking into account the singularity at the pole. We

denote again by p∇pΦ the gradient of pΦ in the logical domain. The Cartesian compo-

nents of the gradient are obtained from the logical ones by applying the inverse of

the transposed Jacobian matrix:

y∇Φps, θq “ pJ´1
F q

T
ps, θq p∇pΦps, θq . (4.56)

From an analytical point of view, (4.56) holds for all values of s ą 0 and its limit

as s Ñ 0` is finite and unique. From a numerical point of view, (4.56) holds for

all values of s sufficiently far from the pole, as far as the inverse Jacobian does not
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n1 ˆ n2 ||∆Φ||L2 Order ||∆Φ||L8 Order

32ˆ 64 7.11ˆ 10´5 8.36ˆ 10´5

64ˆ 128 3.82ˆ 10´6 4.22 3.78ˆ 10´6 4.47

128ˆ 256 2.29ˆ 10´7 4.06 2.13ˆ 10´7 4.15

256ˆ 512 1.41ˆ 10´8 4.02 1.28ˆ 10´8 4.06

512ˆ 1024 8.81ˆ 10´10 4.00 7.87ˆ 10´10 4.02

Table 4.4: Numerical solution of the quasi-neutrality equation on a disk-like domain
defined by mapping (4.2): fourth-order convergence of the elliptic solver using cubic
splines.

become too large. Therefore, we assume that (4.56) holds for s ě ε, for a given small

ε. For s “ 0 the partial derivative with respect to θ vanishes and all the information

is contained in the partial derivative with respect to s, which takes a different value

for each value of θ. Recalling that a partial derivative has the geometrical meaning

of a directional derivative along a vector of the tangent basis, the idea is to combine

two given values corresponding to two different values of θ and extract from them

the Cartesian components of the gradient at the pole. The two chosen values of θ

must correspond to linearly independent directions, so that from

BpΦ

Bs
p0, θ1q “ y∇Φ ¨ es “ py∇Φqx

Bx

Bs
p0, θ1q ` py∇Φqy

By

Bs
p0, θ1q , (4.57a)

BpΦ

Bs
p0, θ2q “ y∇Φ ¨ es “ py∇Φqx

Bx

Bs
p0, θ2q ` py∇Φqy

By

Bs
p0, θ2q , (4.57b)

the two components py∇Φqx and py∇Φqy can be obtained. Each possible couple of

linearly independent directions produces the same result. In order to connect the

two approaches in a smooth way, for 0 ă s ă ε we interpolate linearly the value at

the pole s “ 0 and the value at s “ ε:

y∇Φps, θq “

ˆ

1´
s

ε

˙

y∇Φp0, θq `
s

ε
y∇Φpε, θq . (4.58)
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We remark that the parameter ε can be chosen arbitrarily small, as far as it avoids

underflows and overflows in floating point arithmetic. For all the numerical tests

presented in this thesis we set ε “ 10´12.

4.6 The 2D guiding-center model

We now address the solution of our 2D guiding-center model

$

’

&

’

%

Bρ

Bt
´ Ey Bρ

Bx
` Ex Bρ

By
“ 0 ,

´∇ ¨∇Φ “ ρ ,
with

$

&

%

ρp0, x, yq “ ρINpx, yq ,

Φpt, x, yq “ 0 on BΩ .
(4.59)

Physical quantities conserved by the model are the total mass and energy

Mptq :“

ż

Ω

dx dy ρpt, x, yq “

ż

pΩ

ds dθ | det JF ps, θq| pρpt, s, θq , (4.60a)

W ptq :“

ż

Ω

dx dy |Ept, x, yq|2 “

ż

pΩ

ds dθ | det JF ps, θq| |pEpt, s, θq|
2 . (4.60b)

These integrals are computed using the Gauss-Legendre quadrature points and

weights mentioned in section 4.3. The relative errors for the conservation of the

invariants (4.60) are defined as

δMptq :“
|Mp0q ´Mptq|

|Mp0q|
, δW ptq :“

|W p0q ´W ptq|

|W p0q|
. (4.61)

Before describing the numerical tests considered for this model, we present our

time-advancing strategy and how we deal with the problem of defining an equilibrium

density on complex mappings while initializing our simulations.

4.6.1 Time integration

We present here two different time integration schemes, one explicit and one im-

plicit, that may be chosen according to the particular physical dynamics described
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by model (4.59). Both integration schemes are based on a predictor-corrector pro-

cedure. In the numerical tests discussed in this section, the explicit scheme is our

default choice, because of its low computational cost. However, there are situa-

tions (as, for example, the test case simulating the merger of two macroscopic vor-

tices presented in section 4.6.3) where the dynamics described by model (4.59) is

such that the explicit scheme would require very small time steps in order to pro-

duce correct results. Instead, the implicit trapezoidal scheme that we describe here

has proven capable of capturing the correct dynamics with much larger time steps,

thanks to its symmetry and adjoint-symplecticity (Hairer et al., 2012).

Second-order explicit scheme

The explicit time integration scheme is the second-order integrator described in

(Xiong et al., 2018, section 2.2). Since it will be used also for test cases involv-

ing point charges, we denote here again by ρSL and ρPIC the semi-Lagrangian den-

sity and the particle density, respectively. Moreover, following the notation of sec-

tion 4.4, we denote by X ij :“ Gpηijq the pseudo-Cartesian coordinates of a given

mesh point and by Xc :“ Gpηcq the pseudo-Cartesian coordinates of a given point

charge, respectively. The first-order prediction (superscript “pP q”) is given by

1.
.
X
pP q
ij :“ pJFJ

´1
G q

´1
pηijq pUpηijq

X
pP q
ij :“X ij ´∆t

.
X
pP q
ij (4.62a)

η
pP q
ij :“ G´1

pX
pP q
ij q

2.
.
XpP q

c :“ pJFJ
´1
G q

´1
pηcq pUpηcq

XpP q
c :“Xc `∆t

.
XpP q

c (4.62b)

ηpP qc :“ G´1
pXpP q

c q

We then compute the intermediate semi-Lagrangian and particle densities ρpP qSL and

ρ
pP q
PIC and obtain the intermediate electric potential ΦpP q by solving Poisson’s equa-

tion. Denoting by pU
pP q

the corresponding intermediate advection field, the second-
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order correction (superscript “pCq”) is given by

1.
.
X
pCq
ij :“ pJFJ

´1
G q

´1
pη
pP q
ij q

pUpη
pP q
ij q ` pJFJ

´1
G q

´1
pηijq pU

pP q
pηijq

X
pCq
ij :“X ij ´

∆t

2

.
X
pCq
ij (4.63a)

η
pCq
ij :“ G´1

pX
pCq
ij q

2.
.
XpCq

c :“ pJFJ
´1
G q

´1
pηcq pUpηcq ` pJFJ

´1
G q

´1
pηpP qc q pU

pP q
pηpP qc q

XpCq
c :“Xc `

∆t

2

.
XpCq

c (4.63b)

ηpCqc :“ G´1
pXpCq

c q

For point charges, this second-order scheme is equivalent to Heun’s method (im-

proved Euler’s method (Süli and Mayers, 2003)).

Second-order implicit scheme

The implicit time integration scheme is based on the implicit trapezoidal rule and it

will not be used for test cases involving point charges. We denote again by ρSL the

semi-Lagrangian density and by X ij :“ Gpηijq the pseudo-Cartesian coordinates

of a given mesh point. The second-order prediction (superscript “pP q”) is given by

X
pP q
ij :“X

pkq
ij and ηpP qij :“ G´1

pX
pP q
ij q, where the k-th iteration is computed as

.
X
pkq
ij :“ pJFJ

´1
G q

´1
pηijq pUpηijq ` pJFJ

´1
G q

´1
pη
pk´1q
ij q pUpη

pk´1q
ij q

X
pkq
ij :“X ij ´

∆t

4

.
X
pkq
ij

η
pkq
ij :“ G´1

pX
pkq
ij q

with Xp0q
ij :“ X ij and ηp0qij :“ ηij , provided that |Xpkq

ij ´X
pk´1q
ij |2 ď τ 2, where the

tolerance τ is defined as τ :“ τA ` τR |X ij|, for given absolute and relative toler-

ances τA and τR. We then compute the intermediate semi-Lagrangian density ρpP qSL

and obtain the intermediate electric potential ΦpP q by solving Poisson’s equation.

Denoting by pU
pP q

the corresponding intermediate advection field, the second-order

correction (superscript “pCq”) is given by XpCq
ij :“ X

pkq
ij and ηpCqij :“ G´1

pX
pCq
ij q,
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where the k-th iteration is computed as

.
X
pkq
ij :“ pJFJ

´1
G q

´1
pηijq pU

pP q
pηijq ` pJFJ

´1
G q

´1
pη
pk´1q
ij q pU

pP q
pη
pk´1q
ij q

X
pkq
ij :“X ij ´

∆t

2

.
X
pkq
ij

η
pkq
ij :“ G´1

pX
pkq
ij q

with Xp0q
ij :“X ij and ηp0qij :“ ηij , provided that |Xpkq

ij ´X
pk´1q
ij |2 ď τ 2.

4.6.2 Numerical equilibria

Defining an equilibrium density ρ and a corresponding equilibrium potential Φ for

the system (4.59) becomes non-trivial on domains defined by complex non-circular

mappings, such as (4.2) and (4.6). In the case of circular mappings, any axisym-

metric density independent of the angle variable θ turns out to be an equilibrium for

the transport equation in (4.59). For more complex mappings we follow the numeri-

cal procedure suggested by (Takeda and Tokuda, 1991), and references therein, to

compute an equilibrium couple pρ,Φq. The equilibrium is determined by the eigen-

value problem of finding pσ,Φq such that ´∇ ¨∇Φ “ σ gpΦq, with given g such that

g1pΦq ‰ 0 in some limited domain. Given initial data pσp0q,Φp0qq, the i-th iteration,

with i ě 1, is computed with the following steps:

1. compute ρpiq :“ σpi´1qgpΦpi´1qq;

2. compute Φ
piq
˚ by solving ´∇ ¨∇Φ

piq
˚ “ ρpiq;

3. if a maximum value Φmax is given, compute cpiq by setting cpiq :“ Φmax{||Φ
piq
˚ ||L8 ;

if a maximum value ρmax is given, compute cpiq by solving cpiqgpcpiq ||Φpiq˚ ||L8q “
ρmax
σpi´1q

;

4. compute pσpiq,Φpiqq :“ cpiq pσpi´1q,Φ
piq
˚ q.

The iterative procedure stops when |σpiq ´ σpi´1q| ď τ , for a given tolerance τ . The

eigenvalue problem does not have a unique solution, but the algorithm is expected

to converge to the ground state, that is the eigenstate with minimum eigenvalue. Fig-

ure 4.8 illustrates, for example, the equilibrium obtained in this way with gpΦq “ Φ2
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and ρmax “ 1 on domains defined by a circular mapping and by the mappings (4.2)

and (4.6).
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Figure 4.8: Numerical equilibrium density ρpx, yq obtained with gpΦq “ Φ2 and
ρmax “ 1 on disk-like domains defined by a circular mapping (top) and by the map-
pings (4.2) (bottom left) and (4.6) (bottom right).
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4.6.3 Numerical results

We present here various numerical tests performed on model (4.59), in order to ver-

ify the validity and correctness of the numerical schemes discussed in the previous

sections.

Diocotron instability

As a first test we investigate the evolution of the diocotron instability on a domain

defined by a circular mapping. From a physical point of view, this corresponds to

studying a non-neutral plasma in cylindrical geometry, where the plasma particles

are confined radially by a uniform axial magnetic field with a cylindrical conducting

wall located at the outer boundary (Levy, 1965). Following (Davidson, 2001), we

consider the initial density profile

pρp0, s, θq :“ pρ0psq ` pρ1p0, s, θq :“

#

1` ε cospmθq s´ ď s ď s` ,

0 elsewhere .
(4.64)

This corresponds to a θ-independent equilibrium pρ0 (an annular charged layer) with

a density perturbation pρ1 of azimuthal mode number m and small amplitude ε. The

linear dispersion relation for a complex eigenfrequency ω reads (Davidson, 2001)

ˆ

ω

ωD

˙2

´ bm
ω

ωD
` cm “ 0 , (4.65)

where ωD is the diocotron frequency (ωD “ 1{2 in our units), and bm and cm are

defined as

bm :“ m

«

1´

ˆ

s´

s`

˙2
ff

` ps`q2m ´ ps´q2m , (4.66a)

cm :“ m

«

1´

ˆ

s´

s`

˙2
ff

“

1´ ps´q2m
‰

´

«

1´

ˆ

s´

s`

˙2m
ff

“

1´ ps`q2m
‰

. (4.66b)
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If 4cm ą b2
m, the oscillation frequencies resulting from (4.65) form complex conju-

gate pairs. The solution with Imω ą 0 corresponds to the diocotron instability and

describes how rapidly the electric potential grows. The quantity of interest, in this

regard, is the L2-norm of the perturbed electric potential

||Φ´ Φ0||L2 “

d

ż

Ω

dx dy rΦpt, x, yq ´ Φ0px, yqs
2

“

d

ż

pΩ

ds dθ | det JF ps, θq|
”

pΦpt, s, θq ´ pΦ0ps, θq
ı2

,

(4.67)

where Φ0 denotes the equilibrium electric potential and the integration is performed

again using the Gauss-Legendre quadrature points and weights. In order to repre-

sent the initial density in the finite-dimensional space of tensor-product splines, we

modify (4.64) by a radial smoothing to avoid discontinuities:

pρp0, s, θq :“

$

’

&

’

%

r1` ε cospmθqs exp

„

´

´s´ s̄

d

¯p


s´ ď s ď s` ,

0 elsewhere ,
(4.68)

with s̄ :“ ps` ` s´q{2 and d :“ ps` ´ s´q{2. If the smoothing layer is small enough,

we can still rely on the analytical result obtained for the dispersion relation in the

case of the sharp annular layer (4.64). The numerical results have been verified

against the analytical dispersion relation for a perturbation with azimuthal mode

number m “ 9 and amplitude ε “ 10´4. The numerical growth rate is in good

agreement with the analytical one, Imω « 0.18, for the time interval 20 À t À 50,

which corresponds to the linear phase. At time t « 50, the system enters its non-

linear phase. The simulation is run with n1 ˆ n2 “ 128ˆ 256 and ∆t “ 0.1, with the

explicit time integrator described in section 4.6.1. Additional parameters defining the

initial condition (4.68) are set to s´ “ 0.45, s` “ 0.50 and p “ 50. Numerical results

are illustrated in Figures 4.9-4.12. For the conservation of mass and energy we

get

max
tPr0,70s

δMptq « 5.8ˆ 10´4 , max
tPr0,70s

δW ptq « 1.8ˆ 10´3 . (4.69)
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Figure 4.9: Numerical simulation of the diocotron instability: L2-norm of the per-
turbed electric potential.

Figures 4.10-4.12 show that in this test case nothing significant happens in the re-

gion close to the pole. The effect of using C1 smooth polar splines in such situations

is not particularly evident, but they do ensure continuity of the advection field re-

sponsible for the transport of ρ (the electric field) everywhere in the domain. More-

over, pseudo-Cartesian coordinates reduce to standard Cartesian coordinates, as

the physical domain is defined by a simple circular mapping. The interest of this

test case lies primarily in the fact that it provides the valuable possibility of easily

verifying the implementation of our numerical scheme by comparing the numerical

results with an analytical dispersion relation.

Vortex merger

In the context of incompressible inviscid 2D Euler fluids, we simulate the merger of

two macroscopic vortices by setting up initial conditions qualitatively similar to those

described in (Driscoll et al., 2002, section 3). Unlike the diocotron instability, the
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Figure 4.10: Numerical simulation of the diocotron instability: contour plots of the
density ρpt, x, yq at times t “ 0 (beginning of the simulation) and t “ 50 (end of the
linear phase).
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Figure 4.11: Numerical simulation of the diocotron instability: contour plots of the
electric potential Φpt, x, yq at times t “ 0 (beginning of the simulation) and t “ 50
(end of the linear phase).
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Figure 4.12: Numerical simulation of the diocotron instability: contour plots of the
electric energy density |Ept, x, yq|2 at times t “ 0 (beginning of the simulation) and
t “ 50 (end of the linear phase).
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interest of this test case lies primarily in the fact that the relevant dynamics occurs

in a region close the pole of the physical domain. We consider an equilibrium ρ0

obtained with the numerical procedure described in section 4.6.2 with gpΦq “ Φ2

and Φmax “ 1, and perturb it with two Gaussian perturbations,

ρp0, x, yq :“ ρ0px, yq ` ρ1p0, x, yq

:“ ρ0px, yq ` ε

ˆ

exp

„

´
px´ x˚1q

2 ` py ´ y˚1 q
2

2σ2



` exp

„

´
px´ x˚2q

2 ` py ´ y˚2 q
2

2σ2

 ˙

,

(4.70)

with amplitude ε “ 10´4, width σ “ 0.08 and centered in px˚1 , y
˚
1 q “ p`0.08,´0.14q

and px˚2 , y
˚
2 q “ p´0.08,`0.14q, respectively. The time evolution of the initial per-

turbation ρ1 is shown in Figures 4.13-4.14. The simulation is run with n1 ˆ n2 “

128ˆ 256 and time step ∆t “ 0.1, with the second-order implicit time integrator de-

scribed in section 4.6.1. The explicit time integrator would require in this case very

small time steps in order to capture the correct dynamics. Two different aspects play

a role in the choice of the time integrator for this particular test case. On the one

hand, the error in the integration of the characteristics, which scales with ∆t2 for the

second-order explicit scheme described in section 4.6.1, must not be larger than

the amplitude of the perturbation on the advection field caused by the density per-

turbation. In other words, for the explicit scheme, the choice of the time step would

be dependent on the amplitude ε of the density perturbation. On the other hand,

committing an error in the integration of closed trajectories (as it would be when

using the explicit scheme even for stationary advection fields) seems to disrupt the

dynamics, preventing the simulation from correctly predicting the merger of the two

macroscopic vortices. For the conservation of mass and energy we get

max
tPr0,10s

δMptq « 2.8ˆ 10´9 , max
tPr0,10s

δW ptq « 4.9ˆ 10´9 . (4.71)

The results of a convergence analysis of the numerical results while decreasing the

time step are shown in Table 4.5, where ∆ρ denotes the difference between the

vorticity ρ and a reference vorticity obtained by running a simulation with time step

∆t “ 0.1{16.
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Figure 4.13: Numerical simulation of the merger of two vortices: contour plots of the
density perturbation ρ1pt, x, yq at times t “ 0 and t “ 3.5.
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Figure 4.14: Numerical simulation of the merger of two vortices: contour plots of the
density perturbation ρ1pt, x, yq at times t “ 6.5 and t “ 10.

124



∆t ||∆ρ||L8 Order maxt δMptq Order maxt δW ptq Order

0.1 3.04ˆ 10´5 2.84ˆ 10´9 4.92ˆ 10´9

0.1{2 8.44ˆ 10´6 1.85 1.42ˆ 10´9 1.00 2.47ˆ 10´9 0.99

0.1{4 2.05ˆ 10´6 2.04 7.14ˆ 10´10 0.99 1.22ˆ 10´9 1.02

0.1{8 4.12ˆ 10´7 2.32 3.46ˆ 10´10 1.05 6.08ˆ 10´10 1.01

Table 4.5: Convergence in time of the numerical results for the vortex merger with
respect to reference results obtained with time step ∆t “ 0.1{16. The mesh size
n1 ˆ n2 “ 128ˆ 256 is kept fixed in this convergence analysis.

Point-like vortex dynamics

Again in the context of incompressible inviscid 2D Euler fluids, we also investigate

the dynamics of point-like vortices (or point charges) on a non-uniform equilibrium,

following the discussion in (Schecter and Dubin, 2001). The numerical tests pre-

sented in this section show that the numerical approaches suggested in this the-

sis can be applied straightforwardly in the context of particle-in-cell methods. This

makes our numerical methods interesting also for numerical codes based on such

methods, as for example the gyrokinetic PIC codes GTC (Ethier et al., 2005), GTS

(Wang et al., 2006), XGC1 (Ku et al., 2009), ORB5 (Bottino et al., 2010), and ELM-

FIRE (Heikkinen et al., 2008). The examples discussed here can be considered as

limit cases of usual particle-in-cell simulations, as we will include only one single

point-like vortex (or point charge) in the system. Since our strategy turns out to

work well for this extreme scenario, we do not expect issues to appear when dealing

with the usual case of large numbers of particles. The point-like vortex contributes

to the total charge density as described in equation (4.42). Moreover, the position

of the point-like vortex is evolved following the same advection fields p´Ey, ExqT

responsible for the transport of ρ. Integration in time is performed with the second-

order explicit scheme described in section 4.6.1. For a domain defined by a circular
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mapping, we consider an equilibrium vorticity of the form

pρ0psq :“

#

1´ 1.25 s s ď 0.8 ,

0 s ą 0.8 ,
(4.72)

identical to the one considered in (Schecter and Dubin, 2001, section IV). Fig-

ure 4.15 shows the local stream lines of the advection field near positive and nega-

tive point-like vortices at the initial time t “ 0 in a rotating frame where the point-like

vortices are initially at rest. This is obtained by transforming given coordinates px, yq

at time t to the rotated coordinates

x1 :“ x cosp´ωtq ´ y sinp´ωtq ,

y1 :“ x sinp´ωtq ` y cosp´ωtq ,
(4.73)

and by transforming the advection field p´Ey, ExqT to the rotated advection field

pEy ` ω y,Ex ´ ω xqT , where ω “ 0.3332 represents the angular velocity of the

background at t “ 0 and s “ 0.4. Figures 4.16-4.17 show results for a point-like

vortex of intensity q “ ˘0.0025 at the initial position s “ 0.4 and θ “ 0, viewed

in a rotating frame. Time is here normalized as t1 “ 0.1668 t (as in (Schecter and

Dubin, 2001), where t1 is denoted as T ). The results shown in Figures 4.16-4.17 are

in agreement with the ones shown in Figures 7a and 10a of (Schecter and Dubin,

2001). As explained in (Schecter and Dubin, 2001), positive point-like vortices drift

transverse to the shear flow, up the background vorticity gradient, while negative

point-like vortices drift down the gradient. Figure 4.18 shows, in this regard, the time

evolution of the radial position of the vortices, in agreement with the results shown

in Figures 7b and 10b of (Schecter and Dubin, 2001). The simulation is run with

n1ˆn2 “ 256ˆ512 and time step ∆t “ 0.005. The time step is chosen small enough

to resolve the oscillations due to the self-force experienced by the point-like vortices.

Moreover, the computational mesh needs to be finer than the previous test cases in

order to capture correctly the complex nonlinear dynamics of the interaction between

the point-like vortices and the background vorticity. For a rough comparison, the

vortex-in-cell simulations discussed in (Schecter and Dubin, 2001) require as well a

large computational rectangular grid of size 1025 ˆ 1025. Special techniques may

be used to reduce self-force effects on non-uniform meshes (or even unstructured
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Figure 4.15: Local stream lines of the advection field near a positive (top) and neg-
ative (bottom) point-like vortex in a rotating frame px1, y1q.
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Figure 4.16: Dynamics of a positive point-like vortex on a domain defined by a cir-
cular mapping: contour plots of the density ρpt1, x1, y1q at times t1 “ 0 and t1 “ 5.838
in a rotating frame px1, y1q.
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Figure 4.17: Dynamics of a negative point-like vortex on a domain defined by a cir-
cular mapping: contour plots of the density ρpt1, x1, y1q at times t1 “ 0 and t1 “ 5.838
in a rotating frame px1, y1q.
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(bottom) point-like vortex.
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Figure 4.19: Dynamics of a positive point-like vortex on a disk-like domain defined
by mapping (4.6): contour plots of the density ρpt, x, yq at times t “ 0 and t “ 35.

meshes), such as, for example, the ones suggested in (Bettencourt, 2014), but they

have not been considered in this thesis. For the conservation of mass and energy

we get

max
t1Pr0,5.838s

δMpt1q « 6.9ˆ 10´6 , max
t1Pr0,5.838s

δW pt1q « 8.4ˆ 10´3 , (4.74)

for the positive point-like vortex and

max
t1Pr0,5.838s

δMpt1q « 6.9ˆ 10´6 , max
t1Pr0,5.838s

δW pt1q « 7.3ˆ 10´3 , (4.75)

for the negative point-like vortex.

Similar simulations on a domain defined by mapping (4.6), initialized with an equilib-

rium vorticity obtained with the numerical procedure described in section 4.6.2 with

gpΦq “ Φ2 and ρmax “ 1, show the same qualitative behavior: a positive point-like

vortex drifts towards the center of the domain, while a negative point-like vortex drifts

towards the boundary (Figures 4.19-4.20). The final time t “ 35 corresponds to the

normalized time t1 “ 5.838 considered before. For the conservation of mass and
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Figure 4.20: Dynamics of a negative point-like vortex on a disk-like domain defined
by mapping (4.6): contour plots of the density ρpt, x, yq at times t “ 0 and t “ 35.

energy we get

max
tPr0,35s

δMptq « 1.6ˆ 10´5 , max
tPr0,35s

δW ptq « 6.9ˆ 10´3 , (4.76)

for the positive point-like vortex and

max
tPr0,35s

δMptq « 3.6ˆ 10´6 , max
tPr0,35s

δW ptq « 5.7ˆ 10´3 , (4.77)

for the negative point-like vortex.

4.7 Summary of the contributions

In this chapter we presented a comprehensive numerical strategy for the solu-

tion of systems of coupled hyperbolic-elliptic partial differential equations on sin-

gular mapped disk-like domains. We introduced a novel set of coordinates, named

pseudo-Cartesian coordinates, for the integration of the characteristics of the hyper-

bolic equation of the system. Such coordinates are well-defined everywhere in the
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computational domain, including the pole, and provide a straightforward and rela-

tively simple solution for dealing with singularities when solving advection problems

in complex geometries. They reduce to standard Cartesian coordinates in the case

of a circular mapping. Moreover, we developed a finite element elliptic solver based

on globally C1 smooth splines (Toshniwal et al., 2017). In this thesis we considered

only C1 smoothness, but higher-order smoothness, consistent with the spline de-

gree, may be considered as well. We tested our solvers on several test cases in the

simplest case of a circular domain and in more complex geometries. The numerical

methods presented here show high-order convergence in the space discretization

parameters, uniformly across the computational domain, including the pole. More-

over, the techniques discussed in this chapter can be easily applied in the context

of particle-in-cell methods and are not necessarily restricted to semi-Lagrangian

schemes, which were here discussed in more detail. The range of physical prob-

lems that can be approached following the ideas presented in this chapter includes

the study of turbulence in magnetized fusion plasmas by means of Vlasov-Poisson

fully kinetic models as well as drift-kinetic and gyrokinetic models, and turbulence

models for incompressible inviscid Euler fluids in the context of fluid dynamics.

The methods discussed here were developed with the primary aim of being applied

later on within our 4D field-aligned semi-Lagrangian drift-kinetic code. How this is

done constitutes part of the subjects covered by the next chapter.

All the mathematical and computational tools described in this chapter, except for

background material, were derived and tested within the scope of this thesis. The

code development was done entirely in the framework of the SeLaLib library. The

material presented in this chapter is also described and discussed in a manuscript

written in collaboration with Dr. Yaman Güçlü, which is currently under consideration

for publication in an international peer-reviewed scientific journal.
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Chapter 5

Field-aligned semi-Lagrangian 4D

drift-kinetic simulations

In this chapter we consider a 4D drift-kinetic electrostatic model and discuss its nu-

merical solution in two different geometries, namely a cylindrical geometry with a

screw pinch magnetic field and a toroidal geometry with circular concentric poloidal

cross sections, conformal to the circular concentric flux surfaces of the magnetic

field. Our physical model describes the electromagnetic interaction of positive ions

of a single atomic species with adiabatic electrons. The model is among the sim-

plest that can be derived under specific assumptions from the full gyrokinetic Vlasov-

Maxwell equations. The word “electrostatic” refers to the fact that we consider only

electric perturbations (time-dependent dynamic fluctuations of the electric scalar

potential), without treating magnetic perturbations (time-dependent dynamic fluctu-

ations of the magnetic vector potential). We note that this meaning is in contrast to

the usual meaning of the word “electrostatic” in the context of classical electrody-

namics, where it describes physical processes where the electric field and potential

do not vary in time. Despite these simplifications, the model is still complex enough

to ensure that the numerical methods and algorithms developed within its scope can

be easily employed also within simulation codes that address the solution of more

complex gyrokinetic models.

Our primary aim is to show that it is quite straightforward to integrate the 2D numer-
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ical machinery developed in the previous chapter within our 4D field-aligned semi-

Lagrangian drift-kinetic code. It is our hope that this will serve as a basis for the

future implementation of the same machinery in state-of-the-art gyrokinetic codes,

such as, for example, the semi-Lagrangian gyrokinetic code GySeLa (Grandgirard

et al., 2006b). The numerical tests that we performed in order to verify our imple-

mentation should be considered as first simple tests and can be certainly improved

and extended to cover more complex and realistic scenarios.

This chapter is organized as follows. Section 5.1 describes briefly our 4D drift-

kinetic electrostatic model. Section 5.2 presents in more detail the numerical meth-

ods employed for the solution of each of the lower-dimensional advection problems

obtained by applying the field-aligned splitting discussed in chapter 3. Section 5.3

defines the scalar quantities that we look at as diagnostic tools in order to verify

our implementation and analyze the results of our numerical simulations. Section

5.4 describes our physical model in cylindrical geometry with a screw pinch mag-

netic field and presents the results obtained for the numerical simulation of an ITG

instability, verified through a linear dispersion analysis. Section 5.5 describes our

physical model in a toroidal geometry with circular concentric poloidal cross sec-

tions and present a first basic numerical test with the primary aim of verifying the

conservation properties of the model. We also review how to define an appropriate

kinetic equilibrium in such geometry and suggest a numerical strategy to deal with

the problem of particles crossing the boundary of the computational domain, when

solving the advection equation on poloidal planes. Finally, we end the chapter with

a summary of our contributions.

5.1 The physical model

The target model that we want to solve is the 4D drift-kinetic electrostatic model

$

’

’

&

’

’

%

BF

Bt
`U ¨∇F ` UP}

BF

BP}
“ 0 ,

´∇K ¨

ˆ

ρ0

B2
0

∇KΦ1

˙

`
ne
Te

Φ1 “ ρ1 .

(5.1)
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The unknowns in (5.1) are the particle distribution function F pt,X, P}q, defined on

the 4D gyrocenter phase space described by the gyrocenter position and parallel

momentum X and P}, and the perturbed electric scalar potential Φ1pt,Xq, defined

on the 3D gyrocenter configuration space. Boundary conditions for (5.1) are an

initial distribution function F p0,X, P}q and homogeneous Dirichlet boundary condi-

tions for Φ1. Both F and Φ1 depend on time and model (5.1) describes their self-

consistent evolution in time. We sometimes refer to the first equation in (5.1) as the

4D drift-kinetic Vlasov equation (or simply the Vlasov equation, if the overall context

is clear enough) and to the second equation in (5.1) as the quasi-neutrality equation,

as it can be derived under the assumption of quasi-neutrality of the plasma from the

Vlasov-Maxwell system (see, for example, (Tronko et al., 2016) for a comprehen-

sive explanation of the quasi-neutrality approximation in the derivation of gyrokinetic

models). The word “self-consistent” refers to the fact that the evolution in time of F

is coupled to the evolution in time of Φ1. More precisely, the evolution of Φ1, com-

puted by solving the quasi-neutrality equation in (5.1), is coupled to the evolution of

F through the perturbed charge density ρ1pt,Xq, defined as

ρ1 :“

ż `8

´8

dP}B
˚
} pF ´ F0q , (5.2)

where F0pX, P}q denotes the equilibrium distribution function, while the evolution of

F , computed by solving the Vlasov equation in (5.1), is coupled to the evolution of

Φ1 through the advection fields Upt,X, P}q and UP}pt,X, P}q, defined as

U :“
1

B˚
}

ˆ

b0 ˆ∇H `
BH

BP}
B˚

˙

, (5.3a)

UP} :“ ´
B˚

B˚
}

¨∇H , (5.3b)

where the modified magnetic field B˚
pX, P}q is defined as

B˚ :“ B0 ` P}∇ˆ b0 , (5.4)

136



its parallel component B˚
}
pX, P}q is defined as B˚

}
:“ B˚

¨ b0, and the drift-kinetic

electrostatic Hamiltonian Hpt,X, P}q is defined as

H :“
P 2
}

2
` Φ1 . (5.5)

We note that the perpendicular gradient ∇K in (5.1) denotes the gradient computed

with respect to the coordinates spanning the poloidal planes of the 3D geometry

considered. The notation is therefore slightly imprecise, as such gradient does not

entirely lie on a plane perpendicular to the direction of the magnetic field. Model

(5.1) has been considered, for example, in (Latu et al., 2018), in a context similar to

the one of this thesis.

5.2 Numerical methods

In this chapter we denote the logical coordinates and domains by

pr, θ, ϕ, P}q P r0, as ˆ r0, 2πq ˆ r0, 2πq ˆ r´ sP}, sP}s , (5.6)

where pr, θ, ϕq refer to either cylindrical coordinates in cylindrical geometry or el-

ementary toroidal coordinates in toroidal geometry, a ą 0 denotes the maximum

radius (called the minor radius in toroidal geometry, in order to distinguish it from the

major radius R0) and sP} ą 0 denotes the maximum parallel momentum. We also

denote the corresponding logical meshes by triun1
i“1, tθjun2

j“1, tϕkun3
k“1, and tP}`u

n4
`“1,

respectively.

According to the field-aligned splitting described in chapter 3, we split the 4D Vlasov

equation in (5.1) into the following three separate lower-dimensional advection prob-

lems:

1. a 2D advection on poloidal planes, for constant values ϕ “ ϕk for all k “ 1, . . . , n3

and P} “ P}` for all ` “ 1, . . . , n4:

BF

Bt
`Up ¨∇F “ 0 ; (5.7)
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2. a 2D field-aligned advection on flux surfaces, for constant values r “ ri for all

i “ 1, . . . , n1 and P} “ P}` for all ` “ 1, . . . , n4:

BF

Bt
` Ubb0 ¨∇F “ 0 ; (5.8)

3. a 1D advection in momentum space, for constant values pr, θ, ϕq “ pri, θj, ϕkq

for all i “ 1, . . . , n1, j “ 1, . . . , n2 and k “ 1, . . . , n3:

BF

Bt
` UP}

BF

BP}
“ 0 . (5.9)

We recall that the contravariant components pU ζ1

p , U
ζ2

p q of the poloidal advection

field Up with respect to the tangent basis peζ1 , eζ2 , eζ3q of the coordinate system

defined by the coordinates pζ1, ζ2, ζ3q (Cartesian coordinates in cylindrical geometry

or cylindrical coordinates in toroidal geometry) read

U ζ1

p “
1

B˚
}

1

bζ
3

0

«

1

det Jζ

ˆ

´
BΦ1

Bζ2
` pb0qζ2∇‖Φ1

˙

` P 2
}

´

bζ
3

0 p∇ˆ b0q
ζ1
´ bζ

1

0 p∇ˆ b0q
ζ3
¯

ff

,

(5.10a)

U ζ2

p “
1

B˚
}

1

bζ
3

0

«

´1

det Jζ

ˆ

´
BΦ1

Bζ1
` pb0qζ1∇‖Φ1

˙

` P 2
}

´

bζ
3

0 p∇ˆ b0q
ζ2
´ bζ

2

0 p∇ˆ b0q
ζ3
¯

ff

,

(5.10b)

the advection field Ub for the field-aligned advection on flux surfaces reads

Ub “
1

B˚
}

1

bζ
3

0

«

1

det Jζ

ˆ

pb0qζ1
BΦ1

Bζ2
´ pb0qζ2

BΦ1

Bζ1

˙

` P}

´

Bζ3

0 ` P}p∇ˆ b0q
ζ3
¯

ff

,

(5.11)
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and the advection field UP} for the advection in momentum space reads

UP} “
´1

B˚
}

«˜

B0 `
P}

bζ
3

0

p∇ˆ b0q
ζ3

¸

∇‖Φ1

`
P}

bζ
3

0

´

bζ
3

0 p∇ˆ b0q
ζ1
´ bζ

1

0 p∇ˆ b0q
ζ3
¯

BΦ1

Bζ1

`
P}

bζ
3

0

´

bζ
3

0 p∇ˆ b0q
ζ2
´ bζ

2

0 p∇ˆ b0q
ζ3
¯

BΦ1

Bζ2

ff

,

(5.12)

where we also inserted the explicit expression of the drift-kinetic electrostatic Hamil-

tonian (5.5). We now look at each separate advection problem and discuss in more

detail the numerical methods employed for its solution.

We remark that in the following three paragraphs we do not write the explicit depen-

dence of the various advection fields on all variables and we leave instead only the

dependence on the variables involved in the particular advection described. In other

words, the poloidal advection field Up is considered to be a function of the poloidal

coordinates pr, θq only, the advection field Ub for the field-aligned advection on flux

surfaces is considered to be a function of the flux-surface coordinates pθ, ϕq only,

and the advection field UP} for the advection in momentum space is considered to

be a function of the momentum coordinate P} only.

The poloidal advection (5.7) is solved by following the strategy described in section

4.4 for the 2D guiding-center model. In this context we denote the pseudo-Cartesian

coordinates by X :“ pX ,Yq, in order to avoid confusion with the Cartesian coordi-

nates X in the 3D gyrocenter configuration space. The pseudo-Cartesian coordi-

nates X are defined as
X pr, θq :“ r cos θ ,

Ypr, θq :“ r sin θ .
(5.13)

We denote again by G the mapping defined by Gpr, θq :“ pX ,Yq, and by JG its

Jacobian, using the same notation of section 4.4. The characteristic equations for

the poloidal advection (5.7) in pseudo-Cartesian coordinates read

.
X “ pJJ´1

G q
´1Up , (5.14)

139



where J is the 2 ˆ 2 upper-left block extracted from the Jacobian matrix of the

coordinate transformation pr, θ, ϕq ÞÑ pζ1, ζ2, ζ3q,

J :“

»

—

—

–

Bζ1

Br

Bζ1

Bθ

Bζ2

Br

Bζ2

Bθ

fi

ffi

ffi

fl

. (5.15)

We recall again that the coordinates pζ1, ζ2, ζ3q are chosen to be the Cartesian co-

ordinates px, y, zq in cylindrical geometry or the cylindrical coordinates pR,Z, ϕq in

toroidal geometry. The poloidal components of the electric field E “ ´∇Φ1 with

respect to the tangent basis peζ1 , eζ2 , eζ3q, appearing in U ζ1

p and U ζ2

p , are computed

by following the procedure described in section 4.5. We then integrate the charac-

teristic equations (5.14) with an implicit 2D trapezoidal scheme. Suppose that we

want to find the origin pr˚, θ˚q at time t ´ ∆t of the characteristic passing through

the mesh point pri, θjq at time t. We denote by X ij :“ pXij,Yijq :“ Gpri, θjq the

pseudo-Cartesian coordinates corresponding to pri, θjq. The origin pr˚, θ˚q is given

by pr˚, θ˚q “ prpqqi , θ
pqq
j q “ G

´1
pX pqqij ,Ypqqij q, where the q-th iteration is computed as

.
X pqq

ij :“ pJJ´1
G q

´1
pri, θjqUppri, θjq ` pJJ

´1
G q

´1
pr
pq´1q
i , θ

pq´1q
j qUppr

pq´1q
i , θ

pq´1q
j q

X pqq
ij :“ X ij ´

∆t

2

.
X pqq

ij

pr
pqq
i , θ

pqq
j q :“ G´1

pX pqq
ij q

with X p0q
ij :“ pX p0qij ,Yp0qij q :“ pXij,Yijq and prp0qi , θ

p0q
j q :“ pri, θjq, provided that

|X pqq
ij ´ X pq´1q

ij |2 ď τ 2, where the tolerance τ is defined as τ :“ τA ` τR|X ij|,

for given absolute and relative tolerances τA and τR.

The field-aligned advection on flux surfaces (5.8) is solved as follows. Suppose

that we want to find the origin pθ˚, ϕ˚q at time t ´ ∆t of the characteristic passing

through the mesh point pθj, ϕkq at time t. The toroidal angle coordinate ϕ satisfies

the ordinary differential equation

dϕ

dt
“ Ub b

ϕ
0 “ Uϕ , (5.16)
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Figure 5.1: Field-aligned advection on a flux surface. The blue crosses represent
the points pξpqqpθj, ϕk, `q, ϕ

pqq
` q at the q-th iteration of the implicit trapezoidal scheme.

where bϕ0 represents the third contravariant component of b0 with respect to the

tangent basis per, eθ, eϕq of the logical coordinate system. This scalar equation is

solved with an implicit trapezoidal scheme. For q ě 1, we denote by ϕpqqk the value

of ϕ obtained at the q-th iteration and by tϕpqq` u a set of grid values of ϕ in some

neighborhood of ϕpqqk . It is then possible to compute the values of the coordinate θ

corresponding to the intersections between the magnetic field line passing through

the starting point pθj, ϕkq and the lines at ϕ “ ϕ
pqq
` . We denote such values of the

coordinate θ as ξpqqpθj, ϕk, `q, as in section 3.8. The values of F and Ub at these

intersection points (blue crosses in Figure 5.1) are computed by spline interpolation

along the direction θ. We also denote by U pqqb the value obtained by interpolating

with Lagrange polynomials the values of Ub b
ϕ
0 at the intersection points. We then

compute the value of ϕ at the q-th iteration as

ϕ
pqq
k :“ ϕk ´

∆t

2

”

Ubpθj, ϕkqb
ϕ
0 pθj, ϕkq ` U pq´1q

b

ı

, (5.17)

with ϕp0qk :“ ϕk. We then set the origin of the characteristic to the point obtained at

the q-th iteration, ϕ˚ “ ϕ
pqq
k , if |ϕpqqk ´ ϕ

pq´1q
k | ď τ , for a given tolerance τ .

Finally, the advection in momentum space (5.9) is solved with an implicit 1D trape-

zoidal scheme. The origin P ˚
}

at time t´∆t of the characteristic passing through the

141



mesh point P}` at time t is given by P ˚
}
“ P

pqq
}` , where the q-th iteration is computed

as

P
pqq
}` :“ P}` ´

∆t

2

”

UP}pP}`q ` UP}pP
pq´1q
}` q

ı

, (5.18)

with P p0q
}` :“ P}`, provided that |P pqq

}` ´ P
pq´1q
}` | ď τ , for a given tolerance τ . If for any

q ě 1 we have either P pqq
}` ă ´P̄} or P pqq

}` ą P̄}, we set P pqq
}` “ ´P̄} or P pqq

}` “ P̄},

respectively.

5.3 Scalar diagnostics

The scalar diagnostics currently implemented in our 4D field-aligned semi-Lagrangian

drift-kinetic code are the total mass (or total number of particles) and the L2-norms

of F and Φ1:

Mptq :“

ż a

0

dr

ż 2π

0

dθ

ż 2π

0

dϕ

ż

sP}

´ sP}

dP} | det Jη|B
˚
} F , (5.19a)

||F ||L2ptq :“

«

ż a

0

dr

ż 2π

0

dθ

ż 2π

0

dϕ

ż

sP}

´ sP}

dP} | det Jη|B
˚
} F

2

ff1{2

, (5.19b)

||Φ1||L2ptq :“

«

ż a

0

dr

ż 2π

0

dθ

ż 2π

0

dϕ | det Jη|Φ
2
1

ff1{2

. (5.19c)

These scalar quantities are computed numerically by performing the above integra-

tions on the logical meshes. More precisely, the integration in r is performed with

the weights

wri :“
1

2∆r

$

’

’

&

’

’

%

ri`1 ´ ri i “ 1 ,

ri`1 ´ ri´1 i “ 2, . . . , n1 ´ 1 ,

ri ´ ri´1 i “ n1 ,

(5.20)

where ∆r :“ a{pn1´ 1q (as for a uniform mesh); the integrations in θ and ϕ are per-

formed with the trapezoidal rule on the respective periodic meshes (defining the cell

spacings ∆θ :“ 2π{n2 and ∆ϕ :“ 2π{n3); finally, the integration in P} is performed
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with the weights

w
P}
` :“

1

2∆P}

$

’

’

&

’

’

%

P}``1 ´ P}` ` “ 1 ,

P}``1 ´ P}`´1 ` “ 2, . . . , n4 ´ 1 ,

P}` ´ P}`´1 ` “ n4 ,

(5.21)

where ∆P} :“ 2 sP}{pn4 ´ 1q (as for a uniform mesh). Therefore, the total mass and

the L2-norms of F and Φ1 are computed as

Mptq “
n1
ÿ

i“1

n2
ÿ

j“1

n3
ÿ

k“1

n4
ÿ

`“1

| det Jηpri, θj, ϕkq|B
˚
} pri, θj, ϕk, P}`qF pt, ri, θj, ϕk, P}`qˆ

ˆ wri w
P}
` ∆r∆θ∆ϕ∆P} ,

||F ||L2ptq “

«

n1
ÿ

i“1

n2
ÿ

j“1

n3
ÿ

k“1

n4
ÿ

`“1

| det Jηpri, θj, ϕkq|B
˚
} pri, θj, ϕk, P}`qF

2
pt, ri, θj, ϕk, P}`qˆ

ˆ wri w
P}
` ∆r∆θ∆ϕ∆P}

ff1{2

,

||Φ1||L2ptq “

«

n1
ÿ

i“1

n2
ÿ

j“1

n3
ÿ

k“1

| det Jηpri, θj, ϕkq|Φ
2
1pt, ri, θj, ϕkqw

r
i ∆r∆θ∆ϕ

ff1{2

.

The relative errors for the conservation of the total mass and the L2-norm of F are

defined as

δMptq :“
|Mp0q ´Mptq|

|Mp0q|
, δ||F ||L2ptq :“

| ||F ||L2p0q ´ ||F ||L2ptq|

||F ||L2p0q
. (5.23)

The quadrature formulas presented in this section, especially regarding the inte-

grations in the non-periodic domains along r and P}, could be improved by using

appropriate Gauss-Legendre quadrature points and weights defined in each cell of

the respective domains, consistently with the degrees of the spline basis functions

along r and P}.
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5.4 The 4D drift-kinetic model in cylindrical geometry

We now describe model (5.1) in cylindrical geometry with a screw pinch magnetic

field. In this case we choose the coordinates pζ1, ζ2, ζ3q as the Cartesian coordi-

nates px, y, zq, related to the logical coordinates pr, θ, ϕq via the transformation

xpr, θ, ϕq “ r cos θ ,

ypr, θ, ϕq “ r sin θ ,

zpr, θ, ϕq “ R0 ϕ ,

(5.24)

where R0 is related to the length L of the cylinder via L “ 2πR0. The contravariant

components pBx
0 , B

y
0 , B

z
0q of the magnetic field B0 with respect to the tangent basis

pex, ey, ezq of the Cartesian coordinate system, expressed as functions of the logical

coordinates pr, θ, ϕq, read

Bx
0 pr, θq :“ ´ sB0

r sin θ

R0 qprq
,

By
0pr, θq :“ sB0

r cos θ

R0 qprq
,

Bz
0pr, θq :“ sB0 ,

(5.25)

where sB0 is given and qprq denotes the safety factor profile. We note that B0 is

axisymmetric and therefore does not depend on the toroidal angle coordinate ϕ.

The magnitude B0 of the magnetic field reads

B0prq “

d

sB2
0 pR

2
0 q

2prq ` r2q

R2
0 q

2prq
, (5.26)

and depends only on r. The contravariant components pbx0 , b
y
0, b

z
0q of the unit vector

b0 :“ B0{B0 with respect to the tangent basis pex, ey, ezq of the Cartesian coordi-
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nate system, expressed as functions of the logical coordinates pr, θ, ϕq, read

bx0pr, θq :“
Bx

0 pr, θq

B0prq
“ ´

sB0

B0prq

r sin θ

R0 qprq
,

by0pr, θq :“
By

0pr, θq

B0prq
“

sB0

B0prq

r cos θ

R0 qprq
,

bz0pr, θq :“
Bz

0pr, θq

B0prq
“

sB0

B0prq
.

(5.27)

Moreover, the contravariant components of the curl of b0 with respect to the tangent

basis pex, ey, ezq of the Cartesian coordinate system, expressed as functions of the

logical coordinates pr, θ, ϕq, read

p∇ˆ b0q
x :“

B

By
pb0qz ´

B

Bz
pb0qy “

qprq ´ r q1prq

R2
0 q

2prq ` r2
R0 b

x
0pr, θq ,

p∇ˆ b0q
y :“

B

Bz
pb0qx ´

B

Bx
pb0qz “

qprq ´ r q1prq

R2
0 q

2prq ` r2
R0 b

y
0pr, θq ,

p∇ˆ b0q
z :“

B

Bx
pb0qy ´

B

By
pb0qx “

r2 ` 2R2
0 q

2prq ´R2
0 r qprq q

1prq

pR2
0 q

2prq ` r2qR0 qprq
bz0pr, θq ,

where q1prq “ dqprq{dr. Here we used the fact that pb0qx “ bx0 , pb0qy “ by0 and

pb0qz “ bz0, and expressed derivatives with respect to the Cartesian coordinates in

terms of derivatives with respect to the logical coordinates as

B

Bx
“
Br

Bx

B

Br
`
Bθ

Bx

B

Bθ
`
Bϕ

Bx

B

Bϕ
“ cos θ

B

Br
´

sin θ

r

B

Bθ
,

B

By
“
Br

By

B

Br
`
Bθ

By

B

Bθ
`
Bϕ

By

B

Bϕ
“ sin θ

B

Br
`

cos θ

r

B

Bθ
,

B

Bz
“
Br

Bz

B

Br
`
Bθ

Bz

B

Bθ
`
Bϕ

Bz

B

Bϕ
“

1

R0

B

Bϕ
.

(5.28)

The equation of a magnetic field line in logical coordinates reads

Bθ
0

dθ
“
Bϕ

0

dϕ
, (5.29)
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which gives

dθ “
dϕ

qprq
. (5.30)

Here we used the fact that the contravariant components pBr
0, B

θ
0 , B

ϕ
0 q of the mag-

netic field B0 with respect to the tangent basis per, eθ, eϕq of the logical coordi-

nate system can be computed from the corresponding contravariant components

pBx
0 , B

y
0 , B

z
0q using (A.18):

Br
0 “ cos θ Bx

0 ` sin θ By
0 ,

Bθ
0 “ ´

sin θ

r
Bx

0 `
cos θ

r
By

0 ,

Bϕ
0 “

Bz
0

R0

.

(5.31)

The integration of the right-hand side of (5.30) in the interval rϕ0, ϕs yields

ż ϕ

ϕ0

dϕ1

qprq
“
ϕ´ ϕ0

qprq
. (5.32)

The integration of the left-hand side of (5.30) in the interval rθ0, θs yields

ż θ

θ0

dθ1 “ θ ´ θ0 . (5.33)

Therefore, a magnetic field line passing through the point pr, θ0, ϕ0q can be de-

scribed by the relation between θ and ϕ, which reads

θpϕq “ θ0 `
ϕ´ ϕ0

qprq
. (5.34)

The resulting field lines, shown in Figure 5.2 on the flux surface at r “ a{2, are

simply straight lines, with a slope depending only on r.

146



0 1 2 3 4 5 6

ϕ

0

1

2

3

4

5

6

θ(
ϕ

)

Figure 5.2: Magnetic field lines for the magnetic field (5.25) on the flux surface at
r “ a{2.

5.4.1 Linear dispersion analysis

We perform now a linear dispersion analysis of (5.1) and compute the correspond-

ing dispersion relation. We split the distribution function F into an equilibrium part

F0pr, P}q and a linear perturbation F1pt, r, θ, ϕ, P}q, of the same order as the per-

turbed electric potential Φ1:

F “ F0 ` F1 . (5.35)

The equilibrium distribution function F0 is defined as

F0 :“
1

B0

ρ0
?

2πTi
exp

˜

´
P 2
}

2Ti

¸

, (5.36)

where B0, ρ0 and Ti depend only on r, and it is such that

ż `8

´8

dP}B
˚
} F0 “ ρ0 . (5.37)
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We note that in this section we assume an infinite momentum domain r´8,8s, so

that we can easily perform some analytical calculations. The idea is that the finite

domain r´ sP}, sP}s is chosen in such a way that integrals over r´ sP}, sP}s approximate

well enough the corresponding integrals over r´8,8s. Similarly to (5.35), we split

the advection fields U and UP} as

U “ U 0 `U 1 , UP} “ UP}0 ` UP}1 , (5.38)

with U 0, U 1, UP}0 and UP}1 defined as

U 0 :“
P}
B˚
}

B˚ , U 1 :“
b0

B˚
}

ˆ∇Φ1 , (5.39a)

UP}0 :“ 0 , UP}1 :“ ´
B˚

B˚
}

¨∇Φ1 . (5.39b)

Neglecting terms of order higher than linear, the linearized Vlasov equation reads

BF1

Bt
`U 0 ¨∇F1 “ ´U 0 ¨∇F0 ´U 1 ¨∇F0 ´ UP}1

BF0

BP}
. (5.40)

The corresponding (already) linearized quasi-neutrality equation reads

´∇K ¨

ˆ

ρ0

B2
0

∇KΦ1

˙

`
ne
Te

Φ1 “

ż `8

´8

dP}B
˚
} F1 . (5.41)

Introducing the Fourier coefficients

xF1 :“

ż 2π

0

dθ

2π

ż 2π

0

dϕ

2π
F1e

´imθ´inϕ , xΦ1 :“

ż 2π

0

dθ

2π

ż 2π

0

dϕ

2π
Φ1e

´imθ´inϕ , (5.42)

with m P Z and n P Z, multiplying the linearized equations by e´imθ´inϕ and inte-

grating with respect to θ and ϕ, we obtain

BxF1

Bt
` ik ¨U 0

xF1 “ i

˜

1

B˚
}

BF0

Br
pk ˆ b0q

r
`

1

B˚
}

BF0

BP}
k ¨B˚

¸

xΦ1 , (5.43)
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where the vector k has the covariant components pkr, kθ, kϕq :“ p0,m, nq, and

´
1

r

B

Br

˜

r
ρ0

B2
0

BxΦ1

Br

¸

`
m2

r2

ρ0

B2
0

xΦ1 `
ne
Te

xΦ1 “

ż `8

´8

dP}B
˚
}
xF1 . (5.44)

Here we used U r
0 “ 0, the fact that U θ

0 and Uϕ
0 depend only on r and not on θ and ϕ,

and expressed the differential operator on the left-hand side of the quasi-neutrality

equation in the curvilinear coordinates pr, θq (recalling that ∇K denotes the gradient

computed with respect to the coordinates spanning the poloidal planes). Introducing

the Laplace transforms

ĂF1 :“

ż 8

0

dtxF1e
iωt , ĂΦ1 :“

ż 8

0

dtxΦ1e
iωt , (5.45)

with ω P C, multiplying the linearized equations by eiωt and integrating with respect

to t, we obtain

i p´ω ` k ¨U 0qĂF1 “xF1IN ` i

˜

1

B˚
}

BF0

Br
pk ˆ b0q

r
`

1

B˚
}

BF0

BP}
k ¨B˚

¸

ĂΦ1 , (5.46)

where xF1IN denotes the value of xF1 at the initial time t “ 0, and

´
1

r

B

Br

˜

r
ρ0

B2
0

BĂΦ1

Br

¸

`
m2

r2

ρ0

B2
0

ĂΦ1 `
ne
Te

ĂΦ1 “

ż `8

´8

dP}B
˚
}
ĂF1 . (5.47)

Inserting ĂF1 obtained from (5.46) into (5.47) we obtain the linear dispersion relation

Dpk, ωqĂΦ1 “ Npk, ωq , (5.48)
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where Npk, ωq and the differential operator Dpk, ωq are defined as

Npk, ωq :“

ż `8

´8

dP}
´i B˚

}
xF1IN

´ω ` k ¨U 0

, (5.49a)

Dpk, ωq :“´
1

r

B

Br

ˆ

r
ρ0

B2
0

B

Br

˙

`
m2

r2

ρ0

B2
0

`
ne
Te

´

ż `8

´8

dP}

BF0

Br
pk ˆ b0q

r `
BF0

BP}
k ¨B˚

´ω ` k ¨U 0

.

(5.49b)

The idea is that the Fourier coefficient xΦ1 can be obtained by inverting the Laplace

transform (5.45) as

xΦ1 “
1

2iπ

ż 8`iu

´8`iu

dωĂΦ1e
´iωt , (5.50)

where the integration is done along the line Reω “ u in the complex plane and

u is greater than the real part of all singularities of ĂΦ1. The integral (5.50) can be

computed with the residue theorem by closing the contour by a half-circle in the

lower complex half-plane and letting the radius of the half-circle go to infinity. If ĂΦ1

is analytical everywhere in the domain of integration except a finite number of poles

tωiu
p
i“1 and if the integral on the half-circle vanishes in the limit of infinite radius, we

have
xΦ1 “

p
ÿ

i“1

RespĂΦ1, ωiqe
´iωit . (5.51)

We refer to (Ahlfors, 1979) for more details about path integrals in complex variables.

From the dispersion relation (5.48) we conclude that in order to find the poles of ĂΦ1

it is necessary to find the values of ω such that Dpk, ωq “ 0, for a given k. Such

zeros are computed with the mathematical software package ZEAL (Kravanja et al.,

2000), integrated within the SeLaLib library. We also note that the integral

ż `8

´8

dP}

BF0

Br
pk ˆ b0q

r `
BF0

BP}
k ¨B˚

´ω ` k ¨U 0

, (5.52)
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appearing in the differential operator Dpk, ωq, can be computed analytically and

equals the integral Kpα0, . . . , αn, β0, β1, β2, γq, defined in Appendix B, where n “ 3,

γ :“ 1{p2Tiq, the coefficients β0, β1 and β2 are defined as

β0 :“ ´ωB0 , (5.53a)

β1 :“ k ¨B0 ´ ω rp∇ˆ b0q ¨ b0s , (5.53b)

β2 :“ k ¨ p∇ˆ b0q , (5.53c)

and the coefficients α0, α1, α2 and α3 are defined as

α0 :“ B0
B

Br

ˆ

1

B0

ρ0
?

2πTi

˙

pk ˆ b0q
r , (5.54a)

α1 :“
1

B0

rp∇ˆ b0q ¨ b0sα0 ´
1

Ti

ρ0
?

2πTi
k ¨B0 , (5.54b)

α2 :“
1

Ti

ρ0
?

2πTi

ˆ

1

2

1

Ti

BTi
Br
pk ˆ b0q

r
´ β2 ´ pk ¨ b0q rp∇ˆ b0q ¨ b0s

˙

, (5.54c)

α3 :“
1

B0

rp∇ˆ b0q ¨ b0s

ˆ

α2 `
1

Ti

ρ0
?

2πTi
pk ¨ b0q rp∇ˆ b0q ¨ b0s

˙

. (5.54d)

5.4.2 Numerical results

We present here the numerical results obtained from the simulation of an ITG in-

stability. From a physical point of view, we are looking at a plasma instability driven

by the gradient of the temperature profile of the ions. The instability exhibits a lin-

ear phase of exponential growth, that eventually reaches a saturation level, followed

by a non-linear evolution. The parameters defining the cylindrical domain consid-

ered here are non-physical, as the size of the system is only about 10 times bigger

than the ion Larmor radius. However, such geometry has the effect of amplifying

the physical phenomena under study, thus making numerical issues related to our

numerical scheme more visible and easier to fix. We therefore think that the geo-

metrical setting considered here, despite being non-physical, is still highly valuable

from the point of view of testing our numerical methods and algorithms. More pre-

cisely, the minor radius of the cylinder is a “ 14.5 and its length is L “ 2πR0,
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with R0 “ 72.5. This corresponds to an aspect ratio A “ R0{a “ 5, which is only

slightly larger than the corresponding realistic physical values for toroidal devices

(A « 2.0 for ASDEX Upgrade, A « 2.4 for JET, A « 3.1 for ITER). The density and

temperature profiles of ions and electrons are defined as

ρ0prq “ neprq :“ ρ0 exp

„

´ kρ0wρ0
a

R0

tanh

ˆ

r ´ r̄

wρ0a

˙

, (5.55a)

Tiprq :“ T i exp

„

´ kTiwTi
a

R0

tanh

ˆ

r ´ r̄

wTia

˙ 

, (5.55b)

Teprq :“ T e exp

„

´ kTewTe
a

R0

tanh

ˆ

r ´ r̄

wTea

˙

, (5.55c)

where r̄ :“ a{2 and the parameters are set as

sρ0 “ 0.15 , sTi “ sTe “ 1.0 , (5.56a)

kρ0 “ 4.0 , kTi “ kTe “ 20.0 , (5.56b)

wρ0 “ 0.2 , wTi “ wTe “ 0.1 . (5.56c)

The profiles in (5.55) are shown in Figure 5.3. The safety factor profile qprq is chosen

to be uniform in the whole radial domain, qprq “ 1.25, and sB0 “ 1. The values of

the parameters defining the initial setup of our numerical test are chosen in order to

match the initial setup of the numerical simulations presented in (Latu et al., 2018,

section 4.3). The initial distribution function is defined as a small perturbation added

on an equilibrium local Maxwellian:

F p0, r, θ, ϕ, P}q :“ F0pr, P}q

„

1` ε exp

ˆ

´
pr ´ r̄q2

4wρ0{wTi

˙

cospmθ ` nϕq



, (5.57)

where the equilibrium local Maxwellian F0 is defined as in (5.36). The numerical

results have been verified against the analytical dispersion relation for a pertur-

bation with poloidal mode number m “ 9, toroidal mode number n “ ´8 and

amplitude ε “ 10´8. The exponential growth rate observed in the numerical ex-

periment is in good agreement with the analytical one, Imω « 0.005, for the time

interval 1000 À t À 3000, which corresponds to the linear phase, as shown in Figure

5.4. At time t « 3000 the system enters its non-linear phase. The simulation is run
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Figure 5.3: Numerical simulation of an ITG instability in cylindrical geometry with a
screw pinch magnetic field: density and temperature profiles used to initialize the
simulation.
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Figure 5.4: Numerical simulation of an ITG instability in cylindrical geometry with a
screw pinch magnetic field: L2-norm of the perturbed electric potential.

with n1 ˆ n2 ˆ n3 ˆ n4 “ 256ˆ 512ˆ 32ˆ 128, ∆t “ 2.0 and a momentum domain

r´8.0, 8.0s. Numerical results are shown in Figures 5.4-5.8. For the conservation of

the total mass Mptq and the L2-norm of F we get

max
tPr0,4000s

δMptq « 1.6ˆ 10´7 , max
tPr0,4000s

δ||F ||L2ptq « 2.7ˆ 10´5 . (5.58)

5.5 The 4D drift-kinetic model in toroidal geometries

We now describe model (5.1) in a toroidal geometry with circular concentric poloidal

cross sections, conformal to the circular concentric flux surfaces of the magnetic

field. In this case we choose the coordinates pζ1, ζ2, ζ3q as the cylindrical coordi-
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Figure 5.5: Numerical simulation of an ITG instability in cylindrical geometry
with a screw pinch magnetic field: contour plots of the distribution function
F pt, x, y, z “ 0, P} “ 0q at times t “ 0 (beginning of the simulation) and t “ 3000
(end of the linear phase).
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Figure 5.6: Numerical simulation of an ITG instability in cylindrical geometry with a
screw pinch magnetic field: contour plots of the density perturbation ρ1pt, x, y, z “ 0q
at times t “ 0 (beginning of the simulation) and t “ 3000 (end of the linear phase).
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Figure 5.7: Numerical simulation of an ITG instability in cylindrical geometry with
a screw pinch magnetic field: contour plots of the perturbed electric potential
Φ1pt, x, y, z “ 0q at times t “ 0 (beginning of the simulation) and t “ 3000 (end
of the linear phase).
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Figure 5.8: Numerical simulation of an ITG instability in cylindrical geometry
with a screw pinch magnetic field: contour plots of the density perturbation
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nates pR,Z, ϕq, related to the logical coordinates pr, θ, ϕq via the transformation

Rpr, θ, ϕq “ R0 ` r cos θ ,

Zpr, θ, ϕq “ r sin θ ,

ϕpr, θ, ϕq “ ϕ ,

(5.59)

where R0 denotes the major radius of the torus. The contravariant components

pBR
0 , B

Z
0 , B

ϕ
0 q of the magnetic fieldB0 with respect to the tangent basis peR, eZ , eϕq

of the cylindrical coordinate system, expressed as functions of the logical coordi-

nates pr, θ, ϕq, read

BR
0 pr, θq :“ ´ sB0

r sin θ

pR0 ` r cos θqqprq
,

BZ
0 pr, θq :“ sB0

r cos θ

pR0 ` r cos θqqprq
,

Bϕ
0 pr, θq :“ sB0

R0

pR0 ` r cos θq2
,

(5.60)

where sB0 is given and qprq denotes the safety factor profile. We note that B0 is

axisymmetric and therefore does not depend on the toroidal angle coordinate ϕ.

The magnitude B0 of the magnetic field reads

B0pr, θq “

d

sB2
0 pR

2
0 q

2prq ` r2q

pR0 ` r cos θq2q2prq
. (5.61)

The contravariant components pbR0 , b
Z
0 , b

ϕ
0 q of the unit vector b0 :“ B0{B0 with

respect to the tangent basis peR, eZ , eϕq of the cylindrical coordinate system, ex-

pressed as functions of the logical coordinates pr, θ, ϕq, read

bR0 pr, θq :“
BR

0 pr, θq

B0pr, θq
“ ´

sB0

B0pr, θq

r sin θ

pR0 ` r cos θqqprq
,

bZ0 pr, θq :“
BZ

0 pr, θq

B0pr, θq
“

sB0

B0pr, θq

r cos θ

pR0 ` r cos θqqprq
,

bϕ0 pr, θq :“
Bϕ

0 pr, θq

B0pr, θq
“

sB0

B0pr, θq

R0

pR0 ` r cos θq2
.

(5.62)
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Moreover, the contravariant components of the curl of b0 with respect to the tangent

basis peR, eZ , eϕq of the cylindrical coordinate system, expressed as functions of

the logical coordinates pr, θ, ϕq, read

p∇ˆ b0q
R :“

1

R

ˆ

B

BZ
pb0qϕ ´

B

Bϕ
pb0qZ

˙

“
qprq ´ r q1prq

R2
0 q

2prq ` r2
R0 b

R
0 pr, θq ,

p∇ˆ b0q
Z :“

1

R

ˆ

B

Bϕ
pb0qR ´

B

BR
pb0qϕ

˙

“
qprq ´ r q1prq

R2
0 q

2prq ` r2
R0 b

Z
0 pr, θq ´ b

ϕ
0 pr, θq ,

p∇ˆ b0q
ϕ :“

1

R

ˆ

B

BR
pb0qZ ´

B

BZ
pb0qR

˙

“
r2 ` 2R2

0 q
2prq ´R2

0 r qprq q
1prq

pR2
0 q

2prq ` r2qR0 qprq
bϕ0 pr, θq ,

where q1prq “ dqprq{dr. Here we used the fact that pb0qR “ bR0 , pb0qZ “ bZ0 and

pb0qϕ “ pR0 ` r cos θq2bϕ0 , and expressed derivatives with respect to the cylindrical

coordinates in terms of derivatives with respect to the logical coordinates as

B

BR
“
Br

BR

B

Br
`
Bθ

BR

B

Bθ
`
Bϕ

BR

B

Bϕ
“ cos θ

B

Br
´

sin θ

r

B

Bθ
,

B

BZ
“
Br

BZ

B

Br
`
Bθ

BZ

B

Bθ
`
Bϕ

BZ

B

Bϕ
“ sin θ

B

Br
`

cos θ

r

B

Bθ
,

B

Bϕ
“
Br

Bϕ

B

Br
`
Bθ

Bϕ

B

Bθ
`
Bϕ

Bϕ

B

Bϕ
“
B

Bϕ
.

(5.63)

The equation of a magnetic field line in logical coordinates reads

Bθ
0

dθ
“
Bϕ

0

dϕ
, (5.64)

which gives
dθ

R0 ` r cos θ
“

dϕ

R0 qprq
. (5.65)

Here we used the fact that the contravariant components pBr
0, B

θ
0 , B

ϕ
0 q of the mag-

netic field B0 with respect to the tangent basis per, eθ, eϕq of the logical coordi-

nate system can be computed from the corresponding contravariant components
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pBR
0 , B

Z
0 , B

ϕ
0 q using (A.18):

Br
0 “ cos θ BR

0 ` sin θ BZ
0 ,

Bθ
0 “ ´

sin θ

r
BR

0 `
cos θ

r
BZ

0 ,

Bϕ
0 “ Bϕ

0 .

(5.66)

The integration of the right-hand side of (5.65) in the interval rϕ0, ϕs yields

ż ϕ

ϕ0

dϕ1

R0 qprq
“
ϕ´ ϕ0

R0 qprq
. (5.67)

The integration of the left-hand side of (5.65) in the interval rθ0, θs,

ż θ

θ0

dθ1

R0 ` r cos θ1
, (5.68)

can be performed using the trigonometric identity

cos θ “
1´ tan2pθ{2q

1` tan2pθ{2q
, (5.69)

and introducing the change of variable

ξ1 :“

c

R0 ´ r

R0 ` r
tan

θ1

2
, (5.70)

which eventually yields

ż θ

θ0

dθ1

R0 ` r cos θ1
“

2
a

R2
0 ´ r

2

„

arctan

ˆ

c

R0 ´ r

R0 ` r
tan

θ

2

˙

´ arctan

ˆ

c

R0 ´ r

R0 ` r
tan

θ0

2

˙

.

(5.71)
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Figure 5.9: Magnetic field lines for the magnetic field (5.60) on the flux surface at
r “ a{2.

Therefore, a magnetic field line passing through the point pr, θ0, ϕ0q can be de-

scribed by the relation between θ and ϕ, which reads

θpϕq “ 2 arctan

˜

c

R0 ` r

R0 ´ r
tan

"

a

R2
0 ´ r

2

2
ˆ

ˆ

„

2
a

R2
0 ´ r

2
arctan

ˆ

c

R0 ´ r

R0 ` r
tan

θ0

2

˙

`
ϕ´ ϕ0

R0 qprq

*

¸

.

Figure 5.9 shows these magnetic field lines on the flux surface at r “ a{2.

5.5.1 Kinetic equilibrium

We now briefly review how to define a kinetic equilibrium distribution function, de-

noted again by F0, for model (5.1) in a toroidal geometry with circular poloidal cross

sections with the magnetic field (5.60). This problem has been addressed and dis-
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cussed, for example, in (Idomura et al., 2003; Angelino et al., 2006; Dif-Pradalier

et al., 2008a,b; Di Troia, 2012). By definition, the equilibrium F0 does not depend

on time. Moreover, we assume that F0 is axisymmetric and thus depends only on

pr, θ, P}q. Such equilibrium distribution function is a stationary solution of the Vlasov

equation in (5.1), where only the equilibrium advection fields U 0 and UP}0, given by

U 0 “
P}
B˚
}

B˚ , UP}0 “ 0 , (5.72)

are considered. Under these assumptions, the equation for F0 reads simply

U 0 ¨∇F0 “ 0 , (5.73)

which in logical coordinates yields

P}p∇ˆ b0q
r BF0

Br
`
“

Bθ
0 ` P}p∇ˆ b0q

θ
‰ BF0

Bθ
“ 0 . (5.74)

Following (Angelino et al., 2006), we assume that F0 depends on the variables

pr, θ, P}q only implicitly through two new variables pΨpr, θ, P}q and KpP}q. More pre-

cisely, we can write F0pr, θ, P}q “ rF0ppΨpr, θ, P}q, KpP}qq. The idea behind this as-

sumption is to choose a distribution function which depends only on the canonical

invariants of (5.73), namely the poloidal magnetic flux and the kinetic energy, de-

noted here by pΨ and K, respectively. For this reason, the kinetic equilibrium distri-

bution function that will result from our analysis is usually referred to as canonical

Maxwellian, as it exhibits a functional form similar to a standard local Maxwellian, but

it is modified in order to depend only on the above-mentioned canonical invariants.

We then write (5.74) as

B rF0

BpΨ

˜

P}p∇ˆ b0q
r B

pΨ

Br
`
“

Bθ
0 ` P}p∇ˆ b0q

θ
‰ BpΨ

Bθ

¸

“ 0 . (5.75)

If we assume that pΨ has the form

pΨpr, θ, P}q :“ Ψprq ` P}pR0 ` r cos θqχprq , (5.76)
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it follows that (5.75) holds if and only if the following two ordinary differential equa-

tions are satisfied by Ψ and χ, respectively:

dΨ

dr
“

r sin θBθ
0

p∇ˆ b0q
r
χ , (5.77a)

dχ

dr
`

ˆ

cos θ

R0 ` r cos θ
´
p∇ˆ b0q

θ

p∇ˆ b0q
r

r sin θ

R0 ` r cos θ

˙

χ “ 0 . (5.77b)

Here we can use again the fact that the contravariant components of the curl of b0

with respect to the tangent basis per, eθ, eϕq of the logical coordinate system can

be computed from the corresponding contravariant components with respect to the

tangent basis peR, eZ , eϕq of the cylindrical coordinate system using (A.18):

p∇ˆ b0q
r
“ cos θ p∇ˆ b0q

R
` sin θ p∇ˆ b0q

Z ,

p∇ˆ b0q
θ
“ ´

sin θ

r
p∇ˆ b0q

R
`

cos θ

r
p∇ˆ b0q

Z ,

p∇ˆ b0q
ϕ
“ p∇ˆ b0q

ϕ .

(5.78)

Therefore, the equation for χ reads

dχ

dr
`

ξ ξ1

1` ξ2
χ “ 0 , (5.79)

where the auxiliary function ξ is defined as

ξprq :“
r

R0 qprq
. (5.80)

The solution of (5.79) is

χprq “
χ0

a

1` ξ2prq
, (5.81)

where χ0 is a constant. The function Ψ is then given by

Ψprq “ ´| sB0|χ0

ż r

0

dr1
r1

qpr1q
. (5.82)
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Any function of the two variables pΨ and K, with

pΨpr, θ, P}q “ ´| sB0|χ0

ż r

0

dr1
r1

qpr1q
` P}pR0 ` r cos θq

χ0
a

1` ξ2prq
, (5.83)

is an equilibrium distribution function for (5.1). A shift δpΨpP}q :“ ´R0P} on the

poloidal magnetic flux pΨ can be introduced in order to minimize parallel flows (An-

gelino et al., 2006). To sum up, a canonical Maxwellian distribution function is given

by

F0ppΨ, Kq :“
1

pB0

pρ0
b

2π pTi

exp

ˆ

´
K

pTi

˙

, (5.84)

where pρ0 “ ρ0pprq, pTi “ Tipprq, pB0 “ B0ppr, θ “ π{2q, with pr defined as the inverse

function rpΨq evaluated at Ψ “ pΨ. If q is uniform, i.e. qprq “ q0, we have (setting

χ0 “ 1)

Ψprq “ ´| sB0|
r2

2q0

, (5.85)

with the corresponding inverse function

rpΨq “

d

´
2q0

| sB0|
Ψ . (5.86)

If q has the form qprq “ q0 ` q2r
2, we have (setting again χ0 “ 1)

Ψprq “ ´
| sB0|

2q2

log
qprq

q0

, (5.87)

with the corresponding inverse function

rpΨq “

d

q0

q2

„

exp

ˆ

´
2q2

| sB0|
Ψ

˙

´ 1



. (5.88)

In general, for a given profile qprq, the flux function Ψ can be obtained by computing

numerically the integral (5.82). The corresponding inverse function rpΨq can be then

computed by a numerical inversion: for example, for any given value Ψ “ Ψ˚, we

could use a Newton method to find r “ r˚ that solves Ψprq ´Ψ˚ “ 0.
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5.5.2 Boundary conditions

We now address another issue that comes into play when studying our drift-kinetic

model in toroidal geometry, namely the problem of particles crossing the boundary of

the computational domain, when solving the 2D advection problem (5.7) on a given

poloidal plane. Such problem occurs even when we consider only the equilibrium

advection field U 0. By looking at the kinetic equilibrium distribution function F0

given by the canonical Maxwellian (5.84), we indeed notice that the contour lines

of F0 on a given poloidal plane are not conformal to the circular concentric flux

surfaces of the magnetic field. This is shown in Figure 5.10 with the parameters of

the highly non-physical scenario considered for the numerical simulations described

in section 5.4.2 and with the more realistic parameters considered for the numerical

simulations described in the next section. As a consequence, the characteristics

obtained by solving (5.7), even when we consider only the equilibrium advection

field U 0, can go across the boundary of the poloidal plane. This corresponds to

having particles that enter the computational domain from the region outside the

poloidal plane, as we integrate the characteristics backward in time. We therefore

need a strategy for the integration of (5.7) in the region outside the poloidal plane.

For this purpose, we introduce an outer computational domain pa, rosˆ r0, 2πq, for a

given ro ą a. The strategy we suggest is based on the observation that the electric

field becomes very small when we approach the boundary of the poloidal plane and

consists in integrating (5.7) by considering only the equilibrium advection field U 0.

In other words, we assume that the electric field is zero in the outer region. Since the

radial electric field is small but not exactly zero when we approach the boundary from

the inner region, in order for our strategy to work at the numerical level, we impose by

hand zero radial electric field at r “ a, thus connecting the inner and outer regions

in a smooth way without discontinuities. Moreover, when we need to interpolate

the distribution function at a given point in the outer region, starting from its values

at neighboring mesh points, we choose to interpolate the equilibrium distribution

function F0. One computational advantage of our strategy is that the values of the

equilibrium advection field U 0 and of the equilibrium distribution function F0 at the

mesh points in the outer region can be pre-computed only once. However, when

pre-computing the values of F0 we have to take into account the fact that, according
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Figure 5.10: Contour plots of the equilibrium canonical Maxwellian distribution func-
tion F0 in toroidal geometry with circular poloidal cross sections, with the param-
eters of the highly non-physical scenario considered for the numerical simulations
described in section 5.4.2 (top) and with the more realistic parameters considered
for the numerical simulations described in section 5.5.3 (bottom). In both cases, the
contour lines of F0 are not conformal to the circular concentric flux surfaces of the
magnetic field.
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to our field-aligned splitting combined with the time-advancing strategy described

in section 3.4, the poloidal advection (5.7) is solved after solving the field-aligned

advection on flux surfaces within half a time step. Therefore, in order to be consistent

with our splitting, the equilibrium distribution F0 should also undergo ∆t{2 of field-

aligned advection: when pre-computing the value of F0 at a given phase-space point

pri, θj, ϕk, P}`q in the outer region a ă ri ď ro, we set

F0pri, θj, ϕk, P}`q “ F0pri, θ
1
j, ϕ

1
k, P}`q , (5.89)

where the modified coordinates θ1j and ϕ1k are obtained from θj and ϕk by integrating

the characteristics of (5.8) on the flux surface at r “ ri within half a time step:

θ1j :“ θj ´
∆t

2

bθ0
bϕ0
Uϕ

0 , ϕ1k :“ ϕk ´
∆t

2
Uϕ

0 , (5.90)

where Uϕ
0 denotes the third contravariant component of U 0 with respect to the tan-

gent basis per, eθ, eϕq of the logical coordinate system and is given by

Uϕ
0 “

P}
B˚
}

`

Bϕ
0 ` P}p∇ˆ b0q

ϕ
˘

. (5.91)

5.5.3 Numerical results

We present here the numerical results obtained from the first tests performed on

model (5.1) in a toroidal geometry with circular poloidal cross sections. We note

that this is also the geometry currently available in the gyrokinetic code GySeLa

(Grandgirard et al., 2006a,b, 2016), with the difference that the center of the poloidal

plane is included in our case, thanks to the numerical machinery that we developed

for 2D singular geometries (described in the previous chapter). The parameters

defining the toroidal geometry considered and the initial density and temperature

profiles of ions and electrons are identical to the ones of the test case presented in

(Görler et al., 2016, section III), based in turn on the cyclone base case (Greenfield

et al., 1997; Dimits et al., 2000). More precisely, the minor and major radius of the

torus are set to a “ 180 and R0 “ 500, thus yielding an aspect ratio A “ 2.78,
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which is quite close to the realistic physical values (A « 2.0 for ASDEX Upgrade,

A « 2.4 for JET, A « 3.1 for ITER). The density and temperature profiles of ions

and electrons, as for the tests performed in cylindrical geometry, are defined as

ρ0prq “ neprq :“ ρ0 exp

„

´ kρ0wρ0
a

R0

tanh

ˆ

r ´ r̄

wρ0a

˙

, (5.92a)

Tiprq :“ T i exp

„

´ kTiwTi
a

R0

tanh

ˆ

r ´ r̄

wTia

˙ 

, (5.92b)

Teprq :“ T e exp

„

´ kTewTe
a

R0

tanh

ˆ

r ´ r̄

wTea

˙

, (5.92c)

where r̄ :“ a{2 and the parameters are set as

sρ0 “ 1.0 , sTi “ sTe “ 1.0 , (5.93a)

kρ0 “ 2.23 , kTi “ kTe “ 6.96 , (5.93b)

wρ0 “ 0.3 , wTi “ wTe “ 0.3 . (5.93c)

The profiles (5.92) are shown in Figure 5.11. The safety factor profile qprq is chosen

as qprq :“ q0 ` q2 r
2, with q0 “ 0.84 and q2 “ 2.26{a2, again very close to the

one considered in the test case presented in (Görler et al., 2016, section III), and
sB0 “ 1. The numerical test consists in loading a kinetic equilibrium distribution

function F0 for model (5.1) in toroidal geometry and verifying that we are capable

of maintaining the equilibrium while we let the system evolve in time. The initial

distribution function is defined as the equilibrium canonical Maxwellian (5.84). The

simulation is run with n1 ˆ n2 ˆ n3 ˆ n4 “ 256 ˆ 512 ˆ 32 ˆ 128, ∆t “ 2.0 and a

momentum domain r´6.0, 6.0s. Numerical results are shown in Figures 5.12-5.14.

For the conservation of the total mass Mptq and the L2-norm of F we get

max
tPr0,4000s

δMptq « 6.8ˆ 10´10 , max
tPr0,4000s

δ||F ||L2ptq « 4.7ˆ 10´10 . (5.94)

It is also interesting to measure within this simple numerical test the residual electric

potential Φ1 after one time step. This gives information on how small a perturbation

of the kinetic equilibrium distribution function could be in order to produce an ini-

tial condition that makes sense from a numerical point of view. More precisely, the
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Figure 5.11: Numerical test of the 4D drift-kinetic electrostatic model in toroidal ge-
ometry with circular poloidal cross sections: density and temperature profiles used
to initialize the simulation.
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Figure 5.12: Numerical test of the 4D drift-kinetic electrostatic model in toroidal ge-
ometry with circular poloidal cross sections: contour plots of the distribution function
F pt, x, y, z “ 0, P} “ 0q at times t “ 0 (beginning of the simulation) and t “ 4000
(end of the simulation). A kinetic equilibrium distribution function is loaded and well
maintained during the time evolution.
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Figure 5.13: Numerical test of the 4D drift-kinetic electrostatic model in toroidal ge-
ometry with circular poloidal cross sections: contour plots of the distribution function
F pt, x, y, z “ 0, P} “ sP}q at times t “ 0 (beginning of the simulation) and t “ 4000
(end of the simulation). A kinetic equilibrium distribution function is loaded and well
maintained during the time evolution.
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Figure 5.14: Numerical test of the 4D drift-kinetic electrostatic model in toroidal ge-
ometry with circular poloidal cross sections: contour plots of the distribution function
F pt, x, y, z “ 0, P} “ ´ sP}q at times t “ 0 (beginning of the simulation) and t “ 4000
(end of the simulation). A kinetic equilibrium distribution function is loaded and well
maintained during the time evolution.
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amplitude of a perturbation should be large enough to ensure that the electric po-

tential resulting from it is larger than the residual electric potential obtained without

the perturbation. As a measure of such residual electric potential, we can compute,

for example, the spatial L8-norm of Φ1pt, x, y, z “ 0q at the initial time t “ 0 (where

Φ1 is expected to be zero, because there is no initial perturbation) and at time t “ 2,

after one time step:

max
px,yq

|Φ1pt “ 0, x, y, z “ 0q| « 1.3ˆ 10´16 , (5.95a)

max
px,yq

|Φ1pt “ 2, x, y, z “ 0q| « 3.4ˆ 10´7 . (5.95b)

As a result, we observe that the minimum amplitude ε for a perturbation of the ki-

netic equilibrium distribution function would be approximately ε « 10´4. Smaller

perturbations would produce an electric potential which is too small for the accuracy

resulting from our time splitting.

5.6 Summary of the contributions

In this chapter we discussed the latest developments of our field-aligned semi-

Lagrangian drift-kinetic code. The numerical methods implemented in the code were

described in detail, as well as the numerical results obtained from simulations in two

different 3D geometries, namely a cylindrical geometry and a toroidal geometry with

circular concentric poloidal cross sections. We showed that the numerical machin-

ery developed for the solution of coupled hyperbolic-elliptic problems in 2D singular

geometries can be applied to higher-dimensional kinetic, drift-kinetic and gyrokinetic

models in a straightforward way, therefore making our numerical methods ready

to be implemented in state-of-the-art gyrokinetic codes, such as, for example, the

semi-Lagrangian gyrokinetic code GySeLa (Grandgirard et al., 2006a,b, 2016). The

simulations performed in cylindrical geometries enabled us to provide a robust ver-

ification of our implementation, thanks to the semi-analytical results that can be

derived from a linear dispersion analysis of our drift-kinetic electrostatic model. The

numerical results obtained in toroidal geometry should be considered as first sim-
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ple tests and can be certainly improved and extended to cover more complex and

realistic scenarios.

The starting point at the beginning of our developments was a field-aligned semi-

Lagrangian code addressing the solution of a simplified version of our 4D drift-

kinetic electrostatic model in cylindrical geometry. Such code (and the correspond-

ing model) is described, for example, in (Latu et al., 2018, section 4). It was the

primary aim of this thesis to improve that code and extend its capabilities, with re-

spect to both the physical model addressed and the available 3D geometries. Our

main contributions can be summarized as follows:

• the extension of the physical model (and its linear dispersion analysis) from the

simplified one presented in (Latu et al., 2018, section 4) to a more comprehen-

sive drift-kinetic electrostatic model, closer to the physical model implemented,

for example, in the semi-Lagrangian gyrokinetic code GySeLa;

• the extension of the geometric capabilities of the existing code to toroidal ge-

ometries;

• the integration in the existing code of the numerical machinery developed for

the solution of coupled hyperbolic-elliptic problems in 2D singular geometries;

• the treatment of boundary conditions in toroidal geometries, handling the prob-

lem of particles crossing the boundaries of the poloidal planes.

The rest of the material presented in this chapter refers to either background mathe-

matical notions or mathematical and computational tools that were already available

before this research started and that may have been only slightly improved within

the scope of this thesis.
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Chapter 6

Conclusions and outlook

In this thesis we presented and discussed novel mathematical and computational

tools for theoretical and computational gyrokinetics, which we briefly summarize in

the following.

With regard to theoretical gyrokinetics, we presented and discussed a new method

for the derivation of gyrokinetic models, based on polynomial transforms instead of

Lie transforms. Our technique is based on a rigorous normalization of the phys-

ical equations within ordering assumptions relevant for existing and future fusion

experiments, such as ASDEX Upgrade and ITER. In particular, we derived a set of

gyrokinetic equations for both ions and electrons in maximal ordering. Our method

is alternative to the use of Lie transforms and can provide useful insights into the

derivation of gyrokinetic models. It is our hope that the derivation presented in this

thesis will make gyrokinetic theory more accessible for scientists who are not famil-

iar with it and for students at the early undergraduate level, without requiring any

solid knowledge of differential geometry. Moreover, our rigorous non-dimensional

approach may be of particular interest for mathematicians who want to apply tech-

niques of error analysis and asymptotic methods to gyrokinetic models of magne-

tized fusion plasmas.

With regard to computational gyrokinetics, we presented and discussed novel nu-

merical methods with the ultimate aim of providing useful computational techniques
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to be employed in state-of-the-art gyrokinetic codes. In chapter 3 we introduced the

basic features of a field-aligned semi-Lagrangian 4D drift-kinetic code developed

within the software library SeLaLib. In particular, we extended the field-aligned split-

ting discussed in (Latu et al., 2018) to a general setting based on curvilinear coordi-

nates and also improved the capabilities offered by the SeLaLib library with respect

to our spline discretization. In chapter 4 we presented a comprehensive numeri-

cal strategy for the solution of coupled hyperbolic-elliptic PDEs on singular mapped

disk-like domains. In particular, we introduced a novel set of coordinates, named

pseudo-Cartesian coordinates, for the integration in time of the characteristics of

hyperbolic PDEs on such domains. Moreover, we described a finite element elliptic

solver based on the C1 smooth polar splines presented in (Toshniwal et al., 2017).

The resulting numerical techniques are fairly general and can be also applied to

problems relevant for areas of physics and engineering other than plasma physics

and nuclear fusion. In chapter 5 we described the latest developments on our field-

aligned semi-Lagrangian 4D drift-kinetic code, which may be of interest for similar

codes in the computational plasma physics community. In particular, we showed

that the numerical machinery described in chapter 4 for 2D problems can be ap-

plied to higher-dimensional models in a straightforward way, therefore making our

numerical methods ready to be implemented in state-of-the-art gyrokinetic codes,

such as, for example, the semi-Lagrangian gyrokinetic code GySeLa (Grandgirard

et al., 2006a,b, 2016).

All the numerical tests presented in this thesis were described in detail, as they rep-

resent a fundamental building block of code development. The field-aligned semi-

Lagrangian 4D drift-kinetic code can be further developed and improved in several

ways. In order to consider singular disk-like poloidal domains resembling realistic

Tokamak geometries, as for the 2D setting described in chapter 4, the capability

of constructing a discrete mesh from a given magnetic field should be added. For

example, an interface with the software Tokamesh (Guillard et al., 2018) could be

built, as the two codes are based on a very similar discretization. Moreover, a fifth

dimension (corresponding to the magnetic moment) should be added, in order to be

able to perform all the standard test cases used for verification and validation pur-

poses between different gyrokinetic codes, such as the ones discussed in (Görler
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et al., 2016). In order for our model to correspond precisely to the ones considered

for such test cases, the quasi-neutrality equation for the electric potential should be

also modified by including the so-called “zonal-flow” term, namely the magnetic flux

surface average of the electric potential. The method described in (Crouseilles et al.,

2012, section 6) could be implemented in order to avoid non-locality in the finite ele-

ment solution of the quasi-neutrality equation, thus preserving the overall efficiency

of the code. With regard to the code efficiency, it would be certainly helpful to paral-

lelize the serial finite element elliptic solver described in chapter 4 and implemented

at the moment in our 4D code. An interesting approach to tackle this problem could

be to build an interface for the similar parallel finite element elliptic solver currently

implemented in the novel HPC PSYDAC framework based on Python (Ratnani et al.,

2019).
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Appendix A

Curvilinear coordinates

In this appendix we review briefly the basics of vector algebra and analysis in curvi-

linear coordinates and collect several useful relations that are used consistently

throughout this thesis. It is not within the scope of this appendix to derive all relations

within the context of differential geometry. For this purpose and for a practical and

more comprehensive treatment of the topic, we refer to (D’haeseleer et al., 1991).

A set of curvilinear coordinates pη1, η2, η3q is defined by a transformation T of the

form

T :

x “ xpη1, η2, η3
q ,

y “ ypη1, η2, η3
q ,

z “ zpη1, η2, η3
q ,

(A.1)

where px, y, zq denote Cartesian coordinates in 3D space. The tangent basis of

the curvilinear coordinate system defined by the transformation T is denoted by

peη1 , eη2 , eη3q and defined as

eηi :“
BT

Bηi
, (A.2)

for i “ 1, 2, 3. The corresponding cotangent basis is denoted by peη
1
, eη

2
, eη

3
q and

defined as

eη
i

:“∇ηi , (A.3)

for i “ 1, 2, 3. Here, the gradient ∇ηi is such that ∇ηi ¨ eηj “ δij , where δij is the
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Kronecker delta, defined as

δij :“

#

1 if i “ j ,

0 if i ‰ j ,
(A.4)

for i, j “ 1, 2, 3. The contravariant components of a vector V with respect to the

tangent basis peη1 , eη2 , eη3q are denoted by pV η1 , V η2 , V η3q and defined as

V ηi :“ V ¨ eη
i

, (A.5)

for i “ 1, 2, 3. Similarly, the covariant components of V with respect to the cotangent

basis peη
1
, eη

2
, eη

3
q are denoted by pVη1 , Vη2 , Vη3q and defined as

Vηi :“ V ¨ eηi , (A.6)

for i “ 1, 2, 3. We note that contravariant and covariant components do not differ

in a Cartesian coordinate system. The metric coefficients of the curvilinear coordi-

nate system defined by the coordinates pη1, η2, η3q are denoted by gijpη1, η2, η3q, for

i, j “ 1, 2, 3, and defined as

gij :“ eηi ¨ eηj . (A.7)

The covariant component of a vector V can be expressed in terms of its contravari-

ant components by means of the metric coefficients as

Vηi “ gijV
ηj , (A.8)

for i “ 1, 2, 3. Here and in the following we employ the Einstein summation conven-

tion (sum over repeated indices). The Jacobian matrix of the curvilinear coordinate

system defined by the coordinates pη1, η2, η3q is denoted by Jηpη1, η2, η3q and de-

fined as

Jη :“

»

—

—

—

—

—

—

—

–

Bx

Bη1

Bx

Bη2

Bx

Bη3

By

Bη1

By

Bη2

By

Bη3

Bz

Bη1

Bz

Bη2

Bz

Bη3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (A.9)

180



The determinant det Jη of the Jacobian matrix Jη can be expressed in terms of the

determinant detG of the metric matrix G (defined by the metric coefficients gij) as

det Jη “
?

detG . (A.10)

The dot product between two vectors V and W can be expressed in terms of their

contravariant and covariant components as

V ¨W “ V ηiWηi “ VηiW
ηi . (A.11)

The contravariant components of the cross product between two vectors V and W

can be expressed in terms of their individual covariant components as

pV ˆW q
ηk
“

εijk

det Jη
VηiWηj , (A.12)

for k “ 1, 2, 3. Here εijk denotes the Levi-Civita symbol, defined as

εijk :“

$

’

’

&

’

’

%

`1 if pi, j, kq even permutation of p1, 2, 3q ,

´1 if pi, j, kq odd permutation of p1, 2, 3q ,

0 otherwise ,

(A.13)

for i, j, k “ 1, 2, 3. Similarly, the covariant components of the cross product between

V and W can be expressed in terms of their individual contravariant components

as

pV ˆW qηk “ εijkpdet JηqV
ηiW ηj , (A.14)

for k “ 1, 2, 3. Here εijk is defined as in (A.13). When we consider the gradient

of a scalar function gpη1, η2, η3q, the derivatives of g with respect to the coordinates

pη1, η2, η3q define the covariant components of its gradient. In formulas:

p∇gqηi “
Bg

Bηi
, (A.15)

for i “ 1, 2, 3. The divergence of a vector V can be expressed in terms of its
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contravariant components as

∇ ¨ V “
1

det Jη

B

Bηi

”

pdet JηqV
ηi
ı

. (A.16)

The contravariant components of the curl of a vector V can be expressed in terms

of its covariant components as

p∇ˆ V qη
k

“
εijk

det Jη

BVηj

Bηi
, (A.17)

for k “ 1, 2, 3. The corresponding covariant components can be obtained by low-

ering the indices with the metric coefficients gij , using (A.8). Finally, we end the

appendix by recalling how to obtain the contravariant (respectively, covariant) com-

ponents of a vector V with respect to a curvilinear coordinate system defined by the

coordinates pη1, η2, η3q starting from the corresponding contravariant (respectively,

covariant) components of the same vector with respect to a different curvilinear coor-

dinate system defined by the coordinates pη̄1, η̄2, η̄3q. The contravariant components

of V in the two curvilinear coordinate systems are related by

V η̄i
“
Bη̄i

Bηj
V ηj , (A.18)

for i “ 1, 2, 3. Similarly, the covariant components of V in the two curvilinear coor-

dinate systems are related by

Vη̄i “
Bηj

Bη̄i
Vηj , (A.19)

for i “ 1, 2, 3.
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Appendix B

Useful analytical integrals

We show here how to compute some recurrent integrals frequently occurring in lin-

ear dispersion analyses. Let us first consider the integrals

Ii :“

ż `8

´8

dx xie´x
2

, (B.1)

with i P N. If i “ 0, we have

I0 “

ż `8

´8

dx e´x
2

“
?
π . (B.2)

If i is odd, an odd integrand function is integrated over a domain symmetric with

respect to 0, yielding Ii “ 0. If i is even, there exists a unique integer j ą 0 such

that i “ 2j. Therefore, we have

Ii “

ż `8

´8

dx x2je´x
2

. (B.3)

Due to the parity of the integrand function, we have

ż `8

´8

dx x2je´x
2

“ 2

ż `8

0

dx x2je´x
2

. (B.4)
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Via the change of variable t :“ x2, we obtain

2

ż `8

0

dx x2je´x
2

“

ż `8

0

dt
?
t
tje´t . (B.5)

We now define k :“ j ` 1{2 and obtain

ż `8

0

dt
?
t
tje´t “

ż `8

0

dt tk´1e´t “ Γpkq , (B.6)

where Γ is the Euler Gamma function. Summing up, we have

Ii “

$

’

’

’

’

&

’

’

’

’

%

?
π i “ 0 ,

0 i odd ,

Γ

ˆ

i` 1

2

˙

i even .

(B.7)

Let us now consider the integrals

Jipzq :“

ż `8

´8

dx
xie´x

2

x´ z
, (B.8)

for i P N and z P C. If i ą 0, we have

Jipzq “

ż `8

´8

dx xi´1e´x
2

` z

ż `8

´8

dx
xi´1e´x

2

x´ z

“ Ii´1 ` zJi´1pzq .

(B.9)

If i is even, then Jipzq “ zJi´1pzq. If i is odd, we have

Jipzq “ Γ

ˆ

i

2

˙

` zJi´1pzq . (B.10)

Summing up, for i ą 0 we have the recursive formula

Jipzq “

$

’

&

’

%

Γ

ˆ

i

2

˙

` zJi´1pzq i odd ,

zJi´1pzq i even .

(B.11)
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In order to compute the first integral J0pzq,

J0pzq “

ż `8

´8

dx
e´x

2

x´ z
, (B.12)

we introduce the complex function (Barton et al., 1965) (sometimes called Faddeeva

function)

wpzq :“ e´z
2

ˆ

1`
2i
?
π

ż z

0

dt et
2

˙

“: e´z
2

erfcp´izq “: e´z
2

r1´ erfp´izqs ,

(B.13)

for any z P C. If Impzq ą 0, the function wpzq has also the integral representation

wpzq “
i

π

ż `8

´8

dt
e´t

2

z ´ t
. (B.14)

Therefore, if Impzq ą 0, the integral J0pzq is given by

J0pzq “ iπ wpzq . (B.15)

If Impzq ă 0, we introduce the new variable t :“ ´x and obtain

J0pzq “

ż `8

´8

dx
e´x

2

x´ z
“ ´

ż `8

´8

dt
e´t

2

t` z
“ ´iπ wp´zq , (B.16)

since now Imp´zq ą 0. Summing up, the integral J0pzq is given by

J0pzq “

#

iπ wpzq Impzq ą 0 ,

´iπ wp´zq Impzq ă 0 ,

“ sgn rImpzqs iπ w psgn rImpzqs zq .

(B.17)

The derivative of Jipzq for i ą 0 can be computed from the recursive formula (B.11),

yielding
d

dz
Jipzq “

i
ÿ

j“1

zj´1Ji´jpzq ` z
i d

dz
J0pzq . (B.18)
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The derivative of J0pzq comes then from (B.17), independently of the sign of Impzq:

d

dz
J0pzq “ iπ

d

dz
wpzq . (B.19)

Let us now consider the integral

Kpα0, . . . , αn, β0, β1, β2, γq :“

ż `8

´8

dx
p
řn
i“0 αix

iq e´γx
2

β0 ` β1x` β2x2
, (B.20)

with n P N, αi P R for i “ 0, . . . , n, γ P R with γ ‰ 0, β0 P C with β0 ‰ 0, β1 P C and

β2 P R. If β1 “ 0 and β2 “ 0, we have

Kpα0, . . . , αn, β0, 0, 0, γq “
1

β0

n
ÿ

i“0

αi

ż `8

´8

dx xie´γx
2

. (B.21)

We introduce the change of variable y :“
?
γ x and obtain

Kpα0, . . . , αn, β0, 0, 0, γq “
1

β0

n
ÿ

i“0

αiγ
´pi`1q{2Ii . (B.22)

If only β2 “ 0, we have

Kpα0, . . . , αn, β0, β1, 0, γq “
n
ÿ

i“0

αi

ż `8

´8

dx
xie´γx

2

β0 ` β1x
. (B.23)

We first rewrite the integral as

Kpα0, . . . , αn, β0, β1, 0, γq “
1

β1

n
ÿ

i“0

αi

ż `8

´8

dx
xie´γx

2

x` β0{β1

. (B.24)

Introducing again the change of variable y :“
?
γ x, we define z :“ ´

?
γ β0{β1 and

obtain

Kpα0, . . . , αn, β0, β1, 0, γq “
1

β1

n
ÿ

i“0

αiγ
´i{2Jipzq . (B.25)

If β2 ‰ 0, we define ∆ P C as

∆ :“ β2
1 ´ 4β2β0 , (B.26)
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and u˘ P C as

u˘ :“
1

2β2

p´β1 ˘
?

∆q . (B.27)

We note that
u`u´ “

1

4β2
2

pβ2
1 ´∆q “

β0

β2

,

u` ` u´ “ ´
β1

β2

.

(B.28)

Therefore, we have

β2x
2
` β1x` β0 “ β2px´ u`qpx´ u´q . (B.29)

The integral can be then rewritten as

Kpα0, . . . , αn, β0, β1, β2, γq “
1

β2

n
ÿ

i“0

αi

ż `8

´8

dx
xie´γx

2

px´ u`qpx´ u´q
. (B.30)

Via the change of variable y :“
?
γx, we can write the integral as

Kpα0, . . . , αn, β0, β1, β2, γq “
1

β2

n
ÿ

i“0

αiγ
´pi´1q{2

ż `8

´8

dy
yie´y

2

py ´ z`qpy ´ z´q
, (B.31)

where we have defined z˘ :“
?
γ u˘. We now note that

1

py ´ z`qpy ´ z´q
“

1

z` ´ z´

ˆ

1

y ´ z`
´

1

y ´ z´

˙

, (B.32)

with z` ´ z´ given by

z` ´ z´ “
?
γpu` ´ u´q “

?
γ

?
∆

β2

. (B.33)

Therefore, we obtain

Kpα0, . . . , αn, β0, β1, β2, γq “
1
?

∆

n
ÿ

i“0

αiγ
´i{2

rJipz`q ´ Jipz´qs . (B.34)
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