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Abstract. In this work we introduce a practical method for reducing big point clouds of buildings 

and infrastructure. The proposed method introduces bilateral filtering with a tailored set of 

evaluation functions, that will conserve as much information as possible. To determin the actual 

statistical parameters to perform this filtering and reason about our development, we investigate 

different point properties on a comprehensive dataset. The dataset contains artificial, photo-

grammetric and laser scanned point clouds and was made publicly available. We showcase our 

filtering method by preserving more information than voxel grid or density filters challenging even 

sparser photogrammetric datasets. Finally, we discuss some encoding strategies as well as the sweet 

spot between size and resolution.  

1. Introduction 

Point clouds are becoming a quasi-standard representation for capturing existing context, 

construction progress monitoring, as-built modeling and quality control. While previously only 

a topic of research, most recent real-world applications and software tools support fully 

automated workflows based on point cloud data. In tandem with the increasing number of 

implemented use cases, the instruments to generate suitable point clouds have improved as well. 

As sensors develop in precision and recording speed, they are adapted by the construction 

business and widely applied in planning and quality control. These sensors can capture point 

clouds of bigger construction sites, infrastructure in an adequate time frame and their point 

count can easily surpass multiple billion points.  

For processing, the data is sliced or subsampled to manageable parts. Both strategies have 

downsides as slicing may lead to locality problems and merging issues and subsampling 

normally comes with the cost of precision or a change in the statistical point distribution. Our 

proposed method uses information about the domain to reduce the number of measures without 

sacrificing the properties of a high-density point clouds. Every point will be evaluated on the 

information gain of the point itself, using quantified relations between the different dimensions 

(locality, colour, orientation). We then use two approaches to optimize the data set: Grouping 

points with similar information (lossless compression), and we drop measures with low 

informational gain. To demonstrate the advantages, we benchmark the properties on multiple 

use cases built upon real world and synthetic data. All datasets are available under 

vision.cms.bgu.tum.de/eg_ice2019 (Eickeler 2019). 

2. Related Work 

Practitioners from the civil engineering industry mainly have two options when capturing as-is 

environments as point clouds - laser scanning and photogrammetric reconstruction. While both 

have advantages and disadvantages (Golparvar-Fard et al. 2011; Baltsavias 1999), the 

properties of the resulting point cloud can differ significantly. Laser scanners provide a fixed 

amount of measures per arc which leads to a radially decreasing point density. Most of the point 

clouds consist of multiple aligned scans (Boehler et al. 2003) creating a combined but locally 

inconsistent density: all points are created equal. In contrast, photogrammetric reconstructions 

are influenced by the number of images, parameter and colour gradients on the surfaces. Some 
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surface materials with restless colouring are reconstructed with higher density and precision, 

which provides a natural grouping of points in regions of image diversity. Besides this 

distribution difference, the number of dimensions created by the recording device stands out 

the most. Original laser scan data consists of the three spatial properties - sometimes with an 

attached intensity, that encodes the strength of the signal that was the reflected by the hull. 

Some laser scanners attach colour information with a build-in camera device as a followup. The 

properties of the photogrammetric reconstruction can differ from one toolchain to another. 

Usually normals are estimated in the progress of dense reconstruction (Zheng et al. 2014; 

Schönberger et al. 2016) creating depth and normal maps. All usual properties and their 

common types are listed in Table 1. 

Table 1: Encoded properties and their datatypes 

 Property Laser scan Photogrammetric 

Reconstruction 
 

 Spatial x, y, z double float  

 Orientation nx, ny, nz - float  

 Intensity i float -  

 Colour rgb - float / uint8[3]  

 Scalar field - -  

Considering these properties, the memory consumption is respectively 28 bytes per point stored 

by a laser scanner. The same size is taken by several properties of the photogrammetric 

reconstruction. The size increases during processing due to the optimal Single Instruction 

Multiple Data (SIMD) memory alignment. Reducing the memory footprint has been in interest 

of research and work on reducing the consumption of the structure (Elseberg et al. 2013; 

Schnabel & Klein 2006). For large point clouds re-encoding the static part in a spatial structure 

results in huge memory saving but results in an increase of processing time. 

Another way to reduce the memory consumption is filtering the point cloud. Traditionally the 

filtering methods are generalized methods, that will be applied to the recording point stream of 

scanners or simultaneous localization and mapping (SLAM) methods. Most methods such as 

bilateral or PDE based filtering (Han et al. 2017; Moorfield et al. 2015) try to optimize the cloud 

with respect to meshing performance. For Airborne Laser Scanning (ALS) a study was 

undertaken to compare different algorithms (Sithole & Vosselman 2005). The main goal of the 

examined filter types was not to reduce data, but to increase the signal-to-noise ratio (SNR). 

Filtering can be archieved by changing single properties of an outlier or by culling (removing) 

the point in question. Most of the laser scanners, as well as photogrammetric toolchains, employ 

multiple stages of filtering in the process of creating the merged point cloud.  

If the original signal is not known, evaluating the SNR can be a challenge. The signal is a set 

of multidimensional measures along a surface with seemingly non-continuous behaviour. 

Divergent approaches have been taken to evaluate point clouds: While one approach is the 

evaluation of suitability in use cases (Rebolj et al. 2017), a second tries to evaluate a certain set 

of properties and their relations. Example for such analysis are the volumetric density or the 

number of geometric features (Haala et al. 2013; Angel Alfredo Martell 2017; Dyer 2001).  

A recorded set of points can be compared to ground truth data that was generated by a more 

accurate procedure, such as rapid manufacturing or laser scanning (Tóth et al. 2013). A third 

approach benchmarks the toolchains and information density (Eickeler et al. 2018) by 
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combining and trading between multiple criteria. As an extension, the cluster density (avg. 

nearest-neighbour-distance) was measured on multiple spatial cells. This lead to the 

introduction of density fields and is used to pre-align the clouds prior to a Iterative Closest Point 

Algorithm (Chen et al. 2017b). In a follow up the same authors use cluster density as criteria, 

while examining the deformation and the impact of density on a dataset containing bridges. 

Leading them to the conclusion that working on dense data rapidly increases the cost of 

recording and processing, but only adds a small plus at the detection rate (Chen et al. 2018).  

Culling measures in an infrastructural context (and therefore addressing the same problem as 

this work) as well as redefining points by evaluating segments was analysed by Chen (Chen et 

al. 2017a) and therefore addressing the same problem as this work. In a first partitioning process 

segments are created and grown. Segments group points with the same direction (eigen values) 

together and extended by adding points in the vicinity of the point of origin (seed) and 

completed if a certain threshold is exceeded (Sampath & Shan 2010). For each segment two 

different key point indicators - smoothness and curvature - are evaluated and a local 

compression value is calculated. In a consecutive process, a voxel grid is used to reduce the 

number of measurements in each voxelated segment by this calculated factor. Diverging from 

this approach, we present a point-wise evaluation of informational gain and reduce the point 

cloud by grouping and culling points based on our evaluation model. Clusters are formed by 

similarity and frequency rather than eigen values. 

3.  Methods 

The basic concept of our method is to evaluate each measurement on a point-by-point basis. 

We take multiple properties such as point normals, colours, and meta data into account. Based 

on our preceding analysis of our test dataset, we determin a weighting function and the 

statistical parameters for each property. These weighting is executed on each point of the cloud 

and based on their score the point is being kept or removed. For each measurement the score is 

revaluated as the filtering of the dataset progresses. This ensures that the removed point is 

always the lowest scoring one.  

Taking this concept one step further, we cluster points of similar information content and try to 

increase the information density. This optimization will drop multiple points if their information 

content is marginal and add a new important point in between. Our algorithm merges certain 

points if their weights fall under a certain threshold. The information of the grouping is 

conserved by encoding the information in the length of the normal vector, without changing the 

memory layout of the point. In a similar way we compare the weights of a seeded set to their 

superset and calculate the roughness of the partitions. If the roughness is similar the information 

of the subset is encoded in the normal.  

Datasets. Our test data is constructed of a set of synthetic and real captures. The synthetic 

consists of geometric primitive and simple construction and point clouds were extracted from 

multiple meshes. Per square unit we distributed measures with densities of log10 randomly on 

the containing triangles (Turk 1990) creating 10, 100, …, 1 000 000 [𝑝𝑜𝑖𝑛𝑡𝑠   𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡⁄ ]. 

The points spread is random (Mersenne Twister). For the real captures 3 captures were used: A 

photogrammetric reconstruction of a clock tower at the TU Munich, a photogrammetric 

reconstruction of a (advanced) construction site at [48°08'50.6"N 11°31'33.4"E] and laser scan 

of the same construction site that was taken in parallel. The photogrammetric reconstructions 

were created using the program colmap (Schönberger et al. 2016). 
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Table 2: Selection of used data sets. The sets shown a selection of the sets used in the evaluation. The 

datasets are publicly available (Eickeler 2019). The chosen datasets are border cases of the all data. 

 Point cloud Density NN5  

[k / u²] 

Nr. of measures 

[k] 

Size 

[MB] 

Properties  

 Cube – D1K 9.70 0.006 0.2 xyz, n-xyz  

 Cube – D1M 304.92 6.000 164 xyz, n-xyz  

 Ape – D1K 9.72 0.012 0.3 xyz, n-xyz  

 Ape – D1M 298.15 12.462 349 xyz, n-xyz  

 Clock Tower 162.56 9.728 272 xyz, n-xyz, rgb  

 Construction Site – 1000px 58.91 8.813 235 xyz, n-xyz, rgb  

 Construction Site – 3000px 281.97 76.184 2 034 xyz, n-xyz, rgb  

 Construction Site – Laser S. -          307.500 8 211 xyz, intensity  

Concept. We use bilateral filtering to estimate the information content 𝐼(𝒑) for every point. 

Where 𝒑 is the point of interest and 𝒒 part of 𝑁𝐷 the set 𝑘 nearest neighbours. The w is a 

weighting function and 𝑑(𝒑, 𝒒), the eucledian distance between those measures. The last part 

consists of constant 𝑐 and the sum of the weighted influence of properties of 𝒑 and 𝒒. The 

properties are evaluated by their dedicated function 𝑤𝑎. The constant was added since a minimal 

density is required by multiple guidelines  and algorithms (GSA BIM Guide 2019). We propose 

following weighting functions:  

The space correlation is established by formula 2. We have chosen a polynomial of 3rd order 

for distance evaluation and use the euclidean distance as parameter. The use of this 3rd order 

emphasises sharp angles as well as far distance. The first term, the heaviside function enables 

thresholding to remove duplicates. All 𝜎 are individual constants for dampening the influence 

and should be chosen according to the specifications needed (∑ 𝜎 = 1).  

The weight 𝑤𝑛 evaluates the angle between the normal and the power of 2, we accentuate vivid 

change. Normal change has a great impact on the surface smoothness and the quality of the 

𝐼(𝒑) = ∑ 𝑑(𝒑, 𝒒) (𝑐 +
1

|𝑃|
∑ 𝑤𝑎(𝒑, 𝒒)

𝑎∈𝑃
)

𝒒 ∈𝑁𝐷
 (1) 

𝑤𝑑(𝒑, 𝒒) = 𝐻(𝑑(𝒑, 𝒒) − 𝑐𝑡ℎ𝑟) 𝜎𝑑 [𝑐1  (
𝑑(𝒑, 𝒒)

𝑑 𝑚𝑎𝑥 
)

3

− 𝑐2  (
𝑑(𝒑, 𝒒)

𝑑 𝑚𝑎𝑥
)

2

+ 𝑐3  (
𝑑(𝒑, 𝒒)

𝑑 𝑚𝑎𝑥
) + 𝑐4] (2) 

𝑤𝑛(𝒑, 𝒒) =   
1

𝜋2
 𝜎𝑛  𝑐𝑜𝑠−1 (

𝒑𝑛 ⋅  𝒒𝑛

|𝒑𝑛| |𝒒𝑛|
)

2

  (3) 

𝑤𝑟𝑔𝑏(𝒑, 𝒒) =
1

2𝑏𝑖𝑡
 𝜎𝑐𝑜𝑙 𝑑(𝒑𝑟𝑔𝑏 , 𝒒𝑟𝑏𝑔) (4) 

𝑤𝑖(𝒑, 𝒒) =   𝜎𝑖 (𝒑𝑞 − 𝒑𝑖) (5) 
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edges. Small normal changes may be due rough materials, greater changes hint interesting 

geometric features. In theory angles greater that 180 degrees are not covered, but as these angles 

cannot exists in photogrammetric reconstructions and no patch growing algorithm can generate 

such normals, this fact can be neglected. The colour weight, 𝑤𝑟𝑔𝑏 is the normed distance in the 

colour-space. The factor 2𝑏𝑖𝑡 is needed since the colour range is not fixed and determined by 

the input point cloud. As alternative the intensity can be evaluated, since this measurement must 

be taken with care as multiple scans can target the same feature but record different intensities. 

This term is also used for all other properties that were encoded to the cloud.  

After calculating 𝐼 and removing the point based on the score, the algorithm reevaluate the 

points in the vicinity. Programmatically this is quite complicated since the lower scores might 

change drastically, and order can be cached beforehand. For optimizing the calculation, we can 

use a tree structure and start in multiple cells in parallel, before rearranging the point list. The 

number of filter cycles should not exceed 50% of the median for dense point clouds and even 

less for sparse point clouds.   

4. Parameter extraction 

This framework of formulas was defined by analyzing a broad set of point clouds. For our use 

we need to populate all statistical parameters and fit the model to our context. We used our full 

set dataset for the analysis, but only few examples are discussed. Two primitive sets and the 

high-res construction site are shown to mark the influence of density on the minimal, maximal 

and average distance (see Figure 1a-c). While on sparse data the reduction of the minimal 

distance is noticeable, the impact diminishes while using the datasets of medium or high 

density. This behavior does not differ using NN-2 or NN-10 (data online). For all further 

evaluation NN-5 was chosen to express a certain robustness and locality.  

 
Figure 1 a-c: The plots show the influence of density on the minimal, maximal, average point-to-point 

distance. All plots were evaluated with NN-5. (a) The evaluation of the cube densities; (b) Displays 

densities of “Suzan”; (c) Shows our evaluation on the construction site, the maximal distance was 

replaced by a typical outlier filter;  

The photogrammetric dataset shows equal properties, which is surprising since the toolchain 

does not guarantee an even distribution. The density was measured on the roof of the building 

(see Figure 2c). With the determined polynomial function one can estimate the density and 

parameters of photogrammetric toolchain before starting with the actual calculation.  

For further analysis we create histograms of the existing point clouds. For all histograms a 

double peak can be observed (see Figure 2e-j). The fitted hull curve is based on a double 

gaussian distribution, and perfectly frames our data. The shape of the distribution does not 

change with higher density: The first peak can be explained as the influence of the angles on 
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the density, close to the edge the density increasing because of the angular change. If the 

euclidian distance between the points increases, this influence gets diminished and the 

histogram of the synthetic examples are uniform. While this seems counter intuitive, these are 

properties of the nearest neighbour search combined with the influence of planar and almost 

planar surfaces. In the photogrammetric reconstruction, the peaks melt together and many of 

the measurements are at lower end. The reason for the faster, rising edge roots in the used 

reconstruction toolchain, where the maximal resolution is limited by the input image. The flat 

response of the second gaussian is the outcome of the applied photo consistency function during 

the dense point cloud creation. As shown in earlier research, the lack of features on rather 

smooth walls such as concrete tend to have lower density values (Eickeler et al. 2018). This 

effect flattens the response and shifts the peak to the right. However interestingly the median 

and the mean still have a similar distance.  

   

   

   

Figure 2 a-j: Histograms of the selected datasets. The data is arranged column wise, and shows an 

image of the dataset, the selected lower and higher resolution. The histograms show similar properties, 

with 2 gaussian peaks. While the scale changes the distribution is similar. 
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For determining good parameters for c1 to c4 we need also to take the contextual properties of 

our filtering into account. With increasing distance, points become more valuable since we want 

to guarantee a certain deterministic minimal space distribution. We also want to balance the 

first gaussian peak as an indicator for geometric turbulence and therefore higher information 

density. Based on our chosen dataset of this work, we determin: c1 = 8.76, 𝑐2 = 9.82, 

𝑐3 = 3.09, 𝑐4 = 0.02. The dampening parameter: 𝜎𝑑 = 0.1,  𝜎𝑛 = 0.7,  𝜎𝑟𝑔𝑏 = 0.2,  𝜎𝑖 = 0.2.  

5. Implementation & Evaluation 

The filtering was implemented in C++ featuring the Point Cloud Library (PCL) and tinyply. 

While removing measurements from the cloud the information content needs to be recalculated. 

Because the needed nearest neighbour search is very costly, a dynamic tree structure is optimal. 

We were able to achieve similar results and good performance by recalculating a static tree 

structure after removing a random set of spatial unrelated, lower scoring points. This might not 

lead to the highest scoring point cloud, but we achieved over 98% of the total score on our test 

data with lower density. For our real-world data, some colours, intensities and normal were not 

available and their information context was set to 0. Since we used our own quality criteria to 

filter the cloud, these same criteria cannot be used to evaluate the performance of our filtering. 

As an alternative benchmark, we discuss multiple properties of the filtered point clouds to 

ensure the effectivity of our approach.  

In Figure 3a we are visualizing the effect of the filtering to our dense cube. The dense cube was 

filtered by 80% of the orignial density leaving 120 k measures. The filtering has two properties: 

(1) The surfaces are reduced to equidistant density. (2) At the edge of the cube the information 

content is greatest and more points are preserved.  

 

Figure 3 a,b: (a)Visualization of the information content – edges score higher than points in the plane. 

After reduction a non-uniform distribution(green-blue) forming. (b) The dashed line drawn upon the 

clocktower indicates the crossing of the original | filtered point cloud. 

As a showcase of colour filtering we are visualizing the information content of the clock 

tower data (Figure 3b). This photogrammetric reconstruction has high density and features 

intresting colouring on the old copper plating.  The points are again reduced by 80%, reducing 

the binary filesize from 260 MB to 60 MB. The figure is split by a fine line, inidicating the 

crossing of the orignal and the filtered cloud.  
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In the clocktower cloud the texture quality was conserved by the increase in the local density. 

Overall the original data, the standard deviation of the density was increased by 15%. On 

features that have both, a normal and a colour change the information content is high. This 

can be observed at the contact points of the roof plating. The original score of 𝐼 was 12 975 

which was improved to 16 778. The filtering of the clocktower without parallelization or 

optimizations took around 28 min (~10 million points). Further analysis was undertaken to 

determine the information gain compared to a lower valued reconstruction. We compared the 

construction site data with two settings of our dense reconstruction pipeline. The underlying 

geometry and the camera positions were kept constant while the resolution of the depth and 

normal maps were increased (1000px to 3000px). Additionally, we filtered the high-density 

dataset to contain the same number of points as the original low-resolution point cloud. The 

filtering increased the contrast by a vast amount. One example of these results is shown in 

Figures (14-17).  

     

     

Figure 4 a-f: Dataset “construction site”: (a, d) high-res, (b, e) low-res; (c, f) filtered point cloud. The 

arrows indicate preserved features. Compared to the low-res reconstruction the filtered cloud shows 

higher geometric contrast. 

Grouping: The second part of the filtering is the grouping of points of similar properties. The 

amount of grouping heavily depends on the grouping parameters provided. By using the weights 

𝑤𝑎 for grouping the elements below a certain threshold, every parameter that delivers a constant 

first derivative can be filter points on planes easily. On the point cloud with a higher density 

the results are basically the same as culling with different parameters. The algorithm behaves 

as if the eucledian distance in 𝑑(𝒑, 𝒒) to 1.  

For the roughness, the distance to the best fitting plane is evaluated. If the superset estimates 

the same roughness as the subset the points are grouped, and the roughness is saved. We 

achieved good results by creating a subset from the median. The grouping and the roughness 
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are encoded as the length of the normal vector. We used the first bit to keep the information 

steady and then encoded the weight by big endian notation in the first 2 bytes and the roughness 

in the following. While further processing such a point cloud, we faced some problems with 

existing software. Some of our day-to-day software normalized the vectors before evaluation, 

others when writing results to a file. In both cases the normals were replaced and the 

information was lost. The altered point cloud may show different behaviour in a certain set of 

evaluation algorithms and should not be used for further analysis. 

6. Conclusion 

We previously showed that we can preserve geometry and colour by selective density 

variations. Our proposed method shows multiple improvements over the classical filtering 

approaches of large-scale datasets. Nonetheless employing the filtering increases the 

complexity of the tool chain and the actual speed up needs to be researched on a case by case 

basis. While the filtering of small point clouds is relatively fast, its complexity is of 𝑛 𝑙𝑜𝑔(𝑛) 

and therefore can get computational expensive. This is the same for most of the algorithms used 

in the analysis which may be more expensive or less parallelizable. As grouping can be achieved 

with less extra effort, we would love to recommend it over culling the limitations of the 

encoding as normal length is not feasible. The determination of the roughness contains the same 

limitations. 

Another impressing fact is that the increase of the minimal resolution is only marginal with the 

addition of points on surfaces. Adding more points will result in a reduction of error rather than 

rising the minimal spatial resolution (see figure 1a-c). Practitioners should use historical data 

or available data sets to evaluate their sweet spot between resolution and effort. As with most 

recording, if the properties are not completely known, resolution is king. As shown in this work 

reducing the amount of data in a second step can be done effectively with filtering. However, 

this does not apply to captures of bigger datasets as the effort is increasing manifold. Before 

recording, users should ask the question: “what is the statistical error that I can accept” rather 

than “what are the smaller features that I want to capture”. Naturally the trade of for increasing 

the resolution of the capture gets worse. The most important part of our filtering model is, that 

there is no filtering by property. As speciality of bilateral filtering we can apply our method 

without influencing the latter analysis. This is in stark contrast to the family of PCA based 

methods, as they will reinforce the later PCA used Recognitions algorithms and change the 

parameters practitioners are using on smaller, unfiltered samples. 

7. Outlook 

The focus of the discussion is mainly on the evaluation of speed increase and data reduction 

opposed to the quality loss. Most operations on points are rather cheap if they are performed on 

single points but putting them to a bigger scale soon reaches computational limits. One of the 

limitations is the data throughput and splitting strategies for big data sets. With modern 

technologies there are certain improvements that should be discussed: First and most 

importantly, the encoding of the point cloud can be improved. The choice of floats and their 

non-linear accuracy over their range maybe suboptimal. Another improvement can also be 

made by encoding the normal vector with radians leaving 4 bytes of information for local 

functions. All improvements need to be adapted to the availability of extended SIMD 

instructions which opens the possibility to further enhance the throughput of points. 

Following up this discussion, a smart process of annotation of points, facets and volumetric 

elements needs to be developed. The encoding of semantic data on grouped or single points 

should be researched thoughtfully. Many formats have domain specific solution, such as 

geodetic information encoded in *.las files, that could be generalized.  
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