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Abstract

Fluid effects like spilling water, coiling honey, dancing flames, or smoke plumes are part of our daily life.

As such, they certainly play an important role in manifold computer animations for the entertainment

industry, e.g., in feature films. To facilitate the creation of convincing effects, numerical simulation is

commonly applied to model the physical behavior of fluids like water or air. However, the resulting

motions and shapes are not easily predicted by human artists. Furthermore, to produce realistic flows

properly with turbulent structures, typically high and expensive simulation resolutions are required. An

alternative approach to forward fluid simulation is the reconstruction of three-dimensional real-world

fluid phenomena from two-dimensional video captures. Reconstructions yield visually plausible and

realistic effects with behavior known beforehand, independent of resolution.

In this thesis, we introduce a powerful convex optimization technique, the fast Primal-Dual method

known from the image processing and machine learning areas, to the area of fluid simulation. We

employ it to develop techniques targeting the improvement of control and realism of fluid simulations

for animation. With the Primal-Dual method, we are able to split complex multi-objective functions

into separate sub-problems, which are often easier to solve.

First, we present an efficient, physics-based method to reconstruct volumetric density and motion

accurately from sparse captures of real-world single-phase fluid phenomena, i.e., smoke. In order to

reconstruct smoke plumes precisely from such a small set of views, we constrain a forward fluid simu-

lation based on the incompressible Navier-Stokes equations to meet the two-dimensional input videos.

As matching boundary conditions are crucial for numeric simulations, we provide a novel estimation

method for the unseen density inflow. By definition, our reconstructions reproduce real-world fluid

phenomena and exhibit known shapes and motions. We gather those reconstructions of turbulent,

natural, and buoyancy-driven scalar transport flows to create our large-scale data set ScalarFlow. This

data set is the first of its kind and has many potential applications. For instance, it is now possible to

evaluate and compare different simulation methods based on real-world phenomena. A first perceptual

evaluation study demonstrates that our accurate reconstructions with moderate resolutions capture the

natural complexity of real-world smoke plumes, which would require large simulation resolutions for

regular fluid solvers. Furthermore, ScalarFlow enables training of neural networks with real-world fluid

data, which could lead to more insights about fluid simulation and to faster simulation techniques in

the future.

To create reconstructions that match reality closely, multiple camera views are required as input.
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However, minimizing the number of input views to one drastically reduces the complexity of the cap-

turing setup. With only a single view, much more data sources are eligible as input, e.g., visual effects

companies’ or regular online video databases, or even smartphone and consumer camera recordings.

Therefore, we additionally propose a single-view reconstruction technique, which is highly challenging

since with only a single sequence of two-dimensional input images, the three-dimensional reconstruc-

tion problem becomes heavily under-constrained, especially in the depth direction. Yet, by using the

Primal-Dual method, we present a powerful single-view reconstruction technique that incorporates sev-

eral physical constraints and additional physical priors, e.g., a depth-based regularizer. Our method

finds suitable motion solutions within the null-space of the under-determined reconstruction problem

that feature natural and realistic fluid behavior from all angles.

When reconstructing real-world phenomena, we guide a forward simulation to match the given input

images. Such concept of constraining a simulation’s resulting motion and shape towards a desired

state is called fluid guiding, which additionally allows for artistic modeling. We present a guiding

approach through prescribing a target velocity field by either an artist or the motion of a low-resolution

simulation. The challenge for fluid guiding is to exert not only control but also to preserve appealing

fluid characteristics that are not present in the target velocity. With the Primal-Dual method, we are

able to achieve both: we obtain explicit control over large-scale motion and small-scale details without

prohibiting the creation of complex fluid simulation features.

In order to achieve realistic fluid simulations, it is often required to solve inequality constraints, e.g.,

for separating solid-wall boundary conditions. For example, when simulating liquids with the Fluid

Implicit Particle method, unrealistic artifacts of fluid crawling up solid walls and sticking to ceilings

are frequently present. These artifacts can be prevented by allowing the normal component of the

velocity at fluid-solid faces to be greater or equal to zero. Solving such inequality constraints typically

leads to expensive Quadratic Programming solvers. By employing the Primal-Dual method, we adapt a

regular pressure solver to account for separating solid-wall boundary conditions requiring simply a few

changes to existing implementations. Our presented solver provides much more realistic large-scale

liquid behavior with only additional 12 % of run time costs.

In summary, our multi- and single-view reconstruction techniques, fluid guiding scheme, and sepa-

rating boundary conditions solver reduce present artifacts, increase control, and emphasize real-world

features in the resulting visual effects. With our reference data set ScalarFlow, we enable the evaluation

and development of simulation or neural network methods in order to further improve efficiency and

realism of fluid effects.
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Zusammenfassung

Fluideffekte, wie überlaufendes Wasser, zähflüssiger Honig, züngelnde Flammen oder Rauchwolken,

sind Teil unseres täglichen Lebens und spielen deshalb in der Computeranimation für die Unterhal-

tungsindustrie eine wichtige Rolle, beispielsweise in Spielfilmen. Um die Erschaffung überzeugender

Effekte zu ermöglichen, wird häufig numerische Simulation zur Modellierung des physikalischen Ver-

haltens von Fluiden, wie Wasser oder Luft, eingesetzt. Künstler haben jedoch Schwierigkeiten, die dar-

aus resultierenden Bewegungen und Formen im Voraus abzuschätzen. Zudem wird typischerweise eine

hoch aufgelöste und teure Simulation benötigt, um realistisches Verhalten mit turbulenten Strukturen

zu erzeugen. Als Alternative zur Vorwärtssimulation kann die Rekonstruktion realer dreidimensionaler

Fluidphänomene anhand von zweidimensionalen Videoaufnahmen eingesetzt werden. Die Rekonstruk-

tion liefert unabhängig von der Auflösung realistische Effekte, die dem Verhalten aus den Aufnahmen

folgen.

In dieser Arbeit stellen wir eine mächtige, aus den Bereichen der Bildverarbeitung und des maschinel-

len Lernens bekannte, konvexe Optimierungstechnik, die schnelle Primal-Dual-Methode vor. Wir setzen

diese zur Entwicklung verschiedener Algorithmen ein, welche die Kontrolle und den Realismus von

Strömungssimulationen in der Animation verbessern. Mit der Primal-Dual-Methode ist es möglich, ei-

ne komplexe mehrkriterielle Funktion in Unterprobleme aufzuteilen, die oft einfacher zu lösen sind.

Zuerst stellen wir eine effiziente, Physik-basierte Methode zur genauen Rekonstruktion realer ein-

phasiger Fluidphänomene, z.B. Rauch, vor. Unsere Methode nutzt als Eingabe wenige zweidimensio-

nale Kameraaufnahmen und liefert die volumetrische Dichte und das Bewegungsfeld des Fluides. Um

Rauchwolken aus einer geringen Anzahl von Ansichten akkurat zu rekonstruieren, beschränken wir ei-

ne Vorwärtssimulation auf der Grundlage der inkompressiblen Navier-Stokes-Gleichungen, sodass sie

mit den Eingabevideos übereinstimmt. Da passende Randbedingungen für numerische Simulationen

wesentlich sind, stellen wir eine neuartige Schätzung des ungesehenen Rauchzuflusses vor. Per Defini-

tion geben unsere Rekonstruktionen reale Fluidphänomene wieder und weisen zuvor bekannte Formen

und Bewegungen auf. Diese Rekonstruktionen turbulenter, natürlicher und auftriebsgetriebener skala-

rer Transportströme fassen wir in einem großen Datensatz ScalarFlow zusammen. Dieser ist der erste

seiner Art und findet Einsatz in zahlreichen Anwendungen. Beispielsweise ist es nun möglich, verschie-

dene Simulationsmethoden basierend auf realen Phänomenen zu bewerten und zu vergleichen. Eine

erste Wahrnehmungsstudie zeigt, dass unsere präzisen Rekonstruktionen mit moderater Auflösung die

natürliche Komplexität von realen Rauchwolken erfassen, wohingegen klassische Fluidlöser dafür ho-
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he Simulationsauflösungen benötigen würden. Darüber hinaus ermöglicht ScalarFlow das Trainieren

neuronaler Netze mit realen Fluiddaten, welche zu neuen Erkenntnissen in der Fluidsimulation und in

Zukunft auch zu schnelleren Simulationstechniken führen könnten.

Um genaue Rekonstruktionen zu erstellen, sind mehrere Kameraaufnahmen als Eingabe erforderlich.

Reduziert man jedoch die Anzahl der Kameraansichten auf eine einzige, so verringert sich die Komplexi-

tät der Aufnahmeeinrichtung drastisch. Dieser Schritt ermöglicht verschiedenste Aufnahmequellen als

Eingabe, z.B. online Videodatenbanken, Datenbanken von Spezialeffektunternehmen und sogar Videos

von Smartphones oder handelsüblichen Handkameras. Daher stellen wir zusätzlich eine Rekonstrukti-

onstechnik vor, die nur eine Ansicht als Eingabe erhält. Dies stellt eine besondere Herausforderung dar,

da mit nur einer Sequenz von zweidimensionalen Eingabebildern das Problem der dreidimensionalen

Rekonstruktion stark unterbestimmt wird, insbesondere in der Tiefenrichtung. Dennoch präsentieren

wir unter der Verwendung der Primal-Dual-Methode eine leistungsstarke Rekonstruktionstechnik, die

mehrere physikalische Bedingungen und Annahmen beinhaltet, z.B. einen tiefenbasierten Regularisie-

rer. Unsere Methode findet geeignete Lösungen im Nullraum des unterbestimmten Rekonstruktions-

problems, die aus allen Sichten ein natürliches und realistisches Strömungsverhalten aufweisen.

Beim Rekonstruieren realer Fluidphänomene wird im Grunde eine Vorwärtssimulation anhand der

Eingabebilder gelenkt. Dieses Konzept wird Fluidführung genannt, welches außerdem künstlerische

Modellierungen des Fluides erlaubt. Wir präsentieren eine Methode der Fluidführung, bei der durch

einen Künstler oder durch eine niedrigaufgelöste Simulation ein Sollgeschwindigkeitsfeld vorgegeben

wird. Die Herausforderung der Fluidführung besteht darin, nicht nur Kontrolle auszuüben, sondern

auch ansprechende, durch die Simulation kreierte Fluideigenschaften zu erhalten, die im Sollgeschwin-

digkeitsfeld nicht enthalten sind. Mit der Primal-Dual-Methode erreichen wir beides: Wir erhalten ex-

plizite Kontrolle über großflächige Bewegungen und kleinere Details, ohne die Erstellung komplexer

Fluidcharakteristika zu unterbinden.

Um realistische Strömungssimulationen zu erstellen, ist es oft erforderlich Ungleichheitsbedingungen

zu erfüllen, z.B. für separierende Randbedingungen zwischen Fluiden und Festkörpern. Zum Beispiel

entstehen bei der Simulation von Flüssigkeiten mit der Fluid-Implicit-Particle-Methode häufig unrealis-

tische Artefakte: Flüssigkeit kriecht an Wänden hoch und haftet an Decken. Diese können verhindert

werden, indem die Geschwindigkeit orthogonal zu Flächen zwischen Fluid und Festkörpern auf größer

oder gleich Null beschränkt wird. Die Lösung solcher Ungleichheitsbedingungen führt in der Regel zu

teuren Lösern der Quadratischen Optimierung. Durch den Einsatz der Primal-Dual-Methode passen wir

einen regulären Drucklöser von Simulationen so an, dass durch wenige Änderungen an bestehenden Im-

plementierungen mit nur 12 % zusätzlichen Laufzeitkosten separierende Festkörper-Randbedingungen

erfüllt werden, die ein realistischeres großflächiges Flüssigkeitsverhalten ermöglichen.

Unsere Techniken zur Multi- und Einzelansicht-Rekonstruktion, der Fluidführung und der separieren-

den Randbedingungen reduzieren vorhandene Artefakte, erhöhen die Kontrolle und verstärken realisti-

sches Verhalten der resultierenden visuellen Effekte. Mit der Bereitstellung unseres Referenzdatensatzes

ScalarFlow ermöglichen wir die Bewertung und Entwicklung von Simulationsmethoden oder Neurona-

len Netzen zur weiteren Verbesserung der Effizienz und des Realismus von simulierten Fluideffekten.
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1
Introduction

“Computer animation, as used here, refers to any computer-based computation used in
producing images intended to create the perception of motion.”

Rick Parent (2012, Computer Animation, p. 1)

Nowadays, most images we see on displays and screens are no longer authentic pictures of reality.

With today’s computational possibilities, imaginary worlds are created with their own environments,

objects, and creatures such that viewers are able to fully immerse into virtual worlds, indistinguishable

from reality. Computer animation is the art of breathing life into characters, animals, objects, or sub-

stances. For example, human characters are moved with their skeletons, muscles, hair, and cloth, and

dynamics are added to substances, such as fluids.

Computer animation plays a major role in the real-time and offline entertainment industry, such as

in movie production, television, video games, or commercials. Especially the photorealistic creation

of the most beautiful, impressive, and breathtaking spectacles of nature observed in fluid effects are

indispensable for intense, exciting, and convincing scenes.

Such effects certainly substantiate storytelling and embrace the following materials: water (like the

separating ocean to let Moana (2016) pass through to raging Te Ka), snow (to illustrate the magical

world of princess Elsa in Frozen (2013)), fire (as for Drogon’s dragon fire in Game of Thrones (2019)),

lava (for the volcano’s eruption in Jurassic World: Fallen Kingdom (2018)), explosions (as in various

battles in The Avengers (2011-2019) movies), or smoke (as for the rising of the creatures in Godzilla

II: King of the Monsters (2019)). Animation is also commonly applied for scientific applications in

medicine, forensics, accident reconstruction, or architecture, and for training pilots, SWAT teams, or

nuclear reactor operators [Par12].
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In the beginning of the animation era, artistic techniques like stop-motion or keyframing were popular

where the animator specifies still frames by hand, e.g., in King Kong (1933) or Gertie the Dinosaur

(1912). The current demand for realistic, complex, and detailed fluid effects exceeds the abilities of

a human animator to create manually. Instead, computational models are used to generate a fluid’s

motion, e.g., in form of physics-based or behavioral simulation. Besides from animation, numerical

simulation is an established technique in various research fields to replace expensive or dangerous real-

world experiments with computer simulations. Real-world processes cannot always be experimentally

examined, e.g., due to extremely long or short duration of the experiments. Exemplary application

areas are mechanical engineering for evaluating elastic solids, chemistry for modeling combustion,

melting, or coating processes, nuclear physics for investigating atomic collisions, or traffic engineering

for planning street networks. Concerning fluids, numerical simulation usually solves the Navier-Stokes

equations (NSE), a set of unstable partial differential equations from the area of Computational Fluid

Dynamics (CFD). Fluid simulation is employed for weather or climate forecasts, for optimizing the

shape of a vehicle’s geometry in wind tunnels, to improve the understanding of blood flow in the

human vascular system, and in many other application areas.

Here, we focus on physics-based fluid simulation and real-world fluid reconstructions for animation

purposes. Contrary to engineering applications, which are primarily concerned with accuracy, the focus

in computer graphics is to generate realistic fluid effects that can be controlled to tell a story. Visual

plausibility is essential as humans spot artificial motions easily due to their daily interactions with a

wide range of fluid phenomena, e.g., pouring water, stirring milk into coffee, burning candles, or smoke

rising from a chimney. However, it is challenging to create complex and visually convincing fluid mo-

tion. To enable computationally feasible fluid simulation such that it can be integrated into modern

visual effects pipelines, the NSE are commonly simplified, e.g., reduced to the incompressible Euler

equations for inviscid and divergence-free flows. There exist two different viewpoints for solving the

NSE: the Eulerian viewpoint, where quantities are discretized on a spatial grid, and the Lagrangian

viewpoint, where particles carrying several quantities are traced. Besides subsequent various exten-

sions, a significant step for practical fluid simulation was the introduction of the grid-based and first

unconditionally stable solver [Sta99], through which simulation time steps can be increased leading to

shorter run times.

Physically-based fluid simulation enables animators to generate realistic and manifold fluid behav-

iors. However, fluids are typically chaotic at observable scales such that small perturbations, e.g., chang-

ing a simulation parameter, strongly affect large-scale behavior. Parameters additionally influence each

other and are difficult to be determined upfront. Hence, controlling and predicting a simulation’s be-

havior is challenging. Moreover, higher simulation resolutions are required in order to create detailed,

realistic, and turbulent fluid flows, which result in rapidly increasing computational costs. Thus, artists

usually fine-tune faster low-resolution simulations until the desired motion and visual shapes are met.

Unfortunately, increasing the simulation’s resolution for final production leads to very different behav-

ior after all. Furthermore, unrealistic artifacts, such as artificial numeric viscosity introducing excessive

dissipation or fluid sticking unnaturally long to solid objects, are possible side effects from practical
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low-resolution simulations and simplified physical models.

An alternative approach to forward fluid simulation is compositing existing fluid videos. Composi-

tion of videos makes use of large collections of footage available at visual effects companies, where

the videos need to be modified to fit into the targeted surroundings. Such compositing suffers from

static, two-dimensional (2D) limitations, which prohibit the consideration of illumination effects or

the production of realistic three-dimensional (3D) interactions with a possibly changing environment.

However, image-based modeling, where 2D input sequences are used to reconstruct 3D shape and mo-

tion, eliminates the 2D limitations and further makes use of available fluid footage. Reconstructing

real-world fluid phenomena yields realistic effects with visual shapes and motions known beforehand,

independent of resolution and other parameters. Having both density, i.e., material distribution, and

motion, we can either directly use the density for rendering an effect from arbitrary viewpoints or easily

re-simulate the real phenomenon and adapt it to fit desired artistic purposes. Reconstruction of fluid

phenomena belongs to the class of data-driven animation and is similar to motion capture for humans

or objects, where live motion is mapped onto graphical objects through models wearing special devices

that allow their motion to be tracked by sensors.

In summary, it is highly challenging to create predictable and fast simulations that match real-world

fluid phenomena closely. For instance, Fluid-Implicit Particle (FLIP) simulations for liquids feature

artifacts of fluid being stuck on solids, leading to fluid crawling up walls and sticking to ceilings. Fur-

thermore, flexible comparison and evaluation of different simulation techniques regarding their realism

is infeasible, as only rare real-world fluid reference data exists. Different techniques lead to varying

results making it difficult to draw conclusions about superior realism of either technique.

In this thesis, we propose

• a low-cost and simple hardware setup for generating and capturing real fluids (Section 4.1),

• an accurate, physics-based, sparse reconstruction method for real-world fluid flows (Section 4.2),

• a large-scale data set, called ScalarFlow, of real-world scalar transport flows (Chapter 5),

• reconstructions from single-views mitigating the effort of camera calibration or synchronization

and allowing for much more readily available video data as input (Chapter 6),

• a technique for flexible fluid guiding through prescribing a target velocity field (Chapter 7), and

• a realistic separating solid-wall Boundary Condition (BC) for liquid simulations (Chapter 8).

In order to realize our ideas towards more realistic, controllable, and assessable fluid effects, we in-

troduce and utilize a powerful convex optimization technique for fluid optimization, the fast first-order

Primal-Dual method proposed by Pock et al. [PCBC09] (PD). This technique, known from the image

processing and machine learning areas, is presented in the following section and explained in more

detail in Section 3.2.
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1.1. Convex Optimization with a fast Primal-Dual Method

PD is an established optimization scheme from the computer vision area with an optimal convergence

rate for non-smooth convex problems. While many primal-dual methods exist, we refer to this particular

instance with PD. Convex optimization problems inherit only one global optimum, which is typically

found in a reasonable time, good precision, and independent of initialization. With PD, we are able

to split difficult and complex multi-objective functions into separate, modular sub-problems. Those

sub-problems are often easier to solve, e.g., with specific and highly optimized solvers. Such divide-

and-conquer approaches avoid the need for a monolithic, holistic framework and combine local sub-

problem solutions to find a global solution to the complex problem. We utilize PD for each of our

multi-objective minimization problems.

Gregson et al. [GITH14] established the connection between the fluid pressure solver and convex

optimization while utilizing of the Alternating Direction Methods of Multipliers (ADMM). ADMM is

a variant of the augmented Lagrangian scheme, an algorithm for solving constrained optimization

problems, and has been proven successful in the fields of statistics and machine learning. ADMM

and PD are strongly related, as we will show in Section 3.2.2. However, for the simplest setting of

convergence parameters, PD reduces to ADMM while PD exhibits superior convergence rate for more

sophisticated parameter settings. An alternative to both PD and ADMM is the Iterated Orthogonal

Projection (IOP) [MCPN08] where all sub-problems need to be orthogonal projections, which is not

always given. Those orthogonal projections are applied iteratively in order to meet multiple conditions

after convergence. In Chapters 7 and 8, we demonstrate that PD outperforms ADMM and IOP for both

fluid guiding and separating solid-wall BCs.

1.2. Reconstruction of Real-World Fluid Phenomena

An alternative to purely simulating costly fluid effects is to capture and reconstruct natural fluid phe-

nomena. The resulting outcome can be estimated beforehand and dynamics are realistic by defini-

tion. Reconstruction of 3D density and motion from 2D fluid recordings enables the automatic and

flexible use of real-world phenomena as visual effects, and can be interpreted as the inverse problem

to forward fluid simulation. The input images provide control over the resulting fluid behavior, i.e.,

parameter fine-tuning is not required and changing the resolution will not affect the reconstructed

large-scale behavior. The density can directly be used as visual effect, e.g., by re-rendering it from arbi-

trary viewpoints. The reconstructed velocity field preserves temporal coherence and allows for editing

the captured data once it is reconstructed, e.g., through re-simulation, level-of-detail adjustment, fluid

guiding, or domain modification.

The underlying theory of reconstructing 3D data from 2D images originates from Radon [Rad86],

who proved that any mathematical function could be recovered from an infinite set of projections.

In the late 1960s, this knowledge was used to build the first Computed Tomography (CT) machine,

which approximates a 3D object based on a set of X-ray images [Cie11]. Medical applications typically
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employ complex setups with a large number of different viewpoints, which are often obtained by ro-

tating the reconstruction target itself or by moving a sensor around the target. It is inherently more

difficult to capture the volumetric and temporal features of fluids compared to static or slower moving

objects, as they are chaotic and highly deformable phenomena. Furthermore, their complex image for-

mation model possibly including transparency, reflection, refraction, absorption, or scattering, such as

for smoke or water, increases the challenge of accurately capturing the full properties of fluids based

on images. Compared to medical applications, traditional image-based CT methods in the graphics

area, e.g., [IM04], [AIH∗08], or [GKHH12], are designed for less but still a multitude of input viewing

angles. They usually require projections from rather expensive and high-quality capturing sensors, or

make use of sophisticated capturing setups. Their reconstruction quality rapidly drops when decreasing

the number of sensors, as the corresponding inverse problem becomes under-constrained.

Figure 1.1.: Examples of traditional computed tomography for smoke plumes with two, three, and five input
images and our powerful, accurate reconstruction technique based on the same five input images. The quality
of the reconstructed volume increases with number of input images and even more when using our powerful
reconstruction technique.

Our objective is to use a very sparse number of input images and to make use of a simple captur-

ing setup with inexpensive optical sensors, namely one or five cameras mounted on a Raspberry Pi.

Reducing the number of cameras mitigates the efforts for camera calibration and synchronization and

allows for flexible capturing setups as input source. With only few, inexpensive sensors, our capturing

setup is practical and accessible to a wide range of people. As shown in Figure 1.1, the quality of the

reconstructed volume is heavily related to the number of input views. Our powerful reconstruction

method overcomes these difficulties and produces a realistic density field, even with only five input

views. In this thesis, we target the reconstruction of single-phase flows and, as such, use a common

smoke machine producing buoyancy-driven plumes. Technically, our smoke machine diffuses water

with propylene glycol, i.e., produces fog. However, the underlying physics of smoke and fog are equiv-

alent such that our setup is representative for popular hot smoke simulations [FSJ01]. As publications
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in graphics typically refer to dense, passively advected tracers as smoke, we refer to our tracers as smoke

as well.

Capturing the velocity field of a fluid, i.e., velocimetry, is highly challenging, as motion is usually

only observed indirectly by tracking temporal changes in observable quantities, e.g., smoke density.

However, smoke has no definite features but exhibits non-rigid motion with dynamically changing pat-

terns. For velocity reconstruction, we make use of incompressible 3D Optical Flow (OF) as presented

in [GITH14]. An incompressible velocity field is divergence-free, meaning it is mass-preserving with-

out possessing any source or sink. We are solving a heavily under-constrained tomography problem

for non-stationary motives, i.e., fluids, and therefore, velocity reconstruction gets even more challeng-

ing than in previous work. To counteract the ill-posedness, we constrain a forward fluid simulation

based on the incompressible Navier-Stokes equations to meet the 2D input videos. As such, we couple

the reconstruction of density and velocity tightly through a novel optimization-based formulation and

propose an efficient implementation based on primal-dual optimization including additional physical

priors. Our reconstructed quantities are strongly temporal coherent.

Accurate Multi-View Reconstruction for ScalarFlow With our physical setup and our reconstruc-

tion procedure, we capture a multitude of complex, natural, buoyancy-driven, and turbulent real-world

fluid phenomena. We gather them in our novel data set ScalarFlow, first of its kind. Such volumetric

flow data sets represent a large class of fluid effects in computer animation [FSJ01, SDKN18] and are

also important for engineering [MSCL91, YRK18] or medical applications [MNvTK∗16], as the observa-

tion of transported quantities yields important insights about the underlying flow. Our data set includes

volumetric reconstructions (i.e., velocity and density fields), input video sequences, and camera calibra-

tion data. For our accurate reconstructions, we use five cameras, and as matching boundary conditions

are crucial for numeric simulations, we additionally provide a novel and advanced estimation technique

of unseen density inflow. We furthermore incorporate smoothness and kinetic energy regularizers in

an efficient tomography scheme. In order to provide accuracy measurements, we reconstruct multi-

ple and varying synthetic forward simulations where we have access to the 3D ground truth quantities.

Our reconstructions exhibit a good peak signal-to-noise ratio (PSNR) for density, velocity, and rendered

images comparisons.

While typically only a small number of experts visually evaluates results of fluid simulation for ani-

mations, other research areas, such as computational photography, geometry processing, and machine

learning applications, rely on model and image databases for evaluation. The lack of ground truth refer-

ence data for fluid simulation can be explained by the difficulty of capturing the dynamically changing

and often semi-transparent 3D fluid density. A fluid’s motion can only be indirectly observed by its

effect on visible tracers, e.g., smoke particles. However, having a reference and benchmark data set

could inspire novel research, lead to new insights and knowledge about internal processes in fluid dy-

namics, and to analyses and comparisons that are more objective. One example for such data set from

the computer vision community is the ImageNet data set [DDS∗09], which has been used in thousands

of studies, and has encouraged vast progress in image classification research.
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ScalarFlow comes with many potential applications. For example, fundamental and established simu-

lation methods for single-phase flows can be evaluated and compared concerning their ability of repro-

ducing real-world fluid phenomena. In order to evaluate the realism of fluid simulations perceptually,

it is crucial to have full control over the setup of user studies. Our data set provides this flexibility with

a large number of volumetric reconstructions that allow for background modifications, varying smoke

colors, different rendering styles, and novel viewing angles. Two-dimensional video recordings do not

come with this flexibility. As we will show in Chapter 5, a first perceptual evaluation study demon-

strates that our reconstructions are able to reproduce most of the natural complexity from real-world

smoke plumes with moderate resolution, which would require large simulation resolutions for regular

fluid solvers. Furthermore, deep learning for physics-based simulation is a thriving field. Our data

set connects numerical simulations with real-world fluid phenomena, and enables training of neural

networks with real-world fluid data, which could lead to better understanding, to novel and improved

realistic data-driven approaches, and to faster simulation techniques in the future.

Single-View Reconstruction While previous fluid capture techniques typically require multiple cam-

eras or at least a complex setup; we develop a reconstruction method from a single and simple camera

only. Minimizing the number of input views to one drastically reduces the complexity of the capturing

setup, reduces costs, and eliminates tedious procedures like camera calibration and synchronization.

Single-view reconstruction techniques allow for simpler generation of novel fluid captures and much

more data sources as input, e.g., smartphones, consumer cameras, or visual effects companies and reg-

ular online video databases. However, single-view reconstruction is highly challenging, as with only a

single sequence of 2D input images, the 3D reconstruction problem becomes heavily under-constrained,

especially in the depth direction. We aim for plausible reconstructions from arbitrary viewing angles

through a tailored combination of several physical constraints and additional geometric priors, e.g., a

depth-based regularizer, to resolve motion uncertainty along lines of sight in the single camera view.

Our method is able to find suitable motion solutions within the null-space of the under-determined

reconstruction problem that feature natural and realistic fluid behavior. In order to demonstrate the

capabilities of our method, we first reconstruct a variety of complex synthetic flows generated with

fluid simulation and reconstruct smoke volumes captured with our hardware setup afterwards.

1.3. Fluid Guiding

As fluids behave chaotic at human scales, it is impossible to add small-scale details to low-resolution

simulations, to modify the simulation domain, or to re-run a simulation with different fluid parameters

without influencing the overall large-scale fluid behavior. For storytelling and artistic modeling, how-

ever, it is often necessary to drive a simulation towards a desired visual shape or behavior, or to simply

add interesting details to existing coarse simulations. For example, creating fictitious but visually plau-

sible motions is very valuable for the entertainment industry as demonstrated by the ocean horse and

the smoke dancer in Figure 1.2.
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Figure 1.2.: Examples for guiding water to form a horse shape and smoke to model a dancing ballerina. Both
fluids preserve a realistic look while assisting fictitious storytelling.

Our goal is to provide a flexible guiding technique with explicit control over large-scale motion and

small-scale details without prohibiting the creation of complex fluid simulation features. In particular,

we propose fluid guiding through a target velocity field with possibly spatially varying guiding param-

eters. An artist or a low-resolution input simulation prescribes a velocity field, and the guided fluid

is forced to be arbitrarily close to the current simulation’s and the target velocity field. At the same

time, the velocity field is ensured to be divergence-free. As such, the fluid’s motion follows the targeted

input velocity and physical laws, i.e., the NSE, creating appealing fluid characteristics not present in

the target velocity. We furthermore introduce an efficient method to invert the corresponding system

of linear equations approximately. Our technique is applicable for artistic guiding of simulations and

level-of-detail adjustment of coarse input simulations. In Chapter 7, we show examples of natural ef-

fects where smoke is following a star-shape or moving in an upward spiral motion similar to a tornado.

Furthermore, we conduct performance studies of alternative convex optimization techniques such as

ADMM and IOP, where PD clearly features superior convergence.

1.4. Separating Solid-Wall Boundary Conditions

In general, BCs play a crucial role in determining the numerical solution of differential equations.

Interesting fluid effects include interactions with possibly moving obstacles, a fluid’s container like a

glass or streambed, or with another fluid, such as the surface between water and air. BCs occur where

the fluid volume meets a volume of some other material. There are two types of BC: the solid-wall and

the free-surface BCs. In fluid simulation, BCs as well as the constraint of divergence-free motion are

enforced in the pressure equations.

Free-surface BCs occur, e.g., at the surface of liquids where they typically meet air. For simplicity,
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air is usually not explicitly simulated. Instead, the pressure in air is assumed to be zero such that the

liquid can move around freely. Enforcing zero pressure in air is a Dirichlet BCs on pressure. Considering

solid-wall BCs, the fluid is not allowed to flow into or out of a solid. Therefore, the full velocity or only

the normal component of the velocity at fluid-solid faces are set to the corresponding velocity of the

solid itself, which is zero for stationary objects. BCs constraining the full velocity are called no-slip

or stick BCs. Slip BCs occur when only the normal velocity component is restricted while tangential

motion is allowed. The velocity is set to the desired value and the pressure solver does not alter these

velocities. As velocities are updated with the pressure gradient, we need to enforce a Neumann BC on

the pressure, i.e., set the pressure gradient to zero.

A zero normal velocity component, however, prevents the fluid from separation. While it is physically

correct for a very thin film of fluid being left after contact, the thickness of such films in numerical

simulation is proportional to the grid resolution, which is generally unnaturally large when simulating

large-scale motions. For example, when simulating liquids with the FLIP method, artifacts of fluid

sticking to solid obstacles are frequently observed. Fluid crawls up walls and sticks to ceilings leading

to behavior perceived as unnatural. Batty et al. [BBB07] allow the normal velocity to be greater or equal

to zero, which is expressed as an inequality constraint. Incorporating an inequality constraint into the

pressure solver transforms the previously linear system of equations into a Linear Complementarity

Problem (LCP), which drastically increases the problem’s complexity and typically requires expensive

Quadratic Programming (QP) solvers.

Our objective is to adapt the popular preconditioned Conjugate Gradient (CG) method commonly

employed in pressure solvers to allow for separating solid-wall BCs with only a few implementation

changes. We first classify the interfaces between the fluid and solids into separating and non-separating

faces. Then, we set the normal velocity at non-separating faces, e.g., when fluid pushes towards a wall,

to zero. In the regular CG pressure solver, all faces are treated as free surface allowing the fluid to

move freely. We iterate between classification of fluid-solid faces, setting normal velocities at non-

separating faces to zero, and solving the pressure equations until convergence is reached. Therefore,

we simultaneously enforce incompressibility and separating solid-wall BCs while maintaining a system

of linear equations in the pressure solver. With only an increase of 12 % run time, we are able to produce

much more realistic large-scale liquid behavior as shown in multiple 2D and 3D fluid simulations in

Chapter 8. PD outperforms both ADMM and IOP, leading to similar performance evaluations as for

fluid guiding. Note that in contrast to guiding, the two constraints for separating solid-wall BCs can be

expressed as orthogonal projections. We furthermore present an accelerated separating solid-wall BCs

solver where the pressure solver is involved in treating non-separating faces regularly, which drastically

reduces the number or iterations required for convergence. With such few iterations, the advanced

update scheme of PD is not fully exploited and as such, IOP converges slightly faster.
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1.5. Outline

First, we give an overview over related works from the areas of fluid simulation, fluid reconstruction,

fluid guiding, boundary conditions, and convex optimization in Chapter 2. Then, in Chapter 3, we

discuss fundamental methods of fluid simulation, convex optimization, OF, and CT. Next, we present

our inexpensive hardware setup for capturing real fluid phenomena and our powerful reconstruction

technique in Chapter 4. The obtained accurate reconstructions and the data set ScalarFlow are demon-

strated and evaluated in Chapter 5. The single-view reconstructions are presented in Chapter 6, while

fluid guiding and separating solid-wall BCs are discussed in Chapters 7 and 8. Each of the main chap-

ters describes specifics of the developed method and the corresponding evaluation including results.

Moreover, we show that PD outperforms ADMM and IOP for the optimization problems of fluid guid-

ing and separating solid-wall BCs, see Chapters 7 and 8. When evaluating run times of our proposed

algorithms, we typically use a single CPU, namely an Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz.

In the last Chapter 9, we summarize and discuss each contribution, conclude this thesis, and outline

future work.

1.6. List of Publications

Most of the research in this thesis has been originally presented in the following papers, which are

published or accepted in peer-reviewed journal articles:

IEGT17 T. INGLIS*, M.-L. ECKERT*, J. GREGSON, N. THUEREY: Primal-Dual Optimization for Fluids. Computer
Graphics Forum, 36(8):354-368, 2017.

doi:10.1111/cgf.13084
Accompanying video https://youtu.be/Pgbat5MXo8Q

EHT18 M.-L. ECKERT, W. HEIDRICH, N. THUEREY: Coupled Fluid Density and Motion from Single Views. Com-
puter Graphics Forum, 37(8):47-58, 2018; best paper award from SCA’18.

doi:10.1111/cgf.13511
Accompanying video https://youtu.be/J2wkPNBJLaI

EUT19 M.-L. ECKERT, K. UM, N. THUEREY: ScalarFlow: A Large-Scale Volumetric Data Set of Real-world

Scalar Transport Flows for Computer Animation and Machine Learning. ACM Transactions on Graphics,
38(6):239, 2019.

doi:10.1145/3355089.3356545
Accompanying video https://youtu.be/J0y8zakWQ4Y
Data set https://ge.in.tum.de/publications/2019-scalarflow-eckert/

More precisely, the fluid capturing setup and algorithms in Chapter 4 as well as the results from multi-

and single-view reconstructions in Chapters 5 and 6 were published in [EUT19, EHT18]. The Primal-

Dual optimizations for fluid guiding and separating solid-wall BCs from Chapters 7 and 8 were pub-

lished in [IEGT17].

* These authors contributed equally to the paper.
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2
Related Work

In this chapter, we give an overview over related research in fluid simulation, fluid reconstruction in-

cluding methods for density and velocity reconstruction and scientific data sets, fluid guiding, boundary

conditions for simulations in graphics, and convex optimization.

2.1. Fluid Simulation

Since Kass and Miller [KM90] introduced a linear wave equation for the simulation of water sur-

faces in 1990, fluid simulation has become more and more popular in computer graphics. Harlow

and his team [Har62, HW65] further presented the Particle-in-cell method (PIC) and the Marker-and-

Cell (MAC) grid, a staggered grid for more accurate finite-differences approximations, which is still

widely used. Foster and Fedkiw [FM96] were the first to use the MAC grid as discretization scheme

for 3D Eulerian liquid simulations. There are particle- and grid-based approaches for simulating flu-

ids: the Lagrangian approach tracing particles and the Eulerian approach using finite grids. Some

methods use a hybrid approach where both particles and grids are used. With the Eulerian uncon-

ditionally stable solver [Sta99] solving the NSE, real-time fluid interactions became feasible for the

first time. Though the presented semi-Lagrangian advection scheme introduces diffusion, simulations
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can be run much faster, as time steps can be increased due to the unconditional stability. Various ex-

tensions have been proposed since then, e.g., for more natural and swirling motion: a hybrid solver

for vorticity confinement [FSJ01] and a vortex particle approach [SRF05]; for increasing the per-

ceived resolution of a fluid simulation and therefore saving costs compared to a full NSE approxima-

tion [KTJG08, NSCL08, PTC∗10]; improvements of the advection scheme in terms of accuracy: the Back

and Forth Error Compensation and Correction (BFECC) [KLLR05], the MacCormack advection method

reducing mass and momentum loss [SFK∗08], the advection-reflection scheme [ZNT18], and most re-

cently BiMocq2 [QZG∗19]; for reducing run time of the pressure solver [MST10, SABS14, Sta01]; or

for improved exploitation of grid resolution with dynamically adapted octrees [LGF04].

Smoothed-particle hydrodynamics (SPH) is a purely particle-based method, which can be very ben-

eficial for liquid simulations especially, as mass conservation and convection are dispensable. A study

of different SPH methods is presented by Ihmsen et al. [IOS∗14]. Based on [DG96] where the authors

animate highly deformable bodies, Müller et al. [MCG03] extend SPH to create an interactive method

to simulate free-surface flows. The particle level set method (PLS) [FF01] is also commonly used to

simulate liquids where the surface is tracked and numerical errors and mass-loss are reduced by using

Lagrangian marker particles. [ANSN06, WP10, GNS∗12] are popular vorticity-based methods for volu-

metric flows that use Lagrangian elements as vortex basis. A popular grid-particle hybrid for simulating

liquids is FLIP [ZB05] where particles are used for accurate surface tracking and advection. The parti-

cles are mapped to an auxiliary grid in order to handle BCs efficiently. FLIP and its variants originate

from PIC [Har62] and result in only minor numerical diffusion during the advection stage. Ferstl et

al. [FAW∗16] reduce computational costs for FLIP by using particles only near the surface of the fluid

volume. The now prevalent material point method (MPM) is an extension of FLIP and presents a very

useful alternative for simulating complex and fluid-like materials [SSC∗13, JST∗16, TGK∗17].

Robert Bridson gives a comprehensive overview over common fluid simulation techniques in his

book [Bri15]. In this thesis, we mainly focus on Eulerian fluid solvers, as they are typically applied

for single-phase smoke simulations. However, our separating solid-wall BCs solver is integrated into a

FLIP simulation.

2.2. Fluid Reconstruction

Capturing rigid bodies, human shapes, human motions, faces, and flowing material like garment has

been investigated by [GW99, DATSS07, DAST∗08, ARL∗09, BBA∗07, BPS∗08, WCF07] with a modified

Radon transform, marker-based, or markerless methods. Fluids, however, are chaotic and highly de-

formable phenomena and we are interested in a fluid’s inner structure, not only in its surface. Often,

high-quality optical sensors or other expensive setups are used to capture their appearances accurately.

For example, Kavandi et al. [KCG∗90] conduct localized measurements with photoluminescence and

imaging techniques such that they are able to determine the pressure of aerodynamic surfaces in wind

tunnels. A complex and expensive laser scanning setup is used by [HED05] for capturing smoke where

a single high-speed camera records the scattering of a laser sheet swept through the observed volume.
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Zang et al. [ZIT∗19] reconstruct the inner structure of objects that rapidly deform, such as copper foam

crumpling under a compressive force.

Capturing the velocity field of a fluid, i.e., velocimetry, is highly challenging, as motion is only ob-

served indirectly by tracking temporal changes in observable quantities, e.g., smoke density. Particle

image velocimetry (PIV) [ESWvO06] is a popular and advanced technique for reconstructing the veloc-

ity field of fluids. Carefully chosen, visible particles are introduced to the flow and tracked over time

with complex camera setups requiring great spatial and temporal resolution, The particles’ positions

are then used to reconstruct the flow field. The insertion of particles, however, comes with the risk

of perturbing the measurements and are not applicable to all substances, e.g., smoke could obscure

the marker particles. Furthermore, PIV is typically restricted to significantly smaller volumes than the

volumes required for visual effects. A specialized variant is Rainbow PIV by Xiong et al. [XIAP∗17]

where they illuminate the particles with different colors depending on their depth. Their setup re-

quires even more specialized hardware than traditional PIV methods. Schneiders et al. [SS16, SSE17]

present vortex-in-cell-plus (VIC+), which uses volume particle tracking velocimetry (PTV) in order to

reconstruct instantaneous velocity fields for turbulent boundary layer experiments in the aerospace en-

gineering area. Their reconstruction method incorporates the temporal derivatives of the velocity, and

is able to increase spatial resolution.

In this thesis, we focus on reconstructing smoke based on a sparse number of images taken within

a simple setup with inexpensive and easily accessible optical sensors. In order to achieve high quality

reconstructions, we propose a strong method for coupled tomographic density updates and velocities

utilizing physical constraints. Previous work also employed physical simulations or parts of them to

capture liquids [WLZ∗09] and divergence-free motions [GITH14]. In the following, we present related

works regarding both density and velocity reconstruction.

2.2.1. Density Reconstruction

Shadowgraph and Schlieren methods reveal disturbances in transparent media based on variations in

the refractive index, which is influenced by temperature and density. These non-uniformities can be

observed as shadows (Shadowgraph) or changes in light refraction (Schlieren) in a background image.

For instance, Atcheson et al. [AIH∗08] successfully used Schlieren imaging for capturing non-stationary

gas flows from sixteen rolling shutter cameras. In contrast, we aim to reconstruct shape and motion of

visible phenomena. Hasinoff and Kutulakos [HK03, HK07] reconstruct fire density fields from images

based on a decomposition where they divide flames into epipolar slices, i.e., flame sheets, and compute

the 3D density field as combination of these 2D sheets. Two photographs of a semi-transparent scene

define one flame sheet. In medicine, a CT scan is created by shooting thousands of X-ray beams, usually

at least 160 beams from each of 180 directions [Fee10]. Those beams with known intensity pass through

the medium where photons are absorbed or scattered related to the electron density of the medium.

The number of photons passing through are measured by detector images. Medical CT typically makes

use of direct or iterative algebraic reconstruction methods, e.g., the classical filtered backprojection
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(FBP) algorithm based on the Radon transform [Rad86], or the simultaneous algebraic reconstruction

technique (SART) [AK84, KSW02] and its extensions. Direct, analytical methods struggle with noisy

and incomplete data. Iterative methods, on the other hand, work with sparse input data, allow for

incorporating additional constraints, and minimize the error term of the correspondence between input

images and rendered reconstructed volume.

Driven by medical applications, image-based CT approaches have been developed and are established

in graphics [KSW02]. Multiple 2D projections of 3D fluids are created through visible light [Cie11].

In many cases, fewer input images are available compared to medical CT. In order to reconstruct

astronomical structures, specialized and powerful algorithms assuming rotational symmetry were pro-

posed [LLM∗07, WLM13]. In this thesis, we focus on the reconstruction of single-phase flows as smoke

and briefly outline methods for capturing liquids. Morris and Kutulakos [MK11] reconstruct the position

and normal of surface points of a liquid from two viewpoints and by using submerged checkerboard pat-

terns. However, internal processes are not investigated. Wang et al. [WLZ∗09] make use of structured

light and physics-based simulation in combination with image-based reconstruction to capture a dy-

namic, diffuse liquid surfaces with a single stereo camera. The shape of flowing water is reconstructed

by Ihrke et al. [IGM05]. Water is dyed with fluorescent substances and 8-24 video streams are used

as input. Slowly deforming objects have also been captured in detail with higher-level optimization

tomographies [ZIT∗18, ZAI∗18].

Considering single-phase flows, Ihrke and Magnor [IM04] present a realistic, iterative, image-based

reconstruction of flames using 4-8 input images. They assume a linear image formation model with

constant or trilinear basis functions. The projection matrix forms a sparse, ill-conditioned linear system

of equations solved with a least squares CG solver. An adaptive algorithm is proposed subsequently

to reduce the high computational costs of the reconstruction [IM06]. As the matrix containing pixel-

voxel correspondences grows rapidly with the resolution of both images and volume, a matrix-free and

gridless approach with small memory footprint is proposed by Gregson et al. [GKHH12], the so-called

Stochastic Tomography. The authors reconstruct the mixing behavior of two-phase flows, namely mixing

ink with water, based on 8-16 high-quality camera input videos. Such liquid mixing is closely related

to our single-phase flows of rising hot smoke phenomena. The authors do not build a linear system

of equations or impose a discretization beforehand but work with samples created based on stochastic

random walks and splat them to residual images. General convex regularizers are easily incorporated

such that they achieve high reconstruction quality while requiring less computation time and memory.

However, artifacts increase with reducing the number of input views and with calibration errors.

Our goal on the other hand is to reconstruct real-world fluid phenomena with a very sparse number

of input views, namely one or five, and to use inexpensive consumer cameras in a simple setup with

reduced synchronization efforts. Okabe et al. [ODAO15] present their method Appearance Transfer

that allows for sparse input views, i.e., one or two, but relies on additional virtual views generated by

internal calculations. Based on the original input images, they reconstruct a rough fluid volume, re-

render it from novel virtual cameras, transfer the appearance from the original to the novel images, and

iterate between reconstructing the volume and adapting the novel image views until a satisfactory result
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is achieved. Appearance transfer is conducted by using steerable pyramids and histogram matching.

Using two input views orthogonal to each other significantly improves their reconstruction quality. The

reconstructed densities look realistic but are shaped with the artificially created, virtual input images

that do not necessarily match reality. Fuchs et al. [FCG∗06] use only a single view to reconstruct

scattering media but rely on a set of laser lines sampling the reconstruction volume sparsely with limited

spatial resolution.

2.2.2. Velocity Reconstruction

In order to estimate the motion between two 2D images or two 3D density fields, OF methods are

typically employed. While there exist local approaches for velocity estimation, e.g., the Lucas-Kanade

window technique, we only consider global approaches as fluids behave in global patterns. However,

for some applications, it might be beneficial to combine both local and global approaches [BWS05].

Global OF estimation presented by Horn and Schunck [HS81] is very popular and widely used for

dense motion reconstructions. They propose a variational formulation of the brightness constancy

assumption, which relates the flow to the derivatives of the input densities. However, as infinitely many

velocity fields comply with the brightness constancy assumption, the minimization problem is ill-posed

and a smoothness regularizer is introduced to alleviate under-determination. Large displacements are

often difficult to handle, such that Meinhardt-Llopis [MLPK13] propose using a multi-scale strategy

for handling larger motions. In order to account for different illumination or lighting, Radke [Rad13]

use a gradient constancy assumption instead of the brightness constancy assumption. Suter [Sut94]

decompose the commonly used smoothness regularizer into parts related to the divergence and the

curl of the velocity field. Corpetti et al. [CMP02] extend this idea and regularize highly deformable

2D cloud motions with a divergence term and a divergence-curl-smoothness prior. Such regularizer

is useful for fluid flows that are known to exhibit concentrations of either divergence or vorticity at

some locations. In our case of rising smoke plumes, we assume zero divergence and do not make any

assumption about the present vorticity.

Chen et al. [CLH16] reconstruct a sparse, skeletal flow of smoke, and interpolate it to obtain a

dense velocity field. Their approach takes place in the 2D image plane and assumes that smoke

density does not change much over time. Accompanying the Appearance Transfer method mentioned

above [ODAO15], the authors propose to use 2D OF to estimate the volumetric motion. Yet, the re-

sulting 3D velocity field is just a rough estimate and not divergence-free, which is a crucial constraint

for flow motions in the graphics setting. Gregson et al. [GITH14] reconstruct fluid motion based on

divergence-free OF exploiting the fact that the brightness constancy assumption and continuity equa-

tion determining fluid flows are equivalent as observed by Liu and Shen [LS08]. The authors make use

of ADMM to simultaneously solve for the continuity equation and the divergence-free constraint. They,

furthermore, rely on accurate and full volumetric density fields as input, which is often difficult or im-

possible to access in the visual effects setting. Following the recent success of deep learning approaches,

Fischer et al. [DFI∗15] learn OF with Flownet, a CNN-based neural network.
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Opposed to that, we do not have access to accurate volumetric density fields as input but estimate

3D fluid motion based on 2D input images, which is a heavily under-constrained motion estimation

problem. Therefore, we constrain a forward fluid simulation to meet the 2D input videos, couple the

density and velocity estimation tightly, and assume zero divergence like Gregson et al. in [GITH14].

2.2.3. Scientific Data Sets

A reference and benchmark data set enables researchers to conduct more objective comparisons and

evaluation of methods. One example for data sets with great impact is the ImageNet data set [DDS∗09].

It is used in thousands of studies of image classification and contains over one million images with la-

bels and bounding box information for image classification tasks. More date sets in the computer

vision area are the CIFAR data set for simplified classification tasks [KNH14], a data set of video col-

lections for action recognition [AEHKL∗16], and databases with 3D scanned data for geometry recon-

struction [KPZK17, CDF∗18]. Fluid simulation for engineering applications can make use of the Johns

Hopkins Turbulence Database, which contains eight different simulations of turbulent flows [LPW∗08].

However, there exists only one data set for each of the eight setups and the focus lies on non-visual flows,

i.e., flows without observable quantities. Other CFD and fluid flow databases are the THT Lab [MK90],

KTH Flow [SO10], and FDY DNS [AHOGG14] databases similarly providing single simulated data sets

with varying resolutions. Therefore, those databases are not directly applicable for graphics, vision, or

deep learning use cases.

Our data set ScalarFlow contains many varied data sets of scalar transport processes, i.e., buoyant

plumes of hot smoke. We evaluate simulation methods for single-phase flows concerning their ability

of reproducing real-world fluid phenomena. In particular, we make use of perceptual evaluations, such

as for evaluating rendering algorithms [CCL02], tone mapping [MAF∗09], or animations of human

characters [HRZ∗13]. Most recently, the visual realism of different methods for liquid simulation was

evaluated [UHT17]. While providing benchmark cases for fluid simulation methods is a very promising

direction, our data set can also be beneficial for the construction of reduced models, e.g., for machine

learning applications.

Following the outcome of their perceptual user study on realism of liquid simulations, Um et

al. [UHT18] create detailed splashes for liquid simulations with neural networks. Deep learning has

been applied to several topics in fluid simulation, e.g., driving particle-based simulations [LJS∗15],

replacing the pressure solver [TSSP17], augmenting simulated data with learned descriptors [CT17],

generating real-time interactions with liquid effects [PBT19], learning controllers for rigid body

interactions [MTP∗18], super-resolution with strong temporal coherence through adversarial train-

ing [XFCT18], learning reduced parameter sets of fluid simulations [KCAT∗19], or predicting pressure

field changes in liquid simulations [WBT19].
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2.3. Fluid Guiding

One limitation of purely physics-based fluid simulation is the lack of artistic control, e.g., simply chang-

ing a simulation’s resolution alters its behavior significantly. Therefore, many research works target

guiding fluid simulations towards a desired state. Pan et al. [PHT∗13] use smoke shape keyframes for

intuitive control over smoke simulations. Synthesizing turbulent structures decoupled from the large-

scale motion facilitates the fine-tuning of details, such as in [BHN07, KTJG08, PTSG09]. Yet, the newly

created features do not integrate tightly with the base flow, such that motion is sometimes perceived as

unnatural. So-called up-res methods were proposed by [YCZ11, HMK11, HK13, RLL∗13, NB11] where

low-resolution simulations are edited and guided high-resolution simulations provide fine-scale details

by using Lagrangian coherent structures, by sparse sampling of the target flow, by flow modulation

using the Hilbert-Huang transform, or by guide shapes for free-surfaces flows. We also integrate an

up-res method into our guiding scheme since the separation of low- and high-resolution motion can be

quite useful for artists. Our technique allows for arbitrary flow fields as input producing realistic and

tightly coupled details.

Fluid guiding through adjoint methods, e.g., [GP00, MTPS04, PM17] for engineering and graph-

ics, tend to be expensive and require the differentiation of the entire fluid solver. Simpler techniques

are [SY05b, FL04, SY05a] where they use control forces or velocities for liquids and smoke. How-

ever, Thuerey et al. [TKPR06] notice that artificial viscosity is introduced as well. They propose a

scale-dependent force control based on automatically generated particles only targeting the coarse-

scale velocity components. Gregson et al. [GITH14] present preliminary guiding results using the fast

Fourier transform for filtering low-frequencies, which renders the technique impractical for more com-

plex boundary conditions or spatially varying guiding. Most similar to our approach are the works by

Nielsen et al. [NCZ∗09, NC10]. They propose a multi-scale formulation decoupling large-scale motion

and fine-scale detail control with a monolithic system requiring a specialized solver in order to reduce

run time. Our technique nicely separates the complex problem of guiding into simpler sub-problems,

which are easier to solve.

2.4. Boundary Conditions

As stated in [Bri15], the correct handling of BCs in fluid simulations is a quite difficult task. For exam-

ple, Forster and Metaxas [FM96] voxelize solid obstacles onto the grid. Nevertheless, geometries not

aligning with the grid produce stair-step artifacts, which do not converge to zero when increasing the

simulation’s resolution. The coupling of deformable objects and incompressible or compressible fluids

is targeted with mass-spring systems in [GHD03] and the ghost fluid method in [NGF02]. Takahashi

et al. [TFK∗03] animate multi-phase flows with non-aligned solids by setting the velocity inside a cell

that contains fluid and solid to the velocity of the solid. Rasmussen et al. [REN∗04] develop special

boundary conditions for the natural interaction of particle level set (PLS) simulations with immersing
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rigid bodies. The coupling of fluids and rigid bodies is improved by Carlson et al. [CMT04] using dis-

tributed Lagrange multipliers for two-way coupling and treating rigid bodies as a so-called rigid fluid.

For particle-based fluid simulations, Schechter and Bridson [SB12] introduce ghost particles in sur-

rounding air and solids to reduce particle clumping and thus diffusion. Becker et al. [BTT09] present

one- and two-way coupling with rigid bodies based on a predictor-corrector scheme for both velocity

and position allowing for different slip conditions while enforcing non-penetration.

Foster and Fedkiw [FF01] introduce the slip BCs where fluid motion tangential to the solid is allowed.

They, for the first time, noticed unnatural fluid behavior of liquid sticking to solid obstacles, e.g., do-

main boundaries. To allow fluid to separate smoothly from solids, the normal velocity component at

fluid-solid faces should be allowed to be greater or equal to zero, if the solid is non-moving. Batty et

al. [BBB07] propose a second order variational formulation of the pressure equations as kinetic energy

minimization problem with the following complementarity condition

0≤ p ⊥ (u f luid − usol id) · n̂≥ 0, (2.1)

where p is the pressure, u f luid and usol id are the fluid’s and solid’s velocities, respectively, and n̂ is

the normal of the fluid-solid face. In order to solve their LCP, they apply an expensive QP solver. The

complementarity condition states that if the pressure is positive, the fluid is at rest and no suction

exists towards the solid wall. A zero pressure, however, allows for positive normal velocities leading

to separation of contact. Chentanez et al. [CMF12] incorporate the complementarity condition into

their multigrid solver reducing run time drastically. Erleben [Erl13] provides a thorough survey for

solving LCPs. More recently, Andersen et al. [ANE17] use a simple implementation of a CG solver

to solve the linear complementarity problem. However, their solver is still quite expensive compared

to using a traditional CG solver. [NGL10, NGCL09, GB13] solve for unilateral incompressibility to

enable separation effects by taking QP approaches, which again require complex solvers. For instance,

Gerszewski and Bargteil [GB13] enforce non-negative pressures in cells near liquid surfaces and allow

positive divergence in fluid cells to create large-scale splashes.

In contrast, our goal is to adapt the popular CG pressure solver minimally to enable fluid to detach

naturally and efficiently from obstacles or solid walls. We present a modular optimization framework

allowing for the separate handling of BCs and incompressibility. Similar to our approach, Hender-

son [Hen12] separates the handling of BCs from the divergence-free projection step but do not handle

separating BCs.

2.5. Convex Optimization

Convex optimization is a well-established and powerful technique, e.g., in computer vision. Consid-

ering the areas of statistics and machine learning, Boyd et al. [BPC∗11] portray ADMM and review

different related methods for convex optimization. Gregson et al. [GITH14] used ADMM as efficient
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splitting algorithm to make OF divergence-free. They noted that the proximal operator that ensures in-

compressible fluid velocity is equivalent to the pressure projection commonly solved in fluid simulation

in the graphics context. With ADMM, Narain et al. [NOB16] combine a fast and robust non-linear elas-

ticity model with hard constraints for animating deformable objects, while Pan and Manocha [PM17]

present a space-time control for smoke animations. Xiong et al. [XIAP∗17], on the other hand, applied

ADMM to solve the minimization problems of their method Rainbow PIV.

The fast first-order Primal-Dual method was initially and then in more depth presented by [PCBC09]

and [CP11]. PD is a preconditioned version of ADMM with convergence accelerated by improved

update directions. In contrast to our results, O’Connor et al. [OV14] found that ADMM outperforms PD

for few iteration counts. However, they used a restricted version of PD not exploiting the full potential

of the optimal update directions. PD has recently become more popular and was used for projective

dynamics simulations [NOB16], correcting deficiencies of simple lenses [HRH∗13], for choosing optimal

image priors and optimization algorithms for image processing tasks, such as deconvolution, denoising,

or inpainting [HDN∗16], and for reconstructing rapidly deforming objects [ZIT∗19].

Another, specialized method for convex optimization is IOP, which requires all operators to be or-

thogonal projections. Molemaker et al. [MCPN08] use it to ensure both zero divergence as well as

solid-wall BCs by applying both proximal operators iteratively and sequentially . However, they did not

account for free-surface BCs as Dirichlet BCs do not translate to linear constraints on the fluid’s velocity

field. They noted that IOP exhibits slow convergence if the combined matrix of incompressibility and

BCs constraints has eigenvalues close to one, which happens when the individual sub-spaces are al-

most parallel. The position-based fluids (PBF) method by Macklin and Müller [MM13] also makes use

of iterative application of projections. As we found PD to outperform both ADMM and IOP for regular

iteration counts for both fluid guiding and solid-wall BCs, we focus on using PD in our reconstruction

methods.
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In this chapter, we outline the fundamental theory of forward fluid simulation for visual effects, cover

the theory behind PD and related schemes, explain OF, and outline the basics of CT.

3.1. Fluid Simulation

Fluids are substances that continually deform under applied shear stress, such as liquids and gases.

Liquids have a defined interface where they usually meet another fluid like air. When simulating smoke

plumes, we are truly simulating air with temperature differences and marker particles. For example,

cigarette smoke is rising, as the blaze heats up the surrounding air. Hot air is less dense than cold

air, which makes it lighter and therefore rise up due to buoyancy. As it happens, smoke particles are

dissolved in the hot air making the hot air’s motion visible.

There are two commonly established viewpoints when it comes to simulating fluids numerically: the

Eulerian and the Lagrangian viewpoint. The Eulerian approach discretizes the simulation domain with

a typically uniform grid and observes how different quantities, e.g., smoke density, temperature, and

velocity, change over time at these discretization points. The Lagrangian viewpoint assumes that a

multitude of particles represent the whole fluid volume and carries the quantities, which do not change

over time. The most popular simulation methods with a purely Lagrangian viewpoint are Smoothed

Particle Hydrodynamics (SPH) methods. In this thesis, we focus on Eulerian simulations, which are
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commonly used to simulate single-phase fluids as smoke. Bridson gives a thorough overview over

popular fluid simulation methods for animation in [Bri15].

A fluid’s motion is governed by the non-linear partial differential equations of second order: the

famous NSE. For graphics applications, the goal is to generate visually plausible fluid animations im-

plying that a human observer cannot identify the fluid’s motion as physically incorrect. In engineering

or physics applications, emphasis is placed on high physical accuracy. While fluids are compressible,

compressibility usually takes place at microscopic levels, which is beyond the usual human perception,

and is therefore insignificant for large-scale simulations of smoke or liquids. A fluid is incompressible

if its velocity is divergence-free and therefore mass-preserving, meaning that there is no sink or source.

The incompressible NSE are a widely established physical model for fluid simulation and are written

as

∂ u
∂ t
+ u · ∇u= −

1
ρ
∇p+ ν∇2u+ fext

∇ · u= 0,
(3.1)

Incompressible Navier-Stokes equations.

where u= (u, v, w) is velocity, t is time, ∇ is the nabla operator, ρ is the physical density, p is pressure,

ν is kinematic viscosity, and fext denotes external body forces. Note that the physical density is not

the same as the fluid’s density, such as smoke density. Smoke density is a quantity being transported

throughout the fluid and can be rather interpreted as a marker of hot air. With the term density, we

refer to smoke density and not to the physical density of the fluid if not stated otherwise.

The first equation is called momentum equation and is Newton’s second law ma = F [New99] in

disguise. The left side is the material derivative Du
Dt =

∂ u
∂ t +u ·∇u describing the rate of change of some

physical quantity, here velocity u, in both space and time. Setting the material derivative to zero results

in our advection equation displayed in Equation (3.2), meaning that the quantity moving around is not

changing from the Lagrangian viewpoint. The right side of the momentum equation consists of inter-

Du
Dt
=
∂ u
∂ t
+ u · ∇u= 0 (3.2)

Advection or transport equation.

nal forces, i.e., pressure and viscosity, and external forces, such as gravity. Those forces specify how

the fluid accelerates. For example, high-pressure regions push towards low-pressure regions, which is

expressed by the negative gradient of the pressure. For viscous fluids, particles prefer to move at the

same speed as their neighbors, which is described by minimizing the differences of velocity between

neighbors through the Laplacian operator ∆=∇2. The second equation in Equation (3.1) is the in-

compressibility condition where ∇ · u denotes the divergence of the velocity field, which must be zero

for incompressible fluids.
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Viscosity is a measure of how much a fluid resists deformation, e.g., large-scale water has low vis-

cosity and easily forms turbulent structures. Small-scale liquids or honey feature high viscosity where

the latter is very difficult to stir. However, numerical simulation methods typically introduce an error

term that can physically be interpreted as viscosity. Therefore, viscosity is often excessively present

in the simulation resulting in not solving for the viscosity term explicitly. Omitting the viscosity term

reduces the incompressible NSE to the incompressible Euler equations:

∂ u
∂ t
+ u · ∇u= −

1
ρ
∇p+ fext

∇ · u= 0.
(3.3)

Incompressible Euler equations.

Typical fluid simulators solve the NSE in Equation (3.1) for each time step t by splitting them into

the components advection, adding forces (internal and external ones), and pressure projection. Each

component is solved separately, one after the other. Such an approach is called operator splitting. First,

an intermediate velocity field is computed through advection and adding forces. Then, the velocity field

is made divergence-free and BCs are accounted for by the pressure projection. Note that quantities,

such as smoke densities, should only ever be advected with an incompressible velocity field, i.e., after

the pressure projection. Otherwise, mass-conservation is not guaranteed. An overview over typical

steps in a forward fluid simulation is given in Figure 3.1, where Φ denotes the fluid density. With a

given initial velocity field u0 at t = 0, velocity is advected forward, diffused, extended with external

forces, and corrected with the pressure projection ΠDIV, which projects the velocity field onto the space

of divergence-free velocity fields CDIV. Considering smoke simulations, smoke density Φ is moved along

with the velocity where, optionally, an inflow source is added first. We explain each of the simulator

components and details about the discretization approach in the following.

Figure 3.1.: Steps of a typical forward fluid simulator calculating velocity ut and density Φt . The steps for
velocity are denoted with orange arrows while blue stands for density. For both quantities, we start with their
initial conditions u0 and Φ0. For each time step t, velocity is advected forward, viscosity and external forces
are added, and the velocity is projected to be divergence-free by the pressure solver. Density is evolved by
determining boundary conditions through adding an inflow source and advecting it forward with the newly
computed velocity field. Hence, the main steps are initial and boundary conditions, advection, viscosity, external
forces, and pressure projection.
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Advection The advection, convection, or transport equation in Equation (3.2) could be solved with

forward Euler, which is, however, unstable in this case. Therefore, semi-Lagrangian advection [Sta99]

is typically used, which is unconditionally stable and allows for large time steps. Though it is performed

on an Eulerian grid, a Lagrangian viewpoint is taken, which leads to the name semi-Lagrangian. The

new value of a centrally stored quantity q at location xa is updated by first accessing the velocity u at

xa. Then, this velocity is traced backwards to a grid point xb. The value of quantity q is interpolated

at xb and stored as new value for quantity q at xa. A schematic overview over the back tracing and –

here bilinear – interpolation is shown in Figure 3.2.

Figure 3.2.: Semi-Lagrangian advection scheme by tracing a position xa backwards to position xb, here denoted
with a black arrow. The new value of a centrally stored quantity q at xa is found by interpolating the surrounding
data points of q at position xb. The corresponding bilinear weights for each of the four neighbors are visualized
with colored rectangles.

Note that tracing the velocity backwards is a linearization of the advection equation, as velocity is

assumed to be piecewise constant. The semi-Lagrangian advection scheme is unconditionally stable,

as the solution is bounded by existing values, e.g., through linear interpolation. However, it is only

first-order accurate in time and if the time step size is increased, errors will increase. As interpolation

operations take place in each advection step, sharp features are smoothed out and blurred, which is

also known as dissipation. This kind of numerical dissipation is a viscosity-like term and referred to

as numerical viscosity. Dissipation will still occur if higher-order spatial interpolation is applied and is

accumulated over time steps. When using very small time steps, the sum of interpolation errors will

increase. Therefore, it is important to choose an appropriate time step size where discretization and

interpolation errors balance out.

Often, other quantities are advected within the velocity field. For example, when considering smoke

simulations, smoke density Φ needs to be moved along the velocity field. In order to do so, the following

advection equation must be solved: ∂Φ
∂ t + u · ∇Φ = 0. Instead of solving the self-advection equation

from Equation (3.2), we advect density and as such, use both temporal and spatial derivation of the

density instead of the velocity.
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Forces External body forces are simply added by updating the velocity with a forward Euler step. In

order to incorporate viscosity in special cases where the fluid is too turbulent otherwise, the diffusion

equation is typically solved with a regular CG solver:

∂ u
∂ t
= ν∆u, (3.4)

Diffusion equation for viscosity.

where the Laplacian operator∆ is the divergence of the gradient of the velocity, i.e.,∆=∇·∇=∇2. It

measures how far a quantity differs from the average around it. The diffusion equation is more difficult

to solve at the surface where not every neighbor is available and for variable viscosity, which we will

not discuss here.

Pressure Projection We interpret the pressure as the quantity that makes the velocity field

divergence-free and ensures that both solid-wall and free-surface BCs are met. For example, a

fluid must not flow into or out of a solid obstacle. The intermediate velocity u∗, which is the resulting

velocity field after advection and adding external and viscous forces, is corrected accordingly. In

order to do so, the pressure gradient is subtracted from each velocity component. For example, the

x-component of the velocity is corrected as following:

ui, j,k = u∗i, j,k −
1
ρ
(pi+1, j,k − pi, j,k), (3.5)

Velocity correction through the pressure gradient, assuming a staggered MAC grid as in Figure 3.3. This choice
of discretization is explained later in the paragraph Discretization.

assuming the grid spacing ∆x to be equal to 1, see the paragraph about discretization below. In order

to find the pressure values for which both incompressibility and BCs constraints hold, the following

Poisson equation is solved:

∆p = −
ρ

∆t
∇ · u. (3.6)

Poisson equation for solving the pressure.

This Poisson equation transforms into a system of linear equations Ap = b with the negative divergence

of the velocity being the right-hand-side b and the Laplacian as the system’s matrix A.

A must be adapted such that both solid-wall and free-surface BCs hold. The free-surface BCs are

a Dirichlet BC where the value of the solution is specified. The pressure in surrounding air cells is
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commonly set to be equal to zero: pair = 0. The reason is that air is 700 times lighter than water or

a comparable fluid and, therefore, has no significant impact on that fluid. Air is treated as region of

constant atmospheric pressure, which can be set to zero, because only differences in pressure values

matter.

In order to prevent fluid from flowing into or out of solid walls, the velocity relative to the solid

at fluid-solid interfaces is set to zero. Either the whole velocity or only the normal component of the

velocity is set to zero: n̂ ·(u−usolid) = 0. No-slip boundary conditions are typically used for viscid fluids

and constrain all components of the velocity to be zero, which results in fluid not being able to move

once meeting a wall. The no-stick or slip BCs only constrain the normal component of the velocity,

hence allow tangential movement. The pressure solver does not change these velocities and hence, the

pressure gradient that corrects the velocity must be zero: ∇p = 0. Specifying the value of a derivative

of the solution is a Neumann BC. Both BCs transform into linear constraints on the pressure and can

easily be included in the system’s matrix A.

A is a large, sparse, and symmetric coefficient matrix with one row per cell, which is mostly zero

except for the possibly seven non-zero Laplacian entries (in 3D). As A is symmetric, only half of the

coefficients need to be stored. After setting up A and b, the system is conventionally solved with a

preconditioned CG solver, which is robust, easy to implement, and able to handle complex domain

shapes. The CG solver is an iterative method that does not require an explicit representation of the

system’s matrix and is guaranteed to converge. Each iteration consists of only basic computations.

However, the run time of a CG solver scales poorly with grid resolution and therefore features high

computational costs for higher grid resolutions.

After solving for pressure values, the intermediate velocity field is corrected by the negative pressure

gradient, see Equation (3.5). This pressure correction is also called pressure projection, because the

velocity field is projected onto the space of divergence-free velocity fields CDIV. Projecting it again

leaves the velocity field unchanged. The divergence-free components of the flow are left untouched

by the pressure solver due to the orthogonality of the curl-free and divergence-free components. The

pressure projection is hence an orthogonal projection [Cho68, PB∗14] only removing divergent parts

of the velocity and changing the velocity as few as necessary.

Discretization Discretizing continuous partial differential equations for solving them numerically

influences numerical stability substantially. Time and space need to be discretized. Time is simply

discretized with forward Euler: tn = n∆tfor n= 0, 1, ..., N and ∂ u
∂ t =

utn+1−utn

∆t .

As we take an Eulerian approach, we discretize our spatial simulation domain into a uniform Carte-

sian grid resulting in a finite number of discrete points where each cell comes with indices i, j, k. In

order to approximate partial derivatives discretely, we use finite differences between our discrete grid

points. There are three commonly used differences: forward, backward, and central differences. Cen-

tral differences are the most accurate ones, because their truncation error is on the order of O((∆x)2)

instead of O(∆x), where ∆x denotes the (uniform) grid spacing and ∆x → 0. For example, finite

difference approximations for the first-order derivative of u in the spatial x−direction is given by the
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following equations (considering a 2D domain):

�

∂ u
∂ x

�

i, j
=















ui+1, j−ui, j
∆x +O(∆x), forward difference

ui, j−ui−1, j
∆x +O(∆x), backward difference

ui+1, j−ui−1, j
2∆x +O((∆x)2), central difference.

(3.7)

Forward, backward, and central differences for the derivative of u in the spatial x−direction.

The basis for finite differences is the Taylor expansion:

f (x +∆x) =
∞
∑

k=0

f (k)(x)
k!

(∆x)k. (3.8)

Taylor expansion of an infinitely differentiable function f around point x .

Applied to central differences for the derivative of u in the x−direction results in:

ui+1, j = ui, j +∆x
∂ ui, j

∂ x
+
(∆x)2

2

∂ 2ui, j

∂ x2
+O((∆x)3)

ui−1, j = ui, j −∆x
∂ ui, j

∂ x
+
(∆x)2

2

∂ 2ui, j

∂ x2
+O((∆x)3)

=⇒ ui+1, j − ui−1, j = 2h
∂ ui, j

∂ x
+O((∆x)3)

=⇒
∂ ui, j

∂ x
=

ui+1, j − ui−1, j

2h
+O((∆x)2).

(3.9)

Finite differences converge to the true value of ∂ u
∂ x for ∆x → 0.

However, as central differences do not take the current value ui, j into account, common central dif-

ferences have a non-trivial null-space. The set of functions where the central differences evaluate to

zero includes not only constant but also oscillating functions. This is especially unfavorable in the pres-

sure projection, where the pressure gradient is used to correct the velocity components, and where the

divergence of the velocity must be calculated for the center of each cell. Pressure solvers with regular,

co-located discretization of velocity and pressure tend to produce checkerboard patterns. Furthermore,

highly divergent velocity fields could appear to have zero divergence and are hence not corrected by

the pressure solver. Such high-frequency oscillations could persist during simulation or even grow un-

stably. Therefore, Harlow and Welch [HW65] developed the MAC grid, as this staggered discretization

enables the use of central differences without the non-trivial null-space issue. Velocity components and

pressure values are stored at different locations in the grid, namely in the cell center and the center of

cell faces as shown in Figure 3.3. Hence, the pressure gradient and the divergence of the velocity can
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be approximated by central differences with trivial null-spaces, i.e., only constant functions yield zero

derivatives. The staggered grid approach is also useful for viscosity calculations.

(a) Nine interior cells of a 2D MAC grid with scalar and vector-
valued components.

(b) One cell of a 3D MAC grid with its central scalar quantities
and its velocity components at adjacent faces.

Figure 3.3.: 2D and 3D MAC grid with cell indices i, j, k, velocity components u= (u, v, w) in purple, blue, and
green, pressure p in yellow, and density Φ in gray. To increase the accuracy of finite difference approximations
of velocity, density, or pressure derivatives, the quantities are stored at different locations in the grid. Scalar
quantities are stored in the cell center while vector-valued quantities are positioned at the centers of cell faces.

Fluid Simulator We use the open-source framework mantaflow [TP19] in order to simulate smoke or

liquid. mantaflow contains Eulerian simulations with MAC grids, a preconditioned CG pressure solver,

MacCormack advection, FLIP simulations for liquids, and many more fluid simulation techniques. It is

written in C++ and comes with the possibility of python scripting to facilitate fast prototyping.

3.2. Convex Optimization

The advantage of convex over non-convex problems is that, generally, a global optimum can be com-

puted within reasonable time, good precision, and independent of initialization. Typically, convex

optimization problems take the following form:

minimize
x

h(x), (3.10)

where h is a convex function, called objective function. The objective function might be non-smooth or

even discontinuous. If h is a complex function, it is often easier to solve it through an iterative divide-

and-conquer approach. Let us say h is the sum of two simpler, more manageable, closed, proper, and

convex functions f and g: h = f + g. Then, optimization can be performed separately for f and g,
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which is simpler than optimizing h directly. Depending on the form of f and g, mathematical structures

can be exploited, which leads to very efficient solvers. The split optimization problem takes the form

minimize
x,z

f (x) + g(z)

subject to x= z,
(3.11)

where the variable x is split into two parts: x and z. Such divide-and-conquer approaches as we here

refer to are called proximal methods. In general, the class of optimization algorithms called proxi-

mal methods [PB∗14] splits difficult multi-objective optimization schemes into simpler sub-problems

by making use of proximal operators, which are application specific solvers targeting smaller convex

optimization sub-problems. Here, we have two proximal operators, i.e., solvers, for each sub-problem

f and g, which are defined as following:

prox f ,σ(ξ) := argmin
x

�

f (x) +
σ

2
‖x− ξ‖2

�

proxg,σ(ξ) := argmin
z

�

g(z) +
σ

2
‖z− ξ‖2

�

,
(3.12)

with σ denoting the penalty weight, ξ being a generic input variable, and ‖.‖ being the l2-norm.

The convex functions f and g can be either quantities to minimize or hard constraints, which would

translate to indicator functions. Both proximal operators are applied iteratively until convergence is

reached and the solution in z minimizes h. Depending on the specific instance of algorithm for solving

Equation (3.11), the stopping criterion is either related to the amount of change in the z or to the error

in the first function f . The iterations are stopped when either error measurement or both fall below a

threshold ε.

It would also be possible to solve a convex quadratic function h restricted to an affine set as Karush-

Kuhn-Tucker (KKT) system [BPC∗11]. However, the composed KKT matrix can usually not be solved

by simply applying a preconditioned CG solver, as it is most likely not positive-definite and poorly

conditioned. While there exist several extensions for simplifying the solving of such a system and other

solving strategies, such as the Schur Complement Reduction, we focus here on iterative divide-and-

conquer approaches splitting complex problems into simpler sub-problems.

In order to solve the optimization problem in Equation (3.11), we discuss three proximal methods:

PD, ADMM, and IOP. Although we will mostly use PD in this thesis, we start by introducing ADMM,

which is a simpler version of PD. Before that, we quickly review common forms of proximal operators:

quadratic and indicator functions. An example for an indicator function is the pressure projection from

fluid simulators.

Quadratic Functions Often, the convex functions to minimize are quadratic functions. Here is an

exemplary definition for f :

f (x) = 1
2xT Ax+ bx+ r, (3.13)
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where A is symmetric, positive semi-definite, and square, b is the right-hand side, and r is a constant

term with respect to x. If A+σI is invertible, the corresponding proximal operator is given by

prox f ,σ(ξ) = (A+σI)−1(σξ− b), (3.14)

where σ is the penalty weight keeping the solution of prox f ,σ close to the input variable ξ.

Optimization Problems in Fluid Simulation As we target optimization problems for fluid simu-

lation, we are often dealing with constraints on the velocity field. The velocity field must always be

divergence-free in our application scenarios. Therefore, our optimization problems take on the follow-

ing form:
minimize

x
f (x)

subject to x ∈ CDIV,
(3.15)

where x is the velocity field to be optimized and CDIV denotes the space of divergence-free velocity fields.

Here, g is an indicator function of the closed non-empty convex set CDIV and an orthogonal projection,

as shown in Section 3.1. As explained in [GKHH12], the proximal operator for making a velocity field

divergence-free is equal to the pressure projection, which projects the velocity field onto the space of

divergence-free velocity fields. Therefore, the proximal operator for g is the pressure projection itself:

proxg,σ(ξ) = ΠDIV(ξ), (3.16)

where ΠDIV stands for a projection onto CDIV with a commonly applied Poisson pressure solver.

Such optimization schemes can easily be incorporated into fluid simulators by replacing the call to the

pressure projection with a call to the algorithm solving the optimization problem in Equation (3.15).

However, as a pressure solver based on the CG scheme is typically quite expensive and proximal oper-

ators are applied iteratively, it is beneficial to employ an adaptive accuracy scheme. Here, the accuracy

of the CG solver εCG is set to a high threshold, e.g., εCG = 10−2, for the first iterations and is adaptively

decreased until the desired final accuracy is reached, e.g., εCG = 10−5. With this adaptive CG scheme,

the number of required CG iterations is decreased drastically.

3.2.1. Alternating Direction Methods of Multipliers

ADMM, the Alternating Direction Method of Multipliers [BPC∗11, GOSB14], was developed in the

1970s. It profits from strong convergence properties of the method of multipliers and from decompos-

ability properties of the dual ascent method, and is a special case of the Douglas–Rachford splitting.

ADMM solves the optimization problem Equation (3.11) with the following iterative variable updates:

xk+1 := prox f ,ρ(z
k − yk)

zk+1 := proxg,ρ(x
k+1 + yk)

yk+1 := yk + xk+1 − zk+1,

(3.17)
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where ρ is the parameter for controlling ADMM’s convergence, y is a dual variable, x and z are slack

variables, and k is the iteration counter. The algorithm alternates between updating x and z, which

accounts for the alternating direction in the name ADMM. For convergence, the dual variable y ap-

proaches an optimal value and z holds the solution to Equation (3.11).

Convergence is reached if both primal and dual residual r and s lie below a threshold:





rk+1






2 =




ρ(zk − zk+1)






2 ≤ ε
dual, εdual =

p

ndim ε
abs + εrelmax

�



yk+1






�

(3.18)




sk+1






2 =




xk+1 − zk+1






2 ≤ ε
pri, εpri =

p

ndim ε
abs + εrelmax

�



xk+1




 ,




zk+1






�

, (3.19)

with the primal and dual tolerances εpri and εdual, ndim as the dimension of the residuals, l2-norm

‖.‖, and the absolute and relative stopping criteria εabs and εrel. The relative criterion is typically set to

εrel = 10−3 while εabs depends on the scale of the typical variable values, also usually set to εabs = 10−3.

ADMM may require a high number of iterations for high accuracy. For modest accuracy, it is supposed

to converge within a few tens of iterations [WBAW12].

3.2.2. Fast Primal-Dual Method

With PD, we are able to solve a slightly more general problem [PCBC09]:

minimize
x,z

f (Kx) + g(z)

subject to x= z,
(3.20)

for some linear operator K . In this thesis, K is simply the identity: K = I . The variable updates for PD

are given by
xk+1 := prox f ∗,1/σ(x

k +σyk)

zk+1 := proxg,1/τ(z
k −τxk+1)

yk+1 := zk+1 + θ (zk+1 − zk),

(3.21)

where the parameters {σ,τ,θ} affect convergence, k is the iteration counter, and f ∗ is the convex

conjugate of f . While z converges to the solution of Equation (3.11), x and y are helper variables.

Through Moreau’s identity, the x-update can be transformed such that is not necessary to compute f ∗

directly:

prox f ∗,1/σ(ξ) = ξ−σprox f ,σ(ξ/σ). (3.22)

Thus, the final variable updates are reduced to

xk+1 := xk +σyk −σprox f ,σ(
1
σxk + yk)

zk+1 := proxg,1/τ(z
k −τxk+1)

yk+1 := zk+1 + θ (zk+1 − zk).

(3.23)
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PD is said to have converged if the change in the solution




zk+1 − zk




 gets lower than a specified

threshold ε. As for ADMM, we make use of an absolute and relative criterion εabs and εrel. Both are

typically set to εrel = εabs = 10−3, where the absolute threshold depends on the scale of the solution

values. In Algorithm 1, we summarize a pseudocode implementation for applying PD for a fluid velocity

optimization problem with an application-dependent f and divergence-free constraint g.

Algorithm 1 Our PD-based method for fluid simulation

1: procedure PD(τ, σ, θ)
2: while k < max I ters do
3: xk+1 = xk +σyk −σproxF(σ, 1

σxk + yk) // x-update
4: zk+1 = ΠDIV(zk −τxk+1) // z-update (using adaptive CG accuracy)
5: yk+1 = zk+1 + θ (zk+1 − zk) // y-update
6: // check stopping criterion
7: rk+1 = zk+1 − zk

8: ε=pndimε
abs + εrel





zk+1






9: if
�



rk+1




≤ ε
�

then break
10: end while
11: return z
12: end procedure

An in-depth discussion of PD can be found in [CP11]. The authors state that PD features optimal

convergence properties for the class of non-smooth convex problems. Therefore, with a minimal in-

crease of computational costs, i.e., more vector addition and multiplication, which is often negligible

compared to the cost of proximal operators, we may achieve faster convergence compared to ADMM.

We demonstrate that PD outperforms ADMM for both fluid guiding and solid-wall BCs in Chapters 7

and 8. However, for a special setting of parameters, PD reduces to ADMM as shown in the following.

ADMM to PD ADMM has only one parameter that controls convergence, i.e., ρ. If K is set to the

identity and the convergence parameters of PD and ADMM are set to 1 (σ = τ = θ = ρ = 1), PD

reduces to ADMM. The variable updates for ADMM are given by

I.ADMM xk+1
ADMM = prox f (z

k − yk
ADMM) (3.24)

II.ADMM zk+1 = proxg(x
k+1
ADMM + yk

ADMM) (3.25)

III.ADMM yk+1
ADMM = yk

ADMM + xk+1
ADMM − zk+1, (3.26)

while the updates for PD are given by

I.PD xk+1
PD = xk

PD + yk
PD − prox f (x

k
PD + yk

PD) (3.27)

II.PD zk+1 = proxg(z
k − xk+1

PD ) (3.28)

III.PD yk+1
PD = 2zk+1 − zk. (3.29)
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Now, we reduce PD to ADMM, i.e., transform the PD updates in Equations (3.27), (3.28), (3.29) to the

ADMM updates in Equations (3.24), (3.25), (3.26). As zk+1 converges to the solution of Equation (3.11)

for both update schemes, zk+1 must be equivalent for both schemes and therefore the following must

hold:

II.PD zk+1 = proxg(z
k − xk+1

PD )

II.ADMM = proxg(x
k+1
ADMM + yk

ADMM) (3.30)

⇒ xk+1
ADMM + yk

ADMM = zk − xk+1
PD

⇒ xk+1
PD = −xk+1

ADMM − yk
ADMM + zk (3.31)

⇒ xk
PD = −xk

ADMM − yk−1
ADMM + zk−1 (3.32)

However, the two helper variables x and y take different roles for PD and ADMM. In order to connect

yk+1
ADMM with yk

ADMM,xk+1
ADMM, and zk+1, we add Equation (3.26) to the variable updates of PD:

III.ADMM yk+1
ADMM = yk

ADMM + xk+1
ADMM − zk+1. (3.33)

Then, we use both Equation (3.27) and Equation (3.29) to arrive at Equation (3.24). The update for x

reduces as following:

I.PD xk+1
PD = xk

PD + yk
PD − prox f (x

k
PD + yk

PD) | . use Eq. (3.31), (3.32), (3.29), simplify

−xk+1
ADMM − yk

ADMM + zk = −xk
ADMM − yk−1

ADMM + 2zk − prox f (−xk
ADMM − yk−1

ADMM + 2zk) | . use Eq. (3.26)

−xk+1
ADMM − yk

ADMM + zk = −yk
ADMM + zk − prox f (−yk

ADMM + zk) | . simplify

−xk+1
ADMM = −prox f (−yk

ADMM + zk) | . invert, rearrange

I.ADMM xk+1
ADMM = prox f (z

k − yk
ADMM) (3.34)

We showed that the PD variable updates I.PD, II.PD, III.PD reduce to the ADMM variable updates

I.ADMM, II.ADMM, III.ADMM if K = 1 and σ = τ = θ = ρ = 1. We assumed the equivalence of both

z-variables and added Equation (3.26) to PD’s system. The derived ADMM updates are given in

Equations (3.34), (3.30), (3.33). For more appropriate choices of the convergence parameters, i.e.,

σ,τ,θ 6= 1, optimal control over convergence is obtained.

3.2.3. Iterated Orthogonal Projection

IOP, the Iterated Orthogonal Projection method [MCPN08], is similar to von Neumann’s alternating

projections [BPC∗11] and is suitable for solving Equation (3.11) if both proximal operators are orthog-
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onal projections. Both operators are applied iteratively until convergence is reached:

xk+1 = Π f (z
k) (3.35)

zk+1 = Πg(x
k+1). (3.36)

Fast convergence is not guaranteed, as this iterative scheme converges slowly if the individual sub-

spaces are almost parallel. In practice, usually a limited number is sufficient for a satisfactory result.

Iterations are stopped once the change in the solution or the error in the first proximal operator are

small enough, e.g.,




zk+1 − zk




 ≤ ε. In order to improve convergence, a Krylov method can be ap-

plied [MCPN08], as outlined in pseudocode in Algorithm 2. Algorithm 2 is performed after the two

projections in Equations (3.35) and (3.36).

Algorithm 2 Krylov method speeding up convergence

1: procedure KRYLOV(zk, zk−1, k, εk−1)
2: εk = error(zk)
3: if k > 1 then
4: zε∆ = zk − zk−1 // correction vector
5: εratio = εk/εk−1

6: zεtmp
= zk − εratiozε∆

7: εεtmp
= error(zεtmp

)
8: if εεtmp < εk then zk = zεtmp

9: end if
10: end procedure

3.3. Optical Flow

In this thesis, we reconstruct velocity based on the global, divergence-free OF approach by Gregson et

al. [GITH14]. Given two input density fields Φt−1 and Φt , a velocity field ut is calculated transporting

Φt−1 to Φt , also referred to as ensuring temporal coherence between density fields of different time

steps. In order to estimate such a velocity field, the brightness constancy assumption is minimized,

which is equal to the fluid transport or advection equation, see Equation (3.2). However, this equation

does not fully determine one single 3D velocity field but is severely under-constrained such that many

velocity fields are valid solutions. To alleviate under-determination, two regularizers are added: a

smoothness term constraining each velocity vector not to differ from its neighbors drastically and

a kinetic penalty. Typically, a Tikhonov regularizer is employed as kinetic penalty in order to favor

minimally energetic flows, i.e., preferring small motion displacements over large displacements. As

velocity fields are assumed incompressible for fluid animation purposes, the velocity field is addition-

ally constrained to be divergence-free:
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minimize
ut













Φt −Φt−1

∆t
+∇Φt · ut













2

+α




∇ut






2
+ β





ut






2

subject to ∇ · ut = 0,

(3.37)

Divergence-free optical flow [GITH14].

where ut and Φt are the velocity and density field at time t, ∆t is the time step, ‖.‖ is the l2-norm,

and α and β are the weights determining the amount of smoothness and kinetic penalty, respectively.

Standard OF implementations make use of a co-located discretization instead of a staggered MAC grid,

meaning that all quantities are stored in the centers of the cells. However, the divergence-free con-

straint on the velocity is commonly enforced by a pressure solver, see Section 3.1, which performs best

on a staggered discretization. To counteract checkerboard artifacts, Gregson et al. [GITH14] employed

a pressure solver where pressure values are stored on cell vertices on a uniform rectilinear grid. Un-

fortunately, twenty-seven non-zero entries need to be stored instead of seven, increasing the memory

footprint drastically.

PD Formulation of Incompressible Optical Flow The proximal operators for a PD implementation

of divergence-free OF are inserted into the PD updates in Equation (3.23). Minimizing the sum of

the norm of the brightness constancy assumption and the regularizers translates into a quadratic func-

tion like Equation (3.13) where the corresponding proximal operator is defined in Equation (3.14).

The proximal operator for the indicator function making a velocity field divergence-free is shown in

Equation (3.16). Therefore, the proximal operators for a divergence-free OF are:

prox f ,σ(ξ) = (A+σI)−1(σξ− b)

proxg,1/τ(ξ) = ΠDIV(ξ),
(3.38)

where f , A, and b are defined as follows:

f (ut) =1
2ut T Aut + but + r

A= (∇Φt)(∇Φt)T +α
∑

j∇
2
j + β I

b =∇Φt Φ
t −Φt−1

∆t
.

(3.39)

When minimizing over the velocity ut , we omit terms that are constant with respect to ut , i.e., r. The

dimensions of the matrix A are n× n, where n is 3N and N is the total number of fluid grid cells. Each

component j of one velocity vector covers one row. The first part of matrix A is the outer product of

the density gradient vector ∇Φt . For each dimension, in our 3D case three dimensions, the density
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gradient is defined as ∇Φt = ( ∂Φ
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The outer product of the density gradient is split onto three rows, one for each velocity component. The

smoothness regularizer is applied for each velocity component j separately. Note that ∇2
j =∆. The 2D

version of the discrete Laplacian we employ here takes the form:







0 −1 0

−1 4 −1

0 −1 0






. (3.41)

In 3D, the z-components are included as well and the coefficient of the central cell adds up to 6. For

each velocity component j of a fluid cell, we add a Laplacian term to the corresponding row, which is

weighted with α. We denote the Laplacian matrix with L j . The Tikhonov regularizer is realized in a

straightforward manner, as we just need to add β to the diagonal of A.

The right-hand side b is of dimension 3N × 1 and contains the product of the 3D density gradient

and the scalar temporal density change Φ
t−Φt−1

∆t for each fluid cell.

3.4. Computed Tomography

CT aims at reconstructing a function, e.g., a 3D volume, from a finite number of projections, e.g., 2D

images. For example, multiple cameras are aligned in a semi-circle to record a fluid phenomenon taking

place in their center, see Figure 3.4. Here, the 2D images are created with visible light.

The unknown volume is discretized into a finite number of uniform voxels stored in a vector v with

nv entries. The pixels of each image are combined into the vector p with np entries. For simplicity,

we assume a linear image formation model, which we will specify in Section 3.4.1. Having a linear

image formation model, we are able to express the relation between pixels and voxels as matrix-vector

multiplication Pv = p, where P is the matrix projecting a volume to the images. With P, the dimensions

of the 3D volume are reduced to 2D. For tomography problems, image values p are known while volume

values v are unknown, hence, we are interested in solving for

v = P−1p. (3.42)

Linear system of equations for reconstructing voxel density values v based on pixel intensities p and a linear
image formation model specified in matrix P.
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Figure 3.4.: Top view of seven perspective cameras recording a 3D fluid phenomenon.

However, as we have typically less pixels than voxels, i.e., np << nv , our system of equations is

severely under-constraint. Multiple different 3D volumes exist that project to the same 2D images, i.e.,

the system has more than one solution. Increasing the number of input images and therefore np reduces

the degrees of freedom, but as it is very uncommon that the number of pixels matches the number of

voxels, the matrix P is asymmetric and not invertible.

Furthermore, real-world recordings often feature noise and calibration errors in their pixel values.

Thus, Equation (3.42) is not directly solved but with a least squares approach by multiplying both sides

with the transpose of matrix P:

v = (PT P)−1PT p. (3.43)

The system’s matrix (PT P) is symmetric and invertible but also larger, as its dimensions are nv × nv

instead of np×nv as before. The more input views are added, the denser the system’s matrix gets. Even

when storing only non-zero entries of the system’s matrix, the matrix quickly becomes a bottleneck, as

it requires huge amounts of memory for storage. Ihrke et al. [IM04] propose using a variant of the CG

solver, called Conjugate Gradient Least Squares (CGLS), which approximates PT P during computation

without explicitly storing the matrix product to avoid excessive memory and run time consumption.

After solving the equation system, there is no guarantee about the values in v being non-negative.

In reality, voxel density values are never negative, i.e., vi ≥ 0 must hold for i = 0,1, ..., nv − 1. Ihrke et

al. [IM04] avoid negative values by setting them to zero in each iteration of their CGLS solver.

Visual Hull Some voxels of the volume are known to be zero beforehand, i.e., the voxels that lie in

an area that is seen by at least one black pixel. Removing these voxels from the system of equations not

only drastically reduces the number of unknowns to solve for but also avoids spurious non-zero entries

in voxels that should be exactly zero. Hence, reconstruction accuracy is increased. The so-called visual

hull encloses all voxels that are possibly able to contain fluid density. The word hull is misleading,

MARIE-LENA K. N. ECKERT 37



3. FUNDAMENTAL METHODS

Figure 3.5.: Visual hull of a smoke plume seen from the front and side views, where the colors white and black
denote the inside and the outside of the visual hull, respectively.

as the visual hull here does not necessarily have a connected boundary. The visual hull can rather be

interpreted as the extent or silhouette of the fluid, and an example for the visual hull of smoke is shown

in Figure 3.5. For an infinite number of viewing angles, the visual hull is equal to the convex hull of an

object [Lau94]. The visual hull is created by evaluating which voxels lie in sight of a black pixel and

marking them as not being included in the equation system.

Physical Capturing When recording videos with real cameras, pinhole camera models are assumed.

Such pinhole cameras are perspective cameras with non-parallel rays spawned from a common origin,

see Figure 3.4. For each pixel, one ray is spawned, which is specified by the origin, i.e., the pixel

position, and the ray’s direction, see Figure 3.6a. The larger the aperture angle of a camera, the more do

the directions of the rays diverge. For some virtual cameras and for real-world cameras that are far from

the object of interest, parallel rays are assumed for simplicity. Such cameras are called orthographic

cameras. Reconstructions with orthographic cameras can be easier, as the distribution of the rays is

evenly spaced, especially concerning the coverage of objects in the front and in the back.

As fluids are highly dynamic phenomena, synchronization of recording sensors is extremely impor-

tant. Synchronization means that each camera takes their pictures at the very same time, which is

more difficult to achieve the more cameras are used. Even more crucial is camera calibration. Here,

camera parameters are estimated in order to determine the position and rotation of a camera relative

to the scene and to correct lens distortions. In order to estimate those camera parameters, multiple

images of calibration patterns are taken from different viewing angles. Such calibration patterns can

be checkerboards but also circles where size and distances of the features must be known.

Because camera lenses are not infinitely thin and not perfectly aligned with the image sensor plane,

they introduce distortion to the recorded images leading to altering the usual dimensions of a picture.

There are two types of distortion: radial and tangential distortion. Radial distortion bends straight

lines into curves. This effect increases the further the pixel is positioned from the center of the image.
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(a) Tracing rays starting from image pix-
els and going through the volume’s vox-
els.

(b) A ray traveling through a voxel
where the red color denotes the part of
the ray being inside the current voxel.
The length of the red ray determines the
voxel’s contribution to the pixel value.

(c) Marching along a ray in equidis-
tant steps and trilinearly interpolating
the voxel’s contributing amount at every
step.

Figure 3.6.: Rays start at 2D pixels and travel through the 3D volume. The close-ups illustrate different ap-
proaches of how to determine the amount by which a voxel’s density influences the originating pixel’s intensity.

Tangential distortion leads to areas in the image looking closer than they should and stems from mis-

alignment of optical centers of various lens elements [BB01]. Distortion is different for every camera,

as it depends on manufacturing. Once the distortion coefficients are calculated based on the images of

the calibration patterns, recorded images can be undistorted via post-processing.

3.4.1. Image Formation Model

In order to establish a connection between the voxel’s density and the pixel’s intensity values, an image

formation model must be defined. In reality, cameras take photographs of the smoke’s distribution

being influenced by external lighting, emission, scattering, and absorption effects. Modeling real-world

image formation is highly complex and therefore, exact modeling of reality is impossible but good

approximations of photorealistic images exist [Max95]. Pharr et al. [PJH16] describe how to simulate

the effect of participating media, such as smoke and fog, in Chapter 11. However, as we record thin

smoke plumes, we assume negligible absorption and scattering effects as well as proportional self-

emission just like [IM04], which results in a simple, linear image formation model.

The function beneath the image formation model in [IM04] is described as following:

Ip =

∫

c
Φ(s)ds, (3.44)

where Ip is the intensity value of pixel p, Φ is the density, s is the position, and c is a curve through

space. The intensity function can be expressed as a linear combination of basis functions:

Ip =

∫

c

∑

i

(aiΦi)ds, (3.45)
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where Φi are the basis functions and ai are the corresponding coefficients. The simplest basis function

is the box function, which is one for a voxel with index i and zero for all others. The coefficients ai are

stored in the projection matrix P.

In order to obtain the pixel-voxel correspondences of an image formation of semi-transparent objects,

we cast an invisible ray from each pixel passing through the 3D object, see Figure 3.6a. Ray tracing, ray

casting, and ray marching are often interchangeably used for describing calculations of ray intersec-

tions. Ray tracing describes the technique of tracing a ray to its first intersection with an object, which

leads to spawning new rays from the intersection point, which are traced as well. Advanced effects

as reflections or refractions can be realized with ray tracing. Ray casting is an analytical approach of

directly and very accurately calculating the intersection points of a ray with objects like voxels. Ihrke

and Magnor [IM04] make use of that approach and store the distance that a ray traveled within a spe-

cific voxel in the projection matrix P, as visualized in Figure 3.6b. The distance a ray travels through a

voxel hence determines how much a voxel’s value influences the intensity of the corresponding pixel.

Here, a piecewise constant image formation, i.e., box basis functions, is assumed.

Piecewise constant basis functions lead to block artifacts in the images, see Figure 3.7 on the left.

Images rendering the same smoke plume voxelized onto two grids with different resolution will differ

drastically due to the piecewise constant pixel-voxel-correspondences. Therefore, we propose to use

ray marching for setting up the projection matrix P. Starting at the ray’s origin, we march along the

ray with a specified step size. At each step position on the ray, the trilinear interpolation weights of

the surrounding eight voxels are stored as weights in P. An example process is shown in Figure 3.6c.

Hence, we are using piecewise linear basis functions. Such ray marching leads to smoother images,

which do not vary as much across different voxel resolutions as shown in Figure 3.7 on the right.
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(a) Piecewise constant box basis functions. (b) Piecewise linear basis functions by trilinear interpolation.

Figure 3.7.: Visualization of block artifacts for piecewise constant basis functions in a) and smoother images from
piecewise linear basis functions through ray marching in b). For each method, the a plume is rasterized onto
two grids with base and double resolution on the left and right, respectively. Although block artifacts decrease
for higher grid resolution when using piecewise constant basis functions, the images are very different. When
using piecewise linear basis functions, the images for both resolutions are smoother and more similar, which
is beneficial for tomographic reconstructions of continuous real-world phenomena and also for reconstructing
synthetic plumes on multiple different scales.
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4
Capturing Setup and Reconstruction Algorithms

In this chapter, we present our simple, affordable, and reproducible hardware setup for capturing real

fluid flows and our highly powerful reconstruction technique. We capture fog phenomena, which are

representative for single-flow fluids, such as hot smoke plumes. Therefore, we continue to refer to

our traceable markers as smoke although we are using a fog machine to create them. With our recon-

struction technique, we are able to reconstruct greatly under-determined 3D smoke plumes recorded

with an unusually simple hardware. Our reconstructions exhibit physically convincing behavior from

novel views, since we couple the reconstruction of density and velocity tightly to counteract under-

determination.

4.1. Hardware Setup

With our hardware setup, we create and record controllable, repeatable smoke plumes. Fog fluid for

common fog machines is water-based while some fog machines diffuse water-free oils. Our visible

tracers are droplets of distilled water with propylene glycol. Our setup consists of inexpensive compo-

nents as listed in Appendix A, which are easily replaceable and adjustable to custom needs. In total,

the whole setup consists of hardware that is available for less than 1100 $. Therefore, in contrast to

previous capturing setups in graphics [HED05, XIAP∗17], our setup is economical and can more easily

be recreated.
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We make use of several Raspberry Pi computers for recording, for controlling the amount and speed

of smoke release, and for positioning our calibration board. We first discuss challenges in Section 4.1.1,

describe the smoke generation in Section 4.1.2, present background and lighting in Section 4.1.3, spec-

ify the details of our recording hard- and software in Section 4.1.4, and outline post-processing steps

(a) Rising smoke plume. (b) Our setup with black background and three light sources.

(c) Our setup with five Raspberry Pis and mounted cameras, which are marked
by orange circles, and rising smoke plume.

Top valve

Bottom valve

Fog machine

Calibrated volume

b) Hardware flow setup: c) Numerical simulation setup:

Reconstruction 
volume 

a) Photos of real-world capture setup:

Calibration pattern Fog machine Cameras
Insulated containerInflow region

Fog machine

Diffuse background

Heating cable
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nt
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r
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r
Γ
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O
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(d) Sketch of our smoke generation compo-
nents.

Figure 4.1.: A rising smoke plume in a) and an overview of our simple fluid capturing setup with black molton
as background, covered smoke box with opening on the top, Raspberry Pis including camera modules mounted
on microphone stands, and three diffuser lights in b) and c). The smoke generation part consists of the alleviated
smoke container with its top and bottom valves, an electric heating cable, and a fog machine as illustrated in d).
The volume to reconstruct is placed above the top opening and is calibrated with a movable calibration board.
These components are covered with black molton when recordings take place, as shown in the photographs in
a), b), and c).
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in Section 4.1.5. Our implicit and automatic camera calibration method is specified in Section 4.1.6.

An exemplary rising smoke plume produced with our capturing setup is displayed in Figure 4.1a.

The capturing setup is shown in Figure 4.1b, where the black background cloth and the three lights for

illumination are visible. A different angle of our setup is presented in Figure 4.1c, which shows five

Raspberry Pis mounted on microphone stands recording a rising smoke plume. A sketch of the compo-

nents necessary for smoke generation is illustrated in Figure 4.1d. While recording, those components

are covered with black cloth. The dimensions of our reconstruction domain, which is highlighted in

Figure 4.1d in blue, are 50 cm × 90 cm × 50 cm, where we refer to the height with L = 0.9 m. The

kinematic viscosity of air at a temperature of 20◦ C is ν= 1.516 · 10−5 m2

s , see [Enga]. Average smoke

plumes rise with the upward speeds of approximately u = 0.27 m
s to u = 0.4 m

s , leading to a Reynolds

number Re=uL
ν = 0.27 · 0.9 · 1.516 · 105 ≈ 3.7 · 104 to Re=5.4 · 104. These Reynolds numbers indicate

that the generated flows contain structures transitioning from laminar to turbulent. We produce our

captures with a temperature of 34◦ C, where interesting and swirly structures are formed in the smoke

plumes while passing through our calibrated volume.

4.1.1. Challenges

The first challenge we face when capturing fluid behavior from a common fog machine is the speed

and the control of the exiting hot marker particles. Our machine produces a fast, hot stream of diffused

water, which is not controllable as such. To slow down the stream, we fill the smoke into a container

with an opening at the top. However, with an open outflow area, we are still not able to control the

amount of smoke and the precise timing the smoke exits the container. Therefore, we need a valve for

controlling the opening. As conservation of volume holds, we need a second opening accompanied with

a valve to account for adequate air inflow. Otherwise, smoke is not able to leave the container. But,

smoke cools down very fast, which reduces its buoyancy leading to smoke staying in the container even

when opening both valves. Hence, we control the temperature of the smoke through heating the air

in our container. With control over the smoke temperature as well as density and speed of outflowing

smoke, we are able to generate controllable and varying smoke plumes on demand.

The second challenge is to create high contrast between the nonrelevant background and the fore-

ground smoke plumes and to uniformly light the scene in order to simplify post-processing of the cap-

tured images. Cameras should see a bright and detailed smoke volume on dark background without

obstructing obstacles or reflections. In order to fully make use of available information in an image,

we avoid over- and underexposure of the smoke.

The third challenge involves synchronizing and storing highly resolved recordings. The cameras

should record the dynamic smoke plumes at very similar times. Unfortunately, frames are dropped

and lost if the amount of data to store exceeds the writing speed of the Raspberry Pi computers when

writing onto their SD cards. It is challenging to find optimal temporal and spatial resolution as well as

bit rate for high-quality recordings without dropping any frames.
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The last challenge is to obtain information about how camera rays travel through the reconstruction

volume in order to establish the relation of density in the volume and the pixel’s intensity. We obtain

the pixel-voxel correlations through accurate camera calibration, see Section 4.1.6.

4.1.2. Smoke Generation

(a) Heating cable and moving lids actuated by servo motors. (b) Raspberry Pi driving remote control of fog machine.

Figure 4.2.: Components of our smoke generation setup: smoke box with heating cable, top and bottom openings
with closing lids controlled by servo motors in a), and a Raspberry Pi driving the remote control of the fog machine
in b).

A sketch and photographs of our smoke generation components are shown in Figure 4.1d and Fig-

ure 4.2. As smoke container, we use an inexpensive, insulated Styrofoam box. The dimensions of the

box are 54.5 cm× 35 cm× 30 cm. It features a thermal conductivity of 0.03 W
mK at a temperature of

25◦ C [Engb], and hence exhibits low dissipation of heat. We use an electric heating cable to heat the

smoke to a target temperature. The maximum temperature is 60◦ C, which does not pose any safety

risks for the box, as the melting point of polystyrene is 240◦ C. Furthermore, our heating cable is con-

nected to a safety timer and is controlled by a thermostat. With the thermostat, we ensure that the

desired temperature is reached, kept, and not exceeded. In order to avoid damaging the surround-

ing box and to uniformly distribute the warmth, our heating cable is wired around a metallic fence as

visualized in Figure 4.2a.

As polystyrene is easily editable, we simply cut openings with a carpet cutter into our Styrofoam

box. The top opening allows for smoke outflow while the bottom opening grants air to flow into the

box. Both can be closed through a movable lid, called valve, as displayed on the right of Figure 4.2a

considering the top valve. The valves are controlled via strings connected to servo motors driven by a

Raspberry Pi computer and are closed when filling the box with smoke. For controlled release of smoke,

the bottom and top valve are opened to a certain extent. If the bottom valve is closed, the smoke does

not rise from the box due to volume conservation. The box is elevated from the ground by four pillars

to allow for proper air flow below the box. The bottom opening is 12 cm × 12 cm big while the top

46 MARIE-LENA K. N. ECKERT



4.1. HARDWARE SETUP

opening is 7 cm× 7 cm large. The opening extent of both valves and the smoke temperature influence

the amount and speed of rising smoke and hence, how much turbulent structures are created.

Besides the top and bottom openings, we cut a circular hole into the side of the box to permit smoke

inflow. To guide the smoke from the fog machine into the side opening, we place a straight silicone

hose from the machine’s nozzle to the box. The silicone hose has a diameter of 25 mm, features low

thermal conductivity, is resistant to humidity, and is physically stable. The smoke machine’s model is

an Eurolite N-10. To automate and accurately steer smoke captures, we control the smoke machine’s

remote control with a Raspberry Pi, which is shown in Figure 4.2b. When the green LED lights up, the

machine is ready to release smoke and the Raspberry Pi eventually sends a signal to release smoke for

a certain amount of time. The longer the signal is sent, the more smoke is pushed into the box.

With our box, adjustable smoke temperature, controlled smoke inflow, smoke outflow, and air inflow,

we are able to create manipulable steady smoke flows forming interesting and turbulent structures. One

example for such a plume is shown in Figure 4.1a.

4.1.3. Background and Lighting

In order to decrease reflections in the background, we put black molton cloth behind our smoke plumes.

We use two large movable walls extended to the height with long sticks to form a black background

of approximately 2.8 m× 2.2 m, as shown in Figure 4.1b. To reduce the required size of the movable

walls, we arrange both within a small angle to each other, imitating a curved background. Hence, the

walls serve as background for a wider angle of cameras as they would without the imitated curve. Black

molton cloth forms minimal wrinkles and absorbs light, which reduces reflections. Furthermore, we can

bend it to fit the slight angle between our two movable walls. In contrast, black paper cannot be bent

and produces glossy effects due to reflections, which influence the resulting pixel’s intensities in the

images tampering the reconstruction quality. The black background color is beneficial, as it increases

the contrast between the background and the bright smoke plumes.

To further optimize contrast, illumination of the scene is important. Our goal is to illuminate the

smoke plume uniformly from each angle, such that the perceived brightness is equal for each camera

and smoke structures are clearly visible. We target fully exploiting the capacity of storing information

in images with intensities from 0 to 255 where the background color should be black, i.e., 0, and the

brightest parts of the smoke white, i.e., 255. Hence, we install three lights with diffuser softboxes

in front of them, which produce a diffuse, soft, and nearly uniform illumination. We place the lights

behind the cameras as shown in Figure 4.1b.

4.1.4. Recording

We record the smoke plumes with camera modules attached to Raspberry Pi computers. The computers

are Raspberry Pi Models 1 or 2 while the camera are modules of version 1.
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(a) Top-down view of microphone stands with cameras focusing on the smoke release,
where both cameras and smoke release are marked by orange circles.

(b) Close-up of Raspberry Pi
computer with mounted camera
module.

Figure 4.3.: Arrangement and close-up of our Raspberry Pis with mounted camera modules.

Setup We mount both computers and cameras on microphone stands in order to flexibly adjust their

position and orientation, as shown in Figure 4.1b and Figure 4.1c. We arrange the cameras in a partial

circle of approximately 90◦ between the two outermost camera positions. The cameras are placed

with equal distance of ≈ 120 cm to the smoke release, at a similar height as the smoke release, and

facing slightly upwards. The positioning of the cameras is displayed in Figure 4.3a. A close-up of

one Pi computer with a mounted camera module is visualized in Figure 4.3b. The Raspberry Pis are

connected to a switch and a router via Ethernet, allowing them to communicate with a host computer.

Each Raspberry Pi has a generic SD card or a MicroSD card with at least 10 MB
s of writing speed. We

ensure that cameras do not see each other in order to facilitate post-processing the images. This poses

a limitation to the angle the cameras are able to cover and to the orientation of the outermost cameras.

Technical Details The cameras have three physical ports: a video, still, and preview port. We record

the smoke plumes via the video port using an H264 encoder. Although the video data contains more

noise compared to images taken via the still port, the video port is better suited for taking multiple

images within short time intervals. The required frequency of taking images could not be realized by

using the still port. We use camera video mode 1, where the spatial resolution is 1920× 1080 pixels.

We set the temporal resolution to 60 fps.

We empirically determined suitable exposure correction values for each camera to avoid over- and

underexposure. The auto-white-balance is corrected by iteratively taking pictures of a white sheet of pa-

per and adjusting the gain values until the color white is also perceived as white in each camera. White

balancing is the process of eliminating chromatic discrepancies in images captured by digital cameras

due to varying illumination conditions. The correction is performed by simple matrix multiplications.
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Synchronization As we record dynamic smoke plumes, it is important that each camera captures the

plume formation process at approximately the same time. We control the cameras by connecting all

Raspberry Pi clients to a host computer, from which the whole capturing process is directed. The clients

receive the command to start the capture at a certain time. Before starting the captures, the host sets

exposure and white balance values for each camera.

Another important factor is the size of data to be stored and the writing speed of the Raspberry Pi

computers. Video streams can only be fully stored if the combination of frame rate, resolution, and bit

rate does not exceed the possible writing speed of the SD card. Otherwise, frames are dropped and lost,

which leads to an inconsistent and varying frame rate for each camera. If the frame rate is set too low

or the image resolution is too small, we lose information about the temporal or spatial behavior of the

smoke plumes. The bit rate determines how many bits are used to encode a frame. It takes the motion

rank into account, which specifies how much the motion varies across frames. If the bit rate is set too

low, compressing artifacts occur, which average pixel values and blur interesting and fine-scale smoke

details. Our final capture videos exhibit a bit rate of 19848 kbps, a spatial resolution of 1920× 1080

pixels, and a temporal resolution of 60 fps.

4.1.5. Post-Processing

Figure 4.4.: Effect of our post-processing pipeline demonstrated on one smoke plume recorded from two dis-
tinct camera views. The first image is the captured image converted to gray scale, the second is after applying
denoising, and the third shows the fully post-processed image, i.e., after subtracting the background and after
thresholding. The denoising effect is not obvious to observe, but removes noise in the background as well as in
the smoke, which leads to smoother temporal behavior. The small insets on the lower right show a close-up of
the noisy background area left to the plume. In image sequences, this time-varying noise is perceived as temporal
flickering.

We first convert the H264-encoded videos to .mp4 in order to facilitate visual inspection. Then,

we extract single frames off the .mp4 videos and convert them to gray scale. In order to reduce

noise and hence temporal flickering, we use a Non-Local Means Denoising procedure [BCM11], called

fastNlMeansDenoising in OpenCV, to denoise our sequences. The mean of the spatial and tempo-

ral neighbors is used to adjust the value of each pixel. As such, pixel windows of different sizes are

used. This denoising procedure is computationally expensive but provides excellent denoised image
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sequences. We use a filter strength of 3, a temporal window size of 7, and a spatial search window size

of 21. In order to eliminate background unevenness like wrinkles or varying brightness, we subtract

a frame of the early sequence from each frame. The frame of the early sequence does not show any

smoke behavior yet, but we do not use the very first frame since recording parameters need to adjust

such that artifacts become minimal. As final step, we apply zero thresholding where we set each pixel

with a value below 8 to zero in order to avoid that remaining background noise is interpreted as mov-

ing smoke particles. If images were recorded with more complex lighting and diverse background, we

could include advanced methods from the image processing area to smoothly extract the smoke plume.

With our implicit camera calibration technique outlined in the following section, we do not need to

undistort the captured images in our post-processing pipeline.

4.1.6. Calibration

We employ a simple, convenient, automatic, and accurate calibration method, which produces dense

ray calibration data with optimized correspondence between rays and voxels. In Figure 4.5, we show

our calibration board with affixed ChArUco markers, the rail on which the board moves, and a sketch

of how reference points are found in space. The black molton cloth is lifted to uncover the marker.

After calibration, the black cloth is put back to cover the box, the marker, and the fog machine.

(a) ChArUco marker on
a flat polystyrene board
above the smoke box.

(b) Rail (orange ellipse) on which the
marker moves. The rail is actuated by a
stepping motor driven by a Raspberry Pi
(orange ellipse).

(c) Reference points on the marker board at three
different positions in space observed from one cam-
era. The orange arrow describes the linear marker
movement.

Figure 4.5.: Implicit calibration with a movable ChArUco marker.

Implicit vs. Explicit Calibration In order to establish the connection between pixel intensities and

voxel densities, traditional calibration approaches assume a specific camera model, determine its cam-

era parameters, and undistort the captured images. Such approaches perform explicit calibration to

define intrinsic (optical center, focal length, and skew coefficient) and extrinsic (location and orienta-

tion) camera parameters, as well as distortion coefficients. With these parameters, image distortions

can be corrected and rays originating from each pixel and going through the volume can be calculated

in world space. Such explicit methods are mechanically simple and flexible, as they only require static
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markers and a small amount of reference points. The disadvantage is that possibly simplified camera

and distortion models must be assumed, which have a major impact on the accuracy of the calibration.

In regard to our capturing setup, we use an implicit method for camera calibration. Without undis-

torting images or determining position and orientation of the cameras, the corresponding rays are

calculated directly by interpolating between reference points in space. The calculation of intrinsic or

extrinsic camera parameters is dispensable. However, in order to calculate the line of sight for each

pixel, at least two reference points with different depth levels are required, for which dynamic markers

are needed. Moving markers are used where their exact positions in space are known. There exist

many variations of such implicit camera calibrations [MBK81, WM93]. Implicit calibration methods

are not limited to a camera or a distortion model, but are able to handle any types of cameras and even

refracting materials between camera and target without losing accuracy. A high calibration accuracy

can be achieved where outliers do not affect the calibration accuracy as much. With our implicit camera

calibration, we obtain a starting position and a direction for each ray in world space. We step along the

rays to determine which voxels influence the given pixel and to which degree. The weights specifying

the degree of influence of each voxel to each pixel are stored in our image formation matrix P, see

Section 3.4.1.

Implementation For implicit calibration, it is inherently important to have access to the precise lo-

cation of the marker. We mount a marker board on a ball screw rail controlled and driven by a stepper

motor and a Raspberry Pi. Through rotating the motor by a given angle, the spindle turns a small

amount, which in turn moves the rail forward linearly. The board is only moving into one direction,

namely straight along the rail. In every position, each camera takes an image after waiting for the

wobbling of the marker to stop, which typically occurs after moving the marker to a new position. The

marker is stopped at twenty-one equidistant positions. The home position is accurately defined, as the

rail has an end switch, which is pressed when the marker is returned completely. We use a ChArUco

marker of size 50 cm × 100 cm glued to a flat polystyrene board, which is mounted onto the rail. A

ChArUco marker combines the benefits of chessboard and ArUco markers. The corners of two squares

in a chessboard are detected very accurately. ArUco markers have a unique ID and are hence identified

even when the marker is partially invisible. Placing ArUco markers in the white squares of a chess-

board as shown in Figure 4.5a ensures that the patterns of the ChArUco marker are detected with a

high accuracy even with partial occlusion.

For each pixel, an average line going through all reference points is calculated by interpolating be-

tween marker points and calculating image-to-world transformation matrices. The resulting ray direc-

tions for each of the five cameras, from left to right, are encoded in color as shown in Figure 4.6. Pixels

without an assigned ray are black. The borders of the markers are usually not well detected. Rays for

such pixels and also for pixels, which are geometrically not able to see the marker, are extrapolated

from the neighboring pixels’ rays. For good calibration accuracy, it is necessary that each camera is

able to see the marker board in each of its positions. Steeper viewing angles, such as for the outermost
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cameras, lead to less accurate calibration data. The volume right above the box, which is covered by

the marker, is calibrated.

Figure 4.6.: Calibrated ray directions in world space encoded in RGB values for our five cameras, from left to
right.

Accuracy The accuracy of such implicit calibration methods is high if a large number of reference

points is given as in our case. The rays are directly calculated from the marker images without any

assumptions about intrinsic or extrinsic camera parameters. However, estimated rays covering the

margins of the marker or no marker at all possess a low fidelity. Calibration errors still occur due to

inaccuracies of corner detection, due to sub-pixel lens distortion, or due to inaccurate marker positions.

As the marker exhibits high contrasting black and white areas, images of the marker tend to be over-

exposed, which leads to bright areas bleeding into darker areas. While chessboard detection is still

accurate with overexposure artifacts, the identification of ArUco markers is more difficult. Such un-

detected markers are discarded, which results in incomplete calibration data. However, we found our

calibration method to work well, as our reconstruction technique is robust to small calibration errors.

4.2. Reconstruction Technique

In Chapter 3, we outlined fundamental methods of fluid simulation, OF, and CT. We make use of these

techniques to reconstruct volumetric density and velocity based on few input images, which poses an

under-determined, sparse reconstruction problem. Typical fluid simulators solve the NSE via operator

splitting, where advection, pressure projection, and the incorporation of internal and external forces

are central components, see Section 3.1 and Figure 3.1. However, we cannot rely on a pure forward

simulation to reproduce the behavior given in the real-world input images as initial density distribu-

tion Φ0, density inflow Φt
I , initial velocity u0, velocity inflow ut |I , external forces fext like buoyancy,

and ambient air motions are unknown. Furthermore, forward simulators introduce artificial viscosity

hindering the creation of turbulent fluid structures, as explained in Section 3.1.
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Top valve
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Calibrated volume

b) Hardware flow setup: c) Numerical simulation setup:
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Figure 4.7.: Numerical simulation and
reconstruction domain Γ , which con-
tains outflow BCs at the top and sides.
The invisible inflow region is denoted
with ΓI . The part of the visible domain
that is reached when advecting the in-
flow area ΓI with a given velocity is de-
noted with ΓR. The subarea of ΓI that
reaches the visible domain after advec-
tion is called ΓRI .

Hence, in order to recreate the turbulent motion from the cap-

tured real-world smoke plumes, we guide a forward fluid sim-

ulation with the input images to reconstruct real-world density

and velocity. Finding an instance of a numeric simulation that

matches the given set of observations, is the inverse problem to

forward fluid simulation. To find such an instance, we need to

account for all unknown and missing velocity parts, i.e., forces,

which we call residual velocity ∆ut . Furthermore, we must esti-

mate the unseen density inflow Φt
I to create the required amount

of smoke density determined by the input images. A schematic

overview of our reconstruction technique based on a forward

simulation is shown in Figure 4.8. The components advection,

pressure projection, and viscosity are building blocks from the

forward simulator in Figure 3.1. The blue and orange parts are

the main parts of our reconstruction technique, which are the

calculation of the residual velocity ∆ut , the density inflow esti-

mation (Φ̃t
I and Φt

I ), and the initial density field Φ0. The proce-

dure will be explained in more detail in Section 4.2.2. A sketch

of our reconstruction domain is shown in Figure 4.7. The recon-

struction domain is denoted with Γ and the inflow region with

ΓI . As the reconstruction domain is finite in contrast to the real

world, we apply outflow BCs at the top and side domain bound-

aries. Outflowing densities are deleted and velocities are moving

freely. The upper region of the domain is more difficult to recon-

struct due to the inconsistency of infinite world and finite domain, but we found our algorithm to handle

it well in practice as demonstrated in Chapters 5 and 6.

We make use of our implicit camera calibration from Section 4.1.6 to obtain a ray direction for each

pixel, as visualized in Figure 4.6. In contrast to Ihrke and Magnor [IM04], we march along each ray in

equidistant steps and store the trilinearly interpolated influence of each voxel in our image formation

matrix P producing smooth and realistic images, see Figure 3.7.

Furthermore, our main contributions are:

• joint and tightly coupled reconstruction of both density and velocity through a strong optimization

formulation making use of physics-based and geometric constraints as well as an efficient primal-

dual optimization implementation,

• an advanced method for estimating unseen density inflow and a prescribed inflow velocity esti-

mated from the speed of the rising plumes in the input images,

• a staggered discretization of OF allowing to use a MAC grid in the pressure projection,
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• a progressive tomography scheme incorporating smoothness and kinetic regularizers into an effi-

cient CGLS solver, enforcing non-negative density values through an additional primal-dual opti-

mization, using implicit camera calibration without assumptions about camera or distortion mod-

els, and using an adapted visual hull technique, which considers the number of seeing cameras

as well as pixel windows with improved thresholding for both pixel values and voxel weights.

We use this reconstruction technique for both multi- and single-view reconstructions in Chapters 5

and 6, where the single-view technique is slightly adapted as explained in Section 6.1.

Figure 4.8.: Steps of our reconstruction technique calculating velocity ut and density Φt . As in Figure 3.1, the
velocity’s solving path is denoted with orange arrows, while the density is solved following the blue lines. As initial
conditions, we assume the velocity to be at rest, i.e., ut = 0, and estimate the density Φ0 with a tomography solve
prohibiting negative densities. For each time step t, we reuse the advection, pressure projection, and diffusion
components of the forward simulator to predict a velocity ũt . The density is predicted by calculating and adding a
density inflow Φ̃t

I , which is estimated considering the predicted velocity ũt and input images i t . As the predicted
density Φ̃t

I is only an intermediate helper variable, these steps are grayed out. Based on the predicted density
Φ̃t and the input images i t , a residual velocity ∆ut is calculated, which is added to the predicted velocity ũt .
Considering the input images i t and the final velocity ut , a final density inflow Φt

I is estimated. After advecting
the sum of density inflow Φt

I and previous density Φt−1, the final density Φt is obtained.

4.2.1. Problems of Decoupled Reconstruction Methods

Traditional methods directly compute the density field Φt , which works well for accurate tomographic

reconstructions using a large number of input images. As the number of projections decreases, the

tomography problem becomes more ill-posed, such that reconstruction accuracy decreases drastically

when using existing methods. In order to demonstrate the demand for more sophisticated reconstruc-

tion techniques when using sparse views, we present preliminary results of early stages of our recon-

struction technique in Figure 4.9. Here, we focus on density reconstruction, as density implicitly leads

to insights about motion as well. For simplicity, we first use an orthographic camera and a 2D smoke

plume, which is projected onto a one-dimensional (1D) projection. We use only one single input view

to emphasize the reconstruction difficulties and compute a density change to an existing plume, such

as in Figure 4.9a. Here, our density change is required to match the target change in 1D space, which is

the projected ground truth density change between two time steps, see in Figure 4.9b. We visualize the

54 MARIE-LENA K. N. ECKERT



4.2. RECONSTRUCTION TECHNIQUE

(a) Original smoke
plume.

(b) Change in 1D
projection.

(c) Original den-
sity change.

(d) Uniform
expansion.

(e) Uniform expan-
sion, non-negativi-
ty.

(f) Uniform expan-
sion, non-negativi-
ty, and mask.

Figure 4.9.: Based on an original 2D smoke plume in a) and a 1D projection b) of the ground truth density change
c), which is required to meet the next frame, we estimate the density change in 2D with different methods d),
e), and f). First, we uniformly distribute the values of the 1D projection along each line of sight as shown in d).
Then, we add the constraints of non-negativity in e) and additionally, a local mask in f).

a) b) c) d)

Figure 4.10.: Front and side views of 3D density changes. The ground truth density change leading from one
time step to another is shown in a). Estimating the density of the next time via traditional tomography results in a
density field uniformly distributed along each line of sight. By building the difference to the current ground truth
density field, we obtain the density change shown in b). First calculating the difference in 2D image space and
then projecting it into 3D space plus using a smoothness prior, leads to the density change in c). Our calculated
density change is shown in d). While the front views match the ground truth density change well, our method
overall obtains the most plausible and natural density changes as observed in the side views. Our density values
are slightly too small but match the ground truth density change well.

density change where positive density changes are indicated with white and negative density changes

with red.

The most naïve density estimation expands the values of the 1D projection uniformly into depth, i.e.,

all cells in one line of sight contain the same value, as shown in Figure 4.9d. Such a density change does

not represent natural fluid motions and is hence not suitable for estimating fluid motion. There is no

divergence-free velocity field that is able to infer such density change by advecting the original smoke

plume in Figure 4.9a forward. Adding a non-negativity constraint leads to a slightly more plausible

density shape, as displayed in Figure 4.9e, where total density values below zero are prohibited. To

favor local changes, a mask constraint is added, which concentrates density change in the surrounding

cells of the original smoke plume as shown in Figure 4.9f. However, such a density change still does

not represent the behavior of fluids like the original density change does in Figure 4.9c.

Furthermore, we investigate the failure of traditional methods for single-view 3D reconstructions in

Figure 4.10 with slightly different test cases. Here, we show front (left) and side views (right) of the

3D density change. The ground truth density change in Figure 4.10a) exhibits natural distributions

of negative and positive density changes representing the fluid’s transporting motion. Most positive

values are found at the top, since the smoke plume is rising upwards. In Figure 4.10b), we reconstruct

the consecutive 3D density volume, subtract the current ground truth density plume, and visualize the

resulting density change. This contrasts the previous 2D to 1D examples, where simply a projected

density change is mapped into 2D space. When reconstructing a target 2D image naïvely, the image
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intensities are distributed uniformly into 3D space and as such, the front view looks very accurate while

the side view reveals an unrealistic distribution, compare Figure 4.10b). Subtracting the original plume

from the newly estimated uniform density field results in a large negative change inside the plume and

a strong positive change in the surrounding.

When mapping the projected density change into 3D comparable to the 1D to 2D tests, the density

change is slightly more realistic, see Figure 4.10c). Here, we use a regularized tomography including

smoothness and kinetic energy penalties. However, both density changes b) and c) do not represent

natural fluid motions and no divergence-free velocity field exists, that could induce or match these

observations. Hence, we need to develop a novel basis for reconstructing density changes for highly

under-determined reconstruction problems.

We propose a tight coupling of residual density, i.e., density change, and residual velocity, such that

the residual density is induced by advection with a divergence-free velocity, i.e., the residual velocity.

The result of such a joint density estimation is visualized in Figure 4.10d), which exhibits natural

structures. Our method not only improves temporal coherence but also eliminates undesired stripe

artifacts and uniform depth expansion as typically present in tomography approaches, as also observed

previously in Figure 1.1. Our joint reconstruction is indispensable for inherently under-determined

single-view reconstructions but also beneficial for accurate multi-view reconstructions.

4.2.2. Estimation Procedure

Although OF is not perfectly suited for dynamic and non-smooth fluid motions, it works well when

applied to ground truth density volumes. When using full density volumes, the flow is corrected at each

time step to match the ground truth, such that errors do not accumulate. In contrast to other works, we

do not assume that accurate volumetric densities are available, but instead infer the densities together

with the velocity by tightly coupling both quantities, such that we obtain robust reconstructions even

for sparse input views. We estimate both quantities for a single time step t based on a given state for

time t − 1. Our full reconstruction procedure is outlined in Algorithm 3. This pseudocode illustrates

the schematic overview of Figure 4.8, where advection, pressure projection, and diffusion are re-used

from a common fluid simulator. First, both velocity and density are initialized (lines 2-3). The fluid

is assumed to be at rest and hence, the velocity is simply set to zero. The density is estimated with a

regular tomography solve, as outlined later in Algorithm 6 and Section 4.2.3. The remainder of our

reconstruction method is described in the following paragraphs.

Prediction To ensure temporal coherence and reduce under-determination, we make use of a physics-

based prediction scheme, similar to Gregson et al. [GITH14]. The prediction is illustrated in Figure 4.8

as the left gray box labeled with predict. The predicted velocity ũt is created by projecting the first

advected previous velocity ut−1 to the divergence-free space and adding viscosity (line 5). The advec-

tion is denoted with A and is realized with MacCormack advection. The viscosity step is described in

Section 3.1. The predicted density Φ̃t is created by advecting it forward with the predicted velocity ũt ,
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Algorithm 3 Full Reconstruction Procedure

1: function RECONVELDEN(i t) . reconstruct velocity and density
2: u0 = 0; . init velocity
3: Φ0 = RECONDEN(i0, 0); . init density, use Equation (4.5)
4: for all t do
5: ũt = ΠDIV

�

A(ut−1,ut−1)
�

+ ADDVISCOSITY(ut−1); . predict velocity
6: Φ̃t

I = ESTIMINFL(i t ,Φt−1, ũt); . estimate density inflow
7: Φ̃t =A(Φt−1 + Φ̃t

I , ũ
t); . predict density

8: ∆ut = RECONVELMS(ũt , Φ̃t ,Φt−1, i t); . solve for residual velocity Equation (4.2)
9: ut = ũt +∆ut ; . finalize velocity

10: Φt
I = ESTIMINFL(i t ,Φt−1,ut); . estimate density inflow

11: Φt =A(Φt−1 +Φt
I ,u

t); . finalize density
12: end for
13: end function

where we first add an estimated density inflow Φ̃t
I (lines 6-7). The inflow estimation is explained in

Section 4.2.4 and outlined in pseudocode in Algorithm 8.

Residual Velocity and Density As mentioned above and as highlighted in orange and blue in Fig-

ure 4.8, the central pieces of our reconstruction procedure are the estimation of the residual velocity

∆ut and the estimation of the unseen density inflow Φt
I . Both steps ensure that the motion, density dis-

tribution, and density amount of the reconstruction match the given real-world input images i t , which

are depicted in the lower left of Figure 4.8. The residual velocity estimation is used in Algorithm 3 (line

8), is elaborated in detail in Section 4.2.3, and outlined in pseudocode in Algorithm 4.

The density is never modified directly except for the invisible inflow area. All changes on the density

volume are induced by advecting it with the velocity field (line 11). Hence, the velocity must be calcu-

lated such that the advected density complies to all constraints. The physical constraints on the density

have to transfer onto the residual velocity ∆ut , such that the velocity will induce those constraints

on the density field through advection. Therefore, the residual density ∆Φt is only an intermediate

variable required to enforce constraints on the density, which in turn constrain the residual velocity

through our combined optimization scheme. After calculating the residual velocity, the residual den-

sity is discarded. The densities’ interim character is illustrated by graying the corresponding steps in

Figure 4.8 out. The residual density, however, is inherently important and without its iterative refine-

ment, the reconstructed density and velocity are not as realistic as with our coupled method, which is

demonstrated in Figure 5.6b in Chapter 5. The detailed estimation of the residual density is described

in Section 4.2.3.

Final Quantities To create the final velocity ut , the predicted and the residual velocity ∆ut and ũt

are accumulated (line 9). The final density Φt is generated by first adding a density inflow Φt
I to the

previous density Φt−1 and then advecting it with the final velocity ut (lines 10-11).
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Regularization Within our reconstruction procedure, we make use of smoothness and a kinetic en-

ergy (Tikhonov) regularizers for both density and velocity as is common practice in other works [WC11]

to counteract the ill-posedness of an under-determined problem. As such, we make our problem con-

vex [PB∗14]. The smoothness and kinetic energy regularizers for both density and velocity are given

by
Esmooth(∆ut) =1

2





∇(∆ut)






2
, Esmooth(∆Φ

t) =1
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(4.1)

where the discrete forms are explained in Section 3.3. We denote the Laplacian matrix for scalar

quantities with L and for vector quantities with L j , where j indicates the j-th vector component.

Those regularizing energies are weighted with scalar parameters α and β for smoothness and kinetic

energy, respectively, for velocity and density: (αu,βu,αΦ,βΦ) = (1.1,0.11, 0.55,0.0011). It is important

to choose moderate weights, as too large weights lead to overly smooth and too small residual densities

and velocities due to outweighing the objective physical constraints. The choice of weights strongly

depends on the quantities’ values, which in turn, e.g., depend on the image brightness and volume

resolution for density and velocity, respectively. We determined our weights empirically.

4.2.3. Velocity Estimation

We couple the reconstruction of density Φt and velocity ut through the transport equation. In our

reconstruction method, we estimate a residual velocity ∆ut in combination with a residual density

∆Φt , accounting for the required change to meet the target input images i t based on predicted velocity

ũt and density Φ̃t . The transport equation hence states that the unknown residual density ∆Φt must

be induced by advecting the current density Φ̃t with the unknown residual velocity∆ut . The transport

equation is equivalent to the brightness constancy assumption, see Section 3.3. Additional physical

constraints include that the velocity must be divergence-free and that the sum of the predicted and

residual densities, Φ̃t and ∆Φt , must be non-negative as well as its projection must match the input

images i t . We set the velocity inflow to a constant c, which is approximating the average speed of the

rising plume observed in the input images.

The corresponding optimization problem is given by

minimize
∆Φt ,∆ut

f (∆ut ,∆Φt) =




∆Φt +∇Φ̃t ·∆ut






2

subject to P ∆Φt = i t − ĩ t , ∆Φt + Φ̃t ≥ 0,

∆ut |I = c − ũt |I , ∇ ·∆ut = 0,

(4.2)

where f (∆Φt ,∆ut) is our convex objective function with both ∆Φt and ∆ut unknown, ∆Φt is the

residual density, and as such, the finite difference for approximating ∂ Φ̃t

∂ t , P is the matrix projecting the

3D volume to each 2D image, and ĩ t is the projected predicted density Φ̃t . The dimensions of P are

Np × Nv where Np and Nv denote the total number of pixels and voxels, respectively. The derivation for

Equation (4.2) is described in Appendix B.
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To enforce both image formation and non-negativity constraints on the residual density ∆Φt , we

compute the smallest density correction∆Φt
cor that, when added to∆Φt , ensures that∆Φt complies to

both remaining constraints. Hence, the residual density∆Φt is projected onto the space of density fields

that match the image formation and result in a non-negative total density. Our second minimization

problem concerning the density correction ∆Φt
cor is given by

minimize
∆Φt

cor

h(∆Φt
cor) =





P∆Φt
cor − (i

t − ĩ t − P∆Φt)






2

subject to ∆Φt
cor +∆Φ

t + Φ̃t ≥ 0.
(4.3)

This can equally be formulated for the residual density

minimize
∆Φt

h(∆Φt) =




P∆Φt − (i t − ĩ t)






2

subject to ∆Φt + Φ̃t ≥ 0
(4.4)

and for the density itself
minimize

Φt
h(Φt) =





PΦt − i t






2

subject to Φt ≥ 0.
(4.5)

We find the optimal∆Φt
cor by making use of Algorithm 7 for the tomography problem in h and simulta-

neously enforcing the non-negativity constraint as a projection by employing a second PD loop. Ihrke

and Magnor [IM04] achieve non-negative density values by simply setting negative entries of their

CGLS solver in each iteration to zero. We make use of PD to simultaneously ensure image formation

and non-negativity constraints. Note that the residual density and residual density correction are al-

lowed to be negative while the total density, i.e., the sum of predicted, residual, and correcting density,

must be in the non-negative orthant RN
≥0, where N is the number of cells N = nx ∗ ny ∗ nz .

To account for large motion displacements, we employ a multi-scale scheme typically used for OF,

see [MLPK13]. We employ a hierarchical approach solving from coarse to fine spatial scales, as outlined

Algorithm 4 MS Velocity Update, solve Equation (4.2)

1: function RECONVELMS(ũt , Φ̃t ,Φt−1, i t) . calculate residual velocity on multiple scales
2: if grid size large enough then
3: ∆ut

C = ΠDIV(UP(RECONVELMS(DOWN(ũt), DOWN(Φ̃t), i t)));
4: ũt

new = ũt +∆ut
C; . add coarse residual to prediction

5: Φ̃t
I,new = ESTIMINFL(i t ,Φt−1, ũt

new); . density inflow
6: Φ̃t

new =A(Φt−1 + Φ̃t
I,new, ũt

new); . adapt prediction
7: ∆ut =∆ut

C + RECONVEL(ũt
new, Φ̃t

new, i t); . sum up velocity residuals on different scales
8: else
9: ∆ut = RECONVEL(ũt , Φ̃t , i t);

10: end if
11: return ∆ut ;
12: end function
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Algorithm 5 Velocity Update, solve Equation (4.2)

1: function RECONVEL(ũt , Φ̃t , i t) . calculate residual velocity on single scale
2: for k← 1, 10 do . Prima-Dual iterations
3: . shared part: advection equation, xk = xk

u ∪ xk
Φ

4: xk = xk−1 +σ f yk−1 −σ f SOLVELSE(A f +σ f I ,xk−1 +σ f yk−1 − b f );
5: . velocity part: inflow and divergence-free on zk

u
6: ∆ut

tmp = zk−1
u −τ∆uxk

u; . create temporary residual velocity
7: ∆ut

tmp|I = c − ũt |I ; . set velocity inflow

8: zk
u = ΠDIV(∆ut

tmp); . make div-free

9: . density part: tomo. and non-neg. (Equation (4.3)) on zk
Φ

10: ∆Φt
tmp = zk−1

Φ −τ∆Φxk
Φ; . create temporary residual density

11: zk
Φ =∆Φ

t
tmp + RECONDEN(i t , Φ̃t +∆Φt

tmp); . add density correction

12: . shared variable update, yk = yk
u ∪ yk

Φ

13: yk = zk + θ f (zk − zk−1);
14: end for
15: return zk

u;
16: end function

in pseudocode in Algorithm 4. Coarse quantities are upsampled and advected forward where fine-scale

solves further refine the reconstructed residual velocity. The multi-scale scheme employs the single-

scale residual velocity calculation, which is illustrated in Algorithm 5. In order to calculate the residual

velocity accurately on each scale based on the predicted density Φ̃t
new incorporating velocities from

lower scales ũt
new, we calculate and add an intermediate inflow density Φ̃t

I,new.

Proximal Operators We solve our joint optimization problem efficiently with PD, as outlined in Sec-

tion 3.2.2. Our shared objective function f in Equation (4.2) is quadratic, hence we formulate the

proximal operator as described in Section 3.2:

prox f ,σ f
(ξ) = (A f +σ f I)−1(σ f ξ− b f ), (4.6)

where

A f =

�

(∇Φ̃t)(∇Φ̃t)T (∇Φ̃t)T

(∇Φ̃t) I

�

+

�

αu
∑

j L j 0

0 αΦL

�

+

�

βu I 0

0 βΦ I

�

and b f = 0.

L is the Laplacian matrix and ξ is the concatenation of residual velocity ∆ut and density ∆Φt , i.e.,

ξ= (ξ∆u,ξ∆Φ). If a variable acts only on either velocity or density, we indicate this by a corresponding

subscript. The PD convergence parameters (σ f ,τ f ,θ f ) differ for velocity and density. The joint conver-

gence parameters are again the concatenation of both separate ones for residual velocity and density

(σ f ,τ f ,θ f ) = ((σ∆u,σ∆Φ), (τ∆u,τ∆Φ), (θ∆u,θ∆Φ)). We employ a standard CG solver in the proximal

operator in Equation (4.6). This proximal operator is used in Algorithm 5 (line 4).

The constraints that f must comply to, are all separate orthogonal projections for both unknowns
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∆ut and ∆Φt . Therefore, we split the second proximal operator proxg,1/τg
into two distinct proximal

operators for residual velocity proxg,1/τ∆u,∆u and density proxg,1/τ∆Φ,∆Φ indicated by subscripts. The

proximal operator concerning velocity ensures the incompressibility of ∆u:

proxg,1/τ∆u,∆u(ξ∆u) = ΠDIV(ξ∆u). (4.7)

As explained in Section 3.2, the incompressibility constraint is an orthogonal projection onto the space

of divergence-free velocities, is denoted with ΠDIV, implemented via a standard CG pressure solver,

and employed in Algorithm 5 (line 8). Before enforcing divergence-free velocities, we set the inflowing

residual velocity to the difference between the prescribed constant c and the predicted velocity ũt as

described in Algorithm 5 (line 7).

The proximal operator proxg,1/τ∆Φ,∆Φ projects the residual density onto the space of densities that

match the image formation model and lead to a non-negative total density. We simply add a density

correction to the residual density to enforce both constraints:

proxg,1/τ∆Φ,∆Φ(ξ∆Φ) = ξ∆Φ +∆Φ
t
cor . (4.8)

In order to obtain the density correction ∆Φt
cor , we solve Equation (4.3) with a separate PD loop. The

first proximal operator solves the quadratic objective function h:

proxh,σh,∆Φcor
(ξ∆Φcor

) = (Ah +σh I)−1(σhξ∆Φcor
− bh), (4.9)

where

Ah = PT P +αΦL + βΦ I and bh = PT∆i t
cor = PT (i t − ĩ t − P∆Φt).

This is exactly the regularized tomography.

Enforcing the non-negativity constraint is an orthogonal projection onto the space of non-negative N -

dimensional real-valued vectors RN
≥0. This projection is efficiently realized by simply setting the values

in ∆Φt
cor to the minimal value such that ∆Φt

cor +∆Φ
t + Φ̃t ≥ 0. The corresponding proximal operator,

here indicated with l, is given by:

proxl,1/τh,∆Φcor
(ξ∆Φcor

) = ΠNN(ξ∆Φcor
). (4.10)

A pseudocode description of density estimation is outlined in Algorithm 6, where the procedure is

called RECONDEN(i t ,Φt
IN). This tomography solve is used for initialization of the density field and as a

component of the residual velocity estimation in Algorithm 5.

The convergence parameters of each PD loop, which we determined empirically, are set to the con-

stant values

(σ∆u,τ∆u,θ∆u,σ∆Φ = σh,τ∆Φ = τh,θ∆Φ = θh) = (0.01,10, 1,0.01, 100,1). These parameters control

the speed of convergence, are problem-specific, and are likewise applied to all our reconstructions.
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Algorithm 6 Tomography, solve Equation (4.5), Equation (4.4), or (4.3)

1: function RECONDEN(i t ,Φt
IN) . reconstr. density, Φt

IN can be 0
2: ∆i t = i t − PΦt

IN; . calculate residual image
3: for k← 1, 10 do . Prima-Dual iterations solving Equation (4.4)
4: . solve least squares problem, e.g., with CGLS (Algorithm 7)
5: xk = xk−1 +σhyk−1 −σh SOLVELSE(Ah +σh I ,xk−1 +σhyk−1 − bh);
6: zk = ΠNonNeg(Φt

IN + zk−1 −τhxk); . cut off negative values
7: yk = zk + θh(zk − zk−1);
8: end for
9: return zk;

10: end function

Discretization The standard Horn-Schunck OF and previous OF approaches [GITH14] discretize the

transport equation on a co-located grid. However, pressure solvers perform suboptimally on co-located

grids and introduce checkerboard artifacts or do not remove all divergence for non-smooth velocity

fields. As outlined in Section 3.1, the divergence of a velocity is best eliminated on a staggered MAC

grid. Instead of using a co-located grid for the OF part and a staggered grid for the pressure solver,

which introduces smoothing and interpolation errors, we employ a staggered grid for our complete

reconstruction pipeline.

Visual Hull In practice, it is disadvantageous to apply a visual hull straightforward as described in

Section 3.4, where voxels influencing a black pixel are excluded from the system of equations. Black

pixels are pixels with intensities less or equal to a threshold, e.g., εvh = 1× 10−9. On the one hand, a

voxel’s weight could be very small, and as such, the pixel would still be assumed to be black although

the voxel contains a relevant amount of smoke density. On the other hand, if pixels are small compared

to voxels, multiple pixels could be influenced by a similar range of voxels while exhibiting intensities

varying from dark to bright, as our real world is continuous. Excluding voxels of either category from

the system unnecessarily limits the solution space, which could result in wrongful over-determination

of the system. First, we only consider pixels as truly black if their neighboring pixels inside a given

window are black as well. For an image resolution of 600×1062 and a volume resolution of 100×177,

we use a window size of 31, which we found to perform best. Moreover, a voxel is only ever marked as

outside the system of equations if its influence on a black pixel is above 10 %. Lastly, we only include

voxels in our system if at least two cameras see that voxel (in the case of multi-views). As such, we

reduce unsupervised motions in the under-determined areas.

Regularized Tomography

When solving Equation (4.9) with a common CG solver, it is necessary to explicitly calculate the matrix

product PT P. However, PT P ∈ RNv×Nv is significantly larger than P ∈ RNp×Nv due to the sparsity of the

views Np � Nv . Calculating and storing PT P is infeasible for larger resolutions. Therefore, we avoid

computing PT P directly by employing a CGLS solver like [IM04], which allows for feasible run times.
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Algorithm 7 Regularized CGLS

1: function SOLVECGLSREG(P, R, i t ,ξΦ,σh)
2: r0 = σhξΦ − PT i t − PT P x0 − (R+σh I)x0;
3: p0 = r0;
4: while accuracy not reached do
5: αk = ‖rk−1‖

2 /(pT
k−1PT Ppk−1 + pT

k−1(R+σh I)pk−1);
6: xk = xk−1 +αkpk−1;
7: rk = rk−1 −αk ∗ PT Ppk−1 +αk(R+σh I)pk−1;
8: βk = ‖rk‖

2 /‖rk−1‖
2 ;

9: pk = rk + βk ∗ pk−1;
10: end while
11: end function

A performance comparison is shown in Section 5.1.3. We use our regularized CGLS solver to solve each

tomography problem of our reconstruction pipeline.

For ill-posed inverse problems such as sparse tomography, regularizers are crucial to obtain a stable

solution. For example, it is not guaranteed that every voxel in the grid is hit by a pixel’s ray. Including

a smoothness regularizer ensures even density distribution. However, it is not straightforward to in-

corporate square and symmetric regularizing matrices R ∈ RNv×Nv in a CGLS solver as commonly done

for regular CG solvers. In Algorithm 7, we show how to include a very sparse, regularizing matrix of

smoothness and kinetic energy regularizers R in a CGLS solver. As R contains only seven entries per

row in 3D (diagonal and neighboring cells for smoothness, see Equation (4.1)), it can be stored and

multiplied efficiently. We apply R to the residual and step size calculations. Additionally, the weighted

diagonal matrix σh I and the PD variable updates σhξΦ, see Equation (4.9), are added to the system’s

matrix and to the right-hand side, respectively.

4.2.4. Density Inflow Estimation

Just as for common numerical forward simulations, suitable boundary conditions are crucial for our

reconstruction technique. The invisible inflow region, i.e., the amount of density outflux of our smoke

container, has a big influence on our overall reconstruction quality. Underestimating the amount of

density inflow leads to a plume unable to fill the desired volume in later stages of the reconstruction,

as demonstrated in Figure 4.11a. Overestimating, on the other hand, yields strong instabilities and

evasive motions to the sides of the plume, see Figure 4.11c. Figure 4.11b demonstrates that our inflow

estimation solver leads to stable plumes nicely filling the target smoke volume.

The information in our image data is limited as the density injection from one time step to another

is not directly visible. In order to calculate the required amount of density, we project the current

target images i t into the volume to obtain the target density field Φt
tar = RECONDEN(i t , 0). Our goal

is to estimate a density inflow Φt
I that, when added to the previous density field Φt−1, leads to the

right amount of density in Φt . Φt
I has non-zero entries only in the invisible inflow area ΓI . The region

that traces back into the inflow region ΓI while considering ut is denoted with ΓR, where R stands for

MARIE-LENA K. N. ECKERT 63



4. CAPTURING SETUP AND RECONSTRUCTION ALGORITHMS

(a) Too few density inflow. (b) Our density inflow estimation. (c) Too much density inflow.

Figure 4.11.: These examples highlight the importance of the density inflow for reconstructing smoke plumes.
Depending on the amount of density inflow, the reconstructed plumes contains too less density a), a suitable
amount of density b), or excessive density inflow resulting in unstable behavior and evasive motions c).

reachable. The part of the inflow area, which is reached through back tracing from the visible domain,

is denoted with ΓRI , i.e., the reached inflow area. These domain areas are visualized in Figure 4.7.

Advecting the combination of the previous density Φt−1 and the density inflow Φt
I with the known

velocity ut should result in a density field where the accumulated visible density intensities match

the accumulated visible density intensities of the target density Φt
tar. This constraint is derived and

formulated as follows

∑

e∈Γ\ΓI

A(Φt−1 +Φt
I ,u

t)
!
=
∑

e∈Γ\ΓI

Φt
tar | . assume linear advection

∑

e∈Γ\ΓI

A(Φt−1,ut) +
∑

e∈Γ\ΓI

A(Φt
I ,u

t)
!
=
∑

e∈Γ\ΓI

Φt
tar | . move to other side

∑

e∈Γ\ΓI

A(Φt
I ,u

t)
!
=
∑

e∈Γ\ΓI

�

Φt
tar −A(Φt−1,ut)

�

| . define ∆Φt
tar

∑

e∈ΓR

A(Φt
I ,u

t)
!
=
∑

e∈Γ\ΓI

∆Φt
tar, (4.11)

where A(·,ut) denotes the advection with the final velocity ut , the visible domain is Γ \ ΓI , e is a voxel

element in the volume, ∆Φt
tar = Φ

t
tar−A(Φt−1,ut) is the residual target density field, and ΓR is the part

of the visible domain that is influenced by advecting the inflow area ΓI with ut . When advecting Φt
I with

ut , the amount of smoke densities in the visible area Γ \ ΓI should be equal to the amount of densities

in the residual target density ∆Φt
tar.
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Algorithm 8 Estimate inflow, such that Equation (4.12) holds

1: function ESTIMINFL(i t ,Φt−1,ut)
2: Φt

tar = RECONDEN(i t , 0); . target density
3: ∆Φt

tar = Φ
t
tar −A(Φt−1,ut); . residual density

4: Am = AT
I AI +αΦI

L + βΦI
I

5: bm =max
�

∆Φt
tar|ΓR + d,−A(Φt−1,ut)|ΓR

�

6: for k← 1, 10 do . Prima-Dual iterations
7: xk = xk−1 +σmyk−1 −σm SOLVELSE(Am +σm I ,xk−1 +σmyk−1 − bm);
8: zk = ΠNN(Φt−1 + zk−1 −τxk);
9: yk = zk + θ (zk − zk−1);

10: end for
11: EXTRAPOLATESRCVALUES(zk);
12: return zk;
13: end function

In order to solve for Φt
I , we set up a linear system of equations based on ut , i.e., we solve

AIΦ
t
I = bI for Φt

I . We discretize the advection operator A via a semi-Lagrangian method to obtain

AI . It holds that AI ∈ R|ΓRI |×|ΓR|, since we look for density values in the reached inflow area ΓRI based

on density values in the reachable visible domain ΓR. Hence, AI =A(Φt
I ,u

t)|ΓRI to ΓR .

In total, the right-hand-side vector bI must contain the missing density summed over each cell e in

the domain Γ \ ΓI , i.e.,
∑

e∈Γ\ΓI
∆Φt

tar. However, as bI ∈ R|ΓR|, it covers only a subset of the domain, i.e.,

the reachable area ΓR. Therefore, we set bI to the missing density value in ∆Φt
tar|ΓR plus a constant

d, which accounts for further density discrepancies in the rest of the domain ∆Φt
tar|Γ\(ΓR∪ΓI ). Possible

choices for d are outlined below. Furthermore, if the total missing density is negative, we also need

to ensure that bI is never less than −A(Φt−1,ut), which would lead to negative and hence unrealistic

densities in the visible domain after advecting Φt−1 +Φt
I .

Additionally, we ensure that the final density inflow (Φt−1 +Φt
I )|ΓI is non-negative, which we found

crucial for plausible and numerically stable reconstructions. Our optimization problem is given by

minimize
Φt

I

m(Φt
I ) =





AIΦ
t
I −max

�

∆Φt
tar|ΓR + d,−A(Φt−1,ut)|ΓR

�





2

subject to Φt−1 +Φt
I ≥ 0.

(4.12)

The whole inflow estimation is outlined in pseudocode in Algorithm 8. To ensure subsequent advection

steps make use of smooth inflow densities, we slightly extrapolate the inflow values in ΓRI into cells

that were excluded from the solve, see line 11 of Algorithm 8. Here, we average the values of the

surrounding 3× 3 neighbors that were included in the inflow estimation.

Proximal Operators We formulate the first proximal operator for Equation (4.12) as following

proxm,σm
(ξ) = (Am +σm I)−1(σmξ− bm), (4.13)
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where

Am = AT
I AI +αΦI

L + βΦI
I and bm =max

�

∆Φt
tar|ΓR + d, −A(Φt−1,ut)|ΓR

�

.

We solve this system of equations with a CGLS solver, just as for the tomography. However, as this

system’s matrix is much smaller, i.e., AI ∈ R|ΓRI |×|ΓR|, its costs are negligible compared to the rest of

the optimization procedure. The choice of regularizing weights is (αΦI
,βΦI
) = (0.2,0.02) while the PD

convergence parameters are (σm = σ∆Φ = σh,τm = τ∆Φ = τh,θm = θ∆Φ = θh) = (0.01,100, 1).

Inflow Visual Hull Similar to the visual hull for tomography problems, we remove inflow cells known

to be zero from the system to prevent spurious density in cells that should be empty. Otherwise, halo-

like densities possibly accumulate over time. We mark target density cells in ΓR as outside the system

if their density value in Φt
tar is below 0.01. Inflow cells, that, when advected, would end up in such

cells, are also marked as outside the system of equations, but only if their contributing weight is above

1× 10−5. We determined these thresholds experimentally and use them for all our reconstructions.

Choice of d The most naïve distribution of the total missing density ∆Φt
tar|Γ\(ΓR∪ΓI ), which can be

positive or negative, is to assign each target cell the same value. This leads to the following definition

of d:

d =

∑

Γ\(ΓR∪ΓI )
∆Φt

tar

|ΓR|
. (4.14)

However, we chose a more sophisticated approach by using varying values de for each cell e ∈ ΓR, which

we set in relation to the existing value in∆Φt
tar|e. Hence, d is not uniform for all cells, but individual for

each cell e. A larger value in ∆Φt
tar|e leads to larger de where ’larger’ means more positive, not larger

in its absolute value. We introduce an offset o, which ensures that ∆Φt
tar|e is greater or equal to zero

for each cell, i.e., ∆Φt
tar|e + o ≥ 0. In doing so, we can treat ’larger’ in terms of higher absolute value

and as such, achieve correct proportional scaling of positive and negative values:

de =

∑

Γ\(ΓR∪ΓI )
∆Φt

tar

∑

ΓR

(∆Φt
tar + o)

(∆Φt
tar|e + o), (4.15)

where only truly greater values attract larger portions of the missing density. The offset o is zero or

the absolute value of the largest negative entry in ∆Φt
tar|ΓR , which means o = |min(0,∆Φt

tar|ΓR)|.

In this chapter, we described our hardware setup and our powerful reconstruction method with all

its components. The results and accuracy of our multi- and single-view reconstructions obtained with

this method will be evaluated in the following Chapters 5 and 6.
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5
Accurate Multi-View Reconstruction

Figure 5.1.: A reconstructed density plume from our ScalarFlow data set. Four frames are re-rendered as thick
smoke, which demonstrates the flexibility of a 3D data set. The corresponding input images, i.e., the real-world
references, are shown as insets in the lower left corners.

We create our data set ScalarFlow by gathering various accurate multi-view reconstructions of real-

world smoke plumes, which we record with five cameras as described in Section 4.1. Our reconstruction

method is described in detail in Section 4.2. In order to verify our method’s accuracy, we first reconstruct

synthetically simulated smoke plumes, for which we have access to ground truth density and velocity.

We furthermore compare our reconstructions to previous methods. Then, we illustrate samples from

ScalarFlow and discuss a perceptual user study as demonstration of a first application. The results for

accurate multi-view reconstructions are shown in our video1 and on the ScalarFlow website 2.

Our data set contains 104 reconstructions with 150 frames of 3D density, 3D velocity, 2D rendered

images, and 2D input images. The 3D quantities have a resolution of 100×178×100, while the rendered

images have a resolution of 600 × 1062 and the input images have a resolution of 1080 × 1920. All

of our reconstructions use the same camera calibration, which is given as one text file per camera and

contains the ray’s starting points and directions for each pixel.

Each reconstruction is approximately 10 GB large and lives in its own folder, which contains thumb-

nail images and .mp4 videos summarizing the reconstructed quantities visually, a folder ‘input’ , and

a folder ‘reconstruction’. The ‘input’ folder encloses the original recorded videos and the extracted,

unprocessed, and post-processed images as .jpg and .npz files. We store the 2D images as 3D arrays

where the images are stacked along the z-axis. The ‘reconstruction’ folder contains .npz files for density,

1https://youtu.be/J0y8zakWQ4Y
2https://ge.in.tum.de/publications/2019-scalarflow-eckert/
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Statistics of ScalarFlow

min max mean std. deviation % of nz cells
all
density 0 74.488 0.136 1.140 8.39
velocity 0 9.007 0.078 0.195 91.26
images 0 5.773 0.216 0.599 34.10
000010
density 0 50.68 0.158 1.202 9.66
velocity 0 7.544 0.080 0.211 91.26
images 0 4.608 0.253 0.653 38.23
000030
density 0 60.350 0.134 1.099 8.51
velocity 0 7.018 0.080 0.200 91.26
images 0 3.958 0.212 0.581 34.09
000060
density 0 55.067 0.122 1.050 7.55
velocity 0 5.067 0.0676 0.177 91.26
images 0 4.232 0.190 0.547 31.38
000090
density 0 55.064 0.140 1.149 8.47
velocity 0 7.286 0.084 0.205 91.26
images 0 4.667 0.221 0.601 34.87

Table 5.1.: Statistics of ScalarFlow.

velocity, and rendered and input images in its original form and with cropped inflow section. For crop-

ping the inflow, we delete the density and velocity in the lower 15 cells. The quantities with cropped

inflow area are additionally visualized as .jpg. The visualization of each 104 reconstructed density

seen from the front and side views are shown in Figure 5.2 and 5.3. In each ‘reconstruction’ folder, we

additionally store a ‘description.json’ file where all relevant grid names, parameter values, and meta

data are listed. Furthermore, the python script used for initiating the reconstruction is stored.

Table 5.1 shows the max, min, mean, and standard deviation values over all reconstructions and for

some individual samples. We calculate the Euclidean norm of the velocity. Since many values are zero,

we also indicate the average percentage of cells with non-zero values.
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Figure 5.2.: Overview of the 104 reconstructed densities in ScalarFlow, front view.
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Figure 5.3.: Overview of the 104 reconstructed densities in ScalarFlow, side view.
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(a) Base simulation,
t = 170.

(b) Larger inflow area,
t = 145.

(c) 50 % more buoyancy,
t = 122.

(d) High-resolution,
t = 155.

Figure 5.4.: Four different synthetic smoke simulations with ground truth density (upper left) and reconstructed
density (upper right), with ground truth velocity (lower left) and reconstructed velocity (lower right), front (top
rows) and side views (bottom rows). The high-resolution simulation and reconstruction in d) are downsampled
to facilitate visual comparison. We use our real-world calibration data to generate the synthetic input images and
use our inflow estimation for reconstruction. Independent of varying simulation parameters as well as resolution,
our reconstructions recover both density and motion accurately.

5.1. Evaluation

In order to validate the accuracy of our novel reconstruction technique, we simulate multiple and

varying smoke plumes, for which we have access to the 3D density and velocity. We evaluate the recon-

struction accuracy, compare our results to alternative methods, and elaborate computational resource
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consumption.

5.1.1. Reconstruction Accuracy
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(a) Base Simulation.
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(b) Larger inflow area.
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(c) 50 % more buoyancy.
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(d) High-resolution.

Figure 5.5.: Mean and standard deviation of PSNR values of density, velocity, and image differences for our four
synthetic reconstructions in Figure 5.4 with five instances for each.

In order to examine the accuracy of our reconstruction method, we simulate different smoke plumes

and reconstruct them with our full method outlined in Section 4.2 without exploiting any additional

information from our synthetic setup, such as the ground truth inflow. With changing simulation pa-

rameters, grid resolution, and noise, we evaluate the robustness of our method to handle unknown

and varying behavior as in real-world flows. By increasing the size of the smoke source, the amount

of buoyancy, and simulation resolution, we generate different flow dynamics with a variety of fluid

motion, as shown in Figure 5.4. Furthermore, we add different noise to the density sources and, as

such, create five different instances of each simulation setup. To generate input images of the synthetic

simulations, we render the synthetic density volumes by using our implicit camera calibration data from

five real cameras as described in Section 4.1.6.

Our base simulation in Figure 5.4a is simulated with the Boussinesq approximation on a 100× 177× 100

grid. Our reconstructions use the same grid resolution. We measure the accuracy of our reconstructed
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quantities velocity, density, and images by calculating the PSNR of the difference between ground

truth and reconstructed quantity, since the PSNR is an established quality measurement of compressed

images. The PSNR values are closely related to the standard l2-norm, but use a logarithmic scale and

are normalized against the maximum value of the ground truth quantity. In Figure 5.5a, we visualize

the mean PSNR values and its standard deviation (light halo around mean) over all five simulation

instances of our baseline comparison. The average PSNR values over time are (37.3,34.1, 34.6) for

density, velocity, and images, respectively. Even the highly under-determined side view is reconstructed

accurately, as illustrated in the bottom rows of Figure 5.4a.

Enlarging inflow size and buoyancy amount leads to significantly different flow behaviors, as

demonstrated in Figures 5.4b and 5.4c. However, our algorithm accurately reconstructs these smoke

plumes as well, both in terms of density and velocity. Comparable PSNR values are obtained, as

shown in Figures 5.5b and 5.5c. The corresponding PSNR values for density, velocity, and images are

(35.7, 33.3,33.8) and (36.8, 34.9,33.1), respectively. Doubling the buoyancy leads to much faster ris-

ing plumes, which can be observed in Figure 5.4c where the plume reaches the top of the domain early

at t = 122. Since smoke exiting the finite reconstruction domain poses a challenge to reconstruction,

the PSNR values exhibit a slight valley as observed in Figure 5.5c. Our three tests a), b), and c) yield

distinct data points in the space of buoyant smoke plumes. The comparable PSNR values for all three

indicate that our algorithm is capable of robustly and accurately reconstructing a variety of different

single-phase flows.

Increasing the simulation’s resolution to 200×354×200 while keeping the reconstruction’s resolution

the same, imitates the challenging real-world conditions, since space in our real world is continuous,

i.e., infinitely high resolved. Furthermore, a standard forward fluid simulator would not be able to

recreate the motion of high-resolved simulations on a lower grid. Our reconstruction method, however,

captures both density and velocity accurately as visualized in Figure 5.4d. The PSNR values for density,

velocity, and images are (33.0,31.6, 32.6).

Our reconstructions contain slightly less overall density, but properly capture the intricate shapes of

the complex reference flows, as demonstrated in Figure 5.4. All our tests robustly result in comparable

PSNR values for density, velocity, and images over multiple time steps, as shown in Figure 5.5. The

PSNR values slightly drop over time as the flow becomes more complex over time and by occupying

a larger volume in the domain, but yield high averages overall. For example, the PSNR values for

our baseline simulation at t = 150 still indicate accurate reconstructions with (34.7, 32.5,31.1). These

test results imply that our simple capturing setup with five camera views is sufficient for our strong

physics-based optimization to capture realistic flow behavior matching the given input images.

5.1.2. Alternative Methods

In addition to synthetic evaluations, we compare our approach to previous work by Gregson et

al. [GITH14], referred to as Va and a simpler version of our method, called Vb. For Va, we first recon-

struct the volumetric densities via tomography, then apply a divergence-free OF velocity estimation. In

MARIE-LENA K. N. ECKERT 73



5. ACCURATE MULTI-VIEW RECONSTRUCTION

(a) Va: divergence-free optical flow re-
construction based on tomographic den-
sities from previous works.

(b) Vb: our method without iterating
over coupled reconstruction of residual
velocity and density.

(c) Our full reconstruction method.

Figure 5.6.: Visual comparison of three methods reconstructing volumetric density. Our tightly coupled recon-
struction method in c) is required to obtain a realistic and detailed fluid motion without unnatural artifacts.
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Figure 5.7.: PSNR values for the difference between input and re-rendered reconstructed density for Va (tomog-
raphy plus 3D optical flow), Vb (simplified version of our method), and our full approach.
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our simplified version Vb, we do not iterate between residual velocity and density and hence, remove

their coupling. This leads to an advection-unaware density update, which does not change per iteration

of the residual velocity estimation, in contrast to Equation (4.2). Instead, the residual density is fixed

for each time step and is retrieved from a single tomography step.

As demonstrated in Figure 5.6, our method is able to reconstruct natural, detailed, and artifact-free

fluid-like motion, while Va and Vb are less detailed and exhibit spurious smoke densities outside the

plume. Especially Va exhibits the typical stripe artifacts along the camera’s line of sights. On the other

hand, as the densities reconstructed with Vb deviate from the images over time, the solver is incapable of

reconstructing more than two thirds of the overall sequence. These quality differences are also notable

in the averaged PSNR values of 2D image differences, namely 25.8, 25.0, and 29.2 for Va, Vb, and our

method, respectively. The PSNR values over time are illustrated in Figure 5.7. Hence, our method

recreates the target images with the highest accuracy.

This evaluation indicates that our iteratively computed residual density lies within the image for-

mation null-space, but matches fluid motions undoubtedly better than density fields generated with

simpler or previous methods. The reason beneath are the improved physical constraints finding more

realistic solutions from the said null-space. Hence, our method produces more natural motions, density

distributions without the typical tomographic artifacts, and is capable of handling under-constrained

problems.

5.1.3. Performance Evaluation of Regularized Conjugate Gradient Least Squares

As outlined in Section 4.2.3, we employ a CGLS solver to avoid computing and storing PT P explicitly.

In our multi-view reconstruction setting, a regular CG solver would require on 535 s per tomography

solve on average and 182 s for matrix construction. Our CGLS solver obtains the same residual accuracy

by only requiring 69 s per solve and 13 s for setting up the matrix. Instead of being a bottleneck, our

tomography solver now takes up a smaller part of the overall run time, which is 809 s and 350 s for CG

and CGLS, respectively. Both solvers are equally regularized with the matrix R. Furthermore, the CG

solver needs up to 15 GB of memory for storing PT P, while CGLS requires only 2.5 GB. As both memory

and computational resource consumption grows super-linearly when increasing the grid resolution, our

CGLS is a crucial component for reasonable run times of higher resolution reconstructions.

5.2. Reconstructions in ScalarFlow

Our ScalarFlow data set contains 100 fluid flow reconstructions with a resolution of 100×177×100 and

with 150 to 200 time steps. As such, our data set contains approximately twenty-six billion data voxels

in total. A selection of 20 reconstructions is shown in Figure 5.10. As shown, our data set contains

similar smoke plumes with a variety of interesting and natural variations and as such, thoroughly sample

a chosen space of physical behavior. For example, some captures exhibit secondary plumes forming at

various stages and separating from the main plume.
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Figure 5.8.: Robust PSNR values of image differences for five different real-world reconstructions.

As we provide 3D data of both velocity and density, our collected flows can be used flexibly, e.g.,

for method evaluations, comparisons, re-simulations, data-driven applications, or visualizations. Four

plume sequences of ScalarFlow are shown in Figure 5.9. With these renderings, we demonstrate an

example of flexible visualization, namely rendering the smoke thickly on a colored background to high-

light fine-scale details. The density visualization in Figure 5.10 is closer to the real-world recordings

except for the bright colormap, which facilitates the observation of density details. We evaluate the ac-

curacy of our real-world reconstructions by computing the PSNR values between input images and the

rendered captured densities, just as for our comparison of alternative methods in Figure 5.7. Figure 5.8

shows that our reconstructions match the captured images well with average PSNR values between 27.4

and 29.7. All of our five exemplary reconstructions produce comparable error measurements.

5.3. Perceptual Evaluation

As a first application of our data set, we conduct a perceptual evaluation of established fluid simula-

tion methods as well as varying resolutions via user studies where 189 non-experts from 48 countries

participate. The participants are recruited via crowd-sourcing. Key requirements for robust and reli-

able evaluation results are the access to ground truth or reference data and the availability of a large

number of different instances of the same phenomenon. To ensure objective answers, we design our

studies simple and clear by showing two simulated smoke phenomena next to a reference video. The

participants are asked to select the video, which looks closer to the reference. As such, we adopt

the two-alternative forced choice (2AFC) design [Fec60] and calculate scores with the Bradley-Terry
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Figure 5.9.: Four reconstruction sequences rendered as thick smoke. To demonstrate the flexibility that accom-
panies 3D data sets, we visualize the captured plumes very differently to their real-world counterparts. This
rendering style highlights the amount of small-scale details present in our data set.

model [Hun04, UHT17]. We randomize the questions, where each participants answers every ques-

tion twice. In summary, we obtained 100 answers per question and hence, gather statistically relevant

results.

First, we study well established fluid solvers regarding their capability of reproducing realistic

flows. We evaluate semi-Lagrangian advection [Sta99], MacCormack advection [SFK∗08], advection-

reflection [ZNT18], and lastly, wavelet turbulence [KTJG08] as a representative for up-res methods.

Although these methods have been analyzed visually in the corresponding publications, we are not

aware of any evaluation of these methods against a real-world reference. To facilitate comparison,

we implemented each simulation method in the same fluid solver framework [TP19] and employ the

same initial conditions. Simulations are conducted on 100×177×100 grids where the base resolution

of wavelet turbulence version was halved first in order to enable the resulting synthetic turbulence to

be added with a 2× upsampling. A visual overview over the four simulation methods and one specific

instance of our data set are shown in Figure 5.11.

The result of our 2AFC user study of comparing simulation methods is summarized in Figure 5.12a.

As shown, there is a 64 % chance that viewers prefer the advection-reflection method over MacCormack

advection in terms of their similarity to our real-world reconstruction.

Due to the large amount of available reconstructions in ScalarFlow, we are able to compare such

simulation methods to multiple real flows. We conduct four different studies A’, ’B’, ’C’, and ’D’ of the

same methods but with a different reference data to evaluate the robustness of the users’ preferences

and to prevent outliers to impede insights. The joint preference is ’All’. Although the real smoke

plumes differ visually, a range of similar salient flow features appear across all of them. We found
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Figure 5.10.: A selection of 20 captured flows from ScalarFlow visualized in terms of density and velocity. Each
row on both columns shows four frames of a single capture sequence.
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our evaluation results to be stable and robust, as the preferences of all four studies in Figure 5.12a

are highly correlated with ρ ' 0.98 (P ' 0.02) on average. In this context of user studies, we refer

with ρ and P to the correlation coefficient and its p-value, respectively. In summary, our non-expert

participants surprisingly prefer the relatively old and procedural wavelet turbulence method alike to

the advection-reflection solver. MacCormack advection is slightly outperformed by both, while semi-

Lagrangian advection is the least preferred simulation method, probably due to its high dissipation.

Furthermore, we investigate the influence of grid resolution on the realism of simulated flows. As

explained in Section 3.1, fluid simulators in the graphics area typically do not explicitly add viscosity but

rely on unknown amounts of numerical viscosity instead. With this study, we examine the amount of

numerical viscosity present in forward simulations and aim at finding a suitable grid resolution, which

produces the most similar fluid behavior compared to our reference data. In order to simulate five

simulations on different resolutions, we use the MacCormack advection method as a de facto standard

advection scheme. Our base resolution is 50× 88× 50, which we increase by factors of 2×, 4×, 8×,

and 12×, where the highest resolution is 600× 1062× 600 as visualized in Figure 5.13. Note that the

resolution of the y-direction is always 1.77× x-resolution.

Our user study results in Figure 5.12b show that the 8× and 12× resolutions are considered closest

to our real-world reference data. Interestingly, 8× performs slightly better, which indicates that 8×
exhibits a similar amount of viscosity as in real-world smoke plumes of an approximate size of 0.9 m.

This result vice versa indicates that our reconstructed flows contain visual detail and dynamics that are

comparable to those of finely resolved simulations as the reconstructions use 64× fewer voxels than

the 8× version. Hence, high-resolution simulations are required for numerical simulations to capture

the behavior of real-world smoke plumes.
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Figure 5.11.: Four different simulation methods and one ScalarFlow data set as used for the user studies. F.l.t.r.:
Semi-Lagrangian, MacCormack, advection-reflection, wavelet turbulence, and reconstruction.
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Figure 5.12.: Four different evaluations ’A’, ’B’, ’C’, and ’D’ of established simulation methods and varying simu-
lation resolutions via user studies. ’All’ denotes the combination of all evaluations. ****P < 0.0001.

Figure 5.13.: Simulations on different grid resolutions: 1×, 2×, 4×, 8×, and 12×, where the base resolution is
50× 88× 50.
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Figure 6.1.: Computing volumetric density and velocity from 2D images by employing an optimization formula-
tion for the joint reconstruction of density and motion.

In this chapter, we reconstruct a fluid’s density and motion based on just one single input image se-

quence of a real fluid phenomenon. Single-view reconstructions are especially under-constrained, par-

ticularly in the depth direction. We first explain details of the single-view reconstruction technique,

which is slightly adapted compared to Section 4.2, then evaluate the results of synthetic reconstruc-

tions, and show some real-world single-view reconstructions. As in the previous chapter, we do not use

any ground truth information available from synthetic input simulations when evaluating our method in

order to make them representative of real-world scenarios. The results for single-view reconstructions

can be found in our accompanying video1.

6.1. Method Details

Our single-view results were obtained with a predecessor of the reconstruction method described in

Section 4.2. In particular, we use a CG solver for the tomography part instead of a CGLS solver, use

a simpler density inflow estimation, and do not add any viscosity term. We only prescribe inflow ve-

locities for real-world reconstructions, but not for synthetic ones due to the simpler approximation

of smoke inflow. Our single-view reconstruction procedure a version of Algorithm 3, where we sim-

plify the aforementioned parts. Furthermore, we employ a different velocity alignment step instead of

1https://youtu.be/J2wkPNBJLaI
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line 9. In [Thu17, PBT19], the authors explain that the additive combination of Eulerian flow fields

additionally requires an alignment of the individual fields ut = ΠDIV(advect(ũt ,∆ut))+∆ut .

Inflow Estimation Instead of using our advanced inflow estimation solver, we reconstruct one of the

first capture time steps t0, which shows a small part of the rising smoke, to obtain a smoke source Φ0

in the visible area of our domain, i.e., in Γ \ ΓI . In each time step, we set the source area to the said

reconstructed smoke source for modeling a continuous smoke inflow. In order to receive a plausible

smoke source, we limit the source in depth and in other spatial directions, if necessary. As such, we

restrict the highly under-determined tomography solver to a desired target shape. For our synthetic

reconstructions, we use a cylinder as target shape and assume the input plume to be initially at rest

while we use a box for real-world reconstructions and assume the smoke enters the visible domain with

an initial velocity, which we choose manually and keep constant for each time step.

Perspective versus Orthographic Cameras As outlined in Section 3.4, real-world cameras are per-

spective pinhole cameras. However, it can be useful for synthetic reconstructions to assume ortho-

graphic cameras for simplicity. For large distances between camera and objects to record, the assump-

tion of having parallel rays is a good approximation. Since our cameras are relatively close to the smoke

plumes, the rays we obtain from camera calibration are non-parallel, and hence, we assume perspec-

tive cameras throughout this thesis. Nevertheless, we compare reconstructions using perspective and

orthographic cameras in this paragraph to illustrate difficulties of single-view reconstructions.

Yet, the two different camera models of perspective and orthographic cameras lead to very different

reconstruction results when using only a single input view, which we demonstrate in Figure 6.2. The

input to both reconstructions is a synthetic smoke plume as visualized in Figure 6.2a). A perspective

camera is used to reconstruct Figure 6.2b), while we use an orthogonal camera for Figure 6.2c).

Both reconstructed densities expand into depth, which is visible in the side view, where orthogo-

nal cameras lead to farther but symmetric expansion and perspective reconstructions evoke density

expansions similar to the mirrored alphabetical letter ’C’. This curved motion is caused by residual

velocities being reconstructed orthogonal to the viewing rays. While the residual density mostly acts

along each line of sight, OF reconstructs velocities along density gradients, i.e., orthogonal to the view-

ing direction. Since the camera is placed at central height of the domain, the rays going through the

top part of the domain are directed upwards, while the rays through the bottom domain are directed

downwards in the perspective case. This causes the smoke plume to tilt towards or away from the

viewing point in the top and bottom domain, respectively. This distortion is created due to the inherent

under-determination of single-view reconstructions. One additional view prohibits such distortion suc-

cessfully, as illustrated in Figure 6.5 and Figure 6.6. However, we develop a novel depth regularization

term to improve single-view reconstructions by themselves.

Depth Regularization To increase control over depth motion, we additionally constrain velocities in

the depth as their effect is not directly visible in the 2D input images as is the case for other velocity
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a) b) c)

Figure 6.2.: a) Synthetic input, b) perspective, and c) orthographic reconstructions without depth regularizer
at t = 104. Each image shows a front (left) and side view (right). The side views of b) and c) highlight the
undesirable depth expansion and the ’C’-shaped distortion for the perspective camera view in b).

directions. With our axis-aligned voxelized volume, the depth motions are exactly the z-components

of the velocity. First, we penalize large depth velocities more strongly by increasing the weight β∆u for

our Tikhonov regularizer described in Section 4.2.2 in Equation (4.1), i.e., we introduce β∆uz
. We set

this weight depending on the voxel’s position, i.e., we choose larger penalties for the top and bottom

domain compared to the central domain, since in these cases, the rays are not directed horizontally but

upwards or downwards:

β∆uz
= 1+ 10 ∗ (|(Y /2.)− 1.− j|/(Y /2.))2, (6.1)

where Y and j are the domain size and the current voxel’s index in the y-direction.

Furthermore, in order to avoid a ’C’-shaped drift of the densities, we introduce a novel regularizer

minimizing the sum of depth velocities in one voxel row. The sum of z-velocity components along one

row is described by the matrix S. Here, we only consider velocity components inside the smoke volume.

This regularizer is added to the the systems matrix A f of Equation (4.6) with a separate weighting term

λsum:

Esum(∆u) = 1
2 ‖S∆u‖2 . (6.2)

6.2. Evaluation Based on Synthetic Input

In order to evaluate our reconstruction method, we reconstruct various different synthetic simulation,

which we first project onto the 2D image space for each time step t. The image resolution is 480×640

while our volumetric grid is of size 120× 160× 120 if not stated otherwise. We use the following reg-

ularizing weights for synthetic reconstructions: (αu,βu,αΦ,βΦ,β∆uz
,λsum) = (0.1,1× 10−4, 0.001, 1×

10−4, 1× 10−3, 10), which we found to obtain the fastest and most accurate results on average. Real-

world reconstructions require slightly higher smoothness weights.

Plume with Single View Our first example is a simple plume. The synthetic input simulation and

its perspective reconstructions are demonstrated in Figure 6.3a) - d) for front and side views. The side

view is the most difficult to reconstruct, as it is orthogonal to the single input direction. As observable in
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a) input, front b) input, side

c) reconstruction, front d) reconstruction, side

e) input, front f ) input, side

g) reconstruction, front h) reconstruction, side

i) input, front j) input, side

k) reconstruction, front l) reconstruction, side

Figure 6.3.: Front and side views of input a,b) and reconstruction c,d) of a plume at t = 30,60, 96, a jet stream
e) - h) at t = 30,60, 96, and a plume with solid obstacle i) - l) at t = 30,80, 112.

Figure 6.3a) and c), the given input view is matched very well. The side view motion still expands in the

depth direction, see Figure 6.3b) and d), as it is inherently under-constrained. However, considering
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Figure 6.4.: Re-simulated plume reconstruction from a rotating viewpoint at γ= 83, 85,87, 89,91, 93 and
t = 84,86, 88,90, 92,94 with a 240× 320× 240 domain.

that we are not explicitly constraining and hence limiting this motion, our reconstructions sill exhibit

very natural flow behavior. Increasing the depth regularizing weights would in fact limit the depth

motion further but at the expense of complying to our physical constraints and thus decrease the overall

quality of the reconstructed motion.

Although the advected density distributions implicitly give insights into the underlying motion, we

additionally present the velocity’s central slice as seen from the front and side views for both ground

truth and reconstructed motion in Figure 6.7 a) - d). The velocities in both central slices display natural

and plausible motions, although the side view reveals a larger depth motion compared to the ground

truth. In Figure 6.4, we demonstrate the flexible usage of our reconstructed 3D velocity fields applied

to re-simulating the simple plume in Figure 6.3c) - d) on a higher resolution, where we advect a two

times finer density distribution with our reconstructed velocity. Figure 6.4 shows the re-simulated fluid

with both varying time and viewing angle, where γdenotestheviewingangle. These renderings point

out the amount of detail captured by our velocity fields, which could be refined further with procedural

turbulence methods.

Multiple View Constraints We are able to re-use the information of the input image to further

constrain our plume from other views. The first approach is to use the mirrored input image from

angle 0◦ as additional input view for 180◦, which we call front-as-back. In doing so, we counteract

the undesired tilting motion resulting from perspective camera rays without applying any depth reg-

a) b) c)

Figure 6.5.: a) Synthetic input, b,c) reconstructions with front view as constraint for back and side view, respec-
tively, at t = 76 without using any depth regularizers.

MARIE-LENA K. N. ECKERT 85



6. SINGLE-VIEW RECONSTRUCTION

ularizers, as demonstrated in Figure 6.5b). However, we obtain a symmetric side view. The second

approach uses the front image as side constraint, which hence assumes partial rotational invariance of

the plume. This assumption is overly limiting in a general setting although we use a decreased weight

of 10 % for the side view compared to the front view, which is still matched with highest priority. As

demonstrated in Figure 6.5c), the side view closely matched the front view when using the approach

front-as-side. Hence, the depth expansion is eliminated even when not applying any depth regularizer.

Both approaches increase the reconstruction quality drastically and demonstrate the large null-space

of single-view reconstructions.

Jet Stream and Obstacle Scene In order to validate that our reconstruction method is fully capable

of handling rotationally asymmetric flow and flows with interior boundaries, we generate two more

synthetic cased of a jet stream and of a rising plume meeting a solid sphere. Figure 6.3e) - h) show a jet

stream flowing in from the left side of the domain and rising upwards due to buoyancy while the plume

with sphere in the center of the domain is shown in i) - l). The input view is matched very well for both

scenarios. Our jet reconstruction plausibly recreates the depth motion as shown in the side view. For

this scene, imposing artificial novel view constraints as mentioned before is clearly inadequate. The jet

scene is a good example that specifically benefits from a single-view reconstruction.

Our plume reconstructions including the solid sphere likewise match the input view closely and

exhibits a realistic motion for the unconstrained behaviors throughout the volumetric density. Our

solver has prior knowledge of the size and position of the sphere. However, we could use techniques

for single-view geometry estimation for a more generic reconstruction, which we suggest as extension

for future work.

Comparison to Previous Work We now compare our reconstruction technique with a tomography

plus divergence-free OF by Gregson et al. [GITH14] considering the simple rising plume from Fig-

ure 6.3a) - b). Although our method works well with a single input, we make use of an additional,

orthogonal view for better comparison to previous work. Our reconstruction match the ground truth

densities very well and much better than previous work, see Figure 6.6 and ground truth synthetic input

in Figure 6.3a) and b). Our method produced less volume expansion and is closer to the ground truth

views. The reconstructed motion for both approaches is illustrated in Figure 6.7 e) - h). Our velocities

match the input in a) and b) accurately while Gregson’s approach exhibits undesired velocities outside

the plume’s shape since it works best for reliable density estimations, which in turn correct the esti-

mated motion at each time step. These results demonstrate again that decoupled velocity and density

estimation leaves too many degrees of freedom undefined when using only a sparse number of input

views degrading the reconstruction’s quality.

Okabe et al. [ODAO15] present single-view reconstructions as well. However, their work primarily

concerns with volumetric appearance where the captured motions are naturally less reliable. Hence,

we do not compare our algorithms, but it would be an interesting future extension to combine both

approaches.
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a) ours, front b) ours, side

c) Gregson et al., front d) Gregson et al., side

Figure 6.6.: Our reconstruction a,b) and the approach by Gregson et al. [GITH14] c,d) for a synthetic rising
plume scene.

Time Extrapolation by Simulation In order to investigate the robustness of our method, we re-

construct the first half of a simulation until t = 48 and continue with a standard forward simulation

in the second half. We show an example of the rising plume in Figure 6.8 with ground truth input,

reconstructed density, and time extrapolated density. The extrapolated version follows the reconstruc-

tion tightly within the first ~25 frames and is hence close to the input simulation, which validates the

reliability of our reconstructed density and velocity. However, it would be very interesting to automati-

cally adapt simulation parameters, such as buoyancy, to match the ground truth simulation for a larger

period of time.

6.3. Real-World Results

With our capturing setup described in Section 4.1, we record rising hot smoke. Two examples of such

raw captures without our post-processing technique are demonstrated in Figure 6.9a) and d). The

invisible and temporally changing smoke inflow from the real-world smoke plumes poses a challenge

for our single-view reconstructions, especially as we are using a simplified inflow estimation as outlined

above. We estimate the inflow velocity c roughly from the captured images and use the same for both

our real-world plumes. Our resulting reconstructions exhibit realistic volumetric motion, which leads

to a good match between rendered density and input images and realistic swirls in the side view, which

we demonstrate in Figure 6.9. The rendered density is created with a similar visual style but slightly

different camera properties are shown below each raw input row. These results demonstrate that with

our powerful reconstruction technique, we are able to reconstruct 3D density and motion from a single-

view, which match the input image sequence well while exhibiting plausible fluid behavior throughout
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a) input, front b) input, side

c) ours single, front d) ours single, side

e) ours double, front f ) ours double, side

g) Gregson et al., front h) Gregson et al., side

Figure 6.7.: Central velocity slices of ground truth, our single-view, our double-view, and Gregson et al.’s recon-
structions at t = 30, 60,96.

the whole volume.

Performance An overview over reconstruction run times and grid sizes is presented in Table 6.1. In

fact, later time steps with larger visual hulls require much more computational resources compared

to earlier time steps. As such, the run time is especially increased for the jet, plume, and first real

capture reconstructions, where the density volume becomes largest. As mentioned earlier and in Sec-

tion 4.2.3, our CG implementation calculates and stores the image formation matrix PT P explicitly

which facilitates implementation but is suboptimal in terms of run time or memory consumption.
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a) b) c)

d) e) f )

g) h) i)

Figure 6.8.: Ground truth input in a,b,c), reconstruction in d,e,f), and extrapolation by simulation in g,h,i) after
12, 22, and 32 frames.

Scene Grid Size #Frames Avg. T

Plume, Figure 6.3 120× 160× 120 96 61m
Re-sim., Figure 6.4 240× 320× 240 96 08m
Front = Side, Figure 6.5 120× 160× 120 76 52m
Jet, Figure 6.3 120× 160× 120 96 68m
Obstacle, Figure 6.3 120× 160× 120 112 45m
2 views, Figure 6.6 120× 160× 120 107 44m
Real, Figure 6.9 a) 120× 200× 120 120 62m
Real, Figure 6.9 d) 120× 200× 120 120 54m

Table 6.1.: Performance details for all reconstructed scenes. The time is given as an average over the whole
sequence.
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a) real capture

b) reconstruction, front

c) reconstruction, side

d) real capture

e) reconstruction, front

f ) reconstruction, side

Figure 6.9.: Two captures of real fluids a,d) and reconstructions with front d,e) and side views c,f). Frames are
shown in frame intervals of 15.
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7
Fluid Guiding

Figure 7.1.: Guiding smoke to form a tornado, to create a star shape, and to follow a low-resolution simulation
with spatially varying guiding and a static obstacle.

We first describe our flexible fluid guiding method with several acceleration schemes, evaluate our re-

sults and performance on 2D examples, and show 3D results. We found PD to converge faster than

ADMM. IOP is not applicable for fluid guiding, as not both proximal operators are orthogonal projec-

tions. The results for both fluid guiding and separating solid-wall BCs can be found in our accompanying

video1.

7.1. Method

Our objective is to guide the coarse motion of a fluid simulation to follow a target velocity while permit-

ting the creation of small-scale fluid details. Therefore, we minimize the blurred difference between

the guided velocity field x and the target velocity field utar, where the blurred difference is exactly

the coarse motion. We additionally constrain the change of the current velocity field ucur to be small.

The current velocity field is the simulation’s velocity after advection and adding forces, but before the

pressure projection, see the typical simulator steps in Figure 3.1. Our fluid guiding problem is hence

1https://youtu.be/Pgbat5MXo8Q
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formulated as following:

minimize
x

f (x) = ‖G(x− utar)‖
2 + ‖W (x− ucur)‖

2

subject to x ∈ CDIV,
(7.1)

where W is the guiding weights matrix, G is the Gaussian blur matrix, and CDIV is the space of

divergence-free velocity fields. Both matrices are spatially varying, which allows guiding to be applied

differently to distinct positions in space. Nielsen and Christensen [NC10] also realized spatially varying

fluid guiding, but not with spatially varying blur. W =W (x) is a diagonal matrix that contains the

weights for controlling the guiding strength where larger entries imply weaker guiding. The Gaussian

blur matrix G = G(rβ ,x) applies a blur of radius rβ to fluid cells. Boundaries and obstacles are left

untouched. The first part of our objective function f is minimal for a velocity field that matches the

target velocity when blurred with G. The second part penalizes velocities far away from the current

velocity field.

As our objective function f is quadratic, we follow the derivation in Section 3.2 and formulate the

proximal operator as

prox f ,σ(ξ) = (A+σI)−1(σξ− b),

where

A= 2(GT G +W 2)

b = −2(GT Gutar +W 2ucur)

r = uT
tarG

T Gutar + uT
curW

2ucur.

Since W is symmetric, the following holds: W T W =W 2. When we factor out ucur, our proximal oper-

ator for f simplifies to

prox f ,σ(ξ) = ucur +M−1(σξ+ q), (7.2)

where

M = 2GT G + 2W 2 +σI and q = 2GT G(utar − ucur)−σucur.

The incompressibility constraint contained in g is solved as described in Section 3.2 with the proximal

operator proxg,ρ(ξ) given in Equation (3.16).

Instead of applying PD, we could solve both f and g in one large system as both are quadratic

energies. More precisely, we can combine f ′(x) = 0 with three equations per cell in 3D and the in-

compressibility constraint with one equation per cell in one linear system Lx= d. Since this system is

92 MARIE-LENA K. N. ECKERT



7.1. METHOD

over-constrained, we solve it with least squares by considering

LT Lx= LT d, (7.3)

where L =
�

A
∇·
�

and d=
�

b
0

�

. However, solving the large system, e.g., with an iterative solver, such as

the CG, is infeasible since the number of elements in the matrix grows with O(N). N denotes the total

number of cells in the simulation domain. Hence, we apply PD for our guiding scheme but compare

the performance of a direct CG solver in Section 7.2.1.

Inverse Matrix Approximation for Fluid Guiding Computing M−1(σξ + q) for every iteration is

very slow. The inversion of M is expensive, as M is large with the dimensions N ×N . Since G, W , and

σ are constant for each simulation, matrix inversion takes place only once. In order to speed up our

guiding scheme, we approximate the inverse of M . q can also be precomputed for each time step, as it

does not rely on previous iterations.

The diagonal entries of M are orders of magnitude larger than its off-diagonal entries. We can express

our matrix as M = D + (2GT G), where D = 2W 2 + σI contains the large diagonal terms and 2GT G

includes small off-diagonal terms, which are smaller than 1. By using the Sherman-Morrison-Woodbury

formula, M−1 can be approximated as

M−1 = D−1 − 2D−1GT (I + 2GD−1GT )GD−1. (7.4)

Now, since G and D−1 both contains small value entries, 2GD−1GT is approximately zero. Hence

M−1 ≈ D−1 − 2D−1GT GD−1 (7.5)

= (2W 2 +σI)−1 − 2(2W 2 +σI)−1GT G(2W 2 +σI)−1. (7.6)

The inverse of D is trivial, as D = 2W 2 +σI is diagonal.

Separable Gaussian Another simplification can be applied to prox f ,σ(ξ), as spatially invariant Gaus-

sian blurs are symmetric, which implies that G is a symmetric matrix and therefore GT G = G2. Further-

more, they are separable as convolution is associative. Foe example, a 2D convolution can be expressed

as two 1D convolutions and as such, separable Gaussians can be applied independently in each dimen-

sion. A Gaussian blur applied to a 2D image or a 3D volume is equivalent to applying two or three

independent 1D Gaussian blurs, which speeds up computation substantially.

Considering spatially varying Gaussian blurs, we still use symmetric and hence separable Gaussian

blurs for each cell. Yet, as blur radii differ among cells, G is no longer symmetric. If the spatial variation

is limited, we use GT G to approximate G2, as GT G ≈ G2 for regions of constant blur. An example for

such limited spatial variation are different blur radii for the left and right parts of the simulation domain.

Our approximation works well in practice as shown in Section 7.3. However, our PD guiding scheme is
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independent of the particular instance and realization of the blur kernel. It would be straightforward

to replace our current approximation with a fast and full implementation of calculating GT G.

For solid obstacle cells, we use a blur radius of zero and therefore allow for interior boundaries in

contrast to the guiding scheme based on the fast Fourier transform [GITH14]. Fast Fourier transform

schemes usually require periodic domains and are not able to handle internal boundaries.

Summary Applying the separable Gaussians and approximating the inverse of M greatly speeds up

the x-update for fluid guiding. The new PD variable updates are given by

xk+1 = xk +σyk −σ
�

ucur + D(xk +σyk + q)− 2GT GD2(xk +σyk + q)
�

zk+1 = ΠDIV(z
k −τxk+1)

yk+1 = zk+1 + θ (zk+1 − zk).

(7.7)

Algorithm 9 outlines the proximal operator for f with the given guiding specific parameters W and rβ .

Algorithm 9 Approximation for prox f ,σ(ξ) in fluid guiding

1: procedure PROXF(σ, ξ, W , rβ)
2: q = 2GT G(utar − ucur)−σucur . can be precomputed
3: D = (2W 2 +σI)−1 . inverse of diagonal matrix
4: return ucur + D(σξ+ q)− 2GT GD2(σξ+ q)
5: end procedure

7.2. Evaluation

We first evaluate our guiding methods based on 2D examples and then show more sophisticated 3D

results. To simplify notation, we write W = c for spatially invariant guiding strengths c and W = (c1, c2)

for spatially varying strengths c1 and c2, e.g., on the left and right side of the domain. Spatially varying

blur radii are written analogously as rβ = (rβ1, rβ2).

A comparison of our method and two naïve guiding methods is shown in Figure 7.2a, where we

guide simulations with a spiral, counterclockwise circular velocity field. After guiding, the velocity

is projected to be divergence-free for both alternative methods. A simple approach to fluid guiding

is linear velocity blend, where the new velocity is a linear combination of the current and the tar-

get velocity: unew = rblenducur + (1− rblend)utar, where 0≤ rblend ≤ 1. Smaller values for rblend lead to

stronger guiding. The drawback of linear velocity blend is that strong guiding smoothes out small-scale

fluid characteristics. In order to obtain more details, guiding must be weaker, which leads to reduced

trajectory control, see Figure 7.2b.

Another alternative is detail-preserving guiding [TKPR06] where the large-scale, i.e., blurred, veloc-

ity parts are subtracted from the current velocity, resulting in preserving small-scale details from the
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(a) Target velocity (b) Linear blend with rblend = 0.85, 0.95 (c) Detail-preserving blend with rβ = 3, rβ = 5

Figure 7.2.: Naïve guiding methods with a spiral velocity field as target.

Figure 7.3.: Up-res of 642 simulations to a resolution of 2562 using wavelet turbulence (left) and our method
(right). Our resulting fluid motion contains significantly more coherent vortices.

simulated, current velocity field ucur. Then, the target velocity utar is added, accounting for the desired

large-scale motion: unew = ucur − Gucur + utar. As such, large-scale motions are guided by a target ve-

locity field while small-scale details are preserved. However, it is challenging to control these details,

which furthermore exhibit an unnatural frosted glass appearance, see Figure 7.2c.

In Figure 7.3, we compare our algorithm to wavelet turbulence [KTJG08], which is a fast and purely

post-processing technique adding small-scale details without influencing the coarse-scale motion. The

resulting vortices do not couple as realistically and tightly as with our technique.

Our method allows for much more flexible control over the fluid’s motion compared to the presented

alternative methods. W determines the large-scale guiding strength and the blur radius rβ affects the

creation of small-scale details. An example of the influence of guiding strength and blur radius is given

in Figure 7.4, based on the circular target field of Figure 7.2a. Larger guiding strength values W allow

for more deviation from the prescribed velocity field, while larger blur radii rβ encourage the formation

of small-scale details.

7.2.1. Performance

We compare the convergence of PD to the proximal methods ADMM and IOP, see Sections 3.2.1

and 3.2.3. While ADMM is closely related to PD, see how PD reduces to ADMM Section 3.2.2, IOP

is a variant of the Projection onto Convex Sets (PoCS) algorithm [BB96], which is suited for convex

feasibility problems and not for the more general problem solved by ADMM and PD. Convex feasibility

problems locate intersection points of convex sets. When employing IOP for our fluid guiding prob-

lem, we alternate between the minimum of f and its closest divergence-free neighbor, which is not the

divergence-free minimizer of f , as visualized in Figure 7.5. A divergent target velocity field leads to
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Figure 7.4.: Our guiding technique with a circular
target velocity, varying W and rβ to allow for multi-
scale motion control.

Figure 7.5.: Failure case for IOP given a divergent target
velocity. The IOP’s solution is on an isocontour farther
from the center compared to the solution of PD/ADMM,
which is the true minimum.

IOP failure, while ADMM and PD successfully converge. While IOP finds plausible approximate solu-

tions for some instances, its reliability is limited in the general guiding case. Hence, we focus here on

comparing PD with ADMM where we refer to PD with our method.

To ensure fair comparisons, we apply our acceleration schemes of matrix inversion and separable

Gaussians to both methods. Furthermore, we deduce optimal parameter sets for both ADMM and our

method through experiments with varying test scenes. On average, these parameters lead to the fastest

convergence rates influenced by guiding weights and blur radii. We found that the optimal convergence

parameters of both ADMM and PD are correlated to the average guiding weight W̄ , which averages the

diagonal terms of W . For PD, we set (τ,σ,θ ) = (0.58/W̄ , 2.44/τ, 0.3), and we use ρ = 1.4W̄ 2 for

ADMM.

First, we compare the number of iterations for both ADMM and PD for a 2D fluid guiding on a

2562 grid with our circular target velocity in Figure 7.2a. We use spatially varying weights, where

c1 = {2,4, 8,16} for the left part and c2 = 1 for the right part of the domain. We set rβ = 1. The mean

number of iterations required to each convergence for both methods is shown in Figure 7.6a. Both

methods perform decently for low spatial variance. However, PD clearly outperforms ADMM for larger

spatial variance, e.g., for W = (16,1), PD needs only 16 % of the number of iterations of ADMM.

The same guiding parameters are used for our 3D scene, where we guide a smoke plume in a domain

with a solid obstacle, as the one in Figure 7.14. The simulation’s resolution is 1203. As shown in

Figure 7.6b, our method repeatedly outperforms ADMM, where the difference in convergence rates is

even more apparent. For the largest spatial variance, PD needs only a small percentage of the iterations

ADMM requires for convergence, namely less than 9 %. The run times for both methods are closely

related to the mean number of iterations, as demonstrated in Table 7.7.
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(a) 2D circular target (b) 3D obstacle plume

Figure 7.6.: Mean number of iterations per time step for guiding.

Guiding weight W
(2,1) (4,1) (8,1) (16,1)

2D
Our method 0.14 0.17 0.26 0.38

ADMM 0.26 0.41 0.76 1.89

3D
Our method 16.6 19.5 26.3 38.4

ADMM 30.4 67.8 176.9 325.6

Table 7.7.: Mean run time per time step (in seconds).
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(a) Mean run time.
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(b) Mean run time per grid cell.

Figure 7.8.: Scaling factor of our method’s run time per time step for the 3D tornado scene at various resolutions.

Furthermore, we analyze how our guiding method scales with grid resolution based on the guided

3D tornado scene in Figure 7.1. We use five different grid resolutions, where the base resolution is

402×60. Hence, a scaling factor of three corresponds to the resolution 1202×180. The mean run time
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(a) without up-res on 642 (b) with up-res on 2562

Figure 7.9.: Simulations guided by a star-shaped low-resolution simulation on 642 with rβ = 5 and rβ = 9.

per time steps are shown in Figure 7.8a, which appear to scale exponentially with increasing scaling

factor. However, the mean run time per grid cell shows that in fact, the scaling is linear, see Figure 7.8b.

Our guided simulation at the largest resolution 2002 × 300 takes less than four minutes per time step.

As mentioned before, we could possibly solve the system of combined guiding and divergence-free

constraints in Equation (7.1) directly with a CG solver. Solving the large system features poor perfor-

mance leading to infeasible run times. For a small 1282 example of our circular target velocity, the

direct CG solver is 4000 slower than our PD-based method.

While the performance tests above all use our generic method of spatially varying guiding weights and

blur radii, the special case of spatially invariant weights can be handled with a non-iterative method.

In that case, we only use the non-divergent components of the current and target velocity fields ucur t

and utar t in f (x) and omit the additional divergence-free constraint. The result of minimizing f with

spatially invariant weights is divergence-free, as differentiation commutes with convolution. This non-

iterative method greatly speeds up guiding, but we focus here on the more general guiding scheme

with spatially varying operators that make iterating indispensable.

7.3. Results

We found an iterative up-res method to produce the most interesting guided motions, which is in line

with previous work [KTJG08, YCZ11, HMK11, RLL∗13, HK13]. In up-res methods, coarse flows are

refined to yield the final, high-resolution result. As an example, consider Figure 7.9 of 2D star-shaped

simulations. The base input is a star-guided simulation on a 642 grid with W = 1 and rβ = 1. If we use

the base velocity field as input to guide a simulation with the same resolution but different blur radii,

i.e., rβ = 5 and rβ = 9, the resulting flow has difficulties to follow the given shape while producing

interesting small-scale details, see Figure 7.9a. However, when using the base velocity as input for a

high-resolution simulation on a 2562 grid, interesting fluid characteristics are created while preserving

a sharp star shape, see Figure 7.9b.

We apply this up-res procedure for a simple 3D plume as shown in Figure 7.10. The base simulation

is run on 502 × 100. Then, we use the upsampled base velocity field to guide two re-simulations on
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2002 × 400 – one with spatially invariant blur rβ = 5 and one with spatially varying blur rβ = (1,10) in

order to create different effects. In general, a larger blur radius permits the creation of more small-scale

details. Our spatially varying example exhibits a sharp transition between the two blur radii in order

to demonstrate the contrast between the two guided flow parts. The obvious seem can be damped by

applying a gradual transition between both radii. This example validates that the approximation of

GT G = G2 works well in practice.

We illustrate varying guiding strengths in Figure 7.11, where the simulations are guided by star-

shaped input velocities. The base simulation’s resolution is 503, while the high-resolution re-simulations

take place on 2503 grids. The blur radius is set to rβ = 2 for all examples. The guiding weight for the

base resolution is spatially invariant W = 1, but varies on the right side for both re-simulations, namely

W = 5 and W = 7. Compared to the overall computational costs, the costs for pre-computation are

negligible, as one time step for a 2503 simulation takes approximately 1.5 s.

We repeat the tornado simulation from Figure 7.1 with different blur radii leading to different levels of

turbulence, as visualized in Figure 7.12. The base simulation is run on a 402 × 60 grid with a cylindrical

target velocity with a small upward component. The re-simulations take place on a 2002 × 300 grid.

As last example, we demonstrate our method’s capability of handling interior boundaries in form of

a solid sphere. Such interior boundaries cannot be handled by Fourier-domain based guiding meth-

ods, such as [GITH14]. The base simple plume simulation is run on 403 and is upsampled to 2003.

The guided high-resolution simulation with W = 1 and rβ = 5 follows the coarse input motion, but

additionally creates visually appealing, fluid-specific details, as demonstrated in Figure 7.13. Spatially

varying weights W = (1, 100) are illustrated in Figure 7.14 with rβ = 1. The resulting motion on the

left side of the plume features little additional small-scale details due to tightly following the base ve-

locity. The right region is weakly guided and hence exhibits interesting smaller vortices. This example

verifies that our separable, efficient, and easily parallelizable fluid guiding solver for Equation (7.1)

easily handles arbitrary boundaries.
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Figure 7.10.: Base simple plume simulation on 502 × 100 (left), guided re-simulations on 2002 × 400 with con-
stant blur (middle, rβ = 5) and spatially varying blur (right, rβ = (1,10)).

Figure 7.11.: Base star-shaped simulation on 503, guided re-simulations on 2503 with spatially varying weights.

Figure 7.12.: Base tornado simulation on 402 × 60, re-simulations o 2002 × 300 with varying rβ .
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Figure 7.13.: Re-simulation on 2003 of a base simulation on 403 with an obstacle (inset) with W = 1 and rβ = 5.

Figure 7.14.: Guided simple plume with sphere as obstacle and with spatially varying weights.
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Separating Solid-Wall Boundary Conditions

Figure 8.1.: Non-separating and separating solid-wall boundary conditions in 3D with multiple static obstacles
on a 256× 230× 256 grid. Regular, non- BCs lead to the liquid sticking to walls (left), while our solver allows
for naturally separating liquids (right).

In this chapter, we present our adapted CG solver accounting for separating solid-wall BCs in its stan-

dard and accelerated variants. Considering the standard approach, PD converges faster than ADMM

and IOP. However, IOP outperforms PD in the accelerated version, as only very few iterations are

required. Hence, PD is not able to fully exploit its advanced variable updates. In Figure 8.1 and Fig-

ure 8.2, we illustrate the unwanted artifacts of fluid sticking to solid obstacles and domain boundaries

for regular FLIP liquid simulations and demonstrate the results of our adapted CG solver accounting

for separating solid-wall BCs leading to clean separation. When simulating large-scale fluid flow, the

separating effect is more realistic and hence favored. The results for both fluid guiding and separating

solid-wall BCs can be found in our accompanying video1.

8.1. Method

We realize separating BCs with the inequality constraint u · n̂≥ 0, where u and n̂ are fluid velocity and

the normal at fluid-solid faces, as outlined in Section 1.4. Our goal is to keep the system of equations

in the pressure solver linear. In order to achieve both separating BCs while retaining the linear system

1https://youtu.be/Pgbat5MXo8Q
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Figure 8.2.: 2D breaking dam with non-separating (top) vs. separating BCs (bottom) on a 200 × 140 grid at
t = 75,112, 150.

in the pressure solver, we detach the handling of solid-wall BCs from the pressure solver making the

velocity field divergence-free. Hence, we make use of PD, see Section 3.2, where f controls solid-wall

BCs and g enforces free-surface BCs and zero divergence with a regular CG solver, similar to Equa-

tion (3.16). To handle solid-wall BCs in f , we classify fluid-solid faces as separating or non-separating.

Separating faces are solid walls where the fluid is not pushing against but rather moving away from.

Hence, separating faces should allow for positive normal velocity components. Non-separating faces

specify that fluid is pushing into the obstacle. We do not need to account for separating motions but

project the velocity at non-separating faces to the space of velocities that do not flow into solid obstacles.

We assume static obstacles, which have zero velocity on their surface. However, it is straightforward to

implement our method for moving obstacles.

Separating Solid-Wall BCs Our proximal operator prox f ,σ(ξ) is responsible for velocities at fluid-

solid faces and hence, to allow fluid to detach from detach from obstacles while preventing the fluid

to flow into them, i.e., negative normal velocity components are prohibited: u · n̂≥ 0. BCs forming

a linear constraint, here on the velocity, can be realized as orthogonal projections [MCPN08]. As we

require normal velocity components to be zero, our proximal operator is an orthogonal projection onto

the space of velocity fields with non-negative normal velocity components at fluid-solid faces CNN normal.

We denote this orthogonal projection with ΠNN normal, which is easily implemented by setting negative

normal components to zero. Our proximal operator handling solid-wall BCs is given by

prox f ,σ(ξ) = ΠNN normal(ξ).

The second proximal operator is the common proxg,1/τ(ξ) in Equation (3.16), which is, however,
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Figure 8.3.: Classification of solid faces into non-separating (left) and separating (right). The green and red
arrows denote ui · n̂i and mi respectively, while the black bars indicate εCG.

not aware of any solid obstacle in this case. The pressure solver treats solid-wall BCs as free-surface

with p = 0 in solid cells. In Section 8.1.1, we propose an accelerated version where the pressure solver

includes the handling of solid-wall BCs at non-separating faces. Yet, in the standard version, we cleanly

separate the handling of solid-wall BCs from the pressure solver.

While these two projections in prox f and proxg would work for exact solutions, small positive veloc-

ities are accumulated during PD iterations, as the pressure solver exhibits only finite accuracy. These

accumulated velocities cause small separating motions where the fluid should only move tangentially or

stand still, such as for hydrostatic cases with exactly zero velocities. To circumvent such small motions,

we present a classification step with temporal coherence.

We first assume that all our fluid-solid faces i are separating, and create a list of non-separating faces

Snsep. The classification of separating and non-separating faces is only altered, if the absolute value

of the normal velocity component at the given face is larger than the accuracy of the CG solver, i.e.,

|ui · n̂i| > εCG. A separating face is classified as non-separating, if the fluid has a negative or zero

normal velocity at its face, i.e., ui · n̂i ≤ 0. At non-separating faces, zero normal velocity components

are enforced, as positive normal velocity components are prohibited. In order to ensure temporal

coherence, i.e., prevent small numerical errors to affect classification, we accumulate negative normal

velocity components created by the pressure solver in each PD iteration. We store these accumulated

velocities in our memory field mi . A non-separating face is classified as separating if its normal velocity

component is positive and if its absolute value exceeds the magnitude of the memory field, i.e., ui ·n̂i > 0

and |ui · n̂i| ≥ mi . Conditioning classification with the memory field yields a hysteresis preventing

inaccuracies to change classification states and therefore leads to reliable convergence.

The classification procedure is portrayed in Figure 8.3 by means of two fluid-solid faces with positive

normal velocity. In both cases, the faces have the potential to changes state, as the absolute value of the

normal velocity (green) exceeds the CG’s accuracy threshold, i.e. εCG, |ui ·n̂i|> εCG. On the left, fluid is

pushing against a solid cell. Although the normal velocity is positive, the non-separating classification

of the face is not changed, as the previously accumulated negative normal velocities in mi (red) are

larger. The classification as a non-separating face leads to setting the green positive normal velocity to

zero later on. As visualized, the fluid on the right side of Figure 8.3 is not pushing against the obstacle

but rather flowing tangentially or even separating from it. This is indicated by the large positive normal
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Algorithm 10 Classification of fluid-solid faces

1: procedure CLASSIFY(u, m, εCG, Snsep)
2: for all boundary faces i, with |ui · n̂i| ≥ εCG do
3: if ui · n̂i ≤ 0 then
4: Snsep← Snsep ∪ {i} . non-separating
5: mi ←mi + ui · n̂i
6: else if ( |ui · n̂i| ≥ |mi| ) then
7: Snsep← Snsep \ {i} . make separating
8: mi ← 0
9: end if

10: end for
11: end procedure

Algorithm 11 prox f ,σ for separating solid-wall BCs

1: procedure PROXF(ξ, Snsep) . implements ΠNN normal(ξ, Snsep) for non-separating faces
2: for all i ∈ Snsep do ξi ← ξi − (ξi · n̂)n̂
3: return ξ
4: end procedure

velocity, which is greater than the accumulated memory field. Hence, the liquid boundary is treated as

free surface and the velocity is allowed to move freely.

We outline our classification procedure in Algorithm 10. After initializing all fluid-solid faces to

be separating, we perform classification on z, which is the solution of PD. This means that we call

CLASSIFY(u, m, εCG, Snsep) in Algorithm 1 after line 4. As described above, the classification procedure

updates the list on non-separating faces Snsep based on the current velocity u and the memory field

m. In the proximal operator prox f ,σ(ξ), we set the normal velocity components of non-separating

fluid-solid faces to zero, as specified in Algorithm 11.

Convergence Speedup In order to improve convergence, we adapt a Krylov method for IOP [MCPN08],

as we found it to speed up our BCs solver. The corresponding pseudocode can be found in Section 3.2.3.

Furthermore, we apply an adaptive parameter scheme [CP11] to dynamically adapt the values ofσ,τ,θ

based on a novel parameter γ. We choose the following initial values (σ0,τ0,γ0) = (1/τ0, 150,200).

The parameter updates are given by

θ k← 1/
Æ

1+ 2τk−1γ

σk← σk−1/θ k

τk← τk−1θ k.

Both extensions greatly speed up convergence, but are specific for proximal operators defined as or-

thogonal projections.
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Algorithm 12 Accelerated separating BCs solver

1: procedure SOLVEPRESSUREWITHSEPARATINGBCS(u, εCG)
2: Snsep = 0 . no face is classified as non-separating yet
3: CLASSIFY(u, ·, ε, Snsep) . Algorithm 10
4: while Snsep did not change in last call of CLASSIFY do
5: u= PROXF(u, Snsep) . Algorithm 11
6: u= ΠDIV(u, εCG) . Equation (3.16)
7: CLASSIFY(u, ·, ε, Snsep) . Algorithm 10
8: end while
9: end procedure

8.1.1. Accelerated Solver

Our presented variant of BCs solver follows the standard splitting approach as in other works [MCPN08,

Hen12]. However, we can reduce the total number of iterations significantly if we allow the pressure

solver to partially handle solid-wall BCs as well, namely, the ones it is capable of enforcing. Hence,

we include the solid-wall BCs at non-separating faces, where u · n̂= 0, in the pressure solver instead of

in f . The pressure solver thus uses Neumann BCs for non-separating fluid-solid faces and, as before,

Dirichlet (free-surface) BCs for separating faces.

We outline the pseudocode for our accelerated variant in Algorithm 12. We first classify fluid-solid

faces into separating and non-separating ones depending on the initial velocity field. Then, we it-

erate over setting normal velocities at non-separating faces to zero in Algorithm 11 (line 5), which

implements ΠNN normal(ξ, Snsep), using a regular CG solver to enforce incompressibility (line 6), and re-

classifying fluid-solid faces with Algorithm 10 (line 7). As the pressure solver enforces zero velocities

at non-separating fluid-solid faces, such faces cannot change back to separating. This is a difference

to the standard variant leading to slight deviations in the resulting velocity. In practice, we found

these differences to be negligible. Hence, classification is locked. Therefore, the accelerated BCs solver

does not require the memory field m, where we instead use the placeholder "·". As classification of

non-separating faces is locked, our the accelerated version converges to a stable solution within few

iterations.

8.2. Evaluation and Results

We first validate our separating solid-wall BCs solver on a 200×140 breaking dam scene by classifying

all fluid-solid faces as non-separating, i.e., enforcing regular, non-separating BCs. We found our solver

to produce the same results as a common CG pressure solver obtaining arbitrary levels of accuracy

depending on the choice of εCG and PD stopping criterion threshold ε. Hence, our solver converges

to the correct solution for non-separating BCs. In regard to separating BCs, we only compare our PD-

based solver to ADMM- and IOP-based solvers from previous convex optimization works, as the regular
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(a) IOP/ADMM/PD iterations (b) Sum of CG iterations (c) Run time in seconds

Figure 8.4.: 2D breaking dam with mean quantities per time step.

CG solver is unable to produce such separating effects. In all our experiments, we choose εCG = 10−5

and εabs = εrel = 10−3.

When evaluating performance, we compare both PD/ADMM/IOP and total CG iteration numbers.

Both influence run time, but the number of CG iterations accumulated over PD/ADMM/IOP iterations

has stronger impact as shown in Figure 8.4 for a 2D breaking dam scene. The number of PD iterations

is slightly higher compared to ADMM and IOP due to our adaptive CG accuracy scheme. However, our

method is six and more than two times faster than ADMM and IOP, respectively, as shown in Figure 8.4c.

We need less PD iterations than ADMM and IOP iterations, but even less total CG iterations, as presented

in Figure 8.4a and Figure 8.4b.

Performance measurements for a complex 3D breaking dam simulation with multiple solid obstacles

on a 256 × 230 × 256 grid lead to similar results as shown in Figure 8.5. Due to ADMM’s poor per-

formance and hence infeasible run times, we omit such a comparison in the 3D case. The accelerated

variant of our BCs solver seriously speeds up each method, such that PD performs on par with IOP. As

the accelerated version requires only very few iterations, namely 3-4, the higher-order convergence of

PD is not fully exploited.

A visualization of our complex breaking dam is presented in Figure 8.1 where the importance of

liquid separating smoothly from solids becomes obvious. As illustrated, non-separating solid-walls

yield undesirable fluid behavior of large amounts of liquid crawling up walls and sticking to obstacles.

Our method produces much more plausible large-scale splashy motions with liquid separating naturally

from solids.

Our accelerated separating BCs solver takes 38.7 s on average per time step. Considering the overall

run time for one frame, including surface generation, our method requires only 12 % more compu-

tational time compared to a regular pressure solver while allowing for separating large-scale motion.

Such increase of run time is a small effort considering the use of a simple CG solver without the need

for specialized techniques, such as LCP solvers [GB13]. Even though LCPs have been researched on in

detail and well-performing solvers exists, such as [ANE17], these problems still belong to complexity

classes making high-resolution simulations challenging. For example, Gerszewski and Bargteil [GB13]
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Figure 8.5.: 3D complex breaking dam with mean run time in seconds per time step.

require approximately 25 s for each LCP solve on a 1003 grid while the solver by Andersen et al. [ANE17]

needs 46.92 s using an NVIDIA GeForce GTX 1080 and a 1003 grid.
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9
Conclusion and Outlook

“Animation offers a medium of story telling and visual entertainment which can bring
pleasure and information to people of all ages everywhere in the world.”

Walt Disney (2007, The Review)

In this chapter, we summarize and conclude the methods we developed and the results we achieved.

Then, we discuss limitations and outline ideas for future work.

Summary and Conclusion In this thesis, we have introduced PD, a fast first-order Primal-Dual method

proposed by Pock et al. [PCBC09], to fluid simulation for solving several problems targeting more

controllable, realistic, and artifact-free fluid flows for animation. This fast convergent optimization

framework is applicable to a large variety of problems in fluid simulation and other research areas. We

have developed powerful techniques for sparse- or single-view reconstruction of real-world phenomena,

flexible fluid guiding, and separating solid-wall BCs, which altogether enable more controllable and

realistic fluid effects.

We have presented a novel, simple, easy-to-use, and affordable hardware setup with inexpensive

capturing sensors, controllable and influenceable smoke generation, and an automated, accurate multi-

plane calibration procedure used to obtain pixel-voxel correspondences. For inexpensive optical sen-

sors, we have used cameras mounted on Raspberry Pis. Manipulable smoke motions in terms of speed,

volume, and turbulence have been achieved by controlling the temperature of the smoke and the
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amount of in- and outflow of air. Compared to high-quality, professional capturing setups, our hard-

ware setup is easily reproducible and available to a wide range of people. This setup has enabled us to

capture repeatable and controllable real fluid phenomena from different viewing angles, which can be

used for digital reconstructions.

In order to reconstruct volumetric and complex real-world fluid flows from only sparse views and

with inexpensive sensors, we have constrained a forward fluid simulation to match the given input

videos by using powerful physical constraints, such as tying the residual density to the velocity. We

have also proposed a novel inflow solver for estimating the unseen density inflow and an efficient

approach of incorporating regularizers into a fast tomography solver. The resulting dense and realistic

flow fields can be used for re-simulation, novel visualizations, further editing, incorporation into visual

effects scenes, or guiding operations.

With multiple input video streams, i.e., five, we have reconstructed real-world smoke plumes ac-

curately and created a large-scale data set ScalarFlow of realistic and turbulent scalar flows. Each

reconstruction comprises reconstructed volumetric density and velocity, captured videos, calibration

data, and the corresponding algorithmic framework. Our data set is suitable for many application, e.g.,

as real-world reference data for evaluating simulation methods or for training neural networks. A first

perceptual evaluation study has demonstrated ScalarFlow’s usefulness. The study concludes that the

simulation methods advection-reflection and wavelet turbulence represent real flows best among other

simulation methods. Further, our reconstructions yield dynamics that are comparable to finely resolved

forward simulations. To enable the use of much more general input streams including smartphone

recordings, we have proposed a method for solving the strongly under-determined reconstruction prob-

lem of using just one input video. By making use of strong physical constraints and regularizers, our

results outperform the reconstruction quality of previous work.

For exerting both large-scale and small-scale control over a fluid simulation while permitting the

creation of physically-based, interesting fluid characteristics, we have presented a novel formulation

for fluid guiding. Our guiding scheme can easily be integrated into existing solvers without the need

for complicated extensions. In particular, a simulation is guided to be arbitrarily close to a target

velocity field prescribed by an artist or a low-resolution simulation allowing for artistic modulations

as well as up-res effects. Furthermore, we have efficiently adapted the commonly used CG pressure

solver to account for separating solid-wall BCs when simulating liquids. Here, we have classified faces

between fluid and solids into separating and non-separating faces, and split the tasks of enforcing

incompressibility and BCs over two proximal operators. The resulting simulation produces visually

appealing large-scale liquid behavior with an increase of only 12 % of run time.

We have shown that it can be appropriate to use IOP instead of PD if all constraints can be realized

as orthogonal projections and if only very few iterations are required for convergence like for the case

of accelerated separating solid-wall BCs.

Discussion and Outlook Regarding our real-world fluid capturing setup, we have found it difficult

to tune the direction of the smoke plumes due to ambient air motions. We plan to either limit such
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motions by installing damping cloth or to make such motions more controllable by influencing them

actively, e.g., through directed air flow. Furthermore, we intend to optimize for initial and boundary

conditions for our reconstructions, e.g., position, size, shape, and amount of density source and amount

of velocity inflow over time, to further reduce discrepancies between re-projections and input images. It

would also be very beneficial to automate reconstruction parameters, e.g., PD convergence parameters

for practical settings or weights for the smoothness and kinetic energy regularizers. The latter need

to be increased, e.g., for higher image intensities, as those lead to larger density values. Since we are

solving a non-linear optimization problem, our algorithm is not guaranteed to converge, which is also

the case for related approaches. However, we found our technique to work well in practice.

As future research it will be interesting to evaluate the effect of increasing the reconstruction reso-

lution, i.e., to verify that even higher resolutions do not capture essentially more features from natural

phenomena compared to moderate reconstruction resolutions. However, as storing the tomography

matrix requires large parts of memory, the tomography part poses a memory bottleneck, especially

when increasing the reconstruction resolution. It would be beneficial in terms of computational costs

to replace our tomography solver with SART or another matrix-free method like Stochastic Tomogra-

phy from [GKHH12]. While our linear image formation model works well with thin smoke captures,

denser phenomena require more complex image formation models, which account for, e.g., scattering

and absorption. Since our tomography solver is a separate module, we plan on evaluating its replace-

ment with a data-driven approach, such as an efficient neural network trained for non-linear image

formation models.

As our data set contains varying smoke plumes in terms of direction, average motion speed, or amount

of smoke, we could create a multitude of reconstructions for each of plume variant and sort the plumes

accordingly. In order to extend our data set further, we aim for creating a completely different effect,

such as a smoke jet flowing in horizontally and rising due to buoyancy. We are confident that our

captured reference data in ScalarFlow enables exciting future applications, such as benchmark tests,

evaluation metrics, accuracy measurements, and evaluations of realism of different simulation meth-

ods. We will also employ this data to train neural networks, e.g., in order to develop new and faster

tomographic reconstruction methods or velocity reconstructions, to speed up forward simulations in

general, to create sparse parameter representations of simulations, or to up-res low-resolution simula-

tions based on real-world data [SDKN18, XFCT18]. Since we do not have access to reliable information

about the depth motion when reconstructing from just a single view, we intend to use data-driven reg-

ularizers to further reduce degrees of freedom along the depth direction.

With our flexible velocity-based fluid guiding method, we are not yet capable of controlling the shape

itself. Therefore, it is difficult to guide liquids, as they require constraints targeting the desired shape.

For such constraints, we need to take the position of the surface into account, which should integrate

well into our optimization pipeline. We could further improve an artist’s workflow by providing au-

tomatic generation of target velocity fields, i.e., such that artistic visuals are created more intuitively.

Furthermore, we plan to combine our guiding scheme with our real-world reconstructions, e.g., to use

the reconstructed velocity field as prescribed velocity field and guide a high-resolution simulation to
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investigate whether structures that are even more turbulent will be created. Our accelerated solid-

wall BC solver deviates slightly from the standard version but we did not observe any visual artifacts

from this highly efficient variant. Multigrid solvers such as [CMF12] could possibly outperform our

solver, but the advantage of our approach is that it is modular, converges fast, and requires only small

implementation changes for regular CG solvers.

In the future, we will make use of our modular, efficient, and versatile optimization scheme PD for

solving many more challenging fluid optimization problems, such as highly complex inverse problems.

Moreover, with our real-world fluid data set, we enable further investigation of advanced fluid behavior

and aim for gaining new insights into the mysteries of turbulence. We intend to train neural networks

to learn the difference between simulated fluid data and real-world fluids, which could not only benefit

fluid animation due to reduced run time and increased realism but also lead to better understanding

of fluid behavior in general.
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A
List of Hardware Components for our Capturing Setup

The prices listed for each component are the ones valid when buying the items. The sum in Euros is

986 €, which makes up less than 1100 $.

1. Black molton cloth: dimensions 3 m× 2 m, 10 €
https://www.amazon.de/dp/B0099352F2/ref=cm_sw_em_r_mt_dp_U_SaWpDbRP0H28D

2. Clips for cloth: 10 €
https://www.amazon.de/dp/B00SFJ1EHG/ref=cm_sw_em_r_mt_dp_U_xdWpDbE6FAQS6

3. Raspberry Pi: version 1, 2, or 3 ≈ 35 €, SD card 10 €, power cable 10 €, seven pieces

https://www.conrad.de/de/p/raspberry-pi-3-b-1-gb-4-x-1-2-ghz-raspberry-pi-

1419716.html

4. Raspberry Pi camera module: V1 35 €, microphone stands 10 €, five pieces

https://www.conrad.de/de/p/raspberry-pi-camera-module-v1-5mp-cmos-farb-kame

ramodul-passend-fuer-raspberry-pi-622959.html

5. Fog machine: Eurolite N-10, dimensions 5.7 cm× 10.8 cm× 6.7 cm, 37 €
https://www.amazon.de/dp/B005DQF9NY/ref=cm_sw_em_r_mt_dp_U_njWpDbMVN4QS1

6. Items for driving remote control of fog machine: 10 €

a) relais: https://www.amazon.de/dp/B07CNR7K9B/ref=cm_sw_em_r_mt_dp_U_8jWpDb

S84HM7E

b) strip board: https://www.conrad.de/de/p/phoenix-contact-eh-45f-16-dev-pcb-

lochrasterplatine-gruen-1-st-1833475.html

c) optical coupler: https://www.conrad.de/de/p/vossloh-schwabe-optokoppler-phot

otransistor-ltv827-dip-8-transistor-dc-187003.html

7. Fog fuid: EUROLITE Smoke Fluid – P, 7.5 €
https://www.conrad.de/de/p/nebelfluid-eurolite-p2d-profi-extrem-1-l-1432431.

html
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8. Machine cleaner: Nebelmaschinen-Reiniger 590298, 16 €
https://www.conrad.de/de/p/nebelmaschinen-reiniger-590298-1-l-590298.html

9. Servo motor: Absima Standard-Servo S60MH Analog-Servo, 14.5 €, two pieces

https://www.conrad.de/de/p/absima-standard-servo-s60mh-analog-servo-getrie

be-material-metall-stecksystem-jr-1677457.html

a) previous version, performing sufficiently: 4er MG90S Mini Metal Gear Analog Servo, 5 €
https://www.conrad.de/de/p/modelcraft-standard-servo-bms-410c-analog-

servo-getriebe-material-kunststoff-stecksystem-jr-404753.html

b) previously used servo for side opening, not needed anymore: Modelcraft Mini-Servo

MC1811 Analog-Servo, 4 €
https://www.conrad.de/de/p/modelcraft-mini-servo-mc1811-analog-servo-

getriebe-material-kunststoff-stecksystem-jr-275460.html

10. Silicone hose: Schlauchland, 4 €
https://www.amazon.de/dp/B0180PZR5E/ref=cm_sw_em_r_mt_dp_U_SrWpDbBX51Y2Y

11. Styrofoam box: Thermobox, expanded polystyrene foam (EPS), dimensions 54.5 cm× 35 cm×
30 cm, 9 €
https://www.hornbach.de/shop/Thermobox-mit-Deckel-gross/5991349/artikel.html

12. Heating cable: Terrarium heating cable, 17.5 €
https://www.amazon.de/dp/B01N95UWEO/ref=cm_sw_em_r_mt_dp_U_TsWpDbY9KZCYK

13. Metallic fence: hadra G12500V5I verzinktes, punktgeschweißtes Gitter, 16 €
https://www.amazon.de/dp/B00GR0XS92/ref=cm_sw_em_r_mt_dp_U_hxWpDb6RW43FV

14. Controller thermostat: KKmoon Thermostat Controller, 14 €
https://www.amazon.de/dp/B01EFSD04U/ref=cm_sw_em_r_mt_dp_U_cyWpDbNFY1BVR

15. Timer: GAO Mechanischer Countdown Timer, 10 €
https://www.amazon.de/dp/B00KACQ00W/ref=cm_sw_em_r_mt_dp_U_AyWpDbZZSKNHE

16. Stepping motor: Quimat Nema 17 Schrittmotor, 24 €
https://www.amazon.de/dp/B06XT3HKRX/ref=cm_sw_em_r_mt_dp_U_KuWpDbA75RDVT

17. Rail: 1204 Ball Screw Linear Rail Stroke Long Stage Actuator with Stepper Motor 400MM, 75 €
https://www.ebay.de/itm/1204-Ball-Screw-Linear-Rail-Stroke-Long-Stage-Actu

ator-w-Stepper-Motor-400MM/372110386346?hash=item56a381e4aa:g:fQsAAOSwcXVZ

6aSZ (not available any more, a comparable item is https://www.ebay.de/itm/DE-200m

m-Stroke-Linear-Guide-Rail-Stage-1605-Ball-Screw-Motion-Actuator-Stepper/

264383115222?hash=item3d8e762fd6:g:BuAAAOSwfjdbaUkI)

18. Smaller items: network cables, wood, glue, 100 €
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B
Derivation of Reconstruction Optimization Problem

Here, we derive our optimization problem in Figure 4.2 step-by-step starting with the brightness con-
stancy assumption plus constraints based on the full quantities ut and Φt .

minimize
ut ,Φt
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. linearize advection :
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. Φ̃t =A(Φt−1 + Φ̃t
I , ũ

t),
. remove constant terms

≡ minimize
∆ut ,Φt
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B. DERIVATION OF RECONSTRUCTION OPTIMIZATION PROBLEM

subject to ut |I = c
�

�.ut = ũt +∆ut , where c is inflow speed

≡ ũt |I +∆ut |I = c

≡ ∆ut |I = c − ũt |I , (B.2)

∇ · ut = 0
�

�.ut = ũt +∆ut

≡ ∇ · (ũt +∆ut) = 0
�

�. ũt is div-free

≡ ∇ ·∆ut = 0, (B.3)

PΦt − i t = 0
�

�. Φt =A(Φt−1 +Φt
I ,u

t)

≡ PA(Φt−1 +Φt
I ,u

t)− i t = 0
�

�.ut = ũt +∆ut , Φ̃t
I ≈ Φ

t
I , linearize advection

≡ PA(A(Φt−1 + Φ̃t
I , ũ

t),∆ut)− i t = 0
�

�. Φ̃t =A(Φt−1 + Φ̃t
I , ũ

t)

≡ PA(Φ̃t ,∆ut)− i t = 0
�

�.A(Φ̃t ,∆ut) = Φ̃t +∆Φt ⇒ Φt ≈ Φ̃t +∆Φt

≡ PΦ̃t + P∆Φt − i t = 0,
�

�. ĩ t = PΦ̃t

≡ P∆Φt − (i t − ĩ t) = 0,
�

�.∆i t = i t − ĩ t

≡ P∆Φt −∆i t = 0, (B.4)

Φt ≥ 0
�

�.Φt ≈ Φ̃t +∆Φt

≡ Φ̃t +∆Φt ≥ 0

≡ ∆Φt ≥ −Φ̃t . (B.5)
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